Science.gov

Sample records for pleistocene glacial oscillations

  1. Timing of Pleistocene glacial oscillations recorded in the Cantabrian Mountains (North Iberia): correlation of glacial and periglacial sequences from both sides of the range using a multiple-dating method approach

    NASA Astrophysics Data System (ADS)

    Rodriguez-Rodriguez, Laura; Jiménez-Sánchez, Montserrat; José Domínguez-Cuesta, María; Rinterknecht, Vincent; Pallàs, Raimón; Bourlès, Didier

    2015-04-01

    The Cantabrian Mountains is a coastal mountain range up to 2648 m altitude located at 43oN latitude and directly influenced by the North Atlantic climate oscillations. Although nowadays it is fully deglaciatied, glacial sediments and landforms are clearly preserved elsewhere above 1600 m. Particularly, glacial evidence in the central Cantabrian Mountains suggests the formation of an icefield in the headwaters of the Porma and Esla catchments drained by glaciers up to 1-6 km in length in the northern slope and 19 km-long in the southern slope, with their fronts at minimum altitudes of 900 and 1150 m asl respectively (Rodríguez-Rodríguez et al., 2014). Numerical ages obtained from the base of the Brañagallones ice-dammed deposit and one of the lateral moraines that are damming this deposit suggest that the local glacial maximum was prior to ca 33.5 cal ka BP in the Monasterio Valley (see data compiled in Rodriguez-Rodríguez et al., in press). Currently, our research is focused on developing a full chronology of glacial oscillations in both sides of the range and investigating their paleoclimate significance and relationship with glacial asymmetry through the combined use of surface exposure, OSL and radiocarbon dating methods. In this work, we present 47 10Be surface exposure ages obtained from boulders in moraines, glacial erratic boulders and rock glaciers in the Monasterio and Porma valleys. The glacial record of these valleys was chosen because of: (i) its good preservation state; (ii) the occurrence of a quartz-rich sandstone formation; and (iii) the availability of previous 14C and OSL numerical ages. Sampling sites were selected considering the relative age of glacial stages to cover as complete as possible the history of Pleistocene glaciations in the studied area, from the glacial maximum stage to the prevalence of periglacial conditions. Preliminary results suggest the occurrence of several glacial advances of similar extent at ca 150 - 50 ka followed by a deglaciation sequence that changed gradually to periglacial conditions during the Lateglacial (16 - 12 ka). Radiocarbon and OSL sampling campaigns have been recently developed to complement and cross-check these preliminary results, which are compared with other paleoclimate proxies in this contribution. Rodríguez-Rodríguez, L., Jiménez-Sánchez, M., Domínguez-Cuesta, M.J., 2014. Geophysical Research Abstracts 16, EGU2014-292. Rodríguez-Rodríguez, L., Jiménez-Sánchez, M., Domínguez-Cuesta, M.J., Aranburu, A., in press. Quaternary International, http://dx.doi.org/10.1016/j.quaint.2014.06.007 Research funded by MINECO-PGE-FEDER through the project CANDELA (MINECO-CGL2012-31938). Laura Rodríguez-Rodríguez developed her research granted by the Spanish FPU Program (Ministerio de Educación Cultura y Deporte).

  2. Obliquity pacing of the late Pleistocene glacial terminations

    NASA Astrophysics Data System (ADS)

    Huybers, Peter; Wunsch, Carl

    2005-03-01

    The 100,000-year timescale in the glacial/interglacial cycles of the late Pleistocene epoch (the past ~700,000 years) is commonly attributed to control by variations in the Earth's orbit. This hypothesis has inspired models that depend on the Earth's obliquity (~ 40,000yr ~40kyr), orbital eccentricity (~ 100kyr) and precessional (~ 20kyr) fluctuations, with the emphasis usually on eccentricity and precessional forcing. According to a contrasting hypothesis, the glacial cycles arise primarily because of random internal climate variability. Taking these two perspectives together, there are currently more than thirty different models of the seven late-Pleistocene glacial cycles. Here we present a statistical test of the orbital forcing hypothesis, focusing on the rapid deglaciation events known as terminations. According to our analysis, the null hypothesis that glacial terminations are independent of obliquity can be rejected at the 5% significance level, whereas the corresponding null hypotheses for eccentricity and precession cannot be rejected. The simplest inference consistent with the test results is that the ice sheets terminated every second or third obliquity cycle at times of high obliquity, similar to the original proposal by Milankovitch. We also present simple stochastic and deterministic models that describe the timing of the late-Pleistocene glacial terminations purely in terms of obliquity forcing.

  3. Obliquity pacing of the late Pleistocene glacial terminations.

    PubMed

    Huybers, Peter; Wunsch, Carl

    2005-03-24

    The 100,000-year timescale in the glacial/interglacial cycles of the late Pleistocene epoch (the past approximately 700,000 years) is commonly attributed to control by variations in the Earth's orbit. This hypothesis has inspired models that depend on the Earth's obliquity (approximately 40,000 yr; approximately 40 kyr), orbital eccentricity (approximately 100 kyr) and precessional (approximately 20 kyr) fluctuations, with the emphasis usually on eccentricity and precessional forcing. According to a contrasting hypothesis, the glacial cycles arise primarily because of random internal climate variability. Taking these two perspectives together, there are currently more than thirty different models of the seven late-Pleistocene glacial cycles. Here we present a statistical test of the orbital forcing hypothesis, focusing on the rapid deglaciation events known as terminations. According to our analysis, the null hypothesis that glacial terminations are independent of obliquity can be rejected at the 5% significance level, whereas the corresponding null hypotheses for eccentricity and precession cannot be rejected. The simplest inference consistent with the test results is that the ice sheets terminated every second or third obliquity cycle at times of high obliquity, similar to the original proposal by Milankovitch. We also present simple stochastic and deterministic models that describe the timing of the late-Pleistocene glacial terminations purely in terms of obliquity forcing. PMID:15791252

  4. Interhemispheric correlation of late pleistocene glacial events.

    PubMed

    Lowell, T V; Heusser, C J; Andersen, B G; Moreno, P I; Hauser, A; Heusser, L E; Schlüchter, C; Marchant, D R; Denton, G H

    1995-09-15

    A radiocarbon chronology shows that piedmont glacier lobes in the Chilean Andes achieved maxima during the last glaciation at 13,900 to 14,890, 21,000, 23,060, 26,940, 29,600, and >/=33,500 carbon-14 years before present ((14)C yr B.P.) in a cold and wet Subantarctic Parkland environment. The last glaciation ended with massive collapse of ice lobes close to 14,000(14)C yr B.P., accompanied by an influx of North Patagonian Rain Forest species. In the Southern Alps of New Zealand, additional glacial maxima are registered at 17,720(14)C yr B.P., and at the beginning of the Younger Dryas at 11,050 (14)C yr B. P. These glacial maxima in mid-latitude mountains rimming the South Pacific were coeval with ice-rafting pulses in the North Atlantic Ocean. Furthermore, the last termination began suddenly and simultaneously in both polar hemispheres before the resumption of the modern mode of deep-water production in the Nordic Seas. Such interhemispheric coupling implies a global atmospheric signal rather than regional climatic changes caused by North Atlantic thermohaline switches or Laurentide ice surges. PMID:17789444

  5. Pleistocene glacial evolution of Fuentes Carrionas (Cantabrian Range, NW Spain)

    NASA Astrophysics Data System (ADS)

    Pellitero, Ramon

    2014-05-01

    Fuentes Carrionas is a massif situated at the N of Spain, between Castilla y Leon and Cantabria regions. It is the second highest mountain massif of the Cantabrian Range after Picos de Europa, with peaks over 2500 m.a.s.l. and valleys well over 1000 m.a.s.l. Fuentes Carrionas was glaciated during Quaternary, and even during the Holocene and as far as Little Ice Age the presence of glaciers, or at least permafrost is controversial. Results from glacial geomorphology analysis of Fuentes Carrionas Massif are presented. Based on the interpretation of glacial landforms, glacial evolution since the Last Glacial Maximum until Pleistocene deglaciation is described. Four different glacial equilibrium phases are identified, the last one divided into two pulsations. Deglaciation process took place between 36 ka BP and 11 ka BP. Local Last Glacial Maximum is dated back to 36-38 ka. BP, therefore earlier than LGM. Glaciers reached 15 km. long and occupied valleys down to 1250 m.a.s.l. during this phase. By European LGM (20-18 ka.BP) glaciers had substantially retreated to fronts about 1700 m.a.s.l. A final stage with two marked pulsations shows only small glaciers located at cirques above 2000 m.a.s.l. and, finally, only small cirque glaciers at North and Northeast orientation above 2200 m.a.s.l. Both these phases have been correlated to Oldest and Younger Dryas, although no dates have been done yet. A palaeoenvironmental reconstruction is proposed, based on ELA (Equilibrium Line Altitude) rise. ELA has been calculated with the AAR method and 0.67 ratio. This reconstruction shows that temperatures ranged between 9°C and 10°C lower than present ones at the end of Pleistocene, depending on a precipitations variation between 30% higher and 20% lower than current ones. Further research will focus on these retreat phases, especially on Younger Dryas identification and reconstruction for this site and the rest of Cantabrian Range.

  6. Intensified deep Pacific inflow and ventilation in Pleistocene glacial times.

    PubMed

    Hall, I R; McCave, I N; Shackleton, N J; Weedon, G P; Harris, S E

    2001-08-23

    The production of cold, deep waters in the Southern Ocean is an important factor in the Earth's heat budget. The supply of deep water to the Pacific Ocean is presently dominated by a single source, the deep western boundary current east of New Zealand. Here we use sediment records deposited under the influence of this deep western boundary current to reconstruct deep-water properties and speed changes during the Pleistocene epoch. In physical and isotope proxies we find evidence for intensified deep Pacific Ocean inflow and ventilation during the glacial periods of the past 1.2 million years. The changes in throughflow may be directly related to an increased production of Antarctic Bottom Water during glacial times. Possible causes for such an increased bottom-water production include increasing wind strengths in the Southern Ocean or an increase in annual sea-ice formation, leaving dense water after brine rejection and thereby enhancing deep convection. We infer also that the global thermohaline circulation was perturbed significantly during the mid-Pleistocene climate transition between 0.86 and 0.45 million years ago. PMID:11518963

  7. Changing climatic response: a conceptual model for glacial cycles and the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Daruka, I.; Ditlevsen, P. D.

    2014-03-01

    Milankovitch's astronomical theory of glacial cycles, attributing ice age climate oscillations to orbital changes in Northern Northern-Hemisphere insolation, is challenged by the paleoclimatic record. The climatic response to the variations in insolation is far from trivial. In general the glacial cycles are highly asymmetric in time, with slow cooling from the interglacials to the glacials (inceptions) and very rapid warming from the glacials to the interglacials (terminations). We shall refer to this fast-slow dynamics as the "saw-tooth" shape of the paleoclimatic record. This is non-linearly related to the time-symmetric variations in the orbital forcing. However, the most pronounced challenge to the Milankovitch theory is the Mid-Pleistocene Transition (MPT) occurring about one million years ago. During that event, the prevailing 41 kyr glacial cycles, corresponding to the almost harmonic obliquity cycle were replaced by longer saw-tooth shaped cycles with a time scale around 100 kyr. The MPT must have been driven by internal changes in climate response, since it does not correspond to any apparent changes in the orbital forcing. In order to identify possible mechanisms causing the observed changes in glacial dynamics, it is relevant to study simplified models with the capability of generating temporal behavior similar to the observed records. We present a simple oscillator type model approach, with two variables, a temperature anomaly and an ice volume analogous, climatic memory term. The generalization of the ice albedo feedback is included in terms of an effective multiplicative coupling between this latter climatic memory term (representing the internal degrees of freedom) and the external drive. The simple model reproduces the temporal asymmetry of the late Pleistocene glacial cycles and suggests that the MPT can be explained as a regime shift, aided by climatic noise, from a period 1 frequency locking to the obliquity cycle to a period 2-3 frequency locking to the same obliquity cycle. The change in dynamics has been suggested to be a result of a slow gradual decrease in atmospheric greenhouse gas concentration. The presence of chaos in the (non-autonomous) glacial dynamics and a critical dependence on initial conditions raises fundamental questions about climate predictability.

  8. A conceptual model for glacial cycles and the middle Pleistocene transition

    NASA Astrophysics Data System (ADS)

    Daruka, István; Ditlevsen, Peter D.

    2016-01-01

    Milankovitch's astronomical theory of glacial cycles, attributing ice age climate oscillations to orbital changes in Northern-Hemisphere insolation, is challenged by the paleoclimatic record. The climatic response to the variations in insolation is far from trivial. In general the glacial cycles are highly asymmetric in time, with slow cooling from the interglacials to the glacials (inceptions) and very rapid warming from the glacials to the interglacials (terminations). We shall refer to this fast-slow dynamics as the "saw-tooth" shape of the paleoclimatic record. This is non-linearly related to the time-symmetric variations in the orbital forcing. However, the most pronounced challenge to the Milankovitch theory is the middle Pleistocene transition (MPT) occurring about one million years ago. During that event, the prevailing 41 kyr glacial cycles, corresponding to the almost harmonic obliquity cycle were replaced by longer saw-tooth shaped cycles with a time-scale around 100 kyr. The MPT must have been driven by internal changes in climate response, since it does not correspond to any apparent changes in the orbital forcing. In order to identify possible mechanisms causing the observed changes in glacial dynamics, it is relevant to study simplified models with the capability of generating temporal behavior similar to the observed records. We present a simple oscillator type model approach, with two variables, a temperature anomaly and a climatic memory term. The generalization of the ice albedo feedback is included in terms of an effective multiplicative coupling between this latter climatic memory term (representing the internal degrees of freedom) and the external drive. The simple model reproduces the temporal asymmetry of the late Pleistocene glacial cycles and suggests that the MPT can be explained as a regime shift, aided by climatic noise, from a period 1 frequency locking to the obliquity cycle to a period 2-3 frequency locking to the same obliquity cycle. The change in dynamics has been suggested to be a result of a slow gradual decrease in atmospheric greenhouse gas concentration. The critical dependence on initial conditions in the (non-autonomous) glacial dynamics raises fundamental questions about climate predictability.

  9. Simulations of cataclysmic outburst floods from Pleistocene Glacial Lake Missoula

    USGS Publications Warehouse

    Denlinger, Roger P.; O'Connell, D. R. H.

    2009-01-01

    Using a flow domain that we constructed from 30 m digital-elevation model data of western United States and Canada and a two-dimensional numerical model for shallow-water flow over rugged terrain, we simulated outburst floods from Pleistocene Glacial Lake Missoula. We modeled a large, but not the largest, flood, using initial lake elevation at 1250 m instead of 1285 m. Rupture of the ice dam, centered on modern Lake Pend Oreille, catastrophically floods eastern Washington and rapidly fills the broad Pasco, Yakima, and Umatilla Basins. Maximum flood stage is reached in Pasco and Yakima Basins 38 h after the dam break, whereas maximum flood stage in Umatilla Basin occurs 17 h later. Drainage of these basins through narrow Columbia gorge takes an additional 445 h. For this modeled flood, peak discharges in eastern Washington range from 10 to 20 × 106 m3/s. However, constrictions in Columbia gorge limit peak discharges to 6 m3/s and greatly extend the duration of flooding. We compare these model results with field observations of scabland distribution and high-water indicators. Our model predictions of the locations of maximum scour (product of bed shear stress and average flow velocity) match the distribution of existing scablands. We compare model peak stages to high-water indicators from the Rathdrum-Spokane valley, Walulla Gap, and along Columbia gorge. Though peak stages from this less-than-maximal flood model attain or exceed peak-stage indicators along Rathdrum-Spokane valley and along Columbia gorge, simulated peak stages near Walulla Gap are 10–40 m below observed peak-stage indicators. Despite this discrepancy, our match to field observations in most of the region indicates that additional sources of water other than Glacial Lake Missoula are not required to explain the Missoula floods.

  10. "Pleistocene Park" - A Glacial Ecosystem in a Warming World

    NASA Astrophysics Data System (ADS)

    Zimov, N.; Zimov, S. A.

    2011-12-01

    Most people if asked what association they have to the phrase - ice age, will answer - "Mammoth". But mammoths are not only big wooly elephants which went extinct in the beginning of Holocene. They were also part of a great ecosystem, the Northern Steppe or Mammoth Ecosystem, which was the world's largest ecosystem for hundreds thousand of years. This ecosystem, with extremely high rates of biocycling, could maintain animal densities which can be hardly found anywhere in the modern world. Northern steppe played an important role in shaping the glacial climate of the planet. High albedo grasslands reflected a much bigger portion of sun heat back to the atmosphere. Cold soils and permafrost served as sinks of carbon, helping to keep greenhouse gas concentration in the atmosphere at low levels. In the beginning of Holocene, simultaneously with wave of human expansion, an extinction wave took place. Tens of megafauna species became extinct at that time worldwide, while ones that resisted the extinction substantially dropped in numbers. The Northern Steppe ecosystem became imbalanced. Without large numbers of herbivores grazing and trampling the pasture, trees, shrubs and moss invaded grasslands. Within just a few hundreds years the mammoth ecosystem was gone, replaced by much lower productivity ecosystems. Already 14 thousand year ago, by simply increasing hunting pressure, humans managed to dramatically change Earth's appearance. We propose that by artificially maintaining a high animal density and diversity on a limited territory for extended period of time, it will be possible to reverse the shift, reestablishing the productive Northern Steppe ecosystem. Moss, shrubs and tree sprouts are not able to resist grazing pressure so they will be quickly replaced by grasses and herbs. Animals digesting all aboveground biomass would accelerate nutrition cycling and consequently increase bioproductivity. Higher bioproductivity would increase evapotranspiration, keeping soils dry and runoff low. This would further increase nutrient availability in the soil. Water limitation would force roots grow deeper to cold soil horizons where these roots (carbon) will be sequestered for a long period of time. After high productivity and high diversity of animals in the ecosystem is reached, this ecosystem will once again be able to compete and to expand. To test this hypothesis, we have started the experiment named "Pleistocene Park". For over 15 years we have brought different herbivore species to the fenced area in the Kolyma river lowland, keep them at high density and see the ecosystem transformation. Now Pleistocene Park is size of 20 km2 and home for 7 big herbivores species. It is a small version of how the Mammoth Steppe ecosystem looked in the past and may look in the future. Pleistocene Park is a place where scientists can conduct in situ research and see how restoration of the ice age ecosystem may help mitigate future climatic changes. Arctic is a weakly populated region with no possibilities for agriculture. Modern civilization treats bigger part of the Arctic as wastelands. So why don't turn this "wasteland" into something that can strongly benefit our civilization in the future?

  11. Similar millennial climate variability on the Iberian margin during two early Pleistocene glacials and MIS 3

    NASA Astrophysics Data System (ADS)

    Birner, B.; Hodell, D. A.; Tzedakis, P. C.; Skinner, L. C.

    2016-01-01

    Although millennial-scale climate variability (<10 ka) has been well studied during the last glacial cycles, little is known about this important aspect of climate in the early Pleistocene, prior to the Middle Pleistocene Transition. Here we present an early Pleistocene climate record at centennial resolution for two representative glacials (marine isotope stages (MIS) 37-41 from approximately 1235 to 1320 ka) during the "41 ka world" at Integrated Ocean Drilling Program Site U1385 (the "Shackleton Site") on the southwest Iberian margin. Millennial-scale climate variability was suppressed during interglacial periods (MIS 37, MIS 39, and MIS 41) and activated during glacial inceptions when benthic δ18O exceeded 3.2‰. Millennial variability during glacials MIS 38 and MIS 40 closely resembled Dansgaard-Oeschger events from the last glacial (MIS 3) in amplitude, shape, and pacing. The phasing of oxygen and carbon isotope variability is consistent with an active oceanic thermal bipolar see-saw between the Northern and Southern Hemispheres during most of the prominent stadials. Surface cooling was associated with systematic decreases in benthic carbon isotopes, indicating concomitant changes in the meridional overturning circulation. A comparison to other North Atlantic records of ice rafting during the early Pleistocene suggests that freshwater forcing, as proposed for the late Pleistocene, was involved in triggering or amplifying perturbations of the North Atlantic circulation that elicited a bipolar see-saw response. Our findings support similarities in the operation of the climate system occurring on millennial time scales before and after the Middle Pleistocene Transition despite the increases in global ice volume and duration of the glacial cycles.

  12. Multiple instabilities and modes of glacial rhythmicity in the Plio-Pleistocene: A general theory of late Cenozoic climatic change

    SciTech Connect

    Saltzman, B.; Verbitsky, M.Ya.

    1993-10-01

    Several distinct modes of glacial oscillation have existed during the past few million years, ranging from low-amplitude, high-frequency oscillations in the early Pliocene, through relatively high amplitude, predominantly near 40 ky period, oscillations in the late Pliocene and early Pleistocene, to the major near 100 ky period oscillations of the late Pleistocene. In addition to other plausible mechanisms, this study illustrates another possible contributor based on the hypothesis that the slow-response climatic system is bistable and that two kinds of internal instability may be operative along with externally imposed forcing due to earth-orbital (Milankovitch) radiation changes and slow, tectonically-induced changes in atmospheric carbon dioxide. Within the framework of a dynamical model containing the possibility for these two instabilities, as well as for stable modes, the study shows (1) how Milankovitch radiative changes or stochastic forcing influencing ice sheets can induce aperiodic (chaotic) transitions between the possible stable and unstable modes, and (2) how progressive, long-term, tectonically-induced, changes in carbon dioxide, acting in concert with earth-orbital radiative variations in high Northern Hemisphere latitudes, can force systematic transitions between the modes. This is a minimum dynamical model of the late Cenozoic climatic changes, containing the main physical factors determining these changes: ice mass, bedrock depression, atmospheric carbon dioxide concentration, deep ocean thermohaline state, Milankovitch radiation forcing, and slow tectonically-induced carbon dioxide forcing. 34 refs., 13 figs., 2 tabs.

  13. Pleistocene glacial cycle effects on the phylogeography of the Chinese endemic bat species, Myotis davidii.

    TOXLINE Toxicology Bibliographic Information

    You Y; Sun K; Xu L; Wang L; Jiang T; Liu S; Lu G; Berquist SW; Feng J

    2010-01-01

    BACKGROUND: Global climatic oscillations, glaciation cycles and the unique geographic topology of China have profoundly influenced species population distributions. In most species, contemporary distributions of populations cannot be fully understood, except in a historical context. Complex patterns of Pleistocene glaciations, as well as other physiographic changes have influenced the distribution of bat species in China. Until this study, there had been no phylogeographical research on Myotis davidii, an endemic Chinese bat. We used a combination of nuclear and mitochondrial DNA markers to investigate genetic diversity, population structure, and the demographic history of M. davidii. In particular, we compared patterns of genetic variation to glacial oscillations, topography, and environmental variation during the Pleistocene in an effort to explain current distributions in light of these historical processes.RESULTS: M. davidii comprises three lineages (MEP, SWP and SH) based on the results of molecular variance analysis (AMOVA) and phylogenetic analyses. The results of a STRUCTURE analysis reveal multi-hierarchical population structure in M. davidii. Nuclear and mitochondrial genetic markers reveal different levels of gene flow among populations. In the case of mtDNA, populations adhere to an isolation-by-distance model, whereas the individual assignment test reveals considerable gene flow between populations. MDIV analysis indicate that the split of the MEP and SWP/SH lineages, and from the SWP and SH lineages were at 201 ka BP and 158 ka BP, respectively. The results of a mismatch distribution analysis and neutrality tests indicate a population expansion event at 79.17 ka BP and 69.12 ka BP in MEP and SWP, respectively.CONCLUSIONS: The complex demographic history, discontinuous extant distribution of haplotypes, and multiple-hierarchy population structure of M. davidii appear associated with climatic oscillations, topography and eco-environmental variation of China. Additionally, the three regions are genetically differentiated from one another in the entire sample set. The degree of genetic differentiation, based on the analysis of mtDNA and nDNA, suggests a male-mediated gene flow among populations. Refuges were in the MEP, SH and the lower elevations of SWP regions. This study also provides insights for conservation management units (MEP, SWP and SH).

  14. Pleistocene glacial cycle effects on the phylogeography of the Chinese endemic bat species, Myotis davidii

    PubMed Central

    2010-01-01

    Background Global climatic oscillations, glaciation cycles and the unique geographic topology of China have profoundly influenced species population distributions. In most species, contemporary distributions of populations cannot be fully understood, except in a historical context. Complex patterns of Pleistocene glaciations, as well as other physiographic changes have influenced the distribution of bat species in China. Until this study, there had been no phylogeographical research on Myotis davidii, an endemic Chinese bat. We used a combination of nuclear and mitochondrial DNA markers to investigate genetic diversity, population structure, and the demographic history of M. davidii. In particular, we compared patterns of genetic variation to glacial oscillations, topography, and environmental variation during the Pleistocene in an effort to explain current distributions in light of these historical processes. Results M. davidii comprises three lineages (MEP, SWP and SH) based on the results of molecular variance analysis (AMOVA) and phylogenetic analyses. The results of a STRUCTURE analysis reveal multi-hierarchical population structure in M. davidii. Nuclear and mitochondrial genetic markers reveal different levels of gene flow among populations. In the case of mtDNA, populations adhere to an isolation-by-distance model, whereas the individual assignment test reveals considerable gene flow between populations. MDIV analysis indicate that the split of the MEP and SWP/SH lineages, and from the SWP and SH lineages were at 201 ka BP and 158 ka BP, respectively. The results of a mismatch distribution analysis and neutrality tests indicate a population expansion event at 79.17 ka BP and 69.12 ka BP in MEP and SWP, respectively. Conclusions The complex demographic history, discontinuous extant distribution of haplotypes, and multiple-hierarchy population structure of M. davidii appear associated with climatic oscillations, topography and eco-environmental variation of China. Additionally, the three regions are genetically differentiated from one another in the entire sample set. The degree of genetic differentiation, based on the analysis of mtDNA and nDNA, suggests a male-mediated gene flow among populations. Refuges were in the MEP, SH and the lower elevations of SWP regions. This study also provides insights for conservation management units (MEP, SWP and SH). PMID:20618977

  15. Case for periodic, colossal jokulhlaups from Pleistocene glacial Lake Missoula.

    USGS Publications Warehouse

    Waitt, R.B., Jr.

    1985-01-01

    Lake Missoula (2500 km3) remained sealed as long as any segment of the glacial dam remained grounded; when the lake rose to a critical level c.600 m in depth, the glacier bed at the seal became buoyant, initiating underflow from the lake. Subglacial tunnels then grew exponentially, leading to catastrophic discharge. Calculations of the water budget for the lake basin (including input from the Cordilleran ice sheet) suggest that the lake filled every three to seven decades. -from Author

  16. Bifurcations and strange nonchaotic attractors in a phase oscillator model of glacial-interglacial cycles

    NASA Astrophysics Data System (ADS)

    Mitsui, Takahito; Crucifix, Michel; Aihara, Kazuyuki

    2015-06-01

    Glacial-interglacial cycles are large variations in continental ice mass and greenhouse gases, which have dominated climate variability over the Quaternary. The dominant periodicity of the cycles is ˜40 kyr before the so-called middle Pleistocene transition between ˜1.2 and ˜0.7 Myr ago, and it is ˜100 kyr after the transition. In this paper, the dynamics of glacial-interglacial cycles are investigated using a phase oscillator model forced by the time-varying incoming solar radiation (insolation). We analyze the bifurcations of the system and show that strange nonchaotic attractors appear through nonsmooth saddle-node bifurcations of tori. The bifurcation analysis indicates that mode-locking is likely to occur for the 41 kyr glacial cycles but not likely for the 100 kyr glacial cycles. The sequence of mode-locked 41 kyr cycles is robust to small parameter changes. However, the sequence of 100 kyr glacial cycles can be sensitive to parameter changes when the system has a strange nonchaotic attractor.

  17. Pleistocene sea-surface temperature evolution: Early cooling, delayed glacial intensification, and implications for the mid-Pleistocene climate transition

    NASA Astrophysics Data System (ADS)

    McClymont, Erin L.; Sosdian, Sindia M.; Rosell-Mel, Antoni; Rosenthal, Yair

    2013-08-01

    The mid-Pleistocene climate transition (MPT) is defined by the emergence of high amplitude, quasi-100 ka glacial-interglacial cycles from a prior regime of more subtle 41 ka cycles. This change in periodicity and amplitude cannot be explained by a change in 'external' astronomical forcing. Here, we review and integrate published records of sea-surface temperatures (SSTs) to assess whether a common global expression of the MPT in the surface ocean can be recognized, and examine our findings in light of mechanisms proposed to explain climate system reorganization across the MPT. We show that glacial-interglacial variability in SSTs is superimposed upon a longer-term cooling trend in oceanographic systems spanning the low- to high-latitudes. Regional variability exists in the timing of the onset and magnitude of cooling but, in most cases, a long-term cooling trend begins or intensifies from ~ 1.2 Ma (Marine Isotope Stage, MIS, 35-34). The SST cooling accompanies a long-term trend towards higher global ice volume as recorded in benthic foraminifera ?18O, but predates a step-like increase in ?18O at ~ 0.9 Ma (MIS 24-22) that is argued to reflect expansion of continental ice-sheets. The strongest expression of Pleistocene cooling is found during glacial stages, whereas minor or negligible trends in interglacial temperatures are identified. However, pronounced cooling during both glacial and interglacial maxima is evident at 0.9 Ma. Alongside the long-term SST cooling trends, quasi-100 ka cycles begin to emerge in both the SST and ?18O records at 1.2 Ma, and become dominant with the expansion of the ice-sheets at 0.9 Ma. We show that the intensified glacial-stage cooling is accompanied by evolving pCO2, abyssal ocean ventilation, atmospheric circulation and/or dust inputs to the Southern Ocean. These changes in diverse environmental parameters suggest that glacial climate boundary conditions evolved across the MPT. In turn, these modified boundary conditions may have altered climate sensitivity to orbital forcing by placing pre-existing ice-sheets closer to some threshold of climate-ice sheet response.

  18. Late-glacial pollen, macrofossils and fish remains in northeastern U.S.A. — The Younger Dryas oscillation. A contribution to the 'North Atlantic seaboard programme' of IGCP-253, 'Termination of the Pleistocene'

    NASA Astrophysics Data System (ADS)

    Peteet, D. M.; Daniels, R. A.; Heusser, L. E.; Vogel, J. S.; Southon, J. R.; Nelson, D. E.

    The late-glacial environmental histories of Allamuchy Pond, New Jersey and Linsley Pond, Connecticut are reconstructed from pollen, macrofossil and fish scale remains. Accelerator mass spectrometry (AMS) 14C dating of seeds and needles indicates that the first organic deposition, evidenced by fossil Picea (spruce) needles, occurred approximately 12,400 BP. A major regional warming began in the northeastern United States at this time, correlative with the Bølling/Allerød warming of Europe and Greenland. The increase in Quercus (oak) pollen and presence of Pinus strobus (white pine) needles demonstrates the magnitude of warming reached at about 11,000 BP. The subsequent decline of thermophilous species and increase in boreal Picea, Abies (fir), Larix (larch), Betula papyrifera (paper birch) and Alnus (alder) from 10,800-10,000 BP was a regional vegetational reversal. Thus we find a North American expression of the Younger Dryas with a mean annual temperature depression of 3-4° C. The subsequent classical southern New England pine pollen zone 'B' and Pinus strobus macrofossils signalled a return to warmer conditions at approximately 10,000 BP, regionally, within approximately 50-100 years. A large increase in Quercus follows. This study is unique in documenting a continuous late-glacial record of fish remains from Allamuchy Pond, New Jersey sediments, indicating that members of the families Centrarchidae (sunfish), Salmonidae (trout), Percidae (perch) and Cyprinidae (minnow) were regionally present.

  19. Cataclysmic Late pleistocene flooding from glacial Lake Missoula: A review

    NASA Astrophysics Data System (ADS)

    Baker, Victor R.; Bunker, Russell C.

    Late Wisconsin floods from glacial Lake Missoula occurred between approximately 16 and 12 ka BP. Many floods occurred; some were demonstrably cataclysmic. Early studies of Missoula flooding centered on the anomalous physiography of the Channeled Scabland, which J. Harlen Bretz hypothesized in 1923 to have developed during a debacle that he named 'The Spokane Flood'. Among the ironies in the controversy over this hypothesis was a mistaken view of uniformitarianism held by Bretz's adversaries. After resolution of the scabland's origin by cataclysmic outburst flooding from glacial Lake Missoula, research since 1960 emphasized details of flood magnitudes, frequency, routing and number. Studies of flood hydraulics and other physical parameters need to utilize modern computerized procedures for flow modeling, lake-burst simulation, and sediment-transport analysis. Preliminary simulation models indicate the probability of multiple Late Wisconsin jökulhlaups from Lake Missoula, although these models predict a wide range of flood magnitudes. Major advances have been made in the study of low-energy, rhythmically bedded sediments that accumulated in flood slack-water areas. The 'forty floods' hypothesis postulates that each rhythmite represents the deposition in such slack-water areas of separate, distinct cataclysmic floods that can be traced from Lake Missoula to the vicinity of Portland, Oregon. However, the hypothesis has numerous unsubstantiated implications concerning flood magnitudes, sources, routing and sedimentation dynamics. There were multiple great Late Wisconsin floods in the Columbia River system of the northwestern United States. Studies of high-energy, high altitude flood deposits are necessary to evaluate the magnitudes of these floods. Improved geochronologic studies throughout the immense region impacted by the flooding will be required to properly evaluate flood frequency. The cataclysmic flood concept championed by J. Harlen Bretz continues to stimulate exciting and controversial research.

  20. Plio-Pleistocene glacial-interglacial productivity changes in the eastern equatorial Pacific upwelling system

    NASA Astrophysics Data System (ADS)

    Jakob, Kim A.; Wilson, Paul A.; Bahr, André; Bolton, Clara T.; Pross, Jörg; Fiebig, Jens; Friedrich, Oliver

    2016-03-01

    The eastern equatorial Pacific Ocean (EEP) upwelling system supports >10% of the present-day global ocean primary production, making it an important component in Earth's atmospheric and marine carbon budget. Traditionally, it has been argued that since intensification of Northern Hemisphere glaciation (iNHG, ~2.7 Ma), changes in EEP productivity have predominantly depended on trade wind strength-controlled upwelling intensity. An alternative hypothesis suggests that EEP productivity is primarily controlled by nutrient supply from the high southern latitudes via mode waters. Here we present new high-resolution data for the latest Pliocene/early Pleistocene from Ocean Drilling Program Site 849, located within the equatorial divergence system in the heart of the EEP upwelling regime. We use carbon isotopes in benthic and planktic foraminiferal calcite and sand accumulation rates to investigate glacial-interglacial (G-IG) productivity fluctuations between 2.65 and 2.4 Ma (marine isotope stages (MIS) G1 to 94). This interval includes MIS 100, 98, and 96, three large-amplitude glacials (~1‰ in benthic δ18O) representing the culmination of iNHG. Our results suggest that latest Pliocene/early Pleistocene G-IG productivity changes in the EEP were strongly controlled by nutrient supply from Southern Ocean-sourced mode waters. Our records show a clear G-IG cyclicity from MIS 100 onward with productivity levels increasing from full glacial conditions and peaking at glacial terminations. We conclude that enhanced nutrient delivery from high southern latitudes during full glacial conditions together with superimposed intensified regional upwelling toward glacial terminations strongly regulated primary productivity rates in the EEP from MIS 100 onward.

  1. Paleoclimatic significance of Middle Pleistocene glacial deposits in the Kotzebue Sound region, northwest coastal Alaska

    SciTech Connect

    Roof, S.R.; Brigham-Grette, J. )

    1992-01-01

    During Middle Pleistocene time, glaciers extended from the western Brooks Range in NW Alaska to the coast at Kotzebue Sound, forming Baldwin Peninsula, a 120 km-long terminal moraine. Marine, glacigenic, and fluvial facies exposed along coastal bluffs surrounding Kotzebue Sound and Hotham Inlet indicate that at least the initial stages of the glacial advance occurred while sea level was high enough to cover the shallow Bering Shelf. Although it is presently uncertain if the ice actually reached tidewater before extensive middle-latitude ice-sheet formation, the marine and glacigenic facies clearly indicate that this advance must have occurred significantly out-of-phase with lower latitude glaciation. The authors believe an ice-free Bering Sea provided the moisture for glacier growth during the waning phases of a global interglacial climate. Although the magnitude of the Baldwin Peninsula advance was large compared to late Pleistocene advances, the timing with respect to sea level is consistent with observations by Miller and de Vernal that late Pleistocene polar glaciations also occurred near the end of interglacial periods, when global sea level was high, high-latitude oceans were relatively warm, and summer insolation was decreasing. An important implication of this out-of-phase glaciation hypothesis is that the critical transition point between climate states may be earlier in the interglacial-glacial cycle than previously thought. Because it appears that climate change is initiated in polar regions while the rest of Earth is experiencing an interglacial climate, many of their climate models must be revised. The glacial record at Baldwin Peninsula provides an opportunity to test, revise, and perhaps extend this out-of-phase glaciation hypothesis to the middle Pleistocene interval.

  2. Late Pleistocene oscillations of Lake Owens, eastern California

    SciTech Connect

    Orme, A.J. . Dept. of Geography); Orme, A.R. . Dept. of Geography)

    1993-04-01

    Just before diversion of the Owens River drainage to Los Angeles in 1912--13, Owens Lake had a maximum depth of 14m and covered 290 km[sup 2] at a water-surface elevation of 1,095m. Indeed throughout most of Holocene time, the lake formed the sump for the Owens River drainage, its level fluctuating in response to variable inflow and evaporation. In late Pleistocene time, however, Lake Owens' spilled south towards Lake Searles' on reaching an elevation of 1,145m, at which level the lake was 64m deep and covered 694 km[sup 2]. Aided by radiometric dating, stratigraphic and sedimentological analyses of beach ridges and associated deposits around its northeast margin reveal complex oscillations of Lake Owens between 13,000 and 9,000 years B.P.. Following an earlier high stand, lake level fell until around 13,000 B.P. it rose again to at least 1138m, probably linked to late Wisconsinan glacier melt in the Sierra Nevada. Across the Pleistocene/Holocene transition, lake level fell to around 1100m and then rose to about 1,120m around 9,600 B.P., before falling away during Holocene time. This pattern is consistent with fluctuations in glacier budgets and meltwater regimes, and with late Pleistocene-early Holocene climatic oscillations postulated elsewhere in the region. Correlation with lake-level fluctuations observed at other localities around Owens Lake is complicated by tectonism, but the above sequence invites comparison with the detailed record obtained from Searles Lake farther south.

  3. Sedimentary effects of cataclysmic late Pleistocene glacial outburst flooding, Altay Mountains, Siberia

    NASA Astrophysics Data System (ADS)

    Rudoy, A. N.; Baker, V. R.

    1993-05-01

    Pleistocene glacial outburst floods were released from ice-dammed lakes of the Altay Mountains, south-central Siberia. The Kuray-Chuja lake system yielded peak floods in excess of 1 × 106 m3 s-1 and as great as 18 × 106 m3 s-1. The phenomenally high bed shear stresses and stream powers generated in these flows produced a main-channel, coarse-grained facies of coarse gravel in (1) foreset-bedded bars as much as 200 m high and several kilometers long, and (2) degradational, boulder-capped river terraces. Giant current ripples, 50 to 150 m in spacing, composed of pebble and cobble gravel, are locally abundant. The whole sedimentary assemblage is very similar to that of the Channeled Scabland, produced by the Pleistocene Missoula Floods of western North America.

  4. Glacially-influenced late Pleistocene stratigraphy of a passive margin: New Jersey's Record of the North American ice sheet

    USGS Publications Warehouse

    Carey, J.S.; Sheridan, R.E.; Ashley, G.M.; Uptegrove, J.

    2005-01-01

    Glacial isostasy and the sediment supply changes associated with the waxing and waning of ice sheets have dramatic effects on the stratigraphy of adjacent continental shelves. In ancient stratigraphic records, the glacial influences on such deposits could be difficult to recognize because of the removal of coeval terrestrial glacial deposits by erosion. This study illustrates the effects of the Laurentide Ice Sheet on a basin near its maximum limit, the New Jersey continental shelf. Analysis of 1600 km of Geopulse???, Uniboom???, Minisparker??? and airgun profiles reveals four depositional sequences that have a maximum thickness of ???75 m near the shelf edge. Sequences I and IV correspond to the major glacial-interglacial sea level changes at Marine Isotope Chron (MIC) 6/5e and 2/1, whereas sequences II and III reflect smaller-scale sea-level fluctuations during chrons 4/3c and 3b/3a, respectively. Sequences I and IV are characterized by relatively thick low stand to early transgressive deposits near the shelf edge formed during times of increased sediment supply, but are thin and discontinuous across much of the shelf. Reflection horizons in these units deepen northward in the northern half of the study area due to collapse of a peripheral bulge that formed at the margin of the Laurentide Ice Sheet. The Hudson River moved from a more southerly drainage pattern to the modern Hudson Shelf Valley position, possibly under the influence of the advancing peripheral bulge. Sequences II and III are largely preserved within a broad mid-shelf swale likely created by the migration of an ancestral Hudson River, and their thickness implies much higher sedimentation rates during chrons 4 and 3 than seen today. If the terrestrial glacial record was eroded, the increased rates of sedimentation during the Pleistocene, dominance of sediments derived from northern New England, and northward tilting of strata could be interpreted as a result of uplift of a northern source area. The unusually high frequency of the relative sea-level oscillations (20 kyr), the concentration of sediment supply during low stands and early transgressions, and the correspondence of sea-level change with climatic change could be used to infer their relationship to a nearby ice sheet. Geologists studying deposits formed during times of widespread continental glaciation should consider possible glacial influences on the stratigraphy of mid-latitude deposits, even in the absence of sediments directly deposited by ice. ?? 2005 Elsevier B.V. All rights reserved.

  5. Early Pleistocene Glacial Lake Lesley, West Branch Susquehanna River valley, central Pennsylvania

    NASA Astrophysics Data System (ADS)

    Ramage, Joan M.; Gardner, Thomas W.; Sasowsky, Ira D.

    1998-02-01

    Laurentide glaciers extended into north central Pennsylvania repeatedly during at least the last 2 million years. Early Pleistocene glaciation extended farther south into central Pennsylvania than any subsequent glaciation, reaching the West Branch Susquehanna River (WBSR) valley. Early Pleistocene ice dammed the northeast-flowing West Branch Susquehanna River at Williamsport, forming Glacial Lake Lesley, a 100-km-long proglacial lake. In this paper, we present compelling evidence for the lake and its age. Maximum lake volume (˜ 100 km 3) was controlled by the elevation of the lowest drainage divide, ˜ 340 m above sea level at Dix, Pennsylvania. Stratified deposits at McElhattan and Linden are used to reconstruct depositional environments in Glacial Lake Lesley. A sedimentary section 40 m thick at McElhattan fines upward from crossbedded sand to fine, wavy to horizontally laminated clay, consistent with lake deepening and increasing distance from the sediment source with time. At Linden, isolated cobbles, interpreted as dropstones, locally deform glacio-lacustrine sediment. We use paleomagnetism as an age correlation tool in the WBSR valley to correlate contemporaneous glaciofluvial and proglacial lacustrine sediments. Reversed remanent polarity in finely-laminated lacustrine clay and silt at McElhattan ( I = 20.4°, D = 146.7°, α95 = 17.7°) and in interbedded silt and sand at Linden ( I = 55.3°, D = 175.2°, α95 = 74.6°) probably corresponds to the latter part of the Matuyama Reversed Polarity Chron, indicating an age between ˜ 770 and ˜ 970 ka. At McElhattan, a diamicton deformed the finely laminated silt and clay by loading and partial fluidization during or soon after lake drainage. As a result, the deformed clay at McElhattan lacks discrete bedding and records a different characteristic remanent magnetism from underlying, undeformed beds. This difference indicates that the characteristic remanent magnetism is detrital. An electrical resistivity survey and drill borings define a buried bedrock channel at Bald Eagle near the drainage divide that is the proposed spillway for Glacial Lake Lesley. The highest terrace at Bald Eagle (Qt1 be) was truncated by the spillway channel. Age of Qt1 be is estimated as at least middle Middle Pleistocene to Early Pleistocene by correlation of soil physical properties on Qt1 be to soil chronosequences developed for Susquehanna River alluvial terraces, further downstream. This age is generally consistent with the age estimated from paleomagnetism.

  6. Extensive deposits on the Pacific plate from Late Pleistocene North American glacial lake outbursts

    USGS Publications Warehouse

    Normark, W.R.; Reid, J.A.

    2003-01-01

    One of the major unresolved issues of the Late Pleistocene catastrophic-flood events in the northwestern United States (e.g., from glacial Lake Missoula) has been what happened when the flood discharge reached the ocean. This study compiles available 3.5-kHz high-resolution and airgun seismic reflection data, long-range sidescan sonar images, and sediment core data to define the distribution of flood sediment in deepwater areas of the Pacific Ocean. Upon reaching the ocean at the mouth of the Columbia River near the present-day upper continental slope, sediment from the catastrophic floods continued flowing downslope as hyperpycnally generated turbidity currents. The turbidity currents resulting from the Lake Missoula and other latest Pleistocene floods followed the Cascadia Channel into and through the Blanco Fracture Zone and then flowed west to the Tufts Abyssal Plain. A small part of the flood sediment, which was stripped off the main flow at a bend in the Cascadia Channel at its exit point from the Blanco Fracture Zone, continued flowing more than 400 km to the south and reached the Escanaba Trough, a rift valley of the southern Gorda Ridge. Understanding the development of the pathway for the Late Pleistocene flood sediment reaching Escanaba Trough provides insight for understanding the extent of catastrophic flood deposits on the Pacific plate.

  7. Climatic implications of correlated upper Pleistocene glacial and fluvial deposits on the Cinca and Gallego rivers, NE Spain

    SciTech Connect

    Lewis, Claudia J; Mcdonald, Eric; Sancho, Carlos; Pena, Jose- Luis

    2008-01-01

    We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gallego River valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence dates, and time-related trends in soil development. The ages obtained from glacial deposits indicate glacial periods at 85 {+-} 5 ka, 64 {+-} 11 ka, and 36 {+-} 3 ka (from glacial till) and 20 {+-} 3 ka (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive terrace systems in the Cinca River valley at 178 {+-} 21 ka, 97 {+-} 16 ka, 61 {+-} 4 ka, 47 {+-} 4 ka, and 11 {+-} 1 ka, and in the Gallego River valley at 151 {+-} 11 ka, 68 {+-} 7 ka, and 45 {+-} 3 ka. The times of maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine isotope stages and heinrich events. The maximum extent of glaciers during the last glacial occurred at 64 {+-} 11 ka, and the terraces correlated with this glacial phase are the most extensive in both the Cinca (61 {+-} 4 ka) and Gallego (68 {+-} 7 ka) valleys, indicating a strong increase in fluvial discharge and availability of sediments related to the transition to deglaciation. The global Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly dry conditions at that time. Precipitation must be controlled by the position of the Iberian Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems and the associated fluvial dynamic seem sensitive to (1) global climate changes controlled by insolation, (2) North Atlantic thermohaline circulation influenced by freshwater pulses into the North Atlantic, and (3) anomalies in atmospheric circulation in the North Atlantic controlling precipitation on the Iberian peninsula. The model of glacial and fluvial evolution during the Late Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in southern Europe.

  8. Oscillators and relaxation phenomena in Pleistocene climate theory

    PubMed Central

    Crucifix, Michel

    2012-01-01

    Ice sheets appeared in the northern hemisphere around 3 Ma (million years) ago and glacial–interglacial cycles have paced Earth's climate since then. Superimposed on these long glacial cycles comes an intricate pattern of millennial and sub-millennial variability, including Dansgaard–Oeschger and Heinrich events. There are numerous theories about these oscillations. Here, we review a number of them in order to draw a parallel between climatic concepts and dynamical system concepts, including, in particular, the relaxation oscillator, excitability, slow–fast dynamics and homoclinic orbits. Namely, almost all theories of ice ages reviewed here feature a phenomenon of synchronization between internal climate dynamics and astronomical forcing. However, these theories differ in their bifurcation structure and this has an effect on the way the ice age phenomenon could grow 3 Ma ago. All theories on rapid events reviewed here rely on the concept of a limit cycle excited by changes in the surface freshwater balance of the ocean. The article also reviews basic effects of stochastic fluctuations on these models, including the phenomenon of phase dispersion, shortening of the limit cycle and stochastic resonance. It concludes with a more personal statement about the potential for inference with simple stochastic dynamical systems in palaeoclimate science. PMID:22291227

  9. Pleistocene glaciations in the weatern Arctic Ocean: Tentative age model of marine glacial landforms

    NASA Astrophysics Data System (ADS)

    Niessen, Frank; Stein, Rüdiger; Matthiessen, Jens; Jensen, Laura; Nam, Seung-Il; Schreck, Michael

    2015-04-01

    Recently glacial landforms were presented and interpreted as complex pattern of Pleistocene glaciations in the western Arctic Ocean along the continental margin of the East Siberian and Chukchi seas, (Niessen et al. 2013, Dove et al. 2014). These landforms include moraines, drumlins, glacigenic debris flows, till wedges and mega-scale glacial lineations. Orientations of some of the landforms suggest the presence of former ice sheets on the Chukchi Borderland and the East Siberian shelf. Here we present a tentative age model for some of the younger glacial events by correlation of sediment cores with glacial landforms as seen in subbottom profiles. The database was obtained during RV "Polarstern" cruise ARK-XIII/3 (2008) and RV "Araon" cruise ARA03B (2012), which investigated an area between the Chukchi Borderland and the East Siberian Sea between 165°W and 170°E. The stratigraphic correlation of sediment cores is based on physical properties (wet-bulk density and magnetic susceptibility), lithology and color. The chronology of the area has been proposed by Stein et al. (2010) for a core from the Chukchi Abyssal Plain (PS72/340-5) and includes brown layers B1 to B9 (marine isotope stages MIS 1 to MIS 7), which are used as marker horizons for lateral core correlation. Our tentative age model suggests that the youngest and shallowest (480 m below present water level; mbpwl) grounding event of an ice sheet on the Chukchi Borderland is younger than B2 (interpreted as Last Glacial Maximum; LGM). There is no clear evidence for a LGM glaciation along the East Siberian margin because intensive post LGM iceberg scouring occurred above 350 m present water level. On the slopes of the East Siberian Sea two northerly directed ice advances occurred, both of which are older and younger than B2 and B3, respectively. The younger advance grounded to about 700 m present water depth along the continental slope and the older to 900 m and 1100 m on the Arlis Plateau and the East Siberian continental margin, respectively. We interpret these advances as Middle Weichselian glaciations on the Beringian shelf (MIS 4 to 3). Two older glaciations can be dated as Early Weichselian (MIS 5b to 5d), of which the younger event is older and younger than B3 and B4, respectively. This glaciation can be traced by glacial wedges, streamlined lineations in up to 1200 mbpsl and subglacial diamicton along the East Siberian margin, the Arlis Plateau, and the Mendeleev Ridge. There are at least three older glaciation visible in acoustic images from the East Siberian continental margin, which probably predate the Weichselian. The available cores did not penetrate these events and the ages remain speculative. Dove, D, Polyak, L., Coakley, B. (2014) Widespread, multi-source glacial erosion on the Chukchi margin, Arctic Ocean, Quat. Sci. Rev. 92, 112-122. Niessen, F. et al. (2013) Repeated Pleistocene glaciation of the East Siberian continental margin, Nature Geoscience, 6 (10), 842-846. Stein, R. et al. (2010) Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean), Polarforschung, 79(2), 97-121.

  10. The influence of Pleistocene glacial refugia on tawny owl genetic diversity and phylogeography in western Europe.

    PubMed

    Brito, Patrícia H

    2005-09-01

    The glacial refugia hypothesis indicates that during the height of the Pleistocene glaciations the temperate species that are today widespread in western Europe must have survived in small and climatically favourable areas located in the southern peninsulas of Iberia, Italy and Balkans. One such species is the tawny owl, a relatively sedentary, nonmigratory bird presently distributed throughout Europe. It is a tree-nesting species closely associated with deciduous and mixed coniferous woodlands. In this study I used control region mtDNA sequences from 187 individuals distributed among 14 populations to determine whether current genetic patterns in tawny owl populations were consistent with postglacial expansion from peninsular refugia. European, North African and Asian tawny owls were found to represent three distinct lineages, where North Africa is the sister clade to all European owls. Within Europe, I found three well-supported clades that correspond to each of the three allopatric refugia. Expansion patterns indicate that owls from the Balkan refugium repopulated most of northern Europe, while expansion out of Iberia and Italy had only regional effects leading to admixture in France. Estimates of population divergence times between refugia populations are roughly similar, but one order of magnitude smaller between Greece and northern Europe. Based on a wide range of mutation rates and generation times, divergence between refugia appears to date to the Pleistocene. PMID:16101775

  11. Late Pleistocene and Holocene Glacial Evolution and Isotasy in the Antarctic Peninsula

    NASA Technical Reports Server (NTRS)

    Ivins, E. R.; Raymond, Carol A.; Heflin, M. B.; James, T. S.

    1989-01-01

    Employing a numerical model of Payne et al. that simulates the late-Pleistocene evolution of the former Antarctic Peninsula Ice Sheet (APIS) as a basis, we compute the present-day postglacial vertical isostasy of this region. The region may also experience significant mid-to late-Holocene glacial mass changes. Climate and oceanographic studies indicate that the ice mass imbalance of this region may be of larger magnitude that elsewhere in Antarctica. We compute the crustal response to these more recent ice mass changes and Holocene fluctuations with a simple gravitating Earth model consisting of an elastic lithosphere and a viscoelastic mantle (half-space). The calculations demonstrate that the present-day response could be significant, possibly at the level of about 4 - 11 mm/yr. Such significant crustal motion could be driven by glacial mass changes integrated over the last 1000 years if the regional mantle viscosity is below about 2 x 10(exp 20) Pa sec. In this lower viscosity range, present-day crustal motion has a significant phase-lagged character and the composite lithosphere/mantle viscoelastic response to late-Holocene events dominates over purely elastic (instantaneous) responses to present-day ice mass changes. For a higher mantle viscosity, greater than about 5 x 10(exp 20) Pa sec, the predicted present-day vertical isostasy is dominated by gravitational response to glacial unloading during the 18 - 6 kyr BP collapse of the APIS, and is analogous to that known to be occurring in the Gulf of Bothnia and Hudson Bay.

  12. Late Pleistocene glacial chronology of the Retezat Mts, Southern Carpathians, using 10Be exposure ages

    NASA Astrophysics Data System (ADS)

    Ruszkiczay-Rüdiger, Zsófia; Kern, Zoltán; Urdea, Petru; Braucher, Régis; Madarász, Balázs; Schimmelpfennig, Irene

    2015-04-01

    Our knowledge on the timing of glacial advances in the Southern Carpathians is limited. Recently, some attempts have been made to develop an improved temporal framework for the glaciations of the region using cosmogenic 10Be exposure dating. However, glacial chronology of the Romanian Carpathians remains contradictory. E.g. the timing of the maximum ice advance appears to be asynchronous within the area and also with other dated glacial events in Europe. Main objective of our study is to utilize cosmogenic in situ produced 10Be dating to disentangle the contradictions of the Southern Carpathian Late Pleistocene glacial chronology. Firstly, previously published 10Be data are recalculated in accordance with the new half-life, standardization and production rate of 10Be. The recalculated 10Be exposure ages of the second largest (M2) moraines in the Retezat Mts. appear to be ca. 19-24% older than exposure ages calculated by Reuther et al. (2007, Quat. Int. 164-165, 151-169). This contradicts the earlier conclusions suggesting post LGM age of M2 glacial advance and suggests that M2 moraines can be connected to the end of the LGM with final stabilization possibly at the beginning of the Late Glacial. We emphasize that it is ambiguous to correlate directly the exposure-dated glacier chronologies with millennial scale climate changes due to uncertainties in sample collection and in computation of exposure ages from measured nuclide concentrations. New 10Be samples were collected in order to determine the 10Be exposure age of moraines outside the most prominent generation (M2) including the largest and oldest moraine (M1) and the landforms connected to the smallest ice advances (M4), which remained undated so far. The new exposure ages of M2 moraines are well in harmony with the recalculated ages of Reuther at al. (2007). 10Be exposure age of boulders on the smallest moraine suggest that the last glaciers disappeared in the area during the Late Glacial, indicating no glaciation during the Younger Dryas and Holocene. Previous works, based on geomorphologic analogies and pedological properties suggested that the M1 ice advance was older than LGM, and possibly occurred during the MIS4. Our 10Be exposure dating provided LGM ages for boulders on the M1 side moraine. It is question of further research whether these ages show the time when the glacier abandoned the moraine or they only indicate an LGM erosional event affecting an older moraine. If we accept the LGM age of maximum ice extent (M1), our 10Be exposure age data enables the calculation of a mean glacier retreat rate of 1.3 m/a for the period between M1 and M4 (21.4 to 13.6ka). Alternatively, considering only the oldest 10Be exposure age of the M2 moraine, the M2 to M4 (20.2-13.6ka) glacier retreat rate was slightly lower: 1.1 m/a. Our research was supported by the OTKA PD83610, by the MTA-CNRS cooperation (NKM-96/2014), by the Bolyai Scholarship, and by the 'Lendület' program of the HAS (LP2012-27/2012). The 10Be measurements were performed at the ASTER AMS national facility (CEREGE, Aix en Provence, France).

  13. Ice/Bedrock Feedbacks as a Principle Contributor to Glacial-Interglacial Oscillations

    NASA Astrophysics Data System (ADS)

    Kimmel, J.; Lee, K.; Jackson, C. H.

    2014-12-01

    Since the mid-Pleistocene, the oscillation between glacial and interglacial climate states occurs with a period of approximately 100 kyr. Each cycle is comprised of a slow glaciation with a subsequent rapid deglaciation. While the solar forcing is clearly an important driver for these transitions, the power spectrum of the solar forcing is quite different from the subsequent climate response and, in general, does not have a noticeable correlation with global ice volume. Instead, previous studies have shown that internal climate processes and their interactions (e.g., CO2, water vapor, isostatic bed response) play a significant role in producing these global climate cycles. The rapid retreat of large ice sheets at the start of an interglacial is often attributed to the interaction between surface and atmospheric processes. While calving is thought to amplify this retreat, it is not typically considered a principle driver of the ice sheet response. Our study investigates the potential for ice/bedrock feedbacks to be a principle contributor in shaping the glacial-interglacial climate oscillation -- particularly the rapid deglaciation that precedes an interglacial. The ice sheet model we develop includes a piecewise linear ice/bedrock feedback while atmospheric and surface processes are taken to be as simple as possible. Due to the long timescale of the bedrock response and the rapid mass loss due to calving, the model ice sheet exhibits rapid deglaciation from a stable maximum when it retreats through an overdeepening. However, ice sheet advance is also shown to be as rapid unless a more complex bedrock response is considered. In particular, we show that a forebulge created by the displacement of the mantle adds a new stable branch to the volume/equilibrium line bifurcation diagram that results in slower growth of the ice sheet during glaciation.

  14. Glacial and pluvial periods: their relationship revealed by pleistocene sediments of the red sea and gulf of aden.

    PubMed

    Deuser, W G; Ross, E H; Waterman, L S

    1976-03-19

    Oxygen isotope analyses of planktonic foraminifera from the Red Sea and Gulf of Aden indicate that during periods of maximum continental and polar glaciation in the late Pleistocene, the Red Sea was subject to strong evaporation. Between glacial maximums the salinity of the Red Sea was equal to or below that of the open ocean. This suggests that high-latitude glacial periods corresponded in time to interpluvial stages in the present-day desert belt of northern Africa, whereas high-latitude interglacial periods coincided with pluvial stages. PMID:17781646

  15. An Assessment of Glacial Contributions to Lake Dynamics across the Tibetan Plateau since the Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Sheng, Y.

    2014-12-01

    The Tibetan Plateau is one of the world's most vulnerable areas to global warming, and is home of the world's largest group of mountain glaciers and high-altitude lakes. These lakes in general have shrunk significantly since the late Pleistocene, and are currently continuing to experience changes in their distribution and inundation area. In the meantime, Tibetan glaciers have also gone through dramatic changes as evidenced by paleo glacial relics and recent accelerated melting. The paper provides a regional-scale systematic assessment of both paleo and contemporary lake changes across the plateau using geo-spatial information and optically stimulated luminescence (OSL) dating technologies. Using high-resolution satellite imagery of the plateau together with topographic data, this research recovered paleo lake extents for hundreds of contemporary lakes with visible paleo shore relics and estimated the amount of paleo lake shrinkage at regional scales. Both the basin-based water mass balance analysis using glacier/lake sizes and OSL dating of paleo shores suggest that paleo glaciers played a crucial role in the observed paleo lake shrinkage. Recent ~40 year lake dynamics was monitored by tracking thousands of Tibetan lakes using hundreds of satellite images. The results reveal that the overall total lake area has increased by ~26% between 1976 and 2009. The detected lake dynamics exhibit a strong spatial pattern generally but with local variations. The climate change and its regional glacier variations explain the general trend and the regional patterns of lake dynamics, respectively. The glacier mass monitored by GRACE satellites suggests a thinning trend over the past 12 years in the south while a gaining along the northern rim of the plateau. Basin-based analysis identifies glacial impacts on lake dynamics and explains many local variations. It can be concluded that glaciers play an important role in detected paleo as well as recent lake changes, and will continue to play a critical role in Tibetan lake dynamics in near future.

  16. Isotopically-depleted late Pleistocene groundwater in Columbia River Basalt aquifers: Evidence for recharge of glacial Lake Missoula floodwaters?

    NASA Astrophysics Data System (ADS)

    Brown, Kyle B.; McIntosh, Jennifer C.; Baker, Victor R.; Gosch, Damian

    2010-11-01

    Late Pleistocene outburst flooding of ice-dammed glacial Lake Missoula, and possible discharge from the Cordilleran Ice Sheet (CIS), catastrophically altered the northwestern United States landscape, yet little is known about potential infiltration of flood waters into the subsurface. This study provides compelling evidence for the presence of late Pleistocene CIS-related recharge waters in the Columbia River Basalt Aquifers (CRBAs) in central Washington. CRBA groundwaters with corrected 14C ages from 15.7 and 33.3 k yrs BP (during periods of flood events) have anomalously low δ18O values (-18.9 to -17.6‰), compared to late Pleistocene soil waters (-16.1 to -13.4‰) and modern precipitation in the region (average -15.9‰), consistent with CIS-related meltwater recharge. These results have implications for our understanding of megaflood phenomena on earth and Mars.

  17. Pleistocene coquinas of the glaciomarine Yakataga Formation, Alaska: implications for mixed glacial/carbonate sequences

    SciTech Connect

    Kaye, B.G.; Eyles, N.; Lagoe, M.B.

    1985-01-01

    Of the several models available to students of mixed ancient glacial/carbonate rocks, most accommodate extreme climatic changes by fluctuations in either the Earth's orbital parameters, continental drift rates or the chemistry of early atmospheres and oceans. The Yakataga Formation, where it is exposed on Middleton Island, Alaska is dominated by thick sequences of massive muddy diamicts in which marine micro- and macrofaunas occur. The sequence records the influx onto the Gulf of Alaska continental shelf of large volumes of pelagic and ice-rafted debris from expanded temperate glaciers and ice shelves during the Early Pleistocene with deposition rates of 1m/1000 years. Diamicts contain multiple coquina bands up to 1m thick composed predominantly of cemented molluscan debris and traceable over several kilometers along strike. Analysis of foraminifera indicates that coquinas record episodic changes in relative sea level and non-deposition of mud when extensive communities of bottom dwelling molluscan faunas became established; ice-rafting continued during the formation and development of coquinas. Recent work stresses the accumulation of carbonates in clastic-starved polar glaciomarine environments; the Alaskan coquinas show that significant bioclastic carbonate accumulations also occur under more temperate glaciomarine conditions with higher sedimentation rates.

  18. Seismic characteristics of Pleistocene glacial cycles near shelf edge, offshore Louisiana, Gulf of Mexico

    SciTech Connect

    Watkins, J.S.; Schneider, L.; Hilterman, F.

    1987-05-01

    Seismic stratigraphic studies of the shelf edge and the upper slope basins in the southern parts of the South Marsh Island, Eugene Island, Ship Shoal, and Green Canyon areas of the Louisiana outer continental shelf reveal at least four Pleistocene seismic stratigraphic cycles. These apparently reflect cyclic depositional patterns associated with glacially driven highstands and lowstands of sea level during this time. In the upper slope basins, a strong continuous reflector probably of turbiditic origin marks the base of each cycle. This reflector is thought caused by initial slumping occurring as sea level begins to fall. Overlying this reflector is a zone of chaotic-to-hummocky reflectors thought caused by slumping associated with knick-point erosion and channel-cutting during falling sea level. The upper portion of the cycle is largely reflectorless or weakly reflective punctuated with occasional strong, continuous turbidite reflectors. The reflectorless portion of the cycles is thought to represent homogeneous hemipelagic sedimentation during highstands. Shelf reflectors are usually moderately strong and continuous. A strong reflection(s), identified in some instances with gas sands, marks several sea level lowstands. Erosion is locally evident during lowstands. Otherwise, shelf reflectors are relatively uniform and show few characteristics associated with rising, falling, or highstanding parts of the sea level cycle.

  19. Provenance of Palouse Loess and Relation to Late Pleistocene Glacial Outburst Flooding, Washington State

    NASA Astrophysics Data System (ADS)

    Sweeney, M. R.; Busacca, A. J.; Gaylord, D. R.; Zender, C. S.

    2002-12-01

    The eolian system of the Pacific Northwest is a product of long-term deflation of expansive sedimentary units by prevailing winds throughout the Quaternary. The Palouse loess is a deposit of wind-blown silt that covers approximately 10,000 sqare km up to 75 m thick. Late Quaternary units of the loess become finer texturally and thinner to the northeast, suggesting that they were derived from sedimentary basins south and west. The source of the loess has been inferred and hypothesized but never directly determined. A geochemical study of the late-Pleistocene to Holocene L1 unit of the Palouse loess and its possible sources was conducted to determine its provenance. There are two sedimentary units that lie upwind of the loess that may have contributed sediment via eolian deflation: 1) sand- and silt-rich slackwater sediment derived from late-Pleistocene outburst flooding of glacial Lake Missoula, and 2) sand- and silt-rich sediment from the Miocene-Pliocene Ringold Formation. Both are very similar in mineral composition, being derived from plutonic, metamorphic, and volcanic rocks of the western United States and southern British Columbia. Major and trace element data determined by x-ray fluorescence (XRF) of silt to very fine sand from loess and potential source sediments was used to pinpoint the exact source of the loess. A one-to-one relationship of major and trace elements exists between eolian and flood sediments, whereas Ringold Formation sediments have elevated Ti, P, Mg, and Ca oxides and lower K oxide values as well as scattered trace element values relative to Palouse loess. These trends may be due to the presence of basalt lithic grains in flood sediment that have been broken down and distributed throughout the loess. The Ringold Formation lacks appreciable amounts of basalt. The geochemical data from this study demonstrates that flood sediment is the dominant source of eolian material for the Palouse loess. The spatial distribution of the possible source sediments also suggests that flood slackwater sediment is the dominant source. Slackwater flood sediments rest in basins upwind of loess, where deflation is documented today. The Ringold Formation has limited exposure near the present day Columbia River and was eroded by outburst floods or covered by slackwater sediments. Its limited extent and exposure makes the Ringold Formation an less likely candidate for a source of the L1 loess. Study of the oldest units of Palouse loess will show whether or not the Ringold contributed a larger proportion of eolian material prior to the onset of glacial outburst flooding. This new provenance data will allow estimates to be made of the volume of dust ejected into the atmosphere from the Palouse eolian system since the last glacial maximum, which is essential to modeling of atmospheric dust fluxes that force climate fluctuations.

  20. Submarine glacial landforms record Late Pleistocene ice-sheet dynamics, Inner Hebrides, Scotland

    NASA Astrophysics Data System (ADS)

    Dove, Dayton; Arosio, Riccardo; Finlayson, Andrew; Bradwell, Tom; Howe, John A.

    2015-09-01

    We use ˜7000 km2 of high-resolution swath bathymetry data to describe and map the submarine glacial geomorphology, and reconstruct Late Pleistocene ice sheet flow configurations and retreat dynamics within the Inner Hebrides, western Scotland. Frequently dominated by outcrops of structurally complex bedrock, the seabed also comprises numerous assemblages of well-preserved glacigenic landforms typical of grounded ice sheet flow and punctuated ice-margin retreat. The occurrence and character of the glacially streamlined landforms is controlled in part by the shallow geology and topography, however these factors alone cannot account for the location, orientation, and configuration of the observed landforms. We attribute the distribution of these elongate streamlined landforms to the onset zone of the former Hebrides Ice Stream (HIS) - part of a major ice stream system that drained 5-10% of the last British-Irish Ice Sheet (BIIS). We suggest this geomorphic signature represents the transition from slow 'sheet flow' to 'streaming flow' as ice accelerated out from an environment characterized by numerous bedrock obstacles (e.g. islands, headlands), towards the smooth, sediment dominated shelf. The majority of streamlined landforms associated with the HIS indicate ice sheet flow to the southwest, with regional-scale topography clearly playing a major role in governing the configuration of flow. During maximal glacial conditions (˜29-23 ka) we infer that the HIS merged with the North Channel-Malin Shelf Ice Stream to form a composite ice stream system that ultimately reached the continental shelf edge at the Barra-Donegal Trough-Mouth Fan. Taken collectively however, the pattern of landforms now preserved at seabed (e.g. convergent flow indicators, cross-cutting flow sets) is more indicative of a thinning ice mass, undergoing reorganization during overall ice sheet retreat (during latter stages of Late Weischselian glaciation). Suites of moraines overprinting the streamlined landforms suggest partial stabilization of the HIS prior to the ice sheet retreating to more isolated, topographically confined troughs and basins. Retreat from the shelf towards, and back into the Inner Hebrides may have been rapid due the prevalence of overdeepened troughs. Within the near-shore fjord-like troughs and deeps, basin-aligned streamlined landforms indicate the subsequent flow of thinner topographically partitioned ice masses, and overprinted moraines record further ice margin retreat, potentially along tide-water margins. This work provides the first geomorphological constraints for this large marine-influenced sector of the former BIIS. We also shed new light on the glacial geomorphic record found at the transition from terrestrial to marine continental-shelf settings, and examine the interplay between substrate geology, bed topography/bathymetry, and grounding-line positions - relationships which are important for characterizing contemporary marine ice sheet margins.

  1. All together now? Sensitivity, dynamics, and predictability of planktonic foraminiferal species abundance versus community structure across Plio-Pleistocene glacial-interglacial cycles

    NASA Astrophysics Data System (ADS)

    Hull, P. M.; Norris, R. D.; Sexton, P.

    2012-12-01

    Most studies to date of biospheric sensitivity to global change have focused on understanding the sensitivity of modern species and communities to recent or experimental environmental change. However, it is unclear how to scale these results towards predicting the response of the biosphere to ongoing global change given that i) similar species often respond individualistically the same perturbation, ii) biotic response often scales nonlinearly with the size and/or duration of environmental change, and iii) many terrestrial and marine community types known from the recent past lack modern analogs. In this context, marine microfossils from deep sea sediments hold enormous promise for furthering our understanding of biotic sensitivity as they capture temporally expanded records of paleoceanographic and biotic response across a range climatic regimes (e.g., icehouse versus greenhouse climates), disturbance types (e.g., from background climate oscillations to mass extinctions), and habitats (e.g., low vs. high latitudes, upwelling vs. gyre ecosystems, etc). Here we use the repeated glacial-interglacial cycles and longer term trend of intensifying Northern Hemisphere glaciation from the Pliocene-Pleistocene to examine issues related to the sensitivity of planktonic foraminiferal species and communities to global change in an icehouse world. More specifically, we quantify the sensitivity and predictability of changes in planktonic foraminiferal species abundance (species specific mass accumulation rates) and community structure (dissimilarity indices and community classification) to glacial-interglacial cycles in the Plio-Pleistocene in two Atlantic sites (ODP Sites 999 and 662). We first examine whether the sensitivity of species and communities to glacial-interglacial cycles in the early Pliocene (~5-3 million years ago) is predictive of i) their sensitivity to the intensification of Northern Hemisphere glaciation (~3-2 million years ago), or ii) their sensitivity to glacial-interglacial cycles following the transition (< 2 million years ago). We then test the predictability of species and community change before, during, and after intensification, and the relative timing of biotic and environmental change. Our results build on existing faunal studies of nannoplankton and foraminiferal species dynamics (both shown to exhibit individualistic dynamics controlled, in part, by species ecology) to examine change at the community level and with regards to biosphere sensitivity.

  2. Dating Plio-Pleistocene glacial sediments using the cosmic-ray-produced radionuclides 10Be and 26Al

    USGS Publications Warehouse

    Balco, G.; Stone, J.O.H.; Jennings, C.

    2005-01-01

    We use the cosmic-ray-produced radionuclides 26Al and 10Be to date Plio-Pleistocene glacial sediment sequences. These two nuclides are produced in quartz at a fixed ratio, but have different decay constants. If a sample is exposed at the surface for a time and then buried by overburden and thus removed from the cosmic-ray flux, the 26Al/10Be ratio is related to the duration of burial. We first attempted to date pre-Wisconsinan tills by measuring 26Al and 10Be in fluvial sediments beneath them and applying the method of "burial dating," which previous authors have used to date river sediment carried into caves. This method, however, requires simplifying assumptions about the 26Al and 10Be concentrations in the sediment at the time of burial. We show that these assumptions are not valid for river sediment in glaciated regions. 26Al and 10Be analyses of such sediment do not provide accurate ages for these tills, although they do yield limiting ages in some cases. We overcome this difficulty by instead measuring 26Al and 10Be in quartz from paleosols that are buried by tills. We use a more general mathematical approach to determine the initial nuclide concentrations in the paleosol at the time it was buried, as well as the duration of burial. This technique provides a widely applicable improvement on other means of dating Plio-Pleistocene terrestrial glacial sediments, as well as a framework for applying cosmogenic-nuclide dating techniques in complicated stratigraphic settings. We apply it to pre-Wisconsinan glacial sediment sequences in southwest Minnesota and eastern South Dakota. Pre-Wisconsinan tills underlying the Minnesota River Valley were deposited 0.5 to 1.5 Ma, and tills beneath the Prairie Coteau in eastern South Dakota and adjacent Minnesota were deposited 1 to 2 Ma.

  3. Timing of late Pleistocene glaciation in Mongolia: Surface exposure dating reveals a differentiated pattern of glacial forcing

    NASA Astrophysics Data System (ADS)

    Pötsch, Steffen; Rother, Henrik; Lorenz, Sebastian; Walther, Michael; Lehmkuhl, Frank

    2015-04-01

    The focus of this study is on the geochronological and paleoclimatic characterization of Pleistocene glaciation in central (Khangai Mountains) and western (Turgen Mountains, Mongolian Altai) Mongolia. These two mountain ranges form a 700 km long SE-NW transect through Mongolia and allow assumptions of the temporal and causal dynamics of regional glaciation and their correlation to other mountain glacier records from Central and High Asia. In order to evaluate the Pleistocene glaciations in Mongolia we undertook geomorphological mapping and cosmogenic radionuclide (CRN) surface exposure dating (10Be) in four valley systems located in the Khangai Mountains and Turgen Mountains. In total 46 glacial boulders and roche moutonnées were sampled, prepared and AMS measured to determine their 10Be surface exposure ages. Of these, 26 samples were obtained from the Khangai Mountains (three separate moraine sequences) and 20 samples were taken from the Turgen Mountains (one moraine sequence). Our results give evidence of major ice advances during early MIS-4 (74-71 ka) and MIS-2 (25-20 and 18- 17 ka) in both mountain ranges. However, in the Khangai Mountains of central Mongolia very significant ice advances also occurred during MIS-3 (37-32 ka), which exceeded the ice limits set during the MIS-2 glaciation. These results show that climatic conditions during phases of insolation minima characterized by extremely cold and dry conditions (MIS-4 and MIS-2) produced a favorable setting for major ice expansion in Mongolia. Yet, glacial accumulation in the Khangai Mountains also increased substantially in response to the cool-wet conditions of MIS-3, associated with a possibly greater-than-today input from winter precipitation. These records indicate that in addition to the thermally induced glaciations of MIS-4 and MIS-2, variations in atmospheric moisture supply are also capable of triggering large ice advances as observed during MIS-3. Taken together, this suggests that the role of atmospheric circulation and its significance for controlling regional precipitation results in a more differentiated pattern of late Pleistocene glaciation in Mongolia than previously recognized. Compared to other glacial records from High Asia, the observed patterns of past glaciations in Mongolia show similar results (i.e. ice maxima during interstadial wet phases) compared to monsoon influenced regions in southern Central Asia and NE-Tibet, while major expansion during insolation minima (MIS-4 and MIS-2) are more in tune with glacier responses known from western Central Asia and Siberia.

  4. Glacial chronology and palaeoclimate in the Bystra catchment, Western Tatra Mountains (Poland) during the Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Makos, Michał; Rinterknecht, Vincent; Braucher, Régis; Żarnowski, Michał

    2016-02-01

    Deglaciation chronology of the Bystra catchment (Western Tatra Mountains) has been reconstructed based on 10Be exposure age dating. Fourteen rock samples were collected from boulders located on three moraines that limit the horizontal extent of the LGM maximum advance and the Lateglacial recessional stage. The oldest preserved, maximum moraine was dated at 15.5 ± 0.8 ka, an age that could be explained more likely by post-depositional erosion of the moraine. Such scenario is supported by geomorphologic and palaeoclimatological evidence. The younger cold stage is represented by well-preserved termino-lateral moraine systems in the Kondratowa and Sucha Kasprowa valleys. The distribution of the moraine ridges in both valleys suggest a complex history of deglaciation of the area. The first Late-glacial re-advance (LG1) was followed by a cold oscillation (LG2), that occurred at around 14.0 ± 0.7-13.7 ± 1.2 ka. Glaciers during both stages had nearly the same horizontal extent, however, their thickness and geometry changed significantly, mainly due to local climatic conditions triggered by topography, controlling the exposition to solar radiation. The LG1 stage occurred probably during the pre-Bølling cold stage (Greenland Stadial 2.1a), however, the LG2 stage can be correlated with the cooling at around 14 ka during the Greenland Interstadial 1 (GI-1d - Older Dryas). This is the first chronological evidence of the Older Dryas in the Tatra Mountains. The ELA of the maximum Bystra glacier was located at 1480 m a.s.l. in accordance with the ELA in the High Tatra Mountains during the LGM. During the LG1 and LG2 stages, the ELA in the catchment rose up to 1520-1530 m a.s.l. and was located approximately 100-150 m lower than in the eastern part of the massif. Climate modelling results show that the Bystra glacier (maximum advance) could have advanced in the catchment when mean annual temperature was lower than today by 11-12 °C and precipitation was reduced by 40-60%. This is in accordance with LGM conditions previously reported for the High Tatras. During the LG1 and LG2 stages the temperature decrease in the study area reached 10 °C and precipitation was lower by ∼30% compare to modern conditions. This resulted in slightly higher accumulation (20-30%) in the Western Tatra Mountains compare to the High Tatra Mountains.

  5. Millennial-Scale Climate Variability During a mid-Pleistocene Glacial (MIS 12) from a Terrestrial Lacustrine Record in the Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Fawcett, P. J.; Brown, E. T.; Werne, J. P.; Contreras, S.; Anderson, R. S.; Dodd, J. P.; Sharp, Z. D.; Heikoop, J. M.; Allen, C. D.

    2011-12-01

    We present a high-resolution terrestrial climate record from the Valles Caldera, New Mexico which spans some 200,000 years from mid MIS 14 to early MIS 10. The glacial periods represented in the record exhibit millennial-scale Dansgaard-Oeschger like variability, especially in MIS 12, one of the coldest glacials in the Pleistocene. High resolution proxies from core VC-3 including scanning XRF data, sediment density, color, and magnetic susceptibility show approximately 23 millennial-scale oscillations in MIS 12 with an average duration of 2,300 years. Many of these oscillations are characterized by relatively slow coolings followed by abrupt warmings, similar to D-O events in the Greenland ice core record. MBT/CBT MAT estimates in the MIS 12 portion of the core show stadial to interstadial warmings of up to 6 °C. The VC-3 stadials correlate with high percentages of boreal taxa pollen ( Picea, Abies ) (up to 25%) while interstadials have lower boreal pollen percentages (~5%) and many correlate with local maxima in Juniperus> and Quercus> . Significant changes in the hydrologic cycle also occur at these millennial timescales. Oxygen isotope data from diatom silica record changes of up to 10 per mil from stadial to interstadial, probably reflecting a combination of changes in moisture source (Pacific vs. Gulf of Mexico), moisture transport pathway, and the seasonality of precipitation. Several interstadials correlate with increases in Cyperaceae (sedge) pollen suggesting a shallower lake with a broad marshy zone around its margin. This zone was minimized during stadials when the lake was deeper. Interstadial shallowing probably resulted from higher evaporation rates and/or a reduction in winter precipitation. This combination of proxies from the Valles Caldera suggests that glacial stage millennial-scale climate variability in the American southwest was strongly driven by changes in the strength and location of the winter polar jet, which in turn affected the local hydrologic cycle and isotopic composition of precipitation, regional temperature change, watershed vegetation, the amount of fluvial runoff vs. atmospheric dust loading in the Valles Caldera lake, and contributed to the abrupt warmings ending the D-O like cycles.

  6. Pleistocene Mitochondrial Genomes Suggest a Single Major Dispersal of Non-Africans and a Late Glacial Population Turnover in Europe.

    PubMed

    Posth, Cosimo; Renaud, Gabriel; Mittnik, Alissa; Drucker, Dorothée G; Rougier, Hélène; Cupillard, Christophe; Valentin, Frédérique; Thevenet, Corinne; Furtwängler, Anja; Wißing, Christoph; Francken, Michael; Malina, Maria; Bolus, Michael; Lari, Martina; Gigli, Elena; Capecchi, Giulia; Crevecoeur, Isabelle; Beauval, Cédric; Flas, Damien; Germonpré, Mietje; van der Plicht, Johannes; Cottiaux, Richard; Gély, Bernard; Ronchitelli, Annamaria; Wehrberger, Kurt; Grigorescu, Dan; Svoboda, Jiří; Semal, Patrick; Caramelli, David; Bocherens, Hervé; Harvati, Katerina; Conard, Nicholas J; Haak, Wolfgang; Powell, Adam; Krause, Johannes

    2016-03-21

    How modern humans dispersed into Eurasia and Australasia, including the number of separate expansions and their timings, is highly debated [1, 2]. Two categories of models are proposed for the dispersal of non-Africans: (1) single dispersal, i.e., a single major diffusion of modern humans across Eurasia and Australasia [3-5]; and (2) multiple dispersal, i.e., additional earlier population expansions that may have contributed to the genetic diversity of some present-day humans outside of Africa [6-9]. Many variants of these models focus largely on Asia and Australasia, neglecting human dispersal into Europe, thus explaining only a subset of the entire colonization process outside of Africa [3-5, 8, 9]. The genetic diversity of the first modern humans who spread into Europe during the Late Pleistocene and the impact of subsequent climatic events on their demography are largely unknown. Here we analyze 55 complete human mitochondrial genomes (mtDNAs) of hunter-gatherers spanning ∼35,000 years of European prehistory. We unexpectedly find mtDNA lineage M in individuals prior to the Last Glacial Maximum (LGM). This lineage is absent in contemporary Europeans, although it is found at high frequency in modern Asians, Australasians, and Native Americans. Dating the most recent common ancestor of each of the modern non-African mtDNA clades reveals their single, late, and rapid dispersal less than 55,000 years ago. Demographic modeling not only indicates an LGM genetic bottleneck, but also provides surprising evidence of a major population turnover in Europe around 14,500 years ago during the Late Glacial, a period of climatic instability at the end of the Pleistocene. PMID:26853362

  7. Late Pleistocene glacial stratigraphy of the Kumara-Moana region, West Coast of South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Barrows, Timothy T.; Almond, Peter; Rose, Robert; Keith Fifield, L.; Mills, Stephanie C.; Tims, Stephen G.

    2013-08-01

    On the South Island of New Zealand, large piedmont glaciers descended from an ice cap on the Southern Alps onto the coastal plain of the West Coast during the late Pleistocene. The series of moraine belts and outwash plains left by the Taramakau glacier are used as a type section for interpreting the glacial geology and timing of major climatic events of New Zealand and also as a benchmark for comparison with the wider Southern Hemisphere. In this paper we review the chronology of advances by the Taramakau glacier during the last or Otira Glaciation using a combination of exposure dating using the cosmogenic nuclides 10Be and 36Cl, and tephrochronology. We document three distinct glacial maxima, represented by the Loopline, Larrikins and Moana Formations, separated by brief interstadials. We find that the Loopline Formation, originally attributed to Oxygen Isotope Chronozone 4, is much younger than previously thought, with an advance culminating around 24,900 ± 800 yr. The widespread late Pleistocene Kawakawa/Oruanui tephra stratigraphically lies immediately above it. This Formation has the same age previously attributed to the older part of the Larrikins Formation. Dating of the Larrikins Formation demonstrates there is no longer a basis for subdividing it into older and younger phases with an advance lasting about 1000 years between 20,800 ± 500 to 20,000 ± 400 yr. The Moana Formation represents the deposits of the last major advance of ice at 17,300 ± 500 yr and is younger than expected based on limited previous dating. The timing of major piedmont glaciation is restricted to between ˜25,000 and 17,000 yr and this interval corresponds to a time of regionally cold sea surface temperatures, expansion of grasslands at the expense of forest on South Island, and hemisphere wide glaciation.

  8. Glacial abrupt climate change as a result of internal oscillations

    NASA Astrophysics Data System (ADS)

    Banderas, R.; Álvarez-Solas, J.; Montoya, M.

    2012-04-01

    The study of Greenland ice cores revealed two decades ago the abrupt character of glacial millennial-scale climate variability. Several triggering mechanisms have been proposed and confronted against growing proxy-data evidence. Although the implication of North Atlantic deep water (NADW) formation reorganisations in glacial abrupt climate change seems robust nowadays, their final cause remains unclear. Here, the role of CO2 and Southern Ocean winds is investigated using a coupled model of intermediate complexity in an experimental setup designed such that the climate system resides close to a threshold found in previous studies. An abrupt surface air temperature (SAT) increase over the North Atlantic is simulated in response to increasing atmospheric CO2 levels and/or enhancing southern westerlies. The simulated abrupt warming shows a similar pattern and amplitude over Greenland as registered in ice-core records of Dansgaard-Oeschger (D/O) events. This is accompanied by a strong Atlantic meridional overturning circulation (AMOC) intensification. The AMOC strengthening is found to be caused by a northward shift of NADW formation sites into the Nordic Seas as a result of an increase in sea surface salinity in the Northeastern Atlantic. The latter is caused by a northward retreat of the sea-ice front in response to higher temperatures. In this way, a new mechanism that is consistent with proxy data is identified by which abrupt climate change can be promoted.

  9. Late Pleistocene glacial history of central Marquette and northern Dickinson counties, Michigan

    NASA Astrophysics Data System (ADS)

    Regis, Robert Stephen

    New techniques for mapping glacial landscape units located in the central Upper Peninsula of Michigan were developed using image processing software. Digital Elevation Model (DEM), Side-Looking Airborne Radar (SLAR), Landsat Thematic Mapper (TM) and overburden thickness (OBT) datasets were used. Many combinations of the DEM, SLAR, and TM datasets using the Intensity-Hue-Saturation (IHS) and Principal Components Analysis (PCA) transformations were valuable for visual interpretation of glacial landscape units. Such combinations showed relative elevations of landscape units, relief variations, and surface cover types in a single image. Also in the study, relief images and three-dimensional perspective views derived from the DEM were used to map ice-marginal positions and interpret how glacial ice receded from the area. The stair-step appearance of glacial outwash terraces at progressively lower elevations toward the east became evident using the perspective view technique. Visualization of glaciated terrain using these datasets in an image processor proved to be more effective for interpreting glacial landscapes than traditional topographic map or aerial photograph analyses. Texture analysis of the DEM was used to provide a measure of terrain ruggedness (or roughness) as input to a supervised maximum likelihood classification algorithm. Standard deviation of the DEM was assessed as a measure of texture in four moving windows of the following sizes; 64 pixelssp2, 32 pixelssp2, 16 pixelssp2, and 3 pixelssp2. Windows of different sizes were used to match the frequency of natural variation in size and spacing of features that comprise each of the landscape units in the study area. Texture files were combined with the TM, DEM, and OBT datasets into a single multi-band file. The maximum likelihood classification algorithm was then applied to the multiple-dataset file. The algorithm was first applied only to the two principal components (PC1 and PC2) of the TM's six non-thermal bands, then each remaining dataset was added, one at a time, and the algorithm was re-applied until all eight datasets (PC1, PC2, DEM, OBT, and the four texture datasets) were used. When compared to ground truth data, classification accuracy utilizing all eight datasets reached a maximum of 68.6% correctly classified pixels. Without any textural measure included in the classification (only using PC's, DEM, and OBT), overall accuracy was 54.2%. The addition of each dataset significantly improved the overall performance, suggesting that when classifying glacial landscape units, land cover, topography, overburden thickness, and a measure of surface roughness improves the accuracy of glacial landscape classification.

  10. The sequence and timing of large late Pleistocene floods from glacial Lake Missoula

    NASA Astrophysics Data System (ADS)

    Hanson, Michelle A.; Lian, Olav B.; Clague, John J.

    2012-01-01

    Glacial Lake Missoula formed when the Purcell Trench lobe of the Cordilleran ice sheet dammed Clark Fork River in Montana during the Fraser Glaciation (marine oxygen isotope stage 2). Over a period of several thousand years, the lake repeatedly filled and drained through its ice dam, and floodwaters coursed across the landscape in eastern Washington. In this paper, we describe the stratigraphy and sedimentology of a significant new section of fine-grained glacial Lake Missoula sediment and compare this section to a similar, previously described sequence of sediments at Ninemile Creek, 26 km to the northwest. The new exposure, which we informally term the rail line section, is located near Missoula, Montana, and exposes 29 units, each of which consists of many silt and clay couplets that we interpret to be varves. The deposits are similar to other fine-grained sediments attributed to glacial Lake Missoula. Similar varved sediments overlie gravelly flood deposits elsewhere in the glacial Lake Missoula basin. Each of the 29 units represents a period when the lake was deepening, and all units show evidence for substantial draining of glacial Lake Missoula that repeatedly exposed the lake floor. The evidence includes erosion and deformation of glaciolacustrine sediment that we interpret happened during draining of the lake, desiccation cracks that formed during exposure of the lake bottom, and fluvial sand deposited as the lake began to refill. The floods date to between approximately 21.4 and 13.4 cal ka ago based on regional chronological data. The total number of varves at the rail line and Ninemile sites are, respectively, 732 and 583. Depending on lake refilling times, each exposure probably records 1350-1500 years of time. We present three new optical ages from the rail line and Ninemile sites that further limit the age of the floods. These ages, in calendar years, are 15.1 ± 0.6 ka at the base of the Ninemile exposure, and 14.8 ± 0.7 and 12.6 ± 0.6 ka midway through the rail line exposure. The sediment at the two sections was deposited during later stages of glacial Lake Missoula, after the largest outburst events.

  11. Speciation of two desert poplar species triggered by Pleistocene climatic oscillations

    PubMed Central

    Wang, J; Källman, T; Liu, J; Guo, Q; Wu, Y; Lin, K; Lascoux, M

    2014-01-01

    Despite the evidence that the Pleistocene climatic fluctuations have seriously affected the distribution of intraspecific diversity, less is known on its impact on interspecific divergence. In this study, we aimed to test the hypothesis that the divergence of two desert poplar species Populus euphratica Oliv. and P. pruinosa Schrenk. occurred during the Pleistocene. We sequenced 11 nuclear loci in 60 individuals from the two species to estimate the divergence time between them and to test whether gene flow occurred after species separation. Divergence time between the two species was estimated to be 0.66–1.37 million years ago (Ma), a time at which glaciation was at its maximum in China and deserts developed widely in central Asia. Isolation-with-Migration model also indicated that the two species had diverged in the presence of gene flow. We also detected evidence of selection at GO in P. euphratica and to a lesser extent at PhyB2. Together, these results underscore the importance of Pleistocene climate oscillations in triggering plant speciation as a result of habitats divergence. PMID:24065180

  12. Climatic impact of glacial cycle polar motion: Coupled oscillations of ice sheet mass and rotation pole position

    USGS Publications Warehouse

    Bills, Bruce G.; James, Thomas S.; Mengel, John G.

    1999-01-01

    Precessional motion of Earth's rotation axis relative to its orbit is a well-known source of long-period climatic variation. It is less well appreciated that growth and decay of polar ice sheets perturb the symmetry of the global mass distribution enough that the geographic location of the rotation axis will change by at least 15 km and possibly as much as 100 km during a single glacial cycle. This motion of the pole will change the seasonal and latitudinal pattern of temperatures. We present calculations, based on a diurnal average energy balance, which compare the summer and winter temperature anomalies due to a 1° decrease in obliquity with those due to a 1° motion of the rotation pole toward Hudson Bay. Both effects result in peak temperature perturbations of about 1° Celsius. The obliquity change primarily influences the amplitude of the seasonal cycle, while the polar motion primarily changes the annual mean temperatures. The polar motion induced temperature anomaly is such that it will act as a powerful negative feedback on ice sheet growth. We also explore the evolution of the coupled system composed of ice sheet mass and pole position. Oscillatory solutions result from the conflicting constraints of rotational and thermal stability. A positive mass anomaly on an otherwise featureless Earth is in rotational equilibrium only at the poles or the equator. The two polar equilibria are rotationally unstable, and the equatorial equilibrium, though rotationally stable, is thermally unstable. We find that with a plausible choice for the strength of coupling between the thermal and rotational systems, relatively modest external forcing can produce significant response at periods of 104–106 years, but it strongly attenuates polar motion at longer periods. We suggest that these coupled oscillations may contribute to the observed dominance of 100 kyr glacial cycles since the mid-Pleistocene and will tend to stabilize geographic patterns that are suitable to glaciations.

  13. Isotopic record of Pleistocene glacial/interglacial cycles in pelagic carbonates: Revisiting historical data from the Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Hermoso, Michaël

    2016-04-01

    The glacial/interglacial cycles of the Pleistocene were first recognised by variations in the oxygen isotopic composition of planktonic foraminifera from cores in the Caribbean Sea. Since this pioneering work by Emiliani, this proxy has been extensively applied to a variety of carbonate biominerals over the entirety of the Meso-Cenozoic. However, palaeoceanographic studies have overwhelmingly focused on foraminifera compared to other calcifying microorganism fossils, such as the coccoliths. In this study, I revisit coccolith stable isotopic data obtained from the classic P6304-4 core in light of recent developments in the biogeochemistry of coccolithophores. In particular, I show that the coccolith stable isotope record of the last 13 Marine Isotope Stages (∼480 kyrs) is significantly biased by large vital effects. The magnitude of coccolith carbon and oxygen isotope vital effects is not uniform, but shows remarkable co-variance with the Vostok CO2 ice record. During periods of relatively elevated CO2 (interstadials), the expression of the vital effect is relatively small, whereas it can as high as +3‰ for the oxygen isotopes during glacial stadials, which I argue is a result of enhanced CO2 limitation of coccolithophores. Using this paradigm, I propose that coccolithophore vital effects are not a complicating factor, but rather the signal of interest. As the magnitude of the coccolith vital effect is shown to scale with pCO2, coccolith carbon and oxygen isotopes may be used in conjunction with foraminifera data to reconstruct and refine aqueous CO2 concentrations in the past.

  14. Multiple genetic divergences and population expansions of a Mediterranean sandfly, Phlebotomus ariasi, in Europe during the Pleistocene glacial cycles

    PubMed Central

    Mahamdallie, S S; Pesson, B; Ready, P D

    2011-01-01

    Phlebotomus ariasi is one of the two sandflies transmitting the causative agent of zoonotic leishmaniasis, Leishmania infantum, in France and Iberia, and provides a rare case study of the postglacial re-colonization of France by a Mediterranean species. Four DNA sequences were analysed—mitochondrial cytochrome b (cyt b), nuclear elongation factor-1α (EF-1α) and two anonymous nuclear loci—for 14–15 French populations and single populations from northeast Spain, northwest Spain, Portugal and Morocco. The presence of cryptic sibling species was not revealed by phylogenetic analyses and testing for reproductive isolation between sympatric populations defined by the two most divergent cyt b haplogroups. No locus was shown to be under positive directional or balancing selection and, therefore, molecular variation was explained demographically. Each nuclear locus showed shallow isolation by distance from Portugal to the French Pyrenees, but for both cyt b and EF-1α there was then a step change to the upland Massif Central, where leading-edge populations showed low diversity at all loci. Multiple genetic divergences and population expansions were detected by analyses of cyt b and dated to the Pleistocene. Endemicity of one cyt b sub-lineage suggested the presence of a refuge north of the Pyrenees during the last glacial period. Monopolization of the Massif Central by genetically differentiated populations of P. ariasi might possibly hinder the northwards spread of leishmaniasis. PMID:20736970

  15. Last Glacial-magnitude Ice-Rafted Debris Deposition and its Provenance in the Earliest Pleistocene Sub-Polar North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Bailey, I.; Foster, G. L.; Wilson, P. A.; Jovane, L.; Storey, C.; Becker, J.; Bolton, C. T.

    2011-12-01

    We present the first spatial reconstruction of ice-rafted debris (IRD) deposition and its provenance in the sub-polar North Atlantic Ocean during the earliest large amplitude Pleistocene glacial, marine isotope stage (MIS) 100 (~2.52 Ma). Our flux estimates indicate that the magnitude of IRD deposition during MIS 100 was large with maximum inputs (at ~53 N) comparable to the Last Glacial Maximum (LGM). IRD provenance was determined using laser ablation lead (Pb) isotope analyses of single feldspar grains. We find that the Pb isotope composition (206Pb/204Pb and 207Pb/204Pb) of individual ice-rafted (>150μm) feldspars deposited at DSDP Site 611A, ODP Site 981 and IODP Site U1308 during MIS 100 are very similar to those deposited at the centre of the LGM IRD belt during ambient ice-rafting episodes (Gwiazda et al., 1996a). Based on a comparison to known Pb isotopic composition of potential source regions we propose that abundant iceberg calving sourced from large, multiple circum-North Atlantic Ocean ice-sheets (located on North America, Scandinavia, Greenland and possibly Britain) characterised MIS 100. However, unlike for the LGM, the locus of abundant iceberg melting and IRD deposition may have been situated north of the Last Glacial IRD-belt (~50 N) due to a reduced glacial meridional sea-surface temperature gradient relative to the late Pleistocene scenario.

  16. Size and shape stasis in late Pleistocene mammals and birds from Rancho La Brea during the Last Glacial-Interglacial cycle

    NASA Astrophysics Data System (ADS)

    Prothero, Donald R.; Syverson, Valerie J.; Raymond, Kristina R.; Madan, Meena; Molina, Sarah; Fragomeni, Ashley; DeSantis, Sylvana; Sutyagina, Anastasiya; Gage, Gina L.

    2012-11-01

    Conventional neo-Darwinian theory views organisms as infinitely sensitive and responsive to their environments, and considers them able to readily change size or shape when they adapt to selective pressures. Yet since 1863 it has been well known that Pleistocene animals and plants do not show much morphological change or speciation in response to the glacial-interglacial climate cycles. We tested this hypothesis with all of the common birds (condors, golden and bald eagles, turkeys, caracaras) and mammals (dire wolves, saber-toothed cats, giant lions, horses, camels, bison, and ground sloths) from Rancho La Brea tar pits in Los Angeles, California, which preserves large samples of many bones from many well-dated pits spanning the 35,000 years of the Last Glacial-Interglacial cycle. Pollen evidence showed the climate changed from chaparral/oaks 35,000 years ago to snowy piñon-juniper forests at the peak glacial 20,000 years ago, then back to the modern chaparral since the glacial-interglacial transition. Based on Bergmann's rule, we would expect peak glacial specimens to have larger body sizes, and based on Allen's rule, peak glacial samples should have shorter and more robust limbs. Yet statistical analysis (ANOVA for parametric samples; Kruskal-Wallis test for non-parametric samples) showed that none of the Pleistocene pit samples is statistically distinct from the rest, indicating complete stasis from 35 ka to 9 ka. The sole exception was the Pit 13 sample of dire wolves (16 ka), which was significantly smaller than the rest, but this did not occur in response to climate change. We also performed a time series analysis of the pit samples. None showed directional change; all were either static or showed a random walk. Thus, the data show that birds and mammals at Rancho La Brea show complete stasis and were unresponsive to the major climate change that occurred at 20 ka, consistent with other studies of Pleistocene animals and plants. Most explanations for such stasis (stabilizing selection, canalization) fail in this setting where climate is changing. One possible explanation is that most large birds and mammals are very broadly adapted and relatively insensitive to changes in their environments, although even the small mammals of the Pleistocene show stasis during climate change, too.

  17. Middle Pleistocene (?) buried glacial ice on Bylot Island, Canadian Arctic Archipleago

    NASA Astrophysics Data System (ADS)

    Fortier, D.; Godin, E.; Kanevskiy, M. Z.; Allard, M.

    2009-12-01

    Bylot Island is located north of Baffin Island (73°N, 80°W). More than the half of the island is covered by an ice cap and its outlet glaciers flowing towards the arctic lowland of the Lancaster formation. The study site comprises four main stratigraphic units. Overlying the shales (Tertiary) of the Lancaster Formation (500 m a.s.l.), a diamicton (unit 1) is covered by a “fossil forest-tundra” sequence (unit 2) containing abundant remains of trees and plants (Allard et al., submitted). Paleontological correlation of extinct species and reverse to normal palomagnetism polarities suggest a Late Pliocene to Early Pleistocene age for this unit. A sequence (unit 3) of ice-contact proximal to distal glacio-fluvial sediments overlies the organic beds. Paleomagnetic analysis showed that the upper glacio-fluvial sediments were likely deposited during the Brunhes polarity chron (younger than 0.73 Ma). The uppermost unit (unit 4) consists in a lodgement till containing clasts of Paleozoic limestone erratics. Based on amino acid ratios of shells fragments in the drift, Klassen (1993) suggested that this “foreign drift” was probably deposited during an "old" Quaternary glaciation named “Baffin glaciation” During July 2009 several active-layer detachment slides at the head of large gullies exposed large massive ice bodies located at the junction between units 3 and 4. A preliminary analysis of the ice facies and ice crystals revealed the presence of two distinct types of massive ice: 1) clear-ice bodies with very few sediments and no organic inclusions. The ice crystals were large (cm) and air bubbles were observed at the junction of crystals. These characteristics could potentially indicate an englacial origin for these clear ice bodies. In some places, the ice was stratified with undulating layers of sands and gravels. These micro-structures are very similar to basal ice facies we observed at the Matanuska Glacier in Alaska. The exposed massive ice sections were a few tens of meter wide and about 2 to 4 m deep but the real width and thickness of these ice masses are unknown. The upper part of the clear ice and stratified massive ice bodies were always in contact with various types of glacio-fluvial sediments which suggest that their preservation were likely related to rapid burial of the ice and refreezing of the overlying sediments following permafrost aggradation. 2) large, white to milky, epigenetic ice wedges with a typical sub-vertical foliated structure. The ice wedges were formed in unit 4 and, in some places, penetrated into the clear massive ice bodies described above which created a sharp visual contrast between the two types of ice. This also indicates that ice wedge development post-date the massive ice burial. Based on the chrono-stratigraphic context and on the similarities between 1) the clear ice masses and the contemporary englacial ice facies (e.g. on Bylot Island); and 2) the cryostructures of the stratified massive ice at the study site and the contemporary basal ice cryostructures observed at the Matanuska glaciers, we propose that the massive ice bodies exposed on Bylot Island are related to a Middle Pleistocene glaciation.

  18. The hierarchical structure of glacial climatic oscillations: interactions between ice-sheet dynamics and climate

    NASA Astrophysics Data System (ADS)

    Paillard, Didier

    1995-04-01

    Abrupt climatic oscillations around the North Atlantic have been identified recently in Greenland ice cores as well as in North Atlantic marine sediment cores. The good correlation between the ‘Dansgaard-Oeschger events’ in the ice and the ‘Heinrich events’ in the ocean suggests that climate, in the North Atlantic region, underwent several massive reorganizations in the last glacial period. A characteristic feature of these events seems to be their hierarchical structure. Every 7 to 10-thousand years, when the temperature is close to its minimum, the ice-sheet undergoes a massive iceberg discharge. This Heinrich event is then followed by an abrupt warming, then by several other oscillations, each one lasting between one and two thousand years. These secondary oscillations do not have a clear signature in marine sediments but constitute most of the ‘Dansgaard-Oeschger events’ found in the ice. Here we use a simplified model coupling an ice-sheet and an ocean basin, in order to illustrate how the interactions between these two components can lead to such a hierarchical structure. The ice-sheet model exhibits internal oscillations composed of ice-sheet growing phases and basal ice melting phases that induce massive iceberg discharges. These massive fresh water inputs in the ocean stop for a moment the thermohaline circulation, enhancing the temperature contrast between low- and high-latitudes. Just after this event, the thermohaline circulation restarts and an abrupt warming of high-latitude regions is observed. For some parameter values, these warmer temperatures have in turn some influence on the ice-sheet, inducing secondary oscillations similar to those found in paleoclimatic records. Although the mechanism presented here may be too grossly simplified, it nevertheless underlines the potential importance of the coupling between ice-sheet dynamics and oceanic thermohaline circulation on the structure of the climatic records during the last glacial period.

  19. The hierarchical structure of glacial climatic oscillations: Interactions between ice-sheet dynamics and climate

    SciTech Connect

    Paillard, D.

    1995-04-01

    Abrupt climatic oscillations around the North Atlantic have been identified recently in Greenland ice cores as well as in North Atlantic marine sediment cores. The good correlation between the {open_quote}Dansgaard Oeschger events{close_quote} in the ice and the {open_quote}Heinrich events{close_quote} in the ocean suggests climate, in the North Atlantic region, underwent several massive reorganizations in the last glacial period. A characteristic feature seems to be their hierarchical structure. Every 7 to 10-thousand years, when the temperature is close to its minimum, the ice-sheet undergoes a massive iceberg discharge. This Heinrich event is followed by an abrupt warming. then by other oscillations, each lasting between one and two thousand years. These secondary oscillations do not have a clear signature in marine sediments but constitute most of the{open_quote} Dansgaard-Oeschger events{close_quote} found in the ice. A simplified model coupling an ice-sheet and an ocean basin, to illustrate how the interactions between these two components can lead to such a hierarchical structure. The ice-sheet model exhibits internal oscillations composed of growing phases and basal ice melting phases that induce massive iceberg discharges. These fresh water inputs in the ocean stop for a moment the thermohaline circulation, enhancing the temperature contrast between low- and high-latitudes. Just after this event, the thermohaline circulation restarts and an abrupt warming of high-latitude regions is observed. For some parameter values, these warmer temperatures have some influence on the ice-sheet, inducing secondary oscillations similar to those found in paleoclimatic records. Although the mechanism presented here may be too grossly simplified. it nevertheless underlines the potential importance of the coupling between ice-sheet dynamics and oceanic thermohaline circulation on the structure of the climatic records during the last glacial period. 33 refs., 14 figs., 1 tab.

  20. Effect of Pleistocene Climatic Oscillations on the Phylogeography and Demography of Red Knobby Newt (Tylototriton shanjing) from Southwestern China

    PubMed Central

    Rao, Dingqi; Yang, Junxing

    2013-01-01

    Factors that determine the genetic structure of species in southwestern China remain largely unknown. In this study, phylogeography and demography of Tylototriton shanjing was investigated from a mitochondrial perspective to address the role of the Quaternary ice ages in shaping phylogeographic history and genetic diversity of Yunnan. A total of 146 individuals from 19 populations across the entire range of the species were collected. We detected four maternal phylogenetic lineages corresponding to four population groups, and found that major glaciation events during the Pleistocene have triggered the intra-specific divergence. Coalescent simulations indicated that the populations retreated to different refugia located in southern Yunnan, northwestern Yunnan, the border region of western Yunnan with Myanmar, and middle-western Yunnan, respectively, during previous glacial periods in the Pleistocene, and these four refugia were not retained during the Last Glacial Maximum. Population expansions occurred during the last inter-glaciation, during which ice core and pollen data indicated that the temperature and precipitation gradually increased, and declines of population sizes started after the beginning of the Last Glacial Maximum when the climate became cooler and dryer. The paleo-drainage system had no contribution to the current genetic structure and the rivers were not dispersal barriers for this salamander. PMID:23424644

  1. Effect of Pleistocene climatic oscillations on the phylogeography and demography of red knobby newt (Tylototriton shanjing) from southwestern China.

    PubMed

    Yu, Guohua; Zhang, Mingwang; Rao, Dingqi; Yang, Junxing

    2013-01-01

    Factors that determine the genetic structure of species in southwestern China remain largely unknown. In this study, phylogeography and demography of Tylototriton shanjing was investigated from a mitochondrial perspective to address the role of the Quaternary ice ages in shaping phylogeographic history and genetic diversity of Yunnan. A total of 146 individuals from 19 populations across the entire range of the species were collected. We detected four maternal phylogenetic lineages corresponding to four population groups, and found that major glaciation events during the Pleistocene have triggered the intra-specific divergence. Coalescent simulations indicated that the populations retreated to different refugia located in southern Yunnan, northwestern Yunnan, the border region of western Yunnan with Myanmar, and middle-western Yunnan, respectively, during previous glacial periods in the Pleistocene, and these four refugia were not retained during the Last Glacial Maximum. Population expansions occurred during the last inter-glaciation, during which ice core and pollen data indicated that the temperature and precipitation gradually increased, and declines of population sizes started after the beginning of the Last Glacial Maximum when the climate became cooler and dryer. The paleo-drainage system had no contribution to the current genetic structure and the rivers were not dispersal barriers for this salamander. PMID:23424644

  2. Pleistocene glacial refugia across the Appalachian Mountains and coastal plain in the millipede genus Narceus: Evidence from population genetic, phylogeographic, and paleoclimatic data

    PubMed Central

    Walker, Matt J; Stockman, Amy K; Marek, Paul E; Bond, Jason E

    2009-01-01

    Background Species that are widespread throughout historically glaciated and currently non-glaciated areas provide excellent opportunities to investigate the role of Pleistocene climatic change on the distribution of North American biodiversity. Many studies indicate that northern animal populations exhibit low levels of genetic diversity over geographically widespread areas whereas southern populations exhibit relatively high levels. Recently, paleoclimatic data have been combined with niche-based distribution modeling to locate possible refugia during the Last Glacial Maximum. Using phylogeographic, population, and paleoclimatic data, we show that the distribution and mitochondrial data for the millipede genus Narceus are consistent with classical examples of Pleistocene refugia and subsequent post-glacial population expansion seen in other organismal groups. Results The phylogeographic structure of Narceus reveals a complex evolutionary history with signatures of multiple refugia in southeastern North America followed by two major northern expansions. Evidence for refugial populations were found in the southern Appalachian Mountains and in the coastal plain. The northern expansions appear to have radiated from two separate refugia, one from the Gulf Coastal Plain area and the other from the mid-Atlantic coastal region. Distributional models of Narceus during the Last Glacial Maximum show a dramatic reduction from the current distribution, with suitable ecological zones concentrated along the Gulf and Atlantic coastal plain. We found a strong correlation between these zones of ecological suitability inferred from our paleo-model with levels of genetic diversity derived from phylogenetic and population estimates of genetic structuring. Conclusion The signature of climatic change, during and after the Pleistocene, on the distribution of the millipede genus Narceus is evident in the genetic data presented. Niche-based historical distribution modeling strengthens the conclusions drawn from the genetic data and proves useful in identifying probable refugia. Such interdisciplinary biogeographic studies provide a comprehensive approach to understanding these processes that generate and maintain biodiversity as well as the framework necessary to explore questions regarding evolutionary diversification of taxa. PMID:19183468

  3. Climate oscillations and tephrochronology in eastern middle Sweden during the last glacial-interglacial transition

    NASA Astrophysics Data System (ADS)

    Björck, Jonas; Wastegård, Stefan

    1999-08-01

    Two sequences spanning the last glacial-interglacial transition in southern Östergötland, eastern middle Sweden have been investigated for high-resolution vegetation change and tephrochronology. Organic carbon and pollen analysis indicates that the Younger Dryas-Preboreal climatic transition was characterised by at least one well-defined oscillation or possibly two shorter climatic oscillations. The Vedde Ash (ca. 12000 GRIP yr BP or ca. 10300 14C yr BP) has been identified at both sites, significantly increasing the known distribution of this marker horizon. In addition, a previously unrecorded rhyolitic tephra of Icelandic origin has been identified at ca. 9000 14C yr BP. The expansion of Corylus into southern Östergötland is estimated to be ca. 9400 14C yr BP.

  4. The homogenous genetic structure and inferred unique history of range shifts during the Pleistocene climatic oscillations of Arcterica nana (Maxim.) Makino (Ericaceae).

    PubMed

    Ikeda, Hajime; Setoguchi, Hiroaki

    2009-03-01

    Previous phylogeographic studies of alpine plants in Japan have inferred that populations in central Honshu persisted during the Pleistocene climatic oscillations and suggested interglacial survival in high mountains. However, Arcterica nana (Maxim.) Makino (Ericaceae) exhibits a homogenous genetic structure throughout Japan and may therefore have a unique phylogeographic history. This inconsistency could have resulted from insufficient resolution of previously analyzed chloroplast DNA sequences. Therefore, we conducted a phylogeographic investigation based on amplified fragment length polymorphisms. Using 176 individuals from 21 populations, the relationships among individuals and populations were determined by principal coordinate analysis and a neighbor-joining tree, respectively. In addition, genetic differentiation was estimated using analysis of molecular variance and spatial autocorrelation analysis. These analyses demonstrate a homogenous structure throughout the entire Japanese range, supporting the previous cpDNA phylogeography. Although this genetic structure is inconsistent with those of other alpine plants, it is difficult to postulate that pre-existing genetic differentiation was swamped exclusively within A. nana. Therefore, this homogenous genetic structure may have been caused by the distinct history of populations of A. nana. Specifically, the southern-ward migration and the subsequent continuous populations enabled gene flow throughout the Japanese archipelago during the last glacial period. Thus, our data suggest that alpine plants in the Japanese archipelago did not always experience a shared distribution change following climatic oscillations. PMID:19151915

  5. On the timing and forcing mechanisms of late Pleistocene glacial terminations: Insights from a new high-resolution benthic stable oxygen isotope record of the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Konijnendijk, T. Y. M.; Ziegler, M.; Lourens, L. J.

    2015-12-01

    Benthic oxygen isotope records of deep marine sedimentary archives have yielded a wealth of information regarding ice sheet dynamics and climate change during the Pleistocene. However, since they often lack independent age control, these records are generally bound by a fixed phase relationship between orbital forcing and the climate response, e.g. ice volume changes. We present the first long (˜1.2 Ma) benthic oxygen isotope record from the eastern Mediterranean, based on ODP Sites 967 and 968, which clearly reflects the behavior of global climate on a glacial-interglacial scale throughout the late Pleistocene time period. The age model for our record is based on tuning the elemental ratio of titanium versus aluminum (Ti/Al) against insolation. The Ti/Al record is dominated by the precession-related changes in northern African climate, i.e. monsoonal forcing, and hence largely independent of glacial-interglacial variability. We found the largest offset between our chronology and that of the widely applied, open ocean stacked record LR04 (Lisiecki and Raymo, 2005) for TVII (˜624 ka), which occurred ˜9 kyr earlier according to our estimates, though in agreement with the AICC2012 δDice chronology of EPICA Dome C (Bazin et al., 2013). Spectral cross-correlation analysis between our benthic δ18O record and 65°N summer insolation reveals significant amounts of power in the obliquity and precession range, with an average lag of 5.5 ± 0.8 kyr for obliquity, and 6.0 ± 1.0 kyr for precession. In addition, our results show that the obliquity-related time lag was smaller (3.0 ± 3.3 kyr) prior to ˜900 ka than after (5.7 ± 1.1 kyr), suggesting that on average the glacial response time to obliquity forcing increased during the mid-Pleistocene transition, much later than assumed by Lisiecki and Raymo (2005). Finally, we found that almost all glacial terminations have a consistent phase relationship of ˜45 ± 45° with respect to the precession and obliquity-driven increases in 65°N summer insolation, consistent with the general consensus that both obliquity and precession are important for deglaciation during the Late Pleistocene. Exceptions are glacial terminations TIIIb, T36 and potentially T32 (and TVII T24 and T34), which show this consistent phase relationship only with precession (only with obliquity). Our findings point towards an early (>1200 ka) onset of the Mid Pleistocene Transition. Vice versa, the timing of TVII, which can only be explained as a response to obliquity forcing, indicates that the transition lasted until at least after MIS 15.

  6. Late Pleistocene ages for the most recent volcanism and glacial-pluvial deposits at Big Pine volcanic field, California, USA, from cosmogenic 36Cl dating

    USGS Publications Warehouse

    Vazquez, Jorge A.; Woolford, Jeff M

    2015-01-01

    The Big Pine volcanic field is one of several Quaternary volcanic fields that poses a potential volcanic hazard along the tectonically active Owens Valley of east-central California, and whose lavas are interbedded with deposits from Pleistocene glaciations in the Sierra Nevada Range. Previous geochronology indicates an ∼1.2 Ma history of volcanism, but the eruption ages and distribution of volcanic products associated with the most-recent eruptions have been poorly resolved. To delimit the timing and products of the youngest volcanism, we combine field mapping and cosmogenic 36Cl dating of basaltic lava flows in the area where lavas with youthful morphology and well-preserved flow structures are concentrated. Field mapping and petrology reveal approximately 15 vents and 6 principal flow units with variable geochemical composition and mineralogy. Cosmogenic 36Cl exposure ages for lava flow units from the top, middle, and bottom of the volcanic stratigraphy indicate eruptions at ∼17, 27, and 40 ka, revealing several different and previously unrecognized episodes of late Pleistocene volcanism. Olivine to plagioclase-pyroxene phyric basalt erupted from several vents during the most recent episode of volcanism at ∼17 ka, and produced a lava flow field covering ∼35 km2. The late Pleistocene 36Cl exposure ages indicate that moraine and pluvial shoreline deposits that overlie or modify the youngest Big Pine lavas reflect Tioga stage glaciation in the Sierra Nevada and the shore of paleo-Owens Lake during the last glacial cycle.

  7. Late Pleistocene ages for the most recent volcanism and glacial-pluvial deposits at Big Pine volcanic field, California, USA, from cosmogenic 36Cl dating

    NASA Astrophysics Data System (ADS)

    Vazquez, J. A.; Woolford, J. M.

    2015-09-01

    The Big Pine volcanic field is one of several Quaternary volcanic fields that poses a potential volcanic hazard along the tectonically active Owens Valley of east-central California, and whose lavas are interbedded with deposits from Pleistocene glaciations in the Sierra Nevada Range. Previous geochronology indicates an ˜1.2 Ma history of volcanism, but the eruption ages and distribution of volcanic products associated with the most-recent eruptions have been poorly resolved. To delimit the timing and products of the youngest volcanism, we combine field mapping and cosmogenic 36Cl dating of basaltic lava flows in the area where lavas with youthful morphology and well-preserved flow structures are concentrated. Field mapping and petrology reveal approximately 15 vents and 6 principal flow units with variable geochemical composition and mineralogy. Cosmogenic 36Cl exposure ages for lava flow units from the top, middle, and bottom of the volcanic stratigraphy indicate eruptions at ˜17, 27, and 40 ka, revealing several different and previously unrecognized episodes of late Pleistocene volcanism. Olivine to plagioclase-pyroxene phyric basalt erupted from several vents during the most recent episode of volcanism at ˜17 ka, and produced a lava flow field covering ˜35 km2. The late Pleistocene 36Cl exposure ages indicate that moraine and pluvial shoreline deposits that overlie or modify the youngest Big Pine lavas reflect Tioga stage glaciation in the Sierra Nevada and the shore of paleo-Owens Lake during the last glacial cycle.

  8. Sediment production and transport in the New Zealand Southern Alps - Canterbury sedimentary system during the Late Pleistocene: the influence of alpine glacial erosion on the marine stratigraphic record.

    NASA Astrophysics Data System (ADS)

    Villaseor, T. G.; Jaeger, J. M.; Foster, D. A.

    2014-12-01

    Quaternary mountain glaciations have greatly modified landscape and sediment production, especially after the Mid Pleistocene Transition. However, the impact of increased glacigenic sediment yields on continental margin sedimentation is poorly documented during this period in which eustasy is proposed as the dominant control on margin development. We study the provenance of sediment accumulated in the continental shelf during the Late Pleistocene, by performing 40Ar/39Ar geochronology of the bulk silt-size fraction on sediment samples from three sites drilled during IODP Expedition 317 to Canterbury Basin, New Zealand. The results show ages that range from 25 to 90 Ma, which are significantly younger than the cooling ages of the potential rock sources (>100 Ma). Bedrock cooling ages similar to our results are found adjacent to the Main Divide Fault Zone, located near the main drainage divide in Central Southern Alps. This suggests that a large proportion of sediment accumulating in the continental shelf is sourced in this region of highest elevation and maximum glacial erosion. Sediment bulk ages in the cores show younger ages up-section, suggesting that contribution of young sediment has increased and/or that glaciers have eroded younger rocks with time. In addition, sediment ages are younger in the most landward site, while the most offshore site observes young ages later indicating that the input of young sediment across the continental shelf is progressive, likely by means of sediment reworking during sea level transgression and shoreline migration during sea level fall. We propose that sediment transfer from source to sink occurs in steps in which sediment undergoes several cycles of transport and storage until final accumulation. Glacial erosion plays a very important role in this sedimentary system, supplying sediment that is likely eroded in a zone of rock weakness. The age signature of the muddy sediment accumulating in the continental shelf likely reflects Late Pleistocene landscape evolution in the Southern Alps.

  9. Reduced El Niño-Southern Oscillation during the Last Glacial Maximum.

    PubMed

    Ford, Heather L; Ravelo, A Christina; Polissar, Pratigya J

    2015-01-16

    El Niño-Southern Oscillation (ENSO) is a major source of global interannual variability, but its response to climate change is uncertain. Paleoclimate records from the Last Glacial Maximum (LGM) provide insight into ENSO behavior when global boundary conditions (ice sheet extent, atmospheric partial pressure of CO2) were different from those today. In this work, we reconstruct LGM temperature variability at equatorial Pacific sites using measurements of individual planktonic foraminifera shells. A deep equatorial thermocline altered the dynamics in the eastern equatorial cold tongue, resulting in reduced ENSO variability during the LGM compared to the Late Holocene. These results suggest that ENSO was not tied directly to the east-west temperature gradient, as previously suggested. Rather, the thermocline of the eastern equatorial Pacific played a decisive role in the ENSO response to LGM climate. PMID:25593181

  10. Does an asymmetric thermohaline-ice-sheet oscillator drive 100 000-yr glacial cycles?

    NASA Astrophysics Data System (ADS)

    Denton, George H.

    2000-05-01

    A hypothesis is presented that late Quaternary 100 000-yr glacial cycles are driven by an asymmetric thermohaline-ice-sheet oscillator that emerged in the global climate system 650 000-950 000 yr ago, perhaps when the main source of Northern Hemisphere deep-water production shifted south from the Arctic into the Nordic seas. It is hypothesised that the asymmetry is due to the increasing difficulty after 950 000 years ago of resetting an interglacial mode of the critical Nordic limb of the salinity conveyor once it switches off and an ensuing iceberg flux enters the areas of downwelling. A possible reason for both a southward shift and the resulting asymmetry is uplift of the Greenland-Scotland submarine ridge from activity of the Iceland mantle plume.In this hypothesis an individual 100 000-yr glacial cycle begins when the northernmost limb of the salinity conveyor in the Nordic seas is curtailed, or even switched off, perhaps due to the growing strength of competing Antarctic Bottom Water (AABW) generated by interglacial recession of the West Antarctic Ice Sheet (WAIS) from the West Antarctic Rift System. Such recession produces southern marginal seas where dense shelf water can collect and overflow into the abyss. When northern ice sheets, nucleated by this circulation switch, develop marine components that calve icebergs into the Nordic seas, the salinity conveyor can no longer revert to an interglacial mode from orbital forcing, as it did prior to 950 000 yr ago. In order to reset an interglacial circulation mode of the conveyor, ice sheets must continue to grow for 100 000 years until they capture enough excess volume to produce a gravitational collapse of marine-based components, so massive that all grounded ice is flushed from North Atlantic continental shelves. The outburst of icebergs produced by this collapse cripples the glacial mode of overturning in the northern North Atlantic. Once this collapse ends, however, the Nordic seas become nearly free of icebergs for the first time in 100 000 years because of the depletion of adjacent marine-based components. As a consequence, North Atlantic salinity increases rapidly, switching the conveyor into a vigorous interglacial mode of operation and hence terminating the glacial cycle.By lowering sea-level, the prolonged growth of Northern Hemisphere ice sheets during each 100 000-yr cycle drives Antarctic grounding lines seaward across continental shelves, squeezing off the source of densified shelf waters that feed AABW. Sea-level rise and increased basal melting, however, caused by the subsequent collapse of northern ice sheets and the reintroduction of North Atlantic Deep Water into the Southern Ocean, reverses the process, forcing retreat of Antarctic grounding lines from their advanced last-glacial maximum positions. This retreat opens marginal seas for renewed formation of dense shelf water. By expanding marginal seas and hence the source of dense shelf water, ongoing recession of the WAIS strengthens AABW during the course of an interglaciation, eventually forcing a thermohaline circulation switch in the Nordic seas and initiating yet another 100 000-yr glacial cycle.The 100 000-yr duration of each cycle is set by two factors. Inertia is built into the system by the long time required for ice sheets to grow to the excess volume necessary for a marine collapse that resets the salinity conveyor into an interglacial mode. Eccentricity-driven changes in the amplitude of the precession or tropical half-precession signal give rise to warming events that trigger such a collapse of excess ice about each 100 000 yr.

  11. Linking Late Pleistocene alpine glacial erosion and continental margin sedimentation: Insights from 40Ar/39Ar dating of silt-sized sediment, Canterbury Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Villaseñor, Tania; Jaeger, John M.; Foster, David A.

    2016-01-01

    Quaternary climatic and eustatic cycles in mid-latitude regions have led to more extensive alpine glaciations and continental shelf progradation, respectively. However, the glacial influence on sediment fluxes to the ocean creating continental margin strata is poorly documented. This contribution analyzes the provenance of fine sediment accumulating on the continental shelf during the Late Pleistocene to evaluate the influence of glacial cycles on sediment erosion and routing to the continental shelf. Taking advantage of the contrasting bedrock ages exposed across the Southern Alps, New Zealand, we perform 40Ar/39Ar incremental heating on the bulk silt-size sediment from three drill sites of IODP Expedition 317, Canterbury Basin, New Zealand. The results suggest that a large proportion of sediment accumulating on the continental shelf results from erosion within the Main Divide fault zone of the Southern Alps. Sediment 40Ar/39Ar age fluctuations over this time period suggest that bedrock with various 40Ar/39Ar cooling ages has been differentially eroded in the upper Waitaki River catchment and mixed in the Waitaki-Canterbury sediment-routing system. Across-shelf variations in sediment 40Ar/39Ar age reflect changing modes of sediment dispersal on the continental shelf. Fluvial material, likely derived from the main drainage divide zone, preferentially accumulates in the middle continental shelf, whereas material representing erosion of older bedrock (Torlesse Terrane), located lower in the drainage basin, is dispersed uniformly across the shelf. The age signature of the muddy sediment accumulating on the continental shelf reflects Late Pleistocene landscape evolution of the Southern Alps and its influence on sediment dispersal to the continental shelf.

  12. Gradual and small decrease of glacial sea surface temperatures in the eastern equatorial Indian ocean across the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Casse, Marie; Malaize, Bruno; Bassinot, Franck; Caillon, Nicolas; Degaridel-Thoron, Thibault; Rebaubier, Hélène; Charlier, Karine; Caley, Thibaut; Marieu, Vincent; Beaufort, Luc; Rojas, Virginia; Meynadier, Laure; Valet, Jean Pierre; Reaud, Yvan

    2015-04-01

    The Mid-Pleistocene Transition (MPT), between about 1.2 and 0.7 Ma, is characterized by the emergence of asymmetric, high-amplitude 100 ka cycles, which contrast with the low amplitude, 41 kyr cycles that dominate the early Pleistocene climate. Here, we study the sediment core MD12-3409, which spans the last ~ 1.75 Ma, to document hydrographic changes across the MPT in the Eastern Equatorial Indian Ocean. Stratigraphy is based on benthic foraminifera delta18O and we reconstruct Sea Surface Temperatures (SST) using the Mg/Ca ratio of Globigerinoides ruber, a surface dwelling planktonic foraminifera. Our results reveal a progressive cooling of glacial maxima across the MPT but no long-term trend in mean SST over the last 1.75 Ma. The main periodicity of the surface temperature signal shifts from 41 kyr before the MPT, to both 100 kyr and 41 kyr for the post MPT time period. Over the last 800 ka, the strong correlation between core MD12-3409 SST fluctuations and the atmospheric CO2 record suggests a global, greenhouse forcing for the tropical Indian SST over the post-MPT time period. Within the MPT, and for earlier time interval, changes in temperature gradients between our SST record and other temperature records in, or at the edge of, the Pacific Warm Pool, could suggest reorganizations of sea surface circulation and lateral heat exchanges. Since the MPT, the amplification of sea level lowering during glacial periods might have shoaled the Indonesian Through Flow (ITF) gateway, restricting hydrographic exchanges between Pacific and Indian oceans.

  13. Low but structured chloroplast diversity in Atherosperma moschatum (Atherospermataceae) suggests bottlenecks in response to the Pleistocene glacials

    PubMed Central

    Worth, James R. P.; Marthick, James R.; Jordan, Gregory J.; Vaillancourt, René E.

    2011-01-01

    Background and Aims The cool temperate rainforests of Australia were much reduced in range during the cold and dry glacial periods, although genetic evidence indicates that two key rainforest species, Nothofagus cunninghamii and Tasmannia lanceolata, survived within multiple locations and underwent only local range expansions at the end of the Last Glacial. To better understand the glacial response of a co-occurring but wind-dispersed and less cold-tolerant rainforest tree species, Atherosperma moschatum, a chloroplast phylogeographic study was undertaken. Methods A total of 3294 bp of chloroplast DNA sequence was obtained for 155 samples collected from across the species' range. Key Results The distribution of six haplotypes observed in A. moschatum was geographically structured with an inferred ancestral haplotype restricted to Tasmania, while three non-overlapping and endemic haplotypes were found on the mainland of south-eastern Australia. Last glacial refugia for A. moschatum are likely to have occurred in at least one location in western Tasmania and in Victoria and within at least two locations in the Great Dividing Range of New South Wales. Nucleotide diversity of A. moschatum was lower (π = 0·00021) than either N. cunninghamii (0·00101) or T. lanceolata (0·00073), and was amongst the lowest recorded for any tree species. Conclusions This study provides evidence for past bottlenecks having impacted the chloroplast diversity of A. moschatum as a result of the species narrower climatic niche during glacials. This hypothesis is supported by the star-like haplotype network and similar estimated rates of chloroplast DNA substitution for A. moschatum and the two more cold tolerant and co-occurring species that have higher chloroplast diversity, N. cunninghamii and T. lanceolata. PMID:21856633

  14. Dansgaard-Oeschger Oscillations and the Bi-Polar SeeSaw in a Comprehensive Model of Glacial Climate

    NASA Astrophysics Data System (ADS)

    Peltier, W. R.; Vettoretti, G.

    2013-12-01

    The millennial timescale variability characteristic of Marine Oxygen Isotopic Stage 3 that is observed most clearly in Summit, Greenland ice-cores has never been adequately explained. The mechanism responsible for the bi-polar seesaw relationship between the Polar Regions that accompanies these events has remained similarly enigmatic. This situation has continued to exist in large part as a consequence of the fact that the D-O oscillation has never been shown to arise in a comprehensive coupled model of glacial climate. We will describe a series of very long timescale high resolution integrations of the NCAR CESM1 model under glacial boundary conditions in which the continental ice cover is assumed to be fixed to that of the new ICE-6G (VM5a) model. Greenhouse gases are also fixed to those inferred in the basis of Antarctic ice-core measurements. In order that the equilibrium dynamical state of the ocean not be prejudiced by the initial conditions, the ocean is initialized from a state of rest with modern ocean heat content. The spin-up of the model to statistical equilibrium is characterized by the existence of a series of cooling thresholds which, once crossed, lead the climate system into full glacial cold conditions in which sea ice cover has significantly expanded. In the high spatial resolution version of CESM1, the same resolution employed in CMIP5 experiments, we find that the glacial state is unsteady and characterized by millennium timescale oscillations, each of which has the form of a relaxation oscillation with the fast timescale warming phase of the oscillation caused by a rapid onset of deep water production in the North Atlantic due to convective instability of the water column. The subsequent slow timescale phase of each oscillation is associated with a slow expansion of sea ice cover which leads the system back into stadial conditions. These characteristics accurately mimic the GRIP and NGRIP records of individual D-O oscillations, not only in terms of the period of the individual oscillations but also concerning their amplitude. We compare the model predicted temperature variations for the Summit, Greenland and Dronning Maud Land, Antarctica sites and thereby show that the model replicates the bi-polar seesaw behavior inferred on the basis of the δ18O records from the collocated ice cores. The 'bare' D-O oscillation is thereby shown not to require co-variation of land ice volume for its existence, although negative feedback associated with freshwater forcing during the fast transitions into the interstadial state is expected to be important in sculpting the detailed form of individual Bond cycles.

  15. Influence of Pleistocene glacial/interglacial cycles on the genetic structure of the mistletoe cactus Rhipsalis baccifera (Cactaceae) in Mesoamerica.

    PubMed

    Ornelas, Juan Francisco; Rodríguez-Gómez, Flor

    2015-01-01

    Phylogeographical work on cloud forest-adapted species provides inconsistent evidence on cloud forest dynamics during glacial cycles. A study of Rhipsalis baccifera (Cactaceae), a bird-dispersed epiphytic mistletoe cactus, was conducted to investigate genetic variation at sequence data from nuclear [internal transcribed spacer (ITS), 677 bp] and chloroplast (rpl32-trnL, 1092bp) DNA for 154 individuals across the species range in Mesoamerica to determine if such patterns are consistent with the expansion/contraction model of cloud forest during glacial cycles. We conducted population and spatial genetic analyses as well as gene flow and divergence time estimates between 24 populations comprising the distribution of R. baccifera in Mexico and Guatemala to gain insight of the evolutionary history of these populations, and a complementary species distribution modeling approach to frame information derived from the genetic analyses into an explicit paleoecological context. The results revealed a phylogeographical break at the Isthmus of Tehuantepec, and high levels of genetic diversity among populations and cloud forest areas. Despite the genetic differentiation of some R. baccifera populations, the widespread ITS ribotypes suggest effective nuclear gene flow via pollen and population differentiation shown by the rpl32-trnL suggests more restricted seed flow. Predictions of species distribution models under past last glacial maximum (LGM) climatic conditions and a significant signal of demographic expansion suggest that R. baccifera populations experienced a range expansion tracking the conditions of the cloud forest distribution and shifted to the lowlands with population connectivity during the LGM. PMID:25649131

  16. The glacial geomorphology and Pleistocene history of South America between 38°S and 56°S

    NASA Astrophysics Data System (ADS)

    Glasser, Neil F.; Jansson, Krister N.; Harrison, Stephan; Kleman, Johan

    2008-02-01

    This paper presents new mapping of the glacial geomorphology of southern South America between latitudes 38°S and 56°S, approximately the area covered by the former Patagonian Ice Sheets. Glacial geomorphological features, including glacial lineations, moraines, meltwater channels, trimlines, sandur and cirques, were mapped from remotely sensed images (Landsat 7 ETM+, pan-sharpened Landsat 7 and ASTER). The landform record indicates that the Patagonian Ice Sheets consisted of 66 main outlet glaciers, together with numerous local cirque glaciers and independent ice domes in the surrounding mountains. In the northern part of the mapped area, in the Chilean Lake District (38-42°S), large piedmont glaciers developed on the western side of the Andes and the maximum positions of these outlet glaciers are, in general, marked by arcuate terminal moraines. To the east of the Andes between 38°S and 42°S, outlet glaciers were more restricted in extent and formed "alpine-style" valley glaciers. Along the eastern flank of the Andes south of ˜45°S a series of large fast-flowing outlet glaciers drained the ice sheet. The location of these outlet glaciers was topographically controlled and there was limited scope for interactions between individual lobes. West of the Andes at this latitude, there is geomorphological evidence for an independent ice cap close to sea level on the Taitao Peninsula. The age of this ice cap is unclear but it may represent evidence of glacier growth during the Antarctic Cold Reversal and/or Younger Dryas Chronozone. Maximum glacier positions are difficult to determine along much of the western side of the Andes south of 42°S because of the limited land there, and it is assumed that most of these glaciers had marine termini. In the south-east of the mapped area, in the Fuegan Andes (Cordillera Darwin), the landform record provides evidence of ice-sheet initiation. By adding published dates for glacier advances from the literature we present maps of pre-Last Glacial Maximum (LGM) glacier extent, LGM extent and the positions of other large mapped moraines younger than LGM in age. A number of large moraines occur within the known LGM limits. The age of these moraines is unknown but, since many of them lie well outside the established maximum Neoglacial positions, the possibility that they reflect a return to glacial climates during the Younger Dryas Chronozone or Antarctic Cold Reversal cannot be discounted.

  17. New insights into Late Pleistocene glacial and postglacial history of northernmost Ungava (Canada) from Pingualuit Crater Lake sediments

    NASA Astrophysics Data System (ADS)

    Guyard, Hervé; St-Onge, Guillaume; Pienitz, Reinhard; Francus, Pierre; Zolitschka, Bernd; Clarke, Garry K. C.; Hausmann, Sonja; Salonen, Veli-Pekka; Lajeunesse, Patrick; Ledoux, Grégoire; Lamothe, Michel

    2011-12-01

    The Pingualuit Crater was formed by a meteoritic impact ca. 1.4 million years ago in northernmost Ungava (Canada). Due to its geographical position near the center of successive North American ice sheets and its favorable morphometry, the Pingualuit Crater Lake (water depth = 246 m) promises to yield a unique continuous sedimentary sequence covering several glacial/interglacial cycles in the terrestrial Canadian Arctic. In this paper, we suggest the existence of a subglacial lake at least during the Last Glacial Maximum (LGM) by hydraulic potential modeling using LGM ice-surface elevation and bed topography derived from a digital elevation model. These results support the hypothesis that the bottom sediments of the Crater Lake escaped glacial erosion and may contain a long-term continental sedimentary sequence. We also present the stratigraphy of a 9 m-long core retrieved from the deep basin of the lake as well as a multiproxy reconstruction of its deglacial and postglacial history. The base of the core is formed by very dense diamicton reflecting basal melt-out environments marking the end of subglacial conditions at the coring site. The overlying finely laminated silt are related to the onset of proglacial conditions characterized by extremely low lacustrine productivity. Infra Red Stimulated Luminescence and AMS 14C dating, as well as biostratigraphic data indicate sediment mixing between recent (e.g. Holocene) and much older (pre- to mid-Wisconsinan) material reworked by glacier activity. This process prevents the precise dating of these sediments that we interpret as being deposited just before the final deglaciation of the lake. Two finer grained and organic-rich intervals reflect the inception of lacustrine productivity resulting from the cessation of glacial meltwater inputs and ice-free periods. The lower organic interval corresponds to the early postglacial period (6850-5750 cal BP) and marks the transition between proglacial and postglacial conditions during the Holocene Thermal Maximum, while the uppermost organic-rich core section represents late Holocene sediments (˜4200-600 cal BP). The organic intervals are separated by a basin-scale erosive slide occurring around 4200 cal BP and likely related to 1) a seismic event due to the glacio-isostatic rebound following the last deglaciation or 2) slope instabilities associated with rapid discharge events of the lake.

  18. Unusual configuration of the Devonian-Pleistocene unconformity in the Susquehanna Valley, Oneonta, New York: Evidence for a subglacial meltwater inlet to glacial Lake Otego

    SciTech Connect

    Kucewicz, J. Jr.; Ebert, J.; Rasquin, C.; Sherman, R.; Nethaway, R.; Gardner, J.; Milunich, K.; Weber, J.; Wohlford, T.; Franz, J.; Brillon, S. . Dept. of Earth Sciences)

    1993-03-01

    A recently drilled test well and nearby abandoned bore hole have revealed anomalously shallow bedrock in a portion of the Susquehanna Valley near Oneonta, New York. Gravimetric and seismic refraction studies were conducted in the area to better delineate the Devonian--Pleistocene unconformity. On the northern flank of the valley, geophysical surveys indicate the presence of a shallowly buried bedrock shelf that is rimmed by a bedrock ridge. South of the ridge, bedrock drops abruptly beneath the thickening valley fill. This configuration contradicts predictions based upon projection of the valley walls to a classic U shape. These unusual features coincide with an extremely narrow portion of the valley, a recessional moraine and other stagnant ice features. The bedrock shelf may represent the initial glaciated valley floor. Incision of the valley floor below this surface can be attributed to scour by subglacial meltwaters at a nick point. As such, the narrow, deepest part of the bedrock valley may represent a subglacial inlet to glacial Lake Otego.

  19. Turbidite megabeds in an Oceanic Rift Valley recording jokulhlaups of late Pleistocene glacial lakes of the western United States

    USGS Publications Warehouse

    Zuffa, G.G.; Normark, W.R.; Serra, F.; Brunner, C.A.

    2000-01-01

    Escanaba Trough is the southernmost segment of the Gorda Ridge and is filled by sandy turbidites locally exceeding 500 m in thickness. New results from Ocean Drilling Program (ODP) Sites 1037 and 1038 that include accelerator mass spectrometry (AMS) 14C dates and revised petrographic evaluation of the sediment provenance, combined with high-resolution seismic-reflection profiles, provide a lithostratigraphic framework for the turbidite deposits. Three fining-upward units of sandy turbidites from the upper 365 m at ODP Site 1037 can be correlated with sediment recovered at ODP Site 1038 and Deep Sea Drilling Program (DSDP) Site 35. Six AMS 14C ages in the upper 317 m of the sequence at Site 1037 indicate that average deposition rates exceeded 10 m/k.yr. between 32 and 11 ka, with nearly instantaneous deposition of one ~60-m interval of sand. Petrography of the sand beds is consistent with a Columbia River source for the entire sedimentary sequence in Escanaba Trough. High-resolution acoustic stratigraphy shows that the turbidites in the upper 60 m at Site 1037 provide a characteristic sequence of key reflectors that occurs across the floor of the entire Escanaba Trough. Recent mapping of turbidite systems in the northeast Pacific Ocean suggests that the turbidity currents reached the Escanaba Trough along an 1100-km-long pathway from the Columbia River to the west flank of the Gorda Ridge. The age of the upper fining-upward unit of sandy turbidites appears to correspond to the latest Wisconsinan outburst of glacial Lake Missoula. Many of the outbursts, or jokulhlaups, from the glacial lakes probably continued flowing as hyperpycnally generated turbidity currents on entering the sea at the mouth of the Columbia River.

  20. Water versus ice: The competing roles of modern climate and Pleistocene glacial erosion in the Central Alps of Switzerland

    NASA Astrophysics Data System (ADS)

    Schlunegger, Fritz; Norton, Kevin P.

    2013-08-01

    Recent studies have identified relationships between landscape form, erosion and climate in regions of landscape rejuvenation, associated with increased denudation. Most of these landscapes are located in non-glaciated mountain ranges and are characterized by transient geomorphic features. The landscapes of the Swiss Alps are likewise in a transient geomorphic state as seen by multiple knickzones. In this mountain belt, the transient state has been related to erosional effects during the Late Glacial Maximum (LGM). Here, we focus on the catchment scale and categorize hillslopes based on erosional mechanisms, landscape form and landcover. We then explore relationships of these variables to precipitation and extent of LGM glaciers to disentangle modern versus palaeo controls on the modern shape of the Alpine landscape. We find that in grasslands, the downslope flux of material mainly involves unconsolidated material through hillslope creep, testifying a transport-limited erosional regime. Alternatively, strength-limited hillslopes, where erosion is driven by bedrock failure, are covered by forests and/or expose bedrock, and they display oversteepened hillslopes and channels. There, hillslope gradients and relief are more closely correlated with LGM ice occurrence than with precipitation or the erodibility of the underlying bedrock. We relate the spatial occurrence of the transport- and strength-limited process domains to the erosive effects of LGM glaciers. In particular, strength-limited, rock dominated basins are situated above the equilibrium line altitude (ELA) of the LGM, reflecting the ability of glaciers to scour the landscape beyond threshold slope conditions. In contrast, transport-limited, soil-mantled landscapes are common below the ELA. Hillslopes covered by forests occupy the elevations around the ELA and are constrained by the tree line. We conclude that the current erosional forces at work in the Central Alps are still responding to LGM glaciation, and that the modern climate has not yet impacted on the modern landscape.

  1. Late Pleistocene evolution of the Rhine-Meuse system in the southern North Sea basin: imprints of climate change, sea-level oscillation and glacio-isostacy

    NASA Astrophysics Data System (ADS)

    Busschers, F. S.; Kasse, C.; van Balen, R. T.; Vandenberghe, J.; Cohen, K. M.; Weerts, H. J. T.; Wallinga, J.; Johns, C.; Cleveringa, P.; Bunnik, F. P. M.

    2007-12-01

    High-resolution continuous core material, geophysical measurements, and hundreds of archived core descriptions enabled to identify 13 Late Pleistocene Rhine-Meuse sedimentary units in the infill of the southern part of the North Sea basin (the Netherlands, northwestern Europe). This sediment record and a large set of Optical Stimulated Luminescence dates, 14C dates and biostratigraphical data, allowed to establish detailed relationships between climate change, sea-level oscillation, glaciation history and the sedimentary development of the Rhine fluvial system during the last glacial cycle (Marine Isotope Stages 5e-2, Eemian-Weichselian). A well-preserved Eemian sediment record was encountered as the infill of a Late Saalian (MIS6) subglacial basin. Part of this record reflects groundwater rise controlled (fine-grained) sedimentation as a result of postglacial (early) Eemian sea-level rise. It shows strong analogy to developments known from the Holocene Rhine-Meuse delta. Outside of the glacial depressions near coastal deposits are only fragmentarily preserved. The Early Glacial Rhine sediment record is dominated by organic debris and peat layers, marking landscape stability and low fluvial activity. Part of this record may have been formed under near coastal conditions. Significant amounts of reworked marine biomarkers in the lag-deposits of Early Pleniglacial (MIS4) fluvial systems indicate that this period is characterized by extensive reworking of older (MIS5) near-coastal sediments. Despite the marked Early Pleniglacial climatic cooling, input of new sediment from the drainage basin was relatively low, a feature that is related to the presence of regolith protective relic soil complexes in the basin. During the early Middle Pleniglacial, a major Rhine avulsion indicates the system was in an aggrading mode and that sediment supply into the lower reaches of the Rhine had strongly increased. This increase in sediment supply coincided with the timing of major climate cooling that occurred from ?50 to 45 ka onwards. The increase in sediment supply is related to final breakup of the soil complexes in the drainage basin. After ?24 ka, a strong input of coarse-grained gravelly sediments was observed which indicates a strong increase in physical weathering processes and periglacial-controlled supply of bedload sediment in the catchment. A time delay between climate change (?30 ka) and channel belt aggradation (<24 ka), is explained as a result of transport path length between source and sink and/or effects of higher continental runoff rates after 22 ka. The Late Middle Pleniglacial, Late Pleniglacial and Lateglacial Rhine-Meuse record testifies for strong influence of glacio-isostatic-controlled differential upwarping of the study area. Glacio-isostatic-controlled forebulge upwarping and lateral valley tilting is shown to have deflected Rhine-Meuse channel belts after 35 ka. Glacio-isostatic upwarping is seen as the main cause for strong incision during the first phase of the Late Pleniglacial (30-24 ka). At later stage glacio-isostatic-controlled incision was overruled due to high climate-controlled sediment input from the catchment and probably initial glacio-isostatic subsidence. Migration of channel belts towards the direction of the former centre of glacio-isostatic uplift indicates that glacio-isostacy influenced Rhine-Meuse paleogeography until far into the Lateglacial.

  2. Post-Last Glacial Maximum (Latest Pleistocene to Holocene) geology of the Santa Barbara shelf, southern California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Ritchie, A. C.; Conrad, J. E.; Dartnell, P.; Phillips, E.; Sliter, R. W.

    2011-12-01

    High-resolution bathymetric and seismic-reflection data collected for the California Seafloor Mapping Program (http://walrus.wr.usgs.gov/mapping/csmp/) provide new insights for understanding the post-Last Glacial Maximum (LGM) evolution of the Santa Barbara shelf, highlighting relationships between tectonics, eustasy, and sediment supply. The west-trending shelf extends offshore for 5 to 7 km and is bounded on the south by the deep Santa Barbara basin and on the north by a narrow coastal zone and the steep, rapidly uplifting Santa Ynez Mountains. The active, west-trending, north-dipping Ventura-Pitas Point-North Channel and Red Mountain fault systems form the structural boundary between two distinct shelf domains. The smooth, gently sloping, southern shelf is flooded by thick (35 to 40 m), prograding Santa Clara and Ventura River deltaic deposits. These thick strata drape the shelfbreak and fill the accommodation space created by rising sea level, largely masking the influence of active tectonics. In contrast, the northern shelf has complex bathymetry and a well-defined, sharp shelfbreak at ~90 m water depth. The northern shelf is relatively sediment starved (mean sediment thickness is 3 to 4 m), with thickest accumulations (up to ~18 m) forming shallow (< 30 m), discontinuous to laterally coalescing, inner-shelf bars that are best developed at the mouths of steep coastal watersheds. These watersheds also feed several distinct, coarse-grained sediment lobes (as large as ~1.5 km2, extending to 3 km offshore and depths of 70 m) that probably formed during massive flood events. The relative lack of offshore deposits on the northern shelf suggests sediment transport is dominated by easterly nearshore drift. Faulting and folding on the northern shelf are significant controls on sediment distribution and thickness, the occurrence of bedrock uplifts, and common hydrocarbon-associated seeps, pockmarks, and mounds. Bedrock, typically "soft" Neogene strata, is especially common on the mid- to-outer shelf, forming low-relief ribbed outcrops. Bedrock on the flat outer shelf contains nearshore clam (pholad) borings and is interpreted as the ~20 ka lowstand (Stage 2) wave-cut platform; its depth (< 90 m) indicates post-LGM uplift of about 40 m (rate of ~2 mm/yr) that is tied to slip on the underlying North Channel fault. Three or more(?) distinct submerged strandlines and wave-cut platforms occur within the northern shelf at shallower depths, and are inferred to record relative post-LGM stillstands associated with either pulses of slower sea-level rise or periods when sea level rise was matched by tectonic uplift.

  3. Oscillating glacial northern and southern deep water formation from combined neodymium and carbon isotopes

    NASA Astrophysics Data System (ADS)

    Piotrowski, Alexander M.; Goldstein, Steven L.; Hemming, Sidney, R.; Fairbanks, Richard G.; Zylberberg, David R.

    2008-07-01

    While ocean circulation is driven by the formation of deep water in the North Atlantic and the Circum-Antarctic, the role of southern-sourced deep water formation in climate change is poorly understood. Here we address the balance of northern- and southern-sourced waters in the South Atlantic through the last glacial period using neodymium isotope ratios of authigenic ferromanganese oxides in thirteen deep sea cores from throughout the South Atlantic. The data indicate that northern-sourced water did not reach the Southern Ocean during the late glacial, and was replaced by southern-derived intermediate and deep waters. The high-resolution neodymium isotope record (~ 300 yr sample spacing) from two spliced deep Cape Basin sites indicates that over the last glacial period northern-sourced water mass export to the Southern Ocean was stronger during the major Greenland millennial warming intervals (and Southern Hemisphere cool periods), and particularly during the major interstadials 8, 12, and 14. Northern-sourced water mass export was weaker during Greenland stadials and reached minima during Heinrich Events. The benthic foraminiferal carbon isotopes in the same Cape Basin core reflect a partial control by Southern Hemisphere climate changes and indicate that deep water formation and ventilation occurred in the Southern Ocean during major Greenland cooling intervals (stadials). Together, neodymium isotopes and benthic carbon isotopes provide new information about water mass sourcing and circulation in deep Southern Ocean waters during rapid glacial climate changes. Combining carbon and neodymium isotopes can be used to monitor the relative proportion of northern- and southern-sourced waters in the Cape Basin to gain insight into the processes which control the carbon isotopic composition of deep waters. In this study we show that deep water formation and circulation was more important than biological productivity and nutrient regeneration changes for controlling the carbon isotope chemistry of Antarctic Bottom Water during millennial-scale glacial climate cycles. This observation also lends support to the hypothesis that ocean circulation is linked to interhemispheric climate changes on short timescales, and that ventilation in the glacial ocean rapidly switched between the northern and Southern Hemisphere on millennial timescales.

  4. Offset timing of climate oscillations during the last two glacial-interglacial transitions connected with large-scale freshwater perturbation

    NASA Astrophysics Data System (ADS)

    Jimnez-Amat, Patricia; Zahn, Rainer

    2015-06-01

    Multidecadal to centennial planktic ?18O and Mg/Ca records were generated at Ocean Drilling Program Site 976 (ODP976) in the Alboran Sea. The site is in the flow path of Atlantic inflow waters entering the Mediterranean and captured North Atlantic signals through the surface inflow and the atmosphere. The records reveal similar climatic oscillations during the last two glacial-to-interglacial transitions, albeit with a different temporal pacing. Glacial termination 1 (T1) was marked by Heinrich event 1 (H1), post-H1 Blling/Allerd warming, and Younger Dryas (YD) cooling. During T2 the H11 ?18O anomaly was twice as high and lasted 30% longer than during H1. The post-H11 warming marked the start of MIS5e while the subsequent YD-style cooling occurred during early MIS5e. The post-H11 temperature increase at ODP976 matched the sudden Asian Monsoon Termination II at 129 ka B.P. Extending the 230Th-dated speleothem timescale to ODP976 suggests glacial conditions in the Northeast Atlantic region were terminated abruptly and interglacial warmth was reached in less than a millennium. The early-MIS5e cooling and freshening at ODP976 coincided with similar changes at North Atlantic sites suggesting this was a basin-wide event. By analogy with T1, we argue that this was a YD-type event that was shifted into the early stages of the last interglacial period. This scenario is consistent with evidence from northern North Atlantic and Nordic Sea sites that the continuing disintegration of the large Saalian Stage (MIS6) ice sheet in Eurasia delayed the advection of warm North Atlantic waters and full-strength convective overturn until later stages of MIS5e.

  5. Influence of Glacial Oscillations on Deformation in the Himalayas of Central Nepal

    NASA Astrophysics Data System (ADS)

    Godard, V.; Burbank, D. W.

    2009-12-01

    Recent studies indicate that variations in surface loads associated with the evolution of ice caps or lakes can modulate the stress pattern inside the crust [e.g. Hampel et al., 2007; Luttrell et al., 2007; Turpeinen et al., 2008]. In particular these studies point out that such variations may be large enough to change the stress acting on faults and modify the timing of the seismic cycle and long-term slip rates. Glacial loads can impact the stress regime of mountain ranges in different ways, by simultaneously (1) loading with ice masses and (2) unloading it by bedrock erosion promoted by glacial processes. Furthermore, as a response to climate changes, major glacier retreats and advances occur with durations of a few kyrs, inducing fast rates of variation for the crustal stress field. An ongoing debate in Himalayan geodynamics concerns the deformation distribution inside the range and how the ~20 mm/yr of convergence that is accommodated by the orogen is partitioned between the different structures. In central Nepal, previous studies show that, over the Holocene, the MFT has accommodated ~20 mm/yr, i.e., the entire far-field convergence [Lavé and Avouac, 2001].These data support deformation models where the whole Himalayan range is overthrust along the MHT/MFT system. On the other hand, recent studies point to a Quaternary reactivation of the MCT, suggesting that the mode of deformation can substantially change at a time scale of 10-100 kyrs [e.g. Hodges et al., 2004]. The mechanisms that may lead to a shift from one behavior to another, however, are still poorly understood. We hypothesize that variations in crustal loads associated with changes in the glacial cover may induce variations in the stress pattern that are high enough to significantly modify the deformation regime of the Himalayas and the slip rate on the MCT. We first assess the range of variations in surface loads, associated with both ice loading and bedrock erosion. Then we develop thermomechanical models of the Himalayan range that incorporate the main structural and geodynamical features of the present orogen. They include an explicit description of both the MFT/MHT and MCT as discrete frictional interfaces, in order to assess the activity of both fault systems as a response to various loading and unloading scenarios. We test the implications of several hypotheses concerning the evolution and distribution of glacial cover in the high range in term of (1) timing of the loading and unloading events, (2) magnitude of the loads and (3) position of the load with respect to the main structures. Our results illustrate that loading/unloading in the high range significantly impact the stress pattern on the MCT and could modulate the slip rate by several mm/yr. An important controlling parameter on the response of the MCT is the unloading velocity, with rapid unloading tending to promote a short-lived slip acceleration on the MCT, in relation with a decrease in the normal stress on the fault plane. Slower evolution of the loads leads to more subdued and gradual responses. Those preliminary results suggest that, in cases of rapid unloading and sediment transport during deglaciations, the MCT could accommodate a non-negligible fraction of the long-term shortening.

  6. Spatial and temporal variations of glacial erosion in the Rhône valley (Swiss Alps): insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Sternai, Pietro; Herman, Frédéric; Valla, Pierre; Champagnac, Jean-Daniel; Willett, Sean

    2013-04-01

    The present-day topography of the European Alps shows evidence of intense glacial reshaping. However, significant questions regarding Alpine landscape evolution during glaciations still persist. For example, large-scale topographic analyses suggest that glacial erosion is maximized at and above the glaciers' long-term Equilibrium Line Altitude. In contrast, measurements of long-term denudation rates from low temperature thermochronology suggest high erosion towards low altitudes, leading to an increase of local relief in response to glacial erosion. Based on sediment record, low-temperature thermochronology and burial cosmogenic nuclide dating, it has also been proposed that the mid-Pleistocene climatic transition from symmetric, 40kyr to asymmetric, 100kyr glacial/interglacial oscillations sets the onset of intense glacial erosion within the Alps. However, this climate threshold in glacial erosion has not been showed in other orogens, and positive feedbacks between climate periodicity and glacial erosion efficiency still remain to be proven. We focus on the Rhône valley (Swiss Alps), and use a numerical model to estimate patterns and magnitudes of glacial erosion. Comparing modeling results on an advanced reconstruction of the pre-glacial topography (Sternai et al., 2012) and the present-day landforms, we found that erosion propagates headward as the landscape evolves from a fluvial to a glacial state, leading to an initial increase of local relief in the major valley trunk followed by subsequent erosion at high elevations. We also test the mid-Pleistocene transition hypothesis by running a 2Myr numerical experiment including a shift from symmetric, 40kyr to asymmetric, 100kyr glacial/interglacial oscillations at 1Myr. Although the change of climate periodicity may have produced an intensification of glacial erosion, our results suggest that other factors such as an increase of rock uplift and/or progressive climate cooling are required to explain enhanced valley carving at approximately 1Myr.

  7. Carbon cycle instability as a cause of the late Pleistocene ice age oscillations - Modeling the asymmetric response

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry; Maasch, Kirk A.

    1988-01-01

    A dynamical model of the Pleistocene ice ages is presented, which incorporates many of the qualitative ideas advanced recently regarding the possible role of ocean circulation, chemistry, temperature, and productivity in regulating long-term atmospheric carbon dioxide variations. This model involves one additional term (and free parameter) beyond that included in a previous model (Saltzman and Sutera, 1987), providing the capacity for an asymmetric response. It is shown that many of the main features exhibited by the delta(O-18)-derived ice record and the Vostok core/delta(C-13)-derived carbon dioxide record in the late Pleistocene can be deduced as a free oscillatory solution of the model.

  8. Periodic jökulhlaups from Pleistocene glacial Lake Missoula-New evidence from varved sediment in northern Idaho and Washington

    USGS Publications Warehouse

    Waitt, Richard B.

    1984-01-01

    Newly examined exposures in northern Idaho and Washington show that catastrophic floods from glacial Lake Missoula during late Wisconsin time were repeated, brief jökulhlaups separated by decades of quiet glaciolacustrine and subaerial conditions. Glacial Priest Lake, dammed in the Priest River valley by a tongue of the Purcell trench lobe of the Cordilleran ice sheet, generally accumulated varved mud; the varved mud is sharply interrupted by 14 sand beds deposited by upvalley-running currents. The sand beds are texturally and structurally similar to slackwater sediment in valleys in southern Washington that were backflooded by outbursts from glacial Lake Missoula. Beds of varved mud also accumulated in glacial Lake Spokane (or Columbia?) in Latah Creek valley and elsewhere in northeastern Washington; the mud beds were disrupted, in places violently, during emplacement of each of 16 or more thick flood-gravel beds. This history corroborates evidence from southern Washington that only one graded bed is deposited per flood, refuting a conventional idea that many beds accumulated per flood. The total number of such floodlaid beds in stratigraphic succession near Spokane is at least 28. The mud beds between most of the floodlaid beds in these valleys each consist of between 20 and 55 silt-to-clay varves. Lacustrine environments in northern Idaho and Washington therefore persisted for two to six decades between regularly recurring, colossal floods from glacial Lake Missoula.

  9. Periodic jökulhlaups from Pleistocene glacial Lake Missoula—New evidence from varved sediment in northern Idaho and Washington

    NASA Astrophysics Data System (ADS)

    Waitt, Richard B.

    1984-07-01

    Newly examined exposures in northern Idaho and Washington show that catastrophic floods from glacial Lake Missoula during late Wisconsin time were repeated, brief jökulhlaups separated by decades of quiet glaciolacustrine and subaerial conditions. Glacial Priest Lake, dammed in the Priest River valley by a tongue of the Purcell trench lobe of the Cordilleran ice sheet, generally accumulated varved mud; the varved mud is sharply interrupted by 14 sand beds deposited by upvalley-running currents. The sand beds are texturally and structurally similar to slackwater sediment in valleys in southern Washington that were backflooded by outbursts from glacial Lake Missoula. Beds of varved mud also accumulated in glacial Lake Spokane (or Columbia?) in Latah Creek valley and elsewhere in northeastern Washington; the mud beds were disrupted, in places violently, during emplacement of each of 16 or more thick flood-gravel beds. This history corroborates evidence from southern Washington that only one graded bed is deposited per flood, refuting a conventional idea that many beds accumulated per flood. The total number of such floodlaid beds in stratigraphic succession near Spokane is at least 28. The mud beds between most of the floodlaid beds in these valleys each consist of between 20 and 55 silt-to-clay varves. Lacustrine environments in northern Idaho and Washington therefore persisted for two to six decades between regularly recurring, colossal floods from glacial Lake Missoula.

  10. Late Pleistocene ice margin fluctuations in the Nahanni National Park-UNESCO World Heritage Site and their impact on glacial lake formation and architecture of drainage systems across the Yukon-NWT continental divide

    NASA Astrophysics Data System (ADS)

    Duk-Rodkin, A.; Barendregt, R. W.

    2009-12-01

    In the late Pleistocene the southern Mackenzie region was glaciated by ice masses from a Cordilleran and continental source (Laurentide). Stratigraphic and geomorphologic evidence indicate that the two glaciers occupied this region at different times during the Late Pleistocene. The continental ice sheet advanced over the foothills and up major valleys reaching its maximum extent, ca. 30 ka. B. P. This took place when Cordilleran glaciers were in their initial stages of development. The Laurentide Ice Sheet blocked the drainage of the South Nahanni River near Virginia Falls, forming a glacial lake which inundated an area of approximately 900 km2 at its maximum stand, and had an outlet to the southwest, across the continental divide into the Yukon Territory and eventually into the Pacific Ocean. Lacustrine sediments at various sites reach thicknesses ranging from 110 to 120 metres, at an elevation of around 700 m. Cordilleran glaciers advanced eastward and approximately 5000 years later blocked this southwestward drainage, rerouting it to the east and north along the Mackenzie Mountain front. The drainage was confined between the mountains and continental ice margin where it incised major canyons into the limestone bedrock, and produced a spectacular karst landscape, which today forms part of the Nahanni National Park. During the retreat of the Laurentide and advance of Cordilleran glaciers, glacial Lake Nahanni cut an outlet to the east at First Canyon. This outlet drained into a continuous northbound network of marginal meltwater channels joining the north-flowing drainage that eventually reached the Arctic Ocean, and during further retreat of the ice sheet established the Mackenzie River in its modern location. The presence of Laurentide ice in this region is evidenced by large granite boulders carried from the Canadian Shield. Erratics are found up to 100 km west of the mountain front. Neotectonic activity in the area is interpreted from exposures such as those seen at Virginia Falls. Here glaciolacustrine sediments of Lake Nahanni are found both above and below the falls, but those above the falls are offset along the fault by approximately 30 meters, indicating that the falls most likely formed or were tectonically reactivated in postglacial time. Pre-late Pleistocene terraces of the South Nahanni River lie above the upstream terraces found near Virginia Falls, and slope to the west, further providing evidence of postglacial rebound and tectonics.

  11. Spatial and temporal variations of glacial erosion in the Rhône valley (Swiss Alps): Insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Sternai, Pietro; Herman, Frédéric; Valla, Pierre G.; Champagnac, Jean-Daniel

    2013-04-01

    The present-day topography of the European Alps shows evidence of intense glacial reshaping. However, significant questions regarding Alpine landscape evolution during glaciations still persist. In this study, we focus on the Rhône valley (Swiss Alps), and use a numerical model to estimate patterns and magnitudes of glacial erosion. Comparing modeling results on a reconstructed pre-glacial topography and the present-day landforms, we find that the landscape response to glaciation is more complex than a simple “buzzsaw” mechanism (by which glacial erosion sets the height of mountain ranges) or increase of relief due to localized valley incision. Instead, glacial erosion propagates headward as the landforms evolve from a fluvial to a glacial state, leading to an initial increase of local relief followed by subsequent erosion at high elevations. It has also been proposed that the mid-Pleistocene climatic transition of glacial/interglacial oscillations from periods of 40 kyr (with symmetric shapes) to periods of 100 kyr (with asymmetric shapes) promoted glacial erosion within the Alps. Although this change of climate periodicity may have contributed to enhance glacial erosion, our results suggest that other factors such as an increase in rock uplift and/or progressive climate cooling are required to explain enhanced glacial carving at ~1 Ma.

  12. Climatic Oscillations 10,000-155,000 yr B.P. at Owens Lake, California Reflected in Glacial Rock Flour Abundance and Lake Salinity in Core OL-92

    USGS Publications Warehouse

    Bischoff, J.L.; Menking, K.M.; Fitts, J.P.; Fitzpatrick, J.A.

    1997-01-01

    Chemical analyses of the acid-soluble and clay-size fractions of sediment samples (1500-yr resolution) reveal oscillations of lake salinity and of glacial advances in core OL-92 back to 155,000 yr B.P. Relatively saline conditions are indicated by the abundance of carbonate and smectite (both pedogenic and authigenic), reflected by Ca, Sr, and Mg in the acid-soluble suite, and by Cs2O, excess MgO, and LOI (loss on ignition) in the clay-size fraction. Rock flour produced during glacial advances is represented by the abundance of detrital plagioclase and biotite in the clay-size fraction, the ratio of which remains essentially constant over the entire time span. These phases are quantitatively represented by Na2O, TiO2, Ba, and Mn in the clay fraction. The rock-flour record indicates two major ice-advances during the penultimate glacial cycle corresponding to marine isotope stage (MIS) 6, no major advances during the last interglaciation (entire MIS 5), and three major advances during the last glacial cycle (MIS 2, 3, and 4). The ages of the latter three correspond rather well to 36Cl dates reported for Sierra Nevada moraines. The onset of the last interglaciation is shown by abrupt increases in authigenic CaCO3 and an abrupt decrease in rock flour, at about 118,000 yr B.P. according to our time scale. In contrast, the boundary appears to be gradual in the ??18O record in which the change from light to heavy values begins at about 140,000 yrs B.P. The exact position of the termination, therefore, may be proxy-dependent. Conditions of high carbonate and low rock flour prevailed during the entire period from 118,000 yr B.P. until the glacial advance at 53,000 yr B.P. signaled the end of this long interglaciation. ?? 1997 University of Washington.

  13. Continental Refugium in the Mongolian Plateau during Quaternary Glacial Oscillations: Phylogeography and Niche Modelling of the Endemic Desert Hamster, Phodopus roborovskii

    PubMed Central

    Lv, Xue; Xia, Lin; Ge, Deyan; Wen, Zhixin; Qu, Yanhua; Lu, Liang; Yang, Qisen

    2016-01-01

    The Mongolian Plateau (MP), which is situated in the interior of Asia and possesses a typical continental climate, experienced harsh climatic conditions during the Quaternary glacial fluctuations. Although these events likely had huge impacts on the local animal populations, the current effects have hardly been explored. To investigate whether the MP supported a refugium along an oceanic-continental gradient (ROCG), and whether this refugium was glacial or interglacial, we investigated the demographic and phylogeographic history of an endemic mammal species, the desert hamster Phodopus roborovskii. We reconstructed the demographic variation, the phylogeographic diffusion, and modelled the potential habitat during historical periods. The genetic diversity in the MP was the highest among all the localities, and the MP was a suitable habitat throughout the modelled historical periods. A phylogeographic diffusion analysis emphasized the importance of the MP as the centre of origin, preservation and spread for P. roborovskii. The homogeneous landscape provided the opportunity for a wide gene flow, which resulted in low resolution of the phylogenetic relationships. Moreover, P. roborovskii was favoured by the interglacial condition, with both its demographical and geographical ranges expanded within the interglacial periods. The range variation from the Last Glacial Maximum to the current condition reflects a distinct longitudinal shift, while both ranges largely contracted from that of the Last Interglacial. Our results support that the MP served as a refugium and spread centre for P. roborovskii during the Quaternary climate fluctuations. The interglacial expansion and the longitudinal shifts highlighted the important effects of precipitations on the distribution range of species adapted to arid and semi-arid during glacial oscillations. PMID:26839955

  14. Continental Refugium in the Mongolian Plateau during Quaternary Glacial Oscillations: Phylogeography and Niche Modelling of the Endemic Desert Hamster, Phodopus roborovskii.

    PubMed

    Lv, Xue; Xia, Lin; Ge, Deyan; Wen, Zhixin; Qu, Yanhua; Lu, Liang; Yang, Qisen

    2016-01-01

    The Mongolian Plateau (MP), which is situated in the interior of Asia and possesses a typical continental climate, experienced harsh climatic conditions during the Quaternary glacial fluctuations. Although these events likely had huge impacts on the local animal populations, the current effects have hardly been explored. To investigate whether the MP supported a refugium along an oceanic-continental gradient (ROCG), and whether this refugium was glacial or interglacial, we investigated the demographic and phylogeographic history of an endemic mammal species, the desert hamster Phodopus roborovskii. We reconstructed the demographic variation, the phylogeographic diffusion, and modelled the potential habitat during historical periods. The genetic diversity in the MP was the highest among all the localities, and the MP was a suitable habitat throughout the modelled historical periods. A phylogeographic diffusion analysis emphasized the importance of the MP as the centre of origin, preservation and spread for P. roborovskii. The homogeneous landscape provided the opportunity for a wide gene flow, which resulted in low resolution of the phylogenetic relationships. Moreover, P. roborovskii was favoured by the interglacial condition, with both its demographical and geographical ranges expanded within the interglacial periods. The range variation from the Last Glacial Maximum to the current condition reflects a distinct longitudinal shift, while both ranges largely contracted from that of the Last Interglacial. Our results support that the MP served as a refugium and spread centre for P. roborovskii during the Quaternary climate fluctuations. The interglacial expansion and the longitudinal shifts highlighted the important effects of precipitations on the distribution range of species adapted to arid and semi-arid during glacial oscillations. PMID:26839955

  15. Spatial and temporal variations of glacial erosion in the European Alps: numerical models and implications for slope stability (Invited)

    NASA Astrophysics Data System (ADS)

    Sternai, P.; Herman, F.; Willett, S.; Champagnac, J.; Fox, M.; Valla, P.; Salcher, B.

    2013-12-01

    Glacial erosion in alpine landscapes can be highly variable in space and time and lead to significant morphologic modification and mass redistribution at virtually all scales. Because they affect the near-surface stress and strain distribution by producing cyclic variations of the surface load, removing and abrading rocks, storing/releasing sediments and affecting the surface and subsurface hydrology, glaciations have multiple effects on slope stability. Understanding how glacial erosion evolves in space and time is thus important for investigating potential feedbacks between glacial erosion and deep-seated gravitational slope deformation (DSGSD). The present-day topography of the European Alps shows evidence of intense glacial erosion. However, significant questions regarding Alpine landscape evolution during glaciations still persist. For example, large-scale topographic analyses suggest that glacial erosion is maximized at and above the glaciers' long-term Equilibrium Line Altitude. In contrast, measurements of long-term denudation rates from low-temperature thermochronology and reconstructions of the pre-glacial Alpine topography suggest high erosion towards low altitudes and formation of overdeepnenings, in turn indicating an increase of local relief in response to glacial processes. Based on sediment record, low-temperature thermochronology and burial cosmogenic nuclide dating, it has also been proposed that the mid-Pleistocene climatic transition from symmetric, 40kyr to asymmetric, 100kyr glacial/interglacial oscillations sets the onset of intense glacial erosion within the Alps. However, this climate threshold in glacial erosion has not been showed in other orogens, and positive feedbacks between climate periodicity and glacial erosion efficiency still remain to be proven. Numerical modeling provides estimates of the patterns and magnitudes of glacial erosion through time. Modeling results on an advanced reconstruction of the pre-glacial topography and the present-day landform suggest that glacial erosion propagates headward as the landscape evolves from a fluvial to a glacial state. This evolution of glacial erosion leads to an initial increase of the topographic relief, followed by subsequent erosion at high elevations, in turn reconciling previous, apparently discordant findings. Numerical predictions also suggest that the mid-Pleistocene climate transition may have produced an intensification of glacial erosion. However, other factors such as an increase of rock uplift and/or progressive climate cooling are required to explain enhanced valley carving at approximately 1Myr, as suggested from the Alpine record.

  16. Turbidite Megabeds in an Oceanic Rift Valley Recording Jökulhlaups of Late Pleistocene Glacial Lakes of the Western United States.

    PubMed

    Zuffa; Normark; Serra; Brunner

    2000-05-01

    Escanaba Trough is the southernmost segment of the Gorda Ridge and is filled by sandy turbidites locally exceeding 500 m in thickness. New results from Ocean Drilling Program (ODP) Sites 1037 and 1038 that include accelerator mass spectrometry (AMS) 14C dates and revised petrographic evaluation of the sediment provenance, combined with high-resolution seismic-reflection profiles, provide a lithostratigraphic framework for the turbidite deposits. Three fining-upward units of sandy turbidites from the upper 365 m at ODP Site 1037 can be correlated with sediment recovered at ODP Site 1038 and Deep Sea Drilling Program (DSDP) Site 35. Six AMS 14C ages in the upper 317 m of the sequence at Site 1037 indicate that average deposition rates exceeded 10 m/k.yr. between 32 and 11 ka, with nearly instantaneous deposition of one approximately 60-m interval of sand. Petrography of the sand beds is consistent with a Columbia River source for the entire sedimentary sequence in Escanaba Trough. High-resolution acoustic stratigraphy shows that the turbidites in the upper 60 m at Site 1037 provide a characteristic sequence of key reflectors that occurs across the floor of the entire Escanaba Trough. Recent mapping of turbidite systems in the northeast Pacific Ocean suggests that the turbidity currents reached the Escanaba Trough along an 1100-km-long pathway from the Columbia River to the west flank of the Gorda Ridge. The age of the upper fining-upward unit of sandy turbidites appears to correspond to the latest Wisconsinan outburst of glacial Lake Missoula. Many of the outbursts, or jökulhlaups, from the glacial lakes probably continued flowing as hyperpycnally generated turbidity currents on entering the sea at the mouth of the Columbia River. PMID:10769156

  17. A GCM comparison of Plio-Pleistocene interglacial-glacial periods in relation to Lake El'gygytgyn, NE Arctic Russia

    NASA Astrophysics Data System (ADS)

    Coletti, A. J.; DeConto, R. M.; Brigham-Grette, J.; Melles, M.

    2014-08-01

    Until now, the lack of time-continuous, terrestrial paleoenvironmental data from the Pleistocene Arctic has made model simulations of past interglacials difficult to assess. Here, we compare climate simulations of four warm interglacials at Marine Isotope Stage (MIS) 1 (9 ka), 5e (127 ka), 11c (409 ka), and 31 (1072 ka) with new proxy climate data recovered from Lake El'gygytgyn, NE Russia. Climate reconstructions of the Mean Temperature of the Warmest Month (MTWM) indicate conditions 2.1, 0.5 and 3.1 °C warmer than today during MIS 5e, 11c, and 31, respectively. While the climate model captures much of the observed warming during each interglacial, largely in response to boreal summer orbital forcing, the extraordinary warmth of MIS 11c relative to the other interglacials in the proxy records remain difficult to explain. To deconvolve the contribution of multiple influences on interglacial warming at Lake El'gygytgyn, we isolated the influence of vegetation, sea ice, and circum-Arctic land ice feedbacks on the climate of the Beringian interior. Simulations accounting for climate-vegetation-land surface feedbacks during all four interglacials show expanding boreal forest cover with increasing summer insolation intensity. A deglaciated Greenland is shown to have a minimal effect on Northeast Asian temperature during the warmth of stage 11c and 31 (Melles et al., 2012). A prescribed enhancement of oceanic heat transport into the Arctic ocean has some effect on Beringian climate, suggesting intrahemispheric coupling seen in comparisons between Lake El'gygytgyn and Antarctic sediment records might be related to linkages between Antarctic ice volume and ocean circulation. The exceptional warmth of MIS 11c remains enigmatic however, relative to the modest orbital and greenhouse gas forcing during that interglacial. Large Northern Hemisphere ice sheets during Plio-Pleistocene glaciation causes a substantial decrease in Mean Temperature of the Coldest Month (MTCM) and Mean Annual Precipitation (PANN) causing significant Arctic aridification. Aridification and cooling can be linked to a combination of mechanical forcing from the Laurentide and Fennoscandian ice sheets on mid-tropospheric westerly flow and expanded sea ice cover causing albedo-enhanced feedback.

  18. Late-glacial (Allerød/Younger Dryas) buried organic deposits, Nova Scotia, Canada. A contribution to the 'North Atlantic seaboard programme' of IGCP-253, 'Termination of the Pleistocene'

    NASA Astrophysics Data System (ADS)

    Mott, R. J.; Stea, R. R.

    Numerous deposits of organic, shallow-pond sediments and wetland peat accumulations buried by minerogenic sediments have been discovered throughout Nova Scotia. They are interpreted as representing a late-glacial climatic oscillation correlative with the Allerød/Younger Dryas event of Europe and the North Atlantic Ocean. The organic deposits began forming during the warm or warming interval following deglaciation and often record a transition to colder conditions. The climatic reversion recorded in many deposits began about 10.8 ka BP and continued or sustained cooling culminated in the burial of the organic deposits by minerogenic sediments indicative of solifluction and mass-wasting processes. Some deposits provide strong evidence for regeneration or rejuvenation of local glaciers. As the organic deposits are not as susceptible as lake sediments to contamination by old carbon, they provide a more reliable chronological framework for deglaciation and late-glacial vegetational history. Palynological evidence shows that pioneer herb tundra communities colonized some areas shortly after 13 ka BP. Willow and birch shrubs followed soon after. Spruce woodlands had migrated into the region prior to 10.8 ka BP but had not yet reached the northeast mainland and Cape Breton Island. Cooling after 10.8 ka BP decimated tree populations and favoured a return to shrub and herb communities. The record in the buried deposits was then truncated by deposition of minerogenic sediments, and lake sediment sequences from deeper basins with continuous sedimentation are required to complete the record.

  19. Correlation of Late-Pleistocene Lake-Level Oscillations in Mono Lake, California, with North Atlantic Climate Events

    USGS Publications Warehouse

    Benson, L.V.; Lund, S.P.; Burdett, J.W.; Kashgarian, Michaele; Rose, T.P.; Smoot, J.P.; Schwartz, M.

    1998-01-01

    Oxygen-18 (18O) values of sediment from the Wilson Creek Formation, Mono Basin, California, indicate three scales of temporal variation (Dansgaard-Oeschger, Heinrich, and Milankovitch) in the hydrologic balance of Mono Lake between 35,400 and 12,900 14C yr B.P. During this interval, Mono Lake experienced four lowstands each lasting from 1000 to 2000 yr. The youngest low-stand, which occurred between 15,500 and 14,000 14C yr B.P., was nearly synchronous with a desiccation of Owens Lake, California. Paleomagnetic secular variation (PSV) data indicate that three of four persistent lowstands occurred at the same times as Heinrich events H1, H2, and H4. 18O data indicate the two highest lake levels occurred ???18,000 and ???13,100 14C yr B.P., corresponding to passages of the mean position of the polar jet stream over the Mono Basin. Extremely low values of total inorganic carbon between 26,000 and 14,000 14C yr B.P. indicate glacial activity, corresponding to a time when summer insolation was much reduced. ?? 1998 University of Washington.

  20. Millennial and orbital variations of El Niño/Southern Oscillation and high-latitude climate in the last glacial period.

    PubMed

    Turney, Chris S M; Kershaw, A Peter; Clemens, Steven C; Branch, Nick; Moss, Patrick T; Fifield, L Keith

    2004-03-18

    The El Niño/Southern Oscillation (ENSO) phenomenon is believed to have operated continuously over the last glacial-interglacial cycle. ENSO variability has been suggested to be linked to millennial-scale oscillations in North Atlantic climate during that time, but the proposals disagree on whether increased frequency of El Niño events, the warm phase of ENSO, was linked to North Atlantic warm or cold periods. Here we present a high-resolution record of surface moisture, based on the degree of peat humification and the ratio of sedges to grass, from northern Queensland, Australia, covering the past 45,000 yr. We observe millennial-scale dry periods, indicating periods of frequent El Niño events (summer precipitation declines in El Niño years in northeastern Australia). We find that these dry periods are correlated to the Dansgaard-Oeschger events--millennial-scale warm events in the North Atlantic climate record--although no direct atmospheric connection from the North Atlantic to our site can be invoked. Additionally, we find climatic cycles at a semiprecessional timescale (approximately 11,900 yr). We suggest that climate variations in the tropical Pacific Ocean on millennial as well as orbital timescales, which determined precipitation in northeastern Australia, also exerted an influence on North Atlantic climate through atmospheric and oceanic teleconnections. PMID:15029193

  1. The Thermal Evolution of the Western Equatorial Pacific During the Midde and Early Pleistocene

    NASA Astrophysics Data System (ADS)

    Medina, M. A.; Lea, D. W.; Spero, H. J.

    2004-12-01

    Magnesium/calcium data from planktonic foraminifera in the equatorial Pacific sediment cores suggested that tropical Pacific sea surface temperatures (SST's) were about 3 deg.C colder than modern conditions during glacial episodes of the last 500 thousand years (ky). We have extended the Western Equatorial Pacific (WEP) Globigerinoides ruber Mg/Ca and d18O records, from the Ontong Java Plateau, Ocean Drilling Program Hole 806B (0 19.11'N, 159 21.69'E, 2520m), back to 1.3 ma. For temperature conversion we used a G. ruber calibration based on core-tops from the tropical Pacific (Lea and Martin, 1996), which yields the following relationship: Mg/Ca(mmol/mol)= 0.30exp[0.089 X SST deg. C)]. Our SST record shows that the previously observed 3 deg C-colder SST's than modern conditions during glacial episodes are generally the rule for the entire 1.3 ma period. Glacial-interglacial temperature differences as great as 4 deg. C are observed, even in the Early Pleistocene (1-1.8 ma). Preliminary observations suggest the presence of ~40 Ky SST cycles during the Early Pleistocene, of similar amplitude to the dominant SST cycles seen in Late Pleistocene Tropical records. Early Pleistocene WEP SST's, as suggested by our record, oscillated between 26 and 30 deg. C. MIS 11 stands out as the most prominent feature of the WEP SST record. The potential bias on temperature estimates due to the influence of changes in lysocline depth (Farrell and Prell, 1989) and decrease preservation with depth (Lea et al., 2000) is ± 0.8 deg.C. Preliminary point to point comparison between the SST and the d18O records shows that Mg/Ca-based temperatures lead over d18O by about 3 ky as previously determined by Lea et al. (2000).

  2. Phylogeography of the Alcippe morrisonia (Aves: Timaliidae): long population history beyond late Pleistocene glaciations

    PubMed Central

    Song, Gang; Qu, Yanhua; Yin, Zuohua; Li, Shouhsien; Liu, Naifa; Lei, Fumin

    2009-01-01

    Background The role of Pleistocene glacial oscillations in current biodiversity and distribution patterns varies with latitude, physical topology and population life history and has long been a topic of discussion. However, there had been little phylogeographical research in south China, where the geophysical complexity is associated with great biodiversity. A bird endemic in Southeast Asia, the Grey-cheeked Fulvetta, Alcippe morrisonia, has been reported to show deep genetic divergences among its seven subspecies. In the present study, we investigated the phylogeography of A. morrisonia to explore its population structure and evolutionary history, in order to gain insight into the effect of geological events on the speciation and diversity of birds endemic in south China. Results Mitochondrial genes cytochrome b (Cytb) and cytochrome c oxidase I (COI) were represented by 1236 nucleotide sites from 151 individuals from 29 localities. Phylogenetic analysis showed seven monophyletic clades congruent with the geographically separated groups, which were identified as major sources of molecular variance (90.92%) by AMOVA. TCS analysis revealed four disconnected networks, and that no haplotype was shared among the geographical groups. The common ancestor of these populations was dated to 11.6 Mya and several divergence events were estimated along the population evolutionary history. Isolation by distance was inferred by NCPA to be responsible for the current intra-population genetic pattern and gene flow among geographical groups was interrupted. A late Pleistocene demographic expansion was detected in the eastern geographical groups, while the expansion time (0.2–0.4 Mya) was earlier than the Last Glacial Maximum. Conclusion It is proposed that the complicated topology preserves high genetic diversity and ancient lineages for geographical groups of A. morrisonia in China mainland and its two major islands, and restricts gene exchange during climate oscillations. Isolation by distance seems to be an important factor of genetic structure formation within geographical populations. Although glacial influence to population fluctuation was observed in late Pleistocene, it seems that populations in eastern China were more susceptible to climate change, and all geographical groups were growing stably through the Last Glacial Maximum. Coalescence analysis suggested that the ancestor of A. morrisonia might be traced back to the late Miocene, and the current phylogeographical structure of A. morrisonia is more likely to be attributable to a series geological events than to Pleistocene glacial cycles. PMID:19558699

  3. Arctic ocean sediment texture and the Pleistocene climate cycle

    SciTech Connect

    Clark, D.L.; Morris, T.H.

    1985-01-01

    Arctic Ocean sediment texture accurately reflects the Plio-Pleistocene climate cycle. The precision of paleoclimate interpretation is improved when deglaciation is recognized as a distinct climate stage, overlapping both glacial and interglacial stages, and for the later Pleistocene, perhaps never completed. Oxygen isotope stratigraphy and foraminifera productivity are out of phase but can be understood in the context of the transitional nature of the glacial, deglacial and interglacial climate stages of the Arctic Ocean.

  4. Age of the crowfoot advance in the Canadian Rocky Mountains. A glacial event coeval with the Younger Dryas oscillation

    SciTech Connect

    Reasoner, M.A.; Rutter, N.W. ); Osborn, G. )

    1994-05-01

    A suite of sediment core samples was recovered from two lakes, Crowfoot and Bow lakes, that are adjacent to the Crowfoot moraine type locality, to identify and radiocarbon date sediments related to the Crowfoot advance. The Crowfoot moraine system, widely recognized throughout northwestern North America, represents a glacial advance that is post-Wisconsin and pre-Mazama tephra in age. An interval of inorganic sediments bracketed by accelerator mass spectrometry radiocarbon ages of ca. 11,330 and 10,100 [sup 14]C yr B.P. is associated with the Crowfoot moraine. The Crowfoot advance is therefore approximately synchronous with the European Younger Dryas cold event (ca. 11,000-10,000 [sup 14]C yr B.P.). Furthermore, the termination of the Crowfoot advance also appears to have been abrupt. These findings illustrate that the climatic change responsible for the European Younger Dryas event extended beyond the northern Atlantic basin and western Europe. Equilibrium-line altitude (ELA) depressions associated with the Crowfoot advance are similar to those determined for the Little Ice Age advance, whereas Younger Dryas ELA depressions in Europe significantly exceed Little Ice Age ELA depressions. 26 refs., 3 figs., 1 tab.

  5. Luminescence Chronology for the Formation of Glacial Lake Calgary, Southern Alberta, Canada: Age Constraints for the Initiation of the Late Pleistocene Retreat of the Laurentide Ice Sheet from its Western Margin

    NASA Astrophysics Data System (ADS)

    Munyikwa, K.; Rittenour, T. M.

    2014-12-01

    Glacial Lake Calgary in southern Alberta, Canada, was a Late Pleistocene proglacial lake that formed along the southwest margin of the Laurentide Ice Sheet (LIS), dammed by the retreating ice sheet margin. Attempts to constrain the age of the lake using radiocarbon methods have been hampered by the lack of datable organic material. In an effort to apply an alternative chronometer, this study uses two optically stimulated luminescence (OSL) dating approaches to date fine grained sand and silt that were deposited in the lake during its existence. OSL dating determines the depositional ages of sediments by measuring the energy from ionizing radiation that is stored in mineral grains such as quartz and feldspar. Dividing the stored energy, also referred to as the paleodose, by the rate at which the dose accumulated, allows an age to be ascertained. In one method applied in this study, the paleodose stored in the feldspar component of the sediment is determined using normalized infrared stimulated luminescence signals acquired using a portable OSL reader. In the second method, blue optically stimulated luminescence signals obtained from quartz separates from the sediment by employing a regular OSL reader and standard protocols are used to determine the paleodose. After correcting the feldspar data for anomalous fading, the age results from the two dating approaches are compared. The ages signify a time period by which the LIS had retreated from the study area and, hence, serve as constraints for the initiation of the retreat of the ice sheet from its western limit. Advantages and limitations of the dating methods are briefly discussed. Constraining the chronology of the retreat of the LIS from western Canada allows for a better understanding of the driving forces behind ice sheet retreat. Secondly, assigning a temporal scale to the postglacial evolution of the environment of the region permits a better insight into the dynamics of the physical and biological environments of the time. Thirdly, the region is at the heart of the ice-free corridor that was ostensibly used by early humans to migrate southwards to populate the Americas ca. 16 ka ago. Hence, an improved deglaciation chronology would allow a more comprehensive evaluation of this concept.

  6. Large Glacitectonic structures on the Dogger Bank, southern North Sea; Implications for glacial dynamics, glacial limits, and interplay between the British and Fennoscandinavian Ice Sheets

    NASA Astrophysics Data System (ADS)

    Dove, Dayton; Cotterill, Carol; Long, Dave; Ruiter, Astrid; Phillips, Emrys; James, Leo; Forsberg, Carl Fredrik

    2013-04-01

    Recently acquired 2D seismic data (sparker) acquired over the Dogger Bank (DB) reveal large glacitectonic structures associated with late-Pleistocene glacial incursion into the southern North Sea. The densely populated survey data (100m line spacing) collected for the purposes of offshore windfarm development on the DB, allow for pseudo-3D interpretation. The sparker data show discrete thrust faults extending from within ~5 m of the seabed to ~200 m depth, and consistently terminate at one of two décollement surfaces. Preliminary mapping and amplitude extraction maps reveal the thrusts to occur in a series of thrust blocks (5-8 faults), with each set encompassing an area of approximately 6 km along-strike and 2 km at right angles. The overall zone of thrusting is up to 16 x 6 km on the western edge of the DB. The strike of the faults indicates ice-flow from the west. Other deformation structures include: open, recumbent, and fault propagation folds, as well as back thrusts, and pop-up structures. The relief of the DB (dimensions) is entirely accounted for by what has historically been termed the 'DB Formation'. These new data reveal that this seismostratigraphic unit likely consists of deposits from a variety of glacially influenced depositional regimes. The observed thrusts penetrate through the 'DB formation', indicating this phase of intense deformation post-dated the initial construction of the bank. Less pronounced glacial deformation affects much of the rest of the DB, and the products of this deformation (push-moraine complexes?) were possibly integral to the construction of the bank itself. While the style and fabric (NS?) of this deformation is less clear, it is likely there were multiple incursions of glacial ice, from different directions (and sources?), into this area where late-Pleistocene glaciation limits are poorly understood. Several mechanisms for forming such glacitectonic features have been proposed, and the thrust blocks here may have been caused by sub-glacial (gravitational spreading), ice-marginal (push-moraine complex), or pro-glacial (ice-push) processes, or a combination of the three at an oscillating ice-margin. The thrusts appear to have no surface expression, suggesting the topography was removed either by late-stage glacial erosion or Holocene marine transgression. Work to date on the paleoenvironmental implications of the data has been preliminary. The exact style, pattern, and timing glacial deformation (and associated sedimentation) on the Dogger Bank and circum-southern North Sea, and glacial history of the region, will be the focus of a Ph.D studentship which commenced Sept. 2012.

  7. What Drives Mediterranean Outflow Water Variability during the Mid-Pleistocene Transition and Early Pleistocene at IODP Site U1387 in the Gulf of Cadiz?

    NASA Astrophysics Data System (ADS)

    Voelker, A. H. L.; Jimenez-Espejo, F. J.; Bahr, A.; Acton, G.; Alberto, A.; Rebotim, A.; Salgueiro, E.; Roehl, U.

    2014-12-01

    The Mediterranean Outflow Water (MOW) forms extensive contourite drift deposits along the Iberian margin, especially in the Gulf of Cadiz, and injects heat and salt into the intermediate depths of the North Atlantic. The sediments recovered during IODP Expedition 339 allow studying MOW's history throughout the Pleistocene and Pliocene and thus under varying climate forcing. Here we present centennial-to-millennial scale proxy records for surface water and MOW variations as recorded at IODP Site U1387, drilled into the Faro Drift, which is formed by the upper MOW core. We focus our study on the early to middle Pleistocene with special attention on the Mid-Pleistocene Transition (MPT) when the dominant climate cyclicity changed from 41 kyr to 100 kyr. Surface water and MOW proxy records show millennial-scale stadial/ interstadial oscillations on top of the glacial/ interglacial cycles. Planktonic and benthic δ18O records are tightly coupled highlighting the constant exchange between the (sub)surface waters and the MOW. Low benthic δ13C values during deglacial and peak interglacial periods, coinciding with insolation maxima, reveal a poorly ventilated upper MOW core and a causal link between MOW ventilation and sapropel formation in the Mediterranean Sea. Better ventilation was recorded during glacial and stadial intervals, often in association with the formation of contourites. During the warmer MIS contourites, often more pronounced than their glacial counterparts, were formed during the stadial(s) following the peak interglacial period when northern hemisphere summer insolation was low. Thus, changes in the upper MOW core are tightly coupled to summer insolation with poor ventilation occurring during insolation maxima and higher current velocity marking insolation minima. This insolation forcing reveals a close link between MOW and Mediterranean Sea climate conditions.

  8. Guatemalan forest synthesis after Pleistocene aridity.

    PubMed

    Leyden, B W

    1984-08-01

    Sediments from two lakes in the Peten Department, Guatemala, provide palynological evidence from Central America of late Pleistocene aridity and subsequent synthesis of mesic forests. Late Glacial vegetation consisted of marsh, savanna, and juniper scrub. An early Holocene temperate forest preceded a mesic tropical forest with Brosimum (ramon). Thus "primeval" rain forests of Guatemala are no older than 10,000 to 11,000 years and are considerably younger in the Peten due to Mayan disturbances. Among dated Neotropical sites, the Peten has the most mesic vegetation yet shown to have supplanted xeric vegetation present during the Pleistocene. The arid late Glacial-humid early Holocene transition appears to have been pantropical in the lowlands. The Peten was not a Pleistocene refugium for mesophytic taxa, as has been suggested. Thus genesis of extant rain forests in northern Central America and southern Mexico remains unexplained. PMID:16593498

  9. Guatemalan forest synthesis after Pleistocene aridity

    PubMed Central

    Leyden, Barbara W.

    1984-01-01

    Sediments from two lakes in the Peten Department, Guatemala, provide palynological evidence from Central America of late Pleistocene aridity and subsequent synthesis of mesic forests. Late Glacial vegetation consisted of marsh, savanna, and juniper scrub. An early Holocene temperate forest preceded a mesic tropical forest with Brosimum (ramon). Thus “primeval” rain forests of Guatemala are no older than 10,000 to 11,000 years and are considerably younger in the Peten due to Mayan disturbances. Among dated Neotropical sites, the Peten has the most mesic vegetation yet shown to have supplanted xeric vegetation present during the Pleistocene. The arid late Glacial-humid early Holocene transition appears to have been pantropical in the lowlands. The Peten was not a Pleistocene refugium for mesophytic taxa, as has been suggested. Thus genesis of extant rain forests in northern Central America and southern Mexico remains unexplained. Images PMID:16593498

  10. Obliquity-driven expansion of North Atlantic sea ice during the last glacial

    NASA Astrophysics Data System (ADS)

    Turney, Chris S. M.; Thomas, Zoë A.; Hutchinson, David K.; Bradshaw, Corey J. A.; Brook, Barry W.; England, Matthew H.; Fogwill, Christopher J.; Jones, Richard T.; Palmer, Jonathan; Hughen, Konrad A.; Cooper, Alan

    2015-12-01

    North Atlantic late Pleistocene climate (60,000 to 11,650 years ago) was characterized by abrupt and extreme millennial duration oscillations known as Dansgaard-Oeschger (D-O) events. However, during the Last Glacial Maximum (LGM) 23,000 to 19,000 cal years ago (23 to 19 ka), no D-O events are observed in the Greenland ice cores. Our new analysis of the Greenland δ18O record reveals a switch in the stability of the climate system around 30 ka, suggesting that a critical threshold was passed. Climate system modeling suggests that low axial obliquity at this time caused vastly expanded sea ice in the Labrador Sea, shifting Northern Hemisphere westerly winds south and reducing the strength of meridional overturning circulation. The results suggest that these feedbacks tipped the climate system into full glacial conditions, leading to maximum continental ice growth during the LGM.

  11. Miocene and Pliocene dominated diversification of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota) and Pleistocene population expansions

    PubMed Central

    2012-01-01

    Background Factors promoting diversification in lichen symbioses remain largely unexplored. While Pleistocene events have been important for driving diversification and affecting distributions in many groups, recent estimates suggest that major radiations within some genera in the largest clade of macrolichens (Parmeliaceae, Ascomycota) vastly predate the Pleistocene. To better understand the temporal placement and sequence of diversification events in lichens, we estimated divergence times in a common lichen-forming fungal genus, Melanohalea, in the Northern Hemisphere. Divergence times were estimated using both concatenated gene tree and coalescent-based multilocus species tree approaches to assess the temporal context of major radiation events within Melanohalea. In order to complement our understanding of processes impacting genetic differentiation, we also evaluated the effects of Pleistocene glacial cycles on population demographics of distinct Melanohalea lineages, differing in reproductive strategies. Results We found that divergence estimates, from both concatenated gene tree and coalescent-based multilocus species tree approaches, suggest that diversification within Melanohalea occurred predominantly during the Miocene and Pliocene, although estimated of divergence times differed by up to 8.3 million years between the two methods. These results indicate that, in some cases, taxonomically diagnostic characters may be maintained among divergent lineages for millions of years. In other cases, similar phenotypic characters among non-sister taxa, including reproductive strategies, suggest the potential for convergent evolution due to similar selective pressures among distinct lineages. Our analyses provide evidence of population expansions predating the last glacial maximum in the sampled lineages. These results suggest that Pleistocene glaciations were not inherently unfavorable or restrictive for some Melanohalea species, albeit with apparently different demographic histories between sexually and vegetatively reproducing lineages. Conclusions Our results contribute to the understanding of how major changes during the Miocene and Pliocene have been important in promoting diversification within common lichen-forming fungi in the northern Hemisphere. Additionally, we provide evidence that glacial oscillations have influenced current population structure of broadly distributed lichenized fungal species throughout the Holarctic. PMID:22963132

  12. Investigating the effects of Pleistocene events on genetic divergence within Richardsonius balteatus, a widely distributed western North American minnow

    PubMed Central

    2014-01-01

    Background Biogeographers seek to understand the influences of global climate shifts and geologic changes to the landscape on the ecology and evolution of organisms. Across both longer and shorter timeframes, the western North American landscape has experienced dynamic transformations related to various geologic processes and climatic oscillations, including events as recently as the Last Glacial Maximum (LGM; ~20 Ka) that have impacted the evolution of the North American biota. Redside shiner is a cyprinid species that is widely distributed throughout western North America. The species’ native range includes several well-documented Pleistocene refugia. Here we use mitochondrial DNA sequence data to assess phylogeography, and to test two biogeographic hypotheses regarding post-glacial colonization by redside shiner: 1) Redside shiner entered the Bonneville Basin at the time of the Bonneville Flood (Late Pleistocene; 14.5 Ka), and 2) redside shiner colonized British Columbia post-glacially from a single refugium in the Upper Columbia River drainage. Results Genetic diversification in redside shiner began in the mid to late Pleistocene, but was not associated with LGM. Different clades of redside shiner were distributed in multiple glacial age refugia, and each clade retains a signature of population expansion, with clades having secondary contact in some areas. Conclusions Divergence times between redside shiner populations in the Bonneville Basin and the Upper Snake/Columbia River drainage precedes the Bonneville Flood, thus it is unlikely that redside shiner invaded the Bonneville Basin during this flooding event. All but one British Columbia population of redside shiner are associated with the Upper Columbia River drainage with the lone exception being a population near the coast, suggesting that the province as a whole was colonized from multiple refugia, but the inland British Columbia redside shiner populations are affiliated with a refugium in the Upper Columbia River drainage. PMID:24885371

  13. Lineage-specific late pleistocene expansion of an endemic subtropical gossamer-wing damselfly, Euphaea formosa, in Taiwan

    PubMed Central

    2011-01-01

    Background Pleistocene glacial oscillations have significantly affected the historical population dynamics of temperate taxa. However, the general effects of recent climatic changes on the evolutionary history and genetic structure of extant subtropical species remain poorly understood. In the present study, phylogeographic and historical demographic analyses based on mitochondrial and nuclear DNA sequences were used. The aim was to investigate whether Pleistocene climatic cycles, paleo-drainages or mountain vicariance of Taiwan shaped the evolutionary diversification of a subtropical gossamer-wing damselfly, Euphaea formosa. Results E. formosa populations originated in the middle Pleistocene period (0.3 Mya) and consisted of two evolutionarily independent lineages. It is likely that they derived from the Pleistocene paleo-drainages of northern and southern Minjiang, or alternatively by divergence within Taiwan. The ancestral North-central lineage colonized northwestern Taiwan first and maintained a slowly growing population throughout much of the early to middle Pleistocene period. The ancestral widespread lineage reached central-southern Taiwan and experienced a spatial and demographic expansion into eastern Taiwan. This expansion began approximately 30,000 years ago in the Holocene interglacial period. The ancestral southern expansion into eastern Taiwan indicates that the central mountain range (CMR) formed a barrier to east-west expansion. However, E. formosa populations in the three major biogeographic regions (East, South, and North-Central) exhibit no significant genetic partitions, suggesting that river drainages and mountains did not form strong geographical barriers against gene flow among extant populations. Conclusions The present study implies that the antiquity of E. formosa's colonization is associated with its high dispersal ability and larval tolerance to the late Pleistocene dry grasslands. The effect of late Pleistocene climatic changes on the subtropical damselfly's historical demography is lineage-specific, depending predominantly on its colonization history and geography. It is proposed that the Riss and Würm glaciations in the late Pleistocene period had a greater impact on the evolutionary diversification of subtropical insular species than the last glacial maximum (LGM). PMID:21486452

  14. Persistence across Pleistocene ice ages in Mediterranean and extra-Mediterranean refugia: phylogeographic insights from the common wall lizard

    PubMed Central

    2013-01-01

    Background Pleistocene climatic oscillations have played a major role in structuring present-day biodiversity. The southern Mediterranean peninsulas have long been recognized as major glacial refugia, from where Northern Europe was post-glacially colonized. However, recent studies have unravelled numerous additional refugia also in northern regions. We investigated the phylogeographic pattern of the widespread Western Palaearctic lizard Podarcis muralis, using a range-wide multilocus approach, to evaluate whether it is concordant with a recent expansion from southern glacial refugia or alternatively from a combination of Mediterranean and northern refugia. Results We analyzed DNA sequences of two mitochondrial (cytb and nd4) and three nuclear (acm4, mc1r, and pdc) gene fragments in individuals from 52 localities across the species range, using phylogenetic and phylogeographic methods. The complex phylogeographic pattern observed, with 23 reciprocally monophyletic allo- parapatric lineages having a Pleistocene divergence, suggests a scenario of long-term isolation in multiple ice-age refugia across the species distribution range. Multiple lineages were identified within the three Mediterranean peninsulas – Iberia, Italy and the Balkans - where the highest genetic diversity was observed. Such an unprecedented phylogeographic pattern - here called “refugia within all refugia” – compasses the classical scenario of multiple southern refugia. However, unlike the southern refugia model, various distinct lineages were also found in northern regions, suggesting that additional refugia in France, Northern Italy, Eastern Alps and Central Balkans allowed the long-term persistence of this species throughout Pleistocene glaciations. Conclusions The phylogeography of Podarcis muralis provides a paradigm of temperate species survival in Mediterranean and extra-Mediterranean glacial refugia. Such refugia acted as independent biogeographic compartments for the long-term persistence of this species, for the differentiation of its genetic lineages, and for the short-distance post-glacial re-colonization of neighbouring areas. This finding echoes previous findings from recent phylogeographic studies on species from temperate ecoregions, thus suggesting the need for a reappraisal of the role of northern refugia for glacial persistence and post-glacial assembly of Holarctic biota. PMID:23841475

  15. Inherent characteristics of sawtooth cycles can explain different glacial periodicities

    NASA Astrophysics Data System (ADS)

    Omta, Anne Willem; Kooi, Bob W.; van Voorn, George A. K.; Rickaby, Rosalind E. M.; Follows, Michael J.

    2016-01-01

    At the Mid-Pleistocene Transition about 1 Ma, the dominant periodicity of the glacial-interglacial cycles shifted from 40 to 100 kyr. Here, we use a previously developed mathematical model to investigate the possible dynamical origin of these different periodicities. The model has two variables, one of which exhibits sawtooth oscillations, resembling the glacial-interglacial cycles, whereas the other variable exhibits spikes at the rapid transitions. When applying a sinusoidal forcing with a fixed period, there emerges a rich variety of cycles with different periodicities, each being a multiple of the forcing period. Furthermore, the dominant periodicity of the system can change, while the forcing periodicity remains fixed, due to either random variations or different frequency components of the orbital forcing. Two key relationships stand out as predictions to be tested against observations: (1) the amplitude and the periodicity of the cycles are approximately linearly proportional to each other, a relationship that is also found in the δ ^{18}O temperature proxy. (2) The magnitude of the spikes increases with increasing periodicity and amplitude of the sawtooth. This prediction could be used to identify one or more currently hidden spiking variables driving the glacial-interglacial transitions. Essentially, the quest would be for any proxy record, concurrent with a dynamical model prediction, that exhibits deglacial spikes which increase at times when the amplitude/periodicity of the glacial cycles increases. In the specific context of our calcifier-alkalinity mechanism, the records of interest would be calcifier productivity and calcite accumulation. We believe that such a falsifiable hypothesis should provide a strong motivation for the collection of further records.

  16. Modeling past abrupt climate changes: driven oscillators and synchronization phenomena in Paleoclimate theory

    NASA Astrophysics Data System (ADS)

    Marchionne, Arianna

    2014-05-01

    According to Milankovitch theory of ice ages, summer insolation at high northern latitudes drives the glacial cycles, i.e. the growth and reduction of Northern Hemisphere ice sheets, and there is evidence that astronomical forcing controls indeed the timing of Pleistocene glacial-interglacial cycles. However, the δ18Otime series (the δ18O is a proxy for global ice volume) available for the last few million years reveal a non-linear response of the climate to the external forcing: transitions from the glacial to the interglacial states occur more rapidly than the transitions from the interglacials to the glacials, resulting in the so-called saw-tooth shape of the signal. These terminations were very abrupt compared to the smooth changes in insolation. Moreover, insolation alone cannot explain the Mid-Pleistocene transition. During this event, occurred about one million years ago, the dominant 41 kyr glacial cycles, were replaced by longer saw-tooth shaped cycles with a time scale around 100 kyr. The asymmetry in the oscillations indicates a non-linear response to the orbital forcing, expressed through a bifurcation, or tipping point. As an introduction to the problem, we studied simple driven oscillators that can exhibit asymmetric oscillations between the glacial and interglacial states under the effect of the astronomical forcing, such as the Van der Pool and the Duffing oscillators. In order to understand how these simple low-dimensional models enter theories of ice ages and rapid events, we studied synchronization phenomena between simple driven oscillators and astronomical forcing, focusing on distinguishing between the so-called resonance scenario and the so-called phase locking scenario. We next examined the possible mechanisms for the Mid-Pleistocene transition. Here we show that the transition could be explained as a result of frequency-locking to the external forcing. This change can be interpreted as a result of an internal change in climate response (that might correspond, for example, to the decrease of global CO2), since it does not correspond to any changes in the orbital forcing.

  17. African climate change and faunal evolution during the Pliocene-Pleistocene

    NASA Astrophysics Data System (ADS)

    deMenocal, Peter B.

    2004-03-01

    Environmental theories of African faunal evolution state that important evolutionary changes during the Pliocene-Pleistocene interval (the last ca. 5.3 million years) were mediated by changes in African climate or shifts in climate variability. Marine sediment sequences demonstrate that subtropical African climate periodically oscillated between markedly wetter and drier conditions, paced by earth orbital variations, with evidence for step-like (±0.2 Ma) increases in African climate variability and aridity near 2.8 Ma, 1.7 Ma, and 1.0 Ma, coincident with the onset and intensification of high-latitude glacial cycles. Analysis of the best dated and most complete African mammal fossil databases indicates African faunal assemblage and, perhaps, speciation changes during the Pliocene-Pleistocene, suggesting more varied and open habitats at 2.9-2.4 Ma and after 1.8 Ma. These intervals correspond to key junctures in early hominid evolution, including the emergence of our genus Homo. Pliocene-Pleistocene shifts in African climate, vegetation, and faunal assemblages thus appear to be roughly contemporary, although detailed comparisons are hampered by sampling gaps, dating uncertainties, and preservational biases in the fossil record. Further study of possible relations between African faunal and climatic change will benefit from the accelerating pace of important new fossil discoveries, emerging molecular biomarker methods for reconstructing African paleovegetation changes, tephra correlations between terrestrial and marine sequences, as well as continuing collaborations between the paleoclimatic and paleoanthropological communities.

  18. Middle to Late Pleistocene ice extents, tephrochronology and paleoenvironments of the White River area, southwest Yukon

    NASA Astrophysics Data System (ADS)

    Turner, Derek G.; Ward, Brent C.; Bond, Jeffrey D.; Jensen, Britta J. L.; Froese, Duane G.; Telka, Alice M.; Zazula, Grant D.; Bigelow, Nancy H.

    2013-09-01

    Sedimentary deposits from two Middle to Late Pleistocene glaciations and intervening non-glacial intervals exposed along the White River in southwest Yukon, Canada, provide a record of environmental change for much of the past 200 000 years. The study sites are beyond the Marine Isotope stage (MIS) 2 glacial limit, near the maximum regional extent of Pleistocene glaciation. Non-glacial deposits include up to 25 m of loess, peat and gravel with paleosols, pollen, plant and insect macrofossils, large mammal fossils and tephra beds. Finite and non-finite radiocarbon dates, and twelve different tephra beds constrain the chronology of these deposits. Tills correlated to MIS 4 and 6 represent the penultimate and maximum Pleistocene glacial limits, respectively. The proximity of these glacial limits to each other, compared to limits in central Yukon, suggests precipitation conditions were more consistent in southwest Yukon than in central Yukon during the Pleistocene. Conditions in MIS 5e and 5a are recorded by two boreal forest beds, separated by a shrub birch tundra, that indicate environments as warm or warmer than present. A dry, treeless steppe-tundra, dominated by Artemisia frigida, upland grasses and forbs existed during the transition from late MIS 3 to early MIS 2. These glacial and non-glacial deposits constrain the glacial limits and paleoenvironments during the Middle to Late Pleistocene in southwest Yukon.

  19. The Mid-Pleistocene Transition In The Tropical Pacific

    NASA Astrophysics Data System (ADS)

    Medina-Elizalde, M. A.; Lea, D. W.

    2005-12-01

    During the mid-Pleistocene transition (MPT) at ~950 kyr B.P., the climate of the Earth underwent profound changes. As suggested by foraminiferal oxygen isotopic records, high latitude climate switched from 41,000 years (kyr) to ~100 kyr dominant cycles at this time. A number of hypotheses have been proposed to explain the MPT which involve high latitude northern hemisphere processes. Recent paleoclimate reconstructions, however, indicate that the tropics also experienced climate changes resembling those at high latitude but also with their own unique patterns, which cannot be fully explained by current hypotheses. A sea surface temperature (SST) record based on planktonic foraminiferal Mg/Ca from the western equatorial Pacific (WEP) warm pool ODP Hole 806B reveals that glacial-interglacial (G-I) oscillations in SST also shifted from a period of 41 kyr to 100 kyr during the MPT. This observation is in agreement with the SST records from core MD97-2140, a site to the northwest of Hole 806B, and from ODP Hole 846 in the eastern equatorial Pacific cold tongue, which also show a shift in the dominant periodicity. Hole 806B SST average (27.8°C) and range (3°C) remained the same over the MPT with typical glacial and interglacial SSTs of 26°C and 29°C, respectively. Hole 806B SST lead foraminiferal d18O by 4± 3 kyr over the MPT in agreement with paired records from core MD97-2140 and Hole 846. SST cycles across the MPT have similar magnitude and are synchronous in both the western and the eastern equatorial Pacific but preceded changes in continental ice volume. Today, eastern equatorial Pacific SSTs are strongly influenced by wind-driven thermocline depth changes. In contrast, in the WEP, where the thermocline is very deep, SSTs are less likely to be affected by thermocline depth changes. The nature of tropical SST variability over the mid-Pleistocene transition is remarkably similar to late Pleistocene climate observations and implicates atmospheric greenhouse forcing as the cause of the switch in climate periodicities at this time.

  20. Pleistocene Speciation in the Genus Populus (Salicaceae)

    PubMed Central

    Levsen, Nicholas D.; Tiffin, Peter; Olson, Matthew S.

    2012-01-01

    The macroevolutionary consequences of recent climate change remain controversial, and there is little paleobotanical or morphological evidence that Pleistocene (1.8–0.12 Ma) glacial cycles acted as drivers of speciation, especially among lineages with long generation times, such as trees. We combined genetic and ecogeographic data from 2 closely related North American tree species, Populus balsamifera and P. trichocarpa (Salicacaeae), to determine if their divergence coincided with and was possibly caused by Pleistocene climatic events. We analyzed 32 nuclear loci from individuals of P. balsamifera and P. trichocarpa to produce coalescent-based estimates of the divergence time between the 2 species. We coupled the coalescent analyses with paleodistribution models to assess the influence of climate change on species' range. Furthermore, measures of niche overlap were used to investigate patterns of ecological differentiation between species. We estimated the divergence date of P. balsamifera and P. trichocarpa at approximately 75 Ka, which corresponds closely with the onset of Marine Isotope Stage 4 (∼76 Ka) and a rapid increase in global ice volume. Significance tests of niche overlap, in conjunction with genetic estimates of migration, suggested that speciation occurred in allopatry, possibly resulting from the environmental effects of Pleistocene glacial cycles. Our results indicate that the divergence of keystone tree species, which have shaped community diversity in northern North American ecosystems, was recent and may have been a consequence of Pleistocene-era glaciation and climate change. PMID:22213709

  1. Obliquity and precession as pacemakers of Pleistocene deglaciations

    NASA Astrophysics Data System (ADS)

    Feng, Fabo; Bailer-Jones, C. A. L.

    2015-08-01

    The Milankovitch theory states that the orbital eccentricity, precession, and obliquity of the Earth influence our climate by modulating the summer insolation at high latitudes in the northern hemisphere. Despite considerable success of this theory in explaining climate change over the Pleistocene epoch (2.6-0.01 Myr ago), it is inconclusive with regard to which combination of orbital elements paced the 100 kyr glacial-interglacial cycles over the late Pleistocene. Here we explore the role of the orbital elements in pacing the Pleistocene deglaciations by modeling ice-volume variations in a Bayesian approach. When comparing models, this approach takes into account the uncertainties in the data as well as the different degrees of model complexity. We find that the Earth's obliquity (axial tilt) plays a dominant role in pacing the glacial cycles over the whole Pleistocene, while precession only becomes important in pacing major deglaciations after the transition of the dominant period from 41 kyr to 100 kyr (the mid-Pleistocene transition). We also find that geomagnetic field and orbital inclination variations are unlikely to have paced the Pleistocene deglaciations. We estimate that the mid-Pleistocene transition took place over a 220 kyr interval centered on a time 715 kyr ago, although the data permit a range of 600-1000 kyr. This transition, occurring within just two 100 kyr cycles, indicates a relatively rapid change in the climate response to insolation.

  2. Hominin responses to environmental changes during the Middle Pleistocene in central and southern Italy

    NASA Astrophysics Data System (ADS)

    Orain, R.; Lebreton, V.; Russo Ermolli, E.; Sémah, A.-M.; Nomade, S.; Shao, Q.; Bahain, J.-J.; Thun Hohenstein, U.; Peretto, C.

    2013-03-01

    The palaeobotanical record of early Palaeolithic sites from Western Europe indicates that hominins settled in different kinds of environments. During the "mid-Pleistocene transition (MPT)", from about 1 to 0.6 Ma, the transition from 41- to 100-ka dominant climatic oscillations, occurring within a long-term cooling trend, was associated with an aridity crisis which strongly modified the ecosystems. Starting from the MPT the more favourable climate of central and southern Italy provided propitious environmental conditions for long-term human occupations even during the glacial times. In fact, the human strategy of territory occupation was certainly driven by the availabilities of resources. Prehistoric sites such as Notarchirico (ca. 680-600 ka), La Pineta (ca. 600-620 ka), Guado San Nicola (ca. 380-350 ka) or Ceprano (ca. 345-355 ka) testify to a preferential occupation of the central and southern Apennines valleys during interglacial phases, while later interglacial occupations were oriented towards the coastal plains, as attested by the numerous settlements of the Roma Basin (ca. 300 ka). Faunal remains indicate that human subsistence behaviours benefited from a diversity of exploitable ecosystems, from semi-open to closed environments. In central and southern Italy, several palynological records have already illustrated the regional- and local-scale vegetation dynamic trends. During the Middle Pleistocene climate cycles, mixed mesophytic forests developed during the interglacial periods and withdrew in response to increasing aridity during the glacial episodes. New pollen data from the Boiano Basin (Molise, Italy) attest to the evolution of vegetation and climate between MIS 13 and 9 (ca. 500 to 300 ka). In this basin the persistence of high edaphic humidity, even during the glacial phases, could have favoured the establishment of a refuge area for the arboreal flora and provided subsistence resources for the animal and hominin communities during the Middle Pleistocene. This could have constrained human groups to migrate into such a propitious area. Regarding the local climate evolution during the glacial episodes, the supposed displacement from these sites could be linked to the environmental dynamics solely due to the aridity increase, rather than directly to the global climate changes.

  3. Patterns of Diversity, Areas of Endemism, and Multiple Glacial Refuges for Freshwater Crabs of the Genus Sinopotamon in China (Decapoda: Brachyura: Potamidae)

    PubMed Central

    Fang, Fang; Sun, Hongying; Zhao, Qiang; Lin, Congtian; Sun, Yufang; Gao, Wei; Xu, Juanjuan; Zhou, Junying; Ge, Feng; Liu, Naifa

    2013-01-01

    Previous research has shown that the geographical distribution patterns of freshwater fishes and amphibians have been influenced by past climatic oscillations in China resulting from Pleistocene glacial activity. However, it remains unknown how these past changes have impacted the present-day distribution of Chinese freshwater crabs. This work describes the diversity and endemism of freshwater crabs belonging to Sinopotamon, a highly speciose genus endemic to China, and evaluates its distribution in terms of topography and past climatic fluctuations. Species diversity within Sinopotamon was found to be concentrated in an area from the northeastern edge of the Yunnan-Guizhou Plateau to the Jiangnan Hills, and three areas of endemism were identified. Multiple regression analysis between current climatic variables and Sinopotamon diversity suggested that regional annual precipitation, minimum temperature in the coldest month, and annual temperature range significantly influenced species diversity and may explain the diversity patterns of Sinopotamon. A comparison of ecological niche models (ENMs) between current conditions and the last glacial maximum (LGM) showed that suitable habitat for Sinopotamon in China severely contracted during the LGM. The coincidence of ENMs and the areas of endemism indicated that southeast of the Daba Mountains, and central and southeastern China, are potential Pleistocene refuges for Sinopotamon. The presence of multiple Pleistocene refuges within the range of this genus could further promote inter- and intraspecific differentiations, and may have led to high Sinopotamon species diversity, a high endemism rate and widespread distribution. PMID:23308152

  4. Cenozoic Glacial History Revisited

    NASA Astrophysics Data System (ADS)

    Deconto, R.; Pollard, D.; Wilson, P.; Pagani, M.

    2009-04-01

    Recent geological discoveries have shaken the long-standing view of Earth's Cenozoic glacial history, which traditionally calls for the first continental-scale glaciation of East Antarctica in the earliest Oligocene (~33.6 Ma), followed by the onset of major Northern Hemispheric glacial cycles in the late Pliocene about 30 million years later. For example, new evidence from Arctic and North Atlantic oceans suggests Northern Hemispheric sea ice and glaciers have existed intermittently through much of the Cenozoic, not just the last few million years. In terms of the early glacial history of Antarctica, it has recently been suggested that significant glacial ice might have formed at various times during the overall greenhouse warmth of the Cretaceous and Eocene, and when more permanent, major glaciation began in the earliest Oligocene, a proto-West Antarctic Ice Sheet (WAIS) might have grown in concert with the East Antarctic Ice Sheet, rather than forming much later in the Neogene as is usually assumed. These data hint at previously unconsidered ice accommodation during the Oligocene and Miocene that could help to explain the discrepancy between large variations in global ice volume implied by deep-sea-core records, and the much smaller amplitude variations predicted by numerical climate-ice sheet models of East Antarctica alone. In the more recent Pliocene and Pleistocene, recent sedimentary drilling by ANDRILL has shown that the Antarctic ice shelves and WAIS have waxed and waned with far greater frequency than previously suspected. Here, we review these recent geological findings from the polar regions of both hemispheres, while considering them in the context of globally distributed proxy records from the deep sea and new model results using the latest generation of coupled atmosphere-ocean-cryosphere-isotope models. We offer a revised view of Earth's cryospheric evolution through the Cenozoic, and note important discrepancies between traditional interpretations of proxy ice volume records, based mainly on oxygen isotope and Mg/Ca records from the deep sea, and numerical models simulations that consider the long-term evolution of Cenozoic paleogeography and atmospheric carbon dioxide.

  5. Palaeomagnetic data from Late Glacial glaciolacustrine sediments at Rio Corintos, Chubut, Argentina

    NASA Astrophysics Data System (ADS)

    Beraza, L. A.; Vilas, J. F. A.

    1990-12-01

    The characteristics of the Pleistocene glaciations in Patagonia have been partially solved. On the basis of the moraine extent and the varve-counting method, and by analogy with the Weichselian Glaciation in Scandinavia, Caldenius (1932) established a pattern of Patagonian glaciations which has remained acceptable. Palaeomagnetic studies of glacial sediments have been started with the aim of testing this correlation. A 78-m Late Glacial glaciolacustrine sequence was studied and sampled at Rio Corintos, Chubut Province, Argentina (43 ° 10' S, 71 ° 15' W). Approximately 1089 varves were counted; they were thought to have been deposited between 25 000-13 000 years BP. The samples showed strong and stable values of remanent magnetization. Magnetite was identified as the carrier of the remanence. Magnetic susceptibility and intensity were recorded and the expected variations according to grain size were obtained. Recorded declination values oscillated from 30 ° W to 15 ° E, and inclination values from -8 ° to - 56 °. This shift can be attributed to the secular variation of the geomagnetic field. Declination and inclination values were smoothed using a stratigraphic window which covered 40 varves. Assuming that a single varve implies that one year has passed, the secular variation curve can be presented against a scale-time which spans approximately 1200 years. The corresponding VGP path showed 100% clockwise motion in the region of northern Canada. A correlation with other VGPs recorded in Lago Buenos Aires for Late Glacial varves has been established.

  6. Phylogeography of the Cape velvet worm (Onychophora: Peripatopsis capensis) reveals the impact of Pliocene/Pleistocene climatic oscillations on Afromontane forest in the Western Cape, South Africa.

    PubMed

    McDonald, D E; Daniels, S R

    2012-05-01

    Habitat specialists such as soft-bodied invertebrates characterized by low dispersal capability and sensitivity to dehydration can be employed to examine biome histories. In this study, the Cape velvet worm (Peripatopsis capensis) was used to examine the impacts of climatic oscillations on historical Afromontane forest in the Western Cape, South Africa. Divergence time estimates suggest that the P. capensis species complex diverged during the Pliocene epoch. This period was characterized by dramatic climatic and topographical change. Subsequently, forest expansion and contraction cycles led to diversification within P. capensis. Increased levels of genetic differentiation were observed along a west-to-south-easterly trajectory because the south-eastern parts of the Cape Fold Mountain chain harbour larger, more stable fragments of forest patches, have more pronounced habitat heterogeneity and have historically received higher levels of rainfall. These results suggest the presence of three putative species within P. capensis, which are geographically discreet and genetically distinct. PMID:22409213

  7. Quaternary glacial stratigraphy and chronology of Mexico

    NASA Astrophysics Data System (ADS)

    White, Sidney E.

    The volcano Iztaccihuatl in central Mexico was glaciated twice during the middle Pleistocene, once probably in pre-Illinoian (or pre-Bull Lake) time, and once in late Illinoian (or Bull Lake) time. Glaciation during the late Pleistocene was restricted to the late Wisconsin (or Pinedale). A maximum advance and one readvance are recorded in the early part, and one readvance in the latter part. Three or four small neoglacial advances occurred during the Holocene. Two other volcanoes nearby, Ajusco and Malinche, have a partial record of late Pleistocene and Holocene glaciations. Three others, Popocatépetl, Pico de Orizaba, and Nevado de Toluca, have a full Holocene record of three to five glacial advances during Neoglaciation.

  8. Probability of moraine survival in a succession of glacial advances.

    USGS Publications Warehouse

    Gibbons, A.B.; Megeath, J.D.; Pierce, K.L.

    1984-01-01

    Emplacement of glacial moraines normally results in obliteration of older moraines deposited by less extensive glacial advances, a process we call 'obliterative overlap'. Assuming randomness and obliterative overlap, after 10 glacial episodes the most likely number of surviving moraines is only three. The record of the Pleistocene is in agreement with the probability analysis: the 10 glaciations during the past 0.9 Myr inferred from the deep-sea record resulted in moraine sequences in which only two or three different-aged moraine belts can generally be distinguished. -from Authors

  9. Upper Middle Pleistocene climate and landscape development of Northern Germany

    NASA Astrophysics Data System (ADS)

    Urban, B.

    2009-04-01

    The Pleistocene sequence of the Schöningen lignite mine contains a number of interglacial and interstadial limnic and peat deposits, travertine tuff, soils, tills and fluvioglacial sediments as well as loess deposits. The complex Quaternary sequence contains six major cycles with evidence of four interglacials younger than the Elsterian glaciation and preceding the Holocene. The sequence begins with Late Elsterian glacial and three interstadial deposits formed in shallow basins. Cycle I is assigned to late parts of the Holsteinian interglacial. A strong cooling is recorded by a significant increase of Artemisia and grasses during the following Buschhaus A Stadial, which is considered to mark the onset of the Saalian Complex sensu lato (penultimate glacial-complex). The lacustrine sediments of Cycle II, Reinsdorf interglacial sequence (Urban, 1995), have been found to occur at archaeological sites Schöningen 12 and 13 (Thieme,1997). Recent investigations give evidence for at least 13 Local Pollen Assemblage Zones showing a five-fold division of the interglacial and a sequence of five climatic oscillations following the interglacial (Urban, 2006). From the relative high values for grasses and herbs in the inferred forested periods of the interglacial, a warm dry forest steppe climate can be deduced. The stratigraphic position of throwing spears (Thieme, 1997), can clearly be allocated to Reinsdorf Interstadial B (level II-4) characterized by an open pine-birch forest. Uppermost parts (level II-5) represent the transition into a periglacial environment indicating the definite end of cycle II. The Schöningen Interglacial (Cycle III) represents the youngest of the pre-Drenthe (Early Saalian Stadial) interglacials (Urban, 1995). In summary, it can be concluded that the Middle Pleistocene terrestrial pollen record of the Schöningen sequence represents tentative correlatives of MIS 7, 9 and 11. North of Leck (North Friesland, Schleswig-Holstein) sediments of the centre and the margin of a 286 m deep channel, subglacially eroded during the Elsterian, have recently been investigated by 9 counter flash or cored drillings (Stephan et al., in press). Studies focussed on the uppermost 50 m, made up of a series of approximately 9 m thick fluviatile sediments ("Leck-Folge") with intercalations of organic sand layers and a gyttja band, up to 1.5 m thick. This sequence is overlain by several metres of mainly decalcified groundmoraine, that, itself, is overlain by glaciofluvial and periglacial sediments. The palynological investigations of the gyttja reveal a floral development of interglacial character ("Leck-Thermomer"). Compared to other Middle Pleistocene warm periods in North Germany, correlations of the Leck-Thermomer with the Holsteinian and with the warm periods of the Reinsdorf and Wacken (Dömnitz) interglacials are precluded or appear rather implausible. The Leck-Thermomer is most likely a correlative of the marine oxigen isotope stage 7 c (MIS 7). Stephan, H.-J., Urban, B., Lüttig, G., Menke, B. und M. Sierralta: Palynologische, petrographische und geochronologische Untersuchungen der Leck-Warmzeit (spätes Mittelpleistozän) und ihrer begleitenden Sedimente.- [Palynological, petrographical, and geochronological investigations of deposits of the "Leck-Thermomer" and accompanying sediments].- Geologisches Jahrbuch, in press. Thieme, H., 1997. Lower Paleolithic hunting spears from Germany. Nature 385, 807-810. Urban, B. 1995. Palynological evidence of younger Middle Pleistocene Interglacials (Holsteinian, Reinsdorf, Schöningen) in the Schöningen open cast lignite mine (eastern Lower Saxony/Germany). Mededelingen Rijks Geologische Dienst 52, 175-186. Urban, B. 2006. Interglacial pollen records from Schöningen, north Germany.- In: THE CLIMATE OF PAST INTERGLACIALS. Sirocko, F., Litt, T., Claussen, M., Sanchez-Goni, M.F. (eds.), Springer Verlag; in press.

  10. Late Pleistocene lithostratigraphy and sequences in the southwestern Mesopotamia (Argentina): Evidences of the last interglacial stage

    NASA Astrophysics Data System (ADS)

    Ernesto, Brunetto; Soledad, Ferrero Brenda; Ignacio, Noriega Jorge

    2015-03-01

    The aim of this paper is to show the stratigraphic record of the Late Pleistocene corresponding to the distal region of the Paraná River basin. It displays sedimentological, paleontological and geochronological evidences that characterise the last interglacial-glacial cycle. In particular, strong environmental records are shown for the Last Interglacial Stage (LIS). Salto Ander Egg Formation (SAEF) is defined as a new lithostratigraphic unit representative of the Late Pleistocene in southwestern Mesopotamia. This unit is formed of complex fluvial deposits, which contains a heterogeneous collection of sub-environments, of ages ranging from 120 to 60 ky BP. The clast-supported gravel facies containing sparse boulders indicate high flow during a humid climate. The large and middle-scale architectures of fluvial sedimentary bodies evidence the relationship between the sediment accommodation and the sea level oscillations. Three sub-sequences identified in the succession suggest a transgressive trend during the MIS5e, a highstand stage in MIS5c, and a minor transgressive cycle during MIS3. A Brazilian faunal association collected at the bottom of the sequence and sedimentological interpretations display wet and warm climatic conditions, typical of tropical or subtropical environments. Such environmental conditions are characteristic of the maximum of the last interglacial stage (MIS5e) and show a signal stronger than the signal of the current interglacial stage. All these data show a direct correlation between the increases of paleodischarges and the elevation of the sea level. The whole sequence is completed with transitional swampy deposits, accumulated probably during the MIS3/MIS2 transition, and the typical loess of the Tezanos Pinto Formation, mantled during the Last Maximum Glacial.

  11. Amphibian DNA shows marked genetic structure and tracks pleistocene climate change in northeastern Brazil.

    PubMed

    Carnaval, Ana Carolina; Bates, John M

    2007-12-01

    The glacial refugia paradigm has been broadly applied to patterns of species dynamics and population diversification. However, recent geological studies have demonstrated striking Pleistocene climate changes in currently semiarid northeastern Brazil at time intervals much more frequent than the climatic oscillations associated with glacial and interglacial periods. These geomorphic data documented recurrent pulses of wet regimes in the past 210,000 years that correlate with climate anomalies affecting multiple continents. While analyzing DNA sequences of two mitochondrial genes (cytochrome b and NADH-dehydrogenase subunit 2) and one nuclear marker (cellular-myelocytomatosis proto-oncogene) in the forest-associated frogs Proceratophrys boiei and Ischnocnema gr. ramagii, we found evidence of biological responses consistent with these pluvial maxima events. Sampled areas included old, naturally isolated forest enclaves within the semiarid Caatinga, as well as recent man-made fragments of humid coastal Atlantic forest. Results show that mtDNA lineages in enclave populations are monophyletic or nearly so, whereas nonenclave populations are polyphyletic and more diverse. The studied taxa show evidence of demographic expansions at times that match phases of pluvial maxima inferred from geological data. Divergence times between several populations fall within comparatively drier intervals suggested by geomorphology. Mitochondrial and nuclear data show local populations to be genetically structured, with some high levels of differentiation that suggest the need of further taxonomic work. PMID:17941838

  12. The Middle Pleistocene transition as a generic bifurcation on a slow manifold

    NASA Astrophysics Data System (ADS)

    Ditlevsen, Peter; Ashwin, Peter

    2015-04-01

    The Quaternary Period has been characterised by a cyclical series of glaciations, which are attributed to the change in the insolation (incoming solar radiation) from changes in the Earth's orbit around the Sun. The spectral power in the climate record is very different from that of the orbital forcing: Prior to 1000 kyr before present (BP) most of the spectral power is in the 41 kyr band while since then the power has been in the 100 kyr band. The change defines the middle Pleistocene transition (MPT). The MPT does not indicate any noticeable difference in the orbital forcing. The climate response to the insolation is thus far from linear, and appears to be structurally different before and after the MPT. This paper presents a low order conceptual model for the oscillatory dynamics of the ice sheets in terms of a relaxation oscillator with multiple levels subject to the Milankovitch forcing. The model exhibits smooth transitions between three different climate states; an interglacial (i), a mild glacial (g) and a deep glacial (G) as proposed by Paillard (1998). The model suggests a dynamical explanation in terms of the structure of a slow manifold for the observed allowed and ``forbidden'' transitions between the three climate states. With the model we propose that the synchrony of the climate oscillations with the astronomical forcing is through the mechanism of phase-resetting oscillation in which the internal frequency of oscillation is increased to match the frequency of the forcing, while the opposite possibility of a faster internal oscillation cannot be slowed down to match a longer period forcing. In spite of its simplicity as a forced ODE, the model is able to reproduce many of the details of oscillations observed in the climate record. A particular novelty is that it includes a slow drift in the form of the slow manifold that reproduces the observed dynamical change at the MPT. We explain this change in terms of a transcritical bifurcation in the fast dynamics on varying the slow variable; this bifurcation can induce a sudden change in periodicity and amplitude of the cycle and we suggest that this is associated with a branch of ``canard oscillations'' that appear for a small range of parameters. The model is remarkably robust at simulating the climate record before, during and after the MPT.

  13. Surface Water and Mediterranean Outflow Water Variability During the Mid-Pleistocene Transition (Marine Isotope Stages 17-36) - the IODP Site U1387 record

    NASA Astrophysics Data System (ADS)

    Voelker, Antje; Salgueiro, Emilia; Rodrigues, Teresa; Padilha, Maria; Alberto, Ana; Loureiro, Isabel; Rebotim, Andreia; Jimenez-Espejo, Francisco J.; Bahr, Andre; Röhl, Ulla

    2015-04-01

    The Mediterranean Outflow Water (MOW) forms extensive contourite drift deposits along the Iberian margin, especially in the Gulf of Cadiz, and injects heat and salt into the intermediate depths of the North Atlantic that affect the overturning circulation. The sediments recovered during IODP Expedition 339 allow studying MOW's history throughout the Pleistocene and Pliocene and thus under varying climate forcing. Here we present centennial-to-millennial scale proxy records for surface water and MOW variations as recorded at IODP Site U1387 (558 m water depth), drilled into the Faro Drift, which is formed by the upper MOW core. We focus our study on the early to middle Pleistocene with special attention on the Mid-Pleistocene Transition (MPT) when the period of the dominant climate cycle changed from 41 kyr to 100 kyr. Surface water and MOW proxy records show millennial-scale stadial/ interstadial oscillations on top of the glacial/ interglacial cycles. Changes in the planktonic and benthic oxygen isotope records are tightly coupled highlighting the constant exchange (entrainment) between the (sub)surface waters and the MOW. Alkenone-derived sea-surface temperatures (SST) increased abruptly at the beginning of an interglacial stage (with the exception of MIS 35) and reached maxima of 21-23°C. During the glacial stages, the SST record reveals abrupt drops down to 10-11°C that lasted approximately 1 kyr, respectively, and remind of the SST minima recorded on the western Iberian margin during Heinrich and Heinrich-type ice-rafting events of the middle to late Pleistocene (e.g., Rodrigues et al., 2011 in Paleoceanography). Low benthic carbon isotope values during deglacial and peak interglacial periods, coinciding with insolation maxima, reveal a poorly ventilated upper MOW core and point to a causal link between MOW ventilation and sapropel formation in the Mediterranean Sea. Better ventilation was recorded during glacial and stadial intervals, often in association with the formation of contourites (higher sand content; larger mean grain size) and thus higher bottom current velocity. During the warmer Marine Isotope Stages contourites, often more pronounced than their glacial counterparts, were formed during the stadial(s) following the peak interglacial period when northern hemisphere summer insolation was low. Thus, changes in the upper MOW core are tightly coupled to summer insolation with poor ventilation occurring during insolation maxima and higher current velocity marking insolation minima. This insolation forcing reveals a close link between MOW and Mediterranean Sea climate conditions, whereas the SST record reveals a tight link to surface water conditions in the open North Atlantic.

  14. Late Pleistocene dune activity in the central Great Plains, USA

    USGS Publications Warehouse

    Mason, J.A.; Swinehart, J.B.; Hanson, P.R.; Loope, D.B.; Goble, R.J.; Miao, X.; Schmeisser, R.L.

    2011-01-01

    Stabilized dunes of the central Great Plains, especially the megabarchans and large barchanoid ridges of the Nebraska Sand Hills, provide dramatic evidence of late Quaternary environmental change. Episodic Holocene dune activity in this region is now well-documented, but Late Pleistocene dune mobility has remained poorly documented, despite early interpretations of the Sand Hills dunes as Pleistocene relicts. New optically stimulated luminescence (OSL) ages from drill cores and outcrops provide evidence of Late Pleistocene dune activity at sites distributed across the central Great Plains. In addition, Late Pleistocene eolian sands deposited at 20-25 ka are interbedded with loess south of the Sand Hills. Several of the large dunes sampled in the Sand Hills clearly contain a substantial core of Late Pleistocene sand; thus, they had developed by the Late Pleistocene and were fully mobile at that time, although substantial sand deposition and extensive longitudinal dune construction occurred during the Holocene. Many of the Late Pleistocene OSL ages fall between 17 and 14 ka, but it is likely that these ages represent only the later part of a longer period of dune construction and migration. At several sites, significant Late Pleistocene or Holocene large-dune migration also probably occurred after the time represented by the Pleistocene OSL ages. Sedimentary structures in Late Pleistocene eolian sand and the forms of large dunes potentially constructed in the Late Pleistocene both indicate sand transport dominated by northerly to westerly winds, consistent with Late Pleistocene loess transport directions. Numerical modeling of the climate of the Last Glacial Maximum has often yielded mean monthly surface winds southwest of the Laurentide Ice Sheet that are consistent with this geologic evidence, despite strengthened anticyclonic circulation over the ice sheet. Mobility of large dunes during the Late Pleistocene on the central Great Plains may have been the result of cold, short growing seasons with relatively low precipitation and low atmospheric CO2 that increased plant moisture stress, limiting the ability of vegetation to stabilize active dune sand. The apparent coexistence of large mobile dunes with boreal forest taxa suggests a Late Pleistocene environment with few modern analogs. ?? 2011 Elsevier Ltd.

  15. The middle Pleistocene transition as a generic bifurcation on a slow manifold

    NASA Astrophysics Data System (ADS)

    Ashwin, Peter; Ditlevsen, Peter

    2015-11-01

    The Quaternary period has been characterised by a cyclical series of glaciations, which are attributed to the change in the insolation (incoming solar radiation) from changes in the Earth's orbit around the Sun. The spectral power in the climate record is very different from that of the orbital forcing: prior to 1000 kyr before present most of the spectral power is in the 41 kyr band while since then the power has been in the 100 kyr band. The change defines the middle Pleistocene transition (MPT). The MPT does not indicate any noticeable difference in the orbital forcing. The climate response to the insolation is thus far from linear, and appears to be structurally different before and after the MPT. This paper presents a low order conceptual model for the oscillatory dynamics of the ice sheets in terms of a relaxation oscillator with multiple levels subject to the Milankovitch forcing. The model exhibits smooth transitions between three different climate states; an interglacial (i), a mild glacial (g) and a deep glacial (G) as proposed by Paillard (Nature 391:378-381, 1998). The model suggests a dynamical explanation in terms of the structure of a slow manifold for the observed allowed and "forbidden" transitions between the three climate states. With the model, the pacing of the climate oscillations by the astronomical forcing is through the mechanism of phase-resetting of relaxation oscillations in which the internal phase of the oscillation is affected by the forcing. In spite of its simplicity as a forced ODE, the model is able to reproduce not only general features but also many of the details of oscillations observed in the climate record. A particular novelty is that it includes a slow drift in the form of the slow manifold that reproduces the observed dynamical change at the MPT. We explain this change in terms of a transcritical bifurcation in the fast dynamics on varying the slow variable; this bifurcation can induce a sudden change in periodicity and amplitude of the cycle and we suggest that this is associated with a branch of "canard oscillations" that appear for a small range of parameters. The model is remarkably robust at simulating the climate record before, during and after the MPT. Even though the conceptual model does not point to specific mechanisms, the physical implication is that the major reorganisation of the climate response to the orbital forcing does not necessarily imply that there was a big change in the environmental conditions.

  16. Hybridization among Arctic white-headed gulls (Larus spp.) obscures the genetic legacy of the Pleistocene

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Chesser, R. Terry; Bell, Douglas A.; Dove, Carla J.

    2012-01-01

    We studied the influence of glacial oscillations on the genetic structure of seven species of white-headed gull that breed at high latitudes (Larus argentatus, L. canus, L. glaucescens, L. glaucoides, L. hyperboreus, L. schistisagus, and L. thayeri). We evaluated localities hypothesized as ice-free areas or glacial refugia in other Arctic vertebrates using molecular data from 11 microsatellite loci, mitochondrial DNA (mtDNA) control region, and six nuclear introns for 32 populations across the Holarctic. Moderate levels of genetic structure were observed for microsatellites (FST= 0.129), introns (ΦST= 0.185), and mtDNA control region (ΦST= 0.461), with among-group variation maximized when populations were grouped based on subspecific classification. Two haplotype and at least two allele groups were observed across all loci. However, no haplotype/allele group was composed solely of individuals of a single species, a pattern consistent with recent divergence. Furthermore, northernmost populations were not well differentiated and among-group variation was maximized when L. argentatus and L. hyberboreus populations were grouped by locality rather than species, indicating recent hybridization. Four populations are located in putative Pleistocene glacial refugia and had larger t estimates than the other 28 populations. However, we were unable to substantiate these putative refugia using coalescent theory, as all populations had genetic signatures of stability based on mtDNA. The extent of haplotype and allele sharing among Arctic white-headed gull species is noteworthy. Studies of other Arctic taxa have generally revealed species-specific clusters as well as genetic structure within species, usually correlated with geography. Aspects of white-headed gull behavioral biology, such as colonization ability and propensity to hybridize, as well as their recent evolutionary history, have likely played a large role in the limited genetic structure observed.

  17. Hybridization among Arctic white-headed gulls (Larus spp.) obscures the genetic legacy of the Pleistocene

    PubMed Central

    Sonsthagen, Sarah A; Chesser, R Terry; Bell, Douglas A; Dove, Carla J

    2012-01-01

    We studied the influence of glacial oscillations on the genetic structure of seven species of white-headed gull that breed at high latitudes (Larus argentatus, L. canus, L. glaucescens, L. glaucoides, L. hyperboreus, L. schistisagus, and L. thayeri). We evaluated localities hypothesized as ice-free areas or glacial refugia in other Arctic vertebrates using molecular data from 11 microsatellite loci, mitochondrial DNA (mtDNA) control region, and six nuclear introns for 32 populations across the Holarctic. Moderate levels of genetic structure were observed for microsatellites (FST= 0.129), introns (ΦST= 0.185), and mtDNA control region (ΦST= 0.461), with among-group variation maximized when populations were grouped based on subspecific classification. Two haplotype and at least two allele groups were observed across all loci. However, no haplotype/allele group was composed solely of individuals of a single species, a pattern consistent with recent divergence. Furthermore, northernmost populations were not well differentiated and among-group variation was maximized when L. argentatus and L. hyberboreus populations were grouped by locality rather than species, indicating recent hybridization. Four populations are located in putative Pleistocene glacial refugia and had larger τ estimates than the other 28 populations. However, we were unable to substantiate these putative refugia using coalescent theory, as all populations had genetic signatures of stability based on mtDNA. The extent of haplotype and allele sharing among Arctic white-headed gull species is noteworthy. Studies of other Arctic taxa have generally revealed species-specific clusters as well as genetic structure within species, usually correlated with geography. Aspects of white-headed gull behavioral biology, such as colonization ability and propensity to hybridize, as well as their recent evolutionary history, have likely played a large role in the limited genetic structure observed. PMID:22833800

  18. Pleistocene Niche Stability and Lineage Diversification in the Subtropical Spider Araneus omnicolor (Araneidae)

    PubMed Central

    Peres, Elen A.; Sobral-Souza, Thadeu; Perez, Manolo F.; Bonatelli, Isabel A. S.; Silva, Daniel P.; Silva, Márcio J.; Solferini, Vera N.

    2015-01-01

    The influence of Quaternary climate oscillations on the diversification of the South American fauna is being increasingly explored. However, most of these studies have focused on taxa that are endemic to tropical environments, and relatively few have treated organisms restricted to subtropical biomes. Here we used an integrative phylogeographical framework to investigate the effects of these climate events on the ecological niche and genetic patterns of the subtropical orb-weaver spider Araneus omnicolor (Araneidae). We analyzed the mitochondrial (Cytochrome Oxidase I, COI) and nuclear (Internal Transcribed Subunit II, ITS2) DNA of 130 individuals throughout the species’ range, and generated distribution models in three different climate scenarios [present, Last Glacial Maximum (LGM), and Last Interglacial Maximum (LIG)]. Additionally, we used an Approximate Bayesian Computation (ABC) approach to compare possible demographic scenarios and select the hypothesis that better explains the genetic patterns of A. omnicolor. We obtained high haplotype diversity but low nucleotide variation among sequences. The population structure and demographic analyses showed discrepancies between markers, suggesting male-biased dispersal in the species. The time-calibrated COI phylogenetic inference showed a recent diversification of lineages (Middle/Late Pleistocene), while the paleoclimate modeling indicated niche stability since ~120 Kya. The ABC results agreed with the niche models, supporting a panmictic population as the most likely historical scenario for the species. These results indicate that A. omnicolor experienced no niche or population reductions during the Late Pleistocene, despite the intense landscape modifications that occurred in the subtropical region, and that other factors beside LGM and LIG climate oscillations might have contributed to the demographic history of this species. This pattern may be related to the high dispersal ability and wide environmental tolerance of A. omnicolor, highlighting the need for more phylogeographical studies with invertebrates and other generalist taxa, in order to understand the effects of Quaternary climate changes on Neotropical biodiversity. PMID:25856149

  19. Pleistocene niche stability and lineage diversification in the subtropical spider Araneus omnicolor (Araneidae).

    PubMed

    Peres, Elen A; Sobral-Souza, Thadeu; Perez, Manolo F; Bonatelli, Isabel A S; Silva, Daniel P; Silva, Márcio J; Solferini, Vera N

    2015-01-01

    The influence of Quaternary climate oscillations on the diversification of the South American fauna is being increasingly explored. However, most of these studies have focused on taxa that are endemic to tropical environments, and relatively few have treated organisms restricted to subtropical biomes. Here we used an integrative phylogeographical framework to investigate the effects of these climate events on the ecological niche and genetic patterns of the subtropical orb-weaver spider Araneus omnicolor (Araneidae). We analyzed the mitochondrial (Cytochrome Oxidase I, COI) and nuclear (Internal Transcribed Subunit II, ITS2) DNA of 130 individuals throughout the species' range, and generated distribution models in three different climate scenarios [present, Last Glacial Maximum (LGM), and Last Interglacial Maximum (LIG)]. Additionally, we used an Approximate Bayesian Computation (ABC) approach to compare possible demographic scenarios and select the hypothesis that better explains the genetic patterns of A. omnicolor. We obtained high haplotype diversity but low nucleotide variation among sequences. The population structure and demographic analyses showed discrepancies between markers, suggesting male-biased dispersal in the species. The time-calibrated COI phylogenetic inference showed a recent diversification of lineages (Middle/Late Pleistocene), while the paleoclimate modeling indicated niche stability since ~120 Kya. The ABC results agreed with the niche models, supporting a panmictic population as the most likely historical scenario for the species. These results indicate that A. omnicolor experienced no niche or population reductions during the Late Pleistocene, despite the intense landscape modifications that occurred in the subtropical region, and that other factors beside LGM and LIG climate oscillations might have contributed to the demographic history of this species. This pattern may be related to the high dispersal ability and wide environmental tolerance of A. omnicolor, highlighting the need for more phylogeographical studies with invertebrates and other generalist taxa, in order to understand the effects of Quaternary climate changes on Neotropical biodiversity. PMID:25856149

  20. A high resolution history of the El Niño - Southern Oscillation and of the solar activity during the Late Glacial - Early Holocene in the subtropical Andean region.

    NASA Astrophysics Data System (ADS)

    Giralt, S.; Schimmel, M.; Hernández, A.; Bao, R.; Valero-Garcés, B. L.; Sáez, A.; Pueyo, J. J.

    2009-04-01

    High-resolution laminated lacustrine sediments are excellent archives of the past hydrological changes and they provide valuable insights about the climatic processes that trigger these changes. The paleoclimatic records located in the Southern Hemisphere are fundamental for understanding the evolution of the El Niño - Southern Oscillation (ENSO) since this climatic phenomena is the main cause of droughts and floods in many areas of South America and other regions of the world, like Spain and Egypt. Available regional paleoclimate reconstructions show that modern climatic patterns in South America were established during the Late Holocene. The laminated sediments of Lago Chungará (18° 15' S - 69° 10' W, 4520 m a.s.l., Chilean altiplano) have allowed us to characterize the evolution of this climatic phenomena for the transition Late Glacial - Early Holocene (12,300 - 9,500 calendar years BP) as well as its relationship with other climate forcings, namely the solar activity. The studied sediments correspond to the lowermost 2.4 m of 8 m long Kullemberg cores recovered from this lake. These sediments are mainly made up of greenish and whitish laminae and thin layers constituted by diatomaceous oozes with carbonates and organic matter, arranged in rhythms and cycles. X-ray fluorescence (XRF) (Al, Si, S, K, Ca, Ti, Mn, Fe, Rb, Sr, Zn, Sb and Ba) analyses, total organic carbon (TOC), total carbon (TC), x-ray diffraction (XRD), biogenic silica, stable isotopes (delta18O and delta13C) on carbonates and on diatoms (delta18O) and magnetic susceptibility were determined in order to characterize the sediments of Lago Chungará. Previous statistical studies (cluster and Principal Component Analyses (PCA)) were used to disentangle the paleoclimatic signal from the other ones (volcanic and tectonic). The chronological model framework was built using 6 radiocarbon dates, allowing us to establish that laminated couplets were deposited on a pluriannual basis. These couplets are composed of a lower light lamina, progressively grading upwards to a dark lamina. Light laminae are composed by diatom valves of a single species (Cyclostephanos cf. andinus), accumulated during short-term extraordinary diatom blooms when water column mixing took place under abrupt and short-term climatic events. Dark laminae contain a complex diatom assemblage and are rich in organic matter representing the baseline limnological conditions during several years of deposition. Spectral analyses (Fast Fourier Transformation - FFT - and Time Frequency - TF - analyses) were performed on the isolated paleohydrological curve and on the gray color curve calculated for these laminated sediments. The FFT analyses of the paleohydrological signal obtained from the PCA highlights the record of 35-51 years cycles, that might correspond to the solar Bruckner cycle as well as to the inter-decadal changes in the variance of the ENSO phenomena. The results of the FFT analyses carried out on the gray curve reinforce the hypothesis of the solar control on the variations in the lake productivity: the 11-years Schwabe, 22-23-years Hale, 35-years Bruckner and the approx. 90-years Gleissberg cycles, as well as a strong to very strong ENSO phenomena (8.2 and 7.5-years cycles) are recorded. The TF analyses developed on the variations of the gray-colour curve reveal that all solar frequencies have modified intensities during the Late Glacial and Early Holocene. During the low activity periods of the 11-years Schwabe cycles, strong to very strong ENSO phenomena took place. These results show that ENSO-like variability was present during the late Glacial and early Holocene in the Altiplano.

  1. Outburst floods from glacial Lake Missoula

    NASA Astrophysics Data System (ADS)

    Clarke, G. K. C.; Mathews, W. H.; Pack, R. T.

    1984-11-01

    The Pleistocene outburst floods from glacial Lake Missoula, known as the "Spokane Floods", released as much as 2184 km 3 of water and produced the greatest known floods of the geologic past. A computer simulation model for these floods that is based on physical equations governing the enlargement by water flow of the tunnel penetrating the ice dam is described. The predicted maximum flood discharge lies in the range 2.74 × 10 6-13.7 × 10 6 m 3 sec -1, lending independent glaciological support to paleohydrologic estimates of maximum discharge.

  2. Palaeoenvironmental conditions in the Gulf of Alaska (NE Pacific) during the Mid Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Müller, J.; Romero, O. E.; McClymont, E.; Stein, R. H.; Fahl, K.

    2014-12-01

    The Mid Pleistocene Transition (MPT) constitutes a fundamental shift in Earth's climate system from a 41 ka to a 100 ka periodicity in glacial oscillations. The exact timing and mechanism(s) that caused this change from a low- to high-amplitude glacial variability are still under debate and only recently Pena & Goldstein (2014) suggested that a disruption of the thermohaline circulation at about 900 ka BP and a subsequent change in ocean circulation might have acted as a trigger for the onset of 100 ka glacial-interglacial cycles. Most studies targeting the MPT are based on Atlantic sediment records whereas only few data sets are available from the North Pacific (see e.g. Clark et al., 2006 and McClymont et al., 2013 for reviews). IODP Expedition 341 distal deep-water site U1417 in the Gulf of Alaska (subpolar NE Pacific) now provided a continuous sediment record for reconstructing Miocene to Late Pleistocene changes in the sea surface conditions and how these relate to orbital and millennial scale climate variability. Here we present organic geochemical biomarker data covering the 1.5 Ma to 0.1 Ma time interval with special focus on the MPT. Alkenone, sterol, n-alkane and C25 highly branched isoprenoid data are used to reconstruct sea surface temperatures, primary productivity and terrigenous organic matter input (via sea ice, icebergs, meltwater discharge or aeolian transport). In addition, the diatom concentration and the species composition of the diatom assemblage deliver information on changes in palaeoproductivity and nutrient (silicate) availability. A major change in the environmental setting between 1.2 and 0.8 Ma is recorded by the biomarkers. This shift seems to be associated with a significant cooling of the surface waters in the Gulf of Alaska. Matching this shift, a significant change in the main components of the diatom community occurred between 1.2 and 0.8 Ma. References Clark, P.U., Archer, D., Pollard, D., Blum, J.D., Rial, J.A., Brovkin, V., Mix, A.C., Pisias, N.G., Roy, M., 2006. Quaternary Science Reviews, 25, (23-24), 3150-3184. McClymont, E.L., Sosdian, S.M., Rosell-Melé, A., Rosenthal, Y., 2013. Earth-Science Reviews, 123, 173-193. Pena, L.D. and Goldstein, S.L., 2014. Science, 345, 318-322.

  3. Glacial-interglacial Indian summer monsoon dynamics.

    PubMed

    An, Zhisheng; Clemens, Steven C; Shen, Ji; Qiang, Xiaoke; Jin, Zhangdong; Sun, Youbin; Prell, Warren L; Luo, Jingjia; Wang, Sumin; Xu, Hai; Cai, Yanjun; Zhou, Weijian; Liu, Xiaodong; Liu, Weiguo; Shi, Zhengguo; Yan, Libin; Xiao, Xiayun; Chang, Hong; Wu, Feng; Ai, Li; Lu, Fengyan

    2011-08-01

    The modern Indian summer monsoon (ISM) is characterized by exceptionally strong interhemispheric transport, indicating the importance of both Northern and Southern Hemisphere processes driving monsoon variability. Here, we present a high-resolution continental record from southwestern China that demonstrates the importance of interhemispheric forcing in driving ISM variability at the glacial-interglacial time scale as well. Interglacial ISM maxima are dominated by an enhanced Indian low associated with global ice volume minima. In contrast, the glacial ISM reaches a minimum, and actually begins to increase, before global ice volume reaches a maximum. We attribute this early strengthening to an increased cross-equatorial pressure gradient derived from Southern Hemisphere high-latitude cooling. This mechanism explains much of the nonorbital scale variance in the Pleistocene ISM record. PMID:21817044

  4. Palaeoceanography. Antarctic stratification and glacial CO2.

    PubMed

    Keeling, R F; Visbeck, M

    2001-08-01

    One way of accounting for lowered atmospheric carbon dioxide concentrations during Pleistocene glacial periods is by invoking the Antarctic stratification hypothesis, which links the reduction in CO2 to greater stratification of ocean surface waters around Antarctica. As discussed by Sigman and Boyle, this hypothesis assumes that increased stratification in the Antarctic zone (Fig. 1) was associated with reduced upwelling of deep waters around Antarctica, thereby allowing CO2 outgassing to be suppressed by biological production while also allowing biological production to decline, which is consistent with Antarctic sediment records. We point out here, however, that the response of ocean eddies to increased Antarctic stratification can be expected to increase, rather than reduce, the upwelling rate of deep waters around Antarctica. The stratification hypothesis may have difficulty in accommodating eddy feedbacks on upwelling within the constraints imposed by reconstructions of winds and Antarctic-zone productivity in glacial periods. PMID:11493910

  5. Pleistocene and Holocene Iberian flora: a complete picture and review

    NASA Astrophysics Data System (ADS)

    González Sampériz, Penélope

    2010-05-01

    A detailed analysis of the location and composition of Iberian vegetation types during the whole Pleistocene and Holocene periods shows a complex patched landscape with persistence of different types of ecosystems, even during glacial times. In addition, recent, high-resolution palaeoecological records are changing the traditional picture of post-glacial vegetation succession in the Iberian Peninsula. The main available charcoal and pollen sequences include, coniferous and deciduous forest, steppes, shrublands, savannahs and glacial refugia during the Pleistocene for Meso-thermophytes (phytodiversity reservoirs), in different proportions. This panorama suggests an environmental complexity that relates biotic responses to climate changes forced by Milankovitch cycles, suborbital forcings and by the latitudinal and physiographic particularities of the Iberian Peninsula. Thus, many factors are critical in the course of vegetational developments and strong regional differences are observed since the Early Pleistocene. Currently, the flora of Iberia is located in two biogeographical/climatic regions: the Eurosiberian and the Mediterranean. The first one includes northern and northwestern areas of the peninsula, where post-glacial responses of vegetation are very similar to Central Europe, although with some particularities due to its proximity to both the Atlantic Ocean and the Mediterranean region. The second one comprises the main territory of Iberia and shows more complex patterns and singularities, now and in the past. Steppe landscapes dominated extensive areas over all the territory during the cold spells of the Quaternary, especially during the Late Pleistocene up to the Last Glacial Maximum, but differences in composition of the dominant taxa (Compositae versus Artemisia) are observed since the Early Pleistocene, probably related to moisture regional gradients. Coastal shelves and intramountainous valleys, even in continental areas, are spots of floristic diversity and nuclei of population expansion during climatic ameliorations of the Pleistocene. The floristic composition, location and structure of glacial tree populations and communities may have been a primary control on these developments and on the origin and composition of Holocene scenarios. Refugial populations would have been a source, but not the only one, for the early Lateglacial oak expansions for example. From Middle to Late Holocene, inertial, resilient, and rapid responses of vegetation to climatic change are described, any time with regional and local differences. The role of fire, pastoralism, agriculture and other anthropogenic disturbances such as mining during the Copper, Bronze, Iberic, and Roman times must be also considered as an important factor of the current vegetation distribution. In fact, the Iberian Peninsula constitutes a territory where climatic, geological, biogeographical and historical conditions have converged to produce environmental heterogeneity, large biological diversity and ecosystem richness. A note of singularity: in comparison with other Mediterranean peninsulas, Iberia was, doubtless, particularly suitable for the survival and permanence of sclerophyllous elements of any kind (including Ibero-Maghrebian scrubs such as Maytenus, Periploca, Ziziphus,Withania, Lycium, and Calicotome), currently, during the Holocene, and even during glacial stages of the Pleistocene. However, no macro-remains of these taxa have been documented until Late Holocene chronologies, but the survival of other thermophilous species, such as Olea, reveals the existence of glacial refugia in the southernmost areas of Iberia. Over all, and dealing with plant species, the Iberian Peninsula is a land of survival.

  6. Paleoclimate of northern Guatemala during the Last Glacial Cycle

    NASA Astrophysics Data System (ADS)

    Hodell, D. A.; Anselmetti, F.; Ariztegui, D.; Brenner, M.; Curtis, J.; Gilli, A.; Mueller, A.

    2006-12-01

    Lake Peten Itza (zmax = 165 m) in northern Guatemala is the deepest lake in the lowlands of Central America. Annual rainfall averages ~1600 mm and is highly seasonal with over 90% occurring in the months from May to October. As part of an ICDP project, we recovered 1327 m of lake sediment at seven sites using the GLAD800 superbarge. Preliminary research has focused on Site PI-6 at a water depth of 71 m. Three holes were drilled and recovered a complete stratigraphic section to a maximum depth of 75.9 mblf. Radiocarbon dates on terrestrial organic matter display a regular increase in age with depth, and indicate a mean sedimentation rate of ~100 cm per 1000 yrs (1mm/yr). The top 10.8 mcd were deposited during the Holocene and consist primarily of gray carbonate clay with abundant charcoal. The Pleistocene/Holocene boundary at 10.8 mcd is marked by a transition to Holocene clay from underlying, interbedded dense gypsum sand and clay deposited during the Late Glacial period from ~17 to 9.3 kyrs. This transition represents a switch to moist climate during the early Holocene from more arid conditions during the Late Glacial. Arid conditions during the Late Glacial period may coincide with episodic delivery of seasonal meltwater to the Gulf of Mexico (Aharon, 2003, Paleoceanography, 18, 1079). In contrast to the Late Glacial period, the earlier Last Glacial Maximum (LGM), from 23 to 17 kyrs, consists of gray carbonate clay that is very similar to Holocene deposits, suggesting high detrital input and high lake level. This finding contradicts previous results suggesting that the LGM was dry in the Peten lowlands. We speculate that a cold, wet LGM may have been caused by increased winter precipitation when the Laurentide Ice Sheet (LIS) was at its southernmost extent. The mechanism may have been related to increased frequency of polar outbreaks and "Norte" winds, which occasionally bring rain to the Peten today during the dry season. Similar increases in winter precipitation during the LGM have been inferred from high lake stands in the American Southwest and in northwestern Mexico, as far south as 20°N (Bradbury, 1997, Quat. Int., 43/44, 97-110). In Lake Peten Itza, clay deposition during the LGM was preceded by interbedded gypsum and gray carbonate clay deposited before ~23 kyrs during Marine Isotope Stage 3 (MIS 3), indicating alternating wet-dry conditions. The pattern of clay-gypsum (wet-dry) oscillations during MIS 3 resembles the temperature record from Antarctic ice cores more so than Greenland ice cores. Arid conditions in Peten correlate with warmings in Antarctica, supporting the finding of Hill et al. (2006, Paleoceanography, 21, PA1006,doi:10.1029/2005PA001186) that summer melting of the LIS and meltwater input to the Gulf of Mexico occurred during Antarctic warming events. Our preliminary results do not support a simple relationship between the hydrologic cycle in Peten and Greenland temperature, as inferred from correlations between the Cariaco Basin and Greenland ice cores (Peterson et al., 2000, Science, 290, 1947-1951). Pollen and stable isotopic analyses of Site PI-6 are needed to test the preliminary paleoclimatic interpretations inferred from lithologic changes.

  7. Significant increase in relief of the European Alps during mid-Pleistocene glaciations

    NASA Astrophysics Data System (ADS)

    Valla, Pierre G.; Shuster, David L.; van der Beek, Peter A.

    2011-10-01

    Some of Earth's greatest relief occurs where glacial processes act on mountain topography. This dramatic landscape is thought to be an imprint of Pleistocene glaciations. However, whether the net effect of glacial erosion on mountains is to increase or decrease relief remains disputed. It has been suggested that in the European Alps, the onset of widespread glaciation since the mid-Pleistocene climate transition led to the growth of large, long-lived and strongly erosive alpine glaciers that profoundly influenced topography. Here we use 4He/3He thermochronometry and thermal-kinematic models to show that the Rhône Valley in Switzerland deepened by about 1-1.5km over the past one million years. Our results indicate that while the valley was incised and back-cut, high-altitude areas were preserved from erosion. We find an approximately two-fold increase in both local topographic relief and valley concavity, which occurred around the time of the mid-Pleistocene transition. Our results support the proposed link between the onset of efficient glacial erosion in the European Alps and the transition to longer, colder glacial periods at the middle of the Pleistocene epoch.

  8. Pleistocene environmental dynamics recorded in the loess of the middle and lower Danube basin

    NASA Astrophysics Data System (ADS)

    Fitzsimmons, Kathryn E.; Marković, Slobodan B.; Hambach, Ulrich

    2012-05-01

    The substantial loess deposits of the middle and lower Danube basin in southeastern Europe represent one of the thickest and most comprehensive terrestrial palaeoenvironmental records on the continent, yet are also the least well understood. Environmental conditions over the last million years have resulted in relatively continuous deposits uninterrupted by glaciation and tundra conditions, which nevertheless reflect oscillations between relatively warm-humid (“interglacial”) and cold-dry (“glacial”) intervals. This relative environmental stability may have proven important for hominins migrating into and through the region. The loess stratigraphy comprises distinct loess-paleosol sequences, reflecting glacial-interglacial phases which can be quantified for intensity using environmental magnetism and geochemistry. These phases are emphasised by variations in vegetation and malacofauna which respond to climatic change. The loess deposits demonstrate broadly similar sedimentological characteristics across the basin. Danubian loess deposits initiated in response to the tectonic formation of the Pannonian basin, retreat of the large palaeolakes, and increased sediment supply from the Danube. The period from ˜1 Ma-500 ka (MIS 27-13) was characterised by alternating loess deposition and pedogenesis during glacial and interglacial periods respectively, in response to relatively humid, forested conditions. This period represents the opening of the Danube corridor and provides the backdrop for initial hominin arrival into Europe. After ˜500 ka, and particularly after MIS 9, loess accumulation rates increased in response to relatively more steppic, arid, environments. MIS 9 and 13-15 were the most humid phases of the last ˜600 ky. The MIS 5 interglacial period was the warmest, and relatively most humid, period preceding the Holocene, and was followed by substantially increased loess accumulation during MIS 4, which may be linked to North Atlantic circulation. The complexity of the MIS 3 interstadial paleosol suggests that conditions were not uniformly warm and wet during this time. MIS 3 corresponds with the first arrival of anatomically modern humans to Europe. The last glacial maximum and Younger Dryas of MIS 2 were characterised by substantially increased loess accumulation indicating cold steppe environments most likely influenced by the North Atlantic, although conditions were sufficiently mild that the region acted as a refugium for thermophilic biota, as may also have been the case for most of the Pleistocene glacial cycles. The Holocene soil represents relatively wamer and more humid conditions corresponding to the current interglacial.

  9. Interglacial Climate from Deglaciation to Glacial Inception

    NASA Astrophysics Data System (ADS)

    McManus, J. F.; Raynaud, D.; Tzedakis, P. C.; Wolff, E. W.; Yin, Q.; Pol, K.; Skinner, L. C.; Crucifix, M.; Hodell, D. A.; Berger, A.; Ganopolski, A.; Otto-Bliesner, B. L.; Mangili, C.

    2014-12-01

    Interglacials are the warm, minimum ice, high sea level end-member of the glacial climate cycles of the Pleistocene, with the present Holocene period as the most recent example. We have identified 11 interglacial intervals in the last 800 ka and have reviewed their occurrence, intensity, shape and timing, including the processes that accompany deglaciation and glacial inception. Our compilation of evidence from marine, terrestrial and ice core climate archives suggests that, despite spatial inhomogeneity, marine isotope stages (MIS) 5 and 11 were globally strong (warm), while MIS 13 tended to be cool. A step change in strength of interglacials at ~450 ka (mid-Brunhes) is apparent only in CO2, and Antarctic and deep ocean temperature. The onset of interglacials (deglaciation or glacial "termination") is relatively rapid, and seems to require a combination of low orbital precession (high northern hemisphere summer insolation) and the existence of a large ice sheet. Terminations involve highly non-linear interactions of ocean and atmospheric dynamics, sea level, CO2 and temperature, along with the imposed external insolation forcing. The precise timing appears to be closely tied to the fall in precession but may be modulated by millennial scale climate variability that determines the pattern of change seen in temperature in each hemisphere. There is some organized variability and a range of climatic trends within interglacials, resulting in intensity maxima that may occur either early or late in different instances. The end of interglacials (glacial inception) is typically a slower process involving a global sequence of changes. Interglacials are typically 10-30 ka long. Proposed analogs do not easily inform us about the natural progression or length of the current interglacial, but due to a combination of reduced insolation variability and greenhouse gas concentrations the timing of the next glacial inception appears to be many tens of millennia in the future.

  10. Pleistocene Indian Monsoon Rainfall Variability

    NASA Astrophysics Data System (ADS)

    Yirgaw, D. G.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Sijingeo, A. V.; Nath, B. N.; Frank, M.

    2014-12-01

    The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea. Here we investigate proxies for fresh water input and runoff in a region of strong monsoon precipitation that is a major moisture source for the east Asian Monsoon. A sediment core obtained by the IODP vessel JOIDES Resolution and a gravity core from the Alcock Seamount complex in the Andaman Sea are used to examine the past monsoon variability on the Indian sub-continent and directly over the ocean. The current dataset covers the last glacial and deglacial but will eventually provide a Pleistocene record. We utilise the ecological habitats of G. sacculifer and N. dutertrei to investigate the freshwater-induced stratification with paired Mg/Ca and δ18O analyses to estimate seawater δ18O (δ18Osw). During the last 60 kyrs, Ba/Ca ratios and δ18Osw values generally agree well between the two cores and suggest the weakest surface runoff and monsoon during the LGM and strongest monsoon during the Holocene. The difference in δ18O between the species, interpreted as a proxy for upper ocean stratification, implies stratification developed around 37 ka and remained relatively constant during the LGM, deglacial and Holocene. To investigate monsoon variability for intervals in the past, single shell Mg/Ca and δ18O analyses have been conducted. Mg/Ca ratios from individual shells of N. dutertrei suggest relatively small changes in temperature. However, individual N. dutertrei δ18O differ greatly between the mid-Holocene and samples from the LGM and a nearby core top. The mid-Holocene individuals have a greater range and large skew towards negative values indicating greater fresh water influence.

  11. Mammalian responses to Pleistocene climate change in southeastern Australia

    NASA Astrophysics Data System (ADS)

    Prideaux, Gavin J.; Roberts, Richard G.; Megirian, Dirk; Westaway, Kira E.; Hellstrom, John C.; Olley, Jon M.

    2007-01-01

    Resolving faunal responses to Pleistocene climate change is vital for differentiating human impacts from other drivers of ecological change. While 90% of Australia's large mammals were extinct by ca. 45 ka, their responses to glacial-interglacial cycling have remained unknown, due to a lack of rigorous biostratigraphic studies and the rarity of terrestrial climatic records that can be related directly to faunal records. We present an analysis of faunal data from the Naracoorte Caves in southeastern Australia, which are unique not only because of the species richness and time-depth of the assemblages that they contain, but also because this faunal record is directly comparable with a 500 k.y. speleothem-based record of local effective moisture. Our data reveal that, despite significant population fluctuations driven by glacial-interglacial cycling, the species composition of the mammal fauna was essentially stable for 500 k.y. before the late Pleistocene extinctions. Larger species declined during a drier interval between 270 and 220 ka, likely reflecting range contractions away from Naracoorte, but they then recovered locally, persisting well into the late Pleistocene. Because the speleothem record and prior faunal response imply that local conditions should have been favorable for megafauna until at least 30 ka, climate change is unlikely to have been the principal cause of the extinctions.

  12. Pleistocene drainage incision in the upper Mississippi Valley Driftless Area

    SciTech Connect

    Knox, J.C.

    1985-01-01

    The deep dissection of the Wisconsin Driftless Area and topographically similar, but glaciated areas in adjacent states is generally acknowledged to have occurred during the Pleistocene, but the precise chronology has been poorly understood. The distribution of pre-Illinoian glacial outwash gravels on uplands and valley side benches near the Mississippi River, on the western margin of the Wisconsin Driftless Area, indicates that the major incision (50-60 m) of drainage had occurred during the very early Pleistocene. Deposits in cut-off valley meanders, a common feature in the lower reaches of Driftless Area rivers, provide a basis for relative dating of the valley incision. The cut-offs appear to have evolved episodically when, at various times during the Pleistocene, glacial debris blocked the drainages of the Mississippi and Wisconsin Rivers causing massive alluviation of side valley tributaries. A radiocarbon date of 21,910 +/- 350 year B.P., representing a buried soil horizon at 22 m depth and about 9 m above the bedrock floor of a cut-off valley meander and 18 m above the bedrock floor of the adjacent present-day valley, supports stratigraphic interpretations that suggest modest valley incision into bedrock probably occurred during the Illinoian and may have also occurred during the early Wisconsinan.

  13. Pleistocene Lake Bonneville and Eberswalde Crater of Mars: Quantitative Methods for Recognizing Poorly Developed Lacustrine Shorelines

    NASA Astrophysics Data System (ADS)

    Jewell, P. W.

    2014-12-01

    The ability to quantify shoreline features on Earth has been aided by advances in acquisition of high-resolution topography through laser imaging and photogrammetry. Well-defined and well-documented features such as the Bonneville, Provo, and Stansbury shorelines of Late Pleistocene Lake Bonneville are recognizable to the untrained eye and easily mappable on aerial photos. The continuity and correlation of lesser shorelines must rely quantitative algorithms for processing high-resolution data in order to gain widespread scientific acceptance. Using Savitsky-Golay filters and the geomorphic methods and criteria described by Hare et al. [2001], minor, transgressive, erosional shorelines of Lake Bonneville have been identified and correlated across the basin with varying degrees of statistical confidence. Results solve one of the key paradoxes of Lake Bonneville first described by G. K. Gilbert in the late 19th century and point the way for understanding climatically driven oscillations of the Last Glacial Maximum in the Great Basin of the United States. Similar techniques have been applied to the Eberswalde Crater area of Mars using HRiSE DEMs (1 m horizontal resolution) where a paleolake is hypothesized to have existed. Results illustrate the challenges of identifying shorelines where long term aeolian processes have degraded the shorelines and field validation is not possible. The work illustrates the promises and challenges of indentifying remnants of a global ocean elsewhere on the red planet.

  14. Damping of glacial-interglacial cycles from anthropogenic forcing

    NASA Astrophysics Data System (ADS)

    Haqq-Misra, Jacob

    2014-09-01

    Climate variability over the past million years shows a strong glacial-interglacial cycle of 100,000 years as a combined result of Milankovitch orbital forcing and climatic resonance. It has been suggested that anthropogenic contributions to radiative forcing may extend the length of the present interglacial, but the effects of anthropogenic forcing on the periodicity of glacial-interglacial cycles has received little attention. Here I demonstrate that moderate anthropogenic forcing can act to damp this 100,000 year cycle and reduce climate variability from orbital forcing. Future changes in solar insolation alone will continue to drive a 100,000 year climate cycle over the next million years, but the presence of anthropogenic warming can force the climate into an ice-free state that only weakly responds to orbital forcing. Sufficiently strong anthropogenic forcing that eliminates the glacial-interglacial cycle may serve as an indication of an epoch transition from the Pleistocene to the Anthropocene.

  15. Late Pleistocene vegetation of Kings Canyon, Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Cole, Kenneth

    1983-01-01

    Seven packrat midden samples make possible a comparison between the modern and late Pleistocene vegetation in Kings Canyon on the western side of the southern Sierra Nevada. One modern sample contains macrofossils and pollen derived from the present-day oak-chaparral vegetation. Macrofossils from the six late Pleistocene samples record a mixed coniferous forest dominated by the xerophytic conifers Juniperus occidentalis, Pinus cf. ponderosa, and P. monophylla. The pollen spectra of these Pleistocene middens are dominated by Pinus sp., Taxodiaceae-Cupressaceae-Taxaceae (TCT), and Artemisia sp. Mesophytic conifers are represented by low macrofossil concentrations. Sequoiadendron giganteum is represented by a few pollen grains in the full glacial. Edaphic control and snow dispersal are the most likely causes of these mixed assemblages. The dominant macrofossils record a more xeric plant community than those that now occur on similar substrates at higher elevations or latitudes in the Sierra Nevada. These assemblages suggest that late Wisconsin climates were cold with mean annual precipitation not necessarily greater than modern values. This conclusion supports a model of low summer ablation allowing for the persistence of the glaciers at higher elevations during the late Wisconsin. The records in these middens also suggest that S. giganteum grew at lower elevations along the western side of the range and that P. monophylla was more widely distributed in cismontane California during the Pleistocene.

  16. Global deep-sea extinctions during the Pleistocene ice ages

    NASA Astrophysics Data System (ADS)

    Hayward, Bruce W.

    2001-07-01

    The dark, near-freezing environment of the deep oceans is regarded as one of the most stable habitats on Earth, and this stability is generally reflected in the slow turnover rates (extinctions and appearances) of the organisms that live there. By far the best fossil record of deep-sea organisms is provided by the shells of benthic foraminifera (Protista). A little-known global extinction of deep-sea benthic foraminifera occurred during the Pleistocene ice ages. In the southwest Pacific, it caused the disappearance of at least two families, 15 genera, and 48 species (˜15% 25% of the fauna) of dominantly uniserial, elongate foraminifera with distinctive apertural modifications. These forms progressively died back and became extinct during glacial periods in the late Pliocene to middle Pleistocene (ca. 2.5 0.6 Ma); most extinctions occurred between 1.0 and 0.6 Ma, at the time of the middle Pleistocene climatic revolution. This first high-resolution study of this extinction event indicates that it was far more significant for deep-sea diversity loss than previously reported (10 species). The middle Pleistocene extinction was the most dramatic last phase of a worldwide decline in the abundance of these elongate forms, a phase that began during cooling near the Eocene-Oligocene boundary and continued during the middle Miocene. Clearly these taxa declined when the world cooled, but the reason is yet to be resolved.

  17. Quantifying Pleistocene relief evolution from low-temperature thermochronometry and numerical modelling, Western European Alps

    NASA Astrophysics Data System (ADS)

    Valla, P. G.; Van Der Beek, P.; Shuster, D. L.; Braun, J.; Herman, F.

    2011-12-01

    Evaluating the net effect of late-Cenozoic climate change on mountain belt exhumation and topography development requires suitable tools that provide observational constraints over ~1 km and ~1 Ma scales. Low-temperature thermochronometric tools have brought strong evidence for alpine landscape evolution in response to late Neogene climate change and particularly to the onset of Pliocene/Pleistocene glaciations; however timing and magnitude of geomorphic processes response remain potentially elusive using traditional thermochronology. Here, we use apatite (U-Th-Sm)/He and 4He/3He thermochronometry data collected along two elevation transects in the Swiss European Alps (Valais area) to provide quantitative constraints on both the late-Neogene exhumation and the pre-Pleistocene topography of the upper Rhône catchment. The Rhône valley is a major glacial valley of the Western European Alps with ~1.5-3 km present-day relief; however, there has been no clear quantification of the Pleistocene glacial impact on valley incision and relief development in this area. Apatite (U-Th-Sm)/He data, combined with 4He/3He data from a subset of key samples, are first interpreted in terms of possible thermal histories, which are then compared to exhumation and relief scenarios using the 3D thermo-kinematic model Pecube. Thermal modelling results strongly suggest a rapid late-Neogene exhumation in this area, as well as a late-stage exhumation episode that is associated with ~1-1.5 km of valley deepening over the last ~1 Ma. We then use the 4He/3He-deduced local constraints to reconstruct the "pre-glacial" longitudinal profile of the Rhône valley, and show that the net effect of Pleistocene glaciations has been to both deepen and steepen the Rhône valley, leading to strong local relief increase. Using numerical modelling, we extrapolate the pre-glacial Rhône profile to the entire catchment and provide a synthetic topography of the area to derive topographic metrics characteristic of the "pre-glacial" landscape. Comparing the pre-glacial to present-day topographies reveals that Pleistocene glaciations, while producing a net decrease in the mean topographic elevation, have not significantly modified mean relief at the drainage-basin scale. This thermochronometry-deduced evidence of recent Alpine landscape evolution, as well as our synthetic pre-glacial topographic reconstruction, may be compared to model outputs to further improve numerical predictions of glacial and fluvial erosion processes in shaping alpine landscapes.

  18. Glacial interglacial cycles and development of the Afroalpine ecosystem on East African Mountains II. Origins and development of the biotic component

    NASA Astrophysics Data System (ADS)

    Harmsen, R.; Spence, J. R.; Mahaney, W. C.

    The development of the Afroalpine ecosystem as found on a number of isolated mountains in East Africa has a physical component and a biological component which is to a large degree dependent on the physical environment. The origins of the Afroalpine biota are predominantly African-tropical or Palearctic with smaller contributions from South Africa and other more distant sources. Once the ecosystem was established, dispersal from one mountain to others became a main source of increasing complexity. Ecological succession and evolutionary development from simple random assemblages of early invading species on unmodified substrates to complex interactive communities forming a closely integrated biosphere would have been the next stage in the development of the Afroalpine ecosystem. However, glacial interglacial cycles throughout the Pleistocene may have seriously curtailed this process. Detailed on early succession on Neoglacial tills on Mount Kenya supply a reasonable model for the larger scale recolonization of the upper reaches of the mountain following each glacial, and palynological evidence supplies a fairly accurate picture of the lower altitude glacial Afroalpine communities. Yet, our knowledge of the structure of the Afroalpine ecosystem during past glacials and interglacials is far too sketchy to be able to say how severe the effects of the climatic oscillations were on the development and maintenance of the Afroalpine ecosystem. Current conditions indicate a long history (c 2-3 mil yrs) of adaptation to above tree-line conditions for some organisms, but the entire ecosystem is still very young and will probably never be able to reach a successional or evolutionary equilibrium in the unstable climatic conditions of the Afroalpine environment.

  19. Phylogeographic heterogeneity of the brown macroalga Sargassum horneri (Fucaceae) in the northwestern Pacific in relation to late Pleistocene glaciation and tectonic configurations.

    PubMed

    Hu, Zi-Min; Uwai, Shinya; Yu, Shen-Hui; Komatsu, Teruhisa; Ajisaka, Tetsuro; Duan, De-Lin

    2011-09-01

    Pleistocene glacial oscillations and associated tectonic processes are believed to have influenced the historical abundances and distribution of organisms in the Asia Northwest Pacific (ANP). Accumulating evidence indicates that factors shaping tempospatial population dynamics and distribution patterns of marine taxa vary with biogeographical latitude, pelagic behaviour and oceanographic regimes. To detect what kinds of historical and contemporary factors affected genetic connectivity, phylogeographic profiles of littoral macroalga Sargassum horneri in the ANP were analysed based on mitochondrial (Cox3) and chloroplast (rbcL) data sets. Five distinct clades were recovered. A strong signature of biogeographical structure was revealed (Φ(CT) = 0.487, P < 0.0001) derived from remarkable differentiation in clade distribution, as clade I is restricted to Chinese marginal seas (Yellow-Bohai Sea, East China Sea and South China Sea), whereas clades II-V are discontinuously scattered around the main Islands of Japan. Furthermore, two secondary contact regions were identified along the south Japan-Pacific coastline. This significant differentiation between the two basins may reflect historical glacial isolation in the northwestern Pacific, which is congruent with the estimates of clade divergence and demographic expansion during the late Quaternary low sea levels. Analysis of molecular variance and the population-pair statistic F(ST) also revealed significant genetic structural differences between Chinese marginal seas and the Japanese basin. This exceptional phylogeographic architecture in S. horneri, initially shaped by historical geographic isolation during the late Pleistocene ice age and physical biogeographical barriers, can be complicated by oceanographic regimes (ocean surface currents) and relocating behaviour such as oceanic drifting. PMID:21851438

  20. Subsurface warming in the subpolar North Atlantic during rapid climate events in the Early and Mid-Pleistocene

    NASA Astrophysics Data System (ADS)

    Hernández-Almeida, Iván; Sierro, Francisco; Cacho, Isabel; Abel Flores, José

    2014-05-01

    A new high-resolution reconstruction of the temperature and salinity of the subsurface waters using paired Mg/Ca-δ18O measurements on the planktonic foraminifera Neogloboquadrina pachyderma sinistrorsa (sin.) was conducted on a deep-sea sediment core in the subpolar North Atlantic (Site U1314). This study aims to reconstruct millennial-scale subsurface hydrography variations during the Early and Mid-Pleistocene (MIS 31-19). These rapid climate events are characterized by abrupt shifts between warm/cold conditions, and ice-sheet oscillations, as evidenced by major ice rafting events recorded in the North Atlantic sediments (Hernández-Almeida et al., 2012), similar to those found during the Last Glacial period (Marcott et al, 2011). The Mg/Ca derived paleotemperature and salinity oscillations prior and during IRD discharges at Site U1314 are related to changes in intermediate circulation. The increases in Mg/Ca paleotemperatures and salinities during the IRD event are preceded by short episodes of cooling and freshening of subsurface waters. The response of the AMOC to this perturbation is an increased of warm and salty water coming from the south, transported to high latitudes in the North Atlantic beneath the thermocline. This process is accompanied by a southward shift in the convection cell from the Nordic Seas to the subpolar North Atlantic and better ventilation of the North Atlantic at mid-depths. Poleward transport of warm and salty subsurface subtropical waters causes intense basal melting and thinning of marine ice-shelves, that culminates in large-scale instability of the ice sheets, retreat of the grounding line and iceberg discharge. The mechanism proposed involves the coupling of the AMOC with ice-sheet dynamics, and would explain the presence of these fluctuations before the establishment of high-amplitude 100-kyr glacial cycles. Hernández-Almeida, I., Sierro, F.J., Cacho, I., Flores, J.A., 2012. Impact of suborbital climate changes in the North Atlantic on ice sheet dynamics at the Mid-Pleistocene Transition. Paleoceanography 27, PA3214. Marcott, S.A., Clark, P.U., Padman, L., Klinkhammer, G.P., Springer, S.R., Liu, Z., Otto-Bliesner, B.L., Carlson, A.E., Ungerer, A., Padman, J., He, F., Cheng, J., Schmittner, A., 2011. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proceedings of the National Academy of Sciences 108, 13415-13419

  1. Testing hypotheses of Pleistocene population history using coalescent simulations: phylogeography of the pygmy nuthatch (Sitta pygmaea)

    PubMed Central

    Spellman, Garth M; Klicka, John

    2006-01-01

    In this paper, we use mitochondrial NADH dehydrogenase subunit 2 sequences to test Pleistocene refugial hypotheses for the pygmy nuthatch (Sitta pygmaea). Pygmy nuthatches are a common resident of long-needle pine forests in western North America and demonstrate a particular affinity with ponderosa pine (Pinus ponderosa). Palaeoecological and genetic data indicate that ponderosa pine was isolated in two Pleistocene refugia corresponding to areas in the southern Sierra Nevada in the west and southern Arizona and New Mexico in the east. We use coalescent simulations to test the hypothesis that pygmy nuthatches tracked the Pleistocene history of their preferred habitat and persisted in two refugia during the periods of glacial maxima. Coalescent simulation of population history does not support the hypothesis of two Pleistocene refugia for the pygmy nuthatch. Instead, our data are consistent with a single refuge model. Nucleotide diversity is greatest in the western populations of southern and coastal California. We suggest that the pygmy nuthatch expanded from a far western glacial refuge into its current distribution since the most recent glacial maximum. PMID:17015345

  2. The role of meltwater in glacial processes

    NASA Astrophysics Data System (ADS)

    Eyles, Nick

    2006-08-01

    Water plays a dominant role in many glacial processes and the erosional, depositional and climatic significance of meltwaters and associated fluvioglacial processes cannot be overemphasized. At its maximum extent c. 20,000 years ago, the volume of the Laurentide ice sheet was 33 × 10 6 km 3 (about the same as the volume of all ice present today on planet Earth). The bulk of this was released as water in little more than 10,000 years. Pulses of meltwater flowing to the Atlantic Ocean from large ice dammed lakes altered thermohaline circulation of the world's oceans and global climate. One such discharge event via Hudson Bay at 8200 years BP released 160,000 km 3 of water in 12 months. Global sea levels recovered from glacial maximum low stands reached at about 20,000 years ago at an average rate of 15 m per thousand years but estimates of shorter term rates suggest as much as 20 m sea level rise in 1000 years and for short periods, rates as high as 4 m per hundred years. Meltwaters played a key role in lubricating ice sheet motion (and thus areal abrasion) across the inner portions of the ice sheet where it slid over rigid crystalline bedrock of the Canadian Shield. The recharge of meltwater into the ice sheets bed was instrumental in generating poorly sorted diamict sediments (till) by sliding-induced shearing and deformation of overpressured sediment and soft rock. The transformation of overpressured till into hyperconcentrated slurries in subglacial channels may have generated a highly effective erosional tool for selective overdeepening and sculpting of bedrock substrates. Some workers credit catastrophic subglacial 'megafloods' with the formation of drumlins and flutes on till surfaces. Subglacial melt river systems were instrumental in reworking large volumes of glaciclastic sediment to marine basins; it has been estimated that less than 6% of the total volume of glaciclastic sediment produced during the Pleistocene remains on land. Fluvioglacial and glaciolacustrine sediments and landforms dominate large tracts of the 'glacial' landscape in North America. The recharge of subglacial meltwater into underlying bedrock and sediment aquifers created transient reversals in the long-term equilibrium flow directions of basinal fluids. With regard to pre-Pleistocene glacial record, meltwaters moved enormous volumes of terrestrial 'glaciclastic' sediment to marine basins and thus played a key role in preserving a record of glaciation, a record otherwise almost entirely lost on land.

  3. New exposure ages for the Last Glacial Cycle in the Sanabria Lake region (northwestern Spain)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rodríguez, Laura; Jiménez-Sánchez, Montserrat; Domínguez-Cuesta, María Jose; Rinterknecht, Vincent; Pallàs, Raimon; Braucher, Régis; Bourlès, Didier; Valero-Garcés, Blas

    2013-04-01

    The Sanabria Lake region is located in the Trevinca Massif, a mid-latitude mountain area up to 2128 m asl in the northwest corner of the Iberian Peninsula (42oN 6oW). An ice cap glaciation took place during the Last Glacial Cycle in this massif, with an equilibrium line altitude of 1687 m for the Tera glacial outlet at its local maximum (Cowton et al., 2009). A well preserved glacial sequence occurs on an area of 45 km2 around the present Sanabria Lake (1000 m asl) and is composed by lateral and end moraines in close relationship with glaciolacustrine deposits. This sequence shows the ice snout oscillations of the former Tera glacier during the Last Glacial Cycle and offers a good opportunity to compare radiocarbon and OSL- based chronological models with new cosmogenic isotope dates. The new dataset of 10Be exposure ages presented here for the Sanabria Lake moraines is based on measurements conducted on 23 boulders and is compared with previous radiocarbon and OSL data conducted on ice related deposits (Pérez-Alberti et al., 2011; Rodríguez-Rodríguez et al., 2011). Our results are coherent with the available deglaciation radiocarbon chronology, and support a last deglaciation origin for the whole set of end moraines that are downstream the Sanabria Lake (19.2 - 15.7 10Be ka). Discrepancies between results of the different dating methods concern the timing of the local glacial maximum, with the cosmogenic exposure method always yielding the youngest minimum ages. As proposed to explain similar observations made elsewhere (Palacios et al., 2012), reconciling the ages from different dating methods would imply the occurrence of two glacial advances close enough in extent to generate an overlapping polygenic moraine. Cowton, T., Hughes, P.D., Gibbard, P.L., 2009. Palaeoglaciation of Parque Natural Lago de Sanabria, northwest Spain. Geomorphology 108, 282-291. Rodríguez-Rodríguez, L., Jiménez-Sánchez, M., Domínguez-Cuesta, M.J., Rico, M.T., Valero-Garcés, B., 2011. Last deglaciation in northwestern Spain: New chronological and geomorphologic evidence from the Sanabria region. Geomorphology 135, 48-65. Palacios, D., Andrés, N., Úbeda, J., Alcalá, J., Marcos, J., Vázquez-Selem, L., 2012. The importance of poligenic moraines in the paleoclimatic interpretation from cosmogenic dating. Geophysical Research Abstracts 14, EGU2012-3759-1. Pérez-Alberti, A., Valcárcel-Díaz, M., Martini, I.P., Pascucci, V., Andrucci, S., 2011. Upper Pleistocene glacial valley-junction sediments at Pias, Trevinca Mountains, NW Spain. In: Martini, I.P., French, H.M., Pérez-Alberti, A. (Eds.), Ice-Marginal and Periglacial Processes and Sediments. Geological Society (London) Special Publication 354, pp. 93-110. Research funded by the projects LIMNOCLIBER (REN2003-09130-C02-02), IBERLIMNO (CGL2005-20236-E/CLI), LIMNOCAL (CGL2006-13327-C04-01) and GRACCIE (CSD2007-00067) of the Spanish Inter-Ministry Commission of Science and Technology (CICYT). Additional funding was provided by the Fundación Patrimonio Natural de Castilla y León through the project "La investigacion en el Lago de Sanabria dentro del proyecto CALIBRE: perspectivas y posibilidades", and by the projects Consolider Ingenio 2006 (CSD2006-0041, Topo-Iberia), 2003 PIRA 00256, HF02.4, and RISKNAT (2009SGR520). L. Rodríguez-Rodríguez has developed her research under a Severo Ochoa Programme fellowship (FICYT- Asturias).

  4. Interior hydrography and circulation of the glacial Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Matsumoto, Katsumi; Oba, Tadamichi; Lynch-Stieglitz, Jean; Yamamoto, Hirofumi

    2002-08-01

    The deep water of the Pacific Ocean is a key component of the global climate system on the time scale of late-Pleistocene glaciation and deglaciation. Despite its importance, the deep Pacific during the last glacial maximum has received relatively little attention compared to the deep Atlantic, in part, because the Pacific poorly preserves carbonate sediments on the sea floor. Here, we review the current state of knowledge of the deep hydrography and circulation of the glacial Pacific by examining available nutrient-proxy data, including some new δ 13C and δ 18O data measured on benthic foraminifera Planulina wuellerstorfi from the vicinity of Japan. Available benthic δ 13C and δ 18O and radiocarbon data from the Pacific support the presence of a deep hydrographic boundary at around 2000 m during the Last Glacial Maximum (Paleoceanography 3 (1988) 343; Paleoceanography 7 (1992) 273; Paleoceanography 13(4) (1998) 323). The deep hydrographic divide in the glacial Pacific is similar to what is inferred in the Atlantic (Quaternary Research 18 (1982) 218; Paleoceanography 3 (1988) 317; Paleoceanography 3 (1988) 343; Annual Reviews of Earth Planetary Sciences 20 (1992) 245; Science 259 (1993) 1148), the Indian (Nature 333 (1988) 651; Paleoceanography 13 (1998) 20), and the Southern Ocean (Paleoceanography 11 (1996) 191), suggesting that this is a global phenomenon during the glacial time. The upper water mass has a distinctly enriched δ 13C compared to the deeper water mass, whose possible origins are discussed.

  5. Terrestrial cosmogenic nuclide surface exposure dating of the oldest glacial successions in the Himalayan orogen: Ladakh Range, northern India

    USGS Publications Warehouse

    Owen, L.A.; Caffee, M.W.; Bovard, K.R.; Finkel, R.C.; Sharma, M.C.

    2006-01-01

    Terrestrial cosmogenic nuclide surface exposure dating of moraine boulders and alluvial fan sediments define the timing of five glacial advances over at least the last five glacial cycles in the Ladakh Range of the Transhimalaya. The glacial stages that have been identified are: the Indus Valley glacial stage, dated at older than 430 ka; the Leh glacial stage occurring in the penultimate glacial cycle or older; the Karglacial stage, occurring during the early part of the last glacial cycle; the Bazgo glacial stage, at its maximum during the middle of the last glacial cycle; and the early Holocene Khalling glacial stage. The exposure ages of the Indus Valley moraines are the oldest observed to date throughout the Himalayan orogen. We observe a pattern of progressively more restricted glaciation during the last five glacial cycles, likely indicating a progressive reduction in the moisture supply necessary to sustain glaciation. A possible explanation is that uplift of Himalayan ranges to the south and/or of the Karakoram Mountains to the west of the region may have effectively blocked moisture supply by the south Asian summer monsoon and mid-latitude westerlies, respectively. Alternatively, this pattern of glaciation may reflect a trend of progressively less extensive glaciation in mountain regions that has been observed globally throughout the Pleistocene. ?? 2006 Geological Society of America.

  6. Glacial landscape evolution and sediment export: insights from digital topographic analyses and numerical modelling (Invited)

    NASA Astrophysics Data System (ADS)

    Brocklehurst, S. H.; MacGregor, K. R.

    2013-12-01

    Sediment accumulation rates in the Gulf of Alaska and low-temperature thermochronology from the European Alps, amongst other lines of evidence, indicate accelerated glacial incision and sediment export associated with the Middle Pleistocene Transition (MPT), ~1 Ma. At this time, the change from symmetrical 40-kyr temperature cycles to larger amplitude, asymmetric 100-kyr cycles would have allowed larger, longer lived glaciers to develop, which is inferred as a key contributor to accelerated glacial erosion. Digital topographic analyses comparing glaciated drainage basins of different sizes in the Southern Alps, New Zealand, and Teton Range, western US, amongst others, indicate the importance of scale in glacial landscape development. In smaller drainage basins, or those at the limit of glaciation, landscape modification is primarily restricted to carving characteristic cirques at the heads of valleys. Glaciers may have occasionally spilled from these to carve U-shaped cross-sections downvalley, but without substantial vertical incision. In larger drainage basins with a longer history of glacial occupation, glacial incision has produced shallower downvalley profiles with characteristic glacial steps, presumably accompanied by greater sediment export. A numerical glacial longitudinal profile evolution model, driven by temperature cycles representing either side of the MPT, is used to compare glacial erosion and sediment export from initial Pleistocene glaciations with post-MPT behaviour. The modelled landscape response to the MPT is strongly dependent on the tectonic setting and the behaviour of the fluvial system downstream of the glacier. With no imposed tectonic rock uplift, the major change in the landscape is the carving of cirque forms and glacial longitudinal profiles at the start of the Pleistocene; the MPT would have had little impact on landscape morphology or sediment export. Imposing tectonic as well as isostatic rock uplift, alongside inefficient fluvial transport and erosion downstream of the glacier, the MPT causes more substantial erosion and sediment production than initial glaciation. However, if fluvial processes downstream of the glacier can keep pace with the imposed uplift, the impact of the MPT is dramatically reduced; once again, the major landscape modification is at the onset of glaciation. As such, the history of glacial sediment export during the Pleistocene is a function of drainage basin scale, tectonic setting, and fluvial behaviour downstream of glaciers.

  7. Glacial modification of granite tors in the Cairngorms, Scotland

    USGS Publications Warehouse

    Hall, A.M.; Phillips, W.M.

    2006-01-01

    A range of evidence indicates that many granite tors in the Cairngorms have been modified by the flow of glacier ice during the Pleistocene. Comparisons with SW England and the use of a space-time transformation across 38 tor groups in the Cairngorms allow a model to be developed for progressive glacial modification. Tors with deeply etched surfaces and no, or limited, block removal imply an absence of significant glacial modification. The removal of superstructure and blocks, locally forming boulder trains, and the progressive reduction of tors to stumps and basal slabs represent the more advanced stages of modification. Recognition of some slabs as tor stumps from which glacial erosion has removed all superstructure allows the original distribution of tors to be reconstructed for large areas of the Cairngorms. Unmodified tors require covers of non-erosive, cold-based ice during all of the cold stages of the Middle and Late Pleistocene. Deformation beneath cold-based glacier ice is capable of the removal of blocks but advanced glacial modification requires former wet-based glacier ice. The depth of glacial erosion at former tor sites remains limited largely to the partial or total elimination of the upstanding tor form. Cosmogenic nuclide exposure ages (Phillips et al., 2006) together with data from weathering pit depths (Hall and Phillips, 2006), from the surfaces of tors and large erratic blocks require that the glacial entrainment of blocks from tors occurred in Marine Isotope Stages (MIS) 4-2, 6 and, probably, at least one earlier phase. The occurrence of glacially modified tors on or close to, the main summits of the Cairngorms requires full ice cover over the mountains during these Stages. Evidence from the Cairngorms indicates that tor morphology can be regarded as an important indicator of former ice cover in many formerly glaciated areas, particularly where other evidence of ice cover is sparse. Recognition of the glacial modification of tors is important for debates about the former existence of nunataks and refugia. Copyright ?? 2006 John Wiley & Sons, Ltd.

  8. Vegetation context and climatic limits of the Early Pleistocene hominin dispersal in Europe

    NASA Astrophysics Data System (ADS)

    Leroy, S. A. G.; Arpe, K.; Mikolajewicz, U.

    2011-06-01

    The vegetation and the climatic context in which the first hominins entered and dispersed in Europe during the Early Pleistocene are reconstructed, using literature review and a new climatic simulation. Both in situ fauna and in situ pollen at the twelve early hominin sites under consideration indicate the occurrence of open landscapes: grasslands or forested steppes. The presence of ancient hominins ( Homo of the erectus group) in Europe is only possible at the transition from glacial to interglacial periods, the full glacial being too cold for them and the transition interglacial to glacial too forested. Glacial-interglacial cycles forced by obliquity showed paralleled vegetation successions, which repeated c. 42 times during the course of the Early Pleistocene (2.58-0.78 Ma), providing 42 narrow windows of opportunity for hominins to disperse into Europe. The climatic conditions of this Early Pleistocene vegetation at glacial-interglacial transitions are compared with a climatic simulation for 9 ka ago without ice sheet, as this time period is so far the best analogue available. The climate at the beginning of the present interglacial displayed a stronger seasonality than now. Forest cover would not have been hampered though, clearly indicating that other factors linked to refugial location and soils leave this period relatively free of forests. Similar situations with an offset between climate and vegetation at the beginning of interglacials repeated themselves throughout the Quaternary and benefitted the early hominins when colonising Europe. The duration of this open phase of vegetation at the glacial-interglacial transition was long enough to allow colonisation from the Levant to the Atlantic. The twelve sites fall within rather narrow ranges of summer precipitation and temperature of the coldest month, suggesting the hominins had only a very low tolerance to climate variability.

  9. A first 10Be cosmogenic glacial chronology from the High Atlas, Morocco, during the last glacial cycle.

    NASA Astrophysics Data System (ADS)

    Fink, David; Hughes, Philip; Fenton, Cassie

    2014-05-01

    Glacial geomorphological mapping, 10Be cosmogenic exposure ages of 21 erratics from cirque-valley systems and paleo-glacier climate modelling in the High Atlas Mountains, Morocco (31.1° N, 7.9° W), provides new and novel insights as to the history and evolution of the largest desert region on Earth. The Atlas Mountains display evidence of extensive and multiple Late Pleistocene glaciations whose extent is significantly larger than that recognised by previous workers. The largest glaciers formed in the Toubkal massif where we find 3 distinct phases of glacial advances within the last glacial cycle. The oldest moraines occurring at the lowest elevations have yielded eight 10Be ages ranging from 30 to 88 ka. Six of eight samples from moraines at intermediate elevations gave ages of 19 to 25 ka (2 outliers) which correlates well with the global Last Glacial Maximum (ca. 26-21 ka) and the last termination during marine isotope stage 2. Five erratics from the youngest and most elevated moraines yielded a suite of normally distributed exposure ages from 11 to 13 ka which supports a correlation with the northern hemisphere Younger Dryas (12.9-11.7 ka). The glacial record of the High Atlas effectively reflects moisture supply to the north-western Sahara Desert and can provide an indication of shifts between arid and pluvial conditions. The plaeo equilibrium line altitudes (ELA) of these three glacier phases was more than 1000 m lower than the predicted ELA based on today's temperatures. Glacier-climate modelling indicates that for each of these glacier phases climate was not only significantly cooler than today, but also much wetter. The new evidence on the extent, timing and palaeoclimatic significance of glaciations in this region has major implications for understanding moisture transfer between the North Atlantic Ocean and the Sahara Desert during Pleistocene cold stages.

  10. Aspects of conducting site investigations in glacial terrain

    SciTech Connect

    Schilling, K.E. )

    1993-03-01

    Much of northern US is mantled by Pleistocene glacial drift consisting of heterogeneous deposits of fine to coarse-textured sediments. Hazardous waste site investigations in glacial settings can often present unique design and implementation considerations. Complex glacial stratigraphy encountered during drilling activities demands flexibility built into work plans to allow for field decisions based on field conditions. Continuous cores should be collected from boreholes on a routine basis for stratigraphic purposes with particular importance assigned to field identification of relative permeabilities of stratigraphic units. Selection of appropriate field screening methodology should be based on site conditions. Utilization of open borehole groundwater sampling is recommended for fine-textured glacial settings where soil gas and well point sampling are ineffective. Installation of boreholes allows for collection of stratigraphic information and enables more surface area exposed beneath the water table for groundwater recharge and sampling. Water level determinations can be made on open boreholes for an initial assessment of the horizontal direction of groundwater flow. Placement of screens for monitoring wells should be based on field determination of likely groundwater flow paths. Nested wells are necessary to define the vertical groundwater flow system at most sites. Evaluation of the vertical flow system can often dominate site investigations in fine-textured glacial terrain. Two case studies from Iowa illustrate the usefulness of incorporating the above considerations in planning and implementing in fine-textured glacial sediments. Field investigations utilizing open borehole groundwater sampling successfully delineated site glacial geology and hydrogeology for determination of the nature and extent of groundwater contamination and better located the horizontal and vertical placement of monitoring wells.

  11. Mid-Pleistocene Orbital and Millennial Scale Climate Change in a 200 ky lacustrine sediment core from SW North America

    NASA Astrophysics Data System (ADS)

    Fawcett, P. J.; Werne, J. P.; Anderson, R. S.; Heikoop, J. M.; Brown, E. T.; Berke, M. A.; Smith, S.; Goff, F. E.; Hurley, L. L.; Cisneros Dozal, L. M.; Schouten, S.; Sinninghe Damsté, J. S.; Huang, Y.; Toney, J. L.; Fessenden, J. E.; Woldegabriel, G. W.; Geissman, J. W.; Allen, C. D.

    2009-12-01

    How anthropogenic climate change will affect hydroclimate of the arid regions of SW North America over the next century is a concern. Model projections suggest permanent “dust bowl-like” conditions; however, any anthropogenic change will be superimposed on long-term natural climate variability. We use the paleoclimatic record from an 82-m deep lacustrine sediment core (VC-3) from the Valles Caldera, New Mexico to examine continental climate variations spanning two glacial cycles through the middle Pleistocene from MIS 14 to MIS 10 (552 ka to ~360 ka). Both orbital and millennial-scale variations are evident in multiple proxies, and a strong relationship occurs between the warmest temperatures in the record and periods of extended aridity. We suggest that these periods of aridity are characterized by decreased winter as well as summer precipitation amounts. A new group of organic geochemical proxies (MBT and CBT) allow us to reconstruct the annual mean air temperature (MAT) of the Valles Caldera watershed as well as the watershed soil pH down the length of the core. We compare these proxies to climatically sensitive pollen taxa and other core properties. The MAT record of VC-3 shows considerable glacial-interglacial variation and significant variability within individual glacial and interglacial periods. The warmest interglacial MATs (5 to 7°C) compare favorably with modern MATs of ~5°C in the Valle Grande. MIS 11 has three warm substages, based on MAT estimates (2°C warmer than the cool substages), warm (Juniperus, Quercus, Rosaceae) vs. cool (Abies, Picea, Artemisia) pollen taxa and variation in aquatic productivity proxies (TOC, Si:Ti). The three warm substages of MIS 11 appear to correspond to the three precessional peaks that occur during this interval. Glacial MATs range from -5 to +2°C, with multiple millennial-scale temperature oscillations evident. Several of the interstadials show a distinct pattern of relatively slower temperature increases and progressive declines in cold boreal taxa pollen percentages (Picea, Abies), while others are characterized by abrupt warmings and decreases in boreal taxa pollen. Maximum interstadial temperatures are followed by abrupt coolings of as much as 6 to 7°C, and rapid increases in Picea and Abies pollen. These results show that the continental climate of SW North America had a strong response to millennial-scale climate change as well as to orbital forcing, even during a time of muted precessional cycles (MIS 11).

  12. How long do U-shaped valleys last? The lifespan of glacial topography set by tectonics.

    NASA Astrophysics Data System (ADS)

    Prasicek, Günther; Larsen, Isaac; Montgomery, David

    2015-04-01

    More than 10 kyr after the last major glaciation the topography of mountain ranges world-wide remains dominated by characteristic glacial landforms such as U-shaped valleys, but the transition from a glacial to a fluvial landscape is poorly constrained and it remains unclear how long glacial morphology persists following deglaciation. The longevity of glacial topography influences glacial extent and erosion in subsequent glaciations and hence the cumulative impact of Pleistocene glacial cycles on the evolution of mountain ranges. We tested whether tectonic forcing and erosional response control the timescale over which glacial topography persists into inter-glacial periods in the western Southern Alps of New Zealand and other mountain ranges worldwide, including the syntaxes of the Himalaya and Taiwan. We quantified the degree of glacial imprint by exploiting the conventional interpretation of V-shaped fluvial and U-shaped glacial valleys. Valley cross sections were automatically extracted from digital terrain models and power-laws were fitted to each cross section to quantify the shape of the valley flanks. A power-law exponent of 1 characterizes the straight valley flanks of a V-shaped cross section and greater exponents are indicative of progressively more U-shaped valleys. Our results show that tectonic forcing is a first-order control on landscape evolution and on the persistence of glacial morphology worldwide. In Earth's most rapidly uplifting mountain ranges the lifespan of glacial topography is on the order of one interglacial period, preventing the development of a cumulative glacial signal. In contrast, in most alpine landscapes more than 100 kyr are required for the transformation from glacial back to fluvial topography and glacial landforms have not or have only partially been erased during the current interglacial. Thus we suggest, emphasizing the influence of glacially preconditioned topography on glacial extent and erosion, that tectonic forcing governs the impact of climate depressions on active orogens beyond controlling their vertical extent, by also altering the spatial and temporal pattern of erosion during subsequent glacial periods via a link between rock uplift and valley cross-sectional shape.

  13. Glacial integrative modelling.

    PubMed

    Ganopolski, Andrey

    2003-09-15

    Understanding the mechanisms of past climate changes requires modelling of the complex interaction between all major components of the Earth system: atmosphere, ocean, cryosphere, lithosphere and biosphere. This paper reviews attempts at such an integrative approach to modelling climate changes during the glacial age. In particular, the roles of different factors in shaping glacial climate are compared based on the results of simulations with an Earth-system model of intermediate complexity, CLIMBER-2. It is shown that ice sheets, changes in atmospheric compositions, vegetation cover, and reorganization of the ocean thermohaline circulation play important roles in glacial climate changes. Another example of this approach is the modelling of two major types of abrupt glacial climate changes: Dansgaard-Oeschger and Heinrich events. Our results corroborate some of the early proposed mechanisms, which relate abrupt climate changes to the internal instability of the ocean thermohaline circulation and ice sheets. At the same time, it is shown that realistic representation of the temporal evolution of the palaeoclimatic background is crucial to simulate observed features of the glacial abrupt climate changes. PMID:14558899

  14. Millennial variability and orbital influence on the last glacial inception

    NASA Astrophysics Data System (ADS)

    McManus, J. F.; Raynaud, D.; Tzedakis, P. C.; Landais, A.; Mokeddem, Z.; Oppo, D.; Pages Working Group On Past Interglacials

    2011-12-01

    The glacial inception that followed the prominent global warmth of marine isotope substage 5e (MIS 5e) marks the most recent transition from peak interglacial to glacial climate on Earth. It also followed the last interglacial interval to run its entire natural course, and the only such example of glacial onset for which quality paleoclimate records exist in ice cores, deep-sea sediment cores, and terrestrial sequences in both northern and southern hemispheres. We have combined the evidence from these climatic archives along with absolute dated records from corals and speleothems to assess the sequence and timing of events associated with the last glacial inception. This sequence includes a series of millennial oscillations of increasing magnitude within MIS 5e at high northern latitudes, and a subsequent cascade of events globally that implicate the oceanic and atmospheric circulation as well as the hydrological cycle in abrupt changes associated with the relatively slow decline in northern summer insolation. During the course of this transition, a threshold appears to have been crossed, possibly in the extent or location of incipient continental ice, triggering the dramatic millennial climate instability and bipolar pattern that characterized most of the ensuing 100,000 years until the completion of the last deglaciation. As during deglaciation, atmospheric greenhouse gas concentrations do not appear to have triggered the glacial inception, but rather served as a feedback mechanism that helped set the baseline conditions and the transition to a new glacial state, culminating eventually in the last glacial maximum.

  15. The fluvial system response to abrupt climate change during the last cold stage: the Upper Pleistocene River Thames fluvial succession at Ashton Keynes, UK

    NASA Astrophysics Data System (ADS)

    Lewis, S. G.; Maddy, D.; Scaife, R. G.

    2001-02-01

    The last interglacial-glacial cycle (125-10 ka BP) is characterised by numerous rapid shifts in global climate on sub-Milankovitch timescales, recorded in the ocean and ice core records. These climatic fluctuations are clearly recorded in those European terrestrial sedimentary sequences that span this time period without interruption. In the UK, only fragmentary Upper Pleistocene sequences exist, mainly within the fluvial archive of the major river systems such as the Thames. The response of the upper River Thames to abrupt fluctuations in climate is documented in the fluvial sediments beneath the Floodplain Terrace (Northmoor Member of the Upper Thames Formation) at Ashton Keynes, Wiltshire. A number of criteria are set out by which significant changes in the fluvial system may be established from the sedimentological, palaeoecological and geochronological information contained within the succession. The sedimentary succession is divisible into four facies associations, on the basis of their sedimentology and bounding surface characteristics. These represent distinct phases of fluvial activity at the site and allow changes in fluvial style to be inferred. Palaeoecological reconstructions from pollen analysis of peats within the sequence provides an indication of the nature and direction of Late Glacial environmental change and optically stimulated luminescence and radiocarbon dating methods provide chronological control on the sequence. These data suggest that major changes in fluvial style are recorded within the succession, which can be related to the climatic fluctuations that took place on the oxygen isotope stage 5a/4 transition (approximately 70 ka BP) and the Devensian Late Glacial climatic warm-cold-warm oscillation (13-11 ka BP). The changes in fluvial style are a result of variations in sediment supply to the river resulting from changes in slope stability, vegetation cover and cold-climate mass movement processes and variations in discharge regime caused by changes in precipitation patterns, snow cover, permafrost distribution and vegetation cover.

  16. Repeated Pleistocene glaciation of the East Siberian continental margin

    NASA Astrophysics Data System (ADS)

    Niessen, Frank; Hong, Jong Kuk; Hegewald, Anne; Matthiessen, Jens; Stein, Rüdiger; Kim, Hyoungjun; Kim, Sookwan; Jensen, Laura; Jokat, Wilfried; Nam, Seung-Il; Kang, Sung-Ho

    2013-10-01

    During the Pleistocene glaciations, Arctic ice sheets on western Eurasia, Greenland and North America terminated at their continental margins. In contrast, the exposed continental shelves in the Beringian region of Siberia are thought to have been covered by a tundra landscape. Evidence of grounded ice on seafloor ridges and plateaux off the coast of the Beringian margin, at depths of up to 1,000m, have generally been attributed to ice shelves or giant icebergs that spread oceanwards during glacial maxima. Here we identify marine glaciogenic landforms visible in seismic profiles and detailed bathymetric maps along the East Siberian continental margin. We interpret these features, which occur in present water depths of up to 1,200m, as traces from grounding events of ice sheets and ice shelves. We conclude that the Siberian Shelf edge and parts of the Arctic Ocean were covered by ice sheets of about 1km in thickness during several Pleistocene glaciations before the most recent glacial period, which must have had a significant influence on albedo and oceanic and atmospheric circulation.

  17. On the Interpretation of Late Pleistocene 100-kyr Phases

    NASA Astrophysics Data System (ADS)

    Lisiecki, L. E.

    2013-12-01

    Phase calculations are often used to measure leads and lags in paleoclimate records and then make inferences about the causal mechanisms associated with orbitally forced glacial cycles. Fourier and wavelet spectral analyses work well for near-sinusoidal cycles, but Late Pleistocene 100-kyr glacial cycles are typically sawtooth shaped (e.g., 10 kyr of warming followed by 90 kyr of cooling) and are thus extremely non-sinusoidal. Here I present phase calculations for a variety of 100-kyr sawtooth shapes similar to those observed in paleoclimate records. These calculations demonstrate that variations in cycle shape can produce apparent differences in 100-kyr phase even when records experience synchronous warming and cooling. For example, changing the amplitude of MIS 5e in otherwise identical records can shift the 100-kyr wavelet phase by 13° (3.6 kyr). Therefore, spectral phase calculations are not well-suited for characterizing leads, lags, or response times of 100-kyr cyclicity in paleoclimate records. Direct comparison of the timing of distinctive features (e.g., termination onset or the onset of cooling at the end of an interglacial) is more appropriate for evaluating possible causal sequences in Late Pleistocene 100-kyr cycles.

  18. Recurring middle Pleistocene outburst floods in east-central Alaska

    USGS Publications Warehouse

    Froese, D.G.; Smith, D.G.; Westgate, J.A.; Ager, T.A.; Preece, S.J.; Sandhu, A.; Enkin, R.J.; Weber, F.

    2003-01-01

    Recurring glacial outburst floods from the Yukon-Tanana Upland are inferred from sediments exposed along the Yukon River near the mouth of Charley River in east-central Alaska. Deposits range from imbricate gravel and granules indicating flow locally extending up the Yukon valley, to more distal sediments consisting of at least 10 couplets of planar sands, granules, and climbing ripples with up-valley paleocurrent indicators overlain by massive silt. An interglacial organic silt, occurring within the sequence, indicates at least two flood events are associated with an earlier glaciation, and at least three flood events are associated with a later glaciation which postdates the organic silt. A minimum age for the floods is provided by a glass fission track age of 560,000 ?? 80,000 yr on the GI tephra, which occurs 8 m above the flood beds. A maximum age of 780,000 yr for the floods is based on normal magnetic polarity of the sediments. These age constraints allow us to correlate the flood events to the early-middle Pleistocene. And further, the outburst floods indicate extensive glaciation of the Yukon-Tanana Upland during the early-middle Pleistocene, likely representing the most extensive Pleistocene glaciation of the area. ?? 2003 University of Washington. Published by Elsevier Inc. All rights reserved.

  19. The mid-Pleistocene transition in the subtropical southwest Pacific

    NASA Astrophysics Data System (ADS)

    Russon, T.; Elliot, M.; Sadekov, A.; Cabioch, G.; Corrège, T.; De Deckker, P.

    2011-03-01

    Reconstructions of subtropical southwest Pacific climate variability over the Pleistocene were derived from coupled planktic foraminiferal δ18O-Mg/Ca measurements taken from a southern Coral Sea sediment core. A clear shift from ˜40 kyr to ˜100 kyr modes of reconstructed glacial-interglacial sea surface temperature (SST) variability is seen over the mid-Pleistocene transition, and these fluctuations are shown to have remained coherent with the orbital obliquity cycle across the transition. The likely origin of this strong obliquity signal in subtropical southwest Pacific SST is shown to be the southern high latitudes, and comparison with existing SST reconstructions from the equatorial Pacific is consistent with the communication of the signal occurring principally by greenhouse gas forcing. In contrast to the SST reconstruction, regional hydrological cycle variability (based on the calculated local component of δ18Osw change) does not show significant coherence with obliquity after ˜1000 ka. The decoupling of the SST and hydrological cycle responses over the mid-Pleistocene transition allows constraints to be placed on the evolution and extent of orbitally paced fluctuations within the coupled low-latitude ocean-atmosphere system.

  20. Stratigraphy of Late Pleistocene formations of the Mezen river valley

    NASA Astrophysics Data System (ADS)

    Maksimov, Anton; Semenova, Ljudmila

    2014-05-01

    Stratigraphy of Late Pleistocene formations of the Mezen river valley A.V. Maksimov, L.R. Semenova A.P. Karpinski All-Russian Geological Research Institute (VSEGEI), St.-Petersburg, Russia In recent years received extensive and contradictory evidence on the genesis, age and area of spreading of quaternary formations in NW Russia. The reason for this - the heterogeneity of investigated objects and methods of research. Within a valley of the river Mezen quaternary sediments are distributed everywhere. In outcrops opened sediments relating to the fifth and sixth stages of Middle Pleistocene, Upper Pleistocene and Holocene. Thickness of the quaternary sediments varies over a wide range, generally increasing from west to east. The authors have studied quaternary formations, opened in outcrops in valley of river Mezen (downstream) and its right tributary Peza, as well as in marine coastal cliffs. The aim of the study was to demonstrate specific features of the lithological composition of quaternary sediments from various (in age and origin) moraine complexes of the Russian NW and to reconstruction of paleogeographic sedimentary environments in the Late Pleistocene. Such attention to glacial sediments was dictated by the fact that they bear the most valuable information pertaining to the type and composition of provenances and to the geodynamic settings of feeding and sedimentation zones. To achieve these goals following tasks were set: 1. Lithostratigraphic subdivision of the section of Quaternary sediments. 2. Correlation of local stratigraphic units with stratigraphic scheme adjacent areas using the geochronological, paleontological and paleoclimatic data. 3. Reconstruction of the main geological events Late Pleistocene NW European part of Russia. First for glacial sediments in valley of the river Mezen applied lithological method, for determining the origin of formations. Was studied lithological composition of the sediments and were correlated geological sections. Also was conducted geochronological research. Based on these results, it was found that: - the glaciers of the Baltic Shield and the Czech lip penetrated into the valley of the river Mezen in Valdai time, forming moraines of different lithology; - sea waters penetrated to the valley of the river Mezen in Leningrad and Mikulino time. In Mikulino time the basin was deeper.

  1. Glacial Geology of Wisconsin.

    ERIC Educational Resources Information Center

    Madison Public Schools, WI.

    This publication is a teacher's resource and guidebook for the presentation of the three filmstrips in the "Glacial Geology of Wisconsin" series. The first filmstrip is subtitled, "Evidence of the Glaciers," the second "How the Glaciers Reshaped the Landscape," and the third "Fossils of the Ice Age." Included are a list of objectives, an outline…

  2. Glacial Geology of Wisconsin.

    ERIC Educational Resources Information Center

    Madison Public Schools, WI.

    This publication is a teacher's resource and guidebook for the presentation of the three filmstrips in the "Glacial Geology of Wisconsin" series. The first filmstrip is subtitled, "Evidence of the Glaciers," the second "How the Glaciers Reshaped the Landscape," and the third "Fossils of the Ice Age." Included are a list of objectives, an outline

  3. Glacial geomorphic evidence for a late climatic change on Mars

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.; Strom, R. G.

    1992-01-01

    In a series of preliminary reports, we documented evidence of former glacial epochs on Mars. Apparent glacial landforms seemed to be concentrated primarily at middle to high southern latitudes. We now have additional evidence supporting the view that Martian glaciation appears to have been more extensive than previously recognized. The growth and collapse of ice sheets on Mars seems closely analogous to the growth and decline of Earth's great Pleistocene ice sheets. This implies that climate change was probably somewhat comparable on the two planets, although in the case of Mars the entire planet seems to have changed rapidly to a cold, dry present-day environment after the collapse of the ice sheets.

  4. Glacial cycles drive variations in the production of oceanic crust

    NASA Astrophysics Data System (ADS)

    Crowley, John W.; Katz, Richard F.; Huybers, Peter; Langmuir, Charles H.; Park, Sung-Hyun

    2015-03-01

    Glacial cycles redistribute water between oceans and continents, causing pressure changes in the upper mantle, with consequences for the melting of Earth’s interior. Using Plio-Pleistocene sea-level variations as a forcing function, theoretical models of mid-ocean ridge dynamics that include melt transport predict temporal variations in crustal thickness of hundreds of meters. New bathymetry from the Australian-Antarctic ridge shows statistically significant spectral energy near the Milankovitch periods of 23, 41, and 100 thousand years, which is consistent with model predictions. These results suggest that abyssal hills, one of the most common bathymetric features on Earth, record the magmatic response to changes in sea level. The models and data support a link between glacial cycles at the surface and mantle melting at depth, recorded in the bathymetric fabric of the sea floor.

  5. Glacial cycles drive variations in the production of oceanic crust.

    PubMed

    Crowley, John W; Katz, Richard F; Huybers, Peter; Langmuir, Charles H; Park, Sung-Hyun

    2015-03-13

    Glacial cycles redistribute water between oceans and continents, causing pressure changes in the upper mantle, with consequences for the melting of Earth's interior. Using Plio-Pleistocene sea-level variations as a forcing function, theoretical models of mid-ocean ridge dynamics that include melt transport predict temporal variations in crustal thickness of hundreds of meters. New bathymetry from the Australian-Antarctic ridge shows statistically significant spectral energy near the Milankovitch periods of 23, 41, and 100 thousand years, which is consistent with model predictions. These results suggest that abyssal hills, one of the most common bathymetric features on Earth, record the magmatic response to changes in sea level. The models and data support a link between glacial cycles at the surface and mantle melting at depth, recorded in the bathymetric fabric of the sea floor. PMID:25766231

  6. Fluvial development of major Alpine valleys since the mid-Pleistocene transition

    NASA Astrophysics Data System (ADS)

    Leith, Kerry; Fox, Matthew; Moore, Jeffrey R.

    2015-04-01

    The effects of both fluvial and glacial processes are evident in the morphology of bedrock hillslopes and river channels throughout the European Alps. While steep rock slopes in upper, U-shaped reaches of valleys provide clear evidence for a Pleistocene history that includes at least one period of major glacial erosion, river channels near the toe of blocky rock slopes in lower, V-shaped reaches suggest fluvial incision has played an important role in Alpine evolution. In order to differentiate the impact of these two process regimes on the development of the orogen, we use a combination of integral analysis and forward streampower models to identify a series of corresponding steepened channel reaches across a relatively homogeneous tectonic block of the southern Swiss Alps. We consider these steepened channel sections represent up to seven knickpoints that extend 800 m above the elevation of the present-day Rhone Valley. The uppermost (oldest) knickpoint is currently located approximately half-way into each valley, and effectively defines the front of fluvial erosion into a relict glacial landscape preserved in the upper reaches of each catchment. We expect that these knickpoints form near the outlet of tributary valleys as a result of bedrock uplift during major glacial cycles. The knickpoints are exposed during deglaciation, and propagate upstream as in response to increased streampower during major Pleistocene interglacials. By employing a forward streampower incision model regulated by the timing of global marine isotope stages we are able to reproduce both the form, and location of knickpoints across our study region, and correlate distinct breaks in cross-sectional valley slope to discrete glacial - interglacial transitions. Our results indicate that Alpine landscape evolution has been driven by a combination of tectonic uplift and fluvial incision since an initial period of enhanced glacial erosion prior to 0.7 Ma. We find that rates of tectonic uplift have been relatively consistent since this time, while transitional landscape forms have been largely preserved throughout each glacial cycle.

  7. Late Pliocene to early Pleistocene millennial-scale fluctuations in SST and stratification within the North Atlantic

    NASA Astrophysics Data System (ADS)

    Koch, M.; Friedrich, O.; Wilson, P. A.

    2012-04-01

    The late Pliocene to early Pleistocene (5.6-1.8 Ma) represents in many ways a key interval of Cenozoic palaeoceanography, including two major changes of the Earth system: the significant glaciation of the northern hemisphere, cluminating in a major expansion of Arctic ice sheets (Northern Hemisphere Glaciation, NHG) and the closure of the Panama Gateway. The impact of changes associated with the NHG on surface-water hydrology (SST and stratification) of the subpolar North Atlantic is, however, not fully understood yet. Given its proximity to the large dynamic ice-sheets of the northern hemisphere and the role in deep-water formation, however, the North Atlantic represents one of the climatically sensitive regions on Earth. This study focuses on the combination of Mg/Ca and δ18O analyses on planktic foraminifera in order to understand and reconstruct millennial-scale climate variability during the final stage of the NHG, especially marine oxygen isotope stages (MIS) 103-95 (late Pliocene to early Pleistocene, 2.6 to 2.4 Ma). In particular, this is relevant to better understand fluctuations in the magnitude of SST and stratification changes and their link to the intensification of NHG. Stable isotope and Mg/Ca analyses have been carried out on the deep-dwelling planktic foraminiferal species Globorotalia crassaformis from IODP Site U1313 (North Atlantic, 41°N). This site is located at the base of the upper western flank of the Mid-Atlantic Ridge. It therefore is under direct influence of North Atlantic Deep Water and lies on the southerly limit of the so-called 'IRD belt'. Samples are taken in millenial-scale resolution from 2.6 to 2.4 Ma, comprising isotope stages 103 to 95. Samples from this site were already used before to test the existence of a relationship between the emergence of large-amplitude millennial-scale climate oscillations and an intensification of glacial conditions during the intensification of NHG by measuring mixed-layer stable isotope data on the surface-dwelling planktic foraminifera Globigerinoides ruber. Comparison of our results with these surface-water data reveal relatively stable conditions in surface waters while intermediate waters show strong fluctuations on a glacial-interglacial time scale, most probably reflecting changing intermediate-water masses.

  8. A Late Pleistocene sea level stack

    NASA Astrophysics Data System (ADS)

    Spratt, R. M.; Lisiecki, L. E.

    2015-08-01

    Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0-430 ka and five records from 0-798 ka. The first principal component, which we use as the stack, describes ~80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). When we compare the sea level stack with the δ18O of benthic foraminifera, we find that sea level change accounts for about ~40 % of the total orbital-band variance in benthic δ18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the δ18O of seawater.

  9. A Late Pleistocene sea level stack

    NASA Astrophysics Data System (ADS)

    Spratt, Rachel M.; Lisiecki, Lorraine E.

    2016-04-01

    Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0 to 430 ka and five records from 0 to 798 ka. The first principal component, which we use as the stack, describes ˜ 80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). Bootstrapping and random sampling yield mean uncertainty estimates of 9-12 m (1σ) for the scaled stack. Sea level change accounts for about 45 % of the total orbital-band variance in benthic δ18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the δ18O of seawater.

  10. Giant glacial cirques of non-mountainous terrains

    NASA Astrophysics Data System (ADS)

    Amantov, A.; Amantova, M.

    2012-04-01

    Cirques are usually considered as specific landforms of hill and mountain terrains produced by alpine glaciers, and/or slope failures (landslides). However, glacial cirques seem to be present also in non-mountainous terrains that underwent extensive Pleistocene ice-sheet glaciations and strong glacial and fluvio-glacial erosion. The largest form in the Baltic region is Severoladozhsky (North Lake Ladoga) cirque, probably the world's largest representative, with the length and width close to 100 km. Another example is the deepest Landsort basin of the Baltic Sea. In those cases Meso-Neoproterozoic sediments were subject to selected erosion, with evident overdeepening of the bedrock surface in comparison with surrounding crystalline frame. The bowl headwall shape of the cirque-like landforms was determined by the outline of the margin of exhumed basin. The origin of the major basins of margins of the Baltic and Canadian shields are similar. However, direct analogues of giant cirques are not well developed in this part of North America due to geological deviations and dominant directions of ice movement. Comparable landforms (like the South Chippewa basin of the Lake Michigan) are therefore less mature. We define glacial cirque as an amphitheatre-shape depression with comparable values of length and width, steep headwall with adjacent side slopes and gentle lip with commonly increased glacial accumulation. They are usually located within an ice stream that created typical relief profile with normal horseshoe overdeepening, and in areas predefined by geological and geomorphological peculiarities. This definition likely fits both classic mountain cirques, and giant ones created in favorable conditions in domains that underwent extensive glaciations and relevant selective glacial erosion. Length/width ratio typical for giant cirques group is close to 1:1, being comparable with classical alpine ones. Major differences (like length/height ratio of other order and possible larger internal landscape complications) are related to the extreme size of typical representatives of giant cirques of non-mountainous terrains.

  11. A high resolution Late Glacial to Holocene record of climatic and environmental change in the Mediterranean from Lake Ohrid (Macedonia/Albania)

    NASA Astrophysics Data System (ADS)

    Lacey, Jack; Francke, Alexander; Leng, Melanie; Vane, Chris; Wagner, Bernd

    2015-04-01

    Lake Ohrid (Macedonia/Albania) is one of the world's oldest lakes and is renowned for its high degree of biological diversity. It is the target site for the ICDP SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid) project, an international research initiative to study the links between geology, environment and the evolution of endemic taxa. In 2011 a 10-meter core was recovered from the western shore of Lake Ohrid adjacent to the Lini Peninsula. Here we present high-resolution stable isotope and geochemical data from this core through the Late Glacial to Holocene to reconstruct past climate and hydrology (TIC, δ18Ocalcite, δ13Ccalcite) as well as the terrestrial and aquatic vegetation response to climate (TOC, TOC/N, δ13Corganic, Rock-Eval pyrolysis). The data identify 3 main zones: (1) the Late Glacial-Holocene transition represented by low TIC, TOC and higher isotope values, (2) the early to mid-Holocene characterised by higher TOC, TOC/N and lower δ18Ocalcite, and (3) the late Holocene which shows a marked decrease in TIC and TOC. In general there is an overall trend of increasing δ18Ocalcite from 9 ka to present, suggesting progressive aridification through the Holocene, which is consistent with previous records from Lake Ohrid and the wider Mediterranean region. Several proxies show commensurate excursions that imply the impact of short-term climate oscillations, such as the 8.2 ka event and the Little Ice Age. This is the best-dated and highest resolution archive of Late Glacial and Holocene climate from Lake Ohrid and confirms the overriding influence of the North Atlantic in the north-eastern Mediterranean. The data presented set the context for the SCOPSCO project cores recovered in spring-summer 2013 dating back into the Lower Pleistocene, and will act as a recent calibration to reconstruct climate and hydrology over the entire lake history.

  12. A high-resolution Late Glacial to Holocene record of environmental change in the Mediterranean from Lake Ohrid (Macedonia/Albania)

    NASA Astrophysics Data System (ADS)

    Lacey, Jack H.; Francke, Alexander; Leng, Melanie J.; Vane, Christopher H.; Wagner, Bernd

    2015-09-01

    Lake Ohrid (Macedonia/Albania) is the oldest extant lake in Europe and exhibits an outstanding degree of endemic biodiversity. Here, we provide new high-resolution stable isotope and geochemical data from a 10 m core (Co1262) through the Late Glacial to Holocene and discuss past climate and lake hydrology (TIC, δ13Ccalcite, δ18Ocalcite) as well as the terrestrial and aquatic vegetation response to climate (TOC, TOC/N, δ13Corganic, Rock Eval pyrolysis). The data identifies 3 main zones: (1) the Late Glacial-Holocene transition represented by low TIC and TOC contents, (2) the early to mid-Holocene characterised by high TOC and increasing TOC/N and (3) the Late Holocene-Present which shows a marked decrease in TIC and TOC. In general, an overall trend of increasing δ18Ocalcite from 9 ka to present suggests progressive aridification through the Holocene, consistent with previous records from Lake Ohrid and the wider Mediterranean region. Several proxies show commensurate excursions that imply the impact of short-term climate oscillations, such as the 8.2 ka event and the Little Ice Age. This is the best-dated and highest resolution archive of past Late Glacial and Holocene climate from Lake Ohrid and confirms the overriding influence of the North Atlantic in the north-eastern Mediterranean. The data presented set the context for the International Continental scientific Drilling Program Scientific Collaboration On Past Speciation Conditions in Lake Ohrid project cores recovered in spring-summer 2013, potentially dating back into the Lower Pleistocene, and will act as a recent calibration to reconstruct climate and hydrology over the entire lake history.

  13. Quaternary glacial landforms and evolution in the Cantabrian Mountains (Northern Spain): a synthesis from current data

    NASA Astrophysics Data System (ADS)

    Serrano, Enrique; José González-Trueba, Juan; Pellitero, Ramón; González-García, María; Gómez-Lende, Manuel

    2014-05-01

    In Northern Iberian Peninsula are located the Cantabrian Mountains, a mountain system of 450 km length, reaching 2648 m in the Picos de Europa. It is an Atlantic mountain in the North slope, with a Atlantic Mediterranean transitional climate in the South slope.More than thirty-five massifs developed glaciers during the Pleistocene. Studies on glacial morphology are known from the XIX century and they have focused mainly on the maximum extent of glaciers. Nowadays there are detailed geomorphological maps, morphostratigraphic surveys and estimation of Equilibrium Line Altitude in different massifs and on different stages. During the last decade studies on glacial evolution and glaciation phases have been made, and the first chronological data have been published. In this work we presents the reconstruction of the glacial evolution in the Cantabrian Mountains during the Pleistocene and Holocene, based on recent chronological data (30 dates made using OSL, AMS and C14) and morphostratigraphic correlations obtained by several research groups. The number of reconstructed glacial stages varies among the different massifs, form one to four different stages. The highest massifs located in the central portion of the Cantabrian Mountains have the most complex glacial features, with at least four different moraine complexes stepped between the 400 m a.s.l in the Northern slope and 800 m a.s.l. in the Southern slope for the lowest moraine complexes, and the highest and youngest, located above 2100 m a.s.l. An ancient glacial phase has been pointed to MIS 12 -more than 400 ka-, disconnected from the present day glacial morphology. During Upper Pleistocene three main stages have been identified. The first one, the local glacial maximum, could be prior to the LGM, as all dates refer to chronologies prior to 28-38 ka. Some authors locate this stage prior to 45 and 65 ka, during the 50-70 ka cold stage. It could be a wet stage, when the main fronts reached the Iberian Peninsula from the SW. The second stage is located to around 30 ka, and point to a dryer stage when glaciers was shorter but thicker. The third stage is located at 20-18 ka, contemporary from the LGM. Glaciers are located inside of glacier-shaped mountain valleys. A few moraine complexes located in the highest massif have been related to Lateglacial, coinciding with cold phases (Dryas) recorded in the Picos de Europa lakes and paleolakes. Finally, during the Holocene only small glaciers developed in the Picos de Europa, which have been assigned to LIA. Nowadays there are still glacial ice remains in four glacial cirques of Picos de Europa, close to the LIA moraines.

  14. Late Pleistocene carbonate dissolution in the Venezuela Basin, Caribbean Sea

    SciTech Connect

    Cofer-Shabica, N.B.; Peterson, L.C.

    1985-01-01

    Piston cores from water depths greater than 4000 m in the Venezuela Basin (Caribbean Sea) provide continuous late Pleistocene records of carbonate dissolution and accumulation. The authors examination of multiple dissolution indices indicate that, at least for the last 150,000 years, dissolution of carbonate in the Venezuela Basin has been more intense during interglacial than glacial periods, a pattern opposite to more general observations from the deep Atlantic and Gulf of Mexico. By virtue of its shallow sill depth (1815 m), the Venezuela Basin is relatively isolated from the mainstream of Atlantic thermohaline circulation, and presently is filled with homogeneous, relatively warm (3.8/sup 0/C) waters primarily derived from Upper North Atlantic Deep Water. During the last glacial, the enhanced preservation of carbonate in the Venezuela Basin suggests the presence of a less corrosive, more oxygenated water mass in the Atlantic near sill depth. However, this simple interpretations is potentially complicated by past changes in the rain of biogenic materials from surface waters to the deep basin in what must be an essentially closed system below sill depth. Their observations of increased interglacial dissolution may help to explain previously noted discrepancies in the local glacial to interglacial amplitude of delta/sup 18/O variations recorded by coccoliths and planktonic foraminifera.

  15. Ecological structure of recent and last glacial mammalian faunas in northern Eurasia: the case of Altai-Sayan refugium.

    PubMed

    Pavelková Řičánková, Věra; Robovský, Jan; Riegert, Jan

    2014-01-01

    Pleistocene mammalian communities display unique features which differ from present-day faunas. The paleocommunities were characterized by the extraordinarily large body size of herbivores and predators and by their unique structure consisting of species now inhabiting geographically and ecologically distinct natural zones. These features were probably the result of the unique environmental conditions of ice age ecosystems. To analyze the ecological structure of Last Glacial and Recent mammal communities we classified the species into biome and trophic-size categories, using Principal Component analysis. We found a marked similarity in ecological structure between Recent eastern Altai-Sayan mammalian assemblages and comparable Pleistocene faunas. The composition of Last Glacial and Recent eastern Altai-Sayan assemblages were characterized by the occurrence of large herbivore and predator species associated with steppe, desert and alpine biomes. These three modern biomes harbor most of the surviving Pleistocene mammals. None of the analyzed Palearctic Last Glacial faunas showed affinity to the temperate forest, taiga, or tundra biome. The Eastern part of the Altai-Sayan region could be considered a refugium of the Last Glacial-like mammalian assemblages. Glacial fauna seems to persist up to present in those areas where the forest belt does not separate alpine vegetation from the steppes and deserts. PMID:24454791

  16. Ecological Structure of Recent and Last Glacial Mammalian Faunas in Northern Eurasia: The Case of Altai-Sayan Refugium

    PubMed Central

    Pavelková Řičánková, Věra; Robovský, Jan; Riegert, Jan

    2014-01-01

    Pleistocene mammalian communities display unique features which differ from present-day faunas. The paleocommunities were characterized by the extraordinarily large body size of herbivores and predators and by their unique structure consisting of species now inhabiting geographically and ecologically distinct natural zones. These features were probably the result of the unique environmental conditions of ice age ecosystems. To analyze the ecological structure of Last Glacial and Recent mammal communities we classified the species into biome and trophic-size categories, using Principal Component analysis. We found a marked similarity in ecological structure between Recent eastern Altai-Sayan mammalian assemblages and comparable Pleistocene faunas. The composition of Last Glacial and Recent eastern Altai-Sayan assemblages were characterized by the occurrence of large herbivore and predator species associated with steppe, desert and alpine biomes. These three modern biomes harbor most of the surviving Pleistocene mammals. None of the analyzed Palearctic Last Glacial faunas showed affinity to the temperate forest, taiga, or tundra biome. The Eastern part of the Altai-Sayan region could be considered a refugium of the Last Glacial-like mammalian assemblages. Glacial fauna seems to persist up to present in those areas where the forest belt does not separate alpine vegetation from the steppes and deserts. PMID:24454791

  17. Thriving in the Cold: Glacial Expansion and Post-Glacial Contraction of a Temperate Terrestrial Salamander (Plethodon serratus)

    PubMed Central

    Newman, Catherine E.; Austin, Christopher C.

    2015-01-01

    The dynamic geologic history of the southeastern United States has played a major role in shaping the geographic distributions of amphibians in the region. In the phylogeographic literature, the predominant pattern of distribution shifts through time of temperate species is one of contraction during glacial maxima and persistence in refugia. However, the diverse biology and ecology of amphibian species suggest that a “one-size-fits-all” model may be inappropriate. Nearly 10% of amphibian species in the region have a current distribution comprised of multiple disjunct, restricted areas that resemble the shape of Pleistocene refugia identified for other temperate taxa in the literature. Here, we apply genetics and spatially explicit climate analyses to test the hypothesis that the disjunct regions of these species ranges are climatic refugia for species that were more broadly distributed during glacial maxima. We use the salamander Plethodon serratus as a model, as its range consists of four disjunct regions in the Southeast. Phylogenetic results show that P. serratus is comprised of multiple genetic lineages, and the four regions are not reciprocally monophyletic. The Appalachian salamanders form a clade sister to all other P. serratus. Niche and paleodistribution modeling results suggest that P. serratus expanded from the Appalachians during the cooler Last Glacial Maximum and has since been restricted to its current disjunct distribution by a warming climate. These data reject the universal applicability of the glacial contraction model to temperate taxa and reiterate the importance of considering the natural history of individual species. PMID:26132077

  18. Constraining Late Pleistocene Pluvial Lake Chronologies in Northeastern Nevada

    NASA Astrophysics Data System (ADS)

    Munroe, J. S.; Laabs, B. J.

    2011-12-01

    The presence of lakes in closed basins of the northern Great Basin during pluvial episodes of the Pleistocene has been recognized for over a century. Some of these lakes, such as Bonneville in western Utah and Lahontan in western Nevada, were large, and their histories are well constrained by field mapping, stratigraphic investigations, and geochronology. Dozens of other lakes with smaller dimensions are known to have existed, however with few exceptions their histories are virtually unknown. This situation is unfortunate because smaller, hydrologically closed lakes should be particularly sensitive to climatic changes that shifted the balance of precipitation and evaporation. Records of their fluctuations, therefore, could provide important information about atmospheric reorganization during the last glacial-interglacial transition. Ongoing work in northeastern Nevada is aimed at developing these records through detailed mapping, investigation of natural exposures and artificial excavations, and radiocarbon dating. Gastropod shells recovered from two sites along a beach ridge in the northeast Independence Valley indicate that Lake Clover reached its late Pleistocene highstand between 14,400 and 14,200 14C years BP (~17.5 cal. ka BP). Similarly, radiocarbon dating of gastropod shells from a beach ridge in the Ruby Valley indicates that Lake Franklin was near its late Pleistocene highstand at 13,400 14C years BP (~16.4 cal. ka BP). These ages are essentially synchronous with the highstands of Lakes Newark and Jakes ~150 km to the south, overlap with the hydrologic maximum of Lake Bonneville, and appear to predate the highstand of Lake Lahontan. Additional radiocarbon dating will refine these age relationships and attempt to constrain the timing of stillstands during the overall regression of these lakes in the latest Pleistocene.

  19. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Ciais, P.; Tagliabue, A.; Cuntz, M.; Bopp, L.; Scholze, M.; Hoffmann, G.; Lourantou, A.; Harrison, S. P.; Prentice, I. C.; Kelley, D. I.; Koven, C.; Piao, S. L.

    2012-01-01

    During each of the late Pleistocene glacial-interglacial transitions, atmospheric carbon dioxide concentrations rose by almost 100ppm. The sources of this carbon are unclear, and efforts to identify them are hampered by uncertainties in the magnitude of carbon reservoirs and fluxes under glacial conditions. Here we use oxygen isotope measurements from air trapped in ice cores and ocean carbon-cycle modelling to estimate terrestrial and oceanic gross primary productivity during the Last Glacial Maximum. We find that the rate of gross terrestrial primary production during the Last Glacial Maximum was about 40+/-10 Pg C yr-1, half that of the pre-industrial Holocene. Despite the low levels of photosynthesis, we estimate that the late glacial terrestrial biosphere contained only 330 Pg less carbon than pre-industrial levels. We infer that the area covered by carbon-rich but unproductive biomes such as tundra and cold steppes was significantly larger during the Last Glacial Maximum, consistent with palaeoecological data. Our data also indicate the presence of an inert carbon pool of 2,300 Pg C, about 700 Pg larger than the inert carbon locked in permafrost today. We suggest that the disappearance of this carbon pool at the end of the Last Glacial Maximum may have contributed to the deglacial rise in atmospheric carbon dioxide concentrations.

  20. Polar front shift and atmospheric CO2 during the glacial maximum of the Early Paleozoic Icehouse

    PubMed Central

    Vandenbroucke, Thijs R. A.; Armstrong, Howard A.; Williams, Mark; Paris, Florentin; Zalasiewicz, Jan A.; Sabbe, Koen; Nlvak, Jaak; Challands, Thomas J.; Verniers, Jacques; Servais, Thomas

    2010-01-01

    Our new data address the paradox of Late Ordovician glaciation under supposedly high pCO2 (8 to 22 PAL: preindustrial atmospheric level). The paleobiogeographical distribution of chitinozoan (mixed layer) marine zooplankton biotopes for the Hirnantian glacial maximum (440Ma) are reconstructed and compared to those from the Sandbian (460Ma): They demonstrate a steeper latitudinal temperature gradient and an equatorwards shift of the Polar Front through time from 5570S to ?40S. These changes are comparable to those during Pleistocene interglacial-glacial cycles. In comparison with the Pleistocene, we hypothesize a significant decline in mean global temperature from the Sandbian to Hirnantian, proportional with a fall in pCO2 from a modeled Sandbian level of ?8 PAL to ?5 PAL during the Hirnantian. Our data suggest that a compression of midlatitudinal biotopes and ecospace in response to the developing glaciation was a likely cause of the end-Ordovician mass extinction. PMID:20696937

  1. Plio-Pleistocene stratigraphy and relative sea level estimates: an emerging global perspective

    NASA Astrophysics Data System (ADS)

    Hearty, Paul; O'Leary, Michael; Rovere, Alessio; Raymo, Maureen; Sandstrom, Michael

    2015-04-01

    The historical rise of atmospheric CO2 to over 400 ppmv amplifies the need to better understand natural systems during past warmer interglacials. This change over the past 150 years approximates the CO2 range of full glacial-interglacial cycles. Resulting future global impacts are likely, and accurate geological field data would help us better understand the past behavior of sea level (SL) and ice sheets. The middle Pliocene warm period (MPWP) offers an approximate analogue for a 400-ppmv world. Before PLIOMAX (www.pliomax.org), only a handful of estimates of relative sea levels (RSL) along with considerable uncertainties were available for the MPWP. Precise elevations of Plio-Pleistocene RSL indicators were measured with decimeter accuracy using an OmniStar dGPS at sites in Australia, South Africa, Argentina, and other seemingly stable locations. High-resolution SL indicators include wave abrasion surfaces, sub- and intertidal sedimentary structures, and in situ marine invertebrates such as shallow water oysters and barnacles. In addition, thousands of km of terraced coastline was surveyed with dGPS between study sites. The coastal geomorphic expression of Pliocene SL is profound. From ~5 to 3 Ma, high frequency orbitally-paced, low amplitude SL oscillations acted as a shoreline "buzz saw" on hard bedrock, forming extensive high terraces. In high sediment environments such as that of the southeast US Atlantic Coastal Plain, relatively stable Pliocene ocean levels trapped huge volumes of fluvial sediments in the coastal zone, resulting in broad sandy terraces and extensive dune fields. However, glacio-isostatic adjustment (GIA), dynamic topography (DT), and other post-depositional processes have warped these marine terraces by tens of meters since the Pliocene (Raymo et al. 2011, Rovere et al 2014). The PLIOMAX team has documented precise RSLs from numerous global sites that clearly indicate that global ice volume was significantly reduced during intervals of the Pliocene. Modeling of tectonic, GIA, and DT effects, combined with a renewed Sr dating effort will greatly clarify the SL history evident from the geology of these sites. Raymo, M.E., Mitrovica, J.X., O'Leary, M.J., DeConto, R. M., and Hearty, P.J., 2011. Departures from eustasy in Pliocene sea-level records. Nature Geoscience, doi: 10.1038/NGEO1118. Rovere, A., Raymo, M.E., Mitrovica, J.X., Hearty, P.J., O'Leary, M.J., Inglis, J.D., 2013. The Mid-Pliocene sea-level conundrum: Glacial isostasy, eustasy and dynamic topography. Earth and Planetary Science Letters 387 (2014) 27-33, doi.org/10.1016/j.epsl.2013.10.030.

  2. A 2 million year glacial chronology of the Hatherton Glacier, Antarctica and implications for the size of the East Antarctic Ice Sheet at the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Joy, Kurt; Fink, David; Storey, Bryan; Atkins, Cliff

    2014-01-01

    A series of distinct glacial deposits flanking the margins of the upper Hatherton Glacier, an outlet glacier in the central Transantarctic Mountains, are used to constrain the behaviour of the Antarctic ice-sheets. Cosmogenic exposure ages of 18 erratics from four glacial drifts covering the ice free Dubris and Bibra valleys, range in age from 5 to 1997 ka. Our results document four glacial advance and retreat events superimposed on an overall long-term ice thickness reduction of about 500 m since the mid-Pleistocene. The lack of field evidence and absence of LGM exposure ages in the glacial deposits of the Hatherton Glacier supports our conclusion that at the LGM the East Antarctic Ice Sheet was of similar size, or may have been slightly smaller, than present. Minimum exposure ages from the oldest two glacial events, represented by the Isca and Danum drifts, are ˜1-2 Ma and ˜0.5 Ma respectively. The Britannia-II Drift, previously assumed to mark the maximum extent of the Last Glacial Maximum advance, has a mean 10Be age of 126 ± 3.2 ka (n = 5). Ages from the younger Britannia-I Drift suggest that since the mid-Holocene (6.5 ± 1.2 ka, n = 5), approximately 200 m of additional ice has been lost.

  3. The integration of multiple independent data reveals an unusual response to Pleistocene climatic changes in the hard tick Ixodes ricinus.

    PubMed

    Porretta, Daniele; Mastrantonio, Valentina; Mona, Stefano; Epis, Sara; Montagna, Matteo; Sassera, Davide; Bandi, Claudio; Urbanelli, Sandra

    2013-03-01

    In the last few years, improved analytical tools and the integration of genetic data with multiple sources of information have shown that temperate species exhibited more complex responses to ice ages than previously thought. In this study, we investigated how Pleistocene climatic changes affected the current distribution and genetic diversity of European populations of the tick Ixodes ricinus, an ectoparasite with high ecological plasticity. We first used mitochondrial and nuclear genetic markers to investigate the phylogeographic structure of the species and its Pleistocene history using coalescent-based methods; then we used species distribution modelling to infer the climatic niche of the species at last glacial maximum; finally, we reviewed the literature on the I. ricinus hosts to identify the locations of their glacial refugia. Our results support the scenario that during the last glacial phase, I. ricinus never experienced a prolonged allopatric divergence in separate glacial refugia, but persisted with interconnected populations across Southern and Central Europe. The generalist behaviour in host choice of I. ricinus would have played a major role in maintaining connections between its populations. Although most of the hosts persisted in separate refugia, from the point of view of I. ricinus, they represented a continuity of 'bridges' among populations. Our study highlights the importance of species-specific ecology in affecting responses to Pleistocene glacial-interglacial cycles. Together with other cases in Europe and elsewhere, it contributes to setting new hypotheses on how species with wide ecological plasticity coped with Pleistocene climatic changes. PMID:23398505

  4. Abrupt glacial climate shifts controlled by ice sheet changes.

    PubMed

    Zhang, Xu; Lohmann, Gerrit; Knorr, Gregor; Purcell, Conor

    2014-08-21

    During glacial periods of the Late Pleistocene, an abundance of proxy data demonstrates the existence of large and repeated millennial-scale warming episodes, known as Dansgaard-Oeschger (DO) events. This ubiquitous feature of rapid glacial climate change can be extended back as far as 800,000 years before present (BP) in the ice core record, and has drawn broad attention within the science and policy-making communities alike. Many studies have been dedicated to investigating the underlying causes of these changes, but no coherent mechanism has yet been identified. Here we show, by using a comprehensive fully coupled model, that gradual changes in the height of the Northern Hemisphere ice sheets (NHISs) can alter the coupled atmosphere-ocean system and cause rapid glacial climate shifts closely resembling DO events. The simulated global climate responses--including abrupt warming in the North Atlantic, a northward shift of the tropical rainbelts, and Southern Hemisphere cooling related to the bipolar seesaw--are generally consistent with empirical evidence. As a result of the coexistence of two glacial ocean circulation states at intermediate heights of the ice sheets, minor changes in the height of the NHISs and the amount of atmospheric CO2 can trigger the rapid climate transitions via a local positive atmosphere-ocean-sea-ice feedback in the North Atlantic. Our results, although based on a single model, thus provide a coherent concept for understanding the recorded millennial-scale variability and abrupt climate changes in the coupled atmosphere-ocean system, as well as their linkages to the volume of the intermediate ice sheets during glacials. PMID:25119027

  5. The Last Interglacial-Glacial cycle (MIS 5-2) re-examined based on long proxy records from central and northern Europe

    NASA Astrophysics Data System (ADS)

    Helmens, Karin F.

    2014-02-01

    Current multi-proxy studies on a long sediment sequence preserved at Sokli (N Finland), i.e. in the central area of Fennoscandian glaciations, are drastically changing classic ideas of glaciations, vegetation and climate in northern Europe during the Late Pleistocene. The sediments in the Sokli basin have escaped major glacial erosion due to non-typical bedrock conditions. In this review, the Sokli record is compared in great detail with other long proxy records from central, temperate and northern, boreal Europe. These comprise the classic records of La Grande Pile (E France) and Oerel (N Germany) and more recently obtained records from Horoszki Duże (E Poland) and Lake Yamozero (NW Russia). The focus of the review is on pollen, lithology and macrofossil- and insect-based temperature inferences. The long records are further compared with recent proxy data from nearby terrestrial sites as well as with the rapidly accumulating high-resolution proxy data from the ocean realm. The comparison allows a re-examination of the environmental history and climate evolution of the Last Interglacial-Glacial (LI-G) cycle (MIS 5-2). It shows that environmental and climate conditions during MIS 5 (ca 130-70 ka BP) were distinctly different from those during MIS 4-2 (ca 70-15 ka BP). MIS 5 is characterized by three long forested intervals (broadly corresponding to MIS 5e, 5c, 5a), both in temperate and northern boreal Europe. These mild periods were interrupted by two short, relatively cold and dry intervals (MIS 5d and 5b) with mountain-centered glaciation in Fennoscandia. Millennial scale climate events were superimposed upon these longer lasting climate fluctuations. The time interval encompassing MIS 4-2 shows open vegetation. It is characterized by two glacial maxima (MIS 4 and 2) with sub-continental scale glaciation over northern Europe and dry conditions in strongly continental eastern European settings. High amplitude climate oscillations of millennial duration characterized the climate variability of MIS 3. Mild climate conditions in early MIS 3 caused large-scale deglaciation of the Fennoscandian Ice Sheet, and ice-free conditions with Betula-dominated vegetation (including tree birch) persisted over large parts of Fennoscandia, possibly interrupted by glaciation, during major part of MIS 3 till ca 35 ka BP. Overall, MIS 5 was mostly mild with warmest or peak interglacial conditions at the very start during MIS 5e. MIS 4-2 was mostly cold with most extreme or peak glacial conditions in the closing phase during MIS 2. This points to a subdivision of the last climate cycle into an early, overall mild interglacial half and a late, overall cold glacial half, each with duration of ca 50 ka. This review also shows that the climate variability in central and northern Europe during the LI-G cycle was mostly in degrees of continentality with major shifts in winter temperature and precipitation values; summer temperatures, on the other hand, remained largely unchanged. It points to the waxing and waning of sea-ice over the North Atlantic Ocean as a possible characteristic feature of the Late Pleistocene. The present compilation, based on long terrestrial sequences, high-resolution multi-proxy data from the oceans, and quantified paleo-climate data, strongly favors a definition of entire Marine Oxygen Isotope Stage 5 as the Last Interglacial similar as in the original marine stratigraphy and the stratigraphy at La Grande Pile in France. The proxy-based climate data places the start of the Last Glacial at the base of MIS 4 and the northwest European Pleniglacial. It shows that the division between the Eemian (MIS 5e) and the Early Weichselian (MIS 5d-a) is not useful, as not relevant from a climate point of view.

  6. Geomorphic controls on Pleistocene knickpoint migration in Alpine valleys

    NASA Astrophysics Data System (ADS)

    Leith, Kerry; Fox, Matt; Moore, Jeffrey R.; Brosda, Julian; Krautblatter, Michael; Loew, Simon

    2014-05-01

    Recent insights into sub-glacial bedrock stress conditions suggest that the erosional efficiency of glaciers may reduce markedly following a major erosional cycle [Leith et al., 2013]. This implies that the formation of large glacial valleys within the Alps is likely to have occurred shortly after the onset of 100 ky glacial-interglacial cycles (at the mid-Pleistocene Revolution (MPR)). The majority of landscape change since this time may have therefore been driven by sub-aerial processes. This hypothesis is supported by observations of hillslope and channel morphology within Canton Valais (Switzerland), where major tributary valleys display a common morphology along their length, hinting at a shared geomorphic history. Glaciers currently occupy the headwaters of many catchments, while the upper reaches of rivers flow across extensive alluvial planes before abruptly transitioning to steep channels consisting of mixed bedrock and talus fan deposits. The rivers then converge to flow out over the alluvial plane of the Rhone Valley. Characteristically rough topographies within the region are suggested to mark the progressive transition from a glacial to fluvially-dominated landscape, and correlate well with steepened river channel sections determined from a 2.5 m resolution LiDAR DEM. We envisage a landscape in which ongoing tectonic uplift drives the emergence of Alpine bedrock through massive sedimentary valley infills (currently concentrated in the Rhone Valley), whose elevation is fixed by the consistent fluvial baselevel at Lake Geneva. As fluvial incision ceases at the onset of glaciation, continued uplift causes the formation of knickpoints at the former transition from bedrock to sedimentary infill. These knickpoints will then propagate upstream during subsequent interglacial periods. By investigating channel morphologies using an approach based on the steady-state form of the stream power equation, we can correlate steepened channel reaches (degraded knickpoints) across most major tributaries south of the Rhone River. The timing of apparent uplift events correlates well with that of cool Marine Isotope Stages derived from global oxygen isotope data up to the beginning of MIS 12. A weak correlation up to the beginning of MIS 18 suggests initial glacial incision may have occurred some time during MIS 14 - 20, and valley development has since been driven by fluvial processes. Leith, K., J. R. Moore, F. Amann, and S. Loew (2013), Sub-glacial extensional fracture development and implications for Alpine valley evolution, J. Geophys. Res. Earth Surf., doi:10.1002/2012JF002691.

  7. The aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia.

    PubMed

    Rule, Susan; Brook, Barry W; Haberle, Simon G; Turney, Chris S M; Kershaw, A Peter; Johnson, Christopher N

    2012-03-23

    Giant vertebrates dominated many Pleistocene ecosystems. Many were herbivores, and their sudden extinction in prehistory could have had large ecological impacts. We used a high-resolution 130,000-year environmental record to help resolve the cause and reconstruct the ecological consequences of extinction of Australia's megafauna. Our results suggest that human arrival rather than climate caused megafaunal extinction, which then triggered replacement of mixed rainforest by sclerophyll vegetation through a combination of direct effects on vegetation of relaxed herbivore pressure and increased fire in the landscape. This ecosystem shift was as large as any effect of climate change over the last glacial cycle, and indicates the magnitude of changes that may have followed megafaunal extinction elsewhere in the world. PMID:22442481

  8. The consequences of pleistocene climate change on lowland neotropical vegetation

    SciTech Connect

    De Oliveira, P.E.; Colinvaux, P.A. )

    1994-06-01

    Palynological reconstructions indicate that lowland tropical America was subject to intense cooling during the last ice-age. The descent of presently montane taxa into the lowlands of Amazonia and Minas Gerais indicate temperature depressions ranging from 5[degrees]C to 9[degrees]C cooler-than-present. The strengthened incursion of southerly airmasses caused a reassortment of vegetation throughout Amazonia. Presently allopatric species are found to have been sympatric as novel forest assemblages and formed and dissolved. Modest drying, perhaps a 20% reduction in precipitation, accounts for all the records that show a Pleistocene expansion of savanna. No evidence is found to support the fragmentation of Amazonian forests during glacial times, and the hypothesis of forest refuges as an explanation of tropical speciation is rejected on empirical grounds.

  9. Live birth among Iguanian lizards predates Pliocene–Pleistocene glaciations

    PubMed Central

    Schulte, James A.; Moreno-Roark, Franck

    2010-01-01

    Among tetrapods, viviparity is estimated to have evolved independently within Squamata (lizards and snakes) more than 100 times, most frequently in species occupying cold climate environments. Because of this relationship with cold climates, it is sometimes assumed that many origins of squamate viviparity occurred over the past 2.5–4 Myr during the Pliocene–Pleistocene glaciations; however, this hypothesis is untested. Divergence-dating analysis on a 733-species tree of Iguanian lizards recovers 20 independent lineages that have evolved viviparity, of which 13 multispecies groups derived live birth prior to glacial advances (8–66 Myr ago). These results place the transitions from egg-laying to live birth among squamates in a well-supported historical context to facilitate examination of the underlying phenotypic and genetic changes associated with this complex shift in reproduction. PMID:19812068

  10. Pleistocene changes in the fauna and flora of South america.

    PubMed

    Vuilleumier, B S

    1971-08-27

    In recent years, the view that Pleistocene climatic events played a major role in the evolution of the biotas of southern, primarily tropical continents has begun to displace the previously held conviction that these areas remained relatively stable during the Quaternary. Studies of speciation patterns of high Andean plant and avian taxa (7-14) have led to the conclusion that Pleistocene climatic events were the factors that ultimately shaped the patterns now observed in the paramo-puna and the related Patagonian flora and fauna. The final uplift of the Andes at the end of the Tertiary automatically limits the age of the high Andean habitats and their biotas to the Quaternary. Within this period, the number of ecological fluctuations caused by the glaciations could easily have provided the mechanism behind the patterns now present in these habitats (Appendix, 1; Figs. 1 and 2; Table 1). In glacial periods, when vegetation belts, were lowered, organisms in the paramo-puna habitat were allowed to expand their ranges. In interglacial periods, these taxa were isolated on disjunct peaks, where differentiation could occur. At times of ice expansion, glacial tongues and lakes provided local barriers to gene exchange, whereas in warm, interglacial times, dry river valleys were a major deterrent to the interbreeding of populations on different mountains (Fig. 2; Table 2). A preliminary analysis of about 10 to 12 percent of the total South American avifauna (14), subsequent to the study of the high Andean biota, suggested that the birds of all the major habitats of the continent possess, with about equal frequency, similar stages of speciation. This correspondence in levels of evolution indicated that the avifauna of vegetation zones which were thought to have been more stable (for example, tropical rainforests) are as actively speciating as are those of the more recent paramo-puna habitats. More intensive work on lowland tropical taxa (16, 19-21) and recent work on montane forest elements (40) now justify the conclusion that the floras and faunas of these areas were also greatly affected by Pleistocene climatic shifts. In the broad region of South America that lies within the tropics, a series of humid-arid cycles (Appendix, 6, 8-10) drastically and repeatedly altered vegetation patterns during the Quaternary. Both montane and lowland rainforests were fragmented during dry periods and were able to reexpand during humid phases. Speciation of forest elements was initiated-and sometimes completed-in isolated patches of the fragmented forest. Secondary contact, with hybridization or reunition of populations that did not become reproductively isolated, occurred in periods of reexpansion. These biological data, combined with supportive geological evidence (Appendix, 1-11), show that climatic events during the last million or so years have affected the biota of South America as much as the Pleistocene glacial changes affected the biotas of Eurasia and North America. Since most of South America lies within tropical latitudes, it is suggested here that part of the diversity of species in the tropical areas of this continent is due to two historical factors: the lack of wholesale elimination of species (compared with northern and high latitudes), and ample opportunity for speciation in successive periods of ecological isolation. The apparent paradox of the wealth of species in the "stable tropics" is partially explained by the fact that the tropics have probably been quite unstable, from the point of view of their biotas, during the Pleistocene and perhaps part of the Tertiary. PMID:17812182

  11. Earth's glacial record and its tectonic setting

    NASA Astrophysics Data System (ADS)

    Eyles, N.

    1993-09-01

    Glaciations have occurred episodically at different time intervals and for different durations in Earth's history. Ice covers have formed in a wide range of plate tectonic and structural settings but the bulk of Earth's glacial record can be shown to have been deposited and preserved in basins within extensional settings. In such basins, source area uplift and basin subsidence fulfill the tectonic preconditions for the initiation of glaciation and the accomodation and preservation of glaciclastic sediments. Tectonic setting, in particular subsidence rates, also dictates the type of glaciclastic facies and facies successions that are deposited. Many pre-Pleistocene glaciated basins commonly contain well-defined tectonostratigraphic successions recording the interplay of tectonics and sedimentation; traditional climatostratigraphic approaches involving interpretation in terms of either ice advance/retreat cycles or glacio-eustatic sea-level change require revision. The direct record of continental glaciation in Earth history, in the form of classically-recognised continental glacial landforms and "tillites", is meagre; it is probable that more than 95% of the volume of preserved "glacial" strata are glacially-influenced marine deposits that record delivery of large amounts of glaciclastic sediment to offshore basins. This flux has been partially or completely reworked by "normal" sedimentary processes such that the record of glaciation and climate change is recorded in marine successions and is difficult to decipher. The dominant "glacial" facies in the rock record are subaqueous debris flow diamictites and turbidites recording the selective preservation of poorly-sorted glaciclastic sediment deposited in deep water basins by sediment gravity flows. However, these facies are also typical of many non-glacial settings, especially volcanically-influenced environments; numerous Archean and Proterozoic diamictites, described in the older literature as tillites, have no clearly established glacial parentage. The same remarks apply to many successions of laminated and thin-bedded facies interpreted as "varvites". Despite suggestions of much lower values of solar luminosity (the weak young sun hypothesis), the stratigraphic record of Archean glaciations is not extensive and may be the result of non-preservation. However, the effects of very different Archean global tectonic regimes and much higher geothermal heat flows, combined with a Venus-like atmosphere warmed by elevated levels of CO 2, cannot be ruled out. The oldest unambiguous glacial succession in Earth history appears to be the Early Proterozoic Gowganda Formation of the Huronian Supergroup in Ontario; the age of this event is not well-constrained but glaciation coincided with regional rifting, and may be causally related to, oxygenation of Earth's atmosphere just after 2300 Ma. New evidence that oxygenation is tectonically, not biologically driven, stresses the intimate relationship between plate tectonics, evolution of the atmosphere and glaciation. Global geochemical controls, such as elevated atmospheric CO 2 levels, may be responsible for a long mid-Proterozoic non-glacial interval after 2000 Ma that was terminated by the Late Proterozoic glaciations just after 800 Ma. A persistent theme in both Late Proterozoic and Phanerozoic glaciations is the adiabatic effect of tectonic uplift, either along collisional margins or as a result of passive margin uplifts in areas of extended crust, as the trigger for glaciation; the process is reinforced by global geochemical feedback, principally the drawdown of atmospheric CO 2 and Milankovitch "astronomical" forcing but these are unlikely, by themselves, to inititiate glaciation. The same remarks apply to late Cenozoic glaciations. Late Proterozoic glacially-influenced strata occur on all seven continents and fall into two tectonostratigraphic types. In the first category are thick sucessions of turbidites and mass flows deposited along active, compressional plate margins recording a protracted and complex phase of supercontinent assembly between 800 and 550 Ma. Local cordilleran glaciations of volcanic peaks is indicated. Many deposits are preserved within mobile belts that record the subduction of interior oceans now preserved as "welds" between different cratons. Discrimination between glacially-influenced and non-glacial, volcaniclastic mass flow successions continues to be problematic. The second tectonostratigraphic category of Late Proterozoic glacial strata includes successions of glacially-influenced, mostly marine strata deposited along rifted, extensional plate margins. The oldest (Sturtian) glaciclastic sediments result from the break-out of Laurentia from the Late Proterozoic supercontinent starting around 750 Ma along its "palaeo-Pacific" margin with a later (Marinoan) phase of rifting at about 650 Ma. "Passive margin" uplifts and the generation of "adiabatic" ice covers on uplifted crustal blocks triggered widespread glaciation along the "palaeo-Pacific" margin of North America and in Australia. A major phase of rifting along the opposite ("palaeo-Atlantic") margin of Laurentia occurred after 650 Ma and is similarly recorded by glaciclastic strata in basins preserved around the margins of the present day North Atlantic Ocean. Glaciation of the west African platform after 650 Ma is closely related to collision of the West African and Guyanan cratons and uplift of the orogenic belt; the same process, involving uplift around the northern and western margins of the Afro-Arabian platform subsequently triggered Late Ordovician glaciation at about 440 Ma when the south polar region lay over North Africa. Early Silurian glaciation in Bolivia and Brazil was followed by a non-glacial episode and renewed Late Devonian glaciation of northern Brazil and Bolivia. The latter event may have resulted from rotation of Gondwana under the South Pole combined with active orogenesis along the western margin of the supercontinent. Hercynian uplift along the western margin of South America caused by the collision and docking of "Chilinia" at about 350 Ma (Late Tournasian—Early Visean) was the starting point of a long Late Palaeozoic glacial record that terminated at about 255 Ma (Kungurian-Kazanian) in western Australia. The arrival of large landmasses at high latitude may have been an important precondition for ice growth. Strong Namurian uplift around virtually the entire palaeo-Pacific rim of Gondwana culminated in glaciation of the interior of the supercontinent during the latest Westphalian (c. 300 Ma). There is a clear picture of plate margin compression and propagation of "far field" stresses to the plate interior allowing preservation of glacially-influenced strata in newly-rifted intracratonic basins. Many basins show a "steer's head" style of infill architecture recording successive phases of subsidence and overstepping of younger strata during basin subsidence and expansion. Exploration for oil and gas in Gondwanan glaciated basins is currently a major stimulus to understanding the relationship between tectonics and sedimentation. Warm Mesozoic palaeoclimates do not rule out the existence of restricted ice covers in the interiors of continental landmasses at high palaeolatitudes (e.g. Siberia, Antarctica) but there is as yet, no direct geological record of their existence. The most likely record of glaciers is contained in Late Jurassic and early Cretaceous strata. In any event, these ice masses are unlikely to have had any marked effect on global sea levels and alternative explanations should perhaps be sought for 4th order, so-called "glacio-eustatic" changes in sea level, inferred from Triassic, Jurassic and Cretaceous strata. The growth of extensive Northern Hemisphere ice sheets in Plio-Pleistocene time (c. 2.5 Ma) was the culmination of a long global climatic deterioration that began sometime after 60 Ma during the late Tertiary. Tectonic uplift of areas such as the Tibetan Plateau and plate tectonic reorganizations have been identified as first-order controls. Initiation of the East Antarctic ice sheet, at about 36 Ma, is the result of the progressive thermal isolation of the continent combined with uplift along the Transantarctic Mountains. In the Northern Hemisphere, the upwarping of extensive passive margin plateaux around the margins of the newly-rifted North Atlantic may have amplified global climatic changes and set the scene for the growth of continental ice sheets after 2.5 Ma. Ice sheet growth and decay was driven by complexly interrelated changes in ocean circulation, Milankovitch orbital forcing and global geochemical cycles. It is arguable whether continental glaciations of the Northern Hemisphere, and the evolution of hominids, would have occurred without the necessary precondition of tectonic uplift.

  12. Somma-Vesuvius ground deformation over the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Marturano, Aldo; Aiello, Giuseppe; Barra, Diana

    2013-04-01

    Vertical ground movements at Somma-Vesuvius during the last glacial cycle have been inferred from micropalaeontological and petrochemical analyses of rock samples from boreholes drilled at the archaeological sites of Herculaneum and Pompeii as well as on the apron of the volcano and the adjacent Sebeto and Sarno Valleys. Opposing movements occurred during the periods preceding and following the Last Glacial Maximum (LGM). The uplift began 20 ka ago with marine deposits rising several tens of metres up to 25 m a.s.l., recovering previous subsidence which occurred during the Late glacial period, suggesting a strict connection between volcano-tectonic and glacial cycles. Here we present the analysis of deposits predating the LGM, which confirms subsidence of the Campanian Plain where Mt. Somma-Vesuvius is located, shows variable surface loading effects and highlights the volcano-tectonic stages experienced by the volcano. The self-balancing mechanism of the volcanic system, evolving towards an explosive, subaerial activity 60 ka ago, is testified to by a large ground oscillation in phase with sea level change during the last glacial cycle.

  13. Diatoms in the Zaire deep-sea fan and pleistocene palaeoclimatic trends in the Angola Basin and West equatorial Africa

    NASA Astrophysics Data System (ADS)

    Mikkelsen, Naja

    The marine diatom assemblages remain almost constant during the glacial-interglacial cycles of the Middle and Late Pleistocene. The abundance patterns of diatoms point to a comparatively higher glacial than interglacial productivity. Significantly higher abundances of Thalassionema sp. in cold than in warm core sections indicate a stronger glacial than interglacial productivity. Preservation is notably better in cold than in warm periods. Brackish-water and fresh-water diatoms occur consistently, and the brackish forms totally dominate the assemblages of warm climatic events. This points to predominantly wet interglacial conditions in parts of the drainage area of the Zaire river. Phytoliths and plant cuticles occur in highest abundance in glacial core intervals. Low amounts of plant debris in interglacial core sections are ascribed to intense productivity and immediate decomposition of material in the humid equatorial rain forest. Commonly occurring grass plant cuticles have a burnt image in glacial core sections. This mirrors the glacial reduction of the rain forest in favour of a dry and inflammable savannah vegetation, where intensified glacial trade winds carried the charred plant material to the Angola Basin.

  14. Reduced ventilation and enhanced magnitude of the deep Pacific carbon pool during the last glacial period

    NASA Astrophysics Data System (ADS)

    Skinner, L.; McCave, I. N.; Carter, L.; Fallon, S.; Scrivner, A. E.; Primeau, F.

    2015-02-01

    It has been proposed that the ventilation of the deep Pacific carbon pool was not significantly reduced during the last glacial period, posing a problem for canonical theories of glacial-interglacial CO2 change. However, using radiocarbon dates of marine tephra deposited off New Zealand, we show that deep- (> 2000 m) and shallow sub-surface ocean-atmosphere 14C age offsets (i.e. "reservoir-" or "ventilation" ages) in the southwest Pacific increased by ˜1089 and 337 yrs respectively, reaching ˜2689 and ˜1037 yrs during the late glacial. A comparison with other radiocarbon data from the southern high-latitudes suggests that broadly similar changes were experienced right across the Southern Ocean. If, like today, the Southern Ocean was the main source of water to the glacial ocean interior, these observations would imply a significant change in the global radiocarbon inventory during the last glacial period, possibly equivalent to an increase in the average radiocarbon age > 2 km of ˜ 700 yrs. Simple mass balance arguments and numerical model sensitivity tests suggest that such a change in the ocean's mean radiocarbon age would have had a major impact on the marine carbon inventory and atmospheric CO2, possibly accounting for nearly half of the glacial-interglacial CO2 change. If confirmed, these findings would underline the special role of high latitude shallow sub-surface mixing and air-sea gas exchange in regulating atmospheric CO2 during the late Pleistocene.

  15. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations.

    PubMed

    Lund, D C; Asimow, P D; Farley, K A; Rooney, T O; Seeley, E; Jackson, E W; Durham, Z M

    2016-01-29

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Melt production is apparently modulated by glacial-interglacial changes in sea level, raising the possibility that magmatic flux acts as a negative feedback on ice-sheet size. The timing of melt variability is poorly constrained, however, precluding a clear link between ridge magmatism and Pleistocene climate transitions. Here we present well-dated sedimentary records from the East Pacific Rise that show evidence of enhanced hydrothermal activity during the last two glacial terminations. We suggest that glacial maxima and lowering of sea level caused anomalous melting in the upper mantle and that the subsequent magmatic anomalies promoted deglaciation through the release of mantle heat and carbon at mid-ocean ridges. PMID:26823422

  16. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations

    NASA Astrophysics Data System (ADS)

    Lund, D. C.; Asimow, P. D.; Farley, K. A.; Rooney, T. O.; Seeley, E.; Jackson, E. W.; Durham, Z. M.

    2016-01-01

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Melt production is apparently modulated by glacial-interglacial changes in sea level, raising the possibility that magmatic flux acts as a negative feedback on ice-sheet size. The timing of melt variability is poorly constrained, however, precluding a clear link between ridge magmatism and Pleistocene climate transitions. Here we present well-dated sedimentary records from the East Pacific Rise that show evidence of enhanced hydrothermal activity during the last two glacial terminations. We suggest that glacial maxima and lowering of sea level caused anomalous melting in the upper mantle and that the subsequent magmatic anomalies promoted deglaciation through the release of mantle heat and carbon at mid-ocean ridges.

  17. Late Pleistocene upland stratigraphy of the western Delmarva Peninsula, USA

    NASA Astrophysics Data System (ADS)

    Lowery, Darrin L.; O'Neal, Michael A.; Wah, John S.; Wagner, Daniel P.; Stanford, Dennis J.

    2010-06-01

    New pedological, geological, archaeological, and geochronological data from the Miles Point site in eastern Maryland are compared with similar data from other nearby sites to develop a framework for interpreting the upland stratigraphy in the western Delmarva Peninsula. Our results indicate the presence of two different intervals of loess deposition. The earlier loess (Miles Point Loess) was deposited between 41 and 25 ka. A paleosol (Tilghman Soil) formed in this loess was initially developed in grasslands and boreal environments during a subsequent period of landscape stability between 25 and 18 ka. Between 18 and 12.8 ka, the Miles Point Loess and the Tilghman Soil were eroded in many areas as evidenced by diagnostic ca. 12.8 ka Clovis-age artifacts lying unconformably on the Tilghman Soil. Cores adjacent to the deep channel area of the Chesapeake Bay confirm this erosional unconformity prior to 12.7 ka. A relatively uniform terminal-Pleistocene loess (Paw Paw), deposited prior to the Early Archaic period, buried Clovis-age lag artifacts and other archaeological remains older than 13.2 ka. Stratigraphic evidence from the Late Pleistocene lower Susquehanna River Valley suggests that the Paw Paw Loess is the result of eolian redeposition and reworking of non-glacial eroded upland sediments that filled the valley between 12.7 and 11.5 ka.

  18. Pleistocene marine ice sheets and ice shelves at the East Siberian continental margin

    NASA Astrophysics Data System (ADS)

    Niessen, Frank; Kuk Hong, Jong; Hegewald, Anne; Matthiessen, Jens; Stein, Rüdiger; Kim, Sookwan; Jensen, Laura; Jokat, Wilfried; Nam, Seung Il

    2014-05-01

    RV "Polarstern" cruise ARK-XIII/3 (2008) and RV "Araon" cruise ARA03B (2012) investigated an area in the Arctic Ocean located between the Chukchi Borderland and the East Siberian Sea (between 165°W and 170°E). Based on swath bathymetry, sediment echosounding, seismic profiling and sediment coring we present evidence that the western Arctic Ocean had a glaciated continental margin during several glacial periods of the Pleistocene (Niessen et al. 2013). At the southern end of the Mendeleev Ridge and on the Chukchi and East Siberian continental slopes ice sheets and ice shelves grounded in up to 1200 m present water depth. We found mega-scale glacial lineations (MSGL) associated with deposition of glaciogenic wedges and debris-flow deposits indicative of sub-glacial erosion and deposition close to the former grounding lines. Glacially lineated areas are associated with large-scale erosion, capped with diamicton and draped by, in places, several metres of pelagic sediments. On the Arlis Plateau, a detailed bathymetric map exhibits several generations of MSGL, which we interpret as relicts of different Pleistocene glaciations. Traces of former grounding line positions suggest that an ice shelf of approximately 900 m in thickness has spread across the Southern Mendeleev Ridge in a north-easterly direction. According to our results, ice sheets of more than one km in thickness continued onto, and likely centered over, the East Siberian Shelf. A preliminary age model suggests that the youngest and shallowest grounding event of an ice sheet should be within Marine Isotope Stage (MIS) 3 and clearly predates the Last Glacial Maximum. The oldest and deepest event predates MIS 6. The youngest grounding event on the Arlis Plateau is tentatively dated to have occurred during MIS 4. These results have important implication for the former distribution of thick ice masses in the Arctic Ocean during the Pleistocene. They are relevant for albedo, ocean-atmosphere heat exchange, moisture supply to and freshwater export from the Arctic Ocean and the formation of submarine permafrost on the East Siberian Shelf. Niessen, F., Hong, J. K. , Hegewald, A. , Matthiessen, J. , Stein, R. , Kim, H. , Kim, S. , Jensen, L. , Jokat, W. , Nam, S. I. and Kang, S. H. (2013) Repeated Pleistocene glaciation of the East Siberian continental margin, Nature Geoscience, 6 (10), pp. 842-846.

  19. Hominin variability, climatic instability and population demography in Middle Pleistocene Europe

    NASA Astrophysics Data System (ADS)

    Dennell, Robin W.; Martinón-Torres, María; Bermúdez de Castro, José M.

    2011-06-01

    We propose a population model for Middle Pleistocene Europe that is based on demographic "sources" and "sinks". The former were a small number of "core" or populations in glacial refugia in southern Europe from which hominins expanded northwards in interstadial and interglacial periods; occupation outside glacial refugia would have been restricted to warm or temperate periods, and populations at the northern limit of the Middle Pleistocene range would have been "sink" populations in that they depended upon recruitment from source populations further south. Southwest Asia would also have been a likely source of immigrant, source populations. We argue as an alternative to an "ebb and flow" model in which groups retreated to refugia when conditions worsened that local extinction outside refugia would have been frequent. In extreme situations, Europe may have been a population "sink" (i.e. unpopulated) that was replenished from source populations in Southwest Asia. We suggest that this pattern of repeated colonisation and extinction may help explain the morphological variability of European Middle Pleistocene hominins, particularly Homo heidelbergensis and its apparent non-lineal evolution towards Homo neanderthalensis.

  20. A Holocene and latest Pleistocene pollen record from Lake Poukawa, Hawke's Bay, New Zealand

    NASA Astrophysics Data System (ADS)

    McGlone, M. S.

    2002-07-01

    Lake Poukawa is a small, shallow lake lying in the middle of extensive peatland in the Poukawa depression, central Hawke's Bay. Holocene peats (10 m at deepest point) overlie more than 200 m of sand, silt, clastic debris and infrequent thin peats and lacustrine sediments deposited during the late Pleistocene. Pollen analyses are presented for: a peat possibly dating to a late stage of the last interglacial or a warm interstadial of the last glacial; cool climate last glacial sediments; and a Holocene peat. The last interglacial or interstadial peat records a cool climate Nothofagus podocarp forest. During the last glacial, sparse shrubland and grassland grew within the depression under much drier and colder conditions than now. There is no pollen record for the Late Glacial and early Holocene period as conditions remained too dry for peat formation. Avian fossils indicate scrub and grassland persisted through until at least 10,600 years BP, and scrub or open forest may have prevailed until c. 6500 years BP. Closed podocarp broadleaved forest ( Prumnopitys taxifolia dominant) occupied the depression from at least 6500 years BP until its destruction by Polynesian settlers after 800 years BP. Water levels rose from 6500 to 4500 years BP, culminating in the establishment of the present fluctuating lake-peatland system. Dry conditions in the Late Glacial and early Holocene may reflect a predominant northwesterly air flow, and a change to more easterly and southerly air flow in the mid- to late Holocene resulted in increased rainfall.

  1. Ages and inferred causes of late Pleistocene glaciations on Mauna Kea, Hawai'i

    USGS Publications Warehouse

    Pigati, J.S.; Zreda, M.; Zweck, C.; Almasi, P.F.; Elmore, D.; Sharp, W.D.

    2008-01-01

    Glacial landforms on Mauna Kea, Hawai'i, show that the summit area of the volcano was covered intermittently by ice caps during the Late Pleistocene. Cosmogen 36Cl dating of terminal moraines and other glacial landforms indicates that the last two ice caps, called Older Makanaka and Younger Makanaka, retreated from their maximum positions approximately 23ka and 13ka, respectively. The margins and equilibrium line altitudes of these ice caps on the remote, tropical Pacific island were nearly identical, which would seem to imply the same mechanism for ice growth. But modelling of glacier mass balance, combined with palaeotemperature proxy data from the subtropical North Pacific, suggests that the causes of the two glacial expansions may have been different. Older Makanaka airatop Mauna Kea was likely wetter than today and cold, whereas Younger Makanaka times were slightly warmer but significantly wetter than the previous glaciation. The modelled increase in precipitation rates atop Mauna Kea during the Late Pleistocene is consistent with that near sea level inferred from pollen data, which suggests that the additional precipitation was due to more frequent and/ or intense tropical storms associated with eastward-moving cold fronts. These conditions were similar to modern La Ni??a (weak ENSO) conditions, but persisted for millennia rather than years. Increased precipitation rates and the resulting steeper temperature lapse rates created glacial conditions atop Mauna Kea in the absence of sufficient cooling at sea level, suggesting that if similar correlations existed elsewhere in the tropics, the precipitation-dependent lapse rates could reconcile the apparent difference between glacial-time cooling of the tropics at low and high altitudes. Copyright ?? 2008 John Wiley & Sons, Ltd.

  2. What drives glacial cycles

    SciTech Connect

    Broecker, W.S.; Denton, G.H.

    1990-01-01

    The Milankovitch theory advocates that the glacial cycles have three components: the tilt of the earth's spin axis; the shape of the earth's orbit; and the interaction between the tilt and the eccentricity effects. These three factors work together to vary the amount of sunshine reaching the high northern latitudes in summer and allow the great ice sheets to grow during intervals of cool summers and mild winters. Evidence is presented which indicates that the circulation pattern of the Atlantic ocean was shifted dramatically about 14,000 years ago, at the same time that glaciers in both hemispheres started to retreat. The authors believe that massive reorganizations of the ocean-atmosphere system are the key events that link cyclic changes in the earth's orbit to the advance and retreat of ice sheet.

  3. Millennial-scale varnish microlamination dating of late Pleistocene geomorphic features in the drylands of western USA

    NASA Astrophysics Data System (ADS)

    Liu, Tanzhuo; Broecker, Wallace S.

    2013-04-01

    Varnish microlamination (VML) dating is a climate-based correlative age determination technique used to correlate and date various geomorphic features in deserts. In this study, we establish a generalized late Pleistocene (18-74 ka) millennial-scale microlamination sequence in fine-grained, fast-accumulating rock varnish for the drylands of western USA, radiometrically calibrate the sequence and correlate it with the δ18O record in the GISP2 Greenland ice core. We then use this climate-correlated varnish microstratigraphy to estimate surface exposure ages for radiometrically dated late Pleistocene geomorphic features in the study region. The VML dating of debris flow deposits on the Sehoo recessional shorelines of Lake Lahontan at the Jessup embayment of central Nevada yields a minimum-limiting age of 14.95-15.95 ka, in good agreement with a calibrated 14C age of 15.22 ± 0.12 ka for the timing of the lake recession. The VML dating of a giant ejecta block on the rim of Meteor Crater in northern Arizona yields a minimum-limiting age of 49.15 ka, closely matching a thermoluminescence (TL) age of 49 ± 3 ka and slightly younger than a recently updated cosmogenic 36Cl age of 56.0 ± 2.4 ka for the meteor impact event. The VML dating of distal Q2c fan surfaces on Hanaupah Canyon alluvial fan in Death Valley, California, yields a minimum-limiting age of 73.55 ka, in accord with cosmogenic 36Cl depth-profile ages of 66 + 22/-14 ka and 72 + 24/- 20 ka for the same fan deposits. The close agreement between the VML age estimates and the independently derived radiometric ages for these geomorphic features attests to the validity and reliability of millennial-scale VML dating. To further assess its potential in desert geomorphological research, we use the VML method to study alluvial-fan responses to millennial-scale climatic changes. The VML dating of a small tributary fan in Death Valley reveals two episodes of fan aggradation, one ceasing at 73.55-86.75 ka during the dry period of the last interglacial (MIS 5a) and the other finishing at 66.15 ka during the wet period of the last glacial (MIS 4). The VML and 36Cl dating of the distal Q2c fan surfaces on Hanaupah Canyon fan reveal two episodes of large-scale fan aggradation ended at 72 + 24/- 20 ka and 73.55 ka during the wet period of MIS 4. Fanhead incision and associated within-channel or fantoe aggradation are found to take place during the relatively dry period of the glacial-to-interglacial climatic transition (12-24 ka) and the Holocene interglacial dry period (0-12 ka). These data indicate that, on the millennial to sub-Milankovitch timescale (~ 103-104 years), fan aggradation is a discrete sedimentational process under various climatic conditions. Because fan aggradation is ultimately controlled by the intensity and frequency of precipitation events - which in turn are modulated by major climatic oscillations such as Heinrich events, Dansgaard/Oeschger (DO) events, and glacial/interglacial shifts - these major climatic changes could be the pacemaker of regionally contemporaneous large-area fan segmentation.

  4. Simulating the mid-Pleistocene transition through regolith removal

    NASA Astrophysics Data System (ADS)

    Tabor, Clay R.; Poulsen, Christopher J.

    2016-01-01

    Quaternary δ18O ice-volume proxy records show a transition from high frequency, small-amplitude glacial cycles to low frequency, large-amplitude glacial cycles. This reorganization of the climate system, termed the mid-Pleistocene transition (MPT), is thought to reflect a change in land-ice response to orbital forcing, despite no significant change in orbital cycles during this period. One potential explanation for the MPT proposes that gradual erosion of high-latitude northern hemisphere regolith by multiple cycles of glaciation caused a transition in ice sheet response to external forcing. Here, we explore this "regolith hypothesis" using a complex Earth system model. We show that simulating a transition from deformable sediment to crystalline bedrock produces an evolution in ice-volume response similar to proxy reconstructions of the MPT. The simulated change in ice-volume response is due to a combination of climate and ice-flow changes, with crystalline bedrock producing thicker, colder ice sheets that accumulate more snowfall and have a smaller ablation zone. Further, experiments that include transient eccentricity-amplifying CO2 forcing show only small differences in ice response compared to those with orbital forcing only, suggesting that cycles of CO2 were not the primary cause of the MPT.

  5. Coastal staircase sequences reflecting sea-level oscillations and tectonic uplift during the Quaternary and Neogene

    NASA Astrophysics Data System (ADS)

    Pedoja, Kevin; Husson, Laurent; Johnson, Markes E.; Melnick, Daniel; Witt, Cesar; Pochat, Stéphane; Nexer, Maëlle; Delcaillau, Bernard; Pinegina, Tatiana; Poprawski, Yohann; Authemayou, Christine; Elliot, Mary; Regard, Vincent; Garestier, Franck

    2014-05-01

    Many coasts feature sequences of Quaternary and Neogene shorelines that are shaped by a combination of sea-level oscillations and tectonics. We compiled a global synthesis of sea-level changes for the following highstands: MIS 1, MIS 3, MIS 5e and MIS 11. Also, we date the apparent onset of sequences of paleoshorelines either from published data or tentatively extrapolating an age for the uppermost, purported oldest shoreline in each sequence. Including the most documented MIS 5e benchmark, we identify 926 sequences out of which 185 also feature Holocene shorelines. Six areas are identified where elevations of the MIS 3 shorelines are known, and 31 feature elevation data for MIS 11 shorelines. Genetic relationships to regional geodynamics are further explored based on the elevations of the MIS 5e benchmark. Mean apparent uplift rates range from 0.01 ± 0.01 mm/yr (hotspots) to 1.47 ± 0.08 mm/yr (continental collision). Passive margins appear as ubiquitously uplifting, while tectonic segmentation is more important on active margins. From the literature and our extrapolations, we infer ages for the onset of formation for ~ 180 coastal sequences. Sea level fingerprinting on coastal sequences started at least during mid Miocene and locally as early as Eocene. Whether due to the changes in the bulk volume of seawater or to the temporal variations in the shape of ocean basins, estimates of eustasy fail to explain the magnitude of the apparent sea level drop. Thus, vertical ground motion is invoked, and we interpret the long-lasting development of those paleoshore sequences as the imprint of glacial cycles on globally uplifted margins in response to continental compression. The geomorphological expression of the sequences matches the amplitude and frequency of glacial cyclicity. From middle Pleistocene to present-day, moderately fast (100,000 yrs) oscillating sea levels favor the development of well identified strandlines that are distinct from one another. Pliocene and Lower Pleistocene strandlines associated with faster cyclicity (40,000 yrs) are more compact and easily merge into rasas, whereas older Cenozoic low-frequency eustatic changes generally led to widespread flat-lying coastal plains.

  6. Pleistocene sea-level fluctuations and human evolution on the southern coastal plain of South Africa

    NASA Astrophysics Data System (ADS)

    Compton, John S.

    2011-03-01

    Humans evolved in Africa, but where and how remain unclear. Here it is proposed that the southern coastal plain (SCP) of South Africa may have served as a geographical point of origin through periodic expansion and contraction (isolation) in response to glacial/interglacial changes in sea level and climate. During Pleistocene interglacial highstands when sea level was above -75 m human populations were isolated for periods of 360-3400 25-yr generations on the SCP by the rugged mountains of the Cape Fold Belt, climate and vegetation barriers. The SCP expands five-fold as sea level falls from -75 to -120 m during glacial maxima to form a continuous, unobstructed coastal plain accessible to the interior. An expanded and wet glacial SCP may have served as a refuge to humans and large migratory herds and resulted in the mixing of previously isolated groups. The expansive glacial SCP habitat abruptly contracts, by as much as one-third in 300 yr, during the rapid rise in sea level associated with glacial terminations. Rapid flooding may have increased population density and competition on the SCP to select for humans who expanded their diet to include marine resources or hunted large animals. Successful adaptations developed on an isolated SCP are predicted to widely disperse during glacial terminations when the SCP rapidly contracts or during the initial opening of the SCP in the transition to glacial maxima. The hypothesis that periodic expansion and contraction of the SCP, as well as the coastal plain of North Africa, contributed to the stepwise origin of our species over the last 800 thousand years (kyr) is evaluated by comparing the archeological, DNA and sea-level records. These records generally support the hypothesis, but more complete and well dated records are required to resolve the extent to which sea-level fluctuations influenced the complex history of human evolution.

  7. Range wide molecular data and niche modeling revealed the Pleistocene history of a global invader (Halyomorpha halys)

    PubMed Central

    Zhu, Geng-Ping; Ye, Zhen; Du, Juan; Zhang, Dan-Li; Zhen, Ya-hui; Zheng, Chen-guang; Zhao, Li; Li, Min; Bu, Wen-Jun

    2016-01-01

    Invasive species’ Pleistocene history contains much information on its present population structure, dispersability and adaptability. In this study, the Pleistocene history of a global invasive pest (Brown Marmorated Stink Bug BMSB, Halyomorpha halys) was unveiled using the coupled approach of phylogeography and ecological niche modelling. Rangewide molecular data suggests that the Taiwan and other native populations had diverged in mid-Pleistocene. In mainland China, the native BMSB did not experience population contraction and divergence during last glacial, but persisted in interconnected populations. Combined Bayesian Skyline Plot (BSP) and niche modelling revealed a rapid expansion occurred during the transition of Last Inter Glacial (LIG) to Last Glacial Maximum (LGM). High genetic diversity and multi-reticular haplotypes network exist in the original sources populations of BMSB invasion in northern China. They were speculated to be colonized from the central China, with many derived haplotypes evolved to adapt the novel environment. The ENM future prediction suggest that BMSB may expand northward to higher latitudes in the US and Europe, because of its high invasive ability, together with the available suitable climate space there. PMID:26996353

  8. Range wide molecular data and niche modeling revealed the Pleistocene history of a global invader (Halyomorpha halys).

    PubMed

    Zhu, Geng-Ping; Ye, Zhen; Du, Juan; Zhang, Dan-Li; Zhen, Ya-Hui; Zheng, Chen-Guang; Zhao, Li; Li, Min; Bu, Wen-Jun

    2016-01-01

    Invasive species' Pleistocene history contains much information on its present population structure, dispersability and adaptability. In this study, the Pleistocene history of a global invasive pest (Brown Marmorated Stink Bug BMSB, Halyomorpha halys) was unveiled using the coupled approach of phylogeography and ecological niche modelling. Rangewide molecular data suggests that the Taiwan and other native populations had diverged in mid-Pleistocene. In mainland China, the native BMSB did not experience population contraction and divergence during last glacial, but persisted in interconnected populations. Combined Bayesian Skyline Plot (BSP) and niche modelling revealed a rapid expansion occurred during the transition of Last Inter Glacial (LIG) to Last Glacial Maximum (LGM). High genetic diversity and multi-reticular haplotypes network exist in the original sources populations of BMSB invasion in northern China. They were speculated to be colonized from the central China, with many derived haplotypes evolved to adapt the novel environment. The ENM future prediction suggest that BMSB may expand northward to higher latitudes in the US and Europe, because of its high invasive ability, together with the available suitable climate space there. PMID:26996353

  9. A morphometric analysis of the Late Pleistocene Human Skeleton from the Moh Khiew Cave in Thailand.

    PubMed

    Matsumura, Hirofumi; Pookajorn, Surin

    2005-01-01

    Few Late Pleistocene human remains have been found in Southeast Asia and the morphological features of the people of that age are still largely unknown due to the virtual lack of human remains in the area. Recent excavations at the Moh Khiew Cave in Thailand resulted in the discovery of a Late Pleistocene human skeleton in a relatively good state of preservation. An AMS radiocarbon date on the charcoal sample gathered from the burial gave a result of 25,800 +/- 600 BP, implying that the inhabitants of Moh Khiew Cave resided in a part of Sundaland during the last glacial age. In debates on the population history of Southeast Asia, it has been repeatedly advocated that Southeast Asia was occupied by indigenous people akin to present-day Australo-Melanesians prior to an expansion of migrants from Northeast Asia into this area. Morphometric analyses were undertaken to test the validity of this hypothesis. In the present study, cranial and dental measurements recorded from the Moh Khiew remains are compared with those of early and modern samples from Southeast Asia and Australia. These comparisons demonstrate that the Moh Khiew specimen resembles the Late Pleistocene series from Coobool Creek, Australia in both cranial and dental measurements. These results suggest that the Moh Khiew skeleton, as well as other fossil remains from the Tabon, Niah and Gua Gunung sites, represents a member of the Sundaland population during the Late Pleistocene, who may share common ancestry with the present-day Australian Aborigines and Melanesians. PMID:16130834

  10. Small mammal diversity loss in response to late-Pleistocene climatic change.

    PubMed

    Blois, Jessica L; McGuire, Jenny L; Hadly, Elizabeth A

    2010-06-10

    Communities have been shaped in numerous ways by past climatic change; this process continues today. At the end of the Pleistocene epoch about 11,700 years ago, North American communities were substantially altered by the interplay of two events. The climate shifted from the cold, arid Last Glacial Maximum to the warm, mesic Holocene interglacial, causing many mammal species to shift their geographic distributions substantially. Populations were further stressed as humans arrived on the continent. The resulting megafaunal extinction event, in which 70 of the roughly 220 largest mammals in North America (32%) became extinct, has received much attention. However, responses of small mammals to events at the end of the Pleistocene have been much less studied, despite the sensitivity of these animals to current and future environmental change. Here we examine community changes in small mammals in northern California during the last 'natural' global warming event at the Pleistocene-Holocene transition and show that even though no small mammals in the local community became extinct, species losses and gains, combined with changes in abundance, caused declines in both the evenness and richness of communities. Modern mammalian communities are thus depauperate not only as a result of megafaunal extinctions at the end of the Pleistocene but also because of diversity loss among small mammals. Our results suggest that across future landscapes there will be some unanticipated effects of global change on diversity: restructuring of small mammal communities, significant loss of richness, and perhaps the rising dominance of native 'weedy' species. PMID:20495547

  11. Optically Stimulated Luminescence Dating of Glacial Outwash Spanning the Last Glacial Cycle on the Western Olympic Peninsula, Washington, USA

    NASA Astrophysics Data System (ADS)

    Marshall, K. J.; Thackray, G. D.; Rittenour, T. M.

    2012-12-01

    Valley glaciers in the Olympic Mountains, Washington coalesced and advanced onto the Pacific coastal lowlands six times during Late Pleistocene time. With each advance, the valley glaciers constructed extensive landforms and thick stratigraphic sequences. Along the coast of the Olympic Peninsula, between the Hoh and Queets Rivers, wave-cut sea cliffs expose alternating sequences of outwash fans formed during periods of glacial advance and marine transgressive facies formed during periods of sea-level high stand. Previous work, encompassing geomorphic mapping of inland and coastal outcrops, stratigraphy, stratigraphic correlation, and radiocarbon dating, established a provisional glacial chronology for the Olympic coast, but was limited to the range of radiocarbon dating. Within the sea cliffs, three primary units of outwash were identified: the Hoh Oxbow (MIS 3), Lyman Rapids (MIS 4 or 5b), and Steamboat Creek outwash (MIS 6 or older). The outwash units are generally bounded by interglacial sea-level high stand sediments or interstadial terrestrial sediment. Our new investigations utilize detailed sedimentology and stratigraphy, mapping of geomorphic sequences, and optically stimulated luminescence (OSL) dating to extend and solidify the coastal glacial chronology. OSL methods provide a means to date outwash sequences directly and enable dating of previously undateable older sediments. The quartz in these sediments appears to be fully bleached and retains the luminescence signal. Furthermore, at two locations where both radiocarbon and OSL methods were applied on the same sediments, the ages are indistinguishable, indicating that OSL is reliable in these settings. Preliminary OSL ages from the outwash units indicate valley glacier advances on the Olympic Peninsula during Hoh Oxbow (MIS 3, ca. 30-50 ka), Lyman Rapids (MIS 4, ca. 50-80 ka), and Steamboat Creek (MIS 5d or older, >/= 105 ka). Additionally, general sediment fining up-section suggests a decrease in maximum glacial extent from the Steamboat Creek to the Hoh Oxbow advances.

  12. Pleistocene and pre-Pleistocene Begonia speciation in Africa.

    PubMed

    Plana, Vanessa; Gascoigne, Angus; Forrest, Laura L; Harris, David; Pennington, R Toby

    2004-05-01

    This paper presents a historical biogeographic analysis of African Begonia based on combined internal transcribed spacer (ITS) and trnL intron sequences. Age range estimates for Begonia in Africa ranged from only 1.5 Ma for some terminal nodes to 27 Ma for basal nodes when the ages of Réunion (2 Ma) andMayotte (5.4 Ma) were used to date the split between Begonia salaziensis and Begonia comorensis. Assuming a more recent origin age for Begonia salaziensis (2 Ma) provided age estimates in other parts of the phylogeny which agreed with patterns observed in other African organisms. A large proportion of the Begonia diversity seen today in Africa is of pre-Pleistocene origin. Species of Pleistocene origin are concentrated in species-rich groups such as sections Loasibegonia, Scutobegonia, and Tetraphila, which have their centre of diversity in western Central Africa. Phylogenetically isolated taxa such as Begonia longipetiolata, Begonia iucunda, and Begonia thomeana date to the late Miocene, a period of extended aridification on the African continent that had severe effects on African rain forest species. A general pattern is identified where phylogenetically isolated species occur outside the main identified rain forest refuges. Endemic species on the island of São Tomé such as Begonia baccata, Begonia molleri, and Begonia subalpestris appear to be palaeoendemics. Of these species, the most recent age estimate is for B. baccata, which is dated at ca. 3 Ma. Therefore, São Tomé appears to have functioned as an important (if previously unrecognised) pre-Pleistocene refuge. On the mainland, areas such as the Massif of Chaillu in Gabon, southern Congo (Brazzaville), and far western areas of Congo (Kinshasa) have played similar roles to São Tomé. PMID:15062787

  13. Early Pleistocene sea level and millennial-scale climate fluctuations: a view from the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Alix Jakob, Kim; Friedrich, Oliver; Pross, Jörg

    2015-04-01

    This project aims at deciphering the rate of sea level variability and its effect on millennial-scale climate fluctuations during the final phase of the intensification of northern hemisphere glaciation (NHG). Millennial-scale climate fluctuations appear to have changed significantly at glacial-interglacial time scales during the late Pliocene and Pleistocene. Thereby, millennial-scale climate fluctuations under a warmer climate during late Pliocene and early Pleistocene show markedly lower ampitudes compared to the fluctuations of the late Pleistocene. Numerous Pleistocene proxy records (e.g. McManus et al., 1999) suggest that this difference can be explained by an ice-volume/sea-level threshold that amplifies millennial-scale climate fluctuations and was not reached prior to the Mid-Pleistocene Transition (MPT). However, new records question the existence of this threshold (Bolton et al., 2010) and indicate that either the amplification of millennial-scale climate fluctuations before the MPT required a higher ice-volume threshold than in the late Pleistocene, that ice-volume had no significant effect on the amplitude of climate fluctuations, and/or the available sea level estimates for the early Pleistocene are inaccurate. For identifying the mechanisms underlying the dynamics of early Pleistocene ice sheets, material from the tropical Pacific Ocean (ODP Site 849) is studied over a time interval from 2.6 to 2.4 Ma (marine isotope stages 104 to 96). In summary, the main deliverables are (1) the establishment of a precise δ18O chemostratigraphy using the benthic foraminifera Cibicidoides wuellerstorfi by tuning the δ18O dataset to the LR04 benthic isotope stack (Lisiecki & Raymo, 2005), and (2) providing high-resolution (˜700 years) Mg/Ca and δ18O datasets using the benthic foraminifera Oridorsalis umbonatus and the planktonic foraminifera Globigerinoides ruber. This combined geochemical approach will be used to address the following research questions: (1) Quantification of sea level change from 2.6 to 2.4 Ma; (2) Critically assess the hypothesis of an ice-volume threshold for millennial-scale climate amplification during the early Pleistocene (and if it exists, what its value was); (3) Detailed comparison with late Pleistocene glacials; (4) Model-data comparison to assess the fidelity of model-based sea level estimates; and (5) reconstruction of sea surface temperature fluctuations of the tropical Pacific. References Bolton, C.T., Wilson, P.A., Bailey, I., Friedrich, O., Beer, C.J., Becker, J., Baranwal, S., Schiebel, R. (2010): Millennial-scale climate variability in the subpolar North Atlantic Ocean during the late Pliocene. Paleoceanography 25, doi:10.1029/2010PA001951. Lisiecki, L.E. & Raymo, M.E. (2005): A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, doi:10.1029/2004PA 001071. McManus, J., Oppo, D.W., Cullen, J.L. (1999): A 0.5-Million-Year Record of Millenial-Scale Climate Variability in the North Atlantic. Science 283, 971-975.

  14. Pleistocene-Holocene transition in the central Mississippi River valley

    NASA Astrophysics Data System (ADS)

    Van Arsdale, Roy B.; Cupples, William B.; Csontos, Ryan M.

    2014-06-01

    Within the northern Mississippi embayment the ancestral Mississippi River flowed south through the Western Lowlands and the ancestral Ohio River flowed through the Eastern Lowlands for most of the Pleistocene. Previous investigators have mapped and dated the terraces of their respective braid belts. This current research investigates the three-dimensional aspect of the Quaternary alluvium north of Memphis, Tennessee, through the interpretation of 3374 geologic well logs that are 91.4 m (300 ft) deep. The braid belts are capped by a thin silt/clay horizon (Pleistocene loess) that overlies gravelly sand, which in turn overlies sandy gravel. The base of the Pleistocene alluvium beneath the Ash Hill (27.3-24.6 ka), Melville Ridge (41.6-34.5 ka), and Dudley (63.5-50.1 ka) terraces of the Western Lowland slope southerly by 0.275 m/km and all have an average basal elevation of 38 m. Near Beedeville, Arkansas, the bases of these terraces descend 20 m across a northeast-striking down-to-the-southeast fault that coincides with the western margin of the Cambrian Reelfoot rift. The maximum depth of flow (lowest elevation of base of alluvium) occurred in the Eastern Lowlands and appears to have been the downstream continuation of the ancestral Ohio River Cache valley course in southern Illinois. In traversing from west to east in the Eastern Lowlands, the Sikeston braid belt (19.7-17.8 ka) has a basal elevation averaging 7 m, the Kennett braid belt (16.1-14.4 ka) averages 13 m, the Morehouse (12 ka) braid belt averages 24 m, and the Holocene (≤ 10 ka) Mississippi River floodplain has the highest average basal elevation at 37 m. Along this easterly traverse the base of the Quaternary alluvium rises and the age of alluvium decreases. The eastward thinning of the floodplain alluvium in the Eastern Lowlands appears to be caused by decreasing Mississippi River discharge as it transitioned from the Wisconsinan glacial maximum to the Holocene. The base of the Holocene Mississippi River floodplain averages 23 m higher in elevation than the Pleistocene floodplain bases in the Eastern Lowlands. This high suballuvial surface (platform) is bound by the tectonically uplifted Joiner ridge, Blytheville arch, Charleston uplift, and Bluff Line fault. The spatial relationship and similar histories of the platform and bounding structures suggest that Quaternary erosion and tectonics are related.

  15. The Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Clark, Peter U.; Dyke, Arthur S.; Shakun, Jeremy D.; Carlson, Anders E.; Clark, Jorie; Wohlfarth, Barbara; Mitrovica, Jerry X.; Hostetler, Steven W.; McCabe, A. Marshall

    2009-08-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ~14.5 ka.

  16. The Last Glacial Maximum.

    PubMed

    Clark, Peter U; Dyke, Arthur S; Shakun, Jeremy D; Carlson, Anders E; Clark, Jorie; Wohlfarth, Barbara; Mitrovica, Jerry X; Hostetler, Steven W; McCabe, A Marshall

    2009-08-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level approximately 14.5 ka. PMID:19661421

  17. Pleistocene Aridification Cycles Shaped the Contemporary Genetic Architecture of Southern African Baboons

    PubMed Central

    Sithaldeen, Riashna; Ackermann, Rebecca Rogers; Bishop, Jacqueline M.

    2015-01-01

    Plio-Pleistocene environmental change influenced the evolutionary history of many animal lineages in Africa, highlighting key roles for both climate and tectonics in the evolution of Africa’s faunal diversity. Here, we explore diversification in the southern African chacma baboon Papio ursinus sensu lato and reveal a dominant role for increasingly arid landscapes during past glacial cycles in shaping contemporary genetic structure. Recent work on baboons (Papio spp.) supports complex lineage structuring with a dominant pulse of diversification occurring 1-2Ma, and yet the link to palaeoenvironmental change remains largely untested. Phylogeographic reconstruction based on mitochondrial DNA sequence data supports a scenario where chacma baboon populations were likely restricted to refugia during periods of regional cooling and drying through the Late Pleistocene. The two lineages of chacma baboon, ursinus and griseipes, are strongly geographically structured, and demographic reconstruction together with spatial analysis of genetic variation point to possible climate-driven isolating events where baboons may have retreated to more optimum conditions during cooler, drier periods. Our analysis highlights a period of continuous population growth beginning in the Middle to Late Pleistocene in both the ursinus and the PG2 griseipes lineages. All three clades identified in the study then enter a state of declining population size (Nef) through to the Holocene; this is particularly marked in the last 20,000 years, most likely coincident with the Last Glacial Maximum. The pattern recovered here conforms to expectations based on the dynamic regional climate trends in southern Africa through the Pleistocene and provides further support for complex patterns of diversification in the region’s biodiversity. PMID:25970269

  18. Pleistocene aridification cycles shaped the contemporary genetic architecture of Southern African baboons.

    PubMed

    Sithaldeen, Riashna; Ackermann, Rebecca Rogers; Bishop, Jacqueline M

    2015-01-01

    Plio-Pleistocene environmental change influenced the evolutionary history of many animal lineages in Africa, highlighting key roles for both climate and tectonics in the evolution of Africa's faunal diversity. Here, we explore diversification in the southern African chacma baboon Papio ursinus sensu lato and reveal a dominant role for increasingly arid landscapes during past glacial cycles in shaping contemporary genetic structure. Recent work on baboons (Papio spp.) supports complex lineage structuring with a dominant pulse of diversification occurring 1-2Ma, and yet the link to palaeoenvironmental change remains largely untested. Phylogeographic reconstruction based on mitochondrial DNA sequence data supports a scenario where chacma baboon populations were likely restricted to refugia during periods of regional cooling and drying through the Late Pleistocene. The two lineages of chacma baboon, ursinus and griseipes, are strongly geographically structured, and demographic reconstruction together with spatial analysis of genetic variation point to possible climate-driven isolating events where baboons may have retreated to more optimum conditions during cooler, drier periods. Our analysis highlights a period of continuous population growth beginning in the Middle to Late Pleistocene in both the ursinus and the PG2 griseipes lineages. All three clades identified in the study then enter a state of declining population size (Nef) through to the Holocene; this is particularly marked in the last 20,000 years, most likely coincident with the Last Glacial Maximum. The pattern recovered here conforms to expectations based on the dynamic regional climate trends in southern Africa through the Pleistocene and provides further support for complex patterns of diversification in the region's biodiversity. PMID:25970269

  19. Variations in Glacial Erosion over Multiple Glacial-Interglacial Cycles

    NASA Astrophysics Data System (ADS)

    Headley, R. M.; Ehlers, T. A.

    2013-12-01

    Glacial erosion plays an important role in the construction and development of many mountain ranges. When modeling orogenic development, the choice of ice-flow physics can have an influence on developing topography, though many simple models can still produce the distinctive geomorphological features associated with glaciated topography. However, detailed comparisons at orogenic-time and length scales hold potential for quantifying the influence of glacial physics in landscape evolution models. Within a modified version of the ICE-Cascade landscape evolution model, we present results from a comparison between two different numerical models of glacial flow. This orogenic model calculates not only glaciological processes but also hillslope and fluvial erosion, sediment transport, isostasy, and temporally and spatially variable orographic precipitation. Over single and multiple glaciations and in a variety of climate scenarios, glacial erosion rates and topographic evolution are analyzed. We compare the predicted erosion patterns using a modified SIA as well as a nested, 3D Stokes-flow model calculated using COMSOL Multiphysics. The time-averaged erosion rates differ between the two models of ice physics. In addition, these results and the amount of variation between the models are sensitive to the climate and the ice temperature. For warmer climates with more sliding, the higher-order model leads to larger erosion rates, by almost an order of magnitude, also with more variance. Additionally, as the erosion, basal topography and the ice deformation are all interconnected through the glacial dynamics, comparisons of large-scale and glacier-wide properties can also be instructive. For these properties, particularly the ice thickness and extent, the higher-order glacial model can lead to variations between the ice flow models that are greater than 30%, again with larger differences for temperate ice. When compared after multiple glaciations and long-time scales, these results suggest that consideration of higher-order glacial physics may be necessary, particularly in regions with extensive temperate or polythermal glaciers.

  20. Sedimentary architecture of the Amundsen Sea Embayment shelf, West Antarctica, from pre-glacial to glacial processes

    NASA Astrophysics Data System (ADS)

    Gohl, Karsten; Uenzelmann-Neben, Gabriele; Hillenbrand, Claus-Dieter; Larter, Robert; Nitsche, Frank

    2013-04-01

    Studies of the sedimentary architecture and characteristics of Antarctic shelves provide clues of past ice sheet advance-retreat cycles and help improve constraints for paleo-ice dynamic models since early glacial periods. A first seismostratigraphic analysis of the Amundsen Sea Embayment shelf and slope of West Antarctica reveals insights into the structural architecture of the continental margin and shows stages of sediment deposition, erosion and transport history from pre-glacial times to early glaciation and to the most recent glacial periods. The shelf geometry consists of a large pre- and syn-rift basin in the middle shelf region between outcropping basement of the inner shelf and basement ridges and highs beneath the outer shelf. A middle shelf sub-basin exists which may have formed as a result of motion along an early West Antarctic Rift System branch. At least 4 km of pre-glacial strata has been eroded from the present inner shelf and coastal hinterland by ice sheet advances since the onset of glaciation. Some of the eroded sediments were deposited as a progradational wedge extending the outer shelf by 25 to 65 km oceanward of the pre-glacial shelf-break. Comparing the observed seismic characteristics with those of other Antarctic shelf sequences, we assign an Early Cretaceous age for bottom sedimentary unit ASS-1, a Late Cretaceous to Oligocene age for unit ASS-2, an Early to Mid-Miocene age for unit ASS-3, a Mid-Miocene age for unit ASS-4, a Late Miocene to Early Pliocene age for unit ASS-5, and a Pliocene to Pleistocene age for the top unit ASS-6. The survival of buried grounding zone wedges in the upper part of unit ASS-5 of the outer shelf is consistent with the onset of a long warming phase and a retreated ice sheet in the early Pliocene as observed for the Ross Sea shelf and reconstructed from paleo-ice sheet models. Our data also reveal that the paleo-ice flow paths of the central Pine Island Trough system have remained stationary across the middle and outer shelf since early glacial advances. This study and its stratigraphic constraints will serve as a basis for future drilling operations required for an improved understanding of processes and mechanisms leading to West Antarctic Ice Sheet retreats, such as the rapid ice retreat presently observed in the Amundsen Sea Embayment.

  1. Thermohaline circulation crisis and impacts during the mid-Pleistocene transition.

    PubMed

    Pena, Leopoldo D; Goldstein, Steven L

    2014-07-18

    The mid-Pleistocene transition (MPT) marked a fundamental change in glacial-interglacial periodicity, when it increased from ~41-thousand-year to 100-thousand-year cycles and developed higher-amplitude climate variability without substantial changes in the Milankovitch forcing. Here, we document, by using Nd isotopes, a major disruption of the ocean thermohaline circulation (THC) system during the MPT between marine isotope stages (MISs) 25 and 21 at ~950 to 860 thousand years ago, which effectively marks the first 100-thousand-year cycle, including an exceptional weakening through a critical interglacial (MIS 23) at ~900 thousand years ago. Its recovery into the post-MPT 100-thousand-year world is characterized by continued weak glacial THC. The MPT ocean circulation crisis facilitated the coeval drawdown of atmospheric CO2 and high-latitude ice sheet growth, generating the conditions that stabilized 100-thousand-year cycles. PMID:24968939

  2. Could brown bears (Ursus arctos) have survived in Ireland during the Last Glacial Maximum?

    PubMed

    Leonard, Saoirse A; Risley, Claire L; Turvey, Samuel T

    2013-08-23

    Brown bears are recorded from Ireland during both the Late Pleistocene and early-mid Holocene. Although most of the Irish landmass was covered by an ice sheet during the Last Glacial Maximum (LGM), Irish brown bears are known to have hybridized with polar bears during the Late Pleistocene, and it is suggested that the Irish brown bear population did not become extinct but instead persisted in situ through the LGM in a southwestern ice-free refugium. We use historical population modelling to demonstrate that brown bears are highly unlikely to have survived through the LGM in Ireland under any combination of life-history parameters shown by living bear populations, but instead would have rapidly become extinct following advance of the British-Irish ice sheet, and probably recolonized Ireland during the end-Pleistocene Woodgrange Interstadial from a closely related nearby source population. The time available for brown bear-polar bear hybridization was therefore restricted to narrow periods at the beginning or end of the LGM. Brown bears would have been extremely vulnerable to extinction in Quaternary habitat refugia and required areas substantially larger than southwestern Ireland to survive adverse glacial conditions. PMID:23676655

  3. Unstable AMOC during glacial intervals and millennial variability: The role of mean sea ice extent

    NASA Astrophysics Data System (ADS)

    Sévellec, Florian; Fedorov, Alexey V.

    2015-11-01

    A striking feature of paleoclimate records is the greater stability of the Holocene epoch relative to the preceding glacial interval, especially apparent in the North Atlantic region. In particular, strong irregular variability with an approximately 1500 yr period, known as the Dansgaard-Oeschger (D-O) events, punctuates the last glaciation, but is absent during the interglacial. Prevailing theories, modeling and data suggest that these events, seen as abrupt warming episodes in Greenland ice cores and sea surface temperature records in the North Atlantic, are linked to reorganizations of the Atlantic Meridional Overturning Circulation (AMOC). In this study, using a new low-order ocean model that reproduces a realistic power spectrum of millennial variability, we explore differences in the AMOC stability between glacial and interglacial intervals of the 100 kyr glacial cycle of the Late Pleistocene (1 kyr = 1000 yr). Previous modeling studies show that the edge of sea ice in the North Atlantic shifts southward during glacial intervals, moving the region of the North Atlantic Deep Water formation and the AMOC also southward. Here we demonstrate that, by shifting the AMOC with respect to the mean atmospheric precipitation field, such a displacement makes the system unstable, which explains chaotic millennial variability during the glacials and the persistence of stable ocean conditions during the interglacials.

  4. Stratigraphy, optical dating chronology (IRSL) and depositional model of pre-LGM glacial deposits in the Hope Valley, New Zealand

    NASA Astrophysics Data System (ADS)

    Rother, Henrik; Shulmeister, James; Rieser, Uwe

    2010-02-01

    A 110 m thick succession of glacial valley fill is described from Poplars Gully, central South Island, New Zealand. The section consists of eight lithofacies assemblages that represent different stages of ice occupation in the valley. Basal sediments record an ice retreat phase followed by a glacial re-advance which deposited mass flow diamictons and till. A subsequent ice retreat from the site is indicated by the stratigraphic transition from till to thick glacio-fluvial gravels. This is followed by a probably short-lived glacier re-advance that caused folding and thrusting of proglacial sediments. Final glacial retreat from the valley led to the formation of a large proglacial lake. In total, Poplars Gully holds evidence for two major ice advances, separated by a glacial retreat that resulted in complete ice evacuation from the lower Hope Valley. Infrared stimulated luminescence (IRSL) dating on ice-proximal sediments from Poplars Gully yielded six ages between 181 and 115 ka BP. Our stratigraphic logging and dating results show that the fill sequence was not, as previously thought, deposited in association with ice advances during the Last Glacial Maximum (LGM) nor indeed during the last glacial cycle. LGM glaciers later overran the fill but we find that the older glacial sequences are considerably more voluminous than those deposited during the last glacial cycle. We also show that the mid-Pleistocene glaciers carved a much deeper valley trough than did glaciers during the LGM. Taken together these features are likely to reflect a significant difference in the magnitude of successive Pleistocene glaciations in the valley, with the mid-Pleistocene ice advances having been considerably larger than those of the last glacial cycle. The recognition of the in-situ survival of extensive pre-MIS 5 (Marine Isotope Stage) deposits in valley troughs that were later occupied by LGM glaciers represents a new feature in the Quaternary stratigraphy of the Southern Alps. The results demonstrate that New Zealand's commonly very large soft-sedimentary valley fills provide a valuable, yet largely unexploited, terrestrial sedimentary archive of successive glaciations in the region.

  5. Glacial and periglacial geomorphology and its paleoclimatological significance in three North Ethiopian Mountains, including a detailed geomorphological map

    NASA Astrophysics Data System (ADS)

    Hendrickx, Hanne; Jacob, Miro; Frankl, Amaury; Nyssen, Jan

    2015-10-01

    Geomorphological investigations and detailed mapping of past and present (peri)glacial landforms are required in order to understand the impact of climatic anomalies. The Ethiopian Highlands show a great variety in past and contemporary climate, and therefore, in the occurrence of glacial and periglacial landforms. However, only a few mountain areas have been studied, and detailed geomorphological understanding is lacking. In order to allow a fine reconstruction of the impact of the past glacial cycle on the geomorphology, vegetation complexes, and temperature anomalies, a detailed geomorphological map of three mountain areas (Mt. Ferrah Amba, 12°51‧N 39°29‧E; Mt. Lib Amba, 12°04‧N 39°22‧; and Mt. Abuna Yosef, 12°08‧N 39°11‧E) was produced. In all three study areas, inactive solifluction lobes, presumably from the Last Glacial Maximum (LGM), were found. In the highest study area of Abuna Yosef, three sites were discovered bearing morainic material from small late Pleistocene glaciers. These marginal glaciers occurred below the modeled snowline and existed because of local topo-climatic conditions. Evidence of such Pleistocene avalanche-fed glaciers in Ethiopia (and Africa) has not been produced earlier. Current frost action is limited to frost cracks and small-scale patterned ground phenomena. The depression of the altitudinal belts of periglacial and glacial processes during the last cold period was assessed through periglacial and glacial landform mapping and comparisons with data from other mountain areas taking latitude into account. The depression of glacial and periglacial belts of approximately 600 m implies a temperature drop around 6 °C in the last cold period. This cooling is in line with temperature depressions elsewhere in East Africa during the LGM. This study serves as a case study for all the intermediate mountains (3500-4200 m) of the North Ethiopian highlands.

  6. Glacial discharge along the west Antarctic Peninsula during the Holocene

    NASA Astrophysics Data System (ADS)

    Pike, Jennifer; Swann, George E. A.; Leng, Melanie J.; Snelling, Andrea M.

    2013-03-01

    The causes for rising temperatures along the Antarctic Peninsula during the late Holocene have been debated, particularly in light of instrumental records of warming over the past decades. Suggested mechanisms range from upwelling of warm deep waters onto the continental shelf in response to variations in the westerly winds, to an influence of El Niño-Southern Oscillation on sea surface temperatures. Here, we present a record of Holocene glacial ice discharge, derived from the oxygen isotope composition of marine diatoms from Palmer Deep along the west Antarctic Peninsula continental margin. We assess atmospheric versus oceanic influences on glacial discharge at this location, using analyses of diatom geochemistry to reconstruct atmospherically forced glacial ice discharge and diatom assemblage ecology to investigate the oceanic environment. We show that two processes of atmospheric forcing--an increasing occurrence of La Niña events and rising levels of summer insolation--had a stronger influence during the late Holocene than oceanic processes driven by southern westerly winds and upwelling of upper Circumpolar Deepwater. Given that the evolution of El Niño-Southern Oscillation under global warming is uncertain, its future impacts on the climatically sensitive system of the Antarctic Peninsula Ice Sheet remain to be established.

  7. Glacial landforms of the southern Ungava Bay region (Canada): implications for the late-glacial dynamics and the damming of glacial Lake Naskaupi

    NASA Astrophysics Data System (ADS)

    Dube-Loubert, Hugo; Roy, Martin

    2014-05-01

    The Laurentide ice sheet played an important role in the late Pleistocene climate, notably through discharges of icebergs and meltwater. In this context, the Ungava Bay region in northern Quebec-Labrador appears particularly important, especially during the last deglaciation when the retreating ice margin dammed major river valleys, creating large proglacial lakes (e.g., McLean, aux Feuilles). The history of these lakes is closely related to the temporal evolution of the Labrador-Quebec ice dome. There are, however, large uncertainties regarding the position of its ice divide system through time, thereby limiting our understanding of the history of these glacial lakes. Here we focus on glacial and deglacial landforms present in the George River valley, south of Ungava Bay, in order to bring additional constraints on the late-glacial ice dynamics of this region, which also comprised glacial Lake Naskaupi. This work is based on surficial mapping using aerial photos and satellite imagery, combined with extensive fieldwork and sediment sampling. Our investigation showed significant differences in the distribution of glacial landforms across the region. The area east of the George River is characterized by well-developed Naskaupi shorelines while the elevated terrains show a succession of geomorphological features indicative of cold-based ice or ice with low basal velocities. In the easternmost part of this sector, ice flow directional data indicate that the ice was flowing towards ENE, against the regional slope. Eskers show paleocurrent directions indicating a general ice retreat from east to west. In the western part of this sector, near the George River valley, eskers are absent and the region is covered by felsenmeer and ground moraine that likely reflect the presence of a residual ice mass that was no longer dynamic. The presence of a stagnant ice represents the best mechanism to explain the formation of glacial lakes in the George River valley and its main tributaries. In contrast, the area west of the George River valley shows very few shorelines, implying that Lake Naskaupi was mostly in contact with the decaying ice margin. The abundance ice-marginal meltwater channels allowed the reconstruction of the general ice retreat pattern. The area is also characterized by abundant WNW-trending drumlins and crag-and-tails indicating an important ice flow towards Ungava Bay. These glacial lineations may be linked with eskers further to west that terminated into the postglacial Iberville Sea, forming large ice-contact deltas. This setting suggests that this landform assemblage likely developed during the deglaciation. Our results thus underlie important differences in the subglacial regime across the ice divide of the Labrador sector during the late-glacial and early deglacial interval. The so-called horseshoe unconformity appear to delineate an inner area characterized by warm-based conditions that allowed a massive deglacial ice flow to developed in Ungava Bay, while the area under and proximal to the divide in the east appears to have evolved towards cold-based ice conditions, resulting with a stagnant ice mass that dammed the major proglacial lakes.

  8. Molecular analysis of the Pleistocene history of Saxifraga oppositifolia in the Alps.

    PubMed

    Holderegger, R; Stehlik, I; Abbott, R J

    2002-08-01

    A recent circumpolar survey of chloroplast DNA (cpDNA) haplotypes identified Pleistocene glacial refugia for the Arctic-Alpine Saxifraga oppositifolia in the Arctic and, potentially, at more southern latitudes. However, evidence for glacial refugia within the ice sheet covering northern Europe during the last glacial period was not detected either with cpDNA or in another study of S. oppositifolia that surveyed random amplified polymorphic DNA (RAPD) variation. If any genotypes survived in such refugia, they must have been swamped by massive postglacial immigration of periglacial genotypes. The present study tested whether it is possible to reconstruct the Pleistocene history of S. oppositifolia in the European Alps using molecular methods. Restriction fragment length polymorphism (RFLP) analysis of cpDNA of S. oppositifolia, partly sampled from potential nunatak areas, detected two common European haplotypes throughout the Alps, while three populations harboured two additional, rare haplotypes. RAPD analysis confirmed the results of former studies on S. oppositifolia; high within, but low among population genetic variation and no particular geographical patterning. Some Alpine populations were not perfectly nested in this common gene pool and contained private RAPD markers, high molecular variance or rare cpDNA haplotypes, indicating that the species could possibly have survived on ice-free mountain tops (nunataks) in some parts of the Alps during the last glaciation. However, the overall lack of a geographical genetic pattern suggests that there was massive immigration of cpDNA and RAPD genotypes by seed and pollen flow during postglacial times. Thus, the glacial history of S. oppositifolia in the Alps appears to resemble closely that suggested previously for the species in northern Europe. PMID:12144661

  9. Landscape evolution and origin of Lake Fúquene (Colombia): Tectonics, erosion and sedimentation processes during the Pleistocene

    NASA Astrophysics Data System (ADS)

    Sarmiento, Gustavo; Gaviria, Sergio; Hooghiemstra, Henry; Berrio, Juan Carlos; Van der Hammen, Thomas

    2008-08-01

    The Basin of Ubaté-Chichinquirá (5°28'N, 73°45' W, c. 2580 m altitude) includes the Fúquene Valley and is located in the central part of the Eastern Cordillera of Colombia. Rocks and sediments were folded and faulted during the Miocene, uplifted during the (late) Pliocene, and affected by glaciers during the Pleistocene. Successive glacial and interglacial periods left significant marks in the landscape which were used to reconstruct six stages in the development of the landscape along a relative chronology. During early Pleistocene episode 1 glaciers formed U-shape valleys. Evidence of the impact of ice sheets has been found as far downslope as ca. 2900 m elevation. During episode 2 moraines developed which were cut by the present San José River. During episode 3 abundant sediment was produced by glacial erosion. It accentuated the sculpturing of hard rock and deepening of the drainage basin. The ancestral Ubaté-Suarez River constituted a dynamic erosive system that gave rise to deep V-shaped valleys and progressively formed a set of intricate valleys with a high sediment production. Finally, intense glacial and fluvio-glacial erosion led to a geomorphological system with high energy levels and intensive sediment transport leading to wide valleys. During episode 4 the Ubaté-Suarez River eroded and deepened its valley until it captured the old El Hato-San José Valley. It caused intense erosion of the moraine and the fluvio-glacial gravels. Deep V-shaped valleys stabilized in the high areas of the main drainage system and these valleys form the present-day fluvial sub-basins. During episode 5 the deep valley in the northern part of the Basin of Ubaté-Chichinquirá developed. During middle Pleistocene episode 6 colluvial sediments formed the Saboya dam and a lake was formed in the river valley of which the present Lake Fúquene is only a small remnant. Lithological changes indicate fluctuating water levels and Lake Fúquene must have expanded periodically up to an area 5 to 10 times the present-day surface.

  10. Sudbury Breccia and suevite as glacial indicators transported 800 km to Kentland Astrobleme, Indiana

    NASA Technical Reports Server (NTRS)

    Mchone, John F.; Dietz, Robert S.; Peredery, Walter V.

    1992-01-01

    A glacial erratic whose place of origin is known by direct comparison with bedrock is known as an indicator. In 1971, while visiting the known astrobleme at Kentland, Indiana, Peredery recognized and sampled in the overlying glacial drift deposits a distinctive boulder of Sudbury suevite (black member, Onaping Formation) that normally occurs within the Sudbury Basin as an impact fall-back or wash-in deposit. The rock was sampled (but later mislaid) from a farmer's cairn next to a cleared field. Informal reports of this discovery prompted the other authors to recently reconnoiter the Kentland locality in an attempt to relocate the original boulder. Several breccia blocks were sampled but laboratory examination proved most of these probably to be diamictites from the Precambrian Gowganda Formation, which outcrops extensively in the southern Ontario. However, one sample was confirmed as typical Sudbury Breccia, which outcrops in the country rock surrounding the Sudbury Basin. Thus two glacial indicators were transported by Pleistocene continental glaciers about 820 km over a tightly proscribed path and, curiously, from one astrobleme to another. Brecciated boulders in the Illinois/Indiana till plain are usually ascribed to the Gowganda or Mississagi formations in Ontario. But impact-generated rocks need not be confused. The carbonaceous matrix of the suevite, for example, was sufficiently distinctive to assign it to the upper portion of the black Onaping. The unique and restricted source area of these indicators provide an accurate and reliable control for estimating Pleistocene ice movement.

  11. A fundamental Precambrian-Phanerozoic shift in earth's glacial style?

    NASA Astrophysics Data System (ADS)

    Evans, D. A. D.

    2003-11-01

    It has recently been found that Neoproterozoic glaciogenic sediments were deposited mainly at low paleolatitudes, in marked qualitative contrast to their Pleistocene counterparts. Several competing models vie for explanation of this unusual paleoclimatic record, most notably the high-obliquity hypothesis and varying degrees of the snowball Earth scenario. The present study quantitatively compiles the global distributions of Miocene-Pleistocene glaciogenic deposits and paleomagnetically derived paleolatitudes for Late Devonian-Permian, Ordovician-Silurian, Neoproterozoic, and Paleoproterozoic glaciogenic rocks. Whereas high depositional latitudes dominate all Phanerozoic ice ages, exclusively low paleolatitudes characterize both of the major Precambrian glacial epochs. Transition between these modes occurred within a 100-My interval, precisely coeval with the Neoproterozoic-Cambrian "explosion" of metazoan diversity. Glaciation is much more common since 750 Ma than in the preceding sedimentary record, an observation that cannot be ascribed merely to preservation. These patterns suggest an overall cooling of Earth's longterm climate, superimposed by developing regulatory feedbacks involving an increasingly complex biosphere.

  12. Reorganization of ice sheet flow patterns in Arctic Canada and the mid-Pleistocene transition

    NASA Astrophysics Data System (ADS)

    Refsnider, Kurt A.; Miller, Gifford H.

    2010-07-01

    Evidence for the evolution of Laurentide Ice Sheet (LIS) basal thermal regime patterns during successive glaciations is poorly preserved in the geologic record. Here we explore a new approach to constrain the distribution of cold-based ice across central Baffin Island in the eastern Canadian Arctic over many glacial-interglacial cycles by combining till geochemistry and cosmogenic radionuclide (CRN) data. Parts of the landscaped with geomorphic evidence for limited glacial erosion are covered by till characterized by high chemical index of alteration (CIA) values and CRN concentrations requiring complicated burial-exposure histories. Till from regions scoured by glacial erosion have CIA values indistinguishable from local bedrock and CRN concentrations that can be explained by simple exposure following deglaciation. CRN modeling results based on these constraints suggest that the weathered tills were deposited by 1.9 to 1.2 Ma, and by that time the fiorded Baffin Island coastline must have developed close to its modern configuration as piracy of ice flow by the most efficient fiord systems resulted in a major shift in the basal thermal regime across the northeastern LIS. The resultant concentration of ice flow in fewer outlet systems may help explain the cause of the mid-Pleistocene transition from 41- to 100-kyr glacial cycles.

  13. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends

    PubMed Central

    Schmitt, Thomas

    2007-01-01

    The climatic cycles with subsequent glacial and intergalcial periods have had a great impact on the distribution and evolution of species. Using genetic analytical tools considerably increased our understanding of these processes. In this review I therefore give an overview of the molecular biogeography of Europe. For means of simplification, I distinguish between three major biogeographical entities: (i) "Mediterranean" with Mediterranean differentiation and dispersal centres, (ii) "Continental" with extra-Mediterranean centres and (iii) "Alpine" and/or "Arctic" with recent alpine and/or arctic distribution patterns. These different molecular biogeographical patterns are presented using actual examples. Many "Mediterranean" species are differentiated into three major European genetic lineages, which are due to glacial isolation in the three major Mediterranean peninsulas. Postglacial expansion in this group of species is mostly influenced by the barriers of the Pyrenees and the Alps with four resulting main patterns of postglacial range expansions. However, some cases are known with less than one genetic lineage per Mediterranean peninsula on the one hand, and others with a considerable genetic substructure within each of the Mediterranean peninsulas, Asia Minor and the Maghreb. These structures within the Mediterranean sub-centres are often rather strong and in several cases even predate the Pleistocene. For the "Continental" species, it could be shown that the formerly supposed postglacial spread from eastern Palearctic expansion centres is mostly not applicable. Quite the contrary, most of these species apparently had extra-Mediterranean centres of survival in Europe with special importance of the perialpine regions, the Carpathian Basin and parts of the Balkan Peninsula. In the group of "Alpine" and/or "Arctic" species, several molecular biogeographical patterns have been found, which support and improve the postulates based on distribution patterns and pollen records. Thus, genetic studies support the strong linkage between southwestern Alps and Pyrenees, northeastern Alps and Carpathians as well as southeastern Alps and the Dinaric mountain systems, hereby allowing conclusions on the glacial distribution patterns of these species. Furthermore, genetic analyses of arctic-alpine disjunct species support their broad distribution in the periglacial areas at least during the last glacial period. The detailed understanding of the different phylogeographical structures is essential for the management of the different evolutionary significant units of species and the conservation of their entire genetic diversity. Furthermore, the distribution of genetic diversity due to biogeographical reasons helps understanding the differing regional vulnerabilities of extant populations. PMID:17439649

  14. Glacial history of a modern invader: phylogeography and species distribution modelling of the Asian tiger mosquito Aedes albopictus.

    TOXLINE Toxicology Bibliographic Information

    Porretta D; Mastrantonio V; Bellini R; Somboon P; Urbanelli S

    2012-01-01

    BACKGROUND: The tiger mosquito, Aedes albopictus, is one of the 100 most invasive species in the world and a vector of human diseases. In the last 30 years, it has spread from its native range in East Asia to Africa, Europe, and the Americas. Although this modern invasion has been the focus of many studies, the history of the species' native populations remains poorly understood. Here, we aimed to assess the role of Pleistocene climatic changes in shaping the current distribution of the species in its native range.METHODOLOGY/PRINCIPAL FINDINGS: We investigated the phylogeography, historical demography, and species distribution of Ae. albopictus native populations at the Last Glacial Maximum (LGM). Individuals from 16 localities from East Asia were analyzed for sequence variation at two mitochondrial genes. No phylogeographic structure was observed across the study area. Demographic analyses showed a signature of population expansion that started roughly 70,000 years BP. The occurrence of a continuous and climatically suitable area comprising Southeast China, Indochinese Peninsula, and Sundaland during LGM was indicated by species distribution modelling.CONCLUSIONS/SIGNIFICANCE: Our results suggest an evolutionary scenario in which, during the last glacial phase, Ae. albopictus did not experience a fragmentation phase but rather persisted in interconnected populations and experienced demographic growth. The wide ecological flexibility of the species probably played a crucial role in its response to glacial-induced environmental changes. Currently, there is little information on the impact of Pleistocene climatic changes on animal species in East Asia. Most of the studies focused on forest-associated species and suggested cycles of glacial fragmentation and post-glacial expansion. The case of Ae. albopictus, which exhibits a pattern not previously observed in the study area, adds an important piece to our understanding of the Pleistocene history of East Asian biota.

  15. Glacial History of a Modern Invader: Phylogeography and Species Distribution Modelling of the Asian Tiger Mosquito Aedes albopictus

    PubMed Central

    Porretta, Daniele; Mastrantonio, Valentina; Bellini, Romeo; Somboon, Pradya; Urbanelli, Sandra

    2012-01-01

    Background The tiger mosquito, Aedes albopictus, is one of the 100 most invasive species in the world and a vector of human diseases. In the last 30 years, it has spread from its native range in East Asia to Africa, Europe, and the Americas. Although this modern invasion has been the focus of many studies, the history of the species’ native populations remains poorly understood. Here, we aimed to assess the role of Pleistocene climatic changes in shaping the current distribution of the species in its native range. Methodology/Principal Findings We investigated the phylogeography, historical demography, and species distribution of Ae. albopictus native populations at the Last Glacial Maximum (LGM). Individuals from 16 localities from East Asia were analyzed for sequence variation at two mitochondrial genes. No phylogeographic structure was observed across the study area. Demographic analyses showed a signature of population expansion that started roughly 70,000 years BP. The occurrence of a continuous and climatically suitable area comprising Southeast China, Indochinese Peninsula, and Sundaland during LGM was indicated by species distribution modelling. Conclusions/Significance Our results suggest an evolutionary scenario in which, during the last glacial phase, Ae. albopictus did not experience a fragmentation phase but rather persisted in interconnected populations and experienced demographic growth. The wide ecological flexibility of the species probably played a crucial role in its response to glacial-induced environmental changes. Currently, there is little information on the impact of Pleistocene climatic changes on animal species in East Asia. Most of the studies focused on forest-associated species and suggested cycles of glacial fragmentation and post-glacial expansion. The case of Ae. albopictus, which exhibits a pattern not previously observed in the study area, adds an important piece to our understanding of the Pleistocene history of East Asian biota. PMID:22970238

  16. New GEOPHYSICAL MAPPING of the CHUKCHI MARGIN reveals widespread GLACIAL EROSION

    NASA Astrophysics Data System (ADS)

    Dove, D.; Polyak, L. V.; Coakley, B.

    2012-12-01

    Multibeam bathymetry, multi-channel, and chirp seismic data were acquired in a broad grid from R/V Marcus G. Langseth in September, 2011 over the outer Chukchi shelf, Chukchi Rise, Northwind Basin, and Northwind Ridge at water depths between 40 to 4,000 m. In the bathymetric data, iceberg scouring is dominant at depths less than 350 m, and multiple glacigenic bedforms are observed on the top and slopes (350-900 m) of Chukchi Rise and Borderland. The distribution mega-scale glacial lineations and ice-marginal moraines reveal a complex erosional history. The glacial lineations record two patterns of erosion which are likely formed by local and Laurentide sourced ice streams, recurrent over several glacial episodes. In the areas affected by glacial erosion, the chirp sub-bottom data reveal multiple sedimentary units including: well stratified post and inter-glacial deposits, transparent units interpreted as deformable tills, lenticular and fan shaped units interpreted as ice-marginal features and re-deposited sediments, and pre-glacial strata. A broadly observed buried erosional surface(s) exhibits high-frequency scouring and broad channelling also reveals multiple episodes of glacial erosion. A deeper erosional channel observed in the multi-channel seismic data is tunnel-valley like in form, and may be genetically linked to the large, buried erosional/drainage channels recently observed in the Bering Sea. The data obtained suggest that a Pleistocene ice sheet(s) existed on the northern Chukchi Shelf, and supports earlier conclusions of multiple erosions of the Borderland by SE-NW trending ice flows. The data greatly expand our knowledge on the Quaternary history of the Chukchi-Beringian region, and raise further questions about: the interaction of ice masses from the Laurentide, and potentially Chukchi and East-Siberian Shelf ice sheets, the glacio-isostatic history in the Bering region, and the implications for oceanic and atmospheric circulation, especially the Arctic-Pacific connection.

  17. Mammal diversity during the Pleistocene-Holocene transition in Eastern Europe.

    PubMed

    Puzachenko, Andrei Yurievich; Markova, Anastasia Konstantinovna

    2014-08-01

    Fossil record data on the mammal diversity and species richness are of importance for the reconstruction of the evolution of terrestrial ecosystems during the Late Pleistocene-Holocene transition. In Eastern Europe, the transformations during the Pleistocene-Holocene transition consisted mainly in changes in zonal structure and local fauna composition (Markova & Kolfschoten 2008). We investigated the species richness and the analogues of the α, β diversity indexes (in the sense of Whittaker 1972) of large and medium size mammals for 13 climate-stratigraphic units dating to the Late Pleistocene and the Holocene, from the Hasselo Stadial (44-39 kBP) to the Subatlantic period and the present day. The biological diversity of the Last Glacial Maximum (LGM) and the Holocene thermal optimum was investigated in more detail using information about all mammalian taxa (PALEOFAUNA database; Markova 1995). One of our results show that the α, β diversity values show only a negative correlation with the temperature conditions during the Late Pleistocene, the period that is characterized by the so-called 'Mammoth Fauna' complex. For the Holocene faunas the diversity indexes are nearly independent from physical conditions; the α diversity index decreased and the β diversity index increased. The relatively low α diversity and high β diversity indexes for the present-day faunas are referred to the decrease of the population number of some forest species in historical time and the increase of the dominance of unspecialized species or the species connected with intra-zonal ecosystems. The study shows furthermore the occurrence of several East European 'centers' with a high mammal diversity, which are relatively stable during the Pleistocene-Holocene transition. The orientation of the boundaries between the large geographical mammal assemblages depended, particularly in the northwestern part of Eastern Europe, on the expansion of the Scandinavian ice sheet. PMID:25236416

  18. The early rise and late demise of New Zealand's last glacial maximum.

    PubMed

    Rother, Henrik; Fink, David; Shulmeister, James; Mifsud, Charles; Evans, Michael; Pugh, Jeremy

    2014-08-12

    Recent debate on records of southern midlatitude glaciation has focused on reconstructing glacier dynamics during the last glacial termination, with different results supporting both in-phase and out-of-phase correlations with Northern Hemisphere glacial signals. A continuing major weakness in this debate is the lack of robust data, particularly from the early and maximum phase of southern midlatitude glaciation (∼30-20 ka), to verify the competing models. Here we present a suite of 58 cosmogenic exposure ages from 17 last-glacial ice limits in the Rangitata Valley of New Zealand, capturing an extensive record of glacial oscillations between 28-16 ka. The sequence shows that the local last glacial maximum in this region occurred shortly before 28 ka, followed by several successively less extensive ice readvances between 26-19 ka. The onset of Termination 1 and the ensuing glacial retreat is preserved in exceptional detail through numerous recessional moraines, indicating that ice retreat between 19-16 ka was very gradual. Extensive valley glaciers survived in the Rangitata catchment until at least 15.8 ka. These findings preclude the previously inferred rapid climate-driven ice retreat in the Southern Alps after the onset of Termination 1. Our record documents an early last glacial maximum, an overall trend of diminishing ice volume in New Zealand between 28-20 ka, and gradual deglaciation until at least 15 ka. PMID:25071171

  19. The early rise and late demise of New Zealand’s last glacial maximum

    PubMed Central

    Rother, Henrik; Fink, David; Shulmeister, James; Mifsud, Charles; Evans, Michael; Pugh, Jeremy

    2014-01-01

    Recent debate on records of southern midlatitude glaciation has focused on reconstructing glacier dynamics during the last glacial termination, with different results supporting both in-phase and out-of-phase correlations with Northern Hemisphere glacial signals. A continuing major weakness in this debate is the lack of robust data, particularly from the early and maximum phase of southern midlatitude glaciation (∼30–20 ka), to verify the competing models. Here we present a suite of 58 cosmogenic exposure ages from 17 last-glacial ice limits in the Rangitata Valley of New Zealand, capturing an extensive record of glacial oscillations between 28–16 ka. The sequence shows that the local last glacial maximum in this region occurred shortly before 28 ka, followed by several successively less extensive ice readvances between 26–19 ka. The onset of Termination 1 and the ensuing glacial retreat is preserved in exceptional detail through numerous recessional moraines, indicating that ice retreat between 19–16 ka was very gradual. Extensive valley glaciers survived in the Rangitata catchment until at least 15.8 ka. These findings preclude the previously inferred rapid climate-driven ice retreat in the Southern Alps after the onset of Termination 1. Our record documents an early last glacial maximum, an overall trend of diminishing ice volume in New Zealand between 28–20 ka, and gradual deglaciation until at least 15 ka. PMID:25071171

  20. Tentative correlation of midcontinent glacial sequence with marine chronology

    SciTech Connect

    Dube, T.E.

    1985-01-01

    A tentative glacial-interglacial 3-million-year chronology is synthesized by regional correlation of Midcontinent tills and paleosols to marine paleotemperature/eustatic cycles and oxygen isotope stages. The paleotemperature curves of Beard et al. (1982), based on planktonic foraminiferal abundances, correspond directly with eustatic cycles during the last 3 Ma. These generalized curves are shown to correlate reasonably well with standard oxygen isotope stages at least for the past 900 ka. This indicates that paleotemperature and Vail-type eustatic cycles have been glacially induced during the last 3 Ma. The chronology developed here utilizes both paleotemperature and oxygen isotope stages; however, below the Jaramillo magnetic subchron, isotope curves are more variable and only paleotemperature stages are used. Tills and paleosols at type localities in the Midcontinent area of the US are correlated to the SPECMAP oxygen isotope time scale. Because mid-Brunhes events are poorly constrained by radiometric dates, alternative correlations are possible. The oldest known Midcontinent tills correlate to the first Plio-Pleistocene cold paleotemperature stage and drop in sea level at 2.4 Ma. This Late Pliocene event also corresponds to the first major isotopic enrichment and the onset of late Cenozoic ice-rafting in the North Atlantic region.

  1. Phylogeographic patterns of mtDNA variation revealed multiple glacial refugia for the frog species Feirana taihangnica endemic to the Qinling Mountains.

    PubMed

    Wang, Bin; Jiang, Jianping; Xie, Feng; Li, Cheng

    2013-03-01

    Diversification patterns and demography of montane species are affected by Pleistocene climate fluctuations. Empirical cases from the Qinling Mountains (QM) region, which is a major biogeographic divider of East Asia, are few. We used DNA sequence data of the complete mitochondrial ND2 gene to detect effects of the Pleistocene glaciations on phylogeographic profiles of a frog species, Feirana taihangnica, which is endemic to the QM. Four distinct lineages consisting of seven sublineages were revealed. The strongest signal of biogeographical structure (F(ct) = 0.971, P < 0.01) was found when populations were grouped according to these seven sublineages. One narrow secondary contact zone was detected in the middle QM between the lineage from middle QM and the lineage from eastern QM. Coalescent simulations indicated that this species colonized the QM region by a stepping-stone model. Divergences among lineages had likely been influenced by the uplift of the Tibetan Plateau during the late Miocene-to-late Pleistocene, as well as by the Pleistocene climatic cycles. Coalescent simulations also suggested that F. taihangnica populations have persisted through the Pleistocene glacial periods in multiple refugia across the QM region. Demographic analyses indicated that all lineages, except the lineage in the Funiu Mountains, have been experienced postglacial expansion of population size and distribution range. In conclusion, Pleistocene climate fluctuations and tectonic changes during the late Miocene-late Pleistocene have profoundly influenced the phylogeography and historical demography of F. taihangnica. PMID:23381112

  2. Chronology for fluctuations in late pleistocene Sierra Nevada glaciers and lakes

    SciTech Connect

    Phillips, F.M.; Zreda, M.G.; Plummer, M.A.

    1996-11-01

    Mountain glaciers, because of their small size, are usually close to equilibrium with the local climate and thus should provide a test of whether temperature oscillations in Greenland late in the last glacial period are part of global-scale climate variability or are restricted to the North Atlantic region. Correlation of cosmogenic chlorine-36 dates on Sierra Nevada moraines with a continuous radiocarbon-dated sediment record from nearby Owens Lake shows that Sierra Nevada glacial advances were associated with Heinrich events 5, 3, and 1. 27 refs., 2 figs., 1 tab.

  3. Chronology for fluctuations in late Pleistocene Sierra Nevada glaciers and lakes

    USGS Publications Warehouse

    Phillips, F.M.; Zreda, M.G.; Benson, L.V.; Plummer, M.A.; Elmore, D.; Sharma, Prakash

    1996-01-01

    Mountain glaciers, because of their small size, are usually close to equilibrium with the local climate and thus should provide a test of whether temperature oscillations in Greenland late in the last glacial period are part of global-scale climate variability or are restricted to the North Atlantic region. Correlation of cosmogenic chlorine-36 dates on Sierra Nevada moraines with a continuous radiocarbon-dated sediment record from nearby Owens Lake shows that Sierra Nevada glacial advances were associated with Heinrich events 5, 3, 2, and 1.

  4. Sub-glacial volcanic eruptions

    USGS Publications Warehouse

    White, Donald Edward

    1956-01-01

    The literature on sub-glacial volcanic eruptions and the related flood phenomena has been reviewed as a minor part of the larger problem of convective and conductive heat transfer from intrusive magma. (See Lovering, 1955, for a review of the extensive literature on this subject.) This summary of data on sub-glacial eruptions is part of a program that the U.S. Geological Survey is conducting in connection with its Investigations of Geologic Processes project on behalf of the Division of Research, U.S. Atomic Energy Commission.

  5. Early Pleistocene origin of reefs around Lanai, Hawaii

    NASA Astrophysics Data System (ADS)

    Webster, Jody M.; Clague, David A.; Faichney, Iain D. E.; Fullagar, Paul D.; Hein, James R.; Moore, James G.; Paull, Charles K.

    2010-02-01

    A sequence of submerged terraces (L1-L12) offshore Lanai was previously interpreted as reefal, and correlated with a similar series of reef terraces offshore Hawaii island, whose ages are known to be < 500 ka. We present bathymetric, observational, lithologic and 51 87Sr/ 86Sr isotopic measurements for the submerged Lanai terraces ranging from - 300 to - 1000 m (L3-L12) that indicate that these terraces are drowned reef systems that grew in shallow coral reef to intermediate and deeper fore-reef slope settings since the early Pleistocene. Age estimates based on 87Sr/ 86Sr isotopic measurements on corals, coralline algae, echinoids, and bulk sediments, although lacking the precision (˜ ± 0.23 Ma) to distinguish the age-depth relationship and drowning times of individual reefs, indicate that the L12-L3 reefs range in age from ˜ 1.3-0.5 Ma and are therefore about 0.5-0.8 Ma older than the corresponding reefs around the flanks of Hawaii. These new age data, despite their lack of precision and the influence of later-stage submarine diagenesis on some analyzed corals, clearly revise the previous correlations between the reefs off Lanai and Hawaii. Soon after the end of major shield building (˜ 1.3-1.2 Ma), the Lanai reefs initiated growth and went through a period of rapid subsidence and reef drowning associated with glacial/interglacial cycles similar to that experienced by the Hawaii reefs. However, their early Pleistocene initiation means they experienced a longer, more complex growth history than their Hawaii counterparts.

  6. Tropical Pacific climate response to obliquity forcing in the Pleistocene

    NASA Astrophysics Data System (ADS)

    Lee, S.-Y.; Poulsen, C. J.

    2005-12-01

    Marine proxy records of Pleistocene seawater temperature and productivity in the tropical Pacific Ocean vary over a 41,000-year period that has been attributed to Earth's obliquity cycle. The proxy records are paradoxical both because obliquity has a small effect on low-latitude insolation and because tropical seawater temperature and productivity were anticorrelated with obliquity insolation forcing. In this study, we investigate the response of the tropical Pacific climate to obliquity forcing using a coupled ocean-atmosphere model to reconcile the proxy records with climate theory. Two glacial and two modern simulations were completed with extreme high and low axial tilts of 24.5 and 22.2. In response to an increase in axial tilt, tropical sea surface temperatures decrease by as much as 0.8C because of the local reduction in insolation. Subsurface water temperatures in the eastern and central equatorial Pacific increase by nearly 1C. Anomalous heating through high-obliquity forcing also generates dynamical responses that weaken mean annual midlatitude westerlies and subtropical trade winds, contributing to a 20% reduction in the subtropical gyre circulation. Analyses using a Lagrangian transport model indicate that low-latitude subsurface warming is due to a reduction in heat export from the tropics and the advection and ventilation of anomalously warm South Pacific extratropical waters through the thermocline circulation. The model's response to obliquity is consistent with Pleistocene proxy data that indicate the tropical Walker circulation and thermocline slope were not strongly influenced by changes in axial tilt. The model results also support the hypothesis that Earth's obliquity influences climate through its control on meridional insolation gradients.

  7. Modeling the Global Monsoon System During Glacial Climate Events

    NASA Astrophysics Data System (ADS)

    Merkel, U.; Prange, M.; Schulz, M.

    2008-12-01

    We employ the comprehensive NCAR Community Climate System Model (version 3) to assess the state of the global monsoon system during specific time intervals of the last glacial period. In contrast to previous studies, we take into account changes in ice-sheet distribution, greenhouse-gas concentrations and orbital parameters for marine isotope stage 3 (centered on 35 ka BP) and the last glacial maximum (LGM, centered on 21 ka BP). Both simulations result in a significant reduction of the Atlantic Ocean meridional overturning circulation. Perturbing deep-water formation in the North Atlantic Ocean in these glacial baseline simulations results in explicit representations of Dansgaard-Oeschger stadials and interstadials as well as Heinrich-type events. Glacial boundary conditions induce a large-scale drying in the West African monsoon region and a strengthening and southward shift of the African easterly jet. Through atmospheric dynamics, the effect of ice-sheets is rapidly communicated via the upper troposphere thereby also affecting the Indian and South East Asian summer monsoon systems. Dansgaard-Oeschger stadial boundary conditions lead to a pronounced intensification of the African, Indian and South East Asian summer monsoon compared to the last glacial maximum. Our Dansgaard-Oeschger interstadial simulation indicates a response pattern of all tropical monsoon systems which is similar to the stadial simulation but exhibits a stronger amplitude. This suggests a predominance of the orbital and ice sheet forcing over the imposed Dansgaard-Oeschger climate variability. Tropical inter-ocean basin teleconnections appear to be weakened during stage 3 stadials compared to the LGM as illustrated by a less pronounced covariation between tropical Atlantic hydrological conditions and the El Nio/Southern Oscillation (ENSO) in the eastern tropical Pacific.

  8. SEM microfabric analysis of glacial varves, Geneseo, N. Y

    SciTech Connect

    Pietraszek, S.R. . Geology Dept.)

    1993-03-01

    A detailed study of the microfabric of Pleistocene varved silty-clay from Geneseo Valley (Geneseo, N.Y.) indicates rapid deposition of sediment in a flocculated state into a glacial lake. Ten varve couplets of a 10 cm thick sample were studied using the Scanning Electron Microscope to determine their microfabric. Each varve ranges from 0.5 cm to 2.0 cm and represents an annual ( ) deposit. Varves consists of a lower light colored, coarse zone of silt and clay, and an upper darker colored, organic fine clayey zone. Graded bedding is observed in each couplet, and random clay particle orientation is dominant throughout a varve, with the exception of the top 0.5 mm of the fine layer. The upper and lower contacts are sharp. Fabric features are instrumental in reconstructing a depositional environment. Microfabric results of the glacial unit indicate that an initial heavy concentration of clay and silt was introduced into the basin in a single pulse during spring runoff. The majority of silt settled together with clay in a flocculated or aggregated state, forming the lower coarse zone of random orientation. As the silt concentration diminished, the clay continued to flocculate and settled as a fine clay aggregate. It is proposed that the settling took place during the spring and summer months. Finally, during the winter months, the sediment surface of the varve was disturbed by nemotode burrows, which reoriented the clay flakes into a zone of preferred fabric. Microfabric analysis of these glacial varves, thus suggests that sediment was rapidly deposited in a flocculated state.

  9. Glacial-Holocene Deep Atlantic Variability

    NASA Astrophysics Data System (ADS)

    Oppo, D.; Curry, W. B.; Huang, K.; Gebbie, G.; Keigwin, L. D.

    2012-12-01

    Despite decades of research on deep ocean circulation during the Last Glacial Maximum (LGM) and deglaciation, many uncertainties remain. Even first order questions such as whether Antarctic Intermediate Water (AAIW) influenced the North Atlantic in the past are unresolved. Here, we update the glacial western Atlantic benthic δ13C transect of Curry and Oppo (2005) including new data from four cores recovered between 450 and 1100 m water depth, at AAIW depths in the western tropical North Atlantic. Low glacial values are consistent with the presence of AAIW. However, in the modern ocean, remineralization of organic matter drives δ13C values at these water depths lower than expected from their end-member composition. As this may have also been the case in the past, insights from more conservative tracers like δ18O of calcite, the air-sea exchange δ13C signature (δ13Cas), and neodymium isotopes (ɛNd) are important. We evaluate new and published relevant data and present a new δ13Cas transect for the LGM (updated from Marchitto and Broecker, 2006). A preliminary inversion of LGM data using an ocean pathways model (Gebbie and Huybers, 2010) will be presented. δ13C values in these same four western tropical North Atlantic cores during the Heinrich Event are also consistent with, but may not require, a contribution of AAIW. δ13C values decrease further following the Heinrich event and remain low throughout the deglaciation, during which the records exhibit coherent millennial-scale oscillations. For much of the deglaciation, δ13C values in these cores appear to be lower than values at other sites from similar depths in the western North and South Atlantic, suggestive of non-conservative behavior. The benthic records exhibit high amplitude δ18O variability, which may reflect vertical movement of isopynals, in association with variations in geostrophic flow (e.g. Lynch-Stieglitz et al., 2011). Our new deglacial data will be discussed in the broader context of published multi-proxy records.

  10. Neutrino oscillations

    SciTech Connect

    Simkovic, Fedor

    2007-11-26

    The field of neutrino oscillations is introduced. The basic elements of the theory of neutrino oscillations in vacuum and matter are presented. The history, current status of neutrino oscillations as well as the prospects for the next generation of neutrino experiments are briefly reviewed.

  11. Glacial-interglacial organic carbon record from the Makassar Strait, Indonesia: Implications for regional changes in continental vegetation

    USGS Publications Warehouse

    Visser, K.; Thunell, R.; Goni, M.A.

    2004-01-01

    Recent studies convincingly show that climate in the Western Pacific Warm Pool and other equatorial/tropical regions was significantly colder (by ???3-4??C) during glacial periods, prompting a reexamination of the late Pleistocene paleoenvironments of these regions. This study examines changes in continental vegetation during the last two deglaciations (Terminations I and II) using a sediment core (MD9821-62) recovered from the Makassar Strait, Indonesia. Evidence based on the lignin phenol ratios suggests that vegetation on Borneo and other surrounding islands did not significantly change from tropical rainforest during the last two glacial periods relative to subsequent interglacial periods. This supports the hypothesis that the winter monsoon increased in strength during glacial periods, allowing Indonesia to maintain high rainfall despite the cooler conditions. ?? 2003 Elsevier Ltd. All rights reserved.

  12. Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100.

    PubMed

    Alter, S Elizabeth; Meyer, Matthias; Post, Klaas; Czechowski, Paul; Gravlund, Peter; Gaines, Cork; Rosenbaum, Howard C; Kaschner, Kristin; Turvey, Samuel T; van der Plicht, Johannes; Shapiro, Beth; Hofreiter, Michael

    2015-04-01

    Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range. PMID:25753251

  13. Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms.

    PubMed

    Polyak, L; Edwards, M H; Coakley, B J; Jakobsson, M

    2001-03-22

    It has been proposed that during Pleistocene glaciations, an ice cap of 1 kilometre or greater thickness covered the Arctic Ocean. This notion contrasts with the prevailing view that the Arctic Ocean was covered only by perennial sea ice with scattered icebergs. Detailed mapping of the ocean floor is the best means to resolve this issue. Although sea-floor imagery has been used to reconstruct the glacial history of the Antarctic shelf, little data have been collected in the Arctic Ocean because of operational constraints. The use of a geophysical mapping system during the submarine SCICEX expedition in 1999 provided the opportunity to perform such an investigation over a large portion of the Arctic Ocean. Here we analyse backscatter images and sub-bottom profiler records obtained during this expedition from depths as great as 1 kilometre. These records show multiple bedforms indicative of glacial scouring and moulding of sea floor, combined with large-scale erosion of submarine ridge crests. These distinct glaciogenic features demonstrate that immense, Antarctic-type ice shelves up to 1 kilometre thick and hundreds of kilometres long existed in the Arctic Ocean during Pleistocene glaciations. PMID:11260709

  14. Quaternary glacial and post-glacial depositional history associated with the Green Bay lobe, east-central Wisconsin

    SciTech Connect

    Thieme, L.D.; Smith, G.L. . Dept. of Geology)

    1993-03-01

    Multiple layers of peat and wood fragments indicate that Quaternary glaciation of the east-central region of Wisconsin was punctuated by at least two interglacial periods. Till, outwash, and glaciolacustrine deposits suggest that deposition took place in alternating glacial and non-glacial environments due to oscillations in the position of the Green Bay Lobe terminus. The data for this study consists of 36 auger borings, 70 geologic logs and 100 well-construction reports from water wells. Nine vibracores were taken at the northern margin of Lake Winnebago in order to document in detail the post-glacial history of Glacial Lake Oshkosh/Lake Winnebago. Local bedrock consists of limestones and dolomites of the Middle Ordovician Sinnipee Group. Bedrock elevations range from 211--237 m; bedding dips regionally to the southeast at 1--2 degrees. Bedrock is overlain by a 3--13 m-thick layer of alternating red clay and gray silty-clay (basal Kewaunee Formation ) perhaps deposited in a proglacial lake. These sediments are overlain by apeat/wood layer indicating marsh deposition. This peat/wood layer is overlain by more proglacial lake sediment, 3--10 m of gray brown clay to silty-clay. A second peat/wood layer overlies the gray/brown sediment and may correlate with the Two Creeks buried forest bed. The uppermost unit consists of 2--3 m red silty-clay till (Middle Inlet Member of the Kewaunee Formation). Along the northern margin of present-day Lake Winnebago, red silty-clay is overlain by silty-sand deposited by Glacial Lake Oshkosh. Future work includes obtaining radiocarbon dates from buried peat/wood layers to verify these tentative correlations between east-central Wisconsin and the Lake Michigan Basin.

  15. The Yana RHS site: humans in the Arctic before the last glacial maximum.

    PubMed

    Pitulko, V V; Nikolsky, P A; Girya, E Yu; Basilyan, A E; Tumskoy, V E; Koulakov, S A; Astakhov, S N; Pavlova, E Yu; Anisimov, M A

    2004-01-01

    A newly discovered Paleolithic site on the Yana River, Siberia, at 71 degrees N, lies well above the Arctic circle and dates to 27,000 radiocarbon years before present, during glacial times. This age is twice that of other known human occupations in any Arctic region. Artifacts at the site include a rare rhinoceros foreshaft, other mammoth foreshafts, and a wide variety of tools and flakes. This site shows that people adapted to this harsh, high-latitude, Late Pleistocene environment much earlier than previously thought. PMID:14704419

  16. Managing the effects of accelerated glacial melting on volcanic collapse and debris flows: Planchon-Peteroa Volcano, Southern Andes

    NASA Astrophysics Data System (ADS)

    Tormey, Daniel

    2010-11-01

    Glaciated mountains are among the most sensitive environments to climatic changes, and recent work has shown that large-scale glacial melting, including at the end of the Pleistocene, caused a significant increase in the incidence of large volcanic sector collapse and debris flows on then-active volcanoes. With current accelerated rates of glacial melting, glaciated active volcanoes are at an increasing risk of sector collapse, debris flow and landslide. These catastrophic events are Earth's most damaging erosion phenomenon, causing extensive property damage and loss of life. This paper illustrates these effects in well-studied settings, focusing on the end-Pleistocene to Holocene glaciovolcanic growth and destruction of the cone of the active volcano Planchon-Peteroa in the Andean Southern Volcanic Zone at latitude 35° 15' S, along the border between Chile and Argentina. The development of the volcano over the last 14,000 years illustrates how glacial melting and magmatic activity can trigger landslides and sector collapses. Planchon had a large sector collapse that produced a highly mobile and erosive debris avalanche 11,000 years BP, and other slope instabilities during the end-Pleistocene/early Holocene deglaciation. The summit amphitheater left after the sector collapse was subject to alternating periods of glaciation and melting-induced lake formation. Breaching of the moraine dams then formed lahars and landslides originating at the western edge of the summit amphitheater, and the deposits are preserved along the western flank of the volcano. Deep incision of moraine deposits further down the western slope of the volcano indicates that the lahars and landslides were water-rich and had high erosive power. As illustrated by Planchon-Peteroa, the interplay among glacial growth and melting, magmatic activity, and slope stability is complex, but must be accounted for in volcanic hazard assessment. Planchon-Peteroa currently has the southernmost temperate zone mountain glacier in the Andes. Accelerated glacial melting at present rates of climate change could lead to a recurrence of many of these post-Pleistocene events. A framework for augmenting hazard assessments and countermeasures is also proposed based on the types of hazards presented by accelerated glacial melting. Glacial melting may lead to volcanic hazards in areas not previously considered at risk, and hence there may be a low level of preparedness. Compared to the end-Pleistocene accelerated glacial melting and sector collapses, present-day glacial melting in volcanic terrain has the potential to affect large human populations. Human settlements, hydropower production, forestry, mining and wilderness tourism are all concentrated near some glaciated volcanic areas. For example, the area covered by the debris avalanche from Volcan Planchon currently supports a rich agricultural economy in Chile. Effective risk management is needed to address the issues of changing patterns in vulnerability, the nature and redistribution of hazards, and the potential socioeconomic consequences of glaciovolcanic events. Since these events are infrequent, local communities frequently do not have a memory of past occurrences, and therefore have a low awareness of the potential effects. Systematic and structured impact assessment allows objective risk analysis, uncertainty analysis, and a framework for balancing countermeasures and contingency measures with public need and acceptance. An impact assessment approach similar to that used in land use planning is presented here, with the following major elements: (i) hazard characterization; (ii) consequence characterization; (iii) risk assessment; (iv) risk control and countermeasures; and (v) risk communication. The emphasis is on effective risk communication, supported by facts, in order to address the increased hazards posed by accelerated glacial melting on volcanic cone stability. Decision makers must then weigh societal acceptance of the risk control and countermeasures against their costs and consequences.

  17. Did the West Antarctic Ice Sheet collapse during late Pleistocene interglacials: A reassessment

    NASA Astrophysics Data System (ADS)

    Scherer, R. P.

    2009-04-01

    Ever since John Mercer's provocative paper, "West Antarctic ice sheet and CO2 Greenhouse effect: a threat of disaster" (Nature 271:321-325; 1978), researchers have grappled with questions regarding whether, when, how frequently, and, especially, how quickly the West Antarctic Ice Sheet has disintegrated and reformed during the Pliocene and Pleistocene (and whether and when it may again in the future). Oxygen isotope records, being global averages, are insufficient to answer these questions, because (1) the WAIS signal is relatively small, and (2) antiphased behavior between the poles of the precession cycle will tend to cancel part of the signal, as outlined by Raymo et. al. (Science 313, 492-495, 2006). Previously, Antarctica lacked proximal, well-dated Pleistocene and Pliocene marine geologic records, so eustatic, mostly tropical sea-level records were used to infer past WAIS collapses. The first direct evidence of past Pleistocene WAIS collapse came from diatoms recovered from beneath the WAIS on the Whillans Ice Stream (UpB). Scherer (GPC, 4, 395-412, 1991) and Scherer et al. (Science, 281, 82-85, 1998) interpreted these results as most likely reflecting WAIS retreat during MIS-11, but could not rule out other interglacials, including MIS-5e, the penultimate interglacial discussed by Mercer. More recently, proximal evidence of WAIS retreat (or collapse) during early Pleistocene MIS-31 came from drilling at Cape Roberts (CRP-1) and the ANDRILL McMurdo Ice Shelf project (AND-1B) (Scherer et al., GRL, 35, doi:10.1029/2007GL032254, 2008). These diatom results provide evidence of ice sheet retreat events, but no constraint on the rate of ice sheet "collapse," which is critical to assessing the threat of future collapse. These results provided impetus and constraints for new coupled climate/ice sheet models, which are yielding significant insights (Pollard and DeConto, Nature, in press). The ANDRILL-MIS site contains no clear evidence of WAIS collapse events subsequent to MIS-31, but there is poor age control in the recovered diamictons. Furthermore, evidence of significant interglacials may have been lost in glacial erosion. A reassessment of diatom data from UpB indicates that the Pleistocene diatoms identified from beneath the WAIS are compatible with MIS-31 deposition as well as late Pleistocene marine deposition. This, once again, leaves the question of the configuration of the WAIS during MIS-11, MIS-5e and other late Pleistocene interglacials open for discussion.

  18. Vicariance biogeography in the Pleistocene and speciation in North American wood warblers: a test of Mengel's model.

    PubMed Central

    Bermingham, E; Rohwer, S; Freeman, S; Wood, C

    1992-01-01

    It is widely believed that habitat fragmentation during the Pleistocene initiated speciation events in many songbird genera. One such vicariance model for avian speciation in the Pleistocene was developed by R. M. Mengel for North American birds. This model suggests that the first Pleistocene glacial advance reduced the area of an extensive, eastern North American deciduous forest, forcing adaptation by some species to boreal forest. This, in turn, facilitated the development of transcontinental range expansions during interglacials. Subsequent glacial advances repeatedly fragmented the ranges of these species into eastern and western populations; western isolates speciated to form the multispecies groups observed among various North American birds. We used mtDNA restriction site data to reconstruct the phylogeny of the black-throated green warbler complex-the group that Mengel considered the best fit to his model. Contrary to Mengel's model, the phylogeny indicates that not all western endemics were derived from an eastern ancestor. Instead, our results imply a mix, wherein some western endemics were budded off an eastern source, as Mengel posits, while others probably resulted from intermontane isolations in the west. PMID:11607307

  19. Predicting Pleistocene climate from vegetation

    NASA Astrophysics Data System (ADS)

    Loehle, C.

    2006-10-01

    Climates at the Last Glacial Maximum have been inferred from fossil pollen assemblages, but these inferred climates are colder than those produced by climate simulations. Biogeographic evidence also argues against these inferred cold climates. The recolonization of glaciated zones in eastern North America following the last ice age produced distinct biogeographic patterns. It has been assumed that a wide zone south of the ice was tundra or boreal parkland (Boreal-Parkland Zone or BPZ), which would have been recolonized from southern refugia as the ice melted, but the patterns in this zone differ from those in the glaciated zone, which creates a major biogeographic anomaly. In the glacial zone, there are few endemics but in the BPZ there are many across multiple taxa. In the glacial zone, there are the expected gradients of genetic diversity with distance from the ice-free zone, but no evidence of this is found in the BPZ. Many races and related species exist in the BPZ which would have merged or hybridized if confined to the same refugia. Evidence for distinct southern refugia for most temperate species is lacking. Extinctions of temperate flora were rare. The interpretation of spruce as a boreal climate indicator may be mistaken over much of the region if the spruce was actually an extinct temperate species. All of these anomalies call into question the concept that climates in the zone south of the ice were very cold or that temperate species had to migrate far to the south. Similar anomalies exist in Europe and on tropical mountains. An alternate hypothesis is that low CO2 levels gave an advantage to pine and spruce, which are the dominant trees in the BPZ, and to herbaceous species over trees, which also fits the observed pattern. Most temperate species could have survived across their current ranges at lower abundance by retreating to moist microsites. These would be microrefugia not easily detected by pollen records, especially if most species became rare. These results mean that climate reconstruction based on terrestrial plant indicators will not be valid for periods with markedly different CO2 levels.

  20. Paleoclimatic modeling and phylogeography of least killifish, Heterandria formosa: insights into Pleistocene expansion-contraction dynamics and evolutionary history of North American Coastal Plain freshwater biota

    PubMed Central

    2013-01-01

    Background Climatic and sea-level fluctuations throughout the last Pleistocene glacial cycle (~130-0 ka) profoundly influenced present-day distributions and genetic diversity of Northern Hemisphere biotas by forcing range contractions in many species during the glacial advance and allowing expansion following glacial retreat ('expansion-contraction’ model). Evidence for such range dynamics and refugia in the unglaciated Gulf-Atlantic Coastal Plain stems largely from terrestrial species, and aquatic species Pleistocene responses remain relatively uninvestigated. Heterandria formosa, a wide-ranging regional endemic, presents an ideal system to test the expansion-contraction model within this biota. By integrating ecological niche modeling and phylogeography, we infer the Pleistocene history of this livebearing fish (Poeciliidae) and test for several predicted distributional and genetic effects of the last glaciation. Results Paleoclimatic models predicted range contraction to a single southwest Florida peninsula refugium during the Last Glacial Maximum, followed by northward expansion. We inferred spatial-population subdivision into four groups that reflect genetic barriers outside this refuge. Several other features of the genetic data were consistent with predictions derived from an expansion-contraction model: limited intraspecific divergence (e.g. mean mtDNA p-distance = 0.66%); a pattern of mtDNA diversity (mean Hd = 0.934; mean π = 0.007) consistent with rapid, recent population expansion; a lack of mtDNA isolation-by-distance; and clinal variation in allozyme diversity with higher diversity at lower latitudes near the predicted refugium. Statistical tests of mismatch distributions and coalescent simulations of the gene tree lent greater support to a scenario of post-glacial expansion and diversification from a single refugium than to any other model examined (e.g. multiple-refugia scenarios). Conclusions Congruent results from diverse data indicate H. formosa fits the classic Pleistocene expansion-contraction model, even as the genetic data suggest additional ecological influences on population structure. While evidence for Plio-Pleistocene Gulf Coast vicariance is well described for many freshwater species presently codistributed with H. formosa, this species demography and diversification departs notably from this pattern. Species-specific expansion-contraction dynamics may therefore have figured more prominently in shaping Coastal Plain evolutionary history than previously thought. Our findings bolster growing appreciation for the complexity of phylogeographical structuring within North America’s southern refugia, including responses of Coastal Plain freshwater biota to Pleistocene climatic fluctuations. PMID:24107245

  1. Composite sedimentary record of falling stages of Pleistocene glacio-eustatic cycles in a shelf setting (Crotone basin, south Italy)

    NASA Astrophysics Data System (ADS)

    Massari, F.; Sgavetti, M.; Rio, D.; D'Alessandro, A.; Prosser, G.

    1999-08-01

    A thick Pleistocene shelf and nearshore cyclical succession was deposited in the S. Mauro sub-basin of the Crotone basin (southern Italy). The regressive units of the cycles are mostly represented by coastal siliciclastic and bioclastic prograding wedges showing a clinoform geometry. These are separated by blanket-like deposits of high lateral persistence recording major transgressive episodes. The aim of this paper is (1) to describe facies patterns and depositional setting of two prograding wedges, particularly focussing on their polycyclic internal architecture, (2) to analyze these units within a sequence-stratigraphic framework, and (3) to speculate on the possible origin of the small-scale cyclicity. The two wedges analyzed in this paper consist of a number of shingles. Individual shingles consist of two physically connected units: (1) a relatively thin package of sigmoid clinoforms, grading into (2) a volumetrically dominant package of oblique-tangential clinoforms with toplap terminations. The shingles are bounded by seaward-dipping surfaces with sigmoid clinoform geometry, which are ravinement surfaces updip, passing into conformable flooding surfaces downdip. The wedges are thus organized into high-frequency, small-scale sequences, each comprising transgressive, highstand and falling-stage systems tracts. As a whole, individual prograding wedges are interpreted as forced-regressive units, as the shoreline was subject to an overall shift basinwards and downwards along a low-angle trajectory, in spite of the repeated minor relative sea-level rises. Tectonic subsidence, and particularly the syndepositional growth of gentle synclines, are thought to have been the key factors allowing the preservation of these forced-regressive units. Progradation of the wedges took place in a high-energy wave climate characterized by high frequency of storms and very efficient alongshore redistribution of sediments. Recurrent, storm-driven, offshore currents led to intense reworking of sediments on the topset platform and gravity spreading on the foreset slope of the prograding wedges. Well-oxygenated conditions over the shelf due to intensified storm activity during glacial periods may have enhanced the rate of production of skeletal, foramol-type carbonates. It can reasonably be assumed that progradation took place from a line source and that the sand bodies are to be regarded as coastal prograding bodies. In spite of active syndepositional tectonics, the cycles can be correlated to Pleistocene high-amplitude sea-level oscillations. The older of the two wedges can be correlated, through bio-magnetostratigraphy, to the major climatic transition which occurred from the marine oxygen-isotope stage 25 to 24-22 ( Rio et al., 1996). The younger probably developed during the sea-level fall that ended with substage 18.2, as suggested by sequence- and bio-stratigraphic data. The prograding wedges are thus interpreted to record long-lived sea-level falls of fourth-order cycles. Due to the particular depositional setting, we are inclined to exclude authigenic mechanisms in the origin of small-scale cyclicity. Although the concomitance and interaction of different controlling factors may be taken into account, it is tempting to ascribe this cyclicity to minor eustatic changes punctuating long-lived, erratic falling stages, possibly accompanied by climate-driven fluctuations of sediment supply. Shelf-perched and shelf-edge prograding units consisting of foramol-type carbonates are apparently a common falling-stage to lowstand depositional feature in the Mediterranean area during the Late Pliocene and Pleistocene.

  2. Nonlinear detection of large-scale transitions in Plio-Pleistocene African climate

    NASA Astrophysics Data System (ADS)

    Donges, J. F.; Donner, R. V.; Trauth, M. H.; Marwan, N.; Schellnhuber, H. J.; Kurths, J.

    2011-12-01

    Potential paleoclimatic driving mechanisms acting on human development present an open problem of cross-disciplinary scientific interest. The analysis of paleoclimate archives encoding the environmental variability in East Africa during the last 5 Ma (million years) has triggered an ongoing debate about possible candidate processes and evolutionary mechanisms. In this work, we apply a novel nonlinear statistical technique, recurrence network analysis, to three distinct marine records of terrigenous dust flux. Our method enables us to identify three epochs with transitions between qualitatively different types of environmental variability in North and East Africa during the (i) Mid-Pliocene (3.35-3.15 Ma BP (before present)), (ii) Early Pleistocene (2.25-1.6 Ma BP), and (iii) Mid-Pleistocene (1.1-0.7 Ma BP). A deeper examination of these transition periods reveals potential climatic drivers, including (i) large-scale changes in ocean currents due to a spatial shift of the Indonesian throughflow in combination with an intensification of Northern Hemisphere glaciation, (ii) a global reorganization of the atmospheric Walker circulation induced in the tropical Pacific and Indian Ocean, and (iii) shifts in the dominating temporal variability pattern of glacial activity during the Mid-Pleistocene, respectively. A statistical reexamination of the available fossil record demonstrates a remarkable coincidence between the detected transition periods and major steps in hominin evolution. This suggests that the observed shifts between more regular and more erratic environmental variability have acted as a trigger for rapid change in the development of humankind in Africa.

  3. Pleistocene landscapes in central Iberia inferred from pollen analysis of hyena coprolites

    NASA Astrophysics Data System (ADS)

    Carrin, J. S.; Scott, L.; Arribas, A.; Fuentes, N.; Gil-Romera, G.; Montoya, E.

    2007-02-01

    New pollen data from hyena coprolites from central Spain are presented. The fossil faecal material has been recovered from two karstic systems in different localities, Villacastn and Los Torrejones, which are both around 1000 m a.s.l. The combined findings of bone remains and coprolites in both locations suggest the following chronology: late Middle Pleistocene for Villacastn and early Upper Pleistocene for Los Torrejones. The environments inferred from pollen are broadly in keeping with evidence from associated vertebrate fossil remains, and include a shifting mosaic of open and wooded habitats with abundant pine and juniper species, steppe-grassland areas with composites and chenopods, and enclaves with mixed oak forests. However, Los Torrejones appears to have been less forested than Villacastn. The abundance of oaks in Villacastn may imply the presence of refugia within an interconnected network of several enclaves during the glacial stages in the Upper Pleistocene. A possible explanation for the patchiness of the landscape may be in the role of herbivores, although the long distances and variety of habitats that hyenas had to roam through could be another explanation for the heterogeneous pollen contents in their dung. Copyright

  4. An early to mid-Pleistocene deep Arctic Ocean ostracode fauna with North Atlantic affinities

    USGS Publications Warehouse

    DeNinno, Lauren H.; Cronin, Thomas M.; Rodriquez-Lazaro, J.; Brenner, Alec R.

    2015-01-01

    An early to middle Pleistocene ostracode fauna was discovered in sediment core P1-93-AR-23 (P23, 76.95°N, 155.07°W) from 951 meter water depth from the Northwind Ridge, western Arctic Ocean. Piston core P23 yielded more than 30,000 specimens and a total of about 30 species. Several early to mid-Pleistocene species in the genera Krithe,Echinocythereis, Pterygocythereis, and Arcacythere are now extinct in the Arctic and show taxonomic affinities to North Atlantic Ocean species. Our results suggest that there was a major ostracode faunal turnover during the global climate transitions known as the Mid-Pleistocene Transition (MPT, ~ 1.2 to 0.7 Ma) and the Mid-Brunhes Event (MBE, ~ 400 ka) reflecting the development of perennial sea ice during interglacial periods and large ice shelves during glacial periods over the last 400,000 years.

  5. Is Gene Flow Promoting the Reversal of Pleistocene Divergence in the Mountain Chickadee (Poecile gambeli)?

    PubMed Central

    Manthey, Joseph D.; Klicka, John; Spellman, Garth M.

    2012-01-01

    The Pleistocene glacial cycles left a genetic legacy on taxa throughout the world; however, the persistence of genetic lineages that diverged during these cycles is dependent upon levels of gene flow and introgression. The consequences of secondary contact among taxa may reveal new insights into the history of the Pleistocene’s genetic legacy. Here, we use phylogeographic methods, using 20 nuclear loci from regional populations, to infer the consequences of secondary contact following divergence in the Mountain Chickadee (Poecile gambeli). Analysis of nuclear data identified two geographically-structured genetic groups, largely concordant with results from a previous mitochondrial DNA (mtDNA) study. Additionally, the estimated multilocus divergence times indicate a Pleistocene divergence, and are highly concordant with mtDNA. The previous mtDNA study showed a paucity of sympatry between clades, while nuclear patterns of gene flow show highly varied patterns between populations. The observed pattern of gene flow, from coalescent-based analyses, indicates southern populations in both clades exhibit little gene flow within or between clades, while northern populations are experiencing higher gene flow within and between clades. If this pattern were to persist, it is possible the historical legacy of Pleistocene divergence may be preserved in the southern populations only, and the northern populations would become a genetically diverse hybrid species. PMID:23152877

  6. Pleistocene evolution of closely related sand martins Riparia riparia and R. diluta.

    PubMed

    Pavlova, Alexandra; Zink, Robert M; Drovetski, Sergei V; Rohwer, Sievert

    2008-07-01

    Climatic fluctuations during the Quaternary resulted in a dynamic history of species' range shifts, fragmentations and expansions. Some of these events left traces in the genetic structures of plants and animals. Recent avian phylogeographic studies demonstrated that Holarctic birds responded idiosyncratically to Pleistocene climate fluctuations. We present phylogeographic analyses of the Holarctic collared sand martin (Riparia riparia) and the Asian pale sand martin (Riparia diluta), which were considered conspecific until recently. Mitochondrial and nuclear sequences confirm species status of the pale sand martin; the two species diverged sometime between late Pliocene and middle Pleistocene, but precise dates could not be provided without calibration of the substitution rate. Within the pale sand martin, we found two mitochondrial clades that are likely to have diverged in the Pleistocene, one from Central Siberia, and the other restricted to Mongolia. The two clades were sympatric with the collared sand martin in Buryatiya and Mongolia, respectively. The mitochondrial gene genealogy and phi(st) analysis of the collared sand martin haplotypes indicate recent, but not ongoing, gene exchange between North America and Eurasia, and restricted gene flow between western and eastern Siberia that likely resulted from historic fragmentation of the species' range during the last glacial maximum. PMID:18499482

  7. Migration of the Antarctic Polar Front through the mid-Pleistocene transition: evidence and climatic implications

    NASA Astrophysics Data System (ADS)

    Kemp, A. E. S.; Grigorov, I.; Pearce, R. B.; Naveira Garabato, A. C.

    2010-08-01

    The Antarctic Polar Front is an important biogeochemical divider in the Southern Ocean. Laminated diatom mat deposits record episodes of massive flux of the diatom Thalassiothrix antarctica beneath the Antarctic Polar Front and provide a marker for tracking the migration of the Front through time. Ocean Drilling Program Sites 1091, 1093 and 1094 are the only deep piston cored record hitherto sampled from the sediments of the circumpolar biogenic opal belt. Mapping of diatom mat deposits between these sites indicates a glacial-interglacial front migration of up to 6 degrees of latitude in the early/mid Pleistocene. The mid-Pleistocene transition marks a stepwise minimum 7° northward migration of the locus of the Polar Front sustained for about 450 kyr until an abrupt southward return to a locus similar to its modern position and further south than any mid-Pleistocene locus. This interval from a "900 ka event" that saw major cooling of the oceans and a δ 13C minimum through to the 424 ka Mid-Brunhes Event at Termination V is also seemingly characterised by 1) sustained decreased carbonate in the sub-tropical south Atlantic, 2) reduced strength of Antarctic deep meridional circulation, 3) lower interglacial temperatures and lower interglacial atmospheric CO 2 levels (by some 30 per mil) than those of the last 400 kyr, evidencing less complete deglaciation. This evidence is consistent with a prolonged period lasting 450 kyr of only partial ventilation of the deep ocean during interglacials and suggests that the mechanisms highlighted by recent hypotheses linking mid-latitude atmospheric conditions to the extent of deep ocean ventilation and carbon sequestration over glacial-interglacial cycles are likely in operation during the longer time scale characteristic of the mid-Pleistocene transition. The cooling that initiated the "900 ka event" may have been driven by minima in insolation amplitude related to eccentricity modulation of precession that also affected low latitude climates as marked by threshold changes in the African monsoon system. The major thresholds in earth system behaviour through the mid-Pleistocene transition were likely governed by an interplay of the 100 kyr and 400 kyr eccentricity modulation of precession.

  8. North Atlantic climate evolution through the Plio-Pleistocene climate transitions

    NASA Astrophysics Data System (ADS)

    Lawrence, K. T.; Sosdian, S.; White, H. E.; Rosenthal, Y.

    2010-12-01

    During the Plio-Pleistocene, the Earth witnessed the growth of large northern hemisphere ice sheets and profound changes in both North Atlantic and global climate. Here, we present a ~ 3.2 Myr long, orbitally-resolved alkenone sea surface temperature (SST) record from Deep Sea Drilling Project (DSDP) Site 607 (41°N, 33°W, water depth 3427 m) in the North Atlantic Ocean. We employ a multi-proxy approach comparing these new observations with existing bottom water temperature (BWT) and stable isotope time series from the same site and SST time series from other sites, shedding new light on Plio-Pleistocene climate change. North Atlantic temperature records show a long-term cooling with two major steps occurring during the late Pliocene (3.1 to 2.4 Ma) and the mid-Pleistocene (1.5 to 0.8 Ma), closely timed with intervals of major change in northern hemisphere ice sheets. Existing evidence suggests that the late Pliocene cooling may have been caused by a thresholded response to secular changes in atmospheric carbon dioxide (CO 2). While an explanation for the mid-Pleistocene cooling may involve glacial-interglacial changes in atmospheric CO 2, it seems to also require a change in the behavior of the ice sheets themselves. North Atlantic climate responses were closely phased with benthic oxygen isotope (δ 18O) changes during the "41 kyr world," indicating a strong common northern hemisphere high latitude imprint on North Atlantic climate signals. After the mid-Pleistocene transition (MPT), North Atlantic SST records and the Site 607 benthic carbon isotope (δ 13C) record are more closely phased with δ 18O, whereas BWT significantly leads δ 18O in the 100 kyr band, suggesting a shift from a northern to a southern hemisphere influence on North Atlantic BWT. We propose that the expansion of the West Antarctic ice sheet (WAIS) across the MPT increased the production and export of Antarctic Bottom Water from the Southern Ocean and subsequently controlled its incursion into the North Atlantic, especially during glacial intervals. It follows that the early 100 kyr response of BWT implies an early response of the WAIS relative to the northern hemisphere deglaciation. Thus, in the "100 kyr world," both northern hemisphere and southern hemisphere processes affect climate conditions in the North Atlantic Ocean.

  9. Gulf coastal Pleistocene units and time stratigraphy; reevaluation and problems of Atlantic correlation

    SciTech Connect

    Otvos, E.G. . Geology Section)

    1993-03-01

    Outdated glacial subdivisions and misinterpretations of alluvial interfluve ridges as marine terraces hampered advances in coastal stratigraphy. One problem involves C.W. Cooke's extension of his Atlantic shorelines along the NE Gulf into the Mississippi Embayment. The mirage of an inter-Wisconsinan interglacial gave way to beliefs in high glacial Wisconsinan sea levels that were assumed to have resulted in barriers and intensive alluvial aggradation on the TX-LA coastal plain. Without vertical definitions, Fisk assigned formation status to alluvial and brackish-marine sediments that directly underlie four coastwise Pleistocene terraces in SW Louisiana. The youngest (Prairie) and associated formations were recently (re)defined and correlated with other coastal areas. Brackish and marine deposits in the subsurface have been correlated with Fisk's second youngest coastwise surface. Detailed facies analyses of cores from hundreds of drillholes indicated that, in sharp contrast with Plio-Pleistocene barriers on the Atlantic coast, only a single, Sangamonian (Sg) barrier shore complex remains on the NE Gulf coastal plain after intensive uplift/erosion. Few isolated remnants of pre-Sg Pleistocene alluvial units occur, including flora elements in peat lenses at one location. An early, low Sg sea level stand near Apalachicola is marked by transgressive deposits at c. [minus]37.5m. Thin NE Gulf Sg sequence includes the fine-grained, open marine-to-estuarine Biloxi, the regressive, shallow subtidal-to-supratidal, mainland Gulfport barrier and the alluvial Prairie Formations. These are correlatable Gulfwide. Contrary to widespread assumption, the Gulfport-Ingleside barriers were not islands but mainland strandplains. The Sg complex correlates with oxygen isotope Stage 5 units of the Mid/South Atlantic coastal plain and shelf. Thick LA-TX shelf/slope intervals display about ten fourth-order cycles within 4 primary ones.

  10. Range expansions in the flightless longhorn cactus beetles, Moneilema gigas and Moneilema armatum, in response to Pleistocene climate changes.

    PubMed

    Smith, Christopher Irwin; Farrell, Brian D

    2005-04-01

    Pollen cores and plant and animal fossils suggest that global climate changes at the end of the last glacial period caused range expansions in organisms indigenous to the North American desert regions, but this suggestion has rarely been investigated from a population genetic perspective. In order to investigate the impact of Pleistocene climate changes and glacial/interglacial cycling on the distribution and population structure of animals in North American desert communities, biogeographical patterns in the flightless, warm-desert cactus beetles, Moneilema gigas and Moneilema armatum, were examined using mitochondrial DNA (mtDNA) sequence data from the cytochrome oxidase I (COI) gene. Gene tree relationships between haplotypes were inferred using parsimony, maximum-likelihood, and Bayesian analysis. Nested clade analysis and coalescent modelling using the programs mdiv and fluctuate were used to identify demographically independent populations, and to test the hypothesis that Pleistocene climate changes caused recent range expansions in these species. A sign test was used to evaluate the probability of observing concerted population growth across multiple, independent populations. The phylogeographical and nested clade analyses reveal a history of northward expansion in both of these species, as well as a history of past range fragmentation, followed by expansion from refugia. The coalescent analyses provide highly significant evidence for independent range expansions from multiple refugia, but also identify biogeographical patterns that predate the most recent glacial period. The results indicate that widespread desert environments are more ancient than has been suggested in the past. PMID:15773934

  11. Evidence for a Younger Dryas glacial advance in the Andes of northwestern Venezuela

    NASA Astrophysics Data System (ADS)

    Mahaney, William C.; Milner, M. W.; Kalm, Volli; Dirszowsky, Randy W.; Hancock, R. G. V.; Beukens, Roelf P.

    2008-04-01

    Deposits of push moraine, outwash and glaciolacustrine sediments, recovered from two areas in the northwestern Venezuelan Andes document the latest Pleistocene advance of Mérida ice. Underlying peats provide maximum ages on till and outwash evidently emplaced during the Younger Dryas (YD) climatic event. One example recovered from the Humboldt Massif, where the farthest extent of YD ice buried peat in the surface of Late Glacial till, provides a within-glacier advance age of 12.4 ka cal BP. The peat lies on moraine deposited during a stillstand event when the Humboldt Glacier retreated to the area of Lago Verde at ˜ 4000 m a.s.l. Approximately 0.5 km upvalley, toward Lago Suero, YD till buries peat deposited in glaciolacustrine sediments of presumed Late Glacial age. Farther north, in the Mucuñuque-Mucubají Catchment of the eastern cordillera, a push moraine of possible YD age buries older till of Late Glacial age; ˜ 0.2 km upvalley, outwash of YD age buries glaciolacustrine peat and organic-rich alluvial sediment dated to 13.7 and 13.3 ka cal BP. The latest Mérida advance documented here is approximately synchronous with the YD cold event of Europe and the North Atlantic Region (ca. 11.6-12.7 ka cal BP). The YD event in both areas of the northwestern Venezuelan Andes nearly reestablished earlier Late Glacial ice positions, and termination appears to have been abrupt; the valleys in both areas were evacuated of YD ice without emplacement of recessional moraines as during the main deglaciation. At the Humboldt site, equilibrium line altitudes (ELA's) for the Late Glacial were about 50 m lower than during the inferred YD; in the Mucuñuque-Mucubají catchment, ELA's for the Late Glacial (~ 3900 m a.s.l.) are difficult to establish given the absence of lateral moraines.

  12. Neurodynamic oscillators

    NASA Technical Reports Server (NTRS)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  13. Grassland Vegetation in the Southern Great Plains during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Hall, Stephen A.; Valastro, Salvatore

    1995-09-01

    New pollen records from White Lake in the Southern High Plains and from Friesenhahn Cave on the southeastern Edwards Plateau of Texas indicate that the glacial-age vegetation of the southern Great Plains was a grassland. The High Plains was a treeless Artemisia grassland and the Edwards Plateau, at the south edge of the Great Plains, was a grassland with pinyon pines and deciduous trees in canyons and riparian habitats. The glacial-age grasslands differ from modern shortgrass and tallgrass prairies and may have no modern analog. The dominance of prairie vegetation during the last glacial maximum is compatible with late Pleistocene mammalian faunas and late-glacial grassland pollen records from the region. Earlier interpretations of a pine-spruce forest on the High Plains were based on pollen assemblages that are here shown to have been altered by postdepositional deterioration, resulting in differential preservation of conifer pollen grains. Accordingly, the "Tahoka Pluvial" and other "climatic episodes" defined by High Plains pollen records are abandoned.

  14. Arsenic Geochemistry and Hydrostratigraphy in Midwestern U.S. Glacial Deposits

    USGS Publications Warehouse

    Root, T.L.; Gotkowitz, M.B.; Bahr, J.M.; Attig, J.W.

    2010-01-01

    Arsenic concentrations exceeding the U.S. EPA's 10 ??g/L standard are common in glacial aquifers in the midwestern United States. Previous studies have indicated that arsenic occurs naturally in these aquifers in association with metal-(hydr)oxides and is released to groundwater under reducing conditions generated by microbial oxidation of organic matter. Despite this delineation of the arsenic source and mechanism of arsenic mobilization, identification of arsenic-impacted aquifers is hindered by the heterogeneous and discontinuous nature of glacial sediments. In much of the Midwest, the hydrostratigraphy of glacial deposits is not sufficiently characterized to predict where elevated arsenic concentrations are likely to occur. This case study from southeast Wisconsin presents a detailed characterization of local stratigraphy, hydrostratigraphy, and geochemistry of the Pleistocene glacial deposits and underlying Silurian dolomite. Analyses of a single core, water chemistry data, and well construction reports enabled identification of two aquifers separated by an organic-rich aquitard. The upper, unconfined aquifer provides potable water, whereas arsenic generally exceeds 10 ??g/L in the deeper aquifer. Although coring and detailed hydrostratigraphic characterization are often considered impractical, our results demonstrate that a single core improved interpretation of the complex lithology and hydrostratigraphy. This detailed characterization of hydrostratigraphy facilitated development of well construction guidelines and lays the ground work for further studies of the complex interactions among aquifer sediments, hydrogeology, water chemistry, and microbiology that lead to elevated arsenic in groundwater. Copyright ?? 2009 The Author(s). Journal compilation ?? 2009 National Ground Water Association.

  15. Paleoceanography of the mid-Pleistocene South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Qianyu; Wang, Pinxian; Zhao, Quanhong; Tian, Jun; Cheng, Xinrong; Jian, Zhimin; Zhong, Guangfa; Chen, Muhong

    2008-06-01

    High-frequency fluctuations in paleoenvironmental proxies from the South China Sea, including stable isotopes and abundance of planktonic foraminifers, nannofossils, radiolarians, and palynomorphs, reveal a dynamic local response to the stepwise development of the mid-Pleistocene climate transition (MPT). These proxies indicate a dramatic drop in sea surface temperature (SST) at about 900 ka, the first largest SST decrease in the region during the Quaternary. Estimated winter SST declined from 24-25 C to 17-18 C in the northern and from 26-27 C to 23-24 C in the southern South China Sea. Subsequent changes in the thermocline depth and faunal-floral turnovers imply a period of about 300 ka in the final stage of the MPT. Winter monsoons increased at 900 ka and reached a maximum strength toward the end of the MPT when summer monsoons also strengthened in interglacials. As a result, thermal gradient between the northern and southern South China Sea increased substantially, with stronger winter monsoon influence in the north and warm and saline conditions in the south especially during glacial periods. These N-S paleoceanographic contrasts indicate an initial establishment of the modern-styled semi-enclosed South China Sea about 900 ka ago when passages in the south started to become completely exposed during glacial lowstands. Coupled with deep water cooling and ventilation, uplift of the sill depth in the Bashi Strait to near the present-2400 m during this period caused sudden decline and extinction of Pacific Deep Water benthic foraminifers in the isolated deep sea basin. Together with data from the oceanic western Pacific, these results further imply a considerable weakening of the western Pacific warm pool during MIS 23-22 and in subsequent glacial periods. While the MPT may have invoked high latitude processes especially an increased ice volume, tropical processes more likely have facilitated the restoration of heat and energy to the western Pacific in each interglacial rebound. Planktonic ? 13C maxima on eccentricity periocities leading major cooling events during the Quaternary indicate the important role of global carbon reservoir changes due to low as well as high latitude processes in past climate change.

  16. The Watinglo mandible: a second terminal Pleistocene Homo sapiens fossil from tropical Sahul with a test on existing models for the human settlement of the region.

    PubMed

    Bulbeck, D; O'Connor, S

    2011-02-01

    This paper analyses a fossil human mandible, dated to circa 10ka, from Watinglo rockshelter on the north coast of Papua New Guinea. The fossil is metrically and morphologically similar to male mandibles of recent Melanesians and Australian Aborigines. It is distinguished from Kow Swamp and Coobool Creek male mandibles (Murray Valley, terminal Pleistocene) by being smaller and having different shape characteristics, as well as smaller teeth and a slower rate of tooth wear. It pairs with the Liang Lemdubu female (Late Glacial Maximum, Aru Islands) in suggesting that the morphology of the terminal Pleistocene inhabitants of tropical Sahul was gracile compared to their contemporaries within the southern Murray drainage. An explanatory scenario for this morphological contrast is developed in the context of the Homo sapiens early fossil record, Australasian mtDNA evidence, terminal Pleistocene climatic variation, and the possibility of multiple entry points into Sahul. PMID:21216399

  17. Ice-Sheet Dynamics and Millennial-Scale Climate Variability in the North Atlantic across the Middle Pleistocene Transition (Invited)

    NASA Astrophysics Data System (ADS)

    Hodell, D. A.; Nicholl, J.

    2013-12-01

    During the Middle Pleistocene Transition (MPT), the climate system evolved from a more linear response to insolation forcing in the '41-kyr world' to one that was decidedly non-linear in the '100-kyr world'. Smaller ice sheets in the early Pleistocene gave way to larger ice sheets in the late Pleistocene with an accompanying change in ice sheet dynamics. We studied Sites U1308 (49° 52.7'N, 24° 14.3'W; 3871 m) and U1304 (53° 3.4'N, 33° 31.8'W; 3024 m) in the North Atlantic to determine how ice sheet dynamics and millennial-scale climate variability evolved as glacial boundary conditions changed across the MPT. The frequency of ice-rafted detritus (IRD) in the North Atlantic was greater during glacial stages prior to 650 ka (MIS 16), reflecting more frequent crossing of an ice volume threshold when the climate system spent more time in the 'intermediate ice volume' window, resulting in persistent millennial scale variability. The rarity of Heinrich Events containing detrital carbonate and more frequent occurrence of IRD events prior to 650 ka may indicate the presence of 'low-slung, slippery ice sheets' that flowed more readily than their post-MPT counterparts (Bailey et al., 2010). Ice volume surpassed a critical threshold across the MPT that permitted ice sheets to survive boreal summer insolation maxima, thereby increasing ice volume and thickness, lengthening glacial cycles, and activating the dynamical processes responsible for Laurentide Ice Sheet instability in the region of Hudson Strait (i.e., Heinrich events). The excess ice volume during post-MPT glacial maxima provided a large, unstable reservoir of freshwater to be released to the North Atlantic during glacial terminations with the potential to perturb Atlantic Meridional Overtunring Circulation. We speculate that orbital- and millennial-scale variability co-evolved across the MPT and the interaction of processes on orbital and suborbital time scales gave rise to the changing patterns of glacial-interglacial cycles through the Quaternary. Bailey, I., Bolton, C.T., DeConto, R.M., Pollard, D., Schiebel, R. and Wilson, P.A. (2010) A low threshold for North Atlantic ice rafting from "low-slung slippery" late Pliocene ice sheets. Paleoceanography, 25, PA1212-[14pp]. (doi:10.1029/2009PA001736).

  18. Importance of genetic drift during Pleistocene divergence as revealed by analyses of genomic variation.

    PubMed

    Knowles, L Lacey; Richards, Corinne L

    2005-11-01

    Determining what factors affect the structuring of genetic variation is key to deciphering the relative roles of different evolutionary processes in species differentiation. Such information is especially critical to understanding how the frequent shifts and fragmentation of species distributions during the Pleistocene translates into species differences, and why the effect of such rapid climate change on patterns of species diversity varies among taxa. Studies of mitochondrial DNA (mtDNA) have detected significant population structure in many species, including those directly impacted by the glacial cycles. Yet, understanding the ultimate consequence of such structure, as it relates to how species divergence occurs, requires demonstration that such patterns are also shared with genomic patterns of differentiation. Here we present analyses of amplified fragment length polymorphisms (AFLPs) in the montane grasshopper Melanoplus oregonensis to assess the evolutionary significance of past demographic events and associated drift-induced divergence as inferred from mtDNA. As an inhabitant of the sky islands of the northern Rocky Mountains, this species was subject to repeated and frequent shifts in species distribution in response to the many glacial cycles. Nevertheless, significant genetic structuring of M. oregonensis is evident at two different geographic and temporal scales: recent divergence associated with the recolonization of the montane meadows in individual sky islands, as well as older divergence associated with displacements into regional glacial refugia. The genomic analyses indicate that drift-induced divergence, despite the lack of long-standing geographic barriers, has significantly contributed to species divergence during the Pleistocene. Moreover, the finding that divergence associated with past demographic events involves the repartitioning of ancestral variation without significant reductions of genomic diversity has intriguing implications - namely, the further amplification of drift-induced divergence by selection. PMID:16262856

  19. Periglacial fires and trees in a continental setting of Central Canada, Upper Pleistocene.

    PubMed

    Bélanger, N; Carcaillet, C; Padbury, G A; Harvey-Schafer, A N; Van Rees, K J C

    2014-03-01

    Fire is a key factor controlling global vegetation patterns and carbon cycling. It mostly occurs under warm periods during which fuel builds up with sufficient moisture, whereas such conditions stimulate fire ignition and spread. Biomass burning increased globally with warming periods since the last glacial era. Data confirming periglacial fires during glacial periods are very sparse because such climates are likely too cold to favour fires. Here, tree occurrence and fires during the Upper Pleistocene glacial periods in Central Canada are inferred from botanical identification and calibrated radiocarbon dates of charcoal fragments. Charcoal fragments were archived in sandy dunes of central Saskatchewan and were dated >50000-26600 cal BP. Fragments were mostly gymnosperms. Parallels between radiocarbon dates and GISP2-δ¹⁸O records deciphered relationships between fire and climate. Fires occurred either hundreds to thousands of years after Dansgaard-Oeschger (DO) interstadial warming events (i.e., the time needed to build enough fuel for fire ignition and spread) or at the onset of the DO event. The chronological uncertainties result from the dated material not precisely matching the fires and from the low residual ¹⁴C associated with old sample material. Dominance of high-pressure systems and low effective moisture during post-DO coolings likely triggered flammable periglacial ecosystems, while lower moisture and the relative abundance of fuel overshadowed lower temperatures for fire spread. Laurentide ice sheet (LIS) limits during DO events are difficult to assess in Central Canada due to sparse radiocarbon dates. Our radiocarbon data set constrains the extent of LIS. Central Saskatchewan was not covered by LIS throughout the Upper Pleistocene and was not a continental desert. Instead, our results suggest long-lasting periods where fluctuations of the northern tree limits and fires after interstadials occurred persistently. PMID:24405713

  20. Co-operation between Gdańsk and Vilnius Universities in Pleistocene geochronology investigations

    NASA Astrophysics Data System (ADS)

    Gaigalas, Algirdas; Fedorowicz, Stanisław

    2009-10-01

    The thermoluminescence (TL) dating of aquatic sand'y sediments, carried out as a co-operation between Gdańsk and Vilnius Universities, provided a more accurate chronology of the Middle-Upper Pleistocene in Lithuania. Based on TL dating, Middle and Upper Pleistocene fine-grained sands of aquatic origin have been attributed to the Butėnai (Holsteinian) Interglacial (Tartokai outcrop), Snaigupėlė (Drenthe-Wartha) Interglacial (Tartokai and Valakampiai (Valakupiai) outcrops), Merkinė (Eemian) Interglacial (Tartokai and Netiesos outcrops) and Nemunas (Vistulian) Glacial (Tartokai, Netiesos and Rokai outcrops). The dating of samples from the outcrops studied show the age of the Butėnai Interglacial to be 430.2 to 280.3 ka years BP, of the Snaigupėlė Interglacial 239.4 to 179.3 ka years BP and the Merkinė Interglacial 135.9 to 103.2 ka years BP. The Early Nemunas and the Middle Nemunas non-glacial sediments accumulated between 67.2-30.6 ka years BP. Tills in the upper part of the Tartokai and Rokai outcrops are younger than 30,000 BP and belong to the Late Nemunas glacial maximum in Lithuania. Different dosimetric (TL, OSL) ages of granular fractions of the same sample indicate different parametres predetermined by the distribution of grain size fractions during aquatic sedimentation of quartz sand. The granulometry of sand or the grain size distribution of quartz particles in samples reflect the state of the hydrodynamic sedimentation space.

  1. Lake core record of Grinnell Glacier dynamics during the latest Pleistocene deglaciation and the Younger Dryas, Glacier National Park, Montana, USA

    NASA Astrophysics Data System (ADS)

    Schachtman, Nathan S.; MacGregor, Kelly R.; Myrbo, Amy; Hencir, Nora Rose; Riihimaki, Catherine A.; Thole, Jeffrey T.; Bradtmiller, Louisa I.

    2015-07-01

    Few records in the alpine landscape of western North America document the geomorphic and glaciologic response to climate change during the Pleistocene-Holocene transition. While moraines can provide snapshots of glacier extent, high-resolution records of environmental response to the end of the Last Glacial Maximum, Younger Dryas cooling, and subsequent warming into the stable Holocene are rare. We describe the transition from the late Pleistocene to the Holocene using a ~ 17,000-yr sediment record from Swiftcurrent Lake in eastern Glacier National Park, MT, with a focus on the period from ~ 17 to 11 ka. Total organic and inorganic carbon, grain size, and carbon/nitrogen data provide evidence for glacial retreat from the late Pleistocene into the Holocene, with the exception of a well-constrained advance during the Younger Dryas from 12.75 to 11.5 ka. Increased detrital carbonate concentration in Swiftcurrent Lake sediment reflects enhanced glacial erosion and sediment transport, likely a result of a more proximal ice terminus position and a reduction in the number of alpine lakes acting as sediment sinks in the valley.

  2. Late Pleistocene Vertebrates and Other Fossils from Epiguruk, Northwestern Alaska

    NASA Astrophysics Data System (ADS)

    Hamilton, Thomas D.; Ashley, Gall M.; Reed, Katherine M.; Schweger, Charles E.

    1993-05-01

    Sediments exposed at Epiguruk, a large cutbank on the Kobuk River about 170 km inland from Kotzebue Sound, record multiple episodes of glacial-age alluviation followed by interstadial downcutting and formation of paleosols. Vertebrate remains from Epiguruk include mammoth, bison, caribou, an equid, a canid, arctic ground squirrel, lemmings, and voles. Radiocarbon ages of bone validated by concordant ages of peat and wood span the interval between about 37,000 and 14,000 yr B.P. The late Pleistocene pollen record is dominated by Cyperaceae, with Artemisia, Salix, Betula, and Gramineae also generally abundant. The fossil record from Epiguruk indicates that the Kobuk River valley supported tundra vegetation with abundant riparian willows during middle and late Wisconsin time. Large herbivores were present during the height of late Wisconsin glaciation as well as during its waning stage and the preceding interstadial interval. The Kobuk River valley would have been a favorable refugium for plants, animals, and possibly humans throughout the last glaciation.

  3. Galactic oscillations

    NASA Technical Reports Server (NTRS)

    Miller, R. H.

    1991-01-01

    Long-lived oscillations that act like normal modes are described. The total kinetic energy is found to vary with time by amounts far in excess of the fluctuations expected from the virial theorem, and the variation shows periodic patterns that suggest oscillations. Experimental results indicate that oscillation amplitudes depend on the nature of the model. It is noted that it is difficult to answer questions about likely amplitudes in real galaxies with any confidence at the present time.

  4. An interhemispheric mechanism for glacial abrupt climate change

    NASA Astrophysics Data System (ADS)

    Banderas, Rubén; Alvarez-Solas, Jorge; Robinson, Alexander; Montoya, Marisa

    2015-05-01

    The last glacial period was punctuated by abrupt climate changes that are widely considered to result from millennial-scale variability of the Atlantic meridional overturning circulation (AMOC). However, the origin of these AMOC reorganizations remains poorly understood. The climatic connection between both hemispheres indicated by proxies suggests that the Southern Ocean (SO) could regulate this variability through changes in winds and atmospheric CO concentration. Here, we investigate this hypothesis using a coupled climate model forced by prescribed CO and SO wind-stress variations. We find that the AMOC exhibits an oscillatory behavior between weak and strong circulation regimes which is ultimately caused by changes in the meridional density gradient of the Atlantic Ocean. The evolution of the simulated climatic patterns matches the amplitude and timing of the largest events that occurred during the last glacial period and their widespread climatic impacts. Our results suggest the existence of an internal interhemispheric oscillation mediated by the bipolar seesaw that could promote glacial abrupt climate changes through variations in atmospheric CO levels, the strength of the SO winds and AMOC reorganizations, and provide an explanation for the pervasive Antarctic-like climate signal found in proxy records worldwide.

  5. Holocene glacial discharge fluctuations and recent instability in East Antarctica

    NASA Astrophysics Data System (ADS)

    Crespin, Julien; Yam, Ruth; Crosta, Xavier; Massé, Guillaume; Schmidt, Sabine; Campagne, Philippine; Shemesh, Aldo

    2014-05-01

    Antarctica holds the largest ice sheet in the world, the East Antarctic Ice Sheet (EAIS), and plays a significant role in both local and global climate through the interactions between ice sheets, ocean, sea ice, and atmosphere. Our understanding of East Antarctica Holocene climate variability relies mainly on ice cores that however do not document glacial discharge history. Here, we present the first high resolution δ18Odiatom record derived from two marine sediment cores retrieved on the East Antarctic continental shelf to reconstruct glacial discharge off Adélie Land and George V Land (AL-GVL) over the last 11,000 years from decadal to centennial resolution. Our results suggest multi-centennial glacier advances and retreats until 2000 cal yr BP, followed by a period of relative instability marked by two major glacial retreats centered at ˜1700 cal yr BP and ˜1980 CE. We suggest that the multi-centennial oscillations during the Early/Mid-Holocene reflect glacier fluctuations in response to long-term local seasonal insolation and short-term solar variability. We also propose that δ18Odiatom variability over the last 2000 years was the result of a recent change in the AL-GVL region to increasing atmospheric influence, linked to ENSO intensification and teleconnections strengthening between low and high latitudes.

  6. Calcium Oscillations

    PubMed Central

    Dupont, Geneviève; Combettes, Laurent; Bird, Gary S.; Putney, James W.

    2011-01-01

    Calcium signaling results from a complex interplay between activation and inactivation of intracellular and extracellular calcium permeable channels. This complexity is obvious from the pattern of calcium signals observed with modest, physiological concentrations of calcium-mobilizing agonists, which typically present as sequential regenerative discharges of stored calcium, a process referred to as calcium oscillations. In this review, we discuss recent advances in understanding the underlying mechanism of calcium oscillations through the power of mathematical modeling. We also summarize recent findings on the role of calcium entry through store-operated channels in sustaining calcium oscillations and in the mechanism by which calcium oscillations couple to downstream effectors. PMID:21421924

  7. A phylogeographic, demographic and historical analysis of the short-tailed pit viper (Gloydius brevicaudus): evidence for early divergence and late expansion during the Pleistocene.

    PubMed

    Ding, Li; Gan, Xiao-Ni; He, Shun-Ping; Zhao, Er-Mi

    2011-05-01

    The impact of quaternary glaciation in eastern China on local fanua and flora has been a topic of considerable interest. We used mitochondrial DNA (mtDNA) sequence data and coalescent simulations to test two general biogeographic hypothesis related to the effects of Pleistocene climatic fluctuations for a widespread ophidian species (Gloydius brevicaudus) in eastern China and Korean Peninsula. The phylogenetic analysis revealed three major lineages, the southeast Coastal, Yangtze and North Lineages. The latter two are closely related and jointly form a continental lineage. Divergence dating and coalescent simulations indicate a Late Pliocene to Early Pleistocene divergence between lineages from the southeast coast and continental interior, followed by a mid-to-late Pleistocene divergence between lineages from the north and the middle-lower Yangtze Valley across East China, suggesting that all these lineages predated the last glacial maximum. An overlapping range between the two lineages within the continental lineage and a secondary contact associated with ecological transition zones on the margins of the North China Plain were also observed. These results show that vicariance patterns dominated the history of G. brevicaudus. Though the climatic events of the Pleistocene have had a marked effect on the historical distribution and intra-specific divergence of reptiles in China, coalescent and non-coalescent demographic analyses indicate that all lineages of G. brevicaudus seem not to have been adversely affected by glacial cycles during the Late Pleistocene, presumably because of an increase in the amount of climatically mild habitat in East Asia due to a decline in elevation and the development of monsoons since the Mid-End Pleistocene. PMID:21438932

  8. Extraterrestrial accretion and glacial cycles

    NASA Technical Reports Server (NTRS)

    Muller, R. A.

    1994-01-01

    We propose that the approx. 100-k.y. cycle seen in terrestrial glaciation is due to changes in meteor flux that come from changes in the Earth's orbit. This model can explain a 70-k.y. 'anomalous' period in climate data and the apparent discrepancy between present extraterrestrial fluxes and those in oceanic sediments. It can be tested by measuring Ir densities in sediments and ice during glacials and interglacials.

  9. Late-Pleistocene paleowinds and aeolian sand mobilization in north-central Lower Michigan

    NASA Astrophysics Data System (ADS)

    Arbogast, Alan F.; Luehmann, Michael D.; Miller, Bradley A.; Wernette, Phillipe A.; Adams, Kristin M.; Waha, Jaimen D.; O'Neil, Glenn A.; Tang, Ying; Boothroyd, Jeremy J.; Babcock, Chad R.; Hanson, Paul R.; Young, Aaron R.

    2015-03-01

    Simulation of late glacial atmospheric conditions with atmospheric general circulation models suggest a strong anticyclone over the Laurentide Ice Sheet and associated easterly winds along the glacial margin. In the upper Midwest of North America, evidence supporting this modeled air flow exists in the orientation of paleospits in northeastern Lower Michigan that formed ∼13 ka in association with glacial Lake Algonquin. Conversely, parabolic dunes that developed between 15 and 10 ka in central Wisconsin, northwestern Indiana, and northwestern Ohio resulted from westerly winds, suggesting that the wind gradient was indeed tight. Study results refine our understanding of late-Pleistocene wind conditions even closer to the ice margin in the upper Midwest by focusing on the timing of aeolian sand mobilization in north-central Lower Michigan at the Rosco dune field. The area was deglaciated ∼16 ka, and parabolic dunes have westerly orientations, indicating that they resulted from westerly winds. Optical ages suggest that mobilization last occurred between about 13 ka and 10 ka. The close proximity (∼150 km) of this dune field to more northerly paleolacustrine landforms resulting from easterly winds suggests that anticyclonic circulation indeed extended only a very short distance south of the ice sheet, which is consistent with modeled airflow and the orientation of dunes in central Canada. This study also presents evidence suggesting that, in addition to prevailing winds, dunes likely formed because the sparsely-vegetated local outwash plain was deflated.

  10. Constraints on the Pleistocene chronology of sediments from the Lomonosov Ridge

    USGS Publications Warehouse

    O'Regan, M.; King, J.; Backman, J.; Jakobsson, M.; Palike, H.; Moran, K.; Heil, C.; Sakamoto, T.; Cronin, T. M.; Jordan, R.W.

    2008-01-01

    Despite its importance in the global climate system, age-calibrated marine geologic records reflecting the evolultion of glacial cycles through the Pleistocene are largely absent from the central Arctic Ocean. This is especially true for sediments older than 200 ka. Three sites cored during the Integrated Ocean Drilling Program's Expedition 302, the Arctic Coring Expedition (ACEX), provide a 27 m continuous sedimentary section from the Lomonosov Ridge in the central Arctic Ocean. Two key biostratigraphic datums and constraints from the magnetic inclination data are used to anchor the chronology of these sediments back to the base of the Cobb Mountain subchron (1215 ka). Beyond 1215 ka, two best fitting geomagnetic models are used to investigate the nature of cyclostratigraphic change. Within this chronology we show that bulk and mineral magnetic properties of the sediments vary on predicted Milankovitch frequencies. These cyclic variations record "glacial" and "interglacial" modes of sediment deposition on the Lomonosov Ridge as evident in studies of ice-rafted debris and stable isotopic and faunal assemblages for the last two glacial cycles and were used to tune the age model. Potential errors, which largely arise from uncertainties in the nature of downhole paleomagnetic variability, and the choice of a tuning target are handled by defining an error envelope that is based on the best fitting cyclostratigraphic and geomagnetic solutions. Copyright 2008 by the American Geophysical Union.

  11. Across the southern Andes on fin: glacial refugia, drainage reversals and a secondary contact zone revealed by the phylogeographical signal of Galaxias platei in Patagonia.

    PubMed

    Zemlak, Tyler S; Habit, Evelyn M; Walde, Sandra J; Battini, Miguel A; Adams, Emily D M; Ruzzante, Daniel E

    2008-12-01

    We employed DNA sequence variation at two mitochondrial (control region, COI) regions from 212 individuals of Galaxias platei (Pisces, Galaxiidae) collected throughout Patagonia (25 lakes/rivers) to examine how Andean orogeny and the climatic cycles throughout the Quaternary affected the genetic diversity and phylogeography of this species. Phylogenetic analyses revealed four deep genealogical lineages which likely represent the initial division of G. platei into eastern and western lineages by Andean uplift, followed by further subdivision of each lineage into separate glacial refugia by repeated Pleistocene glacial cycles. West of the Andes, refugia were likely restricted to the northern region of Patagonia with small relicts in the south, whereas eastern refugia appear to have been much larger and widespread, consisting of separate northern and southern regions that collectively spanned most of Argentinean Patagonia. The retreat of glacial ice following the last glacial maximum allowed re-colonization of central Chile from nonlocal refugia from the north and east, representing a region of secondary contact between all four glacial lineages. Northwestern glacial relicts likely followed pro-glacial lakes into central Chilean Patagonia, whereas catastrophic changes in drainage direction (Atlantic --> Pacific) for several eastern palaeolakes were the likely avenues for invasions from the east. These mechanisms, combined with evidence for recent, rapid and widespread population growth could explain the extensive contemporary distribution of G. platei throughout Patagonia. PMID:19017262

  12. A multi-locus species phylogeny of African forest duikers in the subfamily Cephalophinae: evidence for a recent radiation in the Pleistocene

    PubMed Central

    2012-01-01

    Background Duikers in the subfamily Cephalophinae are a group of tropical forest mammals believed to have first originated during the late Miocene. However, knowledge of phylogenetic relationships, pattern and timing of their subsequent radiation is poorly understood. Here we present the first multi-locus phylogeny of this threatened group of tropical artiodactyls and use a Bayesian uncorrelated molecular clock to estimate divergence times. Results A total of 4152 bp of sequence data was obtained from two mitochondrial genes and four nuclear introns. Phylogenies were estimated using maximum parsimony, maximum likelihood, and Bayesian analysis of concatenated mitochondrial, nuclear and combined datasets. A relaxed molecular clock with two fossil calibration points was used to estimate divergence times. The first was based on the age of the split between the two oldest subfamilies within the Bovidae whereas the second was based on the earliest known fossil appearance of the Cephalophinae and molecular divergence time estimates for the oldest lineages within this group. Findings indicate strong support for four major lineages within the subfamily, all of which date to the late Miocene/early Pliocene. The first of these to diverge was the dwarf duiker genus Philantomba, followed by the giant, eastern and western red duiker lineages, all within the genus Cephalophus. While these results uphold the recognition of Philantomba, they do not support the monotypic savanna-specialist genus Sylvicapra, which as sister to the giant duikers leaves Cephalophus paraphyletic. BEAST analyses indicate that most sister species pairs originated during the Pleistocene, suggesting that repeated glacial cycling may have played an important role in the recent diversification of this group. Furthermore, several red duiker sister species pairs appear to be either paraphyletic (C.callipygus/C. ogilbyi and C. harveyi/C. natalensis) or exhibit evidence of mitochondrial admixture (C. nigrifrons and C. rufilatus), consistent with their recent divergence and/or possible hybridization with each other. Conclusions Molecular phylogenetic analyses suggest that Pleistocene-era climatic oscillations have played an important role in the speciation of this largely forest-dwelling group. Our results also reveal the most well supported species phylogeny for the subfamily to date, but also highlight several areas of inconsistency between our current understanding of duiker taxonomy and the evolutionary relationships depicted here. These findings may therefore prove particularly relevant to future conservation efforts, given that many species are presently regulated under the Convention for Trade in Endangered Species. PMID:22823504

  13. Increased late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India

    NASA Astrophysics Data System (ADS)

    Scherler, Dirk; Bookhagen, Bodo; Wulf, Hendrik; Preusser, Frank; Strecker, Manfred R.

    2015-10-01

    The response of surface processes to climatic forcing is fundamental for understanding the impacts of climate change on landscape evolution. In the Himalaya, most large rivers feature prominent fill terraces that record an imbalance between sediment supply and transport capacity, presumably due to past fluctuations in monsoon precipitation and/or effects of glaciation at high elevation. Here, we present volume estimates, chronological constraints, and 10Be-derived paleo-erosion rates from a prominent valley fill in the Yamuna catchment, Garhwal Himalaya, to elucidate the coupled response of rivers and hillslopes to Pleistocene climate change. Although precise age control is complicated due to methodological problems, the new data support formation of the valley fill during the late Pleistocene and its incision during the Holocene. We interpret this timing to indicate that changes in discharge and river-transport capacity were major controls. Compared to the present day, late Pleistocene hillslope erosion rates were higher by a factor of ∼2-4, but appear to have decreased during valley aggradation. The higher late Pleistocene erosion rates are largely unrelated to glacial erosion and could be explained by enhanced sediment production on steep hillslopes due to increased periglacial activity that declined as temperatures increased. Alternatively, erosion rates that decrease during valley aggradation are also consistent with reduced landsliding from threshold hillslopes as a result of rising base levels. In that case, the similarity of paleo-erosion rates near the end of the aggradation period with modern erosion rates might imply that channels and hillslopes are not yet fully coupled everywhere and that present-day hillslope erosion rates may underrepresent long-term incision rates.

  14. People of the ancient rainforest: late Pleistocene foragers at the Batadomba-lena rockshelter, Sri Lanka.

    PubMed

    Perera, Nimal; Kourampas, Nikos; Simpson, Ian A; Deraniyagala, Siran U; Bulbeck, David; Kamminga, Johan; Perera, Jude; Fuller, Dorian Q; Szabó, Katherine; Oliveira, Nuno V

    2011-09-01

    Batadomba-lena, a rockshelter in the rainforest of southwestern Sri Lanka, has yielded some of the earliest evidence of Homo sapiens in South Asia. H. sapiens foragers were present at Batadomba-lena from ca. 36,000 cal BP to the terminal Pleistocene and Holocene. Human occupation was sporadic before the global Last Glacial Maximum (LGM). Batadomba-lena's Late Pleistocene inhabitants foraged for a broad spectrum of plant and mainly arboreal animal resources (monkeys, squirrels and abundant rainforest snails), derived from a landscape that retained equatorial rainforest cover through periods of pronounced regional aridity during the LGM. Juxtaposed hearths, palaeofloors with habitation debris, postholes, excavated pits, and animal and plant remains, including abundant Canarium nutshells, reflect intensive habitation of the rockshelter in times of monsoon intensification and biome reorganisation after ca. 16,000 cal BP. This period corresponds with further broadening of the economic spectrum, evidenced though increased contribution of squirrels, freshwater snails and Canarium nuts in the diet of the rockshelter occupants. Microliths are more abundant and morphologically diverse in the earliest, pre-LGM layer and decline markedly during intensified rockshelter use on the wane of the LGM. We propose that changing toolkits and subsistence base reflect changing foraging practices, from shorter-lived visits of highly mobile foraging bands in the period before the LGM, to intensified use of Batadomba-lena and intense foraging for diverse resources around the site during and, especially, following the LGM. Traces of ochre, marine shell beads and other objects from an 80 km-distant shore, and, possibly burials reflect symbolic practices from the outset of human presence at the rockshelter. Evidence for differentiated use of space (individual hearths, possible habitation structures) is present in LGM and terminal Pleistocene layers. The record of Batadomba-lena demonstrates that Late Pleistocene pathways to (aspects of) behavioural 'modernity' (composite tools, practice of symbolism and ritual, broad spectrum economy) were diverse and ecologically contingent. PMID:21777951

  15. Evidence for Early Pleistocene Glaciation obtained from borecores collected in East-Central Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Barendregt, R. W.; Andriashek, L. D.; Jackson, L. E.

    2014-12-01

    Borecores collected from the east-central region of Alberta, Canada have recently been sub-sampled and studied for paleomagnetic remanence characteristics. A preliminary magnetostratigraphy has been established for sediments previously assumed to represent multiple continental (Laurentide) glaciations, but for which no geochronology was available for the pre-late Wisconsin units. Comprised primarily of tills and lesser thicknesses of interbedded glacio-lacustrine and outwash sediments, the record is extensive, reaching to thicknesses of 300 metres within buried valleys. Most of the sampled units are not accessible from outcrop, and their sedimentology and stratigraphy is derived from core data only. The lowermost tills are reversely magnetized in the majority of borecores sampled to date. These tills are underlain by Empress Formation sediments and/or Colorado Group shales, and overlain by normally magnetized sediments. Both tills contain substantial weathering horizons at their surface, suggesting that interglacial or nonglacial conditions persisted for some time after each period of till deposition. Whether these tills represent a single Early Pleistocene glaciation, or perhaps two, will require additional borecore measurements. This new record of Early Pleistocene glaciation(s) in east-central Alberta places the westernmost extent of earliest Laurentide ice some 300 km farther westward from its previously established limit in the Saskatoon to Regina region of the western Canadian prairies, but still well short of the all-time limit and elevation reached during the Late Wisconsin (Late Pleistocene) in the foothills of the Alberta and Montana Rocky Mountains. Key Words: East-Central Alberta glacial history, Early Pleistocene (Laurentide) glaciation, till magnetostratigraphy, Quaternary history of Western Canadian Prairies, continental glaciations of North America.

  16. Pleistocene vegetation change in central Africa recorded off the Congo River

    NASA Astrophysics Data System (ADS)

    Dupont, L. M.

    2003-04-01

    Marine sediments from the Congo Canyon accumulate material and information from one of Africa's large inland basins that is covered, at present, mainly with lowland rain forest and swamp forests. The sediments provide a record of monsoon related hydrological and vegetation change. Multiproxy studies were carried out on ODP Site 1075 located north of the undersea canyon, and GeoB Site 1008 located south of the canyon. Pollen records are compared with other terrestrial signals (iron, clay minerals, biomarkers). The differentiated responses of mangroves, grasslands and swamps, lowland rain forest, and Afromontane forest to environmental fluctuations give insight in several aspects of Pleistocene climate cycles. The record of Rhizophora (mangrove tree) pollen is consolidated by biomarker data and shows maxima during interglacial periods and during periods of rapid sea-level rise. While the latter might be the effect of increased erosion of mangrove peat, the first indicates extension of mangrove swamps during periods with increased run-off. The record of lowland forest pollen indicates extension of the rain forest as a response to increased precipitation in periods of strong monsoons of the past 150 ka which is corroborated by clay mineral fluctuations. During the humid periods, Poaceae (grasses) and Cyperaceae pollen percentages are low indicating a closed canopy in large areas of the basin. During interglacial stages of the early Pleistocene, maxima of tropical forest elements combine with maxima of grass and cyperaceous pollen indicating that the warm periods might have been drier than those of the late Pleistocene. Podocarpus pollen percent maxima register extension of the Afromontane forest during cool periods from 1.05 to 0.6 Ma. Restricted distribution of mountainous forest during the late Pleistocene glacial stages (MIS 6, 4-2) is concurrent with extension of open vegetation types indicating more arid conditions in equatorial areas.

  17. Investigating the Mid-Pleistocene Transition via Data and Dynamical Systems Analyses

    NASA Astrophysics Data System (ADS)

    Camp, C. D.; Oestreicher, S.; Rodrigues, M. J.

    2012-12-01

    The mid-Pleistocene transition is an excellent opportunity for investigating the variability of the Earth's climate, however the cause of this transition remains elusive. The data records of the Pleistocene exhibit a transition from a dominant 41kyr periodicity to a dominant 100kyr periodicity; but this occurs during a period when the orbital forcing from 100kyr cycles in eccentricity is getting weaker while the orbital forcing from the 41kyr cycles in obliquity remains strong. An analysis applying empirical mode decomposition (EMD) to a recently constructed benthic record devoid of orbital tuning suggests that the transition consists of a persistent 41kyr cycle with an emergent 100kyr cycle. A nonlinear paleoclimate model coupling global ice volume, atmospheric carbon and oceanic deep water formation, is used to investigate the source of the emergent 100kyr cycle. This model exhibits an internal oscillation with a periodicity of 100kyr and contains several Hopf bifurcations at reasonable parameter values. These bifurcations provide a potential explanation for the mid-Pleistocene transition consistent with signal extracted in the EMD analysis of the benthic record. An new internal 100kyr oscillation of earth's climate may have appeared via a bifurcation, phase locked to the weak eccentricity forcing.

  18. Phylogeography of the mitten crab Eriocheir sensu stricto in East Asia: Pleistocene isolation, population expansion and secondary contact.

    PubMed

    Xu, Jiawu; Chan, Tin-Yam; Tsang, Ling Ming; Chu, Ka Hou

    2009-07-01

    We examined the impact of Pleistocene glacial cycles on geographical distribution and genetic structure of the mitten crab Eriocheir sensu stricto in East Asia using sequence variation of mitochondrial cytochrome c oxidase I and cytochrome b gene segments. Phylogenies revealed four distinct but shallow structured lineages in Eriocheir s. s. Three lineages dominated the East China Sea-Yellow Sea, the Sea of Japan and the South China Sea on the margins of the region, and one lineage occurred on Okinawa Island. This geographical distribution represents a general phylogeographic pattern in East Asia, which is closely associated with the fluctuations of marginal seas and islands during the Pleistocene. The four lineages are estimated to have diverged during the mid-Pleistocene. Demographic expansions were observed in each lineage, starting within the second-to-latest interglacial period in the marginal sea lineages ( approximately 70-130ka) and within the last glacial period in the Okinawa lineage ( approximately 25-80ka). Expansions have probably taken place northward along the coast of the East China Sea-Yellow Sea, following the rise of sea levels. Centered on the southern Korean Peninsula, expansions have likely occurred northward along the west coast and eastward along the south coast of the Sea of Japan. Each marginal sea has served as a single refugium during glacial periods. Two secondary contact regions were identified, one of the East China Sea-Yellow Sea and South China Sea lineages, and another of the East China Sea-Yellow Sea and Sea of Japan lineages. Phylogeography of Eriocheir s. s. provides insights into the evolutionary history and mechanism for generating biodiversity in East Asia. PMID:19236929

  19. Modeling the Global Monsoon System During Glacial Climate Events

    NASA Astrophysics Data System (ADS)

    Merkel, U.; Prange, M.; Schulz, M.

    2009-04-01

    We employ the comprehensive NCAR Community Climate System Model (version 3) to assess the state of the global monsoon system during specific time intervals of the last glacial period. In contrast to previous studies, we take into account changes in ice-sheet distribution, greenhouse-gas concentrations and orbital parameters for marine isotope stage 3 (MIS3, centered on 35 ka BP) and the last glacial maximum (LGM, centered on 21 ka BP). Both simulations result in a significant reduction of the Atlantic Ocean meridional overturning circulation as compared to modern conditions. Perturbing deep-water formation in the North Atlantic Ocean in these glacial baseline simulations results in explicit representations of Dansgaard-Oeschger-type stadials and interstadials as well as Heinrich-type events. LGM boundary conditions induce a large-scale drying in the West African monsoon region associated with a strengthening and southward shift of the African easterly jet. Through atmospheric dynamics, the effect of ice-sheets is rapidly communicated into a response of the Indian and South East Asian summer monsoon systems and the South American monsoon. Dansgaard-Oeschger-type stadial boundary conditions lead to a pronounced intensification of the African, Indian and South East Asian summer monsoon compared to the LGM. In the Dansgaard-Oeschger-type interstadial simulation, the response of all tropical monsoon systems is similar to the stadial simulation but exhibits a stronger amplitude. This suggests a predominance of the orbital and ice sheet forcing over the imposed Dansgaard-Oeschger climate variability. Furthermore, the hydrological response to the different glacial boundary conditions exhibits a strong seasonality and even suggests phase shifts in the annual cycle on a regional scale. Tropical inter-ocean basin teleconnections appear to be weakened during MIS3 stadials compared to the LGM as illustrated by a less pronounced covariation between tropical Atlantic hydrological conditions and the El Nio/Southern Oscillation in the eastern tropical Pacific.

  20. The INTIMATE event stratigraphy of the last glacial period

    NASA Astrophysics Data System (ADS)

    Olander Rasmussen, Sune; Svensson, Anders

    2015-04-01

    The North Atlantic INTIMATE (INtegration of Ice-core, MArine and TErrestrial records) group has previously recommended an Event Stratigraphy approach for the synchronisation of records of the Last Termination using the Greenland ice core records as the regional stratotypes. A key element of these protocols has been the formal definition of numbered Greenland Stadials (GS) and Greenland Interstadials (GI) within the past glacial period as the Greenland expressions of the characteristic Dansgaard-Oeschger events that represent cold and warm phases of the North Atlantic region, respectively. Using a recent synchronization of the NGRIP, GRIP, and GISP2 ice cores that allows the parallel analysis of all three records on a common time scale, we here present an extension of the GS/GI stratigraphic template to the entire glacial period. In addition to the well-known sequence of Dansgaard-Oeschger events that were first defined and numbered in the ice core records more than two decades ago, a number of short-lived climatic oscillations have been identified in the three synchronized records. Some of these events have been observed in other studies, but we here propose a consistent scheme for discriminating and naming all the significant climatic events of the last glacial period that are represented in the Greenland ice cores. In addition to presenting the updated event stratigraphy, we make a series of recommendations on how to refer to these periods in a way that promotes unambiguous comparison and correlation between different proxy records, providing a more secure basis for investigating the dynamics and fundamental causes of these climatic perturbations. The work presented is a part of a newly published paper in an INTIMATE special issue of Quaternary Science Reviews: Rasmussen et al., 'A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy', Quaternary Science Reviews, vol. 106, p. 14-24, 2014.

  1. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Böhm, E.; Lippold, J.; Gutjahr, M.; Frank, M.; Blaser, P.; Antz, B.; Fohlmeister, J.; Frank, N.; Andersen, M. B.; Deininger, M.

    2015-01-01

    Extreme, abrupt Northern Hemisphere climate oscillations during the last glacial cycle (140,000 years ago to present) were modulated by changes in ocean circulation and atmospheric forcing. However, the variability of the Atlantic meridional overturning circulation (AMOC), which has a role in controlling heat transport from low to high latitudes and in ocean CO2 storage, is still poorly constrained beyond the Last Glacial Maximum. Here we show that a deep and vigorous overturning circulation mode has persisted for most of the last glacial cycle, dominating ocean circulation in the Atlantic, whereas a shallower glacial mode with southern-sourced waters filling the deep western North Atlantic prevailed during glacial maxima. Our results are based on a reconstruction of both the strength and the direction of the AMOC during the last glacial cycle from a highly resolved marine sedimentary record in the deep western North Atlantic. Parallel measurements of two independent chemical water tracers (the isotope ratios of 231Pa/230Th and 143Nd/144Nd), which are not directly affected by changes in the global cycle, reveal consistent responses of the AMOC during the last two glacial terminations. Any significant deviations from this configuration, resulting in slowdowns of the AMOC, were restricted to centennial-scale excursions during catastrophic iceberg discharges of the Heinrich stadials. Severe and multicentennial weakening of North Atlantic Deep Water formation occurred only during Heinrich stadials close to glacial maxima with increased ice coverage, probably as a result of increased fresh-water input. In contrast, the AMOC was relatively insensitive to submillennial meltwater pulses during warmer climate states, and an active AMOC prevailed during Dansgaard-Oeschger interstadials (Greenland warm periods).

  2. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle.

    PubMed

    Böhm, E; Lippold, J; Gutjahr, M; Frank, M; Blaser, P; Antz, B; Fohlmeister, J; Frank, N; Andersen, M B; Deininger, M

    2015-01-01

    Extreme, abrupt Northern Hemisphere climate oscillations during the last glacial cycle (140,000 years ago to present) were modulated by changes in ocean circulation and atmospheric forcing. However, the variability of the Atlantic meridional overturning circulation (AMOC), which has a role in controlling heat transport from low to high latitudes and in ocean CO2 storage, is still poorly constrained beyond the Last Glacial Maximum. Here we show that a deep and vigorous overturning circulation mode has persisted for most of the last glacial cycle, dominating ocean circulation in the Atlantic, whereas a shallower glacial mode with southern-sourced waters filling the deep western North Atlantic prevailed during glacial maxima. Our results are based on a reconstruction of both the strength and the direction of the AMOC during the last glacial cycle from a highly resolved marine sedimentary record in the deep western North Atlantic. Parallel measurements of two independent chemical water tracers (the isotope ratios of (231)Pa/(230)Th and (143)Nd/(144)Nd), which are not directly affected by changes in the global cycle, reveal consistent responses of the AMOC during the last two glacial terminations. Any significant deviations from this configuration, resulting in slowdowns of the AMOC, were restricted to centennial-scale excursions during catastrophic iceberg discharges of the Heinrich stadials. Severe and multicentennial weakening of North Atlantic Deep Water formation occurred only during Heinrich stadials close to glacial maxima with increased ice coverage, probably as a result of increased fresh-water input. In contrast, the AMOC was relatively insensitive to submillennial meltwater pulses during warmer climate states, and an active AMOC prevailed during Dansgaard-Oeschger interstadials (Greenland warm periods). PMID:25517093

  3. First ancient DNA sequences from the Late Pleistocene red deer (Cervus elaphus) in the Crimea, Ukraine

    NASA Astrophysics Data System (ADS)

    Stanković, Ana; Nadachowski, Adam; Doan, Karolina; Stefaniak, Krzysztof; Baca, Mateusz; Socha, Paweł; Wegleński, Piotr; Ridush, Bogdan

    2010-05-01

    The Late Pleistocene has been a period of significant population and species turnover and extinctions among the large mammal fauna. Massive climatic and environmental changes during Pleistocene significantly influenced the distribution and also genetic diversity of plants and animals. The model of glacial refugia and habitat contraction to southern peninsulas in Europe as areas for the survival of temperate animal species during unfavourable Pleistocene glaciations is at present widely accepted. However, both molecular data and the fossil record indicate the presence of northern and perhaps north-eastern refugia in Europe. In recent years, much new palaeontological data have been obtained in the Crimean Peninsula, Ukraine, following extensive investigations. The red deer (Cervus elaphus) samples for aDNA studies were collected in Emine-Bair-Khosar Cave, situated on the north edge of Lower Plateau of the Chatyrdag Massif (Crimean Mountains). The cave is a vertical shaft, which functioned as a huge mega-trap over a long period of time (probably most of the Pleistocene). The bone assemblages provided about 5000 bones belonging to more than 40 species. The C. elaphus bones were collected from three different stratigraphical levels, radiocarbon dated by accelerator mass spectrometry (AMS) method. The bone fragments of four specimens of red deer were used for the DNA isolation and analysis. The mtDNA (Cytochome b) was successfully isolated from three bone fragments and the cytochrome b sequences were amplified by multiplex PCR. The sequences obtained so far allowed for the reconstruction of only preliminary phylogenetic trees. A fragment of metatarsus from level dated to ca. 48,500±2,000 years BP, yielded a sequence of 513 bp, allowing to locate the specimen on the phylogenetic tree within modern C. elaphus specimens from southern and middle Europe. The second bone fragment, a fragment of mandible, collected from level dated approximately to ca. 33,500±400 years BP, yielded a sequence (696 bp) locating this specimen much closer to the modern C. elaphus specimens from China and Far East. From the third bone fragment (metatarsus), dated between ca. 12,000 years BP and 30,000 years BP, the sequence of only 346 bp has been obtained. It locates this specimen between European and Asiatic haplogroups. The preliminary results of analysis of the DNA from Crimean C. elaphus fossils reveal the great genetic heterogeneity and a complex phylogeographical pattern of the material studied. The obtained results support the opinion that Crimean Peninsula was the most north-eastern refugium in Europe during Late Pleistocene playing a major role in recolonization and dispersal processes of temperate species during and after the Late Pleistocene in this part of the Euro-Asian continent.

  4. Climate change and evolving human diversity in Europe during the last glacial.

    PubMed Central

    Gamble, Clive; Davies, William; Pettitt, Paul; Richards, Martin

    2004-01-01

    A link between climate change and human evolution during the Pleistocene has often been assumed but rarely tested. At the macro-evolutionary level Foley showed for hominids that extinction, rather than speciation, correlates with environmental change as recorded in the deep sea record. Our aim is to examine this finding at a smaller scale and with high-resolution environmental and archaeological archives. Our interest is in changing patterns of human dispersal under shifting Pleistocene climates during the last glacial period in Europe. Selecting this time frame and region allows us to observe how two hominid taxa, Neanderthals and Crô-Magnons, adapted to climatic conditions during oxygen isotope stage 3. These taxa are representative of two hominid adaptive radiations, termed terrestrial and aquatic, which exhibited different habitat preferences but similar tolerances to climatic factors. Their response to changing ecological conditions was predicated upon their ability to extend their societies in space and time. We examine this difference further using a database of all available radiocarbon determinations from western Europe in the late glacial. These data act as proxies for population history, and in particular the expansion and contraction of regional populations as climate changed rapidly. Independent assessment of these processes is obtained from the genetic history of Europeans. The results indicate that climate affects population contraction rather than expansion. We discuss the consequences for genetic and cultural diversity which led to the legacy of the Ice Age: a single hominid species, globally distributed. PMID:15101580

  5. Last Glacial mammals in South America: a new scenario from the Tarija Basin (Bolivia)

    NASA Astrophysics Data System (ADS)

    Coltorti, M.; Abbazzi, L.; Ferretti, M. P.; Iacumin, P.; Rios, F. Paredes; Pellegrini, M.; Pieruccini, P.; Rustioni, M.; Tito, G.; Rook, L.

    2007-04-01

    The chronology, sedimentary history, and paleoecology of the Tarija Basin (Bolivia), one of the richest Pleistocene mammalian sites in South America, are revised here based on a multidisciplinary study, including stratigraphy, sedimentology, geomorphology, paleontology, isotope geochemistry, and 14C geochronology. Previous studies have indicated a Middle Pleistocene age for this classic locality. We have been able to obtain a series of 14C dates encompassing all the fossil-bearing sequences previously studied in the Tarija Basin. The dated layers range in age from about 44,000 to 21,000 radiocarbon years before present (BP), indicating that the Tarija fauna is much younger than previously thought. Glacial advances correlated to marine isotopic stages (MIS) 4 and 2 (ca. 62 and 20 ka BP, respectively) are also documented at the base and at the very top of the Tarija Padcaya succession, respectively, indicating that the Bolivian Altiplano was not dry but sustained an ice cap during the Last Glacial Maximum. The results of this multidisciplinary study enable us to redefine the chronological limits of the Tarija sequence and of its faunal assemblage and to shift this paleontological, paleoclimatological, and paleoecological framework to the time interval from MIS 4 to MIS 2.

  6. Last Glacial mammals in South America: a new scenario from the Tarija Basin (Bolivia).

    PubMed

    Coltorti, M; Abbazzi, L; Ferretti, M P; Iacumin, P; Rios, F Paredes; Pellegrini, M; Pieruccini, P; Rustioni, M; Tito, G; Rook, L

    2007-04-01

    The chronology, sedimentary history, and paleoecology of the Tarija Basin (Bolivia), one of the richest Pleistocene mammalian sites in South America, are revised here based on a multidisciplinary study, including stratigraphy, sedimentology, geomorphology, paleontology, isotope geochemistry, and (14)C geochronology. Previous studies have indicated a Middle Pleistocene age for this classic locality. We have been able to obtain a series of (14)C dates encompassing all the fossil-bearing sequences previously studied in the Tarija Basin. The dated layers range in age from about 44,000 to 21,000 radiocarbon years before present (BP), indicating that the Tarija fauna is much younger than previously thought. Glacial advances correlated to marine isotopic stages (MIS) 4 and 2 (ca. 62 and 20 ka BP, respectively) are also documented at the base and at the very top of the Tarija-Padcaya succession, respectively, indicating that the Bolivian Altiplano was not dry but sustained an ice cap during the Last Glacial Maximum. The results of this multidisciplinary study enable us to redefine the chronological limits of the Tarija sequence and of its faunal assemblage and to shift this paleontological, paleoclimatological, and paleoecological framework to the time interval from MIS 4 to MIS 2. PMID:17180614

  7. Quaternary history of an endemic passerine bird on Corsica Island: Glacial refugium and impact of recent forest regression

    NASA Astrophysics Data System (ADS)

    Thibault, Jean-Claude; Cibois, Alice; Prodon, Roger; Pasquet, Eric

    2016-03-01

    Molecular studies support the hypothesis that Corsica Island was a glacial refugium for a number of forest birds during the Pleistocene. We focused on the Corsican nuthatch (Sitta whiteheadi), an endemic passerine strongly associated with the laricio pine (Pinus nigra laricio). The range of laricio pine has been impacted by the Pleistocene glacial periods and forest has been recently fragmented by cutting and fires. Using both molecular (mitochondrial and nuclear) and morphological characters, we assessed the variation within the nuthatch population. Our results are consistent with the hypothesis that the Corsican nuthatch endured through the late Pleistocene and Holocene climatic variations, and sustained the subsequent cycles of forests reduction/expansion. The results also suggest that the recent anthropization of the landscape resulted in the isolation of a cluster of populations in the northern part of the island. The fragmentation of the habitat of the nuthatch may impede the future of the bird by creating isolated population units between which the gene flow is reduced.

  8. Unstable Atlantic Meridional Overturning Circulation during Glacial Intervals and Millennial Variability: The Role of Mean Sea Ice Extent

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Sevellec, F.

    2014-12-01

    A striking feature of paleoclimate records is the strong irregular variability with an approximately 1500 yr period, known as the Dansgaard-Oeschger (D-O) events, which punctuate the last glacial interval but disappear during the Holocene. Many theories, modeling and data suggest that these events, seen as abrupt warming episodes in Greenland ice cores and sea surface temperature records in the North Atlantic, are linked to reorganizations of the Atlantic Meridional Overturning Circulation (AMOC). In this study, using a new low-order ocean model, we are able to reproduce a realistic power spectrum of this millennial variability, which emerges in the model as a result of unstable AMOC dynamics rather than due to external freshwater forcing. Within this model we explore differences in the AMOC stability between glacial and interglacial intervals of the 100 kyr glacial cycle of the Late Pleistocene. Previous modeling studies show that the edge of sea ice in the North Atlantic shifts southward during glacial intervals, moving the region of the North Atlantic Deep Water formation and the entire AMOC also southward. Here we demonstrate that, by altering the precipitation structure that the AMOC feels, such an expansion of sea ice cover makes the system unstable, which explains chaotic millennial variability during the glacials and the persistence of stable ocean conditions during the interglacials.

  9. Phylogeographical Analysis of mtDNA Data Indicates Postglacial Expansion from Multiple Glacial Refugia in Woodland Caribou (Rangifer tarandus caribou)

    PubMed Central

    Klütsch, Cornelya F. C.; Manseau, Micheline; Wilson, Paul J.

    2012-01-01

    Glacial refugia considerably shaped the phylogeographical structure of species and may influence intra-specific morphological, genetic, and adaptive differentiation. However, the impact of the Quaternary ice ages on the phylogeographical structure of North American temperate mammalian species is not well-studied. Here, we surveyed ∼1600 individuals of the widely distributed woodland caribou (Rangifer tarandus caribou) using mtDNA control region sequences to investigate if glacial refugia contributed to the phylogeographical structure in this subspecies. Phylogenetic tree reconstruction, a median-joining network, and mismatch distributions supported postglacial expansions of woodland caribou from three glacial refugia dating back to 13544–22005 years. These three lineages consisted almost exclusively of woodland caribou mtDNA haplotypes, indicating that phylogeographical structure was mainly shaped by postglacial expansions. The putative centres of these lineages are geographically separated; indicating disconnected glacial refugia in the Rocky Mountains, east of the Mississippi, and the Appalachian Mountains. This is in congruence with the fossil record that caribou were distributed in these areas during the Pleistocene. Our results suggest that the last glacial maximum substantially shaped the phylogeographical structure of this large mammalian North American species that will be affected by climatic change. Therefore, the presented results will be essential for future conservation planning in woodland caribou. PMID:23285137

  10. Dynamics of the late Plio-Pleistocene West Antarctic Ice Sheet documented in subglacial diamictites, AND-1B drill core

    NASA Astrophysics Data System (ADS)

    Cowan, Ellen A.; Christoffersen, Poul; Powell, Ross D.; Talarico, Franco M.

    2014-08-01

    Geologic studies of sediment deposited by glaciers can provide crucial insights into the subglacial environment. We studied muddy diamictites in the ANtarctic geological DRILLing (ANDRILL) AND-1B drill core, acquired from beneath the Ross Ice Shelf in McMurdo Sound, with the aim of identifying paleo-ice stream activity in the Plio-Pleistocene. Glacial advances were identified from glacial surfaces of erosion (GSEs) and subglacial diamictites within three complete sequences were investigated using lithofacies associations, micromorphology, and quartz sand grain microtextures. Whereas conditions in the Late Pliocene resemble the modern Greenland Ice Sheet where fast flowing glaciers lubricated by surface meltwater terminate directly in the sea (interval 201-212 mbsl) conditions in the Late Pleistocene are similar to modern West Antarctic Ice Sheet (WAIS) ice streams (38-49 mbsl). We identify the latter from ductile deformation and high pore-water pressure, which resulted in pervasive rotation and formation of till pellets and low relief, rounded sand grains dominated by abrasion. In the transitional period during the Mid-Pleistocene (55-68 mbsf), a slow moving inland ice sheet deposited tills with brittle deformation, producing lineations and bi-masepic and unistrial plasma fabric, along with high relief, conchoidally fractured quartz grains. Changes in the provenance of gravel to cobble-size clasts support a distant source area of Byrd Glacier for fast-flowing paleo-ice streams and a proximal area between Darwin and Skelton Glaciers for the slow-moving inland ice sheet. This difference in till provenance documents a shift in direction of glacial flow at the core site, which indirectly reflects changes in the size and thickness of the WAIS. Hence, we found that fast ice streaming motion is a consequence of a thicker WAIS pushing flow lines to the west and introducing clasts from the Byrd Glacier source area to the drill site. The detailed analysis of diamictites in AND-1B demonstrates that Pliocene glacial intervals were warmer than in the Pleistocene when polar ice sheets grew from local inland ice to regional ice streams.

  11. Tests of pleistocene speciation in montane grasshoppers (genus Melanoplus) from the sky islands of western North America.

    PubMed

    Knowles, L L

    2000-08-01

    There has a been a resurgence of debate on whether the Pleistocene glaciations inhibited speciation. This study tests a model of Pleistocene speciation, estimating the phylogenetic relationships and divergence times of 10 species of montane grasshoppers, genus Melanoplus, using 1300 bp of the mitochondrial gene cytochrome oxidase I (COI). Based on average pairwise distances (corrected for multiple substitutions using Kimura's two-parameter model), all species appear to have originated within the Pleistocene. Sequence divergences between species are less than 4%, corresponding to divergence times less than 1.7 million years ago. Branching patterns among the species suggest that speciation was associated with more than one glacial-interglacial cycle. A likelihood-ratio test rejected a model of simultaneous species origins, the predicted branching pattern if species arose from the fragmentation of a widespread ancestor. These grasshoppers live in an area that was previously glaciated and, as inhabitants of the northern Rocky Mountain sky islands, underwent latitudinal and probably altitudinal shifts in distribution in response to climatic fluctuations. Given the repeated distributional shifts and range overlap of the taxa, there most likely has been ample opportunity for population mixing. However, despite periodic glacial cycles, with more than 10 major glaciations over the past million years and climatic fluctuations over as short a time scale as 10(3) to 10(4) years, the dynamic history of the Pleistocene did not preclude speciation. Although relationships among some taxa remain unresolved, these grasshopper species, even with their recent origins, exhibit genetic coherence and monophyletic or paraphyletic gene trees. The frequency of glacial cycles suggests that the speciation process must have been extremely rapid. These species of grasshoppers are morphologically very similar, differing primarily in the shape of the male genitalia. These characters are posited to be under sexual selection, may play an important role in reproductive isolation, and are known to diverge rapidly. This suggests the rapidity of evolution of reproductive isolation may determine whether species divergences occurred during the Pleistocene glaciations. PMID:11005300

  12. Extending the Chatham Rise (ODP Site 1123) Deep Ocean Temperature Record into the Plio-Pleistocene: Inception of Northern Hemisphere Glaciation

    NASA Astrophysics Data System (ADS)

    Weidle, I.; Elderfield, H.

    2014-12-01

    The Plio-Pleistocene was a time of global climate cooling: a transition from a state of significant and prolonged climate warmth (Mid Pliocene) to a state of bi-polar glacials (Pleistocene), marked by the onset and intensification of continental ice sheets in the Northern hemisphere (Late Pliocene) and the reorganization of glacial cycle amplitude and frequencies (Mid Pleistocene Transition). This is an interesting and important chapter of climate history for understanding the sensitivity of large ice sheets to perturbations in the climate system on glacial-interglacial and much longer timescales. Of possible priming mechanisms (incl. closure of Panama seaway, orographic uplift), the decline of atmospheric carbon dioxide is considered to have a strong connection with the late Pliocene cooling and ice sheet inception, although the causal mechanism for its decline remains relatively unknown. High-resolution, long term climate records are necessary to further constrain the timings of ice volume evolution and the associated driving factors during the Plio-Pleistocene, however such records are presently limited. ODP Site 1123 (Chatham Rise, southwest Pacific, 3290m) records the evolution of the deep western boundary current of the southwest Pacific, a primary feeder of Antarctic Bottom Water to the global deep ocean. By calculating the oxygen stable isotope composition of past seawater, a proxy calculation combining Mg/Ca-palaeothermometry and δ18O from benthic foraminifera, we present a high-resolution record of global ice volume as a measure of climate change, extending the existing 0-1.5 Ma record (Elderfield et al., 2012) at ODP 1123 to the Plio-Pleistocene (1.5-3.0 Ma). We use this measure of global ice volume evolution to assess the relative timing and magnitude of northern hemisphere glaciation and concomitant deep ocean temperature decline, which aids to infer temperatures around Antarctica during this time. Deep ocean temperature results show high frequency glacial-cycles, approaching near-freezing temperatures at peak glacials. Reference Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I.N., Hodell, D., Piotrowski, A.M. (2012), Science, 337, 704-709.

  13. Push moraines in the upper valley of Santa Cruz river, southwest Argentina. Structural analysis and relationship with Late Pleistocene paleoclimate

    NASA Astrophysics Data System (ADS)

    Goyanes, Gabriel; Massabie, Armando

    2015-01-01

    The upper cliff of the Santa Cruz River was used to assess the proglacial environments of the Argentino Glacier outlet of Late Pleistocene age. These cliffs show glaciolacustrine, fluvioglacial and till deposits, where only the first one are deformed. Glacial landforms in the area and these structures suggest that the ice mass advanced, topographically controlled, towards the east from the Patagonian Ice Sheet pushing up the proglacial sediments. The spatial arrangement of thrusts and overturned folds, the drumlins-flutes moraine directions and the end moraines shape, allow inferring the dynamic and the Argentino glacier profile. Detailed analyses of the glaciotectonic structures indicate that these have two origins: load in the north with stress transfer to the southeast, and push from the west. Through the analysis of deformed sediments, their thickness and their sedimentary and structural features, three zones of deformations were recognized. Each of these zones was associated to glacial advances because of changes of the regional climate conditions.

  14. Using glacial morphology to constrain the impact of the Chile active spreading ridge subduction in Central Patagonia

    NASA Astrophysics Data System (ADS)

    Scalabrino, B.; Ritz, J. F.; Lagabrielle, Y.

    2009-04-01

    The Central Patagonian Cordillera is a unique laboratory to study interaction between oceanic and continental lithospheres during the subduction of an active spreading ridge beneath a continent. The subduction of the South Chile spreading Ridge, which separates the Nazca plate from the Antarctic plate, started ca. 15-14 Ma at the southern tip of Patagonia (55°S latitude). The northwards migration of the Chile Triple Junction induces the subduction of several segments especially around 46°S latitude. There, three segments subducted at ca. 6, 3 and 0.3 Ma, leading to the formation of a large asthenospheric slab-window beneath Central Patagonia. Contemporaneously, the Central Patagonia reliefs are undergoing major glacial events since at least 7 Ma. These events are evidenced to the east of the Central Patagonian morphotectonic front within perched relict surfaces. Inset in these perched glacial surfaces are found mid-Pleistocene glacial valleys, as the Lake General Carrera-Buenos Aires amphitheatre (LGCBA), which formed between 1.1 Ma and 16 ka. We used the relationships between the glacial valleys and the volcanism associated with the asthenospheric slab-window to better constraints the structural evolution of the Patagonian Cordillera related to the subduction of the Chili active spreading Ridge. The present work focused within two well-preserved perched flat surfaces named Meseta del Lago Buenos Aires and Meseta del Cerro Galera: (i) The meseta del Lago Buenos Aires defines a plateau made of interbedded units of tills and lavas dated between 12 Ma and 3 Ma. The top surface of the meseta, ˜2000 meters high is dated at 3 Ma, and is shaped by four NE-SW trending glacial lobes characterized with kettles, lineations and moraines. The glacial valleys are beheaded westwards and define perched valleys 200 to 400 meters higher than the western Cordillera. This suggests recent vertical movement along N160 extensive/transtensive corridor located between the morphotectonic front and the western side of the meseta del Lago Buenos Aires. (ii) Further north, the meseta del Cerro Galera exhibits a sequence of more than 200 m thick tills and fluvio-glacial deposits which top of is at 1500 m. This perched sequence shows accumulation of polygenic material, which sources are situated 100 to 150 km westwards. The glacial sequence of Cerro Galera is situated more than 1000 meters above the tectonic-controlled depression of Coihaique where younger (Pleistocene) glacial deposits have been identified. As observed along the western margin of the Meseta del Lago Buenos Aires, the till is presently disconnected from any former glacial morphology to the west. This feature can be attribute to a major fault zone west to the meseta del Cerro Galera. In summary, we demonstrate that the location of pre-Quaternary glacial markers found as preserved on perched relict surfaces at around 1500-2000 meters whereas the location of Quaternary glacial deposits are 1000 meters below within the present-day glacial valleys suggest a drastic change in the glacial drainage network of the Central Patagonia. This change can be attributed to the extensional/transtensional tectonics responsible for the formation of transverse depressions and oblique tectonic corridors, which occurred between 3 Ma and 1 Ma. Geodynamically, this recent phase has been closely related with the subduction of the South Chile Ridge. The development of a large slab window beneath the Central Patagonian Cordillera since 3 Ma allowed hot mantle to reach sub-lithospheric regions, producing a weakening of the crust triggering in turn localized collapse.

  15. Interhemispheric controls on deep ocean circulation and carbon chemistry during the last two glacial cycles

    NASA Astrophysics Data System (ADS)

    Wilson, David J.; Piotrowski, Alexander M.; Galy, Albert; Banakar, Virupaxa K.

    2015-06-01

    Changes in ocean circulation structure, together with biological cycling, have been proposed for trapping carbon in the deep ocean during glacial periods of the Late Pleistocene, but uncertainty remains in the nature and timing of deep ocean circulation changes through glacial cycles. In this study, we use neodymium (Nd) and carbon isotopes from a deep Indian Ocean sediment core to reconstruct water mass mixing and carbon cycling in Circumpolar Deep Water over the past 250 thousand years, a period encompassing two full glacial cycles and including a range of orbital forcing. Building on recent studies, we use reductive sediment leaching supported by measurements on isolated phases (foraminifera and fish teeth) in order to obtain a robust seawater Nd isotope reconstruction. Neodymium isotopes record a changing North Atlantic Deep Water (NADW) component in the deep Indian Ocean that bears a striking resemblance to Northern Hemisphere climate records. In particular, we identify both an approximately in-phase link to Northern Hemisphere summer insolation in the precession band and a longer-term reduction of NADW contributions over the course of glacial cycles. The orbital timescale changes may record the influence of insolation forcing, for example via NADW temperature and/or Antarctic sea ice extent, on deep stratification and mixing in the Southern Ocean, leading to isolation of the global deep oceans from an NADW source during times of low Northern Hemisphere summer insolation. That evidence could support an active role for changing deep ocean circulation in carbon storage during glacial inceptions. However, mid-depth water mass mixing and deep ocean carbon storage were largely decoupled within glacial periods, and a return to an interglacial-like circulation state during marine isotope stage (MIS) 6.5 was accompanied by only minor changes in atmospheric CO2. Although a gradual reduction of NADW export through glacial periods may have produced slow climate feedbacks linked to the growth of Northern Hemisphere ice sheets, carbon cycling in the glacial ocean was instead more strongly linked to Southern Ocean processes.

  16. Glacial-interglacial variations of microbial communities in permafrost and lake deposits in the Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Mangelsdorf, Kai; Bischoff, Juliane; Gattinger, Andreas; Wagner, Dirk

    2013-04-01

    The Artic regions are expected to be very sensitive to the currently observed climate change. When permafrost is thawing, the stored carbon becomes available again for microbial degradation, forming a potential source for the generation of carbon dioxide and methane with their positive feedback effect on the climate warming. For the prediction of future climate evolution it is, therefore, important to improve our knowledge about the microbial-driven greenhouse gas dynamics in the Siberian Arctic and their response to glacial-interglacial changes in the past. Sample material was drilled on Kurungnahk Island (Russian-German LENA expedition) located in the southern part of the Lena delta and in lake El'gygytgyn (ICDP-project) in the eastern part of Siberia. The Kurungnahk samples comprise Late Pleistocene to Holocene deposits, whereas the lake El'gygytgyn samples cover Middle to Late Pleistocene sediments. Samples were investigated applying a combined biogeochemical and microbiological approach. The methane profile of the Kurungnahk core reveals highest methane contents in the warm and wet Holocene and Late Pleistocene (LP) deposits and correlates largly to the organic carbon (TOC) contents. Archaeol concentrations, being a biomarker for past methanogenic archaea, are also high during the warm and wet Holocene and LP intervals and low during the cold and dry LP periods. This indicates that part of the methane might be produced and trapped in the past. However, biomarkers for living microorganisms (bacteria and archaea) and microbial activity measurements of methanogens point, especially, for the Holocene to a viable archaeal community, indicating a possible in-situ methane production. Furthermore, warm/wet-cold/dry climate cycles are recorded in the archaeal diversity as revealed by genetic fingerprint analysis. Although the overlying lake water buffers the temperature effect on the lake sediments, which never became permafrost, the bacterial and archaeal biomarker profiles from lake El'gygytgyn deposits reveal also a glacial-interglacial variability. A reason for this seems to be higher TOC contents during the interglacials forming the carbon and energy source for the indigenous microbial communities. Algae blooms during the interglacials are indicated by the biogenic silica profile. The variety of methanogenic archaea is higher during the interglacials and methane production experiments reveal a high potential for methane production during these periods. Thus, overall the data indicate production and subsequent release of methane from the lake during interglacial periods. However, occasionally higher biomarker contents for methanogens accompanied by significant methane production potentials during glacial periods suggest that lakes might also produce and release methane during glacial periods.

  17. Evolution of Mustang Graven, Tibet Himalayas, due to Eastward Extrusion of Tibet Plateau in and After the Last Glacial Age

    NASA Astrophysics Data System (ADS)

    Yagi, H.; Maemoku, H.; Dangol, V.; Kumahara, Y.; Nakata, T.

    2003-12-01

    This study clarifies neotectonics and evolution of Mustang Graven due to eastward extrusion of the Tibet plateau in and after the Last Glacial Age. Mustang Graven is a NS trend depression and is located in Tibet Himalayan zone just behind the Higher Nepal Himalayas. Its average height is 4000 meters. Its width and length are less than ten kilometers and more than fifty kilometers respectively. This study depends on interpretation of aerial photographs in scale of 1/50,000 over the Mustang Graven and field survey carried out in Sept. 2002. A distinct topographic contrast occurs along a mount foot line between the graven and the surrounding mountains, the Tibet Himalayas of 5000-7000 meters asl. Fault scarplets on moraines and fan surfaces, which developed as outwash plains in and after the Last Glacial Age, are traceable along the western foot line. Tectonic deformation of the topographic surfaces are cumulative and five to ten meters in relative height . Sense of the faults is normal downthrowing to the east. Valley side fault in a normal sense is also found in the Thakkola formation, the Plio-Pleistocene sediment, near Dhakmar village. Deformation of the Thakkola Formation is more than fifty meters. Such phenomenon indicate that Mustang Graven has been formed by a tensile stress field of EW direction and evolved also in and after the Last Glacial Age. This implies the extrusion of the Tibet Plateau has been continuing throughout the late Pleistocene and to the Holocene.

  18. Synchronous extinction of North America's Pleistocene mammals

    PubMed Central

    Faith, J. Tyler; Surovell, Todd A.

    2009-01-01

    The late Pleistocene witnessed the extinction of 35 genera of North American mammals. The last appearance dates of 16 of these genera securely fall between 12,000 and 10,000 radiocarbon years ago (≈13,800–11,400 calendar years B.P.), although whether the absence of fossil occurrences for the remaining 19 genera from this time interval is the result of sampling error or temporally staggered extinctions is unclear. Analysis of the chronology of extinctions suggests that sampling error can explain the absence of terminal Pleistocene last appearance dates for the remaining 19 genera. The extinction chronology of North American Pleistocene mammals therefore can be characterized as a synchronous event that took place 12,000–10,000 radiocarbon years B.P. Results favor an extinction mechanism that is capable of wiping out up to 35 genera across a continent in a geologic instant. PMID:19934040

  19. Glaciers and Late Quaternary glacial deposits of Turkey

    NASA Astrophysics Data System (ADS)

    Çiner, A.

    2003-04-01

    Turkish glaciers and Late Quaternary glacial deposits are observed in 3 regions: 1. The Taurus Mountain Range (Mediterranean coast and SE Turkey): Two thirds of the present day glaciers are concentrated in the SE part. Among these mountains, Mount Cilo (4168 m) alone supports more than ten glaciers, couple of them 4 km long. In the central part, Aladag (3756 m) and Bolkardag (3524 m) Mountains contain few small glaciers. Small ice caps developed on top of both mountains in Pleistocene. Several U-shaped valleys were carved by glaciers that formed different types of moraines. Even though there are signs of past glacial activity in Beydag (3086 m), Akdag (3016 m) and Sandiras Mountains (2295 m) no glaciers are present in the W Taurus Mountains today. 2. The Pontic Mountain Range (E Black Sea coast): The highest peak is Mount Kaçkar (3932 m) where five glaciers are developed. Several other mountains such as Verçenik (3710 m), Bulut (3562 m), Altiparmak (3353 m), Karagöl (3107 m) and Karadag (3331 m) also support various glaciers. Large U-shaped valleys containing terminal, lateral and ground moraines are observed although the present humid climatic conditions altered most of them. 3. Volcanoes and independent mountain chains scattered in the Anatolian Plateau: The volcanoes in the interior of the country support active glaciers and show signs of past glacial activity. Among them, Mount Agri (Ararat) (5165 m) is the only mountain on which a 10 km2 recent ice cap is developed. Eleven glaciers emerged from the summit, descending down to 3900 m on the N-facing slope and 4200 m on the S facing slope. The near absence of moraines can be explained by the lack of confining ridges to control valley glaciers, by insufficient debris load in the ice to form moraines and by volcanic eruptions that later covered the pre-existing moraines. Other important volcanoes, Mount Süphan (4058 m) and Mount Erciyes (3916 m) also contain active glaciers and well preserved moraines. Apart from the volcanoes, few other mountains in Central Anatolia, such as Uludag (2543 m), Mercan (3368 m) and Mescid (3239 m) bear signs of past glacial activity. The absence of dating of the morainic landforms makes it difficult to assign a precise age to the past glacial periods. However a project that aims to establish glacial chronlogies for the above mentioned mountains by using in situ cosmogenic 36Cl in the moraines, is recently developed. The data available on glaciers indicate that the most recent glacier retreat probably started at the beginning of the 20th century, becoming faster since the 1930's. This shrinkage trend is yet to be quantified by additional field observations in order to understand the glacier evolution of Turkey.

  20. Sedimentary Record of Late Pleistocene to Holocene Transition, Flathead Lake, Montana

    NASA Astrophysics Data System (ADS)

    Hendrix, M. S.; Sperazza, M.; Gerber, T.; Moore, J. N.

    2001-12-01

    We report preliminary results from over 260 km of previously unpublished 3.5 kHz seismic reflection data, along with preliminary sedimentologic and geochemical data from 8 piston cores recovered from Flathead Lake, a large lake (510 km2) located west of the continental divide in Montana. Flathead Lake occupies the southern end of the Rocky Mountain trench, a structural low that contained the Flat-head Lobe of the Cordilleran Ice Sheet during much of the Pleistocene. Our seismic and core data demonstrate: 1) that the Flathead Lake sediment basin existed as part of a glacial lake very near to the terminus of the Late Pleistocene Cordilleran Ice Sheet, and; 2) that Flathead Lake contains a continuous record of profundal lacustrine sedimentation that began prior to the glacial-interglacial transition. Our longest piston core (core FL-00-9P; 7.05m long) contains two volcanic ashes. Major and minor element profiles of glass from each ash demonstrate that the younger ash was derived from Mount Mazama (7,630 cal. yr. B.P.) and the older ash from Glacier Peak (GPA; 13,750 cal. yr. B.P.). Over 60 m of sediment is seismically imaged beneath core FL-00-9P, and comparison among seismic lines strongly suggests that this Pleistocene sediment package underlies much of Flathead Lake. X-radiographs of core FL-00-9P, along with preliminary laser particle size analyses at 1 cm intervals and total carbon analyses at 5 cm intervals, indicate that the lake underwent profound sedimentologic changes slightly prior to deposition of the GPA. Sediment deposited prior to this transition is dominated by cm- to dm-scale upward-fining packages we infer to reflect underflow sedimentation associated with a late stage glacial lake. Median grain sizes range between 0.2 and 20.6 um, and average 5.3 um. Total carbon values range between 0.4 and 3.7 wt%, averaging 2.3 wt%. Sediment deposited since the transition is finer and characterized by a narrower grain size range. Median grain sizes range between 2.2 and 7.6 um, and average 3.8 um. We infer this grain size distribution to reflect suspension settle out as the dominant form of sedimentation. A broad upward coarsening of the median grain size beginning at the transition and continuing to the top of the core probably reflects progradation of the Flathead River delta system southward, towards the core site. Total carbon values above the transition are notably lower than below, averaging about 1.3 wt% and, like the median grain size, appear broadly to increase upsection.

  1. Comparison of glacial periods reveals systematic cold climate variability

    NASA Astrophysics Data System (ADS)

    Bauch, Henning

    2013-04-01

    On a global scale, major variations in Pleistocene temperatures correlate well with glacial-interglacial changes of northern hemisphere ice sheet sizes. While a discharge of icebergs from the ice sheets surrounding the polar North Atlantic region directly reflects the rates of growth and decay of the ice sheet margins at sea level, it is also the result of a rapidly changing climate which affected both the meridional overturning in the ocean and the pattern in ocean-atmosphere circulation. Ice cores and many deep-sea sediment records from this region have demonstrated such complex interrelations between these main environmental processes for the last glaciation (Weichselian). In ice cores, the millennial-scale climate variabilities of the Weichselian are recognized in both hemispheres, albeit with apparently a significant time lag between the southern and northern pole regions. Comparing records of iceberg discharge from the polar and subpolar North Atlantic now reveals a very similar millennial-scale variability between the Weichselian and the penultimate glaciation (Saalian) during which warmer, interstadial times alternated with rather cold polar conditions. Because cold conditions in the polar North were also time-coeval with enhanced aridity and atmospheric dust content (e.g. at least over northern Africa due to changes in the monsoon system), the glacial dust records of Antarctica, which extend back in time much farther than Greenland ice records, could be used to also make an interhemispheric climate comparison. For the last two glaciations such a comparison would indeed indicate a strong linkage between iceberg discharge events in the polar North and increased dust content in the atmosphere.

  2. Glacially driven formation of high-elevation, low-relief landscapes in eastern Tibet

    NASA Astrophysics Data System (ADS)

    Oskin, M. E.; Zhang, H.; Liu-Zeng, J.; Zhang, P.; Reiners, P. W.; Xiao, P.

    2014-12-01

    Low-relief landscapes in central and eastern Tibet have been interpreted as relicts formed by lowland fluvial erosion before being uplifted to elevations exceeding 4 km a.s.l. The timing and amount of surface uplift indicated by these surfaces in Tibet and other orogens provide important constraints on geodynamic processes of crustal thickening and plateau formation. Low-temperature thermochronology and catchment-average 10Be concentrations indicate limited and low rates of long- and short-term erosion of these landscapes. But it is their morphology, dominated by gentle stream gradients, that drives the interpretation that these landscapes formed at much lower elevations than at present. Here we show for the plateau landscape of eastern Tibet that glacial erosion is ubiquitous along drainage divides that separate low-relief areas from deeply incised river gorges. The extent of late Pleistocene glaciation increases along a gradient of late Cenozoic exhumation from ~1 to >4 km indicated by apatite- and zircon-helium cooling ages. We interpret that glacial erosion effectively limits ridgeline elevations and promotes formation of low-relief landscapes in arid plateau interiors undergoing modest (<50 m Myr-1) exhumation rates. More intensive glacial erosion, associated with higher (>200 m Myr-1) exhumation rates nearer to plateau margins, produces bimodal topography, with low-relief cirques at high elevation and gentle, U-shape valleys below the equilibrium line altitudes (ELA). This yields similar mean elevations as nearby plateau surfaces, but with more rugged local relief. As rock uplift rate declines, these nascent plateau surfaces inherit low-gradient glaciated valley networks pinned by glacial erosion at their headwaters and smoothed by periglacial hillslope processes and transport-limited streams. Glacially driven formation of low-relief plateau landscapes within high-elevation eastern Tibet occurs in tandem with external drainage, and does not require uplift of a low-elevation peneplain.

  3. Migration of the subtropical front as a modulator of glacial climate.

    PubMed

    Bard, Edouard; Rickaby, Rosalind E M

    2009-07-16

    Ice cores extracted from the Antarctic ice sheet suggest that glacial conditions, and the relationship between isotopically derived temperatures and atmospheric PCO(2) have been constant over the last 800,000 years of the Late Pleistocene epoch. But independent lines of evidence, such as the extent of Northern Hemisphere ice sheets, sea level and other temperature records, point towards a fluctuating severity of glacial periods, particularly during the more extreme glacial stadials centred around 340,000 and 420,000 years ago (marine isotope stages 10 and 12). Previously unidentified mechanisms therefore appear to have mediated the relationship between insolation, CO(2) and climate. Here we test whether northward migration of the subtropical front (STF) off the southeastern coast of South Africa acts as a gatekeeper for the Agulhas current, which controls the transport of heat and salt from the Indo-Pacific Ocean to the Atlantic Ocean. Using a new 800,000-year record of sea surface temperature and ocean productivity from ocean sediment core MD962077, we demonstrate that during cold stadials (particularly marine isotope stages 10 and 12), productivity peaked and sea surface temperature was up to 6 degrees C cooler than modern temperatures. This suggests that during these cooler stadials, the STF moved northward by up to 7 degrees latitude, nearly shutting off the Agulhas current. Our results, combined with faunal assemblages from the south Atlantic show that variable northwards migration of the Southern Hemisphere STF can modulate the severity of each glacial period by altering the strength of the Agulhas current carrying heat and salt to the Atlantic meridional overturning circulation. We show hence that the degree of northwards migration of the STF can partially decouple global climate from atmospheric partial pressure of carbon dioxide, P CO(2), and help to resolve the long-standing puzzle of differing glacial amplitudes within a consistent range of atmospheric PCO(2). PMID:19606147

  4. Glacial cycles and the growth and destruction of Alaska volcanoes

    NASA Astrophysics Data System (ADS)

    Coombs, M. L.; Calvert, A. T.; Bacon, C. R.

    2014-12-01

    Glaciers have affected profoundly the growth, collapse, preservation, and possibly, eruptive behavior of Quaternary stratovolcanoes in Alaska. Holocene alpine glaciers have acted as effective agents of erosion on volcanoes north of ~55 °N and especially north of 60 °N. Cook Inlet volcanoes are particularly vulnerable as they sit atop rugged intrusive basement as high as 3000 m asl. Holocene glaciers have swept away or covered most of the deposits and dome lavas of frequently active Redoubt (60.5 °N); carved through the flanks of Spurr's active vent, Crater Peak (61.3 °N); and all but obscured the edifice of Hayes (61.6 °N), whose Holocene eruptive history is known almost exclusively though far-traveled tephra and flowage deposits. Relationships between Pleistocene eruptive histories, determined by high-precision Ar-Ar dating of lava flows, and marine oxygen isotope stages (MIS) 2-8 (Bassinot et al., 1994, EPSL, v. 126, p. 91­-108) vary with a volcano's latitude, size, and elevation. At Spurr, 26 ages cluster in interglacial periods. At Redoubt, 28 ages show a more continual eruptive pattern from the end of MIS 8 to the present, with a slight apparent increase in output following MIS 6, and almost no preservation before 220 ka. Veniaminof (56.2 °N) and Emmons (55.5°N), large, broad volcanoes with bases near sea level, had voluminous eruptive episodes during the profound deglaciations after MIS 8 and MIS 6. At Akutan (54.1 °N), many late Pleistocene lavas show evidence for ice contact; ongoing dating will be able to pinpoint ice thicknesses. Furthest south and west, away from thick Pleistocene ice on the Alaska Peninsula and mainland, the Tanaga volcanic cluster (51.9 °N) has a relatively continuous eruptive record for the last 200 k.y. that shows no clear-cut correlation with glacial cycles, except a possible hiatus during MIS 6. Finally, significant edifice collapse features have been temporally linked with deglaciations. A ~10-km3 debris-avalanche deposit from Spurr directly overlies bedrock, suggesting that edifice collapse closely followed MIS 2. The geologic history of Veniaminof suggests possible massive edifice collapse following MIS 6. A stack of westward-dipping lavas and breccias on the east flank of Redoubt Volcano erupted during MIS 6, and may have also failed during the major deglaciation of MIS 5.5.

  5. Glacially conditioned specific stream powers in low-relief river catchments of the southern Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    Phillips, R. T. J.; Desloges, J. R.

    2014-02-01

    Fluvial systems of the southern Laurentian Great Lakes region are carved into a complex glacial landscape shaped by continental ice and meltwater of the late Pleistocene. These glacially conditioned river catchments are typically small with drainage areas < 104 km2. A 10-m digital elevation model (DEM) is used to map the spatial distribution of stream gradient for 22 major river catchments of peninsular southern Ontario, which drain to base levels in the lower Great Lakes (Huron, St. Clair, Erie, and Ontario). Raw data from the DEM show stream gradients that exhibit multiscale variance from real and from artifact sources. Based on a vertical slice and multiple-pass moving-window averaging approach, slope data are generalised to the river reach scale (1-2 km) as a representative spatial scale for fluvial processes operating over Holocene timescales. Models of specific stream power are then compared with glacial landform and surface geology mapping. Inherited glacial signatures in river slope appear as deviations in a stream length-gradient index (SL/K index), where river reaches are frequently oversteepened or understeepened. Based on a slope-area analysis, and complementary to theories of channel pattern discrimination, constant stream power curves (with power-law exponent of - 0.4) provide a first-order approach to stratify river reaches in terms of glacial conditioning and expected planform morphologies. However, multiple-channel planform types are rare and localised in southern Ontario, indicating that oversteepened reaches with high stream powers may often be moderated by (1) sediment calibre, with cobble-beds from inherited glacial sediments; and/or (2) relative bank strength, with limited channel widening particularly in gravel and sand-bed channels. Further discrimination of glacially conditioned fluvial process domains will ultimately require consideration of alluvial floodplain characteristics in addition to general observations of river morphology and channel pattern.

  6. Siphateles (Gila) sp. and Catostomus sp. from the Pleistocene OIS-6 Lake Gale, Panamint Valley, Owens River system, California

    NASA Astrophysics Data System (ADS)

    Jayko, A. S.; Forester, R. M.; Smith, G. R.

    2014-12-01

    Panamint Valley lies within the Owens River system which linked southeastern Sierra Nevada basins between Mono Lake and Death Valley during glacial-pluvial times. Previous work indicates that late Pleistocene glacial-pluvial Lake Gale, Panamint Valley was an open system during OIS-6, a closed ground water supported shallow lake during OIS-4, and the terminal lake basin for the Owens River system during OIS-2. We here report the first occurrence of fossil fish from the Plio-Pleistocene Panamint basin. Fish remains are present in late Pleistocene OIS-6 nearshore deposits associated with a highstand that was spillway limited at Wingate Wash. The deposits contain small minnow-sized remains from both Siphateles or Gila sp. (chubs) and Catostomus sp. (suckers) from at least four locations widely dispersed in the basin. Siphateles or Gila sp. and Catostomus are indigenous to the Pleistocene and modern Owens River system, in particular to the historic Owens Lake area. Cyprinodon (pupfish) and Rhinichthys (dace) are known from the modern Amargosa River and from Plio-Pleistocene deposits in Death Valley to the east. The late Pleistocene OIS-6 to OIS-2 lacustrine and paleohydrologic record in Panamint basin is interpreted from ostracod assemblages, relative abundance of Artemia sp. pellets, shallow water indicators including tufa fragments, ruppia sp. fragments and the relative abundance of charophyte gyrogonites obtained from archived core, as well as faunal assemblages from paleoshoreline and nearshore deposits. The OIS-4 groundwater supported shallow saline lake had sufficiently low ratios of alkalinity to calcium (alk/Ca) to support the occurrence of exotic Elphidium sp. (?) foraminfera which are not observed in either OIS-2 or OIS-6 lacustrine deposits. The arrival of Owens River surface water into Panamint Basin during OIS-2 is recorded by the first appearance of the ostracod Limnocythere sappaensis at ~27 m depth in an ~100 m archived core (Smith and Pratt, 1957) which extends between OIS-5 and post OIS-2 based on based on proxy correlation with the marine oxygen isotope record.

  7. Glacitectonic rafting and associated deformation of mid-Pleistocene glacigenic sediments, near Central Graben, central North Sea; results of a 2D High-Resolution Geophysical Survey

    NASA Astrophysics Data System (ADS)

    Vaughan-Hirsch, David

    2013-04-01

    Glacitectonic rafts are defined as dislocated slabs of bedrock or unconsolidated sediments, transported from their original position by glacial action. These relatively thin, slab-like bodies feature transport distances ranging from tens of meters to hundreds of kilometers. They occur as either single rafts, or multiple stacked bodies associated with a variety of ice-pushed landforms. Internally, rafts frequently appear undeformed although at a larger scale, they may be folded or cut by shear zones and brittle faults. However, the processes leading to the detachment, transport and subsequent emplacement of the rafts remain uncertain. This work describes the results of a geophysical 2D seismic survey of thrust-bound glacitectonic rafts and associated deformation structures, occurring within mid-Pleistocene glacigenic sediments of the Central Graben, central North Sea. The total shortened length of the rafted section is 2.4km, comprising a series of nine discrete rafts which individually range from 235m to 1018m in length. The principle basal detachment occurs at the erosive contact between Aberdeen Ground Formation and overlying Ling Bank Formation. The ice-proximal (northern) limit of rafting is defined by the presence of a large-scale palaeo-channel oriented perpendicular to the direction of rafting, composed of sediments of the Ling Bank Formation and the Forth Formation. The observed deformation structures infer a mean tectonic direction of 178°, indicating that they are associated with an active glacial advance from the north. The resulting deformation creates a minimum lateral shortening throughout the observed sequence of 35%, typifying a strongly compressional regieme associated with rafting. Throughout the surveyed area, structurally younger rafts are found to be emplaced towards the south, compared to the structurally older rafts which are emplaced towards the south-east. This distinction is suggested to be caused by early rafts creating an obstacle to transport for later stages of deformation, resulting in strike-slip basal detachment being associated with the later rafts. Localised distributions of high amplitude surfaces located adjacent to the primary detachment surface are identified through amplitude extraction techniques. These are indicative of migration and collection of gas along the inclined lower surfaces of rafted blocks. They represent a gas risk for drilling operations and demonstrate the significance and possible hazards of glacitectonic deformation to the exploration industry. A model for raft detachment and emplacement is proposed whereby; i) saturated sediments within the palaeo-channel are subject to pressurisation associated with overburden caused by over-riding ice, ii) elevated pore-water pressure develops along the principle detachment surface of the rafts, iii) early stages of deformation consist of ice-distal (southern) blocks becoming emplaced at relatively low angles of inclination, iv) with more proximal blocks accumulating as an imbricate thrust-stack sequence at relatively high angles of elevation. This interpretation suggests a significant subglacial hydrological control upon raft detachment and transport, with fluctuations between an extensional and compressive deformation regime caused by a switch from actively advancing glacial conditions to an oscillating ice-margin at this location. Tectono-stratigraphic evidence indicates that rafting occurring throughout the site is likely to be associated with a glacial advance of the Anglian (MIS 12).

  8. Pleistocene history of the subarctic pacific: periodic and step-wise changes in temperature and precipitation

    SciTech Connect

    Sancetta, C.

    1985-01-01

    Piston core V20-110 records the last 1.8 Ma of North Pacific conditions. Samples at 11 Ka intervals were analyzed for calcite, foraminifera, diatoms, and IRD. Data implies that precipitation varied on a 41-Ka cycle from latest Pliocene to 700 Ka. During the late Pleistocene precipitation, like temperature, has been dominated by a 100 Ka period. There are six distinct intervals, bounded by rapid, unidirectional changes: a) 1.8-1.6 Ma-mostly ice-free, warm (approx.15/sup 0/C), high precipitation, moderately well-mixed waters; b) 1.6-1.3 Ma-slightly cooler (approx.12/sup 0/C), precipitation increasing to maximum, waters well mixed; c) 1.3-1.1 Ma-change to winter precipitation, slightly colder, increased seasonal contrast. d) 1.1 Ma-700 Ka-beginning of glacial mode; periods of high annual precipitation and strong stratification alternate with lower precipitation and more mixing, temperatures cool (approx.10/sup 0/C); e) 700-300 Ka-strong 100-ka cycles, high winter precipitation and low temperatures (5-10/sup 0/C) during glacials; interglacials drier and warmer, more mixing; summer precipitation low throughout; f) 300-0 Ka-glacial maxima cold (<5/sup 0/C), dry, well-mixed; interglacial maxima cool (approx.10/sup 0/C), summer precipitation, well-mixed; transitions high winter precipitation and strong vertical stratification. CCD fluctuating close to 2700 m, being above during glacials and transitions, below only during peak interglacials.

  9. Radiolarian Indices of Paleoproductivity Variation in the late Pleistocene Benguela Upwelling System, ODP Site 1084

    NASA Astrophysics Data System (ADS)

    Bittniok, B. B.; Lazarus, D. B.; Diester-Haass, L.; Billups, K.; Meyers, P.

    2006-12-01

    Changes in export productivity play a significant role in ocean carbon budgets and global climate change. Proxies for export productivity can be difficult to interpret: benthic foraminifera accumulation rates (BFAR) can be affected by carbonate dissolution in organic-carbon rich sediments; bulk opal can be affected by silica limitation of source waters. Recent work (Lazarus et al. 2006; Mar. Micropal.) has shown that a new index based on radiolarian faunal changes (WADE ratio) correlates well to total organic carbon (TOC) values from the same samples over the long term (latest Miocene-Recent) history of productivity in the Benguela Upwelling System (BUS). We present new data on variation in export productivity proxies (WADE, TOC, carbonate, radiolarian opal, BFAR) for the last glacial-interglacial cycle from ODP Site 1084, located just offshore from the main coastal upwelling cells of the BUS. Our age model, from mean Quaternary sedimentation rates (Leg 175 Scientific Results), is in accordance with cyclic variation in other climate sensitive parameters (carbonate and color reflectance). Although opal content and radiolarian preservation is only moderate in our samples, WADE values vary significantly and suggest higher productivity during the last glacial, in accordance with current interpretations of BUS history. Radiolarian opal accumulation is also higher during the last glacial, suggesting that silica limitation (opal paradox) conditions did not dominate over this time period. Similar results for bulk opal have been reported from late Quaternary piston cores from the more northerly Congo upwelling region (Schneider et al, 1997; Paleoc.). We conclude that WADE ratios are a useful proxy for late Pleistocene productivity in the BUS at glacial- interglacial time scales.

  10. Amazonian and neotropical plant communities on glacial time-scales: The failure of the aridity and refuge hypotheses

    NASA Astrophysics Data System (ADS)

    Colinvaux, P. A.; De Oliveira, P. E.; Bush, M. B.

    2000-01-01

    Plants respond to Pleistocene climatic change as species, not as associations or biomes. This has been demonstrated unequivocally by paleobotanical data for temperate latitudes. In the far richer vegetations of the tropics species populations also fluctuated independently in response to climatic forcing, from their longlasting glacial states to the patterns of brief interglacials like the present and back again. We use pollen data to reconstruct the vegetation of the Amazon basin in oxygen isotope stages 3 and 2 of the last glaciation in order to measure how the plant populations of the Amazon responded to the global warming at the onset of the Holocene. We find that plant communities of the neotropics vent copious pollen to lake sediments and that this pollen yields powerful signals for community composition. Three continuous sedimentary records reaching through oxygen isotope stage 2 are available from the Amazon lowlands, those from Carajas, Lake Pata and marine deposits off the mouth of the Amazon River. All three records yield pollen histories of remarkable constancy and stability. By comparing them with deposits of equal antiquity from the cerrado (savanna) of central Brazil, we show that most of the Amazon lowlands remained under forest throughout a glacial cycle. This forest was never fragmented by open vegetation as postulated by the refugia hypothesis. Instead the intact forest of glacial times included significant populations of plants that are now montane, suggesting that the global warming of the early Holocene resulted in the expulsion of heat intolerant plants from the lowland forest. Pollen data from the Amazonian flank of the Andes and from Pacific Panama provide evidence that populations of these heat intolerant plants survive the heat of interglacials in part by maintaining large populations at cooler montane altitudes. Our conclusion that the Amazon lowlands were forested in glacial times specifically refutes the hypothesis of Amazonian glacial aridity. Accordingly we examine the geomorphological evidence for glacial aridity and find it wanting. Of the three paleodune systems reported for tropical South America, that of NE Brazil was active in the Holocene as well as the Pleistocene. Parts of NE Brazil were actually moister than now in late-glacial times. Paleodunes in the Pantanal have never been seen on the ground, and those in the Orinoco Llanos are undated and may be of any age since the Tertiary. Arkosic sands in the Amazon fan deposits came from the Andean foothills or from down cutting by rivers and cannot be evidence of a former arid land surface. White sands of Amazonia formed as podzols, not by aeolian activity. Such Amazonian stone lines as have received critical scrutiny are concretionary pisolites in stratigraphic formations that are more than ten million years old. Although the Amazon was never arid, modeling cooler glacial tropics gives plausibility to a somewhat drier Amazon in glacial times, a concept given substance by pollen data for the movement of ecotones in Rondonia, by stream histories in the Bolivian Andes, and by evidence for lowered lake levels at Carajas and Lake Pata. But this reduced precipitation was never enough to fragment the forest in the Amazon lowlands themselves. Pleistocene mammals of the Napo river valley in Ecuador were able to live along the river system in a forested landscape. Our data suggest that the Amazon forests have been stable since the start of the Pleistocene, a fact that has contributed to the storage of vast diversity. The coming anthropogenic global warming and CO 2 enrichment will add to the global warming already endured by Amazon biota in the Holocene. We think it possible that the expulsion from the lowland forests of heat intolerant species is already complete and that the forest property of maintaining its own microhabitat will allow the high species richness to survive more global warming, provided large enough tracts of forest are preserved.

  11. Power oscillator

    DOEpatents

    Gitsevich, Aleksandr

    2001-01-01

    An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  12. Microelectronic oscillator

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L.

    1969-01-01

    Bipolar transistor operated in a grounded base configuration is used as the inductor in a microelectronic oscillator. This configuration is employed using thin-film hybrid technology and is also applicable to monolithic technology.

  13. Remote identification of a gravel laden Pleistocene river bed

    NASA Technical Reports Server (NTRS)

    Scholen, Douglas E.

    1993-01-01

    The abundance of gravel deposits is well known in certain areas across the Gulf of Mexico coastal plain, including lands within several National Forests. These Pleistocene gravels were deposited following periods of glacial buildup when ocean levels were down and the main river channels had cut deep gorges, leaving the subsidiary streams with increased gradients to reach the main channels. During the warm interglacial periods that followed each glaciation, melting ice brought heavy rainfall and torrents of runoff carrying huge sediment loads that separated into gravel banks below these steeper reaches where abraiding streams, developed. As the oceans rose again, filling in the main channels, these abraiding areas were gradually flattened and covered over by progressively finer material. Older terraces were uplifted by tectonic movements associated with the Gulf Coastal Plain, and the subsequent erosional processes gradually brought the gravels closer to the surface. The study area is located on the Kisatchie National Forest, in central Louisiana, near Alexandria. Details of the full study have been discussed elsewhere. The nearest source of chert is in the Ouachita Mountains located to the northeast. The Ouachita River flows south, out of these mountains, and in Pleistocene times probably carried these chert gravels into the vicinity of the present day Little River Basin which lies along the eastern boundary of the National Forest. Current day drainages cross the National Forest from west to east, emptying into the Little River on the east side. However, a north-south oriented ridge of hills along the west side of the Forest appears to be a recent uplift associated with the hinge line of the Mississippi River depositional basin further to the east, and 800,000 years ago, when these gravels were first deposited during the Williana interglacial period, the streams probably flowed east to west, from the Little River basin to the Red River basin on the west side of the Forest. Within the National Forest and north of Alexandria, along Fish Creek, and east and west of an area known as Breezy Hill, exist several small, worked out gravel pits on privately owned blocks of land, formerly used by the state and county road departments. The pattern presented by these pits gives the impression of a series of north-south drainages lacing through the Forest, probable tributaries to Fish Creek which flows south of east from the west side of the Forest to empty into the Little River. Because of this predominant north-south pattern, no consideration was given to areas between these drainages during early gravel exploration efforts.

  14. Latest Pleistocene and Holocene glacier fluctuations on Mount Baker, Washington

    NASA Astrophysics Data System (ADS)

    Osborn, Gerald; Menounos, Brian; Ryane, Chanone; Riedel, Jon; Clague, John J.; Koch, Johannes; Clark, Douglas; Scott, Kevin; Davis, P. Thompson

    2012-08-01

    Glaciers on stratovolcanoes of the Pacific Northwest of North America offer opportunities for dating late Pleistocene and Holocene glacier advances because tephra and fossil wood are common in lateral moraines and in glacier forefields. We capitalize on this opportunity by examining the Holocene glacial record at Mount Baker, an active stratovolcano in northwest Washington. Earlier workers concluded that glaciers on Mount Baker during the early Holocene were more extensive than during the Little Ice Age and hypothesized that the explanation lay in unusual climatic or hypsometric effects peculiar to large volcanoes. We show that the main argument for an early Holocene glacier advance on Mount Baker, namely the absence of ca 10,000-year-old tephra on part of the south flank of the mountain, is incorrect. Moreover, a lake-sediment core indicates that a small cirque moraine previously thought be of early Holocene age is also likely older than the tephra and consequently of late Pleistocene age. Lateral and end moraines and wood mats ca 2 km downvalley of the present snout of Deming Glacier indicate that an advance during the Younger Dryas interval was little more extensive than the climactic Little Ice Age advance. Tephra and wood between tills in the left lateral moraine of Easton Glacier suggest that ice on Mount Baker was restricted in the early Holocene and that Neoglaciation began ca 6 ka. A series of progressively more extensive Neoglacial advances, dated to about 2.2, 1.6, 0.9, and 0.4 ka, are recorded by stacked tills in the right lateral moraine of Deming Glacier. Intervening retreats were long enough to allow establishment of forests on the moraine. Wood mats in moraines of Coleman and Easton glaciers indicate that Little Ice Age expansion began before 0.7 ka and was followed by retreat and a readvance ca 0.5 ka. Tree-ring and lichen data indicate glaciers on the south side of the mountain reached their maximum extents in the mid-1800s. The similarity between glacier fluctuations at Mount Baker and those elsewhere in the Cascades and in British Columbia suggests a coherent history of Holocene climate change over a broad area of the western Cordillera. We found no evidence that glaciers on stratovolcanoes behave differently than glaciers elsewhere.

  15. Glacial effects limiting mountain height.

    PubMed

    Egholm, D L; Nielsen, S B; Pedersen, V K; Lesemann, J-E

    2009-08-13

    The height of mountain ranges reflects the balance between tectonic rock uplift, crustal strength and surface denudation. Tectonic deformation and surface denudation are interdependent, however, and feedback mechanisms-in particular, the potential link to climate-are subjects of intense debate. Spatial variations in fluvial denudation rate caused by precipitation gradients are known to provide first-order controls on mountain range width, crustal deformation rates and rock uplift. Moreover, limits to crustal strength are thought to constrain the maximum elevation of large continental plateaus, such as those in Tibet and the central Andes. There are indications that the general height of mountain ranges is also directly influenced by the extent of glaciation through an efficient denudation mechanism known as the glacial buzzsaw. Here we use a global analysis of topography and show that variations in maximum mountain height correlate closely with climate-controlled gradients in snowline altitude for many high mountain ranges across orogenic ages and tectonic styles. With the aid of a numerical model, we further demonstrate how a combination of erosional destruction of topography above the snowline by glacier-sliding and commensurate isostatic landscape uplift caused by erosional unloading can explain observations of maximum mountain height by driving elevations towards an altitude window just below the snowline. The model thereby self-consistently produces the hypsometric signature of the glacial buzzsaw, and suggests that differences in the height of mountain ranges mainly reflect variations in local climate rather than tectonic forces. PMID:19675651

  16. Mediterranean Outflow and surface water variability off southern Portugal during the early Pleistocene: A snapshot at Marine Isotope Stages 29 to 34 (1020-1135 ka)

    NASA Astrophysics Data System (ADS)

    Voelker, Antje H. L.; Salgueiro, Emilia; Rodrigues, Teresa; Jimenez-Espejo, Francisco J.; Bahr, André; Alberto, Ana; Loureiro, Isabel; Padilha, Maria; Rebotim, Andreia; Röhl, Ursula

    2015-10-01

    Centennial-to-millennial scale records from IODP Site U1387, drilled during IODP Expedition 339 into the Faro Drift at 558 m water depth, now allow evaluating the climatic history of the upper core of the Mediterranean Outflow (MOW) and of the surface waters in the northern Gulf of Cadiz during the early Pleistocene. This study focuses on the period from Marine Isotope Stages (MIS) 29 to 34, i.e. the interval surrounding extreme interglacial MIS 31. Conditions in the upper MOW reflect obliquity, precession and millennial-scale variations. The benthic δ18O signal follows obliquity with the exception of an additional, smaller δ18O peak that marks the MIS 32/31 transition. Insolation maxima (precession minima) led to poor ventilation and a sluggish upper MOW core, whereas insolation minima were associated with enhanced ventilation and often also increased bottom current velocity. Millennial-scale periods of colder sea-surface temperatures (SST) were associated with short-term maxima in flow velocity and better ventilation, reminiscent of conditions known from MIS 3. A prominent contourite layer, coinciding with insolation cycle 100, was formed during MIS 31 and represents one of the few contourites developing within an interglacial period. MIS 31 surface water conditions were characterized by an extended period (1065-1091 ka) of warm SST, but SST were not much warmer than during MIS 33. Interglacial to glacial transitions experienced 2 to 3 stadial/interstadial cycles, just like their mid-to-late Pleistocene counterparts. Glacial MIS 30 and 32 recorded periods of extremely cold (< 12 °C) SST that in their climatic impact were comparable with the Heinrich events of the mid and late Pleistocene. Glacial MIS 34, on the other hand, was a relative warm glacial period off southern Portugal. Overall, surface water and MOW conditions at Site U1387 show a strong congruence with Mediterranean climate, whereas millennial-scale variations are closely linked to North Atlantic circulation changes.

  17. Ice Age Reboot: Thermohaline Circulation Crisis during the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Pena, L.; Goldstein, S. L.

    2014-12-01

    The mid-Pleistocene transition (MPT) marked a fundamental change in glacial-interglacial periodicity, when it increased from ~41- to 100-kyr cycles and developed higher amplitude climate variability. Because it took place without significant changes in the Milankovitch forcing, this fundamental change must reflect either non-linear responses of the climate system to these external forcings, or internal changes in the ocean-atmosphere-cryosphere system that led to longer periodicities and more intense glacial periods. We document using Nd isotopes a major disruption of the ocean thermohaline circulation (THC) system during the MPT between MIS 25-21 at ~950-860 ka, which effectively marks the first 100-kyr cycle, including an exceptional weakening through critical interglacial MIS 23 at ~900 ka. The data are from ODP Sites 1088 (41°8.163'S, 13°33.77'E, 2082m) and 1090 (42°54.82'S, 8°53.98E', 3702m) in the SE Atlantic Subantarctic Zone, near the upper and lower boundaries of NADW and Circumpolar Deep Water (CDW). Given evidence for nearly stable NADW and North Pacific Water (NPW) ɛNd-values over the last 2 Ma, we interpret the ɛNd variations to reflect changes in the NADW:NPW mixing fractions. During the studied pre-MPT 41-kyr world (MIS 31-25, 1,100-950 ka), at both sites the differences in glacial and interglacial ɛNd-values are small, indicating strong glacial as well as interglacial export of NADW. A major weakening of NADW export occurred during MIS 24-22, including MIS 23, which is unique as the only known interglacial in which the THC did not strengthen, and thus can be considered as a 'trans-glacial' period. The recovery into the post-MPT 100-kyr world is characterized by continued weak glacial THC. We conclude that the MPT ocean circulation crisis 'rebooted' the pacing and intensity of ice ages and facilitated the coeval drawdown of atmospheric CO2 and high latitude ice sheet growth, generating the conditions that stabilized 100-kyr cycles.

  18. Thermohaline Circulation Crisis and Changes Through the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Goldstein, S. L.; Pena, L.

    2013-12-01

    The Mid-Pleistocene Transition (MPT) marked a fundamental change in glacial-interglacial periodicity, transitioning from ~41,000 to 100,000 year cycles, accompanied by higher amplitude climate variability. It occurred without a significant change in orbital forcing, and thus its causes are poorly understood. We report major changes in the pre- and post-MPT mode of the ocean thermohaline circulation (THC), and a THC crisis during the MPT, from Nd isotopes in ODP Sites 1088 (~42S, 2082m) and 1090 (~43S, 3702m). The core locations are at the transition between the South Atlantic and the Southern oceans, a major gateway for the exchange of northern- and southern-sourced water masses. The new data show that in the ';40-kyr world' prior to the MPT, NADW export was strong during both interglacials and glacials. At ~900 ka the THC system underwent a major crisis, with an unprecedented weakening in NADW export during Marine Isotope Stages (MIS) 22-24. The recovery of the THC system in the post-MPT ';100-kyr world' is characterized by strong THC during interglacials, similar to pre-MPT interglacials, but much weaker THC during glacials. The ';THC crisis' interval includes MIS 23, which is unique as an interglacial where the THC operated in the same weak mode as post-MPT glacials. The MIS 22-24 interval has been recognized as a time of abrupt atmospheric pCO2 drawdown (Hoenisch et al. 2009) and significant cooling of ocean deep water, and Antarctic ice sheet expansion (Elderfield et al. Science 2012). Our data indicate that THC changes played an important role as a primary driving force, and helped to generate a series of positive feedbacks. This drastic change in deep-ocean circulation had important implications for the coeval drawdown of atmospheric pCO2, and the absence of a strong THC system through a glacial-to-interglacial-to-glacial cycle had a major impact on high latitude ice sheet growth. We suggest that the weak NADW export during MIS 24-22 resulted in reduced vertical exchange between Antarctic surface and deep waters, which helped to induce the drop in atmospheric pCO2, and in turn generated significant cooling which facilitated ice sheet expansion. These impacts were amplified by anomalously low Southern Hemisphere summer insolation during MIS 23, which resulted in suppressed ice sheet melting. Increased sea-ice coverage around the Antarctic continent during this time period may have generated increased AABW formation, which would have further drawn down CO2 from the atmosphere.

  19. Precipitation Isotopes Reveal Intensified Indonesian Monsoon Circulation During the Dry Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Konecky, B. L.; Russell, J. M.; Vogel, H.; Bijaksana, S.; Huang, Y.

    2014-12-01

    The Indo-Pacific Warm Pool (IPWP) invigorates the oceanic-atmospheric circulation in the tropics, with far-reaching climate impacts that extend into the high latitudes. A growing number of deglacial proxy reconstructions from the region have revealed the importance of both high- and low-latitude climate processes to IPWP rainfall during the late Pleistocene. Many of these proxies reconstruct the oxygen and hydrogen isotopic composition of rainfall (δ18Oprecip, δDprecip), a powerful tool for understanding changes in climate. However, an increasing number of studies from the region have highlighted the tendency for δ18Oprecip and δDprecip to reflect regional and/or remote circulation processes rather than local rainfall amounts, complicating the reconstruction of IPWP hydroclimate. To better understand high- and low-latitude drivers of late Pleistocene hydroclimate in the IPWP, precipitation isotopic reconstructions must be constrained with both modern observations and independent proxies for rainfall amount. We present a reconstruction of δDprecip using leaf wax compounds preserved in the sediments of Lake Towuti, Sulawesi, from 60,000 years before present to today. We interpret our proxy record with the aid of a new precipitation isotopic dataset from our study site, with daily rainfall isotope measurements to constrain the processes controlling δDprecip. Our Lake Towuti δDwax record is strikingly similar to a speleothem δ18O record from southern Indonesia (Ayliffe et al., 2013) and shares features with other nearby records spanning the Last Glacial Maximum to present. Together, these records indicate that monsoon circulation was intensified in central and southern Indonesia during the glacial period. However, other independent rainfall proxies from Lake Towuti indicate that dry conditions accompanied the intensified monsoon. Regional-scale isotopic depletion during the dry glacial period may have arisen from dynamical and other fractionating processes that are evident in our modern precipitation isotopic data during the monsoon season. We use these findings to reconcile some key differences among proxy reconstructions from the region, and to examine the influence of high-latitude and glacial processes on IPWP glacial climate.

  20. Using Climate Models to Evaluate Mechanisms of Glacial Inception

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The initiation and subsequent growth of an ice sheet or large glacier is based on two primary factors: 1. Most fundamentally, a region must exist with a positive net snow accumulation, that is, cold season snowfall exceeds warm season snowmelt. Because snow can melt very rapidly, in a practical sense this probably means that little or no snow melt should occur in the warm season (mountain glaciers being one possible exception). 2. When sufficient ice builds in a region with a positive net snow accumulation, the ice will flow into adjoining regions with a negative mass balance. Feedbacks can also then arise between the emerging ice sheet and the overall climate, which, among other effects, may cause the mass balance in that region to turn positive. A key question is the relative importance of these two factors. In particular, is it possible for a large lowland region to experience a positive mass balance, such that the ice sheet can arise largely 'in-situ'? Or instead are uplands necessary, such that essentially mountain glaciers form first, and then, under the right conditions, grow and coalesce, eventually spreading out into the lowlands? This is probably the single most fundamental question to be addressed in the modeling of glacial inception. Other key questions then focus on how the (upland or low-land) positive mass balance is obtained at some times, but not others (the ice sheets are not continuously present). For Northern Hemisphere ice sheets in particular, what climatic conditions can lead to abundant winter snowfall in the Canadian Arctic and northern Labrador in conjunction with cool summertime conditions? Are both required, or will cool summer conditions alone suffice? Conversely, are a few years of abnormally heavy snowfall all that is required to trigger glacial inception? A major need at present is for carefully constructed climate model studies aimed at addressing these questions. A successful strategy will almost certainly require more than just a global model; while the global climate model might be necessary to properly simulate large-scale forcing, such models have insufficient spatial resolution to adequately address the roles of topography and the nature of the land surface. Necessary also is the use of a high-resolution regional climate model (in conjunction with a global model). Possible forcing mechanisms of Pleistocene ice ages are well known (e.g., orbital forcing; CO2 fluctuations) but we must understand and be able to successfully model the actual processes involved in glacial inception before we can fully understand the true roles played by these forcing mechanisms.

  1. Quantification of glacial erosion in the Alps using OSL-thermochronology

    NASA Astrophysics Data System (ADS)

    Herman, F.; Champagnac, J.-D.; Rhodes, E. J.; Jaiswal, M.; Chen, Y.-G.; Schwenninger, J.-L.

    2009-04-01

    The impact of glaciations on the topography of the Alps is still unclear: Long-term denudation rate determined by low-T thermochronology are in the range of 0.2 to 1 mm/yr, and increased during the Plio-Quaternary by ~3 fold (Vernon et al., 2008). Such an increase is also documented by peri-alpine sediment budget (Kuhleman, 2000), with a two to three fold increase in sediment yields since 5-3 Ma. This increase was considered as evidence of a climatically-driven surface process change, a large component of which was attributed to increased precipitation (Cederbom et al., 2004) and erosion by glacial processes (Champagnac et al., 2007). The transition from full fluvial to glaciated landscape must have involved major changes in topography and erosion rates, in particular given the changes in sediment yield (Kuhlemann, 2000; Mutoni et al 2003). However, the timing of the onset of intense glacial erosion as well as its rates are still ambiguous. The glacial erosion seems to have accelerated around 0.9 Ma as suggested by the ten fold increase of incision rates of a valley in the Central Alps (Häuselmann et al., 2007), and by information about vegetation and sedimentologic changes (Muttoni et al., 2003; Scardia et al., 2006). There is however no direct quantification of topographic change during the Plio-Quaternary. We present here how we use OSL-thermochronology, a new thermochronometer of exceptionally low closure temperature (about 30-400 C) (Herman et al subm.) and a glacial erosion model (Herman and Braun 2008) to estimate topographic changes in the Alps in response to glaciations. Because of its low closure temperature, OSL-thermochronology enables quantification of events of less than 1 Ma at very small wavelength of the topography. We collected two vertical profiles, one in the Zermatt Valley (Valais) and one in Maurienne Valley (Savoy). We infer from these results changes in topography, date and quantify relief creation under glacial - interglacial cycles. Cederbom, C.E, et al., Climate induced rebound and exhumation of the European Alps. Geology 32, 709-712 (2000). Champagnac, J.-D., et al., Quaternary erosion-induced isostatic rebound in the western Alps. Geology 35, 195-198 (2007). Haüselmann P., et al.,et al. Abrupt glacial valley incision at 0.8 Ma dated from cave deposits in Switzerland. Geology 35, 33-42 (2007). Herman F. and Braun J. Evolution of the glacial landscape of the Southern Alps of New Zealand: Insights from a glacial erosion model, J. Geophys. Res., 113, F02009, doi:10.1029/2007JF000807 (2008). Herman F., Rhodes E.J. and Braun J. A new thermochronometer reveals steady state relief and exhumation in a small active orogen during the last glacial cycle, submitted. Kuhlemann J., et al., Quantifying tectonic versus erosive denudation by the sediment budget: the Miocene core complexes of the Alps, Tectonophysics 330, 1-23 (2000). Muttoni G., et al., Onset of major Pleistocene glaciations in the Alps. Geology 31, 989-992 (2003). Scardia, G., et al., Subsurface magnetostratigraphy of Pleistocene sediments from the Po Plain (Italy): Constraints on rates of sedimentation and rock uplift. Bulletin of the Geological Society of America 118(11-12), 1299-1312 (2006). Vernon, A.J., et al., Increase in late Neogene denudation of the European Alps confirmed by analysis of a fission-track thermochronology database. Earth and Planetary Science Letters, 270 (3-4), pp. 316-329 (2008).

  2. Middle Pleistocene handaxes from the Korean Peninsula.

    PubMed

    Norton, Christopher J; Bae, Kidong; Harris, John W K; Lee, Hanyong

    2006-11-01

    We present four biface assemblages from an archaeologically poorly known region of the Old World: Middle Pleistocene Korea. The handaxes are derived from a series of Middle Pleistocene localities in the Imjin/Hantan River Basins (IHRB) in Korea. The best known of these localities is Chongokni, although a number of equally important sites in the IHRB have been discovered and excavated over the course of the past two decades (e.g., Kumpari, Chuwoli, and Kawoli). Reanalysis of the age of the Chongokni deposits suggests a hominin occupation between 350-300 ka. Comparative study of the IHRB handaxes with the well-known bifacial implements from Olorgesailie (Kenya) and Hunsgi-Baichbal (India) indicates that the often-noted "thick" trait of the East Asian handaxes differs at a statistical level across the various regions of the Old World. The finds from the IHRB sites, and the Chinese sites of Bose and Dingcun that contain handaxes-like implement, question the validity of the Movius Line sensu stricto. However, why East Asian Middle Pleistocene hominins did not consistently produce more refined bifaces across broader regional and/or temporal facies, remains open to question. Thus, the absence of similar sites in wider areas of Early and Middle Pleistocene East Asia suggests that the Movius Line sensu lato is still supportable and warrants additional detailed cross comparative studies of the stone toolkits east and west of the line. PMID:16949133

  3. Ice-rafting from the British-Irish ice sheet since the earliest Pleistocene (2.6 million years ago): implications for long-term mid-latitudinal ice-sheet growth in the North Atlantic region

    NASA Astrophysics Data System (ADS)

    Thierens, M.; Pirlet, H.; Colin, C.; Latruwe, K.; Vanhaecke, F.; Lee, J. R.; Stuut, J.-B.; Titschack, J.; Huvenne, V. A. I.; Dorschel, B.; Wheeler, A. J.; Henriet, J.-P.

    2012-06-01

    The Plio-Pleistocene intensification of Northern Hemisphere continental ice-sheet development is known to have profoundly affected the global climate system. Evidence for early continental glaciation is preserved in sediments throughout the North Atlantic Ocean, where ice-rafted detritus (IRD) layers attest to the calving of sediment-loaded icebergs from circum-Atlantic ice sheets. So far, Early-Pleistocene IRD deposition has been attributed to the presence of high-latitudinal ice sheets, whereas the existence and extent of ice accumulation in more temperate, mid-latitudinal regions remains enigmatic. Here we present results from the multiproxy provenance analysis of a unique, Pleistocene-Holocene IRD sequence from the Irish NE Atlantic continental margin. There, the Challenger coral carbonate mound (IODP Expedition 307 site U1317) preserved an Early-Pleistocene record of 16 distinctive IRD events, deposited between ca 2.6 and 1.7 Ma. Strong and complex IRD signals are also identified during the mid-Pleistocene climate transition (ca 1.2 to 0.65 Ma) and throughout the Middle-Late Pleistocene interval. Radiogenic isotope source-fingerprinting, in combination with coarse lithic component analysis, indicates a dominant sediment source in the nearby British-Irish Isles, even for the oldest, Early-Pleistocene IRD deposits. Hence, our findings demonstrate, for the first time, repeated and substantial (i.e. marine-terminating) ice accumulation on the British-Irish Isles since the beginning of the Pleistocene. Contemporaneous expansion of both high- and mid-latitudinal ice sheets in the North Atlantic region is therefore implied at the onset of the Pleistocene. Moreover, it suggests the recurrent establishment of (climatically) favourable conditions for ice sheet inception, growth and instability in mid-latitudinal regions, even in the earliest stages of Northern Hemisphere glacial expansion and in an obliquity-driven climate system.

  4. The dispersion of fibrous amphiboles by glacial processes in the area surrounding Libby, Montana, USA

    USGS Publications Warehouse

    Langer, William H.; Van Gosen, Bradley S.; Meeker, Gregory P.; Adams, David T.; Hoefen, Todd M.

    2011-01-01

    Mining operations began at a world-class vermiculite deposit at Vermiculite Mountain near Libby, Montana, circa 1920 and ended in 1990. Fibrous and asbestiform amphiboles intergrown with vermiculite ore are suspected to be a causative factor in an abnormally high number of cases of respiratory diseases in former mine and mill workers, and in residents of Libby. The question addressed in this report is whether some of the amphibole from Vermiculite Mountain could have been dispersed by Pleistocene glacial processes rather than by human activity after vermiculite mining began. The history of Pinedale glaciation in the Libby area provides a framework for estimating the presence and distribution of asbestiform amphiboles derived from Vermiculite Mountain and found in naturally occurring sediments of Glacial Lake Kootenai that underlie the Libby Valley area. There were two situations where sediments derived from Vermiculite Mountain were deposited into Glacial Lake Kootenai: (1) as lake-bottom sediments derived from meltwater flowing down Rainy Creek when the valley south of Vermiculite Mountain was free of ice but active ice still covered Vermiculite Mountain; and (2) as lake-bottom sediments eroded from the Rainy Creek outwash and re-deposited during a re-advance of the Purcell Trench Glacier lobe near Moyie Springs, Idaho.

  5. Incursions of southern-sourced water into the deep North Atlantic during late Pliocene glacial intensification

    NASA Astrophysics Data System (ADS)

    Lang, David C.; Bailey, Ian; Wilson, Paul A.; Chalk, Thomas B.; Foster, Gavin L.; Gutjahr, Marcus

    2016-05-01

    The circulation and internal structure of the oceans exert a strong influence on Earth's climate because they control latitudinal heat transport and the segregation of carbon between the atmosphere and the abyss. Circulation change, particularly in the Atlantic Ocean, is widely suggested to have been instrumental in the intensification of Northern Hemisphere glaciation when large ice sheets first developed on North America and Eurasia during the late Pliocene, approximately 2.7 million years ago. Yet the mechanistic link and cause/effect relationship between ocean circulation and glaciation are debated. Here we present new records of North Atlantic Ocean structure using the carbon and neodymium isotopic composition of marine sediments recording deep water for both the Last Glacial to Holocene (35-5 thousand years ago) and the late Pliocene to earliest Pleistocene (3.3-2.4 million years ago). Our data show no secular change. Instead we document major southern-sourced water incursions into the deep North Atlantic during prominent glacials from 2.7 million years ago. Our results suggest that Atlantic circulation acts as a positive feedback rather than as an underlying cause of late Pliocene Northern Hemisphere glaciation. We propose that, once surface Southern Ocean stratification and/or extensive sea-ice cover was established, cold-stage expansions of southern-sourced water such as those documented here enhanced carbon dioxide storage in the deep ocean, helping to increase the amplitude of glacial cycles.

  6. Enhanced subarctic Pacific stratification and nutrient utilization during glacials over the last 1.2 Myr

    NASA Astrophysics Data System (ADS)

    Knudson, Karla P.; Ravelo, Ana Christina

    2015-11-01

    The relationship between climate, biological productivity, and nutrient flux is of considerable interest in the subarctic Pacific, which represents an important high-nitrate, low-chlorophyll region. While previous studies suggest that changes in iron supply and/or physical ocean stratification could hypothetically explain orbital-scale fluctuations in subarctic Pacific nutrient utilization and productivity, previous records of nutrient utilization are too short to evaluate these relationships over many glacial-interglacial cycles. We present new, high-resolution records of sedimentary δ15N, which offer the first opportunity to evaluate systematic, orbital-scale variations in subarctic Pacific nitrate utilization from 1.2 Ma. Nitrate utilization was enhanced during all glacials, varied with orbital-scale periodicity since the mid-Pleistocene transition, was strongly correlated with enhanced aeolian dust and low atmospheric CO2, but was not correlated with productivity. These results suggest that glacial stratification, rather than iron fertilization, systematically exerted an important regional control on nutrient utilization and air-sea carbon flux.

  7. Development of a glacially dominated shelf-slope-fan system in tectonically active southeast Alaska: Results of IODP Expedition 341 core-log-seismic integrated studies at glacial cycle resolution

    NASA Astrophysics Data System (ADS)

    Gulick, Sean; Jaeger, John; Mix, Alan; Swartz, John; Worthington, Lindsay; Reece, Robert

    2014-05-01

    Collision of the Yakutat microplate with North American formed the St. Elias Mountains in coastal Gulf of Alaska. While the tectonic driver for orogenesis has been ongoing since the Miocene, results from the Integrated Ocean Drilling Program Expedition 341 suggests that direct climatic perturbation of active orogenesis through glacial erosion is non-linear. Geophysical studies of the glaciated continental margin, slope, and adjacent deep-sea Surveyor Fan allow examination of the glaciated orogen from source to sink. Using high-resolution and crustal-scale seismic data and through comparison with other glaciated margins, we can identify key diagnostic seismic morphologies and facies indicative of glacial proximity and sediment routing. Expedition drilling results calibrated these images suggesting a timeline for initial advances of the Cordilleran ice sheet related glacial systems onto the shelf and a further timeline for the development of ice streams that reach the shelf edge. Comparisons can be made within this single margin between evolution of the tectonic-glacial system where erosion and sediment transport are occurring within a fold and thrust belt versus on a more stable shelf region. Onshore the Bering-Bagley glacial system in the west flows across the Yakataga fold and thrust belt, allowing examination of whether glacial erosion can cause tectonic feedbacks, whereas offshore the Bering-Bagley system interacts with the Pamplona Zone thrusts in a region of significant sediment accommodation. Results from Expedition 341 imply that timing of glacial advance to the shelf edge in this region may be driven by the necessity of filling up the accommodation through aggradation followed by progradation and thus is autogenic. In contrast the Malaspina-Hubbard glacial system to the east encountered significantly less accommodation and more directly responded to climatic forcing including showing outer shelf glacial occupation since the mid-Pleistocene transition-MPT to 100 kyr glacial-interglacial cycles. Examination of the sink for both of these systems, which includes the Surveyor Fan and Aleutian Trench wedge, demonstrates a clear climatic driver for sediment flux to the deep sea. The first appearance of ice-rafted debris at our distal drill site closely approximates the start of the Pleistocene and a doubling of sediment accumulation accompanies the MPT. Converting sediment volumes just within the deep-sea sinks back to erosion rates in the orogen and correlating with changes in exhumation rates from thermochronology demonstrates a lack of accelerated tectonic response to the intensification of Northern Hemisphere glaciations at the start of the Pleistocene but increased shortening and exhumation of sediments at the MPT. The form of tectonic response differs between out-of-sequence thrusting or antiformal stacking within the fold and thrust belt to the west and a near vertical advection of material in a tectonic aneurysm in the core of the orogen to the east.

  8. Surface exposure chronology of the Waimakariri glacial sequence in the Southern Alps of New Zealand: Implications for MIS-2 ice extent and LGM glacial mass balance

    NASA Astrophysics Data System (ADS)

    Rother, Henrik; Shulmeister, James; Fink, David; Alexander, David; Bell, David

    2015-11-01

    During the late Quaternary, the Southern Alps of New Zealand experienced multiple episodes of glaciation with large piedmont glaciers reaching the coastal plains in the west and expanding into the eastern alpine forelands. Here, we present a new 10Be exposure age chronology for a moraine sequence in the Waimakariri Valley (N-Canterbury), which has long been used as a reference record for correlating glacial events across New Zealand and the wider Southern Hemisphere. Our data indicate that the Waimakariri glacier reached its maximum last glaciation extent prior to ∼26 ka well before the global last glaciation maximum (LGM). This was followed by a gradual reduction in ice volume and the abandonment of the innermost LGM moraines at about 17.5 ka. Significantly, we find that during its maximum extent, the Waimakariri glacier overflowed the Avoca Plateau, previously believed to represent a mid-Pleistocene glacial surface (i.e. MIS 8). At the same time, the glacier extended to a position downstream of the Waimakariri Gorge, some 15 km beyond the previously mapped LGM ice limit. We use a simple steady-state mass balance model to test the sensitivity of past glacial accumulation to various climatic parameters, and to evaluate possible climate scenarios capable of generating the ice volume required to reach the full local-LGM extent. Model outcomes indicate that under New Zealand's oceanic setting, a cooling of 5 °C, assuming modern precipitation levels, or a cooling of 6.5 °C, assuming a one third reduction in precipitation, would suffice to drive the Waimakariri glacier to the eastern alpine forelands (Canterbury Plains). Our findings demonstrate that the scale of LGM glaciation in the Waimakariri Valley and adjacent major catchments, both in terms of ice volume and downvalley ice extent, has been significantly underestimated. Our observation that high-lying glacial surfaces, so far believed to represent much older glacial episodes, were glaciated during the LGM, challenges the conventional geomorphic model of glaciation in New Zealand where the vertical arrangement of glacial landform-associations is used to assign successively older glaciation ages.

  9. Glacial isostatic adjustment in the static gravity field of Fennoscandia

    NASA Astrophysics Data System (ADS)

    Root, B. C.; Wal, W.; Novák, P.; Ebbing, J.; Vermeersen, L. L. A.

    2015-01-01

    In the central part of Fennoscandia, the crust is currently rising, because of the delayed response of the viscous mantle to melting of the Late Pleistocene ice sheet. This process, called Glacial Isostatic Adjustment (GIA), causes a negative anomaly in the present-day static gravity field as isostatic equilibrium has not been reached yet. Several studies have tried to use this anomaly as a constraint on models of GIA, but the uncertainty in crustal and upper mantle structures has not been fully taken into account. Therefore, our aim is to revisit this using improved crustal models and compensation techniques. We find that in contrast with other studies, the effect of crustal anomalies on the gravity field cannot be effectively removed, because of uncertainties in the crustal and upper mantle density models. Our second aim is to estimate the effects on geophysical models, which assume isostatic equilibrium, after correcting the observed gravity field with numerical models for GIA. We show that correcting for GIA in geophysical modelling can give changes of several kilometer in the thickness of structural layers of modeled lithosphere, which is a small but significant correction. Correcting the gravity field for GIA prior to assuming isostatic equilibrium and inferring density anomalies might be relevant in other areas with ongoing postglacial rebound such as North America and the polar regions.

  10. Glacial-driven vicariance in the amphipod Gammarus duebeni.

    PubMed

    Krebes, L; Blank, M; Jürss, K; Zettler, M L; Bastrop, R

    2010-02-01

    We have examined the genetic diversity using mitochondrial COI and ND2 sequence data from 306 specimens of the amphi-Atlantic-distributed amphipod Gammarus duebeni. Marine populations from the Atlantic Ocean, the Baltic and North Sea, as well as freshwater populations from Ireland, Cornwall and Brittany were analysed. G. duebeni is a complex of five allopatric lineages. Freshwater populations result from multiple invasions of marine ancestors, represented by distinct lineages. We interpret the recent distribution of lineages as the outcome of a series of spatio-temporal vicariant events caused by Pleistocene glaciations and sea level changes. The freshwater lineages are therefore regarded as 'glacial relicts'. Furthermore, inter-specific competition with, for example, Gammarus pulex (which is absent in Ireland and western Brittany) may be another important determinant in the distribution of freshwater G. duebeni. In Ireland and Brittany, three freshwater refugia are suggested. The significantly limited gene flow detected among marine populations is more likely due to inter-specific competition than to salinity. The G. duebeni-complex represents a model system for the study of allopatric speciation accompanied by major habitat shifts. The pattern of spatio-temporal origins of the freshwater entities we describe here provides an excellent system for investigating evolutionary adaptations to the freshwater environment. Our data did not confirm the presently used subspecies classification but are only preliminary in the absence of nuclear genetic analyses. PMID:19654046

  11. Combining cosmogenic radionuclides and amino acid racemization to date late Pliocene glacial deposits exposed on Baffin Island, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Refsnider, K. A.; Miller, G. H.

    2009-12-01

    Sequences of glacial deposits spanning the Quaternary are valuable archives recording the effects of glaciation on landscapes through time, but determining the age of such deposits has long challenged geologists. The recent advances in cosmogenic radionuclide (CRN) measurement has made it possible to date some of these deposits, but dating buried glacial sediments in most settings remains problematic. Here we explore a new approach to date the oldest glacial deposits in the Plio-Pleistocene Clyde Foreland Formation of Baffin Island. This formation, approximately 40 m thick, includes interlayered shell-bearing marine, glaciomarine, and glacial sediments deposited along the northern margin of the Laurentide Ice Sheet and earlier continental ice sheets. Previous work on foraminifera assemblages suggests that the deposits span the last ≥2 Ma. By combining CRN measurements (10Be and 26Al) from the glacial units and measurements of the D-alloisoleucine:L-isoleucine ratios (A/I) in valves of the mollusk Hiatella arctica in the marine units overlying a particular glacial deposit, we can calculate the age of the glacial deposit. Because the post-burial temperature history for the mollusks preserved in the Clyde Foreland Formation is poorly constrained, A/I ratios alone cannot be used to determine absolute ages. Instead, we use A/I ratios to identify sediment packages of discrete ages and define a step-wise burial history function for glacial units. A/I ratios of all packages (<0.3 for the total hydrolysate fraction) fall within the A/I interval characterized by linear racemization kinetics, so the age of each package in the burial history function can simply be defined as a fractional age with respect to the total burial age for the glacial deposit of interest. The long duration of burial (26Al/10Be as low as 1.6±0.6 at 2σ) and low initial CRN inventories require that post-burial muogenic production is accounted for using the burial history function. We apply a numerical model to calculate the duration of burial from the measured CRN concentrations for a given inherited CRN inventory. But because this initial inventory is unknown, a single CRN sample/burial history combination will not provide a unique age solution. Instead, measurements from multiple localities where a particular glacial deposit has differing burial histories (i.e., the thickness of overlying units or ages of overlying units differ) are required to statistically determine the total burial age that most closely matches the observed CRN inventories and burial histories.

  12. {13C }/{12C } ratios of pleistocene mummified remains from beringia

    NASA Astrophysics Data System (ADS)

    Bombin, Miguel; Muehlenbachs, Karlis

    1985-01-01

    During the Quaternary glacial episodes, when sea level was considerably lower, Asia and North America were linked by large extensions of circumarctic land (Beringia), which remained unglaciated. This land mass served not only as a biogeographical bridge for plants, animals, and humans, but also supported a biome very different from present tundra or boreal coniferous forests, which was dominated by steppes and a rich mammalian megafauna. Carbon stable isotope ratios of Beringian late Pleistocene mummified remains of bison, equids, mammoth, caribou, musk-ox, moose, woolly rhino, and other undetermined species, found preserved in permafrost, indicate that these megaherbivores fed exclusively on C 3 plants, and that C 4 grasses were not differentially ingested by bison, as previously suggested. Paleoclimatic constraints probably prevented the formation of a warm-season (C 4) guild during the later part of the growing season in the steppes of Beringia during the last glaciation.

  13. Expanding Ice Sheets on the Antarctic Peninsula during the Plio/Pleistocene Recorded in Continental Rise Sediment Drifts

    NASA Astrophysics Data System (ADS)

    Cowan, E. A.; Hillenbrand, C.

    2007-12-01

    Sediment drifts on the continental rise west of the Antarctic Peninsula are located within 125 km from the continental shelf edge, the main contributor of terrigenous sediment during both glacial and interglacial periods. The composition of drift deposits continuously recorded changes in ice sheet volume and thermal regime as well as sea surface temperatures (SSTs) and sea ice extent. The coarse-grained terrigenous sediment (pebbles and coarse sand), a proxy for iceberg-rafted debris (IRD), was analyzed in sediments spanning the last 3.1 m.y. at Ocean Drilling Program (ODP) Sites 1101 and 1096. IRD is deposited in both glacial intervals, dominated by fine-grained laminated mud and interglacial units consisting of bioturbated muds enriched in biogenic components. Contents of biogenic opal, which reflect diatom abundance, are relatively high from 3.1-2.2 Ma. Calcareous nannofossils are present within interglacial sediments from 2.2-0.76 Ma. Both findings suggest warm SSTs and limited sea ice over the drifts during interglacial periods before the Late Pleistocene. Quartz grains picked from the IRD fraction and imaged with a scanning electron microscope (SEM) show an abrupt change in surface microtextures at 1.35 Ma. During the Late Pliocene to Early Pleistocene, many quartz grains are completely weathered and only a few show signs of crushing and abrasion, indicating that glaciers were too small to inundate the Antarctic Peninsula topography. Debris shed from mountain peaks was transported supraglacially or englacially allowing weathered grains to pass unmodified through the glaciers. Glaciers expanded in size during glacial periods from 1.35-0.76 Ma. The IRD accumulation during those periods was very high and diverse dropstone lithologies document supply from sources throughout the Antarctica Peninsula. Conditions that spawned the large polar ice sheet identified at the Last Glacial Maximum have been present on the Antarctic Peninsula during glacial periods since approximately 0.76 Ma. Since then, IRD supply has been relatively low and maxima in IRD content occurred during interglacials when sedimentation rates were low. Pebble shapes indicate the dominance of basal glacial transport paths. Quartz sand grains show high relief, fracture and abrasion common under thick ice and dropstone lithologies are more restricted.

  14. Spatial and temporal patterns of Pleistocene biogenic sediment accumulation in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Moy, C. M.; Bahlburg, H.; Childress, L. B.; Cowan, E. A.; Forwick, M.; Müller, J.; Ribeiro, F.; Ridgway, K. D.; Mix, A. C.

    2013-12-01

    Reconstructing the timing and nature of past changes in aquatic productivity in the Gulf of Alaska (GoA) can shed light on the primary processes driving biogeochemical cycling over geologic timescales. Today, Fe is an important micronutrient that limits primary productivity in surface waters beyond the continental shelf in much of the GoA. However, we have a relatively poor understanding of how Fe-delivery processes, combined with changing climate, environmental, and oceanographic conditions, interact to influence primary production over glacial-interglacial timescales. An important first step is to identify the spatial and temporal patterns of increased productivity in the sediment record. Here, we present sedimentologic and physical property data from IODP Expedition 341 and identify intervals where diatom ooze and diatom-rich mud lithofacies are prevalent during the Pleistocene. Among the Expedition 341 recovered cores, were high-recovery intervals in the outer (Site U1417) and inner (U1418) Surveyor Fan, and from a small slope basin at the edge of the continental shelf (Site U1419). In general, greenish gray diatomaceous ooze (containing >50 % diatoms in smear slides) and diatom-rich mud (>25% diatoms) is found in beds ranging in thickness from 20 to 150 cm, interbedded with gray mud that commonly contains lonestones. Ooze is occasionally found immediately overlying volcanic ash. Compared to non-biogenic mud, diatomaceous sediments are generally characterized by lower magnetic susceptibility, natural gamma ray, bulk density, and higher b* color reflectance. At Site U1417, we observe a frequent occurrence of diatomaceous ooze during the middle Pleistocene relative to the early and late Pleistocene. At Site U1418, intervals containing diatom ooze are less common than at U1417 and biogenic sediments are mainly observed within the late Pleistocene portion of the record. However, higher sedimentation rates at U1418 relative to U1417, and the co-occurrence of sand and interbedded mud and silt indicate that clastic sediment dilution may obscure biogenic sediment contribution. At Site U1419, two prominent ~5 m thick intervals of diatomaceous ooze are found (within the uppermost 5 m and between 80 and 90 m composite depth, respectively). Between these intervals are numerous 20 cm thick intervals of biogenic sediment that were likely deposited during the middle or late Pleistocene based on preliminary shipboard age models. Biogenic intervals observed at Expedition 341 sites may be related to increased productivity driven by a combination of the aforementioned processes, but additional chronological and geochemical constraints are needed from all sites to rule out the role that changing sedimentation rates and/or silica dissolution plays in controlling the distribution of ooze in these records.

  15. Glacial and Postglacial Geologic History of Isle Royale National Park, Michigan

    USGS Publications Warehouse

    Huber, N. King

    1973-01-01

    Isle Royale was overridden by glacial ice during each of the four major glaciations of the Pleistocene Epoch, and each successive glaciation essentially obliterated all direct evidence of preceding glaciations on the island. In the waning phase of the last major glaciation, the Wisconsin Glaciation, the frontal ice margin retreated northward from at least the greater part of the Lake Superior basin, then readvanced into the basin during Valders time, about 11,000 years ago. We can attribute to the Valders ice the final aspect of glaciation on Isle Royale, including both erosional and depositional features. It is impossible to estimate the quantity of glacial debris or other surficial materials that might have been present on Isle Royale prior to the Valders readvance, but the readvancing ice appears to have removed most of what might have been present, as judged by the thin surficial cover on the eastern two-thirds of the island today. During the Valders retreat, a series of lakes formed in the Lake Superior basin in front of the retreating ice margin. The retreating ice opened successively lower outlets, and thus the general trend of lake elevations is downward. Distinct lake stages reflect periods of relative stability during which well- defined shoreline features developed. The ice front forming the north margin of the earlier lakes probably remained south of Isle Royale until about the time of glacial Lake Beaver Bay, when it retreated to a position straddling Isle Royale west of Lake Desor. Abundant deposits of glacial debris were left upon the newly deglaciated west end of the island, and the ice front remained stable long enough to build a complex of ice-margin deposits across the island. Shorelines formed by the glacial lake associated with this ice front are found on the western part of the island about 200 feet above present Lake Superior. Subsequent renewed and complete retreat of the ice margin from Isle Royale was rapid enough that only a minor amount of glacial debris was deposited on the central and eastern parts of the island. When the ice margin reached the north edge of the Lake Superior basin, Lake Minong was formed, and the entire basin was filled for the first time since the Valders advance. Lake Minong marked a relatively stable episode in the history of the basin, and its beaches are among the best developed of the abandoned shoreline features on Isle Royale. Lake Minong beaches and later lower beaches are best developed on the southwest end of Isle Royale, where abundant glacial debris provided easily worked materials for beach construction.

  16. Introduction to Pliocene-Pleistocene paleoceanography of the Bering Sea

    NASA Astrophysics Data System (ADS)

    Takahashi, Kozo; Ravelo, A. Christina; Okazaki, Yusuke

    2016-03-01

    High resolution paleoceanography of the Pliocene-Pleistocene is important in understanding climate forcing mechanisms and associated environmental changes during this major transition from global warmth to the Ice Ages. This is particularly true in high latitude marginal seas such as the Bering Sea. The Bering Sea has been very sensitive to changes in global climate during interglacial and glacial, or Milankovitch, time scales. This is due to significant changes in water circulation, land-ocean interaction, and sea-ice formation. With the aim to reveal the climate and oceanographic history of the Bering Sea over the past 5 My, IODP Expedition 323 cored a total of 5741 m of sediment (97.4% recovery) at seven sites in 2009 on D/V JOIDES Resolution covering three regions: the Umnak Plateau, the Bowers Ridge, and the Bering Slope. The water depths of the drill sites range from 818 m to 3174 m, allowing for the characterization of past vertical water mass distribution including changes in the oxygen minimum zone. The four deepest holes range from 600 m to 745 m below the seafloor, and resulted in the recovery of long sediment sequences ranging from 1.9 My to 5 My in age. Following the expedition, two sampling parties at Kochi Core Center (for acquisition of ca. 58,000 subsamples) and two scientific meetings were conducted in order to proceed with the analyses of sediment core samples and discussions. Here, pertinent results, primarily from IODP Expedition 323, are consolidated as a single special volume of Deep-Sea Research Part II Topical Studies in Oceanography.

  17. Stability of the Laurentide Ice Sheet Since the Middle Pleistocene

    NASA Astrophysics Data System (ADS)

    Miller, G. H.; Briner, J. P.; Lifton, N. A.; Anderson, R.; Finkel, R. C.

    2006-12-01

    The final Pleistocene remnants of the Laurentide Ice Sheet persisted on Baffin Island, Arctic Canada, only disappearing in the middle Holocene. The central plateau of Baffin Island is thought to have been the initial locus of ice-sheet growth during ice-age cycles. Discordant cosmogenic nuclide exposure ages derived from 10Be, 26Al, and 14C extracted from quartz in rocky summits along the eastern rim of the central Baffin Island plateau provide constraints on the timing and duration of intervals when the plateau was free of Laurentide ice. In situ 14C records the duration of exposure during the present interglaciation; any previously acquired 14C decayed below detection limits beneath thick Laurentide ice during the last glaciation. The in situ 14C exposure ages for three samples adjacent to an extant cold-based ice cap 1200 m asl suggest only 8 to 10 kyr of ice-free conditions during the Holocene. Disequilibrium between 10Be and 26Al concentrations in the same samples can be explained by brief (ca. 10 kyr) intervals of exposure during peak interglaciations (MIS 11, 9, 7, 5e, and 1), separated by long (ca. 50 to 100 kyr) intervals of complete shielding beneath a thick, cold- based Laurentide Ice Sheet. These data suggest that once the ice sheet formed following peak interglaciations, at least its northeastern core remained intact through the entire glacial cycle, with ice thickness of ca. 2 km over Foxe Basin. Anything less than this configuration would result in exposure of the high summits from which are samples were derived. The volume of ice required to maintain this core of the Laurentide Ice Sheet represents at least 10 m of sea level.

  18. Ecological consequences of early Late Pleistocene megadroughts in tropical Africa

    PubMed Central

    Cohen, Andrew S.; Stone, Jeffery R.; Beuning, Kristina R. M.; Park, Lisa E.; Reinthal, Peter N.; Dettman, David; Scholz, Christopher A.; Johnson, Thomas C.; King, John W.; Talbot, Michael R.; Brown, Erik T.; Ivory, Sarah J.

    2007-01-01

    Extremely arid conditions in tropical Africa occurred in several discrete episodes between 135 and 90 ka, as demonstrated by lake core and seismic records from multiple basins [Scholz CA, Johnson TC, Cohen AS, King JW, Peck J, Overpeck JT, Talbot MR, Brown ET, Kalindekafe L, Amoako PYO, et al. (2007) Proc Natl Acad Sci USA 104:16416–16421]. This resulted in extraordinarily low lake levels, even in Africa's deepest lakes. On the basis of well dated paleoecological records from Lake Malawi, which reflect both local and regional conditions, we show that this aridity had severe consequences for terrestrial and aquatic ecosystems. During the most arid phase, there was extremely low pollen production and limited charred-particle deposition, indicating insufficient vegetation to maintain substantial fires, and the Lake Malawi watershed experienced cool, semidesert conditions (<400 mm/yr precipitation). Fossil and sedimentological data show that Lake Malawi itself, currently 706 m deep, was reduced to an ≈125 m deep saline, alkaline, well mixed lake. This episode of aridity was far more extreme than any experienced in the Afrotropics during the Last Glacial Maximum (≈35–15 ka). Aridity diminished after 95 ka, lake levels rose erratically, and salinity/alkalinity declined, reaching near-modern conditions after 60 ka. This record of lake levels and changing limnological conditions provides a framework for interpreting the evolution of the Lake Malawi fish and invertebrate species flocks. Moreover, this record, coupled with other regional records of early Late Pleistocene aridity, places new constraints on models of Afrotropical biogeographic refugia and early modern human population expansion into and out of tropical Africa. PMID:17925446

  19. Canyon Creek: A late Pleistocene vertebrate locality in interior Alaska

    USGS Publications Warehouse

    Weber, F.R.; Hamilton, T.D.; Hopkins, D.M.; Repenning, C.A.; Haas, H.

    1981-01-01

    The Canyon Creek vertebrate-fossil locality is an extensive road cut near Fairbanks that exposes sediments that range in age from early Wisconsin to late Holocene. Tanana River gravel at the base of the section evidently formed during the Delta Glaciation of the north-central Alaska Range. Younger layers and lenses of fluvial sand are interbedded with arkosic gravel from Canyon Creek that contains tephra as well as fossil bones of an interstadial fauna about 40,000 years old. Solifluction deposits containing ventifacts, wedge casts, and rodent burrows formed during a subsequent period of periglacial activity that took place during the maximum phase of Donnelly Glaciation about 25,000-17,000 years ago. Overlying sheets of eolian sand are separated by a 9500-year-old paleosol that may correlate with a phase of early Holocene spruce expansion through central Alaska. The Pleistocene fauna from Canyon Creek consists of rodents (indicated by burrows), Mammuthus primigenius (woolly mammoth), Equus lambei (Yukon wild ass), Camelops hesternus (western camel), Bison sp. cf. B. crassicornis (large-horned bison), Ovis sp. cf. O. dalli (mountain sheep), Canis sp. cf. C. lupus (wolf), Lepus sp. cf. L. othus or L. arcticus (tundra hare), and Rangifer sp. (caribou). This assemblage suggests an open landscape in which trees and tall shrubs were either absent or confined to sheltered and moist sites. Camelops evidently was present in eastern Beringia during the middle Wisconsin interstadial interval but may have disappeared during the following glacial episode. The stratigraphic section at Canyon Creek appears to demonstrate that the Delta Glaciation of the north-central Alaska Range is at least in part of early Wisconsin age and was separated from the succeeding Donnelly Glaciation by an interstadial rather than interglacial episode. ?? 1981.

  20. Glacioisostatic influences on Virginia's late Pleistocene coastal plain deposits

    NASA Astrophysics Data System (ADS)

    Scott, Timothy W.; Swift, Donald J. P.; Whittecar, G. Richard; Brook, George A.

    2010-03-01

    The late Pleistocene of Virginia's outer coastal plain consists of sediments dated to marine isotope stages (MIS) 5 and 3. Two members from the Tabb Formation south of the Chesapeake Bay in southeastern Virginia and two formations east of the bay on the southern Delmarva Peninsula were dated using optically stimulated luminescence (OSL). The stratigraphically older Butlers Bluff Member yielded OSL ages of 70 ka (62-78 ka) (MIS-5a), and the younger Poquoson Member and Wachapreague Formation, MIS-3 ages of approximately 43 ka (33-50 ka) and 42 ka (33-54 ka), respectively. These shoreface and near-shore geologic units reached maximum altitudes ranging from 3 to 12 m above present sea level, and were deposited when established glacial-eustatic sea-level curves suggest that sea levels were significantly lower than present by approximately 40 m. If these new ages and the sea-level curves are correct, there must have been regional uplift of more than 40 m, probably due to isostatic adjustments of forebulges peripheral to North American ice sheets when they were at their maxima during MIS-6 and MIS-2. If the late MIS-6 forebulge collapse continued throughout MIS-5 and MIS-4, we propose that regional land elevations may have been low enough for deposition to occur during the lower eustatic sea levels of MIS-3. During late MIS-3, the units experienced renewed uplift followed by subsidence to present-day elevations. If this paraglacial region is not yet in isostatic equilibrium and still requires further forebulge subsidence, this could explain the present-day altitude and age discrepancies associated with these relict marine deposits.

  1. Post-glacial population expansion of the Monterey Spanish mackerel Scomberomorus concolor in the Gulf of California.

    PubMed

    Domínguez-López, M; Díaz-Jaimes, P; Uribe-Alcocer, M; Quiñonez-Velázquez, C

    2015-03-01

    The level of genetic homogeneity and demographic history of the Monterey Spanish mackerel Scomberomorus concolor was assessed by analyses using sequences of the mitochondrial (mt)DNA-control region of samples from the two oceanographic regions of the Gulf of California in order to define the stock structure for this exploited vulnerable species. The data were consistent with a single homogeneous population and revealed the hallmark of fluctuations in population size; these fluctuations appear to have occurred during glacial events of the middle to late Pleistocene, which may in turn be related to the colonization and expansion of S. concolor populations in the gulf. PMID:25583211

  2. The intensification of northern component deepwater formation during the mid-Pleistocene climate transition

    NASA Astrophysics Data System (ADS)

    Poirier, Robert K.; Billups, Katharina

    2014-11-01

    We reconstruct mid-Pleistocene (marine isotope stages (MISs) 13-18) deepwater hydrography at Ocean Drilling Program Site 1063 (4583 m water depth, subtropical North Atlantic) using benthic foraminiferal stable isotope records. These new records complete an ~900 kyr long stratigraphy spanning MISs 8-29 (~250-1030 Ka) when combined with previously published records from Site 1063. The results indicate a change in the circulation regime of the abyssal subtropical North Atlantic during MIS 17. Prior to MIS 17, no significant glacial or interglacial δ13C gradients are evident between Site 1063 and the deep South Atlantic. After MIS 17, interglacial intervals at Site 1063 are characterized by δ13C values that consistently approach those recorded in the deep North Atlantic. Comparing Site 1063 δ13C values to 26 additional published records throughout the entire Atlantic basin supports the idea that this δ13C increase is unique to the deep North Atlantic. After MIS 17, the basin-wide influence of higher δ13C values suggests an increased relative flux of northern sourced bottom waters during interglacial periods. The timing of northern sourced water influence at Site 1063 is consistent with the timing of a shift in the orientation of the Arctic Front. Thus, this shift may signify a link between the northward penetration of relatively warm, saline surface waters into the Norwegian-Greenland Seas stimulating deep convection. Our findings fit well with the model of Imbrie et al. (1993) for the importance of the Nordic heat pump in establishing strong 100 kyr cyclicity in late Pleistocene glacial cycles.

  3. American mastodon extirpation in the Arctic and Subarctic predates human colonization and terminal Pleistocene climate change.

    PubMed

    Zazula, Grant D; MacPhee, Ross D E; Metcalfe, Jessica Z; Reyes, Alberto V; Brock, Fiona; Druckenmiller, Patrick S; Groves, Pamela; Harington, C Richard; Hodgins, Gregory W L; Kunz, Michael L; Longstaffe, Fred J; Mann, Daniel H; McDonald, H Gregory; Nalawade-Chavan, Shweta; Southon, John R

    2014-12-30

    Existing radiocarbon ((14)C) dates on American mastodon (Mammut americanum) fossils from eastern Beringia (Alaska and Yukon) have been interpreted as evidence they inhabited the Arctic and Subarctic during Pleistocene full-glacial times (∼ 18,000 (14)C years B.P.). However, this chronology is inconsistent with inferred habitat preferences of mastodons and correlative paleoecological evidence. To establish a last appearance date (LAD) for M. americanum regionally, we obtained 53 new (14)C dates on 36 fossils, including specimens with previously published dates. Using collagen ultrafiltration and single amino acid (hydroxyproline) methods, these specimens consistently date to beyond or near the ∼ 50,000 y B.P. limit of (14)C dating. Some erroneously "young" (14)C dates are due to contamination by exogenous carbon from natural sources and conservation treatments used in museums. We suggest mastodons inhabited the high latitudes only during warm intervals, particularly the Last Interglacial [Marine Isotope Stage (MIS) 5] when boreal forests existed regionally. Our (14)C dataset suggests that mastodons were extirpated from eastern Beringia during the MIS 4 glacial interval (∼ 75,000 y ago), following the ecological shift from boreal forest to steppe tundra. Mastodons thereafter became restricted to areas south of the continental ice sheets, where they suffered complete extinction ∼ 10,000 (14)C years B.P. Mastodons were already absent from eastern Beringia several tens of millennia before the first humans crossed the Bering Isthmus or the onset of climate changes during the terminal Pleistocene. Local extirpations of mastodons and other megafaunal populations in eastern Beringia were asynchrononous and independent of their final extinction south of the continental ice sheets. PMID:25453065

  4. American mastodon extirpation in the Arctic and Subarctic predates human colonization and terminal Pleistocene climate change

    PubMed Central

    Zazula, Grant D.; MacPhee, Ross D. E.; Metcalfe, Jessica Z.; Reyes, Alberto V.; Brock, Fiona; Druckenmiller, Patrick S.; Groves, Pamela; Harington, C. Richard; Hodgins, Gregory W. L.; Kunz, Michael L.; Longstaffe, Fred J.; Mann, Daniel H.; McDonald, H. Gregory; Nalawade-Chavan, Shweta; Southon, John R.

    2014-01-01

    Existing radiocarbon (14C) dates on American mastodon (Mammut americanum) fossils from eastern Beringia (Alaska and Yukon) have been interpreted as evidence they inhabited the Arctic and Subarctic during Pleistocene full-glacial times (∼18,000 14C years B.P.). However, this chronology is inconsistent with inferred habitat preferences of mastodons and correlative paleoecological evidence. To establish a last appearance date (LAD) for M. americanum regionally, we obtained 53 new 14C dates on 36 fossils, including specimens with previously published dates. Using collagen ultrafiltration and single amino acid (hydroxyproline) methods, these specimens consistently date to beyond or near the ∼50,000 y B.P. limit of 14C dating. Some erroneously “young” 14C dates are due to contamination by exogenous carbon from natural sources and conservation treatments used in museums. We suggest mastodons inhabited the high latitudes only during warm intervals, particularly the Last Interglacial [Marine Isotope Stage (MIS) 5] when boreal forests existed regionally. Our 14C dataset suggests that mastodons were extirpated from eastern Beringia during the MIS 4 glacial interval (∼75,000 y ago), following the ecological shift from boreal forest to steppe tundra. Mastodons thereafter became restricted to areas south of the continental ice sheets, where they suffered complete extinction ∼10,000 14C years B.P. Mastodons were already absent from eastern Beringia several tens of millennia before the first humans crossed the Bering Isthmus or the onset of climate changes during the terminal Pleistocene. Local extirpations of mastodons and other megafaunal populations in eastern Beringia were asynchrononous and independent of their final extinction south of the continental ice sheets. PMID:25453065

  5. Paleomagnetism of Early and Middle Pleistocene Cataclysmic Flood Deposits in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Pluhar, C. J.; Burns, S. F.; Carpenter, B.; Yazzie, K.; Melton, D.

    2014-12-01

    Evidence is growing that cataclysmic floods, such as jokulhlaups, have scoured parts of the Pacific Northwest not only during the last glacial maximum (such as the Missoula Floods), but also during earlier parts of the Quaternary. These floods left large erosional features in the "Channeled Scablands" such as colossal flood gravel bars, as well as sediments deposited in backflooded tributary valleys. Evidence for pre-last-glacial cataclysmic floods in the region includes very-well-developed paleosols capping flood deposits, middle Pleistocene U-series disequilibrium dates on some flood sediments, and reversed-paleomagnetic-polarity flood sediments, indicating early Pleistocene age. We document additional evidence for ancient cataclysmic floods at two site, near The Dalles, OR and Othello, WA. The Dalles site consists of 8 flood sediment - capping Stage I to III calcic paleosol couplets, with the third unit from the top containing tephra of the Dibekulewe volcanic ash (0.5 Ma). The sandy nature of the proposed flood sediments is too coarse-grained to attribute to aeolian transport. The Othello site consists of 2 meters of caliche over 40 cm of ancient flood sands and fine gravels We collected paleomagnetic samples from both sites, conducting low temperature cycling (LT), alternating field (AF), and thermal demagnetization experiments on them. These experiments indicate that most samples contain: 1) a large magnetization component in multi-domain magnetite (demagnetized by LT), 2) a large component in goethite (demagnetized by 150°C), and 3) a primary magnetization in pseudo-single and single domain magnetite. The Dalles site spans the Matuyama-Brunhes reversal (0.78 Ma). These and previously published data indicate that one or more mechanisms for generating cataclysmic floods have existed in the Pacific Northwest for much of the Quaternary.

  6. Programmable Oscillator

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Lee, Clement G.; Nguyen, Huy

    2011-01-01

    A programmable oscillator is a frequency synthesizer with an output phase that tracks an arbitrary function. An offset, phase-locked loop circuit is used in combination with an error control feedback loop to precisely control the output phase of the oscillator. To down-convert the