Science.gov

Sample records for plays important roles

  1. Copy number variation plays an important role in clinical epilepsy

    PubMed Central

    Olson, Heather; Shen, Yiping; Avallone, Jennifer; Sheidley, Beth R.; Pinsky, Rebecca; Bergin, Ann M.; Berry, Gerard T.; Duffy, Frank H.; Eksioglu, Yaman; Harris, David J.; Hisama, Fuki M.; Ho, Eugenia; Irons, Mira; Jacobsen, Christina M.; James, Philip; Kothare, Sanjeev; Khwaja, Omar; Lipton, Jonathan; Loddenkemper, Tobias; Markowitz, Jennifer; Maski, Kiran; Megerian, J. Thomas; Neilan, Edward; Raffalli, Peter C.; Robbins, Michael; Roberts, Amy; Roe, Eugene; Rollins, Caitlin; Sahin, Mustafa; Sarco, Dean; Schonwald, Alison; Smith, Sharon E.; Soul, Janet; Stoler, Joan M.; Takeoka, Masanori; Tan, Wen-Han; Torres, Alcy R.; Tsai, Peter; Urion, David K.; Weissman, Laura; Wolff, Robert; Wu, Bai-Lin; Miller, David T.; Poduri, Annapurna

    2015-01-01

    Objective To evaluate the role of copy number abnormalities detectable by chromosomal microarray (CMA) testing in patients with epilepsy at a tertiary care center. Methods We identified patients with ICD-9 codes for epilepsy or seizures and clinical CMA testing performed between October 2006 and February 2011 at Boston Children’s Hospital. We reviewed medical records and included patients meeting criteria for epilepsy. We phenotypically characterized patients with epilepsy-associated abnormalities on CMA. Results Of 973 patients who had CMA and ICD-9 codes for epilepsy or seizures, 805 patients satisfied criteria for epilepsy. We observed 437 copy number variants (CNVs) in 323 patients (1–4 per patient), including 185 (42%) deletions and 252 (58%) duplications. Forty (9%) were confirmed de novo, 186 (43%) were inherited, and parental data were unavailable for 211 (48%). Excluding full chromosome trisomies, CNV size ranged from 18 kb to 142 Mb, and 34% were over 500 kb. In at least 40 cases (5%), the epilepsy phenotype was explained by a CNV, including 29 patients with epilepsy-associated syndromes and 11 with likely disease-associated CNVs involving epilepsy genes or “hotspots.” We observed numerous recurrent CNVs including 10 involving loss or gain of Xp22.31, a region described in patients with and without epilepsy. Interpretation Copy number abnormalities play an important role in patients with epilepsy. Given that the diagnostic yield of CMA for epilepsy patients is similar to the yield in autism spectrum disorders and in prenatal diagnosis, for which published guidelines recommend testing with CMA, we recommend the implementation of CMA in the evaluation of unexplained epilepsy. PMID:24811917

  2. ASXL1 plays an important role in erythropoiesis

    PubMed Central

    Shi, Hui; Yamamoto, Shohei; Sheng, Mengyao; Bai, Jie; Zhang, Peng; Chen, Runze; Chen, Shi; Shi, Lihong; Abdel-Wahab, Omar; Xu, Mingjiang; Zhou, Yuan; Yang, Feng-Chun

    2016-01-01

    ASXL1 mutations are found in a spectrum of myeloid malignancies with poor prognosis. Recently, we reported that Asxl1+/− mice develop myelodysplastic syndrome (MDS) or MDS and myeloproliferative neoplasms (MPN) overlapping diseases (MDS/MPN). Although defective erythroid maturation and anemia are associated with the prognosis of patients with MDS or MDS/MPN, the role of ASXL1 in erythropoiesis remains unclear. Here, we showed that chronic myelomonocytic leukemia (CMML) patients with ASXL1 mutations exhibited more severe anemia with a significantly increased proportion of bone marrow (BM) early stage erythroblasts and reduced enucleated erythrocytes compared to CMML patients with WT ASXL1. Knockdown of ASXL1 in cord blood CD34+ cells reduced erythropoiesis and impaired erythrocyte enucleation. Consistently, the BM and spleens of VavCre+;Asxl1f/f (Asxl1∆/∆) mice had less numbers of erythroid progenitors than Asxl1f/f controls. Asxl1∆/∆ mice also had an increased percentage of erythroblasts and a reduced erythrocyte enucleation in their BM compared to littermate controls. Furthermore, Asxl1∆/∆ erythroblasts revealed altered expression of genes involved in erythroid development and homeostasis, which was associated with lower levels of H3K27me3 and H3K4me3. Our study unveils a key role for ASXL1 in erythropoiesis and indicates that ASXL1 loss hinders erythroid development/maturation, which could be of prognostic value for MDS/MPN patients. PMID:27352931

  3. ASXL1 plays an important role in erythropoiesis.

    PubMed

    Shi, Hui; Yamamoto, Shohei; Sheng, Mengyao; Bai, Jie; Zhang, Peng; Chen, Runze; Chen, Shi; Shi, Lihong; Abdel-Wahab, Omar; Xu, Mingjiang; Zhou, Yuan; Yang, Feng-Chun

    2016-01-01

    ASXL1 mutations are found in a spectrum of myeloid malignancies with poor prognosis. Recently, we reported that Asxl1(+/-) mice develop myelodysplastic syndrome (MDS) or MDS and myeloproliferative neoplasms (MPN) overlapping diseases (MDS/MPN). Although defective erythroid maturation and anemia are associated with the prognosis of patients with MDS or MDS/MPN, the role of ASXL1 in erythropoiesis remains unclear. Here, we showed that chronic myelomonocytic leukemia (CMML) patients with ASXL1 mutations exhibited more severe anemia with a significantly increased proportion of bone marrow (BM) early stage erythroblasts and reduced enucleated erythrocytes compared to CMML patients with WT ASXL1. Knockdown of ASXL1 in cord blood CD34(+) cells reduced erythropoiesis and impaired erythrocyte enucleation. Consistently, the BM and spleens of VavCre(+);Asxl1(f/f) (Asxl1(∆/∆)) mice had less numbers of erythroid progenitors than Asxl1(f/f) controls. Asxl1(∆/∆) mice also had an increased percentage of erythroblasts and a reduced erythrocyte enucleation in their BM compared to littermate controls. Furthermore, Asxl1(∆/∆) erythroblasts revealed altered expression of genes involved in erythroid development and homeostasis, which was associated with lower levels of H3K27me3 and H3K4me3. Our study unveils a key role for ASXL1 in erythropoiesis and indicates that ASXL1 loss hinders erythroid development/maturation, which could be of prognostic value for MDS/MPN patients. PMID:27352931

  4. AtTMEM18 plays important roles in pollen tube and vegetative growth in Arabidopsis.

    PubMed

    Dou, Xiao-Ying; Yang, Ke-Zhen; Ma, Zhao-Xia; Chen, Li-Qun; Zhang, Xue-Qin; Bai, Jin-Rong; Ye, De

    2016-07-01

    In flowering plants, pollen tube growth is essential for delivery of male gametes into the female gametophyte or embryo sac for double fertilization. Although many genes have been identified as being involved in the process, the molecular mechanisms of pollen tube growth remains poorly understood. In this study, we identified that the Arabidopsis Transmembrane Protein 18 (AtTMEM18) gene played important roles in pollen tube growth. The AtTMEM18 shares a high similarity with the Transmembrane 18 proteins (TMEM18s) that are conserved in most eukaryotes and may play important roles in obesity in humans. Mutation in the AtTMEM18 by a Ds insertion caused abnormal callose deposition in the pollen grains and had a significant impact on pollen germination and pollen tube growth. AtTMEM18 is expressed in pollen grains, pollen tubes, root tips and other vegetative tissues. The pollen-rescued assays showed that the mutation in AtTMEM18 also caused defects in roots, stems, leaves and transmitting tracts. AtTMEM18-GFP was located around the nuclei. Genetic assays demonstrated that the localization of AtTMEM18 around the nuclei in the generative cells of pollen grains was essential for the male fertility. Furthermore, expression of the rice TMEM18-homologous protein (OsTMEM18) driven by LAT52 promoter could recover the fertility of the Arabidopsis attmem18 mutant. These results suggested that the TMEM18 is important for plant growth in Arabidopsis. PMID:26699939

  5. Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency.

    PubMed

    Chu, Fei-Fei; Chu, Pei-Na; Cai, Pei-Jie; Li, Wen-Wei; Lam, Paul K S; Zeng, Raymond J

    2013-04-01

    To investigate the role of phosphorus in lipid production under nitrogen starvation conditions, five types of media possessing different nitrogen and phosphorus concentrations or their combination were prepared to culture Chlorella vulgaris. It was found that biomass production under nitrogen deficient condition with sufficient phosphorus supply was similar to that of the control (with sufficient nutrition), resulting in a maximum lipid productivity of 58.39 mg/L/day. Meanwhile, 31P NMR showed that phosphorus in the medium was transformed and accumulated as polyphosphate in cells. The uptake rate of phosphorus in cells was 3.8 times higher than the uptake rate of the control. This study demonstrates that phosphorus plays an important role in lipid production of C. vulgaris under nitrogen deficient conditions and implies a potential to combine phosphorus removal from wastewater with biodiesel production via microalgae. PMID:23517904

  6. Thrombin Maybe Plays an Important Role in MK Differentiation into Platelets

    PubMed Central

    Yang, Xiao-Lei; Ge, Meng-Kai; Mao, De-Kui; Lv, Ying-Tao; Sun, Shu-Yan; Yu, Ai-Ping

    2016-01-01

    Objectives. After development and differentiation, megakaryocytes (MKs) can produce platelets. As is well known, thrombopoietin (TPO) can induce MKs to differentiate. The effect of thrombin on MKs differentiation is not clear. In this study, we used a human megakaryoblastic leukemia cell line (Meg-01) to assess the effect of thrombin on MKs differentiation. Methods. In order to interrogate the role of thrombin in Meg-01 cells differentiation, the changes of morphology, cellular function, and expression of diverse factors were analyzed. Results. The results show that thrombin suppresses Meg-01 cells proliferation and induces apoptosis and cell cycle arrest. Thrombin upregulates the expression of CD41b, which is one of the most important MK markers. Globin transcription factor 1 (GATA-1), an important transcriptional regulator, controls MK development and maturation. The expression of GATA-1 is also upregulated by thrombin in Meg-01 cells. The expression of B-cell lymphoma 2 (Bcl-2), an apoptosis-inhibitory protein, is downregulated by thrombin. Phosphorylated protein kinase B (p-AKT) and phosphorylated extracellular signal-regulated kinase (p-ERK) were upregulated by thrombin in Meg-01 cells. All the results are consistent with Meg-01 cells treated with TPO. Discussion and Conclusion. In conclusion, all these data indicate that thrombin maybe plays an important role in MK differentiation into platelets. However, whether the platelet-like particles are certainly platelets remains unknown. PMID:27064425

  7. hfq Plays Important Roles in Virulence and Stress Adaptation in Cronobacter sakazakii ATCC 29544

    PubMed Central

    Kim, Seongok; Hwang, Hyelyeon; Kim, Kwang-Pyo; Yoon, Hyunjin; Kang, Dong-Hyun

    2015-01-01

    Cronobacter spp. are opportunistic pathogens that cause neonatal meningitis and sepsis with high mortality in neonates. Despite the peril associated with Cronobacter infection, the mechanisms of pathogenesis are still being unraveled. Hfq, which is known as an RNA chaperone, participates in the interaction with bacterial small RNAs (sRNAs) to regulate posttranscriptionally the expression of various genes. Recent studies have demonstrated that Hfq contributes to the pathogenesis of numerous species of bacteria, and its roles are varied between bacterial species. Here, we tried to elucidate the role of Hfq in C. sakazakii virulence. In the absence of hfq, C. sakazakii was highly attenuated in dissemination in vivo, showed defects in invasion (3-fold) into animal cells and survival (103-fold) within host cells, and exhibited low resistance to hydrogen peroxide (102-fold). Remarkably, the loss of hfq led to hypermotility on soft agar, which is contrary to what has been observed in other pathogenic bacteria. The hyperflagellated bacteria were likely to be attributable to the increased transcription of genes associated with flagellar biosynthesis in a strain lacking hfq. Together, these data strongly suggest that hfq plays important roles in the virulence of C. sakazakii by participating in the regulation of multiple genes. PMID:25754196

  8. TRPC3 cation channel plays an important role in proliferation and differentiation of skeletal muscle myoblasts

    PubMed Central

    Woo, Jin Seok; Cho, Chung-Hyun; Kim, Do Han

    2010-01-01

    During membrane depolarization associated with skeletal excitation-contraction (EC) coupling, dihydropyridine receptor [DHPR, a L-type Ca2+ channel in the transverse (t)-tubule membrane] undergoes conformational changes that are transmitted to ryanodine receptor 1 [RyR1, an internal Ca2+-release channel in the sarcoplasmic reticulum (SR) membrane] causing Ca2+ release from the SR. Canonical-type transient receptor potential cation channel 3 (TRPC3), an extracellular Ca2+-entry channel in the t-tubule and plasma membrane, is required for full-gain of skeletal EC coupling. To examine additional role(s) for TRPC3 in skeletal muscle other than mediation of EC coupling, in the present study, we created a stable myoblast line with reduced TRPC3 expression and without α1SDHPR (MDG/TRPC3 KD myoblast) by knock-down of TRPC3 in α1SDHPR-null muscular dysgenic (MDG) myoblasts using retrovirus-delivered small interference RNAs in order to eliminate any DHPR-associated EC coupling-related events. Unlike wild-type or α1SDHPR-null MDG myoblasts, MDG/TRPC3 KD myoblasts exhibited dramatic changes in cellular morphology (e.g., unusual expansion of both cell volume and the plasma membrane, and multi-nuclei) and failed to differentiate into myotubes possibly due to increased Ca2+ content in the SR. These results suggest that TRPC3 plays an important role in the maintenance of skeletal muscle myoblasts and myotubes. PMID:20644344

  9. IQGAP1 Plays an Important Role in the Invasiveness of Thyroid Cancer

    PubMed Central

    Liu, Zhi; Liu, Dingxie; Bojdani, Ermal; El-Naggar, Adel K.; Vasko, Vasily; Xing, Mingzhao

    2010-01-01

    Purpose This study was designed to explore the role of IQGAP1 in the invasiveness of thyroid cancer and its potential as a novel prognostic marker and therapeutic target in this cancer. Experimental Design We examined IQGAP1 copy gain and its relationship with clinicopathological outcomes of thyroid cancer and investigated its role in cell invasion and molecules involved in the process. Results We found IQGAP1 copy number gain ≥ 3 in 1/30 (3%), 24/74 (32%), 44/107 (41%), 8/16 (50%), and 27/41 (66%) of benign thyroid tumor, follicular variant papillary thyroid cancer (FVPTC), follicular thyroid cancer (FTC), tall cell PTC, and anaplastic thyroid cancer, respectively, in the increasing order of invasiveness of these tumors. A similar tumor distribution trend of copy number ≥ 4 was also seen. IQGAP1 copy gain was positively correlated with IQGAP1 protein expression. It was significantly associated with extrathyroidal and vascular invasion of FVPTC and FTC and, remarkably, a 50–60% rate of multifocality and recurrence of BRAF mutation-positive PTC (P = 0.01 and 0.02, respectively). siRNA knockdown of IQGAP1 dramatically inhibited thyroid cancer cell invasion and colony formation. Co-immunoprecipitation assay demonstrated direct interaction of IQGAP1 with E-cadherin, a known invasion-suppressing molecule, which was up-regulated when IQGAP1 was knocked down. This provided a mechanism for the invasive role of IQGAP1 in thyroid cancer. In contrast, IQGAP3 lacked all these functions. Conclusions IQGAP1, through genetic copy gain, plays an important role in the invasiveness of thyroid cancer and may represent a novel prognostic marker and therapeutic target for this cancer. PMID:20959410

  10. Transcription factor ets-2 plays an important role in the pathogenesis of pulmonary fibrosis.

    PubMed

    Baran, Christopher P; Fischer, Sara N; Nuovo, Gerard J; Kabbout, Mohamed N; Hitchcock, Charles L; Bringardner, Benjamin D; McMaken, Sara; Newland, Christie A; Cantemir-Stone, Carmen Z; Phillips, Gary S; Ostrowski, Michael C; Marsh, Clay B

    2011-11-01

    Ets-2 is a ubiquitous transcription factor activated after phosphorylation at threonine-72. Previous studies highlighted the importance of phosphorylated ets-2 in lung inflammation and extracellular matrix remodeling, two pathways involved in pulmonary fibrosis. We hypothesized that phosphorylated ets-2 played an important role in pulmonary fibrosis, and we sought to determine the role of ets-2 in its pathogenesis. We challenged ets-2 (A72/A72) transgenic mice (harboring a mutated form of ets-2 at phosphorylation site threonine-72) and ets-2 (wild-type/wild-type [WT/WT]) control mice with sequential intraperitoneal injections of bleomycin, followed by quantitative measurements of lung fibrosis and inflammation and primary cell in vitro assays. Concentrations of phosphorylated ets-2 were detected via the single and dual immunohistochemical staining of murine lungs and lung sections from patients with idiopathic pulmonary fibrosis. Ets-2 (A72/A72) mice were protected from bleomycin-induced pulmonary fibrosis, compared with ets-2 (WT/WT) mice. This protection was characterized by decreased lung pathological abnormalities and the fibrotic gene expression of Type I collagen, Type III collagen, α-smooth muscle actin, and connective tissue growth factor. Immunohistochemical staining of lung sections from bleomycin-treated ets-2 (WT/WT) mice and from patients with idiopathic pulmonary fibrosis demonstrated increased staining of phosphorylated ets-2 that colocalized with Type I collagen expression and to fibroblastic foci. Lastly, primary lung fibroblasts from ets-2 (A72/A72) mice exhibited decreased expression of Type I collagen in response to stimulation with TGF-β, compared with fibroblasts from ets-2 (WT/WT) mice. These data indicate the importance of phosphorylated ets-2 in the pathogenesis of pulmonary fibrosis through the expression of Type I collagen and (myo)fibroblast activation. PMID:21562315

  11. Transcription Factor ets-2 Plays an Important Role in the Pathogenesis of Pulmonary Fibrosis

    PubMed Central

    Baran, Christopher P.; Fischer, Sara N.; Nuovo, Gerard J.; Kabbout, Mohamed N.; Hitchcock, Charles L.; Bringardner, Benjamin D.; McMaken, Sara; Newland, Christie A.; Cantemir-Stone, Carmen Z.; Phillips, Gary S.; Ostrowski, Michael C.

    2011-01-01

    Ets-2 is a ubiquitous transcription factor activated after phosphorylation at threonine-72. Previous studies highlighted the importance of phosphorylated ets-2 in lung inflammation and extracellular matrix remodeling, two pathways involved in pulmonary fibrosis. We hypothesized that phosphorylated ets-2 played an important role in pulmonary fibrosis, and we sought to determine the role of ets-2 in its pathogenesis. We challenged ets-2 (A72/A72) transgenic mice (harboring a mutated form of ets-2 at phosphorylation site threonine-72) and ets-2 (wild-type/wild-type [WT/WT]) control mice with sequential intraperitoneal injections of bleomycin, followed by quantitative measurements of lung fibrosis and inflammation and primary cell in vitro assays. Concentrations of phosphorylated ets-2 were detected via the single and dual immunohistochemical staining of murine lungs and lung sections from patients with idiopathic pulmonary fibrosis. Ets-2 (A72/A72) mice were protected from bleomycin-induced pulmonary fibrosis, compared with ets-2 (WT/WT) mice. This protection was characterized by decreased lung pathological abnormalities and the fibrotic gene expression of Type I collagen, Type III collagen, α–smooth muscle actin, and connective tissue growth factor. Immunohistochemical staining of lung sections from bleomycin-treated ets-2 (WT/WT) mice and from patients with idiopathic pulmonary fibrosis demonstrated increased staining of phosphorylated ets-2 that colocalized with Type I collagen expression and to fibroblastic foci. Lastly, primary lung fibroblasts from ets-2 (A72/A72) mice exhibited decreased expression of Type I collagen in response to stimulation with TGF-β, compared with fibroblasts from ets-2 (WT/WT) mice. These data indicate the importance of phosphorylated ets-2 in the pathogenesis of pulmonary fibrosis through the expression of Type I collagen and (myo)fibroblast activation. PMID:21562315

  12. TGF-β signaling plays an important role in resisting γ-irradiation

    SciTech Connect

    An, You Sun; Kim, Mi-Ra; Lee, Seung-Sook; Lee, Yun-Sil; Chung, Eunkyung; Song, Jie-Young; Lee, Jeeyong; Yi, Jae Youn

    2013-02-15

    Transforming growth factor-β1 (TGF-β1) regulates various biological processes, including differentiation, bone remodeling and angiogenesis, and is particularly important as a regulator of homeostasis and cell growth in normal tissue. Interestingly, some studies have reported that TGF-β1 induces apoptosis through induction of specific genes, whereas others suggest that TGF-β1 inhibits apoptosis and facilitates cell survival. Resolving these discrepancies, which may reflect differences in cellular context, is an important research priority. Here, using the parental mink lung epithelial cell line, Mv1Lu, and its derivatives, R1B and DR26, lacking TGF-β receptors, we investigated the involvement of TGF-β signaling in the effects of γ-irradiation. We found that canonical TGF-β signaling played an important role in protecting cells from γ-irradiation. Introduction of functional TGF-β receptors or constitutively active Smads into R1B and DR26 cell lines reduced DNA fragmentation, Caspase-3 cleavage and γ-H2AX foci formation in γ-irradiated cells. Notably, we also found that de novo protein synthesis was required for the radio-resistant effects of TGF-β1. Our data thus indicate that TGF-β1 protected against γ-irradiation, decreasing DNA damage and reducing apoptosis, and thereby enhanced cell survival. - Highlights: ► TGF-β1 pretreatment inhibits γ-irradiation-induced apoptosis. ► TGF-β signaling reduces γ-irradiation-induced γ-H2AX foci formation. ► de novo protein synthesis is necessary for TGF-β1-induced radio-resistance.

  13. Arabidopsis abscisic acid receptors play an important role in disease resistance.

    PubMed

    Lim, Chae Woo; Lee, Sung Chul

    2015-06-01

    Stomata are natural pores of plants and constitute the entry points for water during transpiration. However, they also facilitate the ingress of potentially harmful bacterial pathogens. The phytohormone abscisic acid (ABA) plays a pivotal role in protecting plants against biotic stress, by regulating stomatal closure. In the present study, we investigated the mechanism whereby ABA influences plant defense responses to Pseudomonas syringae pv. tomato (Pst) DC3000, which is a virulent bacterial pathogen of Arabidopsis, at the pre-invasive stage. We found that overexpression of two ABA receptors, namely, RCAR4/PYL10-OX and RCAR5/PYL11-OX (hereafter referred to as RCARs), resulted in ABA-hypersensitive phenotypes being exhibited during the seed germination and seedling growth stages. Sensitivity to ABA enhanced the resistance of RCAR4-OX and RCAR5-OX plants to Pst DC3000, through promoting stomatal closure leading to the development of resistance to this bacterial pathogen. Protein phosphatase HAB1 is an important component that is responsible for ABA signaling and which interacts with ABA receptors. We found that hab1 mutants exhibited enhanced resistance to Pst DC3000; moreover, similar to RCAR4-OX and RCAR5-OX plants, this enhanced resistance was correlated with stomatal closure. Taken together, our findings demonstrate that alteration of RCAR4- or RCAR5-HAB1 mediated ABA signaling influences resistance to bacterial pathogens via stomatal regulation. PMID:25969135

  14. Heterocystous Cyanobacteria in Microbialites Play an Important Role in N2 Fixation and Carbonate Mineral Precipitation

    NASA Astrophysics Data System (ADS)

    Alcantara-Hernandez, R. J.

    2015-12-01

    Lake Alchichica is a maars type crater-lake located in Central Mexico (pH > 8.9, EC ~13.39 mS cm-1). This limnological system harbors two types of microbialites that can be found around the entire perimeter of the lake (Fig. 1). These structures are representative examples of complex and diverse microbiological assemblages, where microbial activity promotes lithification by trapping, binding and/or precipitating detrital or chemical sediments. Previous studies determined that the microbialites of Lake Alchichica fix N2 to thrive under the N-limiting conditions of the lake, and that these nitrogenase activity peaks are related to heterocystous cyanobacteria that couple photosynthesis to N2 fixation during daylight periods. Heterocystous cyanobacteria (Nostocales) together with Oscillatoriales (non-heterocystous filamentous cyanobacteria) and other cyanobacterial groups have been described as the most abundant cyanobacteria in Alchichica microbialites, and in lithifying mats. Our results suggest that heterocystous cyanobacteria play an important role not only by fixing N2 for biomass construction, but also because their heterocysts host in their external cell membranes main sites for carbonate mineral precipitation including calcium carbonates and siderite. Previous research has shown that the heterocyst is the specialized site for cellular respiration associated to the pH decrease of vegetative/photosynthetic cells, contributing thus to the precipitation of carbonates and the accretion of the organosedimentary structure

  15. Galectin-3 Plays an Important Role in Innate Immunity to Gastric Infection by Helicobacter pylori.

    PubMed

    Park, Ah-Mee; Hagiwara, Satoru; Hsu, Daniel K; Liu, Fu-Tong; Yoshie, Osamu

    2016-04-01

    We studied the role of galectin-3 (Gal3) in gastric infection by Helicobacter pylori We first demonstrated that Gal3 was selectively expressed by gastric surface epithelial cells and abundantly secreted into the surface mucus layer. We next inoculated H. pylori Sydney strain 1 into wild-type (WT) and Gal3-deficient mice using a stomach tube. At 2 weeks postinoculation, the bacterial cells were mostly trapped within the surface mucus layer in WT mice. In sharp contrast, they infiltrated deep into the gastric glands in Gal3-deficient mice. Bacterial loads in the gastric tissues were also much higher in Gal3-deficient mice than in WT mice. At 6 months postinoculation,H. pylori had successfully colonized within the gastric glands of both WT and Gal3-deficient mice, although the bacterial loads were still higher in the latter. Furthermore, large lymphoid clusters mostly consisting of B cells were frequently observed in the gastric submucosa of Gal3-deficient mice.In vitro, peritoneal macrophages from Gal3-deficient mice were inefficient in killing engulfed H. pylori Furthermore, recombinant Gal3 not only induced rapid aggregation of H. pylori but also exerted a potent bactericidal effect on H. pylori as revealed by propidium iodide uptake and a morphological shift from spiral to coccoid form. However, a minor fraction of bacterial cells, probably transient phase variants of Gal3-binding sugar moieties, escaped killing by Gal3. Collectively, our data demonstrate that Gal3 plays an important role in innate immunity to infection and colonization of H. pylori. PMID:26857579

  16. Basal transcription factor 3 plays an important role in seed germination and seedling growth of rice.

    PubMed

    Wang, Wenyi; Xu, Mengyun; Wang, Ya; Jamil, Muhammad

    2014-01-01

    BTF3 has been recognized to be involved in plant growth and development. But its function remains mostly unknown during seed germination and seedling stage. Here, we have analyzed OsBTF3-related sequences in Oryza sativa L. subspecies, japonica, which resembles with the conserved domain of a nascent polypeptide associated complex (NAC) with different homologs of OsBTF3 and human BTF3. Inhibition of Osj10gBTF3 has led to considerable morphological changes during seed germination and seedling growth. Germination percentage was not influenced by the application of GA3, ABA, and NaCl but all concentrations caused wild-type (WT) seeds to germinate more rapidly than the RNAi (Osj10gBTF3 (Ri)) transgenic lines. Seedling inhibition was more severe in the Osj10gBTF3 (Ri) seedlings compared with their WT especially when treated with 100 or 200 μM GA3; 50% reduction in shoots was observed in Osj10gBTF3 (Ri) seedlings. The expression of Osj3g1BTF3, Osj3g2BTF3 and Osj10gBTF3 was primarily constitutive and generally modulated by NaCl, ABA, and GA3 stresses in both Osj10gBTF3 (Ri) lines and WT at the early seedling stage, suggesting that Osj3g1BTF3 and Osj10gBTF3 are much similar but different from Osj3g2BTF3 in biological function. These results show that OsBTF3 plays an important role in seed germination and seedling growth gives a new perception demonstrating that more multifaceted regulatory functions are linked with BTF3 in plants. PMID:24971328

  17. Soil water content plays an important role in soil-atmosphere exchange of carbonyl sulfide (OCS)

    NASA Astrophysics Data System (ADS)

    Yi, Zhigang; Behrendt, Thomas; Bunk, Rüdiger; Wu, Dianming; Kesselmeier, Jürgen

    2016-04-01

    Carbonyl sulfide (OCS) is a quite stable gas in the troposphere and is transported up to the stratosphere, where it contributes to the sulfate aerosol layer (Crutzen 1976). The tropospheric concentration seems to be quite constant, indicating a balance between sinks and sources. Recent work by Sandoval-Soto et al. (2005) demonstrated the enormous strength of the vegetation sink and the urgent needs to understand the sinks and sources. The role of soils is a matter of discussion (Kesselmeier et al., 1999; Van Diest and Kesselmeier, 2008; Maseyk et al., 2014; Whelan et al., 2015). To better understand the influence of soil water content and OCS mixing ratio on OCS fluxes, we used an OCS analyzer (LGR COS/CO Analyzer 907-0028, Los Gatos, CA, USA) coupled with automated soil chamber system (Behrendt et al., 2014) to measure the OCS fluxes with a slow drying of four different types of soil (arable wheat soil in Mainz, blueberry soil in Waldstein, spruce soil in Waldstein and needle forest soil in Finland). Results showed that OCS fluxes as well as the optimum soil water content for OCS uptake varied significantly for different soils. The net production rates changed significantly with the soil drying out from 100% to about 5% water holding capacity (WHC), implying that soil water content play an important role in the uptake processes. The production and uptake processes were distinguished by the regression of OCS fluxes under different OCS mixing ratios. OCS compensation points (CP) were found to differ significantly for different soil types and water content, with the lowest CP at about 20% WHC, implying that when estimating the global budgets of OCS, especially for soils fluxes, soil water content should be taken into serious consideration. References Crutzen, P. J. 1976, Geophys. Res. Lett., 3, 73-76. Sandoval-Soto, L. et al., 2005, Biogeosciences, 2, 125-132. Kesselmeier, J. et al., 1999, J. Geophys. Res., 104, 11577-11584. Van Diest, H. and Kesselmeier, J. 2008

  18. Play's Importance in School

    ERIC Educational Resources Information Center

    Sandberg, Anette; Heden, Rebecca

    2011-01-01

    The purpose of this study is to contribute knowledge on and gain an understanding of elementary school teachers' perspectives on the function of play in children's learning processes. The study is qualitative with a hermeneutical approach and has George Herbert Mead as a theoretical frame of reference. Interviews have been carried out with seven…

  19. Polynucleotide phosphorylase plays an important role in the generation of spontaneous mutations in Escherichia coli.

    PubMed

    Becket, Elinne; Tse, Lawrence; Yung, Madeline; Cosico, Alexander; Miller, Jeffrey H

    2012-10-01

    Polynucleotide phosphorylase (PNP) plays a central role in RNA degradation, generating a pool of ribonucleoside diphosphates (rNDPs) that can be converted to deoxyribonucleoside diphosphates (dNDPs) by ribonucleotide reductase. We report here that spontaneous mutations resulting from replication errors, which are normally repaired by the mismatch repair (MMR) system, are sharply reduced in a PNP-deficient Escherichia coli strain. This is true for base substitution mutations that occur in the rpoB gene leading to Rif(r) and the gyrB gene leading to Nal(r) and for base substitution and frameshift mutations that occur in the lacZ gene. These results suggest that the increase in the rNDP pools generated by polynucleotide phosphorylase (PNP) degradation of RNA is responsible for the spontaneous mutations observed in an MMR-deficient background. The PNP-derived pool also appears responsible for the observed mutations in the mutT mutator background and those that occur after treatment with 5-bromodeoxyuridine, as these mutations are also drastically reduced in a PNP-deficient strain. However, mutation frequencies are not reduced in a mutY mutator background or after treatment with 2-aminopurine. These results highlight the central role in mutagenesis played by the rNDP pools (and the subsequent dNTP pools) derived from RNA degradation. PMID:22904280

  20. Polynucleotide Phosphorylase Plays an Important Role in the Generation of Spontaneous Mutations in Escherichia coli

    PubMed Central

    Becket, Elinne; Tse, Lawrence; Yung, Madeline; Cosico, Alexander

    2012-01-01

    Polynucleotide phosphorylase (PNP) plays a central role in RNA degradation, generating a pool of ribonucleoside diphosphates (rNDPs) that can be converted to deoxyribonucleoside diphosphates (dNDPs) by ribonucleotide reductase. We report here that spontaneous mutations resulting from replication errors, which are normally repaired by the mismatch repair (MMR) system, are sharply reduced in a PNP-deficient Escherichia coli strain. This is true for base substitution mutations that occur in the rpoB gene leading to Rifr and the gyrB gene leading to Nalr and for base substitution and frameshift mutations that occur in the lacZ gene. These results suggest that the increase in the rNDP pools generated by polynucleotide phosphorylase (PNP) degradation of RNA is responsible for the spontaneous mutations observed in an MMR-deficient background. The PNP-derived pool also appears responsible for the observed mutations in the mutT mutator background and those that occur after treatment with 5-bromodeoxyuridine, as these mutations are also drastically reduced in a PNP-deficient strain. However, mutation frequencies are not reduced in a mutY mutator background or after treatment with 2-aminopurine. These results highlight the central role in mutagenesis played by the rNDP pools (and the subsequent dNTP pools) derived from RNA degradation. PMID:22904280

  1. Dysregulation of JAM-A plays an important role in human tumor progression

    PubMed Central

    Zhao, Chen; Lu, Funian; Chen, Hongxia; Zhao, Xianda; Sun, Jun; Chen, Honglei

    2014-01-01

    Junctional adhesion molecule A (JAM-A) is a transmembrane protein that belongs to the immunoglobulin (Ig) superfamily. Evidence determines that JAM-A plays a role in numerous cellular processes, including tight junction assembly, leukocyte migration, platelet activation, angiogenesis and virus binding. Recent research suggests that JAM-A is dysregulated in various cancers and is vital for tumor progression. JAM-A is implicated in carcinogenesis via different signal pathways such as TGF-β1 signaling. Furthermore, JAM-A expression in cancers is usually associated with certain outcome of patients and might be a prognostic indicator. In this review, the correlation between JAM-A expression and human cancers will be described. PMID:25400822

  2. Autophagy plays an important role in the containment of HIV-1 in nonprogressor-infected patients

    PubMed Central

    Nardacci, Roberta; Amendola, Alessandra; Ciccosanti, Fabiola; Corazzari, Marco; Esposito, Valentina; Vlassi, Chrysoula; Taibi, Chiara; Fimia, Gian Maria; Del Nonno, Franca; Ippolito, Giuseppe; D’Offizi, Gianpiero; Piacentini, Mauro

    2014-01-01

    Recent in vitro studies have suggested that autophagy may play a role in both HIV-1 replication and disease progression. In this study we investigated whether autophagy protects the small proportion of HIV-1 infected individuals who remain clinically stable for years in the absence of antiretroviral therapy, these named long-term nonprogressors (LTNP) and elite controllers (EC). We found that peripheral blood mononuclear cells (PBMC) of the HIV-1 controllers present a significantly higher amount of autophagic vesicles associated with an increased expression of autophagic markers with respect to normal progressors. Of note, ex vivo treatment of PBMC from the HIV-1 controllers with the MTOR inhibitor rapamycin results in a more efficient autophagic response, leading to a reduced viral production. These data lead us to propose that autophagy contributes to limiting viral pathogenesis in HIV-1 controllers by targeting viral components for degradation. PMID:24813622

  3. Hsp70 plays an important role in high-fat diet induced gestational hyperglycemia in mice.

    PubMed

    Xing, Baoheng; Wang, Lili; Li, Qin; Cao, Yalei; Dong, Xiujuan; Liang, Jun; Wu, Xiaohua

    2015-12-01

    Gestational diabetes mellitus (GDM) has emerged as an epidemic disease during the last decade, affecting about 2 to 5% pregnant women. Even among women who have gestational hyperglycemia may also be positively related to adverse outcomes as GDM. Since heat shock protein (Hsp) 70 has been reported to be associated with diabetes and insulin resistance and its expression was reported to be negatively regulated by the membrane-permeable Hsp70 inhibitor MAL3-101 while positively regulated by the Hsp70 activator BGP-15, we investigated whether Hsp70 played a role in a gestational hyperglycemia mouse model. Mice were divided into non-pregnant and pregnant groups, and each comprised three subgroups: control, high-fat diet (HFD) + MAL3-101, and HFD + BGP-15. We examined the serum levels of triglycerides, total cholesterol, glucose, and insulin, as well as conducted thermal detection of brown adipose tissue (BAT). The role of Hsp70 in BAT apoptosis was also investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and caspase-3 staining. Higher serum level of Hsp70 was associated with increased bodyweight gain after pregnancy in mice fed HFD. Circulating Hsp70 was elevated in control pregnant mice compared to control non-pregnant mice. BGP-induced serum Hsp70 expression reduced triglycerides, total cholesterol, glucose, and insulin levels in the serum. Additionally, thermal detection of BAT, TUNEL, and caspase-3 staining revealed relationship correlation between Hsp70 and BAT functions. Hsp70 level is associated with hyperglycemia during pregnancy. Our results support the role of Hsp70 in facilitating BAT activities and protecting BAT cells from apoptosis via caspase-3 pathway. PMID:26318018

  4. PRKX, a Novel cAMP-Dependent Protein Kinase Member, Plays an Important Role in Development.

    PubMed

    Huang, Sizhou; Li, Qian; Alberts, Ian; Li, Xiaohong

    2016-03-01

    The human protein kinase X gene (PRKX) and cAMP-dependent protein kinase (PKA) are both c-AMP-dependent serine/threonine protein kinases within the protein kinase AGC subgroup. Of all the protein kinases in this group, PRKX is the least studied. PRKX has been isolated from patients with chondrodysplasia punctate and is involved in numerous processes, including sexual differentiation and fertilization, normal kidney development and autosomal dominant polycystic kidney disease (ADPKD), blood maturation, neural development, and angiogenesis in vitro. Although the role of PRKX in development and disease has been reported recently, the underlying mechanism of PRKX activity is largely unknown. In addition, based on the expression pattern of PRKX and the extensive role of PKA in disease and development, PRKX might have additional crucial functions that have not been addressed in the literature. In this review, we summarize the characteristics and developmental functions of PRKX that have been reported by recent studies. In particular, we elucidate the structural and functional differences between PRKX and PKA, as well as the possible roles of PRKX in development and related diseases. Finally, we propose future studies that could lead to important discoveries of more PRKX functions and the underlying mechanisms involved. PMID:26252946

  5. Secretory leukocyte protease inhibitor plays an important role in the regulation of allergic asthma in mice.

    PubMed

    Marino, Rafael; Thuraisingam, Thusanth; Camateros, Pierre; Kanagaratham, Cynthia; Xu, Yong Zhong; Henri, Jennifer; Yang, Jingxuan; He, Guoan; Ding, Aihao; Radzioch, Danuta

    2011-04-01

    Secretory leukocyte protease inhibitor (SLPI) is an anti-inflammatory protein that is observed at high levels in asthma patients. Resiquimod, a TLR7/8 ligand, is protective against acute and chronic asthma, and it increases SLPI expression of macrophages in vitro. However, the protective role played by SLPI and the interactions between the SLPI and resiquimod pathways in the immune response occurring in allergic asthma have not been fully elucidated. To evaluate the role of SLPI in the development of asthma phenotypes and the effect of resiquimod treatment on SLPI, we assessed airway resistance and inflammatory parameters in the lungs of OVA-induced asthmatic SLPI transgenic and knockout mice and in mice treated with resiquimod. Compared with wild-type mice, allergic SLPI transgenic mice showed a decrease in lung resistance (p < 0.001), airway eosinophilia (p < 0.001), goblet cell hyperplasia (p < 0.001), and plasma IgE levels (p < 0.001). Allergic SLPI knockout mice displayed phenotype changes significantly more severe compared with wild-type mice. These phenotypes included lung resistance (p < 0.001), airway eosinophilia (p < 0.001), goblet cell hyperplasia (p < 0.001), cytokine levels in the lungs (p < 0.05), and plasma IgE levels (p < 0.001). Treatment of asthmatic transgenic mice with resiquimod increased the expression of SLPI and decreased inflammation in the lungs; resiquimod treatment was still effective in asthmatic SLPI knockout mice. Taken together, our study showed that the expression of SLPI protects against allergic asthma phenotypes, and treatment by resiquimod is independent of SLPI expression, displayed through the use of transgenic and knockout SLPI mice. PMID:21335488

  6. Peptidoglycan Crosslinking Relaxation Plays an Important Role in Staphylococcus aureus WalKR-Dependent Cell Viability

    PubMed Central

    Delaune, Aurelia; Poupel, Olivier; Mallet, Adeline; Coic, Yves-Marie; Msadek, Tarek; Dubrac, Sarah

    2011-01-01

    The WalKR two-component system is essential for viability of Staphylococcus aureus, a major pathogen. We have shown that WalKR acts as the master controller of peptidoglycan metabolism, yet none of the identified regulon genes explain its requirement for cell viability. Transmission electron micrographs revealed cell wall thickening and aberrant division septa in the absence of WalKR, suggesting its requirement may be linked to its role in coordinating cell wall metabolism and cell division. We therefore tested whether uncoupling autolysin gene expression from WalKR-dependent regulation could compensate for its essential nature. Uncoupled expression of genes encoding lytic transglycosylases or amidases did not restore growth to a WalKR-depleted strain. We identified only two WalKR-regulon genes whose expression restored cell viability in the absence of WalKR: lytM and ssaA. Neither of these two genes are essential under our conditions and a ΔlytM ΔssaA mutant does not present any growth defect. LytM is a glycyl–glycyl endopeptidase, hydrolyzing the pentaglycine interpeptide crossbridge, and SsaA belongs to the CHAP amidase family, members of which such as LysK and LytA have been shown to have D-alanyl-glycyl endopeptidase activity, cleaving between the crossbridge and the stem peptide. Taken together, our results strongly suggest that peptidoglycan crosslinking relaxation through crossbridge hydrolysis plays a crucial role in the essential requirement of the WalKR system for cell viability. PMID:21386961

  7. Did large animals play an important role in global biogeochemical cycling in the past?

    NASA Astrophysics Data System (ADS)

    Doughty, C.

    2014-12-01

    In the late Pleistocene (~50-10,000 years ago), ninety-seven genera of large animals (>44kg) (megafauna) went extinct, concentrated in the Americas and Australia. The loss of megafauna had major effects on ecosystem structure, seed dispersal and land surface albedo. However, the impact of this dramatic extinction on ecosystem nutrient biogeochemistry, through the lateral transport of dung and bodies, has never been explored. Here we explore these nutrient impacts using a novel mathematical framework that analyses this lateral transport as a diffusion-like process and demonstrates that large animals play a disproportionately large role in the horizontal transfer of nutrients across landscapes. For example, we estimate that the extinction of the Amazonian megafauna led to a >98% reduction in the lateral transfer flux of the limiting nutrient phosphorus (P) with similar, though less extreme, decreases in all continents outside of Africa. This resulted in strong decreases in phosphorus availability in Eastern Amazonia away from fertile floodplains, a decline which may still be ongoing, and current P limitation in the Amazon basin may be partially a relic of an ecosystem without the functional connectedness it once had. More broadly, the Pleistocene megafaunal extinctions resulted in major and ongoing disruptions to terrestrial biogeochemical cycling at continental scales and increased nutrient heterogeneity globally.

  8. Learning through Role Play.

    ERIC Educational Resources Information Center

    Simmons, Sandra

    2001-01-01

    Explains how role playing can provide enriching experiences that develop children's literacy and numeracy skills. Lists key ingredients of good role playing and suggests ways to plan them and prepare space for them. (SK)

  9. Gravity Plays an Important Role in Muscle Development and the Differentiation of Contractile Protein Phenotype

    NASA Technical Reports Server (NTRS)

    Adams, Gregory A.; Haddad, Fadia; Baldwin, Kenneth M.

    2003-01-01

    Several muscles in the body exist mainly to work against gravity. Whether gravity is important in the development of these muscles is not known. By examining the basic proteins that compose muscle, questions about the role of gravity in muscle development can be answered. Myosin heavy chains (MHCs) are a family of proteins critically important for muscle contraction. Several types of MHCs exist (e.g., neonatal, slow, fast), and each type is produced by a particular gene. Neonatal MHCs are produced early in life. Slow MHCs are important in antigravity muscles, and fast MHCs are found in fast-twitch power muscles. The gene that is turned on or expressed will determine which MHC is produced. Early in development, antigravity skeletal muscles (muscles that work against gravity) normally produce a combination of the neonatal/embryonic MHCs. The expression of these primitive MHCs is repressed early in development; and the adult slow and fast MHC genes become fully expressed. We tested the hypothesis that weightbearing activity is critical for inducing the normal expression of the slow MHC gene typically expressed in adult antigravity muscles. Also, we hypothesized that thyroid hormone, but not opposition to gravity, is necessary for expressing the adult fast IIb MHC gene essential for high-intensity muscle performance. Groups of normal thyroid and thyroid-deficient neonatal rats were studied after their return from the 16-day Neurolab mission and compared to matched controls. The results suggest: (1) Weightlessness impaired body and limb skeletal muscle growth in both normal and thyroid-deficient animals. Antigravity muscles were impaired more than those used primarily for locomotion andor nonweightbearing activity. (2) Systemic and muscle expression of insulin-like growth factor-I (IGF-I), an important body and tissue growth factor, was depressed in flight animals. (3) Normal slow, type I MHC gene expression was markedly repressed in the normal thyroid flight group. (4

  10. Central dopaminergic neurotransmission plays an important role in thermoregulation and performance during endurance exercise.

    PubMed

    Zheng, Xinyan; Hasegawa, Hiroshi

    2016-10-01

    Dopamine (DA) has been widely investigated for its potential role in determining exercise performance. It was originally thought that DA's ergogenic effect was by mediating psychological responses. Recently, some studies have also suggested that DA may regulate physiological responses, such as thermoregulation. Hyperthermia has been demonstrated as an important limiting factor during endurance exercise. DA is prominent in the thermoregulatory centre, and changes in DA concentration have been shown to affect core temperature regulation during exercise. Some studies have proposed that DA or DA/noradrenaline (NA) reuptake inhibitors can improve exercise performance, despite hyperthermia during exercise in the heat. DA/NA reuptake inhibitors also increase catecholamine release in the thermoregulatory centre. Intracerebroventricularly injected DA has been shown to improve exercise performance through inhibiting hyperthermia-induced fatigue, even at normal ambient temperatures. Further, caffeine has been reported to increase DA release in the thermoregulatory centre and improves endurance exercise performance despite increased core body temperature. Taken together, DA has been shown to have ergogenic effects and increase heat storage and hyperthermia tolerance. The mechanisms underlying these effects seem to involve limiting/overriding the inhibitory signals from the central nervous system that result in cessation of exercise due to hyperthermia. PMID:26581447

  11. Transposable elements play an important role during cotton genome evolution and fiber cell development.

    PubMed

    Wang, Kun; Huang, Gai; Zhu, Yuxian

    2016-02-01

    Transposable elements (TEs) usually occupy largest fractions of plant genome and are also the most variable part of the structure. Although traditionally it is hallmarked as "junk and selfish DNA", today more and more evidence points out TE's participation in gene regulations including gene mutation, duplication, movement and novel gene creation via genetic and epigenetic mechanisms. The recently sequenced genomes of diploid cottons Gossypium arboreum (AA) and Gossypium raimondii (DD) together with their allotetraploid progeny Gossypium hirsutum (AtAtDtDt) provides a unique opportunity to compare genome variations in the Gossypium genus and to analyze the functions of TEs during its evolution. TEs accounted for 57%, 68.5% and 67.2%, respectively in DD, AA and AtAtDtDt genomes. The 1,694 Mb A-genome was found to harbor more LTR(long terminal repeat)-type retrotransposons that made cardinal contributions to the twofold increase in its genome size after evolution from the 775.2 Mb D-genome. Although the 2,173 Mb AtAtDtDt genome showed similar TE content to the A-genome, the total numbers of LTR-gypsy and LTR-copia type TEs varied significantly between these two genomes. Considering their roles on rewiring gene regulatory networks, we believe that TEs may somehow be involved in cotton fiber cell development. Indeed, the insertion or deletion of different TEs in the upstream region of two important transcription factor genes in At or Dt subgenomes resulted in qualitative differences in target gene expression. We suggest that our findings may open a window for improving cotton agronomic traits by editing TE activities. PMID:26687725

  12. Does Morphology Play an Important Role in L2 Chinese Vocabulary Acquisition?

    ERIC Educational Resources Information Center

    Zhang, Haomin

    2016-01-01

    The present study examined the role of morphological awareness in second language (L2) Chinese vocabulary acquisition through an investigation of linguistic universality and specificity underlying morphological awareness. Morphological awareness in this study was conceptualized as a universal and sharable cognitive resource as well as a…

  13. Role-Playing Mitosis.

    ERIC Educational Resources Information Center

    Wyn, Mark A.; Stegink, Steven J.

    2000-01-01

    Introduces a role playing activity that actively engages students in the learning process of mitosis. Students play either chromosomes carrying information, or cells in the cell membrane. (Contains 11 references.) (Author/YDS)

  14. The ZupT transporter plays an important role in zinc homeostasis and contributes to Salmonella enterica virulence

    PubMed Central

    Cerasi, Mauro; Liu, Janet Z.; Ammendola, Serena; Poe, Adam J.; Petrarca, Patrizia; Pesciaroli, Michele; Pasquali, Paolo; Raffatellu, Manuela; Battistoni, Andrea

    2014-01-01

    Zinc is an essential metal for cellular homeostasis and function in both eukaryotes and prokaryotes. To acquire this essential nutrient, bacteria employ transporters characterized by different affinity for the metal. Several studies have investigated the role of the high affinity transporter ZnuABC in the bacterial response to zinc shortage, showing that this transporter has a key role in adapting bacteria to zinc starvation. In contrast, the role of the low affinity zinc importer ZupT has been the object of limited investigations. Here we show that a Salmonella strain lacking ZupT is impaired in its ability to grow in metal devoid environments and that a znuABC zupT strain exhibits a severe growth defect in zinc devoid media, is hypersensitive to oxidative stress and contains reduced level of intracellular free zinc. Moreover, we show that ZupT plays a role also in the ability of S. Typhimurim to colonize the host tissues. During systemic infections, the single zupT mutant strain was attenuated only in Nramp1+/+ mice, but competition experiments between znuABC and znuABC zupT mutants revealed that ZupT contributes to metal uptake in vivo independently from the presence a functional Nramp1 transporter. Altogether, the here reported results show that ZupT plays an important role in Salmonella zinc homeostasis, being involved in metal import both in vitro and in infected animals. PMID:24430377

  15. Chemokines and their receptors play important roles in the development of hepatocellular carcinoma

    PubMed Central

    Liang, Chun-Min; Chen, Long; Hu, Heng; Ma, Hui-Ying; Gao, Ling-Ling; Qin, Jie; Zhong, Cui-Ping

    2015-01-01

    The chemokine system consists of four different subclasses with over 50 chemokines and 19 receptors. Their functions in the immune system have been well elucidated and research during the last decades unveils their new roles in hepatocellular carcinoma (HCC). The chemokines and their receptors in the microenvironment influence the development of HCC by several aspects including: inflammation, effects on immune cells, angiogenesis, and direct effects on HCC cells. Regarding these aspects, pre-clinical research by targeting the chemokine system has yielded promising data, and these findings bring us new clues in the chemokine-based therapies for HCC. PMID:26052384

  16. Neprilysins: An Evolutionarily Conserved Family of Metalloproteases That Play Important Roles in Reproduction in Drosophila

    PubMed Central

    Sitnik, Jessica L.; Francis, Carmen; Hens, Korneel; Huybrechts, Roger; Wolfner, Mariana F.; Callaerts, Patrick

    2014-01-01

    Members of the M13 class of metalloproteases have been implicated in diseases and in reproductive fitness. Nevertheless, their physiological role remains poorly understood. To obtain a tractable model with which to analyze this protein family’s function, we characterized the gene family in Drosophila melanogaster and focused on reproductive phenotypes. The D. melanogaster genome contains 24 M13 class protease homologs, some of which are orthologs of human proteases, including neprilysin. Many are expressed in the reproductive tracts of either sex. Using RNAi we individually targeted the five Nep genes most closely related to vertebrate neprilysin, Nep1-5, to investigate their roles in reproduction. A reduction in Nep1, Nep2, or Nep4 expression in females reduced egg laying. Nep1 and Nep2 are required in the CNS and the spermathecae for wild-type fecundity. Females that are null for Nep2 also show defects as hosts of sperm competition as well as an increased rate of depletion for stored sperm. Furthermore, eggs laid by Nep2 mutant females are fertilized normally, but arrest early in embryonic development. In the male, only Nep1 was required to induce normal patterns of female egg laying. Reduction in the expression of Nep2-5 in the male did not cause any dramatic effects on reproductive fitness, which suggests that these genes are either nonessential for male fertility or perform redundant functions. Our results suggest that, consistent with the functions of neprilysins in mammals, these proteins are also required for reproduction in Drosophila, opening up this model system for further functional analysis of this protein class and their substrates. PMID:24395329

  17. Attenuated AMH signaling pathway plays an important role in the pathogenesis of ovarian hyperstimulation syndrome.

    PubMed

    Wang, Lan; Li, Hemei; Ai, Jihui; Yue, Jing; Li, Zhou; Zhang, Hanwang; Zhao, Yiqing

    2015-01-01

    The aim of this study is to investigate the potential role of attenuated anti-Müllerian hormone signaling in the pathogenesis of ovarian hyperstimulation syndrome (OHSS). To analyze the expression of AMH and its receptors in human follicular fluid (FF) and granulosa cells (GCs), this study included consenting patients with moderate to severe OHSS (n = 83) and non-OHSS patients (control population, n = 108) undergoing IVF/ICSI treatment between March 2013 and March 2014. AMH concentrations in single FF samples from the OHSS patients were significantly lower than concentrations in samples from the control group. A negative correlation was found between the E2 level and the AMH level in single FF samples. Similarly, a negative correlation was found between the FF AMH level and the number of oocytes retrieved. Although the mRNA expression level of AMH was hardly detectable in GCs, the mRNA expression level of AMHR2 in GCs from OHSS patients was significantly lower than the AMHR2 mRNA expression level in the control population. Based on these results, we established a murine model of controlled ovarian hyperstimulation (COH) using AMHR2-down-regulated mice to demonstrate the potential role of AMH signaling in the progression of OHSS. The knockdown of AMHR2 is capable of significantly increasing the ovarian response to exogenous gonadotropins, leading to several major clinical manifestations of OHSS in the murine model. In conclusion, attenuated AMH signaling increases ovarian sensitivity to COH and the incidence of OHSS in individuals undergoes IVF/ICSI. PMID:26692936

  18. TLR1/TLR2 heterodimers play an important role in the recognition of Borrelia spirochetes.

    PubMed

    Oosting, Marije; Ter Hofstede, Hadewych; Sturm, Patrick; Adema, Gosse J; Kullberg, Bart-Jan; van der Meer, Jos W M; Netea, Mihai G; Joosten, Leo A B

    2011-01-01

    After infection with Borrelia species, the risk for developing Lyme disease varies significantly between individuals. Recognition of Borrelia by the immune system is mediated by pattern recognition receptors (PRRs), such as TLRs. While TLR2 is the main recognition receptor for Borrelia spp., little is known about the role of TLR1 and TLR6, which both can form functionally active heterodimers with TLR2. Here we investigated the recognition of Borrelia by both murine and human TLR1 and TLR6. Peritoneal macrophages from TLR1- and TLR6- gene deficient mice were isolated and exposed to Borrelia. Human PBMCs were stimulated with Borrelia with or without specific TLR1 and TLR6 blocking using specific antibodies. Finally, the functional consequences of TLR polymorphisms on Borrelia-induced cytokine production were assessed. Splenocytes isolated from both TLR1-/- and TLR6-/- mice displayed a distorted Th1/Th2 cytokine balance after stimulation with B.burgdorferi, while no differences in pro-inflammatory cytokine production were observed. In contrast, blockade of TLR1 with specific neutralizing antibodies led to decreased cytokine production by human PBMCs after exposure to B.burgdorferi. Blockade of human TLR6 did not lead to suppression of cytokine production. When PBMCs from healthy individuals bearing polymorphisms in TLR1 were exposed to B.burgdorferi, a remarkably decreased in vitro cytokine production was observed in comparison to wild-type controls. TLR6 polymorphisms lead to a minor modified cytokine production. This study indicates a dominant role for TLR1/TLR2 heterodimers in the induction of the early inflammatory response by Borrelia spirochetes in humans. PMID:21998742

  19. Attenuated AMH signaling pathway plays an important role in the pathogenesis of ovarian hyperstimulation syndrome

    PubMed Central

    Wang, Lan; Li, Hemei; Ai, Jihui; Yue, Jing; Li, Zhou; Zhang, Hanwang; Zhao, Yiqing

    2015-01-01

    The aim of this study is to investigate the potential role of attenuated anti-Müllerian hormone signaling in the pathogenesis of ovarian hyperstimulation syndrome (OHSS). To analyze the expression of AMH and its receptors in human follicular fluid (FF) and granulosa cells (GCs), this study included consenting patients with moderate to severe OHSS (n = 83) and non-OHSS patients (control population, n = 108) undergoing IVF/ICSI treatment between March 2013 and March 2014. AMH concentrations in single FF samples from the OHSS patients were significantly lower than concentrations in samples from the control group. A negative correlation was found between the E2 level and the AMH level in single FF samples. Similarly, a negative correlation was found between the FF AMH level and the number of oocytes retrieved. Although the mRNA expression level of AMH was hardly detectable in GCs, the mRNA expression level of AMHR2 in GCs from OHSS patients was significantly lower than the AMHR2 mRNA expression level in the control population. Based on these results, we established a murine model of controlled ovarian hyperstimulation (COH) using AMHR2-down-regulated mice to demonstrate the potential role of AMH signaling in the progression of OHSS. The knockdown of AMHR2 is capable of significantly increasing the ovarian response to exogenous gonadotropins, leading to several major clinical manifestations of OHSS in the murine model. In conclusion, attenuated AMH signaling increases ovarian sensitivity to COH and the incidence of OHSS in individuals undergoes IVF/ICSI. PMID:26692936

  20. Aquaporin-1 plays important role in proliferation by affecting cell cycle progression.

    PubMed

    Galán-Cobo, Ana; Ramírez-Lorca, Reposo; Toledo-Aral, Juan José; Echevarría, Miriam

    2016-01-01

    Aquaporin-1 (AQP1) has been associated with tumor development. Here, we investigated how AQP1 may affect cell proliferation. The proliferative rate of adult carotid body (CB) cells, known to proliferate under chronic hypoxia, was analyzed in wild-type (AQP1(+/+) ) and knock out (AQP1(-/-) ) mice, maintained in normoxia or exposed to hypoxia while BrdU was administered. Fewer numbers of total BrdU(+) and TH-BrdU(+) cells were observed in AQP1(-/-) mice, indicating a role for AQP1 in CB proliferation. Then, by flow cytometry, cell cycle state and proliferation of cells overexpressing AQP1 were compared to those of wild-type cells. In the AQP1-overexpressing cells, we observed higher cell proliferation and percentages of cells in phases S and G2/M and fewer apoptotic cells after nocodazole treatment were detected by annexin V staining. Also in these cells, proteomic assays showed higher expression of cyclin D1 and E1 and microarray analysis revealed changes in many cell proliferation-related molecules, including, Zeb 2, Jun, NF-kβ, Cxcl9, Cxcl10, TNF, and the TNF receptor. Overall, our results indicate that the presence of AQP1 modifies the expression of key cell cycle proteins apparently related to increases in cell proliferation. This contributes to explaining the presence of AQP1 in many different tumors. PMID:26081645

  1. Platelet to lymphocyte ratio plays an important role in prostate cancer’s diagnosis and prognosis

    PubMed Central

    Li, Feng; Hu, Haibo; Gu, Shuo; Chen, Xin; Sun, Qing

    2015-01-01

    Objective: To compare the platelet to lymphocyte ratio (PLR) in normal people, benign prostatic hyperplasia (BPH) patients and prostate cancer (PCA) patients, and to explore the prognostic role of PLR in PCA. Methods: 155 normal people, 168 BPH patients and 103 PCA patients were enrolled. PCA patients were divided into PLR low value group (PLR<150) and PLR high value group (PLR≥150), and the difference of patients’ clinical characteristics between high value group and low value group was comparative studied.Results: The differences of PLR among normal people, BPH patients and PCA patients were statistically significant. In addition, platelet counts, neutrophil counts, PSA level, LDH level, AKP level, CRP level and alkaline phosphatase level were also significantly increased in PLR high value group, while the hemoglobin level was decreased. Besides, serious events such as coma during hospitalization were also more likely to appear in PLR high value group. PCA patients had an average follow-up of 3 years, and a total of 25 cases of patients died, including 11 (16.4%) cases in the PLR low value group, and 14 (38.9%) cases in PLR high value group with. Three years survival rate of patients in high value group was significantly reduced. Additionally, PLR was a possible risk factor associated with mortality, and an independent predictor of all-cause mortality during follow-up. Conclusion: PLR is significantly increased in PCA patients, and it is an independent predictor of 3-year mortality in PCA patients. PMID:26380014

  2. Extracellular nucleases and extracellular DNA play important roles in Vibrio cholerae biofilm formation

    PubMed Central

    Seper, Andrea; Fengler, Vera H I; Roier, Sandro; Wolinski, Heimo; Kohlwein, Sepp D; Bishop, Anne L; Camilli, Andrew; Reidl, Joachim; Schild, Stefan

    2011-01-01

    Biofilms are a preferred mode of survival for many microorganisms including Vibrio cholerae, the causative agent of the severe secretory diarrhoeal disease cholera. The ability of the facultative human pathogen V. cholerae to form biofilms is a key factor for persistence in aquatic ecosystems and biofilms act as a source for new outbreaks. Thus, a better understanding of biofilm formation and transmission of V. cholerae is an important target to control the disease. So far the Vibrio exopolysaccharide was the only known constituent of the biofilm matrix. In this study we identify and characterize extracellular DNA as a component of the Vibrio biofilm matrix. Furthermore, we show that extracellular DNA is modulated and controlled by the two extracellular nucleases Dns and Xds. Our results indicate that extracellular DNA and the extracellular nucleases are involved in diverse processes including the development of a typical biofilm architecture, nutrient acquisition, detachment from biofilms and the colonization fitness of biofilm clumps after ingestion by the host. This study provides new insights into biofilm development and transmission of biofilm-derived V. cholerae. PMID:22032623

  3. Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections

    PubMed Central

    Moreau, Pierrick; Moreau, Kevin; Segarra, Amélie; Tourbiez, Delphine; Travers, Marie-Agnès; Rubinsztein, David C; Renault, Tristan

    2015-01-01

    Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters. PMID:25714877

  4. Role Playing and Skits

    ERIC Educational Resources Information Center

    Letwin, Robert, Ed.

    1975-01-01

    Explores non-scripted role playing, dialogue role playing, sociodrama, and skits as variations of simulation techniques. Provides step-by-step guidelines for conducting such sessions. Successful Meetings, Bill Communications, Inc., 1422 Chestnut Street, Philadelphia, Pa. 19102. Subscription Rates: yearly (US, Canada, Mexico) $14.00; elsewhere,…

  5. The Pleiotropic CymR Regulator of Staphylococcus aureus Plays an Important Role in Virulence and Stress Response

    PubMed Central

    Soutourina, Olga; Dubrac, Sarah; Poupel, Olivier; Msadek, Tarek; Martin-Verstraete, Isabelle

    2010-01-01

    We have characterized a novel pleiotropic role for CymR, the master regulator of cysteine metabolism. We show here that CymR plays an important role both in stress response and virulence of Staphylococcus aureus. Genes involved in detoxification processes, including oxidative stress response and metal ion homeostasis, were differentially expressed in a ΔcymR mutant. Deletion of cymR resulted in increased sensitivity to hydrogen peroxide-, disulfide-, tellurite- and copper-induced stresses. Estimation of metabolite pools suggests that this heightened sensitivity could be the result of profound metabolic changes in the ΔcymR mutant, with an increase in the intracellular cysteine pool and hydrogen sulfide formation. Since resistance to oxidative stress within the host organism is important for pathogen survival, we investigated the role of CymR during the infectious process. Our results indicate that the deletion of cymR promotes survival of S. aureus inside macrophages, whereas virulence of the ΔcymR mutant is highly impaired in mice. These data indicate that CymR plays a major role in virulence and adaptation of S. aureus for survival within the host. PMID:20485570

  6. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.

    PubMed

    Cui, Su-Ying; Li, Sheng-Jie; Cui, Xiang-Yu; Zhang, Xue-Qiong; Yu, Bin; Sheng, Zhao-Fu; Huang, Yuan-Li; Cao, Qing; Xu, Ya-Ping; Lin, Zhi-Ge; Yang, Guang; Song, Jin-Zhi; Ding, Hui; Wang, Zi-Jun; Zhang, Yong-He

    2016-02-01

    The Ca(2+) modulation in the dorsal raphe nucleus (DRN) plays an important role in sleep-wake regulation. Calmodulin-dependent kinase II (CaMKII) is an important signal-transducing molecule that is activated by Ca(2+) . This study investigated the effects of intracellular Ca(2+) /CaMKII signaling in the DRN on sleep-wake states in rats. Maximum and minimum CaMKII phosphorylation was detected at Zeitgeber time 21 (ZT 21; wakefulness state) and ZT 3 (sleep state), respectively, across the light-dark rhythm in the DRN in rats. Six-hour sleep deprivation significantly reduced CaMKII phosphorylation in the DRN. Microinjection of the CAMKII activation inhibitor KN-93 (5 or 10 nmol) into the DRN suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REM sleep (NREMS). Application of a high dose of KN-93 (10 nmol) increased slow-wave sleep (SWS) time, SWS bouts, the mean duration of SWS, the percentage of SWS relative to total sleep, and delta power density during NREMS. Microinjection of CaCl2 (50 nmol) in the DRN increased CaMKII phosphorylation and decreased NREMS, SWS, and REMS. KN-93 abolished the inhibitory effects of CaCl2 on NREMS, SWS, and REMS. These data indicate a novel wake-promoting and sleep-suppressing role for the Ca(2+) /CaMKII signaling pathway in DRN neurons. We propose that the intracellular Ca(2+) /CaMKII signaling in the dorsal raphe nucleus (DRN) plays wake-promoting and sleep-suppressing role in rats. Intra-DRN application of KN-93 (CaMKII activation inhibitor) suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REMS (NREMS). Intra-DRN application of CaCl2 attenuated REMS and NREMS. We think these findings should provide a novel cellular and molecular mechanism of sleep-wake regulation. PMID:26558357

  7. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    SciTech Connect

    Du, Fengxia; Zhang, Minjie; Li, Xiaohua; Yang, Caiyun; Meng, Hao; Wang, Dong; Chang, Shuang; Xu, Ye; Price, Brendan; Sun, Yingli

    2014-10-03

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.

  8. Bulk-like endocytosis plays an important role in the recycling of insulin granules in pancreatic beta cells.

    PubMed

    Wen, Du; Xue, Yanhong; Liang, Kuo; Yuan, Tianyi; Lu, Jingze; Zhao, Wei; Xu, Tao; Chen, Liangyi

    2012-08-01

    Although bulk endocytosis has been found in a number of neuronal and endocrine cells, the molecular mechanism and physiological function of bulk endocytosis remain elusive. In pancreatic beta cells, we have observed bulk-like endocytosis evoked both by flash photolysis and trains of depolarization. Bulk-like endocytosis is a clathrin-independent process that is facilitated by enhanced extracellular Ca(2+) entry and suppressed by the inhibition of dynamin function. Moreover, defects in bulk-like endocytosis are accompanied by hyperinsulinemia in primary beta cells dissociated from diabetic KKAy mice, which suggests that bulk-like endocytosis plays an important role in maintaining the exo-endocytosis balance and beta cell secretory capability. PMID:22729398

  9. Molecular identification of three novel glutaredoxin genes that play important roles in antioxidant defense in Helicoverpa armigera.

    PubMed

    Zhang, Song-Dou; Shen, Zhong-Jian; Liu, Xiao-Ming; Li, Zhen; Zhang, Qing-Wen; Liu, Xiao-Xia

    2016-08-01

    Glutaredoxins (Grxs), also known as thioltransferases, play key roles in maintaining intracellular redox balance and protecting cells from oxidative damage in plants and mammals. We tested whether Grxs play important roles in antioxidant defense in insects using the moth, Helicoverpa armigera. We obtained the full-length cDNA sequences of three novel Grx genes, named HaGrx, HaGrx3, and HaGrx5. Sequence analysis indicated that HaGrx shared a high amino acid identity (58%-78%) and a CPYC motif of conserved redox activity with homologues from other selected insect species. In contrast, HaGrx3 and HaGrx5 both shared a CGF(S/G) motif, a conserved catalytic domain, with other orthologous genes. Quantitative real-time PCR results revealed that HaGrx, HaGrx3, and HaGrx5 exhibited temporally- and spatially-dependent patterns of expression. The mRNA expression of HaGrx, HaGrx3, and HaGrx5 was induced by various temperature stresses and H2O2 treatments. We further investigated the knockdown of HaGrx, HaGrx3, and HaGrx5 in H. armigera larvae and found that most of the selected antioxidant genes were up regulated. However, Tpx was down regulated, and further interpretation of the complementary functions of these antioxidant genes is still required. We also determined the effect of HaGrx, HaGrx3, and HaGrx5 knockdown on antioxidant enzymatic activity and metabolite content. The enzymatic activities of SOD, CAT, and POD, and the metabolite contents of hydrogen peroxide, ascorbate, protein carbonyl, and total GSH increased after RNAi mediated knockdown of HaGrx, HaGrx3, and HaGrx5. These results supported our hypothesis that HaGrx, HaGrx3, and HaGrx5 play important roles in antioxidant defense of Helicoverpa armigera and provided a theoretical basis for further in-depth study of physiological function in the insect glutaredoxin family genes. PMID:27339760

  10. A complex of Wiskott-Aldrich syndrome protein with mammalian verprolins plays an important role in monocyte chemotaxis.

    PubMed

    Tsuboi, Shigeru

    2006-06-01

    The Wiskott-Aldrich syndrome protein (WASP) is a product of the gene defective in an Xid disorder, Wiskott-Aldrich syndrome. WASP expression is limited to hemopoietic cells, and WASP regulates the actin cytoskeleton. It has been reported that monocytes/macrophages from WASP-deficient Wiskott-Aldrich syndrome patients are severely defective in chemotaxis, resulting in recurrent infection. However, the molecular basis of such chemotactic defects is not understood. Recently, the WASP N-terminal region was found to bind to the three mammalian verprolin homologs: WASP interacting protein (WIP); WIP and CR16 homologous protein (WICH)/WIP-related protein (WIRE); and CR16. Verprolin was originally found to play an important role in the regulation of actin cytoskeleton in yeast. We have shown that WASP, WIP, and WICH/WIRE are expressed predominantly in the human monocyte cell line THP-1 and that WIP and WICH/WIRE are involved in monocyte chemotaxis. When WASP binding to verprolins was blocked, chemotactic migration of monocytes was impaired in both THP-1 cells and primary human monocytes. Increased expression of WASP and WIP enhanced monocyte chemotaxis. Blocking WASP binding to verprolins impaired cell polarization but not actin polymerization. These results indicate that a complex of WASP with mammalian verprolins plays an important role in chemotaxis of monocytes. Our results suggest that WASP and mammalian verprolins function as a unit in monocyte chemotaxis and that the activity of this unit is critical to establish cell polarization. In addition, our results also indicate that the WASP-verprolin complex is involved in other functions such as podosome formation and phagocytosis. PMID:16709815

  11. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state.

    PubMed

    Kurutas, Ergul Belge

    2016-01-01

    Remarkable interest has risen in the idea that oxidative/nitrosative stress is mediated in the etiology of numerous human diseases. Oxidative/Nitrosative stress is the result of an disequilibrium in oxidant/antioxidant which reveals from continuous increase of Reactive Oxygen and Reactive Nitrogen Species production. The aim of this review is to emphasize with current information the importance of antioxidants which play the role in cellular responce against oxidative/nitrosative stress, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue. Products of lipid peroxidation have commonly been used as biomarkers of oxidative/nitrosative stress damage. Lipid peroxidation generates a variety of relatively stable decomposition end products, mainly α, β-unsaturated reactive aldehydes, such as malondialdehyde, 4-hydroxy-2-nonenal, 2-propenal (acrolein) and isoprostanes, which can be measured in plasma and urine as an indirect index of oxidative/nitrosative stress. Antioxidants are exogenous or endogenous molecules that mitigate any form of oxidative/nitrosative stress or its consequences. They may act from directly scavenging free radicals to increasing antioxidative defences. Antioxidant deficiencies can develop as a result of decreased antioxidant intake, synthesis of endogenous enzymes or increased antioxidant utilization. Antioxidant supplementation has become an increasingly popular practice to maintain optimal body function. However, antoxidants exhibit pro-oxidant activity depending on the specific set of conditions. Of particular importance are their dosage and redox conditions in the cell. PMID:27456681

  12. Ruminal Prevotella spp. may play an important role in the conversion of plant lignans into human health beneficial antioxidants.

    PubMed

    Schogor, Ana L B; Huws, Sharon A; Santos, Geraldo T D; Scollan, Nigel D; Hauck, Barbara D; Winters, Ana L; Kim, Eun J; Petit, Hélène V

    2014-01-01

    Secoisolariciresinol diglucoside (SDG), the most abundant lignan in flaxseed, is metabolized by the ruminal microbiota into enterolignans, which are strong antioxidants. Enterolactone (EL), the main mammalian enterolignan produced in the rumen, is transferred into physiological fluids, with potentially human health benefits with respect to menopausal symptoms, hormone-dependent cancers, cardiovascular diseases, osteoporosis and diabetes. However, no information exists to our knowledge on bacterial taxa that play a role in converting plant lignans into EL in ruminants. In order to investigate this, eight rumen cannulated cows were used in a double 4 × 4 Latin square design and fed with four treatments: control with no flax meal (FM), or 5%, 10% and 15% FM (on a dry matter basis). Concentration of EL in the rumen increased linearly with increasing FM inclusion. Total rumen bacterial 16S rRNA concentration obtained using Q-PCR did not differ among treatments. PCR-T-RFLP based dendrograms revealed no global clustering based on diet indicating between animal variation. PCR-DGGE showed a clustering by diet effect within four cows that had similar basal ruminal microbiota. DNA extracted from bands present following feeding 15% FM and absent with no FM supplementation were sequenced and it showed that many genera, in particular Prevotella spp., contributed to the metabolism of lignans. A subsequent in vitro study using selected pure cultures of ruminal bacteria incubated with SDG indicated that 11 ruminal bacteria were able to convert SDG into secoisolariciresinol (SECO), with Prevotella spp. being the main converters. These data suggest that Prevotella spp. is one genus playing an important role in the conversion of plant lignans to human health beneficial antioxidants in the rumen. PMID:24709940

  13. The First Extracellular Domain Plays an Important Role in Unitary Channel Conductance of Cx50 Gap Junction Channels

    PubMed Central

    Tong, Xiaoling; Aoyama, Hiroshi; Sudhakar, Swathy; Chen, Honghong; Shilton, Brian H.; Bai, Donglin

    2015-01-01

    Gap junction (GJ) channels provide direct passage for ions and small molecules to be exchanged between neighbouring cells and are crucial for many physiological processes. GJ channels can be gated by transjunctional voltage (known as Vj-gating) and display a wide range of unitary channel conductance (γj), yet the domains responsible for Vj-gating and γj are not fully clear. The first extracellular domain (E1) of several connexins has been shown to line part of their GJ channel pore and play important roles in Vj-gating properties and/or ion permeation selectivity. To test roles of the E1 of Cx50 GJ channels, we generated a chimera, Cx50Cx36E1, where the E1 domain of Cx50 was replaced with that of Cx36, a connexin showing quite distinct Vj-gating and γj from those of Cx50. Detailed characterizations of the chimera and three point mutants in E1 revealed that, although the E1 domain is important in determining γj, the E1 domain of Cx36 is able to effectively function within the context of the Cx50 channel with minor changes in Vj-gating properties, indicating that sequence differences between the E1 domains in Cx36 and Cx50 cannot account for their drastic differences in Vj-gating and γj. Our homology models of the chimera and the E1 mutants revealed that electrostatic properties of the pore-lining residues and their contribution to the electric field in the pore are important factors for the rate of ion permeation of Cx50 and possibly other GJ channels. PMID:26625162

  14. NAC transcription factors play an important role in ethylene biosynthesis, reception and signaling of tomato fruit ripening.

    PubMed

    Kou, Xiaohong; Liu, Chen; Han, Lihua; Wang, Shuang; Xue, Zhaohui

    2016-06-01

    NAC proteins comprise a large family of transcription factors that play important roles in diverse physiological processes during development. To explore the role of NAC transcription factors in the ripening of fruits, we predicted the secondary and tertiary structure as well as regulative function of the SNAC4 (SlNAC48, Accession number: NM 001279348.2) and SNAC9 (SlNAC19, Accession number: XM 004236996.2) transcription factors in tomato. We found that the tertiary structure of SNAC9 was similar to that of ATNAP, which played an important role in the fruit senescence and was required for ethylene stimulation. Likewise, the bio-function prediction results indicated that SNAC4 and SNAC9 participated in various plant hormone signaling and senescence processes. More information about SNACs was obtained by the application of VIGS (virus-induced gene silencing). The silencing of SNAC4 and SNAC9 dramatically repressed the LeACS2, LeACS4 and LeACO1 expression, which consequently led to the inhibition of the ripening process. The silencing of SNACs down-regulated the mRNA levels of the ethylene perception genes and, at the same time, suppressed the expression of ethylene signaling-related genes except for LeERF2 which was induced by the silencing of SNAC4. The expressions of LeRIN were different in two silenced fruits. In addition, the silencing of SNAC4 reduced its mRNA level, while the silencing of SNAC9 induced its expression. Furthermore, the silencing of LeACS4, LeACO1 and LeERF2 reduced the expression of SNAC4 and SNAC9, while the silencing of NR induced the expression of all of them. In particular, these results indicate that SNAC transcription factors bind to the promoter of the ethylene synthesis genes in vitro. This experimental evidence demonstrates that SNAC4 and SNAC9 could positively regulate the tomato fruit ripening process by functioning upstream of ethylene synthesis genes. These outcomes will be helpful to provide a theoretical foundation for further

  15. Sphingosine kinase 1 dependent protein kinase C-δ activation plays an important role in acute liver failure in mice

    PubMed Central

    Lei, Yan-Chang; Yang, Ling-Ling; Li, Wen; Luo, Pan

    2015-01-01

    AIM: To investigate the role of protein kinase C (PKC)-δ activation in the pathogenesis of acute liver failure (ALF) in a well-characterized mouse model of D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced ALF. METHODS: BALB/c mice were randomly assigned to five groups, and ALF was induced in mice by intraperitoneal injection of D-GaIN (600 mg/kg) and LPS (10 μg/kg). Kaplan-Meier method was used for survival analysis. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels at different time points within one week were determined using a multiparameteric analyzer. Serum levels of high-mobility group box 1 (HMGB1), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10 as well as nuclear factor (NF)-κB activity were determined by enzyme-linked immunosorbent assay. Hepatic morphological changes at 36 h after ALF induction were assessed by hematoxylin and eosin staining. Expression of PKC-δ in liver tissue and peripheral blood mononuclear cells (PBMCs) was analyzed by Western blot. RESULTS: The expression and activation of PKC-δ were up-regulated in liver tissue and PBMCs of mice with D-GalN/LPS-induced ALF. Inhibition of PKC-δ activation with rottlerin significantly increased the survival rates and decreased serum ALT/AST levels at 6, 12 and 24 h compared with the control group (P < 0.001). Rottlerin treatment also significantly decreased serum levels of HMGB1 at 6, 12, and 24 h, TNF-α, IL-6 and IL-1 β at 12 h compared with the control group (P < 0.01). The inflammatory cell infiltration and necrosis in liver tissue were also decreased in the rottlerin treatment group. Furthermore, sphingosine kinase 1 (SphK1) dependent PKC-δ activation played an important role in promoting NF-κB activation and inflammatory cytokine production in ALF. CONCLUSION: SphK1 dependent PKC-δ activation plays an important role in promoting NF-κB activation and inflammatory response in ALF, and inhibition of PKC-δ activation might be

  16. Notch and Wnt/β-catenin signaling pathway play important roles in activating liver cancer stem cells.

    PubMed

    Wang, Ronghua; Sun, Qian; Wang, Peng; Liu, Man; Xiong, Si; Luo, Jing; Huang, Hai; Du, Qiang; Geller, David A; Cheng, Bin

    2016-02-01

    Human hepatocellular carcinoma (HCC) is driven and maintained by liver cancer stem cells (LCSCs) that display stem cell properties. These LCSCs are promoted by the intersecting of Notch and Wnt/β-Catenin signaling pathways. In this study, we demonstrate that LCSCs with markers CD90, CD24, CD13, and CD133 possess stem properties of self-renewal and tumorigenicity in NOD/SCID mice. The increased expression of these markers was correlated with advanced disease stage, larger tumors, and worse overall survival in 61 HCC cases. We also found that both Notch and Wnt/β-catenin signaling pathways played important roles in increasing the stem-ness characteristics of LCSCs. Our data suggested that Notch1 was downstream of Wnt/β-catenin. The active form of Notch1 intracellular domain (NICD) expression depended on Wnt/β-catenin pathway activation. Moreover, Notch1 negatively contributed to Wnt/β-catenin signaling modulation. Knock down of Notch1 with lentivirus N1ShRNA up-regulated the active form of β-catenin. Ectopic expression of NICD with LV-Notch1 in LCSCs attenuated β-catenin/TCF dependent luciferase activity significantly. In addition, there was a non-proteasome mediated feedback loop between Notch1 and Wnt/β-catenin signaling in LCSCs. The central role of Notch and the Wnt/β-catenin signaling pathway in LCSCs may provide an attractive therapeutic strategy against HCC. PMID:26735577

  17. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots.

    PubMed

    Ma, Jianhui; Dong, Wen; Zhang, Daijing; Gao, Xiaolong; Jiang, Lina; Shao, Yun; Tong, Doudou; Li, Chunxi

    2016-01-01

    Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat. PMID:27602297

  18. W-box and G-box elements play important roles in early senescence of rice flag leaf

    PubMed Central

    Liu, Li; Xu, Wei; Hu, Xuesong; Liu, Haoju; Lin, Yongjun

    2016-01-01

    Plant cis-elements play important roles in global regulation of gene expression. Based on microarray data from rice flag leaves during early senescence, we identified W-box and G-box cis-elements as positive regulators of senescence in the important rice variety Minghui 63. Both cis-elements were bound by leaf senescence-specific proteins in vitro and influenced senescence in vivo. Furthermore, combination of the two elements drove enhanced expression during leaf senescence, and copy numbers of the cis-elements significantly affected the levels of expression. The W-box is the cognate cis-element for WRKY proteins, while the G-box is the cognate cis-element for bZIP, bHLH and NAC proteins. Consistent with this, WRKY, bZIP, bHLH and NAC family members were overrepresented among transcription factor genes up-regulated according during senescence. Crosstalk between ABA, CTK, BR, auxin, GA and JA during senescence was uncovered by comparing expression patterns of senescence up-regulated transcription factors. Together, our results indicate that hormone-mediated signaling could converge on leaf senescence at the transcriptional level through W-box and G-box elements. Considering that there are very few documented early senescence-related cis-elements, our results significantly contribute to understanding the regulation of flag leaf senescence and provide prioritized targets for stay-green trait improvement. PMID:26864250

  19. The imbalance between TIMP3 and matrix-degrading enzymes plays an important role in intervertebral disc degeneration.

    PubMed

    Li, Yan; Li, Kang; Han, Xiuguo; Mao, Chuanyuan; Zhang, Kai; Zhao, Tengfei; Zhao, Jie

    2016-01-15

    It is well-known that one of the most important features of intervertebral disc degeneration (IDD) is the extracellular matrix (ECM) degradation. Collagen and aggrecan are major components of ECM; the degradation of ECM in intervertebral discs (IVDs) is closely related to the activities of collagenase and aggrecanase. TIMP-3 is the most efficient inhibitor of aggrecanase in IVD. However, only few studies focus on the potential relationship between TIMP-3 and IDD. In our study, we found TIMP-3 gene expression was decreased after stimulating with LPS in rat nucleus pulposus (NP) cells. Then we used a lentivirus vector to reconstruct rat NP cells which high expressed TIMP-3 gene (LV-TIMP3). The upregulation of MMPs and ADAMTSs induced by LPS was significantly inhibited in LV-TIMP3 cells. After overexpression of TIMP-3, the aggrecan breakdown caused by LPS was also reduced in both monolayer culture and three-dimension culture model. To further study the relation between TIMP-3 and IDD, we collected human NP tissue samples of different degenerative degrees. Real-time PCR and immunohistochemical staining showed that the expression of TIMP-3 was negatively correlated with the degree of intervertebral disc degeneration, while MMP-1 and ADAMTS-4 were markedly increased in degenerative IVD. Taken together, our results suggest that the imbalance between aggrecanase and TIMP-3 may play an important role in the pathogenesis of IDD and therefore be a potential therapeutic target for treating IDD. PMID:26686417

  20. Proteomic profiling analysis reveals that glutathione system plays important roles responding to osmotic stress in wheat (Triticum aestivum L.) roots

    PubMed Central

    Dong, Wen; Zhang, Daijing; Gao, Xiaolong; Shao, Yun; Tong, Doudou

    2016-01-01

    Wheat is one of the most important crops in the world, and osmotic stress has become one of the main factors affecting wheat production. Understanding the mechanism of the response of wheat to osmotic stress would be greatly significant. In the present study, isobaric tag for relative and absolute quantification (iTRAQ) was used to analyze the changes of protein expression in the wheat roots exposed to different osmotic stresses. A total of 2,228 expressed proteins, including 81 differentially expressed proteins, between osmotic stress and control, were found. The comprehensive analysis of these differentially expressed proteins revealed that osmotic stress increased the variety of expressed proteins and suppressed the quantity of expressed proteins in wheat roots. Furthermore, the proteins for detoxifying and reactive oxygen species scavenging, especially the glutathione system, played important roles in maintaining organism balance in response to osmotic stress in wheat roots. Thus, the present study comprehensively describes the protein expression changes in wheat roots in response to osmotic stress, providing firmer foundation to further study the mechanism of osmotic resistance in wheat. PMID:27602297

  1. Nutrition Metabolism Plays an Important Role in the Alternate Bearing of the Olive Tree (Olea europaea L.)

    PubMed Central

    Turktas, Mine; Inal, Behcet; Okay, Sezer; Erkilic, Emine Gulden; Dundar, Ekrem; Hernandez, Pilar; Dorado, Gabriel; Unver, Turgay

    2013-01-01

    The olive tree (Olea europaea L.) is widely known for its strong tendency for alternate bearing, which severely affects the fruit yield from year to year. Microarray based gene expression analysis using RNA from olive samples (on-off years leaves and ripe-unripe fruits) are particularly useful to understand the molecular mechanisms influencing the periodicity in the olive tree. Thus, we carried out genome wide transcriptome analyses involving different organs and temporal stages of the olive tree using the NimbleGen Array containing 136,628 oligonucleotide probe sets. Cluster analyses of the genes showed that cDNAs originated from different organs could be sorted into separate groups. The nutritional control had a particularly remarkable impact on the alternate bearing of olive, as shown by the differential expression of transcripts under different temporal phases and organs. Additionally, hormonal control and flowering processes also played important roles in this phenomenon. Our analyses provide further insights into the transcript changes between ”on year” and “off year” leaves along with the changes from unrpipe to ripe fruits, which shed light on the molecular mechanisms underlying the olive tree alternate bearing. These findings have important implications for the breeding and agriculture of the olive tree and other crops showing periodicity. To our knowledge, this is the first study reporting the development and use of an olive array to document the gene expression profiling associated with the alternate bearing in olive tree. PMID:23555820

  2. Macrophages as IL-25/IL-33-Responsive Cells Play an Important Role in the Induction of Type 2 Immunity

    PubMed Central

    Yang, Zhonghan; Grinchuk, Viktoriya; Urban, Joseph F.; Bohl, Jennifer; Sun, Rex; Notari, Luigi; Yan, Shu; Ramalingam, Thirumalai; Keegan, Achsah D.; Wynn, Thomas A.; Shea-Donohue, Terez; Zhao, Aiping

    2013-01-01

    Type 2 immunity is essential for host protection against nematode infection but is detrimental in allergic inflammation or asthma. There is a major research focus on the effector molecules and specific cell types involved in the initiation of type 2 immunity. Recent work has implicated an important role of epithelial-derived cytokines, IL-25 and IL-33, acting on innate immune cells that are believed to be the initial sources of type 2 cytokines IL-4/IL-5/IL-13. The identities of the cell types that mediate the effects of IL-25/IL-33, however, remain to be fully elucidated. In the present study, we demonstrate that macrophages as IL-25/IL-33-responsive cells play an important role in inducing type 2 immunity using both in vitro and in vivo approaches. Macrophages produced type 2 cytokines IL-5 and IL-13 in response to the stimulation of IL-25/IL-33 in vitro, or were the IL-13-producing cells in mice administrated with exogenous IL-33 or infected with Heligmosomoides bakeri. In addition, IL-33 induced alternative activation of macrophages primarily through autocrine IL-13 activating the IL-4Rα-STAT6 pathway. Moreover, depletion of macrophages attenuated the IL-25/IL-33-induced type 2 immunity in mice, while adoptive transfer of IL-33-activated macrophages into mice with a chronic Heligmosomoides bakeri infection induced worm expulsion accompanied by a potent type 2 protective immune response. Thus, macrophages represent a unique population of the innate immune cells pivotal to type 2 immunity and a potential therapeutic target in controlling type 2 immunity-mediated inflammatory pathologies. PMID:23536877

  3. Genetic diversity analysis reveals that geographical environment plays a more important role than rice cultivar in Villosiclava virens population selection.

    PubMed

    Wang, Fei; Zhang, Shu; Liu, Mei-Gang; Lin, Xian-Song; Liu, Hui-Jiang; Peng, You-Liang; Lin, Yang; Huang, Jun-Bin; Luo, Chao-Xi

    2014-05-01

    Rice false smut caused by Villosiclava virens is an economically important disease of grains worldwide. The genetic diversity of 153 isolates from six fields located in Wuhan (WH), Yichang Wangjia (YCW), Yichang Yaohe (YCY), Huanggang (HG), Yangxin (YX), and Jingzhou (JZ) in Hubei province of China were phylogenetically analyzed to evaluate the influence of environments and rice cultivars on the V. virens populations. Isolates (43) from Wuhan were from two rice cultivars, Wanxian 98 and Huajing 952, while most of the other isolates from fields YCW, YCY, HG, YX, and JZ originated from different rice cultivars with different genetic backgrounds. Genetic diversity of isolates was analyzed using random amplified polymorphic DNA (RAPD) and single-nucleotide polymorphisms (SNP). The isolates from the same cultivars in Wuhan tended to group together, indicating that the cultivars had an important impact on the fungal population. The 110 isolates from individual fields tended to cluster according to geographical origin. The values of Nei's gene diversity (H) and Shannon's information index (I) showed that the genetic diversity among isolates was higher between than within geographical populations. Furthermore, mean genetic distance between groups (0.006) was higher than mean genetic distance within groups (0.0048) according to MEGA 5.2. The pairwise population fixation index (FST) values also showed significant genetic differentiation between most populations. Higher genetic similarity of isolates from individual fields but different rice cultivars suggested that the geographical factor played a more important role in the selection of V. virens isolates than rice cultivars. This information could be used to improve the management strategy for rice false smut by adjusting the cultivation measures, such as controlling fertilizer, water, and planting density, in the rice field to change the microenvironment. PMID:24584249

  4. Genetic Diversity Analysis Reveals that Geographical Environment Plays a More Important Role than Rice Cultivar in Villosiclava virens Population Selection

    PubMed Central

    Wang, Fei; Zhang, Shu; Liu, Mei-Gang; Lin, Xian-Song; Liu, Hui-Jiang; Peng, You-Liang; Lin, Yang; Huang, Jun-Bin

    2014-01-01

    Rice false smut caused by Villosiclava virens is an economically important disease of grains worldwide. The genetic diversity of 153 isolates from six fields located in Wuhan (WH), Yichang Wangjia (YCW), Yichang Yaohe (YCY), Huanggang (HG), Yangxin (YX), and Jingzhou (JZ) in Hubei province of China were phylogenetically analyzed to evaluate the influence of environments and rice cultivars on the V. virens populations. Isolates (43) from Wuhan were from two rice cultivars, Wanxian 98 and Huajing 952, while most of the other isolates from fields YCW, YCY, HG, YX, and JZ originated from different rice cultivars with different genetic backgrounds. Genetic diversity of isolates was analyzed using random amplified polymorphic DNA (RAPD) and single-nucleotide polymorphisms (SNP). The isolates from the same cultivars in Wuhan tended to group together, indicating that the cultivars had an important impact on the fungal population. The 110 isolates from individual fields tended to cluster according to geographical origin. The values of Nei's gene diversity (H) and Shannon's information index (I) showed that the genetic diversity among isolates was higher between than within geographical populations. Furthermore, mean genetic distance between groups (0.006) was higher than mean genetic distance within groups (0.0048) according to MEGA 5.2. The pairwise population fixation index (FST) values also showed significant genetic differentiation between most populations. Higher genetic similarity of isolates from individual fields but different rice cultivars suggested that the geographical factor played a more important role in the selection of V. virens isolates than rice cultivars. This information could be used to improve the management strategy for rice false smut by adjusting the cultivation measures, such as controlling fertilizer, water, and planting density, in the rice field to change the microenvironment. PMID:24584249

  5. Does arsenic play an important role in the soil microbial community around a typical arsenic mining area?

    PubMed

    Wu, Fan; Wang, Jun-Tao; Yang, Jun; Li, Jing; Zheng, Yuan-Ming

    2016-06-01

    Arsenic (As) can cause serious hazards to human health, especially in mining areas. Soil bacterial communities, which are critical parts of the soil ecosystem, were analyzed directly for soil environmental factors. As a consequence, it is of great significance to understand the ecological risk of arsenic contamination on bacteria, especially at the local scale. In this study, 33 pairs of soil and grain samples were collected from the corn and paddy fields around an arsenic mining area in Shimen County in Hunan Province, China. Significant differences were found between the soil nitrogen, As concentrations, and bacteria activities among these two types of land use. According to the structural equation model (SEM) analysis, compared with other environmental factors, soil As was not the key factor affecting the bacterial community, even when grain As was beyond the threshold of the national food hygiene standards of China. In the corn field, soil pH was the main factor dominating the bacterial richness, composition and grain As. Meanwhile, in the paddy field the soil total nitrogen (TN) and total carbon (TC) were the main factors impacting the bacterial richness, and the bacterial community composition was mainly affected by pH. The interactions between grain As and soil As were weak in the corn field. The bacterial communities played important roles in the food chain risk of As. The local policy of transforming paddy soil to dry land could greatly reduce the health risk of As through the food chain. PMID:27055093

  6. Physiological analyses indicate superoxide dismutase, catalase, and phytochelatins play important roles in Pb tolerance in Eremochloa ophiuroides.

    PubMed

    Li, Xi; Cen, Huameng; Chen, Youxiang; Xu, Siying; Peng, Lingli; Zhu, Hanmingyue; Li, Yiqiao

    2016-01-01

    Phytoremediation is considered to be a promising approach to restore or stabilize soil contaminated by lead (Pb). Turfgrasses, due to their high biomass yields, are considered to be suitable for use in phytoextraction of soil contaminated with heavy metal. It has been demonstrated that centipedegrass (Eremochloa ophiuroides (Munro) Hack., Poaceae) is a good turfgrass for restore of soil contaminated by Pb. However, the enhanced tolerant mechanisms in metallicolous (M) centipedegrass accessions remain unknown. In this study, we made a comparative study of growth performance, Pb accumulation, antioxidant levels, and phytochelatin concentrations in roots and shoots from M and nonmetallicolous (NM) centipedegrass accessions. Results showed that turf quality and growth rate were less repressed in M accessions than in NM accession. Pb stress caused generation of reactive oxygen species in centipedegrass with relatively lower levels in M accessions. Antioxidant activity analysis indicated that superoxide dismutase and catalase played important roles in Pb tolerance in M accessions. M accessions accumulated more Pb in roots and shoots. Greatly increased phytochelatins and less repressed sulfur contents in roots and shoots of M accessions indicated that they correlated with Pb accumulation and tolerance in centipedegrass. PMID:26368658

  7. Suppressor of cytokine signaling 3 plays an important role in porcine circovirus type 2 subclinical infection by downregulating proinflammatory responses

    PubMed Central

    Zhu, Xuejiao; Bai, Juan; Liu, Panrao; Wang, Xianwei; Jiang, Ping

    2016-01-01

    Porcine circovirus type 2 (PCV2) causes porcine circovirus-associated diseases and usually evokes a subclinical infection, without any obvious symptoms, in pigs. It remains unclear how PCV2 leads to a subclinical infection. In this study, we found that peripheral blood mononuclear cells (PBMCs) from PCV2-challenged piglets with no significant clinical symptoms exhibited increased expression of suppressor of cytokine signaling (SOCS) 3, but no significant changes in the expression of the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α; this differed from piglets that displayed significant clinical symptoms. IL-6- and TNF-α-mediated signalings were inhibited in PBMCs from subclinical piglets. Elevated SOCS3 levels inhibited IL-6- and TNF-α-mediated NF-kappa-B inhibitor alpha degradation in PBMCs and PK-15 cells. SOCS3 production was also increased in PCV2-infected PK-15 porcine kidney cells, and IL-6 and TNF-α production that was induced by PCV2 in PK-15 cells was significantly increased when SOCS3 was silenced by a small interfering RNA. SOCS3 interacted with signal transducer and activator of transcription 3 and TNF-associated receptor-associated factor 2, suggesting mechanisms by which SOCS3 inhibits IL-6 and TNF-α signaling. We conclude that SOCS3 plays an important role in PCV2 subclinical infection by suppressing inflammatory responses in primary immune cells. PMID:27581515

  8. Suppressor of cytokine signaling 3 plays an important role in porcine circovirus type 2 subclinical infection by downregulating proinflammatory responses.

    PubMed

    Zhu, Xuejiao; Bai, Juan; Liu, Panrao; Wang, Xianwei; Jiang, Ping

    2016-01-01

    Porcine circovirus type 2 (PCV2) causes porcine circovirus-associated diseases and usually evokes a subclinical infection, without any obvious symptoms, in pigs. It remains unclear how PCV2 leads to a subclinical infection. In this study, we found that peripheral blood mononuclear cells (PBMCs) from PCV2-challenged piglets with no significant clinical symptoms exhibited increased expression of suppressor of cytokine signaling (SOCS) 3, but no significant changes in the expression of the proinflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α; this differed from piglets that displayed significant clinical symptoms. IL-6- and TNF-α-mediated signalings were inhibited in PBMCs from subclinical piglets. Elevated SOCS3 levels inhibited IL-6- and TNF-α-mediated NF-kappa-B inhibitor alpha degradation in PBMCs and PK-15 cells. SOCS3 production was also increased in PCV2-infected PK-15 porcine kidney cells, and IL-6 and TNF-α production that was induced by PCV2 in PK-15 cells was significantly increased when SOCS3 was silenced by a small interfering RNA. SOCS3 interacted with signal transducer and activator of transcription 3 and TNF-associated receptor-associated factor 2, suggesting mechanisms by which SOCS3 inhibits IL-6 and TNF-α signaling. We conclude that SOCS3 plays an important role in PCV2 subclinical infection by suppressing inflammatory responses in primary immune cells. PMID:27581515

  9. HSP90α plays an important role in piRNA biogenesis and retrotransposon repression in mouse

    PubMed Central

    Ichiyanagi, Tomoko; Ichiyanagi, Kenji; Ogawa, Ayako; Kuramochi-Miyagawa, Satomi; Nakano, Toru; Chuma, Shinichiro; Sasaki, Hiroyuki; Udono, Heiichiro

    2014-01-01

    HSP90, found in all kingdoms of life, is a major chaperone protein regulating many client proteins. We demonstrated that HSP90α, one of two paralogs duplicated in vertebrates, plays an important role in the biogenesis of fetal PIWI-interacting RNAs (piRNA), which act against the transposon activities, in mouse male germ cells. The knockout mutation of Hsp90α resulted in a large reduction in the expression of primary and secondary piRNAs and mislocalization of MIWI2, a PIWI homolog. Whereas the mutation in Fkbp6 encoding a co-chaperone reduced piRNAs of 28–32 nucleotides in length, the Hsp90α mutation reduced piRNAs of 24–32 nucleotides, suggesting the presence of both FKBP6-dependent and -independent actions of HSP90α. Although DNA methylation and mRNA levels of L1 retrotransposon were largely unchanged in the Hsp90α mutant testes, the L1-encoded protein was increased, suggesting the presence of post-transcriptional regulation. This study revealed the specialized function of the HSP90α isofom in the piRNA biogenesis and repression of retrotransposons during the development of male germ cells in mammals. PMID:25262350

  10. Organic cation transporter 1 mediates the uptake of monocrotaline and plays an important role in its hepatotoxicity.

    PubMed

    Tu, Meijuan; Sun, Siyuan; Wang, Kai; Peng, Xueying; Wang, Ruihan; Li, Liping; Zeng, Su; Zhou, Hui; Jiang, Huidi

    2013-09-15

    Monocrotaline (MCT) is a kind of toxic retronecine-type pyrrolizidine alkaloids (PAs) from plants of Crotalaria, which can be bio-activated by cytochrome P450 (CYP) enzymes in liver and then induce hepatotoxicity. Since CYPs are localized in the endoplasmic reticulum, the influx of MCT to the liver is the key step for its hepatotoxicity. The objective of the present study was to investigate the role of organic cation transporter 1 (OCT1), a transporter mainly expressed in liver, in the uptake of MCT and in hepatotoxicity induced by MCT. The results revealed that MCT markedly inhibited the uptake of 1-methyl-4-phenylpyridinium (MPP(+)), an OCT1 substrate, in Madin-Darby canine kidney (MDCK) cells stably expressing human OCT1 (MDCK-hOCT1) with the IC50 of 5.52±0.56μM. The uptake of MCT was significantly higher in MDCK-hOCT1 cells than in MDCK-mock cells, and MCT uptake in MDCK-hOCT1 cells followed Michaelis-Menten kinetics with the Km and Vmax values of 25.0±6.7μM and 266±64pmol/mg protein/min, respectively. Moreover, the OCT1 inhibitors, such as quinidine, d-tetrahydropalmatine (d-THP), obviously inhibited the uptake of MCT in MDCK-hOCT1 cells and isolated rat primary hepatocytes, and attenuated the viability reduction and LDH release of the primary cultured rat hepatocytes caused by MCT. In conclusion, OCT1 mediates the hepatic uptake of MCT and may play an important role in MCT induced-hepatotoxicity. PMID:23831208

  11. Glucocorticoids play an important role in mediating the enhanced metabolism of arginine and glutamine in enterocytes of postweaning pigs.

    PubMed

    Flynn, N E; Wu, G

    1997-05-01

    Weaning is associated with increased intestinal metabolism of glutamine and arginine as well as elevated plasma concentrations of cortisol (the major circulating glucocorticoid) in pigs. The objective of this study was to determine if cortisol plays an important role in mediating the enhanced amino acid metabolism in enterocytes of weaned pigs by administering RU486 (a glucocorticoid receptor antagonist). Eighteen 21-d-old pigs were randomly assigned to three groups of six. Two of these groups received intramuscular injections of 0 or 10 mg RU486 per kg body weight 5 min before and 24 and 72 h after weaning to a corn-soybean meal-based diet. The third group was allowed to suckle freely from sows. When the pigs were 29 d old, jugular venous blood was obtained and pigs were killed for preparation of jejunal enterocytes. The activities of arginase, argininosuccinate synthase (ASS), argininosuccinate lyase (ASL) and pyrroline-5-carboxylate (P5C) synthase were measured. For metabolic studies, cells were incubated for 0 or 30 min at 37 degrees C in 2 mL of Krebs-bicarbonate buffer (pH 7.4) containing 0 or 2 mmol/L L-[U-14C]arginine or 2 mmol/L L-[U-14C]glutamine. In comparison with suckling pigs, weaning resulted in increases in the following: 1) the activities of arginase, ASS, ASL and P5C synthase, 2) the metabolism of arginine to CO2, proline and ornithine, and 3) the conversion of glutamine to ornithine, citrulline and CO2. The effects of the administration of RU486 were as follows: 1) attenuation of the increase in arginase activity and the production of ornithine from arginine, 2) abolition of the induction of ASL and P5C synthase, and 3) prevention of the increase in glutamine metabolism and the production of proline and CO2 from arginine in enterocytes of weaned pigs. These data suggest that glucocorticoids play an essential role in mediating the enhanced intestinal degradation of arginine and glutamine during weaning. PMID:9164994

  12. Geography Plays a More Important Role than Soil Composition on Structuring Genetic Variation of Pseudometallophyte Commelina communis

    PubMed Central

    Li, Jiaokun; Xu, Hui; Song, Yunpeng; Tang, Lulu; Gong, Yanbing; Yu, Runlan; Shen, Li; Wu, Xueling; Liu, Yuandong; Zeng, Weimin

    2016-01-01

    Pseudometallophytes are excellent models to study microevolution and local adaptation to soil pollution, as they can grow both on metalliferous and contrasting non-metalliferous soils. Although, there has been accumulating evidence for the effects of edaphic conditions and geographical isolation on the genetic structure of pesudometallophytes, it is still a difficult problem in evolutionary biology to assess their relative importance. In this study, we investigated the spatial patterns of genetic variability, population differentiation and genetic groups in pseudometallophyte Commelina communis with 12 microsatellite loci. Eight metallicolous and six non-metallicolous populations of C. communis were sampled from cupriferous sites and surrounding non-contaminated areas in China. Neither significant reduction in genetic diversity nor apparent founder and bottleneck effects were observed in metallicolous populations of C. communis. Based on Bayesian and Neighbor-Joining clustering analyses and a principal coordinates analysis, all sampled populations were found to be mainly separated into three genetic groups, corresponding well to their geographical locations rather than edaphic origins. Moreover, a significant and strong correlation between population genetic divergence and geographical distance were detected by Mantel test (r = 0.33; P < 0.05) and multiple matrix regression with randomization (MMRR; βD = 0.57, P < 0.01). However, the effect of copper concentration on genetic patterns of C. communis was not significant (MMRR; βE = -0.17, P = 0.12). Our study clearly demonstrated that the extreme edaphic conditions in metalliferous areas had limited effects on the genetic variability in C. communis. Geographic distance played a more important role in affecting the genetic structure of C. communis than soil composition did. In C. communis, the geographically disjunctive populations on metalliferous soils had multiple origins and evolved independently from nearby non

  13. Geography Plays a More Important Role than Soil Composition on Structuring Genetic Variation of Pseudometallophyte Commelina communis.

    PubMed

    Li, Jiaokun; Xu, Hui; Song, Yunpeng; Tang, Lulu; Gong, Yanbing; Yu, Runlan; Shen, Li; Wu, Xueling; Liu, Yuandong; Zeng, Weimin

    2016-01-01

    Pseudometallophytes are excellent models to study microevolution and local adaptation to soil pollution, as they can grow both on metalliferous and contrasting non-metalliferous soils. Although, there has been accumulating evidence for the effects of edaphic conditions and geographical isolation on the genetic structure of pesudometallophytes, it is still a difficult problem in evolutionary biology to assess their relative importance. In this study, we investigated the spatial patterns of genetic variability, population differentiation and genetic groups in pseudometallophyte Commelina communis with 12 microsatellite loci. Eight metallicolous and six non-metallicolous populations of C. communis were sampled from cupriferous sites and surrounding non-contaminated areas in China. Neither significant reduction in genetic diversity nor apparent founder and bottleneck effects were observed in metallicolous populations of C. communis. Based on Bayesian and Neighbor-Joining clustering analyses and a principal coordinates analysis, all sampled populations were found to be mainly separated into three genetic groups, corresponding well to their geographical locations rather than edaphic origins. Moreover, a significant and strong correlation between population genetic divergence and geographical distance were detected by Mantel test (r = 0.33; P < 0.05) and multiple matrix regression with randomization (MMRR; βD = 0.57, P < 0.01). However, the effect of copper concentration on genetic patterns of C. communis was not significant (MMRR; βE = -0.17, P = 0.12). Our study clearly demonstrated that the extreme edaphic conditions in metalliferous areas had limited effects on the genetic variability in C. communis. Geographic distance played a more important role in affecting the genetic structure of C. communis than soil composition did. In C. communis, the geographically disjunctive populations on metalliferous soils had multiple origins and evolved independently from nearby non

  14. Caring About Kids: The Importance of Play.

    ERIC Educational Resources Information Center

    National Inst. of Mental Health (DHHS), Rockville, MD. Div. of Scientific and Public Information.

    In several brief sections, this pamphlet defines play, discusses how play helps a child develop, and how play changes as a child grows older, indicates the role of toys and certain play activities in promoting sex stereotypes, and identifies the role of fantasy and imagination in children's play. A discussion of the role of parents in fostering…

  15. Autophagy plays an important role in Sunitinib-mediated cell death in H9c2 cardiac muscle cells

    SciTech Connect

    Zhao Yuqin; Xue Tao; Yang Xiaochun; Zhu Hong; Ding Xiaofei; Lou Liming; Lu Wei; Yang Bo; He Qiaojun

    2010-10-01

    Sunitinib, which is a multitargeted tyrosine-kinase inhibitor, exhibits antiangiogenic and antitumor activity, and extends survival of patients with metastatic renal-cell carcinoma (mRCC) and gastrointestinal stromal tumors (GIST). This molecule has also been reported to be associated with cardiotoxicity at a high frequency, but the mechanism is still unknown. In the present study, we observed that Sunitinib showed high anti-proliferative effect on H9c2 cardiac muscle cells measured by PI staining and the MTT assay. But apoptotic markers (PARP cleavage, caspase 3 cleavage and chromatin condensation) were uniformly negative in H9c2 cells after Sunitinib treatment for 48 h, indicating that another cell death pathway may be involved in Sunitinib-induced cardiotoxicity. Here we found Sunitinib dramatically increased autophagic flux in H9c2 cells. Acidic vesicle fluorescence and high expression of LC3-II in H9c2 cells identified autophagy as a Sunitinib-induced process that might be associated with cytotoxicity. Furthermore, knocking down Beclin 1 by RNA-interference to block autophagy in H9c2 cells revealed that the death rate was decreased when treated with Sunitinib in comparison to control cells. These results confirmed that autophagy plays an important role in Sunitinib-mediated H9c2 cells cytotoxicity. Taken together, the data presented here strongly suggest that autophagy is associated with Sunitinib-induced cardiotoxicity, and that inhibition of autophagy constitutes a viable strategy for reducing Sunitinib-induced cardiomyocyte death thereby alleviating Sunitinib cardiotoxicity.

  16. The novel zinc cluster regulator Tog1 plays important roles in oleate utilization and oxidative stress response in Saccharomyces cerevisiae

    SciTech Connect

    Thepnok, Piyasuda; Ratanakhanokchai, Khanok; Soontorngun, Nitnipa

    2014-08-08

    Highlights: • TOG1 deletion results in defective growth on non-fermentable carbon sources. • Removal of TOG1 sensitizes cells to oxidative stress. • Tog1 directly binds and activates expression of oleate utilizing genes. • The Δtog1 cells display reduced peroxisomal content in oleate culture. • S. cerevisiae zinc cluster Tog1 is a novel activator of oleate utilization. - Abstract: Many zinc cluster proteins have been shown to play a role in the transcriptional regulation of glucose-repressible genes during glucose exhaustion and diauxic shift. Here, we studied an additional member of this family called Yer184c (herein called Tog1) for transcriptional regulator of oleate. Our results showed that a Δtog1 strain displays impaired growth with several non-fermentable carbons. Tog1 is also implicated in oxidative stress tolerance. Importantly, during the glucose–oleate shift, combined results from quantitative real time-PCR and chromatin immunoprecipitation (ChIP) experiments showed that Tog1 acts as a direct activator of oleate utilizing genes, encoded key enzymes in β-Oxidation and NADPH regeneration (POX1, FOX2, POT1 and IDP2), the glyoxylate shunt (MLS1 and ICL1), and gluconeogenesis (PCK1 and FBP1). A transmission electron microscopy (TEM) analysis of the Δtog1 strain assayed with oleate also revealed a substantial decrease in peroxisome abundance that is vital for fatty acid oxidation. Overall, our results clearly demonstrated that Tog1 is a newly characterized zinc cluster regulator that functions in the complex network of non-fermentable carbon metabolism in Saccharomycescerevisiae.

  17. Abscisic Acid Plays an Important Role in the Regulation of Strawberry Fruit Ripening1[W][OA

    PubMed Central

    Jia, Hai-Feng; Chai, Ye-Mao; Li, Chun-Li; Lu, Dong; Luo, Jing-Jing; Qin, Ling; Shen, Yuan-Yue

    2011-01-01

    The plant hormone abscisic acid (ABA) has been suggested to play a role in fruit development, but supporting genetic evidence has been lacking. Here, we report that ABA promotes strawberry (Fragaria ananassa) fruit ripening. Using a newly established Tobacco rattle virus-induced gene silencing technique in strawberry fruit, the expression of a 9-cis-epoxycarotenoid dioxygenase gene (FaNCED1), which is key to ABA biosynthesis, was down-regulated, resulting in a significant decrease in ABA levels and uncolored fruits. Interestingly, a similar uncolored phenotype was observed in the transgenic RNA interference (RNAi) fruits, in which the expression of a putative ABA receptor gene encoding the magnesium chelatase H subunit (FaCHLH/ABAR) was down-regulated by virus-induced gene silencing. More importantly, the uncolored phenotype of the FaNCED1-down-regulated RNAi fruits could be rescued by exogenous ABA, but the ABA treatment could not reverse the uncolored phenotype of the FaCHLH/ABAR-down-regulated RNAi fruits. We observed that down-regulation of the FaCHLH/ABAR gene in the RNAi fruit altered both ABA levels and sugar content as well as a set of ABA- and/or sugar-responsive genes. Additionally, we showed that exogenous sugars, particularly sucrose, can significantly promote ripening while stimulating ABA accumulation. These data provide evidence that ABA is a signal molecule that promotes strawberry ripening and that the putative ABA receptor, FaCHLH/ABAR, is a positive regulator of ripening in response to ABA. PMID:21734113

  18. Rac1 and Cdc42 Play Important Roles in Arsenic Neurotoxicity in Primary Cultured Rat Cerebellar Astrocytes.

    PubMed

    An, Yuan; Liu, Tingting; Liu, Xiaona; Zhao, Lijun; Wang, Jing

    2016-03-01

    This study aimed to explore whether Rac1 and Cdc42, representative members of Ras homologue guanosine triphosphatases (Rho GTPases), are involved in neurotoxicity induced by arsenic exposure in rat nervous system. Expressions of Rac1 and Cdc42 in rat cerebellum and cerebrum exposed to different doses of NaAsO2 (Wistar rats drank 0, 2, 10, and 50 mg/L NaAsO2 water for 3 months) were examined. Both Rac1 and Cdc42 expressions increased significantly in a dose-dependent manner in cerebellum (P < 0.01) by Western blot and immunohistochemistry assay, but in cerebrum, Rac1 and Cdc42 expressions only in 2 mg/L exposure groups were significantly higher than those in control groups (P < 0.01). Five to 50 μM NaAsO2 decreased cell viability in a dose-dependent manner in primary cultured rat astrocytes, whereas 1 μM NaAsO2 increased the cell viability in these cells. Rac1 inhibitor, NSC23766, decreased NaAsO2-induced apoptosis and increased the cell viability in primary cultured rat cerebellar astrocytes exposed to 30 μM NaAsO2. Cdc42 inhibitor, ZCL278, increased cell viability in the cells exposed to 30 μM NaAsO2. Taken together, our current studies in vivo and in vitro indicate that activations of Rac1 and Cdc42 play a very important role in arsenic neurotoxicity in rat cerebellum, providing a new insight into arsenic neurotoxicity. PMID:26231544

  19. Can Brazil play a more important role in global tuberculosis drug production? An assessment of current capacity and challenges

    PubMed Central

    2013-01-01

    Background Despite the existence of effective treatment, tuberculosis is still a global public health issue. The World Health Organization recommends a six-month four-drug regimen in fixed-dose combination formulation to treat drug sensitive tuberculosis, and long course regimens with several second-line drugs to treat multi-drug resistant tuberculosis. To achieve the projected tuberculosis elimination goal by 2050, it will be essential to ensure a non-interrupted supply of quality-assured tuberculosis drugs. However, quality and affordable tuberculosis drug supply is still a significant challenge for National Tuberculosis Programs. Discussion Quality drug production requires a combination of complex steps. The first challenge is to guarantee the quality of tuberculosis active pharmaceutical ingredients, then ensure an adequate manufacturing process, according to international standards, to guarantee final product´s safety, efficacy and quality. Good practices for storage, transport, distribution and quality control procedures must follow. In contrast to other high-burden countries, Brazil produces tuberculosis drugs through a strong network of public sector drug manufacturers regulated by a World Health Organization-certified national sanitary authority. The installed capacity for production surpasses the 71,000 needed treatments in the country. However, in order to be prepared to act as a global supplier, important bottlenecks are to be overcome. This article presents an in-depth analysis of the current status of production of tuberculosis drugs in Brazil and the bottlenecks and opportunities for the country to sustain national demand and play a role as a potential global supplier. Raw material and drug production, quality control, international certification and pre-qualification, political commitment and regulatory aspects are discussed, as well recommendations for tackling these bottlenecks. This discussion becomes more important as new drugs and regimens to

  20. Down-regulation of carboxylesterases 1 and 2 plays an important role in prodrug metabolism in immunological liver injury rats.

    PubMed

    Zhang, Chengliang; Xu, Yanjiao; Gao, Ping; Lu, Jingli; Li, Xiping; Liu, Dong

    2015-02-01

    Liver plays a central role in xenobiotics metabolism, thus affecting the in vivo disposition and therapeutic effects of drugs. Carboxylesterases (CESs), with the main isoforms CES1 and CES2, are important in the metabolism of ester-type prodrugs. However, influences of immunological liver injury on the activity of CES remain undefined. In the present study, we demonstrated treatment with lipopolysaccharide (LPS) suppressed the activities of CES1 and CES2. The decreased activities of CES1 and CES2 were preliminarily assessed by the hydrolysis assay for their common substrate p-nitrophenyl acetate (PNPA) with rat hepatic microsomal enzyme. Subsequently, RT-PCR results showed that the levels of CES1 mRNA and mRNA of CES2 (AB010635) and CES2 (AY034877) in the model group were significantly lower than those of the normal control group (P<0.05). Western blot results showed that the expressions of CES1 and CES2 proteins were decreased (P<0.05). To further clarify the effects of LPS on the metabolic activities of CESs, pharmacokinetic studies were performed in rats by utilizing imidapril and irinotecan (CPT-11) as the specific substrates for CES1 and CES2, respectively. After treatment with LPS, AUC0-∞ and Cmax of imidaprilat were decreased from 2084.86±340.66ng·h(-1)·mL(-1) and 234.66±68.85ng·mL(-1) to 983.87±315.34ng·h(-1)·mL(-1) and 113.1±19.69ng·mL(-1) (P<0.05), respectively. Moreover, AUC0-∞ and Cmax of SN-38 were decreased from 8100±918.6ng·h(-1)·mL(-1) and 144.67±20.28ng·mL(-1) to 3270±500.5ng·h(-1)·mL(-1) and 56.19±10.38ng·mL(-1) (P<0.05), respectively. In summary, immunological liver injury remarkably attenuated the expressions and metabolic activities of CES1 and CES2, which may be associated with the regulatory effects of cytokines under inflammation. PMID:25499727

  1. Collagenase IV plays an important role in regulating hair cycle by inducing VEGF, IGF-1, and TGF-β expression

    PubMed Central

    Hou, Chun; Miao, Yong; Wang, Jin; Wang, Xue; Chen, Chao-Yue; Hu, Zhi-Qi

    2015-01-01

    , MMP-2 and MMP-9, play important roles in hair cycle, and this could be mediated by induced expression of VEGF, IGF-1, and TGF-β. PMID:26451090

  2. mTOR plays an important role in cow's milk allergy-associated behavioral and immunological deficits.

    PubMed

    Wu, Jiangbo; de Theije, Caroline G M; da Silva, Sofia Lopes; van der Horst, Hilma; Reinders, Margot T M; Broersen, Laus M; Willemsen, Linette E M; Kas, Martien J H; Garssen, Johan; Kraneveld, Aletta D

    2015-10-01

    Autism spectrum disorder (ASD) is multifactorial, with both genetic as well as environmental factors working in concert to develop the autistic phenotype. Immunological disturbances in autistic individuals have been reported and a role for food allergy has been suggested in ASD. Single gene mutations in mammalian target of rapamycin (mTOR) signaling pathway are associated with the development of ASD and enhanced mTOR signaling plays a central role in directing immune responses towards allergy as well. Therefore, the mTOR pathway may be a pivotal link between the immune disturbances and behavioral deficits observed in ASD. In this study it was investigated whether the mTOR pathway plays a role in food allergy-induced behavioral and immunological deficits. Mice were orally sensitized and challenged with whey protein. Meanwhile, cow's milk allergic (CMA) mice received daily treatment of rapamycin. The validity of the CMA model was confirmed by showing increased allergic immune responses. CMA mice showed reduced social interaction and increased repetitive self-grooming behavior. Enhanced mTORC1 activity was found in the brain and ileum of CMA mice. Inhibition of mTORC1 activity by rapamycin improved the behavioral and immunological deficits of CMA mice. This effect was associated with increase of Treg associated transcription factors in the ileum of CMA mice. These findings indicate that mTOR activation may be central to both the intestinal, immunological, and psychiatric ASD-like symptoms seen in CMA mice. It remains to be investigated whether mTOR can be seen as a therapeutic target in cow's milk allergic children suffering from ASD-like symptoms. PMID:26027949

  3. NADPH Oxidase Dependent NLRP3 Inflammasome Activation Plays an Important Role in Lung Fibrosis by Multi-Walled Carbon Nanotubes

    PubMed Central

    Sun, Bingbing; Wang, Xiang; Ji, Zhaoxia; Wang, Meiying; Liao, Yu-Pei; Chang, Chong Hyun; Li, Ruibin; Zhang, Haiyuan; Nel, André E.; Xia, Tian

    2015-01-01

    The purpose of this communication is to elucidate the key role of NADPH oxidase in NLRP3 inflammasome activation and generation of pulmonary fibrosis by multi-walled carbon nanotubes (MWCNTs). Although it is known that oxidative stress plays a role in pulmonary fibrosis by single-walled CNTs, the role of specific sources of reactive oxygen species (ROS), including NADPH oxidase, in inflammasome activation remains to be clarified. In this study, three long aspect ratio (LAR) materials (MWCNTs, SWCNTs, and silver nanowires) are used to compare with spherical carbon black and silver nanoparticles for their ability to trigger oxygen burst activity and NLRP3 assembly. All LAR materials but not spherical nanoparticles induce robust NADPH oxidase activation and respiratory burst activity in THP-1 cells, which are blunted in p22phox deficient cells. NADPH oxidase is directly involved in lysosome damage by LAR materials, as demonstrated by decreased cathepsin B release and IL-1β production in p22phox deficient cells. Reduced respiratory burst activity and inflammasome activation are also observed in bone marrow-derived macrophages from p47phox deficient mice. Moreover, p47phox deficient mice have reduced IL-1β production and lung collagen deposition in response to MWCNTs. Lung fibrosis is also suppressed by N-acetyl-cysteine (NAC) in wild type animals exposed to MWCNTs. PMID:25581126

  4. Carbon nanotubes play an important role in the spatial arrangement of calcium deposits in hydrogels for bone regeneration.

    PubMed

    Cancian, Giulia; Tozzi, Gianluca; Hussain, Amirul Ashraf Bin; De Mori, Arianna; Roldo, Marta

    2016-08-01

    Age related bone diseases such as osteoporosis are considered among the main causes of reduced bone mechanical stability and bone fractures. In order to restore both biological and mechanical function of diseased/fractured bones, novel bioactive scaffolds that mimic the bone structure are constantly under development in tissue engineering applications. Among the possible candidates, chitosan-based thermosensitive hydrogel scaffolds represent ideal systems due to their biocompatibility, biodegradability, enhanced antibacterial properties, promotion of osteoblast formation and ease of injection, which makes them suitable for less invasive surgical procedures. As a main drawback, these chitosan systems present poor mechanical performance that could not support load-bearing applications. In order to produce more mechanically-competent biomaterials, the combined addition of hydroxyapatite and carbon nanotubes (CNTs) is proposed in this study. Specifically, the aim of this work is to develop thermosensitive chitosan hydrogels containing stabilised single-walled and multi-walled CNTs, where their effect on the mechanical/physiochemical properties, calcium deposition patterns and ability to provide a platform for the controlled release of protein drugs was investigated. It was found that the addition of CNTs had a significant effect on the sol-gel transition time and significantly increased the resistance to compression for the hydrogels. Moreover, in vitro calcification studies revealed that CNTs played a major role in the spatial arrangements of newly formed calcium deposits in the composite materials studied, suggesting that they may have a role in the way the repair of fragile and/or fractured bones occurs in vivo. PMID:27324780

  5. The Ubiquitin-Proteasome System Plays an Important Role during Various Stages of the Coronavirus Infection Cycle ▿

    PubMed Central

    Raaben, Matthijs; Posthuma, Clara C.; Verheije, Monique H.; te Lintelo, Eddie G.; Kikkert, Marjolein; Drijfhout, Jan W.; Snijder, Eric J.; Rottier, Peter J. M.; de Haan, Cornelis A. M.

    2010-01-01

    The ubiquitin-proteasome system (UPS) is a key player in regulating the intracellular sorting and degradation of proteins. In this study we investigated the role of the UPS in different steps of the coronavirus (CoV) infection cycle. Inhibition of the proteasome by different chemical compounds (i.e., MG132, epoxomicin, and Velcade) appeared to not only impair entry but also RNA synthesis and subsequent protein expression of different CoVs (i.e., mouse hepatitis virus [MHV], feline infectious peritonitis virus, and severe acute respiratory syndrome CoV). MHV assembly and release were, however, not appreciably affected by these compounds. The inhibitory effect on CoV protein expression did not appear to result from a general inhibition of translation due to induction of a cellular stress response by the inhibitors. Stress-induced phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) generally results in impaired initiation of protein synthesis, but the sensitivity of MHV infection to proteasome inhibitors was unchanged in cells lacking a phosphorylatable eIF2α. MHV infection was affected not only by inhibition of the proteasome but also by interfering with protein ubiquitination. Viral protein expression was reduced in cells expressing a temperature-sensitive ubiquitin-activating enzyme E1 at the restrictive temperature, as well as in cells in which ubiquitin was depleted by using small interfering RNAs. Under these conditions, the susceptibility of the cells to virus infection was, however, not affected, excluding an important role of ubiquitination in virus entry. Our observations reveal an important role of the UPS in multiple steps of the CoV infection cycle and identify the UPS as a potential drug target to modulate the impact of CoV infection. PMID:20484504

  6. Nod-Like Receptor Protein-3 Inflammasome Plays an Important Role during Early Stages of Wound Healing

    PubMed Central

    Weinheimer-Haus, Eileen M.; Mirza, Rita E.; Koh, Timothy J.

    2015-01-01

    The Nod-like receptor protein (NLRP)-3 inflammasome/IL-1β pathway is involved in the pathogenesis of various inflammatory skin diseases, but its biological role in wound healing remains to be elucidated. Since inflammation is typically thought to impede healing, we hypothesized that loss of NLRP-3 activity would result in a downregulated inflammatory response and accelerated wound healing. NLRP-3 null mice, caspase-1 null mice and C57Bl/6 wild type control mice (WT) received four 8 mm excisional cutaneous wounds; inflammation and healing were assessed during the early stage of wound healing. Consistent with our hypothesis, wounds from NLRP-3 null and caspase-1 null mice contained lower levels of the pro-inflammatory cytokines IL-1β and TNF-α compared to WT mice and had reduced neutrophil and macrophage accumulation. Contrary to our hypothesis, re-epithelialization, granulation tissue formation, and angiogenesis were delayed in NLRP-3 null mice and caspase-1 null mice compared to WT mice, indicating that NLRP-3 signaling is important for early events in wound healing. Topical treatment of excisional wounds with recombinant IL-1β partially restored granulation tissue formation in wounds of NLRP-3 null mice, confirming the importance of NLRP-3-dependent IL-1β production during early wound healing. Despite the improvement in healing, angiogenesis and levels of the pro-angiogenic growth factor VEGF were further reduced in IL-1β treated wounds, suggesting that IL-1β has a negative effect on angiogenesis and that NLRP-3 promotes angiogenesis in an IL-1β-independent manner. These findings indicate that the NLRP-3 inflammasome contributes to the early inflammatory phase following skin wounding and is important for efficient healing. PMID:25793779

  7. Diversity and distribution of transcription factors: their partner domains play an important role in regulatory plasticity in bacteria.

    PubMed

    Rivera-Gómez, Nancy; Segovia, Lorenzo; Pérez-Rueda, Ernesto

    2011-08-01

    The ability of bacteria to deal with diverse environmental changes depends on their repertoire of genes and their ability to regulate their expression. In this process, DNA-binding transcription factors (TFs) have a fundamental role because they affect gene expression positively and/or negatively depending on operator context and ligand-binding status. Here, we show an exhaustive analysis of winged helix-turn-helix domains (wHTHs), a class of DNA-binding TFs. These proteins were identified in high proportions and widely distributed in bacteria, representing around half of the total TFs identified so far. In addition, we evaluated the repertoire of wHTHs in terms of their partner domains (PaDos), identifying a similar trend, as with TFs, i.e. they are abundant and widely distributed in bacteria. Based on the PaDos, we defined three main groups of families: (i) monolithic, those families with little PaDo diversity, such as LysR; (ii) promiscuous, those families with a high PaDo diversity; and (iii) monodomain, with families of small sizes, such as MarR. These findings suggest that PaDos have a very important role in the diversification of regulatory responses in bacteria, probably contributing to their regulatory complexity. Thus, the TFs discriminate over longer regions on the DNA through their diverse DNA-binding domains. On the other hand, the PaDos would allow a great flexibility for transcriptional regulation due to their ability to sense diverse stimuli through a variety of ligand-binding compounds. PMID:21636649

  8. Campylobacter jejuni Outer Membrane Vesicles Play an Important Role in Bacterial Interactions with Human Intestinal Epithelial Cells

    PubMed Central

    Elmi, Abdi; Watson, Eleanor; Sandu, Pamela; Gundogdu, Ozan; Mills, Dominic C.; Inglis, Neil F.; Manson, Erin; Imrie, Lisa; Bajaj-Elliott, Mona; Wren, Brendan W.; Smith, David G. E.

    2012-01-01

    Campylobacter jejuni is the most prevalent cause of food-borne gastroenteritis in the developed world; however, the molecular basis of pathogenesis is unclear. Secretion of virulence factors is a key mechanism by which enteric bacterial pathogens interact with host cells to enhance survival and/or damage the host. However, C. jejuni lacks the virulence-associated secretion systems possessed by other enteric pathogens. Many bacterial pathogens utilize outer membrane vesicles (OMVs) for delivery of virulence factors into host cells. In the absence of prototypical virulence-associated secretion systems, OMVs could be an important alternative for the coordinated delivery of C. jejuni proteins into host cells. Proteomic analysis of C. jejuni 11168H OMVs identified 151 proteins, including periplasmic and outer membrane-associated proteins, but also many determinants known to be important in survival and pathogenesis, including the cytolethal distending toxin (CDT). C. jejuni OMVs contained 16 N-linked glycoproteins, indicating a delivery mechanism by which these periplasm-located yet immunogenic glycoproteins can interact with host cells. C. jejuni OMVs possess cytotoxic activity and induce a host immune response from T84 intestinal epithelial cells (IECs), which was not reduced by OMV pretreatment with proteinase K or polymyxin B prior to coincubation with IECs. Pretreatment of IECs with methyl-beta-cyclodextrin partially blocks OMV-induced host immune responses, indicating a role for lipid rafts in host cell plasma membranes during interactions with C. jejuni OMVs. OMVs isolated from a C. jejuni 11168H cdtA mutant induced interleukin-8 (IL-8) to the same extent as did wild-type OMVs, suggesting OMV induction of IL-8 is independent of CDT. PMID:22966047

  9. Fatty acid metabolism pathway play an important role in carcinogenesis of human colorectal cancers by Microarray-Bioinformatics analysis.

    PubMed

    Yeh, Ching-Sheng; Wang, Jaw-Yuan; Cheng, Tian-Lu; Juan, Chin-Hung; Wu, Chan-Han; Lin, Shiu-Ru

    2006-02-28

    The present study systematically explored metabolic pathways and altered expressions of genes speculatively participating in colorectal carcinogenesis by using a Microarray-Bioinformatic analysis methods. The results revealed that 157 genes were up-regulated and 281 genes were down-regulated in colorectal cancer (CRC). Gene Ontology (GO) and relevant bioinformatics tools indicated that the functional category to which 438 genes (12%; 438/3800) of the most frequent alteration belonged was metabolism. The analysis of 10 colorectal cancer tissue specimens demonstrated that genes involved in fatty acid metabolic pathways had high rates of overexpression. In addition, we stimulated CRL-1790 cell line with linoleic acid (a polyunsaturated fatty acid) for 12, 24, 48 and 72 h. Cell proliferation was elevated by 5, 25, 28 and 31% (P<0.05), respectively. Further analyses revealed that the genes increasingly expressed in the cell line included enoyl-Coenzyme A, hydratase/3-hydroxyacyl Coenzyme A dehydrogenase (EHHADH), enoyl Coenzyme A hydratase, short chain, 1, mitochondrial (ECHS1); glutaryl-Coenzyme A dehydrogenase (GCDH), acyl-Coenzyme A oxidase 2, branched chain (ACOX2); acyl-Coenzyme A dehydrogenase, C-2 to C-3 short chain precursor (ACADS); carnitine palmitoyltransferase 1B (CPT1B), acyl-CoA synthetase long-chain family member 5 (ACSL5), and cytochrome P450, family 4, subfamily A, and polypeptide 11 (CYP4A11) genes. This indicated that the stimulating effect of linoleic acid on cell proliferation was due to interference with the metabolic pathway of fatty acid metabolism. In conclusion, genes with altered expression levels in CRC were mainly associated with fatty acid metabolic pathways speculated to have an important role linked to carcinogenesis. PMID:15885896

  10. Shugoshin1 May Play Important Roles in Separation of Homologous Chromosomes and Sister Chromatids during Mouse Oocyte Meiosis

    PubMed Central

    Yin, Shen; Ai, Jun-Shu; Shi, Li-Hong; Wei, Liang; Yuan, Ju; Ouyang, Ying-Chun; Hou, Yi; Chen, Da-Yuan; Schatten, Heide; Sun, Qing-Yuan

    2008-01-01

    Background Homologous chromosomes separate in meiosis I and sister chromatids separate in meiosis II, generating haploid gametes. To address the question why sister chromatids do not separate in meiosis I, we explored the roles of Shogoshin1 (Sgo1) in chromosome separation during oocyte meiosis. Methodology/Principal Findings Sgo1 function was evaluated by exogenous overexpression to enhance its roles and RNAi to suppress its roles during two meioses of mouse oocytes. Immunocytochemistry and chromosome spread were used to evaluate phenotypes. The exogenous Sgo1 overexpression kept homologous chromosomes and sister chromatids not to separate in meiosis I and meiosis II, respectively, while the Sgo1 RNAi promoted premature separation of sister chromatids. Conclusions Our results reveal that prevention of premature separation of sister chromatids in meiosis I requires the retention of centromeric Sgo1, while normal separation of sister chromatids in meiosis II requires loss of centromeric Sgo1. PMID:18949044

  11. Specific Subunits of Heterotrimeric G Proteins Play Important Roles during Nodulation in Soybean1[W][OA

    PubMed Central

    Choudhury, Swarup Roy; Pandey, Sona

    2013-01-01

    Heterotrimeric G proteins comprising Gα, Gβ, and Gγ subunits regulate many fundamental growth and development processes in all eukaryotes. Plants possess a relatively limited number of G-protein components compared with mammalian systems, and their detailed functional characterization has been performed mostly in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). However, the presence of single Gα and Gβ proteins in both these species has significantly undermined the complexity and specificity of response regulation in plant G-protein signaling. There is ample pharmacological evidence for the role of G proteins in regulation of legume-specific processes such as nodulation, but the lack of genetic data from a leguminous species has restricted its direct assessment. Our recent identification and characterization of an elaborate G-protein family in soybean (Glycine max) and the availability of appropriate molecular-genetic resources have allowed us to directly evaluate the role of G-protein subunits during nodulation. We demonstrate that all G-protein genes are expressed in nodules and exhibit significant changes in their expression in response to Bradyrhizobium japonicum infection and in representative supernodulating and nonnodulating soybean mutants. RNA interference suppression and overexpression of specific G-protein components results in lower and higher nodule numbers, respectively, validating their roles as positive regulators of nodule formation. Our data further show preferential usage of distinct G-protein subunits in the presence of an additional signal during nodulation. Interestingly, the Gα proteins directly interact with the soybean nodulation factor receptors NFR1α and NFR1β, suggesting that the plant G proteins may couple with receptors other than the canonical heptahelical receptors common in metazoans to modulate signaling. PMID:23569109

  12. The transporter GAT1 plays an important role in GABA-mediated carbon-nitrogen interactions in Arabidopsis

    PubMed Central

    Batushansky, Albert; Kirma, Menny; Grillich, Nicole; Pham, Phuong A.; Rentsch, Doris; Galili, Gad; Fernie, Alisdair R.; Fait, Aaron

    2015-01-01

    Glutamate derived γ-aminobutyric acid (GABA) is synthetized in the cytosol prior to delivery to the mitochondria where it is catabolized via the TCA cycle. GABA accumulates under various environmental conditions, but an increasing number of studies show its involvement at the crossroad between C and N metabolism. To assess the role of GABA in modulating cellular metabolism, we exposed seedlings of A. thaliana GABA transporter gat1 mutant to full nutrition medium and media deficient in C and N combined with feeding of different concentrations (0.5 and 1 mM) of exogenous GABA. GC-MS based metabolite profiling showed an expected effect of medium composition on the seedlings metabolism of mutant and wild type alike. That being said, a significant interaction between GAT1 deficiency and medium composition was determined with respect to magnitude of change in relative amino acid levels. The effect of exogenous GABA treatment on metabolism was contingent on both the medium and the genotype, leading for instance to a drop in asparagine under full nutrition and low C conditions and glucose under all tested media, but not to changes in GABA content. We additionally assessed the effect of GAT1 deficiency on the expression of glutamate metabolism related genes and genes involved in abiotic stress responses. These results suggest a role for GAT1 in GABA-mediated metabolic alterations in the context of the C-N equilibrium of plant cells. PMID:26483804

  13. GCN2 kinase plays an important role triggering the remission phase of experimental autoimmune encephalomyelitis (EAE) in mice.

    PubMed

    Orsini, Heloisa; Araujo, Leandro P; Maricato, Juliana T; Guereschi, Marcia G; Mariano, Mario; Castilho, Beatriz A; Basso, Alexandre S

    2014-03-01

    Experimental autoimmune encephalomyelitis (EAE) has been widely employed as a model to study multiple sclerosis (MS) and indeed has allowed some important advances in our comprehension of MS pathogenesis. Several pieces of evidence suggest that infiltrating Th1 and Th17 lymphocytes are important players leading to CNS demyelination and lesion during the peak of murine EAE. Subsequently, effector T cell responses rapidly decline and the recovery phase of the disease strongly correlates with the expression of anti-inflammatory cytokines and the enrichment of Foxp3+ regulatory T (Treg) cells within the target organ. However, the mechanisms leading to the increased presence of Treg cells and to the remission phase of the disease are still poorly understood. Recent researches demonstrated that chemically induced amino-acid starvation response might suppress CNS immune activity. Here we verified an important participation of the general control nonrepressible 2 (GCN2), a key regulator kinase of the amino-acid starvation response, in the development of the remission phase of EAE in C57BL/6 mice. By immunizing wild type C57BL/6 (WT) and GCN2 knock-out mice (GCN2 KO) with myelin oligodendrocyte glycoprotein peptide (MOG35-55), it was noticed that GCN2 KO mice did not develop the remission phase of the disease and this was associated with higher levels of CNS inflammation and increased presence of effector T cells (Th1/Th17). These animals also showed lower frequency of Treg cells within the CNS as compared to WT animals. Higher expression of indoleamine 2,3-dioxygenase (IDO) and higher frequency of plasmacytoid dendritic cells (pDCs) were found at the peak of the disease in the CNS of WT animals. Our results suggest that the GCN2 kinase-dependent sensing of IDO activity represents an important trigger to the EAE remission phase. The IDO-mediated immunoregulatory events may include the arresting of effector T cell responses and the differentiation/expansion of Treg cells

  14. The glycerophosphoryl diester phosphodiesterase-like proteins SHV3 and its homologs play important roles in cell wall organization.

    PubMed

    Hayashi, Shimpei; Ishii, Tadashi; Matsunaga, Toshiro; Tominaga, Rumi; Kuromori, Takashi; Wada, Takuji; Shinozaki, Kazuo; Hirayama, Takashi

    2008-10-01

    Despite the importance of extracellular events in cell wall organization and biogenesis, the mechanisms and related factors are largely unknown. We isolated an allele of the shaven3 (shv3) mutant of Arabidopsis thaliana, which exhibits ruptured root hair cells during tip growth. SHV3 encodes a novel protein with two tandemly repeated glycerophosphoryl diester phosphodiesterase-like domains and a glycosylphosphatidylinositol anchor, and several of its paralogs are found in Arabidopsis. Here, we report the detailed characterization of mutants of SHV3 and one of its paralogs, SVL1. The shv3 and svl1 double mutant exhibited additional defects, including swollen guard cells, aberrant expansion of the hypocotyl epidermis and ectopic lignin deposits, suggesting decreased rigidity of the cell wall. Fourier-transform infrared spectroscopy and measurement of the cell wall components indicated an altered cellulose content and pectin modification with cross-linking in the double mutant. Furthermore, we found that the ruptured root hair phenotype of shv3 was suppressed by increasing the amount of borate, which is supposed to be involved in pectic polysaccharide cross-linking, in the medium. These findings indicate that SHV3 and its paralogs are novel important factors involved in primary cell wall organization. PMID:18718934

  15. The AAA ATPase Vps4 Plays Important Roles in Candida albicans Hyphal Formation and is Inhibited by DBeQ.

    PubMed

    Zhang, Yahui; Li, Wanjie; Chu, Mi; Chen, Hengye; Yu, Haoyuan; Fang, Chaoguang; Sun, Ningze; Wang, Qiming; Luo, Tian; Luo, Kaiju; She, Xueping; Zhang, Mengqian; Yang, Dong

    2016-06-01

    Candida albicans is an opportunistic human pathogen, and its pathogenicity is associated with hyphal formation. Previous studies have shown that at neutral-to-alkaline pH, hyphal growth is dependent on the Rim101 pathway whose activation requires Snf7, a member of the ESCRT system. In this work, we described the purification and characterization of the C. albicans Vps4, an AAA ATPase required for recycling of the ESCRTs. Its role on hyphal growth has been investigated. Our data suggest deletion of Vps4 decreases overall hyphal growth at pH 7 and increases the growth of multiple hyphae induced by serum, which indicates that the ESCRTs may make a Rim101-independent contribution to hyphal growth. Furthermore, DBeQ, an inhibitor of the AAA ATPase p97, was shown to inhibit the ATPase activity of Vps4 with an IC50 of about 11.5 μM. To a less degree, it also inhibits hyphal growth. Our work may provide a new strategy to control C. albicans infection. PMID:26700222

  16. Anti-myelin antibodies play an important role in the susceptibility to develop proteolipid protein-induced experimental autoimmune encephalomyelitis.

    PubMed

    Marín, N; Eixarch, H; Mansilla, M J; Rodríguez-Martín, E; Mecha, M; Guaza, C; Álvarez-Cermeño, J C; Montalban, X; Villar, L M; Espejo, C

    2014-02-01

    Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is an autoimmune disorder in which activated T cells cross the blood-brain barrier (BBB) to initiate an inflammatory response that leads to demyelination and axonal damage. The key mechanisms responsible for disease initiation are still unknown. We addressed this issue in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. It is widely known that EAE manifests only in certain strains when immunized with myelin proteins or peptides. We studied the differential immune responses induced in two mouse strains that are susceptible or resistant to EAE induction when they are immunized with the 139-151 peptide of proteolipid protein, an encephalitogenic peptide capable of inducing EAE in the susceptible strain. The adequate combination of major histocompatibility complex alleles and myelin peptides triggered in susceptible mice a T helper type 17 (Th17) response capable of inducing the production of high-affinity anti-myelin immunoglobulin (Ig)G antibodies. These were not detected in resistant mice, despite immunization with the encephalitogenic peptide in junction with complete Freund's adjuvant and pertussis toxin, which mediate BBB disruption. These data show the pivotal role of Th17 responses and of high-affinity anti-myelin antibodies in EAE induction and that mechanisms that prevent their appearance can contribute to resistance to EAE. PMID:24188195

  17. Anti-myelin antibodies play an important role in the susceptibility to develop proteolipid protein-induced experimental autoimmune encephalomyelitis

    PubMed Central

    Marín, N; Eixarch, H; Mansilla, M J; Rodríguez-Martín, E; Mecha, M; Guaza, C; Álvarez-Cermeño, J C; Montalban, X; Villar, L M; Espejo, C

    2014-01-01

    Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system. It is an autoimmune disorder in which activated T cells cross the blood–brain barrier (BBB) to initiate an inflammatory response that leads to demyelination and axonal damage. The key mechanisms responsible for disease initiation are still unknown. We addressed this issue in experimental autoimmune encephalomyelitis (EAE), the animal model of MS. It is widely known that EAE manifests only in certain strains when immunized with myelin proteins or peptides. We studied the differential immune responses induced in two mouse strains that are susceptible or resistant to EAE induction when they are immunized with the 139–151 peptide of proteolipid protein, an encephalitogenic peptide capable of inducing EAE in the susceptible strain. The adequate combination of major histocompatibility complex alleles and myelin peptides triggered in susceptible mice a T helper type 17 (Th17) response capable of inducing the production of high-affinity anti-myelin immunoglobulin (Ig)G antibodies. These were not detected in resistant mice, despite immunization with the encephalitogenic peptide in junction with complete Freund's adjuvant and pertussis toxin, which mediate BBB disruption. These data show the pivotal role of Th17 responses and of high-affinity anti-myelin antibodies in EAE induction and that mechanisms that prevent their appearance can contribute to resistance to EAE. PMID:24188195

  18. SBP2 plays an important role in the virulence changes of different artificial mutants of Streptococcus suis.

    PubMed

    Yu, Yanfei; Qian, Yunyun; Du, Dechao; Xu, Chenyang; Dai, Chen; Li, Quan; Liu, Hanze; Shao, Jing; Wu, Zongfu; Zhang, Wei

    2016-05-24

    Streptococcus suis (SS) is an important bacterial zoonotic pathogen, which can cause infections in pigs and humans. However, the pathogenesis of this bacterium remains unclear, even though some putative virulence factors (VFs) have been reported. Comparative proteomics could be used to identify markers that can distinguish bacterial strains with different virulence; however, the application of this method is restricted by the genome diversities existing in different strains. In this study, two mutants, WT ΔpepT and WT ΔrfeA, which were generated from the same wild-type (WT) strain, ZY05719, and showed opposite virulence tendencies, were constructed. Combining two proteomics assays, two-dimensional difference gel electrophoresis (2D-DIGE) and label-free proteomics, we identified 38 differentially abundant proteins in the mutants compared with their parent, including five known VFs of S. suis and 33 novel elements. One of the novel proteins, a putative pilus protein, named SBP2, was considered as the most promising VF, because SBP2 was not only linked with the known VFs in the virulence interaction network and was proposed to be located on the cell surface, but also showed enriched distribution among highly virulent strains of SS. SBP2 could also bind fibronectin and laminin, two important extracellular matrix proteins of the host, to facilitate the process of adhesion. Thus, spb2 was identified as encoding a promising virulence-associated candidate associated with the pathogenesis of SS, and a comprehensive virulence interaction network of SS was established for the first time. PMID:27077729

  19. FoxO1 Plays an Important Role in Regulating β-Cell Compensation for Insulin Resistance in Male Mice.

    PubMed

    Zhang, Ting; Kim, Dae Hyun; Xiao, Xiangwei; Lee, Sojin; Gong, Zhenwei; Muzumdar, Radhika; Calabuig-Navarro, Virtu; Yamauchi, Jun; Harashima, Hideyoshi; Wang, Rennian; Bottino, Rita; Alvarez-Perez, Juan Carlos; Garcia-Ocaña, Adolfo; Gittes, George; Dong, H Henry

    2016-03-01

    β-Cell compensation is an essential mechanism by which β-cells increase insulin secretion for overcoming insulin resistance to maintain euglycemia in obesity. Failure of β-cells to compensate for insulin resistance contributes to insulin insufficiency and overt diabetes. To understand the mechanism of β-cell compensation, we characterized the role of forkhead box O1 (FoxO1) in β-cell compensation in mice under physiological and pathological conditions. FoxO1 is a key transcription factor that serves as a nutrient sensor for integrating insulin signaling to cell metabolism, growth, and proliferation. We showed that FoxO1 improved β-cell compensation via 3 distinct mechanisms by increasing β-cell mass, enhancing β-cell glucose sensing, and augmenting β-cell antioxidative function. These effects accounted for increased glucose-stimulated insulin secretion and enhanced glucose tolerance in β-cell-specific FoxO1-transgenic mice. When fed a high-fat diet, β-cell-specific FoxO1-transgenic mice were protected from developing fat-induced glucose disorder. This effect was attributable to increased β-cell mass and function. Furthermore, we showed that FoxO1 activity was up-regulated in islets, correlating with the induction of physiological β-cell compensation in high-fat-induced obese C57BL/6J mice. These data characterize FoxO1 as a pivotal factor for orchestrating physiological adaptation of β-cell mass and function to overnutrition and obesity. PMID:26727107

  20. CCR5 plays an important role in resolving an inflammatory response to single-walled carbon nanotubes.

    PubMed

    Park, Eun-Jung; Roh, Jinkyu; Kim, Soo Nam; Kim, Younghun; Han, Sang-Bae; Hong, Jin Tae

    2013-08-01

    Owing to the development of new materials and technology, the pollutants in the environment are becoming more varied and complex over time. In our previous study using ICR mice, we suggested that a single intratracheal instillation of single-walled carbon nanotubes (SWCNTs) induced early lung fibrosis and subchronic tissue damage. In the present study, to investigate the role of CCR5 in inflammatory responses to the uptake of SWCNTs, we compared BAL (Bronchoalveolar lavage) cell composition, cell cycles, cytokines, cell phenotypes, inflammatory response-related proteins, cell surface receptors and histopathology using CCR5 knockout (KO) and wild-type mice. Results showed that the distribution of neutrophils in BAL fluid significantly decreased in KO mice. The expression of apoptosis-related proteins including caspase-3, p53, phospho-p53, p21 and cleaved PARP, TGF βl and mesothelin markedly increased in KO mice compared with wild-type mice. Histopathological lesions were also more frequently noted in KO mice. Moreover, the secretion of IL-13 and IL-17 with IL-6 significantly increased in KO mice compared with wild-type mice, whereas that of IL-12 significantly decreased in comparison to wild-type mice. The distribution of B cells and CD8+ T cells was predominant in the inflammatory responses in KO mice, whereas that of T cells and CD4+ T cells was predominant in the inflammatory responses in wild-type mice. Furthermore, the expression of CCR4 and CCR7 significantly increased in KO mice. Based on these results, we suggest that the absence of CCR5 delays the resolution of inflammatory responses triggered by SWCNTs inflowing into the lungs and shifts inflammatory response for SWCNTs clearance from Th1-type to Th2-type. PMID:22438032

  1. The heat shock response plays an important role in TDP-43 clearance: evidence for dysfunction in amyotrophic lateral sclerosis.

    PubMed

    Chen, Han-Jou; Mitchell, Jacqueline C; Novoselov, Sergey; Miller, Jack; Nishimura, Agnes L; Scotter, Emma L; Vance, Caroline A; Cheetham, Michael E; Shaw, Christopher E

    2016-05-01

    Detergent-resistant, ubiquitinated and hyperphosphorylated Tar DNA binding protein 43 (TDP-43, encoded by TARDBP) neuronal cytoplasmic inclusions are the pathological hallmark in ∼95% of amyotrophic lateral sclerosis and ∼60% of frontotemporal lobar degeneration cases. We sought to explore the role for the heat shock response in the clearance of insoluble TDP-43 in a cellular model of disease and to validate our findings in transgenic mice and human amyotrophic lateral sclerosis tissues. The heat shock response is a stress-responsive protective mechanism regulated by the transcription factor heat shock factor 1 (HSF1), which increases the expression of chaperones that refold damaged misfolded proteins or facilitate their degradation. Here we show that manipulation of the heat shock response by expression of dominant active HSF1 results in a dramatic reduction of insoluble and hyperphosphorylated TDP-43 that enhances cell survival, whereas expression of dominant negative HSF1 leads to enhanced TDP-43 aggregation and hyperphosphorylation. To determine which chaperones were mediating TDP-43 clearance we over-expressed a range of heat shock proteins (HSPs) and identified DNAJB2a (encoded by DNAJB2, and also known as HSJ1a) as a potent anti-aggregation chaperone for TDP-43. DNAJB2a has a J domain, allowing it to interact with HSP70, and ubiquitin interacting motifs, which enable it to engage the degradation of its client proteins. Using functionally deleted DNAJB2a constructs we demonstrated that TDP-43 clearance was J domain-dependent and was not affected by ubiquitin interacting motif deletion or proteasome inhibition. This indicates that TDP-43 is maintained in a soluble state by DNAJB2a, leaving the total levels of TDP-43 unchanged. Additionally, we have demonstrated that the levels of HSF1 and heat shock proteins are significantly reduced in affected neuronal tissues from a TDP-43 transgenic mouse model of amyotrophic lateral sclerosis and patients with

  2. The heat shock response plays an important role in TDP-43 clearance: evidence for dysfunction in amyotrophic lateral sclerosis

    PubMed Central

    Chen, Han-Jou; Mitchell, Jacqueline C.; Novoselov, Sergey; Miller, Jack; Nishimura, Agnes L.; Scotter, Emma L.; Vance, Caroline A.; Cheetham, Michael E.

    2016-01-01

    Detergent-resistant, ubiquitinated and hyperphosphorylated Tar DNA binding protein 43 (TDP-43, encoded by TARDBP) neuronal cytoplasmic inclusions are the pathological hallmark in ∼95% of amyotrophic lateral sclerosis and ∼60% of frontotemporal lobar degeneration cases. We sought to explore the role for the heat shock response in the clearance of insoluble TDP-43 in a cellular model of disease and to validate our findings in transgenic mice and human amyotrophic lateral sclerosis tissues. The heat shock response is a stress-responsive protective mechanism regulated by the transcription factor heat shock factor 1 (HSF1), which increases the expression of chaperones that refold damaged misfolded proteins or facilitate their degradation. Here we show that manipulation of the heat shock response by expression of dominant active HSF1 results in a dramatic reduction of insoluble and hyperphosphorylated TDP-43 that enhances cell survival, whereas expression of dominant negative HSF1 leads to enhanced TDP-43 aggregation and hyperphosphorylation. To determine which chaperones were mediating TDP-43 clearance we over-expressed a range of heat shock proteins (HSPs) and identified DNAJB2a (encoded by DNAJB2, and also known as HSJ1a) as a potent anti-aggregation chaperone for TDP-43. DNAJB2a has a J domain, allowing it to interact with HSP70, and ubiquitin interacting motifs, which enable it to engage the degradation of its client proteins. Using functionally deleted DNAJB2a constructs we demonstrated that TDP-43 clearance was J domain-dependent and was not affected by ubiquitin interacting motif deletion or proteasome inhibition. This indicates that TDP-43 is maintained in a soluble state by DNAJB2a, leaving the total levels of TDP-43 unchanged. Additionally, we have demonstrated that the levels of HSF1 and heat shock proteins are significantly reduced in affected neuronal tissues from a TDP-43 transgenic mouse model of amyotrophic lateral sclerosis and patients with

  3. Carboxyl-Terminal SSLKG Motif of the Human Cystinosin-LKG Plays an Important Role in Plasma Membrane Sorting.

    PubMed

    Bellomo, Francesco; Taranta, Anna; Petrini, Stefania; Venditti, Rossella; Rocchetti, Maria Teresa; Rega, Laura Rita; Corallini, Serena; Gesualdo, Loreto; De Matteis, Maria Antonietta; Emma, Francesco

    2016-01-01

    Cystinosin mediates an ATP-dependent cystine efflux from lysosomes and causes, if mutated, nephropathic cystinosis, a rare inherited lysosomal storage disease. Alternative splicing of the last exon of the cystinosin sequence produces the cystinosin-LKG isoform that is characterized by a different C-terminal region causing changes in the subcellular distribution of the protein. We have constructed RFP-tagged proteins and demonstrated by site-directed mutagenesis that the carboxyl-terminal SSLKG sequence of cystinosin-LKG is an important sorting motif that is required for efficient targeting the protein to the plasma membrane, where it can mediate H+ coupled cystine transport. Deletion of the SSLKG sequence reduced cystinosin-LKG expression in the plasma membrane and cystine transport by approximately 30%, and induced significant accumulation of the protein in the Golgi apparatus and in lysosomes. Cystinosin-LKG, unlike the canonical isoform, also moves to the lysosomes by the indirect pathway, after endocytic retrieval from the plasma membrane, mainly by a clathrin-mediated endocytosis. Nevertheless, silencing of AP-2 triggers the clathrin-independent endocytosis, showing the complex adaptability of cystinosin-LKG trafficking. PMID:27148969

  4. Carboxyl-Terminal SSLKG Motif of the Human Cystinosin-LKG Plays an Important Role in Plasma Membrane Sorting

    PubMed Central

    Taranta, Anna; Petrini, Stefania; Venditti, Rossella; Rocchetti, Maria Teresa; Rega, Laura Rita; Corallini, Serena; Gesualdo, Loreto; De Matteis, Maria Antonietta; Emma, Francesco

    2016-01-01

    Cystinosin mediates an ATP-dependent cystine efflux from lysosomes and causes, if mutated, nephropathic cystinosis, a rare inherited lysosomal storage disease. Alternative splicing of the last exon of the cystinosin sequence produces the cystinosin-LKG isoform that is characterized by a different C-terminal region causing changes in the subcellular distribution of the protein. We have constructed RFP-tagged proteins and demonstrated by site-directed mutagenesis that the carboxyl-terminal SSLKG sequence of cystinosin-LKG is an important sorting motif that is required for efficient targeting the protein to the plasma membrane, where it can mediate H+ coupled cystine transport. Deletion of the SSLKG sequence reduced cystinosin-LKG expression in the plasma membrane and cystine transport by approximately 30%, and induced significant accumulation of the protein in the Golgi apparatus and in lysosomes. Cystinosin-LKG, unlike the canonical isoform, also moves to the lysosomes by the indirect pathway, after endocytic retrieval from the plasma membrane, mainly by a clathrin-mediated endocytosis. Nevertheless, silencing of AP-2 triggers the clathrin-independent endocytosis, showing the complex adaptability of cystinosin-LKG trafficking. PMID:27148969

  5. Surface texture and priming play important roles in predator recognition by the red-backed shrike in field experiments.

    PubMed

    Němec, Michal; Syrová, Michaela; Dokoupilová, Lenka; Veselý, Petr; Šmilauer, Petr; Landová, Eva; Lišková, Silvie; Fuchs, Roman

    2015-01-01

    We compared the responses of the nesting red-backed shrikes (Lanius collurio) to three dummies of a common nest predator, the Eurasian jay (Garrulus glandarius), each made from a different material (stuffed, plush, and silicone). The shrikes performed defensive behaviour including attacks on all three dummies. Nevertheless, the number of attacks significantly decreased from the stuffed dummy through the plush dummy and finally to the silicone dummy. Our results show that wild birds use not only colours but also other surface features as important cues for recognition and categorization of other bird species. Moreover, the silicone dummy was attacked only when presented after the stuffed or plush dummy. Thus, we concluded that the shrikes recognized the jay only the stuffed (with feathered surface) and plush (with hairy surface) dummies during the first encounter. Recognition of the silicon dummy (with glossy surface) was facilitated by previous encounters with the more accurate model. This process resembles the effect of perceptual priming, which is widely described in the literature on humans. PMID:25107529

  6. Does atmospheric CO2 seasonality play an important role in governing the air-sea flux of CO2?

    NASA Astrophysics Data System (ADS)

    Halloran, P. R.

    2012-06-01

    The amplitude, phase, and form of the seasonal cycle of atmospheric CO2 concentrations varies on many time and space scales (Peters et al., 2007). Intra-annual CO2 variation is primarily driven by seasonal uptake and release of CO2 by the terrestrial biosphere (Machta et al., 1977; Buchwitz et al., 2007), with a small (Cadule et al., 2010; Heimann et al., 1998), but potentially changing (Gorgues et al., 2010) contribution from the ocean. Variability in the magnitude, spatial distribution, and seasonal drivers of terrestrial net primary productivity (NPP) will be induced by, amongst other factors, anthropogenic CO2 release (Keeling et al., 1996), land-use change (Zimov et al., 1999) and planetary orbital variability, and will lead to changes in CO2atm seasonality. Despite CO2atm seasonality being a dynamic and prominent feature of the Earth System, its potential to drive changes in the air-sea flux of CO2 has not previously (to the best of my knowledge) been explored. It is important that we investigate the impact of CO2atm seasonality change, and the potential for carbon-cycle feedbacks to operate through the modification of the CO2atm seasonal cycle, because the decision had been made to prescribe CO2atm concentrations (rather than emissions) within model simulations for the fifth IPCC climate assessment (Taylor et al., 2009). In this study I undertake ocean-model simulations within which different magnitude CO2atm seasonal cycles are prescribed. These simulations allow me to examine the effect of a change in CO2atm seasonal cycle magnitude on the air-sea CO2 flux. I then use an off-line model to isolate the drivers of the identified air-sea CO2 flux change, and propose mechanisms by which this change may come about. Three mechanisms are identified by which co-variability of the seasonal cycles in atmospheric CO2 concentration, and seasonality in sea-ice extent, wind-speed and ocean temperature, could potentially lead to changes in the air-sea flux of CO2 at mid

  7. Toll-Like Receptor 6 Plays an Important Role in Host Innate Resistance to Brucella abortus Infection in Mice

    PubMed Central

    de Almeida, Leonardo A.; Macedo, Gilson C.; Marinho, Fábio A. V.; Gomes, Marco T. R.; Corsetti, Patrícia P.; Silva, Aristóbolo M.; Cassataro, Juliana; Giambartolomei, Guillermo H.

    2013-01-01

    Brucella abortus is recognized by several Toll-like receptor (TLR)-associated pathways triggering proinflammatory responses that affect both the nature and intensity of the immune response. Previously, we demonstrated that B. abortus-mediated dendritic cell (DC) maturation and control of infection are dependent on the adaptor molecule MyD88. However, the involvement of all TLRs in response to B. abortus infection is not completely understood. Therefore, we decided to evaluate the requirement for TLR6 in host resistance to B. abortus. Here, we demonstrated that TLR6 is an important component for triggering an innate immune response against B. abortus. An in vitro luciferase assay indicated that TLR6 cooperates with TLR2 to sense Brucella and further activates NF-κB signaling. However, in vivo analysis showed that TLR6, not TLR2, is required for the efficient control of B. abortus infection. Additionally, B. abortus-infected dendritic cells require TLR6 to induce tumor necrosis factor alpha (TNF-α) and interleukin-12 (IL-12). Furthermore, our findings demonstrated that the mitogen-activated protein kinase (MAPK) signaling pathway is impaired in TLR2, TLR6, and TLR2/6 knockout (KO) DCs when infected with B. abortus, which may account for the lower proinflammatory cytokine production observed in TLR6 KO mouse dendritic cells. In summary, the results presented here indicate that TLR6 is required to trigger innate immune responses against B. abortus in vivo and is required for the full activation of DCs to induce robust proinflammatory cytokine production. PMID:23460520

  8. RIG-I, MDA5 and TLR3 Synergistically Play an Important Role in Restriction of Dengue Virus Infection

    PubMed Central

    Thien, Peiling; Xu, Shengli; Lam, Kong-Peng; Liu, Ding Xiang

    2011-01-01

    Dengue virus (DV) infection is one of the most common mosquito-borne viral diseases in the world. The innate immune system is important for the early detection of virus and for mounting a cascade of defense measures which include the production of type 1 interferon (IFN). Hence, a thorough understanding of the innate immune response during DV infection would be essential for our understanding of the DV pathogenesis. A recent application of the microarray to dengue virus type 1 (DV1) infected lung carcinoma cells revealed the increased expression of both extracellular and cytoplasmic pattern recognition receptors; retinoic acid inducible gene-I (RIG-I), melanoma differentiation associated gene-5 (MDA-5) and Toll-like receptor-3 (TLR3). These intracellular RNA sensors were previously reported to sense DV infection in different cells. In this study, we show that they are collectively involved in initiating an effective IFN production against DV. Cells silenced for these genes were highly susceptible to DV infection. RIG-I and MDA5 knockdown HUH-7 cells and TLR3 knockout macrophages were highly susceptible to DV infection. When cells were silenced for only RIG-I and MDA5 (but not TLR3), substantial production of IFN-β was observed upon virus infection and vice versa. High susceptibility to virus infection led to ER-stress induced apoptosis in HUH-7 cells. Collectively, our studies demonstrate that the intracellular RNA virus sensors (RIG-I, MDA5 and TLR3) are activated upon DV infection and are essential for host defense against the virus. PMID:21245912

  9. Membrane cholesterol plays an important role in enteropathogen adhesion and the activation of innate immunity via flagellin-TLR5 signaling.

    PubMed

    Zhou, Mingxu; Duan, Qiangde; Li, Yinchau; Yang, Yang; Hardwidge, Philip R; Zhu, Guoqiang

    2015-08-01

    Lipid rafts are cholesterol- and sphingolipid-rich ordered microdomains distributed in the plasma membrane that participates in mammalian signal transduction pathways. To determine the role of lipid rafts in mediating interactions between enteropathogens and intestinal epithelial cells, membrane cholesterol was depleted from Caco-2 and IPEC-J2 cells using methyl-β-cyclodextrin. Cholesterol depletion significantly reduced Escherichia coli and Salmonella enteritidis adhesion and invasion into intestinal epithelial cells. Complementation with exogenous cholesterol restored bacterial adhesion to basal levels. We also evaluated the role of lipid rafts in the activation of Toll-like receptor 5 signaling by bacterial flagellin. Depleting membrane cholesterol reduced the ability of purified recombinant E. coli flagellin to activate TLR5 signaling in intestinal cells. These data suggest that both membrane cholesterol and lipid rafts play important roles in enteropathogen adhesion and contribute to the activation of innate immunity via flagellin-TLR5 signaling. PMID:25935453

  10. Eos is redundant for T regulatory cell function, but plays an important role in IL-2 and Th17 production by CD4+ T conventional cells

    PubMed Central

    Rieder, Sadiye Amcaoglu; Metidji, Amina; Glass, Deborah Dacek; Thornton, Angela M.; Ikeda, Tohru; Morgan, Bruce A.; Shevach, Ethan M.

    2015-01-01

    Eos is a transcription factor that belongs to the Ikaros family of transcription factors. Eos has been reported to be a T regulatory cell (Treg) signature gene, to play a critical role in Treg suppressor functions, and to maintain Treg stability. We have utilized mice with a global deficiency of Eos to re-examine the role of Eos expression in both Treg and T conventional (Tconv) cells. Treg from Eos deficient (Eos−/−) mice developed normally, displayed a normal Treg phenotype, and exhibited normal suppressor function in vitro. Eos−/− Treg were as effective as Treg from wild type (WT) mice in suppression of inflammation in a model of inflammatory bowel disease. Bone marrow (BM) from Eos−/− mice was as effective as BM from WT mice in controlling T cell activation when used to reconstitute immunodeficient mice in the presence of Scurfy fetal liver cells. Surprisingly, Eos was expressed in activated Tconv cells and was required for IL-2 production, CD25 expression and proliferation in vitro by CD4+ Tconv cells. Eos−/− mice developed more severe Experimental Autoimmune Encephalomyelitis than WT mice, displayed increased numbers of effector T cells in the periphery and CNS, and amplified IL-17 production. In conclusion, our studies are not consistent with a role for Eos in Treg development and function, but demonstrate that Eos plays an important role in the activation and differentiation of Tconv cells. PMID:26062998

  11. Heat tolerance plays an important role in regulating remontant flowering in an F1 population of octoploid strawberry (Fragaria ×ananassa)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Flower initiation in strawberry is often classified by photoperiod sensitivity; however, temperature also plays a major role in determining flower initiation. OBJECTIVE: Our goal was to determine the role heat tolerance plays in regulating remontant flowering in a segregating population ...

  12. The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean

    PubMed Central

    Xu, Zhaolong; Ali, Zulfiqar; Xu, Ling; He, Xiaolan; Huang, Yihong; Yi, Jinxin; Shao, Hongbo; Ma, Hongxiang; Zhang, Dayong

    2016-01-01

    Plant basic-leucine zipper (bZIP) transcription factors play important roles in many biological processes and are involved in the regulation of salt stress tolerance. Previously, our lab generated digital gene expression profiling (DGEP) data to identify differentially expressed genes in a salt-tolerant genotype of Glycine soja (STGoGS) and a salt-sensitive genotype of Glycine max (SSGoGM). This DGEP data revealed that the expression (log2 ratio) of GmbZIP110 was up-regulated 2.76-fold and 3.38-fold in SSGoGM and STGoGS, respectively. In the present study, the salt inducible gene GmbZIP110 was cloned and characterized through phylogenetic analysis, subcellular localization and in silico transcript abundance analysis in different tissues. The functional role of this gene in salt tolerance was studied through transactivation analysis, DNA binding ability, expression in soybean composite seedlings and transgenic Arabidopsis, and the effect of GmbZIP110 on the expression of stress-related genes in transgenic Arabidopsis was investigated. We found that GmbZIP110 could bind to the ACGT motif, impact the expression of many stress-related genes and the accumulation of proline, Na+ and K+, and enhanced the salt tolerance of composite seedlings and transgenic Arabidopsis. Integrating all these results, we propose that GmbZIP110 plays a critical role in the response to salinity stress in soybean and has high potential usefulness in crop improvement. PMID:26837841

  13. The nuclear protein GmbZIP110 has transcription activation activity and plays important roles in the response to salinity stress in soybean.

    PubMed

    Xu, Zhaolong; Ali, Zulfiqar; Xu, Ling; He, Xiaolan; Huang, Yihong; Yi, Jinxin; Shao, Hongbo; Ma, Hongxiang; Zhang, Dayong

    2016-01-01

    Plant basic-leucine zipper (bZIP) transcription factors play important roles in many biological processes and are involved in the regulation of salt stress tolerance. Previously, our lab generated digital gene expression profiling (DGEP) data to identify differentially expressed genes in a salt-tolerant genotype of Glycine soja (STGoGS) and a salt-sensitive genotype of Glycine max (SSGoGM). This DGEP data revealed that the expression (log2 ratio) of GmbZIP110 was up-regulated 2.76-fold and 3.38-fold in SSGoGM and STGoGS, respectively. In the present study, the salt inducible gene GmbZIP110 was cloned and characterized through phylogenetic analysis, subcellular localization and in silico transcript abundance analysis in different tissues. The functional role of this gene in salt tolerance was studied through transactivation analysis, DNA binding ability, expression in soybean composite seedlings and transgenic Arabidopsis, and the effect of GmbZIP110 on the expression of stress-related genes in transgenic Arabidopsis was investigated. We found that GmbZIP110 could bind to the ACGT motif, impact the expression of many stress-related genes and the accumulation of proline, Na(+) and K(+), and enhanced the salt tolerance of composite seedlings and transgenic Arabidopsis. Integrating all these results, we propose that GmbZIP110 plays a critical role in the response to salinity stress in soybean and has high potential usefulness in crop improvement. PMID:26837841

  14. Diabetes-induced upregulation of urotensin II and its receptor plays an important role in TGF-beta1-mediated renal fibrosis and dysfunction.

    PubMed

    Tian, Lin; Li, Cai; Qi, Jiping; Fu, Peng; Yu, Xiaoyan; Li, Xiaokun; Cai, Lu

    2008-11-01

    Urotensin II (UII) was identified as the ligand for a novel G protein-coupled receptor, GPR14. UII was found not only to have a potent vasoconstrictive action but also to have profibrotic effects in the heart. The present study was to define whether UII and GPR14 also play important roles in diabetes-induced renal fibrosis and dysfunction. Diabetic rats were induced using streptozotocin, and the rat proximal tubular epithelial cells (NRK-52E) were used for the in vitro mechanism study. Results showed that expression of UII and GPR14 was significantly upregulated at both mRNA and protein levels in the diabetic kidneys compared with controls. The upregulated expressions of UII and GPR14 in the kidney were accompanied by significant increases in the renal profibrotic factor transforming growth factor (TGF)-beta1 expression, the renal extracellular matrix (fibronectin and collagen IV) accumulation, and the renal dysfunction (increases in urinal N-acetyl-beta-d-glucosaminidase content, 24-h urinary retinol-binding protein excretion rate, and decrease in creatinine clearance rate). Exposure of NRK-52E cells to 10(-8) mol/l UII for 48 h caused a significant increase of TGF-beta1, but not ANG II, production that was GPR14- and calcium-dependent, since GPR14 small-interfering RNA and calcium channel blocker nimodipine or calcium chelator EDTA all could abolish the induction of TGF- beta1 by UII. Furthermore, exposure of NRK-52E cells to TGF-beta1 or ANG II also increased UII and GPR14 mRNA expressions. These results suggested that diabetes-induced upregulation of UII and GPR14, most likely through autocrine and/or paracrine mechanisms, plays an important role in TGF-beta1-mediated renal fibrosis and dysfunction. PMID:18796544

  15. GhCFE1A, a dynamic linker between the ER network and actin cytoskeleton, plays an important role in cotton fibre cell initiation and elongation

    PubMed Central

    Lv, Fenni; Wang, Haihai; Wang, Xinyu; Han, Libo; Ma, Yinping; Wang, Sen; Feng, Zhidi; Niu, Xiaowei; Cai, Caiping; Kong, Zhaosheng; Zhang, Tianzhen; Guo, Wangzhen

    2015-01-01

    Fibre cell initiation and elongation is critical for cotton fibre development. However, little is known about the regulation of initiation and elongation during fibre cell development. Here, the regulatory role of a novel protein GhCFE1A was uncovered. GhCFE1A is preferentially expressed at initiation and rapid elongation stages during fibre development; in addition, much higher expression of GhCFE1A was detected at the fibre initiation stage in fibreless cotton mutants than in the fibre-bearing TM-1 wild-type. Importantly, overexpression of GhCFE1A in cotton not only delayed fibre cell elongation but also significantly reduced the density of lint and fuzz fibre initials and stem trichomes. Yeast two-hybrid assay showed that GhCFE1A interacted with several actin proteins, and the interaction was further confirmed by co-sedimentation assay. Interestingly, a subcellular localization assay showed that GhCFE1A resided on the cortical endoplasmic reticulum (ER) network and co-localized with actin cables. Moreover, the density of F-actin filaments was shown to be reduced in GhCFE1A-overexpressing fibres at the rapid elongation stage compared with the wild-type control. Taken together, the results demonstrate that GhCFE1A probably functions as a dynamic linker between the actin cytoskeleton and the ER network, and plays an important role in fibre cell initiation and elongation during cotton fibre development. PMID:25609828

  16. GhCFE1A, a dynamic linker between the ER network and actin cytoskeleton, plays an important role in cotton fibre cell initiation and elongation.

    PubMed

    Lv, Fenni; Wang, Haihai; Wang, Xinyu; Han, Libo; Ma, Yinping; Wang, Sen; Feng, Zhidi; Niu, Xiaowei; Cai, Caiping; Kong, Zhaosheng; Zhang, Tianzhen; Guo, Wangzhen

    2015-04-01

    Fibre cell initiation and elongation is critical for cotton fibre development. However, little is known about the regulation of initiation and elongation during fibre cell development. Here, the regulatory role of a novel protein GhCFE1A was uncovered. GhCFE1A is preferentially expressed at initiation and rapid elongation stages during fibre development; in addition, much higher expression of GhCFE1A was detected at the fibre initiation stage in fibreless cotton mutants than in the fibre-bearing TM-1 wild-type. Importantly, overexpression of GhCFE1A in cotton not only delayed fibre cell elongation but also significantly reduced the density of lint and fuzz fibre initials and stem trichomes. Yeast two-hybrid assay showed that GhCFE1A interacted with several actin proteins, and the interaction was further confirmed by co-sedimentation assay. Interestingly, a subcellular localization assay showed that GhCFE1A resided on the cortical endoplasmic reticulum (ER) network and co-localized with actin cables. Moreover, the density of F-actin filaments was shown to be reduced in GhCFE1A-overexpressing fibres at the rapid elongation stage compared with the wild-type control. Taken together, the results demonstrate that GhCFE1A probably functions as a dynamic linker between the actin cytoskeleton and the ER network, and plays an important role in fibre cell initiation and elongation during cotton fibre development. PMID:25609828

  17. Does asymmetric charge transfer play an important role as an ionization mode in low power-low pressure glow discharge mass spectrometry?

    NASA Astrophysics Data System (ADS)

    Mushtaq, S.; Steers, E. B. M.; Churchill, G.; Barnhart, D.; Hoffmann, V.; Pickering, J. C.; Putyera, K.

    2016-04-01

    We report results of comprehensive studies using the Nu Instruments Astrum high-resolution glow discharge mass spectrometer (GD-MS) and optical emission spectrometry (OES) to investigate the relative importance of discharge mechanisms, such as Penning ionization (PI) and asymmetric charge transfer (ACT), at low-power/low-pressure discharge conditions. Comparison of the ratios of the ion signals of each constituent element to that of the plasma gas shows that for oxygen, the ratio in krypton is more than ten times higher than in argon (oxygen ground state ions are produced by Kr-ACT). For many elements, the ratios are very similar but that for tungsten is higher with krypton, while for iron, the reverse holds. These effects are linked to the arrangement of ionic energy levels of the elements concerned and the resulting relative importance of ACT and PI. The GD-MS and GD-OES results have shown that the ACT process can play an important role as the ionization mode in low-power/low-pressure discharges. However, OES results have shown that the magnitude of change in spectral intensities of elements studied are dependent on the discharge conditions.

  18. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus.

    PubMed

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-Hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species. PMID:27446060

  19. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus

    PubMed Central

    Yan, Fang; Yu, Yiyang; Wang, Luyao; Luo, Yuming; Guo, Jian-hua; Chai, Yunrong

    2016-01-01

    Bacteria adopt alternative cell fates during development. In Bacillus subtilis, the transition from planktonic growth to biofilm formation and sporulation is controlled by a complex regulatory circuit, in which the most important event is activation of Spo0A, a transcription factor and a master regulator for genes involved in both biofilm formation and sporulation. In B. cereus, the regulatory pathway controlling biofilm formation and cell differentiation is much less clear. In this study, we show that a novel gene, comER, plays a significant role in biofilm formation as well as sporulation in both B. subtilis and B. cereus. Mutations in the comER gene result in defects in biofilm formation and a delay in spore formation in the two Bacillus species. Our evidence supports the idea that comER may be part of the regulatory circuit that controls Spo0A activation. comER likely acts upstream of sda, a gene encoding a small checkpoint protein for both sporulation and biofilm formation, by blocking the phosphor-relay and thereby Spo0A activation. In summary, our studies outlined a conserved, positive role for comER, a gene whose function was previously uncharacterized, in the regulation of biofilm formation and sporulation in the two Bacillus species. PMID:27446060

  20. Mast cells and histamine play an important role in edema and leukocyte recruitment induced by Potamotrygon motoro stingray venom in mice.

    PubMed

    Kimura, Louise F; Prezotto-Neto, José Pedro; Távora, Bianca C L F; Faquim-Mauro, Eliana L; Pereira, Nicole A; Antoniazzi, Marta M; Jared, Simone G S; Teixeira, Catarina F P; Santoro, Marcelo L; Barbaro, Katia C

    2015-09-01

    This work aimed to investigate mechanisms underlying the inflammatory response caused by Potamotrygon motoro stingray venom (PmV) in mouse paws. Pre-treatment of animals with a mast cell degranulation inhibitor (cromolyn) diminished edema (62% of inhibition) and leukocyte influx into the site of PmV injection. Promethazine (histamine type 1 receptor antagonist) or thioperamide (histamine type 3 and 4 receptor antagonist) also decreased edema (up to 30%) and leukocyte numbers, mainly neutrophils (40-50 %). Cimetidine (histamine type 2 receptor antagonist) had no effect on PmV-induced inflammation. In the RBL-2H3 lineage of mast cells, PmV caused proper cell activation, in a dose-dependent manner, with release of PGD2 and PGE2. In addition, the role of COXs products on PmV inflammatory response was evaluated. Indomethacin (COX-1/COX-2 inhibitor) or etoricoxib (COX-2 inhibitor) partially diminished edema (around 20%) in PmV-injected mice. Indomethacin, but not etoricoxib, modulated neutrophil influx into the site of venom injection. In conclusion, mast cell degranulation and histamine, besides COXs products, play an important role in PmV-induced reaction. Since PmV mechanism of action remains unknown, hindering accurate treatment, clinical studies can be performed to validate the prescription of antihistaminic drugs, besides NSAIDs, to patients injured by freshwater stingrays. PMID:26100666

  1. OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus.

    PubMed

    Lu, Linghong; Qiu, Wenmin; Gao, Wenwen; Tyerman, Stephen D; Shou, Huixia; Wang, Chuang

    2016-10-01

    Under phosphate (Pi ) starvation, plants increase the secretion of purple acid phosphatases (PAPs) into the rhizosphere to scavenge organic phosphorus (P) for plant use. To date, only a few members of the PAP family have been characterized in crops. In this study, we identified a novel secreted PAP in rice, OsPAP10c, and investigated its role in the utilization of external organic P. OsPAP10c belongs to a monocotyledon-specific subclass of Ia group PAPs and is specifically expressed in the epidermis/exodermis cell layers of roots. Both the transcript and protein levels of OsPAP10c are strongly induced by Pi starvation. OsPAP10c overexpression increased acid phosphatase (APase) activity by more than 10-fold in the culture media and almost fivefold in both roots and leaves under Pi -sufficient and Pi -deficient conditions. This increase in APase activity further improved the plant utilization efficiency of external organic P. Moreover, several APase isoforms corresponding to OsPAP10c were identified using in-gel activity assays. Under field conditions with three different Pi supply levels, OsPAP10c-overexpressing plants had significantly higher tiller numbers and shorter plant heights. This study indicates that OsPAP10c encodes a novel secreted APase that plays an important role in the utilization of external organic P in rice. PMID:27411391

  2. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization.

    PubMed

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-01

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement. PMID:26791570

  3. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization

    PubMed Central

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-01

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement. PMID:26791570

  4. The antioxidant protein PARK7 plays an important role in cell resistance to Cisplatin-induced apoptosis in case of clear cell renal cell carcinoma.

    PubMed

    Trivedi, Rachana; Dihazi, Gry H; Eltoweissy, Marwa; Mishra, Durga P; Mueller, Gerhard A; Dihazi, Hassan

    2016-08-01

    Clear cell renal cell carcinoma (ccRCC) is the most malignant tumor in the adult kidney. Many factors are responsible for the development and progression of this tumor. Increased reactive oxygen species accumulation and altered redox status have been observed in cancer cells and this biochemical property of cancer cells can be exploited for therapeutic benefits. In earlier work we identified and characterize Protein DJ-1 (PARK7) as an oxidative stress squevenger in renal cells exposed to oxidative stress. To investigate whether the PARK7 or other oxidative stress proteins play a role in the renal cell carcinoma and its sensitivity or resistance to cytostatic drug treatment, differential proteomics analysis was performed with a cell model for clear cell renal carcinoma (Caki-2 and A498). Caki-2 cells were treated with cisplatin and differentially expressed proteins were investigated. The cisplatin treatment resulted in an increase in reactive oxygen species accumulation and ultimately apoptosis of Caki-2 and A498 cells. In parallel, the apoptotic effect was accompanied by a significant downregulation of antioxidant proteins especially PARK7. Knockdown of PARK7 using siRNA and overexpression using plasmid highlights the role of PARK7 as a key player in renal cell carcinoma response to cisplatin induced apoptosis. Overexpression of PARK7 resulted in significant decrease in apoptosis, whereas knockdown of the protein was accompanied by an increase in apoptosis in Caki-2 and A498 cells treated with cisplatin. These results highlights for the first time the important role of PARK7 in cisplatin induced apoptosis in clear renal cell carcinoma cells. PMID:27112662

  5. Inhibition of HDAC3- and HDAC6-Promoted Survivin Expression Plays an Important Role in SAHA-Induced Autophagy and Viability Reduction in Breast Cancer Cells

    PubMed Central

    Lee, Jane Ying-Chieh; Kuo, Ching-Wen; Tsai, Shing-Ling; Cheng, Siao Muk; Chen, Shang-Hung; Chan, Hsiu-Han; Lin, Chun-Hui; Lin, Kun-Yuan; Li, Chien-Feng; Kanwar, Jagat R.; Leung, Euphemia Y.; Cheung, Carlos Chun Ho; Huang, Wei-Jan; Wang, Yi-Ching; Cheung, Chun Hei Antonio

    2016-01-01

    SAHA is a class I HDAC/HDAC6 co-inhibitor and an autophagy inducer currently undergoing clinical investigations in breast cancer patients. However, the molecular mechanism of action of SAHA in breast cancer cells remains unclear. In this study, we found that SAHA is equally effective in targeting cells of different breast cancer subtypes and tamoxifen sensitivity. Importantly, we found that down-regulation of survivin plays an important role in SAHA-induced autophagy and cell viability reduction in human breast cancer cells. SAHA decreased survivin and XIAP gene transcription, induced survivin protein acetylation and early nuclear translocation in MCF7 and MDA-MB-231 breast cancer cells. It also reduced survivin and XIAP protein stability in part through modulating the expression and activation of the 26S proteasome and heat-shock protein 90. Interestingly, targeting HDAC3 and HDAC6, but not other HDAC isoforms, by siRNA/pharmacological inhibitors mimicked the effects of SAHA in modulating the acetylation, expression, and nuclear translocation of survivin and induced autophagy in MCF7 and MDA-MB-231 cancer cells. Targeting HDAC3 also mimicked the effect of SAHA in up-regulating the expression and activity of proteasome, which might lead to the reduced protein stability of survivin in breast cancer cells. In conclusion, this study provides new insights into SAHA's molecular mechanism of actions in breast cancer cells. Our findings emphasize the complexity of the regulatory roles in different HDAC isoforms and potentially assist in predicting the mechanism of novel HDAC inhibitors in targeted or combinational therapies in the future. PMID:27065869

  6. SARI, a novel target gene of glucocorticoid receptor, plays an important role in dexamethasone-mediated killing of B lymphoma cells.

    PubMed

    Huang, Yinghui; Zhou, Jie; Huang, Yan; He, Jintao; Wang, Yuting; Yang, Chaohui; Liu, Dongbo; Zhang, Li; He, Fengtian

    2016-04-01

    Dexamethasone (Dex) has been commonly used in lymphoma and leukemia treatment, but the detailed mechanisms are not fully understood. Suppressor of AP-1 regulated by interferon (SARI) has tumor-selective growth inhibitory effect. However, it's unclear whether SARI is involved in the Dex-mediated lymphoma growth suppression. In this study, we found that Dex-treated B lymphoma tissues had a higher level of SARI. Dex repressed the growth of B lymphoma cells and upregulated SARI expression by activating glucocorticoid receptor (GR) in vitro and in vivo. Silencing of SARI attenuated the Dex-mediated growth suppression of B lymphoma cells and inhibition of AP-1 activity. Reporter assays revealed that activation of GR enhanced the transcriptional activity of SARI promoter. EMSA and ChIP assays showed that GR directly bound to the ER9 element in SARI promoter region. These results for the first time demonstrated that SARI is a novel target gene of GR, and the upregulation of SARI plays an important role in Dex's killing effect on B lymphoma cells, suggesting that SARI may serve as a novel target and a potential indicator of Dex sensitivity in B lymphoma treatment. PMID:26808579

  7. Overexpression of CDR1 and CDR2 genes plays an important role in fluconazole resistance in Candida albicans with G487T and T916C mutations.

    PubMed

    Chen, L M; Xu, Y H; Zhou, C L; Zhao, J; Li, C Y; Wang, R

    2010-01-01

    This study was designed to investigate potential resistance mechanisms by studying the expression of resistant genes in 14 fluconazole-resistant Candida albicans isolates, with G487T and T916C mutations in the 14alpha-demethylase (ERG11) gene, collected from human immunodeficiency virus uninfected patients and a fluconazole-susceptible control strain. The in vitro susceptibilities of the C. albicans isolates to fluconazole were determined using the broth microdilution method and a disc diffusion assay. Expression of Candida drug resistance (CDR)1, CDR2, ERG11, fluconazole resistance (FLU)1 and multidrug resistance (MDR)1 genes was measured using real-time reverse transcription-polymerase chain reaction and evaluated relative to the expression of the control gene 18SrRNA. The CDR1 and CDR2 genes were upregulated in all the fluconazole-resistant C. albicans isolates, whereas only a few isolates showed high expression of MDR1, FLU1 and ERG11 genes compared with the control strain. In conclusion, overexpression of the CDR1 and CDR2 genes may play an important role in fluconazole-resistant C. albicans with G487T and T916C mutations. PMID:20515567

  8. H2O2 plays an important role in the lifestyle of Colletotrichum gloeosporioides during interaction with cowpea [Vigna unguiculata (L.) Walp].

    PubMed

    Eloy, Ygor R G; Vasconcelos, Ilka M; Barreto, Ana L H; Freire-Filho, Francisco R; Oliveira, Jose T A

    2015-08-01

    Plant-fungus interactions usually generate H(2)O(2) in the infected plant tissue. H(2)O(2) has a direct antimicrobial effect and is involved in the cross-linking of cell walls, signaling, induction of gene expression, hypersensitive cell death and induced systemic acquired resistance. This has raised the hypothesis that H(2)O(2) manipulation by pharmacological compounds could alter the lifestyle of Colletotrichum gloeosporioides during interaction with the BR-3-Tracuateua cowpea genotype. The primary leaves of cowpea were excised, infiltrated with salicylic acid (SA), glucose oxidase + glucose (GO/G), catalase (CAT) or diphenyliodonium chloride (DPI), followed by spore inoculation on the adaxial leaf surface. SA or GO/G-treated plantlets showed increased H(2)O(2) accumulation and lipid peroxidation. The fungus used a subcuticular, intramural necrotrophic strategy, and developed secondary hyphae associated with the quick spread and rapid killing of host cells. However, CAT or DPI-treated leaves exhibited decreased H(2)O(2) concentration and lipid peroxidation and the fungus developed intracellular hemibiotrophic infection with vesicles, in addition to primary and secondary hyphal formation. These results suggest that H(2)O(2) plays an important role in the cowpea (C. gloeosporioides) pathosystem given that it affected fungal lifestyle during interaction. PMID:26228563

  9. cDNA-AFLP analysis reveals heat shock proteins play important roles in mediating cold, heat, and drought tolerance in Ammopiptanthus mongolicus.

    PubMed

    Guo, Huiming; Li, Zhaochun; Zhou, Meiliang; Cheng, Hongmei

    2014-03-01

    Ammopiptanthus mongolicus (Maxim.ex kom.) Cheng F. is the only evergreen broadleaf shrub endemic to the desert of central Asian and it can survive at drought, salt, and alkali stress. It is believed that A. mongolicus is an important germplasm containing abiotic-tolerance genes. In order to identify drought-, cold-, and heat-responsive genes and to gain a better understanding of stress responses in A. mongolicus, genome-wide investigation of drought-, cold-, and heat-responsive genes was performed in A. mongolicus using cDNA-amplified fragment length polymorphism. Selective amplification with 240 primer combinations generated 5,000 differentially expressed transcript derived fragments (TDFs). Of these, 201 TDFs with differential expression patterns were excised from gels, reamplified by PCR, and sequenced. The gene expression patterns of 11 regulated genes were further investigated by semiquantitative reverse transcriptase polymerase chain reaction analysis. Sequencing and similarity analysis revealed that TDFs present homologies chiefly with proteins involved in various abiotic and biotic stress and developmental responses. The information presented in this study reveals that heat shock proteins play an active role in mediating drought, cold, and heat tolerance in A. mongolicus. PMID:24241624

  10. A complex of Cox4 and mitochondrial Hsp70 plays an important role in the assembly of the cytochrome c oxidase

    PubMed Central

    Böttinger, Lena; Guiard, Bernard; Oeljeklaus, Silke; Kulawiak, Bogusz; Zufall, Nicole; Wiedemann, Nils; Warscheid, Bettina; van der Laan, Martin; Becker, Thomas

    2013-01-01

    The formation of the mature cytochrome c oxidase (complex IV) involves the association of nuclear- and mitochondria-encoded subunits. The assembly of nuclear-encoded subunits like cytochrome c oxidase subunit 4 (Cox4) into the mature complex is poorly understood. Cox4 is crucial for the stability of complex IV. To find specific biogenesis factors, we analyze interaction partners of Cox4 by affinity purification and mass spectroscopy. Surprisingly, we identify a complex of Cox4, the mitochondrial Hsp70 (mtHsp70), and its nucleotide-exchange factor mitochondrial GrpE (Mge1). We generate a yeast mutant of mtHsp70 specifically impaired in the formation of this novel mtHsp70-Mge1-Cox4 complex. Strikingly, the assembly of Cox4 is strongly decreased in these mutant mitochondria. Because Cox4 is a key factor for the biogenesis of complex IV, we conclude that the mtHsp70-Mge1-Cox4 complex plays an important role in the formation of cytochrome c oxidase. Cox4 arrests at this chaperone complex in the absence of mature complex IV. Thus the mtHsp70-Cox4 complex likely serves as a novel delivery system to channel Cox4 into the assembly line when needed. PMID:23864706

  11. A Putative Mitochondrial Iron Transporter MrsA in Aspergillus fumigatus Plays Important Roles in Azole-, Oxidative Stress Responses and Virulence

    PubMed Central

    Long, Nanbiao; Xu, Xiaoling; Qian, Hui; Zhang, Shizhu; Lu, Ling

    2016-01-01

    Iron is an essential nutrient and enzyme co-factor required for a wide range of cellular processes, especially for the function of mitochondria. For the opportunistic fungal pathogen Aspergillus fumigatus, the ability to obtain iron is required for growth and virulence during the infection process. However, knowledge of how mitochondria are involved in iron regulation is still limited. Here, we show that a mitochondrial iron transporter, MrsA, a homolog of yeast Mrs4p, is critical for adaptation to iron-limited or iron-excess conditions in A. fumigatus. Deletion of mrsA leads to disruption of iron homeostasis with a decreased sreA expression, resulted in activated reductive iron assimilation (RIA) and siderophore-mediated iron acquisition (SIA). Furthermore, deletion of mrsA induces hypersusceptibility to azole and oxidative stresses. An assay for cellular ROS content in ΔmrsA combined with rescue from the mrsA-defective phenotype by the antioxidant reagent L-ascorbic acid indicates that the increased sensitivity of ΔmrsA to the azole itraconazole and to oxidative stress is mainly the result of abnormal ROS accumulation. Moreover, site-directed mutation experiments verified that three conserved histidine residues related to iron transport in MrsA are required for responses to oxidative and azole stresses. Importantly, ΔmrsA causes significant attenuation of virulence in an immunocompromised murine model of aspergillosis. Collectively, our results show that the putative mitochondrial iron transporter MrsA plays important roles in azole- and oxidative-stress responses and virulence by regulating the balance of cellular iron in A. fumigatus. PMID:27433157

  12. A Putative Mitochondrial Iron Transporter MrsA in Aspergillus fumigatus Plays Important Roles in Azole-, Oxidative Stress Responses and Virulence.

    PubMed

    Long, Nanbiao; Xu, Xiaoling; Qian, Hui; Zhang, Shizhu; Lu, Ling

    2016-01-01

    Iron is an essential nutrient and enzyme co-factor required for a wide range of cellular processes, especially for the function of mitochondria. For the opportunistic fungal pathogen Aspergillus fumigatus, the ability to obtain iron is required for growth and virulence during the infection process. However, knowledge of how mitochondria are involved in iron regulation is still limited. Here, we show that a mitochondrial iron transporter, MrsA, a homolog of yeast Mrs4p, is critical for adaptation to iron-limited or iron-excess conditions in A. fumigatus. Deletion of mrsA leads to disruption of iron homeostasis with a decreased sreA expression, resulted in activated reductive iron assimilation (RIA) and siderophore-mediated iron acquisition (SIA). Furthermore, deletion of mrsA induces hypersusceptibility to azole and oxidative stresses. An assay for cellular ROS content in ΔmrsA combined with rescue from the mrsA-defective phenotype by the antioxidant reagent L-ascorbic acid indicates that the increased sensitivity of ΔmrsA to the azole itraconazole and to oxidative stress is mainly the result of abnormal ROS accumulation. Moreover, site-directed mutation experiments verified that three conserved histidine residues related to iron transport in MrsA are required for responses to oxidative and azole stresses. Importantly, ΔmrsA causes significant attenuation of virulence in an immunocompromised murine model of aspergillosis. Collectively, our results show that the putative mitochondrial iron transporter MrsA plays important roles in azole- and oxidative-stress responses and virulence by regulating the balance of cellular iron in A. fumigatus. PMID:27433157

  13. Miniature Inverted–Repeat Transposable Elements (MITEs) Have Been Accumulated through Amplification Bursts and Play Important Roles in Gene Expression and Species Diversity in Oryza sativa

    PubMed Central

    Lu, Chen; Chen, Jiongjiong; Zhang, Yu; Hu, Qun; Su, Wenqing; Kuang, Hanhui

    2012-01-01

    Miniature inverted–repeat transposable elements (MITEs) are predicted to play important roles on genome evolution. We developed a BLASTN-based approach for de novo identification of MITEs and systematically analyzed MITEs in rice genome. The genome of rice cultivar Nipponbare (Oryza sativa ssp. japonica) harbors 178,533 MITE-related sequences classified into 338 families. Pairwise nucleotide diversity and phylogenetic tree analysis indicated that individual MITE families were resulted from one or multiple rounds of amplification bursts. The timing of amplification burst varied considerably between different MITE families or subfamilies. MITEs are associated with 23,623 (58.2%) genes in rice genome. At least 7,887 MITEs are transcribed and more than 3,463 were transcribed with rice genes. The MITE sequences transcribed with rice coding genes form 1,130 pairs of potential natural sense/antisense transcripts. MITEs generate 23.5% (183,837 of 781,885) of all small RNAs identified from rice. Some MITE families generated small RNAs mainly from the terminals, while other families generated small RNAs predominantly from the central region. More than half (51.8%) of the MITE-derived small RNAs were generated exclusively by MITEs located away from genes. Genome-wide analysis showed that genes associated with MITEs have significantly lower expression than genes away from MITEs. Approximately 14.8% of loci with full-length MITEs have presence/absence polymorphism between rice cultivars 93-11 (O. sativa ssp. indica) and Nipponbare. Considering that different sets of genes may be regulated by MITE-derived small RNAs in different genotypes, MITEs provide considerable diversity for O. sativa. PMID:22096216

  14. Complement factor B is the downstream effector of TLRs and plays an important role in a mouse model of severe sepsis.

    PubMed

    Zou, Lin; Feng, Yan; Li, Yan; Zhang, Ming; Chen, Chan; Cai, Jiayan; Gong, Yu; Wang, Larry; Thurman, Joshua M; Wu, Xiaobo; Atkinson, John P; Chao, Wei

    2013-12-01

    Severe sepsis involves massive activation of the innate immune system and leads to high mortality. Previous studies have demonstrated that various types of TLRs mediate a systemic inflammatory response and contribute to organ injury and mortality in animal models of severe sepsis. However, the downstream mechanisms responsible for TLR-mediated septic injury are poorly understood. In this article, we show that activation of TLR2, TLR3, and TLR4 markedly enhanced complement factor B (cfB) synthesis and release by macrophages and cardiac cells. Polymicrobial sepsis, created by cecal ligation and puncture in a mouse model, augmented cfB levels in the serum, peritoneal cavity, and major organs including the kidney and heart. Cecal ligation and puncture also led to the alternative pathway activation, C3 fragment deposition in the kidney and heart, and cfB-dependent C3dg elevation. Bacteria isolated from septic mice activated the serum alternative pathway via a factor D-dependent manner. MyD88 deletion attenuated cfB/C3 upregulation as well as cleavage induced by polymicrobial infection. Importantly, during sepsis, absence of cfB conferred a protective effect with improved survival and cardiac function and markedly attenuated acute kidney injury. cfB deletion also led to increased neutrophil migratory function during the early phase of sepsis, decreased local and systemic bacterial load, attenuated cytokine production, and reduced neutrophil reactive oxygen species production. Together, our data indicate that cfB acts as a downstream effector of TLR signaling and plays a critical role in the pathogenesis of severe bacterial sepsis. PMID:24154627

  15. Complement Factor B is the Downstream Effector of Toll-Like Receptors and Plays an Important Role in a Mouse Model of Severe Sepsis¶

    PubMed Central

    Zou, Lin; Feng, Yan; Li, Yan; Zhang, Ming; Chen, Chan; Cai, Jiayan; Gong, Yu; Wang, Larry; Thurman, Joshua M.; Wu, Xiaobo; Atkinson, John P.; Chao, Wei

    2013-01-01

    Severe sepsis involves massive activation of the innate immune system and leads to high mortality. Previous studies have demonstrated that various types of Toll-like receptors (TLRs) mediate a systemic inflammatory response and contribute to organ injury and mortality in animal models of severe sepsis. However, the downstream mechanisms responsible for TLR-mediated septic injury are poorly understood. Here, we show that activation of TLR2, TLR3 and TLR4 markedly enhanced complement factor B (cfB) synthesis and release by macrophages and cardiac cells. Polymicrobial sepsis, created by cecal ligation and puncture (CLP) in a mouse model, augmented cfB levels in the serum, peritoneal cavity and major organs including the kidney and heart. CLP also led to the alternative pathway (AP) activation, C3 fragment deposition in the kidney and heart, and cfB-dependent C3dg elevation. Bacteria isolated from septic mice activated the serum AP via a factor D-dependent manner. MyD88 deletion attenuated cfB/C3 up-regulation as well as cleavage induced by polymicrobial infection. Importantly, during sepsis, absence of cfB conferred a protective effect with improved survival and cardiac function, and markedly attenuated acute kidney injury. cfB deletion also led to increased neutrophil migratory function during the early phase of sepsis, decreased local and systemic bacterial load, attenuated cytokine production and reduced neutrophil reactive oxygen species production. Together, our data indicate that cfB acts as a downstream effector of TLR signaling and plays a critical role in the pathogenesis of severe bacterial sepsis. PMID:24154627

  16. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses

    PubMed Central

    2011-01-01

    Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants. PMID:21718548

  17. Psychiatrists' Perceptions of Role-Playing Games.

    PubMed

    Lis, Eric; Chiniara, Carl; Biskin, Robert; Montoro, Richard

    2015-09-01

    The literature has seen a surge in research on the mental health impacts of technologies such as Facebook, video games, and massively-multiplayer online role-playing games such as World of Warcraft, but little is known regarding the mental health impact of non-video role-playing games, such as Dungeons & Dragons. The present study examines how psychiatrists' perceive role-playing games and whether they play them. Psychiatrists at a tertiary care centre in Canada completed a questionnaire assessing history of playing role-playing games and whether they associate them with psychopathology. Forty-eight psychiatrists responded. Twenty-three percent have played a role-playing game over their lifetimes. Twenty-two percent believed there was an association between psychopathology and role-playing games. A majority of psychiatrists who responded do not associate role-playing games with psychopathology. Implications for clinical practice and future research are discussed. PMID:25589035

  18. Sirtuin 3, a New Target of PGC-1α, Plays an Important Role in the Suppression of ROS and Mitochondrial Biogenesis

    PubMed Central

    Kong, Xingxing; Wang, Rui; Xue, Yuan; Liu, Xiaojun; Zhang, Huabing; Chen, Yong; Fang, Fude; Chang, Yongsheng

    2010-01-01

    Background Sirtuin 3 (SIRT3) is one of the seven mammalian sirtuins, which are homologs of the yeast Sir2 gene. SIRT3 is the only sirtuin with a reported association with the human life span. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) plays important roles in adaptive thermogenesis, gluconeogenesis, mitochondrial biogenesis and respiration. PGC-1α induces several key reactive oxygen species (ROS)-detoxifying enzymes, but the molecular mechanism underlying this is not well understood. Results Here we show that PGC-1α strongly stimulated mouse Sirt3 gene expression in muscle cells and hepatocytes. Knockdown of PGC-1α led to decreased Sirt3 gene expression. PGC-1α activated the mouse SIRT3 promoter, which was mediated by an estrogen-related receptor (ERR) binding element (ERRE) (−407/−399) mapped to the promoter region. Chromatin immunoprecipitation and electrophoretic mobility shift assays confirmed that ERRα bound to the identified ERRE and PGC-1α co-localized with ERRα in the mSirt3 promoter. Knockdown of ERRα reduced the induction of Sirt3 by PGC-1α in C2C12 myotubes. Furthermore, Sirt3 was essential for PGC-1α-dependent induction of ROS-detoxifying enzymes and several components of the respiratory chain, including glutathione peroxidase-1, superoxide dismutase 2, ATP synthase 5c, and cytochrome c. Overexpression of SIRT3 or PGC-1α in C2C12 myotubes decreased basal ROS level. In contrast, knockdown of mSIRT3 increased basal ROS level and blocked the inhibitory effect of PGC-1α on cellular ROS production. Finally, SIRT3 stimulated mitochondrial biogenesis, and SIRT3 knockdown decreased the stimulatory effect of PGC-1α on mitochondrial biogenesis in C2C12 myotubes. Conclusion Our results indicate that Sirt3 functions as a downstream target gene of PGC-1α and mediates the PGC-1α effects on cellular ROS production and mitochondrial biogenesis. Thus, SIRT3 integrates cellular energy metabolism and ROS generation. The

  19. The Importance of Play: Part Three

    ERIC Educational Resources Information Center

    Exceptional Parent, 2009

    2009-01-01

    Several membership companies of the International Playground Equipment Manufacturers Association (IPEMA) are helping differently-abled children to have access to play equipment and opportunities. These IPEMA membership companies, and others, are driven by the principles of Universal Design (UD), a new concept in playground design that helps ensure…

  20. THE IMPORTANCE OF PLAY DURING HOSPITALIZATION OF CHILDREN

    PubMed Central

    Koukourikos, Konstantinos; Tzeha, Laila; Pantelidou, Parthenopi; Tsaloglidou, Areti

    2015-01-01

    Introduction: Play constitutes an essential parameter of the normal psychosomatic development of children, as well as their statutory right. It is also an important means of communication in childhood. Objective: To review, detect and highlight all data cited regarding the role of play during the hospitalization of children. Methodology: Literature review was achieved by searching the databases Scopus, PubMed, Cinhal in English, using the following key words: therapeutic play, play therapy, hospitalized child, therapist. Results: During hospitalization, play either in the form of therapeutic play, or as in the form of play therapy, is proven to be of high therapeutic value for ill children, thus contributing to both their physical and emotional well-being and to their recovery. It helps to investigate issues related to the child’s experiences in the hospital and reduce the intensity of negative feelings accompanying a child’s admission to hospital and hospitalization. Play is widely used in pre-operative preparation and invasive procedures, while its use among children hospitalized for cancer is beneficial. Conclusion: The use of play in hospital may become a tool in the hands of healthcare professionals, in order to provide substantial assistance to hospitalized children, as long as they have appropriate training, patience, and will to apply it during hospitalization. PMID:26889107

  1. Restaurant Role-Play in Psychology

    ERIC Educational Resources Information Center

    Borya, Anthony

    2013-01-01

    Research methods is perceived as a technical and difficult topic by some students. Using role-play to teach it can make it more accessible, meaningful and engaging. Role-playing the familiar roles of customer and waiting staff at a restaurant and discussing the variables that may affect the size of tips can help students to learn some of the key…

  2. Protein DJ-1 and its anti-oxidative stress function play an important role in renal cell mediated response to profibrotic agents.

    PubMed

    Eltoweissy, Marwa; Dihazi, Gry H; Müller, Gerhard A; Asif, Abdul R; Dihazi, Hassan

    2016-05-24

    In the pathogenesis of renal fibrosis, oxidative stress (OS) enhances the production of reactive oxygen species (ROS) leading to sustained cell growth, inflammation, excessive tissue remodelling and accumulation, which results in the development and acceleration of renal damage. In our previous work (Eltoweissy et al., 2011) we established protein DJ-1 (PARK7) as an important ROS scavenger and key player in renal cell response to OS. In the present study we investigated the impact of profibrogenic agonists on DJ-1 and shed light on the role of this protein in renal fibrosis. Treatment of renal fibroblasts and epithelial cells with the profibrogenic agonist ANG II or PDGF resulted in a significant up-regulation of DJ-1 expression parallel to an increase in the expression of fibrosis markers. Monitoring of DJ-1 expression in kidney extract and tissue sections from a renal fibrosis mouse model (Col4a3-deficient) revealed a disease grade dependent regulation of the protein. Overexpression of DJ-1 prompted cell resistance to OS in both fibroblasts and epithelial cells. Furthermore overexpression of DJ-1, involved in ROS scavenging, in which glutamic acid 18 (E18) is mutated to either to aspartic acid (D) or glutamine (Q) resulted in a significant increase in cell death under OS in the case of E18D mutation, whereas E18Q mutation did not impact significantly the cell response to OS, revealing the importance of the acidic group for the ROS scavenging activity of the DJ-1 protein more than the nature of the amino acid itself. Affinity precipitation of interaction partners of DJ-1 and its mutants revealed an important role of annexin A1 and A5 in the mechanism of action of DJ-1 in anti-oxidative stress response. PMID:27109140

  3. Molecular cloning and functional analysis of GbRVd, a gene in Gossypium barbadense that plays an important role in conferring resistance to Verticillium wilt.

    PubMed

    Yang, Jun; Ma, Qing; Zhang, Yan; Wang, Xingfen; Zhang, Guiyin; Ma, Zhiying

    2016-01-10

    Most of the disease resistance genes already characterized in plants encode nucleotide-binding site-leucine rich repeat (NBS-LRR) proteins that have key roles in resistance to Verticillium dahliae. Using a cDNA library and RACE protocols, we cloned a coiled-coil (CC)-NBS-LRR-type gene, GbRVd, from a resistant tetraploid cotton species, Gossypium barbadense (RVd=Resistance to V. dahliae). We also applied RT-qPCR and VIGS technologies to analyze how expression of GbRVd was induced upon attack by V. dahliae. Its 2862-bp ORF encodes a predicted protein containing 953 amino acid residues, with a predicted molecular weight of 110.17kDa and an isoelectric point of 5.87. GbRVd has three domains - CC, NBS, and LRR - and is most closely related to Gossypium raimondii RVd (88% amino acid identity). Profiling demonstrated that GbRVd is constitutively expressed in all tested tissues, and transcript levels are especially high in the leaves. In plants inoculated with V. dahliae, GbRVd was significantly up-regulated when compared with the control, with expression peaking at 48h post-inoculation. Silencing of GbRVd in cotton through VIGS dramatically down-regulated SA, NO, and H2O2 production, resulting in greater susceptibility to V. dahliae. Taken together, these results suggest that GbRVd has an important role in protecting G. barbadense against infection by V. dahliae. PMID:26407869

  4. The Stable Level of Glutamine synthetase 2 Plays an Important Role in Rice Growth and in Carbon-Nitrogen Metabolic Balance

    PubMed Central

    Bao, Aili; Zhao, Zhuqing; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2015-01-01

    Glutamine synthetase 2 (GS2) is a key enzyme involved in the ammonium metabolism in plant leaves. In our previous study, we obtained GS2-cosuppressed plants, which displayed a normal growth phenotype at the seedling stage, while at the tillering stage they showed a chlorosis phenotype. In this study, to investigate the chlorosis mechanism, we systematically analyzed the plant growth, carbon-nitrogen metabolism and gene expressions between the GS2-cosuppressed rice and wild-type plants. The results revealed that the GS2-cosuppressed plants exhibited a poor plant growth phenotype and a poor nitrogen transport ability, which led to nitrogen accumulation and a decline in the carbon/nitrogen ratio in the stems. Interestingly, there was a higher concentration of soluble proteins and a lower concentration of carbohydrates in the GS2-cosuppressed plants at the seedling stage, while a contrasting result was displayed at the tillering stage. The analysis of the metabolic profile showed a significant increase of sugars and organic acids. Additionally, gene expression patterns were different in root and leaf of GS2-cosuppressed plants between the seedling and tillering stage. These results indicated the important role of a stable level of GS2 transcription during normal rice development and the importance of the carbon-nitrogen metabolic balance in rice growth. PMID:26053400

  5. ROLE-PLAYING AND THE POOR.

    ERIC Educational Resources Information Center

    GOLDFARB, JEAN; RIESSMAN, FRANK

    ROLE-PLAYING IS A VALUABLE TECHNIQUE FOR WORKING WITH DISADVANTAGED PEOPLE BECAUSE IT IS CONGENIAL WITH THE LOW-INCOME PERSON'S STYLE. ROLE-PLAYING ALLOWS THE PRACTITIONER TO REDUCE THE DISTANCE BETWEEN HIMSELF AND THE DISADVANTAGED, IT PERMITS MORE LEARNING ABOUT THE CULTURE OF THE LOW-INCOME PERSON FROM THE "INSIDE," AND IT IS AN EXCELLENT…

  6. Using Role Play to Debate Animal Testing

    ERIC Educational Resources Information Center

    Agell, Laia; Soria, Vanessa; Carrió, Mar

    2015-01-01

    The use of animals in biomedical research is a socio-scientific issue in which decision-making is complicated. In this article, we describe an experience involving a role play activity performed during school visits to the Barcelona Biomedical Research Park (PRBB) to debate animal testing. Role playing games require students to defend different…

  7. Role-Playing Methods in the Classroom.

    ERIC Educational Resources Information Center

    Chesler, Mark; Fox, Robert

    This book, one of three Teacher Resource Booklets on Classroom Social Relations and Learning developed at the Center for Research on Utilization of Scientific Knowledge at the University of Michigan, discusses the theoretical background of role playing and gives a step-by-step discussion of how to use role playing in the classroom. There are…

  8. Age plays an important role in the relationship between smoking status and obesity risk: a large scale cross-sectional study of Chinese adults

    PubMed Central

    Su, Pu; Hong, Liu; Sun, Hang; Zhao, Yi Fan; Li, Liang

    2015-01-01

    Objective: To study the role of age plays in the relationship between smoking status and obesity in both Chinese men and women. Methods: From Chinese Physical and Psychological Database, participants were divided into non-smokers, current smokers, and former smokers. Body mass index (BMI), waist circumference (WC), fat percentage, fat mass, and fat free mass were measured. The mean, standard deviation and frequency of these indicators were calculated for each age bracket. One-way ANOVA and post-hoc test analyses were used to detect the difference among these three groups. Results: In men, from 19 to 24 years old, BMI, WC and fat free mass of current smokers were higher than that of non-smokers (P<0.01). However, fat mass and fat percentage of current smokers were lower than that of non-smokers but higher than that of former smokers (P<0.01). From 25 to 34 years old, BMI and fat mass of former smokers were higher than non-smokers and current smokers (P<0.01). In addition, WC and fat free mass of non-smokers were lower than that of current smokers and former smokers (P<0.01). From 45 to older, BMI, WC, fat mass, fat free mass and fat percentage of former smokers were higher than that of current smokers (P<0.01). From 55 to older, BMI, WC, fat mass, fat free mass and fat percentage of current smokers were lower than that of non-smokers (P<0.01). In women, smoking status might not be significantly related to obesity (P>0.05). Conclusion: For young men, smoking might have an effect on increasing fat free mass, BMI and WC, and decreasing fat mass and fat percentage. For middle and older men, smoking might have an effect on decreasing fat free mass, fat mass, BMI, WC, and fat percentage. Obesity risk should be paid more attention in smoking cessation programs for those former smokers. PMID:26770514

  9. Playing the Day Away: The Importance of Constructive Play in Early Childhood Settings.

    ERIC Educational Resources Information Center

    Oliver, Susan J.; Klugman, Edgar

    2002-01-01

    Discusses the importance of play for the development of young children. Defines constructive play and identifies the benefits of play for children. Describes the current play landscape as characterized by increasing "screen time," limited outdoor play time, increased violence exposure, overscheduling, and overfacilitating. Emphasizes that the…

  10. A novel formaldehyde metabolic pathway plays an important role during formaldehyde metabolism and detoxification in tobacco leaves under liquid formaldehyde stress.

    PubMed

    Wang, Ru; Zeng, Zhidong; Liu, Ting; Liu, Ang; Zhao, Yan; Li, Kunzhi; Chen, Limei

    2016-08-01

    Tobacco and Arabidopsis are two model plants often used in botany research. Our previous study indicated that the formaldehyde (HCHO) uptake and assimilation capacities of tobacco leaves were weaker than those of Arabidopsis leaves. After treatment with a 2, 4 or 6 mM HCHO solution for 24 h, detached tobacco leaves absorbed approximately 40% of the HCHO from the treatment solution. (13)C-NMR analysis detected a novel HCHO metabolic pathway in 2 mM H(13)CHO-treated tobacco leaves. [4-(13)C]Asn, [3-(13)C]Gln and [U-(13)C]oxalic acid (OA) were produced from this pathway after H(13)COOH generation during H(13)CHO metabolism in tobacco leaves. Pretreatments of cyclosporin A (CSA) and dark almost completely inhibited the generation of [4-(13)C]Asn, [3-(13)C]Gln and [U-(13)C]OA from this pathway but did not suppressed the production of H(13)COOH in 2 mM H(13)CHO-treated tobacco leaves. The evidence suggests that this novel pathway has an important role during the metabolic detoxification of HCHO in tobacco leaves. The analysis of the chlorophyll and Rubisco contents indicated that CSA and dark pretreatments did not severely affect the survival of leaf cells but significantly inhibited the HCHO uptake by tobacco leaves. Based on the effects of CSA and dark pretreatments on HCHO uptake and metabolism, it is estimated that the contribution of this novel metabolic pathway to HCHO uptake is approximately 60%. The data obtained from the (13)C-NMR analysis revealed the mechanism underlying the weaker HCHO uptake and assimilation of tobacco leaves compared to Arabidopsis leaves. PMID:27116371

  11. Enhancing Playful Teachers' Perception of the Importance of ICT Use in the Classroom: The Role of Risk Taking as a Mediator

    ERIC Educational Resources Information Center

    Goodwin, A. Lin; Low, Ee Ling; Ng, Pak Tee; Yeung, Alexander S.; Cai, Li

    2015-01-01

    In today's world, teaching and learning processes inevitably involve the application of information and communication technology (ICT). It seems reasonable to expect personal attributes such as cognitive playfulness to be associated with consistent application of ICT. Using survey responses from Singapore students in a teacher education programme…

  12. Immunodominant epitopes in nsp2 of porcine reproductive and respiratory syndrome virus are dispensable for replication but play an important role in viral pathogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) is the largest protein of the virus. Besides its crucial role in viral replication, recent studies indicated its involvement in modulating host immunity. In this study, each of the six identified immu...

  13. Blended Learning Using Role-Plays, Wikis and Blogs

    ERIC Educational Resources Information Center

    Ruyters, Michele; Douglas, Kathy; Law, Siew Fang

    2011-01-01

    Student learning about legal skills in legal education is increasingly seen as important. These legal skills include advocacy and negotiation. These skills are often taught through role-play. This article discusses the combination of role-plays with online tools, including wikis and blogs, to assist students to master legal skills. The article…

  14. Campylobacter jejuni serine protease HtrA plays an important role in heat tolerance, oxygen resistance, host cell adhesion, invasion, and transmigration

    PubMed Central

    Lind, Judith; Backert, Steffen; Tegtmeyer, Nicole

    2015-01-01

    Campylobacter jejuni is an important pathogen of foodborne illness. Transmigration across the intestinal epithelial barrier and invasion are considered as primary reasons for tissue damage triggered by C. jejuni. Using knockout mutants, it was shown that the serine protease HtrA may be important for stress tolerance and physiology of C. jejuni. HtrA is also secreted in the extra­cellular environment, where it can cleave junctional host cell proteins such as E-cadherin. Aim of the present study was to establish a genetic complementation system in two C. jejuni strains in order to introduce the wild-type htrA gene in trans, test known htrA phenotypes, and provide the basis to perform further mutagenesis. We confirm that reexpression of the htrA wild-type gene in ΔhtrA mutants restored the following phenotypes: 1) C. jejuni growth at high temperature (44 °C), 2) growth under high oxygen stress conditions, 3) expression of proteolytically active HtrA oligomers, 4) secretion of HtrA into the supernatant, 5) cell attachment and invasion, and 6) transmigration across polarized epithelial cells. These results establish a genetic complementation system for htrA in C. jejuni, exclude polar effects in the ΔhtrA mutants, confirm important HtrA properties, and permit the discovery and dissection of new functions. PMID:25883795

  15. A DN-mda5 Transgenic Zebrafish 1 Model Demonstrates that Mda5 Plays an Important Role in Snakehead Rhabdovirus Resistance

    PubMed Central

    Gabor, KA; Charette, JR; Pietraszewski, MJ; Wingfield, DJ; Shim, JS; Millard, PJ; Kim, CH

    2015-01-01

    Melanoma Differentiation-Associated protein 5 (MDA5) is a member of the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family, which is a cytosolic pattern recognition receptor that detects viral nucleic acids. Here we show an Mda5-dependent response to rhabdovirus infection in vivo using a dominant-negative mda5 transgenic zebrafish. Dominant-negative mda5 zebrafish embryos displayed an impaired antiviral immune response compared to wild-type counterparts that can be rescued by recombinant full-length Mda5. To our knowledge, we have generated the first dominant-negative mda5 transgenic zebrafish and demonstrated a critical role for Mda5 in the antiviral response to rhabdovirus. PMID:25634485

  16. Tension on dsDNA bound to ssDNA-RecA filaments may play an important role in driving efficient and accurate homology recognition and strand exchange

    PubMed Central

    Vlassakis, Julea; Feinstein, Efraim; Yang, Darren; Tilloy, Antoine; Weiller, Dominic; Kates-Harbeck, Julian; Coljee, Vincent; Prentiss, Mara

    2013-01-01

    It is well known that during homology recognition and strand exchange the double stranded DNA (dsDNA) in DNA/RecA filaments is highly extended, but the functional role of the extension has been unclear. We present an analytical model that calculates the distribution of tension in the extended dsDNA during strand exchange. The model suggests that the binding of additional dsDNA base pairs to the DNA/RecA filament alters the tension in dsDNA that was already bound to the filament, resulting in a non-linear increase in the mechanical energy as a function of the number of bound base pairs. This collective mechanical response may promote homology stringency and underlie unexplained experimental results.

  17. Interaction of myosin VI and its binding partner DOCK7 plays an important role in NGF-stimulated protrusion formation in PC12 cells.

    PubMed

    Sobczak, Magdalena; Chumak, Vira; Pomorski, Paweł; Wojtera, Emilia; Majewski, Łukasz; Nowak, Jolanta; Yamauchi, Junji; Rędowicz, Maria Jolanta

    2016-07-01

    DOCK7 (dedicator of cytokinesis 7) is a guanidine nucleotide exchange factor (GEF) for Rac1 GTPase that is involved in neuronal polarity and axon generation as well in Schwann cell differentiation and myelination. Recently, we identified DOCK7 as the binding partner of unconventional myosin VI (MVI) in neuronal-lineage PC12 cells and postulated that this interaction could be important in vivo [Majewski et al. (2012) Biochem Cell Biol., 90:565-574]. Herein, we found that MVI-DOCK7 interaction takes also place in other cell lines and demonstrated that MVI cargo domain via its RRL motif binds to DOCK7 C-terminal M2 and DHR2 domains. In MVI knockdown cells, lower Rac1 activity and a decrease of DOCK7 phosphorylation on Tyr1118 were observed, indicating that MVI could contribute to DOCK7 activity. MVI and DOCK7 co-localization was maintained during NGF-stimulated PC12 cell differentiation and observed also in the outgrowths. Also, during differentiation an increase in phosphorylation of DOCK7 as well as of its downstream effector JNK kinase was detected. Interestingly, overexpression of GFP-tagged MVI cargo domain (GFP-GT) impaired protrusion formation indicating that full length protein is important for this process. Moreover, a transient increase in Rac activity observed at 5min of NGF-stimulated differentiation of PC12 cells (overexpressing either GFP or GFP-MVI) was not detected in cells overexpressing the cargo domain. These data indicate that MVI-DOCK7 interaction could have functional implications in the protrusion outgrowth, and full length MVI seems to be important for delivery and maintenance of DOCK7 along the protrusions, and exerting its GEF activity. PMID:27018747

  18. Proteomics of Fusarium oxysporum race 1 and race 4 reveals enzymes involved in carbohydrate metabolism and ion transport that might play important roles in banana Fusarium wilt.

    PubMed

    Sun, Yong; Yi, Xiaoping; Peng, Ming; Zeng, Huicai; Wang, Dan; Li, Bo; Tong, Zheng; Chang, Lili; Jin, Xiang; Wang, Xuchu

    2014-01-01

    Banana Fusarium wilt is a soil-spread fungal disease caused by Fusarium oxysporum. In China, the main virulence fungi in banana are F. oxysporum race 1 (F1, weak virulence) and race 4 (F4, strong virulence). To date, no proteomic analyses have compared the two races, but the difference in virulence between F1 and F4 might result from their differentially expressed proteins. Here we report the first comparative proteomics of F1 and F4 cultured under various conditions, and finally identify 99 protein species, which represent 59 unique proteins. These proteins are mainly involved in carbohydrate metabolism, post-translational modification, energy production, and inorganic ion transport. Bioinformatics analysis indicated that among the 46 proteins identified from F4 were several enzymes that might be important for virulence. Reverse transcription PCR analysis of the genes for 15 of the 56 proteins revealed that their transcriptional patterns were similar to their protein expression patterns. Taken together, these data suggest that proteins involved in carbohydrate metabolism and ion transport may be important in the pathogenesis of banana Fusarium wilt. Some enzymes such as catalase-peroxidase, galactosidase and chitinase might contribute to the strong virulence of F4. Overexpression or knockout of the genes for the F4-specific proteins will help us to further understand the molecular mechanism of Fusarium-induced banana wilt. PMID:25460190

  19. Mitogen-Activated Protein Kinase Cascade MKK7-MPK6 Plays Important Roles in Plant Development and Regulates Shoot Branching by Phosphorylating PIN1 in Arabidopsis.

    PubMed

    Jia, Weiyan; Li, Baohua; Li, Shujia; Liang, Yan; Wu, Xiaowei; Ma, Mei; Wang, Jiyao; Gao, Jin; Cai, Yueyue; Zhang, Yuanya; Wang, Yingchun; Li, Jiayang; Wang, Yonghong

    2016-09-01

    Emerging evidences exhibit that mitogen-activated protein kinase (MAPK/MPK) signaling pathways are connected with many aspects of plant development. The complexity of MAPK cascades raises challenges not only to identify the MAPK module in planta but also to define the specific role of an individual module. So far, our knowledge of MAPK signaling has been largely restricted to a small subset of MAPK cascades. Our previous study has characterized an Arabidopsis bushy and dwarf1 (bud1) mutant, in which the MAP Kinase Kinase 7 (MKK7) was constitutively activated, resulting in multiple phenotypic alterations. In this study, we found that MPK3 and MPK6 are the substrates for phosphorylation by MKK7 in planta. Genetic analysis showed that MKK7-MPK6 cascade is specifically responsible for the regulation of shoot branching, hypocotyl gravitropism, filament elongation, and lateral root formation, while MKK7-MPK3 cascade is mainly involved in leaf morphology. We further demonstrated that the MKK7-MPK6 cascade controls shoot branching by phosphorylating Ser 337 on PIN1, which affects the basal localization of PIN1 in xylem parenchyma cells and polar auxin transport in the primary stem. Our results not only specify the functions of the MKK7-MPK6 cascade but also reveal a novel mechanism for PIN1 phosphorylation, establishing a molecular link between the MAPK cascade and auxin-regulated plant development. PMID:27618482

  20. F1C Fimbriae Play an Important Role in Biofilm Formation and Intestinal Colonization by the Escherichia coli Commensal Strain Nissle 1917▿

    PubMed Central

    Lasaro, Melissa A.; Salinger, Nina; Zhang, Jing; Wang, Yantao; Zhong, Zhengtao; Goulian, Mark; Zhu, Jun

    2009-01-01

    Bacterial biofilm formation is thought to enhance survival in natural environments and during interaction with hosts. A robust colonizer of the human gastrointestinal tract, Escherichia coli Nissle 1917, is widely employed in probiotic therapy. In this study, we performed a genetic screen to identify genes that are involved in Nissle biofilm formation. We found that F1C fimbriae are required for biofilm formation on an inert surface. In addition, these structures are also important for adherence to epithelial cells and persistence in infant mouse colonization. The data suggest a possible connection between Nissle biofilm formation and the survival of this commensal within the host. Further study of the requirements for robust biofilm formation may improve the therapeutic efficacy of Nissle 1917. PMID:18997018

  1. Vitamin D deficiency plays an important role in cardiac disease and affects patient outcome: Still a myth or a fact that needs exploration?

    PubMed

    Fanari, Zaher; Hammami, Sumaya; Hammami, Muhammad Baraa; Hammami, Safa; Abdellatif, Abdul

    2015-10-01

    There is increasing evidence that a low vitamin D status may be an important and hitherto neglected factor of cardiovascular disease. This review is an overview of the current body of literature, and presents evidence of the mechanisms through which vitamin D deficiency affects the cardiovascular system in general and the heart in particular. Available data indicate that the majority of congestive heart failure patients have 25-hydroxyvitamin D deficiency. Furthermore, the low serum 25-hydroxyvitamin D level has a higher impact on hypertension, coronary artery disease an on the occurrence of relevant cardiac events. A serum 25-hydroxyvitamin D level below 75 nmol/l (30 ng/l) is generally regarded as vitamin D insufficiency in both adults and children, while a level below 50 nmol/l (20 ng/l) is considered deficiency. Levels below 50 nmol/l (20 ng/l) are linked independently to cardiovascular morbidity and mortality. PMID:26557744

  2. ‘Serious thigh muscle strains’: beware the intramuscular tendon which plays an important role in difficult hamstring and quadriceps muscle strains

    PubMed Central

    Brukner, Peter; Connell, David

    2016-01-01

    Why do some hamstring and quadriceps strains take much longer to repair than others? Which injuries are more prone to recurrence? Intramuscular tendon injuries have received little attention as an element in ‘muscle strain’. In thigh muscles, such as rectus femoris and biceps femoris, the attached tendon extends for a significant distance within the muscle belly. While the pathology of most muscle injures occurs at a musculotendinous junction, at first glance the athlete appears to report pain within a muscle belly. In addition to the musculotendinous injury being a site of pathology, the intramuscular tendon itself is occasionally injured. These injuries have a variety of appearances on MRIs. There is some evidence that these injuries require a prolonged rehabilitation time and may have higher recurrence rates. Therefore, it is important to recognise the tendon component of a thigh ‘muscle strain’. PMID:26519522

  3. Vitamin D deficiency plays an important role in cardiac disease and affects patient outcome: Still a myth or a fact that needs exploration?

    PubMed Central

    Fanari, Zaher; Hammami, Sumaya; Hammami, Muhammad Baraa; Hammami, Safa; Abdellatif, Abdul

    2015-01-01

    There is increasing evidence that a low vitamin D status may be an important and hitherto neglected factor of cardiovascular disease. This review is an overview of the current body of literature, and presents evidence of the mechanisms through which vitamin D deficiency affects the cardiovascular system in general and the heart in particular. Available data indicate that the majority of congestive heart failure patients have 25-hydroxyvitamin D deficiency. Furthermore, the low serum 25-hydroxyvitamin D level has a higher impact on hypertension, coronary artery disease an on the occurrence of relevant cardiac events. A serum 25-hydroxyvitamin D level below 75 nmol/l (30 ng/l) is generally regarded as vitamin D insufficiency in both adults and children, while a level below 50 nmol/l (20 ng/l) is considered deficiency. Levels below 50 nmol/l (20 ng/l) are linked independently to cardiovascular morbidity and mortality. PMID:26557744

  4. Activation of P2X7 Receptor by ATP Plays an Important Role in Regulating Inflammatory Responses during Acute Viral Infection

    PubMed Central

    Lee, Benjamin H.; Hwang, David M.; Palaniyar, Nades; Grinstein, Sergio; Philpott, Dana J.; Hu, Jim

    2012-01-01

    Acute viral infection causes damages to the host due to uncontrolled viral replication but even replication deficient viral vectors can induce systemic inflammatory responses. Indeed, overactive host innate immune responses to viral vectors have led to devastating consequences. Macrophages are important innate immune cells that recognize viruses and induce inflammatory responses at the early stage of infection. However, tissue resident macrophages are not easily activated by the mere presence of virus suggesting that their activation requires additional signals from other cells in the tissue in order to trigger inflammatory responses. Previously, we have shown that the cross-talk between epithelial cells and macrophages generates synergistic inflammatory responses during adenoviral vector infection. Here, we investigated whether ATP is involved in the activation of macrophages to induce inflammatory responses during an acute adenoviral infection. Using a macrophage-epithelial cell co-culture system we demonstrated that ATP signaling through P2X7 receptor (P2X7R) is required for induction of inflammatory mediators. We also showed that ATP-P2X7R signaling regulates inflammasome activation as inhibition or deficiency of P2X7R as well as caspase-1 significantly reduced IL-1β secretion. Furthermore, we found that intranasal administration of replication deficient adenoviral vectors in mice caused a high mortality in wild-type mice with symptoms of acute respiratory distress syndrome but the mice deficient in P2X7R or caspase-1 showed increased survival. In addition, wild-type mice treated with apyrase or inhibitors of P2X7R or caspase-1 showed higher rates of survival. The improved survival in the P2X7R deficient mice correlated with diminished levels of IL-1β and IL-6 and reduced neutrophil infiltration in the early phase of infection. These results indicate that ATP, released during viral infection, is an important inflammatory regulator that activates the

  5. Cell division and endoreduplication play important roles in stem swelling of tuber mustard (Brassica juncea Coss. var. tumida Tsen et Lee).

    PubMed

    Shi, H; Wang, L L; Sun, L T; Dong, L L; Liu, B; Chen, L P

    2012-11-01

    We investigated spatio-temporal variations in cell division and the occurrence of endoreduplication in cells of tuber mustard stems during development. Cells in the stem had 8C nuclei (C represents DNA content of a two haploid genome), since it is an allotetraploid species derived from diploid Brassica rapa (AA) and B. nigra (BB), thus indicating the occurrence of endoreduplication. Additionally, we observed a dynamic change of cell ploidy in different regions of the swollen stems, with a decrease in 4C proportion in P4-1 and a sharp increase in 8C cells that became the dominant cell type (86.33% at most) in the inner pith cells. Furthermore, cDNAs of 14 cell cycle genes and four cell expansion genes were cloned and their spatial transcripts analysed in order to understand their roles in stem development. The expression of most cell cycle genes peaked in regions of the outer pith (P2 or P3), some genes regulating S/G2 and G2/M (BjCDKB1;2, BjCYCB1;1 and BjCYCB1;2) significantly decrease in P5 and P6, while G1/S regulators (BjE2Fa, BjE2Fb and BjE2Fc) showed a relative high expression level in the inner pith (P5) where cells were undergoing endoreduplication. Coincidentally, BjXTH1and BjXTH2 were exclusively expressed in the endoreduplicated cells. Our results suggest that cells of outer pith regions (P2 and P3) mainly divide for cell proliferation, while cells of the inner pith expand through endoreduplication. Endoreduplication could trigger expression of BjXTH1 and BjXTH2 and thus function in cell expansion of the pith tissue. PMID:22639957

  6. Interaction of gypsum and the rhizome of Anemarrhena asphodeloides plays an important role in anti-allergic effects of byakkokakeishito in mice.

    PubMed

    Makino, Toshiaki; Shiraki, Yusaku; Mizukami, Hajime

    2014-07-01

    Gypsum is a crude mineral drug used in the formulas of Japanese kampo medicine and traditional Chinese medicine. The present study aimed to evaluate the anti-allergic effect of byakkokakeishito extract (BKT), which consists of gypsum (natural hydrous calcium sulfate), Anemarrhena Rhizome (rhizome of Anemarrhena asphodeloides), Cinnamon Bark (bark of trunk of Cinnamomum cassia), Oriza Seed (seed of Oryza sativa), and Glycyrrhiza (root and stolon of Glycyrrhiza uralensis), and to clarify the role of gypsum in the formula. We prepared BKT by boiling a mixture of various quantities of gypsum and fixed amounts of the other four crude drugs in water. We evaluated the anti-allergic activity of the formulations using three different murine models of allergy: contact dermatitis induced by painting hapten onto skin; allergic dermatitis-like symptoms induced by cutaneous injection of mite-antigen; and skin passive cutaneous anaphylaxis (PCA) reaction using ovalbumin as antigen. The calcium content in the various BKT samples was dose-dependently increased up to 60 g/day of human dosage. BKT significantly suppressed the allergic symptoms in the three different experimental models. The effect of BKT was augmented by increasing the gypsum dosage only in the PCA reaction model. The extract prepared from a mixture of Anemarrhena Rhizome and gypsum exhibited an effect comparable to that of BKT. BKT exhibits an anti-allergic effect in several animal models, which may provide experimental evidence for the clinical use of BKT in allergic diseases. Gypsum may augment the anti-allergic activity of BKT, presumably through increasing intestinal absorption of Anemarrhena Rhizome-derived active constituents. PMID:24554438

  7. Physical interactions between Ets and NF-kappaB/NFAT proteins play an important role in their cooperative activation of the human immunodeficiency virus enhancer in T cells.

    PubMed Central

    Bassuk, A G; Anandappa, R T; Leiden, J M

    1997-01-01

    The transcriptional regulatory elements of many inducible T-cell genes contain adjacent or overlapping binding sites for the Ets and NF-kappaB/NFAT families of transcription factors. Similar arrays of functionally important NF-kappaB/NFAT and Ets binding sites are present in the transcriptional enhancers of human immunodeficiency viruses types 1 and 2 (HIV-1 and HIV-2), suggesting that this pattern of nuclear protein binding sites reflects an evolutionarily conserved mechanism for regulating inducible T-cell gene expression that has been co-opted during HIV evolution. Despite these findings, the molecular mechanisms by which Ets and NF-kappaB/NFAT proteins cooperatively regulate inducible T-cell gene expression remained unknown. In the studies described in this report, we demonstrated a physical interaction between multiple Ets and NF-kappaB/NFAT proteins both in vitro and in activated normal human T cells. This interaction is mediated by the Ets domain of Ets proteins and the C-terminal region of the Rel homology domains of NF-kappaB/NFAT proteins. In addition, the Ets-NF-kappaB/NFAT interaction requires the presence of DNA binding sites for both proteins, as it is abolished by the DNA intercalating agents propidium iodide and ethidium bromide and enhanced by the presence of synthetic oligonucleotides containing binding sites for Ets and NF-kappaB proteins. A dominant-negative mutant of NF-kappaB p50 that binds DNA but fails to interact with Ets proteins inhibits the synergistic activation of the HIV-1 and HIV-2 enhancers by NF-kappaB (p50 + p65) and Ets-1, suggesting that physical interaction between Ets and NF-kappaB proteins is required for the transcriptional activity of the HIV-1 and HIV-2 enhancers. Taken together, these findings suggest that evolutionarily conserved physical interactions between Ets and NF-kappaB/NFAT proteins are important in regulating the inducible expression of T-cell genes and viruses. These interactions represent a potential target

  8. An inhibitor of yeast cyclin-dependent protein kinase plays an important role in ensuring the genomic integrity of daughter cells.

    PubMed Central

    Nugroho, T T; Mendenhall, M D

    1994-01-01

    The gene encoding a 40-kDa protein, previously studied as a substrate and inhibitor of the yeast cyclin-dependent protein kinase, Cdc28, has been cloned. The DNA sequence reveals that p40 is a highly charged protein of 32,187 Da with no significant homology to other proteins. Overexpression of the gene encoding p40, SIC1, produces cells with an elongated but morphology similar to that of cells with depleted levels of the CLB gene products, suggesting that p40 acts as an inhibitor of Cdc28-Clb complexes in vivo. A SIC1 deletion is viable and has highly increased frequencies of broken and lost chromosomes. The deletion strain segregates out many dead cells that are primarily arrested at the G2 checkpoint in an asymmetric fashion. Only daughters and young mothers display the lethal defect, while experienced mothers appear to grow normally. These results suggest that negative regulation of Cdc28 protein kinase activity by p40 is important for faithful segregation of chromosomes to daughter cells. Images PMID:8164683

  9. TaLHY, a 1R-MYB Transcription Factor, Plays an Important Role in Disease Resistance against Stripe Rust Fungus and Ear Heading in Wheat

    PubMed Central

    Zhang, Zijin; Chen, Jieming; Su, Yongying; Liu, Hanmei; Chen, Yanger; Luo, Peigao; Du, Xiaogang; Wang, Dan; Zhang, Huaiyu

    2015-01-01

    LHY (late elongated hypocotyl) is an important gene that regulates and controls biological rhythms in plants. Additionally, LHY is highly expressed in the SSH (suppression subtractive hybridization) cDNA library-induced stripe rust pathogen (CYR32) in our previous research. To identify the function of the LHY gene in disease resistance against stripe rust, we used RACE-PCR technology to clone TaLHY in the wheat variety Chuannong19. The cDNA of TaLHY is 3085 bp long with an open reading frame of 1947 bp. TaLHY is speculated to encode a 70.3 kDa protein of 648 amino acids , which has one typical plant MYB-DNA binding domain; additionally, phylogenetic tree shows that TaLHY has the highest homology with LHY of Brachypodium distachyon(BdLHY-like). Quantitative fluorescence PCR indicates that TaLHY has higher expression in the leaf, ear and stem of wheat but lower expression in the root. Infestation of CYR32 can result in up-regulated expression of TaLHY, peaking at 72 h. Using VIGS (virus-induced gene silencing) technology to disease-resistant wheat in the fourth leaf stage, plants with silenced TaLHY cannot complete their heading stage. Through the compatible interaction with the stripe rust physiological race CYR32, Chuannong 19 loses its immune capability toward the stripe rust pathogen, indicating that TaLHY may regulate and participate in the heading of wheat, as well as the defense responses against stripe rust infection. PMID:26010918

  10. Domain III of Bacillus thuringiensis Cry1Ie Toxin Plays an Important Role in Binding to Peritrophic Membrane of Asian Corn Borer.

    PubMed

    Feng, Dongmei; Chen, Zhen; Wang, Zhiwen; Zhang, Chunlu; He, Kanglai; Guo, Shuyuan

    2015-01-01

    The insecticidal IE648 toxin is a truncated Cry1Ie protein with increased toxicity against Asian corn borer (ACB). Cry toxins are pore-forming toxins that disrupt insect midgut cells to kill the larvae. However, the peritrophic membrane (PM) is an important barrier that Cry toxins must cross before binding to midgut cells. Previously, it was shown that Cry toxins are able to bind and accumulate in the PM of several lepidopteran insects. Binding of IE648 toxin to PM of ACB was previously reported and the goal of the current work was the identification of the binding region between Cry1Ie and the PM of ACB. Homologous competition binding assays showed that this interaction was specific. Heterologous competition binding assays performed with different fragments corresponding to domain I, domain II and domain III allowed us to identify that domain III participates in the interaction of IE648 with the PM. Specifically, peptide D3-L8 (corresponding to Cry1Ie toxin residues 607 to 616), located in an exposed loop region of domain III is probably involved in this interaction. Ligand blot assays show that IE648 interact with chitin and PM proteins with sizes of 30, 32 and 80 kDa. The fact that domain III interacts with proteins of similar molecular masses supports that this region of the toxin might be involved in PM interaction. These data provide for the first time the identification of domain III as a putative binding region between PM and 3D-Cry toxin. PMID:26295704

  11. Cooperative effects of hepatitis B virus and TNF may play important roles in the activation of metabolic pathways through the activation of NF-κB

    PubMed Central

    Wu, Shuang; Kanda, Tatsuo; Nakamoto, Shingo; Jiang, Xia; Nakamura, Masato; Sasaki, Reina; Haga, Yuki; Shirasawa, Hiroshi; Yokosuka, Osamu

    2016-01-01

    Elevated levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β are often observed in the sera of hepatitis B virus (HBV)-infected patients. It is well known that these cytokines activate nuclear factor-κB (NF-κB)-signaling, and are associated with endoplasmic reticulum (ER) stress. We investigated whether HBV or HBV X protein (HBx) enhanced the activation of NF-κB in the presence of TNF and/or IL-1β, and their effects on the expression of metabolic pathway-associated genes. We examined whether HBV or HBx enhanced cytokine-induced activation of NF-κB in hepatocytes, using a reporter assay, in the presence or absence of TNF and/or IL-1β. The expression of insulin-like growth factor binding protein 1 (IGFBP1), one of the NF-κB target genes was also examined. The expression of metabolic pathway-associated genes in HepG2 and HepG2.2.15 cells in the presence or absence of TNF was evaluated by RT-qPCR. Human hepatocytes expressed TNF receptors and IL-1 receptors. NF-κB was activated by cooperation between HBx and TNF in human hepatocytes. We observed IGFBP1 expression in HBV infection and that a number of metabolic pathway-associated genes were upregulated in HepG2.2.15 cells, compared with HepG2 cells with or without TNF treatment. We observed the cooperative effects of HBV and TNF which enhanced the activation of NF-κB as well as upregulated the expression of metabolic pathway-associated genes in hepatocytes. These effects may be important in the development of HBV-associated metabolic syndrome. PMID:27315566

  12. Cooperative effects of hepatitis B virus and TNF may play important roles in the activation of metabolic pathways through the activation of NF-κB.

    PubMed

    Wu, Shuang; Kanda, Tatsuo; Nakamoto, Shingo; Jiang, Xia; Nakamura, Masato; Sasaki, Reina; Haga, Yuki; Shirasawa, Hiroshi; Yokosuka, Osamu

    2016-08-01

    Elevated levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β are often observed in the sera of hepatitis B virus (HBV)-infected patients. It is well known that these cytokines activate nuclear factor-κB (NF-κB)-signaling, and are associated with endoplasmic reticulum (ER) stress. We investigated whether HBV or HBV X protein (HBx) enhanced the activation of NF-κB in the presence of TNF and/or IL-1β, and their effects on the expression of metabolic pathway‑associated genes. We examined whether HBV or HBx enhanced cytokine-induced activation of NF-κB in hepatocytes, using a reporter assay, in the presence or absence of TNF and/or IL-1β. The expression of insulin-like growth factor binding protein 1 (IGFBP1), one of the NF-κB target genes was also examined. The expression of metabolic pathway-associated genes in HepG2 and HepG2.2.15 cells in the presence or absence of TNF was evaluated by RT-qPCR. Human hepatocytes expressed TNF receptors and IL-1 receptors. NF-κB was activated by cooperation between HBx and TNF in human hepatocytes. We observed IGFBP1 expression in HBV infection and that a number of metabolic pathway-associated genes were upregulated in HepG2.2.15 cells, compared with HepG2 cells with or without TNF treatment. We observed the cooperative effects of HBV and TNF which enhanced the activation of NF-κB as well as upregulated the expression of metabolic pathway-associated genes in hepatocytes. These effects may be important in the development of HBV-associated metabolic syndrome. PMID:27315566

  13. Domain III of Bacillus thuringiensis Cry1Ie Toxin Plays an Important Role in Binding to Peritrophic Membrane of Asian Corn Borer

    PubMed Central

    Feng, Dongmei; Chen, Zhen; Wang, Zhiwen; Zhang, Chunlu; He, Kanglai; Guo, Shuyuan

    2015-01-01

    The insecticidal IE648 toxin is a truncated Cry1Ie protein with increased toxicity against Asian corn borer (ACB). Cry toxins are pore-forming toxins that disrupt insect midgut cells to kill the larvae. However, the peritrophic membrane (PM) is an important barrier that Cry toxins must cross before binding to midgut cells. Previously, it was shown that Cry toxins are able to bind and accumulate in the PM of several lepidopteran insects. Binding of IE648 toxin to PM of ACB was previously reported and the goal of the current work was the identification of the binding region between Cry1Ie and the PM of ACB. Homologous competition binding assays showed that this interaction was specific. Heterologous competition binding assays performed with different fragments corresponding to domain I, domain II and domain III allowed us to identify that domain III participates in the interaction of IE648 with the PM. Specifically, peptide D3-L8 (corresponding to Cry1Ie toxin residues 607 to 616), located in an exposed loop region of domain III is probably involved in this interaction. Ligand blot assays show that IE648 interact with chitin and PM proteins with sizes of 30, 32 and 80 kDa. The fact that domain III interacts with proteins of similar molecular masses supports that this region of the toxin might be involved in PM interaction. These data provide for the first time the identification of domain III as a putative binding region between PM and 3D-Cry toxin. PMID:26295704

  14. A Role-Play Rorschach Procedure

    ERIC Educational Resources Information Center

    Bricklin, Barry

    1975-01-01

    Three subjects were used in a role playing study based on the subject's own Rorschach responses. The results proved to be valuable as an aspect of therapeutic involvement. Results also help to expand and clarify the psychological meaning of Rorschach images. (Author/DEP)

  15. Role-Play in the Science Classroom

    ERIC Educational Resources Information Center

    Worch, Eric A.; Scheuermann, Amy M.; Haney, Jodi J.

    2009-01-01

    The activity shared here is an animal role-playing lesson developed, field-tested, and refined for "Nature's Neighborhood", a newly designed children's education facility at the Toledo Zoo. The activity is targeted at students in kindergarten through second grade, but it can be adapted for use in grades three and four as well. Through students'…

  16. Geriatrix: A Role-Playing Game.

    ERIC Educational Resources Information Center

    Hoffman, Stephanie B.; And Others

    1985-01-01

    To sensitize medical students to the complexities of geriatric patient care, the geriatrics faculty of Upstate Medical Center's Clinical Campus developed Geriatrix, a role-playing game. Students attempt to win points in a board game containing Fact, Concept, and Crisis Squares. Crises promote exposure to ethical dilemmas and invite intense debate…

  17. CD109 Plays a Role in Osteoclastogenesis

    PubMed Central

    Jiang, Hongwei; Tenenbaum, Howard; Glogauer, Michael

    2013-01-01

    Osteoclasts are large multinucleated cells that arise from the fusion of cells from the monocyte/macrophage lineage. Osteoclastogenesis is mediated by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kB ligand (RANKL) and involves a complex multistep process that requires numerous other elements, many of which remain undefined. The primary aim of this project was to identify novel factors which regulate osteoclastogenesis. To carry out this investigation, microarray analysis was performed comparing two pre-osteoclast cell lines generated from RAW264.7 macrophages: one that has the capacity to fuse forming large multinucleated cells and one that does not fuse. It was found that CD109 was up-regulated by>17-fold in the osteoclast forming cell line when compared to the cell line that does not fuse, at day 2 of the differentiation process. Results obtained with microarray were confirmed by RT-qPCR and Western blot analyses in the two cell lines, in the parental RAW264.7 cell line, as well as primary murine monocytes from bone marrow. A significant increase of CD109 mRNA and protein expression during osteoclastogenesis occurred in all tested cell types. In order to characterize the role of CD109 in osteoclastogenesis, CD109 stable knockdown cell lines were established and fusion of osteoclast precursors into osteoclasts was assessed. It was found that CD109 knockdown cell lines were less capable of forming large multinucleated osteoclasts. It has been shown here that CD109 is expressed in monocytes undergoing RANKL-induced osteoclastogenesis. Moreover, when CD109 expression is suppressed in vitro, osteoclast formation decreases. This suggests that CD109 might be an important regulator of osteoclastogenesis. Further research is needed in order to characterize the role played by CD109 in regulation of osteoclast differentiation. PMID:23593435

  18. Play.

    ERIC Educational Resources Information Center

    Rogers, Fred; Sharapan, Hedda

    1993-01-01

    Contends that, in childhood, work and play seem to come together. Says that for young children their play is their work, and the more adults encourage children to play, the more they emphasize important lifelong resource. Examines some uses of children's play, making and building, artwork, dramatic play, monsters and superheroes, gun play, and…

  19. Recruitment of PLANT U-BOX13 and the PI4Kβ1/β2 phosphatidylinositol-4 kinases by the small GTPase RabA4B plays important roles during salicylic acid-mediated plant defense signaling in Arabidopsis.

    PubMed

    Antignani, Vincenzo; Klocko, Amy L; Bak, Gwangbae; Chandrasekaran, Suma D; Dunivin, Taylor; Nielsen, Erik

    2015-01-01

    Protection against microbial pathogens involves the activation of cellular immune responses in eukaryotes, and this cellular immunity likely involves changes in subcellular membrane trafficking. In eukaryotes, members of the Rab GTPase family of small monomeric regulatory GTPases play prominent roles in the regulation of membrane trafficking. We previously showed that RabA4B is recruited to vesicles that emerge from trans-Golgi network (TGN) compartments and regulates polarized membrane trafficking in plant cells. As part of this regulation, RabA4B recruits the closely related phosphatidylinositol 4-kinase (PI4K) PI4Kβ1 and PI4Kβ2 lipid kinases. Here, we identify a second Arabidopsis thaliana RabA4B-interacting protein, PLANT U-BOX13 (PUB13), which has recently been identified to play important roles in salicylic acid (SA)-mediated defense signaling. We show that PUB13 interacts with RabA4B through N-terminal domains and with phosphatidylinositol 4-phosphate (PI-4P) through a C-terminal armadillo domain. Furthermore, we demonstrate that a functional fluorescent PUB13 fusion protein (YFP-PUB13) localizes to TGN and Golgi compartments and that PUB13, PI4Kβ1, and PI4Kβ2 are negative regulators of SA-mediated induction of pathogenesis-related gene expression. Taken together, these results highlight a role for RabA4B and PI-4P in SA-dependent defense responses. PMID:25634989

  20. Role Engagement and Anonymity in Synchronous Online Role Play

    ERIC Educational Resources Information Center

    Cornelius, Sarah; Gordon, Carole; Harris, Margaret

    2011-01-01

    Role play activities provide opportunities for learners to adopt unfamiliar roles, engage in interactions with others, and get involved in realistic tasks. They are often recommended to foster the development of soft skills and a wider perspective of the world. Such activities are widely used as an online teaching approach, with examples ranging…

  1. The Role of Play in Children’s Palliative Care

    PubMed Central

    Boucher, Sue; Downing, Julia; Shemilt, Rise

    2014-01-01

    Play is the universal language of childhood and the time and opportunity to play is every child’s right. The role of play as a vehicle for communication, a tool for distraction and its value in the holistic development of a normal child is without dispute. The role and value of play increases proportionately when a child is made more vulnerable through illness or disability. Despite this, providing time and opportunities to play can be overlooked or considered to be of little importance or relevance when the focus of the adult carers is the amelioration of clinical symptoms of the illness and on lessening the psychological impact the illness may have on the child. This paper outlines the role and the value of play as an integral component in the provision of palliative care for children with chronic, life-threatening and life-limiting conditions. It will show how providing appropriate equipment, sufficient time and relevant play opportunities not only improves the very sick child’s psychological wellbeing, but also allows the child to cast aside the confines and restrictions imposed upon them by their illness and for a few golden moments to be nothing more than a child at play. PMID:27417481

  2. Role Play and Simulation: Returning to Teaching for Understanding

    ERIC Educational Resources Information Center

    Clapper, Timothy C.

    2010-01-01

    This article describes how simulation and role play can be important learning strategies that will create long-lasting understanding. Simulation involves participating in a very real learning experience that closely resembles an actual setting. These actual settings may be replicated by either employing models or mannequins or in the case of role…

  3. Role Playing and Mind Mapping Issues on Nitrate Contamination.

    ERIC Educational Resources Information Center

    Pan, W. L.

    1996-01-01

    Presents mind-mapping and role-playing exercises designed to guide students in the exploration, expression, and integration of varying viewpoints and opinions of a controversial topic (nitrate contamination of water supply); illustrate the importance of applying soil fertility principles to environmental and agronomic management; and encourage…

  4. "Prey Play": Learning about Predators and Prey through an Interactive, Role-Play Game

    ERIC Educational Resources Information Center

    Deaton, Cynthia C. M.; Dodd, Kristen; Drennon, Katherine; Nagle, Jack

    2012-01-01

    "Prey Play" is an interactive role-play activity that provides fifth-grade students with opportunities to examine predator-prey interactions. This four-part, role-play activity allows students to take on the role of a predator and prey as they reflect on the behaviors animals exhibit as they collect food and interact with one another, as well as…

  5. LMO7 Mediates Cell-Specific Activation of the Rho-Myocardin-Related Transcription Factor-Serum Response Factor Pathway and Plays an Important Role in Breast Cancer Cell Migration ▿

    PubMed Central

    Hu, Qiande; Guo, Chun; Li, Yali; Aronow, Bruce J.; Zhang, Jinsong

    2011-01-01

    Serum response factor (SRF) is a ubiquitously expressed transcription factor that regulates cell-specific functions such as muscle development and breast cancer metastasis. The myocardin-related transcription factors (MRTFs), which are transcriptional coactivators mediating cell-specific functions of SRF, are also ubiquitously expressed. How MRTFs and SRF drive cell-specific transcription is still not fully understood. Here we show that LIM domain only 7 (LMO7) is a cell-specific regulator of MRTFs and plays an important role in breast cancer cell migration. LMO7 activates MRTFs by relieving actin-mediated inhibition in a manner that requires, and is synergistic with, Rho GTPase. Whereas Rho is required for LMO7 to activate full-length MRTFs that have three RPEL actin-binding motifs, the disruption of individual actin-RPEL interactions is sufficient to eliminate the Rho dependency and to allow the strong Rho-independent function of LMO7. Mechanistically, we show that LMO7 colocalizes with F-actin and reduces the G-actin/F-actin ratio via a Rho-independent mechanism. The knockdown of LMO7 in HeLa and MDA-MB-231 cells compromises both basal and Rho-stimulated MRTF activities and impairs the migration of MDA-MB-231 breast cancer cells. We also show that LMO7 is upregulated in the stroma of invasive breast carcinoma in a manner that correlates with the increased expression of SRF target genes that regulate muscle and actin cytoskeleton functions. Together, this study reveals a novel cell-specific mechanism regulating Rho-MRTF-SRF signaling and breast cancer cell migration and identifies a role for actin-RPEL interactions in integrating Rho and cell-specific signals to achieve both the synergistic and Rho-dependent activation of MRTFs. PMID:21670154

  6. DNA-dependent protein kinase interacts functionally with the RNA polymerase II complex recruited at the human immunodeficiency virus (HIV) long terminal repeat and plays an important role in HIV gene expression.

    PubMed

    Tyagi, Shilpi; Ochem, Alex; Tyagi, Mudit

    2011-07-01

    DNA-dependent protein kinase (DNA-PK), a nuclear protein kinase that specifically requires association with DNA for its kinase activity, plays important roles in the regulation of different DNA transactions, including transcription, replication and DNA repair, as well as in the maintenance of telomeres. Due to its large size, DNA-PK is also known to facilitate the activities of other factors by providing the docking platform at their site of action. In this study, by running several chromatin immunoprecipitation assays, we demonstrate the parallel distribution of DNA-PK with RNA polymerase II (RNAP II) along the human immunodeficiency virus (HIV) provirus before and after activation with tumour necrosis factor alpha. The association between DNA-PK and RNAP II is also long-lasting, at least for up to 4 h (the duration analysed in this study). Knockdown of endogenous DNA-PK using specific small hairpin RNAs expressed from lentiviral vectors resulted in significant reduction in HIV gene expression and replication, demonstrating the importance of DNA-PK for HIV gene expression. Sequence analysis of the HIV-1 Tat protein revealed three potential target sites for phosphorylation by DNA-PK and, by using kinase assays, we confirmed that Tat is an effective substrate of DNA-PK. Through peptide mapping, we found that two of these three potential phosphorylation sites are recognized and phosphorylated by DNA-PK. Mutational studies on the DNA-PK target sites of Tat further demonstrated the functional significance of the Tat-DNA-PK interaction. Thus, overall our results clearly demonstrate the functional interaction between DNA-PK and RNAP II during HIV transcription. PMID:21450944

  7. Virtual Playgrounds? Assessing the Playfulness of Massively Multiplayer Online Role-Playing Games

    ERIC Educational Resources Information Center

    Graham, Kerrie Lewis

    2010-01-01

    Millions of children and adults devote much of their leisure time to playing massively multiplayer online role-playing games (MMORPGs). Most observers commonly categorize computer games as a play activity, but this article asks whether MMORPGs contain activities that might not be play. The author examines the phenomenon of online gaming and…

  8. Designing and Evaluating an Online Role Play in Conflict Management

    ERIC Educational Resources Information Center

    Hrastinski, Stefan; Watson, Jason

    2009-01-01

    Purpose: This paper aims to identify, through a literature review, key issues regarding how online role plays can be designed and to apply them when designing a role play on conflict management. Design/methodology/approach: By drawing on the key issues identified in the literature review, a role play on conflict management was designed and…

  9. Role Playing as an Imaginative Experience for Language Growth.

    ERIC Educational Resources Information Center

    Yawkey, Thomas Daniels

    This paper discusses the value of role play in facilitating children's language development and suggests strategies for using role play effectively in early childhood and intermediate classrooms. Role play requires the child (1) to listen and observe peer talk and action and to use language memory, attention and concentration behaviors; (2) to…

  10. Role-Play and Student Engagement: Reflections from the Classroom

    ERIC Educational Resources Information Center

    Stevens, Rachel

    2015-01-01

    Role-play is viewed by scholars as an effective active learning strategy: it encourages participation among passive learners, adds dynamism to the classroom and promotes the retention of material. But what do students think of role-play? This study surveyed 144 students after a role-play activity in a history course and asked them to identify what…

  11. The RNA-Binding Chaperone Hfq Is an Important Global Regulator of Gene Expression in Pasteurella multocida and Plays a Crucial Role in Production of a Number of Virulence Factors, Including Hyaluronic Acid Capsule.

    PubMed

    Mégroz, Marianne; Kleifeld, Oded; Wright, Amy; Powell, David; Harrison, Paul; Adler, Ben; Harper, Marina; Boyce, John D

    2016-05-01

    The Gram-negative bacterium Pasteurella multocida is the causative agent of a number of economically important animal diseases, including avian fowl cholera. Numerous P. multocida virulence factors have been identified, including capsule, lipopolysaccharide (LPS), and filamentous hemagglutinin, but little is known about how the expression of these virulence factors is regulated. Hfq is an RNA-binding protein that facilitates riboregulation via interaction with small noncoding RNA (sRNA) molecules and their mRNA targets. Here, we show that a P. multocida hfq mutant produces significantly less hyaluronic acid capsule during all growth phases and displays reduced in vivo fitness. Transcriptional and proteomic analyses of the hfq mutant during mid-exponential-phase growth revealed altered transcript levels for 128 genes and altered protein levels for 78 proteins. Further proteomic analyses of the hfq mutant during the early exponential growth phase identified 106 proteins that were produced at altered levels. Both the transcript and protein levels for genes/proteins involved in capsule biosynthesis were reduced in the hfq mutant, as were the levels of the filamentous hemagglutinin protein PfhB2 and its secretion partner LspB2. In contrast, there were increased expression levels of three LPS biosynthesis genes, encoding proteins involved in phosphocholine and phosphoethanolamine addition to LPS, suggesting that these genes are negatively regulated by Hfq-dependent mechanisms. Taken together, these data provide the first evidence that Hfq plays a crucial role in regulating the global expression of P. multocida genes, including the regulation of key P. multocida virulence factors, capsule, LPS, and filamentous hemagglutinin. PMID:26883595

  12. SPLUNC1 is associated with nasopharyngeal carcinoma prognosis and plays an important role in all-trans-retinoic acid-induced growth inhibition and differentiation in nasopharyngeal cancer cells.

    PubMed

    Zhang, Wenling; Zeng, Zhaoyang; Wei, Fang; Chen, Pan; Schmitt, David C; Fan, Songqing; Guo, Xiaofang; Liang, Fang; Shi, Lei; Liu, Zixin; Zhang, Zuping; Xiang, Bo; Zhou, Ming; Huang, Donghai; Tang, Ke; Li, Xiaoling; Xiong, Wei; Tan, Ming; Li, Guiyuan; Li, Xiayu

    2014-11-01

    Human SPLUNC1 can suppress nasopharyngeal carcinoma (NPC) tumor formation; however, the correlation between SPLUNC1expression and NPC patient prognosis has not been reported. In the present study, we used a large-scale sample of 1015 tissue cores to detect SPLUNC1 expression and its association with patient prognosis. SPLUNC1 expression was reduced in NPC samples compared to nontumor nasopharyngeal epithelium tissues. Positive expression of SPLUNC1 in NPC predicted a better prognosis (disease-free survival, P = 0.034; overall survival, P = 0.048). Cox's proportional hazards model revealed that SPLUNC1 could be a significant prognostic factor affecting disease-free survival (P = 0.027). A cDNA micro-array analyzed by significant analysis of micro-array (SAM) and ingenuity pathway analysis (IPA) revealed that an indirect interaction existed between SPLUNC1 and retinoic acid (RA) in the cancer regulatory network. To further investigate the molecular mechanisms involved, we utilized several bioinformatics tools and identified 12 retinoid X receptors heterodimer binding sites in the promoter region of the SPLUNC1 gene. The transcriptional activity of the SPLUNC1 promoter was up-regulated significantly by all-trans-retinoic acid (ATRA). SPLUNC1 and retinoic acid receptor expression were induced significantly by ATRA, and removal of ATRA led to a progressive loss of SPLUNC1 and retinoic acid receptor expression. ATRA inhibited proliferation and induced the differentiation of NPC cells. Interestingly, over-expression of SPLUNC1 sensitized NPC cells to ATRA, whereas knockdown of SPLUNC1 in HNE1 cells increased cell viability. Under SPLUNC1 knockdown conditions, differentiation was reversed by ATRA treatment. We concluded that SPLUNC1 could potentially predict prognosis for NPC patients and play an important role in ATRA-induced growth inhibition and differentiation in NPC cells. PMID:25161098

  13. Leptin plays a catabolic role on articular cartilage.

    PubMed

    Bao, Jia-peng; Chen, Wei-ping; Feng, Jie; Hu, Peng-fei; Shi, Zhong-li; Wu, Li-dong

    2010-10-01

    Leptin has been shown to play a crucial role in the regulation of body weight. There is also evidence that this adipokine plays a key role in the process of osteoarthritis. However, the precise role of leptin on articular cartilage metabolism is not clear. We investigate the role of leptin on articular cartilage in vivo in this study. Recombinant rat leptin (100 μg) was injected into the knee joints of rats, 48 h later, messenger RNA (mRNA) expression and protein levels of basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), matrix metalloproteinases 2 and 9 (MMP-2, MMP-9), cathepsin D, and collagen II from articular cartilage were analyzed by real-time quantitative polymerase chain reaction (PCR) and western blot. Two important aggrecanases ADAMTS-4 and -5 (a disintegrin and metalloproteinase with thrombospondin motifs 4 and 5) were also analyzed by real-time quantitative PCR. Besides, articular cartilage was also assessed for proteoglycan/GAG content by Safranin O staining. Leptin significantly increased both gene and protein levels of MMP-2, MMP-9, cathepsin D, and collagen II, while decreased bFGF markedly in cartilage. Moreover, the gene expression of ADAMTS-4 and -5 were markedly increased, and histologically assessed depletion of proteoglycan in articular cartilage was observed after treatment with leptin. These results strongly suggest that leptin plays a catabolic role on cartilage metabolism and may be a disadvantage factor involve in the pathological process of OA. PMID:19876764

  14. Rethinking Role Play in the Reception Class

    ERIC Educational Resources Information Center

    Rogers, Sue; Evans, Julie

    2007-01-01

    Background: In 2000 the so-called "Reception" class was re-conceived (in curricular terms, at least) as the second and final year of the Foundation Stage, a distinctive educational phase for children aged 3 until entry to key stage 1 at 5 or 6 years old. The "Curriculum guidance for the Foundation Stage" endorses a play-based, informal curriculum…

  15. Reality and Second-Language Role-Play.

    ERIC Educational Resources Information Center

    Piper, David; Piper, Terry

    1983-01-01

    Although role playing is a well-established and useful method of second language instruction, its success is often undermined by assignment of roles alien to the students' needs and experience. Redefinition of role playing to include the roles an individual assumes in everyday life will help the teacher plan more appropriate activities. (MSE)

  16. The importance of play in adulthood. An interview with Joan M. Erikson. Interview by Daniel Benveniste.

    PubMed

    Erikson, J M

    1998-01-01

    Joan M. Erikson (1902-1997) was an artist, a writer, a mother, and the wife and collaborator of Erik H. Erikson (1902-1994), one of the most important and influential psychoanalysts in the world. The following is an edited dialogue on one of her favorite topics--The Importance of Play in Adulthood. It features her thoughts on the subject and reminiscences of the ways she played throughout her life. She muses on play in relation to humor, fun, the role of the fool, and more. The article was a project undertaken in the spirit of play and it will hopefully evoke further playful musings in the minds of readers. PMID:9990822

  17. Binning of shallowly sampled metagenomic sequence fragments reveals that low abundance bacteria play important roles in sulfur cycling and degradation of complex organic polymers in an acid mine drainage community

    NASA Astrophysics Data System (ADS)

    Dick, G. J.; Andersson, A.; Banfield, J. F.

    2007-12-01

    not expected to reflect the tetranucleotide frequency signature of the host genome. Four unknown tetranucleotide frequency clusters with significant sequence (6 Mb total) were noted and analyzed further. Based on phylogenetic markers and BLAST results, these clusters represent low abundance bacteria including Acintobacteria, Firmicutes, and Proteobacteria. Functional analysis of these clusters revealved that the low- abundance bacteria harbor genes that could potentially encode important ecosystem functions such as sulfur utilization (e.g. polysulfide reductase) and polymer degradation (e.g. chitinase and glycoside hydrolase). We conclude that ESOM clustering of tetranucleotide frequency patterns is an effective method for rapidly binning shotgun community genomic sequences and a valuable tool for analyzing minor community members, which despite their low abundance may play crucial ecological roles.

  18. Endangered Play, Endangered Development: A Constructivist View of the Role of Play in Development and Learning.

    ERIC Educational Resources Information Center

    Levin, Diane E.

    Piagetian and Vygotskian theories may be used as starting points to examine the role of play in development and learning from a constructivist perspective, including how children use play to deepen their understanding and skills, encounter new problems, and incorporate newly mastered skills into their play. Contemporary factors such as an emphasis…

  19. Teaching clinical interviewing skills using role-playing: conveying empathy to performing a suicide assessment: a primer for individual role-playing and scripted group role-playing.

    PubMed

    Shea, Shawn Christopher; Barney, Christine

    2015-03-01

    This article provides a useful introduction to the art of role-playing in both the individual format and the group format using scripted group role-playing (SGRP). Role-playing can provide powerful learning opportunities, but to do so it must be done well. This article imparts guidance toward this goal. SGRP may greatly enhance the acquisition of critical complex interviewing skills, such as suicide assessment and uncovering domestic violence, in health care providers across all disciplines, an educational goal that has not been achievable to date. Although research is at an early stage of development, the hope represented by SGRP is tangible. PMID:25725575

  20. A Role Play for Revising Style and Applying Management Theories

    ERIC Educational Resources Information Center

    Griggs, Karen

    2005-01-01

    Role-playing is a well regarded learning activity. By participating in this activity, students can apply their knowledge through their assigned roles in a realistic but risk-free situation. The role play stimulates class discussion, dramatizes rhetorical principles about purpose, shows how to adapt a text to an audience of employees in a…

  1. Online Role-Play Environments for Higher Education

    ERIC Educational Resources Information Center

    Russell, Carol; Shepherd, John

    2010-01-01

    As online environments and tools have evolved over the last 15-20 years, their use for role-based learning has expanded. This analysis draws on work for an Australian project that has been sharing and developing knowledge about the use of online role-plays in higher education. We describe the learning needs that online role-play can meet, and give…

  2. Mitophagy plays a central role in mitochondrial ageing.

    PubMed

    Diot, Alan; Morten, Karl; Poulton, Joanna

    2016-08-01

    The mechanisms underlying ageing have been discussed for decades, and advances in molecular and cell biology of the last three decades have accelerated research in this area. Over this period, it has become clear that mitochondrial function, which plays a major role in many cellular pathways from ATP production to nuclear gene expression and epigenetics alterations, declines with age. The emerging concepts suggest novel mechanisms, involving mtDNA quality, mitochondrial dynamics or mitochondrial quality control. In this review, we discuss the impact of mitochondria in the ageing process, the role of mitochondria in reactive oxygen species production, in nuclear gene expression, the accumulation of mtDNA damage and the importance of mitochondrial dynamics and recycling. Declining mitophagy (mitochondrial quality control) may be an important component of human ageing. PMID:27352213

  3. The role-playing: the art to catch the eye

    NASA Astrophysics Data System (ADS)

    Crescimbene, Massimo; La Longa, Federica; Lanza, Tiziana

    2015-04-01

    We present some interactive, immersive, authentic role-plays simulation designed to teach to different public: tertiary, secondary and primary students and an experience with a teachers group, after April 6 2009 L'Aquila Earthquake. We will discuss about the basics of the role-play and its applications to the geosciences in outreach projects. Role-play is a powerful method to educate to risk mitigation with particular we will discuss our experience regarding seismic risk. Finally, we will present some data on the effectiveness of the role-play in different settings in which we used it.

  4. Separation processes: Playing a critical role

    SciTech Connect

    Humphrey, J.L.

    1995-10-01

    Separation processes are the main cog in the manufacturing well of the chemical process industries (CPI). They are used for such essential chores as removal of contaminants from raw materials, recovery and purification of primary products, and elimination of contaminants from effluent water and air streams. This article provides an overview of key separation processes, highlights recent commercial developments, and provides insights on expected new developments. It focuses o the core processes for fluid mixture separations--distillation, extraction, adsorption, membranes, and their hybrid systems. Other important processes, such as crystallization and fluid/particle separations, are left for others to cover. 40 refs., 8 figs., 4 tabs.

  5. Rim Sim: A Role-Play Simulation

    USGS Publications Warehouse

    Barrett, Robert C.; Frew, Suzanne L.; Howell, David G.; Karl, Herman A.; Rudin, Emily B.

    2003-01-01

    Rim Sim is a 6-hour, eight-party negotiation that focuses on creating a framework for the long-term disaster-recovery efforts. It involves a range of players from five countries affected by two natural disasters: a typhoon about a year ago and an earthquake about 6 months ago. The players are members of an International Disaster Working Group (IDWG) that has been created by an international commission. The IDWG has been charged with drawing up a framework for managing two issues: the reconstruction of regionally significant infrastructure and the design of a mechanism for allocating funding to each country for reconstruction of local infrastructure and ongoing humanitarian needs. The first issue will involve making choices among five options (two harbor options, two airport options, and one rail-line option), each of which will have three levels at which to rebuild. The second issue will involve five starting-point options. Participants are encouraged to invent other options for both issues. The goal of Rim Sim is to raise questions about traditional approaches to disaster-preparedness planning and reconstruction efforts in an international setting, in this case the Pacific Rim. Players must confront the reverberating effects of disasters and the problems of using science and technical information in decisionmaking, and are introduced to a consensus-building approach emphasizing face-to-face dialog and multinational cooperation in dealing with humanitarian concerns, as well as long-term efforts to reconstruct local and regional infrastructure. The Rim Sim simulation raises four key points: ripple effects of disasters, role of science, multiparty negotiation, and building personal relationships.

  6. Phosphate transporter OsPht1;8 in rice plays an important role in phosphorus redistribution from source to sink organs and allocation between embryo and endosperm of seeds.

    PubMed

    Li, Yiting; Zhang, Jun; Zhang, Xiao; Fan, Hongmei; Gu, Mian; Qu, Hongye; Xu, Guohua

    2015-01-01

    Phosphorus (P) redistribution from source to sink organs within plant is required for optimizing growth and development under P deficient condition. In this study, we knocked down expression of a phosphate transporter gene OsPht1;8 (OsPT8) selectively in shoot and/or in seed endosperm by RNA-interference using RISBZ1 and GluB-1 promoter (designate these transgenic lines as SSRi and EnSRi), respectively, to characterize the role of OsPT8 in P redistribution of rice. In comparison to wild type (WT) and EnSRi lines, SSRi lines under P deficient condition accumulated more P in old blades and less P in young blades, corresponding to attenuated and enriched transcripts of P-responsive genes in old and young blades, respectively. The ratio of total P in young blades to that in old blades decreased from 2.6 for WT to 0.9-1.2 for SSRi lines. During the grain-filling stage, relative to WT, SSRi lines showed the substantial decrease of total P content in both endosperm and embryo, while EnSRi lines showed 40-50% decrease of total P content in embryo but similar P content in endosperm. Taken together, our results demonstrate that OsPT8 plays a critical role in redistribution of P from source to sink organs and P homeostasis in seeds of rice. PMID:25480005

  7. Museum Superheroes: The Role of Play in Young Children's Lives

    ERIC Educational Resources Information Center

    Krakowski, Pamela

    2012-01-01

    This article explores the role of play in an art museum. Reflecting upon a kindergarten field trip to the Warhol Museum in which children's play was the centerpiece of the museum experience, the author examines what early childhood theorists have written about the value of play in young children's lives. She shows how the Warhol's program for…

  8. Foreign Ludicity in Online Role-Playing Games

    ERIC Educational Resources Information Center

    Liang, Mei-Ya

    2012-01-01

    This article reports on an explorative case study which, in the first place, aimed to ascertain different types of foreign language play in online role-playing in "Second Life," and which, secondly aimed to describe how various sources of contextual support can explain this foreign language play. Students' written conversation was analyzed and…

  9. A Historical Journey in Science Education through Role Playing

    ERIC Educational Resources Information Center

    Guha, Smita

    2013-01-01

    In order to avoid a routine classroom environment, teachers often employ the use of role-plays. This is an effective strategy because it is essential for teachers to engage their students with information through various methods. Role-playing provides the children with the opportunity to incorporate multiple senses into a knowledge-based, fun…

  10. Role Playing: Applications in Hostage and Crisis Negotiation Skills Training

    ERIC Educational Resources Information Center

    Van Hasselt, Vincent B.; Romano, Stephen J.; Vecchi, Gregory M.

    2008-01-01

    Role playing has been a mainstay of behavioral assessment for decades. In recent years, however, this analogue strategy has also enjoyed widespread application in the field of law enforcement. Most notably, role-play procedures have become an integral component of assessment and training efforts in hostage and crisis negotiation, which attempts to…

  11. Online Role-Play: Anonymity, Engagement and Risk.

    ERIC Educational Resources Information Center

    Bell, Maureen

    2001-01-01

    Discussion of role-play focuses on a case study of an asynchronous, anonymous online role-play at an Australian university within a WebCT bulletin board that was designed as an alternative to an existing face-to-face workshop to offer more flexible access for participants. Suggests further research needs. (Author/LRW)

  12. The Use of Role Play To Teach Communication Skills.

    ERIC Educational Resources Information Center

    O'Donnell, Nancy; Shaver, Lisa

    Role play (a dramatic technique in which individuals improvise behaviors that illustrate acts expected of persons involved in defined situations) has several advantages for the classroom. Role play: (1) involves little or no additional instructional costs; (2) allows students to practice behaviors and skills; (3) closes the gap between training…

  13. Understanding Public Land Management through Role-Playing

    ERIC Educational Resources Information Center

    Oberle, Alex P.

    2004-01-01

    Role-playing activities are an example of active learning that introduces students to "real-world" situations. This paper discusses the development and assessment of a role-play that involves an undergraduate geography class in a local public land management process. This particular case study is useful because it reflects broader themes and…

  14. Using Role-Playing Games to Teach Astronomy: An Evaluation

    ERIC Educational Resources Information Center

    Francis, Paul

    2005-01-01

    Since 1998, I've been experimenting with the use of role-playing games to teach astronomy. Students play the role of competing teams of researchers, racing to solve some astrophysical mystery. In this article, I review what has been learned from using these games around the world over the last eight years. The most common problem encountered is a…

  15. Table-Top Role Playing Game and Creativity

    ERIC Educational Resources Information Center

    Chung, Tsui-shan

    2013-01-01

    The current study aims to observe whether individuals who engaged in table-top role playing game (TRPG) were more creative. Participants total 170 (52 TRPG players, 54 electronic role playing game (ERPG) players and 64 Non-players) aged from 19 to 63. In the current study, an online questionnaire is used, adopting the verbal subtests of…

  16. Role-Playing and Religion: Using Games to Educate Millennials

    ERIC Educational Resources Information Center

    Porter, Adam L.

    2008-01-01

    I have been experimenting with using role-playing and games in my religion classes for several years and have found that students respond well to these pedagogical tools and methods. After reviewing my experiences, I explore the reasons for students' positive response. I argue that role-playing games capitalize on our students' educational…

  17. "Playing The Role": Classroom Performance Approaches to Characterization.

    ERIC Educational Resources Information Center

    Ratliff, Gerald Lee

    Dynamic classroom role-playing is an essential ingredient in interpretation and performance if the student actor is to learn the technical skills of believable characterization. One of the first classroom performance principles in playing the role is for the student actor to read the playscript with a critical eye to grasp the creative suggestions…

  18. ROLE-PLAYING WITH LOW-INCOME PEOPLE.

    ERIC Educational Resources Information Center

    GOLDFARB, JEAN; RIESSMAN, FRANK

    ROLE-PLAYING, THE FLEXIBLE ACTING OUT OF VARIOUS TYPES OF PROBLEMS IN A PERMISSIVE GROUP ATMOSPHERE, WAS AIMED AT DEVELOPING A FULL, INNER FEELING ABOUT A SITUATION FROM ACTING OUT HOW OTHER PEOPLE ACTUALLY FELT IN THE SITUATION. ROLE-PLAYING WAS ESPECIALLY USEFUL FOR LOW-INCOME GROUPS BECAUSE THEY EXPRESS THEMSELVES MORE READILY WHEN REACTING TO…

  19. Time perspective as a predictor of massive multiplayer online role-playing game playing.

    PubMed

    Lukavska, Katerina

    2012-01-01

    This article focuses on the relationship between the time perspective (TP) personality trait and massive multiplayer online role-playing game (MMORPG) playing. We investigate the question of frequency of playing. The TP was measured with Zimbardo's TP Inventory (ZTPI), which includes five factors-past negative, past positive, present hedonistic, present fatalistic, and future. The study used data from 154 MMORPG players. We demonstrated that TP partially explained differences within a group of players with respect to the frequency of playing. Significant positive correlations were found between present factors and the amount of time spent playing MMORPGs, and significant negative correlation was found between the future factor and the time spent playing MMORPGs. Our study also revealed the influence of future-present balance on playing time. Players who scored lower in future-present balance variables (their present score was relatively high compared with their future score) reported higher values in playing time. In contrast to referential studies on TP and drug abuse and gambling, present fatalistic TP was demonstrated to be a stronger predictor of extensive playing than present hedonistic TP, which opened the question of motivation for playing. The advantage of our study compared with other personality-based studies lies in the fact that TP is a stable but malleable personality trait with a direct link to playing behavior. Therefore, TP is a promising conceptual resource for excessive playing therapy. PMID:22032796

  20. AtPPR2, an Arabidopsis pentatricopeptide repeat protein, binds to plastid 23S rRNA and plays an important role in the first mitotic division during gametogenesis and in cell proliferation during embryogenesis

    PubMed Central

    Lu, Yuqing; Li, Cong; Wang, Hai; Chen, Hao; Berg, Howard; Xia, Yiji

    2011-01-01

    SUMMARY Pentatricopeptide repeat (PPR) proteins are mainly involved in regulating post-transcriptional processes in mitochondria and plastids, including chloroplasts. Mutations in the Arabidopsis PPR2 gene have previously been found to cause defects in seed development and reduced transmission through male and female gametophytes. However, the exact function of AtPPR2 has not been defined. We found that a loss-of-function mutation of AtPPR2 leads to arrest of the first mitotic division during both male and female gametogenesis. In addition, the Atppr2 mutation causes delayed embryogenesis, leading to embryonic lethality. Mutation in emb2750, which appears to be a weak mutant allele of the AtPPR2 locus, also results in defective seeds. However, a majority of emb2750 seeds were able to germinate, but their cotyledons were albino and often deformed, and growth of the emb2750 seedlings were arrested after germination. AtPPR2 is mainly expressed in plant parts that undergo cell division, and AtPPR2 protein was localized to chloroplasts. RNA immunoprecipitation and protein gel mobility shift assays showed that AtPPR2 binds to plastid 23S rRNA. Our study adds to a growing body of evidence that plastids and/or chloroplasts play a key role in cell division. AtPPR2 may modulate the translational process to fine-tune plastid function, thereby regulating cell division. PMID:21435048

  1. Student feedback about the use of role plays in Sparshanam, a medical humanities module

    PubMed Central

    Shankar, P Ravi

    2012-01-01

    Background: At KIST Medical College, Lalitpur, Nepal, a Medical Humanities module for first year medical students has been conducted. Role plays are used to explore social, medical and sexual issues in the Nepalese context. The present study obtained student feedback about the role plays used in the module, the difficulties faced, and obtained suggestions for further improvement. Method: The module was conducted from January to August 2011 using a total of 15 role plays. Student feedback was obtained using a semi-structured questionnaire. Informal discussions were held and a questionnaire was circulated among the first year students who had participated in the module. Results: Ninety-eight of the 100 students in the module participated in the study. The overall opinion regarding the role plays was positive. Students stated role plays helped to make module objectives concrete and interesting, made students identify with the problem being investigated and improved communication skills. Role plays were designed to address important health issues in Nepal and prepare students for addressing these issues in future practice. A lack of sufficient time for preparing the role plays and initial problems with group dynamics were mentioned by the respondents during the study. Conclusions: Student feedback about the use of role plays during the module was positive. Role plays helped in making module objectives more concrete and interesting, improved communication skills and addressed important health issues in Nepal. Role plays are not resource intensive and can be considered for use in medical schools in developing nations. PMID:24358816

  2. Parent participation plays an important part in promoting physical activity

    PubMed Central

    Lindqvist, Anna-Karin; Kostenius, Catrine; Gard, Gunvor; Rutberg, Stina

    2015-01-01

    Although physical activity (PA) is an important and modifiable determinant of health, in Sweden only 15% of boys and 10% of girls aged 15 years old achieve the recommended levels of PA 7 days per week. Adolescents’ PA levels are associated with social influence exerted by parents, friends, and teachers. The purpose of this study was to describe parents’ experiences of being a part of their adolescents’ empowerment-inspired PA intervention. A qualitative interview study was performed at a school in the northern part of Sweden. A total of 10 parents were interviewed, and the collected data were analyzed with qualitative content analysis. Three subthemes were combined into one main theme, demonstrating that parents are one important part of a successful PA intervention. The life of an adolescent has many options and demands that make it difficult to prioritize PA. Although parents felt that they were important in supporting their adolescent, a successful PA intervention must have multiple components. Moreover, the parents noted that the intervention had a positive effect upon not only their adolescents’, but also their own PA. Interventions aimed at promoting PA among adolescents should include measures to stimulate parent participation, have an empowerment approach, and preferably be school-based. PMID:26282870

  3. Glucocorticoids Play a Key Role in Circadian Cell Cycle Rhythms

    PubMed Central

    Dickmeis, Thomas; Lahiri, Kajori; Nica, Gabriela; Vallone, Daniela; Santoriello, Cristina; Neumann, Carl J; Hammerschmidt, Matthias; Foulkes, Nicholas S

    2007-01-01

    Clock output pathways play a pivotal role by relaying timing information from the circadian clock to a diversity of physiological systems. Both cell-autonomous and systemic mechanisms have been implicated as clock outputs; however, the relative importance and interplay between these mechanisms are poorly understood. The cell cycle represents a highly conserved regulatory target of the circadian timing system. Previously, we have demonstrated that in zebrafish, the circadian clock has the capacity to generate daily rhythms of S phase by a cell-autonomous mechanism in vitro. Here, by studying a panel of zebrafish mutants, we reveal that the pituitary–adrenal axis also plays an essential role in establishing these rhythms in the whole animal. Mutants with a reduction or a complete absence of corticotrope pituitary cells show attenuated cell-proliferation rhythms, whereas expression of circadian clock genes is not affected. We show that the corticotrope deficiency is associated with reduced cortisol levels, implicating glucocorticoids as a component of a systemic signaling pathway required for circadian cell cycle rhythmicity. Strikingly, high-amplitude rhythms can be rescued by exposing mutant larvae to a tonic concentration of a glucocorticoid agonist. Our work suggests that cell-autonomous clock mechanisms are not sufficient to establish circadian cell cycle rhythms at the whole-animal level. Instead, they act in concert with a systemic signaling environment of which glucocorticoids are an essential part. PMID:17373855

  4. Role Playing Using a Simulated Pharmacy and Therapeutics Committee Model

    ERIC Educational Resources Information Center

    Fletcher, H. Patrick; Popvich, Nicholas G.

    1977-01-01

    Within a simulated Pharmacy and Therapeutics Committee format, role play is used at Purdue University to illustrate to students the concepts of drug product evaluation and selection as these apply to a hospital formulary system. (Author/LBH)

  5. What Role Does Obstetrical Care Play in Childbirth?

    MedlinePlus

    ... Information Clinical Trials Resources and Publications What role does obstetrical care play in childbirth? Skip sharing on ... has ruptured (the woman’s water breaks), but labor does not start within 24 to 48 hours When ...

  6. Field Effects in the CNS Play Functional Roles

    PubMed Central

    Weiss, Shennan A.; Faber, Donald S.

    2010-01-01

    An endogenous electrical field effect, i.e., ephaptic transmission, occurs when an electric field associated with activity occurring in one neuron polarizes the membrane of another neuron. It is well established that field effects occur during pathological conditions, such as epilepsy, but less clear if they play a functional role in the healthy brain. Here, we describe the principles of field effect interactions, discuss identified field effects in diverse brain structures from the teleost Mauthner cell to the mammalian cortex, and speculate on the function of these interactions. Recent evidence supports that relatively weak endogenous and exogenous field effects in laminar structures reach significance because they are amplified by network interactions. Such interactions may be important in rhythmogenesis for the cortical slow wave and hippocampal sharp wave–ripple, and also during transcranial stimulation. PMID:20508749

  7. Representation of Cultural Role-Play for Training

    NASA Technical Reports Server (NTRS)

    Santarelli, Thomas; Pepe, Aaron; Rosenzweiz, Larry; Paulus, John; Yi, Ahn Na

    2010-01-01

    The Department of Defense (000) has successfully applied a number of methods for cultural familiarization training ranging from stand-up classroom training, to face-to-face live role-play, to so-called smart-cards. Recent interest has turned to the use of single and mUlti-player gaming technologies to augment these traditional methods of cultural familiarization. One such system, termed CulturePad, has been designed as a game-based role-play environment suitable for use in training and experimentation involving cultural roleplay scenarios. This paper describes the initial CulturePad effort focused on a literature review regarding the use of role-play for cultural training and a feasibility assessment of using a game-mediated environment for role-play. A small-scale pilot involving cultural experts was conducted to collect qualitative behavioral data comparing live role-play to game-mediated role-play in a multiplayer gaming engine.

  8. E-learning Constructive Role Plays for EFL Learners in China's Tertiary Education

    ERIC Educational Resources Information Center

    Shen, Lin; Suwanthep, Jitpanat

    2011-01-01

    Recently, speaking has played an increasingly important role in second/foreign language settings. However, in many Chinese universities, EFL students rarely communicate in English with other people effectively. The existing behavioristic role plays on New Horizon College English (NHCE) e-learning do not function successfully in supplementing EFL…

  9. "Free Vote": Role-Playing Parliament in Action

    ERIC Educational Resources Information Center

    Myers, Lynn

    1977-01-01

    A Canadian political role-playing sequence helps secondary students understand the workings of Parliament and clarify their own values. The issue under debate is abolition or retention of capital punishment. Article describes rationale, teacher's instructions, roles, related legislature, rules of Parliamentary debate, public opinion polls, news…

  10. Role Play in Nutrition Education for the Young Child.

    ERIC Educational Resources Information Center

    Marbach, Ellen S.; Yawkey, Thomas Daniels

    The Curry and Arnaud model for role playing is described and discussed as it relates to nutrition education for young children. The components of the model are: (1) developing the role, (2) using thematic content, (3) displaying feelings (in socially acceptable ways), (4) distinguishing between reality and fantasy, and (5) forming interpersonal…

  11. Wnt/β-catenin signaling plays an important role in the protective effects of FDP-Sr against oxidative stress induced apoptosis in MC3T3-E1 cell.

    PubMed

    Qi, Huan-Huan; Bao, Jun; Zhang, Qi; Ma, Bo; Gu, Gui-Ying; Zhang, Peng-Ling; Ou-Yang, Gang; Wu, Zi-Mei; Ying, Han-Jie; Ou-Yang, Ping-Kai

    2016-10-01

    Strontium fructose 1,6-diphosphate (FDP-Sr) is a new strontium-containing compound. The primary aim of this study was to clarify whether the structure component of FDP-Sr, FDP could benefit the protective effect of Sr (II) against oxidative stress induced apoptosis, and meanwhile to further explore the important role of Wnt/β-catenin signaling in the anti-apoptosis effect of FDP-Sr in response to oxidative stress induced by H2O2 in an osteoblastic MC3T3-E1 cell line. Results showed that FDP-Sr could improve the osteoblastic differentiation under oxidative stress with induced cell proliferation and improved mineralization. The inhibition effect of FDP-Sr on cell apoptosis induced by H2O2 was proved by reduced reactive oxygen species production and activated caspase3. Under oxidative stress, mRNA and protein levels of phospho-β-catenin reduced, while β-catenin increased in the FDP-Sr treatment cell, leaded to the up-regulations of Runx2 and OPG at both mRNA and protein levels, finally improved the differentiation of osteoblasts. By the engagement of Wnt/β-catenin pathway's inhibitor (XAV-939), the protective effects of FDP-Sr on osteoblastic differentiation against oxidative stress were repressed along with inhibited wnt/β-catenin signaling and reduced mRNA and protein levels of Runx2 and OPG. In conclusion, FDP-Sr was demonstrated to protect osteoblast differentiation from oxidative damage induced by H2O2 through up-regulation of Wnt/β-catenin signaling, and FDP in FDP-Sr was able to directly improve the oxidative stress injury through its ROS scavenging ability. PMID:27575480

  12. Chloroplastic thioredoxin-f and thioredoxin-m1/4 play important roles in brassinosteroids-induced changes in CO2 assimilation and cellular redox homeostasis in tomato

    PubMed Central

    Cheng, Fei; Zhou, Yan-Hong; Xia, Xiao-Jian; Shi, Kai; Zhou, Jie; Yu, Jing-Quan

    2014-01-01

    Chloroplast thioredoxins (TRXs) and glutathione function as redox messengers in the regulation of photosynthesis. In this work, the roles of chloroplast TRXs in brassinosteroids (BRs)-induced changes in cellular redox homeostasis and CO2 assimilation were studied in the leaves of tomato plants. BRs-deficient d ^im plants showed decreased transcripts of TRX-f, TRX-m2, TRX-m1/4, and TRX-x, while exogenous BRs significantly induced CO2 assimilation and the expression of TRX-f, TRX-m2, TRX-m1/4, and TRX-x. Virus-induced gene silencing (VIGS) of the chloroplast TRX-f, TRX-m2, TRX-m1/4, and TRX-y genes individually increased membrane lipid peroxidation and accumulation of 2-Cys peroxiredoxin dimers, and decreased the activities of the ascorbate–glutathione cycle enzymes and the ratio of reduced glutathione to oxidized glutathione (GSH/GSSG) in the leaves. Furthermore, partial silencing of TRX-f, TRX-m2, TRX-m1/4, and TRX-y resulted in decreased expression of genes involved in the Benson–Calvin cycle and decreased activity of the associated enzymes. Importantly, the BRs-induced increase in CO2 assimilation and the increased expression and activities of antioxidant- and photosynthesis-related genes and enzymes were compromised in the partially TRX-f- and TRX-m1/4-silenced plants. All of these results suggest that TRX-f and TRX-m1/4 are involved in the BRs-induced changes in CO2 assimilation and cellular redox homeostasis in tomato. PMID:24847092

  13. Empathic Features and Absorption in Fantasy Role-Playing.

    PubMed

    Rivers, Anissa; Wickramasekera, Ian E; Pekala, Ronald J; Rivers, Jennifer A

    2016-01-01

    This study examined the levels of empathy and absorption of individuals who regularly play fantasy and science fiction role-playing games. A hypothesis was developed that higher levels of empathy would be found in individuals who fantasy role-play based upon previous research in hypnosis such as J. R. Hilgard's (1970) imaginative involvement hypothesis, research into the "fantasy prone" personality type (Wilson & Barber, 1981), and the empathic involvement hypothesis (Wickramasekera II & Szlyk, 2003). The participants in the current study were 127 fantasy role-players who volunteered and completed the Davis Interpersonal Reactivity Index (empathy) and the Tellegen Absorption Scale (absorption). The results demonstrated that those who play fantasy role-playing games scored significantly higher than the comparison group on the IRI scale of empathy, confirming the hypothesis that fantasy role-players report experiencing higher levels of empathic involvement with others. Correlational analysis between the measures demonstrated a significant positive correlation between empathy and absorption (r = .43, p < .001). These results collectively suggest that fantasy role-players have a uniquely empathically-imaginative style. The results also confirm and extend previous findings on the relationship between empathy and absorption as predicted by the Empathic Involvement Hypothesis (Wickramasekera II & Szlyk, 2003). PMID:26675155

  14. Adapting a Face-to-Face Role-Playing Simulation for Online Play

    ERIC Educational Resources Information Center

    Bos, Nathan; Shami, N. Sadat

    2006-01-01

    The rapid acceleration of online course offerings presents a design challenge for instructors who want to take materials developed for face-to-face settings and adapt them for asynchronous online usage. Broadcast lectures are relatively easy to transfer, but adapting content is harder when classes use small-group discussions, as in role-playing or…

  15. Playing by the Rules: Instruction and Acculturation in Role-Playing Games

    ERIC Educational Resources Information Center

    Neuenschwander, Bryn

    2008-01-01

    The open-ended, informal, and socially negotiated nature of role-playing games creates a distinct learning challenge for newcomers to the hobby. The explicit rules of the game provide only an incomplete framework for structuring the actions of players, and the expectations and mores of a given group will add other, unspoken rules that discourage…

  16. (Role) Playing Politics in an Environmental Chemistry Lecture Course

    NASA Astrophysics Data System (ADS)

    Smythe, A. Meredith; Higgins, Daniel A.

    2007-02-01

    Mock congressional hearings are described as an active learning, role-playing activity for the environmental chemistry lecture course. Each student plays dual roles in this activity, alternately serving as a witness and committee member on hearing topics selected by the class. As witnesses, the students assume the roles of scientists, politicians, industrial representatives, and environmental group representatives and present both written and oral arguments for or against a particular issue. At other times, they play the role of congressional committee members and question the witnesses. Hearings are held on topics related to renewable and nonrenewable energy; hazardous waste; water, soil, and air pollution; water quality; and genetic engineering. This activity greatly enriches the educational experience for the students by allowing them to become actively engaged in learning and debating specific issues related to course materials.

  17. Detection of faking on role-play tests of assertiveness.

    PubMed

    Kern, J M

    1994-04-01

    Faking and demand characteristics can represent significant threats to the validity of role-play tests of social competence. The present study examined whether faking could be detected via the global judgments of experienced and inexperienced assessors. 26 undergraduates low in assertiveness were induced to fake their performances on the Idiographic Role-play Test via instructions and information. Experienced judges successfully differentiated faking subjects from highly assertive subjects (n = 27) who had been provided with information and nonfaking instructions (98% accuracy). Inexperienced assessors correctly classified 79% of the subjects. Within the discussed limitations of this study, it appears that it is possible to detect faking on role-play tests of assertiveness. PMID:8197276

  18. The Role Played by Grandparents in Family Support and Learning: Considerations for Mainstream and Special Schools

    ERIC Educational Resources Information Center

    Mitchell, Wendy

    2008-01-01

    The twenty-first century family faces many demographic changes. Despite this, the importance of intergenerational relationships remains. This article initially reviews the literature surrounding the role that grandparents play in their children's families, highlighting a growing body of research demonstrating the important support role that…

  19. From MMORPG to a Classroom Multiplayer Presential Role Playing Game

    ERIC Educational Resources Information Center

    Susaeta, Heinz; Jimenez, Felipe; Nussbaum, Miguel; Gajardo, Ignacio; Andreu, Juan Jose; Villalta, Marco

    2010-01-01

    The popularity of massively multiplayer online role-playing games (MMORPGs) has grown enormously, with communities of players reaching into the millions. Their fantasy narratives present multiple challenges created by the virtual environment and/or other players. The games' potential for education stems from the fact that players are immersed in a…

  20. Development of Confidence in Child Behavior Management through Role Playing.

    ERIC Educational Resources Information Center

    Kress, Gerard C., Jr.; Ehrlichs, Melvin A.

    1990-01-01

    In a preclinical course in pediatric dentistry, 76 students were taught child behavior management through role playing of 7-10 common management situations. Pre- and postcourse measures of student confidence found that, although older students were more confident, all gained significantly from the training. Other student characteristics were also…

  1. Exploring the Concept of Sustainable Development through Role-Playing

    ERIC Educational Resources Information Center

    Buchs, Arnaud; Blanchard, Odile

    2011-01-01

    The concept of sustainable development is used in everyday life by the general public, alongside researchers, institutions, and private companies. Nevertheless, its definition is far from being unequivocal. Clarifying the outline of the concept seems necessary. We have created a role-play for this purpose. Our article aims at depicting its main…

  2. The Korean War: A Role-Play to Remember

    ERIC Educational Resources Information Center

    Krebs, Marjori M.

    2009-01-01

    The Korean War is often given a cursory glance, if that, in U.S. foreign relations today. This article provides all the information necessary to conduct a role-play in one class period to help students understand the events of the war. Introductory and follow-up questions are also included to stimulate discussion and to connect the events of a war…

  3. A Forensic Psychology Exercise: Role Playing and the Insanity Defense.

    ERIC Educational Resources Information Center

    Fass, Michael E.

    1999-01-01

    Presents a role playing exercise that provides students with an introduction to forensic psychology and the insanity defense. Reports that 87% of the students found this exercise to be an enjoyable teaching technique and useful in providing an understanding of the insanity defense. Concludes that the exercise increases student interest and…

  4. A Role Play on Export Decisions and the Exchange Rate.

    ERIC Educational Resources Information Center

    Cotterell, Ann

    1987-01-01

    Explains that the goal of this exercise is to encourage an understanding of the effects of exchange rate changes and the use of forward rates. Provides a role play that involves students working in groups to decide whether to export a consignment of golf trollies to Italy and shortbread to Canada. (BSR)

  5. Try This: Role-Play Party: Talking about Jobs

    ERIC Educational Resources Information Center

    Benucci, Heather

    2015-01-01

    This article presents a stand-alone language-learning activity emphasizing speaking. Specifically, students will participate in role plays to describe occupations and job-related duties. The level of the activity is upper beginner or low intermediate and the time required is 45-60 minutes. The goals are: (1) to ask and answer small-talk questions…

  6. Reusable, Lifelike Virtual Humans for Mentoring and Role-Playing

    ERIC Educational Resources Information Center

    Sims, Edward M.

    2007-01-01

    Lifelike, interactive digital characters, serving as mentors and role-playing actors, have been shown to significantly improve learner motivation and retention. However, the cost of modeling such characters, authoring and editing their interactions, and delivering them over limited-bandwidth connections can be prohibitive. This paper describes a…

  7. Confronting Prejudiced Comments: Effectiveness of a Role-Playing Exercise

    ERIC Educational Resources Information Center

    Lawson, Timothy J.; McDonough, Tracy A.; Bodle, James H.

    2010-01-01

    We examined whether a role-playing exercise, similar to that developed by Plous (2000), increases students' ability to generate effective responses to prejudiced comments. We assessed social psychology students' (n = 23) ability to respond to prejudiced comments before and after the exercise, and compared their performance to that of 2 other…

  8. [Anthropology play a key role in simulated portrait].

    PubMed

    Xu, Zhi-Biao

    2006-08-15

    The technology of simulated portrait played a key role in criminal cases' deterction recently, while anthropology is attached to it tightly. This paper analyzed and discussed the impact of anthropology in simulated portrait by means of studying the relationship between races, regions figures skeletons and physiognomy. PMID:17080677

  9. A Recruiting and Hiring Role-Play: An Experiential Simulation

    ERIC Educational Resources Information Center

    Newberry, Robert; Collins, Marianne K.

    2012-01-01

    Creating experiential learning opportunities that engage students, meet marketing curricula objectives, and fit the application in a traditional semester course is extremely challenging. This paper describes a role-playing simulation offered concurrently to the professional selling and sales management classes in which the selling students act as…

  10. Biography and Role Playing: Fostering Empathy in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Poorman, Paula B.

    2002-01-01

    Discusses a means for increasing undergraduate and graduate students' level of empathy. Assigned students to write about and role play a character that they create who suffers from a psychological disorder. Explains that after quantitative and qualitative analyses it was demonstrated that students' empathy increased. (CMK)