Science.gov

Sample records for pleistocene glacial oscillations

  1. Timing of Pleistocene glacial oscillations recorded in the Cantabrian Mountains (North Iberia): correlation of glacial and periglacial sequences from both sides of the range using a multiple-dating method approach

    NASA Astrophysics Data System (ADS)

    Rodriguez-Rodriguez, Laura; Jiménez-Sánchez, Montserrat; José Domínguez-Cuesta, María; Rinterknecht, Vincent; Pallàs, Raimón; Bourlès, Didier

    2015-04-01

    The Cantabrian Mountains is a coastal mountain range up to 2648 m altitude located at 43oN latitude and directly influenced by the North Atlantic climate oscillations. Although nowadays it is fully deglaciatied, glacial sediments and landforms are clearly preserved elsewhere above 1600 m. Particularly, glacial evidence in the central Cantabrian Mountains suggests the formation of an icefield in the headwaters of the Porma and Esla catchments drained by glaciers up to 1-6 km in length in the northern slope and 19 km-long in the southern slope, with their fronts at minimum altitudes of 900 and 1150 m asl respectively (Rodríguez-Rodríguez et al., 2014). Numerical ages obtained from the base of the Brañagallones ice-dammed deposit and one of the lateral moraines that are damming this deposit suggest that the local glacial maximum was prior to ca 33.5 cal ka BP in the Monasterio Valley (see data compiled in Rodriguez-Rodríguez et al., in press). Currently, our research is focused on developing a full chronology of glacial oscillations in both sides of the range and investigating their paleoclimate significance and relationship with glacial asymmetry through the combined use of surface exposure, OSL and radiocarbon dating methods. In this work, we present 47 10Be surface exposure ages obtained from boulders in moraines, glacial erratic boulders and rock glaciers in the Monasterio and Porma valleys. The glacial record of these valleys was chosen because of: (i) its good preservation state; (ii) the occurrence of a quartz-rich sandstone formation; and (iii) the availability of previous 14C and OSL numerical ages. Sampling sites were selected considering the relative age of glacial stages to cover as complete as possible the history of Pleistocene glaciations in the studied area, from the glacial maximum stage to the prevalence of periglacial conditions. Preliminary results suggest the occurrence of several glacial advances of similar extent at ca 150 - 50 ka followed by a deglaciation sequence that changed gradually to periglacial conditions during the Lateglacial (16 - 12 ka). Radiocarbon and OSL sampling campaigns have been recently developed to complement and cross-check these preliminary results, which are compared with other paleoclimate proxies in this contribution. Rodríguez-Rodríguez, L., Jiménez-Sánchez, M., Domínguez-Cuesta, M.J., 2014. Geophysical Research Abstracts 16, EGU2014-292. Rodríguez-Rodríguez, L., Jiménez-Sánchez, M., Domínguez-Cuesta, M.J., Aranburu, A., in press. Quaternary International, http://dx.doi.org/10.1016/j.quaint.2014.06.007 Research funded by MINECO-PGE-FEDER through the project CANDELA (MINECO-CGL2012-31938). Laura Rodríguez-Rodríguez developed her research granted by the Spanish FPU Program (Ministerio de Educación Cultura y Deporte).

  2. Pleistocene glacial evolution of Fuentes Carrionas (Cantabrian Range, NW Spain)

    NASA Astrophysics Data System (ADS)

    Pellitero, Ramon

    2014-05-01

    Fuentes Carrionas is a massif situated at the N of Spain, between Castilla y Leon and Cantabria regions. It is the second highest mountain massif of the Cantabrian Range after Picos de Europa, with peaks over 2500 m.a.s.l. and valleys well over 1000 m.a.s.l. Fuentes Carrionas was glaciated during Quaternary, and even during the Holocene and as far as Little Ice Age the presence of glaciers, or at least permafrost is controversial. Results from glacial geomorphology analysis of Fuentes Carrionas Massif are presented. Based on the interpretation of glacial landforms, glacial evolution since the Last Glacial Maximum until Pleistocene deglaciation is described. Four different glacial equilibrium phases are identified, the last one divided into two pulsations. Deglaciation process took place between 36 ka BP and 11 ka BP. Local Last Glacial Maximum is dated back to 36-38 ka. BP, therefore earlier than LGM. Glaciers reached 15 km. long and occupied valleys down to 1250 m.a.s.l. during this phase. By European LGM (20-18 ka.BP) glaciers had substantially retreated to fronts about 1700 m.a.s.l. A final stage with two marked pulsations shows only small glaciers located at cirques above 2000 m.a.s.l. and, finally, only small cirque glaciers at North and Northeast orientation above 2200 m.a.s.l. Both these phases have been correlated to Oldest and Younger Dryas, although no dates have been done yet. A palaeoenvironmental reconstruction is proposed, based on ELA (Equilibrium Line Altitude) rise. ELA has been calculated with the AAR method and 0.67 ratio. This reconstruction shows that temperatures ranged between 9°C and 10°C lower than present ones at the end of Pleistocene, depending on a precipitations variation between 30% higher and 20% lower than current ones. Further research will focus on these retreat phases, especially on Younger Dryas identification and reconstruction for this site and the rest of Cantabrian Range.

  3. Intensified deep Pacific inflow and ventilation in Pleistocene glacial times.

    PubMed

    Hall, I R; McCave, I N; Shackleton, N J; Weedon, G P; Harris, S E

    2001-08-23

    The production of cold, deep waters in the Southern Ocean is an important factor in the Earth's heat budget. The supply of deep water to the Pacific Ocean is presently dominated by a single source, the deep western boundary current east of New Zealand. Here we use sediment records deposited under the influence of this deep western boundary current to reconstruct deep-water properties and speed changes during the Pleistocene epoch. In physical and isotope proxies we find evidence for intensified deep Pacific Ocean inflow and ventilation during the glacial periods of the past 1.2 million years. The changes in throughflow may be directly related to an increased production of Antarctic Bottom Water during glacial times. Possible causes for such an increased bottom-water production include increasing wind strengths in the Southern Ocean or an increase in annual sea-ice formation, leaving dense water after brine rejection and thereby enhancing deep convection. We infer also that the global thermohaline circulation was perturbed significantly during the mid-Pleistocene climate transition between 0.86 and 0.45 million years ago. PMID:11518963

  4. A conceptual model for glacial cycles and the middle Pleistocene transition

    NASA Astrophysics Data System (ADS)

    Daruka, István; Ditlevsen, Peter D.

    2016-01-01

    Milankovitch's astronomical theory of glacial cycles, attributing ice age climate oscillations to orbital changes in Northern-Hemisphere insolation, is challenged by the paleoclimatic record. The climatic response to the variations in insolation is far from trivial. In general the glacial cycles are highly asymmetric in time, with slow cooling from the interglacials to the glacials (inceptions) and very rapid warming from the glacials to the interglacials (terminations). We shall refer to this fast-slow dynamics as the "saw-tooth" shape of the paleoclimatic record. This is non-linearly related to the time-symmetric variations in the orbital forcing. However, the most pronounced challenge to the Milankovitch theory is the middle Pleistocene transition (MPT) occurring about one million years ago. During that event, the prevailing 41 kyr glacial cycles, corresponding to the almost harmonic obliquity cycle were replaced by longer saw-tooth shaped cycles with a time-scale around 100 kyr. The MPT must have been driven by internal changes in climate response, since it does not correspond to any apparent changes in the orbital forcing. In order to identify possible mechanisms causing the observed changes in glacial dynamics, it is relevant to study simplified models with the capability of generating temporal behavior similar to the observed records. We present a simple oscillator type model approach, with two variables, a temperature anomaly and a climatic memory term. The generalization of the ice albedo feedback is included in terms of an effective multiplicative coupling between this latter climatic memory term (representing the internal degrees of freedom) and the external drive. The simple model reproduces the temporal asymmetry of the late Pleistocene glacial cycles and suggests that the MPT can be explained as a regime shift, aided by climatic noise, from a period 1 frequency locking to the obliquity cycle to a period 2-3 frequency locking to the same obliquity cycle. The change in dynamics has been suggested to be a result of a slow gradual decrease in atmospheric greenhouse gas concentration. The critical dependence on initial conditions in the (non-autonomous) glacial dynamics raises fundamental questions about climate predictability.

  5. "Pleistocene Park" - A Glacial Ecosystem in a Warming World

    NASA Astrophysics Data System (ADS)

    Zimov, N.; Zimov, S. A.

    2011-12-01

    Most people if asked what association they have to the phrase - ice age, will answer - "Mammoth". But mammoths are not only big wooly elephants which went extinct in the beginning of Holocene. They were also part of a great ecosystem, the Northern Steppe or Mammoth Ecosystem, which was the world's largest ecosystem for hundreds thousand of years. This ecosystem, with extremely high rates of biocycling, could maintain animal densities which can be hardly found anywhere in the modern world. Northern steppe played an important role in shaping the glacial climate of the planet. High albedo grasslands reflected a much bigger portion of sun heat back to the atmosphere. Cold soils and permafrost served as sinks of carbon, helping to keep greenhouse gas concentration in the atmosphere at low levels. In the beginning of Holocene, simultaneously with wave of human expansion, an extinction wave took place. Tens of megafauna species became extinct at that time worldwide, while ones that resisted the extinction substantially dropped in numbers. The Northern Steppe ecosystem became imbalanced. Without large numbers of herbivores grazing and trampling the pasture, trees, shrubs and moss invaded grasslands. Within just a few hundreds years the mammoth ecosystem was gone, replaced by much lower productivity ecosystems. Already 14 thousand year ago, by simply increasing hunting pressure, humans managed to dramatically change Earth's appearance. We propose that by artificially maintaining a high animal density and diversity on a limited territory for extended period of time, it will be possible to reverse the shift, reestablishing the productive Northern Steppe ecosystem. Moss, shrubs and tree sprouts are not able to resist grazing pressure so they will be quickly replaced by grasses and herbs. Animals digesting all aboveground biomass would accelerate nutrition cycling and consequently increase bioproductivity. Higher bioproductivity would increase evapotranspiration, keeping soils dry and runoff low. This would further increase nutrient availability in the soil. Water limitation would force roots grow deeper to cold soil horizons where these roots (carbon) will be sequestered for a long period of time. After high productivity and high diversity of animals in the ecosystem is reached, this ecosystem will once again be able to compete and to expand. To test this hypothesis, we have started the experiment named "Pleistocene Park". For over 15 years we have brought different herbivore species to the fenced area in the Kolyma river lowland, keep them at high density and see the ecosystem transformation. Now Pleistocene Park is size of 20 km2 and home for 7 big herbivores species. It is a small version of how the Mammoth Steppe ecosystem looked in the past and may look in the future. Pleistocene Park is a place where scientists can conduct in situ research and see how restoration of the ice age ecosystem may help mitigate future climatic changes. Arctic is a weakly populated region with no possibilities for agriculture. Modern civilization treats bigger part of the Arctic as wastelands. So why don't turn this "wasteland" into something that can strongly benefit our civilization in the future?

  6. Similar millennial climate variability on the Iberian margin during two early Pleistocene glacials and MIS 3

    NASA Astrophysics Data System (ADS)

    Birner, B.; Hodell, D. A.; Tzedakis, P. C.; Skinner, L. C.

    2016-01-01

    Although millennial-scale climate variability (<10 ka) has been well studied during the last glacial cycles, little is known about this important aspect of climate in the early Pleistocene, prior to the Middle Pleistocene Transition. Here we present an early Pleistocene climate record at centennial resolution for two representative glacials (marine isotope stages (MIS) 37-41 from approximately 1235 to 1320 ka) during the "41 ka world" at Integrated Ocean Drilling Program Site U1385 (the "Shackleton Site") on the southwest Iberian margin. Millennial-scale climate variability was suppressed during interglacial periods (MIS 37, MIS 39, and MIS 41) and activated during glacial inceptions when benthic δ18O exceeded 3.2‰. Millennial variability during glacials MIS 38 and MIS 40 closely resembled Dansgaard-Oeschger events from the last glacial (MIS 3) in amplitude, shape, and pacing. The phasing of oxygen and carbon isotope variability is consistent with an active oceanic thermal bipolar see-saw between the Northern and Southern Hemispheres during most of the prominent stadials. Surface cooling was associated with systematic decreases in benthic carbon isotopes, indicating concomitant changes in the meridional overturning circulation. A comparison to other North Atlantic records of ice rafting during the early Pleistocene suggests that freshwater forcing, as proposed for the late Pleistocene, was involved in triggering or amplifying perturbations of the North Atlantic circulation that elicited a bipolar see-saw response. Our findings support similarities in the operation of the climate system occurring on millennial time scales before and after the Middle Pleistocene Transition despite the increases in global ice volume and duration of the glacial cycles.

  7. Multiple instabilities and modes of glacial rhythmicity in the Plio-Pleistocene: A general theory of late Cenozoic climatic change

    SciTech Connect

    Saltzman, B.; Verbitsky, M.Ya.

    1993-10-01

    Several distinct modes of glacial oscillation have existed during the past few million years, ranging from low-amplitude, high-frequency oscillations in the early Pliocene, through relatively high amplitude, predominantly near 40 ky period, oscillations in the late Pliocene and early Pleistocene, to the major near 100 ky period oscillations of the late Pleistocene. In addition to other plausible mechanisms, this study illustrates another possible contributor based on the hypothesis that the slow-response climatic system is bistable and that two kinds of internal instability may be operative along with externally imposed forcing due to earth-orbital (Milankovitch) radiation changes and slow, tectonically-induced changes in atmospheric carbon dioxide. Within the framework of a dynamical model containing the possibility for these two instabilities, as well as for stable modes, the study shows (1) how Milankovitch radiative changes or stochastic forcing influencing ice sheets can induce aperiodic (chaotic) transitions between the possible stable and unstable modes, and (2) how progressive, long-term, tectonically-induced, changes in carbon dioxide, acting in concert with earth-orbital radiative variations in high Northern Hemisphere latitudes, can force systematic transitions between the modes. This is a minimum dynamical model of the late Cenozoic climatic changes, containing the main physical factors determining these changes: ice mass, bedrock depression, atmospheric carbon dioxide concentration, deep ocean thermohaline state, Milankovitch radiation forcing, and slow tectonically-induced carbon dioxide forcing. 34 refs., 13 figs., 2 tabs.

  8. Pleistocene glacial cycle effects on the phylogeography of the Chinese endemic bat species, Myotis davidii.

    TOXLINE Toxicology Bibliographic Information

    You Y; Sun K; Xu L; Wang L; Jiang T; Liu S; Lu G; Berquist SW; Feng J

    2010-01-01

    BACKGROUND: Global climatic oscillations, glaciation cycles and the unique geographic topology of China have profoundly influenced species population distributions. In most species, contemporary distributions of populations cannot be fully understood, except in a historical context. Complex patterns of Pleistocene glaciations, as well as other physiographic changes have influenced the distribution of bat species in China. Until this study, there had been no phylogeographical research on Myotis davidii, an endemic Chinese bat. We used a combination of nuclear and mitochondrial DNA markers to investigate genetic diversity, population structure, and the demographic history of M. davidii. In particular, we compared patterns of genetic variation to glacial oscillations, topography, and environmental variation during the Pleistocene in an effort to explain current distributions in light of these historical processes.RESULTS: M. davidii comprises three lineages (MEP, SWP and SH) based on the results of molecular variance analysis (AMOVA) and phylogenetic analyses. The results of a STRUCTURE analysis reveal multi-hierarchical population structure in M. davidii. Nuclear and mitochondrial genetic markers reveal different levels of gene flow among populations. In the case of mtDNA, populations adhere to an isolation-by-distance model, whereas the individual assignment test reveals considerable gene flow between populations. MDIV analysis indicate that the split of the MEP and SWP/SH lineages, and from the SWP and SH lineages were at 201 ka BP and 158 ka BP, respectively. The results of a mismatch distribution analysis and neutrality tests indicate a population expansion event at 79.17 ka BP and 69.12 ka BP in MEP and SWP, respectively.CONCLUSIONS: The complex demographic history, discontinuous extant distribution of haplotypes, and multiple-hierarchy population structure of M. davidii appear associated with climatic oscillations, topography and eco-environmental variation of China. Additionally, the three regions are genetically differentiated from one another in the entire sample set. The degree of genetic differentiation, based on the analysis of mtDNA and nDNA, suggests a male-mediated gene flow among populations. Refuges were in the MEP, SH and the lower elevations of SWP regions. This study also provides insights for conservation management units (MEP, SWP and SH).

  9. Pleistocene glacial cycle effects on the phylogeography of the Chinese endemic bat species, Myotis davidii

    PubMed Central

    2010-01-01

    Background Global climatic oscillations, glaciation cycles and the unique geographic topology of China have profoundly influenced species population distributions. In most species, contemporary distributions of populations cannot be fully understood, except in a historical context. Complex patterns of Pleistocene glaciations, as well as other physiographic changes have influenced the distribution of bat species in China. Until this study, there had been no phylogeographical research on Myotis davidii, an endemic Chinese bat. We used a combination of nuclear and mitochondrial DNA markers to investigate genetic diversity, population structure, and the demographic history of M. davidii. In particular, we compared patterns of genetic variation to glacial oscillations, topography, and environmental variation during the Pleistocene in an effort to explain current distributions in light of these historical processes. Results M. davidii comprises three lineages (MEP, SWP and SH) based on the results of molecular variance analysis (AMOVA) and phylogenetic analyses. The results of a STRUCTURE analysis reveal multi-hierarchical population structure in M. davidii. Nuclear and mitochondrial genetic markers reveal different levels of gene flow among populations. In the case of mtDNA, populations adhere to an isolation-by-distance model, whereas the individual assignment test reveals considerable gene flow between populations. MDIV analysis indicate that the split of the MEP and SWP/SH lineages, and from the SWP and SH lineages were at 201 ka BP and 158 ka BP, respectively. The results of a mismatch distribution analysis and neutrality tests indicate a population expansion event at 79.17 ka BP and 69.12 ka BP in MEP and SWP, respectively. Conclusions The complex demographic history, discontinuous extant distribution of haplotypes, and multiple-hierarchy population structure of M. davidii appear associated with climatic oscillations, topography and eco-environmental variation of China. Additionally, the three regions are genetically differentiated from one another in the entire sample set. The degree of genetic differentiation, based on the analysis of mtDNA and nDNA, suggests a male-mediated gene flow among populations. Refuges were in the MEP, SH and the lower elevations of SWP regions. This study also provides insights for conservation management units (MEP, SWP and SH). PMID:20618977

  10. Case for periodic, colossal jokulhlaups from Pleistocene glacial Lake Missoula.

    USGS Publications Warehouse

    Waitt, R.B., Jr.

    1985-01-01

    Lake Missoula (2500 km3) remained sealed as long as any segment of the glacial dam remained grounded; when the lake rose to a critical level c.600 m in depth, the glacier bed at the seal became buoyant, initiating underflow from the lake. Subglacial tunnels then grew exponentially, leading to catastrophic discharge. Calculations of the water budget for the lake basin (including input from the Cordilleran ice sheet) suggest that the lake filled every three to seven decades. -from Author

  11. Pleistocene sea-surface temperature evolution: Early cooling, delayed glacial intensification, and implications for the mid-Pleistocene climate transition

    NASA Astrophysics Data System (ADS)

    McClymont, Erin L.; Sosdian, Sindia M.; Rosell-Mel, Antoni; Rosenthal, Yair

    2013-08-01

    The mid-Pleistocene climate transition (MPT) is defined by the emergence of high amplitude, quasi-100 ka glacial-interglacial cycles from a prior regime of more subtle 41 ka cycles. This change in periodicity and amplitude cannot be explained by a change in 'external' astronomical forcing. Here, we review and integrate published records of sea-surface temperatures (SSTs) to assess whether a common global expression of the MPT in the surface ocean can be recognized, and examine our findings in light of mechanisms proposed to explain climate system reorganization across the MPT. We show that glacial-interglacial variability in SSTs is superimposed upon a longer-term cooling trend in oceanographic systems spanning the low- to high-latitudes. Regional variability exists in the timing of the onset and magnitude of cooling but, in most cases, a long-term cooling trend begins or intensifies from ~ 1.2 Ma (Marine Isotope Stage, MIS, 35-34). The SST cooling accompanies a long-term trend towards higher global ice volume as recorded in benthic foraminifera ?18O, but predates a step-like increase in ?18O at ~ 0.9 Ma (MIS 24-22) that is argued to reflect expansion of continental ice-sheets. The strongest expression of Pleistocene cooling is found during glacial stages, whereas minor or negligible trends in interglacial temperatures are identified. However, pronounced cooling during both glacial and interglacial maxima is evident at 0.9 Ma. Alongside the long-term SST cooling trends, quasi-100 ka cycles begin to emerge in both the SST and ?18O records at 1.2 Ma, and become dominant with the expansion of the ice-sheets at 0.9 Ma. We show that the intensified glacial-stage cooling is accompanied by evolving pCO2, abyssal ocean ventilation, atmospheric circulation and/or dust inputs to the Southern Ocean. These changes in diverse environmental parameters suggest that glacial climate boundary conditions evolved across the MPT. In turn, these modified boundary conditions may have altered climate sensitivity to orbital forcing by placing pre-existing ice-sheets closer to some threshold of climate-ice sheet response.

  12. Late-glacial pollen, macrofossils and fish remains in northeastern U.S.A. — The Younger Dryas oscillation. A contribution to the 'North Atlantic seaboard programme' of IGCP-253, 'Termination of the Pleistocene'

    NASA Astrophysics Data System (ADS)

    Peteet, D. M.; Daniels, R. A.; Heusser, L. E.; Vogel, J. S.; Southon, J. R.; Nelson, D. E.

    The late-glacial environmental histories of Allamuchy Pond, New Jersey and Linsley Pond, Connecticut are reconstructed from pollen, macrofossil and fish scale remains. Accelerator mass spectrometry (AMS) 14C dating of seeds and needles indicates that the first organic deposition, evidenced by fossil Picea (spruce) needles, occurred approximately 12,400 BP. A major regional warming began in the northeastern United States at this time, correlative with the Bølling/Allerød warming of Europe and Greenland. The increase in Quercus (oak) pollen and presence of Pinus strobus (white pine) needles demonstrates the magnitude of warming reached at about 11,000 BP. The subsequent decline of thermophilous species and increase in boreal Picea, Abies (fir), Larix (larch), Betula papyrifera (paper birch) and Alnus (alder) from 10,800-10,000 BP was a regional vegetational reversal. Thus we find a North American expression of the Younger Dryas with a mean annual temperature depression of 3-4° C. The subsequent classical southern New England pine pollen zone 'B' and Pinus strobus macrofossils signalled a return to warmer conditions at approximately 10,000 BP, regionally, within approximately 50-100 years. A large increase in Quercus follows. This study is unique in documenting a continuous late-glacial record of fish remains from Allamuchy Pond, New Jersey sediments, indicating that members of the families Centrarchidae (sunfish), Salmonidae (trout), Percidae (perch) and Cyprinidae (minnow) were regionally present.

  13. Paleoclimatic significance of Middle Pleistocene glacial deposits in the Kotzebue Sound region, northwest coastal Alaska

    SciTech Connect

    Roof, S.R.; Brigham-Grette, J. )

    1992-01-01

    During Middle Pleistocene time, glaciers extended from the western Brooks Range in NW Alaska to the coast at Kotzebue Sound, forming Baldwin Peninsula, a 120 km-long terminal moraine. Marine, glacigenic, and fluvial facies exposed along coastal bluffs surrounding Kotzebue Sound and Hotham Inlet indicate that at least the initial stages of the glacial advance occurred while sea level was high enough to cover the shallow Bering Shelf. Although it is presently uncertain if the ice actually reached tidewater before extensive middle-latitude ice-sheet formation, the marine and glacigenic facies clearly indicate that this advance must have occurred significantly out-of-phase with lower latitude glaciation. The authors believe an ice-free Bering Sea provided the moisture for glacier growth during the waning phases of a global interglacial climate. Although the magnitude of the Baldwin Peninsula advance was large compared to late Pleistocene advances, the timing with respect to sea level is consistent with observations by Miller and de Vernal that late Pleistocene polar glaciations also occurred near the end of interglacial periods, when global sea level was high, high-latitude oceans were relatively warm, and summer insolation was decreasing. An important implication of this out-of-phase glaciation hypothesis is that the critical transition point between climate states may be earlier in the interglacial-glacial cycle than previously thought. Because it appears that climate change is initiated in polar regions while the rest of Earth is experiencing an interglacial climate, many of their climate models must be revised. The glacial record at Baldwin Peninsula provides an opportunity to test, revise, and perhaps extend this out-of-phase glaciation hypothesis to the middle Pleistocene interval.

  14. Late Pleistocene oscillations of Lake Owens, eastern California

    SciTech Connect

    Orme, A.J. . Dept. of Geography); Orme, A.R. . Dept. of Geography)

    1993-04-01

    Just before diversion of the Owens River drainage to Los Angeles in 1912--13, Owens Lake had a maximum depth of 14m and covered 290 km[sup 2] at a water-surface elevation of 1,095m. Indeed throughout most of Holocene time, the lake formed the sump for the Owens River drainage, its level fluctuating in response to variable inflow and evaporation. In late Pleistocene time, however, Lake Owens' spilled south towards Lake Searles' on reaching an elevation of 1,145m, at which level the lake was 64m deep and covered 694 km[sup 2]. Aided by radiometric dating, stratigraphic and sedimentological analyses of beach ridges and associated deposits around its northeast margin reveal complex oscillations of Lake Owens between 13,000 and 9,000 years B.P.. Following an earlier high stand, lake level fell until around 13,000 B.P. it rose again to at least 1138m, probably linked to late Wisconsinan glacier melt in the Sierra Nevada. Across the Pleistocene/Holocene transition, lake level fell to around 1100m and then rose to about 1,120m around 9,600 B.P., before falling away during Holocene time. This pattern is consistent with fluctuations in glacier budgets and meltwater regimes, and with late Pleistocene-early Holocene climatic oscillations postulated elsewhere in the region. Correlation with lake-level fluctuations observed at other localities around Owens Lake is complicated by tectonism, but the above sequence invites comparison with the detailed record obtained from Searles Lake farther south.

  15. Glacially-influenced late Pleistocene stratigraphy of a passive margin: New Jersey's Record of the North American ice sheet

    USGS Publications Warehouse

    Carey, J.S.; Sheridan, R.E.; Ashley, G.M.; Uptegrove, J.

    2005-01-01

    Glacial isostasy and the sediment supply changes associated with the waxing and waning of ice sheets have dramatic effects on the stratigraphy of adjacent continental shelves. In ancient stratigraphic records, the glacial influences on such deposits could be difficult to recognize because of the removal of coeval terrestrial glacial deposits by erosion. This study illustrates the effects of the Laurentide Ice Sheet on a basin near its maximum limit, the New Jersey continental shelf. Analysis of 1600 km of Geopulse???, Uniboom???, Minisparker??? and airgun profiles reveals four depositional sequences that have a maximum thickness of ???75 m near the shelf edge. Sequences I and IV correspond to the major glacial-interglacial sea level changes at Marine Isotope Chron (MIC) 6/5e and 2/1, whereas sequences II and III reflect smaller-scale sea-level fluctuations during chrons 4/3c and 3b/3a, respectively. Sequences I and IV are characterized by relatively thick low stand to early transgressive deposits near the shelf edge formed during times of increased sediment supply, but are thin and discontinuous across much of the shelf. Reflection horizons in these units deepen northward in the northern half of the study area due to collapse of a peripheral bulge that formed at the margin of the Laurentide Ice Sheet. The Hudson River moved from a more southerly drainage pattern to the modern Hudson Shelf Valley position, possibly under the influence of the advancing peripheral bulge. Sequences II and III are largely preserved within a broad mid-shelf swale likely created by the migration of an ancestral Hudson River, and their thickness implies much higher sedimentation rates during chrons 4 and 3 than seen today. If the terrestrial glacial record was eroded, the increased rates of sedimentation during the Pleistocene, dominance of sediments derived from northern New England, and northward tilting of strata could be interpreted as a result of uplift of a northern source area. The unusually high frequency of the relative sea-level oscillations (20 kyr), the concentration of sediment supply during low stands and early transgressions, and the correspondence of sea-level change with climatic change could be used to infer their relationship to a nearby ice sheet. Geologists studying deposits formed during times of widespread continental glaciation should consider possible glacial influences on the stratigraphy of mid-latitude deposits, even in the absence of sediments directly deposited by ice. ?? 2005 Elsevier B.V. All rights reserved.

  16. Early Pleistocene Glacial Lake Lesley, West Branch Susquehanna River valley, central Pennsylvania

    NASA Astrophysics Data System (ADS)

    Ramage, Joan M.; Gardner, Thomas W.; Sasowsky, Ira D.

    1998-02-01

    Laurentide glaciers extended into north central Pennsylvania repeatedly during at least the last 2 million years. Early Pleistocene glaciation extended farther south into central Pennsylvania than any subsequent glaciation, reaching the West Branch Susquehanna River (WBSR) valley. Early Pleistocene ice dammed the northeast-flowing West Branch Susquehanna River at Williamsport, forming Glacial Lake Lesley, a 100-km-long proglacial lake. In this paper, we present compelling evidence for the lake and its age. Maximum lake volume ( 100 km 3) was controlled by the elevation of the lowest drainage divide, 340 m above sea level at Dix, Pennsylvania. Stratified deposits at McElhattan and Linden are used to reconstruct depositional environments in Glacial Lake Lesley. A sedimentary section 40 m thick at McElhattan fines upward from crossbedded sand to fine, wavy to horizontally laminated clay, consistent with lake deepening and increasing distance from the sediment source with time. At Linden, isolated cobbles, interpreted as dropstones, locally deform glacio-lacustrine sediment. We use paleomagnetism as an age correlation tool in the WBSR valley to correlate contemporaneous glaciofluvial and proglacial lacustrine sediments. Reversed remanent polarity in finely-laminated lacustrine clay and silt at McElhattan ( I = 20.4, D = 146.7, ?95 = 17.7) and in interbedded silt and sand at Linden ( I = 55.3, D = 175.2, ?95 = 74.6) probably corresponds to the latter part of the Matuyama Reversed Polarity Chron, indicating an age between 770 and 970 ka. At McElhattan, a diamicton deformed the finely laminated silt and clay by loading and partial fluidization during or soon after lake drainage. As a result, the deformed clay at McElhattan lacks discrete bedding and records a different characteristic remanent magnetism from underlying, undeformed beds. This difference indicates that the characteristic remanent magnetism is detrital. An electrical resistivity survey and drill borings define a buried bedrock channel at Bald Eagle near the drainage divide that is the proposed spillway for Glacial Lake Lesley. The highest terrace at Bald Eagle (Qt1 be) was truncated by the spillway channel. Age of Qt1 be is estimated as at least middle Middle Pleistocene to Early Pleistocene by correlation of soil physical properties on Qt1 be to soil chronosequences developed for Susquehanna River alluvial terraces, further downstream. This age is generally consistent with the age estimated from paleomagnetism.

  17. Extensive deposits on the Pacific plate from Late Pleistocene North American glacial lake outbursts

    USGS Publications Warehouse

    Normark, W.R.; Reid, J.A.

    2003-01-01

    One of the major unresolved issues of the Late Pleistocene catastrophic-flood events in the northwestern United States (e.g., from glacial Lake Missoula) has been what happened when the flood discharge reached the ocean. This study compiles available 3.5-kHz high-resolution and airgun seismic reflection data, long-range sidescan sonar images, and sediment core data to define the distribution of flood sediment in deepwater areas of the Pacific Ocean. Upon reaching the ocean at the mouth of the Columbia River near the present-day upper continental slope, sediment from the catastrophic floods continued flowing downslope as hyperpycnally generated turbidity currents. The turbidity currents resulting from the Lake Missoula and other latest Pleistocene floods followed the Cascadia Channel into and through the Blanco Fracture Zone and then flowed west to the Tufts Abyssal Plain. A small part of the flood sediment, which was stripped off the main flow at a bend in the Cascadia Channel at its exit point from the Blanco Fracture Zone, continued flowing more than 400 km to the south and reached the Escanaba Trough, a rift valley of the southern Gorda Ridge. Understanding the development of the pathway for the Late Pleistocene flood sediment reaching Escanaba Trough provides insight for understanding the extent of catastrophic flood deposits on the Pacific plate.

  18. Meltwater pathways and grain size transformation in a Pleistocene Mediterranean glacial-fluvial system

    NASA Astrophysics Data System (ADS)

    Adamson, Kathryn; Woodward, Jamie; Hughes, Philip

    2013-04-01

    The Pleistocene sedimentary records of Mount Orjen, western Montenegro, have been used to investigate changes in grain size characteristics of fine sediments transported from the glaciated mountains to the fluvial systems downstream. Understanding the particle size characteristics of the fine sediments transported by these cold stage river systems is important for several reasons. The braided rivers draining the glaciated mountains of the western Balkans may have been an important source of loess for example. It is also important to establish the grain size signature of suspended sediment delivered to the marine environment to aid land-marine correlations. The fine-grained component of the tills is dominated by glacially-comminuted limestone particles. Detailed particle size analysis of the fine sediment matrix component (<63 ?m) of glacial till and alluvial deposits has been undertaken using multiple samples at 12 sites surrounding the Orjen massif. This limestone karst terrain includes a range of meltwater pathways and depositional contexts, including: river valleys, alluvial fans, poljes, and ice marginal settings. 35 U-series ages and soil development indices have been used to develop a robust geochronology for the Pleistocene records Two dominant surface meltwater and sediment pathways have been identified around Mount Orjen. The particle size distributions reveal that these transportation routes can have distinctive sedimentological signatures. Type 1 pathways deliver meltwater and sediments downstream via bedrock gorges. In these settings, the fine grained alluvial matrix presents a largely bimodal particle size distribution (PSD). Type 2 pathways represent meltwater channels draining directly from the ice margin. Alluvial sediments within these environments more closely resemble the normally distributed PSD of the glacial tills. The transition to bimodal PSDs, downstream of Type 1 meltwater routes, suggests that the glacially-comminuted sediments are modified in the fluvial environment. Significantly, the carbonate component is preferentially depleted or removed from the fine silt size fraction. Non-carbonate sediments are instead concentrated into this particle size window. This is thought to be a product of physical and chemical weathering as well as the mechanical sorting of glacially-derived limestone sediments. This has important implications for our understanding of sediment transfer processes within glaciated catchments before these sediments are transported offshore.

  19. Climatic implications of correlated upper Pleistocene glacial and fluvial deposits on the Cinca and Gallego rivers, NE Spain

    SciTech Connect

    Lewis, Claudia J; Mcdonald, Eric; Sancho, Carlos; Pena, Jose- Luis

    2008-01-01

    We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gallego River valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence dates, and time-related trends in soil development. The ages obtained from glacial deposits indicate glacial periods at 85 {+-} 5 ka, 64 {+-} 11 ka, and 36 {+-} 3 ka (from glacial till) and 20 {+-} 3 ka (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive terrace systems in the Cinca River valley at 178 {+-} 21 ka, 97 {+-} 16 ka, 61 {+-} 4 ka, 47 {+-} 4 ka, and 11 {+-} 1 ka, and in the Gallego River valley at 151 {+-} 11 ka, 68 {+-} 7 ka, and 45 {+-} 3 ka. The times of maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine isotope stages and heinrich events. The maximum extent of glaciers during the last glacial occurred at 64 {+-} 11 ka, and the terraces correlated with this glacial phase are the most extensive in both the Cinca (61 {+-} 4 ka) and Gallego (68 {+-} 7 ka) valleys, indicating a strong increase in fluvial discharge and availability of sediments related to the transition to deglaciation. The global Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly dry conditions at that time. Precipitation must be controlled by the position of the Iberian Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems and the associated fluvial dynamic seem sensitive to (1) global climate changes controlled by insolation, (2) North Atlantic thermohaline circulation influenced by freshwater pulses into the North Atlantic, and (3) anomalies in atmospheric circulation in the North Atlantic controlling precipitation on the Iberian peninsula. The model of glacial and fluvial evolution during the Late Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in southern Europe.

  20. Pleistocene glaciations in the weatern Arctic Ocean: Tentative age model of marine glacial landforms

    NASA Astrophysics Data System (ADS)

    Niessen, Frank; Stein, Rüdiger; Matthiessen, Jens; Jensen, Laura; Nam, Seung-Il; Schreck, Michael

    2015-04-01

    Recently glacial landforms were presented and interpreted as complex pattern of Pleistocene glaciations in the western Arctic Ocean along the continental margin of the East Siberian and Chukchi seas, (Niessen et al. 2013, Dove et al. 2014). These landforms include moraines, drumlins, glacigenic debris flows, till wedges and mega-scale glacial lineations. Orientations of some of the landforms suggest the presence of former ice sheets on the Chukchi Borderland and the East Siberian shelf. Here we present a tentative age model for some of the younger glacial events by correlation of sediment cores with glacial landforms as seen in subbottom profiles. The database was obtained during RV "Polarstern" cruise ARK-XIII/3 (2008) and RV "Araon" cruise ARA03B (2012), which investigated an area between the Chukchi Borderland and the East Siberian Sea between 165°W and 170°E. The stratigraphic correlation of sediment cores is based on physical properties (wet-bulk density and magnetic susceptibility), lithology and color. The chronology of the area has been proposed by Stein et al. (2010) for a core from the Chukchi Abyssal Plain (PS72/340-5) and includes brown layers B1 to B9 (marine isotope stages MIS 1 to MIS 7), which are used as marker horizons for lateral core correlation. Our tentative age model suggests that the youngest and shallowest (480 m below present water level; mbpwl) grounding event of an ice sheet on the Chukchi Borderland is younger than B2 (interpreted as Last Glacial Maximum; LGM). There is no clear evidence for a LGM glaciation along the East Siberian margin because intensive post LGM iceberg scouring occurred above 350 m present water level. On the slopes of the East Siberian Sea two northerly directed ice advances occurred, both of which are older and younger than B2 and B3, respectively. The younger advance grounded to about 700 m present water depth along the continental slope and the older to 900 m and 1100 m on the Arlis Plateau and the East Siberian continental margin, respectively. We interpret these advances as Middle Weichselian glaciations on the Beringian shelf (MIS 4 to 3). Two older glaciations can be dated as Early Weichselian (MIS 5b to 5d), of which the younger event is older and younger than B3 and B4, respectively. This glaciation can be traced by glacial wedges, streamlined lineations in up to 1200 mbpsl and subglacial diamicton along the East Siberian margin, the Arlis Plateau, and the Mendeleev Ridge. There are at least three older glaciation visible in acoustic images from the East Siberian continental margin, which probably predate the Weichselian. The available cores did not penetrate these events and the ages remain speculative. Dove, D, Polyak, L., Coakley, B. (2014) Widespread, multi-source glacial erosion on the Chukchi margin, Arctic Ocean, Quat. Sci. Rev. 92, 112-122. Niessen, F. et al. (2013) Repeated Pleistocene glaciation of the East Siberian continental margin, Nature Geoscience, 6 (10), 842-846. Stein, R. et al. (2010) Towards a better (litho-) stratigraphy and reconstruction of Quaternary paleoenvironment in the Amerasian Basin (Arctic Ocean), Polarforschung, 79(2), 97-121.

  1. The influence of Pleistocene glacial refugia on tawny owl genetic diversity and phylogeography in western Europe.

    PubMed

    Brito, Patrcia H

    2005-09-01

    The glacial refugia hypothesis indicates that during the height of the Pleistocene glaciations the temperate species that are today widespread in western Europe must have survived in small and climatically favourable areas located in the southern peninsulas of Iberia, Italy and Balkans. One such species is the tawny owl, a relatively sedentary, nonmigratory bird presently distributed throughout Europe. It is a tree-nesting species closely associated with deciduous and mixed coniferous woodlands. In this study I used control region mtDNA sequences from 187 individuals distributed among 14 populations to determine whether current genetic patterns in tawny owl populations were consistent with postglacial expansion from peninsular refugia. European, North African and Asian tawny owls were found to represent three distinct lineages, where North Africa is the sister clade to all European owls. Within Europe, I found three well-supported clades that correspond to each of the three allopatric refugia. Expansion patterns indicate that owls from the Balkan refugium repopulated most of northern Europe, while expansion out of Iberia and Italy had only regional effects leading to admixture in France. Estimates of population divergence times between refugia populations are roughly similar, but one order of magnitude smaller between Greece and northern Europe. Based on a wide range of mutation rates and generation times, divergence between refugia appears to date to the Pleistocene. PMID:16101775

  2. Late Pleistocene and Holocene Glacial Evolution and Isotasy in the Antarctic Peninsula

    NASA Technical Reports Server (NTRS)

    Ivins, E. R.; Raymond, Carol A.; Heflin, M. B.; James, T. S.

    1989-01-01

    Employing a numerical model of Payne et al. that simulates the late-Pleistocene evolution of the former Antarctic Peninsula Ice Sheet (APIS) as a basis, we compute the present-day postglacial vertical isostasy of this region. The region may also experience significant mid-to late-Holocene glacial mass changes. Climate and oceanographic studies indicate that the ice mass imbalance of this region may be of larger magnitude that elsewhere in Antarctica. We compute the crustal response to these more recent ice mass changes and Holocene fluctuations with a simple gravitating Earth model consisting of an elastic lithosphere and a viscoelastic mantle (half-space). The calculations demonstrate that the present-day response could be significant, possibly at the level of about 4 - 11 mm/yr. Such significant crustal motion could be driven by glacial mass changes integrated over the last 1000 years if the regional mantle viscosity is below about 2 x 10(exp 20) Pa sec. In this lower viscosity range, present-day crustal motion has a significant phase-lagged character and the composite lithosphere/mantle viscoelastic response to late-Holocene events dominates over purely elastic (instantaneous) responses to present-day ice mass changes. For a higher mantle viscosity, greater than about 5 x 10(exp 20) Pa sec, the predicted present-day vertical isostasy is dominated by gravitational response to glacial unloading during the 18 - 6 kyr BP collapse of the APIS, and is analogous to that known to be occurring in the Gulf of Bothnia and Hudson Bay.

  3. Late Pleistocene glacial chronology of the Retezat Mts, Southern Carpathians, using 10Be exposure ages

    NASA Astrophysics Data System (ADS)

    Ruszkiczay-Rüdiger, Zsófia; Kern, Zoltán; Urdea, Petru; Braucher, Régis; Madarász, Balázs; Schimmelpfennig, Irene

    2015-04-01

    Our knowledge on the timing of glacial advances in the Southern Carpathians is limited. Recently, some attempts have been made to develop an improved temporal framework for the glaciations of the region using cosmogenic 10Be exposure dating. However, glacial chronology of the Romanian Carpathians remains contradictory. E.g. the timing of the maximum ice advance appears to be asynchronous within the area and also with other dated glacial events in Europe. Main objective of our study is to utilize cosmogenic in situ produced 10Be dating to disentangle the contradictions of the Southern Carpathian Late Pleistocene glacial chronology. Firstly, previously published 10Be data are recalculated in accordance with the new half-life, standardization and production rate of 10Be. The recalculated 10Be exposure ages of the second largest (M2) moraines in the Retezat Mts. appear to be ca. 19-24% older than exposure ages calculated by Reuther et al. (2007, Quat. Int. 164-165, 151-169). This contradicts the earlier conclusions suggesting post LGM age of M2 glacial advance and suggests that M2 moraines can be connected to the end of the LGM with final stabilization possibly at the beginning of the Late Glacial. We emphasize that it is ambiguous to correlate directly the exposure-dated glacier chronologies with millennial scale climate changes due to uncertainties in sample collection and in computation of exposure ages from measured nuclide concentrations. New 10Be samples were collected in order to determine the 10Be exposure age of moraines outside the most prominent generation (M2) including the largest and oldest moraine (M1) and the landforms connected to the smallest ice advances (M4), which remained undated so far. The new exposure ages of M2 moraines are well in harmony with the recalculated ages of Reuther at al. (2007). 10Be exposure age of boulders on the smallest moraine suggest that the last glaciers disappeared in the area during the Late Glacial, indicating no glaciation during the Younger Dryas and Holocene. Previous works, based on geomorphologic analogies and pedological properties suggested that the M1 ice advance was older than LGM, and possibly occurred during the MIS4. Our 10Be exposure dating provided LGM ages for boulders on the M1 side moraine. It is question of further research whether these ages show the time when the glacier abandoned the moraine or they only indicate an LGM erosional event affecting an older moraine. If we accept the LGM age of maximum ice extent (M1), our 10Be exposure age data enables the calculation of a mean glacier retreat rate of 1.3 m/a for the period between M1 and M4 (21.4 to 13.6ka). Alternatively, considering only the oldest 10Be exposure age of the M2 moraine, the M2 to M4 (20.2-13.6ka) glacier retreat rate was slightly lower: 1.1 m/a. Our research was supported by the OTKA PD83610, by the MTA-CNRS cooperation (NKM-96/2014), by the Bolyai Scholarship, and by the 'Lendület' program of the HAS (LP2012-27/2012). The 10Be measurements were performed at the ASTER AMS national facility (CEREGE, Aix en Provence, France).

  4. An Assessment of Glacial Contributions to Lake Dynamics across the Tibetan Plateau since the Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Sheng, Y.

    2014-12-01

    The Tibetan Plateau is one of the world's most vulnerable areas to global warming, and is home of the world's largest group of mountain glaciers and high-altitude lakes. These lakes in general have shrunk significantly since the late Pleistocene, and are currently continuing to experience changes in their distribution and inundation area. In the meantime, Tibetan glaciers have also gone through dramatic changes as evidenced by paleo glacial relics and recent accelerated melting. The paper provides a regional-scale systematic assessment of both paleo and contemporary lake changes across the plateau using geo-spatial information and optically stimulated luminescence (OSL) dating technologies. Using high-resolution satellite imagery of the plateau together with topographic data, this research recovered paleo lake extents for hundreds of contemporary lakes with visible paleo shore relics and estimated the amount of paleo lake shrinkage at regional scales. Both the basin-based water mass balance analysis using glacier/lake sizes and OSL dating of paleo shores suggest that paleo glaciers played a crucial role in the observed paleo lake shrinkage. Recent ~40 year lake dynamics was monitored by tracking thousands of Tibetan lakes using hundreds of satellite images. The results reveal that the overall total lake area has increased by ~26% between 1976 and 2009. The detected lake dynamics exhibit a strong spatial pattern generally but with local variations. The climate change and its regional glacier variations explain the general trend and the regional patterns of lake dynamics, respectively. The glacier mass monitored by GRACE satellites suggests a thinning trend over the past 12 years in the south while a gaining along the northern rim of the plateau. Basin-based analysis identifies glacial impacts on lake dynamics and explains many local variations. It can be concluded that glaciers play an important role in detected paleo as well as recent lake changes, and will continue to play a critical role in Tibetan lake dynamics in near future.

  5. Seismic characteristics of Pleistocene glacial cycles near shelf edge, offshore Louisiana, Gulf of Mexico

    SciTech Connect

    Watkins, J.S.; Schneider, L.; Hilterman, F.

    1987-05-01

    Seismic stratigraphic studies of the shelf edge and the upper slope basins in the southern parts of the South Marsh Island, Eugene Island, Ship Shoal, and Green Canyon areas of the Louisiana outer continental shelf reveal at least four Pleistocene seismic stratigraphic cycles. These apparently reflect cyclic depositional patterns associated with glacially driven highstands and lowstands of sea level during this time. In the upper slope basins, a strong continuous reflector probably of turbiditic origin marks the base of each cycle. This reflector is thought caused by initial slumping occurring as sea level begins to fall. Overlying this reflector is a zone of chaotic-to-hummocky reflectors thought caused by slumping associated with knick-point erosion and channel-cutting during falling sea level. The upper portion of the cycle is largely reflectorless or weakly reflective punctuated with occasional strong, continuous turbidite reflectors. The reflectorless portion of the cycles is thought to represent homogeneous hemipelagic sedimentation during highstands. Shelf reflectors are usually moderately strong and continuous. A strong reflection(s), identified in some instances with gas sands, marks several sea level lowstands. Erosion is locally evident during lowstands. Otherwise, shelf reflectors are relatively uniform and show few characteristics associated with rising, falling, or highstanding parts of the sea level cycle.

  6. Pleistocene coquinas of the glaciomarine Yakataga Formation, Alaska: implications for mixed glacial/carbonate sequences

    SciTech Connect

    Kaye, B.G.; Eyles, N.; Lagoe, M.B.

    1985-01-01

    Of the several models available to students of mixed ancient glacial/carbonate rocks, most accommodate extreme climatic changes by fluctuations in either the Earth's orbital parameters, continental drift rates or the chemistry of early atmospheres and oceans. The Yakataga Formation, where it is exposed on Middleton Island, Alaska is dominated by thick sequences of massive muddy diamicts in which marine micro- and macrofaunas occur. The sequence records the influx onto the Gulf of Alaska continental shelf of large volumes of pelagic and ice-rafted debris from expanded temperate glaciers and ice shelves during the Early Pleistocene with deposition rates of 1m/1000 years. Diamicts contain multiple coquina bands up to 1m thick composed predominantly of cemented molluscan debris and traceable over several kilometers along strike. Analysis of foraminifera indicates that coquinas record episodic changes in relative sea level and non-deposition of mud when extensive communities of bottom dwelling molluscan faunas became established; ice-rafting continued during the formation and development of coquinas. Recent work stresses the accumulation of carbonates in clastic-starved polar glaciomarine environments; the Alaskan coquinas show that significant bioclastic carbonate accumulations also occur under more temperate glaciomarine conditions with higher sedimentation rates.

  7. Submarine glacial landforms record Late Pleistocene ice-sheet dynamics, Inner Hebrides, Scotland

    NASA Astrophysics Data System (ADS)

    Dove, Dayton; Arosio, Riccardo; Finlayson, Andrew; Bradwell, Tom; Howe, John A.

    2015-09-01

    We use ˜7000 km2 of high-resolution swath bathymetry data to describe and map the submarine glacial geomorphology, and reconstruct Late Pleistocene ice sheet flow configurations and retreat dynamics within the Inner Hebrides, western Scotland. Frequently dominated by outcrops of structurally complex bedrock, the seabed also comprises numerous assemblages of well-preserved glacigenic landforms typical of grounded ice sheet flow and punctuated ice-margin retreat. The occurrence and character of the glacially streamlined landforms is controlled in part by the shallow geology and topography, however these factors alone cannot account for the location, orientation, and configuration of the observed landforms. We attribute the distribution of these elongate streamlined landforms to the onset zone of the former Hebrides Ice Stream (HIS) - part of a major ice stream system that drained 5-10% of the last British-Irish Ice Sheet (BIIS). We suggest this geomorphic signature represents the transition from slow 'sheet flow' to 'streaming flow' as ice accelerated out from an environment characterized by numerous bedrock obstacles (e.g. islands, headlands), towards the smooth, sediment dominated shelf. The majority of streamlined landforms associated with the HIS indicate ice sheet flow to the southwest, with regional-scale topography clearly playing a major role in governing the configuration of flow. During maximal glacial conditions (˜29-23 ka) we infer that the HIS merged with the North Channel-Malin Shelf Ice Stream to form a composite ice stream system that ultimately reached the continental shelf edge at the Barra-Donegal Trough-Mouth Fan. Taken collectively however, the pattern of landforms now preserved at seabed (e.g. convergent flow indicators, cross-cutting flow sets) is more indicative of a thinning ice mass, undergoing reorganization during overall ice sheet retreat (during latter stages of Late Weischselian glaciation). Suites of moraines overprinting the streamlined landforms suggest partial stabilization of the HIS prior to the ice sheet retreating to more isolated, topographically confined troughs and basins. Retreat from the shelf towards, and back into the Inner Hebrides may have been rapid due the prevalence of overdeepened troughs. Within the near-shore fjord-like troughs and deeps, basin-aligned streamlined landforms indicate the subsequent flow of thinner topographically partitioned ice masses, and overprinted moraines record further ice margin retreat, potentially along tide-water margins. This work provides the first geomorphological constraints for this large marine-influenced sector of the former BIIS. We also shed new light on the glacial geomorphic record found at the transition from terrestrial to marine continental-shelf settings, and examine the interplay between substrate geology, bed topography/bathymetry, and grounding-line positions - relationships which are important for characterizing contemporary marine ice sheet margins.

  8. Glacial-interglacial sea-surface temperature (SST) variability in the eastern tropical Pacific: spatial patterns from the late Pleistocene to present

    NASA Astrophysics Data System (ADS)

    Dyck, K.; Ravelo, C.

    2009-12-01

    The equatorial Pacific is an important component of the modern climate system and is critical for understanding climatic and oceanographic changes on glacial-interglacial timescales. While many studies examine the vertical structure of temperature, the spatial variability of SST patterns in the tropical and subtropical Pacific also influence global climate variability. SSTs in the eastern tropical Pacific play a vital role in such climate oscillations as ENSO and the PDO. Iinsight into mechanisms that explain long-term changes in tropical Pacific climate requires and capitalizes on the many realizations of glacial-interglacial cycles preserved in deep-sea sediments. However, most studies are limited to the last 250 ky with the bulk of the research centered on the last glacial maximum. It is now feasible to generate longer records that can resolve many glacial-interglacial cycles. Yet only a handful of geochemical SST records longer than the last few glacial cycles exist for the tropical Pacific. We construct a long geochemical SST record from the Ecuador margin to test various ideas for the causes of tropical climate change (e.g. equatorial ocean currents). In the modern eastern equatorial Pacific, cool nutrient-rich water advects and forms a well-defined cold tongue. Additionally, strong equatorial easterlies drive divergence of surface waters causing cool, deeper water to upwell along the equator and intensify the cold tongue. During periods of strong atmospheric Walker (equatorial Pacific) circulation, the zonal surface temperature gradient is large, supporting a strong equatorial cold tongue. By creating new geochemical records and correlating a number of cores over glacial-interglacial timescales, we evaluate the spatial strength and extent of the equatorial cold tongue for multiple climate cycles through the late Pleistocene and Holocene. To determine past SST we measure the unsaturation index of long-chain lipid ketones (alkenones) found in organic-rich ocean sediments. Alkenones are produced by haptophyte algae, such as the coccolithophorid Emiliani huxleyi and quantified using the lipid unsaturation index (Uk37). We compare existing Uk37 records from the center of upwelling (using ODP Site 846) to a new alkenone-based SST record from ODP Site 1239 (120 km from the Ecuador margin) on the northeastern edge of upwelling. This continental margin site constrains the lateral extent of cold, nutrient-rich upwelling in the eastern equatorial Pacific. We develop a clear picture of spatial variability within the equatorial cold tongue on glacial-interglacial scales by comparing this new record to previously analyzed cores (Site 846, southwest of the Galpagos Islands). Specifically, we show the consistent 2C temperature offset in Site 1239 represents a constant regional temperature gradient to at least MIS 11 (~450 kya).

  9. All together now? Sensitivity, dynamics, and predictability of planktonic foraminiferal species abundance versus community structure across Plio-Pleistocene glacial-interglacial cycles

    NASA Astrophysics Data System (ADS)

    Hull, P. M.; Norris, R. D.; Sexton, P.

    2012-12-01

    Most studies to date of biospheric sensitivity to global change have focused on understanding the sensitivity of modern species and communities to recent or experimental environmental change. However, it is unclear how to scale these results towards predicting the response of the biosphere to ongoing global change given that i) similar species often respond individualistically the same perturbation, ii) biotic response often scales nonlinearly with the size and/or duration of environmental change, and iii) many terrestrial and marine community types known from the recent past lack modern analogs. In this context, marine microfossils from deep sea sediments hold enormous promise for furthering our understanding of biotic sensitivity as they capture temporally expanded records of paleoceanographic and biotic response across a range climatic regimes (e.g., icehouse versus greenhouse climates), disturbance types (e.g., from background climate oscillations to mass extinctions), and habitats (e.g., low vs. high latitudes, upwelling vs. gyre ecosystems, etc). Here we use the repeated glacial-interglacial cycles and longer term trend of intensifying Northern Hemisphere glaciation from the Pliocene-Pleistocene to examine issues related to the sensitivity of planktonic foraminiferal species and communities to global change in an icehouse world. More specifically, we quantify the sensitivity and predictability of changes in planktonic foraminiferal species abundance (species specific mass accumulation rates) and community structure (dissimilarity indices and community classification) to glacial-interglacial cycles in the Plio-Pleistocene in two Atlantic sites (ODP Sites 999 and 662). We first examine whether the sensitivity of species and communities to glacial-interglacial cycles in the early Pliocene (~5-3 million years ago) is predictive of i) their sensitivity to the intensification of Northern Hemisphere glaciation (~3-2 million years ago), or ii) their sensitivity to glacial-interglacial cycles following the transition (< 2 million years ago). We then test the predictability of species and community change before, during, and after intensification, and the relative timing of biotic and environmental change. Our results build on existing faunal studies of nannoplankton and foraminiferal species dynamics (both shown to exhibit individualistic dynamics controlled, in part, by species ecology) to examine change at the community level and with regards to biosphere sensitivity.

  10. Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography

    NASA Astrophysics Data System (ADS)

    Byrne, M.

    2008-12-01

    Phylogeography uses the spatial distribution of genealogical lineages to deduce the influence of historical processes on the evolution of species, and can be informative in regard to location of refugia during extreme climatic conditions. Southern Australia is an ancient landscape with generally low geological relief that was not glaciated but did experience significant climatic oscillations from warm wet conditions in interglacials to cool dry environments during glacial maxima. Phylogeographic patterns in many of the biota of southern Australia reveal evidence of geographically structured divergent lineages indicative of contraction to, and expansion from, major refugia. The time frame for this divergence corresponds with mid Pleistocene climatic oscillations that became more extreme with greater amplitude, and with increased aridity and the formation of sandy deserts. Within lineages there is high haplotype diversity that is generally locally distributed, often specific to populations. These patterns do not reveal specific locations of major refugia that have high diversity and acted as an origin for recent range expansion, as has been observed in Northern Hemisphere glaciated regions. Rather it appears there have been multiple localised refugia throughout the distributions of the species, allowing them to persist through multiple climatic cycles in heterogeneous environments. Phylogeographic patterns in southern Australia indicate that major biotic responses to climatic change involve persistence and resilience rather than large-scale migration, indicating the importance of dynamic evolutionary processes and a mosaic of habitats in heterogeneous landscapes for species to persist though changing environmental conditions.

  11. Dating Plio-Pleistocene glacial sediments using the cosmic-ray-produced radionuclides 10Be and 26Al

    USGS Publications Warehouse

    Balco, G.; Stone, J.O.H.; Jennings, C.

    2005-01-01

    We use the cosmic-ray-produced radionuclides 26Al and 10Be to date Plio-Pleistocene glacial sediment sequences. These two nuclides are produced in quartz at a fixed ratio, but have different decay constants. If a sample is exposed at the surface for a time and then buried by overburden and thus removed from the cosmic-ray flux, the 26Al/10Be ratio is related to the duration of burial. We first attempted to date pre-Wisconsinan tills by measuring 26Al and 10Be in fluvial sediments beneath them and applying the method of "burial dating," which previous authors have used to date river sediment carried into caves. This method, however, requires simplifying assumptions about the 26Al and 10Be concentrations in the sediment at the time of burial. We show that these assumptions are not valid for river sediment in glaciated regions. 26Al and 10Be analyses of such sediment do not provide accurate ages for these tills, although they do yield limiting ages in some cases. We overcome this difficulty by instead measuring 26Al and 10Be in quartz from paleosols that are buried by tills. We use a more general mathematical approach to determine the initial nuclide concentrations in the paleosol at the time it was buried, as well as the duration of burial. This technique provides a widely applicable improvement on other means of dating Plio-Pleistocene terrestrial glacial sediments, as well as a framework for applying cosmogenic-nuclide dating techniques in complicated stratigraphic settings. We apply it to pre-Wisconsinan glacial sediment sequences in southwest Minnesota and eastern South Dakota. Pre-Wisconsinan tills underlying the Minnesota River Valley were deposited 0.5 to 1.5 Ma, and tills beneath the Prairie Coteau in eastern South Dakota and adjacent Minnesota were deposited 1 to 2 Ma.

  12. Simulated Trends in African Glacial and Interglacial Vegetation: Implications for Late-Pleistocene Hominid-Plant Interactions

    NASA Astrophysics Data System (ADS)

    Cowling, S. A.; Cox, P. M.; Jones, C. D.; Maslin, M. A.; Spall, S. A.

    2004-12-01

    Most theories of human evolution in south, central and eastern Africa are predicated on the assumption that savannas and grasslands almost exclusively dominated Pleistocene (glacial) landscapes. It was our aim to evaluate this assumption using a state-of-the-art fully-coupled earth system model (HadCM3LC), which we used to predict potential palaeovegetation following representative glacial and interglacial climate-forcing. Our glacial simulations indicate that tropical broadleaf forest was not severely displaced by grassland expanding into central Africa, although the outer extent of closed forest decreases, particularly in the north. Our vegetation-climate simulations also indicate that the extent of closed tropical forest during typical interglacials is not represented by today's observed vegetation distributions. Simulated interglacial climate results in expansion of tropical forest from coast-to-coast across much of central Africa. Our modelling experiments have implications for interpreting biogeography and phylogenies of various African plant and animal species, including the evolution of our own species, Homo sapiens sapiens.

  13. Timing of late Pleistocene glaciation in Mongolia: Surface exposure dating reveals a differentiated pattern of glacial forcing

    NASA Astrophysics Data System (ADS)

    Ptsch, Steffen; Rother, Henrik; Lorenz, Sebastian; Walther, Michael; Lehmkuhl, Frank

    2015-04-01

    The focus of this study is on the geochronological and paleoclimatic characterization of Pleistocene glaciation in central (Khangai Mountains) and western (Turgen Mountains, Mongolian Altai) Mongolia. These two mountain ranges form a 700 km long SE-NW transect through Mongolia and allow assumptions of the temporal and causal dynamics of regional glaciation and their correlation to other mountain glacier records from Central and High Asia. In order to evaluate the Pleistocene glaciations in Mongolia we undertook geomorphological mapping and cosmogenic radionuclide (CRN) surface exposure dating (10Be) in four valley systems located in the Khangai Mountains and Turgen Mountains. In total 46 glacial boulders and roche moutonnes were sampled, prepared and AMS measured to determine their 10Be surface exposure ages. Of these, 26 samples were obtained from the Khangai Mountains (three separate moraine sequences) and 20 samples were taken from the Turgen Mountains (one moraine sequence). Our results give evidence of major ice advances during early MIS-4 (74-71 ka) and MIS-2 (25-20 and 18- 17 ka) in both mountain ranges. However, in the Khangai Mountains of central Mongolia very significant ice advances also occurred during MIS-3 (37-32 ka), which exceeded the ice limits set during the MIS-2 glaciation. These results show that climatic conditions during phases of insolation minima characterized by extremely cold and dry conditions (MIS-4 and MIS-2) produced a favorable setting for major ice expansion in Mongolia. Yet, glacial accumulation in the Khangai Mountains also increased substantially in response to the cool-wet conditions of MIS-3, associated with a possibly greater-than-today input from winter precipitation. These records indicate that in addition to the thermally induced glaciations of MIS-4 and MIS-2, variations in atmospheric moisture supply are also capable of triggering large ice advances as observed during MIS-3. Taken together, this suggests that the role of atmospheric circulation and its significance for controlling regional precipitation results in a more differentiated pattern of late Pleistocene glaciation in Mongolia than previously recognized. Compared to other glacial records from High Asia, the observed patterns of past glaciations in Mongolia show similar results (i.e. ice maxima during interstadial wet phases) compared to monsoon influenced regions in southern Central Asia and NE-Tibet, while major expansion during insolation minima (MIS-4 and MIS-2) are more in tune with glacier responses known from western Central Asia and Siberia.

  14. Glacial chronology and palaeoclimate in the Bystra catchment, Western Tatra Mountains (Poland) during the Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Makos, Michał; Rinterknecht, Vincent; Braucher, Régis; Żarnowski, Michał

    2016-02-01

    Deglaciation chronology of the Bystra catchment (Western Tatra Mountains) has been reconstructed based on 10Be exposure age dating. Fourteen rock samples were collected from boulders located on three moraines that limit the horizontal extent of the LGM maximum advance and the Lateglacial recessional stage. The oldest preserved, maximum moraine was dated at 15.5 ± 0.8 ka, an age that could be explained more likely by post-depositional erosion of the moraine. Such scenario is supported by geomorphologic and palaeoclimatological evidence. The younger cold stage is represented by well-preserved termino-lateral moraine systems in the Kondratowa and Sucha Kasprowa valleys. The distribution of the moraine ridges in both valleys suggest a complex history of deglaciation of the area. The first Late-glacial re-advance (LG1) was followed by a cold oscillation (LG2), that occurred at around 14.0 ± 0.7-13.7 ± 1.2 ka. Glaciers during both stages had nearly the same horizontal extent, however, their thickness and geometry changed significantly, mainly due to local climatic conditions triggered by topography, controlling the exposition to solar radiation. The LG1 stage occurred probably during the pre-Bølling cold stage (Greenland Stadial 2.1a), however, the LG2 stage can be correlated with the cooling at around 14 ka during the Greenland Interstadial 1 (GI-1d - Older Dryas). This is the first chronological evidence of the Older Dryas in the Tatra Mountains. The ELA of the maximum Bystra glacier was located at 1480 m a.s.l. in accordance with the ELA in the High Tatra Mountains during the LGM. During the LG1 and LG2 stages, the ELA in the catchment rose up to 1520-1530 m a.s.l. and was located approximately 100-150 m lower than in the eastern part of the massif. Climate modelling results show that the Bystra glacier (maximum advance) could have advanced in the catchment when mean annual temperature was lower than today by 11-12 °C and precipitation was reduced by 40-60%. This is in accordance with LGM conditions previously reported for the High Tatras. During the LG1 and LG2 stages the temperature decrease in the study area reached 10 °C and precipitation was lower by ∼30% compare to modern conditions. This resulted in slightly higher accumulation (20-30%) in the Western Tatra Mountains compare to the High Tatra Mountains.

  15. Late Pleistocene glacial stratigraphy of the Kumara-Moana region, West Coast of South Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Barrows, Timothy T.; Almond, Peter; Rose, Robert; Keith Fifield, L.; Mills, Stephanie C.; Tims, Stephen G.

    2013-08-01

    On the South Island of New Zealand, large piedmont glaciers descended from an ice cap on the Southern Alps onto the coastal plain of the West Coast during the late Pleistocene. The series of moraine belts and outwash plains left by the Taramakau glacier are used as a type section for interpreting the glacial geology and timing of major climatic events of New Zealand and also as a benchmark for comparison with the wider Southern Hemisphere. In this paper we review the chronology of advances by the Taramakau glacier during the last or Otira Glaciation using a combination of exposure dating using the cosmogenic nuclides 10Be and 36Cl, and tephrochronology. We document three distinct glacial maxima, represented by the Loopline, Larrikins and Moana Formations, separated by brief interstadials. We find that the Loopline Formation, originally attributed to Oxygen Isotope Chronozone 4, is much younger than previously thought, with an advance culminating around 24,900 ± 800 yr. The widespread late Pleistocene Kawakawa/Oruanui tephra stratigraphically lies immediately above it. This Formation has the same age previously attributed to the older part of the Larrikins Formation. Dating of the Larrikins Formation demonstrates there is no longer a basis for subdividing it into older and younger phases with an advance lasting about 1000 years between 20,800 ± 500 to 20,000 ± 400 yr. The Moana Formation represents the deposits of the last major advance of ice at 17,300 ± 500 yr and is younger than expected based on limited previous dating. The timing of major piedmont glaciation is restricted to between ˜25,000 and 17,000 yr and this interval corresponds to a time of regionally cold sea surface temperatures, expansion of grasslands at the expense of forest on South Island, and hemisphere wide glaciation.

  16. Pleistocene Mitochondrial Genomes Suggest a Single Major Dispersal of Non-Africans and a Late Glacial Population Turnover in Europe.

    PubMed

    Posth, Cosimo; Renaud, Gabriel; Mittnik, Alissa; Drucker, Dorothée G; Rougier, Hélène; Cupillard, Christophe; Valentin, Frédérique; Thevenet, Corinne; Furtwängler, Anja; Wißing, Christoph; Francken, Michael; Malina, Maria; Bolus, Michael; Lari, Martina; Gigli, Elena; Capecchi, Giulia; Crevecoeur, Isabelle; Beauval, Cédric; Flas, Damien; Germonpré, Mietje; van der Plicht, Johannes; Cottiaux, Richard; Gély, Bernard; Ronchitelli, Annamaria; Wehrberger, Kurt; Grigorescu, Dan; Svoboda, Jiří; Semal, Patrick; Caramelli, David; Bocherens, Hervé; Harvati, Katerina; Conard, Nicholas J; Haak, Wolfgang; Powell, Adam; Krause, Johannes

    2016-03-21

    How modern humans dispersed into Eurasia and Australasia, including the number of separate expansions and their timings, is highly debated [1, 2]. Two categories of models are proposed for the dispersal of non-Africans: (1) single dispersal, i.e., a single major diffusion of modern humans across Eurasia and Australasia [3-5]; and (2) multiple dispersal, i.e., additional earlier population expansions that may have contributed to the genetic diversity of some present-day humans outside of Africa [6-9]. Many variants of these models focus largely on Asia and Australasia, neglecting human dispersal into Europe, thus explaining only a subset of the entire colonization process outside of Africa [3-5, 8, 9]. The genetic diversity of the first modern humans who spread into Europe during the Late Pleistocene and the impact of subsequent climatic events on their demography are largely unknown. Here we analyze 55 complete human mitochondrial genomes (mtDNAs) of hunter-gatherers spanning ∼35,000 years of European prehistory. We unexpectedly find mtDNA lineage M in individuals prior to the Last Glacial Maximum (LGM). This lineage is absent in contemporary Europeans, although it is found at high frequency in modern Asians, Australasians, and Native Americans. Dating the most recent common ancestor of each of the modern non-African mtDNA clades reveals their single, late, and rapid dispersal less than 55,000 years ago. Demographic modeling not only indicates an LGM genetic bottleneck, but also provides surprising evidence of a major population turnover in Europe around 14,500 years ago during the Late Glacial, a period of climatic instability at the end of the Pleistocene. PMID:26853362

  17. Thaw lakes in the geological record and their significance for Pleistocene glacial methane emissions

    NASA Astrophysics Data System (ADS)

    van Huissteden, J.; Berrittella, C.

    2009-04-01

    Thaw (or thermokarst) lakes are striking features of present-day arctic lowlands underlain by permafrost, covering 20-50% of the land surface in some cases. Evidence from the geological record shows that during the last glacial thaw lakes also occurred in lowlands within the periglacial zone in Europe. Thaw lakes are found in river valley fills, in glacial and tectonic basins. Thaw lakes in the sedimentary record are characterized by a succession of features indicating the former presence of permafrost (ice wedge casts), followed by permafrost degradation features (generally large cryoturbations), in turn overlain by lacustrine deposits. These successions have been reported from several sites in the Netherlands and Northern Germany. Stratigraphic information suggest that these lakes were of widespread occurrence, and may have resulted from repeated changes in the southern permafrost boundary during rapid climate shifts of the last glacial. CH4emission from thaw lakes in Siberia and Alaska contributes significantly to CH4 emission from northern wetlands. Likewise, also ancient thaw lakes may have contributed to the CH4 emission that led to the CH4 spikes recorded in the ice cores during the last glacial. For an estimation of glacial CH4 sources, the strength of the thaw lake source needs to be quantified.

  18. Glacial stratigraphy of the Bulkley River region: A depositional framework for the late Pleistocene in central British Columbia

    USGS Publications Warehouse

    Stumpf, A.J.; Broster, B.E.; Levson, V.M.

    2004-01-01

    A depositional framework for late Pleistocene sediments in central British Columbia was developed from the composite stratigraphy of glacial sediments found in the Bulkley River region. Nonglacial deposits correlated to the Olympia Nonglacial Interval, are overlain in succession by sub-till, ice-advance sediments, Late Wisconsinan (Fraser Glaciation) till, and late-glacial sediments. Due to local erosion and depositional variability, some of the units are not continuous throughout the region and differ locally in their thickness and complexity. At the onset of the Fraser Glaciation, ice advance was marked by rising base levels in rivers, lake ponding, and ice marginal sub-aqueous deposition. Physiography and glacier dynamics influenced the position of drainage outlets, direction of water flow, and ponding. The region was completely ice covered during this glaciation and ice-flow directions were variable, being dominantly influenced by the migrating position of ice divides. Deglaciation was marked by the widespread deposition of fine-grained sediments in proglacial lakes and glaciofluvial sands and gravels at locations with unrestricted drainage.

  19. Sensitivity of Photosynthetic Gas Exchange and Growth of Lodgepole Pine to Climate Variability Depends on the Age of Pleistocene Glacial Surfaces

    NASA Astrophysics Data System (ADS)

    Osborn, B.; Chapple, W.; Ewers, B. E.; Williams, D. G.

    2014-12-01

    The interaction between soil conditions and climate variability plays a central role in the ecohydrological functions of montane conifer forests. Although soil moisture availability to trees is largely dependent on climate, the depth and texture of soil exerts a key secondary influence. Multiple Pleistocene glacial events have shaped the landscape of the central Rocky Mountains creating a patchwork of soils differing in age and textural classification. This mosaic of soil conditions impacts hydrological properties, and montane conifer forests potentially respond to climate variability quite differently depending on the age of glacial till and soil development. We hypothesized that the age of glacial till and associated soil textural changes exert strong control on growth and photosynthetic gas exchange of lodgepole pine. We examined physiological and growth responses of lodgepole pine to interannual variation in maximum annual snow water equivalence (SWEmax) of montane snowpack and growing season air temperature (Tair) and vapor pressure deficit (VPD) across a chronosequence of Pleistocene glacial tills ranging in age from 700k to 12k years. Soil textural differences across the glacial tills illustrate the varying degrees of weathering with the most well developed soils with highest clay content on the oldest till surfaces. We show that sensitivity of growth and carbon isotope discrimination, an integrated measure of canopy gas exchange properties, to interannual variation SWEmax , Tair and VPD is greatest on young till surfaces, whereas trees on old glacial tills with well-developed soils are mostly insensitive to these interannual climate fluctuations. Tree-ring widths were most sensitive to changes in SWEmax on young glacial tills (p < 0.01), and less sensitive on the oldest till (p < 0.05). Tair correlates strongly with ?13C values on the oldest and youngest tills sites, but shows no significant relationship on the middle aged glacial till. It is clear that growth and photosynthetic gas exchange parameters are sensitive to glacial till surfaces, which is evident by the different responses to SWEmax and Tair across sites.

  20. Physiological and growth responses of C3 and C4 plants at the Pleistocene glacial maximum

    SciTech Connect

    Strain, B.R.

    1995-06-01

    A C3 plant (Abutilon theophrasti) and a C4 plant (Amaranthus retroflexus) were grown from seed in the Duke University Phytotron under four CO2 concentrations (15 Pa, below the Pleistocene minimum), 27 Pa (pre-industrial), 35 Pa (current), and 70 Pa (future) to examine photosynthetic, growth and reproduction responses of annual plants to historic and future levels of CO2. Net photosynthesis and growth were greatly inhibited at 15 Pa and greatly stimulated at 70 Pa. in the C3 Abutilon but only slightly affected in the C4 Amaranthus. Flower bud initiation was not affected by CO2 treatment in either species but all flower buds in 15 Pa CO2 aborted in the C3 within two days of appearance while no inhibition of reproduction was observed at low CO2 in the C4. Differences in physiology, growth and reproduction to the low levels of atmospheric CO2 of the Pleistocene suggest that competitive interactions of C3 and C4 annuals have changed through geologic time. A major question concerning the survival and evolution of obligate C3 annuals during the CO2 minima of the Pleistocene is raised by the results of this study.

  1. Glacial geomorphology of the Pleistocene Lake Fagnano ice lobe, Tierra del Fuego, southern South America

    NASA Astrophysics Data System (ADS)

    Coronato, A.; Seppl, M.; Ponce, J. F.; Rabassa, J.

    2009-11-01

    A regional geomorphological study is presented of the southern and eastern coast of Lake Fagnano, one of the most extensive glacial areas of Tierra del Fuego Island, at the southernmost tip of South America. A palaeoglacial reconstruction is made, based on the location of erosional and depositional glacial landforms. The outlet glacier flowing eastwards from the Darwin Cordillera (Fuegian Andes, Chile) had more than 50 tributary glaciers. An alpine-type landscape, including artes, cirques, truncated spurs and hanging valleys developed in the western region of the present lake, whereas a piedmont-type landscape including lateral moraines, glaciofluvial and glaciolacustrine terraces and an ice-disintegration landscape developed in the eastern region. The glacier spread over the low ranges and lowlands through three different lobes, and was drained by four main outwash basins, directly into the Atlantic Ocean. The ice-covered area is estimated at 4000 km 2; the maximum length of the main lobe at 132 km, and the general slope at 8. Four terminal positions of the glacier were recognized and related to the Intil Bay and Beagle Channel glacial areas, located to the north and south, respectively. 14C dates from basal peats show that most of the area, especially the easternmost part and the southern coast, were free of ice by 12,300 years B.P. Fossil peat contained in the lower basal till deposits yield 14C dates of 31,000-48,200 years B.P., indicating that a glacial advance occurred in the area prior to the Last Glacial Maximum (ca. 25,000-23,000 cal. years B.P.).

  2. The sequence and timing of large late Pleistocene floods from glacial Lake Missoula

    NASA Astrophysics Data System (ADS)

    Hanson, Michelle A.; Lian, Olav B.; Clague, John J.

    2012-01-01

    Glacial Lake Missoula formed when the Purcell Trench lobe of the Cordilleran ice sheet dammed Clark Fork River in Montana during the Fraser Glaciation (marine oxygen isotope stage 2). Over a period of several thousand years, the lake repeatedly filled and drained through its ice dam, and floodwaters coursed across the landscape in eastern Washington. In this paper, we describe the stratigraphy and sedimentology of a significant new section of fine-grained glacial Lake Missoula sediment and compare this section to a similar, previously described sequence of sediments at Ninemile Creek, 26 km to the northwest. The new exposure, which we informally term the rail line section, is located near Missoula, Montana, and exposes 29 units, each of which consists of many silt and clay couplets that we interpret to be varves. The deposits are similar to other fine-grained sediments attributed to glacial Lake Missoula. Similar varved sediments overlie gravelly flood deposits elsewhere in the glacial Lake Missoula basin. Each of the 29 units represents a period when the lake was deepening, and all units show evidence for substantial draining of glacial Lake Missoula that repeatedly exposed the lake floor. The evidence includes erosion and deformation of glaciolacustrine sediment that we interpret happened during draining of the lake, desiccation cracks that formed during exposure of the lake bottom, and fluvial sand deposited as the lake began to refill. The floods date to between approximately 21.4 and 13.4 cal ka ago based on regional chronological data. The total number of varves at the rail line and Ninemile sites are, respectively, 732 and 583. Depending on lake refilling times, each exposure probably records 1350-1500 years of time. We present three new optical ages from the rail line and Ninemile sites that further limit the age of the floods. These ages, in calendar years, are 15.1 0.6 ka at the base of the Ninemile exposure, and 14.8 0.7 and 12.6 0.6 ka midway through the rail line exposure. The sediment at the two sections was deposited during later stages of glacial Lake Missoula, after the largest outburst events.

  3. Speciation of two desert poplar species triggered by Pleistocene climatic oscillations

    PubMed Central

    Wang, J; Källman, T; Liu, J; Guo, Q; Wu, Y; Lin, K; Lascoux, M

    2014-01-01

    Despite the evidence that the Pleistocene climatic fluctuations have seriously affected the distribution of intraspecific diversity, less is known on its impact on interspecific divergence. In this study, we aimed to test the hypothesis that the divergence of two desert poplar species Populus euphratica Oliv. and P. pruinosa Schrenk. occurred during the Pleistocene. We sequenced 11 nuclear loci in 60 individuals from the two species to estimate the divergence time between them and to test whether gene flow occurred after species separation. Divergence time between the two species was estimated to be 0.66–1.37 million years ago (Ma), a time at which glaciation was at its maximum in China and deserts developed widely in central Asia. Isolation-with-Migration model also indicated that the two species had diverged in the presence of gene flow. We also detected evidence of selection at GO in P. euphratica and to a lesser extent at PhyB2. Together, these results underscore the importance of Pleistocene climate oscillations in triggering plant speciation as a result of habitats divergence. PMID:24065180

  4. Isotopic record of Pleistocene glacial/interglacial cycles in pelagic carbonates: Revisiting historical data from the Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Hermoso, Michaël

    2016-04-01

    The glacial/interglacial cycles of the Pleistocene were first recognised by variations in the oxygen isotopic composition of planktonic foraminifera from cores in the Caribbean Sea. Since this pioneering work by Emiliani, this proxy has been extensively applied to a variety of carbonate biominerals over the entirety of the Meso-Cenozoic. However, palaeoceanographic studies have overwhelmingly focused on foraminifera compared to other calcifying microorganism fossils, such as the coccoliths. In this study, I revisit coccolith stable isotopic data obtained from the classic P6304-4 core in light of recent developments in the biogeochemistry of coccolithophores. In particular, I show that the coccolith stable isotope record of the last 13 Marine Isotope Stages (∼480 kyrs) is significantly biased by large vital effects. The magnitude of coccolith carbon and oxygen isotope vital effects is not uniform, but shows remarkable co-variance with the Vostok CO2 ice record. During periods of relatively elevated CO2 (interstadials), the expression of the vital effect is relatively small, whereas it can as high as +3‰ for the oxygen isotopes during glacial stadials, which I argue is a result of enhanced CO2 limitation of coccolithophores. Using this paradigm, I propose that coccolithophore vital effects are not a complicating factor, but rather the signal of interest. As the magnitude of the coccolith vital effect is shown to scale with pCO2, coccolith carbon and oxygen isotopes may be used in conjunction with foraminifera data to reconstruct and refine aqueous CO2 concentrations in the past.

  5. Climatic impact of glacial cycle polar motion: Coupled oscillations of ice sheet mass and rotation pole position

    USGS Publications Warehouse

    Bills, Bruce G.; James, Thomas S.; Mengel, John G.

    1999-01-01

    Precessional motion of Earth's rotation axis relative to its orbit is a well-known source of long-period climatic variation. It is less well appreciated that growth and decay of polar ice sheets perturb the symmetry of the global mass distribution enough that the geographic location of the rotation axis will change by at least 15 km and possibly as much as 100 km during a single glacial cycle. This motion of the pole will change the seasonal and latitudinal pattern of temperatures. We present calculations, based on a diurnal average energy balance, which compare the summer and winter temperature anomalies due to a 1° decrease in obliquity with those due to a 1° motion of the rotation pole toward Hudson Bay. Both effects result in peak temperature perturbations of about 1° Celsius. The obliquity change primarily influences the amplitude of the seasonal cycle, while the polar motion primarily changes the annual mean temperatures. The polar motion induced temperature anomaly is such that it will act as a powerful negative feedback on ice sheet growth. We also explore the evolution of the coupled system composed of ice sheet mass and pole position. Oscillatory solutions result from the conflicting constraints of rotational and thermal stability. A positive mass anomaly on an otherwise featureless Earth is in rotational equilibrium only at the poles or the equator. The two polar equilibria are rotationally unstable, and the equatorial equilibrium, though rotationally stable, is thermally unstable. We find that with a plausible choice for the strength of coupling between the thermal and rotational systems, relatively modest external forcing can produce significant response at periods of 104–106 years, but it strongly attenuates polar motion at longer periods. We suggest that these coupled oscillations may contribute to the observed dominance of 100 kyr glacial cycles since the mid-Pleistocene and will tend to stabilize geographic patterns that are suitable to glaciations.

  6. Multiple genetic divergences and population expansions of a Mediterranean sandfly, Phlebotomus ariasi, in Europe during the Pleistocene glacial cycles

    PubMed Central

    Mahamdallie, S S; Pesson, B; Ready, P D

    2011-01-01

    Phlebotomus ariasi is one of the two sandflies transmitting the causative agent of zoonotic leishmaniasis, Leishmania infantum, in France and Iberia, and provides a rare case study of the postglacial re-colonization of France by a Mediterranean species. Four DNA sequences were analysed—mitochondrial cytochrome b (cyt b), nuclear elongation factor-1α (EF-1α) and two anonymous nuclear loci—for 14–15 French populations and single populations from northeast Spain, northwest Spain, Portugal and Morocco. The presence of cryptic sibling species was not revealed by phylogenetic analyses and testing for reproductive isolation between sympatric populations defined by the two most divergent cyt b haplogroups. No locus was shown to be under positive directional or balancing selection and, therefore, molecular variation was explained demographically. Each nuclear locus showed shallow isolation by distance from Portugal to the French Pyrenees, but for both cyt b and EF-1α there was then a step change to the upland Massif Central, where leading-edge populations showed low diversity at all loci. Multiple genetic divergences and population expansions were detected by analyses of cyt b and dated to the Pleistocene. Endemicity of one cyt b sub-lineage suggested the presence of a refuge north of the Pyrenees during the last glacial period. Monopolization of the Massif Central by genetically differentiated populations of P. ariasi might possibly hinder the northwards spread of leishmaniasis. PMID:20736970

  7. Size and shape stasis in late Pleistocene mammals and birds from Rancho La Brea during the Last Glacial-Interglacial cycle

    NASA Astrophysics Data System (ADS)

    Prothero, Donald R.; Syverson, Valerie J.; Raymond, Kristina R.; Madan, Meena; Molina, Sarah; Fragomeni, Ashley; DeSantis, Sylvana; Sutyagina, Anastasiya; Gage, Gina L.

    2012-11-01

    Conventional neo-Darwinian theory views organisms as infinitely sensitive and responsive to their environments, and considers them able to readily change size or shape when they adapt to selective pressures. Yet since 1863 it has been well known that Pleistocene animals and plants do not show much morphological change or speciation in response to the glacial-interglacial climate cycles. We tested this hypothesis with all of the common birds (condors, golden and bald eagles, turkeys, caracaras) and mammals (dire wolves, saber-toothed cats, giant lions, horses, camels, bison, and ground sloths) from Rancho La Brea tar pits in Los Angeles, California, which preserves large samples of many bones from many well-dated pits spanning the 35,000 years of the Last Glacial-Interglacial cycle. Pollen evidence showed the climate changed from chaparral/oaks 35,000 years ago to snowy piñon-juniper forests at the peak glacial 20,000 years ago, then back to the modern chaparral since the glacial-interglacial transition. Based on Bergmann's rule, we would expect peak glacial specimens to have larger body sizes, and based on Allen's rule, peak glacial samples should have shorter and more robust limbs. Yet statistical analysis (ANOVA for parametric samples; Kruskal-Wallis test for non-parametric samples) showed that none of the Pleistocene pit samples is statistically distinct from the rest, indicating complete stasis from 35 ka to 9 ka. The sole exception was the Pit 13 sample of dire wolves (16 ka), which was significantly smaller than the rest, but this did not occur in response to climate change. We also performed a time series analysis of the pit samples. None showed directional change; all were either static or showed a random walk. Thus, the data show that birds and mammals at Rancho La Brea show complete stasis and were unresponsive to the major climate change that occurred at 20 ka, consistent with other studies of Pleistocene animals and plants. Most explanations for such stasis (stabilizing selection, canalization) fail in this setting where climate is changing. One possible explanation is that most large birds and mammals are very broadly adapted and relatively insensitive to changes in their environments, although even the small mammals of the Pleistocene show stasis during climate change, too.

  8. Middle Pleistocene (?) buried glacial ice on Bylot Island, Canadian Arctic Archipleago

    NASA Astrophysics Data System (ADS)

    Fortier, D.; Godin, E.; Kanevskiy, M. Z.; Allard, M.

    2009-12-01

    Bylot Island is located north of Baffin Island (73N, 80W). More than the half of the island is covered by an ice cap and its outlet glaciers flowing towards the arctic lowland of the Lancaster formation. The study site comprises four main stratigraphic units. Overlying the shales (Tertiary) of the Lancaster Formation (500 m a.s.l.), a diamicton (unit 1) is covered by a fossil forest-tundra sequence (unit 2) containing abundant remains of trees and plants (Allard et al., submitted). Paleontological correlation of extinct species and reverse to normal palomagnetism polarities suggest a Late Pliocene to Early Pleistocene age for this unit. A sequence (unit 3) of ice-contact proximal to distal glacio-fluvial sediments overlies the organic beds. Paleomagnetic analysis showed that the upper glacio-fluvial sediments were likely deposited during the Brunhes polarity chron (younger than 0.73 Ma). The uppermost unit (unit 4) consists in a lodgement till containing clasts of Paleozoic limestone erratics. Based on amino acid ratios of shells fragments in the drift, Klassen (1993) suggested that this foreign drift was probably deposited during an "old" Quaternary glaciation named Baffin glaciation During July 2009 several active-layer detachment slides at the head of large gullies exposed large massive ice bodies located at the junction between units 3 and 4. A preliminary analysis of the ice facies and ice crystals revealed the presence of two distinct types of massive ice: 1) clear-ice bodies with very few sediments and no organic inclusions. The ice crystals were large (cm) and air bubbles were observed at the junction of crystals. These characteristics could potentially indicate an englacial origin for these clear ice bodies. In some places, the ice was stratified with undulating layers of sands and gravels. These micro-structures are very similar to basal ice facies we observed at the Matanuska Glacier in Alaska. The exposed massive ice sections were a few tens of meter wide and about 2 to 4 m deep but the real width and thickness of these ice masses are unknown. The upper part of the clear ice and stratified massive ice bodies were always in contact with various types of glacio-fluvial sediments which suggest that their preservation were likely related to rapid burial of the ice and refreezing of the overlying sediments following permafrost aggradation. 2) large, white to milky, epigenetic ice wedges with a typical sub-vertical foliated structure. The ice wedges were formed in unit 4 and, in some places, penetrated into the clear massive ice bodies described above which created a sharp visual contrast between the two types of ice. This also indicates that ice wedge development post-date the massive ice burial. Based on the chrono-stratigraphic context and on the similarities between 1) the clear ice masses and the contemporary englacial ice facies (e.g. on Bylot Island); and 2) the cryostructures of the stratified massive ice at the study site and the contemporary basal ice cryostructures observed at the Matanuska glaciers, we propose that the massive ice bodies exposed on Bylot Island are related to a Middle Pleistocene glaciation.

  9. Late-glacial environmental oscillations as recorded in the soil archives of Gasserplatz (Vorarlberg, Austria).

    NASA Astrophysics Data System (ADS)

    van Mourik, Jan; Slotboom, Ruud; van der Plicht, Hans; Streurman, Harm Jan; Kuijper, Wim; Hoek, Wim; de Graaff, Leo

    2013-04-01

    Gasserplatz is a shallow basin in the rather flat, glacially eroded confluence area of the former Rhine glacier and the Ill glacier. It became ice-free during the Feldkirch stadium ( ? 15.500 calBP) and transferred in a tiny lake. During the Late-glacial lacustrine carbonate (calcareous gyttja) was deposited, in the Holocene peat accumulated. Gasserplatz deposits are valuable soil archives for palaeo-environmental research. The Late-glacial environmental fluctuations have been recorded in the gyttja deposits. The combined results of pollen, macro-remains and stable isotope analyses that have been put into an independent time frame demonstrate that these fluctuations are associated with large scale temperature oscillations as registered in Greenland ice cores. The results show also a slight delay in environmental response on temperature change. The isotope stratigraphy points to higher temperatures during the whole Blling while Betula trees arrived in Gasserplatz area later. During the Allerd there are frequent short-lived oscillations in temperature, but the palynological expression of these changes resulted in not more than three Betula peaks. Comparison with the research results of similar Alpine lake deposits makes clear that the fluctuations in the Betula curve are not a local but a regional phenomenon.

  10. Investigating Sea Ice Regimes and Glacial Cycles of the Early Pleistocene in a Sediment Record from the Northwind Ridge, Western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Dipre, G.; Polyak, L. V.; Ortiz, J. D.; Cook, A.; Oti, E.

    2014-12-01

    We are conducting a comprehensive study of a sediment record from the Arctic Ocean in order to improve our understanding of paleoceanographic conditions during the early Pleistocene, a potential paleo-analog for the current and future states of the Arctic. The study deals with a sediment core raised on the HOTRAX 2005 expedition from the Northwind Ridge, western Arctic Ocean. By comparison with an earlier reported stratigraphy (Polyak et al., 2013), the core dates back to estimated ca. 1.5 Ma. A suite of paleobiological, lithological, and geochemical proxies will be utilized to reconstruct paleoceanographic environments in the early Pleistocene part of the record. In contrast to most Arctic Ocean sediment cores, calcareous microfossils occur in abundance to ca. 1.2 Ma. This enables the use of microfaunal assemblages as proxies for sea-ice conditions, which control the seasonal organic production. Physical properties such as sediment density, grain size, and sediment fabric (based on XCT imagery) will be employed to determine the impact of glaciations on sedimentation. By reconstructing sea-ice history and glacial cycles, we will gain insights into poorly understood controls on the Arctic environments during the early Pleistocene and Mid-Pleistocene Transition.

  11. Effect of Pleistocene Climatic Oscillations on the Phylogeography and Demography of Red Knobby Newt (Tylototriton shanjing) from Southwestern China

    PubMed Central

    Rao, Dingqi; Yang, Junxing

    2013-01-01

    Factors that determine the genetic structure of species in southwestern China remain largely unknown. In this study, phylogeography and demography of Tylototriton shanjing was investigated from a mitochondrial perspective to address the role of the Quaternary ice ages in shaping phylogeographic history and genetic diversity of Yunnan. A total of 146 individuals from 19 populations across the entire range of the species were collected. We detected four maternal phylogenetic lineages corresponding to four population groups, and found that major glaciation events during the Pleistocene have triggered the intra-specific divergence. Coalescent simulations indicated that the populations retreated to different refugia located in southern Yunnan, northwestern Yunnan, the border region of western Yunnan with Myanmar, and middle-western Yunnan, respectively, during previous glacial periods in the Pleistocene, and these four refugia were not retained during the Last Glacial Maximum. Population expansions occurred during the last inter-glaciation, during which ice core and pollen data indicated that the temperature and precipitation gradually increased, and declines of population sizes started after the beginning of the Last Glacial Maximum when the climate became cooler and dryer. The paleo-drainage system had no contribution to the current genetic structure and the rivers were not dispersal barriers for this salamander. PMID:23424644

  12. Effect of Pleistocene climatic oscillations on the phylogeography and demography of red knobby newt (Tylototriton shanjing) from southwestern China.

    PubMed

    Yu, Guohua; Zhang, Mingwang; Rao, Dingqi; Yang, Junxing

    2013-01-01

    Factors that determine the genetic structure of species in southwestern China remain largely unknown. In this study, phylogeography and demography of Tylototriton shanjing was investigated from a mitochondrial perspective to address the role of the Quaternary ice ages in shaping phylogeographic history and genetic diversity of Yunnan. A total of 146 individuals from 19 populations across the entire range of the species were collected. We detected four maternal phylogenetic lineages corresponding to four population groups, and found that major glaciation events during the Pleistocene have triggered the intra-specific divergence. Coalescent simulations indicated that the populations retreated to different refugia located in southern Yunnan, northwestern Yunnan, the border region of western Yunnan with Myanmar, and middle-western Yunnan, respectively, during previous glacial periods in the Pleistocene, and these four refugia were not retained during the Last Glacial Maximum. Population expansions occurred during the last inter-glaciation, during which ice core and pollen data indicated that the temperature and precipitation gradually increased, and declines of population sizes started after the beginning of the Last Glacial Maximum when the climate became cooler and dryer. The paleo-drainage system had no contribution to the current genetic structure and the rivers were not dispersal barriers for this salamander. PMID:23424644

  13. The hierarchical structure of glacial climatic oscillations: Interactions between ice-sheet dynamics and climate

    SciTech Connect

    Paillard, D.

    1995-04-01

    Abrupt climatic oscillations around the North Atlantic have been identified recently in Greenland ice cores as well as in North Atlantic marine sediment cores. The good correlation between the {open_quote}Dansgaard Oeschger events{close_quote} in the ice and the {open_quote}Heinrich events{close_quote} in the ocean suggests climate, in the North Atlantic region, underwent several massive reorganizations in the last glacial period. A characteristic feature seems to be their hierarchical structure. Every 7 to 10-thousand years, when the temperature is close to its minimum, the ice-sheet undergoes a massive iceberg discharge. This Heinrich event is followed by an abrupt warming. then by other oscillations, each lasting between one and two thousand years. These secondary oscillations do not have a clear signature in marine sediments but constitute most of the{open_quote} Dansgaard-Oeschger events{close_quote} found in the ice. A simplified model coupling an ice-sheet and an ocean basin, to illustrate how the interactions between these two components can lead to such a hierarchical structure. The ice-sheet model exhibits internal oscillations composed of growing phases and basal ice melting phases that induce massive iceberg discharges. These fresh water inputs in the ocean stop for a moment the thermohaline circulation, enhancing the temperature contrast between low- and high-latitudes. Just after this event, the thermohaline circulation restarts and an abrupt warming of high-latitude regions is observed. For some parameter values, these warmer temperatures have some influence on the ice-sheet, inducing secondary oscillations similar to those found in paleoclimatic records. Although the mechanism presented here may be too grossly simplified. it nevertheless underlines the potential importance of the coupling between ice-sheet dynamics and oceanic thermohaline circulation on the structure of the climatic records during the last glacial period. 33 refs., 14 figs., 1 tab.

  14. The hierarchical structure of glacial climatic oscillations: interactions between ice-sheet dynamics and climate

    NASA Astrophysics Data System (ADS)

    Paillard, Didier

    1995-04-01

    Abrupt climatic oscillations around the North Atlantic have been identified recently in Greenland ice cores as well as in North Atlantic marine sediment cores. The good correlation between the ‘Dansgaard-Oeschger events’ in the ice and the ‘Heinrich events’ in the ocean suggests that climate, in the North Atlantic region, underwent several massive reorganizations in the last glacial period. A characteristic feature of these events seems to be their hierarchical structure. Every 7 to 10-thousand years, when the temperature is close to its minimum, the ice-sheet undergoes a massive iceberg discharge. This Heinrich event is then followed by an abrupt warming, then by several other oscillations, each one lasting between one and two thousand years. These secondary oscillations do not have a clear signature in marine sediments but constitute most of the ‘Dansgaard-Oeschger events’ found in the ice. Here we use a simplified model coupling an ice-sheet and an ocean basin, in order to illustrate how the interactions between these two components can lead to such a hierarchical structure. The ice-sheet model exhibits internal oscillations composed of ice-sheet growing phases and basal ice melting phases that induce massive iceberg discharges. These massive fresh water inputs in the ocean stop for a moment the thermohaline circulation, enhancing the temperature contrast between low- and high-latitudes. Just after this event, the thermohaline circulation restarts and an abrupt warming of high-latitude regions is observed. For some parameter values, these warmer temperatures have in turn some influence on the ice-sheet, inducing secondary oscillations similar to those found in paleoclimatic records. Although the mechanism presented here may be too grossly simplified, it nevertheless underlines the potential importance of the coupling between ice-sheet dynamics and oceanic thermohaline circulation on the structure of the climatic records during the last glacial period.

  15. Morpho-Sedimentary Impacts By The Late-Pleistocene - Holocene Jkulhlaups In The jrs-Tungna Fluvio-Glacial System

    NASA Astrophysics Data System (ADS)

    Schneider, Jean Luc; van Vliet-Lanoe, Brigitte; Naaim, Mohamed; Salles, Tristan; Bjornsson, Helgi; Palsson, Finnur

    2013-04-01

    In Iceland, jkulhlaups correspond to glacial outburst floods that are generally related to sublagial volcanic and hydrothermal activities. They affect the main fluvial outwash plains around the ice caps. They result of the sudden outflow of a large volume of melt water with variable sediment charges drained from a (sub)glacial or an ice-dammed marginal lake that feeds short (hours to days) cataclysmic floods with peak discharges (103 to 107 m3.s-1), up to 10-100 times the magnitude of classical hydrometeorological fluvial floods. Despite their short duration, and because of large peak discharges, they have important erosive and sediment transport capacities. Consequently, repeated events have a strong morpho-sedimentary impact on the inundated areas. The connected watersheds of the jrs and Tungna rivers (200 km long; 5000 km2, South Island), west of Vatnajkull, correspond to the largest periglacial fluvial system in Iceland. It has drained numerous jkulhlaup floods during the Late Pleistocene deglaciation and the Holocene during periods of increase of the volcanic activity and heat flow. Jkulhlaups were emitted from at least two outlets along the western edge of Vatnajkull that fed the Kaldakvsl and Tungna rivers. The subglacial depressions (calderas) of the Brarbunga-Hamarinn volcanic system are favorable to the storage of large volumes of water that can feed major jkulhlaups. The jrs-Tungna jkulhlaup system can be subdivided into three parts: (1) the source located at the outlets of the subglacial hydraulic network, (2) a proximal transit zone along which erosional processes are dominant (erosively incised rocky substratum - scablands, abraded scoria cones, scour structures, residual buttes of the sedimentary cover) with minor lateral slackwater deposits, flood overflow ponded lakes, and hydraulic dunes along constrictions of the fluvial network, and (3) a distal depositional zone that corresponds to the coastal sandur, the area of main sedimentation before possible floods entrance into the sea as hyperpycnal plumes. Erosion and sedimentation along the system are controlled by the geometry of the fluvial network. Main erosional processes occur along steep slopes and constrictions, and in areas of fluvial channels confluences. These erosional and depositional structures were mapped along the system and summarized on a DEM. Preliminary 2D and 3D hydraulic simple modeling of the floods has been conducted for the Kaldakvsl-jrs jkulhlaup sub-system with an outlet located in the present-day lake Hgnguln area. The modeling is based on the solutions of Saint-Venant equations obtained by both eulerian (VF2D; IRSTEA) and lagrangian (TELLUS, CSIRO) approaches. Results provide theoretical velocity fields and flood heights along the flooded area. The preliminary results of this modeling were compared to the location of the field structures along the system, and significant correlations between the structures into the field and the velocity fields have been identified. In conclusion, a large jkulhlaup system is mainly erosive, with limited sedimentation located on its edges and on the coastal plain. Works in progress on the jrs-Tungna jkulhlaup system deal with the stratigraphy of past large-scale outburst events, their modeling and the estimate of their recurrence. These are some of the main objectives of the JOKER project submitted to the French Research Agency.

  16. On the timing and forcing mechanisms of late Pleistocene glacial terminations: Insights from a new high-resolution benthic stable oxygen isotope record of the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Konijnendijk, T. Y. M.; Ziegler, M.; Lourens, L. J.

    2015-12-01

    Benthic oxygen isotope records of deep marine sedimentary archives have yielded a wealth of information regarding ice sheet dynamics and climate change during the Pleistocene. However, since they often lack independent age control, these records are generally bound by a fixed phase relationship between orbital forcing and the climate response, e.g. ice volume changes. We present the first long (∼1.2 Ma) benthic oxygen isotope record from the eastern Mediterranean, based on ODP Sites 967 and 968, which clearly reflects the behavior of global climate on a glacial-interglacial scale throughout the late Pleistocene time period. The age model for our record is based on tuning the elemental ratio of titanium versus aluminum (Ti/Al) against insolation. The Ti/Al record is dominated by the precession-related changes in northern African climate, i.e. monsoonal forcing, and hence largely independent of glacial-interglacial variability. We found the largest offset between our chronology and that of the widely applied, open ocean stacked record LR04 (Lisiecki and Raymo, 2005) for TVII (∼624 ka), which occurred ∼9 kyr earlier according to our estimates, though in agreement with the AICC2012 δDice chronology of EPICA Dome C (Bazin et al., 2013). Spectral cross-correlation analysis between our benthic δ18O record and 65°N summer insolation reveals significant amounts of power in the obliquity and precession range, with an average lag of 5.5 ± 0.8 kyr for obliquity, and 6.0 ± 1.0 kyr for precession. In addition, our results show that the obliquity-related time lag was smaller (3.0 ± 3.3 kyr) prior to ∼900 ka than after (5.7 ± 1.1 kyr), suggesting that on average the glacial response time to obliquity forcing increased during the mid-Pleistocene transition, much later than assumed by Lisiecki and Raymo (2005). Finally, we found that almost all glacial terminations have a consistent phase relationship of ∼45 ± 45° with respect to the precession and obliquity-driven increases in 65°N summer insolation, consistent with the general consensus that both obliquity and precession are important for deglaciation during the Late Pleistocene. Exceptions are glacial terminations TIIIb, T36 and potentially T32 (and TVII T24 and T34), which show this consistent phase relationship only with precession (only with obliquity). Our findings point towards an early (>1200 ka) onset of the Mid Pleistocene Transition. Vice versa, the timing of TVII, which can only be explained as a response to obliquity forcing, indicates that the transition lasted until at least after MIS 15.

  17. Late Pleistocene ages for the most recent volcanism and glacial-pluvial deposits at Big Pine volcanic field, California, USA, from cosmogenic 36Cl dating

    USGS Publications Warehouse

    Vazquez, Jorge A.; Woolford, Jeff M

    2015-01-01

    The Big Pine volcanic field is one of several Quaternary volcanic fields that poses a potential volcanic hazard along the tectonically active Owens Valley of east-central California, and whose lavas are interbedded with deposits from Pleistocene glaciations in the Sierra Nevada Range. Previous geochronology indicates an ?1.2 Ma history of volcanism, but the eruption ages and distribution of volcanic products associated with the most-recent eruptions have been poorly resolved. To delimit the timing and products of the youngest volcanism, we combine field mapping and cosmogenic36Cl dating of basaltic lava flows in the area where lavas with youthful morphology and well-preserved flow structures are concentrated. Field mapping and petrology reveal approximately 15 vents and 6 principal flow units with variable geochemical composition and mineralogy. Cosmogenic36Cl exposure ages for lava flow units from the top, middle, and bottom of the volcanic stratigraphy indicate eruptions at ?17, 27, and 40 ka, revealing several different and previously unrecognized episodes of late Pleistocene volcanism. Olivine to plagioclase-pyroxene phyric basalt erupted from several vents during the most recent episode of volcanism at ?17 ka, and produced a lava flow field covering ?35 km2. The late Pleistocene36Cl exposure ages indicate that moraine and pluvial shoreline deposits that overlie or modify the youngest Big Pine lavas reflect Tioga stage glaciation in the Sierra Nevada and the shore of paleo-Owens Lake during the last glacial cycle.

  18. Late Pleistocene ages for the most recent volcanism and glacial-pluvial deposits at Big Pine volcanic field, California, USA, from cosmogenic 36Cl dating

    NASA Astrophysics Data System (ADS)

    Vazquez, J. A.; Woolford, J. M.

    2015-09-01

    The Big Pine volcanic field is one of several Quaternary volcanic fields that poses a potential volcanic hazard along the tectonically active Owens Valley of east-central California, and whose lavas are interbedded with deposits from Pleistocene glaciations in the Sierra Nevada Range. Previous geochronology indicates an ˜1.2 Ma history of volcanism, but the eruption ages and distribution of volcanic products associated with the most-recent eruptions have been poorly resolved. To delimit the timing and products of the youngest volcanism, we combine field mapping and cosmogenic 36Cl dating of basaltic lava flows in the area where lavas with youthful morphology and well-preserved flow structures are concentrated. Field mapping and petrology reveal approximately 15 vents and 6 principal flow units with variable geochemical composition and mineralogy. Cosmogenic 36Cl exposure ages for lava flow units from the top, middle, and bottom of the volcanic stratigraphy indicate eruptions at ˜17, 27, and 40 ka, revealing several different and previously unrecognized episodes of late Pleistocene volcanism. Olivine to plagioclase-pyroxene phyric basalt erupted from several vents during the most recent episode of volcanism at ˜17 ka, and produced a lava flow field covering ˜35 km2. The late Pleistocene 36Cl exposure ages indicate that moraine and pluvial shoreline deposits that overlie or modify the youngest Big Pine lavas reflect Tioga stage glaciation in the Sierra Nevada and the shore of paleo-Owens Lake during the last glacial cycle.

  19. Sediment production and transport in the New Zealand Southern Alps - Canterbury sedimentary system during the Late Pleistocene: the influence of alpine glacial erosion on the marine stratigraphic record.

    NASA Astrophysics Data System (ADS)

    Villaseor, T. G.; Jaeger, J. M.; Foster, D. A.

    2014-12-01

    Quaternary mountain glaciations have greatly modified landscape and sediment production, especially after the Mid Pleistocene Transition. However, the impact of increased glacigenic sediment yields on continental margin sedimentation is poorly documented during this period in which eustasy is proposed as the dominant control on margin development. We study the provenance of sediment accumulated in the continental shelf during the Late Pleistocene, by performing 40Ar/39Ar geochronology of the bulk silt-size fraction on sediment samples from three sites drilled during IODP Expedition 317 to Canterbury Basin, New Zealand. The results show ages that range from 25 to 90 Ma, which are significantly younger than the cooling ages of the potential rock sources (>100 Ma). Bedrock cooling ages similar to our results are found adjacent to the Main Divide Fault Zone, located near the main drainage divide in Central Southern Alps. This suggests that a large proportion of sediment accumulating in the continental shelf is sourced in this region of highest elevation and maximum glacial erosion. Sediment bulk ages in the cores show younger ages up-section, suggesting that contribution of young sediment has increased and/or that glaciers have eroded younger rocks with time. In addition, sediment ages are younger in the most landward site, while the most offshore site observes young ages later indicating that the input of young sediment across the continental shelf is progressive, likely by means of sediment reworking during sea level transgression and shoreline migration during sea level fall. We propose that sediment transfer from source to sink occurs in steps in which sediment undergoes several cycles of transport and storage until final accumulation. Glacial erosion plays a very important role in this sedimentary system, supplying sediment that is likely eroded in a zone of rock weakness. The age signature of the muddy sediment accumulating in the continental shelf likely reflects Late Pleistocene landscape evolution in the Southern Alps.

  20. Production of Carbon Dioxide From Sub-aerially Exposed Continental Shelves and Oceanic Islands During Glacial Periods Since the Middle Pleistocene Climatic Transition

    NASA Astrophysics Data System (ADS)

    Yim, W. W.; Ridley Thomas, N. W.; Switzer, A. D.; Montaggioni, L.; Berne, S.; Camoin, G.

    2008-12-01

    The EPICA Dome C ice core has yielded an 800,000-year record of atmospheric carbon dioxide composition from the Middle Pleistocene climatic transition to the present day. In this record, there is a sharp increase in carbon dioxide immediately following the glacial maxima during the glacial periods which to date remains difficult to explain. We will present evidence to show that sub-aerially exposed continental shelves and oceanic islands may be at least partly responsible for the production of the missing carbon dioxide. In exposed siliciclastic-dominated shelves and oceanic islands, acid-sulphate soil development would lead to the release of carbon dioxide. On the other hand, in exposed carbonate-dominated shelves and oceanic islands, karstification would also lead to the release of carbon dioxide. Selected cores from continental shelves and oceanic islands will be used to support this claim. Further studies on cores obtained from other continental shelves and oceanic islands would facilitate the estimation of carbon dioxide loss through comparison between Holocene marine deposits and their pre-Holocene counterparts. Additionally, information on the vegetation history of exposed shelves and oceanic islands during glacial periods may be obtainable to supplement our knowledge gap on past changes in the biological pump.

  1. Reduced El Nio-Southern Oscillation during the Last Glacial Maximum.

    PubMed

    Ford, Heather L; Ravelo, A Christina; Polissar, Pratigya J

    2015-01-16

    El Nio-Southern Oscillation (ENSO) is a major source of global interannual variability, but its response to climate change is uncertain. Paleoclimate records from the Last Glacial Maximum (LGM) provide insight into ENSO behavior when global boundary conditions (ice sheet extent, atmospheric partial pressure of CO2) were different from those today. In this work, we reconstruct LGM temperature variability at equatorial Pacific sites using measurements of individual planktonic foraminifera shells. A deep equatorial thermocline altered the dynamics in the eastern equatorial cold tongue, resulting in reduced ENSO variability during the LGM compared to the Late Holocene. These results suggest that ENSO was not tied directly to the east-west temperature gradient, as previously suggested. Rather, the thermocline of the eastern equatorial Pacific played a decisive role in the ENSO response to LGM climate. PMID:25593181

  2. Does an asymmetric thermohaline-ice-sheet oscillator drive 100 000-yr glacial cycles?

    NASA Astrophysics Data System (ADS)

    Denton, George H.

    2000-05-01

    A hypothesis is presented that late Quaternary 100 000-yr glacial cycles are driven by an asymmetric thermohaline-ice-sheet oscillator that emerged in the global climate system 650 000-950 000 yr ago, perhaps when the main source of Northern Hemisphere deep-water production shifted south from the Arctic into the Nordic seas. It is hypothesised that the asymmetry is due to the increasing difficulty after 950 000 years ago of resetting an interglacial mode of the critical Nordic limb of the salinity conveyor once it switches off and an ensuing iceberg flux enters the areas of downwelling. A possible reason for both a southward shift and the resulting asymmetry is uplift of the Greenland-Scotland submarine ridge from activity of the Iceland mantle plume.In this hypothesis an individual 100 000-yr glacial cycle begins when the northernmost limb of the salinity conveyor in the Nordic seas is curtailed, or even switched off, perhaps due to the growing strength of competing Antarctic Bottom Water (AABW) generated by interglacial recession of the West Antarctic Ice Sheet (WAIS) from the West Antarctic Rift System. Such recession produces southern marginal seas where dense shelf water can collect and overflow into the abyss. When northern ice sheets, nucleated by this circulation switch, develop marine components that calve icebergs into the Nordic seas, the salinity conveyor can no longer revert to an interglacial mode from orbital forcing, as it did prior to 950 000 yr ago. In order to reset an interglacial circulation mode of the conveyor, ice sheets must continue to grow for 100 000 years until they capture enough excess volume to produce a gravitational collapse of marine-based components, so massive that all grounded ice is flushed from North Atlantic continental shelves. The outburst of icebergs produced by this collapse cripples the glacial mode of overturning in the northern North Atlantic. Once this collapse ends, however, the Nordic seas become nearly free of icebergs for the first time in 100 000 years because of the depletion of adjacent marine-based components. As a consequence, North Atlantic salinity increases rapidly, switching the conveyor into a vigorous interglacial mode of operation and hence terminating the glacial cycle.By lowering sea-level, the prolonged growth of Northern Hemisphere ice sheets during each 100 000-yr cycle drives Antarctic grounding lines seaward across continental shelves, squeezing off the source of densified shelf waters that feed AABW. Sea-level rise and increased basal melting, however, caused by the subsequent collapse of northern ice sheets and the reintroduction of North Atlantic Deep Water into the Southern Ocean, reverses the process, forcing retreat of Antarctic grounding lines from their advanced last-glacial maximum positions. This retreat opens marginal seas for renewed formation of dense shelf water. By expanding marginal seas and hence the source of dense shelf water, ongoing recession of the WAIS strengthens AABW during the course of an interglaciation, eventually forcing a thermohaline circulation switch in the Nordic seas and initiating yet another 100 000-yr glacial cycle.The 100 000-yr duration of each cycle is set by two factors. Inertia is built into the system by the long time required for ice sheets to grow to the excess volume necessary for a marine collapse that resets the salinity conveyor into an interglacial mode. Eccentricity-driven changes in the amplitude of the precession or tropical half-precession signal give rise to warming events that trigger such a collapse of excess ice about each 100 000 yr.

  3. Linking Late Pleistocene alpine glacial erosion and continental margin sedimentation: Insights from 40Ar/39Ar dating of silt-sized sediment, Canterbury Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Villaseñor, Tania; Jaeger, John M.; Foster, David A.

    2016-01-01

    Quaternary climatic and eustatic cycles in mid-latitude regions have led to more extensive alpine glaciations and continental shelf progradation, respectively. However, the glacial influence on sediment fluxes to the ocean creating continental margin strata is poorly documented. This contribution analyzes the provenance of fine sediment accumulating on the continental shelf during the Late Pleistocene to evaluate the influence of glacial cycles on sediment erosion and routing to the continental shelf. Taking advantage of the contrasting bedrock ages exposed across the Southern Alps, New Zealand, we perform 40Ar/39Ar incremental heating on the bulk silt-size sediment from three drill sites of IODP Expedition 317, Canterbury Basin, New Zealand. The results suggest that a large proportion of sediment accumulating on the continental shelf results from erosion within the Main Divide fault zone of the Southern Alps. Sediment 40Ar/39Ar age fluctuations over this time period suggest that bedrock with various 40Ar/39Ar cooling ages has been differentially eroded in the upper Waitaki River catchment and mixed in the Waitaki-Canterbury sediment-routing system. Across-shelf variations in sediment 40Ar/39Ar age reflect changing modes of sediment dispersal on the continental shelf. Fluvial material, likely derived from the main drainage divide zone, preferentially accumulates in the middle continental shelf, whereas material representing erosion of older bedrock (Torlesse Terrane), located lower in the drainage basin, is dispersed uniformly across the shelf. The age signature of the muddy sediment accumulating on the continental shelf reflects Late Pleistocene landscape evolution of the Southern Alps and its influence on sediment dispersal to the continental shelf.

  4. Gradual and small decrease of glacial sea surface temperatures in the eastern equatorial Indian ocean across the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Casse, Marie; Malaize, Bruno; Bassinot, Franck; Caillon, Nicolas; Degaridel-Thoron, Thibault; Rebaubier, Hélène; Charlier, Karine; Caley, Thibaut; Marieu, Vincent; Beaufort, Luc; Rojas, Virginia; Meynadier, Laure; Valet, Jean Pierre; Reaud, Yvan

    2015-04-01

    The Mid-Pleistocene Transition (MPT), between about 1.2 and 0.7 Ma, is characterized by the emergence of asymmetric, high-amplitude 100 ka cycles, which contrast with the low amplitude, 41 kyr cycles that dominate the early Pleistocene climate. Here, we study the sediment core MD12-3409, which spans the last ~ 1.75 Ma, to document hydrographic changes across the MPT in the Eastern Equatorial Indian Ocean. Stratigraphy is based on benthic foraminifera delta18O and we reconstruct Sea Surface Temperatures (SST) using the Mg/Ca ratio of Globigerinoides ruber, a surface dwelling planktonic foraminifera. Our results reveal a progressive cooling of glacial maxima across the MPT but no long-term trend in mean SST over the last 1.75 Ma. The main periodicity of the surface temperature signal shifts from 41 kyr before the MPT, to both 100 kyr and 41 kyr for the post MPT time period. Over the last 800 ka, the strong correlation between core MD12-3409 SST fluctuations and the atmospheric CO2 record suggests a global, greenhouse forcing for the tropical Indian SST over the post-MPT time period. Within the MPT, and for earlier time interval, changes in temperature gradients between our SST record and other temperature records in, or at the edge of, the Pacific Warm Pool, could suggest reorganizations of sea surface circulation and lateral heat exchanges. Since the MPT, the amplification of sea level lowering during glacial periods might have shoaled the Indonesian Through Flow (ITF) gateway, restricting hydrographic exchanges between Pacific and Indian oceans.

  5. Periodic jkulhlaups from Pleistocene glacial Lake MissoulaNew evidence from varved sediment in northern Idaho and Washington

    NASA Astrophysics Data System (ADS)

    Waitt, Richard B.

    1984-07-01

    Newly examined exposures in northern Idaho and Washington show that catastrophic floods from glacial Lake Missoula during late Wisconsin time were repeated, brief jkulhlaups separated by decades of quiet glaciolacustrine and subaerial conditions. Glacial Priest Lake, dammed in the Priest River valley by a tongue of the Purcell trench lobe of the Cordilleran ice sheet, generally accumulated varved mud; the varved mud is sharply interrupted by 14 sand beds deposited by upvalley-running currents. The sand beds are texturally and structurally similar to slackwater sediment in valleys in southern Washington that were backflooded by outbursts from glacial Lake Missoula. Beds of varved mud also accumulated in glacial Lake Spokane (or Columbia?) in Latah Creek valley and elsewhere in northeastern Washington; the mud beds were disrupted, in places violently, during emplacement of each of 16 or more thick flood-gravel beds. This history corroborates evidence from southern Washington that only one graded bed is deposited per flood, refuting a conventional idea that many beds accumulated per flood. The total number of such floodlaid beds in stratigraphic succession near Spokane is at least 28. The mud beds between most of the floodlaid beds in these valleys each consist of between 20 and 55 silt-to-clay varves. Lacustrine environments in northern Idaho and Washington therefore persisted for two to six decades between regularly recurring, colossal floods from glacial Lake Missoula.

  6. Low but structured chloroplast diversity in Atherosperma moschatum (Atherospermataceae) suggests bottlenecks in response to the Pleistocene glacials

    PubMed Central

    Worth, James R. P.; Marthick, James R.; Jordan, Gregory J.; Vaillancourt, Ren E.

    2011-01-01

    Background and Aims The cool temperate rainforests of Australia were much reduced in range during the cold and dry glacial periods, although genetic evidence indicates that two key rainforest species, Nothofagus cunninghamii and Tasmannia lanceolata, survived within multiple locations and underwent only local range expansions at the end of the Last Glacial. To better understand the glacial response of a co-occurring but wind-dispersed and less cold-tolerant rainforest tree species, Atherosperma moschatum, a chloroplast phylogeographic study was undertaken. Methods A total of 3294 bp of chloroplast DNA sequence was obtained for 155 samples collected from across the species' range. Key Results The distribution of six haplotypes observed in A. moschatum was geographically structured with an inferred ancestral haplotype restricted to Tasmania, while three non-overlapping and endemic haplotypes were found on the mainland of south-eastern Australia. Last glacial refugia for A. moschatum are likely to have occurred in at least one location in western Tasmania and in Victoria and within at least two locations in the Great Dividing Range of New South Wales. Nucleotide diversity of A. moschatum was lower (? = 000021) than either N. cunninghamii (000101) or T. lanceolata (000073), and was amongst the lowest recorded for any tree species. Conclusions This study provides evidence for past bottlenecks having impacted the chloroplast diversity of A. moschatum as a result of the species narrower climatic niche during glacials. This hypothesis is supported by the star-like haplotype network and similar estimated rates of chloroplast DNA substitution for A. moschatum and the two more cold tolerant and co-occurring species that have higher chloroplast diversity, N. cunninghamii and T. lanceolata. PMID:21856633

  7. Influence of Pleistocene glacial/interglacial cycles on the genetic structure of the mistletoe cactus Rhipsalis baccifera (Cactaceae) in Mesoamerica.

    PubMed

    Ornelas, Juan Francisco; Rodríguez-Gómez, Flor

    2015-01-01

    Phylogeographical work on cloud forest-adapted species provides inconsistent evidence on cloud forest dynamics during glacial cycles. A study of Rhipsalis baccifera (Cactaceae), a bird-dispersed epiphytic mistletoe cactus, was conducted to investigate genetic variation at sequence data from nuclear [internal transcribed spacer (ITS), 677 bp] and chloroplast (rpl32-trnL, 1092bp) DNA for 154 individuals across the species range in Mesoamerica to determine if such patterns are consistent with the expansion/contraction model of cloud forest during glacial cycles. We conducted population and spatial genetic analyses as well as gene flow and divergence time estimates between 24 populations comprising the distribution of R. baccifera in Mexico and Guatemala to gain insight of the evolutionary history of these populations, and a complementary species distribution modeling approach to frame information derived from the genetic analyses into an explicit paleoecological context. The results revealed a phylogeographical break at the Isthmus of Tehuantepec, and high levels of genetic diversity among populations and cloud forest areas. Despite the genetic differentiation of some R. baccifera populations, the widespread ITS ribotypes suggest effective nuclear gene flow via pollen and population differentiation shown by the rpl32-trnL suggests more restricted seed flow. Predictions of species distribution models under past last glacial maximum (LGM) climatic conditions and a significant signal of demographic expansion suggest that R. baccifera populations experienced a range expansion tracking the conditions of the cloud forest distribution and shifted to the lowlands with population connectivity during the LGM. PMID:25649131

  8. Did glacial advances during the Pleistocene influence differently the demographic histories of benthic and pelagic Antarctic shelf fishes? Inferences from intraspecific mitochondrial and nuclear DNA sequence diversity

    PubMed Central

    Janko, Karel; Lecointre, Guillaume; DeVries, Arthur; Couloux, Arnaud; Cruaud, Corinne; Marshall, Craig

    2007-01-01

    Background Circum-Antarctic waters harbour a rare example of a marine species flock the Notothenioid fish, most species of which are restricted to the continental shelf. It remains an open question as to how they survived Pleistocene climatic fluctuations characterised by repeated advances of continental glaciers as far as the shelf break that probably resulted in a loss of habitat for benthic organisms. Pelagic ecosystems, on the other hand, might have flourished during glacial maxima due to the northward expansion of Antarctic polar waters. In order to better understand the role of ecological traits in Quaternary climatic fluctuations, we performed demographic analyses of populations of four fish species from the tribe Trematominae, including both fully benthic and pelagic species using the mitochondrial cytochrome b gene and an intron from the nuclear S7 gene. Results Nuclear and cytoplasmic markers showed differences in the rate and time of population expansions as well as the likely population structure. Neutrality tests suggest that such discordance comes from different coalescence dynamics of each marker, rather than from selective pressure. Demographic analyses based on intraspecific DNA diversity suggest a recent population expansion in both benthic species, dated by the cyt b locus to the last glacial cycle, whereas the population structure of pelagic feeders either did not deviate from a constant-size model or indicated that the onset of the major population expansion of these species by far predated those of the benthic species. Similar patterns were apparent even when comparing previously published data on other Southern Ocean organisms, but we observed considerable heterogeneity within both groups with regard to the onset of major demographic events and rates. Conclusion Our data suggest benthic and pelagic species reacted differently to the Pleistocene ice-sheet expansions that probably significantly reduced the suitable habitat for benthic species. However, the asynchronous timing of major demographic events observed in different species within both "ecological guilds", imply that the species examined here may have different population and evolutionary histories, and that more species should be analysed in order to more precisely assess the role of life history in the response of organisms to climatic changes. PMID:17997847

  9. Facies characteristics of Middle Pleistocene (Saalian) ice-margin subaqueous fan and delta deposits, glacial Lake Leine, NW Germany

    NASA Astrophysics Data System (ADS)

    Winsemann, Jutta; Asprion, Ulrich; Meyer, Thomas; Schramm, Christoph

    2007-01-01

    The blocking of major river valleys in the Leinebergland area by the Early Saalian Scandinavian ice sheet led to the formation of a large glacial lake, referred to as "glacial Lake Leine", where most of the sediment was deposited by meltwater. At the initial stage, the level of glacial Lake Leine was approx. 110 m a.s.l. The lake level then rose by as much as 100 m to a highstand of approx. 200 m a.s.l. Two genetically distinct ice-margin depositional systems are described that formed on the northern margin of glacial Lake Leine in front of the retreating Scandinavian ice sheet. The Bornhausen delta is up to 15 m thick and characterized by a large-scale tangential geometry with dip angles from 10-28, reflecting high-angle foreset deposition on a steep delta slope. Foreset beds consist of massive clast-supported gravel and pebbly sand, alternating with planar-parallel stratified pebbly sand, deposited from cohesionless debris flows, sandy debris flows and high-density turbidity flows. The finer-grained sandy material moved further downslope where it was deposited from low-density turbidity currents to form massive or ripple-cross-laminated sand in the toeset area. The Freden ice-margin depositional system shows a more complex architecture, characterized by two laterally stacked sediment bodies. The lower part of the section records deposition on a subaqueous ice-contact fan. The upper part of the Freden section is interpreted to represent delta-slope deposits. Beds display low- to high-angle bedding (3-30) and consist of planar and trough cross-stratified pebbly sand and climbing-ripple cross-laminated sand. The supply of meltwater-transported sediment to the delta slope was from steady seasonal flows. During higher energy conditions, 2-D and 3-D dunes formed, migrating downslope and passing into ripples. During lower-energy flow conditions thick climbing-ripple cross-laminated sand beds accumulated also on higher parts of the delta slope.

  10. Glacial deposits at the Boyne Bay Limestone Quarry, Portsoy, and their place in the late Pleistocene history of northeast Scotland

    NASA Astrophysics Data System (ADS)

    Peacock, J. Douglas; Merritt, Jon W.

    2000-07-01

    The glacial deposits at the Boyne Bay Limestone Quarry near Portsoy, a key Quaternary Site of Special Scientific Interest, comprise (i) a sandy, partly weathered diamicton (Craig of Boyne Till Formation, CBTF) resting on decomposed bedrock, (ii) a central, variably glaciotectonised assemblage of dark clay, diamicton and sand, with rafts of sand and weathered diamicton (Whitehills Glacigenic Formation, WGF), and (iii) an upper dark sandy diamicton (Old Hythe Till Formation, OHTF). The CBTF was probably derived from the west or southwest, and the WGF from seawards. Structures within the OHTF conform to deposition by east- or southeast-moving ice from the Moray Firth, but some erratics indicate derivation from the south. The CBTF is believed to pre-date the last (lpswichian) interglacial, but the WGF and OHTF both post-date the early Middle Devensian, and are probably of Late Devensian age. It is proposed that the OHTF was deposited by ice from inland which was directed eastwards near the coast by a vigorous glacier in the Moray Firth, and that the complex, Late Devensian glacial history of the south coast of the Moray Firth as a whole is the result of the interplay of these two contemporary ice-masses. British Geological Survey. NERC 2000.

  11. Sedimentological evidence for a deforming bed in a late Pleistocene glacial sequence from ANDRILL AND-1B, Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Cowan, E. A.; Powell, R. D.

    2009-12-01

    A 1,284.87m-long sediment core (AND-1B) was drilled from beneath the McMurdo Ice Shelf sector of the Ross Ice Shelf as part of the Antarctic geological drilling program, ANDRILL. Snapshots of diamictite depositional processes and paleoenvironmental conditions have been interpreted from a nested set of samples collected at overlapping scales of observation. Data used for detailed sedimentological analyses include cm-scale core logging based on x-radiographs of the archive halves in addition to the original core description, bulk samples, and oriented 45 x 70mm thin sections of diamictites for micromorphology analysis. The 5.8m-thick interval studied contains a complete glacial advance-retreat sequence that is bracketed by glacial surfaces of erosion (GSE) at 41.9 and 47.7mbsf recording glacial advance over the core site. 4.6m of subglacial till is deposited above the lower GSE represented by a sequence of thin muddy conglomerate with diverse pebble lithologies, massive clast-rich muddy diamicite, and stratified diamictite with clast-rich and clast-free beds. The sand size fraction of bulk samples and thin sections from the till are dominated by aggregate grains, termed till pellets following terminology used by sedimentologists in the Ross Sea. The core of the pellet may be a lithic grain or stiff till with additional clay plastered on the outside forming rounded grains from angular ones. Till pellets are rounded, spherical to prolate in form and are associated with turbate structures and aligned grains in till thin sections - evidence of rotational deformation. The area beneath an ice shelf in front of a grounding line is recorded by a thin bed of granular particles that transitions to silty claystone stratified with granules. Granular layers are thought to be from periodic winnowing by strong currents focused near the grounding line. The sub-ice shelf transition from proximal grounding line to distal is recorded by a gradational contact between stratified silty claystone and massive silty claystone. The subglacial diamictites within this interval appear to have formed within a deforming bed. Clay content and high porewater pressures are key to development of till pellets because flow within the dilated till layer rounds intraclasts without crushing grains. Upon a drop in porewater pressure and draining of the till, accretion occurs as the grains solidify. Continuous deforming beds are likely to occur in ice-marginal locations where soft sediment is abundant and where subglacial water is spread diffusely rather than focused in channels.

  12. Unusual configuration of the Devonian-Pleistocene unconformity in the Susquehanna Valley, Oneonta, New York: Evidence for a subglacial meltwater inlet to glacial Lake Otego

    SciTech Connect

    Kucewicz, J. Jr.; Ebert, J.; Rasquin, C.; Sherman, R.; Nethaway, R.; Gardner, J.; Milunich, K.; Weber, J.; Wohlford, T.; Franz, J.; Brillon, S. . Dept. of Earth Sciences)

    1993-03-01

    A recently drilled test well and nearby abandoned bore hole have revealed anomalously shallow bedrock in a portion of the Susquehanna Valley near Oneonta, New York. Gravimetric and seismic refraction studies were conducted in the area to better delineate the Devonian--Pleistocene unconformity. On the northern flank of the valley, geophysical surveys indicate the presence of a shallowly buried bedrock shelf that is rimmed by a bedrock ridge. South of the ridge, bedrock drops abruptly beneath the thickening valley fill. This configuration contradicts predictions based upon projection of the valley walls to a classic U shape. These unusual features coincide with an extremely narrow portion of the valley, a recessional moraine and other stagnant ice features. The bedrock shelf may represent the initial glaciated valley floor. Incision of the valley floor below this surface can be attributed to scour by subglacial meltwaters at a nick point. As such, the narrow, deepest part of the bedrock valley may represent a subglacial inlet to glacial Lake Otego.

  13. Turbidite megabeds in an Oceanic Rift Valley recording jokulhlaups of late Pleistocene glacial lakes of the western United States

    USGS Publications Warehouse

    Zuffa, G.G.; Normark, W.R.; Serra, F.; Brunner, C.A.

    2000-01-01

    Escanaba Trough is the southernmost segment of the Gorda Ridge and is filled by sandy turbidites locally exceeding 500 m in thickness. New results from Ocean Drilling Program (ODP) Sites 1037 and 1038 that include accelerator mass spectrometry (AMS) 14C dates and revised petrographic evaluation of the sediment provenance, combined with high-resolution seismic-reflection profiles, provide a lithostratigraphic framework for the turbidite deposits. Three fining-upward units of sandy turbidites from the upper 365 m at ODP Site 1037 can be correlated with sediment recovered at ODP Site 1038 and Deep Sea Drilling Program (DSDP) Site 35. Six AMS 14C ages in the upper 317 m of the sequence at Site 1037 indicate that average deposition rates exceeded 10 m/k.yr. between 32 and 11 ka, with nearly instantaneous deposition of one ~60-m interval of sand. Petrography of the sand beds is consistent with a Columbia River source for the entire sedimentary sequence in Escanaba Trough. High-resolution acoustic stratigraphy shows that the turbidites in the upper 60 m at Site 1037 provide a characteristic sequence of key reflectors that occurs across the floor of the entire Escanaba Trough. Recent mapping of turbidite systems in the northeast Pacific Ocean suggests that the turbidity currents reached the Escanaba Trough along an 1100-km-long pathway from the Columbia River to the west flank of the Gorda Ridge. The age of the upper fining-upward unit of sandy turbidites appears to correspond to the latest Wisconsinan outburst of glacial Lake Missoula. Many of the outbursts, or jokulhlaups, from the glacial lakes probably continued flowing as hyperpycnally generated turbidity currents on entering the sea at the mouth of the Columbia River.

  14. Late Pleistocene evolution of the Rhine-Meuse system in the southern North Sea basin: imprints of climate change, sea-level oscillation and glacio-isostacy

    NASA Astrophysics Data System (ADS)

    Busschers, F. S.; Kasse, C.; van Balen, R. T.; Vandenberghe, J.; Cohen, K. M.; Weerts, H. J. T.; Wallinga, J.; Johns, C.; Cleveringa, P.; Bunnik, F. P. M.

    2007-12-01

    High-resolution continuous core material, geophysical measurements, and hundreds of archived core descriptions enabled to identify 13 Late Pleistocene Rhine-Meuse sedimentary units in the infill of the southern part of the North Sea basin (the Netherlands, northwestern Europe). This sediment record and a large set of Optical Stimulated Luminescence dates, 14C dates and biostratigraphical data, allowed to establish detailed relationships between climate change, sea-level oscillation, glaciation history and the sedimentary development of the Rhine fluvial system during the last glacial cycle (Marine Isotope Stages 5e-2, Eemian-Weichselian). A well-preserved Eemian sediment record was encountered as the infill of a Late Saalian (MIS6) subglacial basin. Part of this record reflects groundwater rise controlled (fine-grained) sedimentation as a result of postglacial (early) Eemian sea-level rise. It shows strong analogy to developments known from the Holocene Rhine-Meuse delta. Outside of the glacial depressions near coastal deposits are only fragmentarily preserved. The Early Glacial Rhine sediment record is dominated by organic debris and peat layers, marking landscape stability and low fluvial activity. Part of this record may have been formed under near coastal conditions. Significant amounts of reworked marine biomarkers in the lag-deposits of Early Pleniglacial (MIS4) fluvial systems indicate that this period is characterized by extensive reworking of older (MIS5) near-coastal sediments. Despite the marked Early Pleniglacial climatic cooling, input of new sediment from the drainage basin was relatively low, a feature that is related to the presence of regolith protective relic soil complexes in the basin. During the early Middle Pleniglacial, a major Rhine avulsion indicates the system was in an aggrading mode and that sediment supply into the lower reaches of the Rhine had strongly increased. This increase in sediment supply coincided with the timing of major climate cooling that occurred from ?50 to 45 ka onwards. The increase in sediment supply is related to final breakup of the soil complexes in the drainage basin. After ?24 ka, a strong input of coarse-grained gravelly sediments was observed which indicates a strong increase in physical weathering processes and periglacial-controlled supply of bedload sediment in the catchment. A time delay between climate change (?30 ka) and channel belt aggradation (<24 ka), is explained as a result of transport path length between source and sink and/or effects of higher continental runoff rates after 22 ka. The Late Middle Pleniglacial, Late Pleniglacial and Lateglacial Rhine-Meuse record testifies for strong influence of glacio-isostatic-controlled differential upwarping of the study area. Glacio-isostatic-controlled forebulge upwarping and lateral valley tilting is shown to have deflected Rhine-Meuse channel belts after 35 ka. Glacio-isostatic upwarping is seen as the main cause for strong incision during the first phase of the Late Pleniglacial (30-24 ka). At later stage glacio-isostatic-controlled incision was overruled due to high climate-controlled sediment input from the catchment and probably initial glacio-isostatic subsidence. Migration of channel belts towards the direction of the former centre of glacio-isostatic uplift indicates that glacio-isostacy influenced Rhine-Meuse paleogeography until far into the Lateglacial.

  15. Tempo of genetic diversification in southern African rodents: The role of Plio-Pleistocene climatic oscillations as drivers for speciation

    NASA Astrophysics Data System (ADS)

    Montgelard, Claudine; Matthee, Conrad A.

    2012-07-01

    The evolution of the southern African faunal assemblages is thought to have been largely influenced by climatic oscillations of the Plio-Pleistocene. These fluctuations presumably had a major impact in the form of vicariant diversification of taxa by causing simultaneous speciation/cladogenetic events due to habitat fragmentation. We aimed to test this hypothesis by comparing the timing of diversification observed for several rodent lineages with three peaks of aridification described at approximately 2.8, 1.7 and 1.0 Mya. Our study included nine rodent taxa (Nannomys, Aethomys, Otomys, Myotomys, Rhabdomys and Mastomys for the Muridae, Saccostomus for the Nesomyidae, Cryptomys for the Bathyergidae, and Xerus for the Sciuridae) that showed intrageneric mitochondrial cytochrome b cladogenesis during the last 5 Ma. Phylogenetic analysis performed with maximum likelihood and Bayesian methods supported the monophyly of all subgenera and genera. Most diversifications are also well supported and in agreement with previously published studies. Divergence dates between lineages were estimated using a Bayesian relaxed molecular clock and the 7 Myr split between different Apodemus species as well as the divergence between Tatera and Gerbillurus at 6.3 Myr were used as calibration points. Our results did not provide any convincing evidence of a correspondence between rodent diversification events and peaks in aridity during the Plio-Pleistocene. The nearly perfect linear correlation between cladogenesis and time, during the last 5 Myr, strongly suggests that the diversification of southern African rodent lineages is driven by complex interactions between different factors, including life history, climatic changes, and topographic barriers.

  16. Post-Last Glacial Maximum (Latest Pleistocene to Holocene) geology of the Santa Barbara shelf, southern California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Ritchie, A. C.; Conrad, J. E.; Dartnell, P.; Phillips, E.; Sliter, R. W.

    2011-12-01

    High-resolution bathymetric and seismic-reflection data collected for the California Seafloor Mapping Program (http://walrus.wr.usgs.gov/mapping/csmp/) provide new insights for understanding the post-Last Glacial Maximum (LGM) evolution of the Santa Barbara shelf, highlighting relationships between tectonics, eustasy, and sediment supply. The west-trending shelf extends offshore for 5 to 7 km and is bounded on the south by the deep Santa Barbara basin and on the north by a narrow coastal zone and the steep, rapidly uplifting Santa Ynez Mountains. The active, west-trending, north-dipping Ventura-Pitas Point-North Channel and Red Mountain fault systems form the structural boundary between two distinct shelf domains. The smooth, gently sloping, southern shelf is flooded by thick (35 to 40 m), prograding Santa Clara and Ventura River deltaic deposits. These thick strata drape the shelfbreak and fill the accommodation space created by rising sea level, largely masking the influence of active tectonics. In contrast, the northern shelf has complex bathymetry and a well-defined, sharp shelfbreak at ~90 m water depth. The northern shelf is relatively sediment starved (mean sediment thickness is 3 to 4 m), with thickest accumulations (up to ~18 m) forming shallow (< 30 m), discontinuous to laterally coalescing, inner-shelf bars that are best developed at the mouths of steep coastal watersheds. These watersheds also feed several distinct, coarse-grained sediment lobes (as large as ~1.5 km2, extending to 3 km offshore and depths of 70 m) that probably formed during massive flood events. The relative lack of offshore deposits on the northern shelf suggests sediment transport is dominated by easterly nearshore drift. Faulting and folding on the northern shelf are significant controls on sediment distribution and thickness, the occurrence of bedrock uplifts, and common hydrocarbon-associated seeps, pockmarks, and mounds. Bedrock, typically "soft" Neogene strata, is especially common on the mid- to-outer shelf, forming low-relief ribbed outcrops. Bedrock on the flat outer shelf contains nearshore clam (pholad) borings and is interpreted as the ~20 ka lowstand (Stage 2) wave-cut platform; its depth (< 90 m) indicates post-LGM uplift of about 40 m (rate of ~2 mm/yr) that is tied to slip on the underlying North Channel fault. Three or more(?) distinct submerged strandlines and wave-cut platforms occur within the northern shelf at shallower depths, and are inferred to record relative post-LGM stillstands associated with either pulses of slower sea-level rise or periods when sea level rise was matched by tectonic uplift.

  17. Offset timing of climate oscillations during the last two glacial-interglacial transitions connected with large-scale freshwater perturbation

    NASA Astrophysics Data System (ADS)

    Jimnez-Amat, Patricia; Zahn, Rainer

    2015-06-01

    Multidecadal to centennial planktic ?18O and Mg/Ca records were generated at Ocean Drilling Program Site 976 (ODP976) in the Alboran Sea. The site is in the flow path of Atlantic inflow waters entering the Mediterranean and captured North Atlantic signals through the surface inflow and the atmosphere. The records reveal similar climatic oscillations during the last two glacial-to-interglacial transitions, albeit with a different temporal pacing. Glacial termination 1 (T1) was marked by Heinrich event 1 (H1), post-H1 Blling/Allerd warming, and Younger Dryas (YD) cooling. During T2 the H11 ?18O anomaly was twice as high and lasted 30% longer than during H1. The post-H11 warming marked the start of MIS5e while the subsequent YD-style cooling occurred during early MIS5e. The post-H11 temperature increase at ODP976 matched the sudden Asian Monsoon Termination II at 129 ka B.P. Extending the 230Th-dated speleothem timescale to ODP976 suggests glacial conditions in the Northeast Atlantic region were terminated abruptly and interglacial warmth was reached in less than a millennium. The early-MIS5e cooling and freshening at ODP976 coincided with similar changes at North Atlantic sites suggesting this was a basin-wide event. By analogy with T1, we argue that this was a YD-type event that was shifted into the early stages of the last interglacial period. This scenario is consistent with evidence from northern North Atlantic and Nordic Sea sites that the continuing disintegration of the large Saalian Stage (MIS6) ice sheet in Eurasia delayed the advection of warm North Atlantic waters and full-strength convective overturn until later stages of MIS5e.

  18. Influence of Glacial Oscillations on Deformation in the Himalayas of Central Nepal

    NASA Astrophysics Data System (ADS)

    Godard, V.; Burbank, D. W.

    2009-12-01

    Recent studies indicate that variations in surface loads associated with the evolution of ice caps or lakes can modulate the stress pattern inside the crust [e.g. Hampel et al., 2007; Luttrell et al., 2007; Turpeinen et al., 2008]. In particular these studies point out that such variations may be large enough to change the stress acting on faults and modify the timing of the seismic cycle and long-term slip rates. Glacial loads can impact the stress regime of mountain ranges in different ways, by simultaneously (1) loading with ice masses and (2) unloading it by bedrock erosion promoted by glacial processes. Furthermore, as a response to climate changes, major glacier retreats and advances occur with durations of a few kyrs, inducing fast rates of variation for the crustal stress field. An ongoing debate in Himalayan geodynamics concerns the deformation distribution inside the range and how the ~20 mm/yr of convergence that is accommodated by the orogen is partitioned between the different structures. In central Nepal, previous studies show that, over the Holocene, the MFT has accommodated ~20 mm/yr, i.e., the entire far-field convergence [Lavé and Avouac, 2001].These data support deformation models where the whole Himalayan range is overthrust along the MHT/MFT system. On the other hand, recent studies point to a Quaternary reactivation of the MCT, suggesting that the mode of deformation can substantially change at a time scale of 10-100 kyrs [e.g. Hodges et al., 2004]. The mechanisms that may lead to a shift from one behavior to another, however, are still poorly understood. We hypothesize that variations in crustal loads associated with changes in the glacial cover may induce variations in the stress pattern that are high enough to significantly modify the deformation regime of the Himalayas and the slip rate on the MCT. We first assess the range of variations in surface loads, associated with both ice loading and bedrock erosion. Then we develop thermomechanical models of the Himalayan range that incorporate the main structural and geodynamical features of the present orogen. They include an explicit description of both the MFT/MHT and MCT as discrete frictional interfaces, in order to assess the activity of both fault systems as a response to various loading and unloading scenarios. We test the implications of several hypotheses concerning the evolution and distribution of glacial cover in the high range in term of (1) timing of the loading and unloading events, (2) magnitude of the loads and (3) position of the load with respect to the main structures. Our results illustrate that loading/unloading in the high range significantly impact the stress pattern on the MCT and could modulate the slip rate by several mm/yr. An important controlling parameter on the response of the MCT is the unloading velocity, with rapid unloading tending to promote a short-lived slip acceleration on the MCT, in relation with a decrease in the normal stress on the fault plane. Slower evolution of the loads leads to more subdued and gradual responses. Those preliminary results suggest that, in cases of rapid unloading and sediment transport during deglaciations, the MCT could accommodate a non-negligible fraction of the long-term shortening.

  19. Carbon cycle instability as a cause of the late Pleistocene ice age oscillations - Modeling the asymmetric response

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry; Maasch, Kirk A.

    1988-01-01

    A dynamical model of the Pleistocene ice ages is presented, which incorporates many of the qualitative ideas advanced recently regarding the possible role of ocean circulation, chemistry, temperature, and productivity in regulating long-term atmospheric carbon dioxide variations. This model involves one additional term (and free parameter) beyond that included in a previous model (Saltzman and Sutera, 1987), providing the capacity for an asymmetric response. It is shown that many of the main features exhibited by the delta(O-18)-derived ice record and the Vostok core/delta(C-13)-derived carbon dioxide record in the late Pleistocene can be deduced as a free oscillatory solution of the model.

  20. Late Pleistocene ice margin fluctuations in the Nahanni National Park-UNESCO World Heritage Site and their impact on glacial lake formation and architecture of drainage systems across the Yukon-NWT continental divide

    NASA Astrophysics Data System (ADS)

    Duk-Rodkin, A.; Barendregt, R. W.

    2009-12-01

    In the late Pleistocene the southern Mackenzie region was glaciated by ice masses from a Cordilleran and continental source (Laurentide). Stratigraphic and geomorphologic evidence indicate that the two glaciers occupied this region at different times during the Late Pleistocene. The continental ice sheet advanced over the foothills and up major valleys reaching its maximum extent, ca. 30 ka. B. P. This took place when Cordilleran glaciers were in their initial stages of development. The Laurentide Ice Sheet blocked the drainage of the South Nahanni River near Virginia Falls, forming a glacial lake which inundated an area of approximately 900 km2 at its maximum stand, and had an outlet to the southwest, across the continental divide into the Yukon Territory and eventually into the Pacific Ocean. Lacustrine sediments at various sites reach thicknesses ranging from 110 to 120 metres, at an elevation of around 700 m. Cordilleran glaciers advanced eastward and approximately 5000 years later blocked this southwestward drainage, rerouting it to the east and north along the Mackenzie Mountain front. The drainage was confined between the mountains and continental ice margin where it incised major canyons into the limestone bedrock, and produced a spectacular karst landscape, which today forms part of the Nahanni National Park. During the retreat of the Laurentide and advance of Cordilleran glaciers, glacial Lake Nahanni cut an outlet to the east at First Canyon. This outlet drained into a continuous northbound network of marginal meltwater channels joining the north-flowing drainage that eventually reached the Arctic Ocean, and during further retreat of the ice sheet established the Mackenzie River in its modern location. The presence of Laurentide ice in this region is evidenced by large granite boulders carried from the Canadian Shield. Erratics are found up to 100 km west of the mountain front. Neotectonic activity in the area is interpreted from exposures such as those seen at Virginia Falls. Here glaciolacustrine sediments of Lake Nahanni are found both above and below the falls, but those above the falls are offset along the fault by approximately 30 meters, indicating that the falls most likely formed or were tectonically reactivated in postglacial time. Pre-late Pleistocene terraces of the South Nahanni River lie above the upstream terraces found near Virginia Falls, and slope to the west, further providing evidence of postglacial rebound and tectonics.

  1. Climatic Oscillations 10,000-155,000 yr B.P. at Owens Lake, California Reflected in Glacial Rock Flour Abundance and Lake Salinity in Core OL-92

    USGS Publications Warehouse

    Bischoff, J.L.; Menking, K.M.; Fitts, J.P.; Fitzpatrick, J.A.

    1997-01-01

    Chemical analyses of the acid-soluble and clay-size fractions of sediment samples (1500-yr resolution) reveal oscillations of lake salinity and of glacial advances in core OL-92 back to 155,000 yr B.P. Relatively saline conditions are indicated by the abundance of carbonate and smectite (both pedogenic and authigenic), reflected by Ca, Sr, and Mg in the acid-soluble suite, and by Cs2O, excess MgO, and LOI (loss on ignition) in the clay-size fraction. Rock flour produced during glacial advances is represented by the abundance of detrital plagioclase and biotite in the clay-size fraction, the ratio of which remains essentially constant over the entire time span. These phases are quantitatively represented by Na2O, TiO2, Ba, and Mn in the clay fraction. The rock-flour record indicates two major ice-advances during the penultimate glacial cycle corresponding to marine isotope stage (MIS) 6, no major advances during the last interglaciation (entire MIS 5), and three major advances during the last glacial cycle (MIS 2, 3, and 4). The ages of the latter three correspond rather well to 36Cl dates reported for Sierra Nevada moraines. The onset of the last interglaciation is shown by abrupt increases in authigenic CaCO3 and an abrupt decrease in rock flour, at about 118,000 yr B.P. according to our time scale. In contrast, the boundary appears to be gradual in the ??18O record in which the change from light to heavy values begins at about 140,000 yrs B.P. The exact position of the termination, therefore, may be proxy-dependent. Conditions of high carbonate and low rock flour prevailed during the entire period from 118,000 yr B.P. until the glacial advance at 53,000 yr B.P. signaled the end of this long interglaciation. ?? 1997 University of Washington.

  2. Continental Refugium in the Mongolian Plateau during Quaternary Glacial Oscillations: Phylogeography and Niche Modelling of the Endemic Desert Hamster, Phodopus roborovskii

    PubMed Central

    Lv, Xue; Xia, Lin; Ge, Deyan; Wen, Zhixin; Qu, Yanhua; Lu, Liang; Yang, Qisen

    2016-01-01

    The Mongolian Plateau (MP), which is situated in the interior of Asia and possesses a typical continental climate, experienced harsh climatic conditions during the Quaternary glacial fluctuations. Although these events likely had huge impacts on the local animal populations, the current effects have hardly been explored. To investigate whether the MP supported a refugium along an oceanic-continental gradient (ROCG), and whether this refugium was glacial or interglacial, we investigated the demographic and phylogeographic history of an endemic mammal species, the desert hamster Phodopus roborovskii. We reconstructed the demographic variation, the phylogeographic diffusion, and modelled the potential habitat during historical periods. The genetic diversity in the MP was the highest among all the localities, and the MP was a suitable habitat throughout the modelled historical periods. A phylogeographic diffusion analysis emphasized the importance of the MP as the centre of origin, preservation and spread for P. roborovskii. The homogeneous landscape provided the opportunity for a wide gene flow, which resulted in low resolution of the phylogenetic relationships. Moreover, P. roborovskii was favoured by the interglacial condition, with both its demographical and geographical ranges expanded within the interglacial periods. The range variation from the Last Glacial Maximum to the current condition reflects a distinct longitudinal shift, while both ranges largely contracted from that of the Last Interglacial. Our results support that the MP served as a refugium and spread centre for P. roborovskii during the Quaternary climate fluctuations. The interglacial expansion and the longitudinal shifts highlighted the important effects of precipitations on the distribution range of species adapted to arid and semi-arid during glacial oscillations. PMID:26839955

  3. A GCM comparison of Plio-Pleistocene interglacial-glacial periods in relation to Lake El'gygytgyn, NE Arctic Russia

    NASA Astrophysics Data System (ADS)

    Coletti, A. J.; DeConto, R. M.; Brigham-Grette, J.; Melles, M.

    2014-08-01

    Until now, the lack of time-continuous, terrestrial paleoenvironmental data from the Pleistocene Arctic has made model simulations of past interglacials difficult to assess. Here, we compare climate simulations of four warm interglacials at Marine Isotope Stage (MIS) 1 (9 ka), 5e (127 ka), 11c (409 ka), and 31 (1072 ka) with new proxy climate data recovered from Lake El'gygytgyn, NE Russia. Climate reconstructions of the Mean Temperature of the Warmest Month (MTWM) indicate conditions 2.1, 0.5 and 3.1 °C warmer than today during MIS 5e, 11c, and 31, respectively. While the climate model captures much of the observed warming during each interglacial, largely in response to boreal summer orbital forcing, the extraordinary warmth of MIS 11c relative to the other interglacials in the proxy records remain difficult to explain. To deconvolve the contribution of multiple influences on interglacial warming at Lake El'gygytgyn, we isolated the influence of vegetation, sea ice, and circum-Arctic land ice feedbacks on the climate of the Beringian interior. Simulations accounting for climate-vegetation-land surface feedbacks during all four interglacials show expanding boreal forest cover with increasing summer insolation intensity. A deglaciated Greenland is shown to have a minimal effect on Northeast Asian temperature during the warmth of stage 11c and 31 (Melles et al., 2012). A prescribed enhancement of oceanic heat transport into the Arctic ocean has some effect on Beringian climate, suggesting intrahemispheric coupling seen in comparisons between Lake El'gygytgyn and Antarctic sediment records might be related to linkages between Antarctic ice volume and ocean circulation. The exceptional warmth of MIS 11c remains enigmatic however, relative to the modest orbital and greenhouse gas forcing during that interglacial. Large Northern Hemisphere ice sheets during Plio-Pleistocene glaciation causes a substantial decrease in Mean Temperature of the Coldest Month (MTCM) and Mean Annual Precipitation (PANN) causing significant Arctic aridification. Aridification and cooling can be linked to a combination of mechanical forcing from the Laurentide and Fennoscandian ice sheets on mid-tropospheric westerly flow and expanded sea ice cover causing albedo-enhanced feedback.

  4. Lineage-specific late pleistocene expansion of an endemic subtropical gossamer-wing damselfly, Euphaea formosa, in Taiwan

    PubMed Central

    2011-01-01

    Background Pleistocene glacial oscillations have significantly affected the historical population dynamics of temperate taxa. However, the general effects of recent climatic changes on the evolutionary history and genetic structure of extant subtropical species remain poorly understood. In the present study, phylogeographic and historical demographic analyses based on mitochondrial and nuclear DNA sequences were used. The aim was to investigate whether Pleistocene climatic cycles, paleo-drainages or mountain vicariance of Taiwan shaped the evolutionary diversification of a subtropical gossamer-wing damselfly, Euphaea formosa. Results E. formosa populations originated in the middle Pleistocene period (0.3 Mya) and consisted of two evolutionarily independent lineages. It is likely that they derived from the Pleistocene paleo-drainages of northern and southern Minjiang, or alternatively by divergence within Taiwan. The ancestral North-central lineage colonized northwestern Taiwan first and maintained a slowly growing population throughout much of the early to middle Pleistocene period. The ancestral widespread lineage reached central-southern Taiwan and experienced a spatial and demographic expansion into eastern Taiwan. This expansion began approximately 30,000 years ago in the Holocene interglacial period. The ancestral southern expansion into eastern Taiwan indicates that the central mountain range (CMR) formed a barrier to east-west expansion. However, E. formosa populations in the three major biogeographic regions (East, South, and North-Central) exhibit no significant genetic partitions, suggesting that river drainages and mountains did not form strong geographical barriers against gene flow among extant populations. Conclusions The present study implies that the antiquity of E. formosa's colonization is associated with its high dispersal ability and larval tolerance to the late Pleistocene dry grasslands. The effect of late Pleistocene climatic changes on the subtropical damselfly's historical demography is lineage-specific, depending predominantly on its colonization history and geography. It is proposed that the Riss and Wrm glaciations in the late Pleistocene period had a greater impact on the evolutionary diversification of subtropical insular species than the last glacial maximum (LGM). PMID:21486452

  5. Correlation of Late-Pleistocene Lake-Level Oscillations in Mono Lake, California, with North Atlantic Climate Events

    USGS Publications Warehouse

    Benson, L.V.; Lund, S.P.; Burdett, J.W.; Kashgarian, Michaele; Rose, T.P.; Smoot, J.P.; Schwartz, M.

    1998-01-01

    Oxygen-18 (18O) values of sediment from the Wilson Creek Formation, Mono Basin, California, indicate three scales of temporal variation (Dansgaard-Oeschger, Heinrich, and Milankovitch) in the hydrologic balance of Mono Lake between 35,400 and 12,900 14C yr B.P. During this interval, Mono Lake experienced four lowstands each lasting from 1000 to 2000 yr. The youngest low-stand, which occurred between 15,500 and 14,000 14C yr B.P., was nearly synchronous with a desiccation of Owens Lake, California. Paleomagnetic secular variation (PSV) data indicate that three of four persistent lowstands occurred at the same times as Heinrich events H1, H2, and H4. 18O data indicate the two highest lake levels occurred ???18,000 and ???13,100 14C yr B.P., corresponding to passages of the mean position of the polar jet stream over the Mono Basin. Extremely low values of total inorganic carbon between 26,000 and 14,000 14C yr B.P. indicate glacial activity, corresponding to a time when summer insolation was much reduced. ?? 1998 University of Washington.

  6. Early Pleistocene to Holocene glacial activity along the southern Alaska continental shelf inferred from the sedimentary record in the northern Gulf of Alaska - preliminary results

    NASA Astrophysics Data System (ADS)

    Forwick, M.; Cowan, E. A.; Bahlburg, H.; Childress, L. B.; Jaeger, J. M.; Moy, C. M.; Mller, J.; Ribeiro, F.; Ridgway, K. D.; Gulick, S. P.; Worthington, L. L.; Reece, R.

    2013-12-01

    Preliminary analyses of the lithology at Site U1418 (IODP Expedition 341), located on the proximal Surveyor Fan, provide evidence of continuous presence of tidewater glaciers on the southern Alaska continental shelf for more than c. 1.2 Ma, as well as evidence of prolonged presence of grounded ice at the shelf break and/or the initiation of ice streams. The lowermost lithostratigraphic unit (Unit IV) of the 941 m long record is composed of heavily deformed sediments that are interpreted to be the top of the recently discovered Surveyor mass-transport deposit. Unit III contains mostly laminated mud with thin interbeds of sand, silt and clast-rich muddy diamict with rip-up clasts. A few lonestones of granule and pebble size are present. Massive and laminated mud with scattered lonestones, as well as interbedded intervals of clast-poor diamict (clasts of granule and pebble size) compose Unit II. Unit I contains massive mud with interbedded silt laminae and sand beds. Most silt laminae have the same color as the matrix, but some are lighter. Diatom oozes and graded sand beds occur infrequently and lonestones are present below 3 m. The dominance of mud suggests that sedimentation at Site U1418 was strongly influenced by suspension settling from turbid meltwater plumes emanating into the Gulf of Alaska during the past c. 1.2 Ma. Laminated intervals may reflect temporal variations in meltwater runoff from a single sediment source and/or supply from several sources during the deposition of Units II and III. Lonestones and clasts of granule and pebble size are regarded to be mostly iceberg-rafted debris, indicating that tidewater glaciers have been present on the continental shelf for most of the time since the onset of the deposition of Unit III. Diamicts in Unit II most probably reflect periods of enhanced ice rafting and/or reduced meltwater runoff. Minor silt and sand beds provide evidence of occasional sediment reworking during the deposition of Units II and III. The abrupt occurrence of silt laminae and sand beds at the transition from Unit II to Unit I is suggested to reflect a major reorganization of the sediment delivery system to Site U1418. We suggest that these deposits reflect increased turbidity-flow activity related to the first expansion of grounded ice to the shelf break and/or the initiation of ice streams during the Late Pleistocene, transporting large amounts of sediment across the shelf. Slope failures most probably resulted from oversteepening and/or seismicity related to either glacio-isostatic adjustments or tectonic processes. Occasionally occurring different-colored silt laminae indicate that sediments probably originated from multiple sources.

  7. Arctic ocean sediment texture and the Pleistocene climate cycle

    SciTech Connect

    Clark, D.L.; Morris, T.H.

    1985-01-01

    Arctic Ocean sediment texture accurately reflects the Plio-Pleistocene climate cycle. The precision of paleoclimate interpretation is improved when deglaciation is recognized as a distinct climate stage, overlapping both glacial and interglacial stages, and for the later Pleistocene, perhaps never completed. Oxygen isotope stratigraphy and foraminifera productivity are out of phase but can be understood in the context of the transitional nature of the glacial, deglacial and interglacial climate stages of the Arctic Ocean.

  8. Luminescence Chronology for the Formation of Glacial Lake Calgary, Southern Alberta, Canada: Age Constraints for the Initiation of the Late Pleistocene Retreat of the Laurentide Ice Sheet from its Western Margin

    NASA Astrophysics Data System (ADS)

    Munyikwa, K.; Rittenour, T. M.

    2014-12-01

    Glacial Lake Calgary in southern Alberta, Canada, was a Late Pleistocene proglacial lake that formed along the southwest margin of the Laurentide Ice Sheet (LIS), dammed by the retreating ice sheet margin. Attempts to constrain the age of the lake using radiocarbon methods have been hampered by the lack of datable organic material. In an effort to apply an alternative chronometer, this study uses two optically stimulated luminescence (OSL) dating approaches to date fine grained sand and silt that were deposited in the lake during its existence. OSL dating determines the depositional ages of sediments by measuring the energy from ionizing radiation that is stored in mineral grains such as quartz and feldspar. Dividing the stored energy, also referred to as the paleodose, by the rate at which the dose accumulated, allows an age to be ascertained. In one method applied in this study, the paleodose stored in the feldspar component of the sediment is determined using normalized infrared stimulated luminescence signals acquired using a portable OSL reader. In the second method, blue optically stimulated luminescence signals obtained from quartz separates from the sediment by employing a regular OSL reader and standard protocols are used to determine the paleodose. After correcting the feldspar data for anomalous fading, the age results from the two dating approaches are compared. The ages signify a time period by which the LIS had retreated from the study area and, hence, serve as constraints for the initiation of the retreat of the ice sheet from its western limit. Advantages and limitations of the dating methods are briefly discussed. Constraining the chronology of the retreat of the LIS from western Canada allows for a better understanding of the driving forces behind ice sheet retreat. Secondly, assigning a temporal scale to the postglacial evolution of the environment of the region permits a better insight into the dynamics of the physical and biological environments of the time. Thirdly, the region is at the heart of the ice-free corridor that was ostensibly used by early humans to migrate southwards to populate the Americas ca. 16 ka ago. Hence, an improved deglaciation chronology would allow a more comprehensive evaluation of this concept.

  9. Age of the crowfoot advance in the Canadian Rocky Mountains. A glacial event coeval with the Younger Dryas oscillation

    SciTech Connect

    Reasoner, M.A.; Rutter, N.W. ); Osborn, G. )

    1994-05-01

    A suite of sediment core samples was recovered from two lakes, Crowfoot and Bow lakes, that are adjacent to the Crowfoot moraine type locality, to identify and radiocarbon date sediments related to the Crowfoot advance. The Crowfoot moraine system, widely recognized throughout northwestern North America, represents a glacial advance that is post-Wisconsin and pre-Mazama tephra in age. An interval of inorganic sediments bracketed by accelerator mass spectrometry radiocarbon ages of ca. 11,330 and 10,100 [sup 14]C yr B.P. is associated with the Crowfoot moraine. The Crowfoot advance is therefore approximately synchronous with the European Younger Dryas cold event (ca. 11,000-10,000 [sup 14]C yr B.P.). Furthermore, the termination of the Crowfoot advance also appears to have been abrupt. These findings illustrate that the climatic change responsible for the European Younger Dryas event extended beyond the northern Atlantic basin and western Europe. Equilibrium-line altitude (ELA) depressions associated with the Crowfoot advance are similar to those determined for the Little Ice Age advance, whereas Younger Dryas ELA depressions in Europe significantly exceed Little Ice Age ELA depressions. 26 refs., 3 figs., 1 tab.

  10. What Drives Mediterranean Outflow Water Variability during the Mid-Pleistocene Transition and Early Pleistocene at IODP Site U1387 in the Gulf of Cadiz?

    NASA Astrophysics Data System (ADS)

    Voelker, A. H. L.; Jimenez-Espejo, F. J.; Bahr, A.; Acton, G.; Alberto, A.; Rebotim, A.; Salgueiro, E.; Roehl, U.

    2014-12-01

    The Mediterranean Outflow Water (MOW) forms extensive contourite drift deposits along the Iberian margin, especially in the Gulf of Cadiz, and injects heat and salt into the intermediate depths of the North Atlantic. The sediments recovered during IODP Expedition 339 allow studying MOW's history throughout the Pleistocene and Pliocene and thus under varying climate forcing. Here we present centennial-to-millennial scale proxy records for surface water and MOW variations as recorded at IODP Site U1387, drilled into the Faro Drift, which is formed by the upper MOW core. We focus our study on the early to middle Pleistocene with special attention on the Mid-Pleistocene Transition (MPT) when the dominant climate cyclicity changed from 41 kyr to 100 kyr. Surface water and MOW proxy records show millennial-scale stadial/ interstadial oscillations on top of the glacial/ interglacial cycles. Planktonic and benthic δ18O records are tightly coupled highlighting the constant exchange between the (sub)surface waters and the MOW. Low benthic δ13C values during deglacial and peak interglacial periods, coinciding with insolation maxima, reveal a poorly ventilated upper MOW core and a causal link between MOW ventilation and sapropel formation in the Mediterranean Sea. Better ventilation was recorded during glacial and stadial intervals, often in association with the formation of contourites. During the warmer MIS contourites, often more pronounced than their glacial counterparts, were formed during the stadial(s) following the peak interglacial period when northern hemisphere summer insolation was low. Thus, changes in the upper MOW core are tightly coupled to summer insolation with poor ventilation occurring during insolation maxima and higher current velocity marking insolation minima. This insolation forcing reveals a close link between MOW and Mediterranean Sea climate conditions.

  11. Guatemalan forest synthesis after Pleistocene aridity

    PubMed Central

    Leyden, Barbara W.

    1984-01-01

    Sediments from two lakes in the Peten Department, Guatemala, provide palynological evidence from Central America of late Pleistocene aridity and subsequent synthesis of mesic forests. Late Glacial vegetation consisted of marsh, savanna, and juniper scrub. An early Holocene temperate forest preceded a mesic tropical forest with Brosimum (ramon). Thus primeval rain forests of Guatemala are no older than 10,000 to 11,000 years and are considerably younger in the Peten due to Mayan disturbances. Among dated Neotropical sites, the Peten has the most mesic vegetation yet shown to have supplanted xeric vegetation present during the Pleistocene. The arid late Glacial-humid early Holocene transition appears to have been pantropical in the lowlands. The Peten was not a Pleistocene refugium for mesophytic taxa, as has been suggested. Thus genesis of extant rain forests in northern Central America and southern Mexico remains unexplained. Images PMID:16593498

  12. Obliquity-driven expansion of North Atlantic sea ice during the last glacial

    NASA Astrophysics Data System (ADS)

    Turney, Chris S. M.; Thomas, Zo A.; Hutchinson, David K.; Bradshaw, Corey J. A.; Brook, Barry W.; England, Matthew H.; Fogwill, Christopher J.; Jones, Richard T.; Palmer, Jonathan; Hughen, Konrad A.; Cooper, Alan

    2015-12-01

    North Atlantic late Pleistocene climate (60,000 to 11,650 years ago) was characterized by abrupt and extreme millennial duration oscillations known as Dansgaard-Oeschger (D-O) events. However, during the Last Glacial Maximum (LGM) 23,000 to 19,000 cal years ago (23 to 19 ka), no D-O events are observed in the Greenland ice cores. Our new analysis of the Greenland ?18O record reveals a switch in the stability of the climate system around 30 ka, suggesting that a critical threshold was passed. Climate system modeling suggests that low axial obliquity at this time caused vastly expanded sea ice in the Labrador Sea, shifting Northern Hemisphere westerly winds south and reducing the strength of meridional overturning circulation. The results suggest that these feedbacks tipped the climate system into full glacial conditions, leading to maximum continental ice growth during the LGM.

  13. Transient nature of late Pleistocene climate variability.

    PubMed

    Crowley, Thomas J; Hyde, William T

    2008-11-13

    Climate in the early Pleistocene varied with a period of 41 kyr and was related to variations in Earth's obliquity. About 900 kyr ago, variability increased and oscillated primarily at a period of approximately 100 kyr, suggesting that the link was then with the eccentricity of Earth's orbit. This transition has often been attributed to a nonlinear response to small changes in external boundary conditions. Here we propose that increasing variablility within the past million years may indicate that the climate system was approaching a second climate bifurcation point, after which it would transition again to a new stable state characterized by permanent mid-latitude Northern Hemisphere glaciation. From this perspective the past million years can be viewed as a transient interval in the evolution of Earth's climate. We support our hypothesis using a coupled energy-balance/ice-sheet model, which furthermore predicts that the future transition would involve a large expansion of the Eurasian ice sheet. The process responsible for the abrupt change seems to be the albedo discontinuity at the snow-ice edge. The best-fit model run, which explains almost 60% of the variance in global ice volume during the past 400 kyr, predicts a rapid transition in the geologically near future to the proposed glacial state. Should it be attained, this state would be more 'symmetric' than the present climate, with comparable areas of ice/sea-ice cover in each hemisphere, and would represent the culmination of 50 million years of evolution from bipolar nonglacial climates to bipolar glacial climates. PMID:19005552

  14. Diversification in subtropical mountains: phylogeography, Pleistocene demographic expansion, and evolution of polyphenic mandibles in Taiwanese stag beetle, Lucanus formosanus.

    PubMed

    Huang, Jen-Pan; Lin, Chung-Ping

    2010-12-01

    Pleistocene glacial oscillations have had profound impacts on the historical population dynamics of extant species. However, the genetic consequences of past climatic changes depend largely on the latitude and topography of the regions in question. This study investigates the effect of Pleistocene glacial periods and the Central Mountain Range on the phylogeography, historical demography, and phenotypic differentiation of a montane forest-dwelling stag beetle, Lucanus formosanus (Coleoptera: Lucanidae), which exhibits extensive mandible variations across mountain ranges in subtropical Taiwan. Analyses of mitochondrial (cox1) and nuclear (wg) loci reveal that L. formosanus originated nearly 1.6 million years ago (Mya) in the early Pleistocene period and consisted of geographically overlapping Alishan and Widespread clades. A drastic population expansion starting approximately 0.2 Mya in the Widespread clade likely resulted from altitudinal range shift of the temperate forests, which was closely tied to the arrival of the Riss glacial period in the late Middle Pleistocene. A ring-like pattern of historical gene flow among neighboring populations in the vicinity of the Central Mountain Range indicates that the mountains constitute a strong vicariant barrier to the east-west gene flow of L. formosanus populations. A geographic cline of decreasing mandible size from central to north and south, and onto southeast of Taiwan is inconsistent with the low overall phylogeographic structures. The degree of mandible variation does not correlate with the expected pattern of neutral evolution, indicating that the evolutionary diversification of this morphological weapon is most likely subject to sexual or natural selection. We hypothesize that the adaptive evolution of mandibles in L. formosanus is shaped largely by the habitat heterogeneity. PMID:20971199

  15. Miocene and Pliocene dominated diversification of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota) and Pleistocene population expansions

    PubMed Central

    2012-01-01

    Background Factors promoting diversification in lichen symbioses remain largely unexplored. While Pleistocene events have been important for driving diversification and affecting distributions in many groups, recent estimates suggest that major radiations within some genera in the largest clade of macrolichens (Parmeliaceae, Ascomycota) vastly predate the Pleistocene. To better understand the temporal placement and sequence of diversification events in lichens, we estimated divergence times in a common lichen-forming fungal genus, Melanohalea, in the Northern Hemisphere. Divergence times were estimated using both concatenated gene tree and coalescent-based multilocus species tree approaches to assess the temporal context of major radiation events within Melanohalea. In order to complement our understanding of processes impacting genetic differentiation, we also evaluated the effects of Pleistocene glacial cycles on population demographics of distinct Melanohalea lineages, differing in reproductive strategies. Results We found that divergence estimates, from both concatenated gene tree and coalescent-based multilocus species tree approaches, suggest that diversification within Melanohalea occurred predominantly during the Miocene and Pliocene, although estimated of divergence times differed by up to 8.3 million years between the two methods. These results indicate that, in some cases, taxonomically diagnostic characters may be maintained among divergent lineages for millions of years. In other cases, similar phenotypic characters among non-sister taxa, including reproductive strategies, suggest the potential for convergent evolution due to similar selective pressures among distinct lineages. Our analyses provide evidence of population expansions predating the last glacial maximum in the sampled lineages. These results suggest that Pleistocene glaciations were not inherently unfavorable or restrictive for some Melanohalea species, albeit with apparently different demographic histories between sexually and vegetatively reproducing lineages. Conclusions Our results contribute to the understanding of how major changes during the Miocene and Pliocene have been important in promoting diversification within common lichen-forming fungi in the northern Hemisphere. Additionally, we provide evidence that glacial oscillations have influenced current population structure of broadly distributed lichenized fungal species throughout the Holarctic. PMID:22963132

  16. Evolution of salt diapir and karst morphology during the last glacial cycle: Effects of sea-level oscillation, diapir and regional uplift, and erosion (Persian Gulf, Iran)

    NASA Astrophysics Data System (ADS)

    Bruthans, Ji?; Filippi, Michal; Zare, Mohammad; Chur?kov, Zdenka; Asadi, Naser; Fuchs, Markus; Adamovi?, Ji?

    2010-09-01

    Marine, fluvial and cave sediments, and karst phenomena were studied and dated by 14C, U-series, and OSL methods to determine the evolution of the Namakdan diapir and the world's longest salt cave (3N Cave) during the Holocene and the Last Glacial. Sea-level oscillations, the uplift rate of the diapir and its surroundings, and erosion are the main factors influencing the diapir morphology. Although the diapir uplift rate has been constant for the last 50 kyr ( 4 mm/yr at a distance 600 m from the diapir edge), the uplift rate decreases with the distance from the diapir center. Drag-induced host rock deformation extends for 300 m from the outside edge of the diapir, and host rocks in this zone have an uplift rate of 0.4-0.6 mm/yr, which is 2-3 times greater than the regional uplift rate. Based on known sea-level oscillations, radiometric dating, and geological evidence, the Namakdan diapir was repeatedly flooded by sea water between 130 and 80 kyr BP. Submarine residuum composed mainly of gypsum and dolomite formed cap rock on the diapir. After 80 kyr BP, surficial drainage network and karst development started. Blind valleys and their corresponding cave systems evolved continuously for 20-30 kyr. Between 9 and 6 cal kyr BP the rate of sea-level rise exceeded the Namakdan diapir uplift rate by the factor of 3. As a consequence upward incision of cave streams (paragenetic trend) occurred, and blind valleys near the seashore were filled with gravels. Cave passages now accessible on the Namakdan and Hormoz diapirs started to form 3-6 cal kyr BP when sea level stabilized and downward stream incision began. Older cave levels are still preserved but are filled with sediments and salt precipitates. A comparison of the Namakdan diapir evolution with data from the Hormoz and Larak diapirs shows that the evolution of diapir morphology is strongly affected by the differences in uplift rates and geological settings. The general scheme of the evolution of the Namakdan diapir is believed to be partly applicable to many other diapirs in coastal settings.

  17. Investigating the effects of Pleistocene events on genetic divergence within Richardsonius balteatus, a widely distributed western North American minnow

    PubMed Central

    2014-01-01

    Background Biogeographers seek to understand the influences of global climate shifts and geologic changes to the landscape on the ecology and evolution of organisms. Across both longer and shorter timeframes, the western North American landscape has experienced dynamic transformations related to various geologic processes and climatic oscillations, including events as recently as the Last Glacial Maximum (LGM; ~20 Ka) that have impacted the evolution of the North American biota. Redside shiner is a cyprinid species that is widely distributed throughout western North America. The species’ native range includes several well-documented Pleistocene refugia. Here we use mitochondrial DNA sequence data to assess phylogeography, and to test two biogeographic hypotheses regarding post-glacial colonization by redside shiner: 1) Redside shiner entered the Bonneville Basin at the time of the Bonneville Flood (Late Pleistocene; 14.5 Ka), and 2) redside shiner colonized British Columbia post-glacially from a single refugium in the Upper Columbia River drainage. Results Genetic diversification in redside shiner began in the mid to late Pleistocene, but was not associated with LGM. Different clades of redside shiner were distributed in multiple glacial age refugia, and each clade retains a signature of population expansion, with clades having secondary contact in some areas. Conclusions Divergence times between redside shiner populations in the Bonneville Basin and the Upper Snake/Columbia River drainage precedes the Bonneville Flood, thus it is unlikely that redside shiner invaded the Bonneville Basin during this flooding event. All but one British Columbia population of redside shiner are associated with the Upper Columbia River drainage with the lone exception being a population near the coast, suggesting that the province as a whole was colonized from multiple refugia, but the inland British Columbia redside shiner populations are affiliated with a refugium in the Upper Columbia River drainage. PMID:24885371

  18. Pleistocene glaciations, demographic expansion and subsequent isolation promoted morphological heterogeneity: A phylogeographic study of the alpine Rosa sericea complex (Rosaceae).

    PubMed

    Gao, Yun-Dong; Zhang, Yu; Gao, Xin-Fen; Zhu, Zhang-Ming

    2015-01-01

    While most temperate plants probably underwent glacial constriction to refugia and interglacial expansion, another type of interglacial refugia might have existed to maintain alpine plants during warm periods. To test this hypothesis, we applied phylogeographic methods to 763 individuals (62 populations) which belong to 7 taxonomically difficult species of the Rosa sericea complex distributed in alpine regions of the temperate and subtropical zones in eastern Asia. We used three chloroplast (cp) DNA fragments (trnL-trnF, ndhF-rpl32 and ndhJ-trnF) approximately 3,100?bp and nuclear microsatellite (nSSR) on eight sites to determine whether cold tolerant plants experienced expansion during the Pleistocene. The neutral test and mismatch distribution analysis (MDA) indicated that whole populations and major lineages of the Qinghai-Tibet Plateau (QTP) underwent expansion during the middle to late Pleistocene. Environmental niche modeling (ENM) indicates more suitable habitats during the Last Glacial Maximum (LGM) than at present. We concluded that the demographic history of R. sericea, which diverged in the middle Pleistocene, was mostly affected by climatic oscillations instead of by geographical barriers. The low genetic divergence, as well as the weak phylogenetic structure in the R. sericea complex both support treating this complex as a single taxon. PMID:26123942

  19. Persistence across Pleistocene ice ages in Mediterranean and extra-Mediterranean refugia: phylogeographic insights from the common wall lizard

    PubMed Central

    2013-01-01

    Background Pleistocene climatic oscillations have played a major role in structuring present-day biodiversity. The southern Mediterranean peninsulas have long been recognized as major glacial refugia, from where Northern Europe was post-glacially colonized. However, recent studies have unravelled numerous additional refugia also in northern regions. We investigated the phylogeographic pattern of the widespread Western Palaearctic lizard Podarcis muralis, using a range-wide multilocus approach, to evaluate whether it is concordant with a recent expansion from southern glacial refugia or alternatively from a combination of Mediterranean and northern refugia. Results We analyzed DNA sequences of two mitochondrial (cytb and nd4) and three nuclear (acm4, mc1r, and pdc) gene fragments in individuals from 52 localities across the species range, using phylogenetic and phylogeographic methods. The complex phylogeographic pattern observed, with 23 reciprocally monophyletic allo- parapatric lineages having a Pleistocene divergence, suggests a scenario of long-term isolation in multiple ice-age refugia across the species distribution range. Multiple lineages were identified within the three Mediterranean peninsulas Iberia, Italy and the Balkans - where the highest genetic diversity was observed. Such an unprecedented phylogeographic pattern - here called refugia within all refugia compasses the classical scenario of multiple southern refugia. However, unlike the southern refugia model, various distinct lineages were also found in northern regions, suggesting that additional refugia in France, Northern Italy, Eastern Alps and Central Balkans allowed the long-term persistence of this species throughout Pleistocene glaciations. Conclusions The phylogeography of Podarcis muralis provides a paradigm of temperate species survival in Mediterranean and extra-Mediterranean glacial refugia. Such refugia acted as independent biogeographic compartments for the long-term persistence of this species, for the differentiation of its genetic lineages, and for the short-distance post-glacial re-colonization of neighbouring areas. This finding echoes previous findings from recent phylogeographic studies on species from temperate ecoregions, thus suggesting the need for a reappraisal of the role of northern refugia for glacial persistence and post-glacial assembly of Holarctic biota. PMID:23841475

  20. Inherent characteristics of sawtooth cycles can explain different glacial periodicities

    NASA Astrophysics Data System (ADS)

    Omta, Anne Willem; Kooi, Bob W.; van Voorn, George A. K.; Rickaby, Rosalind E. M.; Follows, Michael J.

    2016-01-01

    At the Mid-Pleistocene Transition about 1 Ma, the dominant periodicity of the glacial-interglacial cycles shifted from 40 to 100 kyr. Here, we use a previously developed mathematical model to investigate the possible dynamical origin of these different periodicities. The model has two variables, one of which exhibits sawtooth oscillations, resembling the glacial-interglacial cycles, whereas the other variable exhibits spikes at the rapid transitions. When applying a sinusoidal forcing with a fixed period, there emerges a rich variety of cycles with different periodicities, each being a multiple of the forcing period. Furthermore, the dominant periodicity of the system can change, while the forcing periodicity remains fixed, due to either random variations or different frequency components of the orbital forcing. Two key relationships stand out as predictions to be tested against observations: (1) the amplitude and the periodicity of the cycles are approximately linearly proportional to each other, a relationship that is also found in the ? ^{18}O temperature proxy. (2) The magnitude of the spikes increases with increasing periodicity and amplitude of the sawtooth. This prediction could be used to identify one or more currently hidden spiking variables driving the glacial-interglacial transitions. Essentially, the quest would be for any proxy record, concurrent with a dynamical model prediction, that exhibits deglacial spikes which increase at times when the amplitude/periodicity of the glacial cycles increases. In the specific context of our calcifier-alkalinity mechanism, the records of interest would be calcifier productivity and calcite accumulation. We believe that such a falsifiable hypothesis should provide a strong motivation for the collection of further records.

  1. African climate change and faunal evolution during the Pliocene-Pleistocene

    NASA Astrophysics Data System (ADS)

    deMenocal, Peter B.

    2004-03-01

    Environmental theories of African faunal evolution state that important evolutionary changes during the Pliocene-Pleistocene interval (the last ca. 5.3 million years) were mediated by changes in African climate or shifts in climate variability. Marine sediment sequences demonstrate that subtropical African climate periodically oscillated between markedly wetter and drier conditions, paced by earth orbital variations, with evidence for step-like (0.2 Ma) increases in African climate variability and aridity near 2.8 Ma, 1.7 Ma, and 1.0 Ma, coincident with the onset and intensification of high-latitude glacial cycles. Analysis of the best dated and most complete African mammal fossil databases indicates African faunal assemblage and, perhaps, speciation changes during the Pliocene-Pleistocene, suggesting more varied and open habitats at 2.9-2.4 Ma and after 1.8 Ma. These intervals correspond to key junctures in early hominid evolution, including the emergence of our genus Homo. Pliocene-Pleistocene shifts in African climate, vegetation, and faunal assemblages thus appear to be roughly contemporary, although detailed comparisons are hampered by sampling gaps, dating uncertainties, and preservational biases in the fossil record. Further study of possible relations between African faunal and climatic change will benefit from the accelerating pace of important new fossil discoveries, emerging molecular biomarker methods for reconstructing African paleovegetation changes, tephra correlations between terrestrial and marine sequences, as well as continuing collaborations between the paleoclimatic and paleoanthropological communities.

  2. Middle to Late Pleistocene ice extents, tephrochronology and paleoenvironments of the White River area, southwest Yukon

    NASA Astrophysics Data System (ADS)

    Turner, Derek G.; Ward, Brent C.; Bond, Jeffrey D.; Jensen, Britta J. L.; Froese, Duane G.; Telka, Alice M.; Zazula, Grant D.; Bigelow, Nancy H.

    2013-09-01

    Sedimentary deposits from two Middle to Late Pleistocene glaciations and intervening non-glacial intervals exposed along the White River in southwest Yukon, Canada, provide a record of environmental change for much of the past 200 000 years. The study sites are beyond the Marine Isotope stage (MIS) 2 glacial limit, near the maximum regional extent of Pleistocene glaciation. Non-glacial deposits include up to 25 m of loess, peat and gravel with paleosols, pollen, plant and insect macrofossils, large mammal fossils and tephra beds. Finite and non-finite radiocarbon dates, and twelve different tephra beds constrain the chronology of these deposits. Tills correlated to MIS 4 and 6 represent the penultimate and maximum Pleistocene glacial limits, respectively. The proximity of these glacial limits to each other, compared to limits in central Yukon, suggests precipitation conditions were more consistent in southwest Yukon than in central Yukon during the Pleistocene. Conditions in MIS 5e and 5a are recorded by two boreal forest beds, separated by a shrub birch tundra, that indicate environments as warm or warmer than present. A dry, treeless steppe-tundra, dominated by Artemisia frigida, upland grasses and forbs existed during the transition from late MIS 3 to early MIS 2. These glacial and non-glacial deposits constrain the glacial limits and paleoenvironments during the Middle to Late Pleistocene in southwest Yukon.

  3. Obliquity and precession as pacemakers of Pleistocene deglaciations

    NASA Astrophysics Data System (ADS)

    Feng, Fabo; Bailer-Jones, C. A. L.

    2015-08-01

    The Milankovitch theory states that the orbital eccentricity, precession, and obliquity of the Earth influence our climate by modulating the summer insolation at high latitudes in the northern hemisphere. Despite considerable success of this theory in explaining climate change over the Pleistocene epoch (2.6-0.01 Myr ago), it is inconclusive with regard to which combination of orbital elements paced the 100 kyr glacial-interglacial cycles over the late Pleistocene. Here we explore the role of the orbital elements in pacing the Pleistocene deglaciations by modeling ice-volume variations in a Bayesian approach. When comparing models, this approach takes into account the uncertainties in the data as well as the different degrees of model complexity. We find that the Earth's obliquity (axial tilt) plays a dominant role in pacing the glacial cycles over the whole Pleistocene, while precession only becomes important in pacing major deglaciations after the transition of the dominant period from 41 kyr to 100 kyr (the mid-Pleistocene transition). We also find that geomagnetic field and orbital inclination variations are unlikely to have paced the Pleistocene deglaciations. We estimate that the mid-Pleistocene transition took place over a 220 kyr interval centered on a time 715 kyr ago, although the data permit a range of 600-1000 kyr. This transition, occurring within just two 100 kyr cycles, indicates a relatively rapid change in the climate response to insolation.

  4. Hominin responses to environmental changes during the Middle Pleistocene in central and southern Italy

    NASA Astrophysics Data System (ADS)

    Orain, R.; Lebreton, V.; Russo Ermolli, E.; Sémah, A.-M.; Nomade, S.; Shao, Q.; Bahain, J.-J.; Thun Hohenstein, U.; Peretto, C.

    2013-03-01

    The palaeobotanical record of early Palaeolithic sites from Western Europe indicates that hominins settled in different kinds of environments. During the "mid-Pleistocene transition (MPT)", from about 1 to 0.6 Ma, the transition from 41- to 100-ka dominant climatic oscillations, occurring within a long-term cooling trend, was associated with an aridity crisis which strongly modified the ecosystems. Starting from the MPT the more favourable climate of central and southern Italy provided propitious environmental conditions for long-term human occupations even during the glacial times. In fact, the human strategy of territory occupation was certainly driven by the availabilities of resources. Prehistoric sites such as Notarchirico (ca. 680-600 ka), La Pineta (ca. 600-620 ka), Guado San Nicola (ca. 380-350 ka) or Ceprano (ca. 345-355 ka) testify to a preferential occupation of the central and southern Apennines valleys during interglacial phases, while later interglacial occupations were oriented towards the coastal plains, as attested by the numerous settlements of the Roma Basin (ca. 300 ka). Faunal remains indicate that human subsistence behaviours benefited from a diversity of exploitable ecosystems, from semi-open to closed environments. In central and southern Italy, several palynological records have already illustrated the regional- and local-scale vegetation dynamic trends. During the Middle Pleistocene climate cycles, mixed mesophytic forests developed during the interglacial periods and withdrew in response to increasing aridity during the glacial episodes. New pollen data from the Boiano Basin (Molise, Italy) attest to the evolution of vegetation and climate between MIS 13 and 9 (ca. 500 to 300 ka). In this basin the persistence of high edaphic humidity, even during the glacial phases, could have favoured the establishment of a refuge area for the arboreal flora and provided subsistence resources for the animal and hominin communities during the Middle Pleistocene. This could have constrained human groups to migrate into such a propitious area. Regarding the local climate evolution during the glacial episodes, the supposed displacement from these sites could be linked to the environmental dynamics solely due to the aridity increase, rather than directly to the global climate changes.

  5. Onset of major Pleistocene glaciations in the Alps

    NASA Astrophysics Data System (ADS)

    Muttoni, G.; Carcano, C.; Garzanti, E.; Ghielmi, M.; Piccin, A.; Pini, R.; Rogledi, S.; Sciunnach, D.

    2003-04-01

    Since alligators patrolled Greenland swamps in the Eocene, the Earth's climate underwent significant cooling, which culminated in the Pleistocene Ice Age with recurring glaciations in vast regions of the Alps, Eurasia and North America, and overgrowth of polar icecaps in Antarctica and Greenland. During main Pleistocene glacial penetrations, the Alpine icecap invaded the low gradients of the Central Europe uplands and Italian Po plain. Peri-glacial sedimentary basins such as the Po Basin are natural collectors of past biological and climatic changes involving the waxing and waning of major icecaps. We have found in a 200m-thick core from the central Po plain near Milan stratigraphic evidence for a major glacial pulsation of the nearby Alpine icecap, which occurred in correspondence of a seismically traceable unconformity of regional relevance, termed the "Red Unconformity" (RU) in Eni/Agip terminology. The RU is associated with a major reorganization of vegetation cover and Alpine drainage pattern. The age of the RU was constrained magnetostratigraphically to the the first major Pleistocene glacio-eustatic low-stand at 0.87Ma (Oxygen Isotope Stage 22). This corresponds to the end of the "Mid Pleistocene Revolution" (MPR), a marked reorganization of northern hemisphere glaciation pattern which took place in the late Early Pleistocene. We suggest that the MPR/MIS 22 was associated with the onset of the first major Pleistocene glaciation in the Alps. Noticing the similarity in number of major Pleistocene glacieustatic low-stands starting with MIS 22, and the four-fold Alpine glacial subdivision of Penck and Brckner (1909), we conclude that "Penck and Brckner in 1909 may not have been, after all, that wrong" (Kukla and Cilek, 1996).

  6. The role of stochastic noise in the abrupt climatic transitions of the pleistocene

    SciTech Connect

    Matteucci, G.

    1991-01-01

    Analyses of marine [delta][sup 18]O records suggest that the variations of the Earth's orbital parameters have induced and provided the timing of the Pleistocene climatic oscillations. This dissertation analyses some statistical properties of the Pleistocene climate by estimating the Probability Density Function (PDF) of the [delta][sup 18]O record. The results allow to define statistically what were the [open quotes]typical conditions[close quotes] (in a probabilistic sense) of the Quaternary, to identify the modes of the PDF as the mean glacial and interglacial climatic states, and to clarify the meaning and the abruptness of the climatic transitions. A zero-dimensional Energy Balance Model is developed. The nonlinearity of the ice albedo-temperature feedback leads to multiple steady-state equilibria. The role of stochastic perturbations and their interaction with the orbital forcing in producing the periodic and abrupt climatic transitions of the late Pleistocene are illustrated. A stochastic sensitivity analysis is used to clarify the results, especially the selective amplification of the orbitally-induced 100 kyr cycle, and the predictability of the system on the time scales of the orbital cycles. From the analysis of GCM simulations and observational zonally- averaged data a one-dimensional EBM is then developed. The strong nonlinearity of this model and the occurrence of multiple equilibria is caused by the presence of the Thin Ice Cap Instability. A discussion of the features that stochastic perturbations would introduce, follows. Finally a GCM sensitivity study to atmospheric CO[sub 2] shows how the effects of varying CO[sub 2] concentrations can be included in simple EBMs. The role that stochastic perturbations, orbital forcing, and the known past concentrations of atmospheric CO[sub 2] have played in producing the abrupt climatic transitions of the late Pleistocene is discussed.

  7. Glacial marine sedimentation: Paleoclimatic significance

    SciTech Connect

    Anderson, J.B.; Ashley, G.M.

    1991-01-01

    This publication resulted from a symposium held during the 1988 Annual Meeting of the Geological Society of America. Many, but not all, contributors to the symposium have papers in this volume. This Special Paper consists of 14 chapters and a Subject/Geographic index. Each chapter has is own list of references. The papers cover a wide range of modem climate/ ocean environments, including papers on glacial marine sediments from Antarctica, the fiords of Alaska, and sediments from the Canadian High Arctic. In addition, three papers discuss [open quote]old[close quotes] glacial marine records (i.e., pre-Tertiary), and one paper discusses the Yakataga Formation of the Gulf of Alaska which is a Miocene-to-late-Pleistocene sequence. The last chapter in the book includes a survey and summary of the evidence for the paleoclimatic significance of glacial marine sediments by the two editors, John Anderson and Gail Ashley. It is worth noting that Anderson and Domack state in the Foreword that there is a considerable variation in terminology; hence they employ a series of definitions which they urge the other authors to employ. They define and explain what they mean by [open quotes]polar ice cap,[close quotes] [open quote]polar tundra (subpolar),[close quotes] and [open quotes]temperate oceanic and boreal[close quotes] in terms of the dominant glacial and glacial marine processes. Although one might quarrel with the terminology, the broad differences between these three glaciological regimes are indeed fundamental and need to be sought in the geological record. The flavor of the volume can be judged by some of the chapter titles. Contributions on Antarctica include a paper by Anderson and other entitled [open quote]Sedimentary facies associated with Antarctica's floating ice masses[close quotes] and a companion paper by Anderson and Domack which deals with the extremely complex glacial marine facies (13 facies are delimited) in McMurdo Sound, Antarctica.

  8. Patterns of Diversity, Areas of Endemism, and Multiple Glacial Refuges for Freshwater Crabs of the Genus Sinopotamon in China (Decapoda: Brachyura: Potamidae)

    PubMed Central

    Fang, Fang; Sun, Hongying; Zhao, Qiang; Lin, Congtian; Sun, Yufang; Gao, Wei; Xu, Juanjuan; Zhou, Junying; Ge, Feng; Liu, Naifa

    2013-01-01

    Previous research has shown that the geographical distribution patterns of freshwater fishes and amphibians have been influenced by past climatic oscillations in China resulting from Pleistocene glacial activity. However, it remains unknown how these past changes have impacted the present-day distribution of Chinese freshwater crabs. This work describes the diversity and endemism of freshwater crabs belonging to Sinopotamon, a highly speciose genus endemic to China, and evaluates its distribution in terms of topography and past climatic fluctuations. Species diversity within Sinopotamon was found to be concentrated in an area from the northeastern edge of the Yunnan-Guizhou Plateau to the Jiangnan Hills, and three areas of endemism were identified. Multiple regression analysis between current climatic variables and Sinopotamon diversity suggested that regional annual precipitation, minimum temperature in the coldest month, and annual temperature range significantly influenced species diversity and may explain the diversity patterns of Sinopotamon. A comparison of ecological niche models (ENMs) between current conditions and the last glacial maximum (LGM) showed that suitable habitat for Sinopotamon in China severely contracted during the LGM. The coincidence of ENMs and the areas of endemism indicated that southeast of the Daba Mountains, and central and southeastern China, are potential Pleistocene refuges for Sinopotamon. The presence of multiple Pleistocene refuges within the range of this genus could further promote inter- and intraspecific differentiations, and may have led to high Sinopotamon species diversity, a high endemism rate and widespread distribution. PMID:23308152

  9. Plio-Pleistocene African Climate

    NASA Astrophysics Data System (ADS)

    Demenocal, Peter B.

    1995-10-01

    Marine records of African climate variability document a shift toward more arid conditions after 2.8 million years ago (Ma), evidently resulting from remote forcing by cold North Atlantic sea-surface temperatures associated with the onset of Northern Hemisphere glacial cycles. African climate before 2.8 Ma was regulated by low-latitude insolation forcing of monsoonal climate due to Earth orbital precession. Major steps in the evolution of African hominids and other vertebrates are coincident with shifts to more arid, open conditions near 2.8 Ma, 1.7 Ma, and 1.0 Ma, suggesting that some Pliocene (Plio)-Pleistocene speciation events may have been climatically mediated.

  10. Plio-pleistocene African climate

    SciTech Connect

    deMenocal, P.B.

    1995-10-06

    Marine records of African climate variability document a shift toward more arid conditions after 2.8 million years ago (Ma), evidently resulting from remote forcing by cold North Atlantic sea-surface temperatures associated with the onset of Northern Hemisphere glacial cycles. African climate before 2.8 Ma was regulated by low-latitude insolation forcing of monsoonal climate due to Earth orbital precession. Major steps in the evolution of African hominids and other vertebrates are coincident with shifts to more arid, open conditions near 2.8 Ma, 1.7 Ma, and 1.0 Ma, suggesting that some Pliocene (Plio)-Pleistocene speciation events may have been climatically mediated. 65 refs., 6 figs.

  11. Phylogeography of the Cape velvet worm (Onychophora: Peripatopsis capensis) reveals the impact of Pliocene/Pleistocene climatic oscillations on Afromontane forest in the Western Cape, South Africa.

    PubMed

    McDonald, D E; Daniels, S R

    2012-05-01

    Habitat specialists such as soft-bodied invertebrates characterized by low dispersal capability and sensitivity to dehydration can be employed to examine biome histories. In this study, the Cape velvet worm (Peripatopsis capensis) was used to examine the impacts of climatic oscillations on historical Afromontane forest in the Western Cape, South Africa. Divergence time estimates suggest that the P. capensis species complex diverged during the Pliocene epoch. This period was characterized by dramatic climatic and topographical change. Subsequently, forest expansion and contraction cycles led to diversification within P. capensis. Increased levels of genetic differentiation were observed along a west-to-south-easterly trajectory because the south-eastern parts of the Cape Fold Mountain chain harbour larger, more stable fragments of forest patches, have more pronounced habitat heterogeneity and have historically received higher levels of rainfall. These results suggest the presence of three putative species within P. capensis, which are geographically discreet and genetically distinct. PMID:22409213

  12. Quaternary glacial stratigraphy and chronology of Mexico

    NASA Astrophysics Data System (ADS)

    White, Sidney E.

    The volcano Iztaccihuatl in central Mexico was glaciated twice during the middle Pleistocene, once probably in pre-Illinoian (or pre-Bull Lake) time, and once in late Illinoian (or Bull Lake) time. Glaciation during the late Pleistocene was restricted to the late Wisconsin (or Pinedale). A maximum advance and one readvance are recorded in the early part, and one readvance in the latter part. Three or four small neoglacial advances occurred during the Holocene. Two other volcanoes nearby, Ajusco and Malinche, have a partial record of late Pleistocene and Holocene glaciations. Three others, Popocatépetl, Pico de Orizaba, and Nevado de Toluca, have a full Holocene record of three to five glacial advances during Neoglaciation.

  13. Paleoclimatic implications of fossil shoreline deposits in the southern basin and range province during the Pleistocene-Holocene transition

    NASA Astrophysics Data System (ADS)

    Kowler, A. L.

    2010-12-01

    Paleolake shoreline deposits throughout the southern Basin and Range (SBAR) signify past intervals of steady-state climatic conditions occuring during the late Pleistocene slightly before, as well as after the Last Glacial Maximum (LGM; ~23-19 Ka). Unfortunately, a lack of knowledge about the age of fossil shoreline depositsdue to C-14 related uncertainties and incomplete dating of shorelineshas resulted in a large gap in our knowledge about past climatic and surface hydrologic conditions in the SBAR. Several studies collectively reveal multiple lake level oscillations during the LGM and last part of the Pleistocene, with reasonably well dated shoreline deposits existing for only four paleolakes: one in central New Mexico (Estancia), two in southwestern New Mexico (Playas and Cloverdale), and one in southeastern Arizona (Cochise). In summary, there is evidence for a pre-LGM high-stand at Cochise (>26 Ka), LGM high-stands at Estancia and Cloverdale (>20-16 Ka), deglacial age high-stands at Playas and Cochise (16-13 Ka), and latest Pleistocene-early Holocene still stands of as yet undetermined elevation at Playas and Estancia (13-9K). Further, the absence of high-stands from 11-10 Ka suggests that the Younger Dryas climatic reversalwhich is detected in the stable O isotopic composition of speleothems from Cave-of-the-Bells in southeastern Arizonawas marked there by a decrease in mean annual air temperature without a significant increase in precipitation. Alternatively, if a return to glacial precipitation levels did occur, then it was for an interval so short that sedimentological evidence was not preserved. This presentation will cover the afore mentioned chronologies, along with discussion about associated atmospheric circulation patterns in the SBAR and across western North America.

  14. Upper Middle Pleistocene climate and landscape development of Northern Germany

    NASA Astrophysics Data System (ADS)

    Urban, B.

    2009-04-01

    The Pleistocene sequence of the Schningen lignite mine contains a number of interglacial and interstadial limnic and peat deposits, travertine tuff, soils, tills and fluvioglacial sediments as well as loess deposits. The complex Quaternary sequence contains six major cycles with evidence of four interglacials younger than the Elsterian glaciation and preceding the Holocene. The sequence begins with Late Elsterian glacial and three interstadial deposits formed in shallow basins. Cycle I is assigned to late parts of the Holsteinian interglacial. A strong cooling is recorded by a significant increase of Artemisia and grasses during the following Buschhaus A Stadial, which is considered to mark the onset of the Saalian Complex sensu lato (penultimate glacial-complex). The lacustrine sediments of Cycle II, Reinsdorf interglacial sequence (Urban, 1995), have been found to occur at archaeological sites Schningen 12 and 13 (Thieme,1997). Recent investigations give evidence for at least 13 Local Pollen Assemblage Zones showing a five-fold division of the interglacial and a sequence of five climatic oscillations following the interglacial (Urban, 2006). From the relative high values for grasses and herbs in the inferred forested periods of the interglacial, a warm dry forest steppe climate can be deduced. The stratigraphic position of throwing spears (Thieme, 1997), can clearly be allocated to Reinsdorf Interstadial B (level II-4) characterized by an open pine-birch forest. Uppermost parts (level II-5) represent the transition into a periglacial environment indicating the definite end of cycle II. The Schningen Interglacial (Cycle III) represents the youngest of the pre-Drenthe (Early Saalian Stadial) interglacials (Urban, 1995). In summary, it can be concluded that the Middle Pleistocene terrestrial pollen record of the Schningen sequence represents tentative correlatives of MIS 7, 9 and 11. North of Leck (North Friesland, Schleswig-Holstein) sediments of the centre and the margin of a 286 m deep channel, subglacially eroded during the Elsterian, have recently been investigated by 9 counter flash or cored drillings (Stephan et al., in press). Studies focussed on the uppermost 50 m, made up of a series of approximately 9 m thick fluviatile sediments ("Leck-Folge") with intercalations of organic sand layers and a gyttja band, up to 1.5 m thick. This sequence is overlain by several metres of mainly decalcified groundmoraine, that, itself, is overlain by glaciofluvial and periglacial sediments. The palynological investigations of the gyttja reveal a floral development of interglacial character ("Leck-Thermomer"). Compared to other Middle Pleistocene warm periods in North Germany, correlations of the Leck-Thermomer with the Holsteinian and with the warm periods of the Reinsdorf and Wacken (Dmnitz) interglacials are precluded or appear rather implausible. The Leck-Thermomer is most likely a correlative of the marine oxigen isotope stage 7 c (MIS 7). Stephan, H.-J., Urban, B., Lttig, G., Menke, B. und M. Sierralta: Palynologische, petrographische und geochronologische Untersuchungen der Leck-Warmzeit (sptes Mittelpleistozn) und ihrer begleitenden Sedimente.- [Palynological, petrographical, and geochronological investigations of deposits of the "Leck-Thermomer" and accompanying sediments].- Geologisches Jahrbuch, in press. Thieme, H., 1997. Lower Paleolithic hunting spears from Germany. Nature 385, 807-810. Urban, B. 1995. Palynological evidence of younger Middle Pleistocene Interglacials (Holsteinian, Reinsdorf, Schningen) in the Schningen open cast lignite mine (eastern Lower Saxony/Germany). Mededelingen Rijks Geologische Dienst 52, 175-186. Urban, B. 2006. Interglacial pollen records from Schningen, north Germany.- In: THE CLIMATE OF PAST INTERGLACIALS. Sirocko, F., Litt, T., Claussen, M., Sanchez-Goni, M.F. (eds.), Springer Verlag; in press.

  15. Probability of moraine survival in a succession of glacial advances.

    USGS Publications Warehouse

    Gibbons, A.B.; Megeath, J.D.; Pierce, K.L.

    1984-01-01

    Emplacement of glacial moraines normally results in obliteration of older moraines deposited by less extensive glacial advances, a process we call 'obliterative overlap'. Assuming randomness and obliterative overlap, after 10 glacial episodes the most likely number of surviving moraines is only three. The record of the Pleistocene is in agreement with the probability analysis: the 10 glaciations during the past 0.9 Myr inferred from the deep-sea record resulted in moraine sequences in which only two or three different-aged moraine belts can generally be distinguished. -from Authors

  16. Late Pleistocene lithostratigraphy and sequences in the southwestern Mesopotamia (Argentina): Evidences of the last interglacial stage

    NASA Astrophysics Data System (ADS)

    Ernesto, Brunetto; Soledad, Ferrero Brenda; Ignacio, Noriega Jorge

    2015-03-01

    The aim of this paper is to show the stratigraphic record of the Late Pleistocene corresponding to the distal region of the Paran River basin. It displays sedimentological, paleontological and geochronological evidences that characterise the last interglacial-glacial cycle. In particular, strong environmental records are shown for the Last Interglacial Stage (LIS). Salto Ander Egg Formation (SAEF) is defined as a new lithostratigraphic unit representative of the Late Pleistocene in southwestern Mesopotamia. This unit is formed of complex fluvial deposits, which contains a heterogeneous collection of sub-environments, of ages ranging from 120 to 60 ky BP. The clast-supported gravel facies containing sparse boulders indicate high flow during a humid climate. The large and middle-scale architectures of fluvial sedimentary bodies evidence the relationship between the sediment accommodation and the sea level oscillations. Three sub-sequences identified in the succession suggest a transgressive trend during the MIS5e, a highstand stage in MIS5c, and a minor transgressive cycle during MIS3. A Brazilian faunal association collected at the bottom of the sequence and sedimentological interpretations display wet and warm climatic conditions, typical of tropical or subtropical environments. Such environmental conditions are characteristic of the maximum of the last interglacial stage (MIS5e) and show a signal stronger than the signal of the current interglacial stage. All these data show a direct correlation between the increases of paleodischarges and the elevation of the sea level. The whole sequence is completed with transitional swampy deposits, accumulated probably during the MIS3/MIS2 transition, and the typical loess of the Tezanos Pinto Formation, mantled during the Last Maximum Glacial.

  17. Amphibian DNA shows marked genetic structure and tracks pleistocene climate change in northeastern Brazil.

    PubMed

    Carnaval, Ana Carolina; Bates, John M

    2007-12-01

    The glacial refugia paradigm has been broadly applied to patterns of species dynamics and population diversification. However, recent geological studies have demonstrated striking Pleistocene climate changes in currently semiarid northeastern Brazil at time intervals much more frequent than the climatic oscillations associated with glacial and interglacial periods. These geomorphic data documented recurrent pulses of wet regimes in the past 210,000 years that correlate with climate anomalies affecting multiple continents. While analyzing DNA sequences of two mitochondrial genes (cytochrome b and NADH-dehydrogenase subunit 2) and one nuclear marker (cellular-myelocytomatosis proto-oncogene) in the forest-associated frogs Proceratophrys boiei and Ischnocnema gr. ramagii, we found evidence of biological responses consistent with these pluvial maxima events. Sampled areas included old, naturally isolated forest enclaves within the semiarid Caatinga, as well as recent man-made fragments of humid coastal Atlantic forest. Results show that mtDNA lineages in enclave populations are monophyletic or nearly so, whereas nonenclave populations are polyphyletic and more diverse. The studied taxa show evidence of demographic expansions at times that match phases of pluvial maxima inferred from geological data. Divergence times between several populations fall within comparatively drier intervals suggested by geomorphology. Mitochondrial and nuclear data show local populations to be genetically structured, with some high levels of differentiation that suggest the need of further taxonomic work. PMID:17941838

  18. Surface Water and Mediterranean Outflow Water Variability During the Mid-Pleistocene Transition (Marine Isotope Stages 17-36) - the IODP Site U1387 record

    NASA Astrophysics Data System (ADS)

    Voelker, Antje; Salgueiro, Emilia; Rodrigues, Teresa; Padilha, Maria; Alberto, Ana; Loureiro, Isabel; Rebotim, Andreia; Jimenez-Espejo, Francisco J.; Bahr, Andre; Rhl, Ulla

    2015-04-01

    The Mediterranean Outflow Water (MOW) forms extensive contourite drift deposits along the Iberian margin, especially in the Gulf of Cadiz, and injects heat and salt into the intermediate depths of the North Atlantic that affect the overturning circulation. The sediments recovered during IODP Expedition 339 allow studying MOW's history throughout the Pleistocene and Pliocene and thus under varying climate forcing. Here we present centennial-to-millennial scale proxy records for surface water and MOW variations as recorded at IODP Site U1387 (558 m water depth), drilled into the Faro Drift, which is formed by the upper MOW core. We focus our study on the early to middle Pleistocene with special attention on the Mid-Pleistocene Transition (MPT) when the period of the dominant climate cycle changed from 41 kyr to 100 kyr. Surface water and MOW proxy records show millennial-scale stadial/ interstadial oscillations on top of the glacial/ interglacial cycles. Changes in the planktonic and benthic oxygen isotope records are tightly coupled highlighting the constant exchange (entrainment) between the (sub)surface waters and the MOW. Alkenone-derived sea-surface temperatures (SST) increased abruptly at the beginning of an interglacial stage (with the exception of MIS 35) and reached maxima of 21-23C. During the glacial stages, the SST record reveals abrupt drops down to 10-11C that lasted approximately 1 kyr, respectively, and remind of the SST minima recorded on the western Iberian margin during Heinrich and Heinrich-type ice-rafting events of the middle to late Pleistocene (e.g., Rodrigues et al., 2011 in Paleoceanography). Low benthic carbon isotope values during deglacial and peak interglacial periods, coinciding with insolation maxima, reveal a poorly ventilated upper MOW core and point to a causal link between MOW ventilation and sapropel formation in the Mediterranean Sea. Better ventilation was recorded during glacial and stadial intervals, often in association with the formation of contourites (higher sand content; larger mean grain size) and thus higher bottom current velocity. During the warmer Marine Isotope Stages contourites, often more pronounced than their glacial counterparts, were formed during the stadial(s) following the peak interglacial period when northern hemisphere summer insolation was low. Thus, changes in the upper MOW core are tightly coupled to summer insolation with poor ventilation occurring during insolation maxima and higher current velocity marking insolation minima. This insolation forcing reveals a close link between MOW and Mediterranean Sea climate conditions, whereas the SST record reveals a tight link to surface water conditions in the open North Atlantic.

  19. Late Pleistocene dune activity in the central Great Plains, USA

    USGS Publications Warehouse

    Mason, J.A.; Swinehart, J.B.; Hanson, P.R.; Loope, D.B.; Goble, R.J.; Miao, X.; Schmeisser, R.L.

    2011-01-01

    Stabilized dunes of the central Great Plains, especially the megabarchans and large barchanoid ridges of the Nebraska Sand Hills, provide dramatic evidence of late Quaternary environmental change. Episodic Holocene dune activity in this region is now well-documented, but Late Pleistocene dune mobility has remained poorly documented, despite early interpretations of the Sand Hills dunes as Pleistocene relicts. New optically stimulated luminescence (OSL) ages from drill cores and outcrops provide evidence of Late Pleistocene dune activity at sites distributed across the central Great Plains. In addition, Late Pleistocene eolian sands deposited at 20-25 ka are interbedded with loess south of the Sand Hills. Several of the large dunes sampled in the Sand Hills clearly contain a substantial core of Late Pleistocene sand; thus, they had developed by the Late Pleistocene and were fully mobile at that time, although substantial sand deposition and extensive longitudinal dune construction occurred during the Holocene. Many of the Late Pleistocene OSL ages fall between 17 and 14 ka, but it is likely that these ages represent only the later part of a longer period of dune construction and migration. At several sites, significant Late Pleistocene or Holocene large-dune migration also probably occurred after the time represented by the Pleistocene OSL ages. Sedimentary structures in Late Pleistocene eolian sand and the forms of large dunes potentially constructed in the Late Pleistocene both indicate sand transport dominated by northerly to westerly winds, consistent with Late Pleistocene loess transport directions. Numerical modeling of the climate of the Last Glacial Maximum has often yielded mean monthly surface winds southwest of the Laurentide Ice Sheet that are consistent with this geologic evidence, despite strengthened anticyclonic circulation over the ice sheet. Mobility of large dunes during the Late Pleistocene on the central Great Plains may have been the result of cold, short growing seasons with relatively low precipitation and low atmospheric CO2 that increased plant moisture stress, limiting the ability of vegetation to stabilize active dune sand. The apparent coexistence of large mobile dunes with boreal forest taxa suggests a Late Pleistocene environment with few modern analogs. ?? 2011 Elsevier Ltd.

  20. The Role of Stochastic Noise in the Abrupt Climatic Transitions of the Pleistocene

    NASA Astrophysics Data System (ADS)

    Matteucci, Gianni

    Analyses of marine delta^ {18}O records suggest that the variations of the Earth's orbital parameters have induced and provided the timing of the Pleistocene climatic oscillations. However the astronomical theory is unable to explain the evolution of this variability and the origin of the dominant 100 kyr cycle. In this dissertation some statistical properties of the Pleistocene climate are analyzed by estimating the Probability Density Function (PDF) of the delta ^{18}O record. The change in shape of the PDF underscores the non-stationarity of the Pleistocene variability. The results allow to define statistically what were the "typical conditions" (in a probabilistic sense) of the Quaternary, to identify the modes of the PDF as the mean glacial and interglacial climatic states, and to clarify the meaning and the abruptness of the climatic transitions. From the simple interpretation of the bimodality of the PDF as signature of a bistable system a zero-dimensional Energy Balance Model is developed. The nonlinearity of the ice albedo-temperature feedback leads to multiple steady -state equilibria. The role of stochastic perturbations and their interaction with the orbital forcing in producing the periodic and abrupt climatic transitions of the late Pleistocene are illustrated. A stochastic sensitivity analysis clarifies the statistical significance of the results, especially the selective amplification of the orbitally-induced 100 kyr cycle, and the predictability of the system on the time scales of the orbital cycles. From the analysis of GCM simulations and observational zonally-averaged data a one-dimensional EBM is then developed. The strong nonlinearity of this model and the occurrence of multiple equilibria is caused by the presence of the Thin Ice Cap Instability. The analysis of the response of the 1-D EBM to the deterministic orbital forcing is followed by a discussion of the features that stochastic perturbations would introduce. Finally a GCM sensitivity study to atmospheric CO_2 is used to show how the effects of varying CO_2 concentrations can be included in simple EBMs. The role that stochastic perturbations, orbital forcing, and the known past concentrations of atmospheric CO_2 have played in producing the abrupt climatic transitions of the late Pleistocene is then discussed.

  1. The middle Pleistocene transition as a generic bifurcation on a slow manifold

    NASA Astrophysics Data System (ADS)

    Ashwin, Peter; Ditlevsen, Peter

    2015-11-01

    The Quaternary period has been characterised by a cyclical series of glaciations, which are attributed to the change in the insolation (incoming solar radiation) from changes in the Earth's orbit around the Sun. The spectral power in the climate record is very different from that of the orbital forcing: prior to 1000 kyr before present most of the spectral power is in the 41 kyr band while since then the power has been in the 100 kyr band. The change defines the middle Pleistocene transition (MPT). The MPT does not indicate any noticeable difference in the orbital forcing. The climate response to the insolation is thus far from linear, and appears to be structurally different before and after the MPT. This paper presents a low order conceptual model for the oscillatory dynamics of the ice sheets in terms of a relaxation oscillator with multiple levels subject to the Milankovitch forcing. The model exhibits smooth transitions between three different climate states; an interglacial (i), a mild glacial (g) and a deep glacial (G) as proposed by Paillard (Nature 391:378-381, 1998). The model suggests a dynamical explanation in terms of the structure of a slow manifold for the observed allowed and "forbidden" transitions between the three climate states. With the model, the pacing of the climate oscillations by the astronomical forcing is through the mechanism of phase-resetting of relaxation oscillations in which the internal phase of the oscillation is affected by the forcing. In spite of its simplicity as a forced ODE, the model is able to reproduce not only general features but also many of the details of oscillations observed in the climate record. A particular novelty is that it includes a slow drift in the form of the slow manifold that reproduces the observed dynamical change at the MPT. We explain this change in terms of a transcritical bifurcation in the fast dynamics on varying the slow variable; this bifurcation can induce a sudden change in periodicity and amplitude of the cycle and we suggest that this is associated with a branch of "canard oscillations" that appear for a small range of parameters. The model is remarkably robust at simulating the climate record before, during and after the MPT. Even though the conceptual model does not point to specific mechanisms, the physical implication is that the major reorganisation of the climate response to the orbital forcing does not necessarily imply that there was a big change in the environmental conditions.

  2. Pleistocene Niche Stability and Lineage Diversification in the Subtropical Spider Araneus omnicolor (Araneidae)

    PubMed Central

    Peres, Elen A.; Sobral-Souza, Thadeu; Perez, Manolo F.; Bonatelli, Isabel A. S.; Silva, Daniel P.; Silva, Márcio J.; Solferini, Vera N.

    2015-01-01

    The influence of Quaternary climate oscillations on the diversification of the South American fauna is being increasingly explored. However, most of these studies have focused on taxa that are endemic to tropical environments, and relatively few have treated organisms restricted to subtropical biomes. Here we used an integrative phylogeographical framework to investigate the effects of these climate events on the ecological niche and genetic patterns of the subtropical orb-weaver spider Araneus omnicolor (Araneidae). We analyzed the mitochondrial (Cytochrome Oxidase I, COI) and nuclear (Internal Transcribed Subunit II, ITS2) DNA of 130 individuals throughout the species’ range, and generated distribution models in three different climate scenarios [present, Last Glacial Maximum (LGM), and Last Interglacial Maximum (LIG)]. Additionally, we used an Approximate Bayesian Computation (ABC) approach to compare possible demographic scenarios and select the hypothesis that better explains the genetic patterns of A. omnicolor. We obtained high haplotype diversity but low nucleotide variation among sequences. The population structure and demographic analyses showed discrepancies between markers, suggesting male-biased dispersal in the species. The time-calibrated COI phylogenetic inference showed a recent diversification of lineages (Middle/Late Pleistocene), while the paleoclimate modeling indicated niche stability since ~120 Kya. The ABC results agreed with the niche models, supporting a panmictic population as the most likely historical scenario for the species. These results indicate that A. omnicolor experienced no niche or population reductions during the Late Pleistocene, despite the intense landscape modifications that occurred in the subtropical region, and that other factors beside LGM and LIG climate oscillations might have contributed to the demographic history of this species. This pattern may be related to the high dispersal ability and wide environmental tolerance of A. omnicolor, highlighting the need for more phylogeographical studies with invertebrates and other generalist taxa, in order to understand the effects of Quaternary climate changes on Neotropical biodiversity. PMID:25856149

  3. Hybridization among Arctic white-headed gulls (Larus spp.) obscures the genetic legacy of the Pleistocene

    PubMed Central

    Sonsthagen, Sarah A; Chesser, R Terry; Bell, Douglas A; Dove, Carla J

    2012-01-01

    We studied the influence of glacial oscillations on the genetic structure of seven species of white-headed gull that breed at high latitudes (Larus argentatus, L. canus, L. glaucescens, L. glaucoides, L. hyperboreus, L. schistisagus, and L. thayeri). We evaluated localities hypothesized as ice-free areas or glacial refugia in other Arctic vertebrates using molecular data from 11 microsatellite loci, mitochondrial DNA (mtDNA) control region, and six nuclear introns for 32 populations across the Holarctic. Moderate levels of genetic structure were observed for microsatellites (FST= 0.129), introns (ΦST= 0.185), and mtDNA control region (ΦST= 0.461), with among-group variation maximized when populations were grouped based on subspecific classification. Two haplotype and at least two allele groups were observed across all loci. However, no haplotype/allele group was composed solely of individuals of a single species, a pattern consistent with recent divergence. Furthermore, northernmost populations were not well differentiated and among-group variation was maximized when L. argentatus and L. hyberboreus populations were grouped by locality rather than species, indicating recent hybridization. Four populations are located in putative Pleistocene glacial refugia and had larger τ estimates than the other 28 populations. However, we were unable to substantiate these putative refugia using coalescent theory, as all populations had genetic signatures of stability based on mtDNA. The extent of haplotype and allele sharing among Arctic white-headed gull species is noteworthy. Studies of other Arctic taxa have generally revealed species-specific clusters as well as genetic structure within species, usually correlated with geography. Aspects of white-headed gull behavioral biology, such as colonization ability and propensity to hybridize, as well as their recent evolutionary history, have likely played a large role in the limited genetic structure observed. PMID:22833800

  4. Hybridization among Arctic white-headed gulls (Larus spp.) obscures the genetic legacy of the Pleistocene

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Chesser, R. Terry; Bell, Douglas A.; Dove, Carla J.

    2012-01-01

    We studied the influence of glacial oscillations on the genetic structure of seven species of white-headed gull that breed at high latitudes (Larus argentatus, L. canus, L. glaucescens, L. glaucoides, L. hyperboreus, L. schistisagus, and L. thayeri). We evaluated localities hypothesized as ice-free areas or glacial refugia in other Arctic vertebrates using molecular data from 11 microsatellite loci, mitochondrial DNA (mtDNA) control region, and six nuclear introns for 32 populations across the Holarctic. Moderate levels of genetic structure were observed for microsatellites (FST= 0.129), introns (ΦST= 0.185), and mtDNA control region (ΦST= 0.461), with among-group variation maximized when populations were grouped based on subspecific classification. Two haplotype and at least two allele groups were observed across all loci. However, no haplotype/allele group was composed solely of individuals of a single species, a pattern consistent with recent divergence. Furthermore, northernmost populations were not well differentiated and among-group variation was maximized when L. argentatus and L. hyberboreus populations were grouped by locality rather than species, indicating recent hybridization. Four populations are located in putative Pleistocene glacial refugia and had larger t estimates than the other 28 populations. However, we were unable to substantiate these putative refugia using coalescent theory, as all populations had genetic signatures of stability based on mtDNA. The extent of haplotype and allele sharing among Arctic white-headed gull species is noteworthy. Studies of other Arctic taxa have generally revealed species-specific clusters as well as genetic structure within species, usually correlated with geography. Aspects of white-headed gull behavioral biology, such as colonization ability and propensity to hybridize, as well as their recent evolutionary history, have likely played a large role in the limited genetic structure observed.

  5. A high resolution history of the El Niño - Southern Oscillation and of the solar activity during the Late Glacial - Early Holocene in the subtropical Andean region.

    NASA Astrophysics Data System (ADS)

    Giralt, S.; Schimmel, M.; Hernández, A.; Bao, R.; Valero-Garcés, B. L.; Sáez, A.; Pueyo, J. J.

    2009-04-01

    High-resolution laminated lacustrine sediments are excellent archives of the past hydrological changes and they provide valuable insights about the climatic processes that trigger these changes. The paleoclimatic records located in the Southern Hemisphere are fundamental for understanding the evolution of the El Niño - Southern Oscillation (ENSO) since this climatic phenomena is the main cause of droughts and floods in many areas of South America and other regions of the world, like Spain and Egypt. Available regional paleoclimate reconstructions show that modern climatic patterns in South America were established during the Late Holocene. The laminated sediments of Lago Chungará (18° 15' S - 69° 10' W, 4520 m a.s.l., Chilean altiplano) have allowed us to characterize the evolution of this climatic phenomena for the transition Late Glacial - Early Holocene (12,300 - 9,500 calendar years BP) as well as its relationship with other climate forcings, namely the solar activity. The studied sediments correspond to the lowermost 2.4 m of 8 m long Kullemberg cores recovered from this lake. These sediments are mainly made up of greenish and whitish laminae and thin layers constituted by diatomaceous oozes with carbonates and organic matter, arranged in rhythms and cycles. X-ray fluorescence (XRF) (Al, Si, S, K, Ca, Ti, Mn, Fe, Rb, Sr, Zn, Sb and Ba) analyses, total organic carbon (TOC), total carbon (TC), x-ray diffraction (XRD), biogenic silica, stable isotopes (delta18O and delta13C) on carbonates and on diatoms (delta18O) and magnetic susceptibility were determined in order to characterize the sediments of Lago Chungará. Previous statistical studies (cluster and Principal Component Analyses (PCA)) were used to disentangle the paleoclimatic signal from the other ones (volcanic and tectonic). The chronological model framework was built using 6 radiocarbon dates, allowing us to establish that laminated couplets were deposited on a pluriannual basis. These couplets are composed of a lower light lamina, progressively grading upwards to a dark lamina. Light laminae are composed by diatom valves of a single species (Cyclostephanos cf. andinus), accumulated during short-term extraordinary diatom blooms when water column mixing took place under abrupt and short-term climatic events. Dark laminae contain a complex diatom assemblage and are rich in organic matter representing the baseline limnological conditions during several years of deposition. Spectral analyses (Fast Fourier Transformation - FFT - and Time Frequency - TF - analyses) were performed on the isolated paleohydrological curve and on the gray color curve calculated for these laminated sediments. The FFT analyses of the paleohydrological signal obtained from the PCA highlights the record of 35-51 years cycles, that might correspond to the solar Bruckner cycle as well as to the inter-decadal changes in the variance of the ENSO phenomena. The results of the FFT analyses carried out on the gray curve reinforce the hypothesis of the solar control on the variations in the lake productivity: the 11-years Schwabe, 22-23-years Hale, 35-years Bruckner and the approx. 90-years Gleissberg cycles, as well as a strong to very strong ENSO phenomena (8.2 and 7.5-years cycles) are recorded. The TF analyses developed on the variations of the gray-colour curve reveal that all solar frequencies have modified intensities during the Late Glacial and Early Holocene. During the low activity periods of the 11-years Schwabe cycles, strong to very strong ENSO phenomena took place. These results show that ENSO-like variability was present during the late Glacial and early Holocene in the Altiplano.

  6. Palaeoenvironmental conditions in the Gulf of Alaska (NE Pacific) during the Mid Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Müller, J.; Romero, O. E.; McClymont, E.; Stein, R. H.; Fahl, K.

    2014-12-01

    The Mid Pleistocene Transition (MPT) constitutes a fundamental shift in Earth's climate system from a 41 ka to a 100 ka periodicity in glacial oscillations. The exact timing and mechanism(s) that caused this change from a low- to high-amplitude glacial variability are still under debate and only recently Pena & Goldstein (2014) suggested that a disruption of the thermohaline circulation at about 900 ka BP and a subsequent change in ocean circulation might have acted as a trigger for the onset of 100 ka glacial-interglacial cycles. Most studies targeting the MPT are based on Atlantic sediment records whereas only few data sets are available from the North Pacific (see e.g. Clark et al., 2006 and McClymont et al., 2013 for reviews). IODP Expedition 341 distal deep-water site U1417 in the Gulf of Alaska (subpolar NE Pacific) now provided a continuous sediment record for reconstructing Miocene to Late Pleistocene changes in the sea surface conditions and how these relate to orbital and millennial scale climate variability. Here we present organic geochemical biomarker data covering the 1.5 Ma to 0.1 Ma time interval with special focus on the MPT. Alkenone, sterol, n-alkane and C25 highly branched isoprenoid data are used to reconstruct sea surface temperatures, primary productivity and terrigenous organic matter input (via sea ice, icebergs, meltwater discharge or aeolian transport). In addition, the diatom concentration and the species composition of the diatom assemblage deliver information on changes in palaeoproductivity and nutrient (silicate) availability. A major change in the environmental setting between 1.2 and 0.8 Ma is recorded by the biomarkers. This shift seems to be associated with a significant cooling of the surface waters in the Gulf of Alaska. Matching this shift, a significant change in the main components of the diatom community occurred between 1.2 and 0.8 Ma. References Clark, P.U., Archer, D., Pollard, D., Blum, J.D., Rial, J.A., Brovkin, V., Mix, A.C., Pisias, N.G., Roy, M., 2006. Quaternary Science Reviews, 25, (23-24), 3150-3184. McClymont, E.L., Sosdian, S.M., Rosell-Melé, A., Rosenthal, Y., 2013. Earth-Science Reviews, 123, 173-193. Pena, L.D. and Goldstein, S.L., 2014. Science, 345, 318-322.

  7. Antemortem trauma and survival in the late Middle Pleistocene human cranium from Maba, South China

    PubMed Central

    Wu, Xiu-Jie; Schepartz, Lynne A.; Liu, Wu; Trinkaus, Erik

    2011-01-01

    Paleopathological assessment of the late Middle Pleistocene archaic human cranium from Maba, South China, has documented a right frontal squamous exocranially concave and ridged lesion with endocranial protrusion. Differential diagnosis indicates that it resulted from localized blunt force trauma, due to an accident or, more probably, interhuman aggression. As such it joins a small sample of pre-last glacial maximum Pleistocene human remains with probable evidence of humanly induced trauma. Its remodeled condition also indicates survival of a serious pathological condition, a circumstance that is increasingly documented for archaic and modern Homo through the Pleistocene. PMID:22106311

  8. Pleistocene and Holocene Iberian flora: a complete picture and review

    NASA Astrophysics Data System (ADS)

    González Sampériz, Penélope

    2010-05-01

    A detailed analysis of the location and composition of Iberian vegetation types during the whole Pleistocene and Holocene periods shows a complex patched landscape with persistence of different types of ecosystems, even during glacial times. In addition, recent, high-resolution palaeoecological records are changing the traditional picture of post-glacial vegetation succession in the Iberian Peninsula. The main available charcoal and pollen sequences include, coniferous and deciduous forest, steppes, shrublands, savannahs and glacial refugia during the Pleistocene for Meso-thermophytes (phytodiversity reservoirs), in different proportions. This panorama suggests an environmental complexity that relates biotic responses to climate changes forced by Milankovitch cycles, suborbital forcings and by the latitudinal and physiographic particularities of the Iberian Peninsula. Thus, many factors are critical in the course of vegetational developments and strong regional differences are observed since the Early Pleistocene. Currently, the flora of Iberia is located in two biogeographical/climatic regions: the Eurosiberian and the Mediterranean. The first one includes northern and northwestern areas of the peninsula, where post-glacial responses of vegetation are very similar to Central Europe, although with some particularities due to its proximity to both the Atlantic Ocean and the Mediterranean region. The second one comprises the main territory of Iberia and shows more complex patterns and singularities, now and in the past. Steppe landscapes dominated extensive areas over all the territory during the cold spells of the Quaternary, especially during the Late Pleistocene up to the Last Glacial Maximum, but differences in composition of the dominant taxa (Compositae versus Artemisia) are observed since the Early Pleistocene, probably related to moisture regional gradients. Coastal shelves and intramountainous valleys, even in continental areas, are spots of floristic diversity and nuclei of population expansion during climatic ameliorations of the Pleistocene. The floristic composition, location and structure of glacial tree populations and communities may have been a primary control on these developments and on the origin and composition of Holocene scenarios. Refugial populations would have been a source, but not the only one, for the early Lateglacial oak expansions for example. From Middle to Late Holocene, inertial, resilient, and rapid responses of vegetation to climatic change are described, any time with regional and local differences. The role of fire, pastoralism, agriculture and other anthropogenic disturbances such as mining during the Copper, Bronze, Iberic, and Roman times must be also considered as an important factor of the current vegetation distribution. In fact, the Iberian Peninsula constitutes a territory where climatic, geological, biogeographical and historical conditions have converged to produce environmental heterogeneity, large biological diversity and ecosystem richness. A note of singularity: in comparison with other Mediterranean peninsulas, Iberia was, doubtless, particularly suitable for the survival and permanence of sclerophyllous elements of any kind (including Ibero-Maghrebian scrubs such as Maytenus, Periploca, Ziziphus,Withania, Lycium, and Calicotome), currently, during the Holocene, and even during glacial stages of the Pleistocene. However, no macro-remains of these taxa have been documented until Late Holocene chronologies, but the survival of other thermophilous species, such as Olea, reveals the existence of glacial refugia in the southernmost areas of Iberia. Over all, and dealing with plant species, the Iberian Peninsula is a land of survival.

  9. Glacial-interglacial Indian summer monsoon dynamics.

    PubMed

    An, Zhisheng; Clemens, Steven C; Shen, Ji; Qiang, Xiaoke; Jin, Zhangdong; Sun, Youbin; Prell, Warren L; Luo, Jingjia; Wang, Sumin; Xu, Hai; Cai, Yanjun; Zhou, Weijian; Liu, Xiaodong; Liu, Weiguo; Shi, Zhengguo; Yan, Libin; Xiao, Xiayun; Chang, Hong; Wu, Feng; Ai, Li; Lu, Fengyan

    2011-08-01

    The modern Indian summer monsoon (ISM) is characterized by exceptionally strong interhemispheric transport, indicating the importance of both Northern and Southern Hemisphere processes driving monsoon variability. Here, we present a high-resolution continental record from southwestern China that demonstrates the importance of interhemispheric forcing in driving ISM variability at the glacial-interglacial time scale as well. Interglacial ISM maxima are dominated by an enhanced Indian low associated with global ice volume minima. In contrast, the glacial ISM reaches a minimum, and actually begins to increase, before global ice volume reaches a maximum. We attribute this early strengthening to an increased cross-equatorial pressure gradient derived from Southern Hemisphere high-latitude cooling. This mechanism explains much of the nonorbital scale variance in the Pleistocene ISM record. PMID:21817044

  10. A history of glacial stratigraphy in China

    NASA Astrophysics Data System (ADS)

    Derbyshire, Edward

    Glacial stratigraphy had a late start in China, and it fell to Li Szeguang, an outstanding geologist with a little experience of the European Alps, to inject a systematic approach into the study of Chinese Pleistocene glacial stratigraphy starting in the early 1920s. Several diamictons in low latitude mountains of E. China were attributed to glaciation. A formal stratigraphy had to await his detailed and long term studies of the Lushan (2930'N) on which he based a three-fold sequence of Poyang (Gunz correlate), Da Gu (= Mindel) and Lushan (Riss). A Dali (Wrm) glaciation was added on the basis of evidence from Yunnan Province. Based on much morphological and erosional evidence as well as an assumption of glacial provenance for the widespread bouldery clays, and despite early critical reviews, this work became the dominant hypothesis in Chinese glacial stratigraphy for over 50 years. Echoes of it still remain in the literature, despite mounting sedimentological evidence that the diamictons are weathered debris flow and alluvial accumulations (with some thin, high-level solifluction earths). Increasingly, glacial stratigraphy is now being based on the glaciated west of China from Yunnan to western Xinjiang and it is here that the definitive glacial stratigraphy will be established. At least four glaciations arealready authenticated in many localities in this vast region, although the resolution of this stratigraphy may never match that of the classic loess stratigraphy of Shaanxi and the yet-to-be studied stratigraphy of the thick lacustrine successions in the high desert basins of the west.

  11. Glaciers and rivers: Pleistocene uncoupling in a Mediterranean mountain karst

    NASA Astrophysics Data System (ADS)

    Adamson, K. R.; Woodward, J. C.; Hughes, P. D.

    2014-06-01

    Large-scale coupling between headwater catchments and downstream depocentres is a critical influence on long-term fluvial system behaviour and on the creation of the fluvial sedimentary record. However, it is often difficult to examine this control over multiple Quaternary glacial cycles and it has not been fully explored in karst basins. By investigating the Pleistocene glacial and fluvial records on and around Mount Orjen (1894 m) in Montenegro, we show how the changing connectivity between glaciated mountain headwater source zones and downstream alluvial basins is a key feature of long-term karst system behaviour - especially in relation to the creation and preservation of the surface sedimentary record. Middle and Late Pleistocene glacial deposits are well preserved on Mount Orjen. Uranium-series dating of 27 carbonate cements in fluvial sediments shows that many alluvial depocentres were completely filled with coarse glacial outwash before 350 ka during the largest recorded glaciation. This major glaciation is correlated with the Skamnellian Stage in Greece and Marine Isotope Stage 12 (MIS 12, c 480-420 ka). This was a period of profound landscape change in many glaciated catchments on the Balkan Peninsula. Later glaciations were much less extensive and sediment supply to fluvial systems was much diminished. The extreme base level falls of the Late Miocene produced the world's deepest karst networks around the Mediterranean. After MIS 12, the subterranean karst of Mount Orjen formed the dominant pathway for meltwater and sediment transfer so that the depositional basins below 1000 m became disconnected (uncoupled) from the glaciated headwaters. There is little evidence of post-MIS 12 aggradation or incision in these basins. This absence of later Pleistocene and Holocene fluvial activity means these basins contain some of the thickest and best-preserved outwash deposits in the Mediterranean.

  12. Pleistocene Indian Monsoon Rainfall Variability

    NASA Astrophysics Data System (ADS)

    Yirgaw, D. G.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Sijingeo, A. V.; Nath, B. N.; Frank, M.

    2014-12-01

    The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea. Here we investigate proxies for fresh water input and runoff in a region of strong monsoon precipitation that is a major moisture source for the east Asian Monsoon. A sediment core obtained by the IODP vessel JOIDES Resolution and a gravity core from the Alcock Seamount complex in the Andaman Sea are used to examine the past monsoon variability on the Indian sub-continent and directly over the ocean. The current dataset covers the last glacial and deglacial but will eventually provide a Pleistocene record. We utilise the ecological habitats of G. sacculifer and N. dutertrei to investigate the freshwater-induced stratification with paired Mg/Ca and δ18O analyses to estimate seawater δ18O (δ18Osw). During the last 60 kyrs, Ba/Ca ratios and δ18Osw values generally agree well between the two cores and suggest the weakest surface runoff and monsoon during the LGM and strongest monsoon during the Holocene. The difference in δ18O between the species, interpreted as a proxy for upper ocean stratification, implies stratification developed around 37 ka and remained relatively constant during the LGM, deglacial and Holocene. To investigate monsoon variability for intervals in the past, single shell Mg/Ca and δ18O analyses have been conducted. Mg/Ca ratios from individual shells of N. dutertrei suggest relatively small changes in temperature. However, individual N. dutertrei δ18O differ greatly between the mid-Holocene and samples from the LGM and a nearby core top. The mid-Holocene individuals have a greater range and large skew towards negative values indicating greater fresh water influence.

  13. Examining the effects of glacial erosion on the extent of glaciation

    NASA Astrophysics Data System (ADS)

    Pedersen, V. K.; Egholm, D.

    2012-12-01

    Landscapes modified by warm-based glacial activity in alpine settings show a distinct distribution of surface area with elevation (hypsometry), with a maximum in surface area just below the local snowline altitude. The emergence of this distinct hypsometric signature seems to be a consequence of effective glacial and periglacial erosion above the local snowline. Here we examine the response of mountain range glaciations to this distinct topographic distribution, and investigate how its formation influences patterns of glacial extent, and therefore also patterns of glacial erosion, over several glacial cycles. We use numerical modeling experiments, and show first how the hypsometry of characteristic natural landscapes affects glaciations for a simple climate forcing. The results suggest that glacial extent is highly sensitive to the hypsometry of glacially modified landscapes in addition to the climate forcing. Secondly, we show, using a synthetic landscape, how the gradual development of the distinct glacial hypsometric maximum influences the extent of glaciations on a timescale comparable to the Quaternary period. A Quaternary-like climate forcing results in two different phases of glacial erosion, suggesting a first phase of cirque formation followed by a phase of main valley deepening after the mid-Pleistocene transition. The numerical modeling experiments therefore suggest a significant increase in glacial extent and glacial erosion across the mid-Pleistocene transition. The results are obtained using iSOSIA, a higher-order ice sheet model approach, for simulating the flow of ice. Glacial erosion, represented by abrasion and quarrying processes, is approximated as functions of both sliding velocity, the amount of entrained sediment in the ice, and the bed slope in the direction of sliding. Temperature is linked to elevation through a constant lapse rate, ablation is a linear function of positive temperatures, and accumulation is a linear function of negative temperatures up to a maximum value.

  14. Interglacial Climate from Deglaciation to Glacial Inception

    NASA Astrophysics Data System (ADS)

    McManus, J. F.; Raynaud, D.; Tzedakis, P. C.; Wolff, E. W.; Yin, Q.; Pol, K.; Skinner, L. C.; Crucifix, M.; Hodell, D. A.; Berger, A.; Ganopolski, A.; Otto-Bliesner, B. L.; Mangili, C.

    2014-12-01

    Interglacials are the warm, minimum ice, high sea level end-member of the glacial climate cycles of the Pleistocene, with the present Holocene period as the most recent example. We have identified 11 interglacial intervals in the last 800 ka and have reviewed their occurrence, intensity, shape and timing, including the processes that accompany deglaciation and glacial inception. Our compilation of evidence from marine, terrestrial and ice core climate archives suggests that, despite spatial inhomogeneity, marine isotope stages (MIS) 5 and 11 were globally strong (warm), while MIS 13 tended to be cool. A step change in strength of interglacials at ~450 ka (mid-Brunhes) is apparent only in CO2, and Antarctic and deep ocean temperature. The onset of interglacials (deglaciation or glacial "termination") is relatively rapid, and seems to require a combination of low orbital precession (high northern hemisphere summer insolation) and the existence of a large ice sheet. Terminations involve highly non-linear interactions of ocean and atmospheric dynamics, sea level, CO2 and temperature, along with the imposed external insolation forcing. The precise timing appears to be closely tied to the fall in precession but may be modulated by millennial scale climate variability that determines the pattern of change seen in temperature in each hemisphere. There is some organized variability and a range of climatic trends within interglacials, resulting in intensity maxima that may occur either early or late in different instances. The end of interglacials (glacial inception) is typically a slower process involving a global sequence of changes. Interglacials are typically 10-30 ka long. Proposed analogs do not easily inform us about the natural progression or length of the current interglacial, but due to a combination of reduced insolation variability and greenhouse gas concentrations the timing of the next glacial inception appears to be many tens of millennia in the future.

  15. Pleistocene drainage incision in the upper Mississippi Valley Driftless Area

    SciTech Connect

    Knox, J.C.

    1985-01-01

    The deep dissection of the Wisconsin Driftless Area and topographically similar, but glaciated areas in adjacent states is generally acknowledged to have occurred during the Pleistocene, but the precise chronology has been poorly understood. The distribution of pre-Illinoian glacial outwash gravels on uplands and valley side benches near the Mississippi River, on the western margin of the Wisconsin Driftless Area, indicates that the major incision (50-60 m) of drainage had occurred during the very early Pleistocene. Deposits in cut-off valley meanders, a common feature in the lower reaches of Driftless Area rivers, provide a basis for relative dating of the valley incision. The cut-offs appear to have evolved episodically when, at various times during the Pleistocene, glacial debris blocked the drainages of the Mississippi and Wisconsin Rivers causing massive alluviation of side valley tributaries. A radiocarbon date of 21,910 +/- 350 year B.P., representing a buried soil horizon at 22 m depth and about 9 m above the bedrock floor of a cut-off valley meander and 18 m above the bedrock floor of the adjacent present-day valley, supports stratigraphic interpretations that suggest modest valley incision into bedrock probably occurred during the Illinoian and may have also occurred during the early Wisconsinan.

  16. Middle pleistocene pollen biostratigraphy in the central North Sea

    NASA Astrophysics Data System (ADS)

    Ekman, Sten R.

    1998-09-01

    Middle Pleistocene sequences from the northernmost (Fladen Ground) and the southernmost (Devil's Hole area) parts of the British sector of the central North Sea are correlated on the basis of pollen biostratigraphy. Four pollen stratigraphies are compared, with reference taken to existing borehole and seismic data. The most pronounced influence of reworked pre-Quaternary sediments are present in an upper interval, rich in pre-Neogene palynomorphs, and in a lower interval, rich in Neogene palynomorphs. This change can be related to Middle Pleistocene glacial periods. The pollen content in the younger interval indicates a British provenance, possibly correlated with the Saalian stage. The pollen content in the older interval indicates derivation from the Scandinavian ice sheet, and may correlate with the Elsterian stage. The pollen stratigraphies between these two intervals reflect a vegetational transition from dwarf shrub heaths and peatlands towards boreal forests, possibly followed by a return to a more open landscape. This pollen stratigraphical succession is best preserved in the Devil's Hole sequences. In the Fladen Ground the upper part of the sequence may have been glacially eroded. Deposits of Cromerian Complex age occur at base of the Middle Pleistocene sequences.

  17. Pleistocene Lake Bonneville and Eberswalde Crater of Mars: Quantitative Methods for Recognizing Poorly Developed Lacustrine Shorelines

    NASA Astrophysics Data System (ADS)

    Jewell, P. W.

    2014-12-01

    The ability to quantify shoreline features on Earth has been aided by advances in acquisition of high-resolution topography through laser imaging and photogrammetry. Well-defined and well-documented features such as the Bonneville, Provo, and Stansbury shorelines of Late Pleistocene Lake Bonneville are recognizable to the untrained eye and easily mappable on aerial photos. The continuity and correlation of lesser shorelines must rely quantitative algorithms for processing high-resolution data in order to gain widespread scientific acceptance. Using Savitsky-Golay filters and the geomorphic methods and criteria described by Hare et al. [2001], minor, transgressive, erosional shorelines of Lake Bonneville have been identified and correlated across the basin with varying degrees of statistical confidence. Results solve one of the key paradoxes of Lake Bonneville first described by G. K. Gilbert in the late 19th century and point the way for understanding climatically driven oscillations of the Last Glacial Maximum in the Great Basin of the United States. Similar techniques have been applied to the Eberswalde Crater area of Mars using HRiSE DEMs (1 m horizontal resolution) where a paleolake is hypothesized to have existed. Results illustrate the challenges of identifying shorelines where long term aeolian processes have degraded the shorelines and field validation is not possible. The work illustrates the promises and challenges of indentifying remnants of a global ocean elsewhere on the red planet.

  18. Upper Pleistocene facies sequences and relative sea-level trends along the south coast of Ireland

    SciTech Connect

    McCabe, A.M.; O`Cofaigh, C.

    1996-03-01

    Upper Pleistocene sequences, deposited around 20 ka provide a record of sedimentation during the last glacial/deglacial cycle along the south coast of Ireland. A stratigraphy based on eight lithofacies associations is recognized. Typically, the facies sequences overlie a glaciated shore platform furrowed by subglacial meltwaters. Elements within the stratigraphy comprise: (1) ice advance southwards onto the continental shelf; (2) stagnation-zone retreat triggered by rising sea level related to isostatic depression coupled with subglacial meltwater events that furrowed the platform; (3) progressive rise in relative sea level recorded by a submergent facies sequence on an isostatically depressed slope (beach gravels {yields} subaqueous jet efflux sediments {yields} wave-influenced sands {yields} glaciomarine mud drape); ice-marginal oscillation is recorded by glaciotectonically deformed gravels, sands, and foliated diamict; (4) terrestrial emergence is marked by angular breccias derived from local slopes by periglacial weathering. There is a clear facies transition between the breccias and underlying wave-influenced sands. Facies sequences suggest that the local deglacial cycle was out of phase with the global eustatic cycle along the south coast of Ireland. Stagnation-zone retreat was largely dependent on magnitudes of isostatic depression, high relative sea level, and meltwater events, and not on climatic forcing.

  19. Damping of glacial-interglacial cycles from anthropogenic forcing

    NASA Astrophysics Data System (ADS)

    Haqq-Misra, Jacob

    2014-09-01

    Climate variability over the past million years shows a strong glacial-interglacial cycle of 100,000 years as a combined result of Milankovitch orbital forcing and climatic resonance. It has been suggested that anthropogenic contributions to radiative forcing may extend the length of the present interglacial, but the effects of anthropogenic forcing on the periodicity of glacial-interglacial cycles has received little attention. Here I demonstrate that moderate anthropogenic forcing can act to damp this 100,000 year cycle and reduce climate variability from orbital forcing. Future changes in solar insolation alone will continue to drive a 100,000 year climate cycle over the next million years, but the presence of anthropogenic warming can force the climate into an ice-free state that only weakly responds to orbital forcing. Sufficiently strong anthropogenic forcing that eliminates the glacial-interglacial cycle may serve as an indication of an epoch transition from the Pleistocene to the Anthropocene.

  20. Speciation of Iberian diving beetles in Pleistocene refugia (Coleoptera, Dytiscidae).

    PubMed

    Ribera, Ignacio; Vogler, Alfried P

    2004-01-01

    The Mediterranean basin is an area of high diversity and endemicity, but the age and origin of its fauna are still largely unknown. Here we use species-level phylogenies based on approximately 1300 base pairs of the genes 16S rRNA and cytochrome oxidase I to establish the relationships of 27 of the 34 endemic Iberian species of diving beetles in the family Dytiscidae, and to investigate their level of divergence. Using a molecular clock approach, 18-19 of these species were estimated to be of Pleistocene origin, with four to six of them from the Late Pleistocene ( approximately 100 000 years). A second, lower speciation frequency peak was assigned to Late Miocene or Early Pliocene. Analysis of the distributional ranges showed that endemic species placed in the tip nodes of the trees are significantly more likely to be allopatric with their sisters than endemic species at lower node levels. Allopatric sister species are also significantly younger than sympatric clades, in agreement with an allopatric mode of speciation and limited subsequent range movement. These results strongly suggest that for some taxa Iberian populations were isolated during the Pleistocene long enough to speciate, and apparently did not expand their ranges to recolonize areas north of the Pyrenees. This is in contradiction to observations from fossil beetles in areas further north, which document large range movements associated with the Pleistocene glacial cycles hypothesized to suppress population isolation and allopatric speciation. PMID:14653798

  1. Late Pleistocene vegetation of Kings Canyon, Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Cole, Kenneth

    1983-01-01

    Seven packrat midden samples make possible a comparison between the modern and late Pleistocene vegetation in Kings Canyon on the western side of the southern Sierra Nevada. One modern sample contains macrofossils and pollen derived from the present-day oak-chaparral vegetation. Macrofossils from the six late Pleistocene samples record a mixed coniferous forest dominated by the xerophytic conifers Juniperus occidentalis, Pinus cf. ponderosa, and P. monophylla. The pollen spectra of these Pleistocene middens are dominated by Pinus sp., Taxodiaceae-Cupressaceae-Taxaceae (TCT), and Artemisia sp. Mesophytic conifers are represented by low macrofossil concentrations. Sequoiadendron giganteum is represented by a few pollen grains in the full glacial. Edaphic control and snow dispersal are the most likely causes of these mixed assemblages. The dominant macrofossils record a more xeric plant community than those that now occur on similar substrates at higher elevations or latitudes in the Sierra Nevada. These assemblages suggest that late Wisconsin climates were cold with mean annual precipitation not necessarily greater than modern values. This conclusion supports a model of low summer ablation allowing for the persistence of the glaciers at higher elevations during the late Wisconsin. The records in these middens also suggest that S. giganteum grew at lower elevations along the western side of the range and that P. monophylla was more widely distributed in cismontane California during the Pleistocene.

  2. Global deep-sea extinctions during the Pleistocene ice ages

    NASA Astrophysics Data System (ADS)

    Hayward, Bruce W.

    2001-07-01

    The dark, near-freezing environment of the deep oceans is regarded as one of the most stable habitats on Earth, and this stability is generally reflected in the slow turnover rates (extinctions and appearances) of the organisms that live there. By far the best fossil record of deep-sea organisms is provided by the shells of benthic foraminifera (Protista). A little-known global extinction of deep-sea benthic foraminifera occurred during the Pleistocene ice ages. In the southwest Pacific, it caused the disappearance of at least two families, 15 genera, and 48 species (15% 25% of the fauna) of dominantly uniserial, elongate foraminifera with distinctive apertural modifications. These forms progressively died back and became extinct during glacial periods in the late Pliocene to middle Pleistocene (ca. 2.5 0.6 Ma); most extinctions occurred between 1.0 and 0.6 Ma, at the time of the middle Pleistocene climatic revolution. This first high-resolution study of this extinction event indicates that it was far more significant for deep-sea diversity loss than previously reported (10 species). The middle Pleistocene extinction was the most dramatic last phase of a worldwide decline in the abundance of these elongate forms, a phase that began during cooling near the Eocene-Oligocene boundary and continued during the middle Miocene. Clearly these taxa declined when the world cooled, but the reason is yet to be resolved.

  3. Ecological change, range fluctuations and population dynamics during the Pleistocene.

    PubMed

    Hofreiter, Michael; Stewart, John

    2009-07-28

    Apart from the current human-induced climate change, the Holocene is notable for its stable climate. In contrast, the preceding age, the Pleistocene, was a time of intensive climatic fluctuations, with temperature changes of up to 15 degrees C occurring within a few decades. These climatic changes have substantially influenced both animal and plant populations. Until recently, the prevailing opinion about the effect of these climatic fluctuations on species in Europe was that populations survived glacial maxima in southern refugia and that populations died out outside these refugia. However, some of the latest studies of modern population genetics, the fossil record and especially ancient DNA reveal a more complex picture. There is now strong evidence for additional local northern refugia for a large number of species, including both plants and animals. Furthermore, population genetic analyses using ancient DNA have shown that genetic diversity and its geographical structure changed more often and in more unpredictable ways during the Pleistocene than had been inferred. Taken together, the Pleistocene is now seen as an extremely dynamic era, with rapid and large climatic fluctuations and correspondingly variable ecology. These changes were accompanied by similarly fast and sometimes dramatic changes in population size and extensive gene flow mediated by population movements. Thus, the Pleistocene is an excellent model case for the effects of rapid climate change, as we experience at the moment, on the ecology of plants and animals. PMID:19640497

  4. Extent, timing, and paleogeographic significance of multiple Pleistocene glaciations in the Bering Strait region

    NASA Astrophysics Data System (ADS)

    Heiser, Patricia Anne

    This study utilizes a multidisciplinary approach to the investigation of the extent, timing, and potential effects of repeated Pleistocene glaciation in Bering Strait region. A major focus of this study was directed toward testing the hypothesis that a continental-scale ice sheet existed in Beringia during the Late Wisconsin glacial period. Satellite synthetic aperture radar (SAR) imagery was used to compile a map of glacial moraines in Chukotka, Russia, and to attempt preliminary correlations with the glacial record in Alaska. Geophysical modelling of the solid-earth response to postulated glacial loading, and the reconstruction of regional snowline were combined with the results of the SAR investigation to test the ice sheet hypothesis. Finally, a detailed study of the Quaternary stratigraphy and surficial geology of St. Lawrence Island was used to correlate the glacial and sea level histories of western Alaska and Chukotka, Russia. The sequences of moraines in Chukotka, mapped from SAR imagery, are similar in morphology and position to moraine sequences described in Alaska, recording a succession of glacial events that most likely began in the middle Pleistocene and ended with the Late Wisconsin. The record of repeated mountain glaciation, characterized by radial flow out of high topographic areas provides strong evidence against the existence of a southward-flowing, continental-scale ice sheet in Beringia at any time in the latter part of the Pleistocene. Geophysical modelling of the solid-earth response to glacial loading predicted relative sea level changes on the scale of meters to tens of meters (rising or falling depending on forebulge effect) around the shores of present-day Bering Strait if a large ice sheet had, indeed, occupied the Beringia during Late Wisconsin time. There is no evidence of these predicted sea level changes anywhere in the region. The reconstruction of Late Wisconsin snowlines in Russian and Alaska show that the paleoclimatic conditions needed to 'grow' the hypothesized ice sheet did not exist. Field mapping and stratigraphic work on St. Lawrence Island revealed that ice advanced onto the island twice in the late Pleistocene, once in the Middle Pleistocene and once after the Last Interglacial, probably during the Early Wisconsin. The record of glaciers advancing from Chukotka onto the island provides an important 'Rosetta Stone' for correlating the glacial histories of northeast Siberia and Alaska.

  5. On the glacial erosion of the south-western Barents Sea shelf

    NASA Astrophysics Data System (ADS)

    Sverre Laberg, Jan; Andreassen, Karin; Vorren, Tore O.

    2010-05-01

    The Barents Sea has experienced profound glacial erosion during the late Pliocene and Pleistocene which resulted in the development of a characteristic glacial morphology of the continental shelf and deposition of a several km thick sediment wedge/fan along the western margin prograding into the deep sea. During the middle and late Pleistocene, glacial erosion was most severe beneath the paleo-ice streams of the Barents Sea Ice Sheet and affected mainly the trough areas (~200.000 km2). The total erosion is estimated to 435 - 530 m, the average erosion 0.6 - 0.8 mm/yr and the average sedimentation rates on the continental slope were 18 - 22 cm/kyr. The first-order control on the amount of erosion was probably the glaciations duration and velocity of the ice streams. Erosion by paleo-ice streams affected a larger area (~575.000 km2) during the early and middle Pleistocene because they were less topographically stable due to a less pronounced paleo-relief. Also, glaciotectonism was more extensive during this period. The total erosion was estimated to 330 - 420 m and the average erosion 0.4 - 0.5 mm/yr. The average sedimentation rates were 50 - 64 cm/kyr, 2 - 3 times higher than during the succeeding period. In the late Pliocene - early Pleistocene period, proglacial processes including glacifluvial erosion dominated. The total erosion was found to be 170 - 230 m, the average erosion 0.15 - 0.2 mm/yr and the average sedimentation rates were 16 - 22 cm/kyr. In total, the glacial erosion of the troughs has been relatively high throughout the late Pliocene - Pleistocene period, about 1000 - 1100 m. For the banks the erosion is inferred to have increased from late Pliocene to peak in early - middle Pleistocene, later there has been little erosion in these areas which implies a total of 500 - 650 m of erosion. The average glacial erosion during the whole late Pliocene and Pleistocene period is 38 cm/kyr, one order of magnitude higher than the average glacial erosion of the east Greenland continental shelf. This demonstrates that there have been large variations in the glacial erosion affecting the northern, high-latitude continental margins. Acknowledgement This work is a contribution to the project; Ice ages: subsidence, uplift and tilting of traps: the influence on petroleum systems (GlaciPet) funded by the Research Council of Norway and Statoil.

  6. Subsurface warming in the subpolar North Atlantic during rapid climate events in the Early and Mid-Pleistocene

    NASA Astrophysics Data System (ADS)

    Hernndez-Almeida, Ivn; Sierro, Francisco; Cacho, Isabel; Abel Flores, Jos

    2014-05-01

    A new high-resolution reconstruction of the temperature and salinity of the subsurface waters using paired Mg/Ca-?18O measurements on the planktonic foraminifera Neogloboquadrina pachyderma sinistrorsa (sin.) was conducted on a deep-sea sediment core in the subpolar North Atlantic (Site U1314). This study aims to reconstruct millennial-scale subsurface hydrography variations during the Early and Mid-Pleistocene (MIS 31-19). These rapid climate events are characterized by abrupt shifts between warm/cold conditions, and ice-sheet oscillations, as evidenced by major ice rafting events recorded in the North Atlantic sediments (Hernndez-Almeida et al., 2012), similar to those found during the Last Glacial period (Marcott et al, 2011). The Mg/Ca derived paleotemperature and salinity oscillations prior and during IRD discharges at Site U1314 are related to changes in intermediate circulation. The increases in Mg/Ca paleotemperatures and salinities during the IRD event are preceded by short episodes of cooling and freshening of subsurface waters. The response of the AMOC to this perturbation is an increased of warm and salty water coming from the south, transported to high latitudes in the North Atlantic beneath the thermocline. This process is accompanied by a southward shift in the convection cell from the Nordic Seas to the subpolar North Atlantic and better ventilation of the North Atlantic at mid-depths. Poleward transport of warm and salty subsurface subtropical waters causes intense basal melting and thinning of marine ice-shelves, that culminates in large-scale instability of the ice sheets, retreat of the grounding line and iceberg discharge. The mechanism proposed involves the coupling of the AMOC with ice-sheet dynamics, and would explain the presence of these fluctuations before the establishment of high-amplitude 100-kyr glacial cycles. Hernndez-Almeida, I., Sierro, F.J., Cacho, I., Flores, J.A., 2012. Impact of suborbital climate changes in the North Atlantic on ice sheet dynamics at the Mid-Pleistocene Transition. Paleoceanography 27, PA3214. Marcott, S.A., Clark, P.U., Padman, L., Klinkhammer, G.P., Springer, S.R., Liu, Z., Otto-Bliesner, B.L., Carlson, A.E., Ungerer, A., Padman, J., He, F., Cheng, J., Schmittner, A., 2011. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proceedings of the National Academy of Sciences 108, 13415-13419

  7. Testing hypotheses of Pleistocene population history using coalescent simulations: phylogeography of the pygmy nuthatch (Sitta pygmaea)

    PubMed Central

    Spellman, Garth M; Klicka, John

    2006-01-01

    In this paper, we use mitochondrial NADH dehydrogenase subunit 2 sequences to test Pleistocene refugial hypotheses for the pygmy nuthatch (Sitta pygmaea). Pygmy nuthatches are a common resident of long-needle pine forests in western North America and demonstrate a particular affinity with ponderosa pine (Pinus ponderosa). Palaeoecological and genetic data indicate that ponderosa pine was isolated in two Pleistocene refugia corresponding to areas in the southern Sierra Nevada in the west and southern Arizona and New Mexico in the east. We use coalescent simulations to test the hypothesis that pygmy nuthatches tracked the Pleistocene history of their preferred habitat and persisted in two refugia during the periods of glacial maxima. Coalescent simulation of population history does not support the hypothesis of two Pleistocene refugia for the pygmy nuthatch. Instead, our data are consistent with a single refuge model. Nucleotide diversity is greatest in the western populations of southern and coastal California. We suggest that the pygmy nuthatch expanded from a far western glacial refuge into its current distribution since the most recent glacial maximum. PMID:17015345

  8. Differentiation of pleistocene deposits in northeastern Kansas by clay minerals

    USGS Publications Warehouse

    Tien, P.-L.

    1968-01-01

    Seventy-four samples from eight stratigraphic sections of lower Pleistocene glacial and glaciofluvial deposits in Doniphan County, extreme northeastern Kansas, were analyzed using X-ray diffraction techniques. Clay-mineral assemblages of the <2 ?? fraction of these deposits are nearly identical, consisting of a mixed-layer clay mineral associated with minor amounts of kaolinite and illite. An attempt was made to differentiate units of till and nontill deposits by using the relative intensities of 001 reflections of "mixed-layer mineral," kaolinite, and illite. At least two tills were recognizable. Associated nontill deposits, could not be differentiated from one another, although the nontills are easily distinguished from tills. ?? 1968.

  9. Contrasting Modes of El Nio dynamics in the Holocene and Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Koutavas, A.

    2010-12-01

    The El Nio-Southern Oscillation is at the center of global concerns over 21st century climate change owing to its pervasive influence on Earths climate system, both in terms of global mean temperature, and incidence of extreme events. Successful long-term modeling and prediction of ENSO requires extended observations of past ENSO behavior, but existing paleo-ENSO records are sparse, ambiguous and often contradictory. Here I present insights from a paleo-ENSO archive assembled from >2000 oxygen isotope analyses of individual foraminifera in a marine sediment core located at the eastern edge of the Nino-3 region. The data establish the late Last Glacial Maximum as the interval of most dynamic ENSO conditions and greatest variability, and the mid-Holocene as the time of least dynamic conditions and suppressed variability. Further, the LGM mean structure of surface temperature gradients is most consistent with El Nio, and the mid-Holocene gradients with La Nia. Intermediate states of variability prevailed during the early and late Holocene, and during the 20th century. From this paleo-perspective, the modern ENSO system is within its range of natural variability over the last 25 ka, suggesting that it holds potential to either strengthen or weaken. Perhaps more crucial is the recognition that very large changes in ENSO and equatorial Pacific dynamics have occurred on the time scale of orbital forcing and glacial-interglacial cycles. Such low-frequency ENSO shifts have long been the subject of speculation, but the evidence from this work suggests they are real and surprisingly large. Their understanding remains in its infancy but is essential for a complete theory of Pleistocene glaciations.

  10. The role of meltwater in glacial processes

    NASA Astrophysics Data System (ADS)

    Eyles, Nick

    2006-08-01

    Water plays a dominant role in many glacial processes and the erosional, depositional and climatic significance of meltwaters and associated fluvioglacial processes cannot be overemphasized. At its maximum extent c. 20,000 years ago, the volume of the Laurentide ice sheet was 33 × 10 6 km 3 (about the same as the volume of all ice present today on planet Earth). The bulk of this was released as water in little more than 10,000 years. Pulses of meltwater flowing to the Atlantic Ocean from large ice dammed lakes altered thermohaline circulation of the world's oceans and global climate. One such discharge event via Hudson Bay at 8200 years BP released 160,000 km 3 of water in 12 months. Global sea levels recovered from glacial maximum low stands reached at about 20,000 years ago at an average rate of 15 m per thousand years but estimates of shorter term rates suggest as much as 20 m sea level rise in 1000 years and for short periods, rates as high as 4 m per hundred years. Meltwaters played a key role in lubricating ice sheet motion (and thus areal abrasion) across the inner portions of the ice sheet where it slid over rigid crystalline bedrock of the Canadian Shield. The recharge of meltwater into the ice sheets bed was instrumental in generating poorly sorted diamict sediments (till) by sliding-induced shearing and deformation of overpressured sediment and soft rock. The transformation of overpressured till into hyperconcentrated slurries in subglacial channels may have generated a highly effective erosional tool for selective overdeepening and sculpting of bedrock substrates. Some workers credit catastrophic subglacial 'megafloods' with the formation of drumlins and flutes on till surfaces. Subglacial melt river systems were instrumental in reworking large volumes of glaciclastic sediment to marine basins; it has been estimated that less than 6% of the total volume of glaciclastic sediment produced during the Pleistocene remains on land. Fluvioglacial and glaciolacustrine sediments and landforms dominate large tracts of the 'glacial' landscape in North America. The recharge of subglacial meltwater into underlying bedrock and sediment aquifers created transient reversals in the long-term equilibrium flow directions of basinal fluids. With regard to pre-Pleistocene glacial record, meltwaters moved enormous volumes of terrestrial 'glaciclastic' sediment to marine basins and thus played a key role in preserving a record of glaciation, a record otherwise almost entirely lost on land.

  11. Evidence against a Pleistocene desert refugium in the Lower Colorado River Basin

    USGS Publications Warehouse

    Holmgren, Camille A.; Betancourt, Julio L.; Pealba, M. Cristina; Delgadillo, Jos; Zuravnsky, Kristin; Hunter, Kimberly L.; Rylander, Kate A.; Weiss, Jeremy L.

    2014-01-01

    The assemblage of chaparral, woodland and select desert elements refutes the hypothesis that the Lower Colorado River Basin served as a late Pleistocene refugium for Sonoran Desert flora. The rapid arrival of most missing desert species by the early Holocene suggests they did not have far to migrate. They probably survived the last glacial period as smaller, disparate populations in dry microsites within chaparral and pinyonjuniperoak woodlands. Diploid and tetraploid races of Larrea tridentata were present during the Pleistocene, but hexaploids did not appear until the mid-Holocene. This demonstrates that individualistic responses to climate involved genetic variants, in this case cytotypes, and not just species.

  12. New exposure ages for the Last Glacial Cycle in the Sanabria Lake region (northwestern Spain)

    NASA Astrophysics Data System (ADS)

    Rodrguez-Rodrguez, Laura; Jimnez-Snchez, Montserrat; Domnguez-Cuesta, Mara Jose; Rinterknecht, Vincent; Palls, Raimon; Braucher, Rgis; Bourls, Didier; Valero-Garcs, Blas

    2013-04-01

    The Sanabria Lake region is located in the Trevinca Massif, a mid-latitude mountain area up to 2128 m asl in the northwest corner of the Iberian Peninsula (42oN 6oW). An ice cap glaciation took place during the Last Glacial Cycle in this massif, with an equilibrium line altitude of 1687 m for the Tera glacial outlet at its local maximum (Cowton et al., 2009). A well preserved glacial sequence occurs on an area of 45 km2 around the present Sanabria Lake (1000 m asl) and is composed by lateral and end moraines in close relationship with glaciolacustrine deposits. This sequence shows the ice snout oscillations of the former Tera glacier during the Last Glacial Cycle and offers a good opportunity to compare radiocarbon and OSL- based chronological models with new cosmogenic isotope dates. The new dataset of 10Be exposure ages presented here for the Sanabria Lake moraines is based on measurements conducted on 23 boulders and is compared with previous radiocarbon and OSL data conducted on ice related deposits (Prez-Alberti et al., 2011; Rodrguez-Rodrguez et al., 2011). Our results are coherent with the available deglaciation radiocarbon chronology, and support a last deglaciation origin for the whole set of end moraines that are downstream the Sanabria Lake (19.2 - 15.7 10Be ka). Discrepancies between results of the different dating methods concern the timing of the local glacial maximum, with the cosmogenic exposure method always yielding the youngest minimum ages. As proposed to explain similar observations made elsewhere (Palacios et al., 2012), reconciling the ages from different dating methods would imply the occurrence of two glacial advances close enough in extent to generate an overlapping polygenic moraine. Cowton, T., Hughes, P.D., Gibbard, P.L., 2009. Palaeoglaciation of Parque Natural Lago de Sanabria, northwest Spain. Geomorphology 108, 282-291. Rodrguez-Rodrguez, L., Jimnez-Snchez, M., Domnguez-Cuesta, M.J., Rico, M.T., Valero-Garcs, B., 2011. Last deglaciation in northwestern Spain: New chronological and geomorphologic evidence from the Sanabria region. Geomorphology 135, 48-65. Palacios, D., Andrs, N., beda, J., Alcal, J., Marcos, J., Vzquez-Selem, L., 2012. The importance of poligenic moraines in the paleoclimatic interpretation from cosmogenic dating. Geophysical Research Abstracts 14, EGU2012-3759-1. Prez-Alberti, A., Valcrcel-Daz, M., Martini, I.P., Pascucci, V., Andrucci, S., 2011. Upper Pleistocene glacial valley-junction sediments at Pias, Trevinca Mountains, NW Spain. In: Martini, I.P., French, H.M., Prez-Alberti, A. (Eds.), Ice-Marginal and Periglacial Processes and Sediments. Geological Society (London) Special Publication 354, pp. 93-110. Research funded by the projects LIMNOCLIBER (REN2003-09130-C02-02), IBERLIMNO (CGL2005-20236-E/CLI), LIMNOCAL (CGL2006-13327-C04-01) and GRACCIE (CSD2007-00067) of the Spanish Inter-Ministry Commission of Science and Technology (CICYT). Additional funding was provided by the Fundacin Patrimonio Natural de Castilla y Len through the project "La investigacion en el Lago de Sanabria dentro del proyecto CALIBRE: perspectivas y posibilidades", and by the projects Consolider Ingenio 2006 (CSD2006-0041, Topo-Iberia), 2003 PIRA 00256, HF02.4, and RISKNAT (2009SGR520). L. Rodrguez-Rodrguez has developed her research under a Severo Ochoa Programme fellowship (FICYT- Asturias).

  13. Vegetation context and climatic limits of the Early Pleistocene hominin dispersal in Europe

    NASA Astrophysics Data System (ADS)

    Leroy, S. A. G.; Arpe, K.; Mikolajewicz, U.

    2011-06-01

    The vegetation and the climatic context in which the first hominins entered and dispersed in Europe during the Early Pleistocene are reconstructed, using literature review and a new climatic simulation. Both in situ fauna and in situ pollen at the twelve early hominin sites under consideration indicate the occurrence of open landscapes: grasslands or forested steppes. The presence of ancient hominins ( Homo of the erectus group) in Europe is only possible at the transition from glacial to interglacial periods, the full glacial being too cold for them and the transition interglacial to glacial too forested. Glacial-interglacial cycles forced by obliquity showed paralleled vegetation successions, which repeated c. 42 times during the course of the Early Pleistocene (2.58-0.78 Ma), providing 42 narrow windows of opportunity for hominins to disperse into Europe. The climatic conditions of this Early Pleistocene vegetation at glacial-interglacial transitions are compared with a climatic simulation for 9 ka ago without ice sheet, as this time period is so far the best analogue available. The climate at the beginning of the present interglacial displayed a stronger seasonality than now. Forest cover would not have been hampered though, clearly indicating that other factors linked to refugial location and soils leave this period relatively free of forests. Similar situations with an offset between climate and vegetation at the beginning of interglacials repeated themselves throughout the Quaternary and benefitted the early hominins when colonising Europe. The duration of this open phase of vegetation at the glacial-interglacial transition was long enough to allow colonisation from the Levant to the Atlantic. The twelve sites fall within rather narrow ranges of summer precipitation and temperature of the coldest month, suggesting the hominins had only a very low tolerance to climate variability.

  14. Terrestrial cosmogenic nuclide surface exposure dating of the oldest glacial successions in the Himalayan orogen: Ladakh Range, northern India

    USGS Publications Warehouse

    Owen, L.A.; Caffee, M.W.; Bovard, K.R.; Finkel, R.C.; Sharma, M.C.

    2006-01-01

    Terrestrial cosmogenic nuclide surface exposure dating of moraine boulders and alluvial fan sediments define the timing of five glacial advances over at least the last five glacial cycles in the Ladakh Range of the Transhimalaya. The glacial stages that have been identified are: the Indus Valley glacial stage, dated at older than 430 ka; the Leh glacial stage occurring in the penultimate glacial cycle or older; the Karglacial stage, occurring during the early part of the last glacial cycle; the Bazgo glacial stage, at its maximum during the middle of the last glacial cycle; and the early Holocene Khalling glacial stage. The exposure ages of the Indus Valley moraines are the oldest observed to date throughout the Himalayan orogen. We observe a pattern of progressively more restricted glaciation during the last five glacial cycles, likely indicating a progressive reduction in the moisture supply necessary to sustain glaciation. A possible explanation is that uplift of Himalayan ranges to the south and/or of the Karakoram Mountains to the west of the region may have effectively blocked moisture supply by the south Asian summer monsoon and mid-latitude westerlies, respectively. Alternatively, this pattern of glaciation may reflect a trend of progressively less extensive glaciation in mountain regions that has been observed globally throughout the Pleistocene. ?? 2006 Geological Society of America.

  15. Glacial landscape evolution and sediment export: insights from digital topographic analyses and numerical modelling (Invited)

    NASA Astrophysics Data System (ADS)

    Brocklehurst, S. H.; MacGregor, K. R.

    2013-12-01

    Sediment accumulation rates in the Gulf of Alaska and low-temperature thermochronology from the European Alps, amongst other lines of evidence, indicate accelerated glacial incision and sediment export associated with the Middle Pleistocene Transition (MPT), ~1 Ma. At this time, the change from symmetrical 40-kyr temperature cycles to larger amplitude, asymmetric 100-kyr cycles would have allowed larger, longer lived glaciers to develop, which is inferred as a key contributor to accelerated glacial erosion. Digital topographic analyses comparing glaciated drainage basins of different sizes in the Southern Alps, New Zealand, and Teton Range, western US, amongst others, indicate the importance of scale in glacial landscape development. In smaller drainage basins, or those at the limit of glaciation, landscape modification is primarily restricted to carving characteristic cirques at the heads of valleys. Glaciers may have occasionally spilled from these to carve U-shaped cross-sections downvalley, but without substantial vertical incision. In larger drainage basins with a longer history of glacial occupation, glacial incision has produced shallower downvalley profiles with characteristic glacial steps, presumably accompanied by greater sediment export. A numerical glacial longitudinal profile evolution model, driven by temperature cycles representing either side of the MPT, is used to compare glacial erosion and sediment export from initial Pleistocene glaciations with post-MPT behaviour. The modelled landscape response to the MPT is strongly dependent on the tectonic setting and the behaviour of the fluvial system downstream of the glacier. With no imposed tectonic rock uplift, the major change in the landscape is the carving of cirque forms and glacial longitudinal profiles at the start of the Pleistocene; the MPT would have had little impact on landscape morphology or sediment export. Imposing tectonic as well as isostatic rock uplift, alongside inefficient fluvial transport and erosion downstream of the glacier, the MPT causes more substantial erosion and sediment production than initial glaciation. However, if fluvial processes downstream of the glacier can keep pace with the imposed uplift, the impact of the MPT is dramatically reduced; once again, the major landscape modification is at the onset of glaciation. As such, the history of glacial sediment export during the Pleistocene is a function of drainage basin scale, tectonic setting, and fluvial behaviour downstream of glaciers.

  16. Glacial erosion and geomorphology in the northwest Sierra Nevada, CA

    NASA Astrophysics Data System (ADS)

    James, L. Allan

    2003-09-01

    Pleistocene glacial erosion left a strong topographic imprint in the northwestern Sierra Nevada at many scales, yet the specific landforms and the processes that created them have not been previously documented in the region. In contrast, glaciation in the southern and central Sierra was extensively studied and by the end of the 19th century was among the best understood examples of alpine glaciation outside of the European Alps. This study describes glacially eroded features in the northwest Sierra and presents inferred linkages between erosional forms and Pleistocene glacial processes. Many relationships corroborate theoretical geomorphic principles. These include the occurrence of whalebacks in deep ice positions, roches moutonnes under thin ice, and occurrence of P-forms in low topographic positions where high subglacial meltwater pressures were likely. Some of the landforms described here have not previously been noted in the Sierra, including a large crag and tail eroded by shallow ice and erosional benches high on valley walls thought to be cut by ice-marginal channels.

  17. Mid-Pleistocene Orbital and Millennial Scale Climate Change in a 200 ky lacustrine sediment core from SW North America

    NASA Astrophysics Data System (ADS)

    Fawcett, P. J.; Werne, J. P.; Anderson, R. S.; Heikoop, J. M.; Brown, E. T.; Berke, M. A.; Smith, S.; Goff, F. E.; Hurley, L. L.; Cisneros Dozal, L. M.; Schouten, S.; Sinninghe Damsté, J. S.; Huang, Y.; Toney, J. L.; Fessenden, J. E.; Woldegabriel, G. W.; Geissman, J. W.; Allen, C. D.

    2009-12-01

    How anthropogenic climate change will affect hydroclimate of the arid regions of SW North America over the next century is a concern. Model projections suggest permanent “dust bowl-like” conditions; however, any anthropogenic change will be superimposed on long-term natural climate variability. We use the paleoclimatic record from an 82-m deep lacustrine sediment core (VC-3) from the Valles Caldera, New Mexico to examine continental climate variations spanning two glacial cycles through the middle Pleistocene from MIS 14 to MIS 10 (552 ka to ~360 ka). Both orbital and millennial-scale variations are evident in multiple proxies, and a strong relationship occurs between the warmest temperatures in the record and periods of extended aridity. We suggest that these periods of aridity are characterized by decreased winter as well as summer precipitation amounts. A new group of organic geochemical proxies (MBT and CBT) allow us to reconstruct the annual mean air temperature (MAT) of the Valles Caldera watershed as well as the watershed soil pH down the length of the core. We compare these proxies to climatically sensitive pollen taxa and other core properties. The MAT record of VC-3 shows considerable glacial-interglacial variation and significant variability within individual glacial and interglacial periods. The warmest interglacial MATs (5 to 7°C) compare favorably with modern MATs of ~5°C in the Valle Grande. MIS 11 has three warm substages, based on MAT estimates (2°C warmer than the cool substages), warm (Juniperus, Quercus, Rosaceae) vs. cool (Abies, Picea, Artemisia) pollen taxa and variation in aquatic productivity proxies (TOC, Si:Ti). The three warm substages of MIS 11 appear to correspond to the three precessional peaks that occur during this interval. Glacial MATs range from -5 to +2°C, with multiple millennial-scale temperature oscillations evident. Several of the interstadials show a distinct pattern of relatively slower temperature increases and progressive declines in cold boreal taxa pollen percentages (Picea, Abies), while others are characterized by abrupt warmings and decreases in boreal taxa pollen. Maximum interstadial temperatures are followed by abrupt coolings of as much as 6 to 7°C, and rapid increases in Picea and Abies pollen. These results show that the continental climate of SW North America had a strong response to millennial-scale climate change as well as to orbital forcing, even during a time of muted precessional cycles (MIS 11).

  18. Glacial modification of granite tors in the Cairngorms, Scotland

    USGS Publications Warehouse

    Hall, A.M.; Phillips, W.M.

    2006-01-01

    A range of evidence indicates that many granite tors in the Cairngorms have been modified by the flow of glacier ice during the Pleistocene. Comparisons with SW England and the use of a space-time transformation across 38 tor groups in the Cairngorms allow a model to be developed for progressive glacial modification. Tors with deeply etched surfaces and no, or limited, block removal imply an absence of significant glacial modification. The removal of superstructure and blocks, locally forming boulder trains, and the progressive reduction of tors to stumps and basal slabs represent the more advanced stages of modification. Recognition of some slabs as tor stumps from which glacial erosion has removed all superstructure allows the original distribution of tors to be reconstructed for large areas of the Cairngorms. Unmodified tors require covers of non-erosive, cold-based ice during all of the cold stages of the Middle and Late Pleistocene. Deformation beneath cold-based glacier ice is capable of the removal of blocks but advanced glacial modification requires former wet-based glacier ice. The depth of glacial erosion at former tor sites remains limited largely to the partial or total elimination of the upstanding tor form. Cosmogenic nuclide exposure ages (Phillips et al., 2006) together with data from weathering pit depths (Hall and Phillips, 2006), from the surfaces of tors and large erratic blocks require that the glacial entrainment of blocks from tors occurred in Marine Isotope Stages (MIS) 4-2, 6 and, probably, at least one earlier phase. The occurrence of glacially modified tors on or close to, the main summits of the Cairngorms requires full ice cover over the mountains during these Stages. Evidence from the Cairngorms indicates that tor morphology can be regarded as an important indicator of former ice cover in many formerly glaciated areas, particularly where other evidence of ice cover is sparse. Recognition of the glacial modification of tors is important for debates about the former existence of nunataks and refugia. Copyright ?? 2006 John Wiley & Sons, Ltd.

  19. Aspects of conducting site investigations in glacial terrain

    SciTech Connect

    Schilling, K.E. )

    1993-03-01

    Much of northern US is mantled by Pleistocene glacial drift consisting of heterogeneous deposits of fine to coarse-textured sediments. Hazardous waste site investigations in glacial settings can often present unique design and implementation considerations. Complex glacial stratigraphy encountered during drilling activities demands flexibility built into work plans to allow for field decisions based on field conditions. Continuous cores should be collected from boreholes on a routine basis for stratigraphic purposes with particular importance assigned to field identification of relative permeabilities of stratigraphic units. Selection of appropriate field screening methodology should be based on site conditions. Utilization of open borehole groundwater sampling is recommended for fine-textured glacial settings where soil gas and well point sampling are ineffective. Installation of boreholes allows for collection of stratigraphic information and enables more surface area exposed beneath the water table for groundwater recharge and sampling. Water level determinations can be made on open boreholes for an initial assessment of the horizontal direction of groundwater flow. Placement of screens for monitoring wells should be based on field determination of likely groundwater flow paths. Nested wells are necessary to define the vertical groundwater flow system at most sites. Evaluation of the vertical flow system can often dominate site investigations in fine-textured glacial terrain. Two case studies from Iowa illustrate the usefulness of incorporating the above considerations in planning and implementing in fine-textured glacial sediments. Field investigations utilizing open borehole groundwater sampling successfully delineated site glacial geology and hydrogeology for determination of the nature and extent of groundwater contamination and better located the horizontal and vertical placement of monitoring wells.

  20. How long do U-shaped valleys last? The lifespan of glacial topography set by tectonics.

    NASA Astrophysics Data System (ADS)

    Prasicek, Günther; Larsen, Isaac; Montgomery, David

    2015-04-01

    More than 10 kyr after the last major glaciation the topography of mountain ranges world-wide remains dominated by characteristic glacial landforms such as U-shaped valleys, but the transition from a glacial to a fluvial landscape is poorly constrained and it remains unclear how long glacial morphology persists following deglaciation. The longevity of glacial topography influences glacial extent and erosion in subsequent glaciations and hence the cumulative impact of Pleistocene glacial cycles on the evolution of mountain ranges. We tested whether tectonic forcing and erosional response control the timescale over which glacial topography persists into inter-glacial periods in the western Southern Alps of New Zealand and other mountain ranges worldwide, including the syntaxes of the Himalaya and Taiwan. We quantified the degree of glacial imprint by exploiting the conventional interpretation of V-shaped fluvial and U-shaped glacial valleys. Valley cross sections were automatically extracted from digital terrain models and power-laws were fitted to each cross section to quantify the shape of the valley flanks. A power-law exponent of 1 characterizes the straight valley flanks of a V-shaped cross section and greater exponents are indicative of progressively more U-shaped valleys. Our results show that tectonic forcing is a first-order control on landscape evolution and on the persistence of glacial morphology worldwide. In Earth's most rapidly uplifting mountain ranges the lifespan of glacial topography is on the order of one interglacial period, preventing the development of a cumulative glacial signal. In contrast, in most alpine landscapes more than 100 kyr are required for the transformation from glacial back to fluvial topography and glacial landforms have not or have only partially been erased during the current interglacial. Thus we suggest, emphasizing the influence of glacially preconditioned topography on glacial extent and erosion, that tectonic forcing governs the impact of climate depressions on active orogens beyond controlling their vertical extent, by also altering the spatial and temporal pattern of erosion during subsequent glacial periods via a link between rock uplift and valley cross-sectional shape.

  1. Repeated Pleistocene glaciation of the East Siberian continental margin

    NASA Astrophysics Data System (ADS)

    Niessen, Frank; Hong, Jong Kuk; Hegewald, Anne; Matthiessen, Jens; Stein, Rdiger; Kim, Hyoungjun; Kim, Sookwan; Jensen, Laura; Jokat, Wilfried; Nam, Seung-Il; Kang, Sung-Ho

    2013-10-01

    During the Pleistocene glaciations, Arctic ice sheets on western Eurasia, Greenland and North America terminated at their continental margins. In contrast, the exposed continental shelves in the Beringian region of Siberia are thought to have been covered by a tundra landscape. Evidence of grounded ice on seafloor ridges and plateaux off the coast of the Beringian margin, at depths of up to 1,000m, have generally been attributed to ice shelves or giant icebergs that spread oceanwards during glacial maxima. Here we identify marine glaciogenic landforms visible in seismic profiles and detailed bathymetric maps along the East Siberian continental margin. We interpret these features, which occur in present water depths of up to 1,200m, as traces from grounding events of ice sheets and ice shelves. We conclude that the Siberian Shelf edge and parts of the Arctic Ocean were covered by ice sheets of about 1km in thickness during several Pleistocene glaciations before the most recent glacial period, which must have had a significant influence on albedo and oceanic and atmospheric circulation.

  2. Glacial integrative modelling.

    PubMed

    Ganopolski, Andrey

    2003-09-15

    Understanding the mechanisms of past climate changes requires modelling of the complex interaction between all major components of the Earth system: atmosphere, ocean, cryosphere, lithosphere and biosphere. This paper reviews attempts at such an integrative approach to modelling climate changes during the glacial age. In particular, the roles of different factors in shaping glacial climate are compared based on the results of simulations with an Earth-system model of intermediate complexity, CLIMBER-2. It is shown that ice sheets, changes in atmospheric compositions, vegetation cover, and reorganization of the ocean thermohaline circulation play important roles in glacial climate changes. Another example of this approach is the modelling of two major types of abrupt glacial climate changes: Dansgaard-Oeschger and Heinrich events. Our results corroborate some of the early proposed mechanisms, which relate abrupt climate changes to the internal instability of the ocean thermohaline circulation and ice sheets. At the same time, it is shown that realistic representation of the temporal evolution of the palaeoclimatic background is crucial to simulate observed features of the glacial abrupt climate changes. PMID:14558899

  3. A Late Pleistocene sea level stack

    NASA Astrophysics Data System (ADS)

    Spratt, R. M.; Lisiecki, L. E.

    2015-08-01

    Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0-430 ka and five records from 0-798 ka. The first principal component, which we use as the stack, describes ~80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). When we compare the sea level stack with the δ18O of benthic foraminifera, we find that sea level change accounts for about ~40 % of the total orbital-band variance in benthic δ18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the δ18O of seawater.

  4. Hydrological characteristics of an Alpine glacial valley in the North Italian Dolomites

    NASA Astrophysics Data System (ADS)

    Van de Griend, A. A.; Seyhan, E.; Engelen, G. B.; Geirnaert, W.

    1986-11-01

    Hydrogeological characteristics of Alpine regions generally are determined to a large extent by the geomorphological development during the Quaternary period (Pleistocene and Holocene). This development and the hydrogeological characteristics were studied for a glacial trough-valley San Vigilio, developed in a Dolomite limestone complex in the Alps of North Italy. Geo-electrical soundings were successful for detecting the shape of the glacial valley-bottom and to interpret the depth and sediment type distribution of the glacial valley fill, composed of ground moraine, fluvio-glacial deposits, fluvial fans, talus cones and lake deposits. Hydrochemical analyses and environmental isotopes ( 3H and 18O) were used to further interpret the groundwater flow systems.

  5. Glacial geomorphic evidence for a late climatic change on Mars

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.; Strom, R. G.

    1992-01-01

    In a series of preliminary reports, we documented evidence of former glacial epochs on Mars. Apparent glacial landforms seemed to be concentrated primarily at middle to high southern latitudes. We now have additional evidence supporting the view that Martian glaciation appears to have been more extensive than previously recognized. The growth and collapse of ice sheets on Mars seems closely analogous to the growth and decline of Earth's great Pleistocene ice sheets. This implies that climate change was probably somewhat comparable on the two planets, although in the case of Mars the entire planet seems to have changed rapidly to a cold, dry present-day environment after the collapse of the ice sheets.

  6. Glacial cycles drive variations in the production of oceanic crust.

    PubMed

    Crowley, John W; Katz, Richard F; Huybers, Peter; Langmuir, Charles H; Park, Sung-Hyun

    2015-03-13

    Glacial cycles redistribute water between oceans and continents, causing pressure changes in the upper mantle, with consequences for the melting of Earth's interior. Using Plio-Pleistocene sea-level variations as a forcing function, theoretical models of mid-ocean ridge dynamics that include melt transport predict temporal variations in crustal thickness of hundreds of meters. New bathymetry from the Australian-Antarctic ridge shows statistically significant spectral energy near the Milankovitch periods of 23, 41, and 100 thousand years, which is consistent with model predictions. These results suggest that abyssal hills, one of the most common bathymetric features on Earth, record the magmatic response to changes in sea level. The models and data support a link between glacial cycles at the surface and mantle melting at depth, recorded in the bathymetric fabric of the sea floor. PMID:25766231

  7. Glacial Geology of Wisconsin.

    ERIC Educational Resources Information Center

    Madison Public Schools, WI.

    This publication is a teacher's resource and guidebook for the presentation of the three filmstrips in the "Glacial Geology of Wisconsin" series. The first filmstrip is subtitled, "Evidence of the Glaciers," the second "How the Glaciers Reshaped the Landscape," and the third "Fossils of the Ice Age." Included are a list of objectives, an outline

  8. Glacial Geology of Wisconsin.

    ERIC Educational Resources Information Center

    Madison Public Schools, WI.

    This publication is a teacher's resource and guidebook for the presentation of the three filmstrips in the "Glacial Geology of Wisconsin" series. The first filmstrip is subtitled, "Evidence of the Glaciers," the second "How the Glaciers Reshaped the Landscape," and the third "Fossils of the Ice Age." Included are a list of objectives, an outline…

  9. Late Pleistocene carbonate dissolution in the Venezuela Basin, Caribbean Sea

    SciTech Connect

    Cofer-Shabica, N.B.; Peterson, L.C.

    1985-01-01

    Piston cores from water depths greater than 4000 m in the Venezuela Basin (Caribbean Sea) provide continuous late Pleistocene records of carbonate dissolution and accumulation. The authors examination of multiple dissolution indices indicate that, at least for the last 150,000 years, dissolution of carbonate in the Venezuela Basin has been more intense during interglacial than glacial periods, a pattern opposite to more general observations from the deep Atlantic and Gulf of Mexico. By virtue of its shallow sill depth (1815 m), the Venezuela Basin is relatively isolated from the mainstream of Atlantic thermohaline circulation, and presently is filled with homogeneous, relatively warm (3.8/sup 0/C) waters primarily derived from Upper North Atlantic Deep Water. During the last glacial, the enhanced preservation of carbonate in the Venezuela Basin suggests the presence of a less corrosive, more oxygenated water mass in the Atlantic near sill depth. However, this simple interpretations is potentially complicated by past changes in the rain of biogenic materials from surface waters to the deep basin in what must be an essentially closed system below sill depth. Their observations of increased interglacial dissolution may help to explain previously noted discrepancies in the local glacial to interglacial amplitude of delta/sup 18/O variations recorded by coccoliths and planktonic foraminifera.

  10. Constraining Late Pleistocene Pluvial Lake Chronologies in Northeastern Nevada

    NASA Astrophysics Data System (ADS)

    Munroe, J. S.; Laabs, B. J.

    2011-12-01

    The presence of lakes in closed basins of the northern Great Basin during pluvial episodes of the Pleistocene has been recognized for over a century. Some of these lakes, such as Bonneville in western Utah and Lahontan in western Nevada, were large, and their histories are well constrained by field mapping, stratigraphic investigations, and geochronology. Dozens of other lakes with smaller dimensions are known to have existed, however with few exceptions their histories are virtually unknown. This situation is unfortunate because smaller, hydrologically closed lakes should be particularly sensitive to climatic changes that shifted the balance of precipitation and evaporation. Records of their fluctuations, therefore, could provide important information about atmospheric reorganization during the last glacial-interglacial transition. Ongoing work in northeastern Nevada is aimed at developing these records through detailed mapping, investigation of natural exposures and artificial excavations, and radiocarbon dating. Gastropod shells recovered from two sites along a beach ridge in the northeast Independence Valley indicate that Lake Clover reached its late Pleistocene highstand between 14,400 and 14,200 14C years BP (~17.5 cal. ka BP). Similarly, radiocarbon dating of gastropod shells from a beach ridge in the Ruby Valley indicates that Lake Franklin was near its late Pleistocene highstand at 13,400 14C years BP (~16.4 cal. ka BP). These ages are essentially synchronous with the highstands of Lakes Newark and Jakes ~150 km to the south, overlap with the hydrologic maximum of Lake Bonneville, and appear to predate the highstand of Lake Lahontan. Additional radiocarbon dating will refine these age relationships and attempt to constrain the timing of stillstands during the overall regression of these lakes in the latest Pleistocene.

  11. Giant glacial cirques of non-mountainous terrains

    NASA Astrophysics Data System (ADS)

    Amantov, A.; Amantova, M.

    2012-04-01

    Cirques are usually considered as specific landforms of hill and mountain terrains produced by alpine glaciers, and/or slope failures (landslides). However, glacial cirques seem to be present also in non-mountainous terrains that underwent extensive Pleistocene ice-sheet glaciations and strong glacial and fluvio-glacial erosion. The largest form in the Baltic region is Severoladozhsky (North Lake Ladoga) cirque, probably the world's largest representative, with the length and width close to 100 km. Another example is the deepest Landsort basin of the Baltic Sea. In those cases Meso-Neoproterozoic sediments were subject to selected erosion, with evident overdeepening of the bedrock surface in comparison with surrounding crystalline frame. The bowl headwall shape of the cirque-like landforms was determined by the outline of the margin of exhumed basin. The origin of the major basins of margins of the Baltic and Canadian shields are similar. However, direct analogues of giant cirques are not well developed in this part of North America due to geological deviations and dominant directions of ice movement. Comparable landforms (like the South Chippewa basin of the Lake Michigan) are therefore less mature. We define glacial cirque as an amphitheatre-shape depression with comparable values of length and width, steep headwall with adjacent side slopes and gentle lip with commonly increased glacial accumulation. They are usually located within an ice stream that created typical relief profile with normal horseshoe overdeepening, and in areas predefined by geological and geomorphological peculiarities. This definition likely fits both classic mountain cirques, and giant ones created in favorable conditions in domains that underwent extensive glaciations and relevant selective glacial erosion. Length/width ratio typical for giant cirques group is close to 1:1, being comparable with classical alpine ones. Major differences (like length/height ratio of other order and possible larger internal landscape complications) are related to the extreme size of typical representatives of giant cirques of non-mountainous terrains.

  12. A high-resolution Late Glacial to Holocene record of environmental change in the Mediterranean from Lake Ohrid (Macedonia/Albania)

    NASA Astrophysics Data System (ADS)

    Lacey, Jack H.; Francke, Alexander; Leng, Melanie J.; Vane, Christopher H.; Wagner, Bernd

    2015-09-01

    Lake Ohrid (Macedonia/Albania) is the oldest extant lake in Europe and exhibits an outstanding degree of endemic biodiversity. Here, we provide new high-resolution stable isotope and geochemical data from a 10 m core (Co1262) through the Late Glacial to Holocene and discuss past climate and lake hydrology (TIC, ?13Ccalcite, ?18Ocalcite) as well as the terrestrial and aquatic vegetation response to climate (TOC, TOC/N, ?13Corganic, Rock Eval pyrolysis). The data identifies 3 main zones: (1) the Late Glacial-Holocene transition represented by low TIC and TOC contents, (2) the early to mid-Holocene characterised by high TOC and increasing TOC/N and (3) the Late Holocene-Present which shows a marked decrease in TIC and TOC. In general, an overall trend of increasing ?18Ocalcite from 9 ka to present suggests progressive aridification through the Holocene, consistent with previous records from Lake Ohrid and the wider Mediterranean region. Several proxies show commensurate excursions that imply the impact of short-term climate oscillations, such as the 8.2 ka event and the Little Ice Age. This is the best-dated and highest resolution archive of past Late Glacial and Holocene climate from Lake Ohrid and confirms the overriding influence of the North Atlantic in the north-eastern Mediterranean. The data presented set the context for the International Continental scientific Drilling Program Scientific Collaboration On Past Speciation Conditions in Lake Ohrid project cores recovered in spring-summer 2013, potentially dating back into the Lower Pleistocene, and will act as a recent calibration to reconstruct climate and hydrology over the entire lake history.

  13. A high resolution Late Glacial to Holocene record of climatic and environmental change in the Mediterranean from Lake Ohrid (Macedonia/Albania)

    NASA Astrophysics Data System (ADS)

    Lacey, Jack; Francke, Alexander; Leng, Melanie; Vane, Chris; Wagner, Bernd

    2015-04-01

    Lake Ohrid (Macedonia/Albania) is one of the world's oldest lakes and is renowned for its high degree of biological diversity. It is the target site for the ICDP SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid) project, an international research initiative to study the links between geology, environment and the evolution of endemic taxa. In 2011 a 10-meter core was recovered from the western shore of Lake Ohrid adjacent to the Lini Peninsula. Here we present high-resolution stable isotope and geochemical data from this core through the Late Glacial to Holocene to reconstruct past climate and hydrology (TIC, δ18Ocalcite, δ13Ccalcite) as well as the terrestrial and aquatic vegetation response to climate (TOC, TOC/N, δ13Corganic, Rock-Eval pyrolysis). The data identify 3 main zones: (1) the Late Glacial-Holocene transition represented by low TIC, TOC and higher isotope values, (2) the early to mid-Holocene characterised by higher TOC, TOC/N and lower δ18Ocalcite, and (3) the late Holocene which shows a marked decrease in TIC and TOC. In general there is an overall trend of increasing δ18Ocalcite from 9 ka to present, suggesting progressive aridification through the Holocene, which is consistent with previous records from Lake Ohrid and the wider Mediterranean region. Several proxies show commensurate excursions that imply the impact of short-term climate oscillations, such as the 8.2 ka event and the Little Ice Age. This is the best-dated and highest resolution archive of Late Glacial and Holocene climate from Lake Ohrid and confirms the overriding influence of the North Atlantic in the north-eastern Mediterranean. The data presented set the context for the SCOPSCO project cores recovered in spring-summer 2013 dating back into the Lower Pleistocene, and will act as a recent calibration to reconstruct climate and hydrology over the entire lake history.

  14. Quaternary glacial landforms and evolution in the Cantabrian Mountains (Northern Spain): a synthesis from current data

    NASA Astrophysics Data System (ADS)

    Serrano, Enrique; José González-Trueba, Juan; Pellitero, Ramón; González-García, María; Gómez-Lende, Manuel

    2014-05-01

    In Northern Iberian Peninsula are located the Cantabrian Mountains, a mountain system of 450 km length, reaching 2648 m in the Picos de Europa. It is an Atlantic mountain in the North slope, with a Atlantic Mediterranean transitional climate in the South slope.More than thirty-five massifs developed glaciers during the Pleistocene. Studies on glacial morphology are known from the XIX century and they have focused mainly on the maximum extent of glaciers. Nowadays there are detailed geomorphological maps, morphostratigraphic surveys and estimation of Equilibrium Line Altitude in different massifs and on different stages. During the last decade studies on glacial evolution and glaciation phases have been made, and the first chronological data have been published. In this work we presents the reconstruction of the glacial evolution in the Cantabrian Mountains during the Pleistocene and Holocene, based on recent chronological data (30 dates made using OSL, AMS and C14) and morphostratigraphic correlations obtained by several research groups. The number of reconstructed glacial stages varies among the different massifs, form one to four different stages. The highest massifs located in the central portion of the Cantabrian Mountains have the most complex glacial features, with at least four different moraine complexes stepped between the 400 m a.s.l in the Northern slope and 800 m a.s.l. in the Southern slope for the lowest moraine complexes, and the highest and youngest, located above 2100 m a.s.l. An ancient glacial phase has been pointed to MIS 12 -more than 400 ka-, disconnected from the present day glacial morphology. During Upper Pleistocene three main stages have been identified. The first one, the local glacial maximum, could be prior to the LGM, as all dates refer to chronologies prior to 28-38 ka. Some authors locate this stage prior to 45 and 65 ka, during the 50-70 ka cold stage. It could be a wet stage, when the main fronts reached the Iberian Peninsula from the SW. The second stage is located to around 30 ka, and point to a dryer stage when glaciers was shorter but thicker. The third stage is located at 20-18 ka, contemporary from the LGM. Glaciers are located inside of glacier-shaped mountain valleys. A few moraine complexes located in the highest massif have been related to Lateglacial, coinciding with cold phases (Dryas) recorded in the Picos de Europa lakes and paleolakes. Finally, during the Holocene only small glaciers developed in the Picos de Europa, which have been assigned to LIA. Nowadays there are still glacial ice remains in four glacial cirques of Picos de Europa, close to the LIA moraines.

  15. Ecological structure of recent and last glacial mammalian faunas in northern Eurasia: the case of Altai-Sayan refugium.

    PubMed

    Pavelkov ?i?nkov, V?ra; Robovsk, Jan; Riegert, Jan

    2014-01-01

    Pleistocene mammalian communities display unique features which differ from present-day faunas. The paleocommunities were characterized by the extraordinarily large body size of herbivores and predators and by their unique structure consisting of species now inhabiting geographically and ecologically distinct natural zones. These features were probably the result of the unique environmental conditions of ice age ecosystems. To analyze the ecological structure of Last Glacial and Recent mammal communities we classified the species into biome and trophic-size categories, using Principal Component analysis. We found a marked similarity in ecological structure between Recent eastern Altai-Sayan mammalian assemblages and comparable Pleistocene faunas. The composition of Last Glacial and Recent eastern Altai-Sayan assemblages were characterized by the occurrence of large herbivore and predator species associated with steppe, desert and alpine biomes. These three modern biomes harbor most of the surviving Pleistocene mammals. None of the analyzed Palearctic Last Glacial faunas showed affinity to the temperate forest, taiga, or tundra biome. The Eastern part of the Altai-Sayan region could be considered a refugium of the Last Glacial-like mammalian assemblages. Glacial fauna seems to persist up to present in those areas where the forest belt does not separate alpine vegetation from the steppes and deserts. PMID:24454791

  16. Ecological Structure of Recent and Last Glacial Mammalian Faunas in Northern Eurasia: The Case of Altai-Sayan Refugium

    PubMed Central

    Pavelková Řičánková, Věra; Robovský, Jan; Riegert, Jan

    2014-01-01

    Pleistocene mammalian communities display unique features which differ from present-day faunas. The paleocommunities were characterized by the extraordinarily large body size of herbivores and predators and by their unique structure consisting of species now inhabiting geographically and ecologically distinct natural zones. These features were probably the result of the unique environmental conditions of ice age ecosystems. To analyze the ecological structure of Last Glacial and Recent mammal communities we classified the species into biome and trophic-size categories, using Principal Component analysis. We found a marked similarity in ecological structure between Recent eastern Altai-Sayan mammalian assemblages and comparable Pleistocene faunas. The composition of Last Glacial and Recent eastern Altai-Sayan assemblages were characterized by the occurrence of large herbivore and predator species associated with steppe, desert and alpine biomes. These three modern biomes harbor most of the surviving Pleistocene mammals. None of the analyzed Palearctic Last Glacial faunas showed affinity to the temperate forest, taiga, or tundra biome. The Eastern part of the Altai-Sayan region could be considered a refugium of the Last Glacial-like mammalian assemblages. Glacial fauna seems to persist up to present in those areas where the forest belt does not separate alpine vegetation from the steppes and deserts. PMID:24454791

  17. Thriving in the Cold: Glacial Expansion and Post-Glacial Contraction of a Temperate Terrestrial Salamander (Plethodon serratus)

    PubMed Central

    Newman, Catherine E.; Austin, Christopher C.

    2015-01-01

    The dynamic geologic history of the southeastern United States has played a major role in shaping the geographic distributions of amphibians in the region. In the phylogeographic literature, the predominant pattern of distribution shifts through time of temperate species is one of contraction during glacial maxima and persistence in refugia. However, the diverse biology and ecology of amphibian species suggest that a one-size-fits-all model may be inappropriate. Nearly 10% of amphibian species in the region have a current distribution comprised of multiple disjunct, restricted areas that resemble the shape of Pleistocene refugia identified for other temperate taxa in the literature. Here, we apply genetics and spatially explicit climate analyses to test the hypothesis that the disjunct regions of these species ranges are climatic refugia for species that were more broadly distributed during glacial maxima. We use the salamander Plethodon serratus as a model, as its range consists of four disjunct regions in the Southeast. Phylogenetic results show that P. serratus is comprised of multiple genetic lineages, and the four regions are not reciprocally monophyletic. The Appalachian salamanders form a clade sister to all other P. serratus. Niche and paleodistribution modeling results suggest that P. serratus expanded from the Appalachians during the cooler Last Glacial Maximum and has since been restricted to its current disjunct distribution by a warming climate. These data reject the universal applicability of the glacial contraction model to temperate taxa and reiterate the importance of considering the natural history of individual species. PMID:26132077

  18. Plio-Pleistocene stratigraphy and relative sea level estimates: an emerging global perspective

    NASA Astrophysics Data System (ADS)

    Hearty, Paul; O'Leary, Michael; Rovere, Alessio; Raymo, Maureen; Sandstrom, Michael

    2015-04-01

    The historical rise of atmospheric CO2 to over 400 ppmv amplifies the need to better understand natural systems during past warmer interglacials. This change over the past 150 years approximates the CO2 range of full glacial-interglacial cycles. Resulting future global impacts are likely, and accurate geological field data would help us better understand the past behavior of sea level (SL) and ice sheets. The middle Pliocene warm period (MPWP) offers an approximate analogue for a 400-ppmv world. Before PLIOMAX (www.pliomax.org), only a handful of estimates of relative sea levels (RSL) along with considerable uncertainties were available for the MPWP. Precise elevations of Plio-Pleistocene RSL indicators were measured with decimeter accuracy using an OmniStar dGPS at sites in Australia, South Africa, Argentina, and other seemingly stable locations. High-resolution SL indicators include wave abrasion surfaces, sub- and intertidal sedimentary structures, and in situ marine invertebrates such as shallow water oysters and barnacles. In addition, thousands of km of terraced coastline was surveyed with dGPS between study sites. The coastal geomorphic expression of Pliocene SL is profound. From ~5 to 3 Ma, high frequency orbitally-paced, low amplitude SL oscillations acted as a shoreline "buzz saw" on hard bedrock, forming extensive high terraces. In high sediment environments such as that of the southeast US Atlantic Coastal Plain, relatively stable Pliocene ocean levels trapped huge volumes of fluvial sediments in the coastal zone, resulting in broad sandy terraces and extensive dune fields. However, glacio-isostatic adjustment (GIA), dynamic topography (DT), and other post-depositional processes have warped these marine terraces by tens of meters since the Pliocene (Raymo et al. 2011, Rovere et al 2014). The PLIOMAX team has documented precise RSLs from numerous global sites that clearly indicate that global ice volume was significantly reduced during intervals of the Pliocene. Modeling of tectonic, GIA, and DT effects, combined with a renewed Sr dating effort will greatly clarify the SL history evident from the geology of these sites. Raymo, M.E., Mitrovica, J.X., O'Leary, M.J., DeConto, R. M., and Hearty, P.J., 2011. Departures from eustasy in Pliocene sea-level records. Nature Geoscience, doi: 10.1038/NGEO1118. Rovere, A., Raymo, M.E., Mitrovica, J.X., Hearty, P.J., O'Leary, M.J., Inglis, J.D., 2013. The Mid-Pliocene sea-level conundrum: Glacial isostasy, eustasy and dynamic topography. Earth and Planetary Science Letters 387 (2014) 27-33, doi.org/10.1016/j.epsl.2013.10.030.

  19. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Ciais, P.; Tagliabue, A.; Cuntz, M.; Bopp, L.; Scholze, M.; Hoffmann, G.; Lourantou, A.; Harrison, S. P.; Prentice, I. C.; Kelley, D. I.; Koven, C.; Piao, S. L.

    2012-01-01

    During each of the late Pleistocene glacial-interglacial transitions, atmospheric carbon dioxide concentrations rose by almost 100ppm. The sources of this carbon are unclear, and efforts to identify them are hampered by uncertainties in the magnitude of carbon reservoirs and fluxes under glacial conditions. Here we use oxygen isotope measurements from air trapped in ice cores and ocean carbon-cycle modelling to estimate terrestrial and oceanic gross primary productivity during the Last Glacial Maximum. We find that the rate of gross terrestrial primary production during the Last Glacial Maximum was about 40+/-10 Pg C yr-1, half that of the pre-industrial Holocene. Despite the low levels of photosynthesis, we estimate that the late glacial terrestrial biosphere contained only 330 Pg less carbon than pre-industrial levels. We infer that the area covered by carbon-rich but unproductive biomes such as tundra and cold steppes was significantly larger during the Last Glacial Maximum, consistent with palaeoecological data. Our data also indicate the presence of an inert carbon pool of 2,300 Pg C, about 700 Pg larger than the inert carbon locked in permafrost today. We suggest that the disappearance of this carbon pool at the end of the Last Glacial Maximum may have contributed to the deglacial rise in atmospheric carbon dioxide concentrations.

  20. Polar front shift and atmospheric CO2 during the glacial maximum of the Early Paleozoic Icehouse

    PubMed Central

    Vandenbroucke, Thijs R. A.; Armstrong, Howard A.; Williams, Mark; Paris, Florentin; Zalasiewicz, Jan A.; Sabbe, Koen; Nlvak, Jaak; Challands, Thomas J.; Verniers, Jacques; Servais, Thomas

    2010-01-01

    Our new data address the paradox of Late Ordovician glaciation under supposedly high pCO2 (8 to 22 PAL: preindustrial atmospheric level). The paleobiogeographical distribution of chitinozoan (mixed layer) marine zooplankton biotopes for the Hirnantian glacial maximum (440Ma) are reconstructed and compared to those from the Sandbian (460Ma): They demonstrate a steeper latitudinal temperature gradient and an equatorwards shift of the Polar Front through time from 5570S to ?40S. These changes are comparable to those during Pleistocene interglacial-glacial cycles. In comparison with the Pleistocene, we hypothesize a significant decline in mean global temperature from the Sandbian to Hirnantian, proportional with a fall in pCO2 from a modeled Sandbian level of ?8 PAL to ?5 PAL during the Hirnantian. Our data suggest that a compression of midlatitudinal biotopes and ecospace in response to the developing glaciation was a likely cause of the end-Ordovician mass extinction. PMID:20696937

  1. Inter-basin Sea Surface Salinity Contrasts and the Fate of Ocean Thermohaline Circulation: Application to 8.2 ka Outburst Floods from Glacial Lake Agassiz

    NASA Astrophysics Data System (ADS)

    Seidov, D.; Haupt, B. J.; Clarke, G. K.

    2004-05-01

    For decades, substantial modeling effort has been directed to understanding freshwater impacts on the thermohaline ocean circulation (THC) in order to decipher the glacial cycles of the Pleistocene. Longer-term glacial-interglacial oscillations are paced by variations in Earth's orbital parameters, but shorter-term fluctuations of climate, especially in the North Atlantic region, are clearly driven by internal climate dynamics on millennial and longer time scales. Interactions between ocean and cryosphere are the main candidates for controlling such climate changes. However, the geologic record indicates that the transitions between cold and warm climates within the millennial-scale fluctuations were very fast, lasting for only decades or shorter. The THC is, perhaps, the only viable candidate for such short and abrupt changes. Our recent numerical experiments revealed that sea surface salinity contrasts between the North Atlantic and North Pacific are the most critical for the THC functioning. These contrasts depend on many factors, including the synergy between water vapor disparity between the two oceans and freshwater removal from the catchment area in the mid-latitudinal North Atlantic. However, many believe that this synergy may have been disrupted by fast cryosphere-ocean interactions causing substantial changes in the THC operation. There are several examples of such events since the Last Glacial Maximum. One involved huge outburst floods from glacial lakes that formed along the southern margin of the Laurentide Ice Sheet. The largest of these lakes was glacial Lake Agassiz, which drained into Hudson Bay around 8.45 calendar kyr ago (nominally 8.2 kyr BP). The estimates of freshwater discharged into the northern North Atlantic suggest that these amounts of freshwater could be sufficient for large-scale disturbance of THC. We present our most recent computer simulations of the role of sea surface salinity contrasts between the Atlantic and Pacific Oceans. These results include the scenarios of the Lake Agassiz outburst floods at 8.2 ka that caused sudden disruptions of THC and Atlantic-Pacific salinity balance. The THC response in some of the scenarios demonstrates that THC indeed could be influenced quite strongly. However, this response varies substantially in different scenarios showing its dependence on the intensity, duration, and routes of ice surges.

  2. Pleistocene glaciation history of the Northern North Sea and Norwegian Channel documented by basin-scale 3D seismic analysis

    NASA Astrophysics Data System (ADS)

    Huuse, J.; Huuse, M.

    2012-04-01

    A regionally merged (c. 30,000 km2) 'megasurvey' 3D seismic dataset and an extensive set of 2D lines, tied to the Troll (89-03) core and wireline logs, was used to investigate the glacial and inter-glacial evolution of the northernmost North Sea through the Plio-Pleistocene. An extensive regional unconformity (URU) exists throughout the study area truncating the Naust Formation, a Plio-Pleistocene glacially-influenced progradational delta system, and older strata. This major erosion surface forms the base of the Norwegian Channel, a large (800 km long) cross-shelf trough located along the southern Norwegian coast. The evolution and exact erosion mechanism of this enigmatic feature is still debated. The stratigraphic succession above the URU consists of relatively flat-lying, alternating glacial and glacio-marine units of mid Pleistocene-Holocene age. This study is the first to present fully 3D seismic-constrained maps of the URU, the Naust clinoforms and all major glacial erosion surfaces within the Norwegian Channel infill. Furthermore it documents the geometries and sedimentary facies characteristics of the till and marine units preserved within the Norwegian Channel and the Norwegian sector of the Northern North Sea. Mapped erosional surfaces reveal a diverse assemblage of glacial morpologies interpreted as mega-scale glacial lineations, tunnel valleys, glaciotectonic thrust complexes, terminal moraines and meltwater conduits demarcating the terminus of successive grounded palaeo-ice sheets. Ice berg ploughing was common along the margin between 2.6 and 1.1 Ma with ice streaming commencing prior to 1.1 Ma. Repeated occupation of the NC by fast flowing ice streams, during the Elsterian, Saalian, and Weichselian (MIS 12, 10, 8, 6, 2), led to a progressively westward erosion of the channel margin, migrating approximately 60 km between 1.1 Ma and the LGM. Although well imaged by seismic data, the prolific record of glaciations and interglacials in the Northern North Sea require better age constraints to further fine tune the record of Pleistocene environmental changes. Whilst a large number of wells exist in the North Sea, giving basic lithological information, only very few have sufficiently detailed stratigraphic data in the Pleistocene section. Further research should thus include coring tied to high-resolution seismic data that can be linked to the basin-scale 3D seismic observations presented herein. As this study provides a unique insight into the spatial and temporal dynamics of shelf-edge glaciation in the northern North Sea and its Atlantic margin throughout the late Cenozoic, the plethora of features documented within the Northern North Sea may serve as a template for interpreting other less well imaged glaciated margins.

  3. Geomorphic controls on Pleistocene knickpoint migration in Alpine valleys

    NASA Astrophysics Data System (ADS)

    Leith, Kerry; Fox, Matt; Moore, Jeffrey R.; Brosda, Julian; Krautblatter, Michael; Loew, Simon

    2014-05-01

    Recent insights into sub-glacial bedrock stress conditions suggest that the erosional efficiency of glaciers may reduce markedly following a major erosional cycle [Leith et al., 2013]. This implies that the formation of large glacial valleys within the Alps is likely to have occurred shortly after the onset of 100 ky glacial-interglacial cycles (at the mid-Pleistocene Revolution (MPR)). The majority of landscape change since this time may have therefore been driven by sub-aerial processes. This hypothesis is supported by observations of hillslope and channel morphology within Canton Valais (Switzerland), where major tributary valleys display a common morphology along their length, hinting at a shared geomorphic history. Glaciers currently occupy the headwaters of many catchments, while the upper reaches of rivers flow across extensive alluvial planes before abruptly transitioning to steep channels consisting of mixed bedrock and talus fan deposits. The rivers then converge to flow out over the alluvial plane of the Rhone Valley. Characteristically rough topographies within the region are suggested to mark the progressive transition from a glacial to fluvially-dominated landscape, and correlate well with steepened river channel sections determined from a 2.5 m resolution LiDAR DEM. We envisage a landscape in which ongoing tectonic uplift drives the emergence of Alpine bedrock through massive sedimentary valley infills (currently concentrated in the Rhone Valley), whose elevation is fixed by the consistent fluvial baselevel at Lake Geneva. As fluvial incision ceases at the onset of glaciation, continued uplift causes the formation of knickpoints at the former transition from bedrock to sedimentary infill. These knickpoints will then propagate upstream during subsequent interglacial periods. By investigating channel morphologies using an approach based on the steady-state form of the stream power equation, we can correlate steepened channel reaches (degraded knickpoints) across most major tributaries south of the Rhone River. The timing of apparent uplift events correlates well with that of cool Marine Isotope Stages derived from global oxygen isotope data up to the beginning of MIS 12. A weak correlation up to the beginning of MIS 18 suggests initial glacial incision may have occurred some time during MIS 14 - 20, and valley development has since been driven by fluvial processes. Leith, K., J. R. Moore, F. Amann, and S. Loew (2013), Sub-glacial extensional fracture development and implications for Alpine valley evolution, J. Geophys. Res. Earth Surf., doi:10.1002/2012JF002691.

  4. Marine ice sheets of Pleistocene age on the East Siberian Continental Margin (Invited)

    NASA Astrophysics Data System (ADS)

    Niessen, F.; Hong, J.; Hegewald, A.; Matthiessen, J. J.; Stein, R. H.; Kim, H.; Kim, S.; Jensen, L.; Jokat, W.; Nam, S.; Kang, S.

    2013-12-01

    Based on swath bathymetry, sediment echosounding, seismic profiling and sediment coring we present results of the RV "Polarstern' cruise ARK-XIII/3 (2008) and RV "Araon" cruise ARA03B (2012), which investigated an area between the Chukchi Borderland and the East Siberian Sea between 165W and 170E. At the southern end of the Mendeleev Ridge, close to the Chukchi and East Siberian shelves, evidence is found for the existence of Pleistocene ice sheets/ice shelves, which have grounded several times in up to 1200 m present water depth. We found mega-scale glacial lineations associated with deposition of glaciogenic wedges and debris-flow deposits indicative of sub-glacial erosion and deposition close to the former grounding lines. Glacially lineated areas are associated with large-scale erosion, accentuated by a conspicuous truncation of pre-glacial strata typically capped with mostly thin layers of diamicton draped by pelagic sediments. Our tentative age model suggests that the youngest and shallowest grounding event of an ice sheet should be within Marine Isotope Stage (MIS) 3. The oldest and deepest event predates MIS 6. According to our results, ice sheets of more than one km in thickness continued onto, and likely centered over, the East Siberian Shelf. They were possibly linked to previously suggested ice sheets on the Chukchi Borderland and the New Siberian Islands. We propose that the ice sheets extended northward as thick ice shelves, which grounded on the Mendeleev Ridge to an area up to 78N within MIS 5 and/or earlier. These results have important implication for the former distribution of thick ice masses in the Arctic Ocean during the Pleistocene. They are relevant for global sea-level variations, albedo, ocean-atmosphere heat exchange, freshwater export from the Arctic Ocean at glacial terminations and the formation of submarine permafrost. The existence of km-thick Pleistocene ice sheets in the western Arctic Ocean during glacial times predating that of the Last Glacial Maximum (LGM) also implies significantly different atmospheric circulation patterns, in particular availability and distribution of moisture during pre-LGM glaciations.

  5. Abrupt glacial climate shifts controlled by ice sheet changes.

    PubMed

    Zhang, Xu; Lohmann, Gerrit; Knorr, Gregor; Purcell, Conor

    2014-08-21

    During glacial periods of the Late Pleistocene, an abundance of proxy data demonstrates the existence of large and repeated millennial-scale warming episodes, known as Dansgaard-Oeschger (DO) events. This ubiquitous feature of rapid glacial climate change can be extended back as far as 800,000 years before present (BP) in the ice core record, and has drawn broad attention within the science and policy-making communities alike. Many studies have been dedicated to investigating the underlying causes of these changes, but no coherent mechanism has yet been identified. Here we show, by using a comprehensive fully coupled model, that gradual changes in the height of the Northern Hemisphere ice sheets (NHISs) can alter the coupled atmosphere-ocean system and cause rapid glacial climate shifts closely resembling DO events. The simulated global climate responses--including abrupt warming in the North Atlantic, a northward shift of the tropical rainbelts, and Southern Hemisphere cooling related to the bipolar seesaw--are generally consistent with empirical evidence. As a result of the coexistence of two glacial ocean circulation states at intermediate heights of the ice sheets, minor changes in the height of the NHISs and the amount of atmospheric CO2 can trigger the rapid climate transitions via a local positive atmosphere-ocean-sea-ice feedback in the North Atlantic. Our results, although based on a single model, thus provide a coherent concept for understanding the recorded millennial-scale variability and abrupt climate changes in the coupled atmosphere-ocean system, as well as their linkages to the volume of the intermediate ice sheets during glacials. PMID:25119027

  6. The consequences of pleistocene climate change on lowland neotropical vegetation

    SciTech Connect

    De Oliveira, P.E.; Colinvaux, P.A. )

    1994-06-01

    Palynological reconstructions indicate that lowland tropical America was subject to intense cooling during the last ice-age. The descent of presently montane taxa into the lowlands of Amazonia and Minas Gerais indicate temperature depressions ranging from 5[degrees]C to 9[degrees]C cooler-than-present. The strengthened incursion of southerly airmasses caused a reassortment of vegetation throughout Amazonia. Presently allopatric species are found to have been sympatric as novel forest assemblages and formed and dissolved. Modest drying, perhaps a 20% reduction in precipitation, accounts for all the records that show a Pleistocene expansion of savanna. No evidence is found to support the fragmentation of Amazonian forests during glacial times, and the hypothesis of forest refuges as an explanation of tropical speciation is rejected on empirical grounds.

  7. The aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia.

    PubMed

    Rule, Susan; Brook, Barry W; Haberle, Simon G; Turney, Chris S M; Kershaw, A Peter; Johnson, Christopher N

    2012-03-23

    Giant vertebrates dominated many Pleistocene ecosystems. Many were herbivores, and their sudden extinction in prehistory could have had large ecological impacts. We used a high-resolution 130,000-year environmental record to help resolve the cause and reconstruct the ecological consequences of extinction of Australia's megafauna. Our results suggest that human arrival rather than climate caused megafaunal extinction, which then triggered replacement of mixed rainforest by sclerophyll vegetation through a combination of direct effects on vegetation of relaxed herbivore pressure and increased fire in the landscape. This ecosystem shift was as large as any effect of climate change over the last glacial cycle, and indicates the magnitude of changes that may have followed megafaunal extinction elsewhere in the world. PMID:22442481

  8. Exposure ages for Pleistocene periglacial deposits in Australia

    NASA Astrophysics Data System (ADS)

    Barrows, Timothy T.; Stone, John O.; Fifield, L. Keith

    2004-03-01

    Pleistocene periglacial landforms are widespread in Australia and provide valuable information on past temperatures, but dating the time of their formation has proven difficult. To remedy this, we have explored the use of cosmogenic 36Cl for direct dating of periglacial deposits. We sampled six deposits in four locations in southeastern Australia, ranging from blockstreams and block slopes to former rock glaciers. Eighteen exposure ages reveal a concentration of periglacial activity during the last glacial maximum (LGM) between 16 and 23 ka, with a population having a weighted mean age of 21.90.5 ka. This age is shortly before the time of maximum ice advance during the LGM in southeastern Australia. Exposure dating of block deposits provides a way of extending the chronology of cold climate activity beyond glaciated regions.

  9. The Last Interglacial-Glacial cycle (MIS 5-2) re-examined based on long proxy records from central and northern Europe

    NASA Astrophysics Data System (ADS)

    Helmens, Karin F.

    2014-02-01

    Current multi-proxy studies on a long sediment sequence preserved at Sokli (N Finland), i.e. in the central area of Fennoscandian glaciations, are drastically changing classic ideas of glaciations, vegetation and climate in northern Europe during the Late Pleistocene. The sediments in the Sokli basin have escaped major glacial erosion due to non-typical bedrock conditions. In this review, the Sokli record is compared in great detail with other long proxy records from central, temperate and northern, boreal Europe. These comprise the classic records of La Grande Pile (E France) and Oerel (N Germany) and more recently obtained records from Horoszki Duże (E Poland) and Lake Yamozero (NW Russia). The focus of the review is on pollen, lithology and macrofossil- and insect-based temperature inferences. The long records are further compared with recent proxy data from nearby terrestrial sites as well as with the rapidly accumulating high-resolution proxy data from the ocean realm. The comparison allows a re-examination of the environmental history and climate evolution of the Last Interglacial-Glacial (LI-G) cycle (MIS 5-2). It shows that environmental and climate conditions during MIS 5 (ca 130-70 ka BP) were distinctly different from those during MIS 4-2 (ca 70-15 ka BP). MIS 5 is characterized by three long forested intervals (broadly corresponding to MIS 5e, 5c, 5a), both in temperate and northern boreal Europe. These mild periods were interrupted by two short, relatively cold and dry intervals (MIS 5d and 5b) with mountain-centered glaciation in Fennoscandia. Millennial scale climate events were superimposed upon these longer lasting climate fluctuations. The time interval encompassing MIS 4-2 shows open vegetation. It is characterized by two glacial maxima (MIS 4 and 2) with sub-continental scale glaciation over northern Europe and dry conditions in strongly continental eastern European settings. High amplitude climate oscillations of millennial duration characterized the climate variability of MIS 3. Mild climate conditions in early MIS 3 caused large-scale deglaciation of the Fennoscandian Ice Sheet, and ice-free conditions with Betula-dominated vegetation (including tree birch) persisted over large parts of Fennoscandia, possibly interrupted by glaciation, during major part of MIS 3 till ca 35 ka BP. Overall, MIS 5 was mostly mild with warmest or peak interglacial conditions at the very start during MIS 5e. MIS 4-2 was mostly cold with most extreme or peak glacial conditions in the closing phase during MIS 2. This points to a subdivision of the last climate cycle into an early, overall mild interglacial half and a late, overall cold glacial half, each with duration of ca 50 ka. This review also shows that the climate variability in central and northern Europe during the LI-G cycle was mostly in degrees of continentality with major shifts in winter temperature and precipitation values; summer temperatures, on the other hand, remained largely unchanged. It points to the waxing and waning of sea-ice over the North Atlantic Ocean as a possible characteristic feature of the Late Pleistocene. The present compilation, based on long terrestrial sequences, high-resolution multi-proxy data from the oceans, and quantified paleo-climate data, strongly favors a definition of entire Marine Oxygen Isotope Stage 5 as the Last Interglacial similar as in the original marine stratigraphy and the stratigraphy at La Grande Pile in France. The proxy-based climate data places the start of the Last Glacial at the base of MIS 4 and the northwest European Pleniglacial. It shows that the division between the Eemian (MIS 5e) and the Early Weichselian (MIS 5d-a) is not useful, as not relevant from a climate point of view.

  10. Last glacial aeolian dynamics at the Titel loess plateau (Vojvodina, Serbia)

    NASA Astrophysics Data System (ADS)

    Markovi?, S. B.; Bokhorst, M. P.; Machalett, B.; trbac, D.; Hambach, U.; Basarin, B.; Svir?ev, Z.; Stevens, T.; Frechen, M.; Vandenberghe, J.

    2009-04-01

    The Titel loess plateau (Vojvodina, Serbia) is situated at the confluence of the rivers Danube and Tisa, in the southeastern part of the Ba?ka subregion. Various phases of fluvial erosion have shaped the ellipsoid form of the plateau, which is characterized by steep slopes on the margins. The Titel loess plateau is a unique geomorphologic feature, further emphasising the wide diversity of the loess landforms. The plateau is an island of loess with a maximum length of about 16 km and a maximum width of 7.2 km. Thick loess deposits of between 35 and 55 m are intercalated by 5 main pedocomplexes likely deposited thought the last 5 glacial/interglacial cycles. Steep loess cliffs expose several important sections for understanding climatic and environmental change during the middle and late Pleistocene in the region. The succession of palaeosols through the sequence strongly suggests a transition from humid interglacial climates in the middle Pleistocene, to drier interglacial climates in the late Pleistocene. Past aeolian dynamics have been reconstructed using magnetic susceptibility, grain size, geochemical and malacological investigations by depth in the thick last glacial unit. Luminescence dating and magnetic susceptibility inter-profile correlation provide the chronological framework. Lower last glacial loess unit V-L1L2 is loosely cemented porous sandy loess, with occasional fine laminations and thin, fine sand beds. Identified malacofauna indicates very dry climatic conditions and poor steppic vegetation. It is hypothesized that while the last glacial vegetation cover is extremely sparse, significant sedimentation rates during the lower last glacial can be explained by the presence of a cyanobacterial crust. Protection of loess sediments from deflation by the presence of a cyanobacterial crust is observed at present in loess quarries (Ruma, Crvenka, Petrovaradin). The middle glacial was warmer and relatively moist, as indicated by an increase in clay content and magnetic susceptibility values in a weakly developed pedocomplex, V-L1S1. Loess sub-layers intercalated into V-L1S1 preserve evidence of episodes of abrupt cooling and aridification. In contrast with other European loess sites, the middle glacial pedocomplex is weakly developed at exposures on the Titel loess plateau. The uppermost late glacial loess stratum V-L1L1 shows low values of magnetic susceptibility and clay content, plus high values of carbonate content and the presence of a few frigophilous and cold resistant snails, preserved in sediments laid down during the coldest palaeoclimatic interval of the last glacial period. Composite mollusc associations in loess unit V-L1L1 suggest a higher diversity of environments in comparison to those preserved in the V-L1L2 and V-L1S1 units. In addition to climatic changes over interglacial-glacial and interstadial-stadial timescales, climate proxies (especially grain size) in the last glacial loess exhibit many abrupt fluctuations. Evidence of similar abrupt high frequency fluctuations during the last glacial period appear in loess through out much of Eurasia. Without a detailed and precise chronological framework, provided by independent dating, as yet it is not possible to determine whether the variations recorded in the Titel plateau loess are related to widely documented events in the North Atlantic or independent regional or local depositional/environmental variations. The intensity of deposition of coarser material during the relatively cold early last glacial exceeds that during the coldest last glacial maximum. This may be explainable via changes in general atmospheric circulation, as well as changes in the transportation and depositio regime of the Danube fluvial system. During the last glacial maximum, extension of the ice sheets in northern Europe was greatest and may have redirected the penetration of Atlantic air masses to the east (e.g. Dodonov and Baiguzina, 1995). Model results presented in van Huissteden and Pollard (2003) indicate strong anticyclonal circulation over the Fennoscandian ice sheet

  11. Tropical forest structure: a missing dimension to Pleistocene landscapes

    NASA Astrophysics Data System (ADS)

    Cowling, Sharon A.

    2004-10-01

    By focusing on the horizontal distribution of Pleistocene vegetation types within tropical landscapes, we may be overlooking an equally important feature of palaeovegetation, namely their vertical structure. Tropical forest structure is a critical factor contributing to canopy microclimatology and thus plays a role in defining canopy habitats and species population dynamics. Because of this tight relationship between forest structure and canopy microclimate, flora and fauna with narrow canopy niches may have responded to glacial reductions in forest canopy density in the same manner as if the tropical forest were completely replaced by grassland. This alternative interpretation of palaeo-forest response to past climate change holds significance for the application of the Pleistocene refugia hypothesis in explaining various biogeographical trends. The role of forest structure in influencing hydrological cycling and the exchange of carbon between the biosphere and atmosphere are highlighted to illustrate how palaeoprecipitation and palaeoproductivity proxy data may be misinterpreted when forest structure is not explicitly considered. This is accomplished through theoretical scenarios using hydrological mass balance equations and simulations using a soil-plant-atmosphere landscape model. Available methodologies to reconstruct tropical palaeovegetation structure are identified, including the use of fully coupled earth system models. Copyright

  12. Dynamics of Pleistocene population extinctions in Beringian brown bears.

    PubMed

    Barnes, I; Matheus, P; Shapiro, B; Jensen, D; Cooper, A

    2002-03-22

    The climatic and environmental changes associated with the last glaciation (90,000 to 10,000 years before the present; 90 to 10 ka B.P.) are an important example of the effects of global climate change on biological diversity. These effects were particularly marked in Beringia (northeastern Siberia, northwestern North America, and the exposed Bering Strait) during the late Pleistocene. To investigate the evolutionary impact of these events, we studied genetic change in the brown bear, Ursus arctos, in eastern Beringia over the past 60,000 years using DNA preserved in permafrost remains. A marked degree of genetic structure is observed in populations throughout this period despite local extinctions, reinvasions, and potential interspecies competition with the short-faced bear, Arctodus simus. The major phylogeographic changes occurred 35 to 21 ka B.P., before the glacial maximum, and little change is observed after this time. Late Pleistocene histories of mammalian taxa may be more complex than those that might be inferred from the fossil record or contemporary DNA sequences alone. PMID:11910112

  13. Diatoms in the Zaire deep-sea fan and pleistocene palaeoclimatic trends in the Angola Basin and West equatorial Africa

    NASA Astrophysics Data System (ADS)

    Mikkelsen, Naja

    The marine diatom assemblages remain almost constant during the glacial-interglacial cycles of the Middle and Late Pleistocene. The abundance patterns of diatoms point to a comparatively higher glacial than interglacial productivity. Significantly higher abundances of Thalassionema sp. in cold than in warm core sections indicate a stronger glacial than interglacial productivity. Preservation is notably better in cold than in warm periods. Brackish-water and fresh-water diatoms occur consistently, and the brackish forms totally dominate the assemblages of warm climatic events. This points to predominantly wet interglacial conditions in parts of the drainage area of the Zaire river. Phytoliths and plant cuticles occur in highest abundance in glacial core intervals. Low amounts of plant debris in interglacial core sections are ascribed to intense productivity and immediate decomposition of material in the humid equatorial rain forest. Commonly occurring grass plant cuticles have a burnt image in glacial core sections. This mirrors the glacial reduction of the rain forest in favour of a dry and inflammable savannah vegetation, where intensified glacial trade winds carried the charred plant material to the Angola Basin.

  14. Hominin variability, climatic instability and population demography in Middle Pleistocene Europe

    NASA Astrophysics Data System (ADS)

    Dennell, Robin W.; Martinn-Torres, Mara; Bermdez de Castro, Jos M.

    2011-06-01

    We propose a population model for Middle Pleistocene Europe that is based on demographic "sources" and "sinks". The former were a small number of "core" or populations in glacial refugia in southern Europe from which hominins expanded northwards in interstadial and interglacial periods; occupation outside glacial refugia would have been restricted to warm or temperate periods, and populations at the northern limit of the Middle Pleistocene range would have been "sink" populations in that they depended upon recruitment from source populations further south. Southwest Asia would also have been a likely source of immigrant, source populations. We argue as an alternative to an "ebb and flow" model in which groups retreated to refugia when conditions worsened that local extinction outside refugia would have been frequent. In extreme situations, Europe may have been a population "sink" (i.e. unpopulated) that was replenished from source populations in Southwest Asia. We suggest that this pattern of repeated colonisation and extinction may help explain the morphological variability of European Middle Pleistocene hominins, particularly Homo heidelbergensis and its apparent non-lineal evolution towards Homo neanderthalensis.

  15. An outline of the Pleistocene stratigraphy of the kleszczw Graben, bec?hatw outcrop, central Poland

    NASA Astrophysics Data System (ADS)

    Krzyszkowski, Dariusz

    The Pleistocene sequence of the Kleszczw Graben, central Poland, is located in a brown coal quarry 8 km long and 4 km wide. It contains ten separate organic horizons, in part, stacked one above another and, in part, correlated by reference to associated inorganic units using heavy minerals and gravel petrography. Three of the organic horizons represent interglacials: Ferdynandovian, Mazovian (Holsteinian) and Eemian. Others represent interstadial or periglacial deposits. The Tertiary/Quaternary boundary is recorded at the site by Reuverian C and prae-Tiglian biostratigraphy occurring in a single section. A major hiatus exists above the prae-Tiglian and Lower Pleistocene and Cromerian deposits are absent. Glacial deposits are represented by three Elsterian tills, five Saalian tills and glaciofluvial and glaciolacustrine deposits. The Czy?w Formation lies between the Elsterian and Saalian deposits and contains at least two interglacials, the Ferdynandovian and Mazovian, and several interstadial units without glacial intervening deposits. The Lower Saalian (Odranian = Drenthe) deposits are separated from the Middle Saalian (Wartanian 1) by fluvial sands and organic deposits of the Pilica interstadial. The Middle (Wartanian 1) and Upper Saalian (Wartanian 2) also may be separated by an interstadial palaeosol. The evidence from the Kleszczw Graben, supported by other central European Quaternary sequences, suggest that only four glaciations occurred within the region during the Middle Pleistocene, and that these glaciations were separated by long periods with a complex climate ranging from temperate to periglacial.

  16. Pleistocene pollen stratigraphy from borehole 81/34, devil's hole area, central north sea

    NASA Astrophysics Data System (ADS)

    Ekman, Sten R.

    1998-09-01

    Twelve pollen assemblage zones are identified in a 229 m deep borehole (BH 81/34) from the Devil's Hole area in the central North Sea (British sector). The sediment from this borehole is Early to Late Pleistocene in age and the observation of massulae from Azolla filiculoides in sediment with reversed polarity indicates an age younger than the Olduvai geomagnetic event for the entire sequence. The Early Pleistocene sediments were at least partly deposited in the vicinity of a river outlet and can be correlated either with the Eburonian or the Menapian cold stage and with the Bavel interglacial and the Linge glacial within the Bavelian stage in the Dutch stratigraphy. The Middle Pleistocene sequence contains an interval rich in Abies, Picea and Pinus, probably deposited during the end of either Cromerian Complex interglacial IV (Noordbergum) or possibly the Holsteinian. The uppermost 80 m of the core contains high frequencies of pre-Quaternary and deteriorated palynomorphs indicating extensive glacial or glaciofluvially reworked sediment.

  17. Constraining Middle Pleistocene Glaciations in Birmingham, England; Using Optical Stimulated Luminescence (OSL) Dating.

    NASA Astrophysics Data System (ADS)

    Gibson, S. M.; Gibbard, P. L.; Bateman, M. D.; Boreham, S.

    2014-12-01

    Birmingham is built on a complex sequence of Middle Pleistocene sediments, representing at least three lowland glaciations (MIS12, MIS6, and MIS2). British Geological Survey mapping accounts 75% of the land mass as Quaternary deposits; predominantly glacial-sandy tills, glacial-fluvial sands, clays and organic silts and peats. Understanding the age of fluvial-glacial outwash, related to specific glaciations, is critical in establishing a Geochronology of Birmingham. Shotton (1953) found a series of Middle Pleistocene glacial sediments, termed the Wolstonian, intermediate in age between MIS11 and MIS5e Interglacial's. Uncertainty surrounding the relation to East Anglian sequences developed by Rose (1987) implies Birmingham sequences should be referred to MIS12. Despite this, younger Middle Pleistocene glacial sequences occur in Birmingham, yet uncertainty has deepened over our understanding of the complex, inaccessible sediments, especially as deposits have similar extent with MIS2 sequences. Five Optical Stimulated Luminescence (OSL) dates from three sites around Birmingham have been sampled. East of Birmingham, ice advanced from the Irish Sea and later the North East. In Wolston, a sample of outwash sand, associated with the Thurssington Till, is dated. In Meriden, two samples of outwash sands, associated with a distal Oadby Till, are dated. West of Birmingham, ice advanced from the Welsh Ice Sheet. In Seisdon, two samples of an Esker and outwash sand, associated with a Ridgeacre Till, are dated. Correlation of OSL dates provide an important constraint on understanding the history of Birmingham. Using GSI3D modeling to correlate geochronology and sedimentology, the significance of OSL dating can be understood within the complex sequences (and regional stratigraphy), complimented by Cosmogenic and Palynology dates taken in South West and North East. OSL dating on Birmingham's outwash sands, deposited by extensive repeated Middle Pleistocene glaciations, asserts the Wolstonian Glaciation was present in Birmingham during MIS6, this contributes hugely to debate surrounding the timing of glaciations in East Anglia and across the UK. This has a wider significance due to East Anglia sequences being associated with sequences in the Netherlands, Denmark and Germany (Rose, 2009; Lee et al, 2012).

  18. Pleistocene marine ice sheets and ice shelves at the East Siberian continental margin

    NASA Astrophysics Data System (ADS)

    Niessen, Frank; Kuk Hong, Jong; Hegewald, Anne; Matthiessen, Jens; Stein, Rüdiger; Kim, Sookwan; Jensen, Laura; Jokat, Wilfried; Nam, Seung Il

    2014-05-01

    RV "Polarstern" cruise ARK-XIII/3 (2008) and RV "Araon" cruise ARA03B (2012) investigated an area in the Arctic Ocean located between the Chukchi Borderland and the East Siberian Sea (between 165°W and 170°E). Based on swath bathymetry, sediment echosounding, seismic profiling and sediment coring we present evidence that the western Arctic Ocean had a glaciated continental margin during several glacial periods of the Pleistocene (Niessen et al. 2013). At the southern end of the Mendeleev Ridge and on the Chukchi and East Siberian continental slopes ice sheets and ice shelves grounded in up to 1200 m present water depth. We found mega-scale glacial lineations (MSGL) associated with deposition of glaciogenic wedges and debris-flow deposits indicative of sub-glacial erosion and deposition close to the former grounding lines. Glacially lineated areas are associated with large-scale erosion, capped with diamicton and draped by, in places, several metres of pelagic sediments. On the Arlis Plateau, a detailed bathymetric map exhibits several generations of MSGL, which we interpret as relicts of different Pleistocene glaciations. Traces of former grounding line positions suggest that an ice shelf of approximately 900 m in thickness has spread across the Southern Mendeleev Ridge in a north-easterly direction. According to our results, ice sheets of more than one km in thickness continued onto, and likely centered over, the East Siberian Shelf. A preliminary age model suggests that the youngest and shallowest grounding event of an ice sheet should be within Marine Isotope Stage (MIS) 3 and clearly predates the Last Glacial Maximum. The oldest and deepest event predates MIS 6. The youngest grounding event on the Arlis Plateau is tentatively dated to have occurred during MIS 4. These results have important implication for the former distribution of thick ice masses in the Arctic Ocean during the Pleistocene. They are relevant for albedo, ocean-atmosphere heat exchange, moisture supply to and freshwater export from the Arctic Ocean and the formation of submarine permafrost on the East Siberian Shelf. Niessen, F., Hong, J. K. , Hegewald, A. , Matthiessen, J. , Stein, R. , Kim, H. , Kim, S. , Jensen, L. , Jokat, W. , Nam, S. I. and Kang, S. H. (2013) Repeated Pleistocene glaciation of the East Siberian continental margin, Nature Geoscience, 6 (10), pp. 842-846.

  19. The Pleistocene rivers of the English Channel region

    NASA Astrophysics Data System (ADS)

    Antoine, Pierre; Coutard, Jean-Pierre; Gibbard, Philip; Hallegouet, Bernard; Lautridou, Jean-Pierre; Ozouf, Jean-Claude

    2003-02-01

    The Pleistocene history of river systems that enter the English Channel from northern France and southern England is reviewed. During periods of low sea-level (cold stages) these streams were tributaries of the Channel River. In southern England the largest, the River Solent, is an axial stream that has drained the Hampshire Basin from the Early Pleistocene or late Pliocene. Other streams of southern England may be of similar antiquity but their records are generally short and their sedimentary history have been destroyed, as in northern Brittany, by coastal erosion and valley deepening as a consequence of tectonic uplift. In northern France, the Seine and Somme rivers have very well developed terrace systems recording incision that began at around 1 Ma. The uplift rate, deduced from the study of these terrace systems, is of 55 to 60 m myr-1 since the end of the Early Pleistocene. Generally the facies and sedimentary structures indicate that the bulk of the deposits in these rivers accumulated in braided river environments under periglacial climates in all the area around the Channel. Evolution of the rivers reflects their responses to climatic change, local geological structure and long-term tectonic activity. In this context the Middle Somme valley is characterised by a regular pattern in which incision occurs at the beginning of each glacial period within a general background of uplift. Nevertheless the response of the different rivers to climatic variations, uplift and sea-level changes is complex and variable according to the different parts of the river courses.

  20. Earth's glacial record and its tectonic setting

    NASA Astrophysics Data System (ADS)

    Eyles, N.

    1993-09-01

    Glaciations have occurred episodically at different time intervals and for different durations in Earth's history. Ice covers have formed in a wide range of plate tectonic and structural settings but the bulk of Earth's glacial record can be shown to have been deposited and preserved in basins within extensional settings. In such basins, source area uplift and basin subsidence fulfill the tectonic preconditions for the initiation of glaciation and the accomodation and preservation of glaciclastic sediments. Tectonic setting, in particular subsidence rates, also dictates the type of glaciclastic facies and facies successions that are deposited. Many pre-Pleistocene glaciated basins commonly contain well-defined tectonostratigraphic successions recording the interplay of tectonics and sedimentation; traditional climatostratigraphic approaches involving interpretation in terms of either ice advance/retreat cycles or glacio-eustatic sea-level change require revision. The direct record of continental glaciation in Earth history, in the form of classically-recognised continental glacial landforms and "tillites", is meagre; it is probable that more than 95% of the volume of preserved "glacial" strata are glacially-influenced marine deposits that record delivery of large amounts of glaciclastic sediment to offshore basins. This flux has been partially or completely reworked by "normal" sedimentary processes such that the record of glaciation and climate change is recorded in marine successions and is difficult to decipher. The dominant "glacial" facies in the rock record are subaqueous debris flow diamictites and turbidites recording the selective preservation of poorly-sorted glaciclastic sediment deposited in deep water basins by sediment gravity flows. However, these facies are also typical of many non-glacial settings, especially volcanically-influenced environments; numerous Archean and Proterozoic diamictites, described in the older literature as tillites, have no clearly established glacial parentage. The same remarks apply to many successions of laminated and thin-bedded facies interpreted as "varvites". Despite suggestions of much lower values of solar luminosity (the weak young sun hypothesis), the stratigraphic record of Archean glaciations is not extensive and may be the result of non-preservation. However, the effects of very different Archean global tectonic regimes and much higher geothermal heat flows, combined with a Venus-like atmosphere warmed by elevated levels of CO 2, cannot be ruled out. The oldest unambiguous glacial succession in Earth history appears to be the Early Proterozoic Gowganda Formation of the Huronian Supergroup in Ontario; the age of this event is not well-constrained but glaciation coincided with regional rifting, and may be causally related to, oxygenation of Earth's atmosphere just after 2300 Ma. New evidence that oxygenation is tectonically, not biologically driven, stresses the intimate relationship between plate tectonics, evolution of the atmosphere and glaciation. Global geochemical controls, such as elevated atmospheric CO 2 levels, may be responsible for a long mid-Proterozoic non-glacial interval after 2000 Ma that was terminated by the Late Proterozoic glaciations just after 800 Ma. A persistent theme in both Late Proterozoic and Phanerozoic glaciations is the adiabatic effect of tectonic uplift, either along collisional margins or as a result of passive margin uplifts in areas of extended crust, as the trigger for glaciation; the process is reinforced by global geochemical feedback, principally the drawdown of atmospheric CO 2 and Milankovitch "astronomical" forcing but these are unlikely, by themselves, to inititiate glaciation. The same remarks apply to late Cenozoic glaciations. Late Proterozoic glacially-influenced strata occur on all seven continents and fall into two tectonostratigraphic types. In the first category are thick sucessions of turbidites and mass flows deposited along active, compressional plate margins recording a protracted and complex phase of supercontinent assembly between 800 and 550 Ma. Local cordilleran glaciations of volcanic peaks is indicated. Many deposits are preserved within mobile belts that record the subduction of interior oceans now preserved as "welds" between different cratons. Discrimination between glacially-influenced and non-glacial, volcaniclastic mass flow successions continues to be problematic. The second tectonostratigraphic category of Late Proterozoic glacial strata includes successions of glacially-influenced, mostly marine strata deposited along rifted, extensional plate margins. The oldest (Sturtian) glaciclastic sediments result from the break-out of Laurentia from the Late Proterozoic supercontinent starting around 750 Ma along its "palaeo-Pacific" margin with a later (Marinoan) phase of rifting at about 650 Ma. "Passive margin" uplifts and the generation of "adiabatic" ice covers on uplifted crustal blocks triggered widespread glaciation along the "palaeo-Pacific" margin of North America and in Australia. A major phase of rifting along the opposite ("palaeo-Atlantic") margin of Laurentia occurred after 650 Ma and is similarly recorded by glaciclastic strata in basins preserved around the margins of the present day North Atlantic Ocean. Glaciation of the west African platform after 650 Ma is closely related to collision of the West African and Guyanan cratons and uplift of the orogenic belt; the same process, involving uplift around the northern and western margins of the Afro-Arabian platform subsequently triggered Late Ordovician glaciation at about 440 Ma when the south polar region lay over North Africa. Early Silurian glaciation in Bolivia and Brazil was followed by a non-glacial episode and renewed Late Devonian glaciation of northern Brazil and Bolivia. The latter event may have resulted from rotation of Gondwana under the South Pole combined with active orogenesis along the western margin of the supercontinent. Hercynian uplift along the western margin of South America caused by the collision and docking of "Chilinia" at about 350 Ma (Late Tournasian—Early Visean) was the starting point of a long Late Palaeozoic glacial record that terminated at about 255 Ma (Kungurian-Kazanian) in western Australia. The arrival of large landmasses at high latitude may have been an important precondition for ice growth. Strong Namurian uplift around virtually the entire palaeo-Pacific rim of Gondwana culminated in glaciation of the interior of the supercontinent during the latest Westphalian (c. 300 Ma). There is a clear picture of plate margin compression and propagation of "far field" stresses to the plate interior allowing preservation of glacially-influenced strata in newly-rifted intracratonic basins. Many basins show a "steer's head" style of infill architecture recording successive phases of subsidence and overstepping of younger strata during basin subsidence and expansion. Exploration for oil and gas in Gondwanan glaciated basins is currently a major stimulus to understanding the relationship between tectonics and sedimentation. Warm Mesozoic palaeoclimates do not rule out the existence of restricted ice covers in the interiors of continental landmasses at high palaeolatitudes (e.g. Siberia, Antarctica) but there is as yet, no direct geological record of their existence. The most likely record of glaciers is contained in Late Jurassic and early Cretaceous strata. In any event, these ice masses are unlikely to have had any marked effect on global sea levels and alternative explanations should perhaps be sought for 4th order, so-called "glacio-eustatic" changes in sea level, inferred from Triassic, Jurassic and Cretaceous strata. The growth of extensive Northern Hemisphere ice sheets in Plio-Pleistocene time (c. 2.5 Ma) was the culmination of a long global climatic deterioration that began sometime after 60 Ma during the late Tertiary. Tectonic uplift of areas such as the Tibetan Plateau and plate tectonic reorganizations have been identified as first-order controls. Initiation of the East Antarctic ice sheet, at about 36 Ma, is the result of the progressive thermal isolation of the continent combined with uplift along the Transantarctic Mountains. In the Northern Hemisphere, the upwarping of extensive passive margin plateaux around the margins of the newly-rifted North Atlantic may have amplified global climatic changes and set the scene for the growth of continental ice sheets after 2.5 Ma. Ice sheet growth and decay was driven by complexly interrelated changes in ocean circulation, Milankovitch orbital forcing and global geochemical cycles. It is arguable whether continental glaciations of the Northern Hemisphere, and the evolution of hominids, would have occurred without the necessary precondition of tectonic uplift.

  1. A Holocene and latest Pleistocene pollen record from Lake Poukawa, Hawke's Bay, New Zealand

    NASA Astrophysics Data System (ADS)

    McGlone, M. S.

    2002-07-01

    Lake Poukawa is a small, shallow lake lying in the middle of extensive peatland in the Poukawa depression, central Hawke's Bay. Holocene peats (10 m at deepest point) overlie more than 200 m of sand, silt, clastic debris and infrequent thin peats and lacustrine sediments deposited during the late Pleistocene. Pollen analyses are presented for: a peat possibly dating to a late stage of the last interglacial or a warm interstadial of the last glacial; cool climate last glacial sediments; and a Holocene peat. The last interglacial or interstadial peat records a cool climate Nothofagus podocarp forest. During the last glacial, sparse shrubland and grassland grew within the depression under much drier and colder conditions than now. There is no pollen record for the Late Glacial and early Holocene period as conditions remained too dry for peat formation. Avian fossils indicate scrub and grassland persisted through until at least 10,600 years BP, and scrub or open forest may have prevailed until c. 6500 years BP. Closed podocarp broadleaved forest ( Prumnopitys taxifolia dominant) occupied the depression from at least 6500 years BP until its destruction by Polynesian settlers after 800 years BP. Water levels rose from 6500 to 4500 years BP, culminating in the establishment of the present fluctuating lake-peatland system. Dry conditions in the Late Glacial and early Holocene may reflect a predominant northwesterly air flow, and a change to more easterly and southerly air flow in the mid- to late Holocene resulted in increased rainfall.

  2. Somma-Vesuvius ground deformation over the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Marturano, Aldo; Aiello, Giuseppe; Barra, Diana

    2013-04-01

    Vertical ground movements at Somma-Vesuvius during the last glacial cycle have been inferred from micropalaeontological and petrochemical analyses of rock samples from boreholes drilled at the archaeological sites of Herculaneum and Pompeii as well as on the apron of the volcano and the adjacent Sebeto and Sarno Valleys. Opposing movements occurred during the periods preceding and following the Last Glacial Maximum (LGM). The uplift began 20 ka ago with marine deposits rising several tens of metres up to 25 m a.s.l., recovering previous subsidence which occurred during the Late glacial period, suggesting a strict connection between volcano-tectonic and glacial cycles. Here we present the analysis of deposits predating the LGM, which confirms subsidence of the Campanian Plain where Mt. Somma-Vesuvius is located, shows variable surface loading effects and highlights the volcano-tectonic stages experienced by the volcano. The self-balancing mechanism of the volcanic system, evolving towards an explosive, subaerial activity 60 ka ago, is testified to by a large ground oscillation in phase with sea level change during the last glacial cycle.

  3. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations.

    PubMed

    Lund, D C; Asimow, P D; Farley, K A; Rooney, T O; Seeley, E; Jackson, E W; Durham, Z M

    2016-01-29

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Melt production is apparently modulated by glacial-interglacial changes in sea level, raising the possibility that magmatic flux acts as a negative feedback on ice-sheet size. The timing of melt variability is poorly constrained, however, precluding a clear link between ridge magmatism and Pleistocene climate transitions. Here we present well-dated sedimentary records from the East Pacific Rise that show evidence of enhanced hydrothermal activity during the last two glacial terminations. We suggest that glacial maxima and lowering of sea level caused anomalous melting in the upper mantle and that the subsequent magmatic anomalies promoted deglaciation through the release of mantle heat and carbon at mid-ocean ridges. PMID:26823422

  4. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations

    NASA Astrophysics Data System (ADS)

    Lund, D. C.; Asimow, P. D.; Farley, K. A.; Rooney, T. O.; Seeley, E.; Jackson, E. W.; Durham, Z. M.

    2016-01-01

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Melt production is apparently modulated by glacial-interglacial changes in sea level, raising the possibility that magmatic flux acts as a negative feedback on ice-sheet size. The timing of melt variability is poorly constrained, however, precluding a clear link between ridge magmatism and Pleistocene climate transitions. Here we present well-dated sedimentary records from the East Pacific Rise that show evidence of enhanced hydrothermal activity during the last two glacial terminations. We suggest that glacial maxima and lowering of sea level caused anomalous melting in the upper mantle and that the subsequent magmatic anomalies promoted deglaciation through the release of mantle heat and carbon at mid-ocean ridges.

  5. Ages and inferred causes of late Pleistocene glaciations on Mauna Kea, Hawai'i

    USGS Publications Warehouse

    Pigati, J.S.; Zreda, M.; Zweck, C.; Almasi, P.F.; Elmore, D.; Sharp, W.D.

    2008-01-01

    Glacial landforms on Mauna Kea, Hawai'i, show that the summit area of the volcano was covered intermittently by ice caps during the Late Pleistocene. Cosmogen 36Cl dating of terminal moraines and other glacial landforms indicates that the last two ice caps, called Older Makanaka and Younger Makanaka, retreated from their maximum positions approximately 23ka and 13ka, respectively. The margins and equilibrium line altitudes of these ice caps on the remote, tropical Pacific island were nearly identical, which would seem to imply the same mechanism for ice growth. But modelling of glacier mass balance, combined with palaeotemperature proxy data from the subtropical North Pacific, suggests that the causes of the two glacial expansions may have been different. Older Makanaka airatop Mauna Kea was likely wetter than today and cold, whereas Younger Makanaka times were slightly warmer but significantly wetter than the previous glaciation. The modelled increase in precipitation rates atop Mauna Kea during the Late Pleistocene is consistent with that near sea level inferred from pollen data, which suggests that the additional precipitation was due to more frequent and/ or intense tropical storms associated with eastward-moving cold fronts. These conditions were similar to modern La Ni??a (weak ENSO) conditions, but persisted for millennia rather than years. Increased precipitation rates and the resulting steeper temperature lapse rates created glacial conditions atop Mauna Kea in the absence of sufficient cooling at sea level, suggesting that if similar correlations existed elsewhere in the tropics, the precipitation-dependent lapse rates could reconcile the apparent difference between glacial-time cooling of the tropics at low and high altitudes. Copyright ?? 2008 John Wiley & Sons, Ltd.

  6. Reduced ventilation and enhanced magnitude of the deep Pacific carbon pool during the last glacial period

    NASA Astrophysics Data System (ADS)

    Skinner, L.; McCave, I. N.; Carter, L.; Fallon, S.; Scrivner, A. E.; Primeau, F.

    2015-02-01

    It has been proposed that the ventilation of the deep Pacific carbon pool was not significantly reduced during the last glacial period, posing a problem for canonical theories of glacial-interglacial CO2 change. However, using radiocarbon dates of marine tephra deposited off New Zealand, we show that deep- (> 2000 m) and shallow sub-surface ocean-atmosphere 14C age offsets (i.e. "reservoir-" or "ventilation" ages) in the southwest Pacific increased by ˜1089 and 337 yrs respectively, reaching ˜2689 and ˜1037 yrs during the late glacial. A comparison with other radiocarbon data from the southern high-latitudes suggests that broadly similar changes were experienced right across the Southern Ocean. If, like today, the Southern Ocean was the main source of water to the glacial ocean interior, these observations would imply a significant change in the global radiocarbon inventory during the last glacial period, possibly equivalent to an increase in the average radiocarbon age > 2 km of ˜ 700 yrs. Simple mass balance arguments and numerical model sensitivity tests suggest that such a change in the ocean's mean radiocarbon age would have had a major impact on the marine carbon inventory and atmospheric CO2, possibly accounting for nearly half of the glacial-interglacial CO2 change. If confirmed, these findings would underline the special role of high latitude shallow sub-surface mixing and air-sea gas exchange in regulating atmospheric CO2 during the late Pleistocene.

  7. U-series and oxygen isotope chronology of the mid-Pleistocene Lake Amora (Dead Sea basin)

    NASA Astrophysics Data System (ADS)

    Torfstein, Adi; Haase-Schramm, Alexandra; Waldmann, Nicolas; Kolodny, Yehoshua; Stein, Mordechai

    2009-05-01

    This study establishes for the first time the chronology and limnological history of Lake Amora (Dead Sea basin, Israel), whose deposits (the Amora Formation) comprise one of the longest exposed lacustrine records of the Pleistocene time. The Amora Formation consists of sequences of laminated primary aragonite and silty-detritus, Ca-sulfate minerals, halite and clastic units. This sedimentary sequence was uplifted and tilted by the rising Sedom salt diapir, exposing 320 m of sediments on the eastern flanks of Mt. Sedom (the Arubotaim Cave (AC) section). The chronology of the AC section is based on U-disequilibrium dating ( 230Th- 234U and 234U- 238U ages) combined with floating ?18O stratigraphy and paleomagnetic constraints. The determination of the 230Th- 234U ages required significant corrections to account for detrital Th and U. These corrections were performed on individual samples and on suites of samples from several stratigraphic horizons. The most reliable corrected ages were used to construct an age-elevation model that was further tuned to the oxygen isotope record of east Mediterranean foraminifers (based on the long-term similarity between the sea and lake oxygen isotope archives). The combined U-series- ?18O age-elevation model indicates that the (exposed) Amora sequence was deposited between 740 and 70 ka, covering seven glacial-interglacial cycles (Marine Isotope Stages (MIS) 18 to 5). Taking the last glacial Lake Lisan and the Holocene Dead Sea lacustrine systems as analogs of the depositional-limnological environment of Lake Amora, the latter oscillated between wet (glacial) and more arid (interglacial) conditions, represented by sequences of primary evaporites (aragonite and gypsum that require enhanced supply of freshwater to the lakes) and clastic sediments, respectively. The lake evolved from a stage of rapid shifts between high and low-stand conditions during 740 to 550 ka to a sabkha-like environment that existed (at the AC site) between 550 and 420 ka. This stage was terminated by a dry spell represented by massive halite deposition at 420 ka (MIS12-11). During MIS10-6 the lake fluctuated between lower and higher stands reaching its highest stand conditions at the late glacial MIS6, after which a significant lake level decline corresponds to the transition to the last interglacial (MIS5) low-stand lake, represented by the uppermost part of the Formation. ?18O values in the primary aragonite range between 6.0 and -1.3 , shifting cyclically between glacial and interglacial intervals. The lowest ?18O values are observed during interglacial stages and may reflect short and intense humid episodes that intermittently interrupted the overall arid conditions. These humid episodes, expressed also by enhanced deposition of travertines and speleothems, seem to characterize the Negev Desert, and in contrast to the overall dominance of the Atlantic-Mediterranean system of rain patterns in the Dead Sea basin, some humid episodes during interglacials may be traced to southern sources.

  8. Co-operation between Gda?sk and Vilnius Universities in Pleistocene geochronology investigations

    NASA Astrophysics Data System (ADS)

    Gaigalas, Algirdas; Fedorowicz, Stanis?aw

    2009-10-01

    The thermoluminescence (TL) dating of aquatic sand'y sediments, carried out as a co-operation between Gda?sk and Vilnius Universities, provided a more accurate chronology of the Middle-Upper Pleistocene in Lithuania. Based on TL dating, Middle and Upper Pleistocene fine-grained sands of aquatic origin have been attributed to the But?nai (Holsteinian) Interglacial (Tartokai outcrop), Snaigup?l? (Drenthe-Wartha) Interglacial (Tartokai and Valakampiai (Valakupiai) outcrops), Merkin? (Eemian) Interglacial (Tartokai and Netiesos outcrops) and Nemunas (Vistulian) Glacial (Tartokai, Netiesos and Rokai outcrops). The dating of samples from the outcrops studied show the age of the But?nai Interglacial to be 430.2 to 280.3 ka years BP, of the Snaigup?l? Interglacial 239.4 to 179.3 ka years BP and the Merkin? Interglacial 135.9 to 103.2 ka years BP. The Early Nemunas and the Middle Nemunas non-glacial sediments accumulated between 67.2-30.6 ka years BP. Tills in the upper part of the Tartokai and Rokai outcrops are younger than 30,000 BP and belong to the Late Nemunas glacial maximum in Lithuania. Different dosimetric (TL, OSL) ages of granular fractions of the same sample indicate different parametres predetermined by the distribution of grain size fractions during aquatic sedimentation of quartz sand. The granulometry of sand or the grain size distribution of quartz particles in samples reflect the state of the hydrodynamic sedimentation space.

  9. Simulating the mid-Pleistocene transition through regolith removal

    NASA Astrophysics Data System (ADS)

    Tabor, Clay R.; Poulsen, Christopher J.

    2016-01-01

    Quaternary δ18O ice-volume proxy records show a transition from high frequency, small-amplitude glacial cycles to low frequency, large-amplitude glacial cycles. This reorganization of the climate system, termed the mid-Pleistocene transition (MPT), is thought to reflect a change in land-ice response to orbital forcing, despite no significant change in orbital cycles during this period. One potential explanation for the MPT proposes that gradual erosion of high-latitude northern hemisphere regolith by multiple cycles of glaciation caused a transition in ice sheet response to external forcing. Here, we explore this "regolith hypothesis" using a complex Earth system model. We show that simulating a transition from deformable sediment to crystalline bedrock produces an evolution in ice-volume response similar to proxy reconstructions of the MPT. The simulated change in ice-volume response is due to a combination of climate and ice-flow changes, with crystalline bedrock producing thicker, colder ice sheets that accumulate more snowfall and have a smaller ablation zone. Further, experiments that include transient eccentricity-amplifying CO2 forcing show only small differences in ice response compared to those with orbital forcing only, suggesting that cycles of CO2 were not the primary cause of the MPT.

  10. Millennial-scale varnish microlamination dating of late Pleistocene geomorphic features in the drylands of western USA

    NASA Astrophysics Data System (ADS)

    Liu, Tanzhuo; Broecker, Wallace S.

    2013-04-01

    Varnish microlamination (VML) dating is a climate-based correlative age determination technique used to correlate and date various geomorphic features in deserts. In this study, we establish a generalized late Pleistocene (18-74 ka) millennial-scale microlamination sequence in fine-grained, fast-accumulating rock varnish for the drylands of western USA, radiometrically calibrate the sequence and correlate it with the ?18O record in the GISP2 Greenland ice core. We then use this climate-correlated varnish microstratigraphy to estimate surface exposure ages for radiometrically dated late Pleistocene geomorphic features in the study region. The VML dating of debris flow deposits on the Sehoo recessional shorelines of Lake Lahontan at the Jessup embayment of central Nevada yields a minimum-limiting age of 14.95-15.95 ka, in good agreement with a calibrated 14C age of 15.22 0.12 ka for the timing of the lake recession. The VML dating of a giant ejecta block on the rim of Meteor Crater in northern Arizona yields a minimum-limiting age of 49.15 ka, closely matching a thermoluminescence (TL) age of 49 3 ka and slightly younger than a recently updated cosmogenic 36Cl age of 56.0 2.4 ka for the meteor impact event. The VML dating of distal Q2c fan surfaces on Hanaupah Canyon alluvial fan in Death Valley, California, yields a minimum-limiting age of 73.55 ka, in accord with cosmogenic 36Cl depth-profile ages of 66 + 22/-14 ka and 72 + 24/- 20 ka for the same fan deposits. The close agreement between the VML age estimates and the independently derived radiometric ages for these geomorphic features attests to the validity and reliability of millennial-scale VML dating. To further assess its potential in desert geomorphological research, we use the VML method to study alluvial-fan responses to millennial-scale climatic changes. The VML dating of a small tributary fan in Death Valley reveals two episodes of fan aggradation, one ceasing at 73.55-86.75 ka during the dry period of the last interglacial (MIS 5a) and the other finishing at 66.15 ka during the wet period of the last glacial (MIS 4). The VML and 36Cl dating of the distal Q2c fan surfaces on Hanaupah Canyon fan reveal two episodes of large-scale fan aggradation ended at 72 + 24/- 20 ka and 73.55 ka during the wet period of MIS 4. Fanhead incision and associated within-channel or fantoe aggradation are found to take place during the relatively dry period of the glacial-to-interglacial climatic transition (12-24 ka) and the Holocene interglacial dry period (0-12 ka). These data indicate that, on the millennial to sub-Milankovitch timescale (~ 103-104 years), fan aggradation is a discrete sedimentational process under various climatic conditions. Because fan aggradation is ultimately controlled by the intensity and frequency of precipitation events - which in turn are modulated by major climatic oscillations such as Heinrich events, Dansgaard/Oeschger (DO) events, and glacial/interglacial shifts - these major climatic changes could be the pacemaker of regionally contemporaneous large-area fan segmentation.

  11. Range wide molecular data and niche modeling revealed the Pleistocene history of a global invader (Halyomorpha halys).

    PubMed

    Zhu, Geng-Ping; Ye, Zhen; Du, Juan; Zhang, Dan-Li; Zhen, Ya-Hui; Zheng, Chen-Guang; Zhao, Li; Li, Min; Bu, Wen-Jun

    2016-01-01

    Invasive species' Pleistocene history contains much information on its present population structure, dispersability and adaptability. In this study, the Pleistocene history of a global invasive pest (Brown Marmorated Stink Bug BMSB, Halyomorpha halys) was unveiled using the coupled approach of phylogeography and ecological niche modelling. Rangewide molecular data suggests that the Taiwan and other native populations had diverged in mid-Pleistocene. In mainland China, the native BMSB did not experience population contraction and divergence during last glacial, but persisted in interconnected populations. Combined Bayesian Skyline Plot (BSP) and niche modelling revealed a rapid expansion occurred during the transition of Last Inter Glacial (LIG) to Last Glacial Maximum (LGM). High genetic diversity and multi-reticular haplotypes network exist in the original sources populations of BMSB invasion in northern China. They were speculated to be colonized from the central China, with many derived haplotypes evolved to adapt the novel environment. The ENM future prediction suggest that BMSB may expand northward to higher latitudes in the US and Europe, because of its high invasive ability, together with the available suitable climate space there. PMID:26996353

  12. Range wide molecular data and niche modeling revealed the Pleistocene history of a global invader (Halyomorpha halys)

    PubMed Central

    Zhu, Geng-Ping; Ye, Zhen; Du, Juan; Zhang, Dan-Li; Zhen, Ya-hui; Zheng, Chen-guang; Zhao, Li; Li, Min; Bu, Wen-Jun

    2016-01-01

    Invasive species’ Pleistocene history contains much information on its present population structure, dispersability and adaptability. In this study, the Pleistocene history of a global invasive pest (Brown Marmorated Stink Bug BMSB, Halyomorpha halys) was unveiled using the coupled approach of phylogeography and ecological niche modelling. Rangewide molecular data suggests that the Taiwan and other native populations had diverged in mid-Pleistocene. In mainland China, the native BMSB did not experience population contraction and divergence during last glacial, but persisted in interconnected populations. Combined Bayesian Skyline Plot (BSP) and niche modelling revealed a rapid expansion occurred during the transition of Last Inter Glacial (LIG) to Last Glacial Maximum (LGM). High genetic diversity and multi-reticular haplotypes network exist in the original sources populations of BMSB invasion in northern China. They were speculated to be colonized from the central China, with many derived haplotypes evolved to adapt the novel environment. The ENM future prediction suggest that BMSB may expand northward to higher latitudes in the US and Europe, because of its high invasive ability, together with the available suitable climate space there. PMID:26996353

  13. What drives glacial cycles

    SciTech Connect

    Broecker, W.S.; Denton, G.H.

    1990-01-01

    The Milankovitch theory advocates that the glacial cycles have three components: the tilt of the earth's spin axis; the shape of the earth's orbit; and the interaction between the tilt and the eccentricity effects. These three factors work together to vary the amount of sunshine reaching the high northern latitudes in summer and allow the great ice sheets to grow during intervals of cool summers and mild winters. Evidence is presented which indicates that the circulation pattern of the Atlantic ocean was shifted dramatically about 14,000 years ago, at the same time that glaciers in both hemispheres started to retreat. The authors believe that massive reorganizations of the ocean-atmosphere system are the key events that link cyclic changes in the earth's orbit to the advance and retreat of ice sheet.

  14. Pleistocene sea-level fluctuations and human evolution on the southern coastal plain of South Africa

    NASA Astrophysics Data System (ADS)

    Compton, John S.

    2011-03-01

    Humans evolved in Africa, but where and how remain unclear. Here it is proposed that the southern coastal plain (SCP) of South Africa may have served as a geographical point of origin through periodic expansion and contraction (isolation) in response to glacial/interglacial changes in sea level and climate. During Pleistocene interglacial highstands when sea level was above -75 m human populations were isolated for periods of 360-3400 25-yr generations on the SCP by the rugged mountains of the Cape Fold Belt, climate and vegetation barriers. The SCP expands five-fold as sea level falls from -75 to -120 m during glacial maxima to form a continuous, unobstructed coastal plain accessible to the interior. An expanded and wet glacial SCP may have served as a refuge to humans and large migratory herds and resulted in the mixing of previously isolated groups. The expansive glacial SCP habitat abruptly contracts, by as much as one-third in 300 yr, during the rapid rise in sea level associated with glacial terminations. Rapid flooding may have increased population density and competition on the SCP to select for humans who expanded their diet to include marine resources or hunted large animals. Successful adaptations developed on an isolated SCP are predicted to widely disperse during glacial terminations when the SCP rapidly contracts or during the initial opening of the SCP in the transition to glacial maxima. The hypothesis that periodic expansion and contraction of the SCP, as well as the coastal plain of North Africa, contributed to the stepwise origin of our species over the last 800 thousand years (kyr) is evaluated by comparing the archeological, DNA and sea-level records. These records generally support the hypothesis, but more complete and well dated records are required to resolve the extent to which sea-level fluctuations influenced the complex history of human evolution.

  15. Small mammal diversity loss in response to late-Pleistocene climatic change.

    PubMed

    Blois, Jessica L; McGuire, Jenny L; Hadly, Elizabeth A

    2010-06-10

    Communities have been shaped in numerous ways by past climatic change; this process continues today. At the end of the Pleistocene epoch about 11,700 years ago, North American communities were substantially altered by the interplay of two events. The climate shifted from the cold, arid Last Glacial Maximum to the warm, mesic Holocene interglacial, causing many mammal species to shift their geographic distributions substantially. Populations were further stressed as humans arrived on the continent. The resulting megafaunal extinction event, in which 70 of the roughly 220 largest mammals in North America (32%) became extinct, has received much attention. However, responses of small mammals to events at the end of the Pleistocene have been much less studied, despite the sensitivity of these animals to current and future environmental change. Here we examine community changes in small mammals in northern California during the last 'natural' global warming event at the Pleistocene-Holocene transition and show that even though no small mammals in the local community became extinct, species losses and gains, combined with changes in abundance, caused declines in both the evenness and richness of communities. Modern mammalian communities are thus depauperate not only as a result of megafaunal extinctions at the end of the Pleistocene but also because of diversity loss among small mammals. Our results suggest that across future landscapes there will be some unanticipated effects of global change on diversity: restructuring of small mammal communities, significant loss of richness, and perhaps the rising dominance of native 'weedy' species. PMID:20495547

  16. Is gene flow promoting the reversal of pleistocene divergence in the Mountain Chickadee (Poecile gambeli)?

    PubMed

    Manthey, Joseph D; Klicka, John; Spellman, Garth M

    2012-01-01

    The Pleistocene glacial cycles left a genetic legacy on taxa throughout the world; however, the persistence of genetic lineages that diverged during these cycles is dependent upon levels of gene flow and introgression. The consequences of secondary contact among taxa may reveal new insights into the history of the Pleistocene's genetic legacy. Here, we use phylogeographic methods, using 20 nuclear loci from regional populations, to infer the consequences of secondary contact following divergence in the Mountain Chickadee (Poecile gambeli). Analysis of nuclear data identified two geographically-structured genetic groups, largely concordant with results from a previous mitochondrial DNA (mtDNA) study. Additionally, the estimated multilocus divergence times indicate a Pleistocene divergence, and are highly concordant with mtDNA. The previous mtDNA study showed a paucity of sympatry between clades, while nuclear patterns of gene flow show highly varied patterns between populations. The observed pattern of gene flow, from coalescent-based analyses, indicates southern populations in both clades exhibit little gene flow within or between clades, while northern populations are experiencing higher gene flow within and between clades. If this pattern were to persist, it is possible the historical legacy of Pleistocene divergence may be preserved in the southern populations only, and the northern populations would become a genetically diverse hybrid species. PMID:23152877

  17. Glacial terminations and the global water budget

    SciTech Connect

    Broecker, W.S. . Lamont-Doherty Geological Observatory)

    1992-01-01

    Evidence suggests that the last glacial period came to an abrupt close about 13,500 years ago. This evidence indicates: (1) that the melting of the North American ice sheet commenced abruptly at this time; (2) that surface temperatures in the northern Atlantic rose sharply at this time; (3) that surface water conditions in the Antarctic changed abruptly at this time; (4) that the salinity of the Red Sea dropped abruptly at this time; and (5) that accumulation rate of planktonic foraminifera in the South China Sea underwent an abrupt five-fold increase at this time. This project has been directed toward better developing and documenting our explanation for the abruptness of these changes. This project has supported investigation of several aspects of this hypothesis. We suggest that the Greenland climate changes are driven by oscillations in salt content which modulate the strength of the Atlantic's conveyor circulation.

  18. Exceptional record of mid-Pleistocene vertebrates helps differentiate climatic from anthropogenic ecosystem perturbations

    PubMed Central

    Barnosky, Anthony D.; Bell, Christopher J.; Emslie, Steven D.; Goodwin, H. Thomas; Mead, Jim I.; Repenning, Charles A.; Scott, Eric; Shabel, Alan B.

    2004-01-01

    Mid-Pleistocene vertebrates in North America are scarce but important for recognizing the ecological effects of climatic change in the absence of humans. We report on a uniquely rich mid-Pleistocene vertebrate sequence from Porcupine Cave, Colorado, which records at least 127 species and the earliest appearances of 30 mammals and birds. By analyzing >20,000 mammal fossils in relation to modern species and independent climatic proxies, we determined how mammal communities reacted to presumed glacialinterglacial transitions between 1,000,000 and 600,000 years ago. We conclude that climatic warming primarily affected mammals of lower trophic and size categories, in contrast to documented human impacts on higher trophic and size categories historically. Despite changes in species composition and minor changes in small-mammal species richness evident at times of climatic change, overall structural stability of mammal communities persisted >600,000 years before human impacts. PMID:15197254

  19. Early Pleistocene sea level and millennial-scale climate fluctuations: a view from the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Alix Jakob, Kim; Friedrich, Oliver; Pross, Jörg

    2015-04-01

    This project aims at deciphering the rate of sea level variability and its effect on millennial-scale climate fluctuations during the final phase of the intensification of northern hemisphere glaciation (NHG). Millennial-scale climate fluctuations appear to have changed significantly at glacial-interglacial time scales during the late Pliocene and Pleistocene. Thereby, millennial-scale climate fluctuations under a warmer climate during late Pliocene and early Pleistocene show markedly lower ampitudes compared to the fluctuations of the late Pleistocene. Numerous Pleistocene proxy records (e.g. McManus et al., 1999) suggest that this difference can be explained by an ice-volume/sea-level threshold that amplifies millennial-scale climate fluctuations and was not reached prior to the Mid-Pleistocene Transition (MPT). However, new records question the existence of this threshold (Bolton et al., 2010) and indicate that either the amplification of millennial-scale climate fluctuations before the MPT required a higher ice-volume threshold than in the late Pleistocene, that ice-volume had no significant effect on the amplitude of climate fluctuations, and/or the available sea level estimates for the early Pleistocene are inaccurate. For identifying the mechanisms underlying the dynamics of early Pleistocene ice sheets, material from the tropical Pacific Ocean (ODP Site 849) is studied over a time interval from 2.6 to 2.4 Ma (marine isotope stages 104 to 96). In summary, the main deliverables are (1) the establishment of a precise δ18O chemostratigraphy using the benthic foraminifera Cibicidoides wuellerstorfi by tuning the δ18O dataset to the LR04 benthic isotope stack (Lisiecki & Raymo, 2005), and (2) providing high-resolution (˜700 years) Mg/Ca and δ18O datasets using the benthic foraminifera Oridorsalis umbonatus and the planktonic foraminifera Globigerinoides ruber. This combined geochemical approach will be used to address the following research questions: (1) Quantification of sea level change from 2.6 to 2.4 Ma; (2) Critically assess the hypothesis of an ice-volume threshold for millennial-scale climate amplification during the early Pleistocene (and if it exists, what its value was); (3) Detailed comparison with late Pleistocene glacials; (4) Model-data comparison to assess the fidelity of model-based sea level estimates; and (5) reconstruction of sea surface temperature fluctuations of the tropical Pacific. References Bolton, C.T., Wilson, P.A., Bailey, I., Friedrich, O., Beer, C.J., Becker, J., Baranwal, S., Schiebel, R. (2010): Millennial-scale climate variability in the subpolar North Atlantic Ocean during the late Pliocene. Paleoceanography 25, doi:10.1029/2010PA001951. Lisiecki, L.E. & Raymo, M.E. (2005): A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, doi:10.1029/2004PA 001071. McManus, J., Oppo, D.W., Cullen, J.L. (1999): A 0.5-Million-Year Record of Millenial-Scale Climate Variability in the North Atlantic. Science 283, 971-975.

  20. Pleistocene-Holocene transition in the central Mississippi River valley

    NASA Astrophysics Data System (ADS)

    Van Arsdale, Roy B.; Cupples, William B.; Csontos, Ryan M.

    2014-06-01

    Within the northern Mississippi embayment the ancestral Mississippi River flowed south through the Western Lowlands and the ancestral Ohio River flowed through the Eastern Lowlands for most of the Pleistocene. Previous investigators have mapped and dated the terraces of their respective braid belts. This current research investigates the three-dimensional aspect of the Quaternary alluvium north of Memphis, Tennessee, through the interpretation of 3374 geologic well logs that are 91.4 m (300 ft) deep. The braid belts are capped by a thin silt/clay horizon (Pleistocene loess) that overlies gravelly sand, which in turn overlies sandy gravel. The base of the Pleistocene alluvium beneath the Ash Hill (27.3-24.6 ka), Melville Ridge (41.6-34.5 ka), and Dudley (63.5-50.1 ka) terraces of the Western Lowland slope southerly by 0.275 m/km and all have an average basal elevation of 38 m. Near Beedeville, Arkansas, the bases of these terraces descend 20 m across a northeast-striking down-to-the-southeast fault that coincides with the western margin of the Cambrian Reelfoot rift. The maximum depth of flow (lowest elevation of base of alluvium) occurred in the Eastern Lowlands and appears to have been the downstream continuation of the ancestral Ohio River Cache valley course in southern Illinois. In traversing from west to east in the Eastern Lowlands, the Sikeston braid belt (19.7-17.8 ka) has a basal elevation averaging 7 m, the Kennett braid belt (16.1-14.4 ka) averages 13 m, the Morehouse (12 ka) braid belt averages 24 m, and the Holocene (≤ 10 ka) Mississippi River floodplain has the highest average basal elevation at 37 m. Along this easterly traverse the base of the Quaternary alluvium rises and the age of alluvium decreases. The eastward thinning of the floodplain alluvium in the Eastern Lowlands appears to be caused by decreasing Mississippi River discharge as it transitioned from the Wisconsinan glacial maximum to the Holocene. The base of the Holocene Mississippi River floodplain averages 23 m higher in elevation than the Pleistocene floodplain bases in the Eastern Lowlands. This high suballuvial surface (platform) is bound by the tectonically uplifted Joiner ridge, Blytheville arch, Charleston uplift, and Bluff Line fault. The spatial relationship and similar histories of the platform and bounding structures suggest that Quaternary erosion and tectonics are related.

  1. Phylogeographic and demographic effects of Pleistocene climatic fluctuations in a montane salamander, Plethodon fourchensis.

    PubMed

    Shepard, Donald B; Burbrink, Frank T

    2009-05-01

    Climatic changes associated with Pleistocene glacial cycles profoundly affected species distributions, patterns of interpopulation gene flow, and demography. In species restricted to montane habitats, ranges may expand and contract along an elevational gradients in response to environmental fluctuations and create high levels of genetic variation among populations on different mountains. The salamander Plethodon fourchensis is restricted to high-elevation, mesic forest on five montane isolates in the Ouachita Mountains. We used DNA sequence data along with ecological niche modelling and coalescent simulations to test several hypotheses related to the effects of Pleistocene climatic fluctuations on species in montane habitats. Our results revealed that P. fourchensis is composed of four well-supported, geographically structured lineages. Geographic breaks between lineages occurred in the vicinity of major valleys and a narrow high-elevation pass. Ecological niche modelling predicted that environmental conditions in valleys separating most mountains are suitable; however, interglacial periods like the present are predicted to be times of range expansion in P. fourchensis. Divergence dating and coalescent simulations indicated that lineage diversification occurred during the Middle Pleistocene via the fragmentation of a wide-ranging ancestor. Bayesian skyline plots showed gradual decreases in population size in three of four lineages over the most recent glacial period and a slight to moderate amount of population growth during the Holocene. Our results not only demonstrate that climatic changes during the Pleistocene had profound effects on species restricted to montane habitats, but comparison of our results for P. fourchensis with its parapatric, sister taxon, P. ouachitae, also emphasizes how responses can vary substantially even among closely related, similarly distributed taxa. PMID:19389165

  2. Pleistocene aridification cycles shaped the contemporary genetic architecture of Southern African baboons.

    PubMed

    Sithaldeen, Riashna; Ackermann, Rebecca Rogers; Bishop, Jacqueline M

    2015-01-01

    Plio-Pleistocene environmental change influenced the evolutionary history of many animal lineages in Africa, highlighting key roles for both climate and tectonics in the evolution of Africa's faunal diversity. Here, we explore diversification in the southern African chacma baboon Papio ursinus sensu lato and reveal a dominant role for increasingly arid landscapes during past glacial cycles in shaping contemporary genetic structure. Recent work on baboons (Papio spp.) supports complex lineage structuring with a dominant pulse of diversification occurring 1-2Ma, and yet the link to palaeoenvironmental change remains largely untested. Phylogeographic reconstruction based on mitochondrial DNA sequence data supports a scenario where chacma baboon populations were likely restricted to refugia during periods of regional cooling and drying through the Late Pleistocene. The two lineages of chacma baboon, ursinus and griseipes, are strongly geographically structured, and demographic reconstruction together with spatial analysis of genetic variation point to possible climate-driven isolating events where baboons may have retreated to more optimum conditions during cooler, drier periods. Our analysis highlights a period of continuous population growth beginning in the Middle to Late Pleistocene in both the ursinus and the PG2 griseipes lineages. All three clades identified in the study then enter a state of declining population size (Nef) through to the Holocene; this is particularly marked in the last 20,000 years, most likely coincident with the Last Glacial Maximum. The pattern recovered here conforms to expectations based on the dynamic regional climate trends in southern Africa through the Pleistocene and provides further support for complex patterns of diversification in the region's biodiversity. PMID:25970269

  3. Pleistocene Aridification Cycles Shaped the Contemporary Genetic Architecture of Southern African Baboons

    PubMed Central

    Sithaldeen, Riashna; Ackermann, Rebecca Rogers; Bishop, Jacqueline M.

    2015-01-01

    Plio-Pleistocene environmental change influenced the evolutionary history of many animal lineages in Africa, highlighting key roles for both climate and tectonics in the evolution of Africa’s faunal diversity. Here, we explore diversification in the southern African chacma baboon Papio ursinus sensu lato and reveal a dominant role for increasingly arid landscapes during past glacial cycles in shaping contemporary genetic structure. Recent work on baboons (Papio spp.) supports complex lineage structuring with a dominant pulse of diversification occurring 1-2Ma, and yet the link to palaeoenvironmental change remains largely untested. Phylogeographic reconstruction based on mitochondrial DNA sequence data supports a scenario where chacma baboon populations were likely restricted to refugia during periods of regional cooling and drying through the Late Pleistocene. The two lineages of chacma baboon, ursinus and griseipes, are strongly geographically structured, and demographic reconstruction together with spatial analysis of genetic variation point to possible climate-driven isolating events where baboons may have retreated to more optimum conditions during cooler, drier periods. Our analysis highlights a period of continuous population growth beginning in the Middle to Late Pleistocene in both the ursinus and the PG2 griseipes lineages. All three clades identified in the study then enter a state of declining population size (Nef) through to the Holocene; this is particularly marked in the last 20,000 years, most likely coincident with the Last Glacial Maximum. The pattern recovered here conforms to expectations based on the dynamic regional climate trends in southern Africa through the Pleistocene and provides further support for complex patterns of diversification in the region’s biodiversity. PMID:25970269

  4. Pleistocene glaciation in the blue ridge province, southern appalachian mountains, north Carolina.

    PubMed

    Berkland, J O; Raymond, L A

    1973-08-17

    Glacial polish, grooves, and striations discovered at an elevation of 1370 meters in the headwaters of Boone Fork on Grandfather Mountain, North Carolina, indicate the former, existence of alpine glaciation at a latitude of 36 degrees 07'N. The Boone Fork glacier was located 890 kilometers south of the previously recognized southern limit of alpine glaciation in the Appalachian Mountains, and 350 kilometers southeast of the nearest point on the Laurentide ice sheet. This find has significant implications for studies of Pleistocene geomorphology, paleobiology, and paleoclimatology in the eastern United States. PMID:17736977

  5. Thermohaline circulation crisis and impacts during the mid-Pleistocene transition.

    PubMed

    Pena, Leopoldo D; Goldstein, Steven L

    2014-07-18

    The mid-Pleistocene transition (MPT) marked a fundamental change in glacial-interglacial periodicity, when it increased from ~41-thousand-year to 100-thousand-year cycles and developed higher-amplitude climate variability without substantial changes in the Milankovitch forcing. Here, we document, by using Nd isotopes, a major disruption of the ocean thermohaline circulation (THC) system during the MPT between marine isotope stages (MISs) 25 and 21 at ~950 to 860 thousand years ago, which effectively marks the first 100-thousand-year cycle, including an exceptional weakening through a critical interglacial (MIS 23) at ~900 thousand years ago. Its recovery into the post-MPT 100-thousand-year world is characterized by continued weak glacial THC. The MPT ocean circulation crisis facilitated the coeval drawdown of atmospheric CO2 and high-latitude ice sheet growth, generating the conditions that stabilized 100-thousand-year cycles. PMID:24968939

  6. Variations in Glacial Erosion over Multiple Glacial-Interglacial Cycles

    NASA Astrophysics Data System (ADS)

    Headley, R. M.; Ehlers, T. A.

    2013-12-01

    Glacial erosion plays an important role in the construction and development of many mountain ranges. When modeling orogenic development, the choice of ice-flow physics can have an influence on developing topography, though many simple models can still produce the distinctive geomorphological features associated with glaciated topography. However, detailed comparisons at orogenic-time and length scales hold potential for quantifying the influence of glacial physics in landscape evolution models. Within a modified version of the ICE-Cascade landscape evolution model, we present results from a comparison between two different numerical models of glacial flow. This orogenic model calculates not only glaciological processes but also hillslope and fluvial erosion, sediment transport, isostasy, and temporally and spatially variable orographic precipitation. Over single and multiple glaciations and in a variety of climate scenarios, glacial erosion rates and topographic evolution are analyzed. We compare the predicted erosion patterns using a modified SIA as well as a nested, 3D Stokes-flow model calculated using COMSOL Multiphysics. The time-averaged erosion rates differ between the two models of ice physics. In addition, these results and the amount of variation between the models are sensitive to the climate and the ice temperature. For warmer climates with more sliding, the higher-order model leads to larger erosion rates, by almost an order of magnitude, also with more variance. Additionally, as the erosion, basal topography and the ice deformation are all interconnected through the glacial dynamics, comparisons of large-scale and glacier-wide properties can also be instructive. For these properties, particularly the ice thickness and extent, the higher-order glacial model can lead to variations between the ice flow models that are greater than 30%, again with larger differences for temperate ice. When compared after multiple glaciations and long-time scales, these results suggest that consideration of higher-order glacial physics may be necessary, particularly in regions with extensive temperate or polythermal glaciers.

  7. Could brown bears (Ursus arctos) have survived in Ireland during the Last Glacial Maximum?

    PubMed

    Leonard, Saoirse A; Risley, Claire L; Turvey, Samuel T

    2013-08-23

    Brown bears are recorded from Ireland during both the Late Pleistocene and early-mid Holocene. Although most of the Irish landmass was covered by an ice sheet during the Last Glacial Maximum (LGM), Irish brown bears are known to have hybridized with polar bears during the Late Pleistocene, and it is suggested that the Irish brown bear population did not become extinct but instead persisted in situ through the LGM in a southwestern ice-free refugium. We use historical population modelling to demonstrate that brown bears are highly unlikely to have survived through the LGM in Ireland under any combination of life-history parameters shown by living bear populations, but instead would have rapidly become extinct following advance of the British-Irish ice sheet, and probably recolonized Ireland during the end-Pleistocene Woodgrange Interstadial from a closely related nearby source population. The time available for brown bear-polar bear hybridization was therefore restricted to narrow periods at the beginning or end of the LGM. Brown bears would have been extremely vulnerable to extinction in Quaternary habitat refugia and required areas substantially larger than southwestern Ireland to survive adverse glacial conditions. PMID:23676655

  8. Molecular analysis of the Pleistocene history of Saxifraga oppositifolia in the Alps.

    PubMed

    Holderegger, R; Stehlik, I; Abbott, R J

    2002-08-01

    A recent circumpolar survey of chloroplast DNA (cpDNA) haplotypes identified Pleistocene glacial refugia for the Arctic-Alpine Saxifraga oppositifolia in the Arctic and, potentially, at more southern latitudes. However, evidence for glacial refugia within the ice sheet covering northern Europe during the last glacial period was not detected either with cpDNA or in another study of S. oppositifolia that surveyed random amplified polymorphic DNA (RAPD) variation. If any genotypes survived in such refugia, they must have been swamped by massive postglacial immigration of periglacial genotypes. The present study tested whether it is possible to reconstruct the Pleistocene history of S. oppositifolia in the European Alps using molecular methods. Restriction fragment length polymorphism (RFLP) analysis of cpDNA of S. oppositifolia, partly sampled from potential nunatak areas, detected two common European haplotypes throughout the Alps, while three populations harboured two additional, rare haplotypes. RAPD analysis confirmed the results of former studies on S. oppositifolia; high within, but low among population genetic variation and no particular geographical patterning. Some Alpine populations were not perfectly nested in this common gene pool and contained private RAPD markers, high molecular variance or rare cpDNA haplotypes, indicating that the species could possibly have survived on ice-free mountain tops (nunataks) in some parts of the Alps during the last glaciation. However, the overall lack of a geographical genetic pattern suggests that there was massive immigration of cpDNA and RAPD genotypes by seed and pollen flow during postglacial times. Thus, the glacial history of S. oppositifolia in the Alps appears to resemble closely that suggested previously for the species in northern Europe. PMID:12144661

  9. Sedimentary architecture of the Amundsen Sea Embayment shelf, West Antarctica, from pre-glacial to glacial processes

    NASA Astrophysics Data System (ADS)

    Gohl, Karsten; Uenzelmann-Neben, Gabriele; Hillenbrand, Claus-Dieter; Larter, Robert; Nitsche, Frank

    2013-04-01

    Studies of the sedimentary architecture and characteristics of Antarctic shelves provide clues of past ice sheet advance-retreat cycles and help improve constraints for paleo-ice dynamic models since early glacial periods. A first seismostratigraphic analysis of the Amundsen Sea Embayment shelf and slope of West Antarctica reveals insights into the structural architecture of the continental margin and shows stages of sediment deposition, erosion and transport history from pre-glacial times to early glaciation and to the most recent glacial periods. The shelf geometry consists of a large pre- and syn-rift basin in the middle shelf region between outcropping basement of the inner shelf and basement ridges and highs beneath the outer shelf. A middle shelf sub-basin exists which may have formed as a result of motion along an early West Antarctic Rift System branch. At least 4 km of pre-glacial strata has been eroded from the present inner shelf and coastal hinterland by ice sheet advances since the onset of glaciation. Some of the eroded sediments were deposited as a progradational wedge extending the outer shelf by 25 to 65 km oceanward of the pre-glacial shelf-break. Comparing the observed seismic characteristics with those of other Antarctic shelf sequences, we assign an Early Cretaceous age for bottom sedimentary unit ASS-1, a Late Cretaceous to Oligocene age for unit ASS-2, an Early to Mid-Miocene age for unit ASS-3, a Mid-Miocene age for unit ASS-4, a Late Miocene to Early Pliocene age for unit ASS-5, and a Pliocene to Pleistocene age for the top unit ASS-6. The survival of buried grounding zone wedges in the upper part of unit ASS-5 of the outer shelf is consistent with the onset of a long warming phase and a retreated ice sheet in the early Pliocene as observed for the Ross Sea shelf and reconstructed from paleo-ice sheet models. Our data also reveal that the paleo-ice flow paths of the central Pine Island Trough system have remained stationary across the middle and outer shelf since early glacial advances. This study and its stratigraphic constraints will serve as a basis for future drilling operations required for an improved understanding of processes and mechanisms leading to West Antarctic Ice Sheet retreats, such as the rapid ice retreat presently observed in the Amundsen Sea Embayment.

  10. Unstable AMOC during glacial intervals and millennial variability: The role of mean sea ice extent

    NASA Astrophysics Data System (ADS)

    Svellec, Florian; Fedorov, Alexey V.

    2015-11-01

    A striking feature of paleoclimate records is the greater stability of the Holocene epoch relative to the preceding glacial interval, especially apparent in the North Atlantic region. In particular, strong irregular variability with an approximately 1500 yr period, known as the Dansgaard-Oeschger (D-O) events, punctuates the last glaciation, but is absent during the interglacial. Prevailing theories, modeling and data suggest that these events, seen as abrupt warming episodes in Greenland ice cores and sea surface temperature records in the North Atlantic, are linked to reorganizations of the Atlantic Meridional Overturning Circulation (AMOC). In this study, using a new low-order ocean model that reproduces a realistic power spectrum of millennial variability, we explore differences in the AMOC stability between glacial and interglacial intervals of the 100 kyr glacial cycle of the Late Pleistocene (1 kyr = 1000 yr). Previous modeling studies show that the edge of sea ice in the North Atlantic shifts southward during glacial intervals, moving the region of the North Atlantic Deep Water formation and the AMOC also southward. Here we demonstrate that, by shifting the AMOC with respect to the mean atmospheric precipitation field, such a displacement makes the system unstable, which explains chaotic millennial variability during the glacials and the persistence of stable ocean conditions during the interglacials.

  11. Malacological and sedimentological evidence for ``warm'' glacial climate from the Irig loess sequence, Vojvodina, Serbia

    NASA Astrophysics Data System (ADS)

    Markovi?, Slobodan B.; Oches, Eric A.; McCoy, William D.; Frechen, Manfred; Gaudenyi, Tivadar

    2007-09-01

    Four loess units and three paleosol layers are preserved in the Irig brickyard, Vojvodina, Serbia. Amino acid geochronology provides stratigraphic correlations between loess units V-L1 and V-L2 at the Irig section with loess of glacial cycles B and C, respectively, described from other central European localities. Luminescence dating results for the upper loess layers V-L1L1 and V-L1S1L1 confirm the geological interpretations, although in samples below paleosol V-L1S1S2, the age increase with depth is less than in our proposed age model. Magnetic susceptibility and sedimentological evidence from the Irig loess-paleosol sequence show general similarities with the MIS 6-1 pattern of the SPECMAP oxygen-isotope curve. Malacogical investigations at the Irig site reveal the continuous presence of the Chondrula tridens and Helicopsis striata faunal assemblages throughout the last glacial and final part of the penultimate glacial loess. The loess snail fauna, which is characterized by the complete absence of cold-resistant species, suggests a stable, dry, and relatively warm glacial climate, compared with other central European loess localities. Furthermore, these data suggest that the southern slope of Fru\\vska Gora was a refugium for warm-loving and xerophilus mollusc taxa during the otherwise unfavorable glacial climates of the Late Pleistocene.

  12. Stratigraphy, optical dating chronology (IRSL) and depositional model of pre-LGM glacial deposits in the Hope Valley, New Zealand

    NASA Astrophysics Data System (ADS)

    Rother, Henrik; Shulmeister, James; Rieser, Uwe

    2010-02-01

    A 110 m thick succession of glacial valley fill is described from Poplars Gully, central South Island, New Zealand. The section consists of eight lithofacies assemblages that represent different stages of ice occupation in the valley. Basal sediments record an ice retreat phase followed by a glacial re-advance which deposited mass flow diamictons and till. A subsequent ice retreat from the site is indicated by the stratigraphic transition from till to thick glacio-fluvial gravels. This is followed by a probably short-lived glacier re-advance that caused folding and thrusting of proglacial sediments. Final glacial retreat from the valley led to the formation of a large proglacial lake. In total, Poplars Gully holds evidence for two major ice advances, separated by a glacial retreat that resulted in complete ice evacuation from the lower Hope Valley. Infrared stimulated luminescence (IRSL) dating on ice-proximal sediments from Poplars Gully yielded six ages between 181 and 115 ka BP. Our stratigraphic logging and dating results show that the fill sequence was not, as previously thought, deposited in association with ice advances during the Last Glacial Maximum (LGM) nor indeed during the last glacial cycle. LGM glaciers later overran the fill but we find that the older glacial sequences are considerably more voluminous than those deposited during the last glacial cycle. We also show that the mid-Pleistocene glaciers carved a much deeper valley trough than did glaciers during the LGM. Taken together these features are likely to reflect a significant difference in the magnitude of successive Pleistocene glaciations in the valley, with the mid-Pleistocene ice advances having been considerably larger than those of the last glacial cycle. The recognition of the in-situ survival of extensive pre-MIS 5 (Marine Isotope Stage) deposits in valley troughs that were later occupied by LGM glaciers represents a new feature in the Quaternary stratigraphy of the Southern Alps. The results demonstrate that New Zealand's commonly very large soft-sedimentary valley fills provide a valuable, yet largely unexploited, terrestrial sedimentary archive of successive glaciations in the region.

  13. Glacial and periglacial geomorphology and its paleoclimatological significance in three North Ethiopian Mountains, including a detailed geomorphological map

    NASA Astrophysics Data System (ADS)

    Hendrickx, Hanne; Jacob, Miro; Frankl, Amaury; Nyssen, Jan

    2015-10-01

    Geomorphological investigations and detailed mapping of past and present (peri)glacial landforms are required in order to understand the impact of climatic anomalies. The Ethiopian Highlands show a great variety in past and contemporary climate, and therefore, in the occurrence of glacial and periglacial landforms. However, only a few mountain areas have been studied, and detailed geomorphological understanding is lacking. In order to allow a fine reconstruction of the impact of the past glacial cycle on the geomorphology, vegetation complexes, and temperature anomalies, a detailed geomorphological map of three mountain areas (Mt. Ferrah Amba, 12°51‧N 39°29‧E; Mt. Lib Amba, 12°04‧N 39°22‧; and Mt. Abuna Yosef, 12°08‧N 39°11‧E) was produced. In all three study areas, inactive solifluction lobes, presumably from the Last Glacial Maximum (LGM), were found. In the highest study area of Abuna Yosef, three sites were discovered bearing morainic material from small late Pleistocene glaciers. These marginal glaciers occurred below the modeled snowline and existed because of local topo-climatic conditions. Evidence of such Pleistocene avalanche-fed glaciers in Ethiopia (and Africa) has not been produced earlier. Current frost action is limited to frost cracks and small-scale patterned ground phenomena. The depression of the altitudinal belts of periglacial and glacial processes during the last cold period was assessed through periglacial and glacial landform mapping and comparisons with data from other mountain areas taking latitude into account. The depression of glacial and periglacial belts of approximately 600 m implies a temperature drop around 6 °C in the last cold period. This cooling is in line with temperature depressions elsewhere in East Africa during the LGM. This study serves as a case study for all the intermediate mountains (3500-4200 m) of the North Ethiopian highlands.

  14. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends

    PubMed Central

    Schmitt, Thomas

    2007-01-01

    The climatic cycles with subsequent glacial and intergalcial periods have had a great impact on the distribution and evolution of species. Using genetic analytical tools considerably increased our understanding of these processes. In this review I therefore give an overview of the molecular biogeography of Europe. For means of simplification, I distinguish between three major biogeographical entities: (i) "Mediterranean" with Mediterranean differentiation and dispersal centres, (ii) "Continental" with extra-Mediterranean centres and (iii) "Alpine" and/or "Arctic" with recent alpine and/or arctic distribution patterns. These different molecular biogeographical patterns are presented using actual examples. Many "Mediterranean" species are differentiated into three major European genetic lineages, which are due to glacial isolation in the three major Mediterranean peninsulas. Postglacial expansion in this group of species is mostly influenced by the barriers of the Pyrenees and the Alps with four resulting main patterns of postglacial range expansions. However, some cases are known with less than one genetic lineage per Mediterranean peninsula on the one hand, and others with a considerable genetic substructure within each of the Mediterranean peninsulas, Asia Minor and the Maghreb. These structures within the Mediterranean sub-centres are often rather strong and in several cases even predate the Pleistocene. For the "Continental" species, it could be shown that the formerly supposed postglacial spread from eastern Palearctic expansion centres is mostly not applicable. Quite the contrary, most of these species apparently had extra-Mediterranean centres of survival in Europe with special importance of the perialpine regions, the Carpathian Basin and parts of the Balkan Peninsula. In the group of "Alpine" and/or "Arctic" species, several molecular biogeographical patterns have been found, which support and improve the postulates based on distribution patterns and pollen records. Thus, genetic studies support the strong linkage between southwestern Alps and Pyrenees, northeastern Alps and Carpathians as well as southeastern Alps and the Dinaric mountain systems, hereby allowing conclusions on the glacial distribution patterns of these species. Furthermore, genetic analyses of arctic-alpine disjunct species support their broad distribution in the periglacial areas at least during the last glacial period. The detailed understanding of the different phylogeographical structures is essential for the management of the different evolutionary significant units of species and the conservation of their entire genetic diversity. Furthermore, the distribution of genetic diversity due to biogeographical reasons helps understanding the differing regional vulnerabilities of extant populations. PMID:17439649

  15. Glacial landforms of the southern Ungava Bay region (Canada): implications for the late-glacial dynamics and the damming of glacial Lake Naskaupi

    NASA Astrophysics Data System (ADS)

    Dube-Loubert, Hugo; Roy, Martin

    2014-05-01

    The Laurentide ice sheet played an important role in the late Pleistocene climate, notably through discharges of icebergs and meltwater. In this context, the Ungava Bay region in northern Quebec-Labrador appears particularly important, especially during the last deglaciation when the retreating ice margin dammed major river valleys, creating large proglacial lakes (e.g., McLean, aux Feuilles). The history of these lakes is closely related to the temporal evolution of the Labrador-Quebec ice dome. There are, however, large uncertainties regarding the position of its ice divide system through time, thereby limiting our understanding of the history of these glacial lakes. Here we focus on glacial and deglacial landforms present in the George River valley, south of Ungava Bay, in order to bring additional constraints on the late-glacial ice dynamics of this region, which also comprised glacial Lake Naskaupi. This work is based on surficial mapping using aerial photos and satellite imagery, combined with extensive fieldwork and sediment sampling. Our investigation showed significant differences in the distribution of glacial landforms across the region. The area east of the George River is characterized by well-developed Naskaupi shorelines while the elevated terrains show a succession of geomorphological features indicative of cold-based ice or ice with low basal velocities. In the easternmost part of this sector, ice flow directional data indicate that the ice was flowing towards ENE, against the regional slope. Eskers show paleocurrent directions indicating a general ice retreat from east to west. In the western part of this sector, near the George River valley, eskers are absent and the region is covered by felsenmeer and ground moraine that likely reflect the presence of a residual ice mass that was no longer dynamic. The presence of a stagnant ice represents the best mechanism to explain the formation of glacial lakes in the George River valley and its main tributaries. In contrast, the area west of the George River valley shows very few shorelines, implying that Lake Naskaupi was mostly in contact with the decaying ice margin. The abundance ice-marginal meltwater channels allowed the reconstruction of the general ice retreat pattern. The area is also characterized by abundant WNW-trending drumlins and crag-and-tails indicating an important ice flow towards Ungava Bay. These glacial lineations may be linked with eskers further to west that terminated into the postglacial Iberville Sea, forming large ice-contact deltas. This setting suggests that this landform assemblage likely developed during the deglaciation. Our results thus underlie important differences in the subglacial regime across the ice divide of the Labrador sector during the late-glacial and early deglacial interval. The so-called horseshoe unconformity appear to delineate an inner area characterized by warm-based conditions that allowed a massive deglacial ice flow to developed in Ungava Bay, while the area under and proximal to the divide in the east appears to have evolved towards cold-based ice conditions, resulting with a stagnant ice mass that dammed the major proglacial lakes.

  16. Glacial discharge along the west Antarctic Peninsula during the Holocene

    NASA Astrophysics Data System (ADS)

    Pike, Jennifer; Swann, George E. A.; Leng, Melanie J.; Snelling, Andrea M.

    2013-03-01

    The causes for rising temperatures along the Antarctic Peninsula during the late Holocene have been debated, particularly in light of instrumental records of warming over the past decades. Suggested mechanisms range from upwelling of warm deep waters onto the continental shelf in response to variations in the westerly winds, to an influence of El Niño-Southern Oscillation on sea surface temperatures. Here, we present a record of Holocene glacial ice discharge, derived from the oxygen isotope composition of marine diatoms from Palmer Deep along the west Antarctic Peninsula continental margin. We assess atmospheric versus oceanic influences on glacial discharge at this location, using analyses of diatom geochemistry to reconstruct atmospherically forced glacial ice discharge and diatom assemblage ecology to investigate the oceanic environment. We show that two processes of atmospheric forcing--an increasing occurrence of La Niña events and rising levels of summer insolation--had a stronger influence during the late Holocene than oceanic processes driven by southern westerly winds and upwelling of upper Circumpolar Deepwater. Given that the evolution of El Niño-Southern Oscillation under global warming is uncertain, its future impacts on the climatically sensitive system of the Antarctic Peninsula Ice Sheet remain to be established.

  17. Sudbury Breccia and suevite as glacial indicators transported 800 km to Kentland Astrobleme, Indiana

    NASA Technical Reports Server (NTRS)

    Mchone, John F.; Dietz, Robert S.; Peredery, Walter V.

    1992-01-01

    A glacial erratic whose place of origin is known by direct comparison with bedrock is known as an indicator. In 1971, while visiting the known astrobleme at Kentland, Indiana, Peredery recognized and sampled in the overlying glacial drift deposits a distinctive boulder of Sudbury suevite (black member, Onaping Formation) that normally occurs within the Sudbury Basin as an impact fall-back or wash-in deposit. The rock was sampled (but later mislaid) from a farmer's cairn next to a cleared field. Informal reports of this discovery prompted the other authors to recently reconnoiter the Kentland locality in an attempt to relocate the original boulder. Several breccia blocks were sampled but laboratory examination proved most of these probably to be diamictites from the Precambrian Gowganda Formation, which outcrops extensively in the southern Ontario. However, one sample was confirmed as typical Sudbury Breccia, which outcrops in the country rock surrounding the Sudbury Basin. Thus two glacial indicators were transported by Pleistocene continental glaciers about 820 km over a tightly proscribed path and, curiously, from one astrobleme to another. Brecciated boulders in the Illinois/Indiana till plain are usually ascribed to the Gowganda or Mississagi formations in Ontario. But impact-generated rocks need not be confused. The carbonaceous matrix of the suevite, for example, was sufficiently distinctive to assign it to the upper portion of the black Onaping. The unique and restricted source area of these indicators provide an accurate and reliable control for estimating Pleistocene ice movement.

  18. A fundamental Precambrian-Phanerozoic shift in earth's glacial style?

    NASA Astrophysics Data System (ADS)

    Evans, D. A. D.

    2003-11-01

    It has recently been found that Neoproterozoic glaciogenic sediments were deposited mainly at low paleolatitudes, in marked qualitative contrast to their Pleistocene counterparts. Several competing models vie for explanation of this unusual paleoclimatic record, most notably the high-obliquity hypothesis and varying degrees of the snowball Earth scenario. The present study quantitatively compiles the global distributions of Miocene-Pleistocene glaciogenic deposits and paleomagnetically derived paleolatitudes for Late Devonian-Permian, Ordovician-Silurian, Neoproterozoic, and Paleoproterozoic glaciogenic rocks. Whereas high depositional latitudes dominate all Phanerozoic ice ages, exclusively low paleolatitudes characterize both of the major Precambrian glacial epochs. Transition between these modes occurred within a 100-My interval, precisely coeval with the Neoproterozoic-Cambrian "explosion" of metazoan diversity. Glaciation is much more common since 750 Ma than in the preceding sedimentary record, an observation that cannot be ascribed merely to preservation. These patterns suggest an overall cooling of Earth's longterm climate, superimposed by developing regulatory feedbacks involving an increasingly complex biosphere.

  19. Climatic implications of intermediate sized glacial advances in New Zeland valleys during OIS3.

    NASA Astrophysics Data System (ADS)

    Shulmeister, James; Thackray, Glenn; Rittenour, Tammy

    2014-05-01

    Recent work has greatly increased the number of known glacial oscillations during the last (Otiran) glaciation in South Island, New Zealand. Here we present summary stratigraphic and age results from a tectonic basin in the upper Rangitata Valley and a trough fill in the Rakaia Valley in Canterbury, New Zealand. The deposits constrain a series of intermediate scale glacial advances during OIS 3 that are not recorded in terminal moraine sequences in these valleys. These records demonstrate that ice limits oscillated substantially during the last glacial cycle but that very significant advances occurred at times other than the LGM, with glacial extents 80-95% of the local last glacial maximum. The timings of these advances appear to coincide with fragmentary evidence for glaciation in some other settings in New Zealand and SE Australia, indicating that the advances represent regionally significant climatic events. In the talk, I will summarise the evidence for the better constrained advances, consider the climate forcing required to maintain extended ice in these valleys through much of the last glacial cycle and consider the impact of antecedent ice limits on the climatic conditions at the LGM.

  20. Mammal diversity during the Pleistocene-Holocene transition in Eastern Europe.

    PubMed

    Puzachenko, Andrei Yurievich; Markova, Anastasia Konstantinovna

    2014-08-01

    Fossil record data on the mammal diversity and species richness are of importance for the reconstruction of the evolution of terrestrial ecosystems during the Late Pleistocene-Holocene transition. In Eastern Europe, the transformations during the Pleistocene-Holocene transition consisted mainly in changes in zonal structure and local fauna composition (Markova & Kolfschoten 2008). We investigated the species richness and the analogues of the ?, ? diversity indexes (in the sense of Whittaker 1972) of large and medium size mammals for 13 climate-stratigraphic units dating to the Late Pleistocene and the Holocene, from the Hasselo Stadial (44-39 kBP) to the Subatlantic period and the present day. The biological diversity of the Last Glacial Maximum (LGM) and the Holocene thermal optimum was investigated in more detail using information about all mammalian taxa (PALEOFAUNA database; Markova 1995). One of our results show that the ?, ? diversity values show only a negative correlation with the temperature conditions during the Late Pleistocene, the period that is characterized by the so-called 'Mammoth Fauna' complex. For the Holocene faunas the diversity indexes are nearly independent from physical conditions; the ? diversity index decreased and the ? diversity index increased. The relatively low ? diversity and high ? diversity indexes for the present-day faunas are referred to the decrease of the population number of some forest species in historical time and the increase of the dominance of unspecialized species or the species connected with intra-zonal ecosystems. The study shows furthermore the occurrence of several East European 'centers' with a high mammal diversity, which are relatively stable during the Pleistocene-Holocene transition. The orientation of the boundaries between the large geographical mammal assemblages depended, particularly in the northwestern part of Eastern Europe, on the expansion of the Scandinavian ice sheet. PMID:25236416

  1. Glacial history of a modern invader: phylogeography and species distribution modelling of the Asian tiger mosquito Aedes albopictus.

    TOXLINE Toxicology Bibliographic Information

    Porretta D; Mastrantonio V; Bellini R; Somboon P; Urbanelli S

    2012-01-01

    BACKGROUND: The tiger mosquito, Aedes albopictus, is one of the 100 most invasive species in the world and a vector of human diseases. In the last 30 years, it has spread from its native range in East Asia to Africa, Europe, and the Americas. Although this modern invasion has been the focus of many studies, the history of the species' native populations remains poorly understood. Here, we aimed to assess the role of Pleistocene climatic changes in shaping the current distribution of the species in its native range.METHODOLOGY/PRINCIPAL FINDINGS: We investigated the phylogeography, historical demography, and species distribution of Ae. albopictus native populations at the Last Glacial Maximum (LGM). Individuals from 16 localities from East Asia were analyzed for sequence variation at two mitochondrial genes. No phylogeographic structure was observed across the study area. Demographic analyses showed a signature of population expansion that started roughly 70,000 years BP. The occurrence of a continuous and climatically suitable area comprising Southeast China, Indochinese Peninsula, and Sundaland during LGM was indicated by species distribution modelling.CONCLUSIONS/SIGNIFICANCE: Our results suggest an evolutionary scenario in which, during the last glacial phase, Ae. albopictus did not experience a fragmentation phase but rather persisted in interconnected populations and experienced demographic growth. The wide ecological flexibility of the species probably played a crucial role in its response to glacial-induced environmental changes. Currently, there is little information on the impact of Pleistocene climatic changes on animal species in East Asia. Most of the studies focused on forest-associated species and suggested cycles of glacial fragmentation and post-glacial expansion. The case of Ae. albopictus, which exhibits a pattern not previously observed in the study area, adds an important piece to our understanding of the Pleistocene history of East Asian biota.

  2. Glacial History of a Modern Invader: Phylogeography and Species Distribution Modelling of the Asian Tiger Mosquito Aedes albopictus

    PubMed Central

    Porretta, Daniele; Mastrantonio, Valentina; Bellini, Romeo; Somboon, Pradya; Urbanelli, Sandra

    2012-01-01

    Background The tiger mosquito, Aedes albopictus, is one of the 100 most invasive species in the world and a vector of human diseases. In the last 30 years, it has spread from its native range in East Asia to Africa, Europe, and the Americas. Although this modern invasion has been the focus of many studies, the history of the species’ native populations remains poorly understood. Here, we aimed to assess the role of Pleistocene climatic changes in shaping the current distribution of the species in its native range. Methodology/Principal Findings We investigated the phylogeography, historical demography, and species distribution of Ae. albopictus native populations at the Last Glacial Maximum (LGM). Individuals from 16 localities from East Asia were analyzed for sequence variation at two mitochondrial genes. No phylogeographic structure was observed across the study area. Demographic analyses showed a signature of population expansion that started roughly 70,000 years BP. The occurrence of a continuous and climatically suitable area comprising Southeast China, Indochinese Peninsula, and Sundaland during LGM was indicated by species distribution modelling. Conclusions/Significance Our results suggest an evolutionary scenario in which, during the last glacial phase, Ae. albopictus did not experience a fragmentation phase but rather persisted in interconnected populations and experienced demographic growth. The wide ecological flexibility of the species probably played a crucial role in its response to glacial-induced environmental changes. Currently, there is little information on the impact of Pleistocene climatic changes on animal species in East Asia. Most of the studies focused on forest-associated species and suggested cycles of glacial fragmentation and post-glacial expansion. The case of Ae. albopictus, which exhibits a pattern not previously observed in the study area, adds an important piece to our understanding of the Pleistocene history of East Asian biota. PMID:22970238

  3. New GEOPHYSICAL MAPPING of the CHUKCHI MARGIN reveals widespread GLACIAL EROSION

    NASA Astrophysics Data System (ADS)

    Dove, D.; Polyak, L. V.; Coakley, B.

    2012-12-01

    Multibeam bathymetry, multi-channel, and chirp seismic data were acquired in a broad grid from R/V Marcus G. Langseth in September, 2011 over the outer Chukchi shelf, Chukchi Rise, Northwind Basin, and Northwind Ridge at water depths between 40 to 4,000 m. In the bathymetric data, iceberg scouring is dominant at depths less than 350 m, and multiple glacigenic bedforms are observed on the top and slopes (350-900 m) of Chukchi Rise and Borderland. The distribution mega-scale glacial lineations and ice-marginal moraines reveal a complex erosional history. The glacial lineations record two patterns of erosion which are likely formed by local and Laurentide sourced ice streams, recurrent over several glacial episodes. In the areas affected by glacial erosion, the chirp sub-bottom data reveal multiple sedimentary units including: well stratified post and inter-glacial deposits, transparent units interpreted as deformable tills, lenticular and fan shaped units interpreted as ice-marginal features and re-deposited sediments, and pre-glacial strata. A broadly observed buried erosional surface(s) exhibits high-frequency scouring and broad channelling also reveals multiple episodes of glacial erosion. A deeper erosional channel observed in the multi-channel seismic data is tunnel-valley like in form, and may be genetically linked to the large, buried erosional/drainage channels recently observed in the Bering Sea. The data obtained suggest that a Pleistocene ice sheet(s) existed on the northern Chukchi Shelf, and supports earlier conclusions of multiple erosions of the Borderland by SE-NW trending ice flows. The data greatly expand our knowledge on the Quaternary history of the Chukchi-Beringian region, and raise further questions about: the interaction of ice masses from the Laurentide, and potentially Chukchi and East-Siberian Shelf ice sheets, the glacio-isostatic history in the Bering region, and the implications for oceanic and atmospheric circulation, especially the Arctic-Pacific connection.

  4. Early Pleistocene origin of reefs around Lanai, Hawaii

    USGS Publications Warehouse

    Webster, J.M.; Clague, D.A.; Faichney, I.D.E.; Fullagar, P.D.; Hein, J.R.; Moore, J.G.; Paull, C.K.

    2010-01-01

    A sequence of submerged terraces (L1-L12) offshore Lanai was previously interpreted as reefal, and correlated with a similar series of reef terraces offshore Hawaii island, whose ages are known to be < 500 ka. We present bathymetric, observational, lithologic and 51 87Sr/86Sr isotopic measurements for the submerged Lanai terraces ranging from - 300 to - 1000 m (L3-L12) that indicate that these terraces are drowned reef systems that grew in shallow coral reef to intermediate and deeper fore-reef slope settings since the early Pleistocene. Age estimates based on 87Sr/86Sr isotopic measurements on corals, coralline algae, echinoids, and bulk sediments, although lacking the precision (??? ?? 0.23 Ma) to distinguish the age-depth relationship and drowning times of individual reefs, indicate that the L12-L3 reefs range in age from ??? 1.3-0.5 Ma and are therefore about 0.5-0.8 Ma older than the corresponding reefs around the flanks of Hawaii. These new age data, despite their lack of precision and the influence of later-stage submarine diagenesis on some analyzed corals, clearly revise the previous correlations between the reefs off Lanai and Hawaii. Soon after the end of major shield building (??? 1.3-1.2 Ma), the Lanai reefs initiated growth and went through a period of rapid subsidence and reef drowning associated with glacial/interglacial cycles similar to that experienced by the Hawaii reefs. However, their early Pleistocene initiation means they experienced a longer, more complex growth history than their Hawaii counterparts. ?? 2009 Elsevier B.V.

  5. Tropical Pacific climate response to obliquity forcing in the Pleistocene

    NASA Astrophysics Data System (ADS)

    Lee, S.-Y.; Poulsen, C. J.

    2005-12-01

    Marine proxy records of Pleistocene seawater temperature and productivity in the tropical Pacific Ocean vary over a 41,000-year period that has been attributed to Earth's obliquity cycle. The proxy records are paradoxical both because obliquity has a small effect on low-latitude insolation and because tropical seawater temperature and productivity were anticorrelated with obliquity insolation forcing. In this study, we investigate the response of the tropical Pacific climate to obliquity forcing using a coupled ocean-atmosphere model to reconcile the proxy records with climate theory. Two glacial and two modern simulations were completed with extreme high and low axial tilts of 24.5 and 22.2. In response to an increase in axial tilt, tropical sea surface temperatures decrease by as much as 0.8C because of the local reduction in insolation. Subsurface water temperatures in the eastern and central equatorial Pacific increase by nearly 1C. Anomalous heating through high-obliquity forcing also generates dynamical responses that weaken mean annual midlatitude westerlies and subtropical trade winds, contributing to a 20% reduction in the subtropical gyre circulation. Analyses using a Lagrangian transport model indicate that low-latitude subsurface warming is due to a reduction in heat export from the tropics and the advection and ventilation of anomalously warm South Pacific extratropical waters through the thermocline circulation. The model's response to obliquity is consistent with Pleistocene proxy data that indicate the tropical Walker circulation and thermocline slope were not strongly influenced by changes in axial tilt. The model results also support the hypothesis that Earth's obliquity influences climate through its control on meridional insolation gradients.

  6. Chronology for fluctuations in late pleistocene Sierra Nevada glaciers and lakes

    SciTech Connect

    Phillips, F.M.; Zreda, M.G.; Plummer, M.A.

    1996-11-01

    Mountain glaciers, because of their small size, are usually close to equilibrium with the local climate and thus should provide a test of whether temperature oscillations in Greenland late in the last glacial period are part of global-scale climate variability or are restricted to the North Atlantic region. Correlation of cosmogenic chlorine-36 dates on Sierra Nevada moraines with a continuous radiocarbon-dated sediment record from nearby Owens Lake shows that Sierra Nevada glacial advances were associated with Heinrich events 5, 3, and 1. 27 refs., 2 figs., 1 tab.

  7. Chronology for fluctuations in late Pleistocene Sierra Nevada glaciers and lakes

    USGS Publications Warehouse

    Phillips, F.M.; Zreda, M.G.; Benson, L.V.; Plummer, M.A.; Elmore, D.; Sharma, Prakash

    1996-01-01

    Mountain glaciers, because of their small size, are usually close to equilibrium with the local climate and thus should provide a test of whether temperature oscillations in Greenland late in the last glacial period are part of global-scale climate variability or are restricted to the North Atlantic region. Correlation of cosmogenic chlorine-36 dates on Sierra Nevada moraines with a continuous radiocarbon-dated sediment record from nearby Owens Lake shows that Sierra Nevada glacial advances were associated with Heinrich events 5, 3, 2, and 1.

  8. Tentative correlation of midcontinent glacial sequence with marine chronology

    SciTech Connect

    Dube, T.E.

    1985-01-01

    A tentative glacial-interglacial 3-million-year chronology is synthesized by regional correlation of Midcontinent tills and paleosols to marine paleotemperature/eustatic cycles and oxygen isotope stages. The paleotemperature curves of Beard et al. (1982), based on planktonic foraminiferal abundances, correspond directly with eustatic cycles during the last 3 Ma. These generalized curves are shown to correlate reasonably well with standard oxygen isotope stages at least for the past 900 ka. This indicates that paleotemperature and Vail-type eustatic cycles have been glacially induced during the last 3 Ma. The chronology developed here utilizes both paleotemperature and oxygen isotope stages; however, below the Jaramillo magnetic subchron, isotope curves are more variable and only paleotemperature stages are used. Tills and paleosols at type localities in the Midcontinent area of the US are correlated to the SPECMAP oxygen isotope time scale. Because mid-Brunhes events are poorly constrained by radiometric dates, alternative correlations are possible. The oldest known Midcontinent tills correlate to the first Plio-Pleistocene cold paleotemperature stage and drop in sea level at 2.4 Ma. This Late Pliocene event also corresponds to the first major isotopic enrichment and the onset of late Cenozoic ice-rafting in the North Atlantic region.

  9. The early rise and late demise of New Zealand's last glacial maximum.

    PubMed

    Rother, Henrik; Fink, David; Shulmeister, James; Mifsud, Charles; Evans, Michael; Pugh, Jeremy

    2014-08-12

    Recent debate on records of southern midlatitude glaciation has focused on reconstructing glacier dynamics during the last glacial termination, with different results supporting both in-phase and out-of-phase correlations with Northern Hemisphere glacial signals. A continuing major weakness in this debate is the lack of robust data, particularly from the early and maximum phase of southern midlatitude glaciation (∼30-20 ka), to verify the competing models. Here we present a suite of 58 cosmogenic exposure ages from 17 last-glacial ice limits in the Rangitata Valley of New Zealand, capturing an extensive record of glacial oscillations between 28-16 ka. The sequence shows that the local last glacial maximum in this region occurred shortly before 28 ka, followed by several successively less extensive ice readvances between 26-19 ka. The onset of Termination 1 and the ensuing glacial retreat is preserved in exceptional detail through numerous recessional moraines, indicating that ice retreat between 19-16 ka was very gradual. Extensive valley glaciers survived in the Rangitata catchment until at least 15.8 ka. These findings preclude the previously inferred rapid climate-driven ice retreat in the Southern Alps after the onset of Termination 1. Our record documents an early last glacial maximum, an overall trend of diminishing ice volume in New Zealand between 28-20 ka, and gradual deglaciation until at least 15 ka. PMID:25071171

  10. The early rise and late demise of New Zealand’s last glacial maximum

    PubMed Central

    Rother, Henrik; Fink, David; Shulmeister, James; Mifsud, Charles; Evans, Michael; Pugh, Jeremy

    2014-01-01

    Recent debate on records of southern midlatitude glaciation has focused on reconstructing glacier dynamics during the last glacial termination, with different results supporting both in-phase and out-of-phase correlations with Northern Hemisphere glacial signals. A continuing major weakness in this debate is the lack of robust data, particularly from the early and maximum phase of southern midlatitude glaciation (∼30–20 ka), to verify the competing models. Here we present a suite of 58 cosmogenic exposure ages from 17 last-glacial ice limits in the Rangitata Valley of New Zealand, capturing an extensive record of glacial oscillations between 28–16 ka. The sequence shows that the local last glacial maximum in this region occurred shortly before 28 ka, followed by several successively less extensive ice readvances between 26–19 ka. The onset of Termination 1 and the ensuing glacial retreat is preserved in exceptional detail through numerous recessional moraines, indicating that ice retreat between 19–16 ka was very gradual. Extensive valley glaciers survived in the Rangitata catchment until at least 15.8 ka. These findings preclude the previously inferred rapid climate-driven ice retreat in the Southern Alps after the onset of Termination 1. Our record documents an early last glacial maximum, an overall trend of diminishing ice volume in New Zealand between 28–20 ka, and gradual deglaciation until at least 15 ka. PMID:25071171

  11. Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms.

    PubMed

    Polyak, L; Edwards, M H; Coakley, B J; Jakobsson, M

    2001-03-22

    It has been proposed that during Pleistocene glaciations, an ice cap of 1 kilometre or greater thickness covered the Arctic Ocean. This notion contrasts with the prevailing view that the Arctic Ocean was covered only by perennial sea ice with scattered icebergs. Detailed mapping of the ocean floor is the best means to resolve this issue. Although sea-floor imagery has been used to reconstruct the glacial history of the Antarctic shelf, little data have been collected in the Arctic Ocean because of operational constraints. The use of a geophysical mapping system during the submarine SCICEX expedition in 1999 provided the opportunity to perform such an investigation over a large portion of the Arctic Ocean. Here we analyse backscatter images and sub-bottom profiler records obtained during this expedition from depths as great as 1 kilometre. These records show multiple bedforms indicative of glacial scouring and moulding of sea floor, combined with large-scale erosion of submarine ridge crests. These distinct glaciogenic features demonstrate that immense, Antarctic-type ice shelves up to 1 kilometre thick and hundreds of kilometres long existed in the Arctic Ocean during Pleistocene glaciations. PMID:11260709

  12. Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100.

    PubMed

    Alter, S Elizabeth; Meyer, Matthias; Post, Klaas; Czechowski, Paul; Gravlund, Peter; Gaines, Cork; Rosenbaum, Howard C; Kaschner, Kristin; Turvey, Samuel T; van der Plicht, Johannes; Shapiro, Beth; Hofreiter, Michael

    2015-04-01

    Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range. PMID:25753251

  13. Gulf coastal plain evolution in West Louisiana: Heavy mineral provenance and Pleistocene alluvial chronology

    NASA Astrophysics Data System (ADS)

    Mange, Maria A.; Otvos, Ervin G.

    2005-12-01

    High Resolution Heavy Mineral Analysis (HRHMA) of late Pleistocene terrace samples, their Tertiary source rocks, and modern river sediments provided an effective tool for reconstructing sediment provenance and mapping heavy mineral provinces in southwest Louisiana. Each province, linked to a discrete source region, represents Pleistocene fluvial channel belts within which depositional activity was controlled by periods of climate, sediment supply, and sea level changes. Four coastal heavy mineral provinces have been identified. The Northern Province (NP), drained by the lower reaches of the Sabine and Calcasieu Rivers underlies level mid- and late Pleistocene coastal terrace surfaces and is distinguished by high-grade metamorphic assemblages (kyanite, staurolite, sillimanite) and abundant zircon, probably of Ouachita Mts. derivation. Transporting eroded Cretaceous, Tertiary, and Pleistocene coastal plain deposits, the modern Calcasieu and Sabine River sands in west-central and southwest Louisiana and east Texas, display identical heavy mineral composition to that of the NP. Level Late Pleistocene coastal terrace areas in the east represent the Red River Province (RRP) with dominant epidote, tourmaline, garnet, and zircon. Its mineralogy is influenced significantly by Paleozoic-Mesozoic sedimentary units that frame the drainage basin upstream. Modern Red River sands differ in their spectra both from Red River Pleistocene coastal terrace and valley terrace deposits, interpreted by temporal fluctuations in sediment supply initiating a variable contribution of detritus from different sources. Tributaries that drain formations with high concentrations of high-grade metamorphic minerals also affected Red River valley Pleistocene terrace deposits in west-central Louisiana, enriching them in kyanite and staurolite. The Mississippi Province (MP) occupies the eastern-southeastern area of the low, flat, gently seaward-sloping Prairie coastal terrace. Whereas modern Mississippi alluvium is dominated by hornblende, pyroxenes, and epidote, as the result of post-depositional dissolution, pyroxenes are rare in the MP. The Mixed Suite Province (MSP) reflects MP, RRP, and to a lesser degree, NP signatures and forms the Prairie fluvial coastal plain surface closer to the Texas state line. Raw data of the principal heavy minerals were used for statistical analysis. Statistical parameters proved consistent with mineralogy-derived reconstruction of sediment provenance and provinciality of heavy mineral suites, thus providing an independent and objective support to data interpretation. Optical and thermal luminescence dating at other Gulf locations [Otvos, E.G. (2005). Numerical chronology of Pleistocene coastal plain and valley development; extensive aggradation during glacial low sea levels. Quaternary Internat., 135 91-113.] supports the pre-Sangamon ages of the Intermediate Pleistocene terraces in the NP area. Sangamon (135-116 ka), Eowisconsin (114-76 ka), and Wisconsin (74-36 ka) dates characterize the four provinces in the low, level northern Gulf Prairie coastal plain. Refuting earlier assumptions that coastal plain aggradation occurred only during marine highstand phases, thermal and optical luminescence dates indicated that, despite the low Eowisconsin and Wisconsin eustatic sea levels of several preglacial and glacial stages and substages, coastal plain alluviation, paradoxically, recurred between 106 and 35 ka BP. An interesting outcome of our heavy mineral study is the recognition and dating of a previously undocumented, rare ash-fall event that originated in Caribbean andesitic volcanoes. It was identified by the presence of a volcanogenic heavy mineral suite, composed of pristine euhedral clinopyroxene, sphene, zircon, apatite, and hexagonal biotite. Unaffected by fluvial reworking, this suite was recovered from a MP sample, dated ca. 86 ka BP.

  14. Sub-glacial volcanic eruptions

    USGS Publications Warehouse

    White, Donald Edward

    1956-01-01

    The literature on sub-glacial volcanic eruptions and the related flood phenomena has been reviewed as a minor part of the larger problem of convective and conductive heat transfer from intrusive magma. (See Lovering, 1955, for a review of the extensive literature on this subject.) This summary of data on sub-glacial eruptions is part of a program that the U.S. Geological Survey is conducting in connection with its Investigations of Geologic Processes project on behalf of the Division of Research, U.S. Atomic Energy Commission.

  15. SEM microfabric analysis of glacial varves, Geneseo, N. Y

    SciTech Connect

    Pietraszek, S.R. . Geology Dept.)

    1993-03-01

    A detailed study of the microfabric of Pleistocene varved silty-clay from Geneseo Valley (Geneseo, N.Y.) indicates rapid deposition of sediment in a flocculated state into a glacial lake. Ten varve couplets of a 10 cm thick sample were studied using the Scanning Electron Microscope to determine their microfabric. Each varve ranges from 0.5 cm to 2.0 cm and represents an annual ( ) deposit. Varves consists of a lower light colored, coarse zone of silt and clay, and an upper darker colored, organic fine clayey zone. Graded bedding is observed in each couplet, and random clay particle orientation is dominant throughout a varve, with the exception of the top 0.5 mm of the fine layer. The upper and lower contacts are sharp. Fabric features are instrumental in reconstructing a depositional environment. Microfabric results of the glacial unit indicate that an initial heavy concentration of clay and silt was introduced into the basin in a single pulse during spring runoff. The majority of silt settled together with clay in a flocculated or aggregated state, forming the lower coarse zone of random orientation. As the silt concentration diminished, the clay continued to flocculate and settled as a fine clay aggregate. It is proposed that the settling took place during the spring and summer months. Finally, during the winter months, the sediment surface of the varve was disturbed by nemotode burrows, which reoriented the clay flakes into a zone of preferred fabric. Microfabric analysis of these glacial varves, thus suggests that sediment was rapidly deposited in a flocculated state.

  16. Modeling the Global Monsoon System During Glacial Climate Events

    NASA Astrophysics Data System (ADS)

    Merkel, U.; Prange, M.; Schulz, M.

    2008-12-01

    We employ the comprehensive NCAR Community Climate System Model (version 3) to assess the state of the global monsoon system during specific time intervals of the last glacial period. In contrast to previous studies, we take into account changes in ice-sheet distribution, greenhouse-gas concentrations and orbital parameters for marine isotope stage 3 (centered on 35 ka BP) and the last glacial maximum (LGM, centered on 21 ka BP). Both simulations result in a significant reduction of the Atlantic Ocean meridional overturning circulation. Perturbing deep-water formation in the North Atlantic Ocean in these glacial baseline simulations results in explicit representations of Dansgaard-Oeschger stadials and interstadials as well as Heinrich-type events. Glacial boundary conditions induce a large-scale drying in the West African monsoon region and a strengthening and southward shift of the African easterly jet. Through atmospheric dynamics, the effect of ice-sheets is rapidly communicated via the upper troposphere thereby also affecting the Indian and South East Asian summer monsoon systems. Dansgaard-Oeschger stadial boundary conditions lead to a pronounced intensification of the African, Indian and South East Asian summer monsoon compared to the last glacial maximum. Our Dansgaard-Oeschger interstadial simulation indicates a response pattern of all tropical monsoon systems which is similar to the stadial simulation but exhibits a stronger amplitude. This suggests a predominance of the orbital and ice sheet forcing over the imposed Dansgaard-Oeschger climate variability. Tropical inter-ocean basin teleconnections appear to be weakened during stage 3 stadials compared to the LGM as illustrated by a less pronounced covariation between tropical Atlantic hydrological conditions and the El Nio/Southern Oscillation (ENSO) in the eastern tropical Pacific.

  17. Glacial-interglacial organic carbon record from the Makassar Strait, Indonesia: Implications for regional changes in continental vegetation

    USGS Publications Warehouse

    Visser, K.; Thunell, R.; Goni, M.A.

    2004-01-01

    Recent studies convincingly show that climate in the Western Pacific Warm Pool and other equatorial/tropical regions was significantly colder (by ???3-4??C) during glacial periods, prompting a reexamination of the late Pleistocene paleoenvironments of these regions. This study examines changes in continental vegetation during the last two deglaciations (Terminations I and II) using a sediment core (MD9821-62) recovered from the Makassar Strait, Indonesia. Evidence based on the lignin phenol ratios suggests that vegetation on Borneo and other surrounding islands did not significantly change from tropical rainforest during the last two glacial periods relative to subsequent interglacial periods. This supports the hypothesis that the winter monsoon increased in strength during glacial periods, allowing Indonesia to maintain high rainfall despite the cooler conditions. ?? 2003 Elsevier Ltd. All rights reserved.

  18. Glacial-Holocene Deep Atlantic Variability

    NASA Astrophysics Data System (ADS)

    Oppo, D.; Curry, W. B.; Huang, K.; Gebbie, G.; Keigwin, L. D.

    2012-12-01

    Despite decades of research on deep ocean circulation during the Last Glacial Maximum (LGM) and deglaciation, many uncertainties remain. Even first order questions such as whether Antarctic Intermediate Water (AAIW) influenced the North Atlantic in the past are unresolved. Here, we update the glacial western Atlantic benthic δ13C transect of Curry and Oppo (2005) including new data from four cores recovered between 450 and 1100 m water depth, at AAIW depths in the western tropical North Atlantic. Low glacial values are consistent with the presence of AAIW. However, in the modern ocean, remineralization of organic matter drives δ13C values at these water depths lower than expected from their end-member composition. As this may have also been the case in the past, insights from more conservative tracers like δ18O of calcite, the air-sea exchange δ13C signature (δ13Cas), and neodymium isotopes (ɛNd) are important. We evaluate new and published relevant data and present a new δ13Cas transect for the LGM (updated from Marchitto and Broecker, 2006). A preliminary inversion of LGM data using an ocean pathways model (Gebbie and Huybers, 2010) will be presented. δ13C values in these same four western tropical North Atlantic cores during the Heinrich Event are also consistent with, but may not require, a contribution of AAIW. δ13C values decrease further following the Heinrich event and remain low throughout the deglaciation, during which the records exhibit coherent millennial-scale oscillations. For much of the deglaciation, δ13C values in these cores appear to be lower than values at other sites from similar depths in the western North and South Atlantic, suggestive of non-conservative behavior. The benthic records exhibit high amplitude δ18O variability, which may reflect vertical movement of isopynals, in association with variations in geostrophic flow (e.g. Lynch-Stieglitz et al., 2011). Our new deglacial data will be discussed in the broader context of published multi-proxy records.

  19. Predicting Pleistocene climate from vegetation

    NASA Astrophysics Data System (ADS)

    Loehle, C.

    2006-10-01

    Climates at the Last Glacial Maximum have been inferred from fossil pollen assemblages, but these inferred climates are colder than those produced by climate simulations. Biogeographic evidence also argues against these inferred cold climates. The recolonization of glaciated zones in eastern North America following the last ice age produced distinct biogeographic patterns. It has been assumed that a wide zone south of the ice was tundra or boreal parkland (Boreal-Parkland Zone or BPZ), which would have been recolonized from southern refugia as the ice melted, but the patterns in this zone differ from those in the glaciated zone, which creates a major biogeographic anomaly. In the glacial zone, there are few endemics but in the BPZ there are many across multiple taxa. In the glacial zone, there are the expected gradients of genetic diversity with distance from the ice-free zone, but no evidence of this is found in the BPZ. Many races and related species exist in the BPZ which would have merged or hybridized if confined to the same refugia. Evidence for distinct southern refugia for most temperate species is lacking. Extinctions of temperate flora were rare. The interpretation of spruce as a boreal climate indicator may be mistaken over much of the region if the spruce was actually an extinct temperate species. All of these anomalies call into question the concept that climates in the zone south of the ice were very cold or that temperate species had to migrate far to the south. Similar anomalies exist in Europe and on tropical mountains. An alternate hypothesis is that low CO2 levels gave an advantage to pine and spruce, which are the dominant trees in the BPZ, and to herbaceous species over trees, which also fits the observed pattern. Most temperate species could have survived across their current ranges at lower abundance by retreating to moist microsites. These would be microrefugia not easily detected by pollen records, especially if most species became rare. These results mean that climate reconstruction based on terrestrial plant indicators will not be valid for periods with markedly different CO2 levels.

  20. Absolute chronology for early and middle Pleistocene Laurentide Ice Sheets from multiple- cosmogenic-nuclide dating methods

    NASA Astrophysics Data System (ADS)

    Balco, G.; Rovey, C. W.

    2008-12-01

    Despite an extensive terrestrial stratigraphic record of glaciation on the northern continents, most of what we know about the Plio-Pleistocene evolution of polar and temperate ice sheets is inferred indirectly from marine geochemical records instead. The reason for this is that there exist few methods of directly dating terrestrial glacial records older than the useful time ranges of radiocarbon and luminescence techniques. We have adapted multiple-cosmogenic-nuclide 'burial dating' techniques to address this problem, and, using these techniques, have begun a program of absolute dating and correlation of North American Plio-Pleistocene glacial sedimentary sequences. The results of this program so far significantly improve the existing chronology of Laurentide Ice Sheet advances. In this talk, we summarize these results, including: i) identification and dating of the oldest known terrestrial deposits of the Laurentide Ice Sheet; ii) a complete chronology for the largest Laurentide Ice Sheet advances into central North America; and iii) identification and dating of preglacial and interglacial sediments that can potentially be used to reconstruct late Pliocene to middle Pleistocene terrestrial climate.

  1. Environmental Influences on Pleistocene Hominid Dental Evolution

    ERIC Educational Resources Information Center

    Greene, David L.

    1970-01-01

    Considers natural and cultural environmental factors likely to have been responsible for reduction in size of hominid teeth and simplification of their morphology during the Pleistocene. Cites fossil evidence and postulates selective mechanisms. (EB)

  2. Paleoclimatic modeling and phylogeography of least killifish, Heterandria formosa: insights into Pleistocene expansion-contraction dynamics and evolutionary history of North American Coastal Plain freshwater biota

    PubMed Central

    2013-01-01

    Background Climatic and sea-level fluctuations throughout the last Pleistocene glacial cycle (~130-0 ka) profoundly influenced present-day distributions and genetic diversity of Northern Hemisphere biotas by forcing range contractions in many species during the glacial advance and allowing expansion following glacial retreat ('expansion-contraction’ model). Evidence for such range dynamics and refugia in the unglaciated Gulf-Atlantic Coastal Plain stems largely from terrestrial species, and aquatic species Pleistocene responses remain relatively uninvestigated. Heterandria formosa, a wide-ranging regional endemic, presents an ideal system to test the expansion-contraction model within this biota. By integrating ecological niche modeling and phylogeography, we infer the Pleistocene history of this livebearing fish (Poeciliidae) and test for several predicted distributional and genetic effects of the last glaciation. Results Paleoclimatic models predicted range contraction to a single southwest Florida peninsula refugium during the Last Glacial Maximum, followed by northward expansion. We inferred spatial-population subdivision into four groups that reflect genetic barriers outside this refuge. Several other features of the genetic data were consistent with predictions derived from an expansion-contraction model: limited intraspecific divergence (e.g. mean mtDNA p-distance = 0.66%); a pattern of mtDNA diversity (mean Hd = 0.934; mean π = 0.007) consistent with rapid, recent population expansion; a lack of mtDNA isolation-by-distance; and clinal variation in allozyme diversity with higher diversity at lower latitudes near the predicted refugium. Statistical tests of mismatch distributions and coalescent simulations of the gene tree lent greater support to a scenario of post-glacial expansion and diversification from a single refugium than to any other model examined (e.g. multiple-refugia scenarios). Conclusions Congruent results from diverse data indicate H. formosa fits the classic Pleistocene expansion-contraction model, even as the genetic data suggest additional ecological influences on population structure. While evidence for Plio-Pleistocene Gulf Coast vicariance is well described for many freshwater species presently codistributed with H. formosa, this species demography and diversification departs notably from this pattern. Species-specific expansion-contraction dynamics may therefore have figured more prominently in shaping Coastal Plain evolutionary history than previously thought. Our findings bolster growing appreciation for the complexity of phylogeographical structuring within North America’s southern refugia, including responses of Coastal Plain freshwater biota to Pleistocene climatic fluctuations. PMID:24107245

  3. The Yana RHS site: humans in the Arctic before the last glacial maximum.

    PubMed

    Pitulko, V V; Nikolsky, P A; Girya, E Yu; Basilyan, A E; Tumskoy, V E; Koulakov, S A; Astakhov, S N; Pavlova, E Yu; Anisimov, M A

    2004-01-01

    A newly discovered Paleolithic site on the Yana River, Siberia, at 71 degrees N, lies well above the Arctic circle and dates to 27,000 radiocarbon years before present, during glacial times. This age is twice that of other known human occupations in any Arctic region. Artifacts at the site include a rare rhinoceros foreshaft, other mammoth foreshafts, and a wide variety of tools and flakes. This site shows that people adapted to this harsh, high-latitude, Late Pleistocene environment much earlier than previously thought. PMID:14704419

  4. Managing the effects of accelerated glacial melting on volcanic collapse and debris flows: Planchon-Peteroa Volcano, Southern Andes

    NASA Astrophysics Data System (ADS)

    Tormey, Daniel

    2010-11-01

    Glaciated mountains are among the most sensitive environments to climatic changes, and recent work has shown that large-scale glacial melting, including at the end of the Pleistocene, caused a significant increase in the incidence of large volcanic sector collapse and debris flows on then-active volcanoes. With current accelerated rates of glacial melting, glaciated active volcanoes are at an increasing risk of sector collapse, debris flow and landslide. These catastrophic events are Earth's most damaging erosion phenomenon, causing extensive property damage and loss of life. This paper illustrates these effects in well-studied settings, focusing on the end-Pleistocene to Holocene glaciovolcanic growth and destruction of the cone of the active volcano Planchon-Peteroa in the Andean Southern Volcanic Zone at latitude 35 15' S, along the border between Chile and Argentina. The development of the volcano over the last 14,000 years illustrates how glacial melting and magmatic activity can trigger landslides and sector collapses. Planchon had a large sector collapse that produced a highly mobile and erosive debris avalanche 11,000 years BP, and other slope instabilities during the end-Pleistocene/early Holocene deglaciation. The summit amphitheater left after the sector collapse was subject to alternating periods of glaciation and melting-induced lake formation. Breaching of the moraine dams then formed lahars and landslides originating at the western edge of the summit amphitheater, and the deposits are preserved along the western flank of the volcano. Deep incision of moraine deposits further down the western slope of the volcano indicates that the lahars and landslides were water-rich and had high erosive power. As illustrated by Planchon-Peteroa, the interplay among glacial growth and melting, magmatic activity, and slope stability is complex, but must be accounted for in volcanic hazard assessment. Planchon-Peteroa currently has the southernmost temperate zone mountain glacier in the Andes. Accelerated glacial melting at present rates of climate change could lead to a recurrence of many of these post-Pleistocene events. A framework for augmenting hazard assessments and countermeasures is also proposed based on the types of hazards presented by accelerated glacial melting. Glacial melting may lead to volcanic hazards in areas not previously considered at risk, and hence there may be a low level of preparedness. Compared to the end-Pleistocene accelerated glacial melting and sector collapses, present-day glacial melting in volcanic terrain has the potential to affect large human populations. Human settlements, hydropower production, forestry, mining and wilderness tourism are all concentrated near some glaciated volcanic areas. For example, the area covered by the debris avalanche from Volcan Planchon currently supports a rich agricultural economy in Chile. Effective risk management is needed to address the issues of changing patterns in vulnerability, the nature and redistribution of hazards, and the potential socioeconomic consequences of glaciovolcanic events. Since these events are infrequent, local communities frequently do not have a memory of past occurrences, and therefore have a low awareness of the potential effects. Systematic and structured impact assessment allows objective risk analysis, uncertainty analysis, and a framework for balancing countermeasures and contingency measures with public need and acceptance. An impact assessment approach similar to that used in land use planning is presented here, with the following major elements: (i) hazard characterization; (ii) consequence characterization; (iii) risk assessment; (iv) risk control and countermeasures; and (v) risk communication. The emphasis is on effective risk communication, supported by facts, in order to address the increased hazards posed by accelerated glacial melting on volcanic cone stability. Decision makers must then weigh societal acceptance of the risk control and countermeasures against their costs and consequences.

  5. A 10Be Chronology of Late Pleistocene and Holocene Glaciation in the Rwenzori Mountains, Uganda

    NASA Astrophysics Data System (ADS)

    Baber, M.; Kelly, M. A.; Russell, J. M.; Loomis, S. E.

    2012-12-01

    Although the retreat of glaciers in East Africa has been monitored over the last century, longer-term records of African glacier fluctuations are scarce. The Rwenzori Mountains, located on the border of Uganda and the Democratic Republic of Congo, host the largest glacial system in Africa and provide an opportunity for extensive investigation of past glaciations. We mapped and applied surface exposure (10Be) dating to glacial moraines deposited since the end of the last ice age in the Rwenzori Mountains to test the feasibility of 10Be dating at this site and to develop a chronology of glacial fluctuations. Our study is the first to use 10Be dating of glacial features in Africa and is possible because the Rwenzori host quartz-rich lithologies. By comparing the timing of Rwenzori glacial advances with other paleoclimate records from East Africa, we also will examine the climatic conditions which influenced tropical glacier fluctuations. Osmaston (1989) mapped moraines in the Rwenzori Mountains, documenting three stages of Pleistocene and Holocene glaciations, the Mahoma, Omurubaho and Lac Gris stages. The Mahoma stage moraines are estimated to be older than 17,980 780 yr BP (D. M. Livingstone, 1962) by basal 14C dating of sediments from Lake Mahoma, situated in large lateral moraine at 2990 m asl. The age of the Omurubaho stage moraine is estimated from a basal 14C age (7,730 150 yr BP) Lower Kitandara Lake (3990 m asl) and dammed by an Omurubaho stage moraine. The Lac Gris moraines are estimated at ~150-700 yr BP (de Heinzelin, 1953; Bergstrm, 1955) based on rates of lichen growth and plant colonization on moraines about 200 m below current glacial positions on Mt. Stanley. Though considerable uncertainty remains for the ages of these glacier deposits, these three stages most likely represent ages from the LGM to the LIA. We present two new 10Be ages of boulders from two moraines in the Nyamagusani Valley, ~4000 m asl. Sample KOP-2 (4033 m asl) is from the innermost moraine on the valley floor and yielded a 10Be age of 9,750 110 yrs. Sample LA-1 (3870 masl) is from a moraine located ~1.8 km down valley and is 10,590 120 yrs. Although the 10Be production rate is not well known in this region, these preliminary ages are in stratigraphic order and suggest glacial advance in the Rwenzori during late glacial to Early Holocene time. In June 2012, we sampled boulders from multiple valleys in the Rwenzori. We are currently processing fifteen samples from Nyamagusani to test the reproducibility of boulder ages on individual landforms and to test the age of Omurubaho stage moraines.

  6. Pleistocene landscapes in central Iberia inferred from pollen analysis of hyena coprolites

    NASA Astrophysics Data System (ADS)

    Carrin, J. S.; Scott, L.; Arribas, A.; Fuentes, N.; Gil-Romera, G.; Montoya, E.

    2007-02-01

    New pollen data from hyena coprolites from central Spain are presented. The fossil faecal material has been recovered from two karstic systems in different localities, Villacastn and Los Torrejones, which are both around 1000 m a.s.l. The combined findings of bone remains and coprolites in both locations suggest the following chronology: late Middle Pleistocene for Villacastn and early Upper Pleistocene for Los Torrejones. The environments inferred from pollen are broadly in keeping with evidence from associated vertebrate fossil remains, and include a shifting mosaic of open and wooded habitats with abundant pine and juniper species, steppe-grassland areas with composites and chenopods, and enclaves with mixed oak forests. However, Los Torrejones appears to have been less forested than Villacastn. The abundance of oaks in Villacastn may imply the presence of refugia within an interconnected network of several enclaves during the glacial stages in the Upper Pleistocene. A possible explanation for the patchiness of the landscape may be in the role of herbivores, although the long distances and variety of habitats that hyenas had to roam through could be another explanation for the heterogeneous pollen contents in their dung. Copyright

  7. An early to mid-Pleistocene deep Arctic Ocean ostracode fauna with North Atlantic affinities

    USGS Publications Warehouse

    DeNinno, Lauren H.; Cronin, Thomas M.; Rodriquez-Lazaro, J.; Brenner, Alec R.

    2015-01-01

    An early to middle Pleistocene ostracode fauna was discovered in sediment core P1-93-AR-23 (P23, 76.95°N, 155.07°W) from 951 meter water depth from the Northwind Ridge, western Arctic Ocean. Piston core P23 yielded more than 30,000 specimens and a total of about 30 species. Several early to mid-Pleistocene species in the genera Krithe,Echinocythereis, Pterygocythereis, and Arcacythere are now extinct in the Arctic and show taxonomic affinities to North Atlantic Ocean species. Our results suggest that there was a major ostracode faunal turnover during the global climate transitions known as the Mid-Pleistocene Transition (MPT, ~ 1.2 to 0.7 Ma) and the Mid-Brunhes Event (MBE, ~ 400 ka) reflecting the development of perennial sea ice during interglacial periods and large ice shelves during glacial periods over the last 400,000 years.

  8. Quaternary glacial and post-glacial depositional history associated with the Green Bay lobe, east-central Wisconsin

    SciTech Connect

    Thieme, L.D.; Smith, G.L. . Dept. of Geology)

    1993-03-01

    Multiple layers of peat and wood fragments indicate that Quaternary glaciation of the east-central region of Wisconsin was punctuated by at least two interglacial periods. Till, outwash, and glaciolacustrine deposits suggest that deposition took place in alternating glacial and non-glacial environments due to oscillations in the position of the Green Bay Lobe terminus. The data for this study consists of 36 auger borings, 70 geologic logs and 100 well-construction reports from water wells. Nine vibracores were taken at the northern margin of Lake Winnebago in order to document in detail the post-glacial history of Glacial Lake Oshkosh/Lake Winnebago. Local bedrock consists of limestones and dolomites of the Middle Ordovician Sinnipee Group. Bedrock elevations range from 211--237 m; bedding dips regionally to the southeast at 1--2 degrees. Bedrock is overlain by a 3--13 m-thick layer of alternating red clay and gray silty-clay (basal Kewaunee Formation ) perhaps deposited in a proglacial lake. These sediments are overlain by apeat/wood layer indicating marsh deposition. This peat/wood layer is overlain by more proglacial lake sediment, 3--10 m of gray brown clay to silty-clay. A second peat/wood layer overlies the gray/brown sediment and may correlate with the Two Creeks buried forest bed. The uppermost unit consists of 2--3 m red silty-clay till (Middle Inlet Member of the Kewaunee Formation). Along the northern margin of present-day Lake Winnebago, red silty-clay is overlain by silty-sand deposited by Glacial Lake Oshkosh. Future work includes obtaining radiocarbon dates from buried peat/wood layers to verify these tentative correlations between east-central Wisconsin and the Lake Michigan Basin.

  9. Migration of the Antarctic Polar Front through the mid-Pleistocene transition: evidence and climatic implications

    NASA Astrophysics Data System (ADS)

    Kemp, A. E. S.; Grigorov, I.; Pearce, R. B.; Naveira Garabato, A. C.

    2010-08-01

    The Antarctic Polar Front is an important biogeochemical divider in the Southern Ocean. Laminated diatom mat deposits record episodes of massive flux of the diatom Thalassiothrix antarctica beneath the Antarctic Polar Front and provide a marker for tracking the migration of the Front through time. Ocean Drilling Program Sites 1091, 1093 and 1094 are the only deep piston cored record hitherto sampled from the sediments of the circumpolar biogenic opal belt. Mapping of diatom mat deposits between these sites indicates a glacial-interglacial front migration of up to 6 degrees of latitude in the early/mid Pleistocene. The mid-Pleistocene transition marks a stepwise minimum 7 northward migration of the locus of the Polar Front sustained for about 450 kyr until an abrupt southward return to a locus similar to its modern position and further south than any mid-Pleistocene locus. This interval from a "900 ka event" that saw major cooling of the oceans and a ? 13C minimum through to the 424 ka Mid-Brunhes Event at Termination V is also seemingly characterised by 1) sustained decreased carbonate in the sub-tropical south Atlantic, 2) reduced strength of Antarctic deep meridional circulation, 3) lower interglacial temperatures and lower interglacial atmospheric CO 2 levels (by some 30 per mil) than those of the last 400 kyr, evidencing less complete deglaciation. This evidence is consistent with a prolonged period lasting 450 kyr of only partial ventilation of the deep ocean during interglacials and suggests that the mechanisms highlighted by recent hypotheses linking mid-latitude atmospheric conditions to the extent of deep ocean ventilation and carbon sequestration over glacial-interglacial cycles are likely in operation during the longer time scale characteristic of the mid-Pleistocene transition. The cooling that initiated the "900 ka event" may have been driven by minima in insolation amplitude related to eccentricity modulation of precession that also affected low latitude climates as marked by threshold changes in the African monsoon system. The major thresholds in earth system behaviour through the mid-Pleistocene transition were likely governed by an interplay of the 100 kyr and 400 kyr eccentricity modulation of precession.

  10. Environmental changes at the Holocene-Late Pleistocene transition: Sedimentation on Akademicheskii Ridge (Lake Baikal, Russia)

    NASA Astrophysics Data System (ADS)

    Vologina, Elena G.; Sturm, Michael

    2010-05-01

    Akademicheskii Ridge of Lake Baikal represents a 300 m deep underwater rise, which separates the Central Basin (1647 m water depth) and the North Basin (970 m water depth) of 640 km long lake. The large distance to the turbid load of particle-carrying tributaries and coastal areas as well as the absence of slide induced turbidites are responsible for low sedimentation rates. A large number of short cores (approx. 120 cm) was used to study in detail the Holocene-Late Pleistocene transition, using lithological composition, magnetic susceptibility, microfossils, pollen and spores, chemistry, grain size and mineral composition. Holocene sediments show sedimentation rates from 0.015 to 0.25 mm y-1 and are mainly composed of biogenic material with rare admixtures of aeolian and ice-rafted terrigenous particles [1]. The sediments are characterized by abundant microfossils, such as diatoms, spicules of sponges, chrysophyte cysts, pollen and spores. Holocene diatom assemblages are representated by Aulacoseira baicalensis, A. skvortzowii, Cyclotella minuta, C. baicalensis, Synedra acus var.radians, Stephanodiscus meyerii, Crateriportula inconspicuus and Cyclostephanos dubius [2]. Concentrations of Corg.,Ntot.,and Sibiog.indicate clearly higher productivity of the lake during the Holocene [1]. Late Pleistocene sediments are composed of clastic, fine-grained, clayey material, mainly of terrigenous origin. This includes also aeolian particles and rare ice-transported sandy material and rock debris. A peak of the diatom species Stephanodiscus flabellatus, observed within the upper part of clayey sediments, defines the Late Pleistocene-Holocene transition [2]. Very low contents of microfossils (diatoms, spicules of sponges, chrysophyte cysts etc.) within Late Pleistocene deposits indicate lower productivity of Lake Baikal. Glacial melt-water dominated the sediment transport processes within the lake during this time. The main minerals of the sand fraction are quartz, feldspars and mica. The heavy mineral assemblage contains amphiboles, pyroxenes, epidote, sphene, magnetite, garnet and chloritoide. Within the Holocene, contents of chloritoide are low (0.6-1.2 %), but they are distinctly higher within the Late Pleistocene sediments (3.2-14.6 %) [1]. An increase of chloritoide in sediments points towards an intensification of aeolian transport by stronger winds and longer-lasting periods of ice cover during the Late Pleistocene [3]. Results of pollen analyses support these findings. They indicate that mountain slopes of the catchment of Lake Baikal were mostly uncovered by vegetation. A polymineral composition is characteristic for the clay fraction of Late Pleistocene deposits: hydro-mica, kaolinite, smectite and chlorite. This is caused by extensive glaciation of the catchment of the lake during this time [4], generating increased transport of terrigenous material to the lake by glacial melt water [5]. References [1] Vologina, E.G. and Sturm, M. 2009. Types of Holocene deposits and regional pattern of sedimentation in Lake Baikal. Russian Geology and Geophysics 50, 1-6. [2] Bradbury, J.P., Bezrukova, Ye.V., Chernyaeva, G.P. et al. 1994. A synthesis of post-glacial diatom records from Lake Baikal. J. Paleolimnol. 10, 213-252.

  11. Gulf coastal Pleistocene units and time stratigraphy; reevaluation and problems of Atlantic correlation

    SciTech Connect

    Otvos, E.G. . Geology Section)

    1993-03-01

    Outdated glacial subdivisions and misinterpretations of alluvial interfluve ridges as marine terraces hampered advances in coastal stratigraphy. One problem involves C.W. Cooke's extension of his Atlantic shorelines along the NE Gulf into the Mississippi Embayment. The mirage of an inter-Wisconsinan interglacial gave way to beliefs in high glacial Wisconsinan sea levels that were assumed to have resulted in barriers and intensive alluvial aggradation on the TX-LA coastal plain. Without vertical definitions, Fisk assigned formation status to alluvial and brackish-marine sediments that directly underlie four coastwise Pleistocene terraces in SW Louisiana. The youngest (Prairie) and associated formations were recently (re)defined and correlated with other coastal areas. Brackish and marine deposits in the subsurface have been correlated with Fisk's second youngest coastwise surface. Detailed facies analyses of cores from hundreds of drillholes indicated that, in sharp contrast with Plio-Pleistocene barriers on the Atlantic coast, only a single, Sangamonian (Sg) barrier shore complex remains on the NE Gulf coastal plain after intensive uplift/erosion. Few isolated remnants of pre-Sg Pleistocene alluvial units occur, including flora elements in peat lenses at one location. An early, low Sg sea level stand near Apalachicola is marked by transgressive deposits at c. [minus]37.5m. Thin NE Gulf Sg sequence includes the fine-grained, open marine-to-estuarine Biloxi, the regressive, shallow subtidal-to-supratidal, mainland Gulfport barrier and the alluvial Prairie Formations. These are correlatable Gulfwide. Contrary to widespread assumption, the Gulfport-Ingleside barriers were not islands but mainland strandplains. The Sg complex correlates with oxygen isotope Stage 5 units of the Mid/South Atlantic coastal plain and shelf. Thick LA-TX shelf/slope intervals display about ten fourth-order cycles within 4 primary ones.

  12. Paleoceanography of the mid-Pleistocene South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Qianyu; Wang, Pinxian; Zhao, Quanhong; Tian, Jun; Cheng, Xinrong; Jian, Zhimin; Zhong, Guangfa; Chen, Muhong

    2008-06-01

    High-frequency fluctuations in paleoenvironmental proxies from the South China Sea, including stable isotopes and abundance of planktonic foraminifers, nannofossils, radiolarians, and palynomorphs, reveal a dynamic local response to the stepwise development of the mid-Pleistocene climate transition (MPT). These proxies indicate a dramatic drop in sea surface temperature (SST) at about 900 ka, the first largest SST decrease in the region during the Quaternary. Estimated winter SST declined from 24-25 C to 17-18 C in the northern and from 26-27 C to 23-24 C in the southern South China Sea. Subsequent changes in the thermocline depth and faunal-floral turnovers imply a period of about 300 ka in the final stage of the MPT. Winter monsoons increased at 900 ka and reached a maximum strength toward the end of the MPT when summer monsoons also strengthened in interglacials. As a result, thermal gradient between the northern and southern South China Sea increased substantially, with stronger winter monsoon influence in the north and warm and saline conditions in the south especially during glacial periods. These N-S paleoceanographic contrasts indicate an initial establishment of the modern-styled semi-enclosed South China Sea about 900 ka ago when passages in the south started to become completely exposed during glacial lowstands. Coupled with deep water cooling and ventilation, uplift of the sill depth in the Bashi Strait to near the present-2400 m during this period caused sudden decline and extinction of Pacific Deep Water benthic foraminifers in the isolated deep sea basin. Together with data from the oceanic western Pacific, these results further imply a considerable weakening of the western Pacific warm pool during MIS 23-22 and in subsequent glacial periods. While the MPT may have invoked high latitude processes especially an increased ice volume, tropical processes more likely have facilitated the restoration of heat and energy to the western Pacific in each interglacial rebound. Planktonic ? 13C maxima on eccentricity periocities leading major cooling events during the Quaternary indicate the important role of global carbon reservoir changes due to low as well as high latitude processes in past climate change.

  13. Periglacial fires and trees in a continental setting of Central Canada, Upper Pleistocene.

    PubMed

    Blanger, N; Carcaillet, C; Padbury, G A; Harvey-Schafer, A N; Van Rees, K J C

    2014-03-01

    Fire is a key factor controlling global vegetation patterns and carbon cycling. It mostly occurs under warm periods during which fuel builds up with sufficient moisture, whereas such conditions stimulate fire ignition and spread. Biomass burning increased globally with warming periods since the last glacial era. Data confirming periglacial fires during glacial periods are very sparse because such climates are likely too cold to favour fires. Here, tree occurrence and fires during the Upper Pleistocene glacial periods in Central Canada are inferred from botanical identification and calibrated radiocarbon dates of charcoal fragments. Charcoal fragments were archived in sandy dunes of central Saskatchewan and were dated >50000-26600 cal BP. Fragments were mostly gymnosperms. Parallels between radiocarbon dates and GISP2-??O records deciphered relationships between fire and climate. Fires occurred either hundreds to thousands of years after Dansgaard-Oeschger (DO) interstadial warming events (i.e., the time needed to build enough fuel for fire ignition and spread) or at the onset of the DO event. The chronological uncertainties result from the dated material not precisely matching the fires and from the low residual ?C associated with old sample material. Dominance of high-pressure systems and low effective moisture during post-DO coolings likely triggered flammable periglacial ecosystems, while lower moisture and the relative abundance of fuel overshadowed lower temperatures for fire spread. Laurentide ice sheet (LIS) limits during DO events are difficult to assess in Central Canada due to sparse radiocarbon dates. Our radiocarbon data set constrains the extent of LIS. Central Saskatchewan was not covered by LIS throughout the Upper Pleistocene and was not a continental desert. Instead, our results suggest long-lasting periods where fluctuations of the northern tree limits and fires after interstadials occurred persistently. PMID:24405713

  14. Lake core record of Grinnell Glacier dynamics during the latest Pleistocene deglaciation and the Younger Dryas, Glacier National Park, Montana, USA

    NASA Astrophysics Data System (ADS)

    Schachtman, Nathan S.; MacGregor, Kelly R.; Myrbo, Amy; Hencir, Nora Rose; Riihimaki, Catherine A.; Thole, Jeffrey T.; Bradtmiller, Louisa I.

    2015-07-01

    Few records in the alpine landscape of western North America document the geomorphic and glaciologic response to climate change during the Pleistocene-Holocene transition. While moraines can provide snapshots of glacier extent, high-resolution records of environmental response to the end of the Last Glacial Maximum, Younger Dryas cooling, and subsequent warming into the stable Holocene are rare. We describe the transition from the late Pleistocene to the Holocene using a ~ 17,000-yr sediment record from Swiftcurrent Lake in eastern Glacier National Park, MT, with a focus on the period from ~ 17 to 11 ka. Total organic and inorganic carbon, grain size, and carbon/nitrogen data provide evidence for glacial retreat from the late Pleistocene into the Holocene, with the exception of a well-constrained advance during the Younger Dryas from 12.75 to 11.5 ka. Increased detrital carbonate concentration in Swiftcurrent Lake sediment reflects enhanced glacial erosion and sediment transport, likely a result of a more proximal ice terminus position and a reduction in the number of alpine lakes acting as sediment sinks in the valley.

  15. Late Pleistocene Vertebrates and Other Fossils from Epiguruk, Northwestern Alaska

    USGS Publications Warehouse

    Hamilton, T.D.; Ashley, G.M.; Reed, K.M.; Schweger, C.E.

    1993-01-01

    Sediments exposed at Epiguruk, a large cutbank on the Kobuk River about 170 km inland from Kotzebue Sound, record multiple episodes of glacial-age alluviation followed by interstadial downcutting and formation of paleosols. Vertebrate remains from Epiguruk include mammoth, bison, caribou, an equid, a canid, arctic ground squirrel, lemmings, and voles. Radiocarbon ages of bone validated by concordant ages of peat and wood span the interval between about 37,000 and 14,000 yr B.P. The late Pleistocene pollen record is dominated by Cyperaceae, with Artemisia, Salix, Betula, and Gramineae also generally abundant. The fossil record from Epiguruk indicates that the Kobuk River valley supported tundra vegetation with abundant riparian willows during middle and late Wisconsin time. Large herbivores were present during the height of late Wisconsin glaciation as well as during its waning stage and the preceding interstadial interval. The Kobuk River valley would have been a favorable refugium for plants, animals, and possibly humans throughout the last glaciation.

  16. A quantitative model for assessing community dynamics of pleistocene mammals.

    PubMed

    Lyons, S Kathleen

    2005-06-01

    Previous studies have suggested that species responded individualistically to the climate change of the last glaciation, expanding and contracting their ranges independently. Consequently, many researchers have concluded that community composition is plastic over time. Here I quantitatively assess changes in community composition over broad timescales and assess the effect of range shifts on community composition. Data on Pleistocene mammal assemblages from the FAUNMAP database were divided into four time periods (preglacial, full glacial, postglacial, and modern). Simulation analyses were designed to determine whether the degree of change in community composition is consistent with independent range shifts, given the distribution of range shifts observed. Results indicate that many of the communities examined in the United States were more similar through time than expected if individual range shifts were completely independent. However, in each time transition examined, there were areas of nonanalogue communities. I conducted sensitivity analyses to explore how the results were affected by the assumptions of the null model. Conclusions about changes in mammalian distributions and community composition are robust with respect to the assumptions of the model. Thus, whether because of biotic interactions or because of common environmental requirements, community structure through time is more complex than previously thought. PMID:15937741

  17. Late Pleistocene Vertebrates and Other Fossils from Epiguruk, Northwestern Alaska

    NASA Astrophysics Data System (ADS)

    Hamilton, Thomas D.; Ashley, Gall M.; Reed, Katherine M.; Schweger, Charles E.

    1993-05-01

    Sediments exposed at Epiguruk, a large cutbank on the Kobuk River about 170 km inland from Kotzebue Sound, record multiple episodes of glacial-age alluviation followed by interstadial downcutting and formation of paleosols. Vertebrate remains from Epiguruk include mammoth, bison, caribou, an equid, a canid, arctic ground squirrel, lemmings, and voles. Radiocarbon ages of bone validated by concordant ages of peat and wood span the interval between about 37,000 and 14,000 yr B.P. The late Pleistocene pollen record is dominated by Cyperaceae, with Artemisia, Salix, Betula, and Gramineae also generally abundant. The fossil record from Epiguruk indicates that the Kobuk River valley supported tundra vegetation with abundant riparian willows during middle and late Wisconsin time. Large herbivores were present during the height of late Wisconsin glaciation as well as during its waning stage and the preceding interstadial interval. The Kobuk River valley would have been a favorable refugium for plants, animals, and possibly humans throughout the last glaciation.

  18. Arsenic Geochemistry and Hydrostratigraphy in Midwestern U.S. Glacial Deposits

    USGS Publications Warehouse

    Root, T.L.; Gotkowitz, M.B.; Bahr, J.M.; Attig, J.W.

    2010-01-01

    Arsenic concentrations exceeding the U.S. EPA's 10 ??g/L standard are common in glacial aquifers in the midwestern United States. Previous studies have indicated that arsenic occurs naturally in these aquifers in association with metal-(hydr)oxides and is released to groundwater under reducing conditions generated by microbial oxidation of organic matter. Despite this delineation of the arsenic source and mechanism of arsenic mobilization, identification of arsenic-impacted aquifers is hindered by the heterogeneous and discontinuous nature of glacial sediments. In much of the Midwest, the hydrostratigraphy of glacial deposits is not sufficiently characterized to predict where elevated arsenic concentrations are likely to occur. This case study from southeast Wisconsin presents a detailed characterization of local stratigraphy, hydrostratigraphy, and geochemistry of the Pleistocene glacial deposits and underlying Silurian dolomite. Analyses of a single core, water chemistry data, and well construction reports enabled identification of two aquifers separated by an organic-rich aquitard. The upper, unconfined aquifer provides potable water, whereas arsenic generally exceeds 10 ??g/L in the deeper aquifer. Although coring and detailed hydrostratigraphic characterization are often considered impractical, our results demonstrate that a single core improved interpretation of the complex lithology and hydrostratigraphy. This detailed characterization of hydrostratigraphy facilitated development of well construction guidelines and lays the ground work for further studies of the complex interactions among aquifer sediments, hydrogeology, water chemistry, and microbiology that lead to elevated arsenic in groundwater. Copyright ?? 2009 The Author(s). Journal compilation ?? 2009 National Ground Water Association.

  19. Arsenic geochemistry and hydrostratigraphy in midwestern U.S. glacial deposits.

    PubMed

    Root, Tara L; Gotkowitz, Madeline B; Bahr, Jean M; Attig, John W

    2010-01-01

    Arsenic concentrations exceeding the U.S. EPA's 10 ?g/L standard are common in glacial aquifers in the midwestern United States. Previous studies have indicated that arsenic occurs naturally in these aquifers in association with metal-(hydr)oxides and is released to groundwater under reducing conditions generated by microbial oxidation of organic matter. Despite this delineation of the arsenic source and mechanism of arsenic mobilization, identification of arsenic-impacted aquifers is hindered by the heterogeneous and discontinuous nature of glacial sediments. In much of the Midwest, the hydrostratigraphy of glacial deposits is not sufficiently characterized to predict where elevated arsenic concentrations are likely to occur. This case study from southeast Wisconsin presents a detailed characterization of local stratigraphy, hydrostratigraphy, and geochemistry of the Pleistocene glacial deposits and underlying Silurian dolomite. Analyses of a single core, water chemistry data, and well construction reports enabled identification of two aquifers separated by an organic-rich aquitard. The upper, unconfined aquifer provides potable water, whereas arsenic generally exceeds 10 ?g/L in the deeper aquifer. Although coring and detailed hydrostratigraphic characterization are often considered impractical, our results demonstrate that a single core improved interpretation of the complex lithology and hydrostratigraphy. This detailed characterization of hydrostratigraphy facilitated development of well construction guidelines and lays the ground work for further studies of the complex interactions among aquifer sediments, hydrogeology, water chemistry, and microbiology that lead to elevated arsenic in groundwater. PMID:19840125

  20. The distinct roles of the Antarctic and Subantarctic Zones in ocean productivity and atmospheric CO2 across the Mid-Pleistocene transition

    NASA Astrophysics Data System (ADS)

    Jaccard, S.; Martinez-Garcia, A.; Hasenfratz, A.; Sigman, D. M.; Haug, G. H.

    2012-12-01

    The emergence of low frequency, high-amplitude, quasi-periodic (100-kyr) glacial variability during the middle Pleistocene in the absence of any significant change in orbital forcing indicates a fundamental change internal to the climate system. The mid-Pleistocene transition (MPT), which occurred between 1.2 and 0.7 Myr, has variably been attributed to either global cooling possibly associated with a long-term decrease in greenhouse gas concentrations or changes in internal ice-sheet dynamics independent of changes in atmospheric pCO2. The available low-resolution pCO2 estimates indicate that atmospheric CO2 concentrations were 30 ppm higher during glacial stages before the MPT, but also that interglacial values were similar to those of the late Pleistocene. This resulted in no significant change in the atmospheric CO2 trend. However, the higher atmospheric CO2 concentrations during glacial stages resulted in an increase in glacial temperatures in the tropics, and a 30% decrease in glacial/interglacial amplitude before 450 kyr. During this period Southern Ocean dust fluxes doubled and reached values that are comparable to those of the LGM. Thus, an increase in Fe availability may have potentially contributed, in combination with other mechanisms to explain part of the 30 ppm decrease in glacial atmospheric CO2 observed across the MPT. This observation is coherent with a progressive increase in glacial carbon sequestration due to Fe fertilization in the Southern Ocean as Northern Hemisphere glaciations intensify. Here, we investigate how the combined changes in Fe supply and in the strength of vertical convection have affected the sequestration of remineralized carbon in the ocean interior over the last 1.6 Myrs. We will show highly-resolved, continuous records from two South Atlantic ODP sedimentary archives located on either side of the Antarctic polar front highlighting the existence of a strong positive feedback mechanism between ice volume, Southern Ocean dust deposition and export production that has gradually strengthened through the Pliocene-Pleistocene.

  1. A phylogeographic, demographic and historical analysis of the short-tailed pit viper (Gloydius brevicaudus): evidence for early divergence and late expansion during the Pleistocene.

    PubMed

    Ding, Li; Gan, Xiao-Ni; He, Shun-Ping; Zhao, Er-Mi

    2011-05-01

    The impact of quaternary glaciation in eastern China on local fanua and flora has been a topic of considerable interest. We used mitochondrial DNA (mtDNA) sequence data and coalescent simulations to test two general biogeographic hypothesis related to the effects of Pleistocene climatic fluctuations for a widespread ophidian species (Gloydius brevicaudus) in eastern China and Korean Peninsula. The phylogenetic analysis revealed three major lineages, the southeast Coastal, Yangtze and North Lineages. The latter two are closely related and jointly form a continental lineage. Divergence dating and coalescent simulations indicate a Late Pliocene to Early Pleistocene divergence between lineages from the southeast coast and continental interior, followed by a mid-to-late Pleistocene divergence between lineages from the north and the middle-lower Yangtze Valley across East China, suggesting that all these lineages predated the last glacial maximum. An overlapping range between the two lineages within the continental lineage and a secondary contact associated with ecological transition zones on the margins of the North China Plain were also observed. These results show that vicariance patterns dominated the history of G. brevicaudus. Though the climatic events of the Pleistocene have had a marked effect on the historical distribution and intra-specific divergence of reptiles in China, coalescent and non-coalescent demographic analyses indicate that all lineages of G. brevicaudus seem not to have been adversely affected by glacial cycles during the Late Pleistocene, presumably because of an increase in the amount of climatically mild habitat in East Asia due to a decline in elevation and the development of monsoons since the Mid-End Pleistocene. PMID:21438932

  2. Neurodynamic oscillators

    NASA Technical Reports Server (NTRS)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  3. Late-Pleistocene paleowinds and aeolian sand mobilization in north-central Lower Michigan

    NASA Astrophysics Data System (ADS)

    Arbogast, Alan F.; Luehmann, Michael D.; Miller, Bradley A.; Wernette, Phillipe A.; Adams, Kristin M.; Waha, Jaimen D.; O'Neil, Glenn A.; Tang, Ying; Boothroyd, Jeremy J.; Babcock, Chad R.; Hanson, Paul R.; Young, Aaron R.

    2015-03-01

    Simulation of late glacial atmospheric conditions with atmospheric general circulation models suggest a strong anticyclone over the Laurentide Ice Sheet and associated easterly winds along the glacial margin. In the upper Midwest of North America, evidence supporting this modeled air flow exists in the orientation of paleospits in northeastern Lower Michigan that formed ?13 ka in association with glacial Lake Algonquin. Conversely, parabolic dunes that developed between 15 and 10 ka in central Wisconsin, northwestern Indiana, and northwestern Ohio resulted from westerly winds, suggesting that the wind gradient was indeed tight. Study results refine our understanding of late-Pleistocene wind conditions even closer to the ice margin in the upper Midwest by focusing on the timing of aeolian sand mobilization in north-central Lower Michigan at the Rosco dune field. The area was deglaciated ?16 ka, and parabolic dunes have westerly orientations, indicating that they resulted from westerly winds. Optical ages suggest that mobilization last occurred between about 13 ka and 10 ka. The close proximity (?150 km) of this dune field to more northerly paleolacustrine landforms resulting from easterly winds suggests that anticyclonic circulation indeed extended only a very short distance south of the ice sheet, which is consistent with modeled airflow and the orientation of dunes in central Canada. This study also presents evidence suggesting that, in addition to prevailing winds, dunes likely formed because the sparsely-vegetated local outwash plain was deflated.

  4. Constraints on the Pleistocene chronology of sediments from the Lomonosov Ridge

    USGS Publications Warehouse

    O'Regan, M.; King, J.; Backman, J.; Jakobsson, M.; Palike, H.; Moran, K.; Heil, C.; Sakamoto, T.; Cronin, T. M.; Jordan, R.W.

    2008-01-01

    Despite its importance in the global climate system, age-calibrated marine geologic records reflecting the evolultion of glacial cycles through the Pleistocene are largely absent from the central Arctic Ocean. This is especially true for sediments older than 200 ka. Three sites cored during the Integrated Ocean Drilling Program's Expedition 302, the Arctic Coring Expedition (ACEX), provide a 27 m continuous sedimentary section from the Lomonosov Ridge in the central Arctic Ocean. Two key biostratigraphic datums and constraints from the magnetic inclination data are used to anchor the chronology of these sediments back to the base of the Cobb Mountain subchron (1215 ka). Beyond 1215 ka, two best fitting geomagnetic models are used to investigate the nature of cyclostratigraphic change. Within this chronology we show that bulk and mineral magnetic properties of the sediments vary on predicted Milankovitch frequencies. These cyclic variations record "glacial" and "interglacial" modes of sediment deposition on the Lomonosov Ridge as evident in studies of ice-rafted debris and stable isotopic and faunal assemblages for the last two glacial cycles and were used to tune the age model. Potential errors, which largely arise from uncertainties in the nature of downhole paleomagnetic variability, and the choice of a tuning target are handled by defining an error envelope that is based on the best fitting cyclostratigraphic and geomagnetic solutions. Copyright 2008 by the American Geophysical Union.

  5. Biogeochemical Characteristics of Lacustrine Sediments Reflecting a Changing Alpine Neotropical Ecosystem during the Pleistocene

    NASA Astrophysics Data System (ADS)

    Mora, Germn; Pratt, Lisa M.; Boom, Arnoud; Hooghiemstra, Henry

    2002-09-01

    Continuous lacustrine deposits of the Funza-II core from the Bogot basin, Colombia (5N74W) record late Pleistocene climatic variations, providing an opportunity to assess the influence of glacial-interglacial climate changes on alpine ecosystems in equatorial South America. Biogeochemical response of this tropical alpine system to climate change was inferred from changes in elemental concentrations and ratios and isotopic signatures in the upper 120 m of the lacustrine Funza core. Values of ? 13C org exhibit eight abrupt, positive shifts that are thought to reflect rapid expansions of C 4 grasses in the tropical Andes and algal blooms. One of these excursions, interpreted to correspond to C 4 vegetation expansion, occurred in sediments accumulated during the last glaciation (30,000-50,000 yr B.P.) and implies a downslope shift of the upper Andean treeline, regardless of prevailing temperatures. Sedimentary carbon/sulfur ratios are low and indicate significant sequestering of sulfur. Monosulfides are the dominant constituent of sedimentary sulfur during relatively humid intervals, when increased supply of iron caused by enhanced weathering favored the formation of monosulfide minerals under strongly reducing conditions. In contrast, organosulfur compounds dominate the sedimentary sulfur-species in relatively drier intervals when mildly reducing conditions and limited iron input promoted the diagenetic incorporation of sulfur in organic matter. Dry events inferred from the sulfur record typically correlate with glacial maxima, whereas glacial terminations are usually associated with wet periods.

  6. Increased late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India

    NASA Astrophysics Data System (ADS)

    Scherler, Dirk; Bookhagen, Bodo; Wulf, Hendrik; Preusser, Frank; Strecker, Manfred R.

    2015-10-01

    The response of surface processes to climatic forcing is fundamental for understanding the impacts of climate change on landscape evolution. In the Himalaya, most large rivers feature prominent fill terraces that record an imbalance between sediment supply and transport capacity, presumably due to past fluctuations in monsoon precipitation and/or effects of glaciation at high elevation. Here, we present volume estimates, chronological constraints, and 10Be-derived paleo-erosion rates from a prominent valley fill in the Yamuna catchment, Garhwal Himalaya, to elucidate the coupled response of rivers and hillslopes to Pleistocene climate change. Although precise age control is complicated due to methodological problems, the new data support formation of the valley fill during the late Pleistocene and its incision during the Holocene. We interpret this timing to indicate that changes in discharge and river-transport capacity were major controls. Compared to the present day, late Pleistocene hillslope erosion rates were higher by a factor of ∼2-4, but appear to have decreased during valley aggradation. The higher late Pleistocene erosion rates are largely unrelated to glacial erosion and could be explained by enhanced sediment production on steep hillslopes due to increased periglacial activity that declined as temperatures increased. Alternatively, erosion rates that decrease during valley aggradation are also consistent with reduced landsliding from threshold hillslopes as a result of rising base levels. In that case, the similarity of paleo-erosion rates near the end of the aggradation period with modern erosion rates might imply that channels and hillslopes are not yet fully coupled everywhere and that present-day hillslope erosion rates may underrepresent long-term incision rates.

  7. Evidence for Early Pleistocene Glaciation obtained from borecores collected in East-Central Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Barendregt, R. W.; Andriashek, L. D.; Jackson, L. E.

    2014-12-01

    Borecores collected from the east-central region of Alberta, Canada have recently been sub-sampled and studied for paleomagnetic remanence characteristics. A preliminary magnetostratigraphy has been established for sediments previously assumed to represent multiple continental (Laurentide) glaciations, but for which no geochronology was available for the pre-late Wisconsin units. Comprised primarily of tills and lesser thicknesses of interbedded glacio-lacustrine and outwash sediments, the record is extensive, reaching to thicknesses of 300 metres within buried valleys. Most of the sampled units are not accessible from outcrop, and their sedimentology and stratigraphy is derived from core data only. The lowermost tills are reversely magnetized in the majority of borecores sampled to date. These tills are underlain by Empress Formation sediments and/or Colorado Group shales, and overlain by normally magnetized sediments. Both tills contain substantial weathering horizons at their surface, suggesting that interglacial or nonglacial conditions persisted for some time after each period of till deposition. Whether these tills represent a single Early Pleistocene glaciation, or perhaps two, will require additional borecore measurements. This new record of Early Pleistocene glaciation(s) in east-central Alberta places the westernmost extent of earliest Laurentide ice some 300 km farther westward from its previously established limit in the Saskatoon to Regina region of the western Canadian prairies, but still well short of the all-time limit and elevation reached during the Late Wisconsin (Late Pleistocene) in the foothills of the Alberta and Montana Rocky Mountains. Key Words: East-Central Alberta glacial history, Early Pleistocene (Laurentide) glaciation, till magnetostratigraphy, Quaternary history of Western Canadian Prairies, continental glaciations of North America.

  8. An interhemispheric mechanism for glacial abrupt climate change

    NASA Astrophysics Data System (ADS)

    Banderas, Rubn; Alvarez-Solas, Jorge; Robinson, Alexander; Montoya, Marisa

    2015-05-01

    The last glacial period was punctuated by abrupt climate changes that are widely considered to result from millennial-scale variability of the Atlantic meridional overturning circulation (AMOC). However, the origin of these AMOC reorganizations remains poorly understood. The climatic connection between both hemispheres indicated by proxies suggests that the Southern Ocean (SO) could regulate this variability through changes in winds and atmospheric CO concentration. Here, we investigate this hypothesis using a coupled climate model forced by prescribed CO and SO wind-stress variations. We find that the AMOC exhibits an oscillatory behavior between weak and strong circulation regimes which is ultimately caused by changes in the meridional density gradient of the Atlantic Ocean. The evolution of the simulated climatic patterns matches the amplitude and timing of the largest events that occurred during the last glacial period and their widespread climatic impacts. Our results suggest the existence of an internal interhemispheric oscillation mediated by the bipolar seesaw that could promote glacial abrupt climate changes through variations in atmospheric CO levels, the strength of the SO winds and AMOC reorganizations, and provide an explanation for the pervasive Antarctic-like climate signal found in proxy records worldwide.

  9. Galactic oscillations

    NASA Technical Reports Server (NTRS)

    Miller, R. H.

    1991-01-01

    Long-lived oscillations that act like normal modes are described. The total kinetic energy is found to vary with time by amounts far in excess of the fluctuations expected from the virial theorem, and the variation shows periodic patterns that suggest oscillations. Experimental results indicate that oscillation amplitudes depend on the nature of the model. It is noted that it is difficult to answer questions about likely amplitudes in real galaxies with any confidence at the present time.

  10. Architecture of Late Ordovician glacial valleys in the Tassili N'Ajjer area (Algeria)

    NASA Astrophysics Data System (ADS)

    Deschamps, Rmy; Eschard, Rmi; Rouss, Stphane

    2013-05-01

    The architecture of three Late Ordovician glacial valleys was studied in detail in the Tassili N'Ajjer (SE Algeria) outcrops. The valleys are oriented south-north, 2 to 5 km wide, and up to 250 m deep. The valley-fills revealed a very complex sedimentary architecture with significant lateral facies changes. Several glacial cycles induced the formation of Glacial Erosion Surfaces (GES) at the base and within the glacial valleys. The first type of GES shows a sharp and steep-angled contact without striations or associated syn-sedimentary deformation, suggesting that subglacial meltwater was the dominant erosive agent. A second type associated with the deformation of pre-glacial and syn-glacial sediment, suggests that ice was in contact with the valley floor. Four facies associations are proposed: FA1: subglacial tillite; FA2: Sub-to pro-glacial ice contact fans; FA3: Proglacial sub-aqueous gravity flows; and FA4: outwash fans. The stratigraphic architecture of three of the main valleys reveals a complex polyphase infill. At least two main cycles of ice-sheet advance and retreat can be interpreted from the sedimentary succession of each valley. Minor glacial cycles by ice oscillations also occur locally. GES morphology and the facies sequence suggest that the Iherir valleys were initiated by meltwater erosion in subglacial channels, whereas the Dider and Ouarsissen valleys were part of a large ice stream pathway. Above the valley-fill and the interfluves, a sand-rich unit of stacked lobes and channels is interpreted as submarine outwash fans deposited during final ice retreat. A glacial sequence found between two GES comprises fluvio-glacial or ice-contact fan deposits, fluvio-glacial eskers and tills. These sediments were deposited subglacially or at the glacier front during the ice maximum phase and/or the early ice retreat phase. During the ice retreat, interbedded subaqueous gravity flow deposits and diamictites filled the glacially cut topography as the sea invaded the valleys. Maximum ice retreat was associated with high water fluxes and sediment discharge, causing a sand-dominated outwash fan to prograde out over the valleys and interfluves. This outwash fan was supplied mainly by flood activity at the ice front, involving high-density sustained flows. The dominant facies consists of giant aggrading climbing dunes filling channels or constructing sandy lobes downstream.

  11. First ancient DNA sequences from the Late Pleistocene red deer (Cervus elaphus) in the Crimea, Ukraine

    NASA Astrophysics Data System (ADS)

    Stankovi?, Ana; Nadachowski, Adam; Doan, Karolina; Stefaniak, Krzysztof; Baca, Mateusz; Socha, Pawe?; Wegle?ski, Piotr; Ridush, Bogdan

    2010-05-01

    The Late Pleistocene has been a period of significant population and species turnover and extinctions among the large mammal fauna. Massive climatic and environmental changes during Pleistocene significantly influenced the distribution and also genetic diversity of plants and animals. The model of glacial refugia and habitat contraction to southern peninsulas in Europe as areas for the survival of temperate animal species during unfavourable Pleistocene glaciations is at present widely accepted. However, both molecular data and the fossil record indicate the presence of northern and perhaps north-eastern refugia in Europe. In recent years, much new palaeontological data have been obtained in the Crimean Peninsula, Ukraine, following extensive investigations. The red deer (Cervus elaphus) samples for aDNA studies were collected in Emine-Bair-Khosar Cave, situated on the north edge of Lower Plateau of the Chatyrdag Massif (Crimean Mountains). The cave is a vertical shaft, which functioned as a huge mega-trap over a long period of time (probably most of the Pleistocene). The bone assemblages provided about 5000 bones belonging to more than 40 species. The C. elaphus bones were collected from three different stratigraphical levels, radiocarbon dated by accelerator mass spectrometry (AMS) method. The bone fragments of four specimens of red deer were used for the DNA isolation and analysis. The mtDNA (Cytochome b) was successfully isolated from three bone fragments and the cytochrome b sequences were amplified by multiplex PCR. The sequences obtained so far allowed for the reconstruction of only preliminary phylogenetic trees. A fragment of metatarsus from level dated to ca. 48,5002,000 years BP, yielded a sequence of 513 bp, allowing to locate the specimen on the phylogenetic tree within modern C. elaphus specimens from southern and middle Europe. The second bone fragment, a fragment of mandible, collected from level dated approximately to ca. 33,500400 years BP, yielded a sequence (696 bp) locating this specimen much closer to the modern C. elaphus specimens from China and Far East. From the third bone fragment (metatarsus), dated between ca. 12,000 years BP and 30,000 years BP, the sequence of only 346 bp has been obtained. It locates this specimen between European and Asiatic haplogroups. The preliminary results of analysis of the DNA from Crimean C. elaphus fossils reveal the great genetic heterogeneity and a complex phylogeographical pattern of the material studied. The obtained results support the opinion that Crimean Peninsula was the most north-eastern refugium in Europe during Late Pleistocene playing a major role in recolonization and dispersal processes of temperate species during and after the Late Pleistocene in this part of the Euro-Asian continent.

  12. Body mass and encephalization in Pleistocene Homo.

    PubMed

    Ruff, C B; Trinkaus, E; Holliday, T W

    1997-05-01

    Many dramatic changes in morphology within the genus Homo have occurred over the past 2 million years or more, including large increases in absolute brain size and decreases in postcanine dental size and skeletal robusticity. Body mass, as the 'size' variable against which other morphological features are usually judged, has been important for assessing these changes. Yet past body mass estimates for Pleistocene Homo have varied greatly, sometimes by as much as 50% for the same individuals. Here we show that two independent methods of body-mass estimation yield concordant results when applied to Pleistocene Homo specimens. On the basis of an analysis of 163 individuals, body mass in Pleistocene Homo averaged significantly (about 10%) larger than a representative sample of living humans. Relative to body mass, brain mass in late archaic H. sapiens (Neanderthals) was slightly smaller than in early 'anatomically modern' humans, but the major increase in encephalization within Homo occurred earlier during the Middle Pleistocene (600-150 thousand years before present (kyr BP)), preceded by a long period of stasis extending through the Early Pleistocene (1,800 kyr BP). PMID:9144286

  13. Orbital- to Sub-Orbital-Scale Cyclicity in Seismic Reflections and Sediment Character in Early to Middle Pleistocene Mudstone, Santa Barbara Basin, California

    NASA Astrophysics Data System (ADS)

    Peterson, C. D.; Behl, R. J.; Nicholson, C.; Lisiecki, L. E.; Sorlien, C. C.

    2009-12-01

    High-resolution seismic reflection records and well logs from the Santa Barbara Channel suggest that large parts of the Pleistocene succession records climate variability on orbital to sub-orbital scales with remarkable sensitivity, much like the well-studied sediments of the last glacial cycle (ODP Site 893). Spectral analysis of seismic reflection data and gamma ray logs from stratigraphically similar Pleistocene sections finds similar cyclic character and shifts through the section. This correlation suggests that acoustic impedance and physical properties of sediment are linked by basin-scale, likely climatically-driven, oscillations in lithologic composition and fabric during deposition, and that seismic profiling can provide a method for remote identification and correlation of orbital- and sub-orbital-scale sedimentary cyclicity. Where it crops out along the northern shelf of the central Santa Barbara Channel, the early to middle Pleistocene succession (~1.8-1.2 Ma) is a bathyal hemipelagic mudstone with remarkably rhythmic planar bedding, finely laminated fabric, and well-preserved foraminifera, none of which have been significantly altered, or obscured by post-depositional diagenesis or tectonic deformation. Unlike the coarser, turbiditic successions in the central Ventura and Los Angeles basins, this sequence has the potential to record Quaternary global climate change at high resolution. Seismic reflection data (towed chirp) collected on the R/V Melville 2008 Cruise (MV08) penetrate 10's of meters below seafloor into a ~1 km-long sequence of south-dipping seismic reflectors. Sampling parallel to the seafloor permits acquisition of consistent signal amplitude for similar reflectors without spreading loss. Based on established age ranges for this section, sedimentation rates may range from 0.4 to 1.4 meters/kyr, therefore suggesting that the most powerful cycles are orbital- to sub-orbital-scale. Discrete sets of cycles with high power show an abrupt shift to shorter wavelengths midway through the section. Deep in the section, the strongest cycles indicated by spectral analysis are 50 and 16 meters thick, whereas up section, the strongest cycles are 20 and 12 meters thick. Nearby industry boreholes that penetrate a stratigraphically similar, 1500-meter-thick mudstone section, provide logs of natural gamma ray intensity with a higher sample interval (15 cm), allowing resolution and analysis of even higher frequency lithologic cycles. The strongest cycle deep in the section is 100 meters thick, and up section, the strongest cycle is 12 meters thick. This abrupt decrease in dominant cycle thickness midway through both the seismic and gamma ray records perhaps indicates a basin-wide shift in sedimentation. With improved chronostratigraphy based on Sr-isotope ratios and biostratigraphy, and comparison with paleoclimate proxy data, we will test if seismically resolved lithologic oscillations can be reliably interpreted as representing climatically driven Milankovitch cycles. This method may be used to evaluate the age and paleoceanographic potential of sedimentary strata before a coring vessel is deployed.

  14. Across the southern Andes on fin: glacial refugia, drainage reversals and a secondary contact zone revealed by the phylogeographical signal of Galaxias platei in Patagonia.

    PubMed

    Zemlak, Tyler S; Habit, Evelyn M; Walde, Sandra J; Battini, Miguel A; Adams, Emily D M; Ruzzante, Daniel E

    2008-12-01

    We employed DNA sequence variation at two mitochondrial (control region, COI) regions from 212 individuals of Galaxias platei (Pisces, Galaxiidae) collected throughout Patagonia (25 lakes/rivers) to examine how Andean orogeny and the climatic cycles throughout the Quaternary affected the genetic diversity and phylogeography of this species. Phylogenetic analyses revealed four deep genealogical lineages which likely represent the initial division of G. platei into eastern and western lineages by Andean uplift, followed by further subdivision of each lineage into separate glacial refugia by repeated Pleistocene glacial cycles. West of the Andes, refugia were likely restricted to the northern region of Patagonia with small relicts in the south, whereas eastern refugia appear to have been much larger and widespread, consisting of separate northern and southern regions that collectively spanned most of Argentinean Patagonia. The retreat of glacial ice following the last glacial maximum allowed re-colonization of central Chile from nonlocal refugia from the north and east, representing a region of secondary contact between all four glacial lineages. Northwestern glacial relicts likely followed pro-glacial lakes into central Chilean Patagonia, whereas catastrophic changes in drainage direction (Atlantic --> Pacific) for several eastern palaeolakes were the likely avenues for invasions from the east. These mechanisms, combined with evidence for recent, rapid and widespread population growth could explain the extensive contemporary distribution of G. platei throughout Patagonia. PMID:19017262

  15. Extraterrestrial accretion and glacial cycles

    NASA Technical Reports Server (NTRS)

    Muller, R. A.

    1994-01-01

    We propose that the approx. 100-k.y. cycle seen in terrestrial glaciation is due to changes in meteor flux that come from changes in the Earth's orbit. This model can explain a 70-k.y. 'anomalous' period in climate data and the apparent discrepancy between present extraterrestrial fluxes and those in oceanic sediments. It can be tested by measuring Ir densities in sediments and ice during glacials and interglacials.

  16. Source Inversion of Glacial Earthquakes

    NASA Astrophysics Data System (ADS)

    Sergeant, A.; Mangeney, A.; Stutzmann, E.; Montagner, J. P.; Moretti, L.; Castelnau, O.; Yastrebov, V.

    2014-12-01

    Glacial earthquakes are very-long-period seismic events originating from fast moving marine-terminating glaciers, primarily in Greenland. They consist in large surface waves with dominant periods between 35 and 150 s that are detectable teleseismically. Several studies report a clear temporal and spatial correlation between major glacial earthquakes and the capsize of large, newly calved icebergs. The teleseismic waveform modeling shows that the seismic data are well-explained by a landslide-type source. Long-period seismic waves would result from the force exerted by the iceberg on the glacier and the underlying earth during its collapse. We propose here a method of waveform inversion to retrieve the source-time function of glacial earthquakes. The inversion is carried out in the frequency domain. Taking the inverse Fourier transform of the frequency components determined by the inversion we then obtain time series of forces in the East, North and vertical directions. The recent installation of high-quality seismic networks in Greenland provides valuable data to improve the analysis of the dynamic of such events. We use broadband data from the GLISN experiment to investigate the source process of major glacial earthquakes in the 20-100 s period band. We test the robustness of the method by showing the stability of the inverted source when different stations with varying epicentral distances are used in the inversion. Since observed waveforms used in the inversion are limited in a particular frequency band, the estimated source-time functions are bandpassed. Though their comparison to filtered classical centroid single force models used in other studies shows that the seismogenic process is more complex. We repeated the inversion for several events around Greenland to obtain statistics on different sources. We give a first order interpretation of the dynamic of the inverted sources when applicable.

  17. Dynamics of the late Plio-Pleistocene West Antarctic Ice Sheet documented in subglacial diamictites, AND-1B drill core

    NASA Astrophysics Data System (ADS)

    Cowan, Ellen A.; Christoffersen, Poul; Powell, Ross D.; Talarico, Franco M.

    2014-08-01

    Geologic studies of sediment deposited by glaciers can provide crucial insights into the subglacial environment. We studied muddy diamictites in the ANtarctic geological DRILLing (ANDRILL) AND-1B drill core, acquired from beneath the Ross Ice Shelf in McMurdo Sound, with the aim of identifying paleo-ice stream activity in the Plio-Pleistocene. Glacial advances were identified from glacial surfaces of erosion (GSEs) and subglacial diamictites within three complete sequences were investigated using lithofacies associations, micromorphology, and quartz sand grain microtextures. Whereas conditions in the Late Pliocene resemble the modern Greenland Ice Sheet where fast flowing glaciers lubricated by surface meltwater terminate directly in the sea (interval 201-212 mbsl) conditions in the Late Pleistocene are similar to modern West Antarctic Ice Sheet (WAIS) ice streams (38-49 mbsl). We identify the latter from ductile deformation and high pore-water pressure, which resulted in pervasive rotation and formation of till pellets and low relief, rounded sand grains dominated by abrasion. In the transitional period during the Mid-Pleistocene (55-68 mbsf), a slow moving inland ice sheet deposited tills with brittle deformation, producing lineations and bi-masepic and unistrial plasma fabric, along with high relief, conchoidally fractured quartz grains. Changes in the provenance of gravel to cobble-size clasts support a distant source area of Byrd Glacier for fast-flowing paleo-ice streams and a proximal area between Darwin and Skelton Glaciers for the slow-moving inland ice sheet. This difference in till provenance documents a shift in direction of glacial flow at the core site, which indirectly reflects changes in the size and thickness of the WAIS. Hence, we found that fast ice streaming motion is a consequence of a thicker WAIS pushing flow lines to the west and introducing clasts from the Byrd Glacier source area to the drill site. The detailed analysis of diamictites in AND-1B demonstrates that Pliocene glacial intervals were warmer than in the Pleistocene when polar ice sheets grew from local inland ice to regional ice streams.

  18. Glacial climate in the tropics

    SciTech Connect

    Broecker, W.

    1996-06-28

    New findings have caused ideas about the Earth`s climate during the Pleistocene glaciation to change. A consensus seems to be forming that during times of glaciation, climatic conditions in the tropics were quite different from those today. However still to be explained is why strontium-calcium measurements on corals and moble gas measurements of ground water suggest a tropical cooling of 4-6 C while foraminiferal speciation, oxygen isotope, and alkenone results suggest a cooling of no more than 3 C. This article discusses different aspects of the debate. 9 refs., 1 fig.

  19. Extending the Chatham Rise (ODP Site 1123) Deep Ocean Temperature Record into the Plio-Pleistocene: Inception of Northern Hemisphere Glaciation

    NASA Astrophysics Data System (ADS)

    Weidle, I.; Elderfield, H.

    2014-12-01

    The Plio-Pleistocene was a time of global climate cooling: a transition from a state of significant and prolonged climate warmth (Mid Pliocene) to a state of bi-polar glacials (Pleistocene), marked by the onset and intensification of continental ice sheets in the Northern hemisphere (Late Pliocene) and the reorganization of glacial cycle amplitude and frequencies (Mid Pleistocene Transition). This is an interesting and important chapter of climate history for understanding the sensitivity of large ice sheets to perturbations in the climate system on glacial-interglacial and much longer timescales. Of possible priming mechanisms (incl. closure of Panama seaway, orographic uplift), the decline of atmospheric carbon dioxide is considered to have a strong connection with the late Pliocene cooling and ice sheet inception, although the causal mechanism for its decline remains relatively unknown. High-resolution, long term climate records are necessary to further constrain the timings of ice volume evolution and the associated driving factors during the Plio-Pleistocene, however such records are presently limited. ODP Site 1123 (Chatham Rise, southwest Pacific, 3290m) records the evolution of the deep western boundary current of the southwest Pacific, a primary feeder of Antarctic Bottom Water to the global deep ocean. By calculating the oxygen stable isotope composition of past seawater, a proxy calculation combining Mg/Ca-palaeothermometry and δ18O from benthic foraminifera, we present a high-resolution record of global ice volume as a measure of climate change, extending the existing 0-1.5 Ma record (Elderfield et al., 2012) at ODP 1123 to the Plio-Pleistocene (1.5-3.0 Ma). We use this measure of global ice volume evolution to assess the relative timing and magnitude of northern hemisphere glaciation and concomitant deep ocean temperature decline, which aids to infer temperatures around Antarctica during this time. Deep ocean temperature results show high frequency glacial-cycles, approaching near-freezing temperatures at peak glacials. Reference Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I.N., Hodell, D., Piotrowski, A.M. (2012), Science, 337, 704-709.

  20. The INTIMATE event stratigraphy of the last glacial period

    NASA Astrophysics Data System (ADS)

    Olander Rasmussen, Sune; Svensson, Anders

    2015-04-01

    The North Atlantic INTIMATE (INtegration of Ice-core, MArine and TErrestrial records) group has previously recommended an Event Stratigraphy approach for the synchronisation of records of the Last Termination using the Greenland ice core records as the regional stratotypes. A key element of these protocols has been the formal definition of numbered Greenland Stadials (GS) and Greenland Interstadials (GI) within the past glacial period as the Greenland expressions of the characteristic Dansgaard-Oeschger events that represent cold and warm phases of the North Atlantic region, respectively. Using a recent synchronization of the NGRIP, GRIP, and GISP2 ice cores that allows the parallel analysis of all three records on a common time scale, we here present an extension of the GS/GI stratigraphic template to the entire glacial period. In addition to the well-known sequence of Dansgaard-Oeschger events that were first defined and numbered in the ice core records more than two decades ago, a number of short-lived climatic oscillations have been identified in the three synchronized records. Some of these events have been observed in other studies, but we here propose a consistent scheme for discriminating and naming all the significant climatic events of the last glacial period that are represented in the Greenland ice cores. In addition to presenting the updated event stratigraphy, we make a series of recommendations on how to refer to these periods in a way that promotes unambiguous comparison and correlation between different proxy records, providing a more secure basis for investigating the dynamics and fundamental causes of these climatic perturbations. The work presented is a part of a newly published paper in an INTIMATE special issue of Quaternary Science Reviews: Rasmussen et al., 'A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy', Quaternary Science Reviews, vol. 106, p. 14-24, 2014.

  1. Modeling the Global Monsoon System During Glacial Climate Events

    NASA Astrophysics Data System (ADS)

    Merkel, U.; Prange, M.; Schulz, M.

    2009-04-01

    We employ the comprehensive NCAR Community Climate System Model (version 3) to assess the state of the global monsoon system during specific time intervals of the last glacial period. In contrast to previous studies, we take into account changes in ice-sheet distribution, greenhouse-gas concentrations and orbital parameters for marine isotope stage 3 (MIS3, centered on 35 ka BP) and the last glacial maximum (LGM, centered on 21 ka BP). Both simulations result in a significant reduction of the Atlantic Ocean meridional overturning circulation as compared to modern conditions. Perturbing deep-water formation in the North Atlantic Ocean in these glacial baseline simulations results in explicit representations of Dansgaard-Oeschger-type stadials and interstadials as well as Heinrich-type events. LGM boundary conditions induce a large-scale drying in the West African monsoon region associated with a strengthening and southward shift of the African easterly jet. Through atmospheric dynamics, the effect of ice-sheets is rapidly communicated into a response of the Indian and South East Asian summer monsoon systems and the South American monsoon. Dansgaard-Oeschger-type stadial boundary conditions lead to a pronounced intensification of the African, Indian and South East Asian summer monsoon compared to the LGM. In the Dansgaard-Oeschger-type interstadial simulation, the response of all tropical monsoon systems is similar to the stadial simulation but exhibits a stronger amplitude. This suggests a predominance of the orbital and ice sheet forcing over the imposed Dansgaard-Oeschger climate variability. Furthermore, the hydrological response to the different glacial boundary conditions exhibits a strong seasonality and even suggests phase shifts in the annual cycle on a regional scale. Tropical inter-ocean basin teleconnections appear to be weakened during MIS3 stadials compared to the LGM as illustrated by a less pronounced covariation between tropical Atlantic hydrological conditions and the El Nio/Southern Oscillation in the eastern tropical Pacific.

  2. Last Glacial mammals in South America: a new scenario from the Tarija Basin (Bolivia).

    PubMed

    Coltorti, M; Abbazzi, L; Ferretti, M P; Iacumin, P; Rios, F Paredes; Pellegrini, M; Pieruccini, P; Rustioni, M; Tito, G; Rook, L

    2007-04-01

    The chronology, sedimentary history, and paleoecology of the Tarija Basin (Bolivia), one of the richest Pleistocene mammalian sites in South America, are revised here based on a multidisciplinary study, including stratigraphy, sedimentology, geomorphology, paleontology, isotope geochemistry, and (14)C geochronology. Previous studies have indicated a Middle Pleistocene age for this classic locality. We have been able to obtain a series of (14)C dates encompassing all the fossil-bearing sequences previously studied in the Tarija Basin. The dated layers range in age from about 44,000 to 21,000 radiocarbon years before present (BP), indicating that the Tarija fauna is much younger than previously thought. Glacial advances correlated to marine isotopic stages (MIS) 4 and 2 (ca. 62 and 20 ka BP, respectively) are also documented at the base and at the very top of the Tarija-Padcaya succession, respectively, indicating that the Bolivian Altiplano was not dry but sustained an ice cap during the Last Glacial Maximum. The results of this multidisciplinary study enable us to redefine the chronological limits of the Tarija sequence and of its faunal assemblage and to shift this paleontological, paleoclimatological, and paleoecological framework to the time interval from MIS 4 to MIS 2. PMID:17180614

  3. Climate change and evolving human diversity in Europe during the last glacial.

    PubMed Central

    Gamble, Clive; Davies, William; Pettitt, Paul; Richards, Martin

    2004-01-01

    A link between climate change and human evolution during the Pleistocene has often been assumed but rarely tested. At the macro-evolutionary level Foley showed for hominids that extinction, rather than speciation, correlates with environmental change as recorded in the deep sea record. Our aim is to examine this finding at a smaller scale and with high-resolution environmental and archaeological archives. Our interest is in changing patterns of human dispersal under shifting Pleistocene climates during the last glacial period in Europe. Selecting this time frame and region allows us to observe how two hominid taxa, Neanderthals and Crô-Magnons, adapted to climatic conditions during oxygen isotope stage 3. These taxa are representative of two hominid adaptive radiations, termed terrestrial and aquatic, which exhibited different habitat preferences but similar tolerances to climatic factors. Their response to changing ecological conditions was predicated upon their ability to extend their societies in space and time. We examine this difference further using a database of all available radiocarbon determinations from western Europe in the late glacial. These data act as proxies for population history, and in particular the expansion and contraction of regional populations as climate changed rapidly. Independent assessment of these processes is obtained from the genetic history of Europeans. The results indicate that climate affects population contraction rather than expansion. We discuss the consequences for genetic and cultural diversity which led to the legacy of the Ice Age: a single hominid species, globally distributed. PMID:15101580

  4. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle.

    PubMed

    Böhm, E; Lippold, J; Gutjahr, M; Frank, M; Blaser, P; Antz, B; Fohlmeister, J; Frank, N; Andersen, M B; Deininger, M

    2015-01-01

    Extreme, abrupt Northern Hemisphere climate oscillations during the last glacial cycle (140,000 years ago to present) were modulated by changes in ocean circulation and atmospheric forcing. However, the variability of the Atlantic meridional overturning circulation (AMOC), which has a role in controlling heat transport from low to high latitudes and in ocean CO2 storage, is still poorly constrained beyond the Last Glacial Maximum. Here we show that a deep and vigorous overturning circulation mode has persisted for most of the last glacial cycle, dominating ocean circulation in the Atlantic, whereas a shallower glacial mode with southern-sourced waters filling the deep western North Atlantic prevailed during glacial maxima. Our results are based on a reconstruction of both the strength and the direction of the AMOC during the last glacial cycle from a highly resolved marine sedimentary record in the deep western North Atlantic. Parallel measurements of two independent chemical water tracers (the isotope ratios of (231)Pa/(230)Th and (143)Nd/(144)Nd), which are not directly affected by changes in the global cycle, reveal consistent responses of the AMOC during the last two glacial terminations. Any significant deviations from this configuration, resulting in slowdowns of the AMOC, were restricted to centennial-scale excursions during catastrophic iceberg discharges of the Heinrich stadials. Severe and multicentennial weakening of North Atlantic Deep Water formation occurred only during Heinrich stadials close to glacial maxima with increased ice coverage, probably as a result of increased fresh-water input. In contrast, the AMOC was relatively insensitive to submillennial meltwater pulses during warmer climate states, and an active AMOC prevailed during Dansgaard-Oeschger interstadials (Greenland warm periods). PMID:25517093

  5. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Bhm, E.; Lippold, J.; Gutjahr, M.; Frank, M.; Blaser, P.; Antz, B.; Fohlmeister, J.; Frank, N.; Andersen, M. B.; Deininger, M.

    2015-01-01

    Extreme, abrupt Northern Hemisphere climate oscillations during the last glacial cycle (140,000 years ago to present) were modulated by changes in ocean circulation and atmospheric forcing. However, the variability of the Atlantic meridional overturning circulation (AMOC), which has a role in controlling heat transport from low to high latitudes and in ocean CO2 storage, is still poorly constrained beyond the Last Glacial Maximum. Here we show that a deep and vigorous overturning circulation mode has persisted for most of the last glacial cycle, dominating ocean circulation in the Atlantic, whereas a shallower glacial mode with southern-sourced waters filling the deep western North Atlantic prevailed during glacial maxima. Our results are based on a reconstruction of both the strength and the direction of the AMOC during the last glacial cycle from a highly resolved marine sedimentary record in the deep western North Atlantic. Parallel measurements of two independent chemical water tracers (the isotope ratios of 231Pa/230Th and 143Nd/144Nd), which are not directly affected by changes in the global cycle, reveal consistent responses of the AMOC during the last two glacial terminations. Any significant deviations from this configuration, resulting in slowdowns of the AMOC, were restricted to centennial-scale excursions during catastrophic iceberg discharges of the Heinrich stadials. Severe and multicentennial weakening of North Atlantic Deep Water formation occurred only during Heinrich stadials close to glacial maxima with increased ice coverage, probably as a result of increased fresh-water input. In contrast, the AMOC was relatively insensitive to submillennial meltwater pulses during warmer climate states, and an active AMOC prevailed during Dansgaard-Oeschger interstadials (Greenland warm periods).

  6. Synchronous extinction of North America's Pleistocene mammals

    PubMed Central

    Faith, J. Tyler; Surovell, Todd A.

    2009-01-01

    The late Pleistocene witnessed the extinction of 35 genera of North American mammals. The last appearance dates of 16 of these genera securely fall between 12,000 and 10,000 radiocarbon years ago (≈13,800–11,400 calendar years B.P.), although whether the absence of fossil occurrences for the remaining 19 genera from this time interval is the result of sampling error or temporally staggered extinctions is unclear. Analysis of the chronology of extinctions suggests that sampling error can explain the absence of terminal Pleistocene last appearance dates for the remaining 19 genera. The extinction chronology of North American Pleistocene mammals therefore can be characterized as a synchronous event that took place 12,000–10,000 radiocarbon years B.P. Results favor an extinction mechanism that is capable of wiping out up to 35 genera across a continent in a geologic instant. PMID:19934040

  7. Upper Pleistocene climate dynamics from malakofaunal data

    NASA Astrophysics Data System (ADS)

    Moric, A.

    2009-04-01

    Paleontological and taxonomy data from loess section in the Bansko hill (NE Croatia) provide records for climate variations in the upper Pleistocene of SE Europe. Gastropod species from 4 loess sections, suggest a slight dry/humid variations in climate, during upper pleistocene. Periods of dry and cold climate are more often then humid one. Most abundand from 12 species is Helicopsis striata, gastropod tipical for open and dry habitats. The high relative percentage of dry gastropod taxa in the loess sections, indicates a dry and cold climate for this area, with shorter periods of warmer and more humid climate. This study shows a climate inudced changes in taxonomy of gastropods, which is probably expression of 21-ky-precessional cycles. Keywords: gastropods loess climate change Helicopsis striata upper Pleistocene Croatia

  8. Push moraines in the upper valley of Santa Cruz river, southwest Argentina. Structural analysis and relationship with Late Pleistocene paleoclimate

    NASA Astrophysics Data System (ADS)

    Goyanes, Gabriel; Massabie, Armando

    2015-01-01

    The upper cliff of the Santa Cruz River was used to assess the proglacial environments of the Argentino Glacier outlet of Late Pleistocene age. These cliffs show glaciolacustrine, fluvioglacial and till deposits, where only the first one are deformed. Glacial landforms in the area and these structures suggest that the ice mass advanced, topographically controlled, towards the east from the Patagonian Ice Sheet pushing up the proglacial sediments. The spatial arrangement of thrusts and overturned folds, the drumlins-flutes moraine directions and the end moraines shape, allow inferring the dynamic and the Argentino glacier profile. Detailed analyses of the glaciotectonic structures indicate that these have two origins: load in the north with stress transfer to the southeast, and push from the west. Through the analysis of deformed sediments, their thickness and their sedimentary and structural features, three zones of deformations were recognized. Each of these zones was associated to glacial advances because of changes of the regional climate conditions.

  9. Phylogeographical Analysis of mtDNA Data Indicates Postglacial Expansion from Multiple Glacial Refugia in Woodland Caribou (Rangifer tarandus caribou)

    PubMed Central

    Klütsch, Cornelya F. C.; Manseau, Micheline; Wilson, Paul J.

    2012-01-01

    Glacial refugia considerably shaped the phylogeographical structure of species and may influence intra-specific morphological, genetic, and adaptive differentiation. However, the impact of the Quaternary ice ages on the phylogeographical structure of North American temperate mammalian species is not well-studied. Here, we surveyed ∼1600 individuals of the widely distributed woodland caribou (Rangifer tarandus caribou) using mtDNA control region sequences to investigate if glacial refugia contributed to the phylogeographical structure in this subspecies. Phylogenetic tree reconstruction, a median-joining network, and mismatch distributions supported postglacial expansions of woodland caribou from three glacial refugia dating back to 13544–22005 years. These three lineages consisted almost exclusively of woodland caribou mtDNA haplotypes, indicating that phylogeographical structure was mainly shaped by postglacial expansions. The putative centres of these lineages are geographically separated; indicating disconnected glacial refugia in the Rocky Mountains, east of the Mississippi, and the Appalachian Mountains. This is in congruence with the fossil record that caribou were distributed in these areas during the Pleistocene. Our results suggest that the last glacial maximum substantially shaped the phylogeographical structure of this large mammalian North American species that will be affected by climatic change. Therefore, the presented results will be essential for future conservation planning in woodland caribou. PMID:23285137

  10. Siphateles (Gila) sp. and Catostomus sp. from the Pleistocene OIS-6 Lake Gale, Panamint Valley, Owens River system, California

    NASA Astrophysics Data System (ADS)

    Jayko, A. S.; Forester, R. M.; Smith, G. R.

    2014-12-01

    Panamint Valley lies within the Owens River system which linked southeastern Sierra Nevada basins between Mono Lake and Death Valley during glacial-pluvial times. Previous work indicates that late Pleistocene glacial-pluvial Lake Gale, Panamint Valley was an open system during OIS-6, a closed ground water supported shallow lake during OIS-4, and the terminal lake basin for the Owens River system during OIS-2. We here report the first occurrence of fossil fish from the Plio-Pleistocene Panamint basin. Fish remains are present in late Pleistocene OIS-6 nearshore deposits associated with a highstand that was spillway limited at Wingate Wash. The deposits contain small minnow-sized remains from both Siphateles or Gila sp. (chubs) and Catostomus sp. (suckers) from at least four locations widely dispersed in the basin. Siphateles or Gila sp. and Catostomus are indigenous to the Pleistocene and modern Owens River system, in particular to the historic Owens Lake area. Cyprinodon (pupfish) and Rhinichthys (dace) are known from the modern Amargosa River and from Plio-Pleistocene deposits in Death Valley to the east. The late Pleistocene OIS-6 to OIS-2 lacustrine and paleohydrologic record in Panamint basin is interpreted from ostracod assemblages, relative abundance of Artemia sp. pellets, shallow water indicators including tufa fragments, ruppia sp. fragments and the relative abundance of charophyte gyrogonites obtained from archived core, as well as faunal assemblages from paleoshoreline and nearshore deposits. The OIS-4 groundwater supported shallow saline lake had sufficiently low ratios of alkalinity to calcium (alk/Ca) to support the occurrence of exotic Elphidium sp. (?) foraminfera which are not observed in either OIS-2 or OIS-6 lacustrine deposits. The arrival of Owens River surface water into Panamint Basin during OIS-2 is recorded by the first appearance of the ostracod Limnocythere sappaensis at ~27 m depth in an ~100 m archived core (Smith and Pratt, 1957) which extends between OIS-5 and post OIS-2 based on based on proxy correlation with the marine oxygen isotope record.

  11. Glacial-interglacial variations of microbial communities in permafrost and lake deposits in the Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Mangelsdorf, Kai; Bischoff, Juliane; Gattinger, Andreas; Wagner, Dirk

    2013-04-01

    The Artic regions are expected to be very sensitive to the currently observed climate change. When permafrost is thawing, the stored carbon becomes available again for microbial degradation, forming a potential source for the generation of carbon dioxide and methane with their positive feedback effect on the climate warming. For the prediction of future climate evolution it is, therefore, important to improve our knowledge about the microbial-driven greenhouse gas dynamics in the Siberian Arctic and their response to glacial-interglacial changes in the past. Sample material was drilled on Kurungnahk Island (Russian-German LENA expedition) located in the southern part of the Lena delta and in lake El'gygytgyn (ICDP-project) in the eastern part of Siberia. The Kurungnahk samples comprise Late Pleistocene to Holocene deposits, whereas the lake El'gygytgyn samples cover Middle to Late Pleistocene sediments. Samples were investigated applying a combined biogeochemical and microbiological approach. The methane profile of the Kurungnahk core reveals highest methane contents in the warm and wet Holocene and Late Pleistocene (LP) deposits and correlates largly to the organic carbon (TOC) contents. Archaeol concentrations, being a biomarker for past methanogenic archaea, are also high during the warm and wet Holocene and LP intervals and low during the cold and dry LP periods. This indicates that part of the methane might be produced and trapped in the past. However, biomarkers for living microorganisms (bacteria and archaea) and microbial activity measurements of methanogens point, especially, for the Holocene to a viable archaeal community, indicating a possible in-situ methane production. Furthermore, warm/wet-cold/dry climate cycles are recorded in the archaeal diversity as revealed by genetic fingerprint analysis. Although the overlying lake water buffers the temperature effect on the lake sediments, which never became permafrost, the bacterial and archaeal biomarker profiles from lake El'gygytgyn deposits reveal also a glacial-interglacial variability. A reason for this seems to be higher TOC contents during the interglacials forming the carbon and energy source for the indigenous microbial communities. Algae blooms during the interglacials are indicated by the biogenic silica profile. The variety of methanogenic archaea is higher during the interglacials and methane production experiments reveal a high potential for methane production during these periods. Thus, overall the data indicate production and subsequent release of methane from the lake during interglacial periods. However, occasionally higher biomarker contents for methanogens accompanied by significant methane production potentials during glacial periods suggest that lakes might also produce and release methane during glacial periods.

  12. Interhemispheric controls on deep ocean circulation and carbon chemistry during the last two glacial cycles

    NASA Astrophysics Data System (ADS)

    Wilson, David J.; Piotrowski, Alexander M.; Galy, Albert; Banakar, Virupaxa K.

    2015-06-01

    Changes in ocean circulation structure, together with biological cycling, have been proposed for trapping carbon in the deep ocean during glacial periods of the Late Pleistocene, but uncertainty remains in the nature and timing of deep ocean circulation changes through glacial cycles. In this study, we use neodymium (Nd) and carbon isotopes from a deep Indian Ocean sediment core to reconstruct water mass mixing and carbon cycling in Circumpolar Deep Water over the past 250 thousand years, a period encompassing two full glacial cycles and including a range of orbital forcing. Building on recent studies, we use reductive sediment leaching supported by measurements on isolated phases (foraminifera and fish teeth) in order to obtain a robust seawater Nd isotope reconstruction. Neodymium isotopes record a changing North Atlantic Deep Water (NADW) component in the deep Indian Ocean that bears a striking resemblance to Northern Hemisphere climate records. In particular, we identify both an approximately in-phase link to Northern Hemisphere summer insolation in the precession band and a longer-term reduction of NADW contributions over the course of glacial cycles. The orbital timescale changes may record the influence of insolation forcing, for example via NADW temperature and/or Antarctic sea ice extent, on deep stratification and mixing in the Southern Ocean, leading to isolation of the global deep oceans from an NADW source during times of low Northern Hemisphere summer insolation. That evidence could support an active role for changing deep ocean circulation in carbon storage during glacial inceptions. However, mid-depth water mass mixing and deep ocean carbon storage were largely decoupled within glacial periods, and a return to an interglacial-like circulation state during marine isotope stage (MIS) 6.5 was accompanied by only minor changes in atmospheric CO2. Although a gradual reduction of NADW export through glacial periods may have produced slow climate feedbacks linked to the growth of Northern Hemisphere ice sheets, carbon cycling in the glacial ocean was instead more strongly linked to Southern Ocean processes.

  13. Glacitectonic rafting and associated deformation of mid-Pleistocene glacigenic sediments, near Central Graben, central North Sea; results of a 2D High-Resolution Geophysical Survey

    NASA Astrophysics Data System (ADS)

    Vaughan-Hirsch, David

    2013-04-01

    Glacitectonic rafts are defined as dislocated slabs of bedrock or unconsolidated sediments, transported from their original position by glacial action. These relatively thin, slab-like bodies feature transport distances ranging from tens of meters to hundreds of kilometers. They occur as either single rafts, or multiple stacked bodies associated with a variety of ice-pushed landforms. Internally, rafts frequently appear undeformed although at a larger scale, they may be folded or cut by shear zones and brittle faults. However, the processes leading to the detachment, transport and subsequent emplacement of the rafts remain uncertain. This work describes the results of a geophysical 2D seismic survey of thrust-bound glacitectonic rafts and associated deformation structures, occurring within mid-Pleistocene glacigenic sediments of the Central Graben, central North Sea. The total shortened length of the rafted section is 2.4km, comprising a series of nine discrete rafts which individually range from 235m to 1018m in length. The principle basal detachment occurs at the erosive contact between Aberdeen Ground Formation and overlying Ling Bank Formation. The ice-proximal (northern) limit of rafting is defined by the presence of a large-scale palaeo-channel oriented perpendicular to the direction of rafting, composed of sediments of the Ling Bank Formation and the Forth Formation. The observed deformation structures infer a mean tectonic direction of 178, indicating that they are associated with an active glacial advance from the north. The resulting deformation creates a minimum lateral shortening throughout the observed sequence of 35%, typifying a strongly compressional regieme associated with rafting. Throughout the surveyed area, structurally younger rafts are found to be emplaced towards the south, compared to the structurally older rafts which are emplaced towards the south-east. This distinction is suggested to be caused by early rafts creating an obstacle to transport for later stages of deformation, resulting in strike-slip basal detachment being associated with the later rafts. Localised distributions of high amplitude surfaces located adjacent to the primary detachment surface are identified through amplitude extraction techniques. These are indicative of migration and collection of gas along the inclined lower surfaces of rafted blocks. They represent a gas risk for drilling operations and demonstrate the significance and possible hazards of glacitectonic deformation to the exploration industry. A model for raft detachment and emplacement is proposed whereby; i) saturated sediments within the palaeo-channel are subject to pressurisation associated with overburden caused by over-riding ice, ii) elevated pore-water pressure develops along the principle detachment surface of the rafts, iii) early stages of deformation consist of ice-distal (southern) blocks becoming emplaced at relatively low angles of inclination, iv) with more proximal blocks accumulating as an imbricate thrust-stack sequence at relatively high angles of elevation. This interpretation suggests a significant subglacial hydrological control upon raft detachment and transport, with fluctuations between an extensional and compressive deformation regime caused by a switch from actively advancing glacial conditions to an oscillating ice-margin at this location. Tectono-stratigraphic evidence indicates that rafting occurring throughout the site is likely to be associated with a glacial advance of the Anglian (MIS 12).

  14. Glaciers and Late Quaternary glacial deposits of Turkey

    NASA Astrophysics Data System (ADS)

    Çiner, A.

    2003-04-01

    Turkish glaciers and Late Quaternary glacial deposits are observed in 3 regions: 1. The Taurus Mountain Range (Mediterranean coast and SE Turkey): Two thirds of the present day glaciers are concentrated in the SE part. Among these mountains, Mount Cilo (4168 m) alone supports more than ten glaciers, couple of them 4 km long. In the central part, Aladag (3756 m) and Bolkardag (3524 m) Mountains contain few small glaciers. Small ice caps developed on top of both mountains in Pleistocene. Several U-shaped valleys were carved by glaciers that formed different types of moraines. Even though there are signs of past glacial activity in Beydag (3086 m), Akdag (3016 m) and Sandiras Mountains (2295 m) no glaciers are present in the W Taurus Mountains today. 2. The Pontic Mountain Range (E Black Sea coast): The highest peak is Mount Kaçkar (3932 m) where five glaciers are developed. Several other mountains such as Verçenik (3710 m), Bulut (3562 m), Altiparmak (3353 m), Karagöl (3107 m) and Karadag (3331 m) also support various glaciers. Large U-shaped valleys containing terminal, lateral and ground moraines are observed although the present humid climatic conditions altered most of them. 3. Volcanoes and independent mountain chains scattered in the Anatolian Plateau: The volcanoes in the interior of the country support active glaciers and show signs of past glacial activity. Among them, Mount Agri (Ararat) (5165 m) is the only mountain on which a 10 km2 recent ice cap is developed. Eleven glaciers emerged from the summit, descending down to 3900 m on the N-facing slope and 4200 m on the S facing slope. The near absence of moraines can be explained by the lack of confining ridges to control valley glaciers, by insufficient debris load in the ice to form moraines and by volcanic eruptions that later covered the pre-existing moraines. Other important volcanoes, Mount Süphan (4058 m) and Mount Erciyes (3916 m) also contain active glaciers and well preserved moraines. Apart from the volcanoes, few other mountains in Central Anatolia, such as Uludag (2543 m), Mercan (3368 m) and Mescid (3239 m) bear signs of past glacial activity. The absence of dating of the morainic landforms makes it difficult to assign a precise age to the past glacial periods. However a project that aims to establish glacial chronlogies for the above mentioned mountains by using in situ cosmogenic 36Cl in the moraines, is recently developed. The data available on glaciers indicate that the most recent glacier retreat probably started at the beginning of the 20th century, becoming faster since the 1930's. This shrinkage trend is yet to be quantified by additional field observations in order to understand the glacier evolution of Turkey.

  15. Pleistocene history of the subarctic pacific: periodic and step-wise changes in temperature and precipitation

    SciTech Connect

    Sancetta, C.

    1985-01-01

    Piston core V20-110 records the last 1.8 Ma of North Pacific conditions. Samples at 11 Ka intervals were analyzed for calcite, foraminifera, diatoms, and IRD. Data implies that precipitation varied on a 41-Ka cycle from latest Pliocene to 700 Ka. During the late Pleistocene precipitation, like temperature, has been dominated by a 100 Ka period. There are six distinct intervals, bounded by rapid, unidirectional changes: a) 1.8-1.6 Ma-mostly ice-free, warm (approx.15/sup 0/C), high precipitation, moderately well-mixed waters; b) 1.6-1.3 Ma-slightly cooler (approx.12/sup 0/C), precipitation increasing to maximum, waters well mixed; c) 1.3-1.1 Ma-change to winter precipitation, slightly colder, increased seasonal contrast. d) 1.1 Ma-700 Ka-beginning of glacial mode; periods of high annual precipitation and strong stratification alternate with lower precipitation and more mixing, temperatures cool (approx.10/sup 0/C); e) 700-300 Ka-strong 100-ka cycles, high winter precipitation and low temperatures (5-10/sup 0/C) during glacials; interglacials drier and warmer, more mixing; summer precipitation low throughout; f) 300-0 Ka-glacial maxima cold (<5/sup 0/C), dry, well-mixed; interglacial maxima cool (approx.10/sup 0/C), summer precipitation, well-mixed; transitions high winter precipitation and strong vertical stratification. CCD fluctuating close to 2700 m, being above during glacials and transitions, below only during peak interglacials.

  16. Radiolarian Indices of Paleoproductivity Variation in the late Pleistocene Benguela Upwelling System, ODP Site 1084

    NASA Astrophysics Data System (ADS)

    Bittniok, B. B.; Lazarus, D. B.; Diester-Haass, L.; Billups, K.; Meyers, P.

    2006-12-01

    Changes in export productivity play a significant role in ocean carbon budgets and global climate change. Proxies for export productivity can be difficult to interpret: benthic foraminifera accumulation rates (BFAR) can be affected by carbonate dissolution in organic-carbon rich sediments; bulk opal can be affected by silica limitation of source waters. Recent work (Lazarus et al. 2006; Mar. Micropal.) has shown that a new index based on radiolarian faunal changes (WADE ratio) correlates well to total organic carbon (TOC) values from the same samples over the long term (latest Miocene-Recent) history of productivity in the Benguela Upwelling System (BUS). We present new data on variation in export productivity proxies (WADE, TOC, carbonate, radiolarian opal, BFAR) for the last glacial-interglacial cycle from ODP Site 1084, located just offshore from the main coastal upwelling cells of the BUS. Our age model, from mean Quaternary sedimentation rates (Leg 175 Scientific Results), is in accordance with cyclic variation in other climate sensitive parameters (carbonate and color reflectance). Although opal content and radiolarian preservation is only moderate in our samples, WADE values vary significantly and suggest higher productivity during the last glacial, in accordance with current interpretations of BUS history. Radiolarian opal accumulation is also higher during the last glacial, suggesting that silica limitation (opal paradox) conditions did not dominate over this time period. Similar results for bulk opal have been reported from late Quaternary piston cores from the more northerly Congo upwelling region (Schneider et al, 1997; Paleoc.). We conclude that WADE ratios are a useful proxy for late Pleistocene productivity in the BUS at glacial- interglacial time scales.

  17. Glacial geomorphology of the Torres del Paine region (southern Patagonia): Implications for glaciation, deglaciation and paleolake history

    NASA Astrophysics Data System (ADS)

    Garca, Juan-Luis; Hall, Brenda L.; Kaplan, Michael R.; Vega, Rodrigo M.; Strelin, Jorge A.

    2014-01-01

    The processes affecting paleoclimate variability and Pleistocene glacial landscape development in the southern mid-latitudes remain poorly understood, in part because of the scarcity of comprehensive, well-studied records. Glacial landforms are invaluable for reconstructing past ice-sheet, climate, and associated environmental changes along the southern Andes, but there are significant spatial and temporal gaps in existing data. In this paper, we present new geomorphic and sedimentologic analyses, including surficial maps, for the Torres del Paine region (51S, 73W), southern South America. Our findings provide a new framework for understanding changes in the regional glacier history and Pleistocene landscape development. Glacial extent during the local last glacial maximum (LGM) remains unknown but new chronological data supported by geomorphic evidence afford evidence for a larger ice sheet at Torres del Paine than previously assumed. Deglaciation from the local LGM was underway by 17,400 200 (1?) cal. yr. BP. As opposed to previous suggestions, we have found that most of the moraines fringing the lakes in the Torres del Paine national park were deposited during a late-glacial expansion that occurred between 14,100 and 12,500 cal. yr. BP. Late-glacial advances also have been documented recently for the ltima Esperanza and Lago Argentino basins to the south and north of Torres del Paine, respectively, suggesting an overall regional ice response to a climate signal. The Tehuelche paleolake accompanied each of the ice-sheet fluctuations in Torres del Paine. New data document at least three main phases of this paleolake, which drained eastward to the Atlantic Ocean, while the Andes gaps were blocked with ice. During the late phase of glacial lake formation, when water levels reached 125-155 m a.s.l., the lake likely merged with paleolake Consuelo in the ltima Esperanza area at the end of the last glaciation. Lake Tehuelche in Torres del Paine had drained into the Pacific Ocean by the late-glacial period, suggesting that ice southwest of Torres del Paine may have retreated back into the mountains by this time.

  18. Latest Pleistocene and Holocene glacier fluctuations on Mount Baker, Washington

    NASA Astrophysics Data System (ADS)

    Osborn, Gerald; Menounos, Brian; Ryane, Chanone; Riedel, Jon; Clague, John J.; Koch, Johannes; Clark, Douglas; Scott, Kevin; Davis, P. Thompson

    2012-08-01

    Glaciers on stratovolcanoes of the Pacific Northwest of North America offer opportunities for dating late Pleistocene and Holocene glacier advances because tephra and fossil wood are common in lateral moraines and in glacier forefields. We capitalize on this opportunity by examining the Holocene glacial record at Mount Baker, an active stratovolcano in northwest Washington. Earlier workers concluded that glaciers on Mount Baker during the early Holocene were more extensive than during the Little Ice Age and hypothesized that the explanation lay in unusual climatic or hypsometric effects peculiar to large volcanoes. We show that the main argument for an early Holocene glacier advance on Mount Baker, namely the absence of ca 10,000-year-old tephra on part of the south flank of the mountain, is incorrect. Moreover, a lake-sediment core indicates that a small cirque moraine previously thought be of early Holocene age is also likely older than the tephra and consequently of late Pleistocene age. Lateral and end moraines and wood mats ca 2 km downvalley of the present snout of Deming Glacier indicate that an advance during the Younger Dryas interval was little more extensive than the climactic Little Ice Age advance. Tephra and wood between tills in the left lateral moraine of Easton Glacier suggest that ice on Mount Baker was restricted in the early Holocene and that Neoglaciation began ca 6 ka. A series of progressively more extensive Neoglacial advances, dated to about 2.2, 1.6, 0.9, and 0.4 ka, are recorded by stacked tills in the right lateral moraine of Deming Glacier. Intervening retreats were long enough to allow establishment of forests on the moraine. Wood mats in moraines of Coleman and Easton glaciers indicate that Little Ice Age expansion began before 0.7 ka and was followed by retreat and a readvance ca 0.5 ka. Tree-ring and lichen data indicate glaciers on the south side of the mountain reached their maximum extents in the mid-1800s. The similarity between glacier fluctuations at Mount Baker and those elsewhere in the Cascades and in British Columbia suggests a coherent history of Holocene climate change over a broad area of the western Cordillera. We found no evidence that glaciers on stratovolcanoes behave differently than glaciers elsewhere.

  19. Remote identification of a gravel laden Pleistocene river bed

    NASA Technical Reports Server (NTRS)

    Scholen, Douglas E.

    1993-01-01

    The abundance of gravel deposits is well known in certain areas across the Gulf of Mexico coastal plain, including lands within several National Forests. These Pleistocene gravels were deposited following periods of glacial buildup when ocean levels were down and the main river channels had cut deep gorges, leaving the subsidiary streams with increased gradients to reach the main channels. During the warm interglacial periods that followed each glaciation, melting ice brought heavy rainfall and torrents of runoff carrying huge sediment loads that separated into gravel banks below these steeper reaches where abraiding streams, developed. As the oceans rose again, filling in the main channels, these abraiding areas were gradually flattened and covered over by progressively finer material. Older terraces were uplifted by tectonic movements associated with the Gulf Coastal Plain, and the subsequent erosional processes gradually brought the gravels closer to the surface. The study area is located on the Kisatchie National Forest, in central Louisiana, near Alexandria. Details of the full study have been discussed elsewhere. The nearest source of chert is in the Ouachita Mountains located to the northeast. The Ouachita River flows south, out of these mountains, and in Pleistocene times probably carried these chert gravels into the vicinity of the present day Little River Basin which lies along the eastern boundary of the National Forest. Current day drainages cross the National Forest from west to east, emptying into the Little River on the east side. However, a north-south oriented ridge of hills along the west side of the Forest appears to be a recent uplift associated with the hinge line of the Mississippi River depositional basin further to the east, and 800,000 years ago, when these gravels were first deposited during the Williana interglacial period, the streams probably flowed east to west, from the Little River basin to the Red River basin on the west side of the Forest. Within the National Forest and north of Alexandria, along Fish Creek, and east and west of an area known as Breezy Hill, exist several small, worked out gravel pits on privately owned blocks of land, formerly used by the state and county road departments. The pattern presented by these pits gives the impression of a series of north-south drainages lacing through the Forest, probable tributaries to Fish Creek which flows south of east from the west side of the Forest to empty into the Little River. Because of this predominant north-south pattern, no consideration was given to areas between these drainages during early gravel exploration efforts.

  20. Glacial cycles and the growth and destruction of Alaska volcanoes

    NASA Astrophysics Data System (ADS)

    Coombs, M. L.; Calvert, A. T.; Bacon, C. R.

    2014-12-01

    Glaciers have affected profoundly the growth, collapse, preservation, and possibly, eruptive behavior of Quaternary stratovolcanoes in Alaska. Holocene alpine glaciers have acted as effective agents of erosion on volcanoes north of ~55 N and especially north of 60 N. Cook Inlet volcanoes are particularly vulnerable as they sit atop rugged intrusive basement as high as 3000 m asl. Holocene glaciers have swept away or covered most of the deposits and dome lavas of frequently active Redoubt (60.5 N); carved through the flanks of Spurr's active vent, Crater Peak (61.3 N); and all but obscured the edifice of Hayes (61.6 N), whose Holocene eruptive history is known almost exclusively though far-traveled tephra and flowage deposits. Relationships between Pleistocene eruptive histories, determined by high-precision Ar-Ar dating of lava flows, and marine oxygen isotope stages (MIS) 2-8 (Bassinot et al., 1994, EPSL, v. 126, p. 91-108) vary with a volcano's latitude, size, and elevation. At Spurr, 26 ages cluster in interglacial periods. At Redoubt, 28 ages show a more continual eruptive pattern from the end of MIS 8 to the present, with a slight apparent increase in output following MIS 6, and almost no preservation before 220 ka. Veniaminof (56.2 N) and Emmons (55.5N), large, broad volcanoes with bases near sea level, had voluminous eruptive episodes during the profound deglaciations after MIS 8 and MIS 6. At Akutan (54.1 N), many late Pleistocene lavas show evidence for ice contact; ongoing dating will be able to pinpoint ice thicknesses. Furthest south and west, away from thick Pleistocene ice on the Alaska Peninsula and mainland, the Tanaga volcanic cluster (51.9 N) has a relatively continuous eruptive record for the last 200 k.y. that shows no clear-cut correlation with glacial cycles, except a possible hiatus during MIS 6. Finally, significant edifice collapse features have been temporally linked with deglaciations. A ~10-km3 debris-avalanche deposit from Spurr directly overlies bedrock, suggesting that edifice collapse closely followed MIS 2. The geologic history of Veniaminof suggests possible massive edifice collapse following MIS 6. A stack of westward-dipping lavas and breccias on the east flank of Redoubt Volcano erupted during MIS 6, and may have also failed during the major deglaciation of MIS 5.5.

  1. Glacially driven formation of high-elevation, low-relief landscapes in eastern Tibet

    NASA Astrophysics Data System (ADS)

    Oskin, M. E.; Zhang, H.; Liu-Zeng, J.; Zhang, P.; Reiners, P. W.; Xiao, P.

    2014-12-01

    Low-relief landscapes in central and eastern Tibet have been interpreted as relicts formed by lowland fluvial erosion before being uplifted to elevations exceeding 4 km a.s.l. The timing and amount of surface uplift indicated by these surfaces in Tibet and other orogens provide important constraints on geodynamic processes of crustal thickening and plateau formation. Low-temperature thermochronology and catchment-average 10Be concentrations indicate limited and low rates of long- and short-term erosion of these landscapes. But it is their morphology, dominated by gentle stream gradients, that drives the interpretation that these landscapes formed at much lower elevations than at present. Here we show for the plateau landscape of eastern Tibet that glacial erosion is ubiquitous along drainage divides that separate low-relief areas from deeply incised river gorges. The extent of late Pleistocene glaciation increases along a gradient of late Cenozoic exhumation from ~1 to >4 km indicated by apatite- and zircon-helium cooling ages. We interpret that glacial erosion effectively limits ridgeline elevations and promotes formation of low-relief landscapes in arid plateau interiors undergoing modest (<50 m Myr-1) exhumation rates. More intensive glacial erosion, associated with higher (>200 m Myr-1) exhumation rates nearer to plateau margins, produces bimodal topography, with low-relief cirques at high elevation and gentle, U-shape valleys below the equilibrium line altitudes (ELA). This yields similar mean elevations as nearby plateau surfaces, but with more rugged local relief. As rock uplift rate declines, these nascent plateau surfaces inherit low-gradient glaciated valley networks pinned by glacial erosion at their headwaters and smoothed by periglacial hillslope processes and transport-limited streams. Glacially driven formation of low-relief plateau landscapes within high-elevation eastern Tibet occurs in tandem with external drainage, and does not require uplift of a low-elevation peneplain.

  2. Glacially conditioned specific stream powers in low-relief river catchments of the southern Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    Phillips, R. T. J.; Desloges, J. R.

    2014-02-01

    Fluvial systems of the southern Laurentian Great Lakes region are carved into a complex glacial landscape shaped by continental ice and meltwater of the late Pleistocene. These glacially conditioned river catchments are typically small with drainage areas < 104 km2. A 10-m digital elevation model (DEM) is used to map the spatial distribution of stream gradient for 22 major river catchments of peninsular southern Ontario, which drain to base levels in the lower Great Lakes (Huron, St. Clair, Erie, and Ontario). Raw data from the DEM show stream gradients that exhibit multiscale variance from real and from artifact sources. Based on a vertical slice and multiple-pass moving-window averaging approach, slope data are generalised to the river reach scale (1-2 km) as a representative spatial scale for fluvial processes operating over Holocene timescales. Models of specific stream power are then compared with glacial landform and surface geology mapping. Inherited glacial signatures in river slope appear as deviations in a stream length-gradient index (SL/K index), where river reaches are frequently oversteepened or understeepened. Based on a slope-area analysis, and complementary to theories of channel pattern discrimination, constant stream power curves (with power-law exponent of - 0.4) provide a first-order approach to stratify river reaches in terms of glacial conditioning and expected planform morphologies. However, multiple-channel planform types are rare and localised in southern Ontario, indicating that oversteepened reaches with high stream powers may often be moderated by (1) sediment calibre, with cobble-beds from inherited glacial sediments; and/or (2) relative bank strength, with limited channel widening particularly in gravel and sand-bed channels. Further discrimination of glacially conditioned fluvial process domains will ultimately require consideration of alluvial floodplain characteristics in addition to general observations of river morphology and channel pattern.

  3. Amazonian and neotropical plant communities on glacial time-scales: The failure of the aridity and refuge hypotheses

    NASA Astrophysics Data System (ADS)

    Colinvaux, P. A.; De Oliveira, P. E.; Bush, M. B.

    2000-01-01

    Plants respond to Pleistocene climatic change as species, not as associations or biomes. This has been demonstrated unequivocally by paleobotanical data for temperate latitudes. In the far richer vegetations of the tropics species populations also fluctuated independently in response to climatic forcing, from their longlasting glacial states to the patterns of brief interglacials like the present and back again. We use pollen data to reconstruct the vegetation of the Amazon basin in oxygen isotope stages 3 and 2 of the last glaciation in order to measure how the plant populations of the Amazon responded to the global warming at the onset of the Holocene. We find that plant communities of the neotropics vent copious pollen to lake sediments and that this pollen yields powerful signals for community composition. Three continuous sedimentary records reaching through oxygen isotope stage 2 are available from the Amazon lowlands, those from Carajas, Lake Pata and marine deposits off the mouth of the Amazon River. All three records yield pollen histories of remarkable constancy and stability. By comparing them with deposits of equal antiquity from the cerrado (savanna) of central Brazil, we show that most of the Amazon lowlands remained under forest throughout a glacial cycle. This forest was never fragmented by open vegetation as postulated by the refugia hypothesis. Instead the intact forest of glacial times included significant populations of plants that are now montane, suggesting that the global warming of the early Holocene resulted in the expulsion of heat intolerant plants from the lowland forest. Pollen data from the Amazonian flank of the Andes and from Pacific Panama provide evidence that populations of these heat intolerant plants survive the heat of interglacials in part by maintaining large populations at cooler montane altitudes. Our conclusion that the Amazon lowlands were forested in glacial times specifically refutes the hypothesis of Amazonian glacial aridity. Accordingly we examine the geomorphological evidence for glacial aridity and find it wanting. Of the three paleodune systems reported for tropical South America, that of NE Brazil was active in the Holocene as well as the Pleistocene. Parts of NE Brazil were actually moister than now in late-glacial times. Paleodunes in the Pantanal have never been seen on the ground, and those in the Orinoco Llanos are undated and may be of any age since the Tertiary. Arkosic sands in the Amazon fan deposits came from the Andean foothills or from down cutting by rivers and cannot be evidence of a former arid land surface. White sands of Amazonia formed as podzols, not by aeolian activity. Such Amazonian stone lines as have received critical scrutiny are concretionary pisolites in stratigraphic formations that are more than ten million years old. Although the Amazon was never arid, modeling cooler glacial tropics gives plausibility to a somewhat drier Amazon in glacial times, a concept given substance by pollen data for the movement of ecotones in Rondonia, by stream histories in the Bolivian Andes, and by evidence for lowered lake levels at Carajas and Lake Pata. But this reduced precipitation was never enough to fragment the forest in the Amazon lowlands themselves. Pleistocene mammals of the Napo river valley in Ecuador were able to live along the river system in a forested landscape. Our data suggest that the Amazon forests have been stable since the start of the Pleistocene, a fact that has contributed to the storage of vast diversity. The coming anthropogenic global warming and CO 2 enrichment will add to the global warming already endured by Amazon biota in the Holocene. We think it possible that the expulsion from the lowland forests of heat intolerant species is already complete and that the forest property of maintaining its own microhabitat will allow the high species richness to survive more global warming, provided large enough tracts of forest are preserved.

  4. Temporal labyrinths of eastern Eurasian Pleistocene humans

    PubMed Central

    Wu, Xiu-Jie; Crevecoeur, Isabelle; Liu, Wu; Xing, Song; Trinkaus, Erik

    2014-01-01

    One of the morphological features that has been identified as uniquely derived for the western Eurasian Neandertals concerns the relative sizes and positions of their semicircular canals. In particular, they exhibit a relatively small anterior canal, a relatively larger lateral one, and a more inferior position of the posterior one relative to the lateral one. These discussions have not included full paleontological data on eastern Eurasian Pleistocene human temporal labyrinths, which have the potential to provide a broader context for assessing Pleistocene Homo trait polarities. We present the temporal labyrinths of four eastern Eurasian Pleistocene Homo, one each of Early (Lantian 1), Middle (Hexian 1), and Late (Xujiayao 15) Pleistocene archaic humans and one early modern human (Liujiang 1). The labyrinths of the two earlier specimens and the most recent one conform to the proportions seen among western early and recent modern humans, reinforcing the modern human pattern as generally ancestral for the genus Homo. The labyrinth of Xujiayao 15 is in the middle of the Neandertal variation and separate from the other samples. This eastern Eurasian labyrinthine dichotomy occurs in the context of none of the distinctive Neandertal external temporal or other cranial features. As such, it raises questions regarding possible cranial and postcranial morphological correlates of Homo labyrinthine variation, the use of individual Neandertal features for documenting population affinities, and the nature of late archaic human variation across Eurasia. PMID:25002467

  5. Mediterranean Outflow and surface water variability off southern Portugal during the early Pleistocene: A snapshot at Marine Isotope Stages 29 to 34 (1020-1135 ka)

    NASA Astrophysics Data System (ADS)

    Voelker, Antje H. L.; Salgueiro, Emilia; Rodrigues, Teresa; Jimenez-Espejo, Francisco J.; Bahr, Andr; Alberto, Ana; Loureiro, Isabel; Padilha, Maria; Rebotim, Andreia; Rhl, Ursula

    2015-10-01

    Centennial-to-millennial scale records from IODP Site U1387, drilled during IODP Expedition 339 into the Faro Drift at 558 m water depth, now allow evaluating the climatic history of the upper core of the Mediterranean Outflow (MOW) and of the surface waters in the northern Gulf of Cadiz during the early Pleistocene. This study focuses on the period from Marine Isotope Stages (MIS) 29 to 34, i.e. the interval surrounding extreme interglacial MIS 31. Conditions in the upper MOW reflect obliquity, precession and millennial-scale variations. The benthic ?18O signal follows obliquity with the exception of an additional, smaller ?18O peak that marks the MIS 32/31 transition. Insolation maxima (precession minima) led to poor ventilation and a sluggish upper MOW core, whereas insolation minima were associated with enhanced ventilation and often also increased bottom current velocity. Millennial-scale periods of colder sea-surface temperatures (SST) were associated with short-term maxima in flow velocity and better ventilation, reminiscent of conditions known from MIS 3. A prominent contourite layer, coinciding with insolation cycle 100, was formed during MIS 31 and represents one of the few contourites developing within an interglacial period. MIS 31 surface water conditions were characterized by an extended period (1065-1091 ka) of warm SST, but SST were not much warmer than during MIS 33. Interglacial to glacial transitions experienced 2 to 3 stadial/interstadial cycles, just like their mid-to-late Pleistocene counterparts. Glacial MIS 30 and 32 recorded periods of extremely cold (< 12 C) SST that in their climatic impact were comparable with the Heinrich events of the mid and late Pleistocene. Glacial MIS 34, on the other hand, was a relative warm glacial period off southern Portugal. Overall, surface water and MOW conditions at Site U1387 show a strong congruence with Mediterranean climate, whereas millennial-scale variations are closely linked to North Atlantic circulation changes.

  6. Ice-rafting from the British-Irish ice sheet since the earliest Pleistocene (2.6 million years ago): implications for long-term mid-latitudinal ice-sheet growth in the North Atlantic region

    NASA Astrophysics Data System (ADS)

    Thierens, M.; Pirlet, H.; Colin, C.; Latruwe, K.; Vanhaecke, F.; Lee, J. R.; Stuut, J.-B.; Titschack, J.; Huvenne, V. A. I.; Dorschel, B.; Wheeler, A. J.; Henriet, J.-P.

    2012-06-01

    The Plio-Pleistocene intensification of Northern Hemisphere continental ice-sheet development is known to have profoundly affected the global climate system. Evidence for early continental glaciation is preserved in sediments throughout the North Atlantic Ocean, where ice-rafted detritus (IRD) layers attest to the calving of sediment-loaded icebergs from circum-Atlantic ice sheets. So far, Early-Pleistocene IRD deposition has been attributed to the presence of high-latitudinal ice sheets, whereas the existence and extent of ice accumulation in more temperate, mid-latitudinal regions remains enigmatic. Here we present results from the multiproxy provenance analysis of a unique, Pleistocene-Holocene IRD sequence from the Irish NE Atlantic continental margin. There, the Challenger coral carbonate mound (IODP Expedition 307 site U1317) preserved an Early-Pleistocene record of 16 distinctive IRD events, deposited between ca 2.6 and 1.7 Ma. Strong and complex IRD signals are also identified during the mid-Pleistocene climate transition (ca 1.2 to 0.65 Ma) and throughout the Middle-Late Pleistocene interval. Radiogenic isotope source-fingerprinting, in combination with coarse lithic component analysis, indicates a dominant sediment source in the nearby British-Irish Isles, even for the oldest, Early-Pleistocene IRD deposits. Hence, our findings demonstrate, for the first time, repeated and substantial (i.e. marine-terminating) ice accumulation on the British-Irish Isles since the beginning of the Pleistocene. Contemporaneous expansion of both high- and mid-latitudinal ice sheets in the North Atlantic region is therefore implied at the onset of the Pleistocene. Moreover, it suggests the recurrent establishment of (climatically) favourable conditions for ice sheet inception, growth and instability in mid-latitudinal regions, even in the earliest stages of Northern Hemisphere glacial expansion and in an obliquity-driven climate system.

  7. Ice Age Reboot: Thermohaline Circulation Crisis during the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Pena, L.; Goldstein, S. L.

    2014-12-01

    The mid-Pleistocene transition (MPT) marked a fundamental change in glacial-interglacial periodicity, when it increased from ~41- to 100-kyr cycles and developed higher amplitude climate variability. Because it took place without significant changes in the Milankovitch forcing, this fundamental change must reflect either non-linear responses of the climate system to these external forcings, or internal changes in the ocean-atmosphere-cryosphere system that led to longer periodicities and more intense glacial periods. We document using Nd isotopes a major disruption of the ocean thermohaline circulation (THC) system during the MPT between MIS 25-21 at ~950-860 ka, which effectively marks the first 100-kyr cycle, including an exceptional weakening through critical interglacial MIS 23 at ~900 ka. The data are from ODP Sites 1088 (41°8.163'S, 13°33.77'E, 2082m) and 1090 (42°54.82'S, 8°53.98E', 3702m) in the SE Atlantic Subantarctic Zone, near the upper and lower boundaries of NADW and Circumpolar Deep Water (CDW). Given evidence for nearly stable NADW and North Pacific Water (NPW) ɛNd-values over the last 2 Ma, we interpret the ɛNd variations to reflect changes in the NADW:NPW mixing fractions. During the studied pre-MPT 41-kyr world (MIS 31-25, 1,100-950 ka), at both sites the differences in glacial and interglacial ɛNd-values are small, indicating strong glacial as well as interglacial export of NADW. A major weakening of NADW export occurred during MIS 24-22, including MIS 23, which is unique as the only known interglacial in which the THC did not strengthen, and thus can be considered as a 'trans-glacial' period. The recovery into the post-MPT 100-kyr world is characterized by continued weak glacial THC. We conclude that the MPT ocean circulation crisis 'rebooted' the pacing and intensity of ice ages and facilitated the coeval drawdown of atmospheric CO2 and high latitude ice sheet growth, generating the conditions that stabilized 100-kyr cycles.

  8. Thermohaline Circulation Crisis and Changes Through the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Goldstein, S. L.; Pena, L.

    2013-12-01

    The Mid-Pleistocene Transition (MPT) marked a fundamental change in glacial-interglacial periodicity, transitioning from ~41,000 to 100,000 year cycles, accompanied by higher amplitude climate variability. It occurred without a significant change in orbital forcing, and thus its causes are poorly understood. We report major changes in the pre- and post-MPT mode of the ocean thermohaline circulation (THC), and a THC crisis during the MPT, from Nd isotopes in ODP Sites 1088 (~42S, 2082m) and 1090 (~43S, 3702m). The core locations are at the transition between the South Atlantic and the Southern oceans, a major gateway for the exchange of northern- and southern-sourced water masses. The new data show that in the ';40-kyr world' prior to the MPT, NADW export was strong during both interglacials and glacials. At ~900 ka the THC system underwent a major crisis, with an unprecedented weakening in NADW export during Marine Isotope Stages (MIS) 22-24. The recovery of the THC system in the post-MPT ';100-kyr world' is characterized by strong THC during interglacials, similar to pre-MPT interglacials, but much weaker THC during glacials. The ';THC crisis' interval includes MIS 23, which is unique as an interglacial where the THC operated in the same weak mode as post-MPT glacials. The MIS 22-24 interval has been recognized as a time of abrupt atmospheric pCO2 drawdown (Hoenisch et al. 2009) and significant cooling of ocean deep water, and Antarctic ice sheet expansion (Elderfield et al. Science 2012). Our data indicate that THC changes played an important role as a primary driving force, and helped to generate a series of positive feedbacks. This drastic change in deep-ocean circulation had important implications for the coeval drawdown of atmospheric pCO2, and the absence of a strong THC system through a glacial-to-interglacial-to-glacial cycle had a major impact on high latitude ice sheet growth. We suggest that the weak NADW export during MIS 24-22 resulted in reduced vertical exchange between Antarctic surface and deep waters, which helped to induce the drop in atmospheric pCO2, and in turn generated significant cooling which facilitated ice sheet expansion. These impacts were amplified by anomalously low Southern Hemisphere summer insolation during MIS 23, which resulted in suppressed ice sheet melting. Increased sea-ice coverage around the Antarctic continent during this time period may have generated increased AABW formation, which would have further drawn down CO2 from the atmosphere.

  9. Power oscillator

    DOEpatents

    Gitsevich, Aleksandr

    2001-01-01

    An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  10. Late-glacial to holocene changes in winds, upwelling, and seasonal production of the northern California current system

    USGS Publications Warehouse

    Sancetta, C.; Lyle, M.; Heusser, L.; Zahn, R.; Bradbury, J.P.

    1992-01-01

    A core 120 km off the coast of southern Oregon was examined for changes in lithology, diatoms, and pollen over the past 30,000 yr. Primary production during the late Pleistocene was about half that of the Holocene. Evidence from diatoms and pollen indicates that summer upwelling was much weaker, implying an absence of strong northerly winds. Early Pliocene diatoms found throughout the late Pleistocene section were probably derived from diatomites east of the Cascades and provide evidence for strong easterly winds over a dry continental interior. The findings verify predictions of a climate model based on glacial maximum conditions. There is no compelling evidence for a climatic reversal corresponding to the European Younger Dryas chron. During the early Holocene (9000-7000 yr B.P.) there may have been years when winds were insufficiently strong to support upwelling, so that warm stratified waters lay closer to the coast. ?? 1992.

  11. The Pleistocene climate-controlled fluvial sedimentary record in the Be?chatw mine (central Poland)

    NASA Astrophysics Data System (ADS)

    Zieli?ski, Tomasz

    2007-01-01

    Sedimentological analyses of fluvial formations in the Be?chatw mine have yielded results that have more than regional significance. They concern the reaction of rivers to climatic changes in the Pleistocene. Changes in river geometry and their depositional records are examined from two fluvial formations. These formations represent different times, but show similar palaeoenvironmental changes. Cool temperate climate conditions resulted in meandering (or anastomosing) river sedimentation, which was controlled by equalized precipitation and by a well-developed vegetation cover. Cold periglacial climate conditions resulted in braided river sedimentation immediately before the Glacial Maximum, with high discharges and a high sediment load. The palaeoclimatic and palaeohydrologic analyses of the Weichselian fluvial deposits in Be?chatw provide additional information to that from similar studies in Germany and the Netherlands, thus jointly resulting in a consistent palaeogeographic model of western-middle Europe.

  12. Glacial effects limiting mountain height.

    PubMed

    Egholm, D L; Nielsen, S B; Pedersen, V K; Lesemann, J-E

    2009-08-13

    The height of mountain ranges reflects the balance between tectonic rock uplift, crustal strength and surface denudation. Tectonic deformation and surface denudation are interdependent, however, and feedback mechanisms-in particular, the potential link to climate-are subjects of intense debate. Spatial variations in fluvial denudation rate caused by precipitation gradients are known to provide first-order controls on mountain range width, crustal deformation rates and rock uplift. Moreover, limits to crustal strength are thought to constrain the maximum elevation of large continental plateaus, such as those in Tibet and the central Andes. There are indications that the general height of mountain ranges is also directly influenced by the extent of glaciation through an efficient denudation mechanism known as the glacial buzzsaw. Here we use a global analysis of topography and show that variations in maximum mountain height correlate closely with climate-controlled gradients in snowline altitude for many high mountain ranges across orogenic ages and tectonic styles. With the aid of a numerical model, we further demonstrate how a combination of erosional destruction of topography above the snowline by glacier-sliding and commensurate isostatic landscape uplift caused by erosional unloading can explain observations of maximum mountain height by driving elevations towards an altitude window just below the snowline. The model thereby self-consistently produces the hypsometric signature of the glacial buzzsaw, and suggests that differences in the height of mountain ranges mainly reflect variations in local climate rather than tectonic forces. PMID:19675651

  13. Precipitation Isotopes Reveal Intensified Indonesian Monsoon Circulation During the Dry Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Konecky, B. L.; Russell, J. M.; Vogel, H.; Bijaksana, S.; Huang, Y.

    2014-12-01

    The Indo-Pacific Warm Pool (IPWP) invigorates the oceanic-atmospheric circulation in the tropics, with far-reaching climate impacts that extend into the high latitudes. A growing number of deglacial proxy reconstructions from the region have revealed the importance of both high- and low-latitude climate processes to IPWP rainfall during the late Pleistocene. Many of these proxies reconstruct the oxygen and hydrogen isotopic composition of rainfall (δ18Oprecip, δDprecip), a powerful tool for understanding changes in climate. However, an increasing number of studies from the region have highlighted the tendency for δ18Oprecip and δDprecip to reflect regional and/or remote circulation processes rather than local rainfall amounts, complicating the reconstruction of IPWP hydroclimate. To better understand high- and low-latitude drivers of late Pleistocene hydroclimate in the IPWP, precipitation isotopic reconstructions must be constrained with both modern observations and independent proxies for rainfall amount. We present a reconstruction of δDprecip using leaf wax compounds preserved in the sediments of Lake Towuti, Sulawesi, from 60,000 years before present to today. We interpret our proxy record with the aid of a new precipitation isotopic dataset from our study site, with daily rainfall isotope measurements to constrain the processes controlling δDprecip. Our Lake Towuti δDwax record is strikingly similar to a speleothem δ18O record from southern Indonesia (Ayliffe et al., 2013) and shares features with other nearby records spanning the Last Glacial Maximum to present. Together, these records indicate that monsoon circulation was intensified in central and southern Indonesia during the glacial period. However, other independent rainfall proxies from Lake Towuti indicate that dry conditions accompanied the intensified monsoon. Regional-scale isotopic depletion during the dry glacial period may have arisen from dynamical and other fractionating processes that are evident in our modern precipitation isotopic data during the monsoon season. We use these findings to reconcile some key differences among proxy reconstructions from the region, and to examine the influence of high-latitude and glacial processes on IPWP glacial climate.

  14. Using Climate Models to Evaluate Mechanisms of Glacial Inception

    NASA Technical Reports Server (NTRS)

    Oglesby, Robert J.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The initiation and subsequent growth of an ice sheet or large glacier is based on two primary factors: 1. Most fundamentally, a region must exist with a positive net snow accumulation, that is, cold season snowfall exceeds warm season snowmelt. Because snow can melt very rapidly, in a practical sense this probably means that little or no snow melt should occur in the warm season (mountain glaciers being one possible exception). 2. When sufficient ice builds in a region with a positive net snow accumulation, the ice will flow into adjoining regions with a negative mass balance. Feedbacks can also then arise between the emerging ice sheet and the overall climate, which, among other effects, may cause the mass balance in that region to turn positive. A key question is the relative importance of these two factors. In particular, is it possible for a large lowland region to experience a positive mass balance, such that the ice sheet can arise largely 'in-situ'? Or instead are uplands necessary, such that essentially mountain glaciers form first, and then, under the right conditions, grow and coalesce, eventually spreading out into the lowlands? This is probably the single most fundamental question to be addressed in the modeling of glacial inception. Other key questions then focus on how the (upland or low-land) positive mass balance is obtained at some times, but not others (the ice sheets are not continuously present). For Northern Hemisphere ice sheets in particular, what climatic conditions can lead to abundant winter snowfall in the Canadian Arctic and northern Labrador in conjunction with cool summertime conditions? Are both required, or will cool summer conditions alone suffice? Conversely, are a few years of abnormally heavy snowfall all that is required to trigger glacial inception? A major need at present is for carefully constructed climate model studies aimed at addressing these questions. A successful strategy will almost certainly require more than just a global model; while the global climate model might be necessary to properly simulate large-scale forcing, such models have insufficient spatial resolution to adequately address the roles of topography and the nature of the land surface. Necessary also is the use of a high-resolution regional climate model (in conjunction with a global model). Possible forcing mechanisms of Pleistocene ice ages are well known (e.g., orbital forcing; CO2 fluctuations) but we must understand and be able to successfully model the actual processes involved in glacial inception before we can fully understand the true roles played by these forcing mechanisms.

  15. Stability of the Laurentide Ice Sheet Since the Middle Pleistocene

    NASA Astrophysics Data System (ADS)

    Miller, G. H.; Briner, J. P.; Lifton, N. A.; Anderson, R.; Finkel, R. C.

    2006-12-01

    The final Pleistocene remnants of the Laurentide Ice Sheet persisted on Baffin Island, Arctic Canada, only disappearing in the middle Holocene. The central plateau of Baffin Island is thought to have been the initial locus of ice-sheet growth during ice-age cycles. Discordant cosmogenic nuclide exposure ages derived from 10Be, 26Al, and 14C extracted from quartz in rocky summits along the eastern rim of the central Baffin Island plateau provide constraints on the timing and duration of intervals when the plateau was free of Laurentide ice. In situ 14C records the duration of exposure during the present interglaciation; any previously acquired 14C decayed below detection limits beneath thick Laurentide ice during the last glaciation. The in situ 14C exposure ages for three samples adjacent to an extant cold-based ice cap 1200 m asl suggest only 8 to 10 kyr of ice-free conditions during the Holocene. Disequilibrium between 10Be and 26Al concentrations in the same samples can be explained by brief (ca. 10 kyr) intervals of exposure during peak interglaciations (MIS 11, 9, 7, 5e, and 1), separated by long (ca. 50 to 100 kyr) intervals of complete shielding beneath a thick, cold- based Laurentide Ice Sheet. These data suggest that once the ice sheet formed following peak interglaciations, at least its northeastern core remained intact through the entire glacial cycle, with ice thickness of ca. 2 km over Foxe Basin. Anything less than this configuration would result in exposure of the high summits from which are samples were derived. The volume of ice required to maintain this core of the Laurentide Ice Sheet represents at least 10 m of sea level.

  16. Ecological consequences of early Late Pleistocene megadroughts in tropical Africa.

    PubMed

    Cohen, Andrew S; Stone, Jeffery R; Beuning, Kristina R M; Park, Lisa E; Reinthal, Peter N; Dettman, David; Scholz, Christopher A; Johnson, Thomas C; King, John W; Talbot, Michael R; Brown, Erik T; Ivory, Sarah J

    2007-10-16

    Extremely arid conditions in tropical Africa occurred in several discrete episodes between 135 and 90 ka, as demonstrated by lake core and seismic records from multiple basins [Scholz CA, Johnson TC, Cohen AS, King JW, Peck J, Overpeck JT, Talbot MR, Brown ET, Kalindekafe L, Amoako PYO, et al. (2007) Proc Natl Acad Sci USA 104:16416-16421]. This resulted in extraordinarily low lake levels, even in Africa's deepest lakes. On the basis of well dated paleoecological records from Lake Malawi, which reflect both local and regional conditions, we show that this aridity had severe consequences for terrestrial and aquatic ecosystems. During the most arid phase, there was extremely low pollen production and limited charred-particle deposition, indicating insufficient vegetation to maintain substantial fires, and the Lake Malawi watershed experienced cool, semidesert conditions (<400 mm/yr precipitation). Fossil and sedimentological data show that Lake Malawi itself, currently 706 m deep, was reduced to an approximately 125 m deep saline, alkaline, well mixed lake. This episode of aridity was far more extreme than any experienced in the Afrotropics during the Last Glacial Maximum (approximately 35-15 ka). Aridity diminished after 95 ka, lake levels rose erratically, and salinity/alkalinity declined, reaching near-modern conditions after 60 ka. This record of lake levels and changing limnological conditions provides a framework for interpreting the evolution of the Lake Malawi fish and invertebrate species flocks. Moreover, this record, coupled with other regional records of early Late Pleistocene aridity, places new constraints on models of Afrotropical biogeographic refugia and early modern human population expansion into and out of tropical Africa. PMID:17925446

  17. Glacioisostatic influences on Virginia's late Pleistocene coastal plain deposits

    NASA Astrophysics Data System (ADS)

    Scott, Timothy W.; Swift, Donald J. P.; Whittecar, G. Richard; Brook, George A.

    2010-03-01

    The late Pleistocene of Virginia's outer coastal plain consists of sediments dated to marine isotope stages (MIS) 5 and 3. Two members from the Tabb Formation south of the Chesapeake Bay in southeastern Virginia and two formations east of the bay on the southern Delmarva Peninsula were dated using optically stimulated luminescence (OSL). The stratigraphically older Butlers Bluff Member yielded OSL ages of 70 ka (62-78 ka) (MIS-5a), and the younger Poquoson Member and Wachapreague Formation, MIS-3 ages of approximately 43 ka (33-50 ka) and 42 ka (33-54 ka), respectively. These shoreface and near-shore geologic units reached maximum altitudes ranging from 3 to 12 m above present sea level, and were deposited when established glacial-eustatic sea-level curves suggest that sea levels were significantly lower than present by approximately 40 m. If these new ages and the sea-level curves are correct, there must have been regional uplift of more than 40 m, probably due to isostatic adjustments of forebulges peripheral to North American ice sheets when they were at their maxima during MIS-6 and MIS-2. If the late MIS-6 forebulge collapse continued throughout MIS-5 and MIS-4, we propose that regional land elevations may have been low enough for deposition to occur during the lower eustatic sea levels of MIS-3. During late MIS-3, the units experienced renewed uplift followed by subsidence to present-day elevations. If this paraglacial region is not yet in isostatic equilibrium and still requires further forebulge subsidence, this could explain the present-day altitude and age discrepancies associated with these relict marine deposits.

  18. Canyon Creek: A late Pleistocene vertebrate locality in interior Alaska

    NASA Astrophysics Data System (ADS)

    Weber, Florence R.; Hamilton, Thomas D.; Hopkins, David M.; Repenning, Charles A.; Haas, Herbert

    1981-09-01

    The Canyon Creek vertebrate-fossil locality is an extensive road cut near Fairbanks that exposes sediments that range in age from early Wisconsin to late Holocene. Tanana River gravel at the base of the section evidently formed during the Delta Glaciation of the north-central Alaska Range. Younger layers and lenses of fluvial sand are interbedded with arkosic gravel from Canyon Creek that contains tephra as well as fossil bones of an interstadial fauna about 40,000 years old. Solifluction deposits containing ventifacts, wedge casts, and rodent burrows formed during a subsequent period of periglacial activity that took place during the maximum phase of Donnelly Glaciation about 25,000-17,000 years ago. Overlying sheets of eolian sand are separated by a 9500-year-old paleosol that may correlate with a phase of early Holocene spruce expansion through central Alaska. The Pleistocene fauna from Canyon Creek consists of rodents (indicated by burrows), Mammuthus primigenius (woolly mammoth), Equus lambei (Yukon wild ass), Camelops hesternus (western camel), Bison sp. cf. B. crassicornis (large-horned bison), Ovis sp. cf. O. dalli (mountain sheep), Canis sp. cf. C. lupus (wolf), Lepus sp. cf. L. othus or L. arcticus (tundra hare), and Rangifer sp. (caribou). This assemblage suggests an open landscape in which trees and tall shrubs were either absent or confined to sheltered and moist sites. Camelops evidently was present in eastern Beringia during the middle Wisconsin interstadial interval but may have disappeared during the following glacial episode. The stratigraphic section at Canyon Creek appears to demonstrate that the Delta Glaciation of the north-central Alaska Range is at least in part of early Wisconsin age and was separated from the succeeding Donnelly Glaciation by an interstadial rather than interglacial episode.

  19. Ecological consequences of early Late Pleistocene megadroughts in tropical Africa

    PubMed Central

    Cohen, Andrew S.; Stone, Jeffery R.; Beuning, Kristina R. M.; Park, Lisa E.; Reinthal, Peter N.; Dettman, David; Scholz, Christopher A.; Johnson, Thomas C.; King, John W.; Talbot, Michael R.; Brown, Erik T.; Ivory, Sarah J.

    2007-01-01

    Extremely arid conditions in tropical Africa occurred in several discrete episodes between 135 and 90 ka, as demonstrated by lake core and seismic records from multiple basins [Scholz CA, Johnson TC, Cohen AS, King JW, Peck J, Overpeck JT, Talbot MR, Brown ET, Kalindekafe L, Amoako PYO, et al. (2007) Proc Natl Acad Sci USA 104:1641616421]. This resulted in extraordinarily low lake levels, even in Africa's deepest lakes. On the basis of well dated paleoecological records from Lake Malawi, which reflect both local and regional conditions, we show that this aridity had severe consequences for terrestrial and aquatic ecosystems. During the most arid phase, there was extremely low pollen production and limited charred-particle deposition, indicating insufficient vegetation to maintain substantial fires, and the Lake Malawi watershed experienced cool, semidesert conditions (<400 mm/yr precipitation). Fossil and sedimentological data show that Lake Malawi itself, currently 706 m deep, was reduced to an ?125 m deep saline, alkaline, well mixed lake. This episode of aridity was far more extreme than any experienced in the Afrotropics during the Last Glacial Maximum (?3515 ka). Aridity diminished after 95 ka, lake levels rose erratically, and salinity/alkalinity declined, reaching near-modern conditions after 60 ka. This record of lake levels and changing limnological conditions provides a framework for interpreting the evolution of the Lake Malawi fish and invertebrate species flocks. Moreover, this record, coupled with other regional records of early Late Pleistocene aridity, places new constraints on models of Afrotropical biogeographic refugia and early modern human population expansion into and out of tropical Africa. PMID:17925446

  20. Canyon Creek: A late Pleistocene vertebrate locality in interior Alaska

    USGS Publications Warehouse

    Weber, F.R.; Hamilton, T.D.; Hopkins, D.M.; Repenning, C.A.; Haas, H.

    1981-01-01

    The Canyon Creek vertebrate-fossil locality is an extensive road cut near Fairbanks that exposes sediments that range in age from early Wisconsin to late Holocene. Tanana River gravel at the base of the section evidently formed during the Delta Glaciation of the north-central Alaska Range. Younger layers and lenses of fluvial sand are interbedded with arkosic gravel from Canyon Creek that contains tephra as well as fossil bones of an interstadial fauna about 40,000 years old. Solifluction deposits containing ventifacts, wedge casts, and rodent burrows formed during a subsequent period of periglacial activity that took place during the maximum phase of Donnelly Glaciation about 25,000-17,000 years ago. Overlying sheets of eolian sand are separated by a 9500-year-old paleosol that may correlate with a phase of early Holocene spruce expansion through central Alaska. The Pleistocene fauna from Canyon Creek consists of rodents (indicated by burrows), Mammuthus primigenius (woolly mammoth), Equus lambei (Yukon wild ass), Camelops hesternus (western camel), Bison sp. cf. B. crassicornis (large-horned bison), Ovis sp. cf. O. dalli (mountain sheep), Canis sp. cf. C. lupus (wolf), Lepus sp. cf. L. othus or L. arcticus (tundra hare), and Rangifer sp. (caribou). This assemblage suggests an open landscape in which trees and tall shrubs were either absent or confined to sheltered and moist sites. Camelops evidently was present in eastern Beringia during the middle Wisconsin interstadial interval but may have disappeared during the following glacial episode. The stratigraphic section at Canyon Creek appears to demonstrate that the Delta Glaciation of the north-central Alaska Range is at least in part of early Wisconsin age and was separated from the succeeding Donnelly Glaciation by an interstadial rather than interglacial episode. ?? 1981.

  1. Late Pleistocene voles (Arvicolinae, Rodentia) from the Baranica Cave (Serbia)

    NASA Astrophysics Data System (ADS)

    Bogi?evi?, Katarina; Nenadi?, Draenko; Mihailovi?, Duan

    2012-02-01

    Baranica is a cave system situated in the south-eastern part of Serbia, four kilometers south to Knjaevac, on the right bank of the Trgovi\\vski Timok. The investigations in Baranica were conducted from 1994 to 1997 by the Faculty of Philosophy from Belgrade and the National Museum of Knjaevac. Four geological layers of Quaternary age were recovered. The abundance of remains of both large and small mammals was noticed in the early phase of the research. In this paper, the remains of eight vole species are described: Arvicola terrestris (Linnaeus, 1758), Chionomys nivalis (Martins, 1842), Microtus (Microtus) arvalis (Pallas, 1778) and Microtus (Microtus) agrestis (Linnaeus, 1761), Microtus (Stenocranius) gregalis (Pallas, 1779), Microtus (Terricola) subterraneus (de Slys-Longchamps, 1836), Clethrionomys glareolus (Schreber, 1780) and Lagurus lagurus (Pallas, 1773). Among them, steppe and open area inhabitants prevail. Based on the evolutionary level and dimensions of the Arvicola terrestris molars, as well as the overall characteristics of the fauna, it was concluded that the deposits were formed in the last glacial period of the Late Pleistocene. These conclusions are rather consistent with the absolute dating of large mammal bones (23.520 110 B.P. for Layer 2 and 35.780 320 B.P. for Layer 4).

  2. Development of a glacially dominated shelf-slope-fan system in tectonically active southeast Alaska: Results of IODP Expedition 341 core-log-seismic integrated studies at glacial cycle resolution

    NASA Astrophysics Data System (ADS)

    Gulick, Sean; Jaeger, John; Mix, Alan; Swartz, John; Worthington, Lindsay; Reece, Robert

    2014-05-01

    Collision of the Yakutat microplate with North American formed the St. Elias Mountains in coastal Gulf of Alaska. While the tectonic driver for orogenesis has been ongoing since the Miocene, results from the Integrated Ocean Drilling Program Expedition 341 suggests that direct climatic perturbation of active orogenesis through glacial erosion is non-linear. Geophysical studies of the glaciated continental margin, slope, and adjacent deep-sea Surveyor Fan allow examination of the glaciated orogen from source to sink. Using high-resolution and crustal-scale seismic data and through comparison with other glaciated margins, we can identify key diagnostic seismic morphologies and facies indicative of glacial proximity and sediment routing. Expedition drilling results calibrated these images suggesting a timeline for initial advances of the Cordilleran ice sheet related glacial systems onto the shelf and a further timeline for the development of ice streams that reach the shelf edge. Comparisons can be made within this single margin between evolution of the tectonic-glacial system where erosion and sediment transport are occurring within a fold and thrust belt versus on a more stable shelf region. Onshore the Bering-Bagley glacial system in the west flows across the Yakataga fold and thrust belt, allowing examination of whether glacial erosion can cause tectonic feedbacks, whereas offshore the Bering-Bagley system interacts with the Pamplona Zone thrusts in a region of significant sediment accommodation. Results from Expedition 341 imply that timing of glacial advance to the shelf edge in this region may be driven by the necessity of filling up the accommodation through aggradation followed by progradation and thus is autogenic. In contrast the Malaspina-Hubbard glacial system to the east encountered significantly less accommodation and more directly responded to climatic forcing including showing outer shelf glacial occupation since the mid-Pleistocene transition-MPT to 100 kyr glacial-interglacial cycles. Examination of the sink for both of these systems, which includes the Surveyor Fan and Aleutian Trench wedge, demonstrates a clear climatic driver for sediment flux to the deep sea. The first appearance of ice-rafted debris at our distal drill site closely approximates the start of the Pleistocene and a doubling of sediment accumulation accompanies the MPT. Converting sediment volumes just within the deep-sea sinks back to erosion rates in the orogen and correlating with changes in exhumation rates from thermochronology demonstrates a lack of accelerated tectonic response to the intensification of Northern Hemisphere glaciations at the start of the Pleistocene but increased shortening and exhumation of sediments at the MPT. The form of tectonic response differs between out-of-sequence thrusting or antiformal stacking within the fold and thrust belt to the west and a near vertical advection of material in a tectonic aneurysm in the core of the orogen to the east.

  3. Glacial-interglacial variation in denudation rates from interior Texas, USA, established with cosmogenic nuclides

    NASA Astrophysics Data System (ADS)

    Hidy, Alan J.; Gosse, John C.; Blum, Michael D.; Gibling, Martin R.

    2014-03-01

    The Brazos, Colorado, and Trinity rivers of Texas drain a tectonically quiescent, non-glaciated, and low-relief landscape inland from the Gulf of Mexico, where long-term [103-105 a] changes in denudation rates are probably driven largely by climate change. Here, we use cosmogenic 10Be to obtain spatially averaged denudation rates for these river catchments, primarily from terrace deposits associated with glacial or interglacial intervals over the past half million years. The denudation rates are ?30-35% higher during interglacial periods than during glacial periods, and correlate broadly with temperature. The results are consistent with predictions from the BQART sediment flux model, and support the hypothesis that increased weathering rates associated with warmer climates will accelerate landscape erosion. Furthermore, by analyzing 26Al/10Be in these deposits, we can estimate the bed load sourced from up-catchment surfaces. The stored coastal plain fraction varies from ?10% to 30%, and is greater during times of relatively lower sea level. The results indicate that although sediment flux is moderated by coastal-plain storage, increased up-catchment flux during warmer interglacial periods outpaces evacuation of stored sediment during glacial periods, resulting in a net increase in sediment flux to the ocean during warm intervals. If this temperature-sediment flux relationship is valid beyond the Plio-Pleistocene transition, then global sediment flux to the ocean from passive, non-glaciated, and low-relief landscapes would have been greater during the Pliocene than in the cooler Quaternary.

  4. The dispersion of fibrous amphiboles by glacial processes in the area surrounding Libby, Montana, USA

    USGS Publications Warehouse

    Langer, William H.; Van Gosen, Bradley S.; Meeker, Gregory P.; Adams, David T.; Hoefen, Todd M.

    2011-01-01

    Mining operations began at a world-class vermiculite deposit at Vermiculite Mountain near Libby, Montana, circa 1920 and ended in 1990. Fibrous and asbestiform amphiboles intergrown with vermiculite ore are suspected to be a causative factor in an abnormally high number of cases of respiratory diseases in former mine and mill workers, and in residents of Libby. The question addressed in this report is whether some of the amphibole from Vermiculite Mountain could have been dispersed by Pleistocene glacial processes rather than by human activity after vermiculite mining began. The history of Pinedale glaciation in the Libby area provides a framework for estimating the presence and distribution of asbestiform amphiboles derived from Vermiculite Mountain and found in naturally occurring sediments of Glacial Lake Kootenai that underlie the Libby Valley area. There were two situations where sediments derived from Vermiculite Mountain were deposited into Glacial Lake Kootenai: (1) as lake-bottom sediments derived from meltwater flowing down Rainy Creek when the valley south of Vermiculite Mountain was free of ice but active ice still covered Vermiculite Mountain; and (2) as lake-bottom sediments eroded from the Rainy Creek outwash and re-deposited during a re-advance of the Purcell Trench Glacier lobe near Moyie Springs, Idaho.

  5. Paleomagnetism of Early and Middle Pleistocene Cataclysmic Flood Deposits in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Pluhar, C. J.; Burns, S. F.; Carpenter, B.; Yazzie, K.; Melton, D.

    2014-12-01

    Evidence is growing that cataclysmic floods, such as jokulhlaups, have scoured parts of the Pacific Northwest not only during the last glacial maximum (such as the Missoula Floods), but also during earlier parts of the Quaternary. These floods left large erosional features in the "Channeled Scablands" such as colossal flood gravel bars, as well as sediments deposited in backflooded tributary valleys. Evidence for pre-last-glacial cataclysmic floods in the region includes very-well-developed paleosols capping flood deposits, middle Pleistocene U-series disequilibrium dates on some flood sediments, and reversed-paleomagnetic-polarity flood sediments, indicating early Pleistocene age. We document additional evidence for ancient cataclysmic floods at two site, near The Dalles, OR and Othello, WA. The Dalles site consists of 8 flood sediment - capping Stage I to III calcic paleosol couplets, with the third unit from the top containing tephra of the Dibekulewe volcanic ash (0.5 Ma). The sandy nature of the proposed flood sediments is too coarse-grained to attribute to aeolian transport. The Othello site consists of 2 meters of caliche over 40 cm of ancient flood sands and fine gravels We collected paleomagnetic samples from both sites, conducting low temperature cycling (LT), alternating field (AF), and thermal demagnetization experiments on them. These experiments indicate that most samples contain: 1) a large magnetization component in multi-domain magnetite (demagnetized by LT), 2) a large component in goethite (demagnetized by 150C), and 3) a primary magnetization in pseudo-single and single domain magnetite. The Dalles site spans the Matuyama-Brunhes reversal (0.78 Ma). These and previously published data indicate that one or more mechanisms for generating cataclysmic floods have existed in the Pacific Northwest for much of the Quaternary.

  6. The intensification of northern component deepwater formation during the mid-Pleistocene climate transition

    NASA Astrophysics Data System (ADS)

    Poirier, Robert K.; Billups, Katharina

    2014-11-01

    We reconstruct mid-Pleistocene (marine isotope stages (MISs) 13-18) deepwater hydrography at Ocean Drilling Program Site 1063 (4583 m water depth, subtropical North Atlantic) using benthic foraminiferal stable isotope records. These new records complete an ~900 kyr long stratigraphy spanning MISs 8-29 (~250-1030 Ka) when combined with previously published records from Site 1063. The results indicate a change in the circulation regime of the abyssal subtropical North Atlantic during MIS 17. Prior to MIS 17, no significant glacial or interglacial δ13C gradients are evident between Site 1063 and the deep South Atlantic. After MIS 17, interglacial intervals at Site 1063 are characterized by δ13C values that consistently approach those recorded in the deep North Atlantic. Comparing Site 1063 δ13C values to 26 additional published records throughout the entire Atlantic basin supports the idea that this δ13C increase is unique to the deep North Atlantic. After MIS 17, the basin-wide influence of higher δ13C values suggests an increased relative flux of northern sourced bottom waters during interglacial periods. The timing of northern sourced water influence at Site 1063 is consistent with the timing of a shift in the orientation of the Arctic Front. Thus, this shift may signify a link between the northward penetration of relatively warm, saline surface waters into the Norwegian-Greenland Seas stimulating deep convection. Our findings fit well with the model of Imbrie et al. (1993) for the importance of the Nordic heat pump in establishing strong 100 kyr cyclicity in late Pleistocene glacial cycles.

  7. American mastodon extirpation in the Arctic and Subarctic predates human colonization and terminal Pleistocene climate change

    PubMed Central

    Zazula, Grant D.; MacPhee, Ross D. E.; Metcalfe, Jessica Z.; Reyes, Alberto V.; Brock, Fiona; Druckenmiller, Patrick S.; Groves, Pamela; Harington, C. Richard; Hodgins, Gregory W. L.; Kunz, Michael L.; Longstaffe, Fred J.; Mann, Daniel H.; McDonald, H. Gregory; Nalawade-Chavan, Shweta; Southon, John R.

    2014-01-01

    Existing radiocarbon (14C) dates on American mastodon (Mammut americanum) fossils from eastern Beringia (Alaska and Yukon) have been interpreted as evidence they inhabited the Arctic and Subarctic during Pleistocene full-glacial times (∼18,000 14C years B.P.). However, this chronology is inconsistent with inferred habitat preferences of mastodons and correlative paleoecological evidence. To establish a last appearance date (LAD) for M. americanum regionally, we obtained 53 new 14C dates on 36 fossils, including specimens with previously published dates. Using collagen ultrafiltration and single amino acid (hydroxyproline) methods, these specimens consistently date to beyond or near the ∼50,000 y B.P. limit of 14C dating. Some erroneously “young” 14C dates are due to contamination by exogenous carbon from natural sources and conservation treatments used in museums. We suggest mastodons inhabited the high latitudes only during warm intervals, particularly the Last Interglacial [Marine Isotope Stage (MIS) 5] when boreal forests existed regionally. Our 14C dataset suggests that mastodons were extirpated from eastern Beringia during the MIS 4 glacial interval (∼75,000 y ago), following the ecological shift from boreal forest to steppe tundra. Mastodons thereafter became restricted to areas south of the continental ice sheets, where they suffered complete extinction ∼10,000 14C years B.P. Mastodons were already absent from eastern Beringia several tens of millennia before the first humans crossed the Bering Isthmus or the onset of climate changes during the terminal Pleistocene. Local extirpations of mastodons and other megafaunal populations in eastern Beringia were asynchrononous and independent of their final extinction south of the continental ice sheets. PMID:25453065

  8. American mastodon extirpation in the Arctic and Subarctic predates human colonization and terminal Pleistocene climate change.

    PubMed

    Zazula, Grant D; MacPhee, Ross D E; Metcalfe, Jessica Z; Reyes, Alberto V; Brock, Fiona; Druckenmiller, Patrick S; Groves, Pamela; Harington, C Richard; Hodgins, Gregory W L; Kunz, Michael L; Longstaffe, Fred J; Mann, Daniel H; McDonald, H Gregory; Nalawade-Chavan, Shweta; Southon, John R

    2014-12-30

    Existing radiocarbon ((14)C) dates on American mastodon (Mammut americanum) fossils from eastern Beringia (Alaska and Yukon) have been interpreted as evidence they inhabited the Arctic and Subarctic during Pleistocene full-glacial times (∼ 18,000 (14)C years B.P.). However, this chronology is inconsistent with inferred habitat preferences of mastodons and correlative paleoecological evidence. To establish a last appearance date (LAD) for M. americanum regionally, we obtained 53 new (14)C dates on 36 fossils, including specimens with previously published dates. Using collagen ultrafiltration and single amino acid (hydroxyproline) methods, these specimens consistently date to beyond or near the ∼ 50,000 y B.P. limit of (14)C dating. Some erroneously "young" (14)C dates are due to contamination by exogenous carbon from natural sources and conservation treatments used in museums. We suggest mastodons inhabited the high latitudes only during warm intervals, particularly the Last Interglacial [Marine Isotope Stage (MIS) 5] when boreal forests existed regionally. Our (14)C dataset suggests that mastodons were extirpated from eastern Beringia during the MIS 4 glacial interval (∼ 75,000 y ago), following the ecological shift from boreal forest to steppe tundra. Mastodons thereafter became restricted to areas south of the continental ice sheets, where they suffered complete extinction ∼ 10,000 (14)C years B.P. Mastodons were already absent from eastern Beringia several tens of millennia before the first humans crossed the Bering Isthmus or the onset of climate changes during the terminal Pleistocene. Local extirpations of mastodons and other megafaunal populations in eastern Beringia were asynchrononous and independent of their final extinction south of the continental ice sheets. PMID:25453065

  9. Surface exposure chronology of the Waimakariri glacial sequence in the Southern Alps of New Zealand: Implications for MIS-2 ice extent and LGM glacial mass balance

    NASA Astrophysics Data System (ADS)

    Rother, Henrik; Shulmeister, James; Fink, David; Alexander, David; Bell, David

    2015-11-01

    During the late Quaternary, the Southern Alps of New Zealand experienced multiple episodes of glaciation with large piedmont glaciers reaching the coastal plains in the west and expanding into the eastern alpine forelands. Here, we present a new 10Be exposure age chronology for a moraine sequence in the Waimakariri Valley (N-Canterbury), which has long been used as a reference record for correlating glacial events across New Zealand and the wider Southern Hemisphere. Our data indicate that the Waimakariri glacier reached its maximum last glaciation extent prior to ∼26 ka well before the global last glaciation maximum (LGM). This was followed by a gradual reduction in ice volume and the abandonment of the innermost LGM moraines at about 17.5 ka. Significantly, we find that during its maximum extent, the Waimakariri glacier overflowed the Avoca Plateau, previously believed to represent a mid-Pleistocene glacial surface (i.e. MIS 8). At the same time, the glacier extended to a position downstream of the Waimakariri Gorge, some 15 km beyond the previously mapped LGM ice limit. We use a simple steady-state mass balance model to test the sensitivity of past glacial accumulation to various climatic parameters, and to evaluate possible climate scenarios capable of generating the ice volume required to reach the full local-LGM extent. Model outcomes indicate that under New Zealand's oceanic setting, a cooling of 5 °C, assuming modern precipitation levels, or a cooling of 6.5 °C, assuming a one third reduction in precipitation, would suffice to drive the Waimakariri glacier to the eastern alpine forelands (Canterbury Plains). Our findings demonstrate that the scale of LGM glaciation in the Waimakariri Valley and adjacent major catchments, both in terms of ice volume and downvalley ice extent, has been significantly underestimated. Our observation that high-lying glacial surfaces, so far believed to represent much older glacial episodes, were glaciated during the LGM, challenges the conventional geomorphic model of glaciation in New Zealand where the vertical arrangement of glacial landform-associations is used to assign successively older glaciation ages.

  10. Glacial-driven vicariance in the amphipod Gammarus duebeni.

    PubMed

    Krebes, L; Blank, M; Jrss, K; Zettler, M L; Bastrop, R

    2010-02-01

    We have examined the genetic diversity using mitochondrial COI and ND2 sequence data from 306 specimens of the amphi-Atlantic-distributed amphipod Gammarus duebeni. Marine populations from the Atlantic Ocean, the Baltic and North Sea, as well as freshwater populations from Ireland, Cornwall and Brittany were analysed. G. duebeni is a complex of five allopatric lineages. Freshwater populations result from multiple invasions of marine ancestors, represented by distinct lineages. We interpret the recent distribution of lineages as the outcome of a series of spatio-temporal vicariant events caused by Pleistocene glaciations and sea level changes. The freshwater lineages are therefore regarded as 'glacial relicts'. Furthermore, inter-specific competition with, for example, Gammarus pulex (which is absent in Ireland and western Brittany) may be another important determinant in the distribution of freshwater G. duebeni. In Ireland and Brittany, three freshwater refugia are suggested. The significantly limited gene flow detected among marine populations is more likely due to inter-specific competition than to salinity. The G. duebeni-complex represents a model system for the study of allopatric speciation accompanied by major habitat shifts. The pattern of spatio-temporal origins of the freshwater entities we describe here provides an excellent system for investigating evolutionary adaptations to the freshwater environment. Our data did not confirm the presently used subspecies classification but are only preliminary in the absence of nuclear genetic analyses. PMID:19654046

  11. Low Florida coral calcification rates in the Plio-Pleistocene

    NASA Astrophysics Data System (ADS)

    Brachert, T. C.; Reuter, M.; Krüger, S.; Klaus, J. S.; Helmle, K.; Lough, J. M.

    2015-12-01

    In geological outcrops and drill cores from reef frameworks, the skeletons of scleractinian corals are usually leached and more or less completely transformed into sparry calcite because the highly porous skeletons formed of metastable aragonite (CaCO3) undergo rapid diagenetic alteration. Upon alteration, ghost structures of the distinct annual growth bands may be retained allowing for reconstructions of annual extension (= growth) rates, but information on skeletal density needed for reconstructions of calcification rates is invariably lost. Here we report the first data of calcification rates of fossil reef corals which escaped diagenetic alteration. The corals derive from unlithified shallow water carbonates of the Florida platform (southeastern USA), which formed during four interglacial sea level highstands dated 3.2, 2.9, 1.8, and 1.2 Ma in the mid Pliocene to early Pleistocene. With regard to the preservation, the coral skeletons display smooth growth surfaces with minor volumes of marine aragonite cement within intra-skeletal porosity. Within the skeletal structures, dissolution is minor along centers of calcification. Mean extension rates were 0.44 ± 0.19 cm yr-1 (range 0.16 to 0.86 cm yr-1) and mean bulk density was 0.86 ± 0.36 g cm-3 (range 0.55 to 1.22 g cm-3). Correspondingly, calcification rates ranged from 0.18 to 0.82 g cm-2 yr-1 (mean 0.38 ± 0.16 g cm-2 yr-1), values which are 50 % of modern shallow-water reef corals. To understand the possible mechanisms behind these low calcification rates, we compared the fossil calcification with modern zooxanthellate-coral (z-coral) rates from the Western Atlantic (WA) and Indo-Pacific (IP) calibrated against sea surface temperature (SST). In the fossil data, we found an analogous relationship with SST in z-corals from the WA, i.e. density increases and extension rate decreases with increasing SST, but over a significantly larger temperature window during the Plio-Pleistocene. With regard to the environment of coral growth, stable isotope proxy data from the fossil corals and the overall structure of the ancient shallow marine communities are consistent with a well-mixed, open marine environment similar to the present-day Florida Reef Tract, but variably affected by intermittent upwelling. Upwelling along the platform may explain low rates of reef coral calcification and inorganic cementation, but is too localized to account for low extension rates of Pliocene z-corals recorded throughout the tropical Caribbean in the western Atlantic region. Low aragonite saturation on a more global scale in response to rapid glacial/interglacial CO2 cyclicity is also a potential factor, but Plio-Pleistocene atmospheric pCO2 is believed to have been broadly similar to the present-day. Heat stress related to globally high interglacial SST, only episodically moderated by intermittent upwelling affecting the Florida platform seems to be the most likely reason for low calcification rates. From these observations we suggest some present coral reef systems to be endangered from future ocean warming.

  12. Combining cosmogenic radionuclides and amino acid racemization to date late Pliocene glacial deposits exposed on Baffin Island, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Refsnider, K. A.; Miller, G. H.

    2009-12-01

    Sequences of glacial deposits spanning the Quaternary are valuable archives recording the effects of glaciation on landscapes through time, but determining the age of such deposits has long challenged geologists. The recent advances in cosmogenic radionuclide (CRN) measurement has made it possible to date some of these deposits, but dating buried glacial sediments in most settings remains problematic. Here we explore a new approach to date the oldest glacial deposits in the Plio-Pleistocene Clyde Foreland Formation of Baffin Island. This formation, approximately 40 m thick, includes interlayered shell-bearing marine, glaciomarine, and glacial sediments deposited along the northern margin of the Laurentide Ice Sheet and earlier continental ice sheets. Previous work on foraminifera assemblages suggests that the deposits span the last ?2 Ma. By combining CRN measurements (10Be and 26Al) from the glacial units and measurements of the D-alloisoleucine:L-isoleucine ratios (A/I) in valves of the mollusk Hiatella arctica in the marine units overlying a particular glacial deposit, we can calculate the age of the glacial deposit. Because the post-burial temperature history for the mollusks preserved in the Clyde Foreland Formation is poorly constrained, A/I ratios alone cannot be used to determine absolute ages. Instead, we use A/I ratios to identify sediment packages of discrete ages and define a step-wise burial history function for glacial units. A/I ratios of all packages (<0.3 for the total hydrolysate fraction) fall within the A/I interval characterized by linear racemization kinetics, so the age of each package in the burial history function can simply be defined as a fractional age with respect to the total burial age for the glacial deposit of interest. The long duration of burial (26Al/10Be as low as 1.60.6 at 2?) and low initial CRN inventories require that post-burial muogenic production is accounted for using the burial history function. We apply a numerical model to calculate the duration of burial from the measured CRN concentrations for a given inherited CRN inventory. But because this initial inventory is unknown, a single CRN sample/burial history combination will not provide a unique age solution. Instead, measurements from multiple localities where a particular glacial deposit has differing burial histories (i.e., the thickness of overlying units or ages of overlying units differ) are required to statistically determine the total burial age that most closely matches the observed CRN inventories and burial histories.

  13. Phylogeography of the large white-bellied rat Niviventer excelsior suggests the influence of Pleistocene glaciations in the Hengduan mountains.

    PubMed

    Chen, Weicai; Liu, Shaoying; Liu, Yang; Hao, Haibang; Zeng, Bo; Chen, Shunde; Peng, Hongyuan; Yue, Bisong; Zhang, Xiuyue

    2010-06-01

    The Hengduan Mountains, situated in the southeastern Tibetan Plateau, have undergone dramatic geological and climatic changes over the Pleistocene epoch. Several studies have revealed that the mountains served as a refugium during the ice age. The large white-bellied rat Niviventer excelsior is a rodent endemic to the Hengduan Mountains, which makes it an appropriate species for investigating the influence of glacial movements on the genetic structure of mammals. In this study, we sequenced the partial mitochondrial DNA control region from 72 N. excelsior specimens collected from 20 localities. The results revealed very high levels of haplotype diversity (h = 0.947) and nucleotide diversity (pi = 0.101) in this species. No common haplotype was found to be shared in samples from all geographic regions. Demographic analyses suggested that N. excelsior populations had not been subject to either expansion or bottleneck. The phylogenetic relationships among the haplotypes have no correlation with their geographical origins, while topology revealed two major clades. We speculate that the populations of N. excelsior may have been restricted to two separate refugia during the Last Glacial Maximum (0.60-0.17 Mya), with one west and one east of the Shaluli Mountains. Between the two major refugia, there existed a more widely distributed network subrefugia, which conserved genetic variations in N. excelsior. These results indicated that complex topographic configuration in the Hengduan Mountains provided a network of refugia to maintain the high level of genetic diversity in Pleistocene glaciations. PMID:20528155

  14. Early Pleistocene British-Irish ice rafting: Was the onset of Northern Hemisphere glaciation more widespread than previously assumed?

    NASA Astrophysics Data System (ADS)

    Thierens, M. M.; Tyrrell, S.; Wheeler, A. J.

    2011-12-01

    The late Pliocene - early Pleistocene onset and intensification of Northern Hemisphere glaciation marks an important threshold in Earth's climate system. Unravelling the extent and dynamics of early ice-sheet development is crucial to our understanding of the processes driving Quaternary glaciations and hence, affecting global climate and its variability[1]. In the North Atlantic Ocean, ice-rafted detritus (IRD) layers attest to the development of marine-terminating ice sheets, discharging sediment-loaded icebergs into the ocean. So far, Early-Pleistocene IRD deposition has been predominantly linked to the intensified glaciation of high-latitudinal regions surrounding the North Atlantic (Canada, Greenland, Iceland and Scandinavia), while the extent and role of early ice build-up in more temperate mid-latitudinal regions is still poorly understood. Here we present results from a multiproxy provenance analysis of the unique, Pleistocene IRD record that has been preserved in the Challenger Mound sequence (IODP Expedition 307; Irish NE Atlantic continental margin). This archive has, recently, revealed the first evidence supporting substantial and repeated ice build-up on the British-Irish Isles (57° - 52°N) since the earliest Pleistocene (ca 2.6 Ma) [2]. Nd-Sr isotopic analysis of multiple IRD intervals throughout the sequence show a dominant sediment input from the adjacent British-Irish Isles, even for the early Pleistocene IRD deposits. Furthermore, the Pb isotopic composition of detrital, and apparently ice-rafted, K-feldspar grains shows excellent correspondence to a NW Irish Mainland source, definitively ruling out more far-travelled, northern sources for these grains. The long-term development of an ice sheet on NW Ireland, even in the early stages of Northern Hemisphere glacial expansion, is evidenced and discussed in this study. Overall, widespread circum-Atlantic ice-sheet development at more temperate, mid-latitudes appears to be a persistent feature of the Pleistocene climate system and, hence, should be accounted for. References [1] e.g. Raymo, M.E., Huybers, P., 2008. Unlocking the mysteries of the ice ages. Nature 451, 284-285. [2] Thierens, M., Pirlet, H., Colin, C., et al. 2011. Ice-rafting from the British-Irish ice sheet since the earliest Pleistocene (2.6 million years ago): implications for long-term mid-latitudinal ice-sheet growth in the North Atlantic region. Quaternary Science Reviews, 10.1016/j.quascirev.2010.12.020.

  15. Glacial and Postglacial Geologic History of Isle Royale National Park, Michigan

    USGS Publications Warehouse

    Huber, N. King

    1973-01-01

    Isle Royale was overridden by glacial ice during each of the four major glaciations of the Pleistocene Epoch, and each successive glaciation essentially obliterated all direct evidence of preceding glaciations on the island. In the waning phase of the last major glaciation, the Wisconsin Glaciation, the frontal ice margin retreated northward from at least the greater part of the Lake Superior basin, then readvanced into the basin during Valders time, about 11,000 years ago. We can attribute to the Valders ice the final aspect of glaciation on Isle Royale, including both erosional and depositional features. It is impossible to estimate the quantity of glacial debris or other surficial materials that might have been present on Isle Royale prior to the Valders readvance, but the readvancing ice appears to have removed most of what might have been present, as judged by the thin surficial cover on the eastern two-thirds of the island today. During the Valders retreat, a series of lakes formed in the Lake Superior basin in front of the retreating ice margin. The retreating ice opened successively lower outlets, and thus the general trend of lake elevations is downward. Distinct lake stages reflect periods of relative stability during which well- defined shoreline features developed. The ice front forming the north margin of the earlier lakes probably remained south of Isle Royale until about the time of glacial Lake Beaver Bay, when it retreated to a position straddling Isle Royale west of Lake Desor. Abundant deposits of glacial debris were left upon the newly deglaciated west end of the island, and the ice front remained stable long enough to build a complex of ice-margin deposits across the island. Shorelines formed by the glacial lake associated with this ice front are found on the western part of the island about 200 feet above present Lake Superior. Subsequent renewed and complete retreat of the ice margin from Isle Royale was rapid enough that only a minor amount of glacial debris was deposited on the central and eastern parts of the island. When the ice margin reached the north edge of the Lake Superior basin, Lake Minong was formed, and the entire basin was filled for the first time since the Valders advance. Lake Minong marked a relatively stable episode in the history of the basin, and its beaches are among the best developed of the abandoned shoreline features on Isle Royale. Lake Minong beaches and later lower beaches are best developed on the southwest end of Isle Royale, where abundant glacial debris provided easily worked materials for beach construction.

  16. Luminescence chronology of the Upper Pleistocene loess record at Kurtak in M iddle Siberia

    NASA Astrophysics Data System (ADS)

    Zander, Anja; Frechen, Manfred; Zykina, Valentina; Boenigk, Wolfgang

    2003-05-01

    The loess/palaeosol sequence of Kurtak, situated at the western bank of the upper Yenisei in Middle Siberia, represents one of the best developed Middle and Upper Pleistocene sediment records in Yenisei Siberia. More than 40 m thick loess and loess-like sediments intercalated by at least four pedocomplexes are exposed at a steep erosional slope at the bank of the Krasnoyarsk Water Reservoir. Infrared optically stimulated luminescence (IRSL) and thermoluminescence (TL) dating techniques have been applied on 38 fine grain samples from the upper 23 m of the profile, representing the penultimate and last interglacial-glacial cycle. The IRSL and TL age estimates are in good agreement with the geological estimates up to the last interglacial soil horizon (oxygen isotope substage (OIS) 5e). The luminescence ages show that the lowermost truncated palaeosol of kastanosjem-type is likely to have formed during the penultimate interglacial upon subaerial deposits. Three weak reddish brown palaeosols intercalated by reworked loess-like sediments correlate with early Upper Pleistocene interstadials (OIS5dion of -a), and a succession of humic horizons alternated by cryoturbation processes (Kurtak pedocomplex) is linked with OIS 3. Thick loess deposits between the pedocomplexes show now significant age increase with depth, indicating high accumulation rates at around 23 ka (OIS 2) and 60 ka (OIS 4).

  17. Physiological and Evolutionary Responses of Plants to Low CO2 of the Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Ward, J. K.

    2002-05-01

    Recently, plant ecologists and physiologists have been interested in the effects of low atmospheric CO2 concentrations on the physiology, growth, and evolution of plants. This interest is in response to ice core data indicating that CO2 concentrations were as low as 180 ppm during glacial periods of the late Pleistocene (relative to a modern value of 370 ppm). This talk will review the recent advancements in understanding how plants may have survived and evolved in response to these low CO2 concentrations that may have been highly stressful on C3 plants, due to limitations in carbon availability. The talk will highlight both experimental work conducted with modern plants developed under past conditions and the responses of ancient vegetation (e.g. wood samples from the La Brea tar pits) that can be measured with stable isotope analysis. The overall aim of this talk will be an attempt to understand how C3 plants persisted during periods of low CO2 during the late Pleistocene when carbon would have been a major limiting resource.

  18. A late Pleistocene steppe bison ( Bison priscus) partial carcass from Tsiigehtchic, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Zazula, Grant D.; MacKay, Glen; Andrews, Thomas D.; Shapiro, Beth; Letts, Brandon; Brock, Fiona

    2009-12-01

    A partial steppe bison ( Bison priscus) carcass was recovered at Tsiigehtchic, near the confluence of the Arctic Red and Mackenzie Rivers, Northwest Territories, Canada in September of 2007. The carcass includes a complete cranium with horn cores and sheaths, several complete post-cranial elements (many of which have some mummified soft tissue), intestines and a large piece of hide. A piece of metacarpal bone was subsampled and yielded an AMS radiocarbon age of 11,830 45 14C yr BP (OxA-18549). Mitochondrial DNA sequenced from a hair sample confirms that Tsiigehtchic steppe bison ( Bison priscus) did not belong to the lineage that eventually gave rise to modern bison ( Bison bison). This is the first radiocarbon dated Bison priscus in the Mackenzie River valley, and to our knowledge, the first reported Pleistocene mammal soft tissue remains from the glaciated regions of northern Canada. Investigation of the recovery site indicates that the steppe bison was released from the permafrost during a landslide within unconsolidated glacial outwash gravel. These data indicate that the lower Mackenzie River valley was ice free and inhabited by steppe bison by 11,800 14C years ago. This date is important for the deglacial chronology of the Laurentide Ice Sheet and the opening of the northern portal to the Ice Free Corridor. The presence of steppe bison raises further potential for the discovery of more late Pleistocene fauna, and possibly archaeological evidence, in the region.

  19. Obscuring of long eccentricity cyclicity in Pleistocene oceanic carbon isotope records

    NASA Astrophysics Data System (ADS)

    Wang, Pinxian; Tian, Jun; Lourens, Lucas J.

    2010-02-01

    Long eccentricity (400-kyr) cycles in carbon isotope records from the Pacific and Atlantic oceans and the Mediterranean sea of the past 5.0 Ma are compared. All records show maximum ?? 13C values ( ?13Cmax) at eccentricity minima during the Pliocene, but this relationship obscured in the Pleistocene after 1.6 Ma in particular for the open ocean deep-water ?13C records. Since a clear anti-phase relationship was set up between oceanic ?18O and ?13C in the 100-kyr band from this time, we attribute the obscured 400-kyr signal to a major change in the oceanic carbon reservoir probably associated with restructure of the Southern Ocean. A similar change occurred in the Miocene at 13.9 Ma when the 400-kyr cyclicity in ?13C records flattened out together with a drastic cooling and Antarctic ice-sheet expansion. A remarkable exception is the Mediterranean surface water ?13C record, which remained paced by the long-term eccentricity cycle throughout the Pliocene and Pleistocene, suggesting a low-latitude climatic origin of the 400-kyr signal that is independent of glacial-interglacial forcing. Since the Earth is currently passing through an eccentricity minimum, it is crucial to understand the nature of the ?13Cmax events.

  20. Synchronous genetic turnovers across Western Eurasia in Late Pleistocene collared lemmings.

    PubMed

    Palkopoulou, Eleftheria; Baca, Mateusz; Abramson, Natalia I; Sablin, Mikhail; Socha, Paweł; Nadachowski, Adam; Prost, Stefan; Germonpré, Mietje; Kosintsev, Pavel; Smirnov, Nickolay G; Vartanyan, Sergey; Ponomarev, Dmitry; Nyström, Johanna; Nikolskiy, Pavel; Jass, Christopher N; Litvinov, Yuriy N; Kalthoff, Daniela C; Grigoriev, Semyon; Fadeeva, Tatyana; Douka, Aikaterini; Higham, Thomas F G; Ersmark, Erik; Pitulko, Vladimir; Pavlova, Elena; Stewart, John R; Węgleński, Piotr; Stankovic, Anna; Dalén, Love

    2016-05-01

    Recent palaeogenetic studies indicate a highly dynamic history in collared lemmings (Dicrostonyx spp.), with several demographical changes linked to climatic fluctuations that took place during the last glaciation. At the western range margin of D. torquatus, these changes were characterized by a series of local extinctions and recolonizations. However, it is unclear whether this pattern represents a local phenomenon, possibly driven by ecological edge effects, or a global phenomenon that took place across large geographical scales. To address this, we explored the palaeogenetic history of the collared lemming using a next-generation sequencing approach for pooled mitochondrial DNA amplicons. Sequences were obtained from over 300 fossil remains sampled across Eurasia and two sites in North America. We identified five mitochondrial lineages of D. torquatus that succeeded each other through time across Europe and western Russia, indicating a history of repeated population extinctions and recolonizations, most likely from eastern Russia, during the last 50 000 years. The observation of repeated extinctions across such a vast geographical range indicates large-scale changes in the steppe-tundra environment in western Eurasia during the last glaciation. All Holocene samples, from across the species' entire range, belonged to only one of the five mitochondrial lineages. Thus, extant D. torquatus populations only harbour a small fraction of the total genetic diversity that existed across different stages of the Late Pleistocene. In North American samples, haplotypes belonging to both D. groenlandicus and D. richardsoni were recovered from a Late Pleistocene site in south-western Canada. This suggests that D. groenlandicus had a more southern and D. richardsoni a more northern glacial distribution than previously thought. This study provides significant insights into the population dynamics of a small mammal at a large geographical scale and reveals a rather complex demographical history, which could have had bottom-up effects in the Late Pleistocene steppe-tundra ecosystem. PMID:26919067

  1. Stratigraphic framework of a late pleistocene shelf-edge delta, northeast Gulf of Mexico

    SciTech Connect

    Sydow, J.; Roberts, H.H. )

    1994-08-01

    Lithologic, biostratrigraphic, and chronostratigraphic data from a 92-m continuous surface boring, in the Main Pass area of the outer Mississippi-Alabama shelf, were used to calibrate high-resolution seismic profiles in a study of a late Pleistocene shelf-edge delta. The boring is the first of its kind through a shelf-edge clinoform wedge and the first [open quotes]ground-truth[close quotes] confirmation that the clinoforms in the study area are deltaic in origin. Chronologic control for the late Pleistocene outer shelf stratigraphy is based on the identification of Ericson Zones X, Y, and Z (alternating warm and cold water planktonic foraminifera zones) in the boring, representing at least the last 130 k.y. During sea level lowering related to the previous glacial maximum, the delta system prograded onto a carbonate-rich outer shelf and upper slope starved of terrigenous sediments. The ancestral Mobile River, possibly joined by the Pascagoula River, was the fluvial feeder of the shelf-edge delta. The upper portion of the delta wedge is extensively eroded, primarily by a broad swath of significant fluvial scour centered along the northeast- to southwest-oriented dip axis of the delta, and to a lesser extent by subsequent transgressive truncation. Fluvial scour resulted in a broad erosional trough filled with fluvial and estuarine facies. Thin estuarine and overlying marine units reflect transgression of the Lagniappe delta during the late Pleistocene-early Holocene transgression. According to standard sequence stratigraphic definitions, the extent of the sequence boundary, identified as the erosional base of the fluvial facies, places the majority of the outer shelf delta in the highstand systems tract. The portion of the delta thus categorized as highstand was built during the falling to lowstand minimum part of the relative sea level curve. 64 refs., 18 figs.

  2. Southeast Asian primate communities: the effects of ecology and Pleistocene refuges on species richness.

    PubMed

    Hassel-Finnegan, Heather; Borries, Carola; Zhao, Qing; Phiapalath, Phaivanh; Koenig, Andreas

    2013-12-01

    We examined historical and ecological factors affecting current primate biodiversity in Southeast Asia. In Africa, Madagascar and South America, but not Southeast Asia, primate species richness is positively associated with average rainfall and distance from the equator (latitude). We predicted that Southeast Asia's non-conformance may be due to the effect of dispersed Pleistocene refuges (locations of constricted tropical forests during glacial maxima which today are at least 305 m in altitude). Based on 45 forested sites (13 on large islands; 32 on the mainland) of at least 100 km(2) to minimize recent human impact, we determined correlations between extant primate species richness and rainfall, latitude and supplementary ecological variables, while controlling for refuges and islands. We found that refuge sites had significantly higher primate species richness than non-refuges (t = -2.76, P < 0.05), and distance from the nearest Pleistocene refuge was negatively correlated with species richness for non-refuge sites (r = -0.51, P < 0.05). There was no difference in species richness between sites on large islands and the mainland (t = -1.4, P = 0.16). The expected positive relationship between rainfall and species richness was not found (r = 0.17, P = 0.28). As predicted, primate species richness was negatively correlated with latitude (r = -0.39, P < 0.05) and positively correlated with mean temperature (r = 0.45, P < 0.05). General linear models indicated that a site's latitude (F1,38 = 6.18, P < 0.05) and Pleistocene refuge classification (F1,42 = 5.96, P < 0.05) were the best predictors of species richness. Both ecological and historical factors contribute to present day primate species richness in Southeast Asia, making its biodiversity less of an outlier than previously believed. PMID:24344966

  3. Pleistocene climate and biome evolution modulated at orbital, millennial, and centennial time scales

    NASA Astrophysics Data System (ADS)

    Hooghiemstra, H.

    2013-05-01

    For the northern Andes we present a multi-proxy record of environmental and climatic change at millennial- to century-scale resolution of the full Pleistocene. The composite record includes the 540-m Funza core (2250-27 ka; 1050-yr resolution) from the Bogot basin (~4N, 2550 m asl, 2100 samples), the 58-mcd core (284-27 ka; 60-yr resolution) from the Fquene basin (~5N, 2540 m asl 4700 samples), and the 12-m core (last 14 ka; 25-yr resolution) from the La Cocha basin (1N, 2780 m asl, 550 samples). At high elevations climatic variability is mainly driven by the 41-kyr component of orbital forcing changing into a dominant 100-kyr frequency during the last 0.9 Ma. High elevation intraAndean environments are mainly driven by temperature and atmospheric pCO2 while changes in moisture is an important driver of the Andean environments on the Amazonian flank. The Pleistocene is reflected by MIS 87 to 1, the last interglacial-glacial cycle by D/O-cycles 28 to 1 (and during MIS 7-6 another 15 D/O-style cycles), and the Holocene shows many events with an acceleration of climate change. Repeatedly the subpramo shrub biome is temporarily lost suggesting vertical migration of forest exceeded the maximum migration capacity of the subpramo biome. Continuous changes in altitidinal vegetation distribution caused mountains above ~1500 m were alternatingly covered by different biomes. Forests reached only ~125 ka modern species compositions indicating most of the Pleistocene record shows nonanalog vegetation associations, however not preventing modern ecological ranges can be applied to reconstruct past environments. Comparison with Greenland, Antarctic and marine climate records is demonstrated.

  4. Geographic and temporal trends in proboscidean and human radiocarbon histories during the late Pleistocene

    NASA Astrophysics Data System (ADS)

    Ugan, Andrew; Byers, David

    2007-12-01

    The causes of large animal extinctions at the end of the Pleistocene remain a hotly debated topic focused primarily on the effects of human over hunting and climate change. Here we examine multiple, large radiocarbon data sets for humans and extinct proboscideans and explore how variation in their temporal and geographic distributions were related prior to proboscidean extinction. These data include 4532 archaeological determinations from Europe and Siberia and 1177 mammoth and mastodont determinations from Europe, Siberia, and North America. All span the period from 45,000 to 12,000 calendar years BP. We show that while the geographic ranges of dated human occupations and proboscidean remains overlap across the terminal Pleistocene of the Old World, the two groups remain largely segregated and increases in the frequency of human occupations do not coincide with declines in proboscidean remains. Prior to the Last Glacial Maximum (LGM; ca 21,000 years BP), archaeological 14C determinations increase slightly in frequency worldwide while the frequency of dated proboscidean remains varies depending on taxon and location. After the LGM, both sympatric and allopatric groups of humans and proboscideans increase sharply as climatic conditions ameliorate. Post-LGM radiocarbon frequencies among proboscideans peak at different times, also depending upon taxon and location. Woolly mammoths in Beringia reach a maximum and then decline beginning between 16,000 and 15,500 years BP, woolly mammoths in Europe and Siberia ca 14,500 and 13,500 BP, and Columbian mammoth and American mastodont only after 13,000 BP. Declines among woolly mammoths appear to coincide with the restructuring of biotic communities following the Pleistocene-Holocene transition.

  5. Obsidian hydration dates glacial loading?

    USGS Publications Warehouse

    Friedman, I.; Pierce, K.L.; Obradovich, J.D.; Long, W.D.

    1973-01-01

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming . The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  6. Obsidian hydration dates glacial loading?

    PubMed

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow. PMID:17806883

  7. Pleistocene paleosols in the loess and loess-like sediments of the central part of the russian plain

    NASA Astrophysics Data System (ADS)

    Yakimenko, E. Y.

    The Central part of the Russian Plain is a key region because of the complex interrelation of the Pleistocene glacials and interglacials. Fossil soils are not continuous in this region due to cryoturbation, erosion and other later processes. Morphological, chemical and micromorphological features of the Upper (Eemian) and Middle (Treenian) Pleistocene paleosols were investigated in the sections of loess and loess-like sediments on the plateau on the right bank of the River Oka. The Eemian soils studied have a humic (A1) horizon with typical biogenic multiordered microstructure and illuvial (B) horizon. The soil morphology is similar to that of the modern Grey-forest soils, which are widespread in this region. The Middle and Upper Pleistocene paleosols are separated by the Moscow (Warta) loess, but sometimes the Eemian fossil soil lies directly on the podzolic layer of the Treenian soil. The investigated Treenian paleosol exposed in the loess has no humic horizon and is very similar to the modern spodosol, indicating colder forest conditions in the region during this interglacial.

  8. Pliocene-Pleistocene diatom biostratigraphy of nearshore Antarctica from the AND-1B drillcore, McMurdo Sound

    NASA Astrophysics Data System (ADS)

    Winter, D.; Sjunneskog, C.; Scherer, R.; Maffioli, P.; Riesselman, C.; Harwood, D.

    2012-10-01

    The near-shore open-marine diatom record recovered in the ANtarctic geological DRILLing (ANDRILL) McMurdo Ice Shelf Project (MIS) AND-1B drillcore, McMurdo Sound, Antarctica, advances our understanding of the marine conditions present in the southern Ross Sea during the Pliocene and early Pleistocene. This diatom history is recorded within alternating diamictite and diatomite that reflect alternating glacial activity and high marine primary productivity. The diatomite units were deposited in a continental shelf open-marine setting during periods of reduced ice cover in West Antarctica. A new diatom biostratigraphic scheme spanning the last ca. 5 Ma is proposed for the Antarctic near-shore area, based on prior work from high latitude drillcores. Four new zones are proposed for the Pliocene/Pleistocene, with eight in total for the new zonal scheme, utilizing Actinocylus fasciculatus, Actinocyclus maccollumii, Fragilariopsis bohatyii, Rouxia antarctica, and Thalassiosira fasciculata as new zonal markers. The early Pliocene shares the most assemblage commonality with that of the Southern Ocean with greater numbers of endemic species observed in the late Pliocene and early Pleistocene; a group of related Fragilaripsis species characterizes much of this later part of the time column. Two new species are proposed, Fragilariopsis tigris sp. nov. Riesselman and Thalassiosira teres sp. nov. Winter; a formal name is also proposed for another species, Rhizosolenia harwoodii sp. nov. Winter. The new zonation is tied to a robust chronology utilizing diatom biostratigraphy, volcanic 40Ar/39Ar ages and magnetostratigraphy.

  9. Pleistocene paleoenvironmental reconstructions and mammalian evolution in South-East Asia: focus on fossil faunas from Thailand

    NASA Astrophysics Data System (ADS)

    Tougard, C.; Montuire, S.

    2006-01-01

    Mammalian faunal studies have provided various clues for a better reconstruction of hominid Quaternary paleoenvironments. In this work, two methods were used: (1) the cenogram method, based on a graphical representation of the mammalian community structure, and (2) the species richness of murine rodents to estimate climatic parameters. These methods were applied to Middle and Late Pleistocene mammalian faunas of South-East Asia, from South China to Indonesia. Special emphasis was laid on a fauna from north-east Thailand dated back to approximately 170,000 years (i.e. a glacial period). This Thai fauna seems characteristic of a slightly open forested environment intermediate between those of present-day central Myanmar and the northern part of South China. In the Thai fauna, the occurrence of both cool-loving mammalian taxa, currently living further north, and species of larger body size than their living counterparts, indicates cooler and probably drier climatic conditions than present-day climates in Thailand. These results are quite consistent with Middle Pleistocene palynological records from South China and eastern Java. From other less well-documented Pleistocene faunas, taken into account in this work, humid climatic conditions of interglacial periods were revealed from large mammalian taxa.

  10. Late Pleistocene age and archaeological context for the hominin calvaria from GvJm-22 (Lukenya Hill, Kenya)

    PubMed Central

    Tryon, Christian A.; Crevecoeur, Isabelle; Faith, J. Tyler; Ekshtain, Ravid; Nivens, Joelle; Patterson, David; Mbua, Emma N.; Spoor, Fred

    2015-01-01

    Kenya National Museums Lukenya Hill Hominid 1 (KNM-LH 1) is a Homo sapiens partial calvaria from site GvJm-22 at Lukenya Hill, Kenya, associated with Later Stone Age (LSA) archaeological deposits. KNM-LH 1 is securely dated to the Late Pleistocene, and samples a time and region important for understanding the origins of modern human diversity. A revised chronology based on 26 accelerator mass spectrometry radiocarbon dates on ostrich eggshells indicates an age range of 23,576–22,887 y B.P. for KNM-LH 1, confirming prior attribution to the Last Glacial Maximum. Additional dates extend the maximum age for archaeological deposits at GvJm-22 to >46,000 y B.P. (>46 kya). These dates are consistent with new analyses identifying both Middle Stone Age and LSA lithic technologies at the site, making GvJm-22 a rare eastern African record of major human behavioral shifts during the Late Pleistocene. Comparative morphometric analyses of the KNM-LH 1 cranium document the temporal and spatial complexity of early modern human morphological variability. Features of cranial shape distinguish KNM-LH 1 and other Middle and Late Pleistocene African fossils from crania of recent Africans and samples from Holocene LSA and European Upper Paleolithic sites. PMID:25730861

  11. Late Pleistocene age and archaeological context for the hominin calvaria from GvJm-22 (Lukenya Hill, Kenya).

    PubMed

    Tryon, Christian A; Crevecoeur, Isabelle; Faith, J Tyler; Ekshtain, Ravid; Nivens, Joelle; Patterson, David; Mbua, Emma N; Spoor, Fred

    2015-03-01

    Kenya National Museums Lukenya Hill Hominid 1 (KNM-LH 1) is a Homo sapiens partial calvaria from site GvJm-22 at Lukenya Hill, Kenya, associated with Later Stone Age (LSA) archaeological deposits. KNM-LH 1 is securely dated to the Late Pleistocene, and samples a time and region important for understanding the origins of modern human diversity. A revised chronology based on 26 accelerator mass spectrometry radiocarbon dates on ostrich eggshells indicates an age range of 23,576-22,887 y B.P. for KNM-LH 1, confirming prior attribution to the Last Glacial Maximum. Additional dates extend the maximum age for archaeological deposits at GvJm-22 to >46,000 y B.P. (>46 kya). These dates are consistent with new analyses identifying both Middle Stone Age and LSA lithic technologies at the site, making GvJm-22 a rare eastern African record of major human behavioral shifts during the Late Pleistocene. Comparative morphometric analyses of the KNM-LH 1 cranium document the temporal and spatial complexity of early modern human morphological variability. Features of cranial shape distinguish KNM-LH 1 and other Middle and Late Pleistocene African fossils from crania of recent Africans and samples from Holocene LSA and European Upper Paleolithic sites. PMID:25730861

  12. Geomorphic and sedimentary responses of the Bull Creek Valley (Southern High Plains, USA) to Pleistocene and Holocene environmental change

    NASA Astrophysics Data System (ADS)

    Arauza, Hanna M.; Simms, Alexander R.; Bement, Leland C.; Carter, Brian J.; Conley, Travis; Woldergauy, Ammanuel; Johnson, William C.; Jaiswal, Priyank

    2016-01-01

    Fluvial geomorphology and stratigraphy often reflect past environmental and climate conditions. This study examines the response of Bull Creek, a small ephemeral creek in the Oklahoma panhandle, to environmental conditions through the late Pleistocene and Holocene. Fluvial terraces were mapped and their stratigraphy and sedimentology documented throughout the course of the main valley. Based on their elevations, terraces were broadly grouped into a late-Pleistocene fill terrace (T3) and two Holocene fill-cut terrace sets (T2 and T1). Terrace systems are marked by similar stratigraphies recording the general environmental conditions of the time. Sedimentary sequences preserved in terrace fills record the transition from a perennial fluvial system during the late glacial period and the Younger Dryas to a semiarid environment dominated by loess accumulation and punctuated by flood events during the middle to late Holocene. The highest rates of aeolian accumulation within the valley occurred during the early to middle Holocene. Our data provide significant new information regarding the late-Pleistocene and Holocene environmental history for this region, located between the well-studied Southern and Central High Plains of North America.

  13. Late Pleistocene Southeast Amazonia Paleoenvironmental reconstruction inferred by bulk, isotopic and molecular organic matter. Saci lake-Para-Brazil

    NASA Astrophysics Data System (ADS)

    Martins, G. S.; Cordeiro, R. C.; Turcq, B.; Moreira, L. S.; Bouloubassi, I.; Sifeddine, A.

    2014-12-01

    Bulk, Isotope and biolomecular analysis supported by 22 14C AMS dates, allowed the reconstruction of environmental changes during the last 35 000 years BP in the Southeast Amazonian basin. A terrestrial origin has been inferred for the odd carbon-numbered long-chain (>C27) n-alkanes. The entire n-alkane ?13C range between -31.7 and -36.8, which is the isotopic range occupied by C3 vegetation. The C29:C31 ratio shows that a gramineae contribution is higher during the Pleistocene than in Holocene. The n-alkanes concentration decrease between 32 000 - 18 000, suggesting a increase in arid conditions. The ACL index confirm this interpretation showing high values due the Pleistocene linked to more hydrological stress. A shift in the abundance of n-alkane and isotopic values are observed across the late Pleistocene glacial-Holocene interglacial climate change, suggesting a climate-induced vegetational change. During the middle Holocene the n-alcanes values decreases indicating rain forest regression accompanied by increase in the ACL values confirming the dry climate conditions. Comparison with other South American records, our record indicates regression/expansion of the rain forest linked to the South American System monsoon activity since 35 kyrs.

  14. Glacial Isostatic Adjustment in Antarctica

    NASA Astrophysics Data System (ADS)

    Whitehouse, P. L.

    2014-12-01

    In order to determine the distribution of present-day ice mass change across the Antarctic Ice Sheet it is first necessary to remove the geodetic signal of past ice mass change. This signal arises due to the ongoing process of Glacial Isostatic Adjustment (GIA), which has traditionally been estimated by modelling the response of the Earth system to ice-sheet changes during a glacial cycle. Reconstructions of ice-sheet change are typically based on field observations relating to past ice extent and thickness, although a more recent approach has involved the use of ice-sheet models, and even coupled ice-sheet - GIA models, to reconstruct the ice-sheet history in areas where field constraints are sparse. Both methods have their limitations and in this presentation I will highlight the advantages of each and compare recently-published models to assess our current state of knowledge in the field of Antarctic GIA. I will also briefly discuss the motivation behind active areas of model development, which include the consideration of lateral variations in Earth structure and feedbacks between solid Earth, ice sheet and ocean processes. Finally, I will assess the suitability of the various data sets that are used to constrain or test Antarctic GIA models, and I will explain how combinations of data are being used to isolate the GIA signal independently of traditional modelling assumptions. Despite the clear benefits of this approach for the purposes of quantifying present-day ice mass change, it is still crucial to be able to model how GIA processes will evolve in the future. The motivation for this goal is provided by recent modelling studies, which suggest that GIA processes will be modified by, and are capable of influencing, the future dynamics of the Antarctic Ice Sheet.

  15. Robustness of Quaternary glacial cycles

    NASA Astrophysics Data System (ADS)

    Ganopolski, Andrei; Brovkin, Victor; Calov, Reinhard

    2015-04-01

    In spite of significant progress in paleoclimate reconstructions and modeling some aspects of Quaternary climate cycles are still poorly understood. Among them is the question of whether glacial cycles are deterministic and solely externally forced or, at least partially, they are stochastic. The answer to this question can only be obtained using a comprehensive Earth system models which incorporates all major components of the Earth system - atmosphere, ocean, land surface, northern hemisphere ice sheets, terrestrial biota and soil carbon, aeolian dust and marine biogeochemistry. Here, we used the Earth system model of intermediate complexity CLIMBER-2. The model was optimally tuned to reproduce climate, ice volume and CO2 variability for the last 0.8 million years. Using the same model version, we performed a large set of simulations covering the entire Quaternary (3 million years). By starting the model at different times (with the time step of 100,000 years) and using identical initial conditions we run the model for 500,000 years using the Earth's orbital variations as the only prescribed radiative forcing. We show that within less than 100,000 years after the beginning of each experiment the modeling results converge to the same solution which depends only on the orbital forcing and boundary conditions, such as topography and terrestrial sediment thickness for the ice sheets or volcanic CO2 outgassing for the carbon cycle. By using only several sets of the Northern Hemisphere orography and sediment thickness which represent different stages of landscape evolution during Quaternary, we are able to reproduce all major regimes of Quaternary long-term climate variability. Our results thus strongly support the notion that Quaternary glacial cycles are deterministic and externally forced.

  16. Programmable Oscillator

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Lee, Clement G.; Nguyen, Huy

    2011-01-01

    A programmable oscillator is a frequency synthesizer with an output phase that tracks an arbitrary function. An offset, phase-locked loop circuit is used in combination with an error control feedback loop to precisely control the output phase of the oscillator. To down-convert the received signal, several stages of mixing may be employed with the compensation for the time-base distortion of the carrier occurring at any one of those stages. In the Goldstone Solar System Radar (GSSR), the compensation occurs in the mixing from an intermediate frequency (IF), whose value is dependent on the station and band, to a common IF used in the final stage of down-conversion to baseband. The programmable oscillator (PO) is used in the final stage of down-conversion to generate the IF, along with a time-varying phase component that matches the time-base distortion of the carrier, thus removing it from the final down-converted signal.

  17. Late Quaternary Glacial / Interglacial Cyclicity Models of the Red Sea

    NASA Astrophysics Data System (ADS)

    Badawi, Amani

    2015-04-01

    Four distinct glacial / interglacial cycle during the last 380 Kyr have been recognized in the Red Sea. The identified four cycles reveal deviation in deep-sea ecosystem between the northern and southern Red Sea. In the northern Red Sea salinity fluctuations, productivity and deep-water ventilation and formation had the major impact on benthic foraminiferal pattern corresponding to glacial/interglacial cycles and glacio-eustatic sea level changes coupled with the impact of Mediterranean climate regime. While in the southern Red Sea region the oscillation trend of benthic foraminiferal pattern within the glacials and interglacials stages, indicating a high frequency environmental alternation. This alternation is consistent with the extent of NE monsoonal wind that controls the intensity and extension of the productivity, which in turn determine organic matter fluxes and oxygen level at the sea floor. The benthic foraminiferal faunas from samples of two piston cores retrieved along a North-South transect in the Red Sea were studied. The northern core was collected during Meteor cruise M 31/2, while the southern one was collected during the Sonne cruise 121. Benthic foraminiferal faunas from both sites exhibit large variability with respect to density, diversity, species composition and assemblages combined with stable oxygen and carbon isotope records of planktic and benthic foraminifera. One hundered thirty benthic foraminiferal species were identified in the investigated cores. The faunal data set of the northern core was reduced to five assemblages (factors) while the southern one was reduced to four assemblages. All assemblages were ranked according to their ecological significance. Besides, Relative abundance of major benthic foraminiferal suborders (Textulariina (agglutinating foraminifera), Miliolina, and Rotaliina), in addition to infaunal/epifaunal relative abundance were used as paleoenvironmental proxies allowing the reconstruction of past changes in deep-water salinity, ventilation, and organic carbon fluxes at the sea-floor.

  18. Bahamian Pleistocene model for some Mississippian oolites

    SciTech Connect

    Bain, R.J. )

    1989-08-01

    San Salvador Island, unlike most Bahamian islands, is a narrow isolated platform surrounded by deep ocean. Therefore, sedimentary deposits on San Salvador must be explained in terms of processes and settings on this narrow, isolated shelf. Pleistocene oolite occurs between Illinoian and Wisconsinan paleosols. Dune ridges of up to 120 ft are composed of Pleistocene cross-bedded oolitic grainstone, whereas interdunal deposits are bioclastic packstone and wackestone containing abundant Chione cancellata. In lower dunal deposits, bioclastic content increases and the degree of sorting decreases. A fenestral porosity zone occurs approximately 5 ft above present-day sea level. In several ridges, oolite drapes over older paleosol-capped bioclastic ridges. During the Sangamonian, sea water flooded the platform, however some remnant Aftonian ridges remained above sea level. As cold water from the surrounding deep ocean warmed on the shelf, ooids were generated and were washed onto beaches and blown into dunes. Remnant ridges restricted water movement and acted as nucleii for eolian ooid dunes. As sea level continued to rise, ooids were replaced by lagoonal bioclastic deposits. Ooid production was restricted to the swash zone along beaches resulting in the mixture of ooids and bioclastic sand in later Sangamonian deposits. Numerous Mississippian oolites display features similar to the Pleistocene oolite of San Salvador Island. Possible comparisons include thick lenses of Ste. Genevieve and Bangor limestones, paleosols in the Ste. Genevieve halo-shaped bodies of Greenbrier oolite, and the relationship of nearly all olites with bioclastic facies.

  19. Isotopic composition of old ground water from lake agassiz: implications for late pleistocene climate.

    PubMed

    Remenda, V H; Cherry, J A; Edwards, T W

    1994-12-23

    A uniform oxygen isotope value of -25 per mil was obtained from old ground water at depths of 20 to 30 meters in a thick deposit of clay in the southern part of the glacial Lake Agassiz basin. The lake occupied parts of North Dakota and southern Manitoba at the end of the last glacial maximum and received water from the ice margin and the interior plains region of Canada. Ground water from thick late Pleistocene-age clay deposits elsewhere, a till in southern Saskatchewan, and a glaciolacustrine deposit in northern Ontario show the same value at similar depths. These sites are at about 50 degrees N latitude, span a distance of 2000 kilometers, and like the Lake Agassiz sites, have a ground-water velocity of less than a few millimeters per year. The value of -25 per mil is characteristic of meltwater impounded in the southern basin of Lake Agassiz. This value corresponds to an estimated air temperature of -16 degrees C, compared with the modern temperature of 0 degrees C for this area. PMID:17836515

  20. Isotopic composition of old ground water from Lake Agassiz: Implications for late Pleistocene climate

    SciTech Connect

    Remenda, V.H.; Cherry, J.A.; Edwards, T.W.D. )

    1994-12-23

    A uniform oxygen isotope value of -25 per mil was obtained from old ground water at depths of 20 to 30 meters in a thick deposit of clay in the southern part of the glacial Lake Agassiz basin. The lake occupied parts of North Dakota and southern Manitoba at the end of the last glacial maximum and received water from the ice margin and the interior plains region of Canada. Ground water from thick late Pleistocene-age clay deposits elsewhere, a till in southern Saskatchewan, and a glaciolacustrine deposit in northern Ontario show the same value at similar depths. These sites are at about 50[degrees]N latitude, span a distance of 2000 kilometers, and like the Lake Agassiz sites, have a ground-water velocity of less than a few millimeters per year. The value of -25 per mil is characteristic of meltwater impounded in the southern basin of Lake Agassiz. This value corresponds to an estimated air temperature of -16[degrees]C, compared with the modern temperature of 0[degrees]C for this area. 15 refs., 5 figs.

  1. The Pleistocene archaeology and environments of the Wasiriya Beds, Rusinga Island, Kenya.

    PubMed

    Tryon, Christian A; Tyler Faith, J; Peppe, Daniel J; Fox, David L; McNulty, Kieran P; Jenkins, Kirsten; Dunsworth, Holly; Harcourt-Smith, Will

    2010-12-01

    Western Kenya is well known for abundant early Miocene hominoid fossils. However, the Wasiriya Beds of Rusinga Island, Kenya, preserve a Pleistocene sedimentary archive with radiocarbon age estimates of >33-45ka that contains Middle Stone Age artifacts and abundant, well-preserved fossil fauna: a co-occurrence rare in eastern Africa, particularly in the region bounding Lake Victoria. Artifacts and fossils are associated with distal volcanic ash deposits that occur at multiple localities in the Wasiriya Beds, correlated on the basis of geochemical composition as determined by electron probe microanalysis. Sediment lithology and the fossil ungulates suggest a local fluvial system and associated riparian wooded habitat within a predominantly arid grassland setting that differs substantially from the modern environment, where local climate is strongly affected by moisture availability from Lake Victoria. In particular, the presence of oryx (Oryx gazella) and Grevy's zebra (Equus grevyi) suggest a pre-Last Glacial Maximum expansion of arid grasslands, an environmental reconstruction further supported by the presence of several extinct specialized grazers (Pelorovis antiquus, Megalotragus sp., and a small alcelaphine) that are unknown from Holocene deposits in eastern Africa. The combination of artifacts, a rich fossil fauna, and volcaniclastic sediments makes the Wasiriya Beds a key site for examining the Lake Victoria basin, a biogeographically important area for understanding the diversification and dispersal of Homo sapiens from Africa, whose pre-Last Glacial Maximum history remains poorly understood. PMID:20880570

  2. Muted climate variations in continental Siberia during the mid-Pleistocene epoch.

    PubMed

    Prokopenko, Alexander A; Williams, Douglas F; Kuzmin, Mikhail I; Karabanov, Eugene B; Khursevich, Galina K; Peck, John A

    2002-07-01

    The large difference in carbon and oxygen isotope data from the marine record between marine oxygen isotope stage 12 (MIS 12) and MIS 11, spanning the interval between about 480 and 380 kyr ago, has been interpreted as a transition between an extremely cold glacial period and an unusually warm interglacial period, with consequences for global ice volume, sea level and the global carbon cycle. The extent of the change is intriguing, because orbital forcing is predicted to have been relatively weak at that time. Here we analyse a continuous sediment record from Lake Baikal, Siberia, which reveals a virtually continuous interglacial diatom assemblage, a stable littoral benthic diatom assemblage and lithogenic sediments with 'interglacial' characteristics for the period from MIS 15a to MIS 11 (from about 580 to 380 kyr ago). From these data, we infer significantly weaker climate contrasts between MIS 12 and 11 than during more recent glacial-interglacial transitions in the late Pleistocene epoch (about 130 to 10 kyr ago). For the period from MIS 15a to MIS 11, we also infer an apparent lack of extensive mountain glaciation. PMID:12097906

  3. Late Pleistocene deglaciation in the upper Gállego Valley, central Pyrenees

    NASA Astrophysics Data System (ADS)

    Palacios, David; de Andrés, Nuria; López-Moreno, Juan I.; García-Ruiz, José M.

    2015-05-01

    Deglaciation processes in the upper Gállego Valley, central-southern Pyrenees, were studied using geomorphological mapping and 36Cl cosmogenic dating of moraine and rock glacier boulders, as well as polished bedrock. Although the precise position of the Gállego Glacier during the global last glacial maximum is not known, there is evidence that ice tongues retreated to the headwaters, which caused subdivision of the main glacier into a number of individual glaciers prior to 17 ka. A range of ages (16 to 11 ka) was found among three tributary valleys within the general trend of deglaciation. The retreat rate to cirque was estimated to be relatively rapid (approximately 5 km per ka). The mapped glacial sedimentology and geomorphology appears to support the occurrence of multiple minor advances and retreats, or periods of stasis during the late deglaciation. Geomorphological and geological differences among the tributary valleys, and error estimates associated with the results obtained, prevented unambiguous correlations of the advances with the late Pleistocene cold periods. During the latter advances, small glaciers and rock glaciers developed close to the cirque headwalls, and co-occurred under the same climatic conditions. No evidence for Holocene re-advance was found for any of the three tributary valleys.

  4. New evidence for mid-Pliocene-early Pleistocene glaciation in the northern Patagonian Andes Argentina

    SciTech Connect

    Stephens, G.C.; Evenson, E.B.; Rabassa, J.

    1985-01-01

    Mount Tronador is an extinct, glacially eroded strato-volcano located in the northern Patagonian Andes. With a summit elevation of 3556 m, Mount Tronador lies mostly above the present regional snowline (2000 m) and is largely covered by extensive snow fields and glaciers. The rocks of Mount Tronador comprise the Tronador Formation, a 2000 m thick sequence of interlayered basalts, andesites, ignimbrites, agglomerates, volcanic mudflows and lahars. This volcanic edifice is built on an erosional land surface of Tertiary age. Three K-Ar dates from the Tronador Formation yield radiometric ages of 3.2, 0.34 and 0.18 m.y. Striated clasts have been found included in several large glacial boulders derived from volcanic mudflows and lahars of the Tronador Fm. These boulders have been eroded by the Rio Manso Glacier and deposited in its Neoglacial moraines. The lahar boulders themselves contain pebbles and boulders of andesitic rocks in a vitroclastic matrix of pyroclastic origin. The striated clasts are well-rounded, shaped and polished, and the striations can be traced beneath the volcanic matrix. Thus these striated clasts represent a pre-Holocene cycle of glaciation. Mercer (1976) and Ciesielski (1982) document glaciations from southern Patagonia (2.1-3.5 m.y.) and from the southwestern Atlantic (2.1-3.9 m.y.) respectively. The discovery of striated clasts in lahars and mudflows of the Tronador Fm. indicates the existence of a heretofore undocumented Pliocene-Pleistocene glaciation in northern Patagonia.

  5. Rapid thinning of the late Pleistocene Patagonian Ice Sheet followed migration of the Southern Westerlies

    PubMed Central

    Boex, J.; Fogwill, C.; Harrison, S.; Glasser, N. F.; Hein, A.; Schnabel, C.; Xu, S.

    2013-01-01

    Here we present the first reconstruction of vertical ice-sheet profile changes from any of the Southern Hemisphere's mid-latitude Pleistocene ice sheets. We use cosmogenic radio-nuclide (CRN) exposure analysis to record the decay of the former Patagonian Ice Sheet (PIS) from the Last Glacial Maximum (LGM) and into the late glacial. Our samples, from mountains along an east-west transect to the east of the present North Patagonian Icefield (NPI), serve as ‘dipsticks' that allow us to reconstruct past changes in ice-sheet thickness, and demonstrates that the former PIS remained extensive and close to its LGM extent in this region until ~19.0 ka. After this time rapid ice-sheet thinning, initiated at ~18.1 ka, saw ice at or near its present dimension by 15.5 ka. We argue this rapid thinning was triggered by a combination of the rapid southward migration of the precipitation bearing Southern Hemisphere (SH) westerlies and regional warming. PMID:23817136

  6. Spawning sockeye salmon fossils in Pleistocene lake beds of Skokomish Valley, Washington

    NASA Astrophysics Data System (ADS)

    Smith, Gerald R.; Montgomery, David R.; Peterson, N. Phil; Crowley, Bruce

    2007-09-01

    An assemblage of fossil sockeye salmon was discovered in Pleistocene lake sediments along the South Fork Skokomish River, Olympic Peninsula, Washington. The fossils were abundant near the head of a former glacial lake at 115 m elevation. Large adult salmon are concentrated in a sequence of death assemblages that include individuals with enlarged breeding teeth and worn caudal fins indicating migration, nest digging, and spawning prior to death. The specimens were 4 yr old and 45-70 cm in total length, similar in size to modern sockeye salmon, not landlocked kokanee. The fossils possess most of the characteristics of sockeye salmon, Oncorhynchus nerka, but with several minor traits suggestive of pink salmon, O. gorbuscha. This suggests the degree of divergence of these species at about 1 million yr ago, when geological evidence indicates the salmon were deposited at the head of a proglacial lake impounded by the Salmon Springs advance of the Puget lobe ice sheet. Surficial geology and topography record a complicated history of glacial damming and river diversion that implies incision of the modern gorge of the South Fork Skokomish River after deposition of the fossil-bearing sediments.

  7. Parallel responses of bees to Pleistocene climate change in three isolated archipelagos of the southwestern Pacific

    PubMed Central

    Groom, Scott V. C.; Stevens, Mark I.; Schwarz, Michael P.

    2014-01-01

    The impacts of glacial cycles on the geographical distribution and size of populations have been explored for numerous terrestrial and marine taxa. However, most studies have focused on high latitudes, with only a few focused on the response of biota to the last glacial maximum (LGM) in equatorial regions. Here, we examine how population sizes of key bee fauna in the southwest Pacific archipelagos of Fiji, Vanuatu and Samoa have fluctuated over the Quaternary. We show that all three island faunas suffered massive population declines, roughly corresponding in time to the LGM, followed by rapid expansion post-LGM. Our data therefore suggest that Pleistocene climate change has had major impacts across a very broad tropical region. While other studies indicate widespread Holarctic effects of the LGM, our data suggest a much wider range of latitudes, extending to the tropics, where these climate change repercussions were important. As key pollinators, the inferred changes in these bee faunas may have been critical in the development of the diverse Pacific island flora. The magnitude of these responses indicates future climate change scenarios may have alarming consequences for Pacific island systems involving pollinator-dependent plant communities and agricultural crops. PMID:24807250

  8. The Mid-Pleistocene Climate Transition in the Southern Hemisphere: Evidences From ODP Site 1123

    NASA Astrophysics Data System (ADS)

    Ferretti, P.; Elderfield, H.; McCave, N.

    2008-12-01

    One of the most intriguing aspects of the Pleistocene climate is the development of quasi-periodic (ca.100 kyr), high-amplitude glacial variability during the middle Pleistocene. A number of causes have been suggested for this Mid-Pleistocene Transition (MPT), but there is no consensus yet on this matter despite more than two decades of research. Most hypotheses for the origin of the MPT invoke either a response to a long-term cooling, possibly induced by decreasing atmospheric pCO2, or changes in internal ice sheet dynamics. Marine records from the North Atlantic and tropical-ocean upwelling regions have already provided support to the first hypothesis, documenting decreases of sea surface temperatures during the MPT. In contrast, very little is known about how deep-water temperatures evolved during this climate transition, and how it correlated to the surface water variability. Here we present records of Mg/Ca and stable isotopes on planktonic (Globigerina bulloides, Globorotalia inflata) and benthic (Uvigerina spp.) foraminifera over the time interval 0.35-1 Ma from a marine sediment core recovered in the mid Southern latitudes (ODP Site 1123, Southwest Pacific Ocean). The Mg/Ca-based temperature estimates allow us to test the hypothesis of a global cooling associated with the MPT in the Southern Hemisphere and, paired with the foraminiferal ?18O record, derive the ?18O of the water in which the foraminifer calcified, the latter of which combines a global glacioeustatic signal with local hydrographic effects. These results permit preliminary discussion of the magnitude of the surface- and deep-water temperature changes during glacial/interglacial transitions and the interglacials themselves. The phase relationship between surface- and deep-water signals is tentatively assessed. Finally, the phasing of variations in the marine record will be considered with respect to other component of the climate system, and a comparison with greenhouse gases and atmospheric temperature from EPICA Dome C will be attempted, after evaluation of methods for precise synchronization of these records.

  9. Sensitivity simulations with direct shortwave radiative forcing by aeolian dust during glacial cycles

    NASA Astrophysics Data System (ADS)

    Bauer, E.; Ganopolski, A.

    2014-07-01

    Possible feedback effects between aeolian dust, climate and ice sheets are studied for the first time with an Earth system model of intermediate complexity over the late Pleistocene period. Correlations between climate and dust deposition records suggest that aeolian dust potentially plays an important role for the evolution of glacial cycles. Here climatic effects from the dust direct radiative forcing (DRF) caused by absorption and scattering of solar radiation are investigated. Key elements controlling the dust DRF are the atmospheric dust distribution and the absorption-scattering efficiency of dust aerosols. Effective physical parameters in the description of these elements are varied within uncertainty ranges known from available data and detailed model studies. Although the parameters can be reasonably constrained, the simulated dust DRF spans a~wide uncertainty range related to the strong nonlinearity of the Earth system. In our simulations, the dust DRF is highly localized. Medium-range parameters result in negative DRF of several watts per square metre in regions close to major dust sources and negligible values elsewhere. In the case of high absorption efficiency, the local dust DRF can reach positive values and the global mean DRF can be insignificantly small. In the case of low absorption efficiency, the dust DRF can produce a significant global cooling in glacial periods, which leads to a doubling of the maximum glacial ice volume relative to the case with small dust DRF. DRF-induced temperature and precipitation changes can either be attenuated or amplified through a feedback loop involving the dust cycle. The sensitivity experiments suggest that depending on dust optical parameters, dust DRF has the potential to either damp or reinforce glacial-interglacial climate changes.

  10. Sensitivity simulations with direct radiative forcing by aeolian dust during glacial cycles

    NASA Astrophysics Data System (ADS)

    Bauer, E.; Ganopolski, A.

    2014-01-01

    Possible feedback effects between aeolian dust, climate and ice sheets are studied for the first time with an Earth system model of intermediate complexity over the late Pleistocene period. Correlations between climate variables and dust deposits suggest that aeolian dust potentially plays an important role for the evolution of glacial cycles. Here climatic effects from the dust direct radiative forcing (DRF) caused by absorption and scattering of solar radiation are investigated. Key factors controlling the dust DRF are the atmospheric dust distribution and the absorption-scattering efficiency of dust aerosols. Effective physical parameters in the description of these factors are varied within uncertainty ranges known from available data and detailed model studies. Although the parameters are reasonably constrained by use of these studies, the simulated dust DRF spans a wide uncertainty range related to nonlinear dependencies. In our simulations, the dust DRF is highly localized. Medium-range parameters result in negative DRF of several W m-2 in regions close to major dust sources and negligible values elsewhere. In case of high absorption efficiency, the local dust DRF can reach positive values and the global mean DRF can be insignificantly small. In case of low absorption efficiency, the dust DRF can produce a significant global cooling in glacial periods which leads to a doubling of the maximum glacial ice volume relative to the case with small dust DRF. DRF-induced temperature and precipitation changes can either be attenuated or amplified through a feedback loop involving the dust cycle. The sensitivity experiments suggest that depending on dust optical parameters the DRF has the potential to either damp or reinforce glacial-interglacial climate changes.

  11. Paleoecology of central Kentucky since the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Wilkins, Gary R.; Delcourt, Paul A.; Delcourt, Hazel R.; Harrison, Frederick W.; Turner, Manson R.

    1991-09-01

    Pollen grains and spores, plant macrofossils, and sponge spicules from a 7.2-m sediment core from Jackson Pond dating back to 20,000 yr B.P. are the basis for new interpretations of vegetational, limnological, and climatic changes in central Kentucky. During the full-glacial interval (20,400 to 16,800 yr B.P.) upland vegetation was closed spruce forest with jack pine as a subdominant. Aquatic macrophyte and sponge assemblages indicate that the site was a relatively deep, open pond with low organic productivity. During late-glacial time (16,800 to 11,300 yr B.P.) spruce populations continued to dominate while jack pine declined and sedge increased as the vegetation became a more open, taiga-like boreal woodland. Between 11,300 and 10,000 yr B.P., abundances of spruce and oak pollen oscillated reciprocally, possibly reflecting the Younger Dryas oscillation as boreal taxa underwent a series of declines and increases at the southern limit of their ranges before becoming extirpated and replaced by deciduous forest. In the early Holocene (10,000 to 7300 yr B.P.) a mesic deciduous woodland developed; it was replaced by xeric oak-hickory forest during the middle Holocene between 7300 and 3900 yr B.P. Grass increased after 3900 yr B.P., indicating that the presettlement vegetation mosaic of mixed deciduous forest and prairie (the "Kentucky Barrens") became established in central Kentucky after the Hypsithermal interval. Sponge spicules increased in number during the Holocene, reflecting reduced water depths in the pond. Sediment infilling, as well as climatic warming and the expansion of fringing shrub thickets, increased nutrient and habitat availability for freshwater sponges.

  12. The Punta Lucero Quarry site (Zierbena, Bizkaia): a window into the Middle Pleistocene in the Northern Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Gómez-Olivencia, Asier; Sala, Nohemi; Arceredillo, Diego; García, Nuria; Martínez-Pillado, Virginia; Rios-Garaizar, Joseba; Garate, Diego; Solar, Gonzalo; Libano, Iñaki

    2015-08-01

    The period between the end of the Early Pleistocene and the mid-Middle Pleistocene (roughly between 1.0 and 0.4 Ma BP) is of great interest in Western Europe. It witnessed several climatic oscillations and changes in the fauna, the demise of a hominin species and the appearance of another, along with important cultural and technological changes. Thus, the few available sites with these chronologies is vital to the understanding of the tempo and mode of these changes. Middle Pleistocene sites in the Northern Iberian Peninsula are very rare. Here we present the study of the site found at the Punta Lucero Quarry (Biscay province, Northern Iberian Peninsula), which includes for the first time the complete collection from the site. The fossil association from this site includes several ungulates, such as a Megacerine deer, Cervus elaphus, large bovids (likely both Bos primigenius and Bison sp. are present), Stephanorhinus sp., and carnivores, such as Homotherium latidens, Panthera gombaszoegensis, Canis mosbachensis and Vulpes sp. This association is typical of a middle Middle Pleistocene chronology and would be the oldest macro-mammal site in the Eastern Cantabrian region. This site would likely correspond to a chronology after Mode 1 technological complex and before the arrival of Mode 2 technology in this region. Thus, it offers a glimpse into the paleoecological conditions slightly prior to or contemporaneous with the first Acheulian makers in the northern fringe of the Iberian Peninsula.

  13. Record of glacial Lake Missoula floods in glacial Lake Columbia, Washington

    NASA Astrophysics Data System (ADS)

    Hanson, Michelle A.; Clague, John J.

    2016-02-01

    During the last glaciation (marine oxygen isotope stage 2), outburst floods from glacial Lake Missoula deposited diagnostic sediments within glacial Lake Columbia. Two dominant outburst flood lithofacies are present within glacial Lake Columbia deposits: a flood expansion bar facies and a finer-grained hyperpycnite facies. We conclude that the flood sediments have a glacial Lake Missoula source because: (1) current indicators indicate westward flow through the lake, and upvalley flow followed by downvalley flow in tributary valleys; (2) no flood sediments are found north of a certain point; (3) there is a dominance of Belt-Purcell Supergroup clasts in a flood expansion bar; and (4) some of the finer-grained beds have a pink colour, reflective of glacial Lake Missoula lake-bottom sediments. A new radiocarbon age of 13,400 ± 100 14C BP on plant detritus found below 37 flood beds helps constrain the timing of outburst flooding from glacial Lake Missoula.

  14. Transient rock slope processes driven by Pleistocene fluvial incision in Alpine valleys

    NASA Astrophysics Data System (ADS)

    Leith, Kerry; Fox, Matthew; Moore, Jeffrey; Loew, Simon

    2013-04-01

    Major tributary valleys within Canton Valais (Switzerland) display a common morphology along their length, hinting at a shared geomorphic history. Glaciers currently occupy the headwaters of many catchments, while the upper reaches of rivers flow across extensive alluvial planes before abruptly transitioning to steep channels consisting of mixed bedrock and talus fan deposits. The rivers then flow out over the alluvial plane of the Rhone Valley, converging to discharge into Lake Geneva, which defines a long-term local baselevel for the system. Using a 2.5 m resolution LiDAR DEM, we correlate knickpoints common to several of the tributary valleys, which are assumed to be associated with the propagation of ongoing fluvial incision into the steep bedrock/talus sections the river channels. The morphology of valley walls several hundred metres above these steep channel sections is characteristically rough, and large deep-seated landslides which commonly intersect