Science.gov

Sample records for platinum alloys

  1. Failure mechanism characterization of platinum alloy

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.; Mcfarlen, W. T.

    1986-01-01

    This article describes procedures and results of testing performed on a platinum/10-percent rhodium, thin-wall tubular product. The purpose of the testing was to develop exemplar SEM fractographs to be used to characterize failures under various environmental conditions. Conditions evaluated for the platinum alloys included high temperature, hydrogen environment, braze metal contamination, and cyclic loading.

  2. De-alloyed platinum nanoparticles

    DOEpatents

    Strasser, Peter; Koh, Shirlaine; Mani, Prasanna; Ratndeep, Srivastava

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  3. Oxidation performance of platinum-clad Mo-47Re alloy

    NASA Technical Reports Server (NTRS)

    Clark, Ronald K.; Wallace, Terryl A.

    1994-01-01

    The alloy Mo-47Re has favorable mechanical properties at temperatures above 1400 C, but it undergoes severe oxidation when used in air with no protective coating. To shield the alloy from oxidation, platinum cladding has been evaluated. The unprotected alloy undergoes catastrophic oxidation under static and dynamic oxidation conditions. The platinum cladding provides good protection from static and dynamic oxidation for moderate times at 1260 C. Samples tested for longer times under static oxidation conditions experienced severe oxidation. The data suggest that oxidation results from the transport of oxygen through the grain boundaries and through the pinhole defects of the platinum cladding.

  4. Bimetallic alloy electrocatalysts with multilayered platinum-skin surfaces

    DOEpatents

    Stamenkovic, Vojislav R.; Wang, Chao; Markovic, Nenad M.

    2016-01-26

    Compositions and methods of preparing a bimetallic alloy having enhanced electrocatalytic properties are provided. The composition comprises a PtNi substrate having a surface layer, a near-surface layer, and an inner layer, where the surface layer comprises a nickel-depleted composition, such that the surface layer comprises a platinum skin having at least one atomic layer of platinum.

  5. Atomic engineering of platinum alloy surfaces.

    PubMed

    Li, Tong; Bagot, P A J; Marquis, E A; Edman Tsang, S C; Smith, G D W

    2013-09-01

    A major practical challenge in heterogeneous catalysis is to minimize the loading of expensive platinum group metals (PGMs) without degrading the overall catalytic efficiency. Gaining a thorough atomic-scale understanding of the chemical/structural changes occurring during catalyst manufacture/operation could potentially enable the design and production of "nano-engineered" catalysts, optimized for cost, stability and performance. In the present study, the oxidation behavior of a Pt-31 at% Pd alloy between 673-1073 K is investigated using atom probe tomography (APT). Over this range of temperatures, three markedly different chemical structures are observed near the surface of the alloy. At 673 K, the surface oxide formed is enriched with Pd, the concentration of which rises further following oxidation at 773 K. During oxidation at 873 K, a thick, stable oxide layer is formed on the surface with a stoichiometry of PdO, beneath which a Pd-depleted (Pt-rich) layer exists. Above 873 K, the surface composition switches to enrichment in Pt, with the Pt content increasing further with increasing oxidation temperature. This treatment suggests a route for tuning the surfaces of Pt-Pd nanoparticles to be either Pd-rich or Pt-rich, simply by adjusting the oxidation temperatures in order to form two different types of core-shell structures. In addition, comparison of the oxidation behavior of Pt-Pd with Pt-Rh and Pd-Rh alloys demonstrates markedly different trends under the same conditions for these three binary alloys. PMID:23276526

  6. Platinum- and platinum alloy-coated palladium and palladium alloy particles and uses thereof

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir Branko

    2010-04-06

    The present invention relates to particle and nanoparticle composites useful as oxygen-reduction electrocatalysts. The particle composites are composed of a palladium or palladium-alloy particle or nanoparticle substrate coated with an atomic submonolayer, monolayer, bilayer, or trilayer of zerovalent platinum atoms. The invention also relates to a catalyst and a fuel cell containing the particle or nanoparticle composites of the invention. The invention additionally includes methods for oxygen reduction and production of electrical energy by using the particle and nanoparticle composites of the invention.

  7. Platinum-ruthenium-palladium alloys for use as a fuel cell catalyst

    DOEpatents

    Gorer, Alexander

    2002-01-01

    A noble metal alloy composition for a fuel cell catalyst, a ternary alloy composition containing platinum, ruthenium and palladium. The alloy shows increased activity as compared to well-known catalysts.

  8. Surface segregations in platinum-based alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Yamakawa, Shunsuke; Asahi, Ryoji; Koyama, Toshiyuki

    2014-04-01

    A phase-field model that describes the radial distributions of the ordered-disordered phase and surface segregation in a single-alloy nanoparticle is introduced to clarify the overall behavior of surface segregation of various Pt-based alloy nanoparticles. One of the obstacles to apply a platinum-transition metal alloy as a cathode electro-catalyst of a polymer electrolyte fuel cell is the need to ensure the retention of the designed surface composition in an alloy nanoparticle against the alloy combinations, a particle size, and heat treatment. From the results of calculations for CrPt, FePt, CoPt, NiPt, CuPt, PdPt, IrPt, and AuPt binary nanoparticles with diameters below 10 nm at 973.15 K, the compositional variation within a single particle was found to depend on the balance between the atomic interaction within particles and the surface free energy. In addition, the obtained specific steady-state composition of the surface varied significantly with alloy combination and particle diameter. Based on the general tendencies of a binary system to exhibit segregation, attempts to control the amount of platinum segregation on the surface using a ternary-alloy system were examined.

  9. Joining lead wires to thin platinum alloy films

    NASA Technical Reports Server (NTRS)

    Przybyszewski, J. S.; Claing, R. G. (Inventor)

    1983-01-01

    A two step process of joining a lead wire to .000002 m thick platinum alloy film which rests upon an equally thin alumina insulating layer which is adhered to a metal substrate is described. Typically the platinum alloy film forms part of a thermocouple for measuring the surface temperature of a gas turbine airfoil. In the first step the lead wire is deformed 30 to 60% at room temperature while the characteristic one million ohm resistance of the alumina insulating layer is monitored for degradation. In the second step the cold pressed assembly is heated at 865 to 1025 C for 4 to 75 hr in air. During the heating step any degradation of insulating layer resistance may be reversed, provided the resistance was not decreased below 100 ohm in the cold pressing.

  10. Rumpling phenomenon in platinum modified Ni-Al alloys

    SciTech Connect

    Zimmerman, Benjamin Joseph

    2005-05-01

    Surface undulations known as rumpling have been shown to develop at the surface of bond coats used in advanced thermal barrier coating systems. Rumpling can result in cracking and eventual spallation of the top coat. Many mechanisms to explain rumpling have been proposed, and among them is a martensitic transformation. High-temperature x-ray diffraction, differential scanning calorimetry and potentiometry were used to investigate the nature of the martensitic transformation in bulk platinum-modified nickel aluminides. It was found that the martensitic transformation has strong time dependence and can form over a range of temperatures. Cyclic oxidation experiments were performed on the bulk alloys to investigate the effect of the martensitic transformation on surface rumpling. It was found that the occurrence of rumpling was associated with the martensitic transformation. The degree of rumpling was found to increase with an increasing number of cycles and was independent of the heating and cooling rates used. The thickness of the oxide layer at the surface of the samples had a significant impact on the amplitude of the resulting undulations, with amplitude increasing with increasing oxide-layer thickness. Rumpling was also observed in an alloy based on the {gamma}-{gamma}' region of the nickel-aluminum-platinum phase diagram. Rumpling in this alloy was found to occur during isothermal oxidation and is associated with a subsurface layer containing a platinum-rich phase known as a. Rumpling in both alloy systems may be explained by creep deformation of a weakened subsurface layer in response to the compressive stresses in the thermally grown oxide layer.

  11. BOWIEITE: A NEW RHODIUM-IRIDIUM-PLATINUM SULFIDE IN PLATINUM-ALLOY NUGGETS, GOODNEWS BAY, ALASKA.

    USGS Publications Warehouse

    Desborough, George A.; Criddle, Alan J.

    1984-01-01

    Bowieite (Rh,Ir,Pt)//2S//3, a new mineral species, is found in three nuggets of platinum from Goodnews Bay, Alaska. In linearly polarized reflected light, and compared to the host, higher reflecting white platinum-iridium alloy, bowieite is pale gray to pale gray-brown; neither bireflectance nor reflectance pleochroism is apparent. With polars crossed, its anisotropic rotation tints vary from gray to dark brown. Luminance values (relative to the CIE illuminant C) for R//1 and R//2, computed from full spectral data for the most bireflectant grain, are 45. 8% and 48. 2% in air, and 30. 5% and 33. 0% in oil, respectively. VHN//1//0//0 1288 (858 to 1635). Bowieite is orthorhombic, space group Pnca, with a 8. 454(7) -8. 473(8), b 5. 995(1)-6. 002(7), c 6. 143(1)-6. 121(8) A, Z equals 4. Some grains that are 2. 6 to 3. 8 atomic % metal-deficient occur as an optically coherent rim on bowieite; the rim and the bowieite grain are not optically continuous.

  12. Measurements of thermoelectric power in annealed and quenched gold-platinum alloys

    NASA Technical Reports Server (NTRS)

    Baarle, C. V.; Huebener, R. P.

    1969-01-01

    Report gives measurements of absolute thermoelectric powers of dilute gold-platinum alloys and influence of quenched-in lattice vacancies on their thermoelectric powers. It investigates phonon-drag component of thermoelectric power as a function of platinum concentration, and change in phonon-drag thermoelectric power by lattice vacancies.

  13. Cyclic electrodeposition of PtCu alloy: facile fabrication of highly porous platinum electrodes.

    PubMed

    Kloke, Arne; Köhler, Christian; Gerwig, Ramona; Zengerle, Roland; Kerzenmacher, Sven

    2012-06-01

    Cyclic electrodeposition of platinum and copper enables the fabrication of high surface area electrodes (roughness factors of >3000) by multiple alternation of alloy co-deposition and dealloying of copper from the just-fabricated alloy layers. The underlying processes, resulting electrode structures, and their applicability to potentially implantable glucose fuel cells are discussed. PMID:22549848

  14. Electrodeposition of platinum-iridium alloy nanowires for hermetic packaging of microelectronics.

    PubMed

    Petrossians, Artin; Whalen, John J; Weiland, James D; Mansfeld, Florian

    2012-01-01

    An electrodeposition technique was applied for fabrication of dense platinum-iridium alloy nanowires as interconnect structures in hermetic microelectronic packaging to be used in implantable devices. Vertically aligned arrays of platinum-iridium alloy nanowires with controllable length and a diameter of about 200 nm were fabricated using a cyclic potential technique from a novel electrodeposition bath in nanoporous aluminum oxide templates. Ti/Au thin films were sputter deposited on one side of the alumina membranes to form a base material for electrodeposition. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to characterize the morphology and the chemical composition of the nanowires, respectively. SEM micrographs revealed that the electrodeposited nanowires have dense and compact structures. EDS analysis showed a 60:40% platinum-iridium nanowire composition. Deposition rates were estimated by determining nanowire length as a function of deposition time. High Resolution Transmission Electron Microscopy (HRTEM) images revealed that the nanowires have a nanocrystalline structure with grain sizes ranging from 3 nm to 5 nm. Helium leak tests performed using a helium leak detector showed leak rates as low as 1 × 10(-11) mbar L s(-1) indicating that dense nanowires were electrodeposited inside the nanoporous membranes. Comparison of electrical measurements on platinum and platinum-iridium nanowires revealed that platinum-iridium nanowires have improved electrical conductivity. PMID:23365995

  15. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-08-01

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon.

  16. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction.

    PubMed

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-01-01

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon. PMID:27503412

  17. Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit

    NASA Astrophysics Data System (ADS)

    Lucci, Felicia R.; Liu, Jilei; Marcinkowski, Matthew D.; Yang, Ming; Allard, Lawrence F.; Flytzani-Stephanopoulos, Maria; Sykes, E. Charles H.

    2015-10-01

    Platinum is ubiquitous in the production sectors of chemicals and fuels; however, its scarcity in nature and high price will limit future proliferation of platinum-catalysed reactions. One promising approach to conserve platinum involves understanding the smallest number of platinum atoms needed to catalyse a reaction, then designing catalysts with the minimal platinum ensembles. Here we design and test a new generation of platinum-copper nanoparticle catalysts for the selective hydrogenation of 1,3-butadiene,, an industrially important reaction. Isolated platinum atom geometries enable hydrogen activation and spillover but are incapable of C-C bond scission that leads to loss of selectivity and catalyst deactivation. γ-Alumina-supported single-atom alloy nanoparticle catalysts with <1 platinum atom per 100 copper atoms are found to exhibit high activity and selectivity for butadiene hydrogenation to butenes under mild conditions, demonstrating transferability from the model study to the catalytic reaction under practical conditions.

  18. Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit.

    PubMed

    Lucci, Felicia R; Liu, Jilei; Marcinkowski, Matthew D; Yang, Ming; Allard, Lawrence F; Flytzani-Stephanopoulos, Maria; Sykes, E Charles H

    2015-01-01

    Platinum is ubiquitous in the production sectors of chemicals and fuels; however, its scarcity in nature and high price will limit future proliferation of platinum-catalysed reactions. One promising approach to conserve platinum involves understanding the smallest number of platinum atoms needed to catalyse a reaction, then designing catalysts with the minimal platinum ensembles. Here we design and test a new generation of platinum-copper nanoparticle catalysts for the selective hydrogenation of 1,3-butadiene,, an industrially important reaction. Isolated platinum atom geometries enable hydrogen activation and spillover but are incapable of C-C bond scission that leads to loss of selectivity and catalyst deactivation. γ-Alumina-supported single-atom alloy nanoparticle catalysts with <1 platinum atom per 100 copper atoms are found to exhibit high activity and selectivity for butadiene hydrogenation to butenes under mild conditions, demonstrating transferability from the model study to the catalytic reaction under practical conditions. PMID:26449766

  19. Chemically synthesized Iron-Platinum binary alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Colak, Levent

    In this dissertation, we explored the fabrication of FePt nanoparticles prepared by a solution-phase synthesis route and characterized their structural/ microstructural and magnetic properties both to gain a fundamental understanding and to check their compatibility for technological applications in ultra high density magnetic storage media. Monodispersed Fe-Pt alloy NPs (nanoparticles) have been prepared by thermal decomposition of iron pentacarbonyl [Fe(CO)5] and reduction of platinum acetylacetonate [Pt(acac)2] with dibenzyl ether in the presence of oleic acid (OA) and oleyl amine (OAm) as surfactants. The composition of the nanoparticles was adjusted by changing the Fe(CO)5/Pt(acac) 2 molar ratio while fixing the Pt(acac)2 amount. Two phases of Fe-Pt binary alloy, FePt3 and FePt, were obtained successfully with the molar ratios of 1.5 and 2.1, respectively. The size of FePt NPs was tuned in the range of 3-6 nm by controlling the injection temperature of the iron precursor. It was found that, low injection temperature of precursors and the usage of surfactants as a reaction solvent, together with a slow heating to a low refluxing temperature were the key parameters for the formation of cubic nanoparticles. Spherical, cubic (with rounded edges) and octapod shapes were successfully produced by changing the OAm/OA molar ratio. Nanorods were formed by simply adjusting the injection time of the surfactants. Although it was reported in the literature that the dominant mechanism of formation of NPs involves the initial formation of platinum rich clusters followed by the gradual diffusion of iron atoms into these clusters during the synthesis, in this work it is clearly shown that Fe rich seeds do form in the early stages of the reaction. And it was these competitive nucleation sites that cause a compositional distribution between individual FePt particles in the final sample, although a narrow distribution is measured for the overall composition. As-synthesized NPs

  20. Nanostructured Platinum Alloys for Use as Catalyst Materials

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor); Narayan, Sri R. (Inventor)

    2013-01-01

    A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.

  1. Nanostructured Platinum Alloys for Use as Catalyst Materials

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor); Narayan, Sri R. (Inventor)

    2015-01-01

    A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.

  2. Hydrogen spillover on platinum-zirconium alloys and feasibility of its use in electrocatalysis

    SciTech Connect

    Petrii, O.A.; Vasina, S.Ya.; Seropegin, Yu.D.

    1995-12-01

    The effect of hydrogen spillover on electrodes prepared from Pt-Zr (from 0.4 to 4 wt% Zr) alloys, which were subjected to heat-treatment in the atmosphere of air or in vacuum at temperatures ranging from 600 to 800{degrees}C, is discovered and investigated. The superequivalent (with respect to the oxygen being adsorbed and copper adatoms) quantity of reversibly adsorbed hydrogen is shown to depend on the concentration of zirconium in the alloy as well as on the temperature and annealing time of the sample. A conclusion is made that a disperse oxide-zirconium phase may form at the surface of the alloys, to which hydrogen spills from the platinum centers. The zirconium additives are found to lower the electrocatalytic activity of platinum in the methanol oxidation reaction. The presence of the spillover effect leads to an increase in the reduction currents of maleic acid.

  3. Multistep electrochemical deposition of hierarchical platinum alloy counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Junjun; Ma, Mingming; Tang, Qunwei; Yu, Liangmin

    2016-01-01

    The preferred platinum counter electrode (CE) has been a burden for commercialization of dye-sensitized solar cell (DSSC) due to high expense and chemical corrosion by liquid electrolyte. In the current study, we have successfully realized the multistep deposition of platinum alloy CEs including PtNi, PtFe, and PtCo for liquid-junction DSSC applications. The preliminary results demonstrate that the enhanced electrochemical activities are attributable to high charge-transfer ability and matching work functions of the PtM (M = Ni, Fe, Co) alloy CEs to redox potential of I-/I3- electrolyte. The resultant DSSCs yield impressive power conversion efficiencies of 8.65%, 7.48%, and 7.08% with PtNi, PtFe, and PtCo CEs, respectively. On behalf of the competitive reactions between transition metals with liquid electrolyte, the PtM alloy CEs display enhanced long-term stability.

  4. High-temperature thermodynamic activities of zirconium in platinum alloys determined by nitrogen-nitride equilibria

    SciTech Connect

    Goodman, D.A.

    1980-05-01

    A high-temperature nitrogen-nitride equilibrium apparatus is constructed for the study of alloy thermodynamics to 2300/sup 0/C. Zirconium-platinum alloys are studied by means of the reaction 9ZrN + 11Pt ..-->.. Zr/sub 9/Pt/sub 11/ + 9/2 N/sub 2/. Carful attention is paid to the problems of diffusion-limited reaction and ternary phase formation. The results of this study are and a/sub Zr//sup 1985/sup 0/C/ = 2.4 x 10/sup -4/ in Zr/sub 9/Pt/sub 11/ ..delta..G/sub f 1985/sup 0/C//sup 0/ Zr/sub 9/Pt/sub 11/ less than or equal to -16.6 kcal/g atom. These results are in full accord with the valence bond theory developed by Engel and Brewer; this confirms their prediction of an unusual interaction of these alloys.

  5. Activation energies for oxygen reduction on platinum alloys: theory and experiment.

    PubMed

    Anderson, Alfred B; Roques, Jérôme; Mukerjee, Sanjeev; Murthi, Vivek S; Markovic, Nenad M; Stamenkovic, Vojislav

    2005-01-27

    A combined theoretical and experimental analysis of the electrode potential dependencies of activation energies is presented for the first step in oxygen reduction over platinum and platinum alloy catalysts in both polycrystalline and carbon supported form. Tafel data for several of the catalysts are used to predict potential-dependent activation energies for oxygen reduction over the 0.6-0.9 V range in strong and weak acid. Comparisons with the theoretical curve show good agreement above 0.8 V, suggesting a fairly constant preexponential factor. Arrhenius determinations of activation energies over the 0.7-0.9 V range yield little trend for weak acid, possibly because of the larger uncertainties in the Arrhenius fits, but the strong acid results have smaller uncertainties and for them the measured activation energies trend up with potential. PMID:16851081

  6. Catalytic Activity of Platinum Monolayer on Iridium and Rhenium Alloy Nanoparticles for the Oxygen Reduction Reaction

    SciTech Connect

    Karan, Hiroko I.; Sasaki, Kotaro; Kuttiyiel, Kurian; Farberow, Carrie A.; Mavrikakis, Manos; Adzic, Radoslav R.

    2012-05-04

    A new type of electrocatalyst with a core–shell structure that consists of a platinum monolayer shell placed on an iridium–rhenium nanoparticle core or platinum and palladium bilayer shell deposited on that core has been prepared and tested for electrocatalytic activity for the oxygen reduction reaction. Carbon-supported iridium–rhenium alloy nanoparticles with several different molar ratios of Ir to Re were prepared by reducing metal chlorides dispersed on Vulcan carbon with hydrogen gas at 400 °C for 1 h. These catalysts showed specific electrocatalytic activity for oxygen reduction reaction comparable to that of platinum. The activities of PtML/PdML/Ir2Re1, PtML/Pd2layers/Ir2Re1, and PtML/Pd2layers/Ir7Re3 catalysts were, in fact, better than that of conventional platinum electrocatalysts, and their mass activities exceeded the 2015 DOE target. Our density functional theory calculations revealed that the molar ratio of Ir to Re affects the binding strength of adsorbed OH and, thereby, the O2 reduction activity of the catalysts. The maximum specific activity was found for an intermediate OH binding energy with the corresponding catalyst on the top of the volcano plot. The monolayer concept facilitates the use of much less platinum than in other approaches. Finally, the results with the PtML/PdML/Ir2Re electrocatalyst indicate that it is a promising alternative to conventional Pt electrocatalysts in low-temperature fuel cells.

  7. Abnormal reduction of coercivity on magnetic cobalt platinum alloy films

    NASA Astrophysics Data System (ADS)

    Su, C. W.; Shern, C. S.

    2006-08-01

    Ultrathin Co-Pt alloy films as substrate were studied by the surface magneto-optical Kerr effect. As the growth of Ni, the films show uniquely high polar Kerr responses without any in-plane signals. The coercivity decreased until the thickness of Ni film was higher than 5 ML. A new surface structure was discovered at 7-10 ML Ni/Co-Pt films by the low-energy electron diffraction. Interestingly, polar Kerr signal and coercivity of the 10 ML Ni/Co-Pt(1 1 1) template film reduced rapidly as Co films were further deposited onto only about 1-2 ML. Then the films show a canted magnetization with a rollback hysteresis in the polar configuration during the growth of Co. Coercivity of the 7 ML Co/Ni/Co-Pt film was found unusually down to almost 100 Oe.The corresponding magic number at around 7 ML of Co in the abnormal reduction of coercivity may be attributed to the cluster formations of Co.

  8. Autocatalysis and selective oxidative etching induced synthesis of platinum-copper bimetallic alloy nanodendrites electrocatalysts.

    PubMed

    Gong, Mingxing; Fu, Gengtao; Chen, Yu; Tang, Yawen; Lu, Tianhong

    2014-05-28

    The controllable synthesis of noble metal alloy nanostructures with highly branched morphology has attracted much attention because of their specific physical and chemical properties. This article reports the synthesis of platinum-copper bimetallic alloy nanodendrites (Pt-Cu BANDs) by a facile, one-pot, templateless, and seedless hydrothermal method in the presence of poly(allylamine hydrochloride) (PAH) and formaldehyde (HCHO). The morphology, composition, and structure of Pt-Cu BANDs are fully characterized by various physical techniques, demonstrating Pt-Cu BANDs are highly alloying, porous, and self-supported nanostructures. The formation/growth mechanism of Pt-Cu BANDs is explored and discussed based on the experimental observations. The autocatalytic growth and interdiffusion are responsible for the formation of Pt-Cu alloy whereas selective oxidative etching results in dendritic morphology of Pt-Cu alloy nanostructures. In addition, the electrocatalytic activity and stability of Pt-Cu BANDs for the methanol oxidation reaction (MOR) are investigated by various electrochemical techniques. The synthesized Pt-Cu BANDs show higher electrocatalytic activity and stability than commercially available Pt black. PMID:24801265

  9. Dissolution Engineering of Platinum Alloy Counter Electrodes in Dye-Sensitized Solar Cells.

    PubMed

    Tang, Qunwei; Zhang, Huihui; Meng, Yuanyuan; He, Benlin; Yu, Liangmin

    2015-09-21

    The dissolution of platinum (Pt) has been one of the heart issues in developing advanced dye-sensitized solar cells (DSSCs). We present here the experimental realization of stable counter-electrode (CE) electrocatalysts by alloying Pt with transition metals for enhanced dissolution resistance to state-of-the-art iodide/triiodide (I(-)/I3(-)) redox electrolyte. Our focus is placed on the systematic studies of dissolution engineering for PtM0.05 (M=Ni, Co, Fe, Pd, Mo, Cu, Cr, and Au) alloy CE electrocatalysts along with mechanism analysis from thermodynamical aspects, yielding more negative Gibbs free energies for the dissolution reactions of transition metals. The competitive reactions between transition metals with iodide species (I3(-), I2) could protect the Pt atoms from being dissolved by redox electrolyte and therefore remain the high catalytic activity of the Pt electrode. PMID:26220170

  10. Picosecond laser micromachining of nitinol and platinum-iridium alloy for coronary stent applications

    NASA Astrophysics Data System (ADS)

    Muhammad, N.; Whitehead, D.; Boor, A.; Oppenlander, W.; Liu, Z.; Li, L.

    2012-03-01

    The demand for micromachining of coronary stents by means of industrial lasers rises quickly for treating coronary artery diseases, which cause more than one million deaths each year. The most widely used types of laser for stent manufacturing are Nd:YAG laser systems with a wavelength of 1064 nm with pulse lengths of 10-3-10-2 seconds. Considerable post-processing is required to remove heat-affected zones (HAZ), and to improve surface finishes and geometry. Using a third harmonic laser radiation of picosecond laser (6×10-12 s pulse duration) in UV range, the capability of the picosecond laser micromachining of nitinol and platinum-iridium alloy for coronary stent applications are presented. In this study dross-free cut of nitinol and platinum-iridium alloy tubes are demonstrated and topography analysis of the cut surface is carried out. The HAZ characteristics have been investigated by means of microscopic examinations and measurement of micro-hardness distribution near the cut zones.

  11. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts

    SciTech Connect

    Bu, Lingzheng; Ding, Jiabao; Yao, Jianlin; Huang, Xiaoqing; Guo, Shaojun; Zhang, Xu; Lu, Gang; Su, Dong; Zhu, Xing; Guo, Jun

    2015-10-13

    The production of inorganic nanoparticles (NPs) with precise control over structures has always been a central target in various fields of chemistry and physics because the properties of NPs can be desirably manipulated by their structure.[1-4] There has been an intense search for high-performance noble metal NP catalysts particular for Pt.[5-9] Precious platinum (Pt) NPs are active catalysts for various heterogeneous reactions and show particularly superior performance in both the anodic oxidation reaction and the cathodic ORR in the fuel cells, but their rare content and high cost largely impede the practical application.[10-12] A potential strategy to address this tremendous challenge is alloying Pt NPs with the transition metals (TM).[13-16]

  12. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts

    DOE PAGESBeta

    Bu, Lingzheng; Ding, Jiabao; Yao, Jianlin; Huang, Xiaoqing; Guo, Shaojun; Zhang, Xu; Lu, Gang; Su, Dong; Zhu, Xing; Guo, Jun

    2015-10-13

    The production of inorganic nanoparticles (NPs) with precise control over structures has always been a central target in various fields of chemistry and physics because the properties of NPs can be desirably manipulated by their structure.[1-4] There has been an intense search for high-performance noble metal NP catalysts particular for Pt.[5-9] Precious platinum (Pt) NPs are active catalysts for various heterogeneous reactions and show particularly superior performance in both the anodic oxidation reaction and the cathodic ORR in the fuel cells, but their rare content and high cost largely impede the practical application.[10-12] A potential strategy to address this tremendousmore » challenge is alloying Pt NPs with the transition metals (TM).[13-16]« less

  13. An investigation into factors affecting the stability of carbons and carbon supported platinum and platinum/cobalt alloy catalysts during 1.2 V potentiostatic hold regimes at a range of temperatures

    NASA Astrophysics Data System (ADS)

    Ball, S. C.; Hudson, S. L.; Thompsett, D.; Theobald, B.

    To meet automotive targets for fuel cell operation and allow higher temperature operation an understanding of the factors affecting carbon and platinum stability is critical. The stability of both carbons and carbon supported platinum and platinum/cobalt alloy catalysts was studied during 1.2 V versus RHE potentiostatic hold tests using carbon and catalyst coated electrodes in a three-chamber wet electrolyte cell at a range of temperatures. At 80 °C the wt% of carbon corroded increases with increasing BET area. Surface oxidation was followed electrochemically using the quinone/hydroquinone redox couple. Increasing temperature, time at 1.2 V and wt% platinum on the carbon increases surface oxidation. Although increasing temperature was shown to increase the extent of carbon corrosion, catalysing the carbon did not significantly change how much carbon was corroded. Platinum stability was investigated by electrochemical metal area loss (ECA). Platinum catalysts on commercial carbons lost more ECA with increasing temperature. A platinum/cobalt alloy on a low surface area carbon was demonstrated to be more stable to both carbon corrosion and metal area loss at temperatures up to 80 °C than platinum catalysts on commercial carbons, making this material an excellent candidate for higher temperature automotive operation.

  14. LDRD final report on synthesis of shape-and size-controlled platinum and platinum alloy nanostructures on carbon with improved durability.

    SciTech Connect

    Shelnutt, John Allen; Garcia, Robert M.; Song, Yujiang; Moreno, Andres M.; Stanis, Ronald J.

    2008-10-01

    This project is aimed to gain added durability by supporting ripening-resistant dendritic platinum and/or platinum-based alloy nanostructures on carbon. We have developed a new synthetic approach suitable for directly supporting dendritic nanostructures on VXC-72 carbon black (CB), single-walled carbon nanotubes (SWCNTs), and multi-walled carbon nanotubes (MWCNTs). The key of the synthesis is to creating a unique supporting/confining reaction environment by incorporating carbon within lipid bilayer relying on a hydrophobic-hydrophobic interaction. In order to realize size uniformity control over the supported dendritic nanostructures, a fast photocatalytic seeding method based on tin(IV) porphyrins (SnP) developed at Sandia was applied to the synthesis by using SnP-containing liposomes under tungsten light irradiation. For concept approval, one created dendritic platinum nanostructure supported on CB was fabricated into membrane electrode assemblies (MEAs) for durability examination via potential cycling. It appears that carbon supporting is essentially beneficial to an enhanced durability according to our preliminary results.

  15. Partitioning of Si and platinum group elements between liquid and solid Fe-Si alloys

    NASA Astrophysics Data System (ADS)

    Morard, G.; Siebert, J.; Badro, J.

    2014-05-01

    Crystallization of the Earth's inner core fractionates major and minor elements between the solid and liquid metal, leaving physical and geochemical imprints on the Earth's core. For example, the density jump observed at the Inner Core Boundary (ICB) is related to the preferential partitioning of lighter elements in the liquid outer core. The fractionation of Os, Re and Pt between liquid and solid during inner core crystallization has been invoked as a process that explains the observed Os isotopic signature of mantle plume-derived lavas (Brandon et al., 1998; Brandon and Walker, 2005) in terms of core-mantle interaction. In this article we measured partitioning of Si, Os, Re and Pt between liquid and solid metal. Isobaric (2 GPa) experiments were conducted in a piston-cylinder press at temperatures between 1250 °C and 1600 °C in which an imposed thermal gradient through the sample provided solid-liquid coexistence in the Fe-Si system. We determined the narrow melting loop in the Fe-Si system using Si partitioning values and showed that order-disorder transition in the Fe-Si solid phases can have a large effect on Si partitioning. We also found constant partition coefficients (DOs, DPt, DRe) between liquid and solid metal, for Si concentrations ranging from 2 to 12 wt%. The compact structure of Fe-Si liquid alloys is compatible with incorporation of Si and platinum group elements (PGEs) elements precluding solid-liquid fractionation. Such phase diagram properties are relevant for other light elements such as S and C at high pressure and is not consistent with inter-elemental fractionation of PGEs during metal crystallization at Earth's inner core conditions. We therefore propose that the peculiar Os isotopic signature observed in plume-derived lavas is more likely explained by mantle source heterogeneity (Meibom et al., 2002; Baker and Krogh Jensen, 2004; Luguet et al., 2008).

  16. A Generic Wet Impregnation Method for Preparing Substrate-Supported Platinum Group Metal and Alloy Nanoparticles with Controlled Particle Morphology.

    PubMed

    Zhang, Changlin; Oliaee, Shirin Norooz; Hwang, Sang Youp; Kong, Xiangkai; Peng, Zhenmeng

    2016-01-13

    Mass production of shape-controlled platinum group metal (PGM) and alloy nanoparticles is of high importance for their many fascinating properties in catalysis, electronics, and photonics. Despite of successful demonstrations at milligram scale using wet chemistry syntheses in many fundamental studies, there is still a big gap between the current methods and their real applications due to the complex synthetic procedures, scale-up difficulty, and surface contamination problem of the made particles. Here we report a generic wet impregnation method for facile, surfactant-free, and scalable preparation of nanoparticles of PGMs and their alloys on different substrate materials with controlled particle morphology and clean surface, which bridges the outstanding properties of these nanoparticles to practical important applications. The underlying particle growth and shape formation mechanisms were investigated using a combination of ex situ and in situ characterizations and were attributed to their different interactions with the applied gas molecules. PMID:26642094

  17. Platinum-monolayer Electrocatalysts: Palladium Interlayer on IrCo Alloy Core Improves Activity in Oxygen-reduction Reaction

    SciTech Connect

    Gong, K.; Chen, W.-F.; Sasaki, K.; Su, D.; Vukmirovic, M.B.; Zhou, W.; Izzo, E.L.; Perez-Acosta, C.; Hirunsit, P.; Balbuena, P.B.; Adzic, R.R.

    2010-11-15

    We describe the synthesis and electrocatalytic properties of a new low-Pt electrocatalyst consisting of an IrCo core, a Pd interlayer, and a surface Pt monolayer, emphasizing the interlayer's role in improving electrocatalytic activity for the oxygen-reduction reaction on Pt in HClO{sub 4} solution. We prepared the IrCo alloys by decomposing, at 800 C, hexacyanometalate, KCoIr(CN){sub 6}, adsorbed on the carbon surfaces. The synthesis of Ir{sub 3}Co/C involved heating a mix of metal salts and carbon in hydrogen at 500 C. Thereafter, we placed a palladium and/or platinum monolayer on them via the galvanic displacement of an underpotentially deposited copper monolayer. The electrocatalysts were characterized using structural- and electrochemical-techniques. For PtML/PdML/IrCo/C, we observed a Pt mass activity of 1.18 A/mg{sub (Pt)} and the platinum-group-metals mass of 0.16 A/mg{sub (Pt, Pd, Ir)}. In comparison, without a Pd interlayer, i.e., Pt{sub ML}/IrCo/C, the activities of 0.15 A/mg{sub (Pt)} and 0.036 A/mg{sub (Pt, Pd, Ir)} were considerably lower. We consider that the palladium interlayer plays an essential role in achieving high catalytic activity by adjusting the electronic interaction of the platinum monolayer with the IrCo core, so that it accelerates the kinetics of adsorption and desorption of the intermediates of oxygen reduction. A similar trend was observed for Pt{sub ML}/Pd{sub ML} and Pt{sub ML} deposited on Ir{sub 3}Co/C alloy core. We used density functional theory to interpret the observed phenomena.

  18. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.

    PubMed

    Vinayan, B P; Ramaprabhu, S

    2013-06-01

    The efforts to push proton exchange membrane fuel cells (PEMFC) for commercial applications are being undertaken globally. In PEMFC, the sluggish kinetics of oxygen reduction reactions (ORR) at the cathode can be improved by the alloying of platinum with 3d-transition metals (TM = Fe, Co, etc.) and with nitrogen doping, and in the present work we have combined both of these aspects. We describe a facile method for the synthesis of a nitrogen doped (reduced graphene oxide (rGO)-multiwalled carbon nanotubes (MWNTs)) hybrid structure (N-(G-MWNTs)) by the uniform coating of a nitrogen containing polymer over the surface of the hybrid structure (positively surface charged rGO-negatively surface charged MWNTs) followed by the pyrolysis of these (rGO-MWNTs) hybrid structure-polymer composites. The N-(G-MWNTs) hybrid structure is used as a catalyst support for the dispersion of platinum (Pt), platinum-iron (Pt3Fe) and platinum-cobalt (Pt3Co) alloy nanoparticles. The PEMFC performances of Pt-TM alloy nanoparticle dispersed N-(G-MWNTs) hybrid structure electrocatalysts are 5.0 times higher than that of commercial Pt-C electrocatalysts along with very good stability under acidic environment conditions. This work demonstrates a considerable improvement in performance compared to existing cathode electrocatalysts being used in PEMFC and can be extended to the synthesis of metal, metal oxides or metal alloy nanoparticle decorated nitrogen doped carbon nanostructures for various electrochemical energy applications. PMID:23644681

  19. Osmium isotopic compositions of Os-rich platinum group element alloys from the Klamath and Siskiyou Mountains

    NASA Astrophysics Data System (ADS)

    Meibom, Anders; Frei, Robert; Sleep, Norman H.

    2004-02-01

    We present new measurements of 186Os/188Os and 187Os/188Os in 10 Os-rich platinum group element (PGE) alloys from placer deposits formed by the mechanical erosion of peridotite-bearing ophiolites in the Klamath and Siskiyou Mountains in northern California and southwestern Oregon. These data nearly double our database of high-precision 186Os/188Os measurements on such samples. Together with previously published data, our new results reinforce the conclusion that the radiogenic 186Os/188Os compositions of these PGE alloys are very difficult to reconcile with a derivation of their Os from the outer core. Such a model requires extremely early growth of the inner core to its present size, within several hundred million years after accretion of the Earth, which is geophysically implausible. Collectively, our data suggest instead that partial melting or metasomatic processes in the upper mantle play a primary role in controlling the Os isotopic systematics of these Os-rich PGE alloys and suggest the existence of upper mantle components characterized by radiogenic 186Os/188Os ratios. Pyroxene-rich lithologies are possible candidates.

  20. Nanoscale alloying effect of gold-platinum nanoparticles as cathode catalysts on the performance of a rechargeable lithium-oxygen battery

    NASA Astrophysics Data System (ADS)

    Yin, Jun; Fang, Bin; Luo, Jin; Wanjala, Bridgid; Mott, Derrick; Loukrakpam, Rameshowri; Ng, Mei Shan; Li, Zheng; Hong, Jian; Whittingham, M. Stanley; Zhong, Chuan-Jian

    2012-08-01

    The understanding of nanoscale alloying or the phase segregation effect of alloy nanoparticles on the catalytic properties is important for a rational design of the desired catalysts for a specific reaction. This paper describes findings of an investigation into this type of structural effect for carbon-supported bimetallic gold-platinum nanoparticles as cathode catalysts in a rechargeable lithium-oxygen battery. The nanoscale structural characteristics in terms of size, alloying and phase segregation were shown to affect the catalytic properties of the catalysts in the Li-O2 battery. In addition to the composition effect, the catalysts with a fully alloyed phase structure were found to exhibit a smaller discharge-charge voltage difference and a higher discharge capacity than those with a partial phase segregation structure. This finding is significant for the design of alloy nanoparticles as air cathode catalysts in rechargeable lithium-air batteries, demonstrating the importance of the control of the nanoscale composition and phase properties.

  1. Development of platinum-modified gamma-nickel+gamma-nickel-aluminum-based alloys for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Heidloff, Andrew James

    Nickel-base superalloys have been used extensively in high-temperature applications where strength and structural stability are required, most notably in aero gas turbine engines. To increase the efficiency of such engines, a continuous increase in superalloy operating temperatures has been observed. As temperatures continue to increase, multiple aspects of alloy stability become increasingly important. In that regard, the high-temperature performance of superalloys can be generally discussed from two important standpoints, surface stability and structural stability. Historically, structural stability has been the primary concern to alloy designers, such that superalloys that may be exposed to high-temperature applications exceeding 1100°C typically utilize a coating for environmental protection. However, the use of coatings introduces potential deficiencies. For instance, aluminide coatings can lead to extensive instabilities when in contact with newer generation superalloys. Also, a few niche applications exist where the use of a coating is impractical. In such cases, the alloys require both environmental resistance and high-temperature strength. The primary goal of this study was to develop novel heat-treatable gamma-Ni+gamma'-Ni 3Al-based alloys having excellent resistance to both high-temperature oxidation and creep. The alloys were developed in a systematic manner using multiple alloying additions, including Pt and Ir, i.e., platinum group metals (PGMs). The microstructures and environmental and thermal stabilities of the alloys studied were fully characterized through a series of experiments, including: oxidation (both isothermal and cyclic); hot corrosion (both Type I and Type II); microstructure analysis (including lattice misfit); and phase equilibria calculations with partitioning coefficient analysis. Pt modification was found to significantly affect the lattice misfit of an alloy by expanding the gamma' lattice parameter through its Ni sublattice site

  2. Comparison of methanol and ethylene glycol oxidation by alloy and Core-Shell platinum based catalysts

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Burstein, L.; Rosenberg, Yu.; Peled, E.

    2011-10-01

    Two Core-Shell, RuCore-PtShell and IrNiCore-PtRuShell, XC72-supported catalyst were synthesized in a two-step deposition process with NaBH4 as reducing agent. The structure and composition of the Core-Shell catalysts were determined by EDS, XPS and XRD. Electrochemical characterization was performed with the use of cyclic voltammetry. Methanol and ethylene glycol oxidation activities of the Core-Shell catalysts (in terms of surface and mass activities) were studied at 80 °C and compared to those of a commercial Pt-Ru alloy catalyst. The surface activity of the alloy based catalyst, in the case of methanol oxidation, was found to be superior as a result of optimized surface Pt:Ru composition. However, the mass activity of the PtRu/IrNi/XC72 was higher than that of the alloy based catalyst by ∼50%. Regarding ethylene glycol oxidation, while the surface activity of the alloy based catalyst was slightly higher than that of the Pt/Ru/XC72 catalyst, the latter showed ∼66% higher activities in terms of A g-1 of Pt. These results show the potential of Core-Shell catalysts for reducing the cost of catalysts for DMFC and DEGFC.

  3. Magnetic and magneto-optical properties of cobalt-platinum alloys with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Weller, D.; Brändle, H.; Gorman, G.; Lin, C.-J.; Notarys, H.

    1992-11-01

    Co1-xPtx alloys with Pt contents in the range 0.45≤x≤0.9 show sizable perpendicular magnetic anisotropy, 100% perpendicular remanence and coercivities in the range 160 kA/m. Thin films of this material are grown by electron beam evaporation onto fused silica or Si, at substrate temperatures between 150 and 350 °C. Spectroscopic investigations of the polar Kerr rotation show a significant enhancement of the Pt related UV peak. A comparison of the static signal levels R×(θk2+ɛk2)1/2 of Co/Pt multilayers and alloys shows an overall 50% enhancement in the case of alloys. Curie temperatures around 200 °C are observed for Co˜22Pt˜78 compositions. These properties, together with the potentially high chemical stability and ease of manufacturing make Co1-xPtx alloys very attractive materials for short wavelength magneto-optic recording.

  4. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts.

    PubMed

    Greeley, J; Stephens, I E L; Bondarenko, A S; Johansson, T P; Hansen, H A; Jaramillo, T F; Rossmeisl, J; Chorkendorff, I; Nørskov, J K

    2009-10-01

    The widespread use of low-temperature polymer electrolyte membrane fuel cells for mobile applications will require significant reductions in the amount of expensive Pt contained within their cathodes, which drive the oxygen reduction reaction (ORR). Although progress has been made in this respect, further reductions through the development of more active and stable electrocatalysts are still necessary. Here we describe a new set of ORR electrocatalysts consisting of Pd or Pt alloyed with early transition metals such as Sc or Y. They were identified using density functional theory calculations as being the most stable Pt- and Pd-based binary alloys with ORR activity likely to be better than Pt. Electrochemical measurements show that the activity of polycrystalline Pt(3)Sc and Pt(3)Y electrodes is enhanced relative to pure Pt by a factor of 1.5-1.8 and 6-10, respectively, in the range 0.9-0.87 V. PMID:21378936

  5. A General Method for Multimetallic Platinum Alloy Nanowires as Highly Active and Stable Oxygen Reduction Catalysts.

    PubMed

    Bu, Lingzheng; Ding, Jiabao; Guo, Shaojun; Zhang, Xu; Su, Dong; Zhu, Xing; Yao, Jianlin; Guo, Jun; Lu, Gang; Huang, Xiaoqing

    2015-11-25

    An unconventional class of high-performance Pt alloy multimetallic nanowires (NWs) is produced by a general method. The obtained PtNi NWs exhibit amazingly specific and mass oxygen reduction reaction (ORR) activities with improvement factors of 51.1 and 34.6 over commercial Pt/C catalysts, respectively, and are also stable in ORR conditions, making them among the most efficient electrocatalysts for ORR. PMID:26459261

  6. High temperature oxidation behavior of gamma-nickel+gamma'-nickel aluminum alloys and coatings modified with platinum and reactive elements

    NASA Astrophysics Data System (ADS)

    Mu, Nan

    was also inferred that Pt enhances the diffusive flux of aluminum from the substrate to the scale/alloy interface. Relatively low levels of hafnium addition to Pt-free gamma'-Ni 3Al increased the extent of external NiO formation due to non-protective HfO2 formation. Accordingly, this effect intensified with increasing Hf content from 0.2 to 0.5at.%. The synergistic effect of Pt and Hf co-addition was realized by examining Pt+Hf-modified gamma'-Ni3Al alloys. It was inferred that Pt decreases the chemical activity of Hf so that HfO2 formation could be suppressed with increasing Pt content. Thus, the early-stage Al2O3 formation facilitated by Pt additions and NiO development assisted by Hf additions are the competing scale growth processes that are influenced by the relative contents of Pt and Hf. Large interfacial voids were observed on the gamma'-Ni 3Al alloy after 4-days isothermal oxidation at 1150°C, which could be attributed to the Kirkendall effect. Platinum addition was also found to improve Al2O3-scale adhesion. Pt and Hf effects on two-phase gamma-Ni+gamma'-Ni3Al alloys of compositions Ni-20Al-20Pt-xHf (x ranges from 0 to 0.91) were examined by both thermal gravimetric analyses and cyclic oxidation tests. Scale microstructures were characterized by confocal photo-stimulated microspectroscopy (CPSM), in-lens SEM, and FIB-TEM. Hafnium additions up to about 0.48at.% markedly decreased the weight change of isothermally oxidized Pt-modified gamma+gamma' alloys by forming thinner oxide scales than that on the Hf-free Ni-20Al-20Pt base alloy. This could be attributed to an Al2O3 grain boundary blocking effect imparted by the segregated Hf. However, an over-doped alloy with 0.91at.% Hf exhibited detrimental effect by forming internal HfO 2. It was observed that Hf additions altered the Al2O3 scale microstructure. The most remarkable difference was that the columnar width of the Al2O3 scale grains formed on Ni-20Al-20Pt was much larger than it was on Ni-20Al-20Pt-0

  7. Hot corrosion behavior of platinum-modified nickel- and cobalt-based alloys and coatings

    NASA Astrophysics Data System (ADS)

    Deodeshmukh, Vinay Prakash

    High temperature degradation by hot corrosion (650-1000°C) and/or oxidation (>1000°C) can severely reduce the longevity of advanced gas turbine engine components. The protection of high-temperature components against hot corrosion or oxidation is typically conferred by the application of either a diffusion or overlay metallic coating that is able to form a continuous, adherent, and slow-growing oxide scale. There are currently no coatings that provide adequate protection to both hot corrosion and oxidation. Indeed, there is a particular need for such protective coatings because many advanced aero, marine, and industrial gas-turbines operate in both hot corrosion and oxidation regimes in their duty cycle. Recent work at Iowa State University (ISU) has showed that a wide range Pt+Hf-modified gamma'-Ni3Al + gamma-Ni alloy compositions form a very adherent and slow-growing Al 2O3 scale. In fact, the results reported suggest that Pt+Hf-modified gamma' + gamma coatings offer a viable superior alternative to beta-NiAl(Pt)-based coatings. The main thrust of this study was to assess and establish optimum target gamma' + gamma coating compositions for extending the service life of high-temperature gas turbine components exposed to hot corrosion and oxidation conditions. Both high temperature hot-corrosion (HTHC-900°C) and low temperature hot-corrosion (LTHC-705°C) behaviors of the Pt+Hf-modified gamma' + gamma alloys were assessed. The salt used to bring about hot corrosion was Na 2SO4. Quite interestingly, it was found that the HTHC resistance of gamma' + gamma alloys improved with up to about 10 at.% Pt addition, but then decreased significantly with increasing Pt content up to 30 at.% (the maximum level studied); however, under LTHC conditions the resistance of gamma' + gamma alloys improved with increasing Pt content up to 30 at.%. To further improve hot corrosion resistance of Pt+Hf-modified gamma' + gamma alloys, the effects of systematic additions of Cr, Si, and

  8. Oxygen Reduction Reaction on Platinum-Terminated “Onion-structured” Alloy Catalysts

    SciTech Connect

    Herron, Jeffrey A.; Jiao, Jiao; Hahn, Konstanze; Peng, Guowen; Adzic, Radoslav R.; Mavrikakis, Manos

    2012-12-17

    Using periodic, self-consistent density functional theory (GGA-PW91) calculations, a series of onion-structured metal alloys have been investigated for their catalytic performance towards the oxygen reduction reaction (ORR). The onion-structures consist of a varying number of atomic layers of one or two metals each, pseudomorphically deposited on top of one another to form the overall structure. All catalysts studied feature a Pt overlayer, and often consist of at least one Pd layer below the surface. Three distinct ORR mechanisms were analyzed on the close-packed facets of all the structures considered. These mechanisms include a direct route of O2 dissociation and two hydrogen-assisted routes of O–O bond-breaking in peroxyl (OOH) and in hydrogen peroxide (HOOH) intermediates. A thermochemical analysis of the elementary steps provides information on the operating potential, and thereby energy efficiency of each electrocatalyst. A Sabatier analysis of catalytic activity based on thermochemistry of proton/electron transfer steps and activation energy barrier for O–O bond-breaking steps leads to a “volcano” relation between the surfaces’ activity and the binding energy of O. Several of the onion-structured alloys studied here show promise for achieving energy efficiency higher than that of Pt, by being active at potentials higher than the operating potential of Pt. Furthermore, some have at least as good activity as pure Pt at that operating potential. Thus, a number of the onion-structured alloys studied here are promising as cathode electrocatalysts in proton exchange membrane fuel cells.

  9. Apollo 14 very low titanium glasses - Melting experiments in iron-platinum alloy capsules

    NASA Astrophysics Data System (ADS)

    Chen, H.-K.; Lindsley, D. H.

    1983-11-01

    This paper describes two techniques that have been developed to produce Fe-Pt alloy capsules for hgh-pressure experiments, and reports liquidus-phase relations of the Apollo 14 very low titanium glasses determined using Fe-rich capsules (a/Fe/ approximately 0.6). The liquid is multiply saturated with olivine and clinopyroxene at equal to or greater than 22 kbar. The multiple saturation is at least 3 kbar higher than that determined using pure Fe capsules and corresponds to a source region at least 60 km deeper if olivine and clinopyroxene were the residual phases. However, independent data on iron activity or oxygen fugacity of the glasses are still needed in order to choose a container of optimum composition. Preliminary experiments in Fe-poor alloy capsules suggest that the valence state of iron and the crystallization sequence in the melt have changed, possibly as a result of oxidizing materials entrapped during the iron-plating processes. The FeO content of the charge decreases linearly with increasing run duration in experiments using pure Fe capsules. The observation that iron-rich globules grow with time suggests that the equilibrium Fe (bleb) + Fe2O3 (liq) = 3 FeO (liq) might be established in the liquid at high pressure. If this explanation is correct, an appreciable amount of 'FeO' in the liquid could actually be Fe2O3, and some natural lunar volcanic glasses may contain ferric iron as well.

  10. Apollo 14 very low titanium glasses - Melting experiments in iron-platinum alloy capsules

    NASA Technical Reports Server (NTRS)

    Chen, H.-K.; Lindsley, D. H.

    1983-01-01

    This paper describes two techniques that have been developed to produce Fe-Pt alloy capsules for hgh-pressure experiments, and reports liquidus-phase relations of the Apollo 14 very low titanium glasses determined using Fe-rich capsules (a/Fe/ approximately 0.6). The liquid is multiply saturated with olivine and clinopyroxene at equal to or greater than 22 kbar. The multiple saturation is at least 3 kbar higher than that determined using pure Fe capsules and corresponds to a source region at least 60 km deeper if olivine and clinopyroxene were the residual phases. However, independent data on iron activity or oxygen fugacity of the glasses are still needed in order to choose a container of optimum composition. Preliminary experiments in Fe-poor alloy capsules suggest that the valence state of iron and the crystallization sequence in the melt have changed, possibly as a result of oxidizing materials entrapped during the iron-plating processes. The FeO content of the charge decreases linearly with increasing run duration in experiments using pure Fe capsules. The observation that iron-rich globules grow with time suggests that the equilibrium Fe (bleb) + Fe2O3 (liq) = 3 FeO (liq) might be established in the liquid at high pressure. If this explanation is correct, an appreciable amount of 'FeO' in the liquid could actually be Fe2O3, and some natural lunar volcanic glasses may contain ferric iron as well.

  11. Cost-effective platinum alloy counter electrodes for liquid-junction dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Yanjuan; Tang, Qunwei; Yu, Liangmin; Yan, Xuefeng; Dong, Lei

    2016-02-01

    One of the challenges in developing advanced dye-sensitized solar cells (DSSCs) is the pursuit of cost-effective and robust counter electrodes (CEs). We present here the successful synthesis of binary PtxM100-x (M = Ni, Co, Fe) alloy nanostructures on Ti foil by a facile and environmental-friendly strategy for utilization as CEs in liquid-junction DSSCs. Due to the reasonable charge-transfer ability and excellent electrocatalytic activity, the resultant DSSC yields a promising power conversion efficiency (PCE) of 6.42% with binary Pt0.28Ni99.72 CE in comparison with 6.18% for pristine Pt CE based device. The easy synthesis, cost-effectiveness, and good electrocatalytic property may help the Pt0.28Ni99.72 nanostructure stand out as an alternative CE electrocatalyst in a DSSC.

  12. Synthesis of Platinum Nanotubes and Nanorings via Simultaneous Metal Alloying and Etching.

    PubMed

    Huang, Zhiqi; Raciti, David; Yu, Shengnan; Zhang, Lei; Deng, Lin; He, Jie; Liu, Yijing; Khashab, Niveeen M; Wang, Chao; Gong, Jinlong; Nie, Zhihong

    2016-05-25

    Metallic nanotubes represent a class of hollow nanostructures with unique catalytic properties. However, the wet-chemical synthesis of metallic nanotubes remains a substantial challenge, especially for those with dimensions below 50 nm. This communication describes a simultaneous alloying-etching strategy for the synthesis of Pt nanotubes with open ends by selective etching Au core from coaxial Au/Pt nanorods. This approach can be extended for the preparation of Pt nanorings when Saturn-like Au core/Pt shell nanoparticles are used. The diameter and wall thickness of both nanotubes and nanorings can be readily controlled in the range of 14-37 nm and 2-32 nm, respectively. We further demonstrated that the nanotubes with ultrathin side walls showed superior catalytic performance in oxygen reduction reaction. PMID:27090384

  13. Excavated Cubic Platinum-Tin Alloy Nanocrystals Constructed from Ultrathin Nanosheets with Enhanced Electrocatalytic Activity.

    PubMed

    Chen, Qiaoli; Yang, Yanan; Cao, Zhenming; Kuang, Qin; Du, Guifen; Jiang, Yaqi; Xie, Zhaoxiong; Zheng, Lansun

    2016-07-25

    Excavated polyhedral noble-metal materials that were built by the orderly assembly of ultrathin nanosheets have both large surface areas and well-defined facets, and therefore could be promising candidates for diverse important applications. In this work, excavated cubic Pt-Sn alloy nanocrystals (NCs) with {110} facets were constructed from twelve nanosheets by a simple co-reduction method with the assistance of the surface regulator polyvinylpyrrolidone. The specific surface area of the excavated cubic Pt-Sn NCs is comparable to that of commercial Pt black despite their larger particle size. The excavated cubic Pt-Sn NCs exhibited superior electrocatalytic activity in terms of both the specific area current density and the mass current density towards methanol oxidation. PMID:27325395

  14. A seed-mediated approach to the morphology-controlled synthesis of bimetallic copper-platinum alloy nanoparticles with enhanced electrocatalytic performance for the methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Han, Lin; Cui, Penglei; He, Hongyan; Liu, Hui; Peng, Zhijian; Yang, Jun

    2015-07-01

    Mastery over the morphology of nanomaterials usually enables control of their properties and enhancement of their usefulness for a given application. Herein, we report a seed-mediated approach for the fabrication of bimetallic copper-platinum (CuPt) alloy nanoparticles with different morphologies. This strategy involves the first synthesis of Cu seed particles with multiple twins, and subsequent nucleation and growth of Pt metal. Then upon the Cu/Pt molar ratios in the synthesis, the rapid interdiffusion of Cu and Pt atoms results in the formation of bimetallic CuPt alloy nanoparticles with polyhedral, stellated, or dendritic morphologies. It has been found that both the morphology and electronic coupling effect between Cu and Pt components have significant effect on the electrochemical property of the alloy particles. In particular, the dendritic CuPt alloy nanoparticles display the highest specific activity for methanol oxidation reaction (MOR) due to their abundant atomic steps, edges, and corner atoms in the dendritic structure, while the polyhedral CuPt alloy particles show best carbon monoxide (CO) tolerant behavior due to the strong electronic donation effect from Cu to Pt atoms.

  15. Nanoscale alloying effect of gold-platinum nanoparticles as cathode catalysts on the performance of a rechargeable lithium-oxygen battery.

    PubMed

    Yin, Jun; Fang, Bin; Luo, Jin; Wanjala, Bridgid; Mott, Derrick; Loukrakpam, Rameshowri; Ng, Mei Shan; Li, Zheng; Hong, Jian; Whittingham, M Stanley; Zhong, Chuan-Jian

    2012-08-01

    The understanding of nanoscale alloying or the phase segregation effect of alloy nanoparticles on the catalytic properties is important for a rational design of the desired catalysts for a specific reaction. This paper describes findings of an investigation into this type of structural effect for carbon-supported bimetallic gold-platinum nanoparticles as cathode catalysts in a rechargeable lithium-oxygen battery. The nanoscale structural characteristics in terms of size, alloying and phase segregation were shown to affect the catalytic properties of the catalysts in the Li-O(2) battery. In addition to the composition effect, the catalysts with a fully alloyed phase structure were found to exhibit a smaller discharge-charge voltage difference and a higher discharge capacity than those with a partial phase segregation structure. This finding is significant for the design of alloy nanoparticles as air cathode catalysts in rechargeable lithium-air batteries, demonstrating the importance of the control of the nanoscale composition and phase properties. PMID:22781275

  16. Characterization of ordered tin-platinum surface alloys and tin-oxide overlayers on platinum(111) using ultra-high vacuum-scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Beck, David Eugene

    2001-07-01

    An ultra-high vacuum chamber that incorporates scanning tunneling microscopy (STM) with Auger electron spectroscopy (AES), low energy electron diffraction (LEED), Fourier transform infra-red absorption spectroscopy (FT-IRAS) and temperature programmed desorption (TPD) was built to study the structure and reactivity of bimetallic surfaces. √Chemical and electronic contrast was observed in STM images of a mixed (2x2) and (√3x√3)R30°-Sn/Pt(111) surface alloy. Although Sn atoms are buckled out from the surface by 0.22 A, they were imaged as depressions in STM images because of their much lower local density of states (LDOS) at the Fermi level than Pt. Corrugation measurements for the two ordered regions, and for antiphase boundaries and defect sites, showed a Sn concentration dependence that scaled with the number of Sn nearest neighbors surrounding a given Pt atom. This shows direct evidence for an electronic or ligand effect due to alloying of Sn with Pt. STM studies were performed on the Sn/Pt(100) system to determine the structure of a surface characterized by a (3√2x√2)R45° pattern in LEED. Sn films (0.6--1 ML) were deposited on a reconstructed Pt(100)-hex-R0.7° surface and annealed to 550, 750, and 900 K, to form a c(2x2) overlayer, and a c(2x2) and (3√2x√2)R45° surface alloy respectively. Using STM images, the structure of a (3√2x√2)R45° surface alloy was determined to arise from a reconstruction that formed with Pt missing rows separated by 11.8 A (3√2). A model for this structure is proposed. Ultra-thin Sn-oxide layers were produced on Pt(111) by oxidizing Sn/Pt(111)-(2x2) and -(√3x√3)R30° surface alloys using NO2. Both oxidized surface alloys form a SnOx overlayer that wets the substrate. However, for the oxidized (2x2) surface alloy, the SnOx film does not completely cover the surface. For the oxidized (√3x√3)R30° surface alloy, an ordered (4x4) LEED pattern is observed upon flash-annealing above 900 K. The formation of

  17. Tuning of platinum nano-particles by Au usage in their binary alloy for direct ethanol fuel cell: Controlled synthesis, electrode kinetics and mechanistic interpretation

    NASA Astrophysics Data System (ADS)

    Dutta, Abhijit; Mondal, Achintya; Datta, Jayati

    2015-06-01

    Understanding of the electrode-kinetics and mechanism of ethanol oxidation reaction (EOR) is of considerable interest for optimizing electro-catalysis in direct ethanol fuel cell (DEFC). This work attempts to design Pt based electro-catalyst on carbon support, tuned with gold nano-particles (NPs), for their use in DEFC operating in alkaline medium. The platinum-gold alloyed NPs are synthesized at desired compositions and size (2-10 nm) by controlled borohydride reduction method and successfully characterized by XRD, TEM, EDS and XPS techniques. The kinetic parameters along with the activation energies for the EOR are evaluated over the temperature range 20-80 °C and the oxidation reaction products estimated through ion chromatographic analysis. Compared to single Pt/C catalyst, the over potential of EOR is reduced by ca. 500 mV, at the onset during the reaction, for PtAu/C alloy with only 23% Pt content demonstrating the ability of Au and/or its surface oxides providing oxygen species at much lower potentials compared to Pt. Furthermore, a considerable increase in the peak power density (>191%) is observed in an in-house fabricated direct ethanol anion exchange membrane fuel cell, DE(AEM)FC using the best performing Au covered Pt electrode (23% Pt) compared to the monometallic Pt catalyst.

  18. Experimental partitioning of Zr, Ti, and Nb between silicate liquid and a complex noble metal alloy and the partitioning of Ti between perovskite and platinum metal

    NASA Technical Reports Server (NTRS)

    Jurewicz, Stephen R.; Jones, John H.

    1993-01-01

    El Goresy et al.'s observation of Nb, Zr, and Ta in refractory platinum metal nuggets (RPMN's) from Ca-Al-rich inclusions (CAI's) in the Allende meteorite led them to propose that these lithophile elements alloyed in the metallic state with noble metals in the early solar nebula. However, Grossman pointed out that the thermodynamic stability of Zr in the oxide phase is vastly greater than metallic Zr at estimated solar nebula conditions. Jones and Burnett suggested this discrepancy may be explained by the very non-ideal behavior of some lithophile transition elements in noble metal solutions and/or intermetallic compounds. Subsequently, Fegley and Kornacki used thermodynamic data taken from the literature to predict the stability of several of these intermetallic compounds at estimated solar nebula conditions. Palme and Schmitt and Treiman et al. conducted experiments to quantify the partitioning behavior of certain lithophile elements between silicate liquid and Pt-metal. Although their results were somewhat variable, they did suggest that Zr partition coefficients were too small to explain the observed 'percent' levels in some RPMN's. Palme and Schmitt also observed large partition coefficients for Nb and Ta. No intermetallic phases were identified. Following the work of Treiman et al., Jurewicz and Jones performed experiments to examine Zr, Nb, and Ti partitioning near solar nebula conditions. Their results showed that Zr, Nb, and Ti all have an affinity for the platinum metal, with Nb and Ti having a very strong preference for the metal. The intermetallic phases (Zr,Fe)Pt3, (Nb,Fe)Pt3, and (Ti,Fe)Pt3 were identified. Curiously, although both experiments and calculations indicate that Ti should partition strongly into Pt-metal (possibly as TiPt3), no Ti has ever been observed in any RPMN's. Fegley and Kornacki also noticed this discrepancy and hypothesized that the Ti was stabilized in perovskite which is a common phase in Allende CAI's.

  19. Influence of microstructure on the shape memory properties of two titanium-lean, nickel-titanium-platinum high temperature shape memory alloys

    NASA Astrophysics Data System (ADS)

    Hudish, Grant A.

    Because of NiTi's superior properties (work output, strength, ductility, recoverable strain, etc.) it is the base system of choice for development of derivative high-temperature shape memory alloys (HTSMAs). Ternary additions of Hf, Zr, Pt, Pd, and Au can be made, in quantities greater than ≈ 10 at.%, to increase the transformation temperature of Ni-Ti based SMAs. Pt as an alloying addition is attractive because of (1) its efficiency in raising the martensitic transformation temperature, (2) the relatively stable properties during thermal cycling of Pt-containing Nitinol (NiTi), and (3) the high work outputs of Ni-Ti-Pt alloys relative to other HTSMAs. Platinum containing samples of NiTi were thermally processed to explore the utility of Ti-lean precipitates for matrix strengthening and stabilization of shape memory properties during thermomechanical cycling. Two alloys, Ti48.5Ni30.5Pt 21 and Ti49.5Ni29.5Pt21, were heat treated for 1, 5, 24 and 100h at 500, 550, 600, 650, and 700°C and examined using SEM, EDS, DTA, XRD and TEM techniques. Two relevant precipitate phases, the PL and Ti2(Ni,Pt)3 phases, were identified, characterized and the thermodynamic stability and relevant behavior during thermal processing determined. Samples were then subjected to thermomechanical testing that consisted of two parts, (1) two thermal cycles (75°C to 500°C to 75°C) each at stresses of 0, 50, 100, 150, 200, 250, and 300MPa, and (2) 100 thermal cycles at 200MPa. With this combination of systematic microstructural characterization and isobaric thermal cycling, the link between microstructure and shape memory performance was made. The influence the PL and Ti2(Ni,Pt)3 phases have on properties such as martensitic transformation temperatures, transformation strain, and accumulated irrecoverable strain are explained and discussed. Specifically, it was found that the P L-phase suppresses transformation temperatures and strains through a matrix strengthening effect, but also

  20. Multi-component nanoporous platinum-ruthenium-copper-osmium-iridium alloy with enhanced electrocatalytic activity towards methanol oxidation and oxygen reduction

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoting; Si, Conghui; Gao, Yulai; Frenzel, Jan; Sun, Junzhe; Eggeler, Gunther; Zhang, Zhonghua

    2015-01-01

    Multi-component nanoporous platinum-ruthenium-copper-osmium-iridium (np-PtRuCuOsIr) electrocatalyst has been facilely fabricated by chemical dealloying of mechanically alloyed AlCuPtRuOsIr precursor. The np-PtRuCuOsIr catalyst exhibits a typical three-dimensional bi-continuous interpenetrating ligament/channel structure with a length scale of ∼2.5 nm. The np-PtRuCuOsIr catalyst reaches a higher level in the mass activity (857.5 mA mgPt-1) and specific activity (3.0 mA cm-2) towards methanol oxidation compared to the commercial PtC catalyst (229.5 mA mgPt-1 and 0.5 mA cm-2 respectively). Moreover, the CO stripping peak of np-PtRuCuOsIr is 0.54 V (vs. SCE), 130 mV negative shift in comparison with the commercial PtC (0.67 V vs. SCE). The half-wave potential of np-PtRuCuOsIr is 0.900 V vs. RHE, 36 mV positive compared with that of the commercial PtC (0.864 V vs. RHE). The np-PtRuCuOsIr catalyst also shows 1.8 and 3.8 times enhancement in the mass and specific activity towards oxygen reduction than the commercial PtC. Moreover, the np-PtRuCuOsIr alloy exhibits superior oxygen reduction activities even after 15 K cycles, indicating its excellent long-term stability. The present np-PtRuCuOsIr can act as a promising candidate for the electrocatalyst in direct methanol fuel cells (DMFCs).

  1. Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate.

    PubMed

    Du, Minshu; Cui, Lishan; Cao, Yi; Bard, Allen J

    2015-06-17

    Both the ligand effect and surface strain can affect the electrocatalytic reactivity. In that matter exists a need to be fundamentally understood; however, there is no effective strategy to isolate the strain effect in electrocatalytic systems. In this research we show how the elastic strain in a platinum nanofilm varies the catalytic activity for the oxygen reduction reaction, a key barrier to the wide applications of fuel cells. NiTi shape memory alloy was selected as the substrate to strain engineer the deposited Pt nanofilm in both compressively and tensilely strained states by taking advantage of the two-way shape memory effect for the first time. We demonstrate that compressive strain weakens the Pt surface adsorption and hence improves the ORR activity, which reflects in a 52% enhancement of the kinetic rate constant and a 27 mV positive shift of the half-wave potential for the compressively strained 5 nm Pt compared to the pristine Pt. Tensile strain has the opposite effect, which is in general agreement with the proposed d-band theory. PMID:25986928

  2. Template-engaged synthesis of hollow porous platinum-palladium alloy nanospheres for efficient methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Qiu, Xiaoyu; Dai, Yuxuan; Zhu, Xiaoshu; Zhang, Hanyue; Wu, Ping; Tang, Yawen; Wei, Shaohua

    2016-01-01

    Hollow porous structures of Pt-Pd bimetallic alloy possess unique compositional and structural superiorities for catalytic and electrocatalytic applications, and are thus anticipated to manifest novel properties and/or enhanced performance compared with their monometallic counterparts. Herein, a general electrostatic-attraction-directed layer-by-layer assembly approach has been developed for the construction of a novel type of hollow porous Pt-Pd alloy nanospheres (Pt-Pd HPNSs) using SiO2 nanospheres as templates. Moreover, the Pt-Pd HPNSs with controllable shell thickness are prepared and their comparative electrocatalytic performances toward methanol oxidation reaction (MOR) are investigated. It's found that optimized Pt-Pd HPNSs manifests markedly enhanced catalytic activity and durability in comparison with both commercial Pt black and Pd black catalysts.

  3. Greatly improved electrochemical performance of lithium-oxygen batteries with a bimetallic platinum-copper alloy catalyst

    NASA Astrophysics Data System (ADS)

    Lee, Minwook; Hwang, Yubin; Yun, Kyung-Han; Chung, Yong-Chae

    2015-08-01

    Research on the cathode catalysts of lithium-oxygen (Li-O2) batteries is one of the most important branches to commercialize these batteries to overcome the sluggish kinetics during both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). In this study, a high performance catalyst based on a bimetallic Pt-Cu alloy is investigated for Li-O2 batteries using first-principles calculation. The theoretical prediction shows that the Pt-Cu alloy is much more effective than the pure Pt according to the electrochemical performance. In particular, the effectiveness of the catalytic property is maximized in the case of the PtCu (111) surface which greatly reduces the large overpotentials of the original Li-O2 batteries during the OER/ORR. It is identified for the first time that the charge overpotentials are affected mainly by the inherent surface charge character of the alloy catalyst. It is observed that the more negatively charged PtCu (111) surface can act as a weakly positively charged surface for the adsorption of Li-O intermediates and thus result in weak ionic bonding of the intermediates on the surface. As a result, the dominant factor improving the catalytic performance is clearly demonstrated, providing insight into the design of an efficient catalyst for Li-O2 battery technologies.

  4. Effect of platinum substitution on the structural and magnetic properties of Ni2MnGa ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; D'Souza, S. W.; Nayak, J.; Caron, L.; Suard, E.; Chadov, S.; Felser, C.

    2016-04-01

    Ni2MnGa exhibits ideal ferromagnetic shape memory properties, however, brittleness and a low-temperature martensite transition hinder its technological applications motivating the search for novel materials showing better mechanical properties as well as higher transition temperatures. In this work, the crystal structure, phase transitions, and the magnetic properties of quaternary Ni2 -xPtxMnGa (0 ≤x ≤1 ) shape memory alloys were studied experimentally by x-ray diffraction, magnetization measurements, and neutron diffraction and compared to ab initio calculations. Compositions within 0 ≤x ≤0.25 exhibit the cubic austenite phase at room temperature. The x ≈0.3 composition exhibits a seven-layer modulated monoclinic martensite structure. Within 0.4 ≤x ≤1 , the system stabilizes in the nonmodulated tetragonal structure. The martensite transition has very narrow thermal hysteresis 0 ≤x ≤0.3 , which is a typical characteristic of a shape memory alloy. By increasing x , the temperature of the martensite transition increases, while that of the magnetic transition decreases. The x =1 composition (NiPtMnGa) in the martensite phase undergoes a para-to-ferrimagnetic transition. The saturation magnetization exhibits a nontrivial behavior with increasing up to x ≈0.25 , above which, it suddenly decreases. Powder neutron diffraction reveals the presence of antisite disorder, with about 17% of the original Ga sites being occupied by Mn. Computations suggest that the antisite disorder triggers an antiferromagnetic coupling between two Mn atoms in different crystallographic positions, resulting into a sudden drop of the saturation magnetization for higher x .

  5. Platinum-group minerals from placers related to the Nizhni Tagil (Middle Urals, Russia) Uralian-Alaskan-type ultramafic complex: ore-mineralogy and study of silicate inclusions in (Pt, Fe) alloys

    NASA Astrophysics Data System (ADS)

    Johan, Z.

    2006-05-01

    The study of platinum-group minerals (PGM) concentrates from the Nizhni Tagil placers related to the Soloviev Mountain (Gora Solovieva) Uralian-Alaskan-type intrusion revealed a predominance of (Pt, Fe) alloys over Ir-, and Os-bearing alloys. (Pt, Fe) alloys (“isoferroplatinum-type”) are interstitial with respect to chromite and show important variations in their chemical compositions, which are, however, falling within the experimentally determined stability field of isoferroplatinum. Tetraferroplatinum, enriched in Cu and Ni and tulameenite represent low-temperature mineral phases replacing (Pt, Fe) alloys. Alloys belonging to the Os-Ir-Ru ternary system have compositions corresponding to native osmium, iridium and ruthenium, respectively, and to rutheniridosmine. Osmium exsolutions appear in Ir-, and (Pt, Fe) alloys, and iridium exsolutions in (Pt, Fe) alloys. Laurite is a high-temperature phase included in native iridium and (Pt, Fe) alloys. Low-temperature PGM association comprises Ir-bearing sulpharsenides, including a phase (Ir, Os, Fe, Pt, Ru, Ni)3(As, Sb)0.85S, and a palladium antimonide Pd20Sb7. These two phases were previously unknown in nature. Furthermore, native palladium occurs in the studied concentrates. This low-temperature paragenesis indicates an interaction of Pt-, Os-, Ir- and Ru-bearing alloys with late fluids enriched in volatiles, As and Sb. The chromite composition is characterized by the predominance of Cr3+ → Fe3+ substitution like in other Uralian-Alaskan-type intrusions; that indicates a fO2 variation during the chromite precipitation. Monomineralic inclusions of euhedral clinopyroxene and chromite crystals in (Pt, Fe) alloys were observed. Furthermore, (Pt, Fe) alloys contain polyphase silicate inclusions, which occupy the alloy negative crystals. Two types of silicate inclusions were recognized: (1) Low-pressure inclusions composed of amphibole, biotite, Jd-poor clinopyroxene, magnetite, apatite and glass; (2) High

  6. Controlled synthesis of porous platinum nanostructures for catalytic applications.

    PubMed

    Cao, Yanqin; Zhang, Junwei; Yang, Yong; Huang, Zhengren; Long, Nguyen Viet; Nogami, Masayuki

    2014-02-01

    Porous platinum, that has outstanding catalytic and electrical properties and superior resistant characteristics to corrosion, has been widely applied in chemical, petrochemical, pharmaceutical, electronic, and automotive industries. As the catalytic activity and selectivity depend on the size, shape and structure of nanomaterials, the strategies for controlling these factors of platinum nanomaterials to get excellent catalytic properties are discussed. Here, recent advances in the design and preparation of various porous platinum nanostructures are reviewed, including wet-chemical synthesis, electro-deposition, galvanic replacement reaction and de-alloying technology. The applications of various platinum nanostructures are also discussed, especially in fuel cells. PMID:24749422

  7. Facile synthesis of platinum-gold alloyed string-bead nanochain networks with the assistance of allantoin and their enhanced electrocatalytic performance for oxygen reduction and methanol oxidation reactions

    NASA Astrophysics Data System (ADS)

    He, Li-Li; Zheng, Jie-Ning; Song, Pei; Zhong, Shu-Xian; Wang, Ai-Jun; Chen, Zhaojiang; Feng, Jiu-Ju

    2015-02-01

    In this work, a facile one-pot wet-chemical method is developed for preparation of bimetallic platinum-gold (Pt-Au) alloyed string-bead nanochain networks, using allantoin as a structure-directing agent, without any template, surfactant, or seed. The characterization experiments are mainly performed by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) spectroscopy. The as-prepared Pt-Au nanocrystals show enhanced electrocatalytic performance toward oxygen reduction reaction (ORR) mainly predominated by a four-electron pathway, and display improved catalytic activity and high stability for methanol oxidation reaction (MOR) over commercial Pt black and Pt-Ru black.

  8. Platinum adlayered ruthenium nanoparticles, method for preparing, and uses thereof

    DOEpatents

    Tong, YuYe; Du, Bingchen

    2015-08-11

    A superior, industrially scalable one-pot ethylene glycol-based wet chemistry method to prepare platinum-adlayered ruthenium nanoparticles has been developed that offers an exquisite control of the platinum packing density of the adlayers and effectively prevents sintering of the nanoparticles during the deposition process. The wet chemistry based method for the controlled deposition of submonolayer platinum is advantageous in terms of processing and maximizing the use of platinum and can, in principle, be scaled up straightforwardly to an industrial level. The reactivity of the Pt(31)-Ru sample was about 150% higher than that of the industrial benchmark PtRu (1:1) alloy sample but with 3.5 times less platinum loading. Using the Pt(31)-Ru nanoparticles would lower the electrode material cost compared to using the industrial benchmark alloy nanoparticles for direct methanol fuel cell applications.

  9. Nanoporous PdZr surface alloy as highly active non-platinum electrocatalyst toward oxygen reduction reaction with unique structure stability and methanol-tolerance

    NASA Astrophysics Data System (ADS)

    Duan, Huimei; Xu, Caixia

    2016-06-01

    Nanoporous (NP) PdZr alloy with controllable bimetallic ratio is successfully fabricated by a simple dealloying method. By leaching out the more reactive Al from PdZrAl precursor alloy, NP-PdZr alloy with smaller ligament size was generated, characterized by the nanoscaled interconnected network skeleton and hollow channels extending in all three dimensions. Upon voltammetric scan in acid solution, the dissolution of surface Zr atoms generates the highly active Pd-Zr surface alloy with a nearly pure Pd surface and Pd-Zr alloy core. The NP-Pd80Zr20 surface alloy exhibits markedly enhanced specific and mass activities as well as higher catalytic stability toward oxygen reduction reaction (ORR) compared with NP-Pd and the state-of-the-art Pt/C catalysts. In addition, the NP-Pd80Zr20 surface alloy shows a better selectivity for ORR than methanol in the 0.1 M HClO4 and 0.1 M methanol mixed solution. X-ray photoelectron spectroscopy and density functional theory calculations both demonstrate that the weakened Pd-O bond and improved ORR performances in turn depend on the downshifted d-band center of Pd due to the alloying Pd with Zr (20 at.%). The as-made NP-PdZr alloy holds prospective applications as a cathode electrocatalyst in fuel-cell-related technologies with the advantages of superior overall ORR performances, unique structure stability, and easy preparation.

  10. Three-dimensional hierarchical porous platinum-copper alloy networks with enhanced catalytic activity towards methanol and ethanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Fan, Yang; Liu, Pei-Fang; Zhang, Zong-Wen; Cui, Ying; Zhang, Yan

    2015-11-01

    Porous Pt-Cu alloy networks are synthesized through a one-pot hydrothermal process, with ethylene glycol as the reducing agent and the block copolymer Pluronic F127 as structure-directing agent. The structure, porosity and surface chemical state of as-prepared Pt-Cu alloy with different composition are characterized. The formation mechanism of the porous structure is investigated by time sequential experiments. The obtained Pt53Cu47 alloy possesses a unique 3D hierarchical porous network structure assembled by interconnected nanodendrites as building blocks. Because of the high surface area, concave surface topology and open porous structure, the Pt53Cu47 alloy catalyst exhibits enhanced catalytic activity towards methanol and ethanol electro-oxidation in comparison with commercial Pt black and the Pt73Cu27 alloy synthesized following the same process as Pt53Cu47.

  11. Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof

    DOEpatents

    Adzic, Radoslav; Mo, Yibo; Vukmirovic, Miomir; Zhang, Junliang

    2010-12-21

    The invention relates to platinum-coated particles useful as fuel cell electrocatalysts. The particles are composed of a noble metal or metal alloy core at least partially encapsulated by an atomically thin surface layer of platinum atoms. The invention particularly relates to such particles having a palladium, palladium alloy, gold alloy, or rhenium alloy core encapsulated by an atomic monolayer of platinum. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  12. Nanoporous PdZr surface alloy as highly active non-platinum electrocatalyst toward oxygen reduction reaction with unique structure stability and methanol-tolerance

    NASA Astrophysics Data System (ADS)

    Duan, Huimei; Xu, Caixia

    2016-06-01

    Nanoporous (NP) PdZr alloy with controllable bimetallic ratio is successfully fabricated by a simple dealloying method. By leaching out the more reactive Al from PdZrAl precursor alloy, NP-PdZr alloy with smaller ligament size was generated, characterized by the nanoscaled interconnected network skeleton and hollow channels extending in all three dimensions. Upon voltammetric scan in acid solution, the dissolution of surface Zr atoms generates the highly active Pd-Zr surface alloy with a nearly pure Pd surface and Pd-Zr alloy core. The NP-Pd80Zr20 surface alloy exhibits markedly enhanced specific and mass activities as well as higher catalytic stability toward oxygen reduction reaction (ORR) compared with NP-Pd and the state-of-the-art Pt/C catalysts. In addition, the NP-Pd80Zr20 surface alloy shows a better selectivity for ORR than methanol in the 0.1 M HClO4 and 0.1 M methanol mixed solution. X-ray photoelectron spectroscopy and density functional theory calculations both demonstrate that the weakened Pd-O bond and improved ORR performances in turn depend on the downshifted d-band center of Pd due to the alloying Pd with Zr (20 at.%). The as-made NP-PdZr alloy holds prospective applications as a cathode electrocatalyst in fuel-cell-related technologies with the advantages of superior overall ORR performances, unique structure stability, and easy preparation.

  13. Computational Study of Platinum Group Superalloys

    NASA Astrophysics Data System (ADS)

    Popoola, A. I.; Lowther, J. E.

    2014-02-01

    Various properties of substitutional alloys formed from aluminium and the platinum group metals (PGMs) are examined using density functional (D-F) theory and show strong variations depending on metal type. A similar pattern for the binary alloys is observed using molecular dynamics modeling employing Sutton Chen potentials. All results suggest that several of the PGMs could have superior properties to the presently used Ni3Al alloy for high temperature applications. Some phases are predicted to be stable with extremely high melting temperatures (MTs).

  14. PLATINUM AND FUEL CELLS

    EPA Science Inventory

    Platinum requirements for fuel cell vehicles (FCVS) have been identified as a concern and possible problem with FCV market penetration. Platinum is a necessary component of the electrodes of fuel cell engines that power the vehicles. The platinum is deposited on porous electrodes...

  15. Enhanced methanol electro-oxidation and oxygen reduction reaction performance of ultrafine nanoporous platinum-copper alloy: Experiment and density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Sun, Junzhe; Shi, Jun; Xu, Junling; Chen, Xiaoting; Zhang, Zhonghua; Peng, Zhangquan

    2015-04-01

    Novel ultrafine nanoporous Pt-Cu alloy with a Pt:Cu stoichiometric ratio of 3:1 (np-Pt3Cu) has been prepared by mechanical alloying and subsequent two-step chemical dealloying. The obtained np-Pt3Cu has uniform and bicontinuous ligament(metal)-channel(void) structure with the ligament size of 3.3 ± 0.7 nm. To explore its potential application in energy conversion reactions, the np-Pt3Cu alloy has been examined as electrocatalyst for the operating reactions in direct methanol fuel cells (DMFCs). Compared with the commercial JM Pt/C, a benchmark catalyst extensively used in fuel cell research, the np-Pt3Cu alloy demonstrates better performance in both the methanol electro-oxidation and oxygen reduction reactions in acidic medium. Theoretical calculations reveal that the electronic structure of Pt has been modified with the shift of Pt d-band center due to alloying with Cu, which can decrease CO poisoning and enhance the methanol oxidation and oxygen reduction reaction activities.

  16. Method for producing electricity using a platinum-ruthenium-palladium catalyst in a fuel cell

    DOEpatents

    Gorer, Alexander

    2004-01-27

    A method for producing electricity using a fuel cell that utilizes a ternary alloy composition as a fuel cell catalyst, the ternary alloy composition containing platinum, ruthenium and palladium. The alloy shows increased activity as compared to well-known catalysts.

  17. PLATINUM-GROUP METALS

    EPA Science Inventory

    The document assembles, organizes, and evaluates all pertinent information (up to April 1976) about the effects on man and his environment that result either directly or indirectly from pollution by platinum-group metals: iridium (Ir), osmium (Os), palladium (Pd), platinum (Pt), ...

  18. Corrosion-resistant iridium-platinum anode material for high polarization application in corrosive acids

    SciTech Connect

    Farmer, J.; Summers, L.; Lewis, P.

    1993-09-08

    The present invention relates to highly corrosion resistant components for use in an electrochemical cell. Specifically, these components are resistant to corrosion under very extreme conditions such as exposure to aqua regia in the presence of a constant current density of 100mA/m{sup 2}. The components are comprised of an iridium-platinum alloy that comprises less than 30% iridium. In a preferred embodiment of the present invention, the iridium-platinum alloy comprises 15-20% iridium. In another preferred embodiment of the present invention, the iridium-platinum alloy is deposited on the surface of an electrochemical cell component by magnetron sputtering. The present invention also relates to a method for conducting an electrochemical reaction in the presence of highly corrosive acids under a high degree of polarization wherein the electrochemical cell comprises a component, preferably the anode, containing an iridium-platinum alloy that comprises less than 30% iridium.

  19. Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang

    2010-04-27

    The invention relates to gold-coated particles useful as fuel cell electrocatalysts. The particles are composed of an electrocatalytically active core at least partially encapsulated by an outer shell of gold or gold alloy. The invention more particularly relates to such particles having a noble metal-containing core, and more particularly, a platinum or platinum alloy core. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  20. Improving Platinum Efficiency:. Nanoformulations

    NASA Astrophysics Data System (ADS)

    Carmona, Rolando; Liang, Xing-Jie

    2013-09-01

    Platinum-based drugs continue being the support of therapy for many different kinds of cancer. Cancer patients often present irreversible resistance to platinum after repeated treatment in clinic. Despite of the great efforts, chemoresistance (intrinsic or acquired) already is a major limitation in the management of this disease. In this review, the last current research on cancer characteristic and cancer chemical resistance is summarized, the major and novel strategies to reverse resistance to platinum- based drugs are discussed and this article mainly emphasizes the contribution of nanotechnology and combination therapies to target sites and reduce the cancer chemoresistance.

  1. Solar abundance of platinum

    PubMed Central

    Burger, Harry; Aller, Lawrence H.

    1975-01-01

    Three lines of neutral platinum, located at λ 2997.98 Å, λ 3064.71 Å, and λ 3301.86 Å have been used to determine the solar platinum abundance by the method of spectral synthesis. On the scale, log A(H) = 12.00, the thus-derived solar platinum abundance is 1.75 ± 0.10, in fair accord with Cameron's value of log A(Pt) = 1.69 derived by Mason from carbonaceous chondrites and calculated on the assumption that log A(Si) = 7.55 in the sun. PMID:16592278

  2. Enhancement of Platinum Cathode Catalysis by Addition of Transition Metals

    ERIC Educational Resources Information Center

    Duong, Hung Tuan

    2009-01-01

    The sluggish kinetics of oxygen reduction reaction (ORR) contributes significantly to the loss of cathode overpotential in fuel cells, thus requiring high loadings of platinum (Pt), which is an expensive metal with limited supply. However, Pt and Pt-based alloys are still the best available electrocatalysts for ORR thus far. The research presented…

  3. [Platinum antitumor complexes].

    PubMed

    Bonetti, Andrea; Giuliani, Jacopo; Muggia, Franco

    2015-12-01

    In the last 50 years the oncology has experienced remarkable changes resulting in transforming malignant germ-cell testicular tumors from highly fatal to nearly uniformly cured neoplasms. This clinical landmark was justly attributed to the identification of cisplatin by Barnett Rosenberg in his experiments dating to 1965. On this 50th anniversary of this discovery, one is reminded of the following key aspects in cancer therapeutics: 1) the life-story of Barnett Rosenberg and his legacy that included organizing nearly quadrennial "platinum" meetings incorporating advances in cancer biology into evolving therapeutic strategies; 2) the search for less toxic analogs of cisplatin leading to the development of carboplatin; 3) clinical research into attenuation of cisplatin toxicities; 4) oxaliplatin and the expansion of the therapeutic spectrum of platinum compounds; and 5) the ongoing multifaceted investigations into the problem of "platinum resistance". PMID:26780071

  4. Platinum Neurotoxicity Pharmacogenetics

    PubMed Central

    McWhinney, Sarah R.; Goldberg, Richard M.; McLeod, Howard L.

    2009-01-01

    Cisplatin, carboplatin, and oxaliplatin anticancer drugs are commonly used to treat lung, colorectal, ovarian, breast, head/neck, and genitourinary cancers. However, the efficacy of platinum-based drugs is often compromised because of the substantial risk for severe toxicities, including neurotoxicity. Neurotoxicity can result in both acute and chronic debilitation. Moreover, colorectal cancer patients treated with oxaliplatin more often discontinue therapy due to peripheral neuropathy than for tumor progression, potentially compromising patient benefit. Numerous methods to prevent neurotoxicity have so far proven unsuccessful. In order to circumvent this life-altering side effect, while taking advantage of the antitumor activities of the platinum agents, efforts to identify mechanism-based biomarkers are underway. In this review, we detail findings from the current literature for genetic markers associated with neurotoxicity induced by single agent and combination platinum chemotherapy. These data have the potential for broad clinical implications if mechanistic associations lead to the development of toxicity modulators to minimize the noxious sequelae of platinum chemotherapy. PMID:19139108

  5. Growth of platinum nanocrystals

    SciTech Connect

    2009-01-01

    Movie showing the growth of platinum nanocrystals in a liquid cell observed in situ using the JEOL 3010 TEM at the National Center for Electron Microscopy. This is the first ever-real time movie showing nucleation and growth by monomer attachment or by smaller nanocrystals coalescing to form larger nanocrystals. All the nanocrystals end up being roughly the same shape and size. http://newscenter.lbl.gov/feature-stories/2009/08/04/growth-spurts/

  6. Platinum in Earth surface environments

    NASA Astrophysics Data System (ADS)

    Reith, F.; Campbell, S. G.; Ball, A. S.; Pring, A.; Southam, G.

    2014-04-01

    Platinum (Pt) is a rare precious metal that is a strategic commodity for industries in many countries. The demand for Pt has more than doubled in the last 30 years due to its role in the catalytic conversion of CO, hydrocarbons and NOx in modern automobiles. To explore for new Pt deposits, process ores and deal with ecotoxicological effects of Pt mining and usage, the fundamental processes and pathways of Pt dispersion and re-concentration in surface environments need to be understood. Hence, the aim of this review is to develop a synergistic model for the cycling of Pt in Earth surface environments. This is achieved by integrating the geological/(biogeo)chemical literature, which focuses on naturally occurring Pt mobility around ore deposits, with the environmental/ecotoxicological literature dealing with anthropogenic Pt dispersion. In Pt deposits, Pt occurs as sulfide-, telluride- and arsenide, native metal and alloyed to other PGEs and iron (Fe). Increased mining and utilization of Pt combined with the burning of fossil fuels have led to the dispersion of Pt-containing nano- and micro-particles. Hence, soils and sediments in industrialized areas, urban environments and along major roads are now commonly Pt enriched. Platinum minerals, nuggets and anthropogenic particles are transformed by physical and (bio)geochemical processes. Complexation of Pt ions with chloride, thiosulfate, ammonium, cyanide, low- and high molecular weight organic acids (LMWOAs and HMWOAs) and siderophores can facilitate Pt mobilization. Iron-oxides, clays, organic matter and (micro)biota are known to sequester Pt-complexes and -particles. Microbes and plants are capable of bioaccumulating and reductively precipitating mobile Pt complexes. Bioaccumulation can lead to toxic effects on plants and animals, including humans. (Bio)mineralization in organic matter-rich sediments can lead to the formation of secondary Pt particles and -grains. Ultimately, Pt is enriched in oceanic sediments

  7. Porous platinum-based catalysts for oxygen reduction

    DOEpatents

    Erlebacher, Jonah D; Snyder, Joshua D

    2014-11-25

    A porous metal that comprises platinum and has a specific surface area that is greater than 5 m.sup.2/g and less than 75 m.sup.2/g. A fuel cell includes a first electrode, a second electrode spaced apart from the first electrode, and an electrolyte arranged between the first and the second electrodes. At least one of the first and second electrodes is coated with a porous metal catalyst for oxygen reduction, and the porous metal catalyst comprises platinum and has a specific surface area that is greater than 5 m.sup.2/g and less than 75 m.sup.2/g. A method of producing a porous metal according to an embodiment of the current invention includes producing an alloy consisting essentially of platinum and nickel according to the formula Pt.sub.xNi.sub.1-x, where x is at least 0.01 and less than 0.3; and dealloying the alloy in a substantially pH neutral solution to reduce an amount of nickel in the alloy to produce the porous metal.

  8. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of hafnium, tantalum, tungsten, rhenium, osmium, iridium, and platinum on hardness of molybdenum. Special emphasis was placed on alloy softening in these binary molybdenum alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to molybdenum, while those elements having an equal number or fewer s+d electrons that molybdenum failed to produce alloy softening. Alloy softening and alloy hardening can be correlated with the difference in number of s+d electrons of the solute element and molybdenum.

  9. CONTROL ROD ALLOY CONTAINING NOBLE METAL ADDITIONS

    DOEpatents

    Anderson, W.K.; Ray, W.E.

    1960-05-01

    Silver-base alloys suitable for use in the fabrication of control rods for neutronic reactors are given. The alloy consists of from 0.5 wt.% to about 1.5 wt.% of a noble metal of platinum, ruthenium, rhodium, osmium, or palladium, up to 10 wt.% of cadmium, from 2 to 20 wt.% indium, the balance being silver.

  10. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  11. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  12. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  13. 21 CFR 872.3060 - Noble metal alloy.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  14. Silicone breast implants and platinum.

    PubMed

    Wixtrom, Roger N

    2007-12-01

    Platinum, in a specific form, is used as a catalyst in the cross-linking reactions of the silicone gel and elastomer in breast implants. After manufacture, it remains in the devices at low-parts-per-million levels. Potential concerns have been raised as to whether this platinum might diffuse from silicone breast implants into the body and result in adverse health effects. The weight of evidence indicates that the platinum present is in its most biocompatible (zero valence) form, and the very minute levels (<0.1 percent) that might diffuse from the implants do not represent a significant health risk to patients. PMID:18090821

  15. Platinum availability for future automotive technologies.

    PubMed

    Alonso, Elisa; Field, Frank R; Kirchain, Randolph E

    2012-12-01

    Platinum is an excellent catalyst, can be used at high temperatures, and is stable in many aggressive chemical environments. Consequently, platinum is used in many current industrial applications, notably automotive catalytic converters, and prospective vehicle fuel cells are expected to rely upon it. Between 2005 and 2010, the automotive industry used approximately 40% of mined platinum. Future automotive industry growth and automotive sales shifts toward new technologies could significantly alter platinum demand. The potential risks for decreased platinum availability are evaluated, using an analysis of platinum market characteristics that describes platinum's geophysical constraints, institutional efficiency, and dynamic responsiveness. Results show that platinum demand for an automotive fleet that meets 450 ppm greenhouse gas stabilization goals would require within 10% of historical growth rates of platinum supply before 2025. However, such a fleet, due largely to sales growth in fuel cell vehicles, will more strongly constrain platinum supply in the 2050 time period. While current platinum reserves are sufficient to satisfy this increased demand, decreasing platinum ore grade and continued concentration of platinum supply in a single geographic area are availability risk factors to platinum end-users. PMID:23088692

  16. Synthesis and characterization of potential iron–platinum drugs and supplements by laser liquid photolysis

    PubMed Central

    Nkosi, Steven S; Mwakikunga, Bonex W; Sideras-Haddad, Elias; Forbes, Andrew

    2012-01-01

    Highly crystalline nanospherical iron–platinum systems were produced by 248 nm laser irradiation of a liquid precursor at different laser fluences, ranging from 100–375 mJ/cm2. The influence of laser intensity on particle size, iron composition, and structure was systematically investigated. Different nanostructures of iron–platinum alloy and chemically disordered iron–platinum L10 phase were obtained without annealing. The prepared precursor solution underwent deep photolysis to polycrystalline iron–platinum nanoalloys through Fe(III) acetylacetonate and Pt(II) acetylacetonate. Fe(II) and Pt(I) acetylacetone decomposed into Fe0 and Pt0 nanoparticles. We found that the (001) diffraction peak shifted linearly to a lower angle, with the last peak shifting in opposition to the others. This caused the face-centered cubic L10 structure to change its composition according to laser fluence. The nanostructures were shown to contain iron and platinum only by energy-dispersive spectroscopy at several spots. The response of these iron–platinum nanoparticles to infrared depends on their stoichiometric composition, which is controlled by laser fluence. PMID:24198494

  17. Coating Carbon Fibers With Platinum

    NASA Technical Reports Server (NTRS)

    Effinger, Michael R.; Duncan, Peter; Coupland, Duncan; Rigali, Mark J.

    2007-01-01

    A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution.

  18. Polymorphic transporters and platinum pharmacodynamics

    PubMed Central

    Sprowl, Jason A.; Ness, Rachel A.; Sparreboom, Alex

    2013-01-01

    Summary Several solute carriers and ATP-binding cassette transporters have been implicated in the influx or efflux of platinum-based chemotherapeutic agents such as cisplatin, carboplatin, and oxaliplatin. Given that many of these proteins are highly polymorphic, the genetic status of these proteins could be an important contributor to the extensive interindividual pharmacokinetic variability associated with the clinical use of these agents. In this review article, we provide an updated overview of the various transporters that have shown promise in animal models or patient populations in facilitating the movement of platinum-based agents across cell membranes, and how their function is associated with drug disposition or pharmacodynamic effects. PMID:22986709

  19. Bioavailability of platinum emitted from automobile exhaust.

    PubMed

    Artelt, S; Kock, H; Nachtigall, D; Heinrich, U

    1998-08-01

    A model substance was used which is similar in respect to platinum content of exhaust particles emitted from a three-way-catalytic converter equipped engine. The bioavailability of platinum from such exhaust particles and the kind of platinum species formed in vivo were assessed. An in vitro solubility test showed a solubility of approximately 10 percent of platinum content of the model substance in physiological sodium chloride solution. Two short-term animal studies (8 days) were performed. In all examined rat tissues and body fluids platinum could be detected. In addition, the contribution of the overall bioavailability caused by swallowing a certain amount of the intratracheally applied platinum was evaluated by oral application. It was very low. An analytical method was developed to determine platinum species. Synthetic samples (matrix with a platinum standard solution) were analysed. In rat bronchoalveolar lavage spiked with a platinum standard solution only low molecular complexed platinum was found whereas in rat blood plasma all platinum was bound to proteins. In ongoing studies, the model substance is being tested in a three month rat inhalation study. PMID:9820662

  20. Method for forming porous platinum films

    DOEpatents

    Maya, Leon

    2000-01-01

    A method for forming a platinum film includes providing a substrate, sputtering a crystalline platinum oxide layer over at least a portion of the substrate, and reducing the crystalline platinum oxide layer to form the platinum film. A device includes a non-conductive substrate and a platinum layer having a density of between about 2 and 5 g/cm.sup.3 formed over at least a portion of the non-conductive substrate. The platinum films produced in accordance with the present invention provide porous films suitable for use as electrodes, yet require few processing steps. Thus, such films are less costly. Such films may be formed on both conductive and non-conductive substrates. While the invention has been illustrated with platinum, other metals, such as noble metals, that form a low density oxide when reactively sputtered may also be used.

  1. Nanocarriers for delivery of platinum anticancer drugs☆

    PubMed Central

    Oberoi, Hardeep S.; Nukolova, Natalia V.; Kabanov, Alexander V.; Bronich, Tatiana K.

    2014-01-01

    Platinum based anticancer drugs have revolutionized cancer chemotherapy, and continue to be in widespread clinical use especially for management of tumors of the ovary, testes, and the head and neck. However, several dose limiting toxicities associated with platinum drug use, partial anti-tumor response in most patients, development of drug resistance, tumor relapse, and many other challenges have severely limited the patient quality of life. These limitations have motivated an extensive research effort towards development of new strategies for improving platinum therapy. Nanocarrier-based delivery of platinum compounds is one such area of intense research effort beginning to provide encouraging preclinical and clinical results and may allow the development of the next generation of platinum chemotherapy. This review highlights current understanding on the pharmacology and limitations of platinum compounds in clinical use, and provides a comprehensive analysis of various platinum–polymer complexes, micelles, dendrimers, liposomes and other nanoparticles currently under investigation for delivery of platinum drugs. PMID:24113520

  2. Reducing Stress-Corrosion Cracking in Bearing Alloys

    NASA Technical Reports Server (NTRS)

    Paton, N. E.; Dennies, D. P.; Lumsden, I., J.b.

    1986-01-01

    Resistance to stress-corrosion cracking in some stainless-steel alloys increased by addition of small amounts of noble metals. 0.75 to 1.00 percent by weight of palladium or platinum added to alloy melt sufficient to improve properties of certain stainless steels so they could be used in manufacture of high-speed bearings.

  3. Noble alloys in dentistry.

    PubMed

    Gettleman, L

    1991-04-01

    Noble metals used for dental castings continue to consist of alloys of gold, palladium, and silver (not a noble metal), with smaller amounts of iridium, ruthenium, and platinum. The majority are used as a backing for ceramic baking, with the rest used as inlays, onlays, and unveneered crowns. Base metal alloys, principally made of nickel, chromium, and beryllium have gained widespread usage, especially in the United States, due to their lower cost and higher mechanical properties. The current literature, for the most part, cites the use of noble alloys as controls for trials of alternative materials. Direct gold (gold foil) still retains a following and a number of new patents were founded. PMID:1777669

  4. Controlling the Adsorption of Carbon Monoxide on Platinum Clusters by Dopant-Induced Electronic Structure Modification.

    PubMed

    Ferrari, Piero; Molina, Luis M; Kaydashev, Vladimir E; Alonso, Julio A; Lievens, Peter; Janssens, Ewald

    2016-09-01

    A major drawback of state-of-the-art proton exchange membrane fuel cells is the CO poisoning of platinum catalysts. It is known that CO poisoning is reduced if platinum alloys are used, but the underlying mechanism therefore is still under debate. We study the influence of dopant atoms on the CO adsorption on small platinum clusters using mass spectrometry experiments and density functional calculations. A significant reduction in the reactivity for Nb- and Mo-doped clusters is attributed to electron transfer from those highly coordinated dopants to the Pt atoms and the concomitant lower CO binding energies. On the other hand Sn and Ag dopants have a lower Pt coordination and have a limited effect on the CO adsorption. Analysis of the density of states demonstrates a correlation of dopant-induced changes in the electronic structure with the enhanced tolerance to CO poisoning. PMID:27464653

  5. Surface characterization of platinum electrodes.

    PubMed

    Solla-Gullón, José; Rodríguez, Paramaconi; Herrero, Enrique; Aldaz, Antonio; Feliu, Juan M

    2008-03-14

    The quantitative analysis of the different surface sites on platinum samples is attempted from pure voltammetric data. This analysis requires independent knowledge of the fraction of two-dimensional (111) and (100) domains. Specific site-probe reactions are employed to achieve this goal. Irreversibly-adsorbed bismuth and tellurium have been revealed to be sensitive to the presence of (111) terrace domains of different width whereas almost all sites involved in (100) ordered domains have been characterized through germanium adatoms. The experimental protocol follows that used with well-defined single-crystal electrodes and, therefore, requires careful control of the surface cleanliness. Platinum basal planes and their vicinal stepped surfaces have been employed to obtain calibration plots between the charge density measured under the adatom redox peak, specific for the type of surface site, and the corresponding terrace size. The evaluation of the (100) bidimensional domains can also be achieved using the voltammetric profiles, once the fraction of (111) ordered domains present in the polyoriented platinum has been determined and their featureless contribution has been subtracted from the whole voltammetric response. Using that curve, it is possible to perform a deconvolution of the adsorption states of the polycrystalline sample different from those related to (111) domains. The fraction of (100)-related states in the deconvoluted voltammogram can then be compared to that expected from the independent estimation coming from the charge involved in the redox process undergone by the irreversibly-adsorbed germanium and thus check the result of the deconvolution. The information about the surface-site distribution can also be applied to analyze the voltammetric profile of nanocrystalline platinum electrodes. PMID:18309392

  6. Phosphoric acid fuel cell platinum use study

    NASA Technical Reports Server (NTRS)

    Lundblad, H. L.

    1983-01-01

    The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.

  7. Formation, Characteristics and Electrocatalytic Properties of Nanoporous Metals Formed by Dealloying of Ternary-Noble Alloys

    NASA Astrophysics Data System (ADS)

    Vega Zuniga, Adrian A.

    Nanoporous metals formed by electrochemical dealloying of silver from Ag-Au-Pt alloys, with 77 at.% silver and platinum contents of 1, 2 and 3 at.%, have been studied. The presence of platinum, which is immobile relative to gold, refine the ligament size and stabilized the nanostructure against coarsening, even under experimental conditions that would be expected to promote coarsening (e.g., exposure to high temperature, longer dealloying times). By adding only 1 at.% Pt to the alloy precursor, the ligament/pore size was reduced by 50% with respect to that in nanoporous gold (NPG), which was formed on a Ag-Au alloy with the same silver content as ternary alloys. A further decrease in the ligament size was observed by increasing the platinum content of the precursor; however, most of the improvement occurred with 1 at.% Pt. The adsorbate-induced surface segregation of platinum was also investigated for these nanoporous metals. By exposing freshly-dealloyed nanostructures to moderate temperatures in the presence of air, platinum segregated to the ligament surface; in contrast, in an inert atmosphere (Ar-H 2), platinum mostly reverted to the bulk of the ligaments. This thermally activated process was thermodynamically driven by the interaction between platinum and oxygen; however, at the desorption temperature of oxygen, platinum de-segregated from the surface. Moreover, the co-segregation of platinum and oxygen hindered the thermal coarsening of the ligaments. Finally, the electrocatalytic abilities of these nanostructures were studied towards methanol and ethanol electro-oxidation, in alkaline and acidic media, showing significantly improved response in comparison to that observed in NPG. The synergistic effect between gold and platinum atoms and the smaller feature size of the nanostructures were directly associated with this behaviour. In alkaline electrolyte, the nanostructure formed on the alloy with 1 at.% Pt showed higher catalytic response than the other two

  8. Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit

    SciTech Connect

    Lucci, Felicia R.; Liu, Jilei; Marcinkowski, Matthew D.; Yang, Ming; Allard, Lawrence F.; Flytzani-Stephanopoulos, Maria; Sykes, E. Charles H.

    2015-10-09

    Platinum is ubiquitous in the production sectors of chemicals and fuels; however, its scarcity in nature and high price will limit future proliferation of platinum-catalysed reactions. One definite approach to conserve platinum involves understanding the smallest number of platinum atoms needed to catalyse a reaction, then designing catalysts with the minimal platinum ensembles. Here we design and test a new generation of platinum–copper nanoparticle catalysts for the selective hydrogenation of 1,3-butadiene,, an industrially important reaction. Isolated platinum atom geometries enable hydrogen activation and spillover but are incapable of C–C bond scission that leads to loss of selectivity and catalyst deactivation. γ-Alumina-supported single-atom alloy nanoparticle catalysts with <1 platinum atom per 100 copper atoms are found to exhibit high activity and selectivity for butadiene hydrogenation to butenes under mild conditions, demonstrating transferability from the model study to the catalytic reaction under practical conditions.

  9. Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit

    PubMed Central

    Lucci, Felicia R.; Liu, Jilei; Marcinkowski, Matthew D.; Yang, Ming; Allard, Lawrence F.; Flytzani-Stephanopoulos, Maria; Sykes, E. Charles H.

    2015-01-01

    Platinum is ubiquitous in the production sectors of chemicals and fuels; however, its scarcity in nature and high price will limit future proliferation of platinum-catalysed reactions. One promising approach to conserve platinum involves understanding the smallest number of platinum atoms needed to catalyse a reaction, then designing catalysts with the minimal platinum ensembles. Here we design and test a new generation of platinum–copper nanoparticle catalysts for the selective hydrogenation of 1,3-butadiene,, an industrially important reaction. Isolated platinum atom geometries enable hydrogen activation and spillover but are incapable of C–C bond scission that leads to loss of selectivity and catalyst deactivation. γ-Alumina-supported single-atom alloy nanoparticle catalysts with <1 platinum atom per 100 copper atoms are found to exhibit high activity and selectivity for butadiene hydrogenation to butenes under mild conditions, demonstrating transferability from the model study to the catalytic reaction under practical conditions. PMID:26449766

  10. INDUCTION OF TRISOMICS BY PLATINUM DIAMINODINITRODICHLORIDE

    EPA Science Inventory

    Trisomics were produced in the pollen mother cells of Pennisetum americanum (L) K. Schum plants resulting from seeds treated with M to the minus 6th power platinum diaminodinitrodichloride. On the basis of the preliminary study the relative potency of cis-Platinum diaminodinitrod...

  11. Platinum electrodes for electrochemical detection of bacteria

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.

    1979-01-01

    Bacteria is detected electro-chemically by measuring evolution of hydrogen in test system with platinum and reference electrode. Using system, electrodes of platinum are used to detect and enumerate varieties of gram-positive and gram-negative organisms compared in different media.

  12. Platinum metallization for MEMS application

    PubMed Central

    Guarnieri, Vittorio; Biazi, Leonardo; Marchiori, Roberto; Lago, Alexandre

    2014-01-01

    The adherence of Platinum thin film on Si/SiO2 wafer was studies using Chromium, Titanium or Alumina (Cr, Ti, Al2O3) as interlayer. The adhesion of Pt is a fundamental property in different areas, for example in MEMS devices, which operate at high temperature conditions, as well as in biomedical applications, where the problem of adhesion of a Pt film to the substrate is known as a major challenge in several industrial applications health and in biomedical devices, such as for example in the stents.1-4 We investigated the properties of Chromium, Titanium, and Alumina (Cr, Ti, and Al2O3) used as adhesion layers of Platinum (Pt) electrode. Thin films of Chromium, Titanium and Alumina were deposited on Silicon/Silicon dioxide (Si/SiO2) wafer by electron beam. We introduced Al2O3 as a new adhesion layer to test the behavior of the Pt film at higher temperature using a ceramic adhesion thin film. Electric behaviors were measured for different annealing temperatures to know the performance for Cr/Pt, Ti/Pt, and Al2O3/Pt metallic film in the gas sensor application. All these metal layers showed a good adhesion onto Si/SiO2 and also good Au wire bondability at room temperature, but for higher temperature than 400 °C the thin Cr/Pt and Ti/Pt films showed poor adhesion due to the atomic inter-diffusion between Platinum and the metal adhesion layers.5 The proposed Al2O3/Pt ceramic-metal layers confirmed a better adherence for the higher temperatures tested. PMID:24743057

  13. On the system cerium-platinum-silicon

    SciTech Connect

    Gribanov, Alexander Grytsiv, Andriy; Royanian, Esmaeil; Rogl, Peter; Bauer, Ernst; Giester, Gerald; Seropegin, Yurii

    2008-11-15

    Phase relations in the ternary system Ce-Pt-Si have been established for the isothermal section at 800 deg. C based on X-ray powder diffraction, metallography, scanning electron microscopy (SEM) and electron probe microanalysis (EPMA) techniques on about 120 alloys, which were prepared by various methods employing arc-melting under argon or powder reaction sintering. Nineteen ternary compounds were observed. Atom order in the crystal structures of {tau}{sub 18}-Ce{sub 5}(Pt,Si){sub 4} (Pnma; a=0.77223(3) nm, b=1.53279(8) nm c=0.80054(5) nm), {tau}{sub 3}-Ce{sub 2}Pt{sub 7}Si{sub 4} (Pnma; a=1.96335(8) nm, b=0.40361(4) nm, c=1.12240(6) nm) and {tau}{sub 10}-CePtSi{sub 2} (Cmcm; a=0.42943(2) nm, b=1.67357(5) nm, c=0.42372(2) nm) was determined by direct methods from X-ray single-crystal CCD data and found to be isotypic with the Sm{sub 5}Ge{sub 4}-type, the Ce{sub 2}Pt{sub 7}Ge{sub 4}-type and the CeNiSi{sub 2}-type, respectively. Rietveld refinements established the atom arrangement in the structures of Pt{sub 3}Si (Pt{sub 3}Ge-type, C2/m, a=0.7724(2) nm, b=0.7767(2) nm, c=0.5390(2) nm, {beta}=133.86(2){sup o}), {tau}{sub 16}-Ce{sub 3}Pt{sub 5}Si (Ce{sub 3}Pd{sub 5}Si-type, Imma, a=0.74025(8) nm, b=1.2951(2) nm, c=0.7508(1) nm) and {tau}{sub 17}-Ce{sub 3}PtSi{sub 3} (Ba{sub 3}Al{sub 2}Ge{sub 2}-type, Immm, a=0.41065(5) nm, b=0.43221(5) nm, c=1.8375(3) nm). Phase equilibria in Ce-Pt-Si are characterised by the absence of cerium solubility in platinum silicides. Cerium silicides and cerium platinides, however, dissolve significant amounts of the third component, whereby random substitution of the almost equally sized atom species platinum and silicon is reflected in extended homogeneous regions at constant Ce content such as for {tau}{sub 13}-Ce(Pt{sub x}Si{sub 1-x}){sub 2}, {tau}{sub 6}-Ce{sub 2}Pt{sub 3+x}Si{sub 5-x} or {tau}{sub 7}-CePt{sub 2-x}Si{sub 2+x}. - Graphical abstract: Phase relations in the ternary system Ce-Pt-Si have been established for the isothermal

  14. Extended Platinum Nanotubes as Fuel Cell Catalysts

    SciTech Connect

    Alia, S.; Pivovar, B. S.; Yan, Y.

    2012-01-01

    Energy consumption has relied principally on fossil fuels as an energy source; fuel cells, however, can provide a clean and sustainable alternative, an answer to the depletion and climate change concerns of fossil fuels. Within proton exchange membrane fuel cells, high catalyst cost and poor durability limit the commercial viability of the device. Recently, platinum nanotubes (PtNTs) were studied as durable, active catalysts, providing a platform to meet US Department of Energy vehicular activity targets.[1] Porous PtNTs were developed to increase nanotube surface area, improving mass activity for oxygen reduction without sacrificing durability.[2] Subsurface platinum was then replaced with palladium, forming platinum-coated palladium nanotubes.[3] By forming a core shell structure, platinum utilization was increased, reducing catalyst cost. Alternative substrates have also been examined, modifying platinum surface facets and increasing oxygen reduction specific activity. Through modification of the PtNT platform, catalyst limitations can be reduced, ensuring a commercially viable device.

  15. Optical Properties and Electronic Structures of d- and F-Electron Metals and Alloys, Silver-Indium Nickel - GOLD-GALLIUM(2), PLATINUM-GALLIUM(2), - - Cobalt-Aluminum CERIUM-TIN(3), and LANTHANUM-TIN(3)

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Joo

    1990-01-01

    Optical properties and electronic structures of disordered Ag_{1-x}In_ {x} (x = 0.0, 0.04, 0.08, 0.12) and Ni_{1-x}Cu_{x }(x = 0.0, 0.1, 0.3, 0.4) alloys and ordered AuGa_2, PtGa _2, beta^' -NiAl, beta^' -CoAl, CeSn_3, and LaSn_3 have been studied. The complex dielectric functions have been determined for Ag_{1-x}In _{x},Ni_{1-x}Cu_ {x},AuGa_2, and PtGa_2 in the 1.2-5.5 eV region and for CeSn_3 and LaSn_3 in the 1.5-4.5 eV region using spectroscopic ellipsometry. Self-consistent relativistic band calculations using the linearized-augmented -plane-wave method have been performed for AuGa _2, PtGa_2,beta^' -CoAl, CeSn_3, and LaSn_3 to interpret the experimental optical spectra. In Ag_{1-x}In_{x} , the intraband scattering rate increases with increasing In concentration in the low-energy region (<3.5 eV). As the In concentration increases, the onset energy of the L_3to L_sp{2}{'}( E_{F}) transitions, 4.03 eV for pure Ag, shifts to higher energies, while that of the L_sp{2}{'}(E _{F}) to L_1 transitions, 3.87 eV for pure Ag, shifts to lower energies. This is only partly attributable to the rise of the Fermi level E_{F} caused by an increase in the average number of electrons per atom due to the In solute and to the narrowing of the Ag 4d-bands. The L_1-band may also lower as In is added. In Ni_{1-x}Cu_ {x}, the 4.7-eV edge (from transitions between the s-d-hybridized bands well below E_ {F} and the s-p-like bands above E _{F}, e.g., X_1 to X_sp{4}{'} ) shifts to higher energies, while the 1.5-eV edge (from transitions between a p-like band below E _{F} and a d-band above E _{F}, e.g., L_sp {2}{'} to L_3) remains at the same energy as the Cu concentration increases. A structure grows in the (2-3)-eV region as Cu is added, and it is interpreted as being due to transitions between the localized Cu subbands. For AuGa_2 and PtGa _2, both compounds show interband absorption at low photon energies (<1.3 eV). The interband absorption for AuGa_2 is strong at about 2 eV while

  16. On the high-pressure superconducting phase in platinum hydride

    NASA Astrophysics Data System (ADS)

    Szczȩśniak, D.; Zemła, T. P.

    2015-08-01

    Motivated by the ambiguous experimental data for the superconducting phase in silane (SiH4), which may originate from platinum hydride (PtH), we provide a theoretical study of the superconducting state in the latter alloy. The quantitative estimates of the thermodynamics of PtH at 100 GPa are given for a wide range of Coulomb pseudopotential values ({μ }*) within the Eliashberg formalism. The obtained critical temperature value ({T}{{C}}\\in < 12.94,20.01> for {μ }*\\in < 0.05,0.15> ) agrees well with the experimental TC for SiH4, which may be ascribed to PtH. Moreover, the calculated characteristic thermodynamic ratios exceed the predictions of the Bardeen-Cooper-Schrieffer theory, implying the occurrence of strong-coupling and retardation effects in PtH. We note that our results may be of high relevance for future theoretical and experimental studies on hydrides.

  17. Characterization of electrochemically modified polycrystalline platinum surfaces

    SciTech Connect

    Krebs, L.C.; Ishida, Takanobu.

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  18. [Mechanism of Platinum Derivatives Induced Kidney Injury].

    PubMed

    Yan, Feifei; Duan, Jianchun; Wang, Jie

    2015-09-20

    Platinum derivatives are the most widely used chemotherapeutic agents to treat solid tumors including ovarian, head and neck, and testicular germ cell tumors, lung cancer, and colorectal cancer. Two major problems exist, however, in the clinic use of platinum derivatives. One is the development of tumor resistance to the drug during therapy, leading to treatment failure. The other is the drug's toxicity such as the cisplatin's nephrotoxicity, which limits the dose that can be administered. This paper describes the mechanism of platinum derivatives induced kidney injury. PMID:26383983

  19. Antitumor effect of arabinogalactan and platinum complex.

    PubMed

    Starkov, A K; Zamay, T N; Savchenko, A A; Ingevatkin, E V; Titova, N M; Kolovskaya, O S; Luzan, N A; Silkin, P P; Kuznetsova, S A

    2016-03-01

    The article presents the results of investigation of antitumor properties of platinum-arabinogalactan complex. We showed the ability of the complex to inhibit the growth of Ehrlich ascites tumor cells. It is found that the distribution of the platinum-arabinogalactan complex is not specific only for tumor cells in mice. The complex was found in all tissues and organs examined (ascites cells, embryonic cells, kidney, and liver). The mechanism of action of the arabinogalactan-platinum complex may be similar to cisplatin as the complex is able to accumulate in tumor cells. PMID:27193706

  20. Beam-deposited platinum as versatile catalyst for bottom-up silicon nanowire synthesis

    SciTech Connect

    Hibst, N.; Strehle, S.; Knittel, P.; Kranz, C.; Mizaikoff, B.

    2014-10-13

    The controlled localized bottom-up synthesis of silicon nanowires on arbitrarily shaped surfaces is still a persisting challenge for functional device assembly. In order to address this issue, electron beam and focused ion beam-assisted catalyst deposition have been investigated with respect to platinum expected to form a PtSi alloy catalyst for a subsequent bottom-up nanowire synthesis. The effective implementation of pure platinum nanoparticles or thin films for silicon nanowire growth has been demonstrated recently. Beam-deposited platinum contains significant quantities of amorphous carbon due to the organic precursor and gallium ions for a focused ion beam-based deposition process. Nevertheless, silicon nanowires could be grown on various substrates regardless of the platinum purity. Additionally, p-type doping could be realized with diborane whereas n-type doping suppressed a nanowire growth. The rational utilization of this beam-assisted approach enables us to control the localized synthesis of single silicon nanowires at planar surfaces but succeeded also in single nanowire growth at the three-dimensional apex of an atomic force microscopy tip. Therefore, this catalyst deposition method appears to be a unique extension of current technologies to assemble complex nanowire-based devices.

  1. Teaching the Chemistry of Platinum.

    PubMed

    Anderson, Robert G W

    2015-01-01

    Following colonisation of South America by the Spanish, many new naturally occurring substances were sent to Europe. One of these was the silvery, unreactive metal, platinum, discovered in New Grenada in the mid-eighteenth century. It was often found in granular form, associated with gold, and the challenge to chemists was to refine it, produce it as wire or sheet, and determine its chemical properties. This interested the professor of chemistry at the University of Edinburgh, Joseph Black, who was able to obtain samples from London-based Spanish contacts, particularly Ignacio Luzuriaga. This paper examines how Black transmitted his knowledge of the metal to large numbers of students attending his annual course. PMID:26924332

  2. Calibration of platinum resistance thermometers.

    NASA Technical Reports Server (NTRS)

    Sinclair, D. H.; Terbeek, H. G.; Malone, J. H.

    1972-01-01

    Results of five years experience in calibrating about 1000 commercial platinum resistance thermometers (PRT) are reported. These PRT were relatively small and rugged, with ice-point resistances from 200 to 5000 ohms. Calibrations normalized in terms of resistance-difference ratios (Cragoe Z function) were found to be remarkably uniform for five of six different types of PRT tested, and to agree very closely with normalized calibrations of the primary reference standard type PRT. The Z function normalization cancels residual resistances which are not temperature dependent and simplifies interpolation between calibration points when the quality of a given type of PRT has been established in terms of uniform values of the Z function. Measurements at five or six well spaced base-point temperatures with Z interpolation will suffice to calibrate a PRT accurately from 4 to 900 K.

  3. Evaluation of platinum resistance thermometers

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Dillon-Townes, Lawrence A.

    1988-01-01

    An evaluation procedure for the characterization of industrial platinum resistance thermometers (PRTs) for use in the temperature range -120 to 160 C was investigated. This evaluation procedure consisted of calibration, thermal stability and hysteresis testing of four surface measuring PRTs. Five different calibration schemes were investigated for these sensors. The IPTS-68 formulation produced the most accurate result, yielding average sensor systematic error of 0.02 C and random error of 0.1 C. The sensors were checked for thermal stability by successive and thermal cycling between room temperature, 160 C, and boiling point of nitrogen. All the PRTs suffered from instability and hysteresis. The applicability of the self-heating technique as an in situ method for checking the calibration of PRTs located inside wind tunnels was investigated.

  4. Titanium oxynitride interlayer to influence oxygen reduction reaction activity and corrosion stability of Pt and Pt-Ni alloy.

    PubMed

    Tan, XueHai; Wang, Liya; Zahiri, Beniamin; Kohandehghan, Alireza; Karpuzov, Dimitre; Lotfabad, Elmira Memarzadeh; Li, Zhi; Eikerling, Michael H; Mitlin, David

    2015-01-01

    A key advancement target for oxygen reduction reaction catalysts is to simultaneously improve both the electrochemical activity and durability. To this end, the efficacy of a new highly conductive support that comprises of a 0.5 nm titanium oxynitride film coated by atomic layer deposition onto an array of carbon nanotubes has been investigated. Support effects for pure platinum and for a platinum (50 at %)/nickel alloy have been considered. Oxynitride induces a downshift in the d-band center for pure platinum and fundamentally changes the platinum particle size and spatial distribution. This results in major enhancements in activity and corrosion stability relative to an identically synthesized catalyst without the interlayer. Conversely, oxynitride has a minimal effect on the electronic structure and microstructure, and therefore, on the catalytic performance of platinum-nickel. Calculations based on density functional theory add insight with regard to compositional segregation that occurs at the alloy catalyst-support interface. PMID:25470445

  5. Platinum-ruthenium-palladium fuel cell electrocatalyst

    DOEpatents

    Gorer, Alexander

    2006-02-07

    A catalyst suitable for use in a fuel cell, especially as an anode catalyst, that contains platinum at a concentration that is between about 20 and about 60 atomic percent, ruthenium at a concentration that is between about 20 and about 60 atomic percent, palladium at a concentration that is between about 5 and about 45 atomic percent, and having an atomic ratio of platinum to ruthenium that is between about 0.7 and about 1.2. Alternatively, the catalyst may contain platinum at a concentration that is between about 25 and about 50 atomic percent, ruthenium at a concentration that is between about 25 and about 55 atomic percent, palladium at a concentration that is between about 5 and about 45 atomic percent, and having a difference between the concentrations of ruthenium and platinum that is no greater than about 20 atomic percent.

  6. Platinum-ruthenium-nickel fuel cell electrocatalyst

    DOEpatents

    Gorer, Alexander

    2005-07-26

    A catalyst suitable for use in a fuel cell, especially as an anode catalyst, that contains platinum, ruthenium, and nickel, wherein the nickel is at a concentration that is less than about 10 atomic percent.

  7. Platinum-Resistor Differential Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Kolbly, R. B.; Britcliffe, M. J.

    1985-01-01

    Platinum resistance elements used in bridge circuit for measuring temperature difference between two flowing liquids. Temperature errors with circuit are less than 0.01 degrees C over range of 100 degrees C.

  8. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1981-01-01

    The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst supported on a carbon substrate. During operation, the small platinum crystallites sinter, causing loss in cell performance. A support was developed that stabilizes platinum in the high surface area condition by retarding or preventing the sintering process. The approach is to form etch pits in the carbon by oxidizing the carbon in the presence of a metal oxide catalyst, remove the metal oxide by an acid wash, and then deposit platinum in these pits. Results confirm the formation of etch pits in each of the three supports chosen for investigation: Vulcan XC-72R, Vulcan XC-72 that was graphized at 2500 C, and Shawinigan Acetylene Black.

  9. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1982-01-01

    Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.

  10. Corrosion Behavior of Platinum-Enhanced Radiopaque Stainless Steel (PERSS®) for Dilation-Baloon Expandable Coronary Stents

    SciTech Connect

    Covino, Jr., Bernard S.; Craig, Charles H.; Cramer, Stephen D.; Bullard, Sophie J.; Ziomek-Moroz, Margaret; Jablonski, Paul D.; Turner, Paul C.; Radisch, Jr., Herbert R.; Gokcen, Nev A.; Friend, Clifford M.; Edwards, Michael R.

    2002-05-01

    Dilation-balloon expandable coronary stents are commonly made of implant grade stainless steels conforming to ASTM F138/F139, e.g., Biodur? 316LS (UNS S31673). Typical of such stents is the Boston Scientific/Interventional Technologies? (BS/IVT) LP-StentTM. In 2000, BS/IVT determined that the addition of 5 to 6 wt % platinum to Biodur 316LS produced a stainless steel with enhanced radiopacity to make their stents more visible radiographically and thus more effective clinically. A goal of the program was to ensure platinum additions would not adversely affect the corrosion resistance of Biodur 316LS. The corrosion resistance of 5-6 wt % PERSS? alloys and Biodur 316LS was determined using electrochemical tests for general, pitting, crevice and intergranular corrosion. Experimental methods included ASTM A262E, F746, F2129, and potentiodynamic polarization. The 6 wt % PERSS? alloy (IVT 78) had a resistance to pitting, crevice and intergranular corrosion that was similar to the Biodur 316LS base material. IVT 78 was a single-phase austenitic alloy with no evidence of inclusions or precipitates. It was more resistant to pitting corrosion than 5 wt % PERSS? alloys. Performance of the PERSS? alloys was not a function of alloy oxygen content in the range 0.01 to 0.03 wt %.

  11. A facile and efficient synthesis of polystyrene/gold-platinum composite particles and their application for aerobic oxidation of alcohols in water.

    PubMed

    Li, Yunxing; Gao, Yan; Yang, Cheng

    2015-05-01

    Herein we develop a facile and effective method for the synthesis of composite particles composed of polystyrene microspheres decorated with gold-platinum alloy nanoparticles, which exhibited excellent catalytic activity and recyclability for 1-phenylethanol oxidation under mild conditions (without a base, air as an oxidant, in water, at 40 °C). PMID:25850358

  12. Platinum-rare earth cathodes for direct borohydride-peroxide fuel cells

    NASA Astrophysics Data System (ADS)

    Cardoso, D. S. P.; Santos, D. M. F.; Šljukić, B.; Sequeira, C. A. C.; Macciò, D.; Saccone, A.

    2016-03-01

    Hydrogen peroxide (H2O2) is being actively investigated as an oxidant for direct borohydride fuel cells. Herein, platinum-rare earth (RE = Sm, Dy, Ho) alloys are prepared by arc melting and their activity for hydrogen peroxide reduction reaction (HPRR) is studied in alkaline media. Cyclic voltammetry and chronoamperometry measurements show that Pt-Sm electrode displays the highest catalytic activity for HPRR with the lowest activation energy, followed by Pt-Ho, while Pt-Dy alloys show practically no activity. Laboratory direct borohydride-peroxide fuel cells (DBPFCs) are assembled using these alloys. The DBPFC with Pt-Sm cathode gives the highest peak power density of 85 mW cm-2, which is more than double of that obtained in a DBPFC with Pt electrodes.

  13. Allergic reaction to platinum in silicone breast implants.

    PubMed

    Arepalli, Sambasiva R; Bezabeh, Shewit; Brown, S Lori

    2002-01-01

    Platinum is used as a catalyst in the manufacture of silicone breast implants. Because platinum is recognized as a potent sensitizer in certain circumstances, some have expressed concern that women with silicone breast implants are exposed to platinum, which is causing allergic reactions. We searched the literature for information on the level of platinum in breast implants and reports of sensitization that clearly related to platinum in women with breast implants. We found no published report with convincing evidence that platinum causes allergic reactions in women with breast implants or that women with breast implants are any more likely to have allergic reactions than women without breast implants. PMID:12627791

  14. Studies of n-butane conversion over silica-supported platinum, platinum-silver and platinum-copper catalysts

    SciTech Connect

    Gu, Junhua

    1992-06-09

    The present work was undertaken to elucidate effect of adding silver and copper to silica-supported platinum catalyst on the activity and selectivity in the n-butane reactions. At the conditions of this study n-butane underwent both hydrogenolysis and structural isomerization. The catalytic activity and selectivities between hydrogenolysis and isomerization and within hydrogenolysis were measured at temperature varying from 330 C to 370 C. For platinum-silver catalysts, at lower temperatures studied the catalytic activity per surface platinum atom (turnover frequency) remained constant at lower silver content (between 0 at. % and 30 at. %) and decreased with further increased silver loading, suggesting that low- index planes could be dominant in the hydrogenolysis of n-butane. Moreover, increasing silver content resulted in an enhancement of the selectivity of isomerization products relative to hydrogenolysis products. At the higher temperature studied, no suppression in catalytic activity was observed. It is postulated that surface structure could change due to the mobility of surface silver atoms, leading to surface silver atoms forming islands or going to the bulk, and leaving large portions of basal planes exposed with active platinum atoms. It is also suggested that the presence of inert silver atoms results in weakening of the H-surface bond. This results in increased mobility of hydrogen atoms on the surface and hence, higher reactivity with other adsorbed species. For platinum copper catalysts, the mixed ensembles could play an active role in the hydrogenolysis of n-butane.

  15. Biologically Inspired Phosphino Platinum Complexes

    SciTech Connect

    Jain, Avijita; Helm, Monte L.; Linehan, John C.; DuBois, Daniel L.; Shaw, Wendy J.

    2012-08-01

    Platinum complexes containing phosphino amino acid and amino acid ester ligands, built upon the PPhNR’2 platform, have been synthesized and characterized (PPhNR’2= [1,3-diaza]-5-phenyl phosphacyclohexane, R’=glycine or glycine ester). These complexes were characterized by 31P, 13C, 1H, 195Pt NMR spectroscopy and mass spectrometry. The X-ray crystal structure of one of the complexes, [PtCl2(PPhNGlyester 2)2], is also reported. These biologically inspired ligands have potential use in homogeneous catalysis, with special applications in chiral chemistry and water soluble chemistry. These complexes also provide a foundation upon which larger peptides can be attached, to allow the introduction of enzyme-like features onto small molecule catalysts. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  16. Platinum metals magmatic sulfide ores.

    PubMed

    Naldrett, A J; Duke, J M

    1980-06-27

    Platinum-group elements (PGE) are mined predominantly from deposits that have formed by the segregation of molten iron-nickel-copper sulfides from silicate magmas. The absolute concentrations of PGE in sulfides from different deposits vary over a range of five orders of magnitude, whereas those of other chalcophile elements vary by factors of only 2 to 100. However, the relative proportions of the different PGE in a given deposit are systematically related to the nature of the parent magma. The absolute and relative concentrations of PGE in magmatic sulfides are explained in terms of the degree of partial melting of mantle peridotite required to produce the parent magma and the processes of batch equilibration and fractional segregation of sulfides. The Republic of South Africa and the U.S.S.R. together possess more than 97 percent of the world PGE reserves, but significant undeveloped resources occur in North America. The Stillwater complex in Montana is perhaps the most important example. PMID:17796685

  17. Epirubicin, Cisplatin, and Capecitabine for Primary Platinum-Resistant or Platinum-Refractory Epithelial Ovarian Cancer

    PubMed Central

    Sayal, Karen; Gounaris, Ioannis; Basu, Bristi; Freeman, Sue; Moyle, Penny; Hosking, Karen; Iddawela, Mahesh; Jimenez-Linan, Mercedes; Abraham, Jean; Brenton, James; Hatcher, Helen; Earl, Helena; Parkinson, Christine

    2015-01-01

    Objective Primary platinum-resistant epithelial ovarian cancer (EOC) is an area of unmet medical need. There is limited evidence from small studies that platinum-based combinations can overcome “resistance” in a proportion of patients. We investigated the efficacy and toxicity of platinum-based combination chemotherapy in the platinum-resistant and platinum-refractory setting. Methods Epirubicin, cisplatin, and capecitabine (ECX) combination chemotherapy was used at our institution for the treatment of relapsed EOC. From the institutional database, we identified all patients with primary platinum-refractory or platinum-resistant relapse treated with ECX as second-line therapy between 2001 and 2012. We extracted demographic, clinical, treatment, and toxicity data and outcomes. We used logistic and Cox regression models to identify predictors of response and survival respectively. Results Thirty-four 34 patients (8 refractory, 26 resistant) were treated with ECX. Response Evaluation Criteria In Solid Tumors (RECIST) response rate was 45%, median progression-free survival (PFS) was 6.4 months, and overall survival (OS) was 10.6 months. Platinum-resistant patients had better outcomes than did platinum-refractory patients (response rate, 54% vs 0%, P = 0.047; PFS 7.2 vs 1.8 months, P < 0.0001; OS 14.4 vs 3 months, P < 0.001). In regression models, time to progression after first-line treatment and platinum-refractory status were the strongest predictors of response and PFS or OS, respectively. Patients with time to progression after first-line treatment longer than 3 months showed PFS and OS of 7.9 and 14.7 months, respectively. Toxicity was manageable, with only 13% of cycles administered at reduced doses. Conclusions Epirubicin, cisplatin, and capecitabine seems to be active in platinum-resistant relapsed EOC with manageable toxicity. Further prospective investigation of platinum-anthracycline combinations is warranted in patients who relapse 3 to 6 months after

  18. Surface decorated platinum carbonyl clusters

    NASA Astrophysics Data System (ADS)

    Ciabatti, Iacopo; Femoni, Cristina; Iapalucci, Maria Carmela; Longoni, Giuliano; Zacchini, Stefano; Zarra, Salvatore

    2012-06-01

    Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters.Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters. CCDC 867747 and 867748. For crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30400g

  19. Autonomous movement of platinum-loaded stomatocytes.

    PubMed

    Wilson, Daniela A; Nolte, Roeland J M; van Hest, Jan C M

    2012-04-01

    Polymer stomatocytes are bowl-shaped structures of nanosize dimensions formed by the controlled deformation of polymer vesicles. The stable nanocavity and strict control of the opening are ideal for the physical entrapment of nanoparticles which, when catalytically active, can turn the stomatocyte morphology into a nanoreactor. Herein we report an approach to generate autonomous movement of the polymer stomatocytes by selectively entrapping catalytically active platinum nanoparticles within their nanocavities and subsequently using catalysis as a driving force for movement. Hydrogen peroxide is free to access the inner stomatocyte cavity, where it is decomposed by the active catalyst (the entrapped platinum nanoparticles) into oxygen and water. This generates a rapid discharge, which induces thrust and directional movement. The design of the platinum-loaded stomatocytes resembles a miniature monopropellant rocket engine, in which the controlled opening of the stomatocytes directs the expulsion of the decomposition products away from the reaction chamber (inner stomatocyte cavity). PMID:22437710

  20. Further studies on the synthesis of finely divided platinum

    SciTech Connect

    Turkevich, J.; Miner, R.S. Jr.; Babenkova, L.

    1986-09-25

    An investigation was made of the effect of pH and of starting platinum complexes on the synthesis of monodisperse platinum particles by citrate reduction. The antitumor drug cis-platin does not readily produce colloidal particles, and these lack activity for hydrogen peroxide decomposition. The growth of platinum particles by both citrate reduction and hydrogen gas treatment was also studied.

  1. Platinum Publications, January 1–March 31, 2016 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  2. Platinum Publications, October 1–29, 2015 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  3. Platinum Publications, July 31–September 30, 2015 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  4. Platinum Publications, June 26–July 30, 2015 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  5. Platinum Publications, October 30–December 31, 2015 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  6. Platinum Publications, November 27, 2014 – February 26, 2015 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  7. Platinum Publications, October 30 – November 26, 2014 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  8. Platinum Publications, February 27 – March 26, 2015 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  9. Platinum Publications as of May 29, 2014 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 21 prestigious science journals. This list represents new publications generated from PubMed as of the date shown above. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  10. Platinum Publications as of June 25, 2014 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 21 prestigious science journals. This list represents new publications generated from PubMed as of the date shown above. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  11. Platinum Publications as of March 6, 2014 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 21 prestigious science journals. This list represents new publications generated from PubMed as of the date shown above. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  12. Platinum Publications as of September 25, 2014 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 21 prestigious science journals. This list represents new publications generated from PubMed as of the date shown above. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  13. Platinum Publications, March 27 – April 30, 2015 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  14. Platinum Publications, February 27 – March 26, 2015 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  15. Platinum Publications, October 30 – November 26, 2014 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  16. Platinum Publications, July 31–September 30, 2015 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  17. Platinum Publications, June 26–July 30, 2015 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  18. Platinum Publications, July 1–July 28, 2016 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  19. Platinum Publications, September 26 – October 29, 2014 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  20. Platinum Publications as of April 30, 2014 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 21 prestigious science journals. This list represents new publications generated from PubMed as of the date shown above. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  1. Platinum Publications, October 30–December 31, 2015 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  2. Platinum Publications, September 26 – October 29, 2014 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  3. Platinum Publications, April 1–May 27, 2016 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  4. Platinum Publications, January 1–March 31, 2016 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  5. Platinum Publications as of December 3, 2013 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 21 prestigious science journals. This list represents new publications generated from PubMed as of the date shown above. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  6. Mineral resource of the month: platinum-group metals

    USGS Publications Warehouse

    Hilliard, Henry

    2003-01-01

    The precious metals commonly referred to as platinum-group metals (PGM) include iridium, osmium, palladium, platinum, rhodium and ruthenium. PGM are among the rarest of elements, and their market values — particularly for palladium, platinum and rhodium — are the highest of all precious metals.

  7. Platinum Publications, June 1–June 30, 2016 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  8. Platinum Publications, May 1 – June 25, 2015 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  9. Nonenzymatic glucose detection using mesoporous platinum.

    PubMed

    Park, Sejin; Chung, Taek Dong; Kim, Hee Chan

    2003-07-01

    Roughness of nanoscopic dimensions can be used to selectively enhance the faradaic current of a sluggish reaction. Using this principle, we constructed mesoporous structures on the surfaces of pure platinum electrodes responding even more sensitively to glucose than to common interfering species, such as L-ascorbic acid and 4-acetamidophenol. Good sensitivities, as high as 9.6 microA cm(-2) mM(-1), were reproducibly observed in the presence of high concentration of chloride ion. The selectivities, sensitivities, and stabilities determined experimentally have demonstrated the potential of mesoporous platinum as a novel candidate for nonenzymatic glucose sensors. PMID:12964749

  10. Platinum mineralization in the Kapalagulu Intrusion, western Tanzania

    NASA Astrophysics Data System (ADS)

    Wilhelmij, Harry R.; Cabri, Louis J.

    2016-03-01

    . Impersistent, stratiform PGE mineralized horizons occur within the MCSS harzburgite from which drill core samples were taken for platinum-group mineral (PGM) characterization from two drill holes. Where the PGE reefs reach the surface there is residual PGE mineralization within the laterite regolith from which drill core samples were taken from various laterite lithological units for PGM characterization. As the harzburgite PGE reefs contain significant concentrations of both sulfide and chromite (including chromitite seams) they resemble the PGE-rich chromitite seams of the Bushveld Complex rather than the PGE-bearing Main Sulfide Zone of the Great Dyke and Main Sulfide Layer of the Munni Munni Complex. The dominant Pd PGM in three PGE reef samples varies, ranging ( n = 164, relative wt%) from bismuthides (63 %), bismuthtellurides (19 %), and tellurides (6 %), to tellurides (39 %), bismuthtellurides (24 %), stannides (14 %), and alloys (13 %), and to antimon-arsenides (33 %), stannides (21 %), bismuthides (17 %), tellurides (13 %), and alloys (10 %). From 13.5 % to 21.0 % of the total Pd occurs as a solid solution in pentlandite. The three samples have similar Pt PGM modal distributions ( n = 172, relative wt%); the dominant Pt mineral is sperrylite (79, 58, and 47 %) followed by tellurides (15, 17, 21 %), alloys (2, 1, 1 %), and sulfides (2, 1, 0 %). Comparison of Pd/Pt ratios from assays to those calculated from minerals show that the data for the Pt and Pd PGM are very robust, confirming the concentration methodology and characterization. Study of samples from a shallow drill hole penetrating the laterite regolith shows that the primary Pd mineralization has not survived oxidation, is mainly dispersed, but some was reconstituted to form secondary minerals: cabriite, unnamed tellurides, a selenide, a Pd-Te-Hg mineral, alloys and Pd-bearing secondary sulfides (millerite and heazlewoodite). The primary Pt minerals are more resistant to oxidation and dissolution, especially

  11. Platinum mineralization in the Kapalagulu Intrusion, western Tanzania

    NASA Astrophysics Data System (ADS)

    Wilhelmij, Harry R.; Cabri, Louis J.

    2016-03-01

    . Impersistent, stratiform PGE mineralized horizons occur within the MCSS harzburgite from which drill core samples were taken for platinum-group mineral (PGM) characterization from two drill holes. Where the PGE reefs reach the surface there is residual PGE mineralization within the laterite regolith from which drill core samples were taken from various laterite lithological units for PGM characterization. As the harzburgite PGE reefs contain significant concentrations of both sulfide and chromite (including chromitite seams) they resemble the PGE-rich chromitite seams of the Bushveld Complex rather than the PGE-bearing Main Sulfide Zone of the Great Dyke and Main Sulfide Layer of the Munni Munni Complex. The dominant Pd PGM in three PGE reef samples varies, ranging ( n = 164, relative wt%) from bismuthides (63 %), bismuthtellurides (19 %), and tellurides (6 %), to tellurides (39 %), bismuthtellurides (24 %), stannides (14 %), and alloys (13 %), and to antimon-arsenides (33 %), stannides (21 %), bismuthides (17 %), tellurides (13 %), and alloys (10 %). From 13.5 % to 21.0 % of the total Pd occurs as a solid solution in pentlandite. The three samples have similar Pt PGM modal distributions ( n = 172, relative wt%); the dominant Pt mineral is sperrylite (79, 58, and 47 %) followed by tellurides (15, 17, 21 %), alloys (2, 1, 1 %), and sulfides (2, 1, 0 %). Comparison of Pd/Pt ratios from assays to those calculated from minerals show that the data for the Pt and Pd PGM are very robust, confirming the concentration methodology and characterization. Study of samples from a shallow drill hole penetrating the laterite regolith shows that the primary Pd mineralization has not survived oxidation, is mainly dispersed, but some was reconstituted to form secondary minerals: cabriite, unnamed tellurides, a selenide, a Pd-Te-Hg mineral, alloys and Pd-bearing secondary sulfides (millerite and heazlewoodite). The primary Pt minerals are more resistant to oxidation and dissolution, especially

  12. Alloy materials

    DOEpatents

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  13. Platinum particle size and support effects in NO(x) mediated carbon oxidation over platinum catalysts.

    PubMed

    Villani, Kenneth; Vermandel, Walter; Smets, Koen; Liang, Duoduo; van Tendeloo, Gustaaf; Martens, Johan A

    2006-04-15

    Platinum metal was dispersed on microporous, mesoporous, and nonporous support materials including the zeolites Na-Y, Ba-Y, Ferrierite, ZSM-22, ETS-10, and AIPO-11, alumina, and titania. The oxidation of carbon black loosely mixed with catalyst powder was monitored gravimetrically in a gas stream containing nitric oxide, oxygen, and water. The carbon oxidation activity of the catalysts was found to be uniquely related to the Pt dispersion and little influenced by support type. The optimum dispersion is around 3-4% corresponding to relatively large Pt particle sizes of 20-40 nm. The carbon oxidation activity reflects the NO oxidation activity of the platinum catalyst, which reaches an optimum in the 20-40 nm Pt particle size range. The lowest carbon oxidation temperatures were achieved with platinum loaded ZSM-22 and AIPO-11 zeolite crystallites bearing platinum of optimum dispersion on their external surfaces. PMID:16683615

  14. Platinum recycling in the United States in 1998

    USGS Publications Warehouse

    Hilliard, Henry E.

    2001-01-01

    In the United States, catalytic converters are the major source of secondary platinum for recycling. Other sources of platinum scrap include reforming and chemical process catalysts. The glass industry is a small but significant source of platinum scrap. In North America, it has been estimated that in 1998 more than 20,000 kilograms per year of platinum-group metals from automobile catalysts were available for recycling. In 1998, an estimated 7,690 kilograms of platinum were recycled in the United States. U.S. recycling efficiency was calculated to have been 76 percent in 1998; the recycling rate was estimated at 16 percent.

  15. Chronology of platinum accumulation in an urban lake

    NASA Astrophysics Data System (ADS)

    Rauch, S.; Hermond, H. F.; Ravizza, G.; Morrison, G. M.

    2003-05-01

    Concern has recently emerged over the release of platinum from automobile catalysts and increasing environmental concentrations. The history of platinum deposition is followed through the natural incorporation of pollutants into the sediment record of the Upper Mystic Lake. Platinum was determined by ICP-MS in dated sediments. Platinum concentration remained relatively constant until the mid-1970s when Pt-containing catalysts were introduced in the US. After the introduction of catalysts, platinum concentration increased significantly, with an average deposition rate of 5.4 μg m^{-2} year^{-1} after 1990.

  16. Use of platinum electrodes for the electrochemical detection of bacteria

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.

    1978-01-01

    Platinum electrodes with surface area ratios of four to one were used to detect and enumerate a variety of gram-positive and gram-negative organisms. Linear relationships were established between inoculum size and detection time. End points for platinum electrodes were similar to those obtained with a platinum-reference electrode combination. Shape of the overall response curves and length of detection times for gram-positive organisms were markedly different than those for the majority of gram-negative species. Platinum electrodes are better than the platinum-reference electrode combination because of cost, ease of handling, and clearer definition of the end point.

  17. Tracking the shape-dependent sintering of platinum-rhodium model catalysts under operando conditions

    NASA Astrophysics Data System (ADS)

    Hejral, Uta; Müller, Patrick; Balmes, Olivier; Pontoni, Diego; Stierle, Andreas

    2016-03-01

    Nanoparticle sintering during catalytic reactions is a major cause for catalyst deactivation. Understanding its atomic-scale processes and finding strategies to reduce it is of paramount scientific and economic interest. Here, we report on the composition-dependent three-dimensional restructuring of epitaxial platinum-rhodium alloy nanoparticles on alumina during carbon monoxide oxidation at 550 K and near-atmospheric pressures employing in situ high-energy grazing incidence x-ray diffraction, online mass spectrometry and a combinatorial sample design. For platinum-rich particles our results disclose a dramatic reaction-induced height increase, accompanied by a corresponding reduction of the total particle surface coverage. We find this restructuring to be progressively reduced for particles with increasing rhodium composition. We explain our observations by a carbon monoxide oxidation promoted non-classical Ostwald ripening process during which smaller particles are destabilized by the heat of reaction. Its driving force lies in the initial particle shape which features for platinum-rich particles a kinetically stabilized, low aspect ratio.

  18. Tracking the shape-dependent sintering of platinum-rhodium model catalysts under operando conditions.

    PubMed

    Hejral, Uta; Müller, Patrick; Balmes, Olivier; Pontoni, Diego; Stierle, Andreas

    2016-01-01

    Nanoparticle sintering during catalytic reactions is a major cause for catalyst deactivation. Understanding its atomic-scale processes and finding strategies to reduce it is of paramount scientific and economic interest. Here, we report on the composition-dependent three-dimensional restructuring of epitaxial platinum-rhodium alloy nanoparticles on alumina during carbon monoxide oxidation at 550 K and near-atmospheric pressures employing in situ high-energy grazing incidence x-ray diffraction, online mass spectrometry and a combinatorial sample design. For platinum-rich particles our results disclose a dramatic reaction-induced height increase, accompanied by a corresponding reduction of the total particle surface coverage. We find this restructuring to be progressively reduced for particles with increasing rhodium composition. We explain our observations by a carbon monoxide oxidation promoted non-classical Ostwald ripening process during which smaller particles are destabilized by the heat of reaction. Its driving force lies in the initial particle shape which features for platinum-rich particles a kinetically stabilized, low aspect ratio. PMID:26957204

  19. Platinum-based drugs: past, present and future.

    PubMed

    Dilruba, Shahana; Kalayda, Ganna V

    2016-06-01

    Platinum-based drugs cisplatin, carboplatin and oxaliplatin are widely used in the therapy of human neoplasms. Their clinical success is, however, limited due to severe side effects and intrinsic or acquired resistance to the treatment. Much effort has been put into the development of new platinum anticancer complexes, but none of them has reached worldwide clinical application so far. Nedaplatin, lobaplatin and heptaplatin received only regional approval. Some new platinum complexes and platinum drug formulations are undergoing clinical trials. Here, we review the main classes of new platinum drug candidates, such as sterically hindered complexes, monofunctional platinum drugs, complexes with biologically active ligands, trans-configured and polynuclear platinum complexes, platinum(IV) prodrugs and platinum-based drug delivery systems. For each class of compounds, a detailed overview of the mechanism of action is given, the cytotoxicity is compared to that of the clinically used platinum drugs, and the clinical perspectives are discussed. A critical analysis of lessons to be learned is presented. Finally, a general outlook regarding future directions in the field of new platinum drugs is given. PMID:26886018

  20. Fraction of platinum surface covered with carbonaceous species following hydrogenolysis of hexane on platinum alumina catalysts

    SciTech Connect

    Rivera Latas, F.J.

    1986-01-01

    Catalytic naphtha reforming plays a major role in satisfying the demand for unleaded, high octane gasoline. Hydrogen containing carbonaceous deposits (coke) accumulation on the surface of the catalysts during reforming operation. This study investigated the following question: what is the fraction of the platinum surface covered with the deposits following a typical reforming reaction. These observations prompted us to prepare a platinum-alumina catalyst with a high metal content (5%) to enhance the sensitivity of experiments designed to examine the platinum surface following hexane hydrogenolysis. The reaction was selected because it is a good model reaction for catalytic reforming and it was also studied by the Somorjai group in the higher temperature range of their work. Hydrogenolysis of hexane was carried out in a flow system for 3 h at 713 K, at atmospheric pressure, and around 0.1 total conversion. The catalyst was cooled down to room temperature in the reactant mixture, and the fraction of surface platinum atoms exposed was measured in situ by four independent methods: titration of adsorbed oxygen by dihydrogen, chemisorption of carbon monoxide, infra-red spectroscopy of carbon monoxide bonded to platinum, and rate of ethylene hydrogenation. Independent gravimetric studies showed that coke deposits of around 1% by weight were formed on the same catalyst during hydrogenolysis of hexane under similar conditions. Each of the four methods indicate that approximately 50% of the platinum surface remains exposed under the conditions.

  1. Platinum-containing compound platinum pyrithione is stronger and safer than cisplatin in cancer therapy.

    PubMed

    Zhao, Chong; Chen, Xin; Zang, Dan; Lan, Xiaoying; Liao, Siyan; Yang, Changshan; Zhang, Peiquan; Wu, Jinjie; Li, Xiaofen; Liu, Ningning; Liao, Yuning; Huang, Hongbiao; Shi, Xianping; Jiang, Lili; Liu, Xiuhua; He, Zhimin; Wang, Xuejun; Liu, Jinbao

    2016-09-15

    DNA is the well-known molecular target of current platinum-based anticancer drugs; consequently, their clinical use is severely restricted by their systemic toxicities and drug resistance originating from non-selective DNA damage. Various strategies have been developed to circumvent the shortcomings of platinum-based chemotherapy but the inherent problem remains unsolved. Here we report that platinum pyrithione (PtPT), a chemically well-characterized synthetic complex of platinum, inhibits proteasome function and thereby exhibits greater and more selective cytotoxicity to multiple cancer cells than cisplatin, without showing discernible DNA damage both in vitro and in vivo. Moreover, unlike the classical proteasome inhibitor bortezomib/Velcade which inhibits the proteasome via blocking the peptidase activity of 20S proteasomes, PtPT primarily deactivates 26S proteasome-associated deubiquitinases USP14 and UCHL5. Furthermore, PtPT can selectively induce cytotoxicity and proteasome inhibition in cancer cells from leukemia patients but not peripheral blood mononuclear cells from healthy humans. In nude mice, PtPT also remarkably inhibited tumor xenograft growth, without showing the adverse effects that were induced by cisplatin. Hence, we have discovered a new platinum-based anti-tumor agent PtPT which targets 26S proteasome-associated deubiquitinases rather than DNA in the cell and thereby exerts safer and more potent anti-tumor effects, identifying a highly translatable new platinum-based anti-cancer strategy. PMID:27381943

  2. Skin Sensitizing Potency of Halogenated Platinum Salts.

    EPA Science Inventory

    The relationship between occupational exposure to halogenated platinum (Pt) salts and Pt-specific allergic sensitization is well-established. Although human case reports and clinical studies demonstrate that Pt salts are potent skin sensitizers, no studies have been published tha...

  3. Nanoscale platinum printing on insulating substrates.

    PubMed

    O'Connell, C D; Higgins, M J; Sullivan, R P; Jamali, S S; Moulton, S E; Wallace, G G

    2013-12-20

    The deposition of noble metals on soft and/or flexible substrates is vital for several emerging applications including flexible electronics and the fabrication of soft bionic implants. In this paper, we describe a new strategy for the deposition of platinum electrodes on a range of materials, including insulators and flexible polymers. The strategy is enabled by two principle advances: (1) the introduction of a novel, low temperature strategy for reducing chloroplatinic acid to platinum using nitrogen plasma; (2) the development of a chloroplatinic acid based liquid ink formulation, utilizing ethylene glycol as both ink carrier and reducing agent, for versatile printing at nanoscale resolution using dip-pen nanolithography (DPN). The ink formulation has been printed and reduced upon Si, glass, ITO, Ge, PDMS, and Parylene C. The plasma treatment effects reduction of the precursor patterns in situ without subjecting the substrate to destructively high temperatures. Feature size is controlled via dwell time and degree of ink loading, and platinum features with 60 nm dimensions could be routinely achieved on Si. Reduction of the ink to platinum was confirmed by energy dispersive x-ray spectroscopy (EDS) elemental analysis and x-ray diffraction (XRD) measurements. Feature morphology was characterized by optical microscopy, SEM and AFM. The high electrochemical activity of individually printed Pt features was characterized using scanning electrochemical microscopy (SECM). PMID:24270681

  4. Nanoscale platinum printing on insulating substrates

    NASA Astrophysics Data System (ADS)

    O'Connell, C. D.; Higgins, M. J.; Sullivan, R. P.; Jamali, S. S.; Moulton, S. E.; Wallace, G. G.

    2013-12-01

    The deposition of noble metals on soft and/or flexible substrates is vital for several emerging applications including flexible electronics and the fabrication of soft bionic implants. In this paper, we describe a new strategy for the deposition of platinum electrodes on a range of materials, including insulators and flexible polymers. The strategy is enabled by two principle advances: (1) the introduction of a novel, low temperature strategy for reducing chloroplatinic acid to platinum using nitrogen plasma; (2) the development of a chloroplatinic acid based liquid ink formulation, utilizing ethylene glycol as both ink carrier and reducing agent, for versatile printing at nanoscale resolution using dip-pen nanolithography (DPN). The ink formulation has been printed and reduced upon Si, glass, ITO, Ge, PDMS, and Parylene C. The plasma treatment effects reduction of the precursor patterns in situ without subjecting the substrate to destructively high temperatures. Feature size is controlled via dwell time and degree of ink loading, and platinum features with 60 nm dimensions could be routinely achieved on Si. Reduction of the ink to platinum was confirmed by energy dispersive x-ray spectroscopy (EDS) elemental analysis and x-ray diffraction (XRD) measurements. Feature morphology was characterized by optical microscopy, SEM and AFM. The high electrochemical activity of individually printed Pt features was characterized using scanning electrochemical microscopy (SECM).

  5. Evaluation of industrial platinum resistance thermometers

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Dillontownes, Lawrence A.; Alderfer, David W.

    1987-01-01

    The calibration and stability of four surface temperature measuring industrial platinum resistance thermometers for use in the temperature range -120 C to 160 C was investigated. It was found that the calibration formulation of the International Practical Temperature Scale of 1968 provided the most accurate calibration. It was also found that all the resistance thermometers suffered from varying degrees of instability and hysteresis.

  6. Porous platinum mesoflowers with enhanced activity for methanol oxidation reaction

    SciTech Connect

    Zhuang Lina; Wang Wenjin; Hong Feng; Yang Shengchun; You Hongjun; Fang Jixiang; Ding Bingjun

    2012-07-15

    Porous Pt and Pt-Ag alloy mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesized using Ag mesoflowers as sacrificial template by galvanic reaction. The silver content in Pt-Ag alloys can be facilely controlled by nitric acid treatment. And the pure Pt MFs can be obtained by selective removal of silver element from Pt{sub 72}Ag{sub 28} MFs electrochemically. Both Pt{sub 45}Ag{sub 55}, Pt{sub 72}Ag{sub 28} and pure Pt show a high catalytic performance in methanol oxidation reaction (MOR). Especially, pure Pt MFs exhibited a 2 to 3 times current density enhancement in MOR compared with the commercial used Pt black, which can be attributed to their porous nanostructure with 3-dimentional nature and small crystal sizes. - Graphical Abstract: The CVs of MOR on Pt (red) and Pt black (green) catalysts in 0.1 M HClO{sub 4} and 0.5 M CH{sub 3}OH for specific mass current. The insert shows the SEM images of two porous Pt MFs. Platinum mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesised with Ag mesoflowers as sacrificial template by galvanic replacement. The porous Pt MFs exhibited a more than 3 times enhancement in electrocatalytic performance for methanol oxidation reaction compared the commercial used Pt black. Highlights: Black-Right-Pointing-Pointer Porous Pt and Pt-Ag mesoflowers (MFs) were synthesized using Ag MFs sacrifical template. Black-Right-Pointing-Pointer Pt MFs presents an improved catalytic activity in MOR compared with Pt black. Black-Right-Pointing-Pointer We provided a facile approach for the development of high performance Pt electrocatalysts for fuel cells.

  7. Cataloging antineoplastic agents according to their effectiveness against platinum-resistant and platinum-sensitive ovarian carcinoma cell lines

    PubMed Central

    Ishiguro, Kimiko; Zhu, Yong-Lian; Lin, Z. Ping; Penketh, Philip G.; Shyam, Krishnamurthy; Zhu, Rui; Baumann, Raymond P.; Sartorelli, Alan C.; Rutherford, Thomas J.; Ratner, Elena S.

    2016-01-01

    Although epithelial ovarian cancers (EOCs) are initially treated with platinum-based chemotherapy, EOCs vary in platinum responsiveness. Cataloging antineoplastic agents according to their effectiveness against platinum-resistant and platinum-sensitive EOC cell lines is valuable for development of therapeutic strategies to avoid platinum inefficacy and to exploit platinum sensitivity. TOV-21G devoid of FANCF expression, OV-90 and SKOV-3 were employed as examples of platinum-sensitive, platinum-intermediate and platinum-resistant cell lines, respectively. Antineoplastic agents examined included mitomycin C, doxorubicin, etoposide, gemcitabine, chlorambucil, paclitaxel, triapine and X-rays. Their effectiveness against cell lines was analyzed by clonogenic assays. Cytotoxic profiles of mitomycin C and carboplatin were similar, with mitomycin C exhibiting greater potency and selectivity against TOV-21G than carboplatin. Cytotoxic profiles of doxorubicin, etoposide and X-rays overlapped with that of carboplatin, while OV-90 overexpressing Rad51 was more resistant to chlorambucil than SKOV-3. The efficacy of paclitaxel and triapine was independent of platinum sensitivity or resistance. Consistent with these cytotoxic profiles, cisplatin/mitomycin C, triapine, and paclitaxel differed in the capacity to induce phosphorylation of H2AX, and produced unique inhibitory patterns of DNA/RNA syntheses in HL-60 human leukemia cells. Paclitaxel and triapine in combination produced additive antitumor effects in M109 murine lung carcinoma. In conclusion, mitomycin C is potentially more effective against Fanconi anemia pathway-deficient EOCs than carboplatin. Doxorubicin and etoposide, because of their overlapping cytotoxic properties with carboplatin, are unlikely to be efficacious against platinum-refractory EOCs. Paclitaxel and triapine are effective regardless of platinum sensitivity status, and promising in combination for both platinum-sensitive and platinum-refractory EOCs

  8. Carbon monoxide tolerant platinum electrocatalysts on niobium doped titania and carbon nanotube composite supports

    NASA Astrophysics Data System (ADS)

    Rigdon, William A.; Huang, Xinyu

    2014-12-01

    In the anode of electrochemical cells operating at low temperature, the hydrogen oxidation reaction is susceptible to poisoning from carbon monoxide (CO) which strongly adsorbs on platinum (Pt) catalysts and increases activation overpotential. Adsorbed CO is removed by oxidative processes such as electrochemical stripping, though cleaning can also cause corrosion. One approach to improve the tolerance of Pt is through alloying with less-noble metals, but the durability of alloyed electrocatalysts is a critical concern. Without sacrificing stability, tolerance can be improved by careful design of the support composition using metal oxides. The bifunctional mechanism is promoted at junctions of the catalyst and metal oxides used in the support. Stable metal oxides can also form strong interactions with catalysts, as is the case for platinum on titania (TiOx). In this study, niobium (Nb) serves as an electron donor dopant in titania. The transition metal oxides are joined to functionalized multi-wall carbon nanotube (CNT) supports in order to synthesize composite supports. Pt is then deposited to form electrocatalysts which are characterized before fabrication into anodes for tests as an electrochemical hydrogen pump. Comparisons are made between the control from Pt-CNT to Pt-TiOx-CNT and Pt-Ti0.9Nb0.1Ox-CNT in order to demonstrate advantages.

  9. Clinical utility of platinum chromium bare-metal stents in coronary heart disease

    PubMed Central

    Jorge, Claudia; Dubois, Christophe

    2015-01-01

    Coronary stents represent a key development for the treatment of obstructive coronary artery disease since the introduction of percutaneous coronary intervention. While drug-eluting stents gained wide acceptance in contemporary percutaneous coronary intervention practice, further developments in bare-metal stents remain crucial for patients who are not candidates for drug-eluting stents, or to improve metallic platforms for drug elution. Initially, stent platforms used biologically inert stainless steel, restricting stent performance due to limitations in flexibility and strut thickness. Later, cobalt chromium stent alloys outperformed steel as the material of choice for stents, allowing latest generation stents to be designed with significantly thinner struts, while maintaining corrosion resistance and radial strength. Most recently, the introduction of the platinum chromium alloy refined stent architecture with thin struts, high radial strength, conformability, and improved radiopacity. This review will provide an overview of the novel platinum chromium bare-metal stent platforms available for coronary intervention. Mechanical properties, clinical utility, and device limitations will be summarized and put into perspective. PMID:26345228

  10. Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules.

    SciTech Connect

    Genorio, B.; Strmcnik, D.; Subbaraman, R.; Tripkovic, D.; Karapetrov, G.; Stamenkovic, V. R.; Pejovnik, S.; Markovic, N. M.; Univ. Ljubljana; National Inst. of Chemistry

    2010-12-01

    The design of new catalysts for polymer electrolyte membrane fuel cells must be guided by two equally important fundamental principles: optimization of their catalytic behaviour as well as the long-term stability of the metal catalysts and supports in hostile electrochemical environments. The methods used to improve catalytic activity are diverse, ranging from the alloying and de-alloying of platinum to the synthesis of platinum core-shell catalysts. However, methods to improve the stability of the carbon supports and catalyst nanoparticles are limited, especially during shutdown (when hydrogen is purged from the anode by air) and startup (when air is purged from the anode by hydrogen) conditions when the cathode potential can be pushed up to 1.5 V. Under the latter conditions, stability of the cathode materials is strongly affected (carbon oxidation reaction) by the undesired oxygen reduction reaction (ORR) on the anode side. This emphasizes the importance of designing selective anode catalysts that can efficiently suppress the ORR while fully preserving the Pt-like activity for the hydrogen oxidation reaction. Here, we demonstrate that chemically modified platinum with a self-assembled monolayer of calix[4]arene molecules meets this challenging requirement.

  11. Platinum stable isotopes in ferromanganese crust and nodules

    NASA Astrophysics Data System (ADS)

    Corcoran, Loretta; Seward, Terry; Handler, Monica R.

    2015-04-01

    Hydrogenetic ferromanganese (Fe-Mn) crust and nodules are slow-growing chemical sediments that form by direct precipitation from seawater, resulting in a record of changing seawater chemistry. These sediments are the primary sink for platinum in the modern oxic marine environment, hosting well-documented enrichments over other platinum-group elements (PGEs): the Pt anomaly [1]. Platinum is a non-bio-essential, highly siderophile, transition metal with six stable isotopes (190Pt, 192Pt, 194Pt, 195Pt, 196Pt, and 198Pt) with several oxidation states (Pt0, Pt2+ and Pt4+). Platinum is generally considered to exist in the hydrosphere as Pt2+ although its behaviour in the marine environment is poorly constrained, and Pt4+may also be present. Variations in ocean redox state, together with changes in source fluxes to the oceans, may therefore lead to small variations (< ±1) in the stable isotopic composition of marine platinum, raising the potential of adding platinum to the growing arsenal of paleoceanographic tracers. A method has been developed to measure the platinum isotopic composition using double spike MC-ICPMS analysis [2]and applied to a global suite of modern Fe-Mn crust and nodules. Combining synchrotron XAFS analyses of platinum adsorbed onto Fe-Mn oxide and oxyhydroxide surfaces to determine oxidation state and bonding environment, with platinum stable isotopic measurements allowing us to evaluate both platinum incorporation onto these sediments and the associated degree of platinum isotopic fractionation. Leaching experiments conducted on platinum rich terrestrial materials underwent platinum stable isotopic measurement as an analogue for the Pt isotopic fractionation associated with continental weathering. [1] Hodge, V.F. et al. (1985) Earth and Planetary Science Letters, 72, 158-162. [2] Creech, J. et al. (2013) Journal of Analytical Atomic Spectrometry, 28. 853-865.

  12. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry...—Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate... in any assay for quality of a karat gold industry product include springs, posts, and separable...

  13. 16 CFR Appendix to Part 23 - Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate, Silver, and Platinum Industry...—Exemptions Recognized in the Assay for Quality of Gold Alloy, Gold Filled, Gold Overlay, Rolled Gold Plate... in any assay for quality of a karat gold industry product include springs, posts, and separable...

  14. Platinum group metals base refractory superalloys

    SciTech Connect

    Yamabe-Mitarai, Y.; Koizumi, Y.; Murakami, H.; Harada, H.; Maruko, T.

    1997-12-31

    Ir- and Rh-base refractory superalloys wit h an fcc and L1{sub 2} two phase structure similar to Ni-base superalloys, yet with considerably higher melting temperatures have been proposed. Fcc and L1{sub 2} two phases were observed in these alloys by transmission electron microscopy and X-ray powder diffractometry. The compression tests of these alloys showed that the strengths of several alloys were about 200 MPa at 1,800 C and these alloys have potential to become ultra-high temperature materials for use in power engineering field.

  15. Synthesis of Bimetallic Platinum Nanoparticles for Biosensors

    PubMed Central

    Leteba, Gerard M.; Lang, Candace I.

    2013-01-01

    The use of magnetic nanomaterials in biosensing applications is growing as a consequence of their remarkable properties; but controlling the composition and shape of metallic nanoalloys is problematic when more than one precursor is required for wet chemistry synthesis. We have developed a successful simultaneous reduction method for preparation of near-spherical platinum-based nanoalloys containing magnetic solutes. We avoided particular difficulties in preparing platinum nanoalloys containing Ni, Co and Fe by the identification of appropriate synthesis temperatures and chemistry. We used transmission electron microscopy (TEM) to show that our particles have a narrow size distribution, uniform size and morphology, and good crystallinity in the as-synthesized condition. Energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) confirms the coexistence of Pt with the magnetic solute in a face-centered cubic (FCC) solid solution. PMID:23941910

  16. Raman characterization of platinum diselenide thin films

    NASA Astrophysics Data System (ADS)

    O’Brien, Maria; McEvoy, Niall; Motta, Carlo; Zheng, Jian-Yao; Berner, Nina C.; Kotakoski, Jani; Elibol, Kenan; Pennycook, Timothy J.; Meyer, Jannik C.; Yim, Chanyoung; Abid, Mohamed; Hallam, Toby; Donegan, John F.; Sanvito, Stefano; Duesberg, Georg S.

    2016-06-01

    Platinum diselenide (PtSe2) is a newly discovered 2D material which is of great interest for applications in electronics and catalysis. PtSe2 films were synthesized by thermally assisted selenization of predeposited platinum films and scanning transmission electron microscopy revealed the crystal structure of these films to be 1T. Raman scattering of these films was studied as a function of film thickness, laser wavelength and laser polarization. E g and A 1g Raman active modes were identified using polarization measurements in the Raman setup. These modes were found to display a clear position and intensity dependence with film thickness, for multiple excitation wavelengths, and their peak positions agree with simulated phonon dispersion curves for PtSe2. These results highlight the practicality of using Raman spectroscopy as a prime characterization technique for newly synthesized 2D materials.

  17. Remarkable NO oxidation on single supported platinum atoms

    SciTech Connect

    Narula, Chaitanya K.; Allard, Lawrence F.; Stocks, G. M.; Moses-DeBusk, Melanie

    2014-11-28

    Our first-principles density functional theoretical modeling suggests that NO oxidation is feasible on fully oxidized single θ-alumina-supported platinum atoms via a modified Langmuir-Hinshelwood pathway. This is in contrast to the known decrease in NO oxidation activity of supported platinum with decreasing Pt particle size believed to be due to increased platinum oxidation. In order to validate our theoretical study, we evaluated single θ-Al2O3-supported platinum atoms and found them to exhibit remarkable NO oxidation activity. A comparison of turnover frequencies (TOF) of single supported Pt atoms with those of platinum particles for NO oxidation shows that single supported Pt atoms are as active as fully formed platinum particles. The overall picture of NO oxidation on supported Pt is that NO oxidation activity decreases with decreasing Pt particle size but accelerates when Pt is present only as single atoms.

  18. Remarkable NO oxidation on single supported platinum atoms

    DOE PAGESBeta

    Narula, Chaitanya K.; Allard, Lawrence F.; Stocks, G. M.; Moses-DeBusk, Melanie

    2014-11-28

    Our first-principles density functional theoretical modeling suggests that NO oxidation is feasible on fully oxidized single θ-alumina-supported platinum atoms via a modified Langmuir-Hinshelwood pathway. This is in contrast to the known decrease in NO oxidation activity of supported platinum with decreasing Pt particle size believed to be due to increased platinum oxidation. In order to validate our theoretical study, we evaluated single θ-Al2O3-supported platinum atoms and found them to exhibit remarkable NO oxidation activity. A comparison of turnover frequencies (TOF) of single supported Pt atoms with those of platinum particles for NO oxidation shows that single supported Pt atoms aremore » as active as fully formed platinum particles. The overall picture of NO oxidation on supported Pt is that NO oxidation activity decreases with decreasing Pt particle size but accelerates when Pt is present only as single atoms.« less

  19. Remarkable NO oxidation on single supported platinum atoms

    PubMed Central

    Narula, Chaitanya K.; Allard, Lawrence F.; Stocks, G. M.; Moses-DeBusk, Melanie

    2014-01-01

    Our first-principles density functional theoretical modeling suggests that NO oxidation is feasible on fully oxidized single θ-Al2O3 supported platinum atoms via a modified Langmuir-Hinshelwood pathway. This is in contrast to the known decrease in NO oxidation activity of supported platinum with decreasing Pt particle size believed to be due to increased platinum oxidation. In order to validate our theoretical study, we evaluated single θ-Al2O3 supported platinum atoms and found them to exhibit remarkable NO oxidation activity. A comparison of turnover frequencies (TOF) of single supported Pt atoms with those of platinum particles for NO oxidation shows that single supported Pt atoms are as active as fully formed platinum particles. Thus, the overall picture of NO oxidation on supported Pt is that NO oxidation activity decreases with decreasing Pt particle size but accelerates when Pt is present only as single atoms. PMID:25429995

  20. Role of electron concentration in softening and hardening of ternary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1975-01-01

    Effects of various combinations of hafnium, tantalum, rhenium, osmium, iridium, and platinum in ternary molybdenum alloys on alloy softening and hardening were determined. Hardness tests were conducted at four test temperatures over the temperature range 77 to 411 K. Results showed that hardness data for ternary molybdenum alloys could be correlated with anticipated results from binary data based upon expressions involving the number of s and d electrons contributed by the solute elements. The correlation indicated that electron concentration plays a dominant role in controlling the hardness of ternary molybdenum alloys.

  1. Luminescent Platinum Compounds: From Molecules to OLEDs

    NASA Astrophysics Data System (ADS)

    Murphy, Lisa; Williams, J. A. Gareth

    Around 30 years ago, much of the research into platinum coordination chemistry was being driven either by research into one-dimensional, electrically conducting molecular materials exploiting the stacking interactions of planar complexes, or by the unprecedented success of cis-Pt(NH3)2Cl2 (cisplatin) as an anticancer agent. At that time, a number of simple platinum(II) compounds were known to be photoluminescent at low temperature or in the solid state, but almost none in fluid solution at room temperature. Since that time, several families of complexes have been discovered that are brightly luminescent, and a number of investigations have shed light on the factors that govern the luminescence efficiencies of Pt(II) complexes. Over the past decade, such studies have been spurred on by the potential application of triplet-emitting metal complexes as phosphors in organic light-emitting devices (OLEDs), where their ability to trap otherwise wasted triplet states can lead to large gains in efficiency. In this contribution, we take a chemist's perspective of the field, overviewing in the first instance the factors that need to be taken into account in the rational design of highly luminescent platinum(II) complexes, and the background to their use in OLEDs. We then consider in more detail the properties of some individual classes, highlighting work from the past 3 years, and including selected examples of their utility in OLEDs and other applications.

  2. Platinum group minerals in podiform chromitites of the Bou Azzer ophiolite, Anti Atlas, Central Morocco

    NASA Astrophysics Data System (ADS)

    El Ghorfi, M.; Melcher, F.; Oberthür, T.; Boukhari, A. E.; Maacha, L.; Maddi, A.; Mhaili, M.

    2008-01-01

    The Neoproterozoic Bou Azzer ophiolite complex hosts numerous, small lenticular bodies of massive and disseminated chromite. Metallurgical-grade high-Mg and high-Cr spinels (cores with 48-62 wt% Cr2O3) reveal complex alteration patterns of successive Cr and Mn enrichment and loss of Al towards the rims, while the Mg# ratios [(Mg/(Mg + Fe2+)] remain almost constant. Concentration patterns of platinum-group elements are typical for ophiolitic chromitite poor in sulfides, with predominance of the IPGE, variable Rh, and low Pt and Pd. The most abundant platinum-group mineral is Rh-bearing laurite that occurs either included in spinel or in silicate matrix, whereas Os-Ir-Ru alloy is always included in spinel. Laurite inclusions reveal complex intergrowth textures with Rh-Ru-Pt rich alloy, and with Rh-rich sulfide. Most laurites display trends to sulfur-poor compositions leading to local formation of very fine-grained Ru-Os-Ir alloy phases. Ni-Co-Fe sulfides, arsenides and sulfarsenides devoid of PGE are associated with the alteration of chromite. Textural position and chemical composition of the base metal inclusions, as well as comparison of alteration features between chromite and accessory chromian spinel in the Co-Ni-As ores of the Bou Azzer ophiolite indicate a close connection. It is suggested that hydrothermal fluids percolated through the marginal zones of the ophiolite belt during greenschist facies metamorphism and deposited Ni-Co-Fe arsenides, sulfarsenides and minor sulfides as accessories within altered chromitites, and also in structurally favourable zones as Ni-Co-As ores.

  3. Synthesis and characterization of nanostructured palladium-based alloy electrocatalysts

    NASA Astrophysics Data System (ADS)

    Sarkar, Arindam

    Low temperature fuel cells like proton exchange membrane fuel cells (PEMFC) are expected to play a crucial role in the future hydrogen economy, especially for transportation applications. These electrochemical devices offer significantly higher efficiency compared to conventional heat engines. However, use of exotic and expensive platinum as the electrocatalyst poses serious problems for commercial viability. In this regard, there is an urgent need to develop low-platinum or non-platinum electrocatalysts with electrocatalytic activity for the oxygen reduction reaction (ORR) superior or comparable to that of platinum. This dissertation first investigates non-platinum, palladium-based alloy electrocatalysts for ORR. Particularly, Pd-M (M = Mo and W) alloys are synthesized by a novel thermal decomposition of organo-metallic precursors. The carbon-supported Pd-M (M = Mo, W) electrocatalyts are then heat treated up to 900°C in H2 atmosphere and investigated for their phase behavior. Cyclic voltammetry (CV) and rotating disk electrode (RDE) measurements reveal that the alloying of Pd with Mo or W significantly enhances the catalytic activity for ORR as well as the stability (durability) of the electrocatalysts. Additionally, both the alloy systems exhibit high tolerance to methanol, which is particularly advantageous for direct methanol fuel cells (DMFC). The dissertation then focuses on one-pot synthesis of carbon-supported multi-metallic Pt-Pd-Co nanoalloys by a rapid microwave-assisted solvothermal (MW-ST) method. The multi-metallic alloy compositions synthesized by the MW-ST method show much higher catalytic activity for ORR compared to their counterparts synthesized by the conventional borohydride reduction method. Additionally, a series of Pt encapsulated Pd-Co nanoparticle electrocatalysts are synthesized by the MW-ST method and characterized to understand their phase behavior, surface composition, and electrocatalytic activity for ORR. Finally, the dissertation

  4. Exhaust system having a gold-platinum group metal catalyst

    DOEpatents

    Ragle, Christie Susan; Silver, Ronald G.; Zemskova, Svetlana Mikhailovna; Eckstein, Colleen J.

    2011-12-06

    A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.

  5. Exhaust system having a gold-platinum group metal catalyst

    DOEpatents

    Ragle, Christie Susan; Silver, Ronald G.; Zemskova, Svetlana Mikhailovna; Eckstein, Colleen J.

    2012-08-07

    A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.

  6. Catalytic activities of platinum nanotubes: a density functional study

    NASA Astrophysics Data System (ADS)

    Mukherjee, Prajna; Gupta, Bikash C.; Jena, Puru

    2015-10-01

    In this work we investigate the catalytic properties of platinum nanotubes using density functional theory based calculations. In particular, we study the dissociation of hydrogen and oxygen molecules as well as oxidation of CO molecules. The results indicate that platinum nanotubes have good catalytic properties and can be effectively used in converting CO molecule to CO2.

  7. Determination of platinum in blood by adsorptive voltammetry.

    PubMed

    Nygren, O; Vaughan, G T; Florence, T M; Morrison, G M; Warner, I M; Dale, L S

    1990-08-01

    This work describes a sensitive method for the determination of platinum in blood, which can be used for determining the natural levels of platinum in human blood, for monitoring patients treated with platinum cytotoxic drugs, and for monitoring occupational exposure to these drugs and other platinum compounds. The method involves dry ashing of blood samples in a muffle furnace and determination of platinum by adsorptive voltammetric (AV) measurement of the catalytic reduction of protons by the platinum-formazone complex. The detection limit for a 100-microL sample of blood is 0.017 micrograms/L, with a recovery of 94% and a relative standard deviation of 7% at a platinum level of 1 microgram/L. By using this method, the natural levels of platinum in human blood were found to be in the range 0.1-2.8 micrograms/L (median = 0.6 micrograms/L). These results were verified by inductively coupled plasma mass spectrometry (ICP-MS) with blood prepared by wet ashing and using gold as an internal standard. PMID:2400106

  8. 76 FR 8627 - Revision of Class E Airspace; Platinum, AK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... Class E airspace at Platinum AK (75 FR 77572). Interested parties were invited to participate in this... U.S.C. 106(g), 40103, 40113, 40120; E.O. 10854, 24 FR 9565, 3 CFR, 1959-1963 Comp., p. 389. Sec. 71... Federal Aviation Administration 14 CFR Part 71 Revision of Class E Airspace; Platinum, AK AGENCY:...

  9. Vapor-deposited platinum as a fuel-cell catalyst

    NASA Technical Reports Server (NTRS)

    Asher, W. J.; Batzold, J. S.

    1974-01-01

    Electrodes are prepared by vacuum deposition of platinum on nickel substrate with conventional vapor-deposition apparatus. Amount of platinum loaded on substrate can be veried by changing exposure time during deposition. These electrodes are significantly more effective than conventional oxygen electrodes.

  10. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1963-02-26

    A brazing alloy which, in the molten state, is characterized by excellent wettability and flowability, said alloy being capable of forming a corrosion resistant brazed joint wherein at least one component of said joint is graphite and the other component is a corrosion resistant refractory metal, said alloy consisting essentially of 20 to 50 per cent by weight of gold, 20 to 50 per cent by weight of nickel, and 15 to 45 per cent by weight of molybdenum. (AEC)

  11. VANADIUM ALLOYS

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  12. Platinum trans-Bis(borirene) complexes displaying coplanarity and communication across a platinum metal center.

    PubMed

    Braunschweig, Holger; Damme, Alexander; Dewhurst, Rian D; Kelch, Hauke; Macha, Bret B; Radacki, Krzysztof; Vargas, Alfredo; Ye, Qing

    2015-02-01

    Ambient-temperature photolysis of the aminoborylene complex [(OC)5 Cr=B=N(SiMe3 )2 ] in the presence of a series of trans-bis(alkynyl)platinum(II) precursors of the type trans-[Pt(CCAr)2 (PEt3 )2 ] (Ar=Ph, p-C6 H4 OMe, and p-C6 H4 CF3 ) successfully leads to twofold transfer of the borylene moiety [:B=N(SiMe3 )2 ] onto the alkyne functionalities. The alkynyl precursors and resultant bis(borirene)platinum(II) complexes formed are of the type trans-[Pt(B{=N(SiMe3 )2 }C=CAr)2 (PEt3 )2 ] (Ar=Ph, p-C6 H4 OMe, and p-C6 H4 CF3 ). These species have all been successfully characterized by NMR, IR, and UV/Vis spectroscopy as well as by elemental analysis. Single-crystal X-ray diffraction has verified that these trans-bis(borirene)platinum(II) complexes display coplanarity between the twin three-membered rings across the platinum core in the solid state and stand as the first examples of coplanar conformations of twin borirene systems. These complexes were modeled using density functional theory (DFT), providing information helpful in determining the ability of the transition metal core to interact with each individual borirene ring system and allowing for the observed coplanarity of these rings in the solid state. This proposed transition metal interaction with the twin borirene systems is manifested in the electronic characterization of these borirene species, which display divergent photophysical UV/Vis spectroscopic profiles compared to a previously published mono(borirene)platinum(II) complex. PMID:25430871

  13. Induction of protein crystallization by platinum nanoparticles

    NASA Astrophysics Data System (ADS)

    Takeda, Yoshihiro; Mafuné, Fumitaka

    2016-03-01

    We have investigated effects of platinum nanoparticles (PtNPs) on protein crystal nucleation. The presence of PtNPs increased the number of crystals in a crystallization solution, indicating that the PtNPs have the ability to promote the crystal nucleation. Dynamic light scattering measurements revealed that the PtNP gathers more than 10 lysozyme molecules around it to form an embryonic complex of PtNP and lysozyme. Zeta potential measurements revealed that the charges of the lysozyme molecules were reduced by delocalization of their charges in the complex. As a result, the energy barrier of association between the complexes is reduced, followed by the nucleation.

  14. Impedance spectra of polypyrrole coated platinum electrodes.

    PubMed

    Onnela, Niina; Savolainen, Virpi; Hiltunen, Maiju; Kellomäki, Minna; Hyttinen, Jari

    2013-01-01

    Polypyrrole (PPy) coated electrodes may provide new solutions to increase the charge injection capacity and biocompatibility of metal electrodes in e.g., neural stimulus applications. In this study, electrical impedance spectra of PPy coated platinum (Pt) electrodes having three different coating thicknesses were measured and modeled. A suitable equivalent electrical circuit providing the material characteristics was chosen and the impedance data was analyzed using the model and data fitting. The modeled parameter values of different coating thicknesses were compared and our results demonstrated the changes in charge transfer properties and mechanisms of thin and thick PPy film coatings. PMID:24109743

  15. Response time correlations for platinum resistance thermometers

    NASA Technical Reports Server (NTRS)

    Pandey, D. K.; Ash, R. L.; Dillon-Townes, L. A.

    1985-01-01

    The 'plunge method' recommended by ASTM has been used to determine the time constant of 100-ohm platinum resistance thermometers (PRT) considered for use in the National Transonic Facility. It is shown that the response time of ventilated PRT can be correlated with the reciprocal of the heat transfer coefficient in a given field. Universal correlations are established for the 100- and 1000-ohm PRT with uncertainties of 20 and 30 percent, respectively. The correlations are found to be consistent with the uncertainty involved in heat transfer correlations available in the literature and are recommended for use in flowing liquids and gases.

  16. EPM Fine-Disperse Platinum Coating on Powder Carriers

    NASA Astrophysics Data System (ADS)

    Serga, V.; Kulikova, L.; Cvetkov, A.; Krumina, A.

    2012-08-01

    In the reported investigation the extractive-pyrolytic method of fine-disperse platinum coating on powder carriers was applied. Nanopowders of Al2O3, γ- AlO(OH), Y2O3, CeO2, SiO2 were used as carriers. Investigations on the effect of synthesis parameters on the mean size of platinum crystallites in the produced composites (metal content 4.8 wt%) have revealed that the increase of the pyrolysis temperature, annealing period, metal concentration in the precursor [(C8H17)3NH]2PtCI6 in toluene as well as the decrease of the specific surface area result in growth of the mean size of platinum crystallites. Microscopic studies show the formation of platinum spherical particles sized 5 to 35 nm as a results of the pyrolysis of the platinum-containing precursor in a water-soluble carrier (fine-disperse NaCl).

  17. Environmental routes for platinum group elements to biological materials--a review.

    PubMed

    Ek, Kristine H; Morrison, Gregory M; Rauch, Sebastien

    2004-12-01

    The increased use of platinum group elements (PGE) in automobile catalysts has led to concern over potential environmental and biological accumulation. Platinum (Pt), palladium (Pd) and rhodium (Rh) concentrations have increased in the environment since the introduction of automobile catalysts. This review summarises current knowledge concerning the environmental mobility, speciation and bioavailability of Pt, Pd and Rh. The greater proportion of PGE emissions is from automobile catalysts, in the form of nanometer-sized catalyst particles, which deposit on roadside surfaces, as evidenced in samples of road dust, grass and soil. In soil, PGE can be transformed into more mobile species through complexation with organic matter and can be solubilised in low pH rainwater. There are indications that environmentally formed Pd species are more soluble and hence more mobile in the environment than Rh and Pt. PGE can reach waterbodies through stormwater transport and deposition in sediments. Besides external contamination of grass close to roads, internal PGE uptake has been observed for plants growing on soil contaminated with automobile catalyst PGE. Fine particles of PGE were also detected on the surface of feathers sampled from passerines and raptors in their natural habitat, and internal organs of these birds also contained PGE. Uptake has been observed in sediment-dwelling invertebrates, and laboratory studies have shown an uptake of PGE in eel and fish exposed to water containing road dust. The available evidence indicates that the PGE, especially Pd, are transported to biological materials through deposition in roots by binding to sulphur-rich low molecular weight species in plants. PGE uptake to exposed animals have uptake rates in the following order: Pd>Pt>Rh. The liver and kidney accumulate the highest levels of PGE, especially Pd. Urinary Pd and Rh, but not Pt, levels are correlated with traffic intensity. Dental alloys may lead to elevated urinary Pt levels

  18. Therapeutic gold, silver, and platinum nanoparticles.

    PubMed

    Yamada, Miko; Foote, Matthew; Prow, Tarl W

    2015-01-01

    There are an abundance of nanoparticle technologies being developed for use as part of therapeutic strategies. This review focuses on a narrow class of metal nanoparticles that have therapeutic potential that is a consequence of elemental composition and size. The most widely known of these are gold nanoshells that have been developed over the last two decades for photothermal ablation in superficial cancers. The therapeutic effect is the outcome of the thickness and diameter of the gold shell that enables fine tuning of the plasmon resonance. When these metal nanoparticles are exposed to the relevant wavelength of light, their temperature rapidly increases. This in turn induces a localized photothermal ablation that kills the surrounding tumor tissue. Similarly, gold nanoparticles have been developed to enhance radiotherapy. The high-Z nature of gold dramatically increases the photoelectric cross-section. Thus, the photoelectric effects are significantly increased. The outcome of these interactions is enhanced tumor killing with lower doses of radiation, all while sparing tissue without gold nanoparticles. Silver nanoparticles have been used for their wound healing properties in addition to enhancing the tumor-killing effects of anticancer drugs. Finally, platinum nanoparticles are thought to serve as a reservoir for platinum ions that can induce DNA damage in cancer cells. The future is bright with the path to clinical trials is largely cleared for some of the less complex therapeutic metal nanoparticle systems. PMID:25521618

  19. A novel platinum chromium everolimus-eluting stent for the treatment of coronary artery disease

    PubMed Central

    Bennett, Johan; Dubois, Christophe

    2013-01-01

    The development of coronary stents represents a major step forward in the treatment of obstructive coronary artery disease since the introduction of percutaneous coronary intervention. The initial enthusiasm for bare metal stents was, however, tempered by a significant incidence of in-stent restenosis, the manifestation of excessive neointima hyperplasia within the stented vessel segment, ultimately leading to target vessel revascularization. Later, drug-eluting stents, with controlled local release of antiproliferative agents, consistently reduced this need for repeat revascularization. In turn, the long-term safety of first-generation drug-eluting stents was brought into question with the observation of an increased incidence of late stent thrombosis, often presenting as myocardial infarction or sudden death. Since then, new drugs, polymers, and platforms for drug elution have been developed to improve stent safety and preserve efficacy. Development of a novel platinum chromium alloy with high radial strength and high radiopacity has enabled the design of a new, thin-strut, flexible, and highly trackable stent platform, while simultaneously improving stent visibility. Significant advances in polymer coating, serving as a drug carrier on the stent surface, and in antiproliferative agent technology have further improved the safety and clinical performance of newer-generation drug-eluting stents. This review will provide an overview of the novel platinum chromium everolimus-eluting stents that are currently available. The clinical data from major clinical trials with these devices will be summarized and put into perspective. PMID:23818756

  20. ZIRCONIUM ALLOY

    DOEpatents

    Wilhelm, H.A.; Ames, D.P.

    1959-02-01

    A binary zirconiuin--antimony alloy is presented which is corrosion resistant and hard containing from 0.07% to 1.6% by weight of Sb. The alloys have good corrosion resistance and are useful in building equipment for the chemical industry.

  1. URANIUM ALLOYS

    DOEpatents

    Seybolt, A.U.

    1958-04-15

    Uranium alloys containing from 0.1 to 10% by weight, but preferably at least 5%, of either zirconium, niobium, or molybdenum exhibit highly desirable nuclear and structural properties which may be improved by heating the alloy to about 900 d C for an extended period of time and then rapidly quenching it.

  2. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes

    SciTech Connect

    K Sasaki; H Naohara; Y Cai; Y Choi; P Liu; M Vukmirovic; J Wang; R Adzic

    2011-12-31

    Platinum monolayers can act as shells for palladium nanoparticles to lead to electrocatalysts with high activities and an ultralow platinum content, but high platinum utilization. The stability derives from the core protecting the shell from dissolution. In fuel-cell tests, no loss of platinum was observed in 200,000 potential cycles, whereas loss of palladium was significant.

  3. Core-Protected Platinum Monolayer Shell High-Stability Electrocatalysts for Fuel-Cell Cathodes

    SciTech Connect

    Adzic, R.R.; Sasaki, K.; Naohara, H.; Cai, Y.; Choi, Y.M.; Liu, P.; Vukmirovic, M.B.; Wang, J.X.

    2010-11-08

    More than skin deep: Platinum monolayers can act as shells for palladium nanoparticles to lead to electrocatalysts with high activities and an ultralow platinum content, but high platinum utilization. The stability derives from the core protecting the shell from dissolution. In fuel-cell tests, no loss of platinum was observed in 200?000 potential cycles, whereas loss of palladium was significant.

  4. Effect of titania on the characteristics of a Tin-Platinum catalyst

    NASA Astrophysics Data System (ADS)

    Morales-Gil, P.; Nava, N.; Baggio-Saitovitch, E.

    2015-06-01

    Pt-Sn bimetallic catalysts dispersed on alumina are commonly used for reforming and dehydrogenation reactions. In this research work, Pt and Sn were supported on titania. The resulting interactions between the components in the prepared samples, before and after treatment with hydrogen, were studied by Mössbauer spectroscopy, X-ray diffraction and Rietveld refinement. The results show the presence of Pt and SnO2 after calcinations. After the reduction process, metallic Pt, PtSn, and Pt3Sn alloys were identified. The Rietveld refinement analysis shows that some Ti4+ atoms were replaced by Sn4+ atoms in the titania structure. Finally, the Mössbauer spectroscopy and X-ray diffraction results indicate that metallic platinum and SnO2 are encapsulated by a TiOx layer.

  5. Platinum-tin oxide core-shell catalysts for efficient electro-oxidation of ethanol.

    PubMed

    Du, Wenxin; Yang, Guangxing; Wong, Emily; Deskins, N Aaron; Frenkel, Anatoly I; Su, Dong; Teng, Xiaowei

    2014-08-01

    Platinum-tin (Pt/Sn) binary nanoparticles are active electrocatalysts for the ethanol oxidation reaction (EOR), but inactive for splitting the C-C bond of ethanol to CO2. Here we studied detailed structure properties of Pt/Sn catalysts for the EOR, especially CO2 generation in situ using a CO2 microelectrode. We found that composition and crystalline structure of the tin element played important roles in the CO2 generation: non-alloyed Pt46-(SnO2)54 core-shell particles demonstrated a strong capability for C-C bond breaking of ethanol than pure Pt and intermetallic Pt/Sn, showing 4.1 times higher CO2 peak partial pressure generated from EOR than commercial Pt/C. PMID:25033229

  6. Monofunctional and Higher-Valent Platinum Anticancer Agents

    PubMed Central

    Johnstone, Timothy C.; Wilson, Justin J.

    2013-01-01

    Platinum compounds represent one of the great success stories of metals in medicine. Following the serendipitous discovery of the anticancer activity of cisplatin by Rosenberg, a large number of cisplatin variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. These efforts continue today with increased realization that new strategies are needed to overcome issues of toxicity and resistance inherent to treatment by the approved platinum anticancer agents. One approach has been the use of so-called “non-traditional” platinum(II) and platinum(IV) compounds that violate the structure-activity relationships that governed platinum drug-development research for many years. Another is the use of specialized drug delivery strategies. Here we describe recent developments from our laboratory involving monofunctional platinum(II) complexes together with an historical account of the manner by which we came to investigate these compounds and their relationship to previously studied molecules. We also discuss work carried out using platinum(IV) prodrugs and the development of nanoconstructs designed to deliver them in vivo. PMID:23738524

  7. Electrochemical platinum coatings for improving performance of implantable microelectrode arrays.

    PubMed

    de Haro, C; Mas, R; Abadal, G; Muñoz, J; Perez-Murano, F; Dominguez, C

    2002-12-01

    The formation and properties of electrochemical platinum films grown on platinum contacts contained in implantable flexible microelectrodes were investigated. The resulting platinum deposits were obtained by applying cyclic voltammetry to baths containing concentrations around 70 mM of chloroplatinic acid. A pre-activation step was necessary before the platinum-electroplating step in order to achieve good adhesive properties. The benefits of this process were ascribed to higher corrosion resistance, lower impedance and improved adhesion to the sputtered platinum. These improvements can make the application of this electrochemical technique highly useful for increasing the lifetime of implantable microelectrode arrays, such as cuff structures (IEEE Trans. Biomed. Eng. 40 (1993) 640). These medical devices, obtained by semiconductor technology could be used for selective stimulation of nerve fascicles, although, poor long-term performance has been achieved with them. The dissolution rate for platinum thin-film microelectrodes under fixed corrosion test conditions was 38.8 ng/C. Lower rates were observed for electroplated microelectrodes, obtaining a dissolution rate of 7.8 ng/C under analogous experimental ageing conditions. The corrosion behaviour of the electroplated platinum during stimulation experimental conditions was estimated by electrochemical impedance spectroscopy. PMID:12322971

  8. Electron Beam Welder Used to Braze Sapphire to Platinum

    NASA Technical Reports Server (NTRS)

    Forsgren, Roger C.; Vannuyen, Thomas

    1998-01-01

    A new use for electron beam brazing was recently developed by NASA Lewis Research Center's Manufacturing Engineering Division. This work was done to fabricate a fiberoptic probe (developed by Sentec Corporation) that could measure high temperatures less than 600 deg C of vibrating machinery, such as in jet engine combustion research. Under normal circumstances, a sapphire fiber would be attached to platinum by a ceramic epoxy. However, no epoxies can adhere ceramic fibers to platinum under such high temperatures and vibration. Also, since sapphire and platinum have different thermal properties, the epoxy bond is subjected to creep over time. Therefore, a new method had to be developed that would permanently and reliably attach a sapphire fiber to platinum. Brazing a sapphire fiber to a platinum shell. The fiber-optic probe assembly consists of a 0.015-in.-diameter sapphire fiber attached to a 0.25-in.-long, 0.059-in.-diameter platinum shell. Because of the small size of this assembly, electron beam brazing was chosen instead of conventional vacuum brazing. The advantage of the electron beam is that it can generate a localized heat source in a vacuum. Gold reactive braze was used to join the sapphire fiber and the platinum. Consequently, the sapphire fiber was not affected by the total heat needed to braze the components together.

  9. Surface Analysis of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes

    NASA Technical Reports Server (NTRS)

    Rosario-Castro, Belinda I.; Fachini, Estevao R.; Contes, Enid J.; Perez-Davis, Marla E.; Cabrera, Carlos R.

    2008-01-01

    Formation of self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) on polycrystalline platinum electrodes has been studied by surface analysis and electrochemistry techniques. The 4-ATP monolayer was characterized by cyclic voltammetry (CV), Raman spectroscopy, reflection absorption infrared (RAIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) experiments give an idea about the packing quality of the monolayer. RAIR and Raman spectra for 4-ATP modified platinum electrodes showed the characteristic adsorption bands for neat 4-ATP indicating the adsorption of 4-ATP molecules on platinum surface. The adsorption on platinum was also evidenced by the presence of sulfur and nitrogen peaks by XPS survey spectra of the modified platinum electrodes. High resolution XPS studies and RAIR spectrum for platinum electrodes modified with 4-ATP indicate that molecules are sulfur-bonded to the platinum surface. The formation of S-Pt bond suggests that ATP adsorption gives up an amino terminated SAM. Thickness of the monolayer was evaluated via angle-resolved XPS (AR-XPS) analyses. Derivatization of 4-ATP SAM was performed using 16-Br hexadecanoic acid.

  10. Placer and lode platinum-group minerals in south Kalimantan, Indonesia: evidence for derivation from Alaskan-type ultramafic intrusions

    USGS Publications Warehouse

    Zientek, M.L.

    1992-01-01

    Platinum-group minerals occur in significant proportions in placer deposits in several localities in South Kalimantan. They consist of Pt-Fe alloy that may be intergrown with or contain inclusions of Ir-Os-Ru alloy, laurite and chromite. Alluvial PGM found along Sungai Tambanio are in part derived from chromatite schlieren in dunitic bodies intruded into clinopyroxene cumulates that may be part of an Alaskan-type ultramafic complex. A chromitite schlieren in serpentinite from one of these dunitic bodies is anomalous in PGE. The chondrite-normalized PGE pattern for this rock, pan concentrates from this area, and PGM concentrates from diamond-Au-PGM placer deposits have an "M'-shaped pattern enriched in Ir and Pt that is typical of PGE-mineralization associated with Alaskan-type ultramafic complexes. -Authors

  11. Preparation of low-sulfur platinum and platinum aluminide layers in thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Spitsberg, Irene T. (Inventor); Walston, William S. (Inventor); Schaeffer, Jon C. (Inventor)

    2003-01-01

    A method for preparing a coated nickel-base superalloy article reduces the sulfur content of the surface region of the metallic coating layers to low levels, thereby improving the adhesion of the coating layers to the article. The method includes depositing a first layer of platinum overlying the surface of a substrate, depositing a second layer of aluminum over the platinum, and final desulfurizing the article by heating the article to elevated temperature, preferably in hydrogen, and removing a small amount of material from the surface that was exposed during the step of heating. A ceramic layer may be deposited over the desulfurized article. The article may also be similarly desulfurized at other points in the fabrication procedure.

  12. Platinum coat color locus in the deer mouse.

    PubMed

    Dodson, K M; Dawson, W D; Van Ooteghem, S O; Cushing, B S; Haigh, G R

    1987-01-01

    Platinum coat color in the deer mouse, Peromyscus maniculatus, is an autosomal recessive trait marking a locus, pt, distinct from silver (si), albino (c), blonde (bl), brown (b), and agouti (a). Platinum deer mice are conspicuously pale, with light ears and tail stripe. The pewter trait is allelic with and phenotypically identical to platinum, and represents an independent recurrence of this mutant. The rate of recoveries of coat color mutations from wild deer mice is consistent with available data for recurring mutation rates balanced by strong selection against the recessive phenotype. PMID:3611714

  13. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    SciTech Connect

    Cha, Jennifer N.; Wang, Joseph

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely

  14. Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit

    DOE PAGESBeta

    Lucci, Felicia R.; Liu, Jilei; Marcinkowski, Matthew D.; Yang, Ming; Allard, Lawrence F.; Flytzani-Stephanopoulos, Maria; Sykes, E. Charles H.

    2015-10-09

    Platinum is ubiquitous in the production sectors of chemicals and fuels; however, its scarcity in nature and high price will limit future proliferation of platinum-catalysed reactions. One definite approach to conserve platinum involves understanding the smallest number of platinum atoms needed to catalyse a reaction, then designing catalysts with the minimal platinum ensembles. Here we design and test a new generation of platinum–copper nanoparticle catalysts for the selective hydrogenation of 1,3-butadiene,, an industrially important reaction. Isolated platinum atom geometries enable hydrogen activation and spillover but are incapable of C–C bond scission that leads to loss of selectivity and catalyst deactivation.more » γ-Alumina-supported single-atom alloy nanoparticle catalysts with <1 platinum atom per 100 copper atoms are found to exhibit high activity and selectivity for butadiene hydrogenation to butenes under mild conditions, demonstrating transferability from the model study to the catalytic reaction under practical conditions.« less

  15. Comparison study of few-layered graphene supported platinum and platinum alloys for methanol and ethanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Xiao, Kaijun; Xi, Jingyu; Qiu, Xinping

    2015-03-01

    Pt, PtRu, PtNi and PtRuNi nanoparticles are assembled to few-layered graphene (FLG) and the resulting hybrids are examined as catalysts for the electro-oxidation of methanol and ethanol. The structures of the catalysts are characterized using transmission electron microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy. The compositional and electronic properties of the nanoparticles are analyzed using X-ray photoelectron spectroscopy. The activity of the catalysts towards methanol and ethanol electro-oxidation is studied by cyclic voltammetry, linear sweeping voltammetry and chronoamperometry. It is found that the activity of the catalysts follows the sequence of Pt/FLG < PtNi/FLG < PtRu/FLG < PtRuNi/FLG. The activity of the catalysts is well correlated with the structural characteristics. The superior activity of the PtRuNi/FLG catalyst is attributed to the synergistic effects of Pt, Ru and Ni, as explained by the bi-functional, ligand and strain effects.

  16. PLUTONIUM ALLOYS

    DOEpatents

    Chynoweth, W.

    1959-06-16

    The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

  17. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  18. Thermodynamic ground states of platinum metal nitrides

    SciTech Connect

    Aberg, D; Sadigh, B; Crowhurst, J; Goncharov, A

    2007-10-09

    We have systematically studied the thermodynamic stabilities of various phases of the nitrides of the platinum metal elements using density functional theory. We show that for the nitrides of Rh, Pd, Ir and Pt two new crystal structures, in which the metal ions occupy simple tetragonal lattice sites, have lower formation enthalpies at ambient conditions than any previously proposed structures. The region of stability can extend up to 17 GPa for PtN{sub 2}. Furthermore, we show that according to calculations using the local density approximation, these new compounds are also thermodynamically stable at ambient pressure and thus may be the ground state phases for these materials. We further discuss the fact that the local density and generalized gradient approximations predict different values of the absolute formation enthalpies as well different relative stabilities between simple tetragonal and the pyrite or marcasite structures.

  19. Platinum Nickel Nanowires as Methanol Oxidation Electrocatalysts

    SciTech Connect

    Alia, Shaun M.; Pylypenko, Svitlana; Neyerlin, Kenneth C.; Kocha, Shyam S.; Pivovar, Bryan S.

    2015-08-27

    We investigated platinum(Pt) nickel (Ni) nanowires (PtNiNWs) as methanol oxidation reaction (MOR) catalysts in rotating disk electrode (RDE) half-cells under acidic conditions. Pt-ruthenium (Ru) nanoparticles have long been the state of the art MOR catalyst for direct methanol fuel cells (DMFCs) where Ru provides oxophilic sites, lowering the potential for carbon monoxide oxidation and the MOR onset. Ru, however, is a precious metal that has long term durability concerns. Ni/Ni oxide species offer a potential to replace Ru in MOR electrocatalysis. PtNiNWs were investigated for MOR and oxygen annealing was investigated as a route to improve catalyst performance (mass activity 65% greater) and stability to potential cycling. Our results presented show that PtNiNWs offer significant promise in the area, but also result in Ni ion leaching that is a concern requiring further evaluation in fuel cells.

  20. Platinum dendritic nanoparticles with magnetic behavior

    NASA Astrophysics Data System (ADS)

    Li, Wenxian; Sun, Ziqi; Tian, Dongliang; Nevirkovets, Ivan P.; Dou, Shi-Xue

    2014-07-01

    Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ˜4 nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.

  1. Superconductivity observed in platinum-silicon interface

    SciTech Connect

    Kuo, Pai-Chia; Chen, Chun-Wei; Lee, Ku-Pin; Shiue, Jessie

    2014-05-26

    We report the discovery of superconductivity with an onset temperature of ∼0.6 K in a platinum-silicon interface. The interface was formed by using a unique focused ion beam sputtering micro-deposition method in which the energies of most sputtered Pt atoms are ∼2.5 eV. Structural and elemental analysis by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy reveal a ∼ 7 nm interface layer with abundant Pt, which is the layer likely responsible for the superconducting transport behavior. Similar transport behavior was also observed in a gold-silicon interface prepared by the same technique, indicating the possible generality of this phenomenon.

  2. Role of copper transporters in platinum resistance

    PubMed Central

    Kilari, Deepak; Guancial, Elizabeth; Kim, Eric S

    2016-01-01

    Platinum (Pt)-based antitumor agents are effective in the treatment of many solid malignancies. However, their efficacy is limited by toxicity and drug resistance. Reduced intracellular Pt accumulation has been consistently shown to correlate with resistance in tumors. Proteins involved in copper homeostasis have been identified as Pt transporters. In particular, copper transporter receptor 1 (CTR1), the major copper influx transporter, has been shown to play a significant role in Pt resistance. Clinical studies demonstrated that expression of CTR1 correlated with intratumoral Pt concentration and outcomes following Pt-based therapy. Other CTRs such as CTR2, ATP7A and ATP7B, may also play a role in Pt resistance. Recent clinical studies attempting to modulate CTR1 to overcome Pt resistance may provide novel strategies. This review discusses the role of CTR1 as a potential predictive biomarker of Pt sensitivity and a therapeutic target for overcoming Pt resistance. PMID:26862494

  3. Platinum dendritic nanoparticles with magnetic behavior

    SciTech Connect

    Li, Wenxian; Sun, Ziqi; Nevirkovets, Ivan P.; Dou, Shi-Xue; Tian, Dongliang

    2014-07-21

    Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ∼4 nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.

  4. Platinum Nickel Nanowires as Methanol Oxidation Electrocatalysts

    DOE PAGESBeta

    Alia, Shaun M.; Pylypenko, Svitlana; Neyerlin, Kenneth C.; Kocha, Shyam S.; Pivovar, Bryan S.

    2015-08-27

    We investigated platinum(Pt) nickel (Ni) nanowires (PtNiNWs) as methanol oxidation reaction (MOR) catalysts in rotating disk electrode (RDE) half-cells under acidic conditions. Pt-ruthenium (Ru) nanoparticles have long been the state of the art MOR catalyst for direct methanol fuel cells (DMFCs) where Ru provides oxophilic sites, lowering the potential for carbon monoxide oxidation and the MOR onset. Ru, however, is a precious metal that has long term durability concerns. Ni/Ni oxide species offer a potential to replace Ru in MOR electrocatalysis. PtNiNWs were investigated for MOR and oxygen annealing was investigated as a route to improve catalyst performance (mass activitymore » 65% greater) and stability to potential cycling. Our results presented show that PtNiNWs offer significant promise in the area, but also result in Ni ion leaching that is a concern requiring further evaluation in fuel cells.« less

  5. Thermodynamic ground states of platinum metal nitrides.

    PubMed

    Aberg, Daniel; Sadigh, Babak; Crowhurst, Jonathan; Goncharov, Alexander F

    2008-03-01

    The thermodynamic stabilities of various phases of the nitrides of the platinum-metal elements are systematically studied using density functional theory. It is shown that for the nitrides of Rh, Pd, Ir, and Pt two new crystal structures, in which the metal ions occupy simple tetragonal lattice sites, have lower formation enthalpies at ambient conditions than any previously proposed structures. The region of stability with respect to those structures extends to 17 GPa for PtN2. Calculations show that the PtN2 simple tetragonal structures at this pressure are thermodynamically stable also with respect to phase separation. The fact that the local density and generalized gradient approximations predict different values of the absolute formation enthalpies as well different relative stabilities between simple tetragonal and the pyrite or marcasite structures are further discussed. PMID:18352720

  6. Thermodynamic Ground States of Platinum Metal Nitrides

    NASA Astrophysics Data System (ADS)

    Åberg, Daniel; Sadigh, Babak; Crowhurst, Jonathan; Goncharov, Alexander F.

    2008-03-01

    The thermodynamic stabilities of various phases of the nitrides of the platinum-metal elements are systematically studied using density functional theory. It is shown that for the nitrides of Rh, Pd, Ir, and Pt two new crystal structures, in which the metal ions occupy simple tetragonal lattice sites, have lower formation enthalpies at ambient conditions than any previously proposed structures. The region of stability with respect to those structures extends to 17 GPa for PtN2. Calculations show that the PtN2 simple tetragonal structures at this pressure are thermodynamically stable also with respect to phase separation. The fact that the local density and generalized gradient approximations predict different values of the absolute formation enthalpies as well different relative stabilities between simple tetragonal and the pyrite or marcasite structures are further discussed.

  7. Platinum group nuggets in deep sea sediments

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Bates, B. A.; Wheelock, M. M.

    1984-01-01

    The existence of iron meteor oblation spheres in deep sea sediments was known for over a century. These spheres generally were believed to be composed of either pure magnetite and wustite or an oxide shell surrounding a NiFe metal core. A large number of 300 micron to 600 micron spheres found were pure oxide spheres, usually containing a solitary 10 micron platinum group nugget (pgn) composed almost entirely of group VIII metals. Twelve PGN's were analyzed and most had chondritic abundances with some depletions that correlate with element volatility. PGN formation by oxidation of a molten metal sphere entering the atmosphere cannot occur if the oxygen abundance in the atmosphere is less than half of its present value. The first appearance of PGN's in the geological record should mark when, in the Earth's history, oxygen rose to this level.

  8. On the kinetics of platinum silicide formation

    NASA Astrophysics Data System (ADS)

    Faber, Erik J.; Wolters, Rob A. M.; Schmitz, Jurriaan

    2011-02-01

    In this work, the kinetics of platinum silicide formation for thin Pt films (50 nm) on monocrystalline ⟨100⟩ silicon is investigated via in situ resistance measurements under isothermal (197-275 °C) conditions. For Pt2Si diffusion limited growth was observed. For PtSi formation, however, no linear relation between silicide thickness and √t was found. PtSi growth over time could be described using the Avrami relation rendering Avrami exponent n =1.4±0.1. Additionally, an effective activation energy EA=1.7±0.1 eV was derived using the Avrami k values. The findings are important for obtaining well defined silicide films and silicide-to-silicon contacts.

  9. Physical Character and Morphology of Platinum Nanocrystals on Strontium Titanate

    NASA Astrophysics Data System (ADS)

    Gild, Joshua; Pierce, Michael; Komanicky, Vladimir; Barbour, Andi; You, Hoydoo

    2015-03-01

    The physical characteristics of platinum nanocrystals on single crystal strontium titanate, SrTiO3 , can effect the chemical properties of this important model catalyst. The morphology, epitaxy, distribution, and size of the Pt nano-crystals can all be controlled through different growth and processing mechanisms. Nanometer scale platinum thin films are deposited on strontium titanate at ambient temperatures then annealed at range of temperatures and in various oxidizing environments. The process of how these conditions influence the formation of uniformly epitaxial platinum crystals on the sample surface has been investigated using basic materials characterization techniques. Single crystal x-ray diffraction is the primary tool for these experiments, coupled with atomic force microscopy for morphology and x-ray and electron spectroscopy to determine chemical bonding between the particles and gases introduced into the system. These substrate supported nanoparticle samples will then be utilized in experiments to test their catalytic activity compared to an amorphous platinum film.

  10. Defining Therapy for Recurrent Platinum-sensitive Ovarian Cancer

    Cancer.gov

    In this phase III clinical trial, women with platinum-sensitive, recurrent ovarian epithelial, fallopian tube, or primary peritoneal cancer will be randomly assigned to undergo secondary cytoreductive surgery, if they are candidates for such surgery, and

  11. MEIOTIC BEHAVIOR OF PLATINUM-INDUCED ANEUPLOIDS IN PEARL MILLET

    EPA Science Inventory

    Cytotoxicity, measured by seed germination and seedling survival, and the clastogenic potential of platinum diaminodinitrodichloride were evaluated in pear millet (Pennisetum americanum (k) Schum). The study was conducted under controlled climatic conditions. Presoaked seed of pe...

  12. Interfacial electronic effects control the reaction selectivity of platinum catalysts.

    PubMed

    Chen, Guangxu; Xu, Chaofa; Huang, Xiaoqing; Ye, Jinyu; Gu, Lin; Li, Gang; Tang, Zichao; Wu, Binghui; Yang, Huayan; Zhao, Zipeng; Zhou, Zhiyou; Fu, Gang; Zheng, Nanfeng

    2016-05-01

    Tuning the electronic structure of heterogeneous metal catalysts has emerged as an effective strategy to optimize their catalytic activities. By preparing ethylenediamine-coated ultrathin platinum nanowires as a model catalyst, here we demonstrate an interfacial electronic effect induced by simple organic modifications to control the selectivity of metal nanocatalysts during catalytic hydrogenation. This we apply to produce thermodynamically unfavourable but industrially important compounds, with ultrathin platinum nanowires exhibiting an unexpectedly high selectivity for the production of N-hydroxylanilines, through the partial hydrogenation of nitroaromatics. Mechanistic studies reveal that the electron donation from ethylenediamine makes the surface of platinum nanowires highly electron rich. During catalysis, such an interfacial electronic effect makes the catalytic surface favour the adsorption of electron-deficient reactants over electron-rich substrates (that is, N-hydroxylanilines), thus preventing full hydrogenation. More importantly, this interfacial electronic effect, achieved through simple organic modifications, may now be used for the optimization of commercial platinum catalysts. PMID:26808458

  13. Water dissociation on silica in the presence of atomic platinum

    NASA Astrophysics Data System (ADS)

    Klett, Joachim; Elger, Benjamin; Krähling, Stephan; Kaiser, Bernhard; Jaegermann, Wolfram; Schäfer, Rolf

    2016-07-01

    We have investigated the adsorption of water on well-defined silica and silica/Pt interfaces by synchrotron X-Ray Photoelectron Spectroscopy (SXPS). For that purpose silica surfaces grown on Si have been covered with atomic platinum in order to facilitate water dissociation. Water was adsorbed from the gas phase at cryogenic temperatures and its dissociation was observed on clean and platinum coated surfaces. After desorption the adsorbed hydroxides decompose on the blank surface, whereas the hydroxides remain stable if the surface was modified with platinum. The principal reversibility of the hydroxylation process implies the necessity of point defects in order to stabilize hydroxides on well-ordered silica surfaces. Deposited platinum atoms are able to stabilize hydroxides in their proximity and act as an acceptor state on the silica surface.

  14. Interfacial electronic effects control the reaction selectivity of platinum catalysts

    NASA Astrophysics Data System (ADS)

    Chen, Guangxu; Xu, Chaofa; Huang, Xiaoqing; Ye, Jinyu; Gu, Lin; Li, Gang; Tang, Zichao; Wu, Binghui; Yang, Huayan; Zhao, Zipeng; Zhou, Zhiyou; Fu, Gang; Zheng, Nanfeng

    2016-05-01

    Tuning the electronic structure of heterogeneous metal catalysts has emerged as an effective strategy to optimize their catalytic activities. By preparing ethylenediamine-coated ultrathin platinum nanowires as a model catalyst, here we demonstrate an interfacial electronic effect induced by simple organic modifications to control the selectivity of metal nanocatalysts during catalytic hydrogenation. This we apply to produce thermodynamically unfavourable but industrially important compounds, with ultrathin platinum nanowires exhibiting an unexpectedly high selectivity for the production of N-hydroxylanilines, through the partial hydrogenation of nitroaromatics. Mechanistic studies reveal that the electron donation from ethylenediamine makes the surface of platinum nanowires highly electron rich. During catalysis, such an interfacial electronic effect makes the catalytic surface favour the adsorption of electron-deficient reactants over electron-rich substrates (that is, N-hydroxylanilines), thus preventing full hydrogenation. More importantly, this interfacial electronic effect, achieved through simple organic modifications, may now be used for the optimization of commercial platinum catalysts.

  15. Platinum Publications, April 1–May 27, 2016 | Poster

    Cancer.gov

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed.

  16. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1962-02-20

    A brazing alloy is described which, in the molten state, is characterized by excellent wettability and flowability and is capable of forming a corrosion-resistant brazed joint. At least one component of said joint is graphite and the other component is a corrosion-resistant refractory metal. The brazing alloy consists essentially of 40 to 90 wt % of gold, 5 to 35 wt% of nickel, and 1 to 45 wt% of tantalum. (AEC)

  17. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  18. Platinum nanostructures formed by femtosecond laser irradiation in water

    SciTech Connect

    Huo Haibin; Shen Mengyan

    2012-11-15

    Platinum nanostructures with various morphologies, such as spike-like, ripple-like and array-like structures, have been fabricated by 400 nm and 800 nm femtosecond laser irradiation in water. Different structures can be formed on the surfaces as a function of the laser wavelength, the fluence and scan methods. The reflectance measurements of these structures show much larger absorption on the irradiated surfaces than untreated platinum surfaces.

  19. Mineral resource of the month: platinum group metals

    USGS Publications Warehouse

    Loferski, Patricia J.

    2010-01-01

    The article focuses on platinum group metals (PGMs) and their properties. According to the author, PGMs, which include iridium, osmium, palladium, platinum, rhodium, and ruthenium, are among the rarest mineral commodities in the Earth's crust. PGMs are primarily used as catalytic converters that clean harmful exhaust from vehicle engines. They are also used in the chemical industry as catalysts in the production of nitric acid and in the petroleum refining industry.

  20. In vitro permeation of platinum and rhodium through Caucasian skin.

    PubMed

    Franken, A; Eloff, F C; Du Plessis, J; Badenhorst, C J; Jordaan, A; Du Plessis, J L

    2014-12-01

    During platinum group metals (PGMs) refining the possibility exists for dermal exposure to PGM salts. The dermal route has been questioned as an alternative route of exposure that could contribute to employee sensitisation, even though literature has been focused on respiratory exposure. This study aimed to investigate the in vitro permeation of platinum and rhodium through intact Caucasian skin. A donor solution of 0.3mg/ml of metal, K2PtCl4 and RhCl3 respectively, was applied to the vertical Franz diffusion cells with full thickness abdominal skin. The receptor solution was removed at various intervals during the 24h experiment, and analysed with high resolution ICP-MS. Skin was digested and analysed by ICP-OES. Results indicated cumulative permeation with prolonged exposure, with a significantly higher mass of platinum permeating after 24h when compared to rhodium. The mass of platinum retained inside the skin and the flux of platinum across the skin was significantly higher than that of rhodium. Permeated and skin retained platinum and rhodium may therefore contribute to sensitisation and indicates a health risk associated with dermal exposure in the workplace. PMID:25084315

  1. Platinum compounds in children with cancer: toxicity and clinical management.

    PubMed

    Ruggiero, Antonio; Trombatore, Giovanna; Triarico, Silvia; Arena, Roberta; Ferrara, Pietro; Scalzone, Maria; Pierri, Filomena; Riccardi, Riccardo

    2013-11-01

    Platinum compounds are widely used in the treatment of pediatric tumors such as neuroblastoma, germ-cell tumors, osteosarcoma, retinoblastoma, hepatoblastoma, brain tumors (low-grade gliomas and medulloblastoma/PNET), and relapsed and refractory lymphomas. The three major platinum compounds (cisplatin, carboplatin, and oxaliplatin) have a similar pharmacokinetics profile and mechanism of action, but the differences in their chemical structure are responsible for their different antitumor activity and toxicity. In this review, we have described the main characteristics of cisplatin, carboplatin, and oxaliplatin, focusing on their toxic effects and possible strategies to prevent them to improve the clinical outcomes in pediatric cancer patients. The underlying mechanism of each platinum-related toxicity is shown together with the clinical manifestations. Furthermore, possible preventive strategies are suggested to reduce the negative impact of platinum compounds on the quality of life of children with cancer. Cisplatin seems to be mostly ototoxic and nephrotoxic, carboplatin mainly produces myelosuppression, whereas oxaliplatin induces predominantly peripheral sensory neurotoxicity. In contrast, nausea and vomiting can be linked to all platinum compounds, although cisplatin exerts the strongest emetic effect. A correct knowledge of pharmacokinetics and toxicological profile of platinum compounds may aid physicians prevent their toxicity on auditory, nervous, renal, and bone marrow function, improving the quality of life of pediatric cancer patients. PMID:23962902

  2. Method for wetting a boron alloy to graphite

    DOEpatents

    Storms, E.K.

    1987-08-21

    A method is provided for wetting a graphite substrate and spreading a a boron alloy over the substrate. The wetted substrate may be in the form of a needle for an effective ion emission source. The method may also be used to wet a graphite substrate for subsequent joining with another graphite substrate or other metal, or to form a protective coating over a graphite substrate. A noneutectic alloy of boron is formed with a metal selected from the group consisting of nickel (Ni), palladium (Pd), and platinum (Pt) with excess boron, i.e., and atomic percentage of boron effective to precipitate boron at a wetting temperature of less than the liquid-phase boundary temperature of the alloy. The alloy is applied to the substrate and the graphite substrate is then heated to the wetting temperature and maintained at the wetting temperature for a time effective for the alloy to wet and spread over the substrate. The excess boron is evenly dispersed in the alloy and is readily available to promote the wetting and spreading action of the alloy. 1 fig.

  3. Phase properties of carbon-supported platinum-gold nanoparticles for formic acid eletro-oxidation

    NASA Astrophysics Data System (ADS)

    Liao, Mengyin; Xiong, Jihai; Fan, Min; Shi, Jinming; Luo, Chenglong; Zhong, Chuan-Jian; Chen, Bing H.

    2015-10-01

    The design of active and robust bimetallic nanocatalysts requires the control of the nanoscale alloying, phase-segregation and the correlation between nanoscale phase-segregation and catalytic properties. To enhance the performance and durability of formic acid oxidation reaction in fuel-cell applications, we prepared a platinum-gold (PtAu) nanocatalyst with controlled morphology and composition. The catalyst is further treated by calcination under controlled temperature and atmosphere. The morphology of the bimetallic nanoparticles is determined by transmission electron microscopy. The nanoscale phase properties and surface composition are carried out by X-ray diffraction and X-ray photoelectron spectroscopy. Cyclic voltammetry measurements demonstrated that the catalytic activity is highly dependent on the nanoscale evolution of alloying and phase segregation. The mass activity of as-prepared Pt50Au50/C with 600 °C treatment temperature is about 11 times higher than that of commercial Pt/C. Stability tests showed no obvious loss of activity after 500 potential cycles. The high activity and stability are attributed to lattice contraction effect as a result of the high thermal treatment condition. Our findings demonstrate the importance of phase segregation at the nanoscale in harnessing the true electrocatalytic potential of bimetallic nanoparticles.

  4. A Single-Site Platinum CO Oxidation Catalyst in Zeolite KLTL: Microscopic and Spectroscopic Determination of the Locations of the Platinum Atoms

    SciTech Connect

    Kistler, Joseph D.; Chotigkrai, Nutchapon; Xu, Pinghong; Enderle, Bryan; Praserthdam, Piyasan; Chen, Cong-Yan; Browning, Nigel D.; Gates, Bruce C.

    2014-07-01

    A stable site-isolated mononuclear platinum catalyst with a well-defined structure is presented. Platinum complexes supported in zeolite KLTL were synthesized from [Pt(NH3)4](NO3)2, oxidized at 633 K, and used to catalyze CO oxidation. Finally, IR and X-ray absorption spectra and electron micrographs determine the structures and locations of the platinum complexes in the zeolite pores, demonstrate the platinum-support bonding, and show that the platinum remained site isolated after oxidation and catalysis.

  5. Elevated temperature aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, Peter (Inventor); Lederich, Richard J. (Inventor); O'Neal, James E. (Inventor)

    1989-01-01

    Three aluminum-lithium alloys are provided for high performance aircraft structures and engines. All three alloys contain 3 wt % copper, 2 wt % lithium, 1 wt % magnesium, and 0.2 wt % zirconium. Alloy 1 has no further alloying elements. Alloy 2 has the addition of 1 wt % iron and 1 wt % nickel. Alloy 3 has the addition of 1.6 wt % chromium to the shared alloy composition of the three alloys. The balance of the three alloys, except for incidentql impurities, is aluminum. These alloys have low densities and improved strengths at temperatures up to 260.degree. C. for long periods of time.

  6. Platinum Nanoparticles Strongly Bonded to Freestanding Graphene

    NASA Astrophysics Data System (ADS)

    Thibado, Paul; Schoelz, J. K.; Ghosh, P. K.; Thompson, J.; Dong, L.; Neek-Amal, M.; Peeters, F. M.

    2015-03-01

    Freestanding graphene membranes were successfully functionalized with platinum nanoparticles (Pt NPs). The membranes were imaged using high-resolution transmission electron microscopy, revealing a homogeneous distribution of uniformly sized, single-crystal Pt NPs that exhibit a preferred orientation and nearest-neighbor distance. The Pt NPs were also found to be partially elevated by the graphene substrate, as deduced from atomic-resolution scanning tunneling microscopy (STM) images. Furthermore, the electrostatic force between the STM tip and sample was utilized to estimate the binding energy of the Pt NPs to the suspended graphene. Local strain accumulation due to strong sp3 bond formation is thought to be the origin of the Pt NP self-organization. Such detailed insight into the atomic nature of this functionalized system was only possible through the cooperation of dual microscopic techniques combined with molecular dynamics simulations. The findings are expected to shape future approaches to develop high-performance electronics based on nanoparticle-functionalized graphene as well as fuel cells using Pt NP catalysts. Financial support provided by the Office of Naval Research under Grant No. N00014-10-1-0181 and the National Science Foundation under Grant No. DMR-0855358.

  7. Superlattices of platinum and palladium nanoparticles

    SciTech Connect

    MARTIN,JAMES E.; WILCOXON,JESS P.; ODINEK,JUDY G.; PROVENCIO,PAULA P.

    2000-04-06

    The authors have used a nonionic inverse micelle synthesis technique to form nanoclusters of platinum and palladium. These nanoclusters can be rendered hydrophobic or hydrophilic by the appropriate choice of capping ligand. Unlike Au nanoclusters, Pt nanoclusters show great stability with thiol ligands in aqueous media. Alkane thiols, with alkane chains ranging from C{sub 6} to C{sub 18} were used as hydrophobic ligands, and with some of these they were able to form 2-D and/or 3-D superlattices of Pt nanoclusters as small as 2.7 nm in diameter. Image processing techniques were developed to reliably extract from transmission electron micrographs (TEMs) the particle size distribution, and information about the superlattice domains and their boundaries. The latter permits one to compute the intradomain vector pair correlation function of the particle centers, from which they can accurately determine the lattice spacing and the coherent domain size. From these data the gap between the particles in the coherent domains can be determined as a function of the thiol chain length. It is found that as the thiol chain length increases, the gaps between particles within superlattice domains increases, but more slowly than one might expect, possibly indicating thiol chain interdigitation.

  8. Guanidine complexes of platinum: a theoretical study.

    PubMed

    Marin-Luna, Marta; Sanchez-Sanz, Goar; O'Sullivan, Patrick; Rozas, Isabel

    2014-07-24

    We have studied theoretically the complexes of model N-phenylguanidine/ium derivatives with PtCl3(-) and PtCl2 in different coordinating modes (mono- and bidentate) with different N atoms of the guanidine/ium moiety using the B3LYP/6-31+G** and LANL2DZ mixed basis set. This will aid the understanding of the complexation between platinum and the guanidine or guanidinium moiety in order to design dual anticancer agents that combine a guanidine-based DNA minor groove binder and a cisplatin-like moiety. Calculated interaction and relative energies, analysis of the electron density, and examination of the orbital interactions indicate that the most stable type of complex is that with a monodentate interaction between PtCl3(-) and guanidinium established through one of the NH2 groups. Next, we optimized the structure of three bis-guanidinium diaromatic systems developed in our group as DNA minor groove binders and their complexation with PtCl3(-), finding that the formation of Pt complexes of these minor groove binders is favorable and would produce stable monodentate coordinated systems. PMID:24988181

  9. Platinum Attachments on Iron Oxide Nanoparticle Surfaces

    SciTech Connect

    Palchoudhury, Soubantika; Xu, Yaolin; An, Wei; Turner, C. H.; Bao, Yuping

    2010-04-30

    Platinum nanoparticles supported on metal oxide surfaces have shown great potential as heterogeneous catalysts to accelerate electrochemical processes, such as the oxygen reduction reaction in fuel cells. Recently, the use of magnetic supports has become a promising research topic for easy separation and recovery of catalysts using magnets, such as Pt nanoparticles supported on iron oxide nanoparticles. The attachment of Pt on iron oxide nanoparticles is limited by the wetting ability of the Pt (metal) on ceramic surfaces. A study of Pt nanoparticle attachment on iron oxide nanoparticle surfaces in an organic solvent is reported, which addresses the factors that promote or inhibit such attachment. It was discovered that the Pt attachment strongly depends on the capping molecules of the iron oxide seeds and the reaction temperature. For example, the attachment of Pt nanoparticles on oleic acid coated iron oxide nanoparticles was very challenging, because of the strong binding between the carboxylic groups and iron oxide surfaces. In contrast, when nanoparticles are coated with oleic acid/tri-n-octylphosphine oxide or oleic acid/oleylamine, a significant increase in Pt attachment was observed. Electronic structure calculations were then applied to estimate the binding energies between the capping molecules and iron ions, and the modeling results strongly support the experimental observations.

  10. Platinum and Gold Complexes for OLEDs.

    PubMed

    Tang, Man-Chung; Chan, Alan Kwun-Wa; Chan, Mei-Yee; Yam, Vivian Wing-Wah

    2016-08-01

    Encouraging efforts on the design of high-performance organic materials and smart architecture during the past two decades have made organic light-emitting device (OLED) technology an important competitor for the existing liquid crystal displays. Particularly, the development of phosphorescent materials based on transition metals plays a crucial role for this success. Apart from the extensively studied iridium(III) complexes with d(6) electronic configuration and octahedral geometry, the coordination-unsaturated nature of d(8) transition metal complexes with square-planar structures has been found to provide intriguing spectroscopic and luminescence properties. This article briefly summarizes the development of d(8) platinum(II) and gold(III) complexes and their application studies in the fabrication of phosphorescent OLEDs. An in-depth understanding of the nature of the excited states has offered a great opportunity to fine-tune the emission colors covering the entire visible spectrum as well as to improve their photophysical properties. With good device engineering, high performance vacuum-deposited OLEDs with external quantum efficiencies (EQEs) of up to 30 % and solution-processable OLEDs with EQEs of up to 10 % have been realized by modifying the cyclometalated or pincer ligands of these metal complexes. These impressive demonstrations reveal that d(8) metal complexes are promising candidates as phosphorescent materials for OLED applications in displays as well as in solid-state lighting in the future. PMID:27573398

  11. Platinum metals in magmatic sulfide ores

    USGS Publications Warehouse

    Naldrett, A.J.; Duke, J.M.

    1980-01-01

    Platinum-group elements (PGE) are mined predominantly from deposits that have formed by the segregation of molten iron-nickel-copper sulfides from silicate magmas. The absolute concentrations of PGE in sulfides from different deposits vary over a range of five orders of magnitude, whereas those of other chalcophile elements vary by factors of only 2 to 100. However, the relative proportions of the different PGE in a given deposit are systematically related to the nature of the parent magma. The absolute and relative concentrations of PGE in magmatic sulfides are explained in terms of the degree of partial melting of mantle peridotite required to produce the parent magma and the processes of batch equilibration and fractional segregation of sulfides. The Republic of South Africa and the U.S.S.R. together possess more than 97 percent of the world PGE reserves, but significant undeveloped resources occur in North America. The Stillwater complex in Montana is perhaps the most important example. Copyright ?? 1980 AAAS.

  12. Eribulin mesylate (halichondrin B Analog E7389) in platinum-resistant and platinum-sensitive ovarian cancer: a two-cohort, phase II study

    PubMed Central

    Hensley, Martee L.; Kravetz, Sara; Jia, Xiaoyu; Iasonos, Alexia; Tew, William; Pereira, Lauren; Sabbatini, Paul; Whalen, Christin; Aghajanian, Carol A.; Zarwan, Corinne; Berlin, Suzanne

    2011-01-01

    Background Eribulin mesylate is a tubulin inhibitor with activity superior to paclitaxel in NIH:OVCAR-3 human epithelial ovarian cancer xenograft models. We sought to assess the efficacy of eribulin in platinum-resistant and platinum-sensitive recurrent ovarian cancer. Methods Patients with recurrent measurable epithelial ovarian cancer, ≤2 prior cytotoxic regimens, and adequate organ function were enrolled into two separate cohorts: 1) Platinum resistant (progression-free interval from last platinum-based therapy <6 months); and 2) Platinum sensitive (progression-free interval from last platinum-based therapy ≥6 months). Treatment: Eribulin 1.4 mg/m2 over 15 minutes by vein on days 1 and 8, every 21 days. Efficacy was determined by objective response by computed tomography. Results Platinum-resistant cohort: Thirty-seven patients enrolled. Thirty-six patients were evaluable for response and toxicity. Two patients achieved partial response (PR, 5.5%). Sixteen (44%) had a best response of stable disease. Median progression-free survival was 1.8 months (95% confidence interval, 1.4–2.8 months). Platinum-sensitive cohort: Thirty-seven patients enrolled, and all were evaluable for response. Seven patients achieved partial response (PR, 19%). Median progression-free survival was 4.1 months (95% confidence interval, 2.8–5.8 months). The major toxicity was grade 3 or 4 neutropenia (42% in platinum-resistant patients; 54% in platinum-sensitive patients). Conclusions Eribulin achieved objective response in 5.5% of women with platinum-resistant recurrent ovarian cancer and in 19% of women with platinum-sensitive disease. Median progression-free survival was 1.8 months in the platinum-resistant group and 4.1 months in the platinum-sensitive group. PMID:21935916

  13. Vibrational Recognition of Adsorption Sites for CO on Platinum and Platinum-Ruthenium Surfaces.

    SciTech Connect

    Dabo, Ismaila; Wieckowski, Andrzei; Marzari, Nicola N.

    2007-09-01

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. We have studied the vibrational properties of CO adsorbed on platinum and platinum-ruthenium surfaces using density-functional perturbation theory within the Perdew-Burke-Ernzerhof generalizedgradient approximation. The calculated C-O stretching frequencies are found to be in excellent agreement with spectroscopic measurements. The frequency shifts that take place when the surface is covered with ruthenium monolayers are also correctly predicted. This agreement for both shifts and absolute vibrational frequencies is made more remarkable by the frequent failure of local and semilocal exchange-correlation functionals in predicting the stability of the different adsorption sites for CO on transition metal surfaces. We have investigated the chemical origin of the C-O frequency shifts introducing an orbital-resolved analysis of the force and frequency density of states, and assessed the effect of donation and backdonation on the CO vibrational frequency using a GGA + molecular U approach. These findings rationalize and establish the accuracy of density-functional calculations in predicting absolute vibrational frequencies, notwithstanding the failure in determining relative adsorption energies, in the strong chemisorption regime.

  14. Characterization of Platinum and Iridium Oxyhydrate Surface Layers from Platinum and Iridium Foils.

    PubMed

    Johnson, Benjamin; Ranjan, Chinmoy; Greiner, Mark; Arrigo, Rosa; Schuster, Manfred Erwin; Höpfner, Britta; Gorgoi, Mihaela; Lauermann, Iver; Willinger, Marc; Knop-Gericke, Axel; Schlögl, Robert

    2016-07-01

    Platinum and iridium polycrystalline foils were oxidized electrochemically through anodization to create thin platinum and iridium hydrous oxide layers, which were analyzed through laboratory photoelectron spectroscopy during heating and time series (temperature-programmed spectroscopy). The films contain oxygen in the form of bound oxides, water, and hydroxides and were investigated by depth profiling with high-energy photoelectron spectroscopy. The Pt films are unstable and begin to degrade immediately after removal from the electrolyte to form core-shell structures with a metallic inner core and a hydrous oxide outer shell almost devoid of Pt. However, evidence was found for metastable intermediate states of degradation; therefore, it may be possible to manufacture PtOx phases with increased stability. Heating the film to even 100 °C causes accelerated degradation, which shows that stoichiometric oxides such as PtO2 or PtO are not the active species in the electrolyte. The Ir films exhibit increased stability and higher surface Ir content, and gentle heating at low temperatures leads to a decrease in defect density. Although both layers are based on noble metals, their surface structures are markedly different. The complexity of such hydrous oxide systems is discussed in detail with the goal of identifying the film composition more precisely. PMID:27226255

  15. Platinum in the environment: frequency of reactions to platinum-group elements in patients with dermatitis and urticaria.

    PubMed

    Santucci, B; Valenzano, C; de Rocco, M; Cristaudo, A

    2000-12-01

    The aim of the present paper is to evaluate whether increasing environmental exposure increases the frequency of the positive prick and patch test reactions to certain chlorinated platinum salts in patients with dermatitis and urticaria. 800 consecutive subjects with contact dermatitis (n=749) and urticaria (n=51) were variously patch and prick tested with 30 haptens of a standard series, with aqueous solutions of, respectively, hexachloroplatinic acid (H2[PtCl6]), potassium tetrachloroplatinate (K2[PtCl4]), sodium hexachloroplatinate (Na2[PtCl6]), iridium chloride (IrCl3), rhodium chloride (RhCl3) and palladium chloride (PdCl2), and with 16 common inhalants. 153 workers, variably exposed in a platinum refinery, were patch and prick tested only with solutions containing platinum-group elements at various concentrations and with 16 common inhalants. Platinum-group elements did not elicit positive patch or prick test reactions in non-occupationally exposed subjects. In contrast, in exposed workers, positive patch test reactions at day 2 and at 25 min, respectively, were found in 2 subjects with hand dermatitis and in 2 with urticaria and asthma. 22 out of the 153 workers, 18 of whom had rhinitis, asthma, and urticaria, gave positive prick test reactions to 1 or more salts. Furthermore, on patch and prick testing, 4 cross-reactions between platinum, palladium, iridium and rhodium were demonstrated. In conclusion, the test results demonstrate that the present concentration in the environment does not increase the incidence of reactions to platinum salts in patients with dermatitis and/or urticaria. However, if the average level of environmental platinum exposure approaches those existing in industrial settings in the future, we are going to observe more frequent health effects. PMID:11140383

  16. Smoking and occupational allergy in workers in a platinum refinery.

    PubMed Central

    Venables, K. M.; Dally, M. B.; Nunn, A. J.; Stevens, J. F.; Stephens, R.; Farrer, N.; Hunter, J. V.; Stewart, M.; Hughes, E. G.; Newman Taylor, A. J.

    1989-01-01

    OBJECTIVE--To test the hypothesis that smoking increases the risk of sensitisation by occupational allergens. DESIGN--Historical prospective cohort study. SETTING--Platinum refinery. SUBJECTS--91 Workers (86 men) who started work between 1 January 1973 and 31 December 1974 and whose smoking habit and atopic state (on skin prick testing with common allergens) had been noted at joining. MAIN OUTCOME MEASURES--Results of skin prick tests with platinum salts carried out routinely every three to six months and records of any respiratory symptoms noted by the refinery's occupational health service. Follow up was until 1980 or until leaving refinery work, whichever was earlier. RESULTS--57 Workers smoked and 29 were atopic; 22 developed a positive result on skin testing with platinum salts and 49 developed symptoms, including all 22 whose skin test result was positive. Smoking was the only significant predictor of a positive result on skin testing with platinum salts and its effect was greater than that of atopy; the estimated relative risks (95% confidence interval) when both were included in the regression model were: smokers versus non-smokers 5.05 (1.68 to 15.2) and atopic versus non-atopic 2.29 (0.88 to 5.99). Number of cigarettes smoked per day was the only significant predictor of respiratory symptoms. CONCLUSION--Smokers are at increased risk of sensitisation by platinum salts. PMID:2508944

  17. Structures of 38-atom gold-platinum nanoalloy clusters

    SciTech Connect

    Ong, Yee Pin; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Bimetallic nanoclusters, such as gold-platinum nanoclusters, are nanomaterials promising wide range of applications. We perform a numerical study of 38-atom gold-platinum nanoalloy clusters, Au{sub n}Pt{sub 38−n} (0 ≤ n ≤ 38), to elucidate the geometrical structures of these clusters. The lowest-energy structures of these bimetallic nanoclusters at the semi-empirical level are obtained via a global-minimum search algorithm known as parallel tempering multi-canonical basin hopping plus genetic algorithm (PTMBHGA), in which empirical Gupta many-body potential is used to describe the inter-atomic interactions among the constituent atoms. The structures of gold-platinum nanoalloy clusters are predicted to be core-shell segregated nanoclusters. Gold atoms are observed to preferentially occupy the surface of the clusters, while platinum atoms tend to occupy the core due to the slightly smaller atomic radius of platinum as compared to gold’s. The evolution of the geometrical structure of 38-atom Au-Pt clusters displays striking similarity with that of 38-atom Au-Cu nanoalloy clusters as reported in the literature.

  18. Oxidation Reaction Induced Structural Changes in Sub-Nanometer Platinum Supported on Alumina

    DOE PAGESBeta

    DeBusk, Melanie Moses; Allard, Jr, Lawrence Frederick; Blom, Douglas Allen; Narula, Chaitanya Kumar

    2015-01-01

    Platinum supported on alumina is an essential component of emission treatment catalysts used in transportation. Theoretical, experimental, and mechanistic aspects of platinum particles supported on a variety of supports have been extensively studied; however, available experimental information on the behavior of single vs. sub-nanometer platinum is extremely limited. To bridge the knowledge gap between single supported platinum and well-formed supported platinum nanoparticles, we have carried out synthesis, characterization, and CO and NO oxidation studies of sub-nanometer platinum supported on α, θ, and γ-Al2O3 and monitored changes in structure upon exposure to CO and NO oxidation conditions. We find that sub-nanometermore » Pt is highly effective for CO oxidation due to high platinum dispersion but is not very efficient as NO oxidation catalyst. Furthermore, sub-nanometer platinum agglomerates rapidly under CO or NO oxidation conditions to form nanoparticles.« less

  19. Oxidation-induced structural changes in sub-nanometer platinum supported on alumina

    SciTech Connect

    DeBusk, Melanie Moses; Allard, Jr, Lawrence Frederick; Blom, Douglas Allen; Narula, Chaitanya Kumar

    2015-06-26

    Platinum supported on alumina is an essential component of emission treatment catalysts used in transportation. Theoretical, experimental, and mechanistic aspects of platinum particles supported on a variety of supports have been extensively studied; however, available experimental information on the behavior of single vs. sub-nanometer platinum is extremely limited. To bridge the knowledge gap between single supported platinum and well-formed supported platinum nanoparticles, we have carried out synthesis, characterization, and CO and NO oxidation studies of sub-nanometer platinum supported on α, θ, and γ-Al2O3 and monitored changes in structure upon exposure to CO and NO oxidation conditions. Furthermore, we find that sub-nanometer Pt is highly effective for CO oxidation due to high platinum dispersion but is not very efficient as NO oxidation catalyst. Lastly, sub-nanometer platinum agglomerates rapidly under CO or NO oxidation conditions to form nanoparticles.

  20. Oxidation-induced structural changes in sub-nanometer platinum supported on alumina

    DOE PAGESBeta

    DeBusk, Melanie Moses; Allard, Jr, Lawrence Frederick; Blom, Douglas Allen; Narula, Chaitanya Kumar

    2015-06-26

    Platinum supported on alumina is an essential component of emission treatment catalysts used in transportation. Theoretical, experimental, and mechanistic aspects of platinum particles supported on a variety of supports have been extensively studied; however, available experimental information on the behavior of single vs. sub-nanometer platinum is extremely limited. To bridge the knowledge gap between single supported platinum and well-formed supported platinum nanoparticles, we have carried out synthesis, characterization, and CO and NO oxidation studies of sub-nanometer platinum supported on α, θ, and γ-Al2O3 and monitored changes in structure upon exposure to CO and NO oxidation conditions. Furthermore, we find thatmore » sub-nanometer Pt is highly effective for CO oxidation due to high platinum dispersion but is not very efficient as NO oxidation catalyst. Lastly, sub-nanometer platinum agglomerates rapidly under CO or NO oxidation conditions to form nanoparticles.« less

  1. PLATINUM HEXAFLUORIDE AND METHOD OF FLUORINATING PLUTONIUM CONTAINING MIXTURES THERE-WITH

    DOEpatents

    Malm, J.G.; Weinstock, B.; Claassen, H.H.

    1959-07-01

    The preparation of platinum hexafluoride and its use as a fluorinating agent in a process for separating plutonium from fission products is presented. According to the invention, platinum is reacted with fluorine gas at from 900 to 1100 deg C to form platinum hexafluoride. The platinum hexafluoride is then contacted with the plutonium containing mixture at room temperature to form plutonium hexafluoride which is more volatile than the fission products fluorides and therefore can be isolated by distillation.

  2. Transport Magnetic Proximity Effects in Platinum

    NASA Astrophysics Data System (ADS)

    Huang, Ssu-Yen

    2013-03-01

    Platinum (Pt) metal, being non-magnetic and having a strong spin-orbit coupling interaction, has been central in detecting pure spin current and establishing most of the recent spin-based phenomena. Thus, it is important to ascertain the transport and magnetic characteristics of thin Pt films in contact with a ferromagnet. In this work, we use both electric and thermal means to conclusively show the transport magnetic proximity effects (MPE) of thin Pt film in contact with ferromagnetic insulator YIG. At thicknesses comparable to, and less than, the spin diffusion length, the strong ferromagnetic characteristics in Pt films on YIG are indistinguishable from those of ferromagnetic permalloy on YIG. The MPE occurs at the interface and decreases exponentially away from the interface, concentrating in only a few monolayers. As a result, the pure spin current detected by a thin Pt is tainted with a spin polarized current. The pure spin current phenomena, such as the inverse spin Hall effect and the spin Seebeck effect, have been contaminated with the anomalous Hall effect and the anomalous Nernst effect respectively. These results raise serious questions about the suitability, and the validity, of using Pt in establishing pure spin current phenomena; on the other hand, a much stronger spin-based effect can be induced by the MPE at the interface. This research is in collaboration with X. Fin, Y. P. Chen, J. Wu, and J. Q. Xiao (University of Delaware), T. Y. Chen (Arizona State University) and D. Qu, W. G. Wang, and C. L. Chien (The Johns Hopkins University).

  3. Design of experimentation with a platinum-magnesium bioelectric battery.

    PubMed

    Fontenier, G; Freschard, R; Mourot, M

    1975-01-01

    The utilization of metal electrodes in the fabrication of a bioelectric battery has been the subject of intensive study for several years. Up to this date, subcutaneous cathodes of black platinum or of silver-silver chloride have been used in conjunction with anodes of aluminum or zinc. The subcutaneous black platinum is not reliable as a function of time due to the growth of overlying heterogeneous tissues. The utilization of a smooth platinum cathode in the right endoauricular position allows good reliability with time, but does not allow using a large surface area. Furthermore we have a reduction of the H-+ ions and not of the oxygen. A pure Domal magnesium anode was utilized with this cathode, which seemed to be a good compromise between to battery's voltage, its lifetime, and its lack of toxicity to body tissues. PMID:1139023

  4. Dissolution of Platinum in the Operational Range of Fuel Cells

    PubMed Central

    Keeley, Gareth P.; Geiger, Simon; Zeradjanin, Aleksandar R.; Hodnik, Nejc; Kulyk, Nadiia

    2015-01-01

    Abstract One of the most important practical issues in low‐temperature fuel‐cell catalyst degradation is platinum dissolution. According to the literature, it initiates at 0.6–0.9 VRHE, whereas previous time‐ and potential‐resolved inductively coupled plasma mass spectrometry (ICP–MS) experiments, however, revealed dissolution onset at only 1.05 VRHE. In this manuscript, the apparent discrepancy is addressed by investigating bulk and nanoparticulated catalysts. It is shown that, given enough time for accumulation, traces of platinum can be detected at potentials as low as 0.85 VRHE. At these low potentials, anodic dissolution is the dominant process, whereas, at more positive potentials, more platinum dissolves during the oxide reduction after accumulation. Interestingly, the potential and time dissolution dependence is similar for both types of electrode. Dissolution processes are discussed with relevance to fuel‐cell operation and plausible dissolution mechanisms are considered. PMID:27525206

  5. Sum frequency generation imaging microscopy of CO on platinum.

    PubMed

    Cimatu, Katherine; Baldelli, Steven

    2006-12-20

    Sum frequency vibrational spectroscopy is utilized as an imaging technique to distinguish and compare the local response of carbon monoxide (CO) covered platinum (Pt) polycrystalline surface versus the average response of the investigated area. The Pt electrode was prepared using the standard method and was exposed to approximately 1 atm of CO(g). SFG images and vibrational spectra were obtained where the contrast is based on the intrinsic nature of each peak in the CO vibrational spectrum. The illustration of the images and the chemical maps of CO on the platinum surface showed the distribution of the CO across the observed area. The results obtained by comparing the local and the average response confirmed the spatial distributions of the CO on the platinum sample which are due to several reasons such as dipole-dipole coupling and surface coverage. This finding has a significant contribution toward recognizing that surfaces usually considered homogeneous may in fact be quite heterogeneous. PMID:17165737

  6. One-dimensional Magnus-type platinum double salts

    PubMed Central

    Hendon, Christopher H.; Walsh, Aron; Akiyama, Norinobu; Konno, Yosuke; Kajiwara, Takashi; Ito, Tasuku; Kitagawa, Hiroshi; Sakai, Ken

    2016-01-01

    Interest in platinum-chain complexes arose from their unusual oxidation states and physical properties. Despite their compositional diversity, isolation of crystalline chains has remained challenging. Here we report a simple crystallization technique that yields a series of dimer-based 1D platinum chains. The colour of the Pt2+ compounds can be switched between yellow, orange and blue. Spontaneous oxidation in air is used to form black Pt2.33+ needles. The loss of one electron per double salt results in a metallic state, as supported by quantum chemical calculations, and displays conductivity of 11 S cm−1 at room temperature. This behaviour may open up a new avenue for controllable platinum chemistry. PMID:27320502

  7. Electron Field Emission Properties of Textured Platinum Surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, James S.

    2002-01-01

    During ground tests of electric microthrusters and space tests of electrodynamic tethers the electron emitters must successfully operate at environmental pressures possibly as high as 1x10(exp -4) Pa. High partial pressures of oxygen, nitrogen, and water vapor are expected in such environments. A textured platinum surface was used in this work for field emission cathode assessments because platinum does not form oxide films at low temperatures. Although a reproducible cathode conditioning process did not evolve from this work, some short term tests for periods of 1 to 4 hours showed no degradation of emission current at an electric field of 8 V/mm and background pressures of about 1x10(exp -6) Pa. Increases of background pressure by air flow to about 3x10(exp -4) Pa yield a hostile environment for the textured platinum field emission cathode.

  8. One-dimensional Magnus-type platinum double salts.

    PubMed

    Hendon, Christopher H; Walsh, Aron; Akiyama, Norinobu; Konno, Yosuke; Kajiwara, Takashi; Ito, Tasuku; Kitagawa, Hiroshi; Sakai, Ken

    2016-01-01

    Interest in platinum-chain complexes arose from their unusual oxidation states and physical properties. Despite their compositional diversity, isolation of crystalline chains has remained challenging. Here we report a simple crystallization technique that yields a series of dimer-based 1D platinum chains. The colour of the Pt(2+) compounds can be switched between yellow, orange and blue. Spontaneous oxidation in air is used to form black Pt(2.33+) needles. The loss of one electron per double salt results in a metallic state, as supported by quantum chemical calculations, and displays conductivity of 11 S cm(-1) at room temperature. This behaviour may open up a new avenue for controllable platinum chemistry. PMID:27320502

  9. 40 CFR 440.110 - Applicability; description of the platinum ore subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... platinum ore subcategory. 440.110 Section 440.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.110 Applicability; description of the platinum ore subcategory. The provisions of...

  10. 40 CFR 440.110 - Applicability; description of the platinum ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... platinum ore subcategory. 440.110 Section 440.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.110 Applicability; description of the platinum ore subcategory....

  11. 40 CFR 440.110 - Applicability; description of the platinum ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... platinum ore subcategory. 440.110 Section 440.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.110 Applicability; description of the platinum ore subcategory....

  12. 40 CFR 440.110 - Applicability; description of the platinum ore subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... platinum ore subcategory. 440.110 Section 440.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.110 Applicability; description of the platinum ore subcategory. The provisions of...

  13. 40 CFR 440.110 - Applicability; description of the platinum ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... platinum ore subcategory. 440.110 Section 440.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.110 Applicability; description of the platinum ore subcategory....

  14. DETERMINATION OF HUMAN BODY BURDEN BASELINE DATA OF PLATINUM THROUGH AUTOPSY TISSUE ANALYSIS

    EPA Science Inventory

    Results of analysis for platinum in 97 autopsy sets are presented. Analysis was performed by a specially developed emission spectrochemical method. Almost half of the individuals studied were found to have detectable platinum in one or more tissue samples. Platinum was found to b...

  15. The effects of platinum on nickel electrodes in the nickel hydrogen cell

    NASA Technical Reports Server (NTRS)

    Zimmerman, Albert H.

    1991-01-01

    Interactions of platinum and platinum compounds with the nickel electrode that are possible in the nickel hydrogen cell, where both the nickel electrode and a platinum catalyst hydrogen electrode are in intimate contact with the alkaline electrolyte, are examined. Additionally, a mechanism of nickel cobalt oxyhydroxide formation in NiH2 cells is presented.

  16. Water-soluble platinum phthalocyanines as potential antitumor agents.

    PubMed

    Bologna, Giuseppina; Lanuti, Paola; D'Ambrosio, Primiano; Tonucci, Lucia; Pierdomenico, Laura; D'Emilio, Carlo; Celli, Nicola; Marchisio, Marco; d'Alessandro, Nicola; Santavenere, Eugenio; Bressan, Mario; Miscia, Sebastiano

    2014-06-01

    Breast cancer represents the second cause of death in the European female population. The lack of specific therapies together with its high invasive potential are the major problems associated to such a tumor. In the last three decades platinum-based drugs have been considered essential constituents of many therapeutic strategies, even though with side effects and frequent generation of drug resistance. These drugs have been the guide for the research, in last years, of novel platinum and ruthenium based compounds, able to overcome these limitations. In this work, ruthenium and platinum based phthalocyanines were synthesized through conventional techniques and their antiproliferative and/or cytotoxic actions were tested. Normal mammary gland (MCF10A) and several models of mammarian carcinoma at different degrees of invasiveness (BT474, MCF-7 and MDA-MB-231) were used. Cells were treated with different concentrations (5-100 μM) of the above reported compounds, to evaluate toxic concentration and to underline possible dose-response effects. The study included growth curves made by trypan blue exclusion test and scratch assay to study cellular motility and its possible negative modulation by phthalocyanine. Moreover, we investigated cell cycle and apoptosis through flow cytometry and AMNIS Image Stream cytometer. Among all the tested drugs, tetrasulfonated phthalocyanine of platinum resulted to be the molecule with the best cytostatic action on neoplastic cell lines at the concentration of 30 μM. Interestingly, platinum tetrasulfophtalocyanine, at low doses, had no antiproliferative effects on normal cells. Therefore, such platinum complex, appears to be a promising drug for mammarian carcinoma treatment. PMID:24699848

  17. Composition Dependence of the Optical Conductivity of NiPt Alloys Determined by Spectroscopic Ellipsometry

    NASA Astrophysics Data System (ADS)

    Abdallah, Lina; Tawalbeh, Tarek; Vasiliev, Igor; Zollner, Stefan; Lavoie, Christian; Ozcan, Ahmet; Raymond, Mark

    2012-10-01

    The complex dielectric function of different Ni-Pt alloys (0% to 25% Pt concentration, 10nm thickness) was determined using spectroscopic ellipsometry over a broad photon energy range from 0.6 to 6.6eV. Data were fitted using basis spline functions as well as Drude-Lorentz oscillators to describe free carrier absorption and interband transitions. We found absorption peaks at 1.5 and 4.7 eV due to interband transitions. Results showed a broadening in the absorption peak of Nickel with increasing the Platinum concentration in the alloy. The experimental results were compared with ab initio density functional theory band structure calculations which showed that adding Platinum enhances the density of states of Nickel especially at low energies. Annealing the metals at 500^o C for 30 s increases the optical conductivity.

  18. Effects of Palladium Content, Quaternary Alloying, and Thermomechanical Processing on the Behavior of Ni-Ti-Pd Shape Memory Alloys for Actuator Applications

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen

    2008-01-01

    The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently driving research in high-temperature shape memory alloys (HTSMA) having transformation temperatures above 100 C. One of the basic high temperature systems under investigation to fill this need is NiTiPd. Prior work on this alloy system has focused on phase transformations and respective temperatures, no-load shape memory behavior (strain recovery), and tensile behavior for selected alloys. In addition, a few tests have been done to determine the effect of boron additions and thermomechanical treatment on the aforementioned properties. The main properties that affect the performance of a solid state actuator, namely work output, transformation strain, and permanent deformation during thermal cycling under load have mainly been neglected. There is also no consistent data representing the mechanical behavior of this alloy system over a broad range of compositions. For this thesis, ternary NiTiPd alloys containing 15 to 46 at.% palladium were processed and the transformation temperatures, basic tensile properties, and work characteristics determined. However, testing reveals that at higher levels of alloying addition, the benefit of increased transformation temperature begins to be offset by lowered work output and permanent deformation or "walking" of the alloy during thermal cycling under load. In response to this dilemma, NiTiPd alloys have been further alloyed with gold, platinum, and hafnium additions to solid solution strengthen the martensite and parent austenite phases in order to improve the thermomechanical behavior of these materials. The tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared and discussed. In addition, the benefits of more advanced thermomechanical processing or training on the dimensional stability of

  19. Synthesis of platinum nanoparticle electrocatalysts by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Lubers, Alia Marie

    Demand for energy continues to increase, and without alternatives to fossil fuel combustion the effects on our environment will become increasingly severe. Fuel cells offer a promising improvement on current methods of energy generation; they are able to convert hydrogen fuel into electricity with a theoretical efficiency of up to 83% and interface smoothly with renewable hydrogen production. Fuel cells can replace internal combustion engines in vehicles and are used in stationary applications to power homes and businesses. The efficiency of a fuel cell is maximized by its catalyst, which is often composed of platinum nanoparticles supported on carbon. Economical production of fuel cell catalysts will promote adoption of this technology. Atomic layer deposition (ALD) is a possible method for producing catalysts at a large scale when employed in a fluidized bed. ALD relies on sequential dosing of gas-phase precursors to grow a material layer by layer. We have synthesized platinum nanoparticles on a carbon particle support (Pt/C) by ALD for use in proton exchange membrane fuel cells (PEMFCs) and electrochemical hydrogen pumps. Platinum nanoparticles with different characteristics were deposited by changing two chemistries: the carbon substrate through functionalization; and the deposition process by use of either oxygen or hydrogen as ligand removing reactants. The metal depositing reactant was trimethyl(methylcyclopentadienyl)platinum(IV). Functionalizing the carbon substrate increased nucleation during deposition resulting in smaller and more dispersed nanoparticles. Use of hydrogen produced smaller nanoparticles than oxygen, due to a gentler hydrogenation reaction compared to using oxygen's destructive combustion reaction. Synthesized Pt/C materials were used as catalysts in an electrochemical hydrogen pump, a device used to separate hydrogen fuel from contaminants. Catalysts deposited by ALD on functionalized carbon using a hydrogen chemistry were the most

  20. Temperature dependence of the emissivity of platinum in the IR.

    PubMed

    Deemyad, Shanti; Silvera, Isaac F

    2008-08-01

    The accuracy of temperature determination by fitting the spectral irradiance to a Planck curve depends on knowledge of the emissivity at all temperatures and pressures of interest within a spectral region. Here, the emissivity of platinum is measured in the near infrared as a function of temperature. In the wavelength range of study and the temperature range of 650-1100 K, we find the emissivity to be independent of temperature to within experimental error. This result should lead to improved accuracy of temperature measurement by optical pyrometry where platinum is used as a thermal emitter. PMID:19044386

  1. Determination of palladium and platinum by atomic absorption

    USGS Publications Warehouse

    Schnepfe, M.M.; Grimaldi, F.S.

    1969-01-01

    Palladium and platinum are determined by atomic absorption after fire-assay concentration into a gold bead. The limit of determination is ~0??06 ppm in a 20-g sample. Serious depressive interelement interferences are removed by buffering the solutions with a mixture of cadmium and copper sulphates with cadmium and copper concentrations each at 0??5%. Substantial amounts of Ag, Al, Au, Bi, Ca, Co, Cr, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Te, Ti, V, Y, Zn, and the platinum metals do not interfere in the atomic-absorption determination. ?? 1969.

  2. Amphiphilic Cyanine-Platinum Conjugates as Fluorescent Nanodrugs.

    PubMed

    Sun, Tingting; Li, Zhensheng; Xie, Zhigang; Jing, Xiabin

    2016-01-01

    Two fluorescent nanomedicines based on small molecular cyanine-platinum conjugates have been prepared via a nanoprecipitation method and characterized by transmission electron microscopy (TEM) as well as dynamic light scattering (DLS). The conjugates exhibited an enhanced fluorescence in their nanoparticle formulation compared to that in solution. The nanomedicines could be endocytosed by cancer cells as revealed by confocal laser scanning microscopy (CLSM) and showed high cellular proliferation inhibition. Fluorescent platinum nanomedicines prepared directly from small molecules could be an alternative strategy for developing new drugs with simultaneous cellular imaging and cancer therapy functions. PMID:26556434

  3. Microwave spectroscopy of platinum monofluoride and platinum monochloride in the X 2Π(3/2) states.

    PubMed

    Okabayashi, Toshiaki; Kurahara, Taku; Okabayashi, Emi Y; Tanimoto, Mitsutoshi

    2012-05-01

    Platinum monofluoride (PtF) and platinum monochloride (PtCl) were detected in the gas phase using a source-modulated microwave spectrometer. The PtF and PtCl radicals were generated in a free space cell using the sputtering reaction from a platinum sheet placed on the inner surface of a stainless steel cathode through a dc glow discharge plasma of CF(4) and Cl(2), respectively, diluted with Ar. Rotational transitions were measured in the region between 150 and 313 GHz. Rotational, centrifugal distortion, and several fine- and hyperfine-structure constants were determined by a least-squares analysis. The observed fine-structure spectral patterns indicate that both PtF and PtCl radicals have the (2)Π(3/2) electronic ground states, while the related cyanide PtCN and hydride PtH radicals have the (2)Δ(5/2) electronic ground states. PMID:22583234

  4. Alloy softening in binary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to Mo, while those elements having an equal number or fewer s+d electrons than Mo failed to produce alloy softening. Alloy softening and hardening can be correlated with the difference in number of s+d electrons of the solute element and Mo.

  5. Recent strikes in South Africa’s platinum-group metal mines: effects upon world platinum-group metal supplies

    USGS Publications Warehouse

    Yager, Thomas R.; Soto-Viruet, Yadira; Barry, James J.

    2012-01-01

    The recent labor disputes over wages and working conditions that have affected South Africa’s three leading platinum-group metal (PGM) producers have affected an industry already plagued by market pressures and labor unrest and raised the specter of constraints in the world’s supply of these metals. Although low demand for these metals in 2011 and 2012 helped to offset production losses of recent years, and particularly those losses caused by the strikes in 2012, a prolonged resumption of strikes could cause severe shortages of iridium, platinum, rhodium, ruthenium, and, to a lesser extent, palladium.

  6. Optimization of carbon-supported platinum cathode catalysts for DMFC operation.

    SciTech Connect

    Zhu, Y.; Brosha, E. L.; Zelenay, P.

    2002-01-01

    In this paper, we describe performance and optimization of carbon-supported cathode catalysts at low platinum loading. We find that at a loading below 0.6 mg cm-2 carbon-supported platinum outperforms platinum black as a DMFC cathode catalyst. A catalyst with a 1:1 volume ratio of the dry NafionTM to the electronically conducting phase (platinum plus carbon support) provides the best performance in oxygen reduction reaction. Thanks to improved catalyst utilization, carbon-supported catalysts with a platinum content varying from 40 wt% to 80 wt% deliver very good DMFC performance, even at relatively modest precious metal loadings investigated in this work.

  7. Platinum-based oxygen reduction electrocatalysts.

    PubMed

    Wu, Jianbo; Yang, Hong

    2013-08-20

    An efficient oxygen reduction reaction (ORR) offers the potential for clean energy generation in low-temperature, proton-exchange membrane fuel cells running on hydrogen fuel and air. In the past several years, researchers have developed high-performance electrocatalysts for the ORR to address the obstacles of high cost of the Pt catalyst per kilowatt of output power and of declining catalyst activity over time. Current efforts are focused on new catalyst structures that add a secondary metal to change the d-band center and the surface atomic arrangement of the catalyst, altering the chemisorption of those oxygencontaining species that have the largest impact on the ORR kinetics and improving the catalyst activity and cost effectiveness. This Account reviews recent progress in the design of Pt-based ORR electrocatalysts, including improved understanding of the reaction mechanisms and the development of synthetic methods for producing catalysts with high activity and stability. Researchers have made several types of highly active catalysts, including an extended single crystal surface of Pt and its alloy, bimetallic nanoparticles, and self-supported, low-dimensional nanostructures. We focus on the design and synthetic strategies for ORR catalysts including controlling the shape (or facet) and size of Pt and its bimetallic alloys, and controlling the surface composition and structure of core-shell, monolayer, and hollow porous structures. The strong dependence of ORR performance on facet and size suggests that synthesizing nanocrystals with large, highly reactive {111} facets could be as important, if not more important, to increasing their activity as simply making smaller nanoparticles. A newly developed carbon-monoxide (CO)-assisted reduction method produces Pt bimetallic nanoparticles with controlled facets. This CO-based approach works well to control shapes because of the selective CO binding on different, low-indexed metal surfaces. Post-treatment under

  8. Oxalato-platinum or 1-OHP, a third-generation platinum complex: an experimental and clinical appraisal and preliminary comparison with cis-platinum and carboplatinum.

    PubMed

    Mathé, G; Kidani, Y; Segiguchi, M; Eriguchi, M; Fredj, G; Peytavin, G; Misset, J L; Brienza, S; de Vassals, F; Chenu, E

    1989-01-01

    A new platinum complex, oxalatoplatin or l-OHP, which, at the same metal dose in experimental tests is as efficient as cisplatin, and is more so at a lower metal dose than carboplatin; which is as efficient in human tumors of the testis and ovary as these other analogs, and more so in melanoma and breast cancer; which is not nephrotoxic, cardiotoxic or mutagenic, and hardly hematotoxic and neurotoxic, is described and compared with the above-mentioned platinum complexes. Combined with 5Fu, it induces a high number of remissions in colorectal cancer, and has brought about cures in inoperable gastric cancers. Combined with carboplatin, it has resulted in a high proportion of cures in L1210-carrying mice, which no other two-by-two combination of these complexes has achieved. PMID:2675999

  9. MEA for alkaline direct ethanol fuel cell with alkali doped PBI membrane and non-platinum electrodes

    NASA Astrophysics Data System (ADS)

    Modestov, A. D.; Tarasevich, M. R.; Leykin, A. Yu.; Filimonov, V. Ya.

    This paper reports on the fabrication of MEA for alkaline direct ethanol fuel cell (ADEFC). The MEA was fabricated using non-platinum electrocatalysts and a membrane of alkali doped polybenzimidazole (PBI). The employed oxygen reduction catalyst was prepared by pyrolysis of 5,10,15,20-tetrakis(4-methoxyphenyl)-21H,23H-porphine cobalt(II) supported on XC72 carbon. This catalyst is tolerant to ethanol. Electrocatalyst at the anode was RuV alloy supported on XC72 carbon. It was synthesized by reduction of respective salts at elevated temperature. Single cell power density of 100 mW cm -2 at U = 0.4 V was achieved at 80 °C using air at ambient pressure and 3 M KOH + 2 M EtOH anode feed. The developed MEA is considered viable for use in emergency power supply units and in power sources for portable electronic equipment.

  10. Biological role in the transformation of platinum-group mineral grains

    NASA Astrophysics Data System (ADS)

    Reith, Frank; Zammit, Carla M.; Shar, Sahar S.; Etschmann, Barbara; Bottrill, Ralph; Southam, Gordon; Ta, Christine; Kilburn, Matthew; Oberthür, Thomas; Ball, Andrew S.; Brugger, Joël

    2016-04-01

    Platinum-group elements are strategically important metals. Finding new deposits is becoming increasingly difficult owing to our limited understanding of the processes that affect their mobility in surface environments. Microorganisms have been shown to promote the mobility of metals around ore deposits. Here we show that microorganisms influence the mobility of platinum-group elements in mineral grains collected from Brazil, Australia and Colombia. Scanning electron microscopy showed biofilms covering the platinum-group mineral grains. The biofilms contained abundant platinum-group element nanoparticles and microcrystalline aggregates, and were dominated by Proteobacteria, many of which were closely related to known metal-resistant species. Some platinum-group mineral grains contained carbon, nitrogen, sulfur, selenium and iodine, suggesting the grains may be biogenic in origin. Molecular analyses show that Brazilian platinum-palladium grains hosted specific bacterial communities, which were different in composition from communities associated with gold grains, or communities in surrounding soils and sediments. Nano-phase metallic platinum accumulated when a metallophillic bacterium was incubated with a percolating platinum-containing medium, suggesting that biofilms can cause the precipitation of mobile platinum complexes. We conclude that biofilms are capable of forming or transforming platinum-group mineral grains, and may play an important role for platinum-group element dispersion and re-concentration in surface environments.

  11. Density Functional Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires

    SciTech Connect

    Matanovic, Ivana; Kent, Paul; Garzon, Fernando; Henson, Neil J.

    2013-03-14

    We used density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5–1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, non-hollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity toward the oxygen reduction reaction of platinum nanowires was assessed by studying the change in the chemisorption energies of oxygen, hydroxyl, and hydroperoxyl groups, induced by converting the nanotube models to nanowires. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Single-wall nanotubes and platinum nanowires with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.

  12. Synthesis, Characterization, and Catalytic Properties of Novel Single-Site and Nanosized Platinum Catalysts

    SciTech Connect

    Bonati, Matteo L.M.; Douglas, Thomas M.; Gaemers, Sander; Guo, Neng

    2013-01-10

    Novel single-site platinum catalysts have been synthesized by reacting platinum(II) organometallics with partially dehydroxylated silica. The resulting materials have been characterized by various methods such as IR, MAS NMR, and EXAFS. Further, the single-site platinum catalysts were calcined in air to remove the ligand and produce nanosized platinum particles, that were characterized by TEM and H{sub 2} chemisorption. All catalysts were tested for the hydrogenation of toluene. The single-site platinum catalysts were less active than a commercial Pt/SiO{sub 2} catalyst with comparable platinum loading, and this has been ascribed to ligand effects. Conversely, the nanosized platinum catalysts were more active than the commercial Pt/SiO{sub 2} catalyst due to their high dispersion and small particle sizes.

  13. Theoretical Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires

    SciTech Connect

    Matanovic, Ivana; Kent, Paul; Garzon, Fernando; Henson, Neil J.

    2012-10-10

    We use density functional theory to study the difference in the structure, stability and catalytic reactivity between ultrathin, 0.5- 1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum atoms in small diameter nanotubes. In this way more stable, nonhollow structures were formed. The difference in the electronic structure of platinum nanotubes and nanowires was examined by inspecting the density of surface states and band structure. Furthermore, reactivity towards the oxygen reduction reaction of platinum nanowires was addressed by studying the change in the chemisorption energies of oxygen and hydroxyl groups, induced by inserting the inner chain of platinum atoms into the hollow nanotubes. Both ultrathin platinum nanotubes and nanowires show distinct properties compared to bulk platinum. Nanotubes with diameters larger than 1 nm show promise for use as oxygen reduction catalysts.

  14. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    PubMed

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-01

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity. PMID:26710326

  15. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    NASA Astrophysics Data System (ADS)

    Pennisi, C. P.; Sevcencu, C.; Dolatshahi-Pirouz, A.; Foss, M.; Lundsgaard Hansen, J.; Nylandsted Larsen, A.; Zachar, V.; Besenbacher, F.; Yoshida, K.

    2009-09-01

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  16. Operation of platinum-palladium catalysts with leaded gasoline.

    PubMed Central

    Teague, D M; Clougherty, L B; Speca, A N

    1975-01-01

    The effect of various fuel additives on the ability of platinum-palladium catalytic converters to remove the carbon monoxide and hydrocarbon components of automotive exhaust has been examined. Engine dynamometer studies suggest that these catalysts may be successfully used in conjunction with fuels of relatively high tetraethyllead concentrations, provided the ethylene dibromide portion of the scavenger is excluded. PMID:50929

  17. Operation of platinum-palladium catalysts with leaded gasoline.

    PubMed

    Teague, D M; Clougherty, L B; Speca, A N

    1975-04-01

    The effect of various fuel additives on the ability of platinum-palladium catalytic converters to remove the carbon monoxide and hydrocarbon components of automotive exhaust has been examined. Engine dynamometer studies suggest that these catalysts may be successfully used in conjunction with fuels of relatively high tetraethyllead concentrations, provided the ethylene dibromide portion of the scavenger is excluded. PMID:50929

  18. Do platinum salts fit all triple negative breast cancers?

    PubMed

    Gerratana, L; Fanotto, V; Pelizzari, G; Agostinetto, E; Puglisi, F

    2016-07-01

    Triple-negative breast cancer (TNBC) is an aggressive disease with limited treatment options and poor prognosis once metastatic. Pre-clinical and clinical data suggest that TNBC could be more sensitive to platinum-based chemotherapy, especially among BRCA1/2-mutated patients. In recent years, several randomised trials have been conducted to evaluate platinum efficacy in both early-stage and advanced TNBC, with conflicting results especially for long-term outcomes. Experimental studies are now focusing on identifying biomarkers of response to help selecting patients who may benefit most from platinum-based therapies, including BRCA1/2 mutational status and genomic instability signatures (such as HRD-LOH or HRD-LST scores). A standard therapy for TNBC is still missing and platinum-based regimens represent an emerging therapeutic option for selected patients with a defect in the homologous recombination repair system. The identification of these patients through validated biomarker assays will be crucial to optimize the use of currently approved agents in TNBC. PMID:27343437

  19. Rapid epitaxy-free graphene synthesis on silicidated polycrystalline platinum

    PubMed Central

    Babenko, Vitaliy; Murdock, Adrian T.; Koós, Antal A.; Britton, Jude; Crossley, Alison; Holdway, Philip; Moffat, Jonathan; Huang, Jian; Alexander-Webber, Jack A.; Nicholas, Robin J.; Grobert, Nicole

    2015-01-01

    Large-area synthesis of high-quality graphene by chemical vapour deposition on metallic substrates requires polishing or substrate grain enlargement followed by a lengthy growth period. Here we demonstrate a novel substrate processing method for facile synthesis of mm-sized, single-crystal graphene by coating polycrystalline platinum foils with a silicon-containing film. The film reacts with platinum on heating, resulting in the formation of a liquid platinum silicide layer that screens the platinum lattice and fills topographic defects. This reduces the dependence on the surface properties of the catalytic substrate, improving the crystallinity, uniformity and size of graphene domains. At elevated temperatures growth rates of more than an order of magnitude higher (120 μm min−1) than typically reported are achieved, allowing savings in costs for consumable materials, energy and time. This generic technique paves the way for using a whole new range of eutectic substrates for the large-area synthesis of 2D materials. PMID:26175062

  20. Molybdenum-platinum-oxide electrodes for thermoelectric generators

    DOEpatents

    Schmatz, Duane J.

    1990-01-01

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a solid electrolyte carrying a thin film comprising molybdenum-platinum-oxide as an electrode deposited by physical deposition techniques. The invention is also directed to the method of making same.

  1. Article having an improved platinum-aluminum-hafnium protective coating

    NASA Technical Reports Server (NTRS)

    Nagaraj, Bangalore Aswatha (Inventor); Williams, Jeffrey Lawrence (Inventor)

    2005-01-01

    An article protected by a protective coating has a substrate and a protective coating having an outer layer deposited upon the substrate surface and a diffusion zone formed by interdiffusion of the outer layer and the substrate. The protective coating includes platinum, aluminum, no more than about 2 weight percent hafnium, and substantially no silicon. The outer layer is substantially a single phase.

  2. Acute and chronic nephrotoxicity of platinum nanoparticles in mice

    NASA Astrophysics Data System (ADS)

    Yamagishi, Yoshiaki; Watari, Akihiro; Hayata, Yuya; Li, Xiangru; Kondoh, Masuo; Yoshioka, Yasuo; Tsutsumi, Yasuo; Yagi, Kiyohito

    2013-09-01

    Platinum nanoparticles are being utilized in various industrial applications, including in catalysis, cosmetics, and dietary supplements. Although reducing the size of the nanoparticles improves the physicochemical properties and provides useful performance characteristics, the safety of the material remains a major concern. The aim of the present study was to evaluate the biological effects of platinum particles less than 1 nm in size (snPt1). In mice administered with a single intravenous dose of snPt1, histological analysis revealed necrosis of tubular epithelial cells and urinary casts in the kidney, without obvious toxic effects in the lung, spleen, and heart. These mice exhibited dose-dependent elevation of blood urea nitrogen, an indicator of kidney damage. Direct application of snPt1 to in vitro cultures of renal cells induced significant cytotoxicity. In mice administered for 4 weeks with twice-weekly intraperitoneal snPt1, histological analysis of the kidney revealed urinary casts, tubular atrophy, and inflammatory cell accumulation. Notably, these toxic effects were not observed in mice injected with 8-nm platinum particles, either by single- or multiple-dose administration. Our findings suggest that exposure to platinum particles of less than 1 nm in size may induce nephrotoxicity and disrupt some kidney functions. However, this toxicity may be reduced by increasing the nanoparticle size.

  3. Platinum Recovery from Synthetic Extreme Environments by Halophilic Bacteria.

    PubMed

    Maes, Synthia; Props, Ruben; Fitts, Jeffrey P; Smet, Rebecca De; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H; Vanhaecke, Frank; Boon, Nico; Hennebel, Tom

    2016-03-01

    Metal recycling based on urban mining needs to be established to tackle the increasing supply risk of critical metals such as platinum. Presently, efficient strategies are missing for the recovery of platinum from diluted industrial process streams, often characterized by extremely low pHs and high salt concentrations. In this research, halophilic mixed cultures were employed for the biological recovery of platinum (Pt). Halophilic bacteria were enriched from Artemia cysts, living in salt lakes, in different salt matrices (sea salt mixture and NH4Cl; 20-210 g L(-1) salts) and at low to neutral pH (pH 3-7). The main taxonomic families present in the halophilic cultures were Halomonadaceae, Bacillaceae, and Idiomarinaceae. The halophilic cultures were able to recover >98% Pt(II) and >97% Pt(IV) at pH 2 within 3-21 h (4-453 mg Ptrecovered h(-1) g(-1) biomass). X-ray absorption spectroscopy confirmed the reduction to Pt(0) and transmission electron microscopy revealed both intra- and extracellular Pt precipitates, with median diameters of 9-30 nm and 11-13 nm, for Pt(II) and Pt(IV), respectively. Flow cytometric membrane integrity staining demonstrated the preservation of cell viability during platinum recovery. This study demonstrates the Pt recovery potential of halophilic mixed cultures in acidic saline conditions. PMID:26854514

  4. Concentration of some platinum-group metals in coal

    USGS Publications Warehouse

    Finkelman, R.B.; Aruscavage, P. J.

    1981-01-01

    New data on some platinum group metals in coal indicate that the concentration of Pt is generally less than about 5 ppb, that of Pd is generally less than 1 ppb, and that of Rh is generally less than 0.5 ppb. No conclusive evidence was obtained concerning the mode of occurrence of these elements in coal. ?? 1981.

  5. Chitosan sorbents for platinum sorption from dilute solutions

    SciTech Connect

    Guibal, E.; Larkin, A.; Vincent, T.; Tobin, J.M.

    1999-10-01

    Chitosan has proved efficient at removing platinum in dilute effluents. The maximum uptake capacity reaches 300 mg/g (almost 1.5 mmol/g). The optimum pH for sorption is pH 2. A glutaraldehyde cross-linking pretreatment is necessary to stabilize the biopolymer in acidic solutions. Sorption isotherms have been studied as a function of pH, sorbent particle size, and the cross-linking ratio. Surprisingly, the extent of the cross-linking (determined by the concentration of the cross-linking agent in the treatment bath) has no significant influence on uptake capacity. Competitor anions such as chloride or nitrate induce a large decrease in the sorption efficiency. Sorption kinetics show also that uptake rate is not significantly changed by increasing either the cross-linking ratio or the particle size of the sorbent. Mass transfer rates are significantly affected by the initial platinum concentration and by the conditioning of the biopolymer. Gel-bead conditioning appears to reduce the sorption rate. While for molybdate and vanadate ions, mass transfer was governed by intraparticle mass transfer, for platinum, both external and intraparticle diffusion control the uptake rate. In contrast with the former ions, platinum does not form polynuclear hydrolyzed species, which are responsible for steric hindrance of diffusion into the polymer network.

  6. Allergy to complex platinum salts: A historical prospective cohort study.

    PubMed Central

    Niezborala, M; Garnier, R

    1996-01-01

    OBJECTIVE: To assess the incidence of allergy to complex platinum salts in a platinum refinery. METHODS: A historical prospective cohort study was carried out on 77 workers (67 men) who started work between 1 January 1979 and 31 December 1991 and who were not atopic on skin prick tests to three common allergens at the time of recruitment. Skin prick tests with complex platinum salts were carried out and diagnosis of allergy to complex platinum salts made by the company's doctor. Skin tests and medical examinations were carried out routinely every six months. Follow up was until 30 September 1992 or until leaving refinery work. RESULTS: 18 workers developed a positive result on skin tests and 23 developed symptoms, including all 18 subjects with positive skin tests; the probability of surviving (95% confidence interval (95% CI)) for 72 months after joining the company, with negative skin test results was 0.67 (0.51-0.79) or with no symptoms was 0.63 (0.49-0.75). The incidence of positive skin tests and symptoms was highest during the first two years of work. Symptoms occurred more frequently in September and October than during the other months of the year. The exclusion of atopic subjects did not seem to have resulted in a lower incidence of sensitisation. Smoking was a significant predictive factor for both positive skin tests (estimated relative risk 5.53) and symptoms (4.70). CONCLUSION: The findings confirm that smoking is and that atopy may not be a high risk factor for the development of allergy to complex platinum salts. The high incidence of sensitisation and the available data on the clinical course of sensitised workers show that sensitised workers must be promptly and completely removed from exposure. PMID:8664963

  7. Radiosensitization of EMT6 cells by four platinum complexes.

    PubMed

    Teicher, B A; Rockwell, S; Lee, J B

    1985-05-01

    The greatest research effort in producing radiation sensitizers has been directed toward organic compounds. However, platinum complexes also have radiosensitizing capabilities, perhaps because they bind to DNA. The compound described here are dichloro complexes of bivalent platinum with one or two potentially radiosensitizing ligands. The radiosensitization of oxygenated and hypoxic exponentially growing EMT6 cells in vitro was measured. The dose modifying factors obtained with 200 microM and 400 microM trans-bis(2-nitroimidazole)dichloroplatinum II (NIPt) in hypoxic cells were 1.5 and 2.1, respectively. For trans-bis(2-amino-5-nitrothiazole)dichloroplatinum II (Plant) under the same conditions, the dose modifying factor was 1.5 at 200 microM and 1.8 at 400 microM. Neither compound sensitized oxygenated cells when tested similar protocols. Unlike the trans complexes, (1,2-diamino-4-nitrobenzene)dichloroplatinum II (Plato) was cytotoxic toward the hypoxic cells in the absence of X rays. The time course of cytotoxicity for 100 microM Plato in exponentially growing cells showed rapid killing of hypoxic cells, and much less toxicity toward oxygenated cells. In radiosensitization studies, dose modifying factors of 1.6 and 2.0 were found with 200 microM and 400 microM Plato in hypoxic cells. The compound did not sensitize aerobic cells. The well-known platinum complex cis-dipyridinedichloroplatinum II (PyPt) represents a cis-platinum heterocyclic aromatic complex that does not have a nitro-functionality. The dose modifying factor obtained with 400 microM PyPt in hypoxic cells was 1.7. On a molar basis, the nitro-functional platinum complexes appear to be more effective as hypoxic cell radiosensitizers than the corresponding free ligands. PMID:4039304

  8. TISSUE ORGAN DISTRIBUTION AND BEHAVIORAL EFFECTS OF PLATINUM FOLLOWING ACUTE AND REPEATED EXPOSURE OF THE MOUSE TO PLATINUM SULFATE

    EPA Science Inventory

    Platinum sulfate was administered intragastrically (IG) to adult male Swiss mice in a single dose at the 7 day LD5 or LD25 level. Control groups received 0.25M H2SO4 (pH 0.85) or 0.14M NaCl. Open field behavior (ambulations, rearings) was measured, and tissue/organ Pt levels dete...

  9. Thermal stress test of the depth-graded platinum/carbon reflectors

    NASA Astrophysics Data System (ADS)

    Maeda, Yoshitomo; Ichihara, Kou; Kan, Hiroaki; Shionome, Yu; Sato, Takuro; Sato, Toshiki; Hayashi, Takayuki; Ishida, Manabu; Namba, Yoshiharu; Takahashi, Hideaki; Miyazawa, Takuya; Ishibashi, Kazunori; Sakai, Michito; Sugita, Satoshi; Haba, Yoshito; Matsumoto, Hironori; Mori, Hideyuki

    2015-07-01

    The ASTRO-H hard x-ray telescope (HXT) is designed to reflect hard x-rays with energies up to 80 keV. It will make use of thin-foil, multinested conical optics with depth-graded platinum/carbon (Pt/C) multilayers. We report on thermal stress tests of the HXT reflectors. The reflectors were fabricated on a heat-formed aluminum substrate of thickness gauged at 200 μm of the alloy 5052. This was followed by an epoxy replication on Pt/C-sputtered smooth Pyrex cylindrical mandrels to acquire the x-ray reflective surface. For the thermal tests, the reflectors were maintained at three different temperatures: -5, 50, and 60°C, respectively, for a week. We found that the surface of the reflectors were significantly changed at temperatures of 60°C or higher. The change appears as wrinkles with a typical scale length of a few tens of microns. No changes on the surface were observed from the -5 and 50°C samples. There was also no change in the x-ray reflectivity for these two temperatures.

  10. Platinum Monolayer on IrFe Core-Shell Nanoparticle Electrocatalysts for the Oxygen Reduction Reaction

    SciTech Connect

    K Sasaki; K Kuttiyiel; D Su; R Adzic

    2011-12-31

    We synthesized high activity and stability platinum monolayer on IrFe core-shell nanoparticle electrocatalysts. Carbon-supported IrFe core-shell nanoparticles were synthesized by chemical reduction and subsequent thermal annealing. The formation of Ir shells on IrFe solid-solution alloy cores has been verified by scanning transmission electron microscopy coupled with energy-loss spectroscopy (EELS) and in situ X-ray absorption spectroscopy. The Pt monolayers were deposited on IrFe core-shell nanoparticles by galvanic replacement of underpotentially deposited Cu adatoms on the Ir shell surfaces. The specific and Pt mass activities for the ORR on the Pt monolayer on IrFe core-shell nanoparticle electrocatalyst are 0.46 mA/cm{sup 2} and 1.1 A/mg{sub Pt}, which are much higher than those on a commercial Pt/C electrocatalyst. High durability of Pt{sub ML}/IrFe/C has also been demonstrated by potential cycling tests. These high activity and durability observed can be ascribed to the structural and electronic interaction between the Pt monolayer and the IrFe core-shell nanoparticles.

  11. Platinum Monolayer on IrFe Core–Shell Nanoparticle Electrocatalysts for the Oxygen Reduction Reaction

    SciTech Connect

    Sasaki K.; Kuttiyiel, K.A.; Su, D.; Adzic, R.R.

    2012-04-19

    We synthesized high activity and stability platinum monolayer on IrFe core-shell nanoparticle electrocatalysts. Carbon-supported IrFe core-shell nanoparticles were synthesized by chemical reduction and subsequent thermal annealing. The formation of Ir shells on IrFe solid-solution alloy cores has been verified by scanning transmission electron microscopy coupled with energy-loss spectroscopy (EELS) and in situ X-ray absorption spectroscopy. The Pt monolayers were deposited on IrFe core-shell nanoparticles by galvanic replacement of underpotentially deposited Cu adatoms on the Ir shell surfaces. The specific and Pt mass activities for the ORR on the Pt monolayer on IrFe core-shell nanoparticle electrocatalyst are 0.46 mA/cm{sup 2} and 1.1 A/mg{sub Pt}, which are much higher than those on a commercial Pt/C electrocatalyst. High durability of Pt{sub ML}/IrFe/C has also been demonstrated by potential cycling tests. These high activity and durability observed can be ascribed to the structural and electronic interaction between the Pt monolayer and the IrFe core-shell nanoparticles.

  12. Electrochemical infrared characterization of CO comains on ruthenium-decorated platinum nanoparticles.

    PubMed

    Park, Sungho; Wieckowski, Andrzej; Weaver, Michael J

    2003-02-26

    Spectra obtained by electrochemical infrared reflection absorption spectroscopy (EC-IRAS) for carbon monoxide (CO) adlayers formed by partial CO dosing on various ruthenium-decorated platinum nanoparticle films are reported. The need to achieve a well distributed rather than aggregated metal nanoparticle array is demonstrated, given that such nanoparticle aggregates induce complex dielectric behavior. The strategy here is to use an "organic glue matrix" (short chain SAMs) between the nanoparticles and the gold substrates. The observed promotion in CO electrooxidation by the existence of a Ru island on Pt nanoparticles, of interest to fuel-cell catalysis, showed a strong relationship with Ru surface concentrations, consistent with previous studies on single crystal or polycrystalline bimetallic surfaces. Two distinctive CO infrared bands, one for the Pt-CO and one for Ru-CO domain were found after the dipole coupling of CO within the two CO domains was minimized. Interestingly, those two CO bands showed independent electrooxidation behavior with electrode potential changes. Also, it is shown that the electrooxidation of CO on large Ru islands is less facile than on small Ru islands. In addition, the activity of commercial Pt/Ru alloy nanoparticles to CO stripping was tested and IRAS spectra were reported as a comparison to our Ru-decorated Pt nanoparticles. PMID:12590558

  13. Palladium, platinum, rhodium, iridium and ruthenium in chromite- rich rocks from the Samail ophiolite, Oman.

    USGS Publications Warehouse

    Page, N.J.; Pallister, J.S.; Brown, M.A.; Smewing, J.D.; Haffty, J.

    1982-01-01

    30 samples of chromitite and chromite-rich rocks from two stratigraphic sections, 250 km apart, through the basal ultramafic member of the Samail ophiolite were spectrographically analysed for platinum-group elements (PGE) and for Co, Cu, Ni and V. These data are reported as are Cr/(Cr + Al), Mg/(Mg + Fe) and wt.% TiO2 for most samples. The chromitite occurs as pods or lenses in rocks of mantle origin or as discontinuous layers at the base of the overlying cumulus sequence. PGE abundances in both sections are similar, with average contents in chromite-rich rocks: Pd 8 ppb, Pt 14 ppb, Rh 6 ppb, Ir 48 ppb and Ru 135 ppb. The PGE data, combined with major-element and petrographic data on the chromitite, suggest: 1) relatively larger Ir and Ru contents and highest total PGE in the middle part of each section; 2) PGE concentrations and ratios do not correlate with coexisting silicate and chromite abundances or chromite compositions; 3) Pd/PGE, on average, increases upward in each section; 4) Samail PGE concentrations, particularly Rh, Pt and Pd, are lower than the average values for chromite-rich rocks in stratiform intrusions. 2) suggests that PGEs occur in discrete alloy or sulphide phases rather than in the major oxides or silicates, and 4) suggests that chromite-rich rocks from the oceanic upper mantle are depleted in PGE with respect to chondrites. L.C.C.

  14. Anomalously high retention of radiogenic helium in native platinum

    NASA Astrophysics Data System (ADS)

    Yakubovich, O. V.; Shukolyukov, Yu. A.; Mochalov, A. G.; Kotov, A. B.; Korneev, S. I.

    2012-04-01

    Relatively quick migration of helium from crystal structures has been known for a long time. However there is a group of minerals - native metals - where stability of radiogenic helium is essentially high [1]. Helium, due to its very low solubility in metals, assembles in atomic clusters - "bubbles" of nanometer size. Migration of helium "bubbles" as a whole from the crystal structures needs relatively high temperature near the melting point of metals. On that ground of special interest are platinoids with melting points (and, consequently, temperatures of "explosion-like" release of radiogenic helium) of more than 1550 oC In this respect we believe that the method based on natural radioactivity of platinum is promising. To verify the idea of anomalously high retention of radiogenic helium in native platinum and to check the efficiency of the proposed 190Pt-4He method of isotope geochronology, we studied independent mineral aggregates of native platinum from chromite-bearing dunites of Galmoenan plutonic complex (10 individual samples) (Koryak-Kamchatka belt, Russia) and Konder massif (5 individual samples) (Khabarovsk district,Russia). Because native platinum always has admixture of Fe, Cu etc. for reliable determination of concentration of platinum in the samples in our study we used electron microscope JSM-6510LA with JED 2200 add-on. Amount of 4He in native platinum was determinate on mass-spectrometer complex MSU-G-01-M. Native platinum consists of 6 isotopes. Among them two isotopes are α-radioactive and decay according to following schemes: 190Pt →4He+186Os→4He+182W 192Pt →4He+188Os Presumably, in native platinum there is always a certain amount of uranium and thorium, absorbed in the process of crystallization. However influence of helium generation from uranium becomes more marked at growing of 238U/Pt ratio and beginning with 238U/Pt ≈ 10-5 should be taken into consideration. For the same reason helium produced by the decay of 192Pt and 186Os can

  15. Metal alloy identifier

    DOEpatents

    Riley, William D.; Brown, Jr., Robert D.

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  16. Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications.

    PubMed

    Soundarrajan, C; Sankari, A; Dhandapani, P; Maruthamuthu, S; Ravichandran, S; Sozhan, G; Palaniswamy, N

    2012-06-01

    The leaf extract of Ocimum sanctum was used as a reducing agent for the synthesis of platinum nanoparticles from an aqueous chloroplatinic acid (H(2)PtCl(6)·6H(2)O). A greater conversion of platinum ions to nanoparticles was achieved by employing a tulsi leaf broth with a reaction temperature of 100 °C. Energy-dispersive absorption X-ray spectroscopy confirmed the platinum particles as major constituent in the reduction process. It is evident from scanning electron microscopy that the reduced platinum particles were found as aggregates with irregular shape. Fourier-transform infrared spectroscopy revealed that the compounds such as ascorbic acid, gallic acid, terpenoids, certain proteins and amino acids act as reducing agents for platinum ions reduction. X-ray diffraction spectroscopy suggested the associated forms of platinum with other molecules and the average particle size of platinum nanoparticle was 23 nm, calculated using Scherer equation. The reduced platinum showed similar hydrogen evolution potential and catalytic activity like pure platinum using linear scan voltammetry. This environmentally friendly method of biological platinum nanoparticles production increases the rates of synthesis faster which can potentially be used in water electrolysis applications. PMID:22167464

  17. Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors.

    PubMed

    Sun, Y; Buck, H; Mallouk, T E

    2001-04-01

    Combinatorial methods were used to search for active alloy electrocatalysts for use in enzyme-free amperometric glucose sensors. Electrode arrays (715-member) containing combinations of Pt, Pb, Au, Pd, and Rh were prepared and screened by converting anodic current to visible fluorescence. The most active compositions contained both Pt and Pb. Bulk quantities of catalysts with compositions corresponding to those identified in the screening experiments were prepared and characterized. The best alloy electrocatalysts catalyzed glucose oxidation at substantially more negative potentials than pure platinum in enzyme-free voltammetric measurements. They were also insensitive to potential interfering agents (ascorbic and uric acids, and 4-acetamidophenol), which are oxidized at slightly more positive potentials. Rotating disk electrode (RDE) experiments were carried out to study the catalytic mechanism. The improvement in catalytic performance was attributed to the inhibition of adsorption of oxidation products, which poison Pt electrodes. PMID:11321315

  18. Quantitative bioimaging of platinum group elements in tumor spheroids.

    PubMed

    Niehoff, Ann-Christin; Grünebaum, Jonas; Moosmann, Aline; Mulac, Dennis; Söbbing, Judith; Niehaus, Rebecca; Buchholz, Rebecca; Kröger, Sabrina; Wiehe, Arno; Wagner, Sylvia; Sperling, Michael; von Briesen, Hagen; Langer, Klaus; Karst, Uwe

    2016-09-28

    Limited drug penetration into tumor tissue is a significant factor to the effectiveness of cancer therapy. Tumor spheroids, a 3D cell culture model system, can be used to study drug penetration for pharmaceutical development. In this study, a method for quantitative bioimaging of platinum group elements by laser ablation (LA) coupled to inductively coupled plasma mass spectrometry (ICP-MS) is presented. Different matrix-matched standards were used to develop a quantitative LA-ICP-MS method with high spatial resolution. To investigate drug penetration, tumor spheroids were incubated with platinum complexes (Pt(II)acetylacetonate, cisplatin) and the palladium tagged photosensitizer 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (mTHPP). Distribution and accumulation of the pharmaceuticals were determined with the developed method. PMID:27619092

  19. Nanostructured gold and platinum electrodes on silicon structures for biosensing

    NASA Astrophysics Data System (ADS)

    Ogurtsov, V. I.; Sheehan, M. M.

    2005-01-01

    Gold and platinum metal electrodes on Si/SiO2 having undergone anisotropic potassium hydroxide (KOH) etch treatment are considered. This treatment etches at different rates and directions in the material resulting in creation of numerous pyramid shaped holes in the silicon substrate. This surface is used to make metal electrodes with increased electrode efficiency. The electrodes can serve as the sensors or as the sensor substrates (for surface polymer modification) and because both gold and platinum are inert they have applications for food safety biosensing. Wine, an economically significant food product, was chosen as a matrix, and impedance spectroscopy (EIS) was selected as a method of investigation of electrode behaviour. Based on results of EIS, different complexity equivalent circuits were determined by applying fitting mean square root optimisation of sensor complex impedance measurements.

  20. SNMS investigations of platinum-doped nanogranular tin dioxide layers

    NASA Astrophysics Data System (ADS)

    Schneider, T.; Sommer, M.; Goschnick, J.

    2005-09-01

    Thin platinum-doped nanogranular SnO 2 layers are examined because of its high gas sensitivity and fast gas response to be applied in gas sensor microarrays. The nanogranular metal oxide layers were prepared from a colloidal dispersion using spin coating on silicon substrates. Field emission scanning electron microscopy (FE-SEM) investigations showed quite homogeneous layers of 20 nm particles, containing a few holes of some micron width, probably due to bubbles introduced into the layer during wet deposition. Depth resolved analysis with secondary neutral mass spectrometry (SNMS) was employed to characterize the elemental content and depth distribution of the 20 nm particle layers. A platinum content of approx. 1 at.%, homogeneously spread throughout the particles was found, as well as carbon and chlorine residues of a few atomic percent enriched at the surface of the particles.

  1. Platinum(IV)-chlorotoxin (CTX) conjugates for targeting cancer cells.

    PubMed

    Graf, Nora; Mokhtari, Tara E; Papayannopoulos, Ioannis A; Lippard, Stephen J

    2012-05-01

    Cisplatin is one of the most widely used anticancer drugs. Its side effects, however, have motivated researchers to search for equally effective analogs that are better tolerated. Selectively targeting cancer tissue is one promising strategy. For this purpose, a platinum(IV) complex was conjugated to the cancer-targeting peptide chlorotoxin (CTX, TM601) in order to deliver cisplatin selectively to cancer cells. The 1:1 Pt-CTX conjugate was characterized by mass spectrometry and gel electrophoresis. Like most platinum(IV) derivatives, the cytotoxicity of the conjugate was lower in cell culture than that of cisplatin, but greater than those of its Pt(IV) precursor and CTX in several cancer cell lines. PMID:22465700

  2. Extremely fast hydrogen absorption/desorption through platinum overlayers

    NASA Astrophysics Data System (ADS)

    Połczyński, Piotr; Jurczakowski, Rafał

    2016-02-01

    The hydrogen electrosorption in thin palladium films (50-1000 nm) was investigated at palladium electrodes covered with platinum overlayers. The results for this model system show that the rates of the hydrogen sorption/desorption are orders of magnitude higher for platinized samples with respect to pure palladium. The highest absorption kinetics have been observed for Pd electrodes fully covered with 1-3 platinum monolayers. By means of electrochemical impedance spectroscopy (EIS) we have shown that the process is diffusion limited at platinized Pd layers. Diffusion coefficient, DH, determined in EIS, is two orders of magnitude higher than that previously reported for thin palladium films and approaches DH for bulk palladium. The system stability after hydrogen absorption was assessed and the sorption mechanism was discussed. Surprisingly high durability of the platinized palladium enables its use in a variety of applications where fast and selective response in the presence of hydrogen is required.

  3. International strategic minerals inventory summary report: platinum-group metals

    USGS Publications Warehouse

    Sutphin, David M.; Page, Norman J

    1986-01-01

    Major world resources of platinum-group metals are described in this summary report of information in the International Strategic Minerals Inventory {ISMI}. ISMI is a cooperative data-collection effort of earth-science and mineral-resource agencies in Australia, Canada, the Federal Republic of Germany, the Republic of South Africa, and the United States of America. This report, designed to be of benefit to policy analysts, contains two parts. Part I presents an overview of the resources and potential supply of platinum-group metals on the basis of inventory information. Part II contains tables of some of the geologic information and mineral-resource and production data that were collected by ISMI participants.

  4. Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion.

    PubMed

    Peng, Kui-Qing; Wang, Xin; Wu, Xiao-Ling; Lee, Shuit-Tong

    2009-11-01

    High-density aligned n-type silicon nanowire (SiNW) arrays decorated with discrete 5-10 nm platinum nanoparticles (PtNPs) have been fabricated by aqueous electroless Si etching followed by an electroless platinum deposition process. Coating of PtNPs on SiNW sidewalls yielded a substantial enhancement in photoconversion efficiency and an apparent energy conversion efficiency of up to 8.14% for the PtNP-decorated SiNW-based photoelectrochemical solar cell using a liquid electrolyte containing Br(-)/Br(2) redox couple. The results demonstrate PtNP-decorated SiNWs to be a promising hybrid system for solar energy conversion. PMID:19807069

  5. High low-temperature CO oxidation activity of platinum oxide prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Johánek, V.; Václavů, M.; Matolínová, I.; Khalakhan, I.; Haviar, S.; Matolín, V.

    2015-08-01

    CO oxidation on platinum oxide deposited by magnetron sputtering on flat (Si) and highly porous (multi-walled carbon nanotubes, MWCNT) substrates were examined using X-ray photoelectron spectroscopy, scanning tunneling microscopy, temperature-programmed desorption and temperature-programmed reaction in both UHV and ambient pressure conditions. Platinum in the freshly deposited thin film is present entirely in the 4+ oxidation state. The intrinsic CO oxidation capability of such catalyst proved to be significantly higher under approx. 480 K than that of pure platinum, presumably due to the interplay between metallic and cationic platinum entities, and the reaction yield can be further enhanced by increasing effective surface area when MWCNT is used as a support. The thermo-chemical stability of the platinum oxide, however, has its limitations as the thin film can be gradually thermally reduced to metallic platinum (with small residuum of stable Pt2+ species) and this process is further facilitated in the presence of reducing CO atmosphere.

  6. Radiosensitization of EMT6 cells by four platinum complexes

    SciTech Connect

    Teicher, B.A.; Rockwell, S.; Lee, J.B.

    1985-05-01

    The compounds described here are dichloro complexes of bivalent platinum with one or two potentially radiosensitizing ligands. The radiosensitization of oxygenated and hypoxic exponentially growing EMT6 cells in vitro was measured. The dose modifying factors obtained with 200 ..mu..M and 400 ..mu..M trans-bis(2-nitroimidazole)dichloroplatinum II (NIPt) in hypoxic cells were 1.5 and 2.1, respectively. For trans-bis(2-amino-5-nitrothiazole)dichloroplatinum II (Plant) under the same conditions, the dose modifying factor was 1.5 at 200 ..mu..M and 1.8 at 400 ..mu..M. Neither compound sensitized oxygenated cells when tested similar protocols. Unlike the trans complexes (1,2-diamino-4-nitrobenzene)dichloroplatinum II (Plato) was cytotoxic toward the hypoxic cells in the absence of X rays. The time course of cytotoxicity for 100 ..mu..M Plato in exponentially growing cells showed rapid killing of hypoxic cells, and much less toxicity toward oxygenated cells. In radiosensitization studies, dose modifying factors of 1.6 and 2.0 were found with 200 ..mu..M and 400 ..mu..M Plato in hypoxic cells. The compound did not sensitize aerobic cells. The well-known platinum complex cis-dipyridinedichloroplatinum II (PyPt) represents a cis-platinum heterocyclic aromatic complex that does not have a nitro-functionality. The dose modifying factor obtained with 400 ..mu..M PyPt in hypoxic cells was 1.7. On a molar basis, the nitro-functional platinum complexes appear to be more effective as hypoxic cell radiosensitizers than the corresponding free ligands.

  7. Platinum(II) complexes as spectroscopic probes for biomolecules

    SciTech Connect

    Ratilla, E.

    1990-09-21

    The use of platinum(II) complexes as tags and probes for biomolecules is indeed advantageous for their reactivities can be selective for certain purposes through an interplay of mild reaction conditions and of the ligands bound to the platinum. The use of {sup 195}Pt NMR as a method of detecting platinum and its interactions with biomolecules was carried out with the simplest model of platinum(II) tagging to proteins. Variable-temperature {sup 195}Pt NMR spectroscopy proved useful in studying the stereodynamics of complex thioethers like methionine. The complex, Pt(trpy)Cl{sup +}, with its chromophore has a greater potential for probing proteins. It is a noninvasive and selective tag for histidine and cysteine residues on the surface of cytochrome c at pH 5. The protein derivatives obtained are separable, and the tags are easily quantitated and differentiated through the metal-to-ligand charge transfer bands which are sensitive to the environment of the tag. Increasing the pH to 7.0 led to the modification by Pt(trpy)Cl{sup +}of Arg 91 in cytochrome c. Further studies with guanidine-containing ligands as models for arginine modification by Pt(trpy)Cl{sup +} showed that guanidine can act as a terminal ligand and as a bridging ligand. Owing to the potential utility of Pt(trpy)L{sup n+} as electron dense probes of nucleic acid structure, interactions of this bis-Pt(trpy){sup 2+} complex with nucleic acids was evaluated. Indeed, the complex interacts non-covalently with nucleic acids. Its interactions with DNA are not exactly the same as those of its precedents. Most striking is its ability to form highly immobile bands of DNA upon gel electrophoresis. 232 refs.

  8. Double-Stranded Water on Stepped Platinum Surfaces

    NASA Astrophysics Data System (ADS)

    Kolb, Manuel J.; Farber, Rachael G.; Derouin, Jonathan; Badan, Cansin; Calle-Vallejo, Federico; Juurlink, Ludo B. F.; Killelea, Daniel R.; Koper, Marc T. M.

    2016-04-01

    The interaction of platinum with water plays a key role in (electro)catalysis. Herein, we describe a combined theoretical and experimental study that resolves the preferred adsorption structure of water wetting the Pt(111)-step type with adjacent (111) terraces. Double stranded lines wet the step edge forming water tetragons with dissimilar hydrogen bonds within and between the lines. Our results qualitatively explain experimental observations of water desorption and impact our thinking of solvation at the Pt electrochemical interface.

  9. Photochemistry and charge transfer chemistry of the platinum group elements

    SciTech Connect

    Eisenberg, R.

    1991-12-01

    Significant progress has been made on the photochemistry and photophysics of platinum group element dithiolate complexes. The specific systems under investigation are square planar complexes of Pt(II) containing a dithiolate chelate and two other donor groups to complete the coordination sphere. The donor groups may be amines, imines, phosphines, phosphites or olefins, and they can be either monodentate or joined together as part of a chelate ring.

  10. Nucleolar damage correlates with neurotoxicity induced by different platinum drugs

    PubMed Central

    McKeage, M J; Hsu, T; Screnci, D; Haddad, G; Baguley, B C

    2001-01-01

    Platinum-based drugs are very useful in cancer therapy but are associated with neurotoxicity in the clinic. To investigate the mechanism of neurotoxicity, dorsal root ganglia of rats treated with various platinum drugs were studied. Cell body, nuclear and nucleolar dimensions of dorsal root ganglia sensory nerve cells were measured to determine morphological toxicity. Sensory nerve conduction velocity was measured to determine functional toxicity. After a single dose of oxaliplatin (10 mg kg−1), no significant change in nuclear and cell body diameter was seen but decreased nucleolar size was apparent within a few hours of treatment. Changes in nucleolar size were maximal at 24 hours, recovered very slowly and showed a non-linear dependence on oxaliplatin dose (r2= 0.99). Functional toxicity was delayed in onset until 14 days after a single dose of oxaliplatin but eventually recovered 3 months after treatment. Multiple doses of cisplatin, carboplatin, oxaliplatin, R, R -ormaplatin and S, S -ormaplatin were also associated with time-dependent reduction in nucleolar size. A linear correlation was obtained between the rate of change in nucleolar size during multiple dose treatment with the series of platinum drugs and the time taken for the development of altered sensory nerve conduction velocity (r2= 0.86;P< 0.024). Damage to the nucleolus of ganglionic sensory neurons is therefore linked to the neurotoxicity of platinum-based drugs, possibly through mechanisms resulting in the inhibition of rRNA synthesis. © 2001 Cancer Research Campaign  http://www.bjcancer.com PMID:11710838

  11. [Platinum compounds in cancer therapy--past, present, and future].

    PubMed

    Akaza, H; Saijo, N; Aiba, K; Isonishi, S; Ohashi, Y; Kawai, K; Konishi, T; Saeki, T; Sone, S; Tsukagoshi, S; Tsuruo, T; Noguchi, S; Miki, T; Mikami, O; Smith, M; Hoctin-Boes, G; Stribling, D

    2001-05-01

    Platinum cytotoxics play an important role globally in the management of solid tumours. Cisplatin sets the standard for efficacy in both regions with careful administration to reduce nephrotoxicity. Carboplatin is associated with neurotoxicity, but has become the leading product in the US due largely to the easier to manage toxicity profile. Both agents have been widely used in both registered and non registered indications and are frequently combined with other cytotoxics. In Japan, cisplatin has been used successfully at low doses in combination with 5-FU based regimens and appears to achieve a synergistic effect, but controlled data are not yet available. More recently oxaliplatin (Europe) and nedaplatin (in Japan) have been introduced, but their clinical roles in therapy have yet to be established. One of the limiting features of the first generation of platinum compounds is that a significant proportion of tumours develop cross resistance to platins due to either changes in uptake or excretion, intracellular detoxification or accelerated DNA repair. The forum discussed the possibility for the development of better new platinum compounds, A new platin agent which had lower toxicity and higher efficacy across a wide range of cancers without the development of resistance would be a significant step forward. If the tolerability profile was suitable, an oral formulation may improve the quality of life for patients but this must not be at the expense of efficacy. Even after the introduction of new target based drugs, platinum cytotoxics are likely to be used to reduce the tumour mass and in some cases can be expected to potentiate the effects of the new agents. In preclinical studies, ZD0473 has been shown to by-pass some major mechanisms of resistance and has the potential to achieve these objectives and is now being evaluated in clinical studies in both Japan and the West. PMID:11383210

  12. Conducting polymers and corrosion: Part 2 -- Polyaniline on aluminum alloys

    SciTech Connect

    Tallman, D.E.; Pae, Y.; Bierwagen, G.P.

    2000-04-01

    The electrochemical behavior of conducting polyaniline coatings on various aluminum alloys subjected to immersion in dilute Harrison solution (0.35% ammonium sulfate [(NH{sub 4}){sub 2}SO{sub 4}], 0.05% sodium chloride [NaCl]) was studied. Electrochemical impedance spectroscopy revealed that the charge-transfer resistance (R{sub ct}) of polyaniline-coated alloys increased as a function of immersion time. Polyaniline-coated platinum did not exhibit a significant increase in impedance under similar conditions, indicating that an active metal in contact with the polyaniline is required for the observed increase in R{sub ct}. A similar pattern of increasing R{sub ct} was observed for Alodine (Product A)-treated Al 7075T-6 (UNS A97075) alloys. Mean current and mean potential values obtained from electrochemical noise measurements also suggest a substantial electrochemical interaction between the polyaniline and the aluminum alloy during the early stages of immersion. Polarization experiments and open-circuit potential measurements revealed an ennobling of aluminum alloys to higher potential in the presence of polyaniline coatings. The corrosion protection afforded by a polyaniline/epoxy two-coat system on Al 2024T-3 (UNS A92024) alloy also was evaluated using impedance spectroscopy and compared with that for a single coat of epoxy on untreated and Product A-treated Al2024T-3 alloy. The Product A treatment and the polyaniline coating were found to increase the lifetime of the epoxy topcoat, although these two-coating systems exhibited rather different variations in low-frequency impedance with immersion time. A mechanism consistent with these observations was suggested.

  13. Platinum-induced structural collapse in layered oxide polycrystalline films

    SciTech Connect

    Wang, Jianlin; Liu, Changhui; Huang, Haoliang; Fu, Zhengping; Peng, Ranran E-mail: yllu@ustc.edu.cn; Zhai, Xiaofang; Lu, Yalin E-mail: yllu@ustc.edu.cn

    2015-03-30

    Effect of a platinum bottom electrode on the SrBi{sub 5}Fe{sub 1−x}Co{sub x}Ti{sub 4}O{sub 18} layered oxide polycrystalline films was systematically studied. The doped cobalt ions react with the platinum to form a secondary phase of PtCoO{sub 2}, which has a typical Delafossite structure with a weak antiferromagnetism and an exceptionally high in-plane electrical conductivity. Formation of PtCoO{sub 2} at the interface partially consumes the cobalt dopant and leads to the structural collapsing from 5 to 4 layers, which was confirmed by X-ray diffraction and high resolution transmission electron microscopy measurements. Considering the weak magnetic contribution from PtCoO{sub 2}, the observed ferromagnetism should be intrinsic of the Aurivillius compounds. Ferroelectric properties were also indicated by the piezoresponse force microscopy. In this work, the platinum induced secondary phase at the interface was observed, which has a strong impact on Aurivillius structural configuration and thus the ferromagnetic and ferroelectric properties.

  14. Platinum redispersion on metal oxides in low temperature fuel cells.

    PubMed

    Tripković, Vladimir; Cerri, Isotta; Nagami, Tetsuo; Bligaard, Thomas; Rossmeisl, Jan

    2013-03-01

    We have analyzed the aptitude of several metal oxide supports (TiO(2), SnO(2), NbO(2), ZrO(2), SiO(2), Ta(2)O(5) and Nb(2)O(5)) to redisperse platinum under electrochemical conditions pertinent to the Proton Exchange Membrane Fuel Cell (PEMFC) cathode. The redispersion on oxide supports in air has been studied in detail; however, due to different operating conditions it is not straightforward to link the chemical and the electrochemical environment. The largest differences reflect in (1) the oxidation state of the surface (the oxygen species coverage), (2) temperature and (3) the possibility of platinum dissolution at high potentials and the interference of redispersion with normal working potential of the PEMFC cathode. We have calculated the PtO(x) (x = 0, 1, 2) adsorption energies on different metal oxides' surface terminations as well as inside the metal oxides' bulk, and we have concluded that NbO(2) might be a good support for platinum redispersion at PEMFC cathodes. PMID:23358311

  15. Heteroleptic Complexes of Cyclometalated Platinum with Triarylformazanate Ligands.

    PubMed

    Kabir, Evanta; Wu, Chia-Hua; Wu, Judy I-Chia; Teets, Thomas S

    2016-01-19

    Formazanates are a ligand class featuring a 1,2,4,5-tetraazapentadienyl core, with variable substitution at the 1, 3, and 5 positions. Here we describe a set of four heteroleptic cylcometalated platinum complexes containing triarylformazanate ligands. The complexes are prepared by metathesis reactions of chloro-bridged dimers [Pt(C∧N)(μ-Cl)]2 (C∧N = 2-phenylpyridine or 2-(2,4-difluorophenyl)pyridine) with triarylformazans in the presence of base. X-ray diffraction studies reveal the molecular structures of three such complexes. Cyclic voltammograms and UV-vis absorption spectra of the complexes show features characteristic of both the cyclometalated platinum fragment and the formazanate, with the latter giving rise to two reversible one-electron reductions in the CV and an intense visible π → π* absorption which is red-shifted by >100 nm relative to the free formazan. The electronic structures and redox properties of the complexes were further investigated by UV-vis spectroelectrochemistry and density functional theory calculations. All of the experimental and theoretical work points to a frontier molecular orbital manifold where the formazanate π and π* orbitals are substantially mixed with d-orbitals derived from the platinum center. PMID:26702999

  16. Platinum-induced structural collapse in layered oxide polycrystalline films

    NASA Astrophysics Data System (ADS)

    Wang, Jianlin; Huang, Haoliang; Liu, Changhui; Fu, Zhengping; Zhai, Xiaofang; Peng, Ranran; Lu, Yalin

    2015-03-01

    Effect of a platinum bottom electrode on the SrBi5Fe1-xCoxTi4O18 layered oxide polycrystalline films was systematically studied. The doped cobalt ions react with the platinum to form a secondary phase of PtCoO2, which has a typical Delafossite structure with a weak antiferromagnetism and an exceptionally high in-plane electrical conductivity. Formation of PtCoO2 at the interface partially consumes the cobalt dopant and leads to the structural collapsing from 5 to 4 layers, which was confirmed by X-ray diffraction and high resolution transmission electron microscopy measurements. Considering the weak magnetic contribution from PtCoO2, the observed ferromagnetism should be intrinsic of the Aurivillius compounds. Ferroelectric properties were also indicated by the piezoresponse force microscopy. In this work, the platinum induced secondary phase at the interface was observed, which has a strong impact on Aurivillius structural configuration and thus the ferromagnetic and ferroelectric properties.

  17. Reduced hydrogen embrittlement susceptibility in platinum implanted high strength steel

    NASA Astrophysics Data System (ADS)

    Cowie, J. G.; Lowder, L. J.; Culbertson, R. J.; Kosik, W. E.; Brown, R.

    1991-07-01

    High strength steels suffer from a high susceptibility to hydrogen embrittlement in a corrosive atmosphere, a factor which limits their usefulness. A good catalyst, such as platinum, present on the surface of the steel may lead to a low value of hydrogen overvoltage, thereby reducing the accumulation and subsequent diffusion of atomic hydrogen into the metal. In the present study, platinum was implanted into high strength electroslag remelted (ESR) 4340 steel specimens to a dose of 10 16 atoms/cm 2. Both Pt-implanted and unimplanted specimens were rate charged with hydrogen. The relative concentration of diffusible hydrogen was determined using an electrochemical measurement device known as a Barnacle Electrode. The specimens implanted with platinum exhibited less diffusible hydrogen than the unimplanted steel. Slow strain rate notched-tensile tests, in an aqueous solution of 3.5 wt.% NaCI, were performed in order to evaluate the effect of hydrogen on strength and ductility. The Pt-implanted specimens were able to sustain significantly higher loads before fracture than their unimplanted counterparts. Scanning electron microscopy (SEM) verified the presence of brittle cracking typical of hydrogen embrittlement type failures. Degradation of mechanical properties due to hydrogen embrittlement was thus significantly reduced. This suggested that both the electrochemical and catalytic properties of the Pt-implanted surface were responsible for the improvement in properties.

  18. Compatability of dispersion-strengthened platinum with resistojet propellants

    NASA Technical Reports Server (NTRS)

    Whalen, Margaret V.; Nathal, Michael V.

    1987-01-01

    Resistojets for the Space Station require long life and multipropellant capability. The choice of available materials to meet these requirements is limited. Dispersion-strengthened platinum was selected. Past results indicated that it should be suffieiently inert in candidate propellant environments and should be capable of operating at moderate temperatures for extended periods. A series of propellant compatibility tests was done with platinum strengthened with either yttria or zirconia. Data presented included the results of 1000-hr tests in CO2, H2, ammonia (NH3), N2, steam, hydrazine (N2H4), and methane (CH4); and 2000-hr tests in H2 and NH3. The platinum samples were tested at 1400 C in CO2, H2, NH3, N2, steam, and N2H4; at 500 C in CH4; and at 800 C in N2H4. The mass-loss results indicated material life, exptrapolated from experimental mass-loss data, in excess of 100 000 hr in all environments except steam and N2H4, where it was greater than or =45000 hr. Generally, on the basis of mass loss, there were no compatibility concerns in any of the environments considered. Optical and scanning electron microscopy were used to determine the effect of propellants on the material surface and to evaluate material stability.

  19. In vitro free radical scavenging activity of platinum nanoparticles

    NASA Astrophysics Data System (ADS)

    Watanabe, Aki; Kajita, Masashi; Kim, Juewon; Kanayama, Atsuhiro; Takahashi, Kyoko; Mashino, Tadahiko; Miyamoto, Yusei

    2009-11-01

    A polyacrylic acid (PAA)-protected platinum nanoparticle species (PAA-Pt) was prepared by alcohol reduction of hexachloroplatinate. The PAA-Pt nanoparticles were well dispersed and homogeneous in size with an average diameter of 2.0 ± 0.4 nm (n = 200). We used electron spin resonance to quantify the residual peroxyl radical (\\mathrm {AOO}^{\\bullet } ) generated from 2,2-azobis (2-aminopropane) dihydrochloride (AAPH) by thermal decomposition in the presence of O2 and a spectrophotometric method to quantify the residual 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. PAA-Pt scavenged these two radicals in a dose-dependent manner. Platinum was the functional component. PAA-Pt reduced the rate of oxygen consumption required for linoleic acid peroxidation initiated by \\mathrm {AOO}^{\\bullet } generated from AAPH, indicating inhibition of the propagation of linolate peroxidation. A thiobarbituric acid test also revealed dose-dependent inhibition of the linolate peroxidation by PAA-Pt. Fifty micromolar platinum, as PAA-Pt, completely quenched 250 µM DPPH radical for 5 min. Even when twice diluted in half, the PAA-Pt still quenched 100% of the 250 µM DPPH radical. The scavenging activity of PAA-Pt is durable. These observations suggest that PAA-Pt is an efficient scavenger of free radicals.

  20. Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates

    SciTech Connect

    Adzic, Radoslav; Zhang, Junliang; Vukmirovic, Miomir

    2012-11-13

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen.

  1. Cisplatin based chemotherapy in testicular cancer patients: long term platinum excretion and clinical effects.

    PubMed

    Hohnloser, J H; Schierl, R; Hasford, B; Emmerich, B

    1996-09-20

    Patients with advanced testicular cancer (TC) have a very good long-term prognosis owing to cisplatin-based polychemotherapy. Platinum is believed to be excreted at a rapid rate via urine within weeks after chemotherapy. As a new, highly sensitive method has become available detecting even natural background platinum levels in body fluids, this study was set up to analyze urinary and serum platinum levels in long-term survivors of testicular neoplasm after cisplatin based polychemotherapy and to correlate clinical data with urinary and serum platinum levels. Urinary platinum concentrations were measured in 64 healthy controls (C) and 22 male patients (TC) 150 to 3022 days after the last application of i.v. cisplatin using voltammetry after UV-photolysis. In the latter group (TC), serum platinum levels were measured as well. Clinical data were analysed as to long-term organ toxicity. Mean urinary platinum levels were 2700 times higher in the patient group (TC) than natural background noise (p < 0.0001). There was a decline of urinary and serum platinum levels over time, being significantly above normal even 8 years after cisplatin exposure. The only significant variables related to the urine platinum concentration were a) the interval between the last i.v. cisplatin application and time of study and b) the total dose given. Not significant were the number of chemotherapy cycles, pre-therapy renal disease, patient age, tumour resection before/after chemotherapy, site of pre/post therapy resection, clinical staging, histological subtypes or tumour markers. Post-therapy renal disease or peripheral nerve damage were not significantly associated with urinary platinum levels. Our data indicate that even 8 years after cisplatin based chemotherapy 500 times elevated urinary and serum platinum levels can be measured in testicular cancer patients. No organ toxicity related to long-term platinum excretion could be detected. This may be due to our small sample size. PMID

  2. Electrocatalyst for oxygen reduction with reduced platinum oxidation and dissolution rates

    DOEpatents

    Adzic, Radoslav; Zhang, Junliang; Vukmirovic, Miomir

    2011-11-22

    The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen.

  3. Platinum-group element resources in podiform chromitites from California and Oregon.

    USGS Publications Warehouse

    Page, N.J.; Singer, D.A.; Moring, B.C.; Carlson, C.A.; McDade, J.M.; Wilson, S.A.

    1986-01-01

    Assays of Pt, Pd, Rh and Ir from approx 280 podiform chromite deposits in Palaeozoic and Mesozoic ophiolites are statistically analysed to estimate their possible by-product value from mining the chromite. The platinum-group elements occur in discrete platinum-group minerals, and in solid solution in Cu-Ni-Fe sulphides. Low grades and small amounts of total platinum-group elements in podiform chromite deposits imply a small resource. -G.J.N.

  4. Optimum Platinum Loading In Pt/SnO2 CO-Oxidizing Catalysts

    NASA Technical Reports Server (NTRS)

    Schryer, David R.; Upchurch, Billy T.; Davis, Patricia P.; Brown, Kenneth G.; Schryer, Jacqueline

    1991-01-01

    Platinum on tin oxide (Pt/SnO2) good catalyst for oxidation of carbon monoxide at or near room temperature. Catalytic activity peaks at about 17 weight percent Pt. Catalysts with platinum loadings as high as 46 percent fabricated by technique developed at Langley Research Center. Work conducted to determine optimum platinum loading for this type of catalyst. Major application is removal of unwanted CO and O2 in CO2 lasers.

  5. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts.

    PubMed

    Wang, Deli; Xin, Huolin L; Hovden, Robert; Wang, Hongsen; Yu, Yingchao; Muller, David A; DiSalvo, Francis J; Abruña, Héctor D

    2013-01-01

    To enhance and optimize nanocatalyst performance and durability for the oxygen reduction reaction in fuel-cell applications, we look beyond Pt-metal disordered alloys and describe a new class of Pt-Co nanocatalysts composed of ordered Pt(3)Co intermetallic cores with a 2-3 atomic-layer-thick platinum shell. These nanocatalysts exhibited over 200% increase in mass activity and over 300% increase in specific activity when compared with the disordered Pt(3)Co alloy nanoparticles as well as Pt/C. So far, this mass activity for the oxygen reduction reaction is the highest among the Pt-Co systems reported in the literature under similar testing conditions. Stability tests showed a minimal loss of activity after 5,000 potential cycles and the ordered core-shell structure was maintained virtually intact, as established by atomic-scale elemental mapping. The high activity and stability are attributed to the Pt-rich shell and the stable intermetallic Pt(3)Co core arrangement. These ordered nanoparticles provide a new direction for catalyst performance optimization for next-generation fuel cells. PMID:23104154

  6. Magnetic anisotropy graded media and iron-platinum alloy thin films

    NASA Astrophysics Data System (ADS)

    Lu, Zhihong

    Anisotropy graded media are promising to overcome the writability problem in achieving ultrahigh areal density for magnetic recording media. To more conveniently study and compare various media with regard to a particular figure of merit, a new energy landscape method of analysis is suggested. Using this method, the theoretical limit of the figure of merit for a graded medium is found to be 4. This limit can be approached by a graded medium with anisotropy quadratically increasing from zero to its maximum value. In order to characterize the anisotropy distribution of a graded medium, hard axis loops of graded media with various anisotropy profiles are simulated and analyzed. It is found that the second derivative of the hard axis loop can give useful information on the anisotropy distribution in a graded medium. Fe50Pt 50 with the L10 structure, as one of the magnetically hardest materials, has great potential for media application. By using a first-principles calculation method, the magnetic and electronic structures of L10 structured Fe50Pt50 have been studied. These calculations show that although the ferromagnetic phase is the most stable phase for Fe 50Fe50 with the L10 structure, there is a competition between the antiferromagnetic and the ferromagnetic phases when the ratio of lattice constants, c/a, decreases. Experimental investigations of Fe 50Pt50 films with graded order parameter fabricated by varying the growth temperature during deposition demonstrate that these films have much smaller switching field than fully ordered Fe50Pt50, which suggests it is possible to make graded media by using this kind of films. Fe100-xPtx films with compositional gradient were also studied; however, the large easy axis dispersion in these films makes them unsuitable for the fabrication of graded media. Films with [FePt3(ordered)/FePt 3(disordered)]n superlattices were deposited on MgO substrates and sapphire substrates. It was found that the superlattices deposited on MgO substrates show higher exchange bias field. Polarized neutron reflectivity results show that ferromagnetic layers on MgO substrates contain more antiferromagnetic component than those on sapphire substrates. The larger exchange bias of the superlattice on MgO substrate is hypothesized to be due to larger exchange bias in its ferromagnetic layers.

  7. Near-UV phosphorescent emitters: N-heterocyclic platinum(ii) tetracarbene complexes.

    PubMed

    Unger, Yvonne; Zeller, Alexander; Taige, Maria A; Strassner, Thomas

    2009-06-28

    Although examples of nickel(ii), palladium(ii) and platinum(ii) N-heterocyclic tetracarbene complexes are known in the literature, particularly platinum(ii) tetracarbene complexes are rare. We developed a new synthetic route via biscarbene acetate complexes, which make homoleptic as well as heteroleptic platinum(ii) tetracarbene complexes accessible. The reported photoluminescence data show that these complexes have good quantum yields and photostability and are a promising class of emitters for PhOLEDs. Characterization of the compounds includes a solid-state structure of the homoleptic complex bis(1,1'-diisopropyl-3,3'-methylenediimidazoline-2,2'-diylidene)platinum(ii) dibromide. PMID:19513490

  8. Oxidation Behavior of Binary Niobium Alloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.; Corey, James L.

    1960-01-01

    This investigation concludes a study to determine the effects of up to 25 atomic percent of 55 alloying additions on the oxidation characteristics of niobium. The alloys were evaluated by oxidizing in an air atmosphere for 4 hours at 1000 C and 2 hours at 1200 C. Titanium and chromium improved oxidation resistance at both evaluation conditions. Vanadium and aluminum improved oxidation resistance at 1000 C, even though the V scale tended to liquefy and the Al specimens became brittle and the scale powdery. Copper, cobalt, iron, and iridium improved oxidation resistance at 1200 C. Other investigations report tungsten and molybdenum are protective up to about 1000 C, and tantalum at 1100 C. The most important factor influencing the rate of oxidation was the ion size of the alloy additions. Ions slightly smaller than the Nb(5+) ion are soluble in the oxide lattice and tend to lower the compressive stresses in the bulk scale that lead to cracking. The solubility of the alloying addition also depends on the valence to some extent. All of the elements mentioned that improve the oxidation resistance of Nb fit this size criterion with the possible exception of Al, whose extremely small size in large concentrations would probably lead to the formation of a powdery scale. Maintenance of a crack-free bulk scale for as long as possible may contribute to the formation of a dark subscale that ultimately is rate- controlling in the oxidation process. The platinum-group metals, especially Ir, appear to protect by entrapment of the finely dispersed alloying element by the incoming Nb2O5 metal-oxide interface. This inert metallic Ir when alloyed in a sufficient amount with Yb appears to give a ductile phase dispersed in the brittle oxide. This scale would then flow more easily to relieve the large compressive stresses to delay cracking. Complex oxide formation (which both Ti and Zr tend to initiate) and valence effects, which probably change the vacancy concentration in the scale

  9. Platinum decorated Ru/C: Effects of decorated platinum on catalyst structure and performance for the methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Gao, Haili; Liao, Shijun; Zeng, Jianhuang; Xie, Yichun

    Platinum decorated Ru/C catalysts are prepared by successive reduction of a platinum precursor on pre-formed Ru/C. Pt:Ru atomic ratios are varied from 0.13:1 to 0.81:1 to investigate the platinum decoration effects on the catalyst's structure and electrochemical performance towards the methanol oxidation reaction (MOR) at room temperature. The catalysts are extensively characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Ru@Pt/C catalysts show enhanced mass-normalized activity and specific activity for the MOR relative to Pt/C. For the anodic oxidation of methanol, the ratio of forward to reverse oxidation peak current R (I f/ I b) varies considerably: R decreases from 5.8 to 0.8 when the Pt:Ru ratio increases from 0.13:1 to 0.81:1. When the ratio of Pt:Ru is 0.42:1, R reaches 0.99 (close to that of Pt/C), and further increase of the Pt:Ru ratio leads to almost no decrease in R. Coincidentally, maximum mass-normalized activity is also obtained when Pt:Ru is 0.42:1.

  10. cis-platinum and ovarian carcinoma. In vitro chemosensitivity of cultured tumour cells from patients receiving high dose cis-platinum as first line treatment.

    PubMed Central

    Wilson, A. P.; Ford, C. H.; Newman, C. E.; Howell, A.

    1987-01-01

    A study on the in vitro sensitivity of tumour cells from patients with ovarian cancer has been carried out in parallel with a clinical study designed to evaluate the role of high-dose cis-platinum (CIS) as first-line chemotherapy. A total of 50 samples from 102 patients have been successfully cultured and screened for in vitro chemosensitivity to 7 drugs, including CIS. The malignant nature of cells growing in culture was confirmed using a combination of karyology, morphology and immunohistochemical staining with HMFG2. Tumours were graded as sensitive (less than 40% of control 3H-leucine incorporation), intermediate (41-60% of control) or resistant (greater than 61% of control) to CIS. Correlation of in vitro sensitivity to cis-platinum with clinical response to cis-platinum assessed using CT scan and second-look laparotomy, showed positive correlation in 9/11 (89%) patients (8 = S/S; 1 = R/R); positive correlation between in vitro sensitivity to phosphoramide mustard and clinical response was also found in 4/6 patients receiving cyclophosphamide (3 = S/S; 1 = R/R). All patients with sensitive tumours showed a clinical response to cis-platinum. Comparison of cis-platinum sensitivity with sensitivity to phosphoramide mustard and melphalan showed that some tumours were sensitive only to cis-platinum; resistance to cis-platinum and sensitivity to phosphoramide mustard/melphalan was an infrequent occurrence. Some tumours which were resistant to cis-platinum showed sensitivity to adriamycin and bleomycin, particularly those from untreated patients. Sensitivity to 5-fluorouracil and resistance to cis-platinum was found in approximately equal proportions of tumours in both the treated and untreated groups. PMID:3435704

  11. Preparation, characterization and degradation mechanisms of PtCu alloy nanoparticles for automotive fuel cells

    NASA Astrophysics Data System (ADS)

    Marcu, A.; Toth, G.; Srivastava, R.; Strasser, P.

    2012-06-01

    Electrochemically dealloyed PtCu alloy nanoparticles successfully meet the automotive technology target of having four times higher Pt mass activity for the electroreduction of molecular oxygen compared to current state-of-the-art platinum catalysts [1]. However, the catalysts must also maintain their activity throughout the aggressive automotive drive-cycles in order to be implemented in fuel cells cars. Here, the durability of dealloyed PtCu catalysts was systematically evaluated under various voltage-cycles using a rotating ring disk electrode. The stability of the non-noble metal alloy component was proven at electrode potentials below 0.6 V. The platinum stability was evaluated at potentials up to 1.1 V to avoid carbon corrosion and then up to 1.2 V to be closer to the more aggressive cycles developed in startup/shutdown events of the fuel cells. The major known failure modes such as non-noble metal dissolution, platinum dissolution, and particle growth/agglomeration were monitored in order to understand closely the PtCu nanoparticles behavior under different potential cycles and to provide a degradation fingerprint.

  12. Amorphous nickel boride membrane on a platinum–nickel alloy surface for enhanced oxygen reduction reaction

    PubMed Central

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-01-01

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum–nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum–nickel catalyst, and this composite catalyst composed of crystalline platinum–nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon. PMID:27503412

  13. Nanoporous PtRu Alloys with Unique Catalytic Activity toward Hydrolytic Dehydrogenation of Ammonia Borane.

    PubMed

    Zhou, Qiuxia; Xu, Caixia

    2016-03-01

    Nanoporous (NP) PtRu alloys with three different bimetallic components were straightforwardly fabricated by dealloying PtRuAl ternary alloys in hydrochloric acid. Selective etching of aluminum from source alloys generates bicontinuous network nanostructures with uniform size and structure. The as-made NP-PtRu alloys exhibit superior catalytic activity toward the hydrolytic dehydrogenation of ammonia borane (AB) than pure NP-Pt and NP-Ru owing to alloying platinum with ruthenium. The NP-Pt70 Ru30 alloy exhibits much higher specific activity toward hydrolytic dehydrogenation of AB than NP-Pt30 Ru70 and NP-Pt50 Ru50 . The hydrolysis activation energy of NP-Pt70 Ru30 was estimated to be about 38.9 kJ mol(-1) , which was lower than most of the reported activation energy values in the literature. In addition, recycling tests show that the NP-Pt70 Ru30 is still highly active in the hydrolysis of AB even after five runs, which indicates that NP-PtRu alloy accompanied by the network nanoarchitecture is beneficial to improve structural stability toward the dehydrogenation of AB. PMID:26573746

  14. Desorption of oxygen from alloyed Ag/Pt(111)

    SciTech Connect

    Jankowski, Maciej; Wormeester, Herbert Zandvliet, Harold J. W.; Poelsema, Bene

    2014-06-21

    We have investigated the interaction of oxygen with the Ag/Pt(111) surface alloy by thermal desorption spectroscopy (TDS). The surface alloy was formed during the deposition of sub-monolayer amounts of silver on Pt(111) at 800 K and subsequent cooling to 300 K. The low-temperature phase of the surface alloy is composed of nanometer-sized silver rich stripes, embedded within platinum-rich domains, which were characterized with spot profile analysis low energy electron diffraction. The TDS measurements show that oxygen adsorption is blocked on Ag sites: the saturation coverage of oxygen decreases with increasing Ag coverage. Also, the activation energy for desorption (E{sub des}) decreases with Ag coverage. The analysis of the desorption spectra from clean Pt(111) shows a linear decay of E{sub des} with oxygen coverage, which indicates repulsive interactions between the adsorbed oxygen atoms. In contrast, adsorption on alloyed Ag/Pt(111) leads to an attractive interaction between adsorbed oxygen atoms.

  15. Computational and Experimental Development of Novel High Temperature Alloys

    SciTech Connect

    Kramer, M.J.; Ray, P.K.; and Akinc, M.

    2010-06-29

    The work done in this paper is based on our earlier work on developing an extended Miedema model and then using it to downselect potential alloy systems. Our approach is to closely couple the semi-empirical methodologies to more accurate ab initio methods to dentify the best candidates for ternary alloying additions. The architectural framework for our material's design is a refractory base metal with a high temperature intermetallic which provides both high temperature creep strength and a source of oxidatively stable elements. Potential refractory base metals are groups IIIA, IVA and VA. For Fossil applications, Ni-Al appears to be the best choice to provide the source of oxidatively stable elements but this system requires a 'boost' in melting temperatures to be a viable candidate in the ultra-high temperature regime (> 1200C). Some late transition metals and noble elements are known to increase the melting temperature of Ni-Al phases. Such an approach suggested that a Mo-Ni-Al system would be a good base alloy system that could be further improved upon by dding Platinum group metals (PGMs). In this paper, we demonstrate the variety of microstructures that can be synthesized for the base alloy system, its oxidation behavior as well as the oxidation behavior of the PGM substituted oxidation resistant B2 NiAl phase.

  16. Turbine Blade Alloy

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca

    2001-01-01

    The High Speed Research Airfoil Alloy Program developed a fourth-generation alloy with up to an +85 F increase in creep rupture capability over current production airfoil alloys. Since improved strength is typically obtained when the limits of microstructural stability are exceeded slightly, it is not surprising that this alloy has a tendency to exhibit microstructural instabilities after high temperature exposures. This presentation will discuss recent results obtained on coated fourth-generation alloys for subsonic turbine blade applications under the NASA Ultra-Efficient Engine Technology (UEET) Program. Progress made in reducing microstructural instabilities in these alloys will be presented. In addition, plans will be presented for advanced alloy development and for computational modeling, which will aid future alloy development efforts.

  17. Structure and Chemistry of Nickel Oxide-Nickel Platinum-Platinum Interfaces

    NASA Astrophysics Data System (ADS)

    Yang, Judith Chun-Hsu

    Recent investigations have demonstrated that interfacial reactions can be used to modify the mechanical strength of metal-ceramic interfaces. To better understand this phenomena, the structure and chemistry of model metal-ceramic interfaces, formed by diffusion bonding single crystals of NiO and Pt together, were studied using electron microscopy techniques. Lattice imaging shows that the interface structure between NiO and Pt may facet depending on the relative twist geometry between them. As suggested by Ni-Pt phase diagrams and previous work, suitable choice of annealing temperature, time and oxygen partial pressure allows the formation of the intermetallic compound NiPt. Conventional transmission electron microscope (CTEM) studies reveal the presence of a 0-20 nm thick NiPt interlayer after heat treatment at low oxygen activities. Electron energy loss spectroscopy (EELS) investigations showed that the nickel diffuses into the platinum for 100nm. Some thermodynamic and kinetic information of the NiPt formation at the NiO -Pt interface, based on the CTEM and EELS studies, is presented. The influence of crystallography, impurities and oxygen activity on the interfacial reactions were investigated. In the (100)_{NiO}//(100)_ {Pt} system, a NiPt layer forms along the interface. Whereas in the (100)_{NiO }//(111)_{Pt} system, NiPt particles appear within the Pt matrix. The growth of the intermetallic interlayer is also sensitive to impurities. The presence of silicon impurities in the heat treatment furnace reduces the thickness of the NiPt interlayer by nearly a factor of ten. The NiPt interlayer may or may not form due to slight changes in the oxygen activity of the heat treatment. A simple bonding model was previously proposed to explain why NiPt improves the interfacial shear strength. That is, the NiPt layer prevents the formation of weak Pt-O bonds. In order to experimentally check this model, NiPt -NiO interface planes, produced by internal oxidation in order

  18. HDAC4-regulated STAT1 activation mediates platinum resistance in ovarian cancer.

    PubMed

    Stronach, Euan A; Alfraidi, Albandri; Rama, Nona; Datler, Christoph; Studd, James B; Agarwal, Roshan; Guney, Tankut G; Gourley, Charlie; Hennessy, Bryan T; Mills, Gordon B; Mai, Antonello; Brown, Robert; Dina, Roberto; Gabra, Hani

    2011-07-01

    Ovarian cancer frequently acquires resistance to platinum chemotherapy, representing a major challenge for improving patient survival. Recent work suggests that resistant clones exist within a larger drug-sensitive cell population prior to chemotherapy, implying that resistance is selected for rather than generated by treatment. We sought to compare clinically derived, intrapatient paired models of initial platinum response and subsequent resistant relapse to define molecular determinants of evolved resistance. Transcriptional analysis of a matched cell line series from three patients with high-grade serous ovarian cancer before and after development of clinical platinum resistance (PEO1/PEO4/PEO6, PEA1/PEA2, PEO14/PEO23) identified 91 up- and 126 downregulated genes common to acquired resistance. Significantly enhanced apoptotic response to platinum treatment in resistant cells was observed following knockdown of histone deacetylase (HDAC) 4, FOLR2, PIK3R1, or STAT1 (P < 0.05). Interestingly, HDAC4 and STAT1 were found to physically interact. Acetyl-STAT1 was detected in platinum-sensitive cells but not in HDAC4 overexpressing platinum-resistant cells from the same patient. In resistant cells, STAT1 phosphorylation/nuclear translocation was seen following platinum exposure, whereas silencing of HDAC4 increased acetyl-STAT1 levels, prevented platinum-induced STAT1 activation, and restored cisplatin sensitivity. Conversely, matched sensitive cells were refractory to STAT1 phosphorylation on platinum treatment. Analysis of 16 paired tumor biopsies taken before and after development of clinical platinum resistance showed significantly increased HDAC4 expression in resistant tumors [n = 7 of 16 (44%); P = 0.04]. Therefore, clinical selection of HDAC4-overexpressing tumor cells upon exposure to chemotherapy promotes STAT1 deacetylation and cancer cell survival. Together, our findings identify HDAC4 as a novel, therapeutically tractable target to counter platinum

  19. HDAC4-regulated STAT1 activation mediates platinum resistance in ovarian cancer

    PubMed Central

    Stronach, Euan A; Alfraidi, Albandri; Rama, Nona; Datler, Christoph; Studd, Jamie; Agarwal, Roshan; Guney, Tankut G; Gourley, Charlie; Hennessy, Bryan T; Mills, Gordon B; Mai, Antonello; Brown, Robert; Dina, Roberto; Gabra, Hani

    2011-01-01

    Ovarian cancer frequently acquires resistance to platinum chemotherapy, representing a major challenge for improving patient survival. Recent work suggests resistant clones exist within a larger drug sensitive cell-population prior to chemotherapy, implying that resistance is selected for rather than generated by treatment. We sought to compare clinically-derived, intra-patient paired models of initial platinum response and subsequent resistant relapse to define molecular determinants of evolved resistance. Transcriptional analysis of a matched cell-line series from three patients with high-grade serous ovarian cancer before and after development of clinical platinum resistance (PEO1/PEO4/PEO6, PEA1/PEA2, PEO14/PEO23) identified 91 up- and 126 down-regulated genes common to acquired resistance. Significantly enhanced apoptotic response to platinum treatment in resistant cells was observed following knockdown of HDAC4, FOLR2, PIK3R1 or STAT1 (p<0.05). Interestingly, HDAC4 and STAT1 were found to physically interact. Acetyl-STAT1 was detected in platinum sensitive but not HDAC4 over-expressing platinum resistant cells from the same patient. In resistant cells, STAT1 phosphorylation/nuclear translocation was seen following platinum exposure, whereas silencing of HDAC4 increased acetyl-STAT1 levels, prevented platinum induced STAT1 activation and restored cisplatin sensitivity. Conversely, matched sensitive cells were refractory to STAT1 phosphorylation on platinum treatment. Analysis of 16 paired tumor biopsies taken before and after development of clinical platinum resistance showed significantly increased HDAC4 expression in resistant tumors (n=7/16[44%]; p=0.04). Therefore, clinical selection of HDAC4 overexpressing tumor cells upon exposure to chemotherapy promotes STAT1 deacetylation and cancer cell survival. Together, our findings identify HDAC4 as a novel, therapeutically tractable target to counter platinum resistance in ovarian cancer. PMID:21571862

  20. Monochloramine-sensitive amperometric microelectrode: optimization of gold, platinum, and carbon fiber sensing materials for removal of dissolved oxygen interference

    EPA Science Inventory

    Amperometric monochloramine detection using newly fabricated gold, platinum, and carbon-fiber microsensors was investigated to optimize sensor operation and eliminate oxygen interference. Gold and platinum microsensors exhibited no oxygen interference during monochloramine measu...

  1. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  2. Separation in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1986-01-01

    Studies of monotectic alloys and alloy analogs reviewed. Report surveys research on liquid/liquid and solid/liquid separation in binary monotectic alloys. Emphasizes separation processes in low gravity, such as in outer space or in free fall in drop towers. Advances in methods of controlling separation in experiments highlighted.

  3. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  4. PLUTONIUM-THORIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  5. Thermodynamics of several lewis-acid-base stabilized transition metal alloys

    NASA Astrophysics Data System (ADS)

    Gibson, John K.; Brewer, Leo; Gingerich, Karl A.

    1984-11-01

    High-temperature (1425 to 2750 K) thermodynamic activities of one or both components of twenty-five binary alloys of a group IVB-VIB element (Ti, Zr, Hf, Nb, Ta, or W) with a platinum group element (Ru, Os, Ir, Pd, Pt, or Au) have been determined by equilibrating the alloy with the appropriate carbide and graphite, equilibrating with the nitride and nitrogen gas, or measuring the partial vapor pressure(s) thermogravimetrically or mass spectrometrically. The extraordinary stability of this class of transition metal alloy is attributed to a generalized Lewis-acid-base interaction involving valence d electrons, and the results of these investigations are interpreted within the context of this effect. Among the conclusions made are that a non-spherically-symmetrical crystal field significantly reduces the bonding effectiveness of certain valence d orbitals; the effect of the extent of derealization of these orbitals is also considered.

  6. Low Temperature Catalytic Ethanol Conversion Over Ceria-Supported Platinum, Rhodium, and Tin-Based Nanoparticle Systems

    NASA Astrophysics Data System (ADS)

    Mahmoud, Eugene Leo Draine

    Due to the feasibility of ethanol production in the United States, ethanol has become more attractive as a fuel source and a possible energy carrier within the hydrogen economy. Ethanol can be stored easily in liquid form, and can be internally pre-formed prior to usage in low temperature (200°C--400°C) solid acid and polymer electrolyte membrane fuel cells. However, complete electrochemical oxidation of ethanol remains a challenge. Prior research of ethanol reforming at high temperatures (> 400°C) has identified several metallic and oxide-based catalyst systems that improve ethanol conversion, hydrogen production, and catalyst stability. In this study, ceria-supported platinum, rhodium, and tin-based nanoparticle catalyst systems will be developed and analyzed in their performance as low-temperature ethanol reforming catalysts for fuel cell applications. Metallic nanoparticle alloys were synthesized with ceria supports to produce the catalyst systems studied. Gas phase byproducts of catalytic ethanol reforming were analyzed for temperature-dependent trends and chemical reaction kinetic parameters. Results of catalytic data indicate that catalyst composition plays a significant role in low-temperature ethanol conversion. Analysis of byproduct yields demonstrate how ethanol steam reforming over bimetallic catalyst systems (platinum-tin and rhodium-tin) results in higher hydrogen selectivity than was yielded over single-metal catalysts. Additionally, oxidative steam reforming results reveal a correlation between catalyst composition, byproduct yield, and ethanol conversion. By analyzing the role of temperature and reactant composition on byproduct yields from ethanol reforming, this study also proposes how these parameters may contribute to optimal catalytic ethanol reforming.

  7. Influence of Dose on Particle Size and Optical Properties of Colloidal Platinum Nanoparticles

    PubMed Central

    Gharibshahi, Elham; Saion, Elias

    2012-01-01

    Attempts to produce colloidal platinum nanoparticles by using steady absorption spectra with various chemical-based reduction methods often resulted in the fast disappearance of the absorption maxima leaving reduced platinum nanoparticles with little information on their optical properties. We synthesized colloidal platinum nanoparticles in an aqueous solution of polyvinyl pyrrolidone by gamma radiolytic reduction method, which produced steady absorption spectra of fully reduced and highly pure platinum nanoparticles free from by-product impurities or reducing agent contamination. The average particle size was found to be in the range of 3.4–5.3 nm and decreased with increasing dose due to the domination of nucleation over ion association in the formation of metal nanoparticles by the gamma radiolytic reduction method. The platinum nanoparticles exhibit optical absorption spectra with two absorption peaks centered at about 216 and 264 nm and the peaks blue shifted to lower wavelengths with decreasing particle size. The absorption spectra of platinum nanoparticles were also calculated using quantum mechanical treatment and coincidently a good agreement was obtained between the calculated and measured absorption peaks at various particle sizes. This indicates that the 216 and 264-nm absorption peaks of platinum nanoparticles conceivably originated from the intra-band transitions of conduction electrons of (n = 5, l = 2) and (n = 6, l = 0) energy states respectively to higher energy states. The absorption energies, i.e., conduction band energies of platinum nanoparticles derived from the absorption peaks increased with increasing dose and decreased with increasing particle size. PMID:23203091

  8. 76 FR 67793 - Notification of Expanded Pricing Grid for Precious Metals Products Containing Platinum and Gold...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... and Gold--Excluding Commemorative Gold Coins AGENCY: United States Mint, Department of the Treasury..., 2009, outlining the new pricing methodology for numismatic products containing platinum and gold. Since that time, the price of platinum and gold has increased considerably, and is approaching the...

  9. 78 FR 11954 - Revised Pricing Grid for Gold and Platinum Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY United States Mint Revised Pricing Grid for Gold and Platinum Products AGENCY: United States Mint... grid for 2013 gold and platinum products. Please see the grid following signature. DATES: This...

  10. ALLERGIC RESPONSE TO PLATINUM AND PALLADIUM COMPLEXES DETERMINATION OF NO-EFFECT LEVEL

    EPA Science Inventory

    Rabbits, guinea pigs and mice were subcutaneously injected with PtSO4 (with and without NH4Cl) and PdSO4 (with and without NH4Cl) in an attempt to sensitize the animals to platinum or palladium. No allergic induction was found. No allergic induction to platinum or palladium was f...

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, HVLP COATING EQUIPMENT, SHARPE MANUFACTURING COMPANY PLATINUM 2012 HVLP SPRAY GUN

    EPA Science Inventory

    This report presents the results of the verification test of the Sharpe Platinum 2013 high-volume, low-pressure gravity-feed spray gun, hereafter referred to as the Sharpe Platinum, which is designed for use in automotive refinishing. The test coating chosen by Sharpe Manufacturi...

  12. Luminescent Cyclometalated Platinum and Palladium Complexes with Novel Photophysical Properties

    NASA Astrophysics Data System (ADS)

    Turner, Eric

    Organic light emitting diodes (OLEDs) is a rapidly emerging technology based on organic thin film semiconductors. Recently, there has been substantial investment in their use in displays. In less than a decade, OLEDs have grown from a promising academic curiosity into a multi-billion dollar global industry. At the heart of an OLED are emissive molecules that generate light in response to electrical stimulation. Ideal emitters are efficient, compatible with existing materials, long lived, and produce light predominantly at useful wavelengths. Developing an understanding of the photophysical processes that dictate the luminescent properties of emissive materials is vital to their continued development. Chapter 1 and Chapter 2 provide an introduction to the topics presented and the laboratory methods used to explore them. Chapter 3 discusses a series of tridentate platinum complexes. A synthetic method utilizing microwave irradiation was explored, as well as a study of the effects ligand structure had on the excited state properties. Results and techniques developed in this endeavor were used as a foundation for the work undertaken in later chapters. Chapter 4 introduces a series of tetradentate platinum complexes that share a phenoxy-pyridyl (popy) motif. The new molecular design improved efficiency through increased rigidity and modification of the excited state properties. This class of platinum complexes were markedly more efficient than those presented in Chapter 3, and devices employing a green emitting complex of the series achieved nearly 100% electron-to-photon conversion efficiency in an OLED device. Chapter 5 adapts the ligand structure developed in Chapter 4 to palladium. The resulting complexes exceed reported efficiencies of palladium complexes by an order of magnitude. This chapter also provides the first report of a palladium complex as an emitter in an OLED device. Chapter 6 discusses the continuation of development efforts to include carbazolyl

  13. High strength alloys

    SciTech Connect

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  14. High strength alloys

    SciTech Connect

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J; John, Randy Carl; Kim, Dong Sub

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  15. Modified electrochromism of tungsten oxide via platinum nanophases

    NASA Astrophysics Data System (ADS)

    Park, Kyung-Won; Shim, Hee-Sang; Seong, Tae-Yeon; Sung, Yung-Eun

    2006-05-01

    We report electrochromic properties of WO3 modified by platinum nanophases. The WO3 incorporated by Pt metallic nanophases (Pt -WO3) showed exactly reverse electrochromic phenomenon compared with that of both pure WO3 and WO3 intercepted and coated by metallic Pt thin-film layer. In addition, to investigate the origin of modified electrochromic properties, electrodes consisting of WO3 and/or Pt layers were designed and observed in optical properties during electrochemical reaction. The change of electrochromic properties in the Pt -WO3 is caused by modified structural and electrochemical properties of the WO3 by Pt metallic nanophases dispersed in the oxide matrix.

  16. Method for determining the presence of platinum in earth formations

    SciTech Connect

    Dion, E.P.

    1984-07-31

    A spectral natural gamma radiation logging tool is calibrated with a material of known potassium content so that the natural gamma radiation measured by such logging tool is related to potassium concentration. The earth formations surrounding a borehole are logged with such logging tool to identify the presence of potassium. A specified concentration of potassium correlates inversely with a magnetic mineral content in the earth formation. The amount of magnetic mineral content is a measure of the presence of the non-magnetic mineral platinum in the earth formation.

  17. Platinum-group element abundance patterns in different mantle environments

    SciTech Connect

    Rehkaemper, M.; Halliday, A.N.; Barfod, D.; Fitton, J.G.; Dawson, J.B.

    1997-11-28

    Mantle-derived xenoliths from the Cameroon Line and northern Tanzania display differences in their platinum-group element (PGE) abundance patterns. The Cameroon Line lherzolites have uniform PGE patterns indicating a homogeneous upper mantle over several hundreds of kilometers, with approximately chondritic PGE ratios. The PGE patterns of the Tanzanian peridotites are similar to the PGE systematics of ultramafic rocks from ophiolites. The differences can be explained if the northern Tanzanian lithosphere developed in a fluid-rich suprasubduction zone environment, whereas the Cameroon Line lithosphere only experienced melt extraction from anhydrous periodotites. 32 refs., 2 figs., 1 tab.

  18. Phosphorescent Organic Light Emitting Diodes Implementing Platinum Complexes

    NASA Astrophysics Data System (ADS)

    Ecton, Jeremy Exton

    Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable materials for OLEDs with high external quantum efficiency's (EQE) and high operational lifetimes. Recently, significant improvements in the internal quantum efficiency or ratio of generated photons to injected electrons have been achieved with the advent of phosphorescent complexes with the ability to harvest both singlet and triplet excitons. Since then, a variety of phosphorescent complexes containing heavy metal centers including Os, Ni, Ir, Pd, and Pt have been developed. Thus far, the majority of the work in the field has focused on iridium based complexes. Platinum based complexes, however, have received considerably less attention despite demonstrating efficiency's equal to or better than their iridium analogs. In this study, a series of OLEDs implementing newly developed platinum based complexes were demonstrated with efficiency's or operational lifetimes equal to or better than their iridium analogs for select cases. In addition to demonstrating excellent device performance in OLEDs, platinum based complexes exhibit unique photophysical properties including the ability to form excimer emission capable of generating broad white light emission from a single emitter and the ability to form narrow band emission from a rigid, tetradentate molecular structure for select cases. These unique photophysical properties were exploited and their optical and electrical properties in a device setting were elucidated. Utilizing the unique properties of a tridentate Pt complex, Pt-16, a highly efficient white device employing a single emissive layer exhibited a peak EQE of over 20% and high color quality with a CRI of 80 and color coordinates CIE(x=0.33, y=0.33). Furthermore, by employing a rigid, tetradentate platinum complex, PtN1N, with a narrow band emission into a

  19. Separation of platinum group metal ions by Donnan dialysis

    SciTech Connect

    Brajter, K.; Slonawska, K.; Cox, J.A.

    1985-10-01

    Separations of metal ions on the basis of Donnan dialysis across anion-exchange membranes should be possible if the receiver electrolyte composition favors the formation of selected anionic complexes of the sample metal ions. Moreover, such a separation has the possibility of being better suited from some applications than batch or column experiments with anion-exchange resins. The above hypothesis are tested on the platinum-group metal ions, Pt(IV), Rh(III), Pd(II), Ir(III), and Ir(IV). 13 references, 4 tables.

  20. A branched luminescent multinuclear platinum(II) complex

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Xu, S. J.; Tao, Chi-Hang; Yam, Vivian Wing-Wah; Zhang, Jie

    2011-08-01

    Nonlinear optical properties of luminescent multinuclear platinum(II) complex of branched alkynyls in benzene solution are investigated at room temperature by using two-photon fluorescence (TPF) technique. It is found that the material shows unusual nonlinear optical characteristics under the excitation of near infrared femtosecond laser pulses. The self-focusing of laser beam energy during propagation of the laser pulses in the sample with large nonlinear coefficient for the refractive index is observed. Based on this phenomenon, a new method for measuring the nonlinear coefficient and two-photon absorption cross section of materials is proposed.

  1. Adsorption of xenon on vicinal copper and platinum surfaces

    NASA Astrophysics Data System (ADS)

    Baker, Layton

    The adsorption of xenon was studied on Cu(111), Cu(221), Cu(643) and on Pt(111), Pt(221), and Pt(531) using low energy electron diffraction (LEED), temperature programmed desorption (TPD) of xenon, and ultraviolet photoemission of adsorbed xenon (PAX). These experiments were performed to study the atomic and electronic structure of stepped and step-kinked, chiral metal surfaces. Xenon TPD and PAX were performed on each surface in an attempt to titrate terrace, step edge, and kink adsorption sites by adsorption energetics (TPD) and local work function differences (PAX). Due to the complex behavior of xenon on the vicinal copper and platinum metal surfaces, adsorption sites on these surfaces could not be adequately titrated by xenon TPD. On Cu(221) and Cu(643), xenon desorption from step adsorption sites was not apparent leading to the conclusion that the energy difference between terrace and step adsorption is minuscule. On Pt(221) and Pt(531), xenon TPD indicated that xenon prefers to bond at step edges and that the xenon-xenon interaction at step edges in repulsive but no further indication of step-kink adsorption was observed. The Pt(221) and Pt(531) TPD spectra indicated that the xenon overlayer undergoes strong compression near monolayer coverage on these surfaces due to repulsion between step-edge adsorbed xenon and other encroaching xenon atoms. The PAX experiments on the copper and platinum surfaces demonstrated that the step adsorption sites have lower local work functions than terrace adsorption sites and that higher step density leads to a larger separation in the local work function of terrace and step adsorption sites. The PAX spectra also indicated that, for all surfaces studied at 50--70 K, step adsorption is favored at low coverage but the step sites are not saturated until monolayer coverage is reached; this observation is due to the large entropy difference between terrace and step adsorption states and to repulsive interactions between xenon atoms

  2. Finding Platinum-Coating Gaps On Titanium Anodes

    NASA Technical Reports Server (NTRS)

    Bodemeijer, Ronnald; Flowers, Cecil E.

    1990-01-01

    Simple procedure makes gaps visible to eye. New gap-detection method consists of plating thin layer of non-silver-colored metal like copper or gold on anode. Contrast in color between plated metal and bare anode material makes gaps stand out. If anode passes inspection, copper or gold plate removable by reversal of test-plating current. Remains to be determined whether test plating and removal damages anode. New method simpler and more economical than previous attempts to identify gaps in platinum.

  3. Extraterrestrial platinum group nuggets in deep-sea sediments

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Bates, B. A.; Wheelock, M. M.

    1984-01-01

    A previously unrecognized property of iron cosmic spheres is reported. The most common spheres larger than 300 microns do not, in fact, contain FeNi metal cores, but instead contain a micrometer-sized nugget composed almost entirely of platinum group elements. These elements appear to have been concentrated by the oxidation of molten meteoritic metal during atmospheric entry. This process is critically dependent on the relative abundance of oxygen in the atmosphere, and the first appearance of the nuggets in the geological record may provide a marker indicating when the oxygen abundance attained half of its present level.

  4. Platinum/Tin Oxide/Silica Gel Catalyst Oxidizes CO

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T.; Davis, Patricia P.; Schryer, David R.; Miller, Irvin M.; Brown, David; Van Norman, John D.; Brown, Kenneth G.

    1991-01-01

    Heterogeneous catalyst of platinum, tin oxide, and silica gel combines small concentrations of laser dissociation products, CO and O2, to form CO22 during long times at ambient temperature. Developed as means to prevent accumulation of these products in sealed CO2 lasers. Effective at ambient operating temperatures and installs directly in laser envelope. Formulated to have very high surface area and to chemisorb controlled quantities of moisture: chemisorbed water contained within and upon its structure, makes it highly active and very longlived so only small quantity needed for long times.

  5. Pretreatment of Platinum/Tin Oxide-Catalyst

    NASA Technical Reports Server (NTRS)

    Hess, Robert V.; Paulin, Patricia A.; Miller, Irvin M.; Schryer, David R.; Sidney, Barry D.; Wood, George M.; Upchurch, Billy T.; Brown, Kenneth G.

    1987-01-01

    Addition of CO to He pretreatment doubles catalytic activity. In sealed, high-energy, pulsed CO2 laser, CO and O2 form as decomposition products of CO2 in laser discharge zone. Products must be recombined, because oxygen concentration of more than few tenths of percent causes rapid deterioration of power, ending in unstable operation. Promising low-temperature catalyst for combining CO and O2 is platinum on tin oxide. New development increases activity of catalyst so less needed for recombination process.

  6. Bulk synthesis of nanoporous palladium and platinum powders

    SciTech Connect

    Robinson, David B; Fares, Stephen J; Tran, Kim L; Langham, Mary E

    2014-04-15

    Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.

  7. Bulk synthesis of nanoporous palladium and platinum powders

    SciTech Connect

    Robinson, David B.; Fares, Stephen J.; Tran, Kim L.; Langham, Mary E.

    2012-04-17

    Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.

  8. Development of Platinum(iv) Complexes as Anticancer Prodrugs: the Story so Far

    NASA Astrophysics Data System (ADS)

    Wong, Daniel Yuan Qiang; Ang, Wee Han

    2012-06-01

    The serendipitous discovery of the antitumor properties of cisplatin by Barnett Rosenberg some forty years ago brought about a paradigm shift in the field of medicinal chemistry and challenged conventional thinking regarding the role of potentially toxic heavy metals in drugs. Platinum(II)-based anticancer drugs have since become some of the most effective and widely-used drugs in a clinician's arsenal and have saved countless lives. However, they are limited by high toxicity, severe side-effects and the incidence of drug resistance. In recent years, attention has shifted to stable platinum(IV) complexes as anticancer prodrugs. By exploiting the unique chemical and structural attributes of their scaffolds, these platinum(IV) prodrugs offer new strategies of targeting and killing cancer cells. This review summarizes the development of anticancer platinum(IV) prodrugs to date and some of the exciting strategies that utilise the platinum(IV) construct as targeted chemotherapeutic agents against cancer.

  9. Sn-Ag-Cu and Sn-Cu solders: Interfacial reactions with platinum

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyun; Kim, Young-Ho

    2004-06-01

    The interfacial reaction and intermetallic formation at the interface between tin solders containing a small amount of copper with platinum were investigated in this study. Sn-0.7Cu and Sn-1.7Cu solders were reacted with platinum by dipping Pt/Ti/Si specimens into the molten solder at 260°C. Sn-3.8Ag-0.7Cu solder was reacted with platinum by reflowing solder paste on a Pt/Ti/Si substrate at 250°C. PtSn4 intermetallic formed in all specimens while Cu6Sn5 interfacial intermetallic was not observed at the solder/platinum interfaces in any specimens. A parabolic relationship existed between the thickness of the Pt-Sn intermetallic and reaction time, which indicates the intermetallic formation in the solder/platinum interface is diffusion controlled.

  10. Palladium–platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction

    SciTech Connect

    Wang, Xue; Choi, Sang-Il; Roling, Luke T.; Luo, Ming; Ma, Cheng; Zhang, Lei; Chi, Miaofang; Liu, Jingyue; Xie, Zhaoxiong; Herron, Jeffrey A.; Mavrikakis, Manos; Xia, Younan

    2015-07-02

    Conformal deposition of platinum as ultrathin shells on facet-controlled palladium nanocrystals offers a great opportunity to enhance the catalytic performance while reducing its loading. Here we report such a system based on palladium icosahedra. Owing to lateral confinement imposed by twin boundaries and thus vertical relaxation only, the platinum overlayers evolve into a corrugated structure under compressive strain. For the core-shell nanocrystals with an average of 2.7 platinum overlayers, their specific and platinum mass activities towards oxygen reduction are enhanced by eight- and sevenfold, respectively, relative to a commercial catalyst. Density functional theory calculations indicate that the enhancement can be attributed to the weakened binding of hydroxyl to the compressed platinum surface supported on palladium. After 10,000 testing cycles, the mass activity of the core-shell nanocrystals is still four times higher than the commercial catalyst. Ultimately, these results demonstrate an effective approach to the development of electrocatalysts with greatly enhanced activity and durability.

  11. Palladium-platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction

    NASA Astrophysics Data System (ADS)

    Wang, Xue; Choi, Sang-Il; Roling, Luke T.; Luo, Ming; Ma, Cheng; Zhang, Lei; Chi, Miaofang; Liu, Jingyue; Xie, Zhaoxiong; Herron, Jeffrey A.; Mavrikakis, Manos; Xia, Younan

    2015-07-01

    Conformal deposition of platinum as ultrathin shells on facet-controlled palladium nanocrystals offers a great opportunity to enhance the catalytic performance while reducing its loading. Here we report such a system based on palladium icosahedra. Owing to lateral confinement imposed by twin boundaries and thus vertical relaxation only, the platinum overlayers evolve into a corrugated structure under compressive strain. For the core-shell nanocrystals with an average of 2.7 platinum overlayers, their specific and platinum mass activities towards oxygen reduction are enhanced by eight- and sevenfold, respectively, relative to a commercial catalyst. Density functional theory calculations indicate that the enhancement can be attributed to the weakened binding of hydroxyl to the compressed platinum surface supported on palladium. After 10,000 testing cycles, the mass activity of the core-shell nanocrystals is still four times higher than the commercial catalyst. These results demonstrate an effective approach to the development of electrocatalysts with greatly enhanced activity and durability.

  12. Thermodynamic Effect of Platinum Addition to beta-NiAl: An Initial Investigation

    NASA Technical Reports Server (NTRS)

    2005-01-01

    An initial investigation was conducted to determine the effect of platinum addition on the activities of aluminum and nickel in beta-NiAl(Pt) over the temperature range 1354 to 1692 K. These measurements were made with a multiple effusion-cell configured mass spectrometer (multi-cell KEMS). The results of this study show that Pt additions act to decreased alpha(Al) and increased the alpha(Ni) in beta-NiAl(Pt) for constant X(sub Ni)/X(sub Al) approx. = 1.13, while at constant X(sub Al) the affect of Pt on Al is greatly reduced. The measured partial enthalpies of mixing indicate Al-atoms have a strong self interaction while Ni- and Pt-atoms in have similar interactions with Al-atoms. Conversely the binding of Ni-atoms in beta-NiAl decreases with Pt addition independent of Al concentration. These initial results prove the technique can be applied to the Ni-Al-Pt system but more activity measurements are required to fully understand the thermodynamics of this system and how Pt additions improved the scaling behavior of nickel-based superalloys. In addition, with the choice of a suitable oxide material for the effusion-cell, the "closed" isothermal nature of the effusion-cell allows the direct investigation of an alloy-oxide equilibrium which resembles the "local-equilibrium" description of the metal-scale interface observed during high temperature oxidation. It is proposed that with an Al(l) + Al2O3(s) experimental reference state together with the route measurement of the relative partial-pressures of Al(g) and Al2O(g) allows the activities of O and Al2O3 to be determined along with the activities of Ni and Al. These measurements provide a direct method of investigating the thermodynamics of the metal-scale interface of a TGO-scale.

  13. Efficient spin transport through native oxides of nickel and permalloy with platinum and gold overlayers

    NASA Astrophysics Data System (ADS)

    Zink, B. L.; Manno, M.; O'Brien, L.; Lotze, J.; Weiler, M.; Bassett, D.; Mason, S. J.; Goennenwein, S. T. B.; Johnson, M.; Leighton, C.

    2016-05-01

    We present measurements of spin pumping detected by the inverse spin Hall effect voltage and ferromagnetic resonance spectroscopy in a series of metallic ferromagnet/normal metal thin film stacks. We compare heterostructures grown in situ to those where either a magnetic or nonmagnetic oxide is introduced between the two metals. The heterostructures, either nickel with a platinum overlayer (Ni/Pt) or the nickel-iron alloy permalloy (Py) with a gold overlayer (Py/Au), were also characterized in detail using grazing-incidence x-ray reflectivity, Auger electron spectroscopy, and both SQUID and alternating-gradient magnetometry. We verify the presence of oxide layers, characterize layer thickness, composition, and roughness, and probe saturation magnetization, coercivity, and anisotropy. The results show that while the presence of a nonmagnetic oxide at the interface suppresses spin transport from the ferromagnet to the nonmagnetic metal, a thin magnetic oxide (here the native oxide formed on both Py and Ni) somewhat enhances the product of the spin-mixing conductance and the spin Hall angle. We also observe clear evidence of an out-of-plane component of magnetic anisotropy in Ni/Pt samples that is enhanced in the presence of the native oxide, resulting in perpendicular exchange bias. Finally, the dc inverse spin Hall voltages generated at ferromagnetic resonance in our Py/Au samples are large, and suggest values for the spin Hall angle in gold of 0.04 <αSH<0.22 , in line with the highest values reported for Au. This is interpreted as resulting from Fe impurities. We present indirect evidence that the Au films described here indeed have significant impurity levels.

  14. Spark alloying of an AL9 alloy by hard alloys

    NASA Astrophysics Data System (ADS)

    Kuptsov, S. G.; Fominykh, M. V.; Mukhinov, D. V.; Magomedova, R. S.; Nikonenko, E. A.

    2015-08-01

    The phase compositions of spark coatings of Kh12M steel with a VT1-0 (titanium) alloy and T15K6 and T30K4 hard alloys are studied. It is shown that the TiC titanium carbide forms in all cases and tungsten carbide decomposes with the formation of tungsten in a coating. These processes are intensified by increasing time, capacitance, and frequency. The surface hardness, the sample weight, and the white layer thickness increase monotonically.

  15. Creep Resistant Zinc Alloy

    SciTech Connect

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  16. High surface area platinum-titania aerogels: Preparation, structural properties, and hydrogenation activity

    SciTech Connect

    Schneider, M.; Duff, D.G.; Mallat, T.; Wildberger, M.; Baiker, A. )

    1994-06-01

    High surface area platinum-titania aerogels with marked meso-to macroporosity have been synthesized via the sol-gel-aerogel route. An acid-catalyzed titania gel was prepared from tetrabutoxy-titanium(IV) with methanol as solvent. The platinum precursor solutions added after the redispersion of the titania gel were either PtCl[sub 4], (NH[sub 4])[sub 2]PtCl[sub 6] or Pt(acac)[sub 2] dissolved in protic solvents. Platinum metal particles formed upon high-temperature supercritical drying. The platinum-titania aerogels have a BET surface area of 150 to 190 m[sup 2] g[sup [minus]1] after thermal pretreatments up to 673 K and the titania matrix consists of well-developed anatase crystallites of about 8-9 nm mean size. Depending on the platinum precursor used, the volume-weighted-mean particle size, determined by TEM, varies in the range 3.6 to 68 nm, consistent with XRD results for the platinum component. All aerogel samples showed a pronounced stability of both the titania matrix and the platinum particles towards air or hydrogen at temperatures up to 673 K. Thermal analysis, combined with mass spectroscopy, revealed that the untreated catalysts contain a considerable amount of entrapped organic impurities after the high-temperature supercritical drying. For the characterization of the activity and the accessibility of platinum particles the liquid phase hydrogenations of trans-stilbene and benzophenone were used as test reactions. Compared to a commercial alumina-supported platinum catalyst, the untreated 2-5 wt% platinum-titania catalysts derived from (NH[sub 4])[sub 2]PtCl[sub 6]- and especially PtCl[sub 4]-precursor solutions exhibit a markedly higher catalytic activity. In general, air pretreatments at 573 K or above had either no or promoting influence on activity. In contrast, pretreatments in hydrogen produced either no or detrimental activity change. 50 refs., 9 figs., 3 tabs.

  17. Characterization of sputtered iridium oxide thin films on planar and laser micro-structured platinum thin film surfaces for neural stimulation applications

    NASA Astrophysics Data System (ADS)

    Thanawala, Sachin

    Electrical stimulation of neurons provides promising results for treatment of a number of diseases and for restoration of lost function. Clinical examples include retinal stimulation for treatment of blindness and cochlear implants for deafness and deep brain stimulation for treatment of Parkinsons disease. A wide variety of materials have been tested for fabrication of electrodes for neural stimulation applications, some of which are platinum and its alloys, titanium nitride, and iridium oxide. In this study iridium oxide thin films were sputtered onto laser micro-structured platinum thin films by pulsed-DC reactive sputtering of iridium metal in oxygen-containing atmosphere, to obtain high charge capacity coatings for neural stimulation applications. The micro-structuring of platinum films was achieved by a pulsed-laser-based technique (KrF excimer laser emitting at lambda=248nm). The surface morphology of the micro-structured films was studied using different surface characterization techniques. In-vitro biocompatibility of these laser micro-structured films coated with iridium oxide thin films was evaluated using cortical neurons isolated from rat embryo brain. Characterization of these laser micro-structured films coated with iridium oxide, by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and increase in charge capacity. A comparison between amorphous and crystalline iridium oxide thin films as electrode materials indicated that amorphous iridium oxide has significantly higher charge capacity and lower impedance making it preferable material for neural stimulation application. Our biocompatibility studies show that neural cells can grow and differentiate successfully on our laser micro-structured films coated with iridium oxide. This indicates that reactively sputtered iridium oxide (SIROF) is biocompatible.

  18. Weldability of High Alloys

    SciTech Connect

    Maroef, I

    2003-01-22

    The purpose of this study was to investigate the effect of silicon and iron on the weldability of HAYNES HR-160{reg_sign} alloy. HR-I60 alloy is a solid solution strengthened Ni-Co-Cr-Si alloy. The alloy is designed to resist corrosion in sulfidizing and other aggressive high temperature environments. Silicon is added ({approx}2.75%) to promote the formation of a protective oxide scale in environments with low oxygen activity. HR-160 alloy has found applications in waste incinerators, calciners, pulp and paper recovery boilers, coal gasification systems, and fluidized bed combustion systems. HR-160 alloy has been successfully used in a wide range of welded applications. However, the alloy can be susceptible to solidification cracking under conditions of severe restraint. A previous study by DuPont, et al. [1] showed that silicon promoted solidification cracking in the commercial alloy. In earlier work conducted at Haynes, and also from published work by DuPont et al., it was recognized that silicon segregates to the terminal liquid, creating low melting point liquid films on solidification grain boundaries. Solidification cracking has been encountered when using the alloy as a weld overlay on steel, and when joining HR-160 plate in a thickness greater than19 millimeters (0.75 inches) with matching filler metal. The effect of silicon on the weldability of HR-160 alloy has been well documented, but the effect of iron is not well understood. Prior experience at Haynes has indicated that iron may be detrimental to the solidification cracking resistance of the alloy. Iron does not segregate to the terminal solidification product in nickel-base alloys, as does silicon [2], but iron may have an indirect or interactive influence on weldability. A set of alloys covering a range of silicon and iron contents was prepared and characterized to better understand the welding metallurgy of HR-160 alloy.

  19. HEPARAN SULFATE PROTEOGLYCAN-MEDIATED ENTRY PATHWAY FOR CHARGED TRI-PLATINUM COMPOUNDS. DIFFERENTIAL CELLULAR ACCUMULATION MECHANISMS FOR PLATINUM

    PubMed Central

    Silva, Heveline; Frézard, Frédéric; Peterson, Erica J.; Kabolizadeh, Peyman; Ryan, John J.; Farrell, Nicholas P.

    2012-01-01

    We examined the mechanism of accumulation of charged polynuclear platinum complexes (PPCs), based on analogy of polyarginine interactions with the cell surface heparan sulfate proteoglycan (HSPG) family of protein-linked glycosoaminoglycan polysaccharides (GAGs). GAGS such as heparan sulfate (HS) and chondroitin sulfate (CS) mediate the cellular entry of many charged molecules. Fluorescence microscopy and flow cytometry showed that PPCs, but not the neutral cisplatin or oxaliplatin, blocked the cellular entry of TAMRA-R9 (a nonarginine peptide, R9) coupled to the TAMRA fluorescent label 5-(and 6-)carboxytetramethylrhodamine) in Chinese Hamster Ovary (CHO), human colon carcinoma (HCT116), and osteosarcoma (SAOS-2) cells. Furthermore, detection of platinum accumulation in wt CHO, mutant CHO-pgsD-677 (lacking HS), and CHO-pgsA (lacking HS/CS) cells confirms that HSPG-mediated interactions are an important mechanism for PPC internalization, but not so for uncharged cisplatin and oxaliplatin. Endocytosis inhibitor studies show that macropinocytosis, a mechanism of cell entry for heparan sulfate GAGs and arginine-rich peptides, is important in the cellular accumulation of “non-covalent” TriplatinNC, and to a lesser degree, the covalently-binding BBR3464. Clathrin-mediated endocytosis, however, was not involved in either case. Overall the results suggest a new proteoglycan-mediated mechanism for cellular accumulation of PPCs not shared by cisplatin or oxaliplatin. The results have significant implications for rational design of platinum antitumor drugs with distinct biological profiles in comparison to the clinically-used agents as well as expanding the chemotypes for HS proteoglycan-dependent receptors. PMID:22494465

  20. NMR of platinum catalysts: Double NMR of chemisorbed carbon monoxide and a model for the platinum NMR line shape

    SciTech Connect

    Makowka, C.D.; Slichter, C.P. ); Sinfelt, J.H. )

    1985-05-01

    The authors report observation of the NMR line of {sup 195}Pt atoms in the surface layer of small platinum-metal particles on which {sup 13}CO has been chemisorbed. The surface {sup 195}Pt atoms are resolved from those of {sup 195}Pt atoms deeper in the particle by spin-echo double resonance between {sup 195}Pt and {sup 13}C. The particles, supported on {eta}-alumina, had dispersions (fraction of the atoms that are on the surface) of 26% and 76%. Comparison with {sup 195}Pt resonance in Pt carbonyls suggests that the magnitude of the Knight shift of the surface Pt is less than 0.2%. Analysis of the {sup 195}Pt spin-lattice relaxation indicates that the small surface Knight shift results from cancellation of 6s and 5d core-polarization contributions as was found theoretically by Weinert and Freeman for clean Pt surfaces. The {sup 13}C-{sup 195}Pt indirect spin coupling is found to be very similar to those in diamagnetic platinum carbonyl molecules. The results show that CO bonds via the C atom and verify that concepts from studies of large single crystals are valid for the small particles. The key features of the {sup 195}Pt line shapes in these small platinum particles are described by a simple phenomenological model of the spatial Knight-shift variation inside these particles. The model successfully describes the major structure seen in the NMR line shapes of samples with dispersions ranging from 5% to 76%.

  1. Manganese-tuned chemical etching of a platinum-copper nanocatalyst with platinum-rich surfaces

    NASA Astrophysics Data System (ADS)

    Huang, Y. Y.; Zhao, T. S.; Zhao, G.; Yan, X. H.; Xu, K.

    2016-02-01

    This work presents a modified chemical etching strategy to fabricate binary metal nanocatalysts with large active areas. The strategy employs PtCu alloy particles with Pt-rich outer layers as the precursor and manganese species to manipulate the acid leaching processes. X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy techniques are used to analyze the catalyst structures and the tuning mechanism of manganese species during etching. It is found that the introduction of manganese species allows more Pt active sites to be formed onto the catalyst surface after etching, possibly due to reduction in the number of Pt atoms enclosed inside particles. The electrochemically active surface area of the synthetic MnA-PtCu/C catalyst increases by 90% relative to commercial Pt/C catalyst. As a result of the increase in active areas and the additional promotion effects by Cu, the MnA-PtCu/C catalyst reveals a methanol oxidation activity 1.7 and 4.0 times higher than that of the synthetic PtCu/C and commercial Pt/C catalysts, respectively.

  2. Platinum-group element abundance and distribution in chromite deposits of the Acoje Block, Zambales Ophiolite Complex, Philippines

    USGS Publications Warehouse

    Bacuta, G.C., Jr.; Kay, R.W.; Gibbs, A.K.; Lipin, B.R.

    1990-01-01

    Platinum-group elements (PGE) occur in ore-grade concentration in some of the chromite deposits related to the ultramafic section of the Acoje Block of the Zambales Ophiolite Complex. The deposits are of three types: Type 1 - associated with cumulate peridotites at the base of the crust; Type 2 - in dunite pods from the top 1 km of mantle harzburgite; and Type 3 - like Type 2, but in deeper levels of the harzburgite. Most of the deposites have chromite compositions that are high in Cr with Cr/(Cr + Al) (expressed as chromium index, Cr#) > 0.6; high-Al (Cr# Pd, thought to be characteristic of PGE-barren deposits) and positive slope (Ir < Pd, characteristic of PGE-rich deposits). Iridium, Ru and Os commonly occur as micron-size laurite (sulfide) inclusions in unfractured chromite. Laurite and native Os are also found as inclusions in interstitial sulfides. Platinum and Pd occur as alloy inclusions (and possibly as solid solution) in interstitial Ni-Cu sulfides and as tellurobismuthides in serpentine and altered sulfides. Variability of PGE distribution may be explained by alteration, crystal fractionation or partial melting processes. Alteration and metamorphism were ruled out, because PGE contents do not correlate with degree of serpentinization or the abundance and type (hydroxyl versus non-hydroxyl) of silicate inclusions in chromite. Preliminary Os isotopic data do not support crustal contamination as a source of the PGEs in the Acoje deposits. The anomalous PGE concentrations in Type 1 high-Cr chromite deposits are attributed to two stages of enrichment: an early enrichment of their mantle source from previous melting events and a later stage of sulfide segregation accompanying chromite crystallization. High-Al chromite deposits which crystallized from basalts derived from relatively low degrees of melting owe their low PGE content to partitioning of PGEs in sulfides and alloys that remain in the mantle. High-Cr deposits crystallized from melts that were

  3. Potentiometric titration of gold, platinum, and some other precious metals

    SciTech Connect

    Selig, W.S.

    1991-02-04

    Gold, platinum, and several other platinum metals can be determined by titration with cetylpyridinium chloride (CPC). CPC forms a precipitate with AuCl{sub 4}{sup {minus}} and PtCl{sub 6}{sup 2{minus}}. Differentiation of AuCl{sub 4{minus}} and PtCl{sub 6}{sup 2{minus}} with this titrant is not possible; however, their sum can be determined. Titration with tetraphenylarsonium chloride at pH 1 is selective for tetrachloroaurate, which thus can be determined in the presence of hexachloroplatinate. Hexachloroosmate(IV), tetrachloroplatinite(II), tetrachloropalladate(II), hexachloropalladate(IV), and hexachloroiridate(IV) can also be determined potentiometrically vs. CPC. The indicating electrode is prepared by coating a spectroscopic graphite rod with a solution of poly(vinyl chloride) (PVC) and dioctylphthalate (DOP) in tetrahydrofuran (THF). Gold in gold cyanide plating baths and in potassium aurocyanide can be determined by potentiometric titration vs standard silver nitrate, using a silver ion-selective indicating electrode. The monovalent gold need not be converted to the trivalent state with aqua regia, resulting in a considerable saving of time and effort. Free cyanide and aurocyanide can be titrated sequentially by this method. Chloride does not interfere and can, in fact, also be sequentially determined. 17 refs., 2 figs., 3 tabs.

  4. Structural Preferences in Phosphanylthiolato Platinum(II) Complexes

    PubMed Central

    Duran, Josep; Real, Julio; Benet‐Buchholz, Jordi; Solà, Miquel

    2016-01-01

    Abstract Invited for this month's cover picture are the groups of Prof. Alfonso Polo and Dr. Albert Poater at the Universitat de Girona, as well as their collaborators from the Universitat Autònoma de Barcelona and the Institute of Chemical Research of Catalonia. The cover picture shows phosphanylthiolate ligand coordination on a platinum(II) center to give only the bischelate cis ‐P,P isomer when the ligand/Pt ratio is 2, whereas a trinuclear unexpected complex is achieved with a ligand/Pt ratio of 1. Here, the synthesis and structural determination is combined with density functional theory (DFT) calculations to rationalize the reaction mechanistically and through conceptual DFT. The exciting point of this study is that it opens the door to test new experimental pathways to monitor the preferred cis or trans arrangement of bidentate ligands to platinum. (Legend: H‐white, C‐black, P‐purple, S‐yellow, Cl‐green, Pt‐blue.) For more details, see the Full Paper on p. 51 ff. PMID:27308218

  5. Platinum group elements in the environment and their health risk.

    PubMed

    Ravindra, Khaiwal; Bencs, László; Van Grieken, René

    2004-01-01

    Accumulation of platinum group elements (PGEs) in the environment has been increased over the time. Catalytic converters of modern vehicles are considered to be the main sources of PGE pollution, since the correlation is between the Pt:Rh ratios in various environmental compartments and in converter units. The present literature survey shows that the concentration of these metals has increased significantly in the last decades in diverse environmental matrices; like airborne particulate matter, soil, roadside dust and vegetation, river, coastal and oceanic environment. Generally, PGEs are referred to behave in an inert manner and to be immobile. However, there is an evidence of spread and bioaccumulation of these elements in the environment. Platinum content of road dusts can be soluble, consequently, it enters the waters, sediments, soil and finally, the food chain. The effect of chronic occupational exposure to Pt compounds is well-documented, and certain Pt species are known to exhibit allergenic potential. However, the toxicity of biologically available anthropogenic Pt is not clear. Hence, there is a need to study the effect on human health of long-term chronic exposure to low levels of Pt compounds. PMID:14654273

  6. Platinum-group elements: so many excellent properties

    USGS Publications Warehouse

    Zientek, Michael L.; Loferski, Patricia J.

    2014-01-01

    The platinum-group elements (PGE) include platinum, palladium, rhodium, ruthenium, iridium, and osmium. These metals have similar physical and chemical properties and occur together in nature. The properties of PGE, such as high melting points, corrosion resistance, and catalytic qualities, make them indispensable to many industrial applications. PGE are strategic and critical materials for many nations because they are essential for important industrial applications but are mined in a limited number of places and have no adequate substitutes. Exploration and mining companies have found approximately 104,000 metric tons of PGE (with minor gold) in mineral deposits around the world that could be developed. For PGE, almost all known production and resources are associated with three geologic features: the Bushveld Complex, a layered mafic-to-ultramafic intrusion in South Africa; the Great Dyke, a layered mafic-to-ultramafic intrusion in Zimbabwe; and sill-like intrusions associated with flood basalts in the Noril’sk-Talnakh area, Russia. To help predict where PGE supplies might be located, USGS scientists study how and where PGE resources are concentrated in the Earth's crust and use that knowledge to assess the likelihood that undiscovered PGE deposits may exist. Techniques used for assessing mineral resources were developed by the USGS to support the stewardship of Federal lands and evaluate mineral resource availability in a global context. The USGS also compiles statistics and information on the worldwide supply, demand, and flow of PGE. These data are all used to inform U.S. national policymakers.

  7. A new capsule platinum resistance thermometer for cryogenic use

    NASA Astrophysics Data System (ADS)

    Courts, S. S.; Krause, J. K.

    2013-09-01

    Standards grade platinum resistance thermometers (SPRTs) obtain their high stability in part due to the strain-free mounting of the sensing wire. The space required for this strain-free mounting normally results in thermometers on the order of 6 mm diameter by 40 mm length in size. While these SPRTs are acceptable in many applications, it is desirable to reduce the size as much as possible for cryogenic use where space is of major concern. For over 40 years Minco Products, Inc. provided a smaller alternative with their model S1059, a high-stability cryogenic capsule platinum resistance thermometer (PRT) packaged in a copper canister sized only 3.2 mm diameter by 9.7 mm length. The packaging was compatible for use over the 13 K to 533 K temperature range. Unfortunately, this product was discontinued in 2009. In its absence, Lake Shore Cryotronics, Inc., has worked with Advanced Sensing Products to develop a similarly sized replacement sensor for cryogenic use. The replacement capsule PRT is manufactured using the model S1059 design, but with modifications to reduce the chance of lead breakage at the epoxy-lead interface. Test devices have been fabricated and tested for temperature response and stability upon repeated calibration from 13 K to 330 K. The new sensor design features and performance data are presented in this work.

  8. Nonuniformity effects in a hybrid platinum silicide imaging device

    NASA Astrophysics Data System (ADS)

    Dereniak, Eustace L.; Perry, David L.

    1992-05-01

    The objective of this project was twofold. The first objective was to characterize the Hughes Aircraft Company CRC-365 platinum silicide imaging device in a starting infrared sensor system. The CRC-365 is a hybrid 256 x 256 IR focal plane array that operates in the 3-5 micrometer thermal infrared band. A complete sensor and computer interface were built for these tests, using, plans provided by the Rome Laboratory at Hanscom AFB. Testing of the device revealed largely satisfactory performance, with notable exception in the areas of temporal response, temporal noise, and electrical crosstalk. The second objective of this research was to advance the understanding of how detector nonuniformity effects reduce the performance of sensors of this type. Notable accomplishments in this area included a complete linear analysis of corrected thermal imaging in platinum silicide sensors, a nonlinear analysis of the CRC-365's expected performance, analysis of its actual performance when operated with nonuniformity correction, and the development of a new figure of merit. It was demonstrated that the CRC-365 is capable of maintaining background-noise-limited performance over at least a 40 K target temperature range, when operated with two-point nonuniformity correction.

  9. Evolving concepts in the management of drug resistant ovarian cancer: dose dense chemotherapy and the reversal of clinical platinum resistance.

    PubMed

    Pinato, David J; Graham, Janet; Gabra, Hani; Sharma, Rohini

    2013-04-01

    Despite the initially high response rate to standard front-line debulking surgery followed by platinum-based chemotherapy, the relapse rate in ovarian cancer is high and many patients will recur within 6 months of completing platinum based treatment. These patients may still require further chemotherapy despite being considered "platinum resistant". In this setting, response rates to conventionally scheduled second line platinum and non-platinum agents is low, ranging between 5% and 15%. There is an emerging body of evidence that in this scenario, chemotherapeutic activity can be enhanced using unconventionally scheduled "dose-dense" platinum and non-platinum based regimens with improved response rates of up to 65%. Randomised studies to evaluate the impact of this approach on survival in recurrent, platinum resistant disease are urgently required to confirm the promising phase II findings if there is to be a change in the standard of care of patients with platinum resistant disease. In this review we discuss the evolving strategies to overcome resistance in patients with platinum resistant ovarian cancer with a particular focus on alterations in dose schedule as a means of reversing platinum resistance. PMID:22595680

  10. Predicting Ovarian Cancer Patients' Clinical Response to Platinum-Based Chemotherapy by Their Tumor Proteomic Signatures.

    PubMed

    Yu, Kun-Hsing; Levine, Douglas A; Zhang, Hui; Chan, Daniel W; Zhang, Zhen; Snyder, Michael

    2016-08-01

    Ovarian cancer is the deadliest gynecologic malignancy in the United States with most patients diagnosed in the advanced stage of the disease. Platinum-based antineoplastic therapeutics is indispensable to treating advanced ovarian serous carcinoma. However, patients have heterogeneous responses to platinum drugs, and it is difficult to predict these interindividual differences before administering medication. In this study, we investigated the tumor proteomic profiles and clinical characteristics of 130 ovarian serous carcinoma patients analyzed by the Clinical Proteomic Tumor Analysis Consortium (CPTAC), predicted the platinum drug response using supervised machine learning methods, and evaluated our prediction models through leave-one-out cross-validation. Our data-driven feature selection approach indicated that tumor proteomics profiles contain information for predicting binarized platinum response (P < 0.0001). We further built a least absolute shrinkage and selection operator (LASSO)-Cox proportional hazards model that stratified patients into early relapse and late relapse groups (P = 0.00013). The top proteomic features indicative of platinum response were involved in ATP synthesis pathways and Ran GTPase binding. Overall, we demonstrated that proteomic profiles of ovarian serous carcinoma patients predicted platinum drug responses as well as provided insights into the biological processes influencing the efficacy of platinum-based therapeutics. Our analytical approach is also extensible to predicting response to other antineoplastic agents or treatment modalities for both ovarian and other cancers. PMID:27312948

  11. Hierarchical Nanoporous Gold-Platinum with Heterogeneous Interfaces for Methanol Electrooxidation

    PubMed Central

    Xiao, Shuang; Xiao, Fei; Hu, Yuan; Yuan, Songliu; Wang, Shuai; Qian, Lihua; Liu, Yunqi

    2014-01-01

    The electrocatalysts utilized as the prospective electrodes in fuel cells and high efficient energy conversion devices require both the interconnected channels for efficient electrolyte transportation and the superior catalytic activity with long service life. In this work, nanoporous gold with the rigid skeletons in three dimensions is partially decorated by porous platinum shell containing nanoscale interstitials, aiming to create the heterogeneous gold-platinum interfaces and facilitate the electrolyte transportation as well. In comparison with no catalytic activity of bare nanoporous gold, the catalytic activity of hierarchical nanoporous gold-platinum towards electrochemical oxidation of methanol increases with the loading level of platinum shells, resulting in the highest electrochemical area of 70.4 m2·g−1 after the normalization by the mass of platinum. Heterogeneous gold-platinum interfaces affect the tolerance of the absorbed intermediate species because of the oxidization by the oxygenated species absorbed on the gold surface and the enhanced ion transportation within the porous platinum shell. PMID:24621809

  12. The mineralogy and mineral associations of platinum group elements and gold in the Platreef at Zwartfontein, Akanani Project, Northern Bushveld Complex, South Africa

    NASA Astrophysics Data System (ADS)

    van der Merwe, Frits; Viljoen, Fanus; Knoper, Mike

    2012-09-01

    The mineralogy of the platinum-group elements (PGE), and gold, in the Platreef of the Bushveld Complex, was investigated using an FEI Mineral Liberation Analyser. Polished sections were prepared from 171 samples collected from two boreholes, for the in-situ examination of platinum group minerals (PGM). PGM and gold minerals encountered include maslovite (PtBiTe, 32 area% of total PGM), kotulskite (Pd(BiTe), 17 %), isoferroplatinum (Pt3Fe, 15 %), sperrylite (PtAs2, 11 %), cooperite (PtS, 5 %), moncheite (PtTe2; 5 %), electrum (AuAg; 5 %), michenerite (PdBiTe; 3 %), Pd alloys (Pd, Sb, Sn; 3 %), hollingworthite ((Rh,Pt)AsS; 2 %), as well as minor (all <1 area% of total PGM) merenskyite (PdBiTe2), laurite (RuS2), rustenburgite (Pt0.4Pd0.4Sn0.2), froodite (PdBi2), atokite (Pd0.5Pt0.3Sn0.2), stumpflite (PtSb), plumbopalladinite (Pd3Pb2), and zvyagintsevite (Pd3Pb). An observed association of all PGM with base metal sulfides (BMS), and a pronounced association of PGE tellurides, arsenides and Pd&Pt alloys with secondary silicates, is consistent with the remobilisation and recrystallisation of some of the PGM's during hydrothermal alteration and serpentinisation subsequent to their initial (primary) crystallisation from BMS (e.g. Godel et al. J Petrol 48:1569-1604, 2007; Hutchinson and McDonald Appl Earth Sci (Trans Inst Min Metall B) 114:B208-224, 2008).

  13. Catalyst Alloys Processing

    NASA Astrophysics Data System (ADS)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  14. DNA-PK mediates AKT activation and apoptosis inhibition in clinically acquired platinum resistance.

    PubMed

    Stronach, Euan A; Chen, Michelle; Maginn, Elaina N; Agarwal, Roshan; Mills, Gordon B; Wasan, Harpreet; Gabra, Hani

    2011-11-01

    Clinical resistance to chemotherapy is a frequent event in cancer treatment and is closely linked to poor outcome. High-grade serous (HGS) ovarian cancer is characterized by p53 mutation and high levels of genomic instability. Treatment includes platinum-based chemotherapy and initial response rates are high; however, resistance is frequently acquired, at which point treatment options are largely palliative. Recent data indicate that platinum-resistant clones exist within the sensitive primary tumor at presentation, implying resistant cell selection after treatment with platinum chemotherapy. The AKT pathway is central to cell survival and has been implicated in platinum resistance. Here, we show that platinum exposure induces an AKT-dependent, prosurvival, DNA damage response in clinically platinum-resistant but not platinum-sensitive cells. AKT relocates to the nucleus of resistant cells where it is phosphorylated specifically on S473 by DNA-dependent protein kinase (DNA-PK), and this activation inhibits cisplatin-mediated apoptosis. Inhibition of DNA-PK or AKT, but not mTORC2, restores platinum sensitivity in a panel of clinically resistant HGS ovarian cancer cell lines: we also demonstrate these effects in other tumor types. Resensitization is associated with prevention of AKT-mediated BAD phosphorylation. Strikingly, in patient-matched sensitive cells, we do not see enhanced apoptosis on combining cisplatin with AKT or DNA-PK inhibition. Insulin-mediated activation of AKT is unaffected by DNA-PK inhibitor treatment, suggesting that this effect is restricted to DNA damage-mediated activation of AKT and that, clinically, DNA-PK inhibition might prevent platinum-induced AKT activation without interfering with normal glucose homeostasis, an unwanted toxicity of direct AKT inhibitors. PMID:22131882

  15. DNA-PK Mediates AKT Activation and Apoptosis Inhibition in Clinically Acquired Platinum Resistance12

    PubMed Central

    Stronach, Euan A; Chen, Michelle; Maginn, Elaina N; Agarwal, Roshan; Mills, Gordon B; Wasan, Harpreet; Gabra, Hani

    2011-01-01

    Clinical resistance to chemotherapy is a frequent event in cancer treatment and is closely linked to poor outcome. High-grade serous (HGS) ovarian cancer is characterized by p53 mutation and high levels of genomic instability. Treatment includes platinum-based chemotherapy and initial response rates are high; however, resistance is frequently acquired, at which point treatment options are largely palliative. Recent data indicate that platinum-resistant clones exist within the sensitive primary tumor at presentation, implying resistant cell selection after treatment with platinum chemotherapy. The AKT pathway is central to cell survival and has been implicated in platinum resistance. Here, we show that platinum exposure induces an AKT-dependent, prosurvival, DNA damage response in clinically platinum-resistant but not platinum-sensitive cells. AKT relocates to the nucleus of resistant cells where it is phosphorylated specifically on S473 by DNA-dependent protein kinase (DNA-PK), and this activation inhibits cisplatin-mediated apoptosis. Inhibition of DNA-PK or AKT, but not mTORC2, restores platinum sensitivity in a panel of clinically resistant HGS ovarian cancer cell lines: we also demonstrate these effects in other tumor types. Resensitization is associated with prevention of AKT-mediated BAD phosphorylation. Strikingly, in patient-matched sensitive cells, we do not see enhanced apoptosis on combining cisplatin with AKT or DNA-PK inhibition. Insulin-mediated activation of AKT is unaffected by DNA-PK inhibitor treatment, suggesting that this effect is restricted to DNA damage-mediated activation of AKT and that, clinically, DNA-PK inhibition might prevent platinum-induced AKT activation without interfering with normal glucose homeostasis, an unwanted toxicity of direct AKT inhibitors. PMID:22131882

  16. PLUTONIUM-ZIRCONIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  17. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  18. Low activation ferritic alloys

    DOEpatents

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  19. Low activation ferritic alloys

    DOEpatents

    Gelles, D.S.; Ghoniem, N.M.; Powell, R.W.

    1985-02-07

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  20. Characterization of the mechanical properties of freestanding platinum thin films

    NASA Astrophysics Data System (ADS)

    Abbas, Khawar

    Many MEMS devices utilize nanocrystalline thin metallic films as mechanical structures, in particular, micro switching devices where these films are used as Ohmic contacts. But the elastic and plastic properties of these thin films (thickness < 1mum) are significantly different from those of the bulk material. At these scales the volume fraction of material defects such as: grain boundaries, dislocations and interstitials become quite significant and become a chief contributor to the physical and mechanical material properties. In order to effectively design MEMS devices it is important that these material properties are explored and mechanical behavior of the structure they form be characterized. Popular thin film materials used in MEMS devices are Aluminum (Al), Copper (Cu), Nickel (Ni) and Gold (Au). Platinum has traditionally gained acceptance into the MEMS industry because of its chemical inertness and high temperature stability. However the mechanical properties of platinum remains the least exploited. Platinum has a high Young's Modulus (164 GPa, for bulk) and high melting temperature (1768 °C) and therefore can be used as a 'thin film' structure (cantilever, a bridge or a membrane) in high temperature environments with high resistance to mechanical failure. The physical size of these thin film structure make it very difficult to handle them and employ traditional mechanical testing methodologies and techniques and therefore require custom test platforms. One such recently developed platform is presented in this dissertation. The test platform is comprised of a microfabricated cascaded thermal actuator system and test specimen. The cascaded thermal actuator system is capable of providing tens of microns of displacement and tens of milli-Newton forces simultaneously while applying a relatively low temperature gradient across the test specimen. The dimensions of the platform make its use possible in both the SEM/TEM environments and on a probe station under

  1. Platinum anticancer drugs. From serendipity to rational design.

    PubMed

    Monneret, C

    2011-11-01

    The discovery of cis-platin was serendipitous. In 1965, Rosenberg was looking into the effects of an electric field on the growth of Escherichia coli bacteria. He noticed that bacteria ceased to divide when placed in an electric field but what Rosenberg also observed was a 300-fold increase in the size of the bacteria. He attributed this to the fact that somehow the platinum-conducting plates were inducing cell growth but inhibiting cell division. It was later deduced that the platinum species responsible for this was cis-platin. Rosenberg hypothesized that if cis-platin could inhibit bacterial cell division it could also stop tumor cell growth. This conjecture has proven correct and has led to the introduction of cis-platin in cancer therapy. Indeed, in 1978, six years after clinical trials conducted by the NCI and Bristol-Myers-Squibb, the U.S. Food and Drug Administration (FDA) approved cis-platin under the name of Platinol(®) for treating patients with metastatic testicular or ovarian cancer in combination with other drugs but also for treating bladder cancer. Bristol-Myers Squibb also licensed carboplatin, a second-generation platinum drug with fewer side effects, in 1979. Carboplatin entered the U.S. market as Paraplatin(®) in 1989 for initial treatment of advanced ovarian cancer in established combination with other approved chemotherapeutic agents. Numerous platin derivatives have been further developed with more or less success and the third derivative to be approved in 1994 was oxaliplatin under the name of Eloxatin(®). It was the first platin-based drug to be active against metastatic colorectal cancer in combination with fluorouracil and folinic acid. The two others platin-based drugs to be approved were nedaplatin (Aqupla(®)) in Japan and lobaplatin in China, respectively. More recently, a strategy to overcome resistance due to interaction with thiol-containing molecules led to the synthesis of picoplatin in which one of the amines linked to Pt

  2. Biotinylated Platinum(II) Ferrocenylterpyridine Complexes for Targeted Photoinduced Cytotoxicity.

    PubMed

    Mitra, Koushambi; Shettar, Abhijith; Kondaiah, Paturu; Chakravarty, Akhil R

    2016-06-01

    Biotinylated platinum(II) ferrocenylterpyridine (Fc-tpy) complexes [Pt(Fc-tpy)(L(1))]Cl (1) and [Pt(Fc-tpy)(L(2))]Cl (2), where HL(1) and HL(2) are biotin-containing ligands, were prepared, and their targeted photoinduced cytotoxic effect in cancer cells over normal cells was studied. A nonbiotinylated complex, [Pt(Fc-tpy)(L(3))]Cl (3), was prepared as a control to study the role of the biotin moiety in cellular uptake properties of the complexes. Three platinum(II) phenylterpyridine (Ph-tpy) complexes, viz., [Pt(Ph-tpy)(L(1))]Cl (4), [Pt(Ph-tpy)(L(2))]Cl (5), and [Pt(Ph-tpy)(L(3))]Cl (6), were synthesized and explored to understand the role of a metal-bound Fc-tpy ligand over Ph-tpy as a photoinitiator. The Fc-tpy complexes displayed an intense absorption band near 640 nm, which was absent in their Ph-tpy analogues. The Fc-tpy complexes (1 mM in 0.1 M TBAP) showed an irreversible cyclic voltammetric anodic response of the Fc/Fc(+) couple near 0.25 V. The Fc-tpy complexes displayed photodegradation in red light of 647 nm involving the formation of a ferrocenium ion (Fc(+)) and reactive oxygen species (ROS). Photoinduced release of the biotinylated ligands was observed from spectral measurements, and this possibly led to the controlled generation of an active platinum(II) species, which binds to the calf-thymus DNA used for this study. The biotinylated photoactive Fc-tpy complexes showed significant photoinduced cytotoxicity, giving a IC50 value of ∼7 μM in visible light of 400-700 nm with selective uptake in BT474 cancer cells over HBL-100 normal cells. Furthermore, ferrocenyl complexes resulted in light-induced ROS-mediated apoptosis, as indicated by DCFDA, annexin V/FITC staining, and sub-G1 DNA content determined by fluorescent activated cell sorting analysis. The phenyl analogues 4 and 5 were photostable, served as DNA intercalators, and demonstrated selective cytotoxicity in the cancer cells, giving IC50 values of ∼4 μM. PMID:27171926

  3. Synthesis and reactivity of dichloroboryl complexes of platinum(II).

    PubMed

    Charmant, Jonathan P H; Fan, Cheng; Norman, Nicholas C; Pringle, Paul G

    2007-01-01

    The reaction between [Pt(nbe)3] (nbe=norbornene), two equivalents of the phosphines PPh3, PMePh2 or PMe2Ph and 1 equivalent of BCl3 affords the platinum dichloroboryl species [PtCl(BCl2)(PPh3)2], [PtCl(BCl2)(PMePh2)2] and [PtCl(BCl2)(PMe2Ph)2]. All three complexes were characterised by X-ray crystallography and reveal that the boryl group lies trans to the chloride. With PMe3 as the phosphine, the complex [PtCl(BCl2)(PMe3)2] is isolated in high yield as a white crystalline powder although crystals suitable for X-ray crystallography were not obtained. Crystals were obtained of a product shown by X-ray crystallography to be the unusual dinuclear species [Pt2(BCl2)2(PMe3)4(micro-Cl)][BCl4] which reveals an arrangement in which two square planar platinum(II) centres are linked by a single bridging chloride which is trans to a BCl2 group on each platinum centre. The reaction of [PtCl(BCl2)(PMe3)2] with NEt3 or pyridine (py) affords the adducts [PtCl{BCl2(NEt3)}(PMe3)2] and [PtCl{BCl2(py)}(PMe3)2], respectively, both characterised spectroscopically. The reaction between [PtCl(BCl2)(PMe3)2] and either 4 equivalents of NHEt2 or piperidine (pipH) results in the mono-substituted boryl species [PtCl{BCl(NEt2)}(PMe3)2] and [PtCl{BCl(pip)}(PMe3)2], respectively, the former characterised by X-ray crystallography. Treatment of either [PtCl(BCl2)(PMe3)2] (in the presence of excess NEt3) or [PtCl{BCl(NEt2)}(PMe3)2] with catechol affords the B(cat) (cat=catecholate) derivative [PtCl{B(cat)}(PMe3)2] which is also formed in the reaction between [Pt(PMe3)4] and ClB(cat) and also from the slow decomposition of [Pt{B(cat)}2(PMe3)2] in dichloromethane over a period of months. The compound [Pt{B(cat)}2(PMe3)2] was prepared from the reaction between [Pt(PMe3)4] and B2(cat)2. PMID:17160181

  4. Antimicrobial Properties of Diamondlike Carbon-Silver-Platinum Nanocomposite Thin Films

    SciTech Connect

    CHRISTOPHER, BERRY

    2005-03-07

    Silver and platinum were incorporated within diamondlike carbon (DLC) thin films using a multicomponent target pulsed laser deposition process. Transmission electron microscopy of the DLC-silver and DLC-platinum composite films reveals that the metals self-assemble into particulate nanocomposite structures. Nanoindentation testing has shown that diamondlike carbon-silver films exhibit hardness and Young's modulus values of approximately 37 GPa and 333 GPa, respectively. DLC-silver-platinum films exhibited antimicrobial properties against Staphylococcus bacteria. Diamondlike carbon-biofunctional metal nanocomposite films have a variety of potential medical and antimicrobial applications.

  5. Dielectric loss peak due to platinum electrode porosity in lead zirconate titanate thin-film capacitors

    NASA Astrophysics Data System (ADS)

    Jung, D. J.; Dawber, M.; Ruediger, A.; Scott, J. F.; Kim, H. H.; Kim, Kinam

    2002-09-01

    Impedance spectroscopy measurements were carried out in situ on lead zirconate titanate capacitors 1.2×1.2 μm2 in size on a Samsung 4 Mbit 6 in, wafer. We show here that large dielectric loss appears at low frequencies, which is a constriction effect due to the porosity of the platinum electrode. Porous platinum electrodes facilitate an oxygen electrode reaction. The effect may be removed by annealing the platinum electrode at moderate temperature (300 °C). Such an anneal should thus be considered an essential step in the fabrication of a ferroelectric thin-film capacitor on Pt.

  6. Surface free energy of platinum nanoparticles at zero pressure: A molecular dynamic study

    NASA Astrophysics Data System (ADS)

    Akbarzadeh, Hamed; Abroshan, Hadi; Parsafar, Gholam Abbas

    2010-02-01

    Metallic nanoparticles are interesting because of their use in catalysis and sensors. The surface energy of the FCC platinum nanoparticles are investigated via molecular dynamics simulation using Quantum Sutton-Chen (QSC) potential. We have calculated the Gibbs free energy for the FCC platinum bulk and also for its nanoparticle. All calculations have been carried out at zero pressure. We have used the thermodynamic integration method to obtain the Gibbs free energy. The total Gibbs free energy is taken as the sum of its central bulk and its surface free energy. We have calculated the free energy of a platinum nanoparticle as a function of temperature.

  7. Evaluation of novel trans-sulfonamide platinum complexes against tumor cell lines.

    PubMed

    Pérez, Carlos; Díaz-García, C Vanesa; Agudo-López, Alba; del Solar, Virginia; Cabrera, Silvia; Agulló-Ortuño, M Teresa; Navarro-Ranninger, Carmen; Alemán, José; López-Martín, José A

    2014-04-01

    Platinum-based drugs, mainly cisplatin, are employed for the treatment of solid malignancies. However, cisplatin treatment often results in the development of chemoresistance, leading to therapeutic failure. Here, the antitumor activity of different trans-sulfonamide platinum complexes in a panel of human cell lines is presented. The cytotoxicity profiles and cell cycle analyses of these platinum sulfonamide complexes were different from those of cisplatin. These studies showed that complex 2b with cyclohexyldiamine and dansyl moieties had the best antitumoral activities. PMID:24589491

  8. Chemisorptive properties of platinum supported on zeolite Y studied by infrared emission spectroscopy

    SciTech Connect

    Primet, M.; Fouilloux, P.; Imelik, B.

    1980-02-01

    IR emission spectra obtained with a Fourier transform spectrometer at 110/sup 0/C revealed that pyridine adsorbed on platinum Y zeolite by coordination to the Na ion and by formation of pyridinium ions with bands at 755 and 685 cm/sup -//sup 1/; the formation of pyridinium ions suggested the presence of acidic OH groups formed during platinum reduction with hydrogen. Bands observed at 465 and 2070 cm/sup -//sup 1/ in the spectra of adsorbed carbon monoxide were attributed to linearly adsorbed species, and a band at 1850 cm/sup -//sup 1/ to carbon monoxide bonded to two platinum atoms. The experimental technique and its scope are discussed.

  9. Concentrations of platinum group elements in 122 U.S. coal samples

    USGS Publications Warehouse

    Oman, C.L.; Finkelman, R.B.; Tewalt, S.J.

    1997-01-01

    Analysis of more than 13,000 coal samples by semi-quantitative optical emission spectroscopy (OES) indicates that concentrations of the platinum group elements (iridium, palladium, platinum, osmium, rhodium, and ruthenium) are less than 1 ppm in the ash, the limit of detection for this method of analysis. In order to accurately determine the concentration of the platinum group elements (PGE) in coal, additional data were obtained by inductively coupled plasma mass spectroscopy, an analytical method having part-per-billion (ppb) detection limits for these elements. These data indicate that the PGE in coal occur in concentrations on the order of 1 ppb or less.

  10. NICKEL-BASE ALLOY

    DOEpatents

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  11. Rechargeable sodium alloy anode

    SciTech Connect

    Jow, T.R.

    1988-06-28

    A secondary battery is described comprising: (a) an anode which comprises an alloy of sodium and one or metals selected from the group consisting of tin, lead antimony, bismuth, selenium and tellerium, (b) an electrolyte comprising one or more organic solvents and one or more sodium salts dissolved therein forming dissolved sodium cations in solution; and (c) a cathode; the sodium cations from the electrolyte alloying with the one or more metals of the alloy in the anode during the charging of the battery and sodium in the alloy disoloving in the electrolyte during the discharging of the battery.

  12. Origin of platinum-group mineral assemblages in a mantle tectonite at Unst deduced from mineral chemistry and osmium isotopes

    NASA Astrophysics Data System (ADS)

    Badanina, Inna Yu.; Lord, Richard A.; Malitch, Kreshimir N.; Meisel, Thomas C.

    2013-04-01

    This study assesses textural and mineral chemistry data, whole-rock and mineral separate Os-isotope compositions for distinct platinum-group mineral (PGM) inclusion assemblages in an isolated chromitite pod at Harold's Grave, which occurrs in a mantle tectonite at Unst in the Shetland Ophiolite Complex, Scotland. The investigation employed a multi-technique approach and utilized a number of analytical techniques, including electron microprobe analysis, ID ICP-MS after high pressure acid digestion, and LA MC-ICP-MS. Two distinct PGM assemblages have been recognized. They comprise a 'primary' euhedrally shaped (up to 15 μm in size) PGM assemblage, which occur as inclusions in chromite, and a modified 'secondary' subeuhedral to anhedral PGM assemblage (up to 100 μm) associated with Ru-rich pentlandite observed in cracks filled by chlorite or serpentine, interstitially to chromite grains. A 'primary' PGM assemblage is represented by solitary grains of laurite or iridian osmium and composite grains that display well defined phase boundaries between two or three distinct PGM. The latter are dominated by laurite and iridian osmium, with subordinate laurite + osmian iridium + iridian osmium and rare laurite + Ir-Rh alloy + Rh-rich sulphide (possibly prassoite). The compositional variability of associated laurite and Os-rich alloys at Harold's Grave fit the predicted compositions of experiment W-1200-0.37 of Andrews and Brenan (2002) providing unequivocal information on conditions of their genesis, with the upper thermal stability of laurite in equilibrium with Os-rich alloys estimated at 1200 - 1250° C and f(S2) of 10-0.39-10-0.07. The inconsistent grouping of different primary PGM grains argues against an origin by subsolidus exsolution from the chromite host, providing useful information on conditions of their genesis. The 'secondary' PGM assemblage is polyphase, with dominant laurite, intimately intergrown with native osmium, irarsite and Ru-rich pentlandite. This

  13. Evaluation of zinc electrodeposition kinetics from acidic zinc sulfate solutions using a UPD-modified platinum substrate

    NASA Astrophysics Data System (ADS)

    Guerra, Eduard

    In general, underpotential deposition, UPD, describes the formation of a two-dimensional layer of metal onto a foreign substrate at a potential more positive than that for overpotential deposition, OPD, of the metal. Use of this phenomenon is proposed as a novel technique for generating smooth and reproducible electrode surfaces of reactive metals, using zinc UPD on platinum as a model case. The technique involves polarization of a polished platinum electrode to cause zinc UPD followed by a pulsed polarization step to grow a bulk zinc metal deposit on the electrode. The steady-state zinc deposition rate is recorded as a function of the applied potential. Mass transfer effects are controlled by the use of a rotating disc electrode. After each potential step, the electrode is polarized to a potential near the UPD potential, which dissolves the bulk zinc and regenerates the original smooth electrode. In this manner the voltage-current density relationship for the zinc deposition reaction may be mapped for a particular solution composition. Experiments were conducted to characterize UPD of zinc on platinum in magnesium sulphate and sulphuric acid supporting electrolytes. UPD of zinc on platinum occurs at a voltage approximately 1 V more positive than that of bulk zinc deposition with an estimated charge density of 260 +/- 30 muC cm-2, which is in the order of a monolayer of zinc. The UPD layer was determined to evolve into a Pt-Zn alloy which further inhibited hydrogen evolution, relative to the freshly deposited UPD layer. Bulk zinc deposition experiments were carried out in pure zinc sulphate solutions at 25°C, using the developed technique, and kinetic parameters were evaluated and compared to previously reported values. The Tafel slope for zinc deposition from pH neutral electrolytes was determined to be ca. 60 mV dec-1, while in highly acid electrolytes was ca. 30 mV dec-1, due to the inhibiting effect of hydrogen adsorption. The transition of zinc deposit

  14. Synthesis and Characterization of Bimetallic Core-Shell-Supported Platinum Monolayer Electrocatalysts for the Oxygen Reduction Reaction

    NASA Astrophysics Data System (ADS)

    Kuttiyiel, Kurian Abraham

    Fuel cells are expected to be one of the major clean energy sources in the near future. However, the slow kinetics of electrocatalytic oxygen reduction reaction (ORR) and the high loading of Platinum (Pt) for the cathode material are the urgent issues to be addressed since they determine the efficiency and the cost of this energy source. In this study, a new approach was developed for designing electrocatalysts for the ORR in fuel cells. These electrocatalysts consist of only one Pt monolayer on suitable carbon-supported Iridium-Nickel (IrNi) core-shell nanoparticles. The synthesis involved depositing a monolayer of Copper (Cu) on IrNi metal alloy surface at under-potentials, followed by galvanic displacement of the Cu monolayer with Pt. It was found that the electronic properties of Pt monolayer could be fine-tuned by the electronic and geometric effects introduced by the substrate metal. The Pt mass activity of the new Pt monolayer IrNi electrocatalysts was up to six times higher than the state-of-the-art commercial Pt/C catalysts. The structure and composition of the core-shell nanoparticles were verified using transmission electron microscopy and in situ X-ray absorption spectroscopy, while potential cycling test was employed to confirm the stability of the electrocatalyst. The formation of Ir shell on IrNi alloy during annealing due to thermal segregation was monitored by time-resolved synchrotron XRD measurements. Our experimental results, supported by computations, demonstrated an effective way of using Pt that can resolve key ORR problems which include inadequate activity and durability while minimizing the Pt loading.

  15. Trapping five-coordinate platinum(iv) intermediates.

    PubMed

    Shaw, Paul A; Phillips, Jessica M; Clarkson, Guy J; Rourke, Jonathan P

    2016-07-28

    The oxidation of three different complexes of the doubly cycloplatinated 2,6-di(4-fluorophenyl)pyridine ligand (namely DMSO, PPh3 and PPr3 derivatives, 1a, 1b and 1c, respectively) with the electrophilic oxidant iodobenzenedichloride was studied. In each case oxidation can yield a simple trans-dichloro platinum(iv) complex (2(t)), which subsequently isomerises to the cis isomer (2(c)). However, by changing the solvent, or performing the reaction in the presence of an additional ligating species, a five-coordinate intermediate can be trapped out and isolated. Thus, cationic species with additional DMSO or pyridine coordinated could be collected for the DMSO and PPh3 derivatives. The PPr3 derivative traps out the reactive five-coordinate species with an agostic interaction that subsequently induces a transcyclometallation reaction to give a complex with a singly cyclometallated pyridine and a cyclometallated phosphine, which was characterised crystallographically, (6c PMID:27335216

  16. RF magnetron sputtering of thick platinum coatings on glass microspheres

    SciTech Connect

    Meyer, S.F.; Hsieh, E.J.; Burt, R.J.

    1980-05-28

    Thick platinum coatings on glass microspheres are needed for proposed Laser Fusion targets. The spherical nature of these substrates coupled with the small dimensions (approx. 100 ..mu..m OD) make it difficult to achieve a smooth and uniform coating. Coating problems encountered include a rough surface and porous microstructure from the oblique incidence and lack of temperature and bias control, clumping of the microspheres causing non-uniformities, and particle accumulation causing cone defects. Sputtering parameters significantly affecting the coatings include total pressure, DC substrate bias, and the addition of doping gases. Using an ultrasonic vibrating screened cage and RF magnetron Sputtergun, we have successfully batch coated microspheres with up to 6 ..mu..m of Pt, with a surface roughness of 200 nm, thickness non-concentricity of 300 nm, and density greater than 98% of bulk Pt.

  17. Mitochondria-Localized Fluorescent BODIPY-Platinum Conjugate

    PubMed Central

    2015-01-01

    A convenient synthesis of a BODIPY (1,3,5,7-tetramethyl-8-(4-pyridyl)-4,4′-difluoroboradiazaindacene) labeled platinum compound (BODIPY-Pt) was developed by direct conjugation of cisplatin with the pyridine group of BODIPY. The membrane permeability and selective uptake of BODIPY-Pt in the mitochondria was studied using confocal laser scanning microscopy (CLSM). The fluorescent BODIPY-Pt conjugate showed high cellular proliferation inhibition against human cervical carcinoma (HeLa) and human breast cancer (MCF-7) cells, with half maximal inhibitory concentrations (IC50) of 27.37 and 12.14 μM, respectively. This work highlights the potential of using BODIPY labeled Pt compounds to realize the visualization of Pt distribution in living cells. PMID:25941554

  18. Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories

    SciTech Connect

    Zheng, Haimei; Smith, Rachel; Jun, Young-wook; Kisielowski, Christian; Dahmen, Ulrich; Alivisatos, A. Paul

    2009-02-09

    It is conventionally assumed that the growth of monodisperse colloidal nanocrystals requires a temporally discrete nucleation followed by monomer attachment onto the existing nuclei. However, recent studies have reported violations of this classical growth model, and have suggested that inter-particle interactions are also involved during the growth. Mechanisms of nanocrystal growth still remain controversial. Using in situ transmission electron microscopy, we show that platinum nanocrystals can grow either by monomer attachment from solution onto the existing particles or by coalescence between the particles. Surprisingly, an initially broad size distribution of the nanocrystals can spontaneously narrow. We suggest that nanocrystals take different pathways of growth based on their size- and morphology-dependent internal energies. These observations are expected to be highly relevant for other nanocrystal systems.

  19. Platinum Group Metal Recycling Technology Development - Final Report

    SciTech Connect

    Lawrence Shore

    2009-08-19

    BASF Catalysts LLC, formerly Engelhard Corporation, has completed a project to recover Pt from PEM fuel cell membrane electrode assemblies. The project, which began in 2003, has met the project objective of an environmentally-friendly, cost-effective method for recovery of platinum without release of hydrogen fluoride. This has been achieved using a combination of milling, dispersion and acid leaching. 99% recovery of Pt was achieved, and this high yield can be scaled up using one vessel for a single leach and rinse. Leaching was been successfully achieved using a 10% solids level, double the original target. At this solids content, the reagent and utility costs represent ~0.35% of the Pt value of a lot, using very conservative assumptions. The main cost of the process is capital depreciation, followed by labor.

  20. Potentiometric sensors with carbon black supporting platinum nanoparticles.

    PubMed

    Paczosa-Bator, Beata; Cabaj, Leszek; Piech, Robert; Skupień, Krzysztof

    2013-11-01

    For the first time, a single-piece, all-solid-state ion-selective electrode was fabricated with carbon black supporting platinum nanoparticles (PtNPs-CB) and a polymeric membrane. The PtNPs-CB, as an intermediate layer, was drop-casted directly on the solid substrate, and then an ionophore-doped solvent polymeric membrane was added in order to form a sensor. The performance of the newly developed electrodes was evaluated on the basis of potassium and nitrate ions. The stability of the electrical potential for the electrodes was examined by performing current-reversal chronopotentiometry, and the influence of the interfacial water film was assessed by the potentiometric aqueous-layer test. Fabricated potassium- and nitrate-selective electrodes displayed a Nernstian slope and several outstanding properties such as high long-term potential stability, potential repeatability, and reproducibility. PMID:24094044

  1. Emerging magnetic order in platinum atomic contacts and chains

    PubMed Central

    Strigl, Florian; Espy, Christopher; Bückle, Maximilian; Scheer, Elke; Pietsch, Torsten

    2015-01-01

    The development of atomic-scale structures revealing novel transport phenomena is a major goal of nanotechnology. Examples include chains of atoms that form while stretching a transition metal contact or the predicted formation of magnetic order in these chains, the existence of which is still debated. Here we report an experimental study of the magneto-conductance (MC) and anisotropic MC with atomic-size contacts and mono-atomic chains of the nonmagnetic metal platinum. We find a pronounced and diverse MC behaviour, the amplitude and functional dependence change when stretching the contact by subatomic distances. These findings can be interpreted as a signature of local magnetic order in the chain, which may be of particular importance for the application of atomic-sized contacts in spintronic devices of the smallest possible size. PMID:25649440

  2. Aqueous synthesis of near-infrared highly fluorescent platinum nanoclusters

    NASA Astrophysics Data System (ADS)

    García Fernández, Jenifer; Trapiella-Alfonso, Laura; Costa-Fernández, José M.; Pereiro, Rosario; Sanz-Medel, Alfredo

    2015-05-01

    A one-step synthesis of near infrared fluorescent platinum nanoclusters (PtNCs) in aqueous medium is described. The proposed optimized procedure for PtNC synthesis is rather simple, fast and it is based on the direct metal reduction with NaBH4. Bidentated thiol ligands (lipoic acid) were selected as nanoclusters stabilizers in water media. The structural characterization revealed attractive features of the PtNCs, including small size, high water solubility, near-infrared luminescence centered at 680 nm, long-term stability and the highest quantum yield in water reported so far (47%) for PtNCs. Moreover, their stability in different pH media and an ionic strength of 0.2 M NaCl was studied and no significant changes in fluorescence emission were detected. In brief, they offer a new type of fluorescent noble metal nanoprobe with a great potential to be applied in several fields, including biolabeling and imaging experiments.

  3. Platinum(iv) anticancer prodrugs - hypotheses and facts.

    PubMed

    Gibson, Dan

    2016-08-16

    In this manuscript we focus on Pt(iv) anticancer prodrugs. We explore the main working hypotheses for the design of effective Pt(iv) prodrugs and note the exceptions to the common assumptions that are prevalent in the field. Special attention was devoted to the emerging class of "dual action" Pt(iv) prodrugs, where bioactive ligands are conjugated to the axial positions of platinum in order to obtain orthogonal or complementary effects that will increase the efficacy of killing the cancer cells. We discuss the rationale behind the design of the "dual action" prodrugs and the results of the pharmacological studies obtained. Simultaneous release of two bioactive moieties inside the cancer cells often triggers several processes that together determine the fate of the cell. Pt(iv) complexes provide many opportunities for applying new concepts in targeting, synergistic cell killing and exploiting novel nanodelivery systems. PMID:27214873

  4. Coulometric study of ethanol adsorption at a polycrystalline platinum electrode

    NASA Astrophysics Data System (ADS)

    Gilman, Sol

    2012-01-01

    For the first time, use of a novel pre-conditioning sequence and measurements of hydrogen blockage during fast cathodic scans has enabled the determination of rates of accumulation of ethanolic species on the surface of a platinum electrode under well-controlled conditions of surface cleanliness/activity and mass transport. For dilute solutions of ethanol in 1 N perchloric acid (HClO4), oxidative adsorption rates maximize at 0.3 V, drop off at more cathodic potentials due to competition with adsorbed hydrogen and drop off at more anodic potentials due to oxidative processes that produce products released to the electrolyte. The time and concentration dependence of adsorption follows relationships that are common for adsorption on a heterogeneous surface. Some evidence are presented supporting a mechanism for production of soluble products that does not involve the adsorbed species that are detected through the measurement of blockage of hydrogen adsorption sites.

  5. Unsaturated platinum-rhenium cluster complexes. Synthesis, structures and reactivity.

    PubMed

    Adams, Richard D; Captain, Burjor; Smith, Mark D; Beddie, Chad; Hall, Michael B

    2007-05-01

    Two new compounds PtRe3(CO)12(PBut3)(micro-H)3, 9, and PtRe2(CO)9(PBut3)(micro-H)2, 10, were obtained from the reaction of Pt(PBut3)2 with Re3(CO)12(micro-H3), 8, at room temperature. Compound 9 contains a butterfly cluster of four metals formed by the insertion of the platinum atom from a Pt(PBut3) group into one of the hydride-bridged metal-metal bonds of 8. The three hydrido ligands are bridging ligands across each of three new Pt-Re bonds. Compound 10 contains a triangular PtRe2 cluster with two hydrido ligands; one bridges a Pt-Re bond, and the other bridges the Re-Re bond. The new compound Pt2Re2(CO)7(PBut3)2(micro-H)2, 11, was obtained from the reaction of 8 with Pt(PBut3)2 in hexane at reflux. Compound 11 was also obtained from 10 by reaction with an additional quantity of Pt(PBut3)2. Compound 11 contains a tetrahedral cluster of four metal atoms with two dynamically active hydrido ligands. A CO ligand on one of the two platinum atoms also exchanges between the two platinum atoms rapidly on the NMR time scale. Compound 11 is electronically unsaturated and was found to add hydrogen at room temperature to form the tetrahydrido cluster complex, Pt2Re2(CO)7(PBut3)2(micro-H)4, 12. Compound 12 has a structure similar to 11 but contains one triply bridging hydrido ligand, two edge bridging hydrido ligands, and one terminal hydrido ligand on one of the two platinum atoms. A kinetic isotope effect D/H of 1.5(1) was determined for the addition of H2 to 11. Hydrogen can be eliminated from 12 by heating to 97 degrees C or by the application of UV-vis irradiation at room temperature. Compound 12 adds CO at room temperature to yield the complex Pt2Re2(CO)8(PBut3)2(micro-H)4, 13, which contains a planar cluster of four metal atoms with a Pt-Pt bond and four edge bridging hydrido ligands. Compounds 11 and 12 react with Pt(PBut3)2 to yield the known five metal cluster complexes Pt3Re2(CO)6(PBut3)3(micro-H)2, 14, and Pt3Re2(CO)6(PBut3)3(micro-H)4, 15, respectively. Density

  6. Preparation of platinum nanoparticles in liquids by laser ablation method

    NASA Astrophysics Data System (ADS)

    Binh Nguyen, The; Dinh Nguyen, Thanh; Nguyen, Quang Dong; Trinh Nguyen, Thi

    2014-09-01

    Platinum (Pt) nanoparticles were prepared in solutions of ethanol and TSC (trisodium citrate—Na3C6H5O7.nH2O) in water by laser ablation method using Nd:YAG laser. The role of laser fluence, laser wavelength and concentration of surfactant liquids in laser ablation process were investigated. The morphology, size distribution and optical properties of the Pt nanoparticles (NPs) were observed by transmission electron microscopy (TEM), UV-vis spectrometer and x-ray diffraction measurements. The average diameter of Pt NPs prepared in ethanol and TSC solutions ranges around 7-9 nm and 10-12 nm, respectively. The results showed advantages of the laser ablation method.

  7. Monolayer graphene growth on sputtered thin film platinum

    SciTech Connect

    Kang, Byung Jin; Mun, Jeong Hun; Cho, Byung Jin; Hwang, Chan Yong

    2009-11-15

    It is demonstrated that sputtered thin film platinum (Pt) can be used as a catalytic metal for graphene growth on metal. During the crystallization annealing, the sputtered Pt is crystallized mostly into Pt (111) orientation, maintaining excellent surface roughness with no sign of agglomeration. The relatively lower carbon solubility in Pt and the good surface roughness of the thin film Pt enable us to form a uniform monolayer graphene on Pt over the entire region of the thin film Pt/SiO{sub 2}/Si substrate by carbon dissolution and segregation method processed in a methane ambient. The monolayer graphene grown on Pt has been successfully transferred to SiO{sub 2}/Si substrate by simple wet etching of Pt. The results of Raman spectroscopic and scanning tunneling microscopic measurements of the synthesized graphene layer are presented.

  8. Nanoparticle growth. Facet development during platinum nanocube growth.

    PubMed

    Liao, Hong-Gang; Zherebetskyy, Danylo; Xin, Huolin; Czarnik, Cory; Ercius, Peter; Elmlund, Hans; Pan, Ming; Wang, Lin-Wang; Zheng, Haimei

    2014-08-22

    An understanding of how facets of a nanocrystal develop is critical for controlling nanocrystal shape and designing novel functional materials. However, the atomic pathways of nanocrystal facet development are mostly unknown because of the lack of direct observation. We report the imaging of platinum nanocube growth in a liquid cell using transmission electron microscopy with high spatial and temporal resolution. The growth rates of all low index facets are similar until the {100} facets stop growth. The continuous growth of the rest facets leads to a nanocube. Our calculation shows that the much lower ligand mobility on the {100} facets is responsible for the arresting of {100} growing facets. These findings shed light on nanocrystal shape-control mechanisms and future design of nanomaterials. PMID:25146287

  9. Sum Frequency Generation Studies of Hydrogenation Reactions on Platinum Nanoparticles

    SciTech Connect

    Krier, James M.

    2013-08-31

    Sum Frequency Generation (SFG) vibrational spectroscopy is used to characterize intermediate species of hydrogenation reactions on the surface of platinum nanoparticle catalysts. In contrast to other spectroscopy techniques which operate in ultra-high vacuum or probe surface species after reaction, SFG collects information under normal conditions as the reaction is taking place. Several systems have been studied previously using SFG on single crystals, notably alkene hydrogenation on Pt(111). In this thesis, many aspects of SFG experiments on colloidal nanoparticles are explored for the first time. To address spectral interference by the capping agent (PVP), three procedures are proposed: UV cleaning, H2 induced disordering and calcination (core-shell nanoparticles). UV cleaning and calcination physically destroy organic capping while disordering reduces SFG signal through a reversible structural change by PVP.

  10. Solid-state dewetting of continuous thin platinum coatings

    NASA Astrophysics Data System (ADS)

    Hanief, N.; Topić, M.; Pineda-Vargas, C.

    2015-11-01

    Thermal stability of coatings is of crucial importance for reliability of electronic devices operating at high temperature. Thus, we investigated the Cr-Pt system where a thin platinum coating of 0.1 μm was deposited on chromium substrate and annealed at 1000 °C for 8 h. The scanning electron microscope (SEM) showed that a continuous and uniformly deposited Pt coating experienced the formation of "islands" after annealing. The grain-boundary grooving, dewetting and agglomeration were the main mechanisms of degradation of thermally annealed coatings. Results by μ-PIXE (particle-induced X-ray emission) and transmission electron microscope (TEM) showed the presence of Cr3Pt phase in "islands" and the coating thickness was approximately 0.5 μm. The surrounding regions were left uncovered due to coating agglomeration at the expense of initially deposited coating.

  11. Platinum electrodeposition on unsupported carbon nano-onions.

    PubMed

    Santiago, Diana; Rodríguez-Calero, Gabriel G; Palkar, Amit; Barraza-Jimenez, Diana; Galvan, D H; Casillas, Gilberto; Mayoral, Alvaro; Jose-Yacamán, Miguel; Echegoyen, Luis; Cabrera, Carlos R

    2012-12-11

    An effort to develop smaller, well-dispersed catalytic materials electrochemically on high-surface-area carbon supports is required for improved fuel cell performance. A high-surface-area carbon material of interest is carbon nano-onions (CNOs), also known as multilayer fullerenes. The most convenient synthesis method for CNOs is annealing nanodiamond particles, thus retaining the size of the precursors and providing the possibility to prepare very small nanocatalysts using electrochemical techniques. In terms of pure metal catalysts, platinum is the most common catalyst used in fuel cells. The combination of Pt nanoparticles with CNOs could lead to new catalytic nanomaterials. In this work, this was accomplished by using a rotating disk-slurry electrode (RoDSE) technique. The Pt/CNO catalysts were prepared from slurries that contained functionalized CNOs and K(2)PtCl(6) as the platinum precursor in aqueous 0.1 M H(2)SO(4) solution. X-ray photoelectron spectroscopy results showed that 37% of the Pt on the CNOs is metallic Pt whereas 63% had higher binding energies, which is evidence of higher oxidation states or the presence of Pt atoms and clusters on CNOs. However, aberration-corrected scanning transmission electron microscopy of the Pt/CNOs confirmed the presence of Pt atoms and clusters on CNOs. Thermal gravimetric analysis showed the excellent thermal stability of the Pt/CNOs and a lower onset potential for the electrochemical oxidation of methanol compared to that of commercial Pt/Vulcan catalyst material. The computational method confirmed the Pt atoms' location at CNOs surface sites. Geometric parameters for distances between Pt atoms in the 3Pt/CNOs molecular system from our theoretical calculations are in agreement with the respective parameters obtained experimentally. The combination of CNO with RoDSE presents a new highly dispersed catalyst nanomaterial. PMID:23145813

  12. Ozone enhancement of platinum asthma in a primate model

    SciTech Connect

    Biagini, R.E.; Moorman, W.J.; Lewis, T.R.; Bernstein, I.L.

    1986-10-01

    Three groups of adult male cynomolgus monkeys (Macaca fascicularis) were exposed to either 200 micrograms/m/sup 3/ ammonium hexachloroplatinate ((NH/sub 4/)2PtCl/sub 6/), 200 micrograms (NH/sub 4/)2PtCl/sub 6/ concurrently with 1 ppm ozone (O/sub 3/), or to 1 ppm O/sub 3/ only. The animals were exposed by inhalation for 6 h per day, 5 days per week for 12 wk. The experimental design included methacholine preexposure and Na2PtCl/sub 6/ bronchoprovocation challenge evaluations, Na2PtCl/sub 6/ threshold skin tests, and sera for analyses of antibodies. Two weeks after the 12-wk exposures, these same indices were reevaluated. Baseline pulmonary function was not significantly affected by the exposure regimens; however, the combination of exposure to O/sub 3/ and (NH/sub 4/)2PtCl/sub 6/ significantly reduced the concentration of platinum (Pt) salt and methacholine necessary to increase average pulmonary flow resistance (RL) 200% (EC200 RL). Ozone or Pt exposure alone had no significant effect on these parameters. Platinum and methacholine EC200 RL values were highly correlated for both Pt-exposed groups after exposure. These data indicated that combined O/sub 3/ and Pt exposure significantly increased specific (Pt) and nonspecific (methacholine) bronchial hyperreactivity more often than did exposure to either O/sub 3/ or the Pt salt alone. Combined O/sub 3/ plus Pt exposure also significantly increases the incidence of positive Pt skin tests when compared with the other exposure groups. Similar to the human experience, radioallergosorbent testing (RAST) for Pt-specific antibodies was not as sensitive as direct skin testing in identifying allergic persons.

  13. Tissue cell assisted fabrication of tubular catalytic platinum microengines

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Moo, James Guo Sheng; Pumera, Martin

    2014-09-01

    We report a facile platform for mass production of robust self-propelled tubular microengines. Tissue cells extracted from fruits of banana and apple, Musa acuminata and Malus domestica, are used as the support on which a thin platinum film is deposited by means of physical vapor deposition. Upon sonication of the cells/Pt-coated substrate in water, microscrolls of highly uniform sizes are spontaneously formed. Tubular microengines fabricated with the fruit cell assisted method exhibit a fast motion of ~100 bodylengths per s (~1 mm s-1). An extremely simple and affordable platform for mass production of the micromotors is crucial for the envisioned swarms of thousands and millions of autonomous micromotors performing biomedical and environmental remediation tasks.We report a facile platform for mass production of robust self-propelled tubular microengines. Tissue cells extracted from fruits of banana and apple, Musa acuminata and Malus domestica, are used as the support on which a thin platinum film is deposited by means of physical vapor deposition. Upon sonication of the cells/Pt-coated substrate in water, microscrolls of highly uniform sizes are spontaneously formed. Tubular microengines fabricated with the fruit cell assisted method exhibit a fast motion of ~100 bodylengths per s (~1 mm s-1). An extremely simple and affordable platform for mass production of the micromotors is crucial for the envisioned swarms of thousands and millions of autonomous micromotors performing biomedical and environmental remediation tasks. Electronic supplementary information (ESI) available: Related video. See DOI: 10.1039/c4nr03720k

  14. Screw Thread-Like Platinum-Copper Nanowires Bounded with High-Index Facets for Efficient Electrocatalysis.

    PubMed

    Zhang, Nan; Bu, Lingzheng; Guo, Shaojun; Guo, Jun; Huang, Xiaoqing

    2016-08-10

    Introducing high-index facets into nanocrystals (NCs) is an effective way for boosting the electrocatalytic intrinsic activity. However, the established NCs with high-index facets usually have a big diameter, which makes them exhibit a very limited surface area, thus finally limited mass activity. To embody the advantage of high-index facets in enhancing electrocatalysis well, the better nanostructures should meet the requirement of both high surface area and high-density high-index facets. Herein, we report our important advances in making the unique three-dimensional screw thread-like platinum-copper (Pt-Cu) alloy nanowires (NWs) with high-density high-index facets and controlled composition. Such special NWs with a high surface area of 46.90 m(2) g(-1) exhibit much better performance than the PtCu nanoparticles (NPs) in alcohol electrooxidations. This work opens a new way for maximizing the electrocatalytic performance by introducing high-index facets into high-surface-area stable bimetallic NWs. PMID:27347609

  15. First-principles study of spin-dependent thermoelectric properties of half-metallic Heusler thin films between platinum leads

    NASA Astrophysics Data System (ADS)

    Comtesse, Denis; Geisler, Benjamin; Entel, Peter; Kratzer, Peter; Szunyogh, László

    2014-03-01

    The electronic and magnetic bulk properties of half-metallic Heusler alloys such as Co2FeSi,Co2FeAl, Co2MnSi, and Co2MnAl are investigated by means of ab initio calculations in combination with Monte Carlo simulations. The electronic structure is analyzed using the plane-wave code quantum espresso and the magnetic exchange interactions are determined using the Korringa-Kohn-Rostoker (KKR) method. From the magnetic exchange interactions, the Curie temperature is obtained via Monte Carlo simulations. In addition, electronic transport properties of trilayer systems consisting of two semi-infinite platinum leads and a Heusler layer in-between are obtained from the fully relativistic screened KKR method by employing the Kubo-Greenwood formalism. The focus is on thermoelectric properties, namely, the Seebeck effect and its spin dependence. It turns out that already thin Heusler layers provide highly spin-polarized currents. This is attributed to the recovery of half-metallicity with increasing layer thickness. The absence of electronic states of spin-down electrons around the Fermi level suppresses the contribution of this spin channel to the total conductance, which strongly influences the thermoelectric properties and results in a spin polarization of thermoelectric currents.

  16. Simulation of Drawing of Small Stainless Steel Platinum Medical Tubes--Influence of the Tool Parameters on the Forming Limit

    SciTech Connect

    Linardon, Camille; Affagard, Jean-Sebastien; Chagnon, Gregory; Favier, Denis; Gruez, Benoit

    2011-05-04

    Tube cold drawing processes are used to reduce tube diameters and thickness, while pulling them through a conical converging die with or without inner plug. An accurate modelling of the material deformation and friction behaviour is required in order to well describe these processes.The study concerns a stainless steel platinum alloy. The material behaviour is characterised through tensile tests at strain rates as close as possible to the high strain rates reached during the drawing process. The results are fitted with an isotropic temperature-independent Johnson Cook constitutive equation. The modelling of floating plug drawing is performed on a ABAQUS/Explicit model. Friction coefficient is difficult to estimate with mechanical experimental tests, thus an inverse analysis is carried out to fit this parameter thanks to finite element simulation and experimental drawing tests. Drawing force measurements are recorded during the forming process. The Cockroft-Latham criterion is applied to understand the different process parameters influence on tube drawing and its accuracy for drawing process is evaluated.

  17. Influence of carbon chain length on the synthesis and yield of fatty amine-coated iron-platinum nanoparticles

    NASA Astrophysics Data System (ADS)

    Taylor, Robert M.; Monson, Todd C.; Gullapalli, Rama R.

    2014-06-01

    Iron oxide nanoparticles are among the most widely used and characterized magnetic nanoparticles. However, metal alloys such as superparamagnetic iron-platinum particles (SIPPs), which have better magnetic properties, are receiving increased attention. Scalable techniques to routinely synthesize SIPPs in bulk need further study. Here, we focus on the role played by the fatty amine ligand in the formation of the bimetallic FePt nanocrystal. More specifically, we compare the effect of varying lengths of fatty amine ligands on the shape, structure, uniformity, composition, and magnetic properties of the SIPPs. We synthesized SIPPs by employing a `green' thermal decomposition reaction using fatty amine ligands containing 12 to 18 carbons in length. Greater fatty amine chain length increased the polydispersity, particle concentration, iron concentration, and the stability of the SIPPs. Additionally, longer reflux times increased the diameter of the particles, but decreased the iron concentration, suggesting that shorter reaction times are preferable. Fourier transform infrared spectroscopy of the SIPPs indicates that the ligands are successfully bound to the FePt cores through the amine group. Superconducting quantum interference device magnetometry measurements suggest that all of the SIPPs were superparamagnetic at room temperature and that SIPPs synthesized using tetradecylamine had the highest saturation magnetization. Our findings indicate that the octadecylamine ligand, which is currently used for the routine synthesis of SIPPs, may not be optimal. Overall, we found that using tetradecylamine and a 30-min reflux reaction resulted in optimal particles with the highest degree of monodispersity, iron content, stability, and saturation magnetization.

  18. Simulation of Drawing of Small Stainless Steel Platinum Medical Tubes—Influence of the Tool Parameters on the Forming Limit

    NASA Astrophysics Data System (ADS)

    Linardon, Camille; Affagard, Jean-Sébastien; Chagnon, Grégory; Favier, Denis; Gruez, Benoit

    2011-05-01

    Tube cold drawing processes are used to reduce tube diameters and thickness, while pulling them through a conical converging die with or without inner plug. An accurate modelling of the material deformation and friction behaviour is required in order to well describe these processes. The study concerns a stainless steel platinum alloy. The material behaviour is characterised through tensile tests at strain rates as close as possible to the high strain rates reached during the drawing process. The results are fitted with an isotropic temperature-independent Johnson Cook constitutive equation. The modelling of floating plug drawing is performed on a ABAQUS/Explicit model. Friction coefficient is difficult to estimate with mechanical experimental tests, thus an inverse analysis is carried out to fit this parameter thanks to finite element simulation and experimental drawing tests. Drawing force measurements are recorded during the forming process. The Cockroft-Latham criterion is applied to understand the different process parameters influence on tube drawing and its accuracy for drawing process is evaluated.

  19. Significance of β-dehydrogenation in ethanol electro-oxidation on platinum doped with Ru, Rh, Pd, Os and Ir.

    PubMed

    Sheng, Tian; Lin, Wen-Feng; Hardacre, Christopher; Hu, P

    2014-07-14

    In the exploration of highly efficient direct ethanol fuel cells (DEFCs), how to promote the CO2 selectivity is a key issue which remains to be solved. Some advances have been made, for example, using bimetallic electrocatalysts, Rh has been found to be an efficient additive to platinum to obtain high CO2 selectivity experimentally. In this work, the mechanism of ethanol electrooxidation is investigated using the first principles method. It is found that CH3CHOH* is the key intermediate during ethanol electrooxidation and the activity of β-dehydrogenation is the rate determining factor that affects the completeness of ethanol oxidation. In addition, a series of transition metals (Ru, Rh, Pd, Os and Ir) are alloyed on the top layer of Pt(111) in order to analyze their effects. The elementary steps, α-, β-C-H bond and C-C bond dissociations, are calculated on these bimetallic M/Pt(111) surfaces and the formation potential of OH* from water dissociation is also calculated. We find that the active metals increase the activity of β-dehydrogenation but lower the OH* formation potential resulting in the active site being blocked. By considering both β-dehydrogenation and OH* formation, Ru, Os and Ir are identified to be unsuitable for the promotion of CO2 selectivity and only Rh is able to increase the selectivity of CO2 in DEFCs. PMID:24869778

  20. Distribution of platinum-group elements in the Bati Kef chromite deposit, Guleman-Elazig area, eastern Turkey.

    USGS Publications Warehouse

    Page, N.J.; Engin, T.; Singer, D.A.; Haffty, J.

    1984-01-01

    The distribution of platinum-group elements (PGE) within chromite deposits from an ophiolite is determined and their geochemistry compared with chromitites from ophiolites and from stratiform layered complexes elsewhere in the world. The Guleman area chromitites are lenses of layered massive to disseminated chromite in dunite or sheared harzburgite along and near the dunite-harzburgite contact. PGE were analysed by a fire assay/spectrographic method. The analyses, in ppb, varied narrowly near the detection limits; only Ir was mostly detected (24-27 ppb) . The data plot as independent, slight variations of individual PGE with crude and irregular spatial distributions, oriented with respect to the land surface. Based on studies elsewhere, the PGE reside mostly in laurite, erlichmanite and Os/Ir alloys included within or interstitial to chromite. Average values for each PGE were normalized with respect to average chondrite concentrations for these elements. All patterns for ophiolite-chromitites (5) show depletion of these elements relative to chondrite average concentrations, with greater depletion in Pt and Pd than in Ir and Ru, to produce patterns with negative slopes. Chromitites from differentiated stratiform complexes (2) yield patterns with positive slopes. -G.J.N.

  1. Uptake of platinum by zebrafish (Danio rerio) and ramshorn snail (Marisa cornuarietis) and resulting effects on early embryogenesis.

    PubMed

    Osterauer, Raphaela; Haus, Nadine; Sures, Bernd; Köhler, Heinz-R

    2009-11-01

    Platinum group elements (PGEs), platinum, palladium and rhodium are widely used in automobile catalytic converters. PGEs are emitted into the environment and enter the aquatic ecosystem via runoff rainwater. The present study investigated the bioavailability of platinum chloride for the zebrafish (Danio rerio) and the ramshorn snail (Marisa cornuarietis) and determined the bioaccumulation rate of platinum. Applying the fish early life stage assay for D. rerio (DarT) and the Marisa embryo toxicity test ("Mariett") for M. cornuarietis, effects of platinum chloride on the embryonic development were investigated. Platinum concentrations tested in this study ranged from environmentally relevant concentrations of 38 ng L(-1) up to a concentration of 74.2 microg L(-1) for D. rerio and of 200 ngL(-1) up to 98.7 microg L(-1) for M. cornuarietis. Platinum was found to be accumulated in both organisms. Bioaccumulation factors (BAFs) were in the range of 5-55 for D. rerio and of 218.4-723.9 for M. cornuarietis, depending on the tested Pt concentrations. During the embryonic development, platinum was shown to alter the heart rate of both organisms already at the lowest tested concentration. At higher concentrations, platinum decelerated the hatching rate of the embryos of both species. Additionally, a retardation of the general development and a loss of weight due to platinum exposure was observed in M. cornuarietis. Results of this study contribute important data on the ecotoxicity of a rarely studied element. PMID:19796790

  2. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs

    PubMed Central

    Johnstone, Timothy C.; Suntharalingam, Kogularamanan; Lippard, Stephen J.

    2016-01-01

    The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer,, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing non-classical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore non-classical platinum(II) complexes with trans geometry and with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-treat agents, and photoactivatable platinum(IV) complexes. Nanodelivery particles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations including supramolecular self-assembled structures, proteins, peptides, metal-organic frameworks, and coordination polymers will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also reflect our optimism that the next generation of platinum cancer drugs is about to arrive. PMID:26865551

  3. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs.

    PubMed

    Johnstone, Timothy C; Suntharalingam, Kogularamanan; Lippard, Stephen J

    2016-03-01

    The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing nonclassical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown, and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this Review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore nonclassical platinum(II) complexes with trans geometry or with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-threat agents, and photoactivatable platinum(IV) complexes. Nanoparticles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations, including supramolecular self-assembled structures, proteins, peptides, metal-organic frameworks, and coordination polymers, will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also will reflect our optimism that the next generation of approved platinum cancer drugs is about to arrive. PMID:26865551

  4. Investigating the performance of catalyst layer micro-structures with different platinum loadings

    SciTech Connect

    Khakaz-Baboli, Moben; Harvey, David; Pharoah, Jon

    2012-07-01

    In this study a four-phase micro-structure of a PEFC catalyst layer was reconstructed by randomly placing overlapping spheres for each solid catalyst phase. The micro-structure was mirrored to make a micro-structure. A body-fit computational mesh was produced for the reconstructed micro-structure in OpenFOAM. Associated conservation equations were solved within all the phases with electrochemical reaction as the boundary condition at the interface between ionomer and platinum phases. The study is focused on the platinum loading of CL. The polarization curves of the micro-structure performance have been compared for different platinum loadings. This paper gives increased insight into the relatively greater losses at decreased platinum loadings.

  5. Fluoropyrimidine and platinum toxicity pharmacogenetics: an umbrella review of systematic reviews and meta-analyses.

    PubMed

    Campbell, Jared M; Bateman, Emma; Peters, Micah Dj; Bowen, Joanne M; Keefe, Dorothy M; Stephenson, Matthew D

    2016-03-01

    Fluoropyrimidine (FU) and platinum-based chemotherapies are greatly complicated by their associated toxicities. This umbrella systematic review synthesized all systematic reviews that investigated associations between germline variations and toxicity, with the aim of informing personalized medicine. Systematic reviews are important in pharmacogenetics where false positives are common. Four systematic reviews were identified for FU-induced toxicity and three for platinum. Polymorphisms of DPYD and TYMS, but not MTHFR, were statistically significantly associated with FU-induced toxicity (although only DPYD had clinical significance). For platinum, GSTP1 was found to not be associated with toxicity. This umbrella systematic review has synthesized the best available evidence on the pharmacogenetics of FU and platinum toxicity. It provides a useful reference for clinicians and identifies important research gaps. PMID:26894782

  6. Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution.

    PubMed

    Kye, Joohong; Shin, Muncheol; Lim, Bora; Jang, Jae-Won; Oh, Ilwhan; Hwang, Seongpil

    2013-07-23

    Pt monolayer decorated gold nanostructured film on planar p-type silicon is utilized for photoelectrochemical H2 generation in this work. First, gold nanostructured film on silicon was spontaneously produced by galvanic displacement of the reduction of gold ion and the oxidation of silicon in the presence of fluoride anion. Second, underpotential deposition (UPD) of copper under illumination produced Cu monolayer on gold nanostructured film followed by galvanic exchange of less-noble Cu monolayer with more-noble PtCl6(2-). Pt(shell)/Au(core) on p-type silicon showed the similar activity with platinum nanoparticle on silicon for photoelectrochemical hydrogen evolution reaction in spite of low platinum loading. From Tafel analysis, Pt(shell)/Au(core) electrocatalyst shows the higher area-specific activity than platinum nanoparticle on silicon demonstrating the significant role of underlying gold for charge transfer reaction from silicon to H(+) through platinum catalyst. PMID:23750804

  7. Advances in drug delivery system for platinum agents based combination therapy

    PubMed Central

    Kang, Xiang; Xiao, Hai-Hua; Song, Hai-Qin; Jing, Xia-Bin; Yan, Le-San; Qi, Ruo-Gu

    2015-01-01

    Platinum-based anticancer agents are widely used as first-line drugs in cancer chemotherapy for various solid tumors. However, great side effects and occurrence of resistance remain as the major drawbacks for almost all the platinum drugs developed. To conquer these problems, new strategies should be adopted for platinum drug based chemotherapy. Modern nanotechnology has been widely employed in the delivery of various therapeutics and diagnostic. It provides the possibility of targeted delivery of a certain anticancer drug to the tumor site, which could minimize toxicity and optimize the drug efficacy. Here, in this review, we focused on the recent progress in polymer based drug delivery systems for platinum-based combination therapy. PMID:26779373

  8. Synthesis and characterisation of platinum (II) salphen complex and its interaction with calf thymus DNA

    NASA Astrophysics Data System (ADS)

    Sukri, Shahratul Ain Mohd; Heng, Lee Yook; Karim, Nurul Huda Abd

    2014-09-01

    A platinum (II) salphen complex was synthesised by condensation reaction of 2,4-dihydroxylbenzaldehyde and o-phenylenediamine with potassium tetrachloroplatinate to obtain N,N'-Bis-4-(hydroxysalicylidene)-phenylenediamine-platinum (II). The structure of the complex was confirmed by 1H and 13C NMR spectroscopy, FTIR spectroscopy, CHN elemental analyses and ESI-MS spectrometry. The platinum (II) salphen complex with four donor atoms N2O2 from its salphen ligand coordinated to platinum (II) metal centre were determined. The binding mode and interaction of this complex with calf thymus DNA was determined by UV/Vis DNA titration and emission titration. The intercalation between the DNA bases by π-π stacking due to its square planar geometry and aromatic rings structures was proposed.

  9. CVD aluminiding process for producing a modified platinum aluminide bond coat for improved high temperature performance

    NASA Technical Reports Server (NTRS)

    Nagaraj, Bangalore A. (Inventor); Williams, Jeffrey L. (Inventor)

    2003-01-01

    A method of depositing by chemical vapor deposition a modified platinum aluminide diffusion coating onto a superalloy substrate comprising the steps of applying a layer of a platinum group metal to the superalloy substrate; passing an externally generated aluminum halide gas through an internal gas generator which is integral with a retort, the internal gas generator generating a modified halide gas; and co-depositing aluminum and modifier onto the superalloy substrate. In one form, the modified halide gas is hafnium chloride and the modifier is hafnium with the modified platinum aluminum bond coat comprising a single phase additive layer of platinum aluminide with at least about 0.5 percent hafnium by weight percent and about 1 to about 15 weight percent of hafnium in the boundary between a diffusion layer and the additive layer. The bond coat produced by this method is also claimed.

  10. NREL Team Creates High-Activity, Durable Platinum Extended Surface Catalyst for Fuel Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2011-02-01

    Researchers with NREL's Fuel Cell team showed that platinum can replace copper nanowires in such a way that high-surface-area and high-specific-activity catalysts are produced, potentially allowing for lower-cost catalysts.

  11. Synthesis and characterisation of platinum (II) salphen complex and its interaction with calf thymus DNA

    SciTech Connect

    Sukri, Shahratul Ain Mohd; Heng, Lee Yook; Karim, Nurul Huda Abd

    2014-09-03

    A platinum (II) salphen complex was synthesised by condensation reaction of 2,4-dihydroxylbenzaldehyde and o-phenylenediamine with potassium tetrachloroplatinate to obtain N,N′-Bis-4-(hydroxysalicylidene)-phenylenediamine-platinum (II). The structure of the complex was confirmed by {sup 1}H and {sup 13}C NMR spectroscopy, FTIR spectroscopy, CHN elemental analyses and ESI-MS spectrometry. The platinum (II) salphen complex with four donor atoms N{sub 2}O{sub 2} from its salphen ligand coordinated to platinum (II) metal centre were determined. The binding mode and interaction of this complex with calf thymus DNA was determined by UV/Vis DNA titration and emission titration. The intercalation between the DNA bases by π-π stacking due to its square planar geometry and aromatic rings structures was proposed.

  12. Diffusion of hydrogen through platinum membranes at high pressures and temperatures

    NASA Technical Reports Server (NTRS)

    Chou, I.-M.; Eugster, H. P.; Berens, P.; Weare, J. H.

    1978-01-01

    The diffusion of hydrogen through platinum membranes has been measured at 450, 500, 550 and 600 C at 2000 bar pressure, using the hydrogen sensor technique. Ag + AgCl + 3M HCl was the starting solution inside the platinum tube. Hydrogen diffuses out of the platinum tube into a system containing Fe2O3 + Fe3O4 + H2O; that is, a solution with a fixed hydrogen fugacity. After quench, the drop in hydrogen fugacity inside the platinum tube was calculated from measurements of pH and chloride molality. The hydrogen fugacity is initially roughly proportional to the square root of time. Diffusion constants were calculated from these data by numerical integration.

  13. Precocious puberty in rats induced by hypothalamic lesions: a comparison of platinum and stainless steel electrodes.

    PubMed

    Ruf, K B; YoungLai, E V; Kitchen, J H; Vuillet, M

    1976-05-15

    Precocious sexual maturation was induced in immature female rats by 2 types of unilateral hypothalamic lesions. Stainless steel electrodes produced smaller tissue defects but proved more efficient than platinum electrodes. PMID:1278327

  14. Aluminum battery alloys

    DOEpatents

    Thompson, David S.; Scott, Darwin H.

    1985-01-01

    Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  15. Neutron Absorbing Alloys

    DOEpatents

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  16. Copper-tantalum alloy

    DOEpatents

    Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.

    1986-07-15

    A tantalum-copper alloy can be made by preparing a consumable electrode consisting of an elongated copper billet containing at least two spaced apart tantalum rods extending longitudinally the length of the billet. The electrode is placed in a dc arc furnace and melted under conditions which co-melt the copper and tantalum to form the alloy.

  17. Cesium iodide alloys

    DOEpatents

    Kim, H.E.; Moorhead, A.J.

    1992-12-15

    A transparent, strong CsI alloy is described having additions of monovalent iodides. Although the preferred iodide is AgI, RbI and CuI additions also contribute to an improved polycrystalline CsI alloy with outstanding multispectral infrared transmittance properties. 6 figs.

  18. Surface composition of alloys

    NASA Astrophysics Data System (ADS)

    Sachtler, W. M. H.

    1984-11-01

    In equilibrium, the composition of the surface of an alloy will, in general, differ from that of the bulk. The broken-bond model is applicable to alloys with atoms of virtually equal size. If the heat of alloy formation is zero, the component of lower heat of atomization is found enriched in the surface. If both partners have equal heats of sublimination, the surface of a diluted alloy is enriched with the minority component. Size effects can enhance or weaken the electronic effects. In general, lattice strain can be relaxed by precipitating atoms of deviating size on the surface. Two-phase alloys are described by the "cherry model", i.e. one alloy phase, the "kernel" is surrounded by another alloy, the "flesh", and the surface of the outer phase, the "skin" displays a deviating surface composition as in monophasic alloys. In the presence of molecules capable of forming chemical bonds with individual metal atoms, "chemisorption induced surface segregation" can be observed at low temperatures, i.e. the surface becomes enriched with the metal forming the stronger chemisorption bonds.

  19. Aluminum battery alloys

    DOEpatents

    Thompson, D.S.; Scott, D.H.

    1984-09-28

    Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

  20. Ductile transplutonium metal alloys

    DOEpatents

    Conner, W.V.

    1981-10-09

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.