Science.gov

Sample records for pleistocene glacial oscillations

  1. Timing of Pleistocene glacial oscillations recorded in the Cantabrian Mountains (North Iberia): correlation of glacial and periglacial sequences from both sides of the range using a multiple-dating method approach

    NASA Astrophysics Data System (ADS)

    Rodriguez-Rodriguez, Laura; Jiménez-Sánchez, Montserrat; José Domínguez-Cuesta, María; Rinterknecht, Vincent; Pallàs, Raimón; Bourlès, Didier

    2015-04-01

    The Cantabrian Mountains is a coastal mountain range up to 2648 m altitude located at 43oN latitude and directly influenced by the North Atlantic climate oscillations. Although nowadays it is fully deglaciatied, glacial sediments and landforms are clearly preserved elsewhere above 1600 m. Particularly, glacial evidence in the central Cantabrian Mountains suggests the formation of an icefield in the headwaters of the Porma and Esla catchments drained by glaciers up to 1-6 km in length in the northern slope and 19 km-long in the southern slope, with their fronts at minimum altitudes of 900 and 1150 m asl respectively (Rodríguez-Rodríguez et al., 2014). Numerical ages obtained from the base of the Brañagallones ice-dammed deposit and one of the lateral moraines that are damming this deposit suggest that the local glacial maximum was prior to ca 33.5 cal ka BP in the Monasterio Valley (see data compiled in Rodriguez-Rodríguez et al., in press). Currently, our research is focused on developing a full chronology of glacial oscillations in both sides of the range and investigating their paleoclimate significance and relationship with glacial asymmetry through the combined use of surface exposure, OSL and radiocarbon dating methods. In this work, we present 47 10Be surface exposure ages obtained from boulders in moraines, glacial erratic boulders and rock glaciers in the Monasterio and Porma valleys. The glacial record of these valleys was chosen because of: (i) its good preservation state; (ii) the occurrence of a quartz-rich sandstone formation; and (iii) the availability of previous 14C and OSL numerical ages. Sampling sites were selected considering the relative age of glacial stages to cover as complete as possible the history of Pleistocene glaciations in the studied area, from the glacial maximum stage to the prevalence of periglacial conditions. Preliminary results suggest the occurrence of several glacial advances of similar extent at ca 150 - 50 ka followed

  2. Obliquity pacing of the late Pleistocene glacial terminations.

    PubMed

    Huybers, Peter; Wunsch, Carl

    2005-03-24

    The 100,000-year timescale in the glacial/interglacial cycles of the late Pleistocene epoch (the past approximately 700,000 years) is commonly attributed to control by variations in the Earth's orbit. This hypothesis has inspired models that depend on the Earth's obliquity (approximately 40,000 yr; approximately 40 kyr), orbital eccentricity (approximately 100 kyr) and precessional (approximately 20 kyr) fluctuations, with the emphasis usually on eccentricity and precessional forcing. According to a contrasting hypothesis, the glacial cycles arise primarily because of random internal climate variability. Taking these two perspectives together, there are currently more than thirty different models of the seven late-Pleistocene glacial cycles. Here we present a statistical test of the orbital forcing hypothesis, focusing on the rapid deglaciation events known as terminations. According to our analysis, the null hypothesis that glacial terminations are independent of obliquity can be rejected at the 5% significance level, whereas the corresponding null hypotheses for eccentricity and precession cannot be rejected. The simplest inference consistent with the test results is that the ice sheets terminated every second or third obliquity cycle at times of high obliquity, similar to the original proposal by Milankovitch. We also present simple stochastic and deterministic models that describe the timing of the late-Pleistocene glacial terminations purely in terms of obliquity forcing. PMID:15791252

  3. Interhemispheric correlation of late pleistocene glacial events

    SciTech Connect

    Lowell, T.V.; Heusser, C.J.; Andersen, B.G.

    1995-09-15

    A radiocarbon chronology shows that piedmont glacier lobes in the Chilean Andes achieved maxima during the last glaciation at 13,900 to 14,890, 21,000, 23,060, 26,940, 29,600, and {ge}33,500 carbon-14 years before present ({sup 14}C yr B.P.) in a cold and wet Subantarctic Parkland environment. The last glaciation ended with massive collapse of ice lobes close to 14,000 {sup 14}C yr B.P., accompanied by an influx of North Patagonian Rain Forest species. In the Southern Alps of New Zealand, additional glacial maxima are registered at 17,720 {sup 14}C yr B.P., and at the beginning of the Younger Dryas at 11,050 {sup 14}C yr B.P. These glacial maxima in mid-latitude mountains rimming the South Pacific were coeval with ice-rafting pulses in the North Atlantic Ocean. Furthermore, the last termination began suddenly and simultaneously in both polar hemispheres before the resumption of the modern mode of deep-water production in the Nordic Seas. Such interhemispheric coupling implies a global atmospheric signal rather than regional climatic changes caused by North Atlantic thermohaline switches or Laurentide ice surges. 51 refs., 3 figs., 1 tab.

  4. Early Pleistocene Glacial Cycles and the Integrated Summer Insolation Forcing

    NASA Astrophysics Data System (ADS)

    Huybers, Peter

    2006-07-01

    Long-term variations in Northern Hemisphere summer insolation are generally thought to control glaciation. But the intensity of summer insolation is primarily controlled by 20,000-year cycles in the precession of the equinoxes, whereas early Pleistocene glacial cycles occur at 40,000-year intervals, matching the period of changes in Earth's obliquity. The resolution of this 40,000-year problem is that glaciers are sensitive to insolation integrated over the duration of the summer. The integrated summer insolation is primarily controlled by obliquity and not precession because, by Kepler's second law, the duration of the summer is inversely proportional to Earth's distance from the Sun.

  5. Pleistocene glacial evolution of Fuentes Carrionas (Cantabrian Range, NW Spain)

    NASA Astrophysics Data System (ADS)

    Pellitero, Ramon

    2014-05-01

    Fuentes Carrionas is a massif situated at the N of Spain, between Castilla y Leon and Cantabria regions. It is the second highest mountain massif of the Cantabrian Range after Picos de Europa, with peaks over 2500 m.a.s.l. and valleys well over 1000 m.a.s.l. Fuentes Carrionas was glaciated during Quaternary, and even during the Holocene and as far as Little Ice Age the presence of glaciers, or at least permafrost is controversial. Results from glacial geomorphology analysis of Fuentes Carrionas Massif are presented. Based on the interpretation of glacial landforms, glacial evolution since the Last Glacial Maximum until Pleistocene deglaciation is described. Four different glacial equilibrium phases are identified, the last one divided into two pulsations. Deglaciation process took place between 36 ka BP and 11 ka BP. Local Last Glacial Maximum is dated back to 36-38 ka. BP, therefore earlier than LGM. Glaciers reached 15 km. long and occupied valleys down to 1250 m.a.s.l. during this phase. By European LGM (20-18 ka.BP) glaciers had substantially retreated to fronts about 1700 m.a.s.l. A final stage with two marked pulsations shows only small glaciers located at cirques above 2000 m.a.s.l. and, finally, only small cirque glaciers at North and Northeast orientation above 2200 m.a.s.l. Both these phases have been correlated to Oldest and Younger Dryas, although no dates have been done yet. A palaeoenvironmental reconstruction is proposed, based on ELA (Equilibrium Line Altitude) rise. ELA has been calculated with the AAR method and 0.67 ratio. This reconstruction shows that temperatures ranged between 9°C and 10°C lower than present ones at the end of Pleistocene, depending on a precipitations variation between 30% higher and 20% lower than current ones. Further research will focus on these retreat phases, especially on Younger Dryas identification and reconstruction for this site and the rest of Cantabrian Range.

  6. Intensified deep Pacific inflow and ventilation in Pleistocene glacial times.

    PubMed

    Hall, I R; McCave, I N; Shackleton, N J; Weedon, G P; Harris, S E

    2001-08-23

    The production of cold, deep waters in the Southern Ocean is an important factor in the Earth's heat budget. The supply of deep water to the Pacific Ocean is presently dominated by a single source, the deep western boundary current east of New Zealand. Here we use sediment records deposited under the influence of this deep western boundary current to reconstruct deep-water properties and speed changes during the Pleistocene epoch. In physical and isotope proxies we find evidence for intensified deep Pacific Ocean inflow and ventilation during the glacial periods of the past 1.2 million years. The changes in throughflow may be directly related to an increased production of Antarctic Bottom Water during glacial times. Possible causes for such an increased bottom-water production include increasing wind strengths in the Southern Ocean or an increase in annual sea-ice formation, leaving dense water after brine rejection and thereby enhancing deep convection. We infer also that the global thermohaline circulation was perturbed significantly during the mid-Pleistocene climate transition between 0.86 and 0.45 million years ago. PMID:11518963

  7. Changing climatic response: a conceptual model for glacial cycles and the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Daruka, I.; Ditlevsen, P. D.

    2014-03-01

    Milankovitch's astronomical theory of glacial cycles, attributing ice age climate oscillations to orbital changes in Northern Northern-Hemisphere insolation, is challenged by the paleoclimatic record. The climatic response to the variations in insolation is far from trivial. In general the glacial cycles are highly asymmetric in time, with slow cooling from the interglacials to the glacials (inceptions) and very rapid warming from the glacials to the interglacials (terminations). We shall refer to this fast-slow dynamics as the "saw-tooth" shape of the paleoclimatic record. This is non-linearly related to the time-symmetric variations in the orbital forcing. However, the most pronounced challenge to the Milankovitch theory is the Mid-Pleistocene Transition (MPT) occurring about one million years ago. During that event, the prevailing 41 kyr glacial cycles, corresponding to the almost harmonic obliquity cycle were replaced by longer saw-tooth shaped cycles with a time scale around 100 kyr. The MPT must have been driven by internal changes in climate response, since it does not correspond to any apparent changes in the orbital forcing. In order to identify possible mechanisms causing the observed changes in glacial dynamics, it is relevant to study simplified models with the capability of generating temporal behavior similar to the observed records. We present a simple oscillator type model approach, with two variables, a temperature anomaly and an ice volume analogous, climatic memory term. The generalization of the ice albedo feedback is included in terms of an effective multiplicative coupling between this latter climatic memory term (representing the internal degrees of freedom) and the external drive. The simple model reproduces the temporal asymmetry of the late Pleistocene glacial cycles and suggests that the MPT can be explained as a regime shift, aided by climatic noise, from a period 1 frequency locking to the obliquity cycle to a period 2-3 frequency

  8. A conceptual model for glacial cycles and the middle Pleistocene transition

    NASA Astrophysics Data System (ADS)

    Daruka, István; Ditlevsen, Peter D.

    2016-01-01

    Milankovitch's astronomical theory of glacial cycles, attributing ice age climate oscillations to orbital changes in Northern-Hemisphere insolation, is challenged by the paleoclimatic record. The climatic response to the variations in insolation is far from trivial. In general the glacial cycles are highly asymmetric in time, with slow cooling from the interglacials to the glacials (inceptions) and very rapid warming from the glacials to the interglacials (terminations). We shall refer to this fast-slow dynamics as the "saw-tooth" shape of the paleoclimatic record. This is non-linearly related to the time-symmetric variations in the orbital forcing. However, the most pronounced challenge to the Milankovitch theory is the middle Pleistocene transition (MPT) occurring about one million years ago. During that event, the prevailing 41 kyr glacial cycles, corresponding to the almost harmonic obliquity cycle were replaced by longer saw-tooth shaped cycles with a time-scale around 100 kyr. The MPT must have been driven by internal changes in climate response, since it does not correspond to any apparent changes in the orbital forcing. In order to identify possible mechanisms causing the observed changes in glacial dynamics, it is relevant to study simplified models with the capability of generating temporal behavior similar to the observed records. We present a simple oscillator type model approach, with two variables, a temperature anomaly and a climatic memory term. The generalization of the ice albedo feedback is included in terms of an effective multiplicative coupling between this latter climatic memory term (representing the internal degrees of freedom) and the external drive. The simple model reproduces the temporal asymmetry of the late Pleistocene glacial cycles and suggests that the MPT can be explained as a regime shift, aided by climatic noise, from a period 1 frequency locking to the obliquity cycle to a period 2-3 frequency locking to the same obliquity

  9. Simulations of cataclysmic outburst floods from Pleistocene Glacial Lake Missoula

    USGS Publications Warehouse

    Denlinger, Roger P.; O'Connell, D. R. H.

    2009-01-01

    Using a flow domain that we constructed from 30 m digital-elevation model data of western United States and Canada and a two-dimensional numerical model for shallow-water flow over rugged terrain, we simulated outburst floods from Pleistocene Glacial Lake Missoula. We modeled a large, but not the largest, flood, using initial lake elevation at 1250 m instead of 1285 m. Rupture of the ice dam, centered on modern Lake Pend Oreille, catastrophically floods eastern Washington and rapidly fills the broad Pasco, Yakima, and Umatilla Basins. Maximum flood stage is reached in Pasco and Yakima Basins 38 h after the dam break, whereas maximum flood stage in Umatilla Basin occurs 17 h later. Drainage of these basins through narrow Columbia gorge takes an additional 445 h. For this modeled flood, peak discharges in eastern Washington range from 10 to 20 × 106 m3/s. However, constrictions in Columbia gorge limit peak discharges to 6 m3/s and greatly extend the duration of flooding. We compare these model results with field observations of scabland distribution and high-water indicators. Our model predictions of the locations of maximum scour (product of bed shear stress and average flow velocity) match the distribution of existing scablands. We compare model peak stages to high-water indicators from the Rathdrum-Spokane valley, Walulla Gap, and along Columbia gorge. Though peak stages from this less-than-maximal flood model attain or exceed peak-stage indicators along Rathdrum-Spokane valley and along Columbia gorge, simulated peak stages near Walulla Gap are 10–40 m below observed peak-stage indicators. Despite this discrepancy, our match to field observations in most of the region indicates that additional sources of water other than Glacial Lake Missoula are not required to explain the Missoula floods.

  10. "Pleistocene Park" - A Glacial Ecosystem in a Warming World

    NASA Astrophysics Data System (ADS)

    Zimov, N.; Zimov, S. A.

    2011-12-01

    Most people if asked what association they have to the phrase - ice age, will answer - "Mammoth". But mammoths are not only big wooly elephants which went extinct in the beginning of Holocene. They were also part of a great ecosystem, the Northern Steppe or Mammoth Ecosystem, which was the world's largest ecosystem for hundreds thousand of years. This ecosystem, with extremely high rates of biocycling, could maintain animal densities which can be hardly found anywhere in the modern world. Northern steppe played an important role in shaping the glacial climate of the planet. High albedo grasslands reflected a much bigger portion of sun heat back to the atmosphere. Cold soils and permafrost served as sinks of carbon, helping to keep greenhouse gas concentration in the atmosphere at low levels. In the beginning of Holocene, simultaneously with wave of human expansion, an extinction wave took place. Tens of megafauna species became extinct at that time worldwide, while ones that resisted the extinction substantially dropped in numbers. The Northern Steppe ecosystem became imbalanced. Without large numbers of herbivores grazing and trampling the pasture, trees, shrubs and moss invaded grasslands. Within just a few hundreds years the mammoth ecosystem was gone, replaced by much lower productivity ecosystems. Already 14 thousand year ago, by simply increasing hunting pressure, humans managed to dramatically change Earth's appearance. We propose that by artificially maintaining a high animal density and diversity on a limited territory for extended period of time, it will be possible to reverse the shift, reestablishing the productive Northern Steppe ecosystem. Moss, shrubs and tree sprouts are not able to resist grazing pressure so they will be quickly replaced by grasses and herbs. Animals digesting all aboveground biomass would accelerate nutrition cycling and consequently increase bioproductivity. Higher bioproductivity would increase evapotranspiration, keeping soils

  11. Late Pleistocene oscillations of the Drau Glacier (southern Austria)

    NASA Astrophysics Data System (ADS)

    Karnitschar, Christina; Reitner, Jürgen; Draganits, Erich

    2016-04-01

    The Drau Glacier was the largest Pleistocene glacier in the southeastern part of the Alps and significantly shaped the landscape in this region. The study area is located at the termination of the Drau Glacier in the southern part of Austria (Carinthia). The investigation aims to decipher glacial dynamics during the Late Pleistocene glacial advance, stabilisation and final recession of this glacier based on geological/geomorphological mapping, interpretation of airborne laser scan (ALS) topographic data and lithostratigraphic investigations of glacial and periglacial sediments. Special emphasis is laid on the reconstruction of the maximum extent of the glaciation (LGM). Based on previous mapping by Bobek (1959) and Ucik (1996-1998) more details have been gained for the paleogeographic reconstruction based on glacial and non-glacial erosion and accumulation features. These include traces of pre-Upper Pleistocene glaciation, drumlins, terminal moraines and kettle holes. Paleogeographic reconstruction was done with correlation of different outcrops based on lithostratigraphy and ALS topography. Sequences of gravel related to glacial advance covered by till, followed by periglacial sediments allowed detailed reconstruction of the glacial sequence in this area and the complex succession of various extents of the Drau Glacier. References Bobek, Hans. 1959: Der Eisrückgang im östlichen Klagenfurter Becken. In: Mitteilungen der österreichischen geographischen Gesellschaft, Wien. Ucik, Friedrich Hans. 1996: Bericht über geologische Aufnahmen im Quartär auf Blatt 204 Völkermarkt, Jb. Geol. B.-A., 141, S. 340, Wien. Ucik, Friedrich Hans. 1997: Bericht über geologische Aufnahmen im Quartär auf Blatt 204 Völkermarkt, Jb. Geol. B.-A., 141, S. 325-326, Wien. Ucik, Friedrich Hans. 1998: Bericht über geologische Aufnahmen im Quartär auf Blatt 204 Völkermarkt, Jb. Geol. B.-A., 142, S. 333-334, Wien.

  12. Similar millennial climate variability on the Iberian margin during two early Pleistocene glacials and MIS 3

    NASA Astrophysics Data System (ADS)

    Birner, B.; Hodell, D. A.; Tzedakis, P. C.; Skinner, L. C.

    2016-01-01

    Although millennial-scale climate variability (<10 ka) has been well studied during the last glacial cycles, little is known about this important aspect of climate in the early Pleistocene, prior to the Middle Pleistocene Transition. Here we present an early Pleistocene climate record at centennial resolution for two representative glacials (marine isotope stages (MIS) 37-41 from approximately 1235 to 1320 ka) during the "41 ka world" at Integrated Ocean Drilling Program Site U1385 (the "Shackleton Site") on the southwest Iberian margin. Millennial-scale climate variability was suppressed during interglacial periods (MIS 37, MIS 39, and MIS 41) and activated during glacial inceptions when benthic δ18O exceeded 3.2‰. Millennial variability during glacials MIS 38 and MIS 40 closely resembled Dansgaard-Oeschger events from the last glacial (MIS 3) in amplitude, shape, and pacing. The phasing of oxygen and carbon isotope variability is consistent with an active oceanic thermal bipolar see-saw between the Northern and Southern Hemispheres during most of the prominent stadials. Surface cooling was associated with systematic decreases in benthic carbon isotopes, indicating concomitant changes in the meridional overturning circulation. A comparison to other North Atlantic records of ice rafting during the early Pleistocene suggests that freshwater forcing, as proposed for the late Pleistocene, was involved in triggering or amplifying perturbations of the North Atlantic circulation that elicited a bipolar see-saw response. Our findings support similarities in the operation of the climate system occurring on millennial time scales before and after the Middle Pleistocene Transition despite the increases in global ice volume and duration of the glacial cycles.

  13. Multiple instabilities and modes of glacial rhythmicity in the Plio-Pleistocene: A general theory of late Cenozoic climatic change

    SciTech Connect

    Saltzman, B.; Verbitsky, M.Ya.

    1993-10-01

    Several distinct modes of glacial oscillation have existed during the past few million years, ranging from low-amplitude, high-frequency oscillations in the early Pliocene, through relatively high amplitude, predominantly near 40 ky period, oscillations in the late Pliocene and early Pleistocene, to the major near 100 ky period oscillations of the late Pleistocene. In addition to other plausible mechanisms, this study illustrates another possible contributor based on the hypothesis that the slow-response climatic system is bistable and that two kinds of internal instability may be operative along with externally imposed forcing due to earth-orbital (Milankovitch) radiation changes and slow, tectonically-induced changes in atmospheric carbon dioxide. Within the framework of a dynamical model containing the possibility for these two instabilities, as well as for stable modes, the study shows (1) how Milankovitch radiative changes or stochastic forcing influencing ice sheets can induce aperiodic (chaotic) transitions between the possible stable and unstable modes, and (2) how progressive, long-term, tectonically-induced, changes in carbon dioxide, acting in concert with earth-orbital radiative variations in high Northern Hemisphere latitudes, can force systematic transitions between the modes. This is a minimum dynamical model of the late Cenozoic climatic changes, containing the main physical factors determining these changes: ice mass, bedrock depression, atmospheric carbon dioxide concentration, deep ocean thermohaline state, Milankovitch radiation forcing, and slow tectonically-induced carbon dioxide forcing. 34 refs., 13 figs., 2 tabs.

  14. Molecular evidence for Pleistocene glacial cycles driving diversification of a North American desert spider, Agelenopsis aperta.

    PubMed

    Ayoub, Nadia A; Riechert, Susan E

    2004-11-01

    The influence of historical climatic vs. geological changes on species diversification patterns was investigated in a widely distributed North American desert spider, Agelenopsis aperta (Araneae: Agelenidae), with particular reference to Pleistocene glacial cycles and earlier patterns of mountain building. Levels of sequence divergence obtained from the mitochondrial gene, cytochrome oxidase I, dated to the Pleistocene, eliminating Rocky Mountain orogeny as a cause of diversification, as orogeny ended 4 million years ago. The results of phylogenetic and network analyses showed the presence of three geographically defined clades, which were consistent with the presence of at least three glacial refugia: (i) east of the Rocky Mountains; (ii) between the Rocky Mountains and Sierra Nevadas; and (iii) west of the Sierra Nevadas. In addition, populations within the Rocky Mountains exhibited significantly lower genetic diversity than populations east of the Rocky Mountains and the haplotypes found within the Rockies were a subset of eastern haplotypes. These patterns suggest that a post-Pleistocene range expansion occurred out of an eastern glacial refugium into the Rocky Mountains. Examination of phylogeographical studies of other North American desert taxa indicated that mountain building explained diversification patterns more effectively for some taxa but Pleistocene climate change was more important for others, including A. aperta. PMID:15488003

  15. Late Pleistocene glacial chronology and paleoclimate of Big Cottonwood Canyon, Wasatch Range, Utah.

    NASA Astrophysics Data System (ADS)

    Quirk, B.; Moore, J. R.; Laabs, B. J. C.; Caffee, M. W.; Plummer, M. A.

    2015-12-01

    Development of high-resolution glacial chronologies and paleoclimate modeling play a critical role in understanding modern climate variability. The glacial chronology of Big Cottonwood Canyon, Wasatch Range, Utah is poorly understood, and has not been assessed since the early 1900's. We used a variety of modern techniques to establish new understanding of Late Pleistocene glaciation in Big Cottonwood and other Wasatch Range canyons. An absolute chronology was established through the use of cosmogenic nuclide (beryllium-10) exposure age dating; we processed seventeen samples from moraine boulders, erratics, and striated bedrock throughout Big Cottonwood Canyon. Remote mapping of glacial landforms was completed using 2-meter LiDAR digital elevation models, and all identified landforms later verified and mapped in the field. We then used a coupled energy-mass-balance and ice-flow model to 1. infer ice extents in Big Cottonwood Canyon, incorporating neighboring canyons with well constrained maxima; and 2. explore paleoclimate conditions during the Late Pleistocene necessary to reproduce these ice extents. Results reveal new information regarding the influence of Pleistocene Lake Bonneville on climate and landscape evolution in the Wasatch Range during and following the Last Glacial Maximum.

  16. Case for periodic, colossal jokulhlaups from Pleistocene glacial Lake Missoula.

    USGS Publications Warehouse

    Waitt, R.B., Jr.

    1985-01-01

    Lake Missoula (2500 km3) remained sealed as long as any segment of the glacial dam remained grounded; when the lake rose to a critical level c.600 m in depth, the glacier bed at the seal became buoyant, initiating underflow from the lake. Subglacial tunnels then grew exponentially, leading to catastrophic discharge. Calculations of the water budget for the lake basin (including input from the Cordilleran ice sheet) suggest that the lake filled every three to seven decades. -from Author

  17. Late-glacial pollen, macrofossils and fish remains in northeastern U.S.A. — The Younger Dryas oscillation. A contribution to the 'North Atlantic seaboard programme' of IGCP-253, 'Termination of the Pleistocene'

    NASA Astrophysics Data System (ADS)

    Peteet, D. M.; Daniels, R. A.; Heusser, L. E.; Vogel, J. S.; Southon, J. R.; Nelson, D. E.

    The late-glacial environmental histories of Allamuchy Pond, New Jersey and Linsley Pond, Connecticut are reconstructed from pollen, macrofossil and fish scale remains. Accelerator mass spectrometry (AMS) 14C dating of seeds and needles indicates that the first organic deposition, evidenced by fossil Picea (spruce) needles, occurred approximately 12,400 BP. A major regional warming began in the northeastern United States at this time, correlative with the Bølling/Allerød warming of Europe and Greenland. The increase in Quercus (oak) pollen and presence of Pinus strobus (white pine) needles demonstrates the magnitude of warming reached at about 11,000 BP. The subsequent decline of thermophilous species and increase in boreal Picea, Abies (fir), Larix (larch), Betula papyrifera (paper birch) and Alnus (alder) from 10,800-10,000 BP was a regional vegetational reversal. Thus we find a North American expression of the Younger Dryas with a mean annual temperature depression of 3-4° C. The subsequent classical southern New England pine pollen zone 'B' and Pinus strobus macrofossils signalled a return to warmer conditions at approximately 10,000 BP, regionally, within approximately 50-100 years. A large increase in Quercus follows. This study is unique in documenting a continuous late-glacial record of fish remains from Allamuchy Pond, New Jersey sediments, indicating that members of the families Centrarchidae (sunfish), Salmonidae (trout), Percidae (perch) and Cyprinidae (minnow) were regionally present.

  18. Cataclysmic Late pleistocene flooding from glacial Lake Missoula: A review

    NASA Astrophysics Data System (ADS)

    Baker, Victor R.; Bunker, Russell C.

    Late Wisconsin floods from glacial Lake Missoula occurred between approximately 16 and 12 ka BP. Many floods occurred; some were demonstrably cataclysmic. Early studies of Missoula flooding centered on the anomalous physiography of the Channeled Scabland, which J. Harlen Bretz hypothesized in 1923 to have developed during a debacle that he named 'The Spokane Flood'. Among the ironies in the controversy over this hypothesis was a mistaken view of uniformitarianism held by Bretz's adversaries. After resolution of the scabland's origin by cataclysmic outburst flooding from glacial Lake Missoula, research since 1960 emphasized details of flood magnitudes, frequency, routing and number. Studies of flood hydraulics and other physical parameters need to utilize modern computerized procedures for flow modeling, lake-burst simulation, and sediment-transport analysis. Preliminary simulation models indicate the probability of multiple Late Wisconsin jökulhlaups from Lake Missoula, although these models predict a wide range of flood magnitudes. Major advances have been made in the study of low-energy, rhythmically bedded sediments that accumulated in flood slack-water areas. The 'forty floods' hypothesis postulates that each rhythmite represents the deposition in such slack-water areas of separate, distinct cataclysmic floods that can be traced from Lake Missoula to the vicinity of Portland, Oregon. However, the hypothesis has numerous unsubstantiated implications concerning flood magnitudes, sources, routing and sedimentation dynamics. There were multiple great Late Wisconsin floods in the Columbia River system of the northwestern United States. Studies of high-energy, high altitude flood deposits are necessary to evaluate the magnitudes of these floods. Improved geochronologic studies throughout the immense region impacted by the flooding will be required to properly evaluate flood frequency. The cataclysmic flood concept championed by J. Harlen Bretz continues to stimulate

  19. Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in NE Asia.

    PubMed

    Herzschuh, Ulrike; Birks, H John B; Laepple, Thomas; Andreev, Andrei; Melles, Martin; Brigham-Grette, Julie

    2016-01-01

    Broad-scale climate control of vegetation is widely assumed. Vegetation-climate lags are generally thought to have lasted no more than a few centuries. Here our palaeoecological study challenges this concept over glacial-interglacial timescales. Through multivariate analyses of pollen assemblages from Lake El'gygytgyn, Russian Far East and other data we show that interglacial vegetation during the Plio-Pleistocene transition mainly reflects conditions of the preceding glacial instead of contemporary interglacial climate. Vegetation-climate disequilibrium may persist for several millennia, related to the combined effects of permafrost persistence, distant glacial refugia and fire. In contrast, no effects from the preceding interglacial on glacial vegetation are detected. We propose that disequilibrium was stronger during the Plio-Pleistocene transition than during the Mid-Pliocene Warm Period when, in addition to climate, herbivory was important. By analogy to the past, we suggest today's widespread larch ecosystem on permafrost is not in climate equilibrium. Vegetation-based reconstructions of interglacial climates used to assess atmospheric CO2-temperature relationships may thus yield misleading simulations of past global climate sensitivity. PMID:27338025

  20. Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in NE Asia

    NASA Astrophysics Data System (ADS)

    Herzschuh, Ulrike; Birks, H. John B.; Laepple, Thomas; Andreev, Andrei; Melles, Martin; Brigham-Grette, Julie

    2016-06-01

    Broad-scale climate control of vegetation is widely assumed. Vegetation-climate lags are generally thought to have lasted no more than a few centuries. Here our palaeoecological study challenges this concept over glacial-interglacial timescales. Through multivariate analyses of pollen assemblages from Lake El'gygytgyn, Russian Far East and other data we show that interglacial vegetation during the Plio-Pleistocene transition mainly reflects conditions of the preceding glacial instead of contemporary interglacial climate. Vegetation-climate disequilibrium may persist for several millennia, related to the combined effects of permafrost persistence, distant glacial refugia and fire. In contrast, no effects from the preceding interglacial on glacial vegetation are detected. We propose that disequilibrium was stronger during the Plio-Pleistocene transition than during the Mid-Pliocene Warm Period when, in addition to climate, herbivory was important. By analogy to the past, we suggest today's widespread larch ecosystem on permafrost is not in climate equilibrium. Vegetation-based reconstructions of interglacial climates used to assess atmospheric CO2-temperature relationships may thus yield misleading simulations of past global climate sensitivity.

  1. Plio-Pleistocene glacial-interglacial productivity changes in the eastern equatorial Pacific upwelling system

    NASA Astrophysics Data System (ADS)

    Jakob, Kim A.; Wilson, Paul A.; Bahr, André; Bolton, Clara T.; Pross, Jörg; Fiebig, Jens; Friedrich, Oliver

    2016-03-01

    The eastern equatorial Pacific Ocean (EEP) upwelling system supports >10% of the present-day global ocean primary production, making it an important component in Earth's atmospheric and marine carbon budget. Traditionally, it has been argued that since intensification of Northern Hemisphere glaciation (iNHG, ~2.7 Ma), changes in EEP productivity have predominantly depended on trade wind strength-controlled upwelling intensity. An alternative hypothesis suggests that EEP productivity is primarily controlled by nutrient supply from the high southern latitudes via mode waters. Here we present new high-resolution data for the latest Pliocene/early Pleistocene from Ocean Drilling Program Site 849, located within the equatorial divergence system in the heart of the EEP upwelling regime. We use carbon isotopes in benthic and planktic foraminiferal calcite and sand accumulation rates to investigate glacial-interglacial (G-IG) productivity fluctuations between 2.65 and 2.4 Ma (marine isotope stages (MIS) G1 to 94). This interval includes MIS 100, 98, and 96, three large-amplitude glacials (~1‰ in benthic δ18O) representing the culmination of iNHG. Our results suggest that latest Pliocene/early Pleistocene G-IG productivity changes in the EEP were strongly controlled by nutrient supply from Southern Ocean-sourced mode waters. Our records show a clear G-IG cyclicity from MIS 100 onward with productivity levels increasing from full glacial conditions and peaking at glacial terminations. We conclude that enhanced nutrient delivery from high southern latitudes during full glacial conditions together with superimposed intensified regional upwelling toward glacial terminations strongly regulated primary productivity rates in the EEP from MIS 100 onward.

  2. Paleoclimatic significance of Middle Pleistocene glacial deposits in the Kotzebue Sound region, northwest coastal Alaska

    SciTech Connect

    Roof, S.R.; Brigham-Grette, J. )

    1992-01-01

    During Middle Pleistocene time, glaciers extended from the western Brooks Range in NW Alaska to the coast at Kotzebue Sound, forming Baldwin Peninsula, a 120 km-long terminal moraine. Marine, glacigenic, and fluvial facies exposed along coastal bluffs surrounding Kotzebue Sound and Hotham Inlet indicate that at least the initial stages of the glacial advance occurred while sea level was high enough to cover the shallow Bering Shelf. Although it is presently uncertain if the ice actually reached tidewater before extensive middle-latitude ice-sheet formation, the marine and glacigenic facies clearly indicate that this advance must have occurred significantly out-of-phase with lower latitude glaciation. The authors believe an ice-free Bering Sea provided the moisture for glacier growth during the waning phases of a global interglacial climate. Although the magnitude of the Baldwin Peninsula advance was large compared to late Pleistocene advances, the timing with respect to sea level is consistent with observations by Miller and de Vernal that late Pleistocene polar glaciations also occurred near the end of interglacial periods, when global sea level was high, high-latitude oceans were relatively warm, and summer insolation was decreasing. An important implication of this out-of-phase glaciation hypothesis is that the critical transition point between climate states may be earlier in the interglacial-glacial cycle than previously thought. Because it appears that climate change is initiated in polar regions while the rest of Earth is experiencing an interglacial climate, many of their climate models must be revised. The glacial record at Baldwin Peninsula provides an opportunity to test, revise, and perhaps extend this out-of-phase glaciation hypothesis to the middle Pleistocene interval.

  3. Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in NE Asia

    PubMed Central

    Herzschuh, Ulrike; Birks, H. John B.; Laepple, Thomas; Andreev, Andrei; Melles, Martin; Brigham-Grette, Julie

    2016-01-01

    Broad-scale climate control of vegetation is widely assumed. Vegetation-climate lags are generally thought to have lasted no more than a few centuries. Here our palaeoecological study challenges this concept over glacial–interglacial timescales. Through multivariate analyses of pollen assemblages from Lake El'gygytgyn, Russian Far East and other data we show that interglacial vegetation during the Plio-Pleistocene transition mainly reflects conditions of the preceding glacial instead of contemporary interglacial climate. Vegetation–climate disequilibrium may persist for several millennia, related to the combined effects of permafrost persistence, distant glacial refugia and fire. In contrast, no effects from the preceding interglacial on glacial vegetation are detected. We propose that disequilibrium was stronger during the Plio-Pleistocene transition than during the Mid-Pliocene Warm Period when, in addition to climate, herbivory was important. By analogy to the past, we suggest today's widespread larch ecosystem on permafrost is not in climate equilibrium. Vegetation-based reconstructions of interglacial climates used to assess atmospheric CO2–temperature relationships may thus yield misleading simulations of past global climate sensitivity. PMID:27338025

  4. Agulhas salt-leakage oscillations during abrupt climate changes of the Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Marino, Gianluca; Zahn, Rainer; Ziegler, Martin; Purcell, Conor; Knorr, Gregor; Hall, Ian R.; Ziveri, Patrizia; Elderfield, Henry

    2013-09-01

    An ensemble of new, high-resolution records of surface ocean hydrography from the Indian-Atlantic oceanic gateway, south of Africa, demonstrates recurrent and high-amplitude salinity oscillations in the Agulhas Leakage area during the penultimate glacial-interglacial cycle. A series of millennial-scale salinification events, indicating strengthened salt leakage into the South Atlantic, appear to correlate with abrupt changes in the North Atlantic climate and Atlantic Meridional Overturning Circulation (AMOC). This interhemispheric coupling, which plausibly involved changes in the Hadley Cell and midlatitude westerlies that impacted the interocean transport at the tip of Africa, suggests that the Agulhas Leakage acted as a source of negative buoyancy for the perturbed AMOC, possibly aiding its return to full strength. Our finding points to the Indian-to-Atlantic salt transport as a potentially important modulator of the AMOC during the abrupt climate changes of the Late Pleistocene.

  5. Glacially-influenced late Pleistocene stratigraphy of a passive margin: New Jersey's Record of the North American ice sheet

    USGS Publications Warehouse

    Carey, J.S.; Sheridan, R.E.; Ashley, G.M.; Uptegrove, J.

    2005-01-01

    Glacial isostasy and the sediment supply changes associated with the waxing and waning of ice sheets have dramatic effects on the stratigraphy of adjacent continental shelves. In ancient stratigraphic records, the glacial influences on such deposits could be difficult to recognize because of the removal of coeval terrestrial glacial deposits by erosion. This study illustrates the effects of the Laurentide Ice Sheet on a basin near its maximum limit, the New Jersey continental shelf. Analysis of 1600 km of Geopulse???, Uniboom???, Minisparker??? and airgun profiles reveals four depositional sequences that have a maximum thickness of ???75 m near the shelf edge. Sequences I and IV correspond to the major glacial-interglacial sea level changes at Marine Isotope Chron (MIC) 6/5e and 2/1, whereas sequences II and III reflect smaller-scale sea-level fluctuations during chrons 4/3c and 3b/3a, respectively. Sequences I and IV are characterized by relatively thick low stand to early transgressive deposits near the shelf edge formed during times of increased sediment supply, but are thin and discontinuous across much of the shelf. Reflection horizons in these units deepen northward in the northern half of the study area due to collapse of a peripheral bulge that formed at the margin of the Laurentide Ice Sheet. The Hudson River moved from a more southerly drainage pattern to the modern Hudson Shelf Valley position, possibly under the influence of the advancing peripheral bulge. Sequences II and III are largely preserved within a broad mid-shelf swale likely created by the migration of an ancestral Hudson River, and their thickness implies much higher sedimentation rates during chrons 4 and 3 than seen today. If the terrestrial glacial record was eroded, the increased rates of sedimentation during the Pleistocene, dominance of sediments derived from northern New England, and northward tilting of strata could be interpreted as a result of uplift of a northern source area. The

  6. Sedimentary effects of cataclysmic late Pleistocene glacial outburst flooding, Altay Mountains, Siberia

    NASA Astrophysics Data System (ADS)

    Rudoy, A. N.; Baker, V. R.

    1993-05-01

    Pleistocene glacial outburst floods were released from ice-dammed lakes of the Altay Mountains, south-central Siberia. The Kuray-Chuja lake system yielded peak floods in excess of 1 × 106 m3 s-1 and as great as 18 × 106 m3 s-1. The phenomenally high bed shear stresses and stream powers generated in these flows produced a main-channel, coarse-grained facies of coarse gravel in (1) foreset-bedded bars as much as 200 m high and several kilometers long, and (2) degradational, boulder-capped river terraces. Giant current ripples, 50 to 150 m in spacing, composed of pebble and cobble gravel, are locally abundant. The whole sedimentary assemblage is very similar to that of the Channeled Scabland, produced by the Pleistocene Missoula Floods of western North America.

  7. Magnetic Properties of Bermuda Rise Sediments Controlled by Glacial Cycles During the Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Roud, S.

    2015-12-01

    Sediments from ODP site 1063 (Bermuda Rise, North Atlantic) contain a high-resolution record of geomagnetic field behavior during the Brunhes Chron. We present rock magnetic data of the upper 160 mcd (<900 ka) from hole 1063D that show magnetic properties vary in concert with glacial cycles. Magnetite appears to be the main magnetic carrier in the carbonate-dominated interglacial horizons, yet exhibits contrasting grain size distributions depending on the redox state of the horizons. Higher contributions of single domain magnetite exist above the present day sulfate reduction zone (ca. 44 mcd) with relatively higher multidomain magnetite components below that likely arise from the partial dissolution of SD magnetite in the deeper, anoxic horizons. Glacial horizons on the other hand, characterized by enhanced terrigenous deposition, show no evidence for diagenetic dissolution but do indicate the presence of authigenic greigite close to glacial maxima (acquisition of gyro-remanence, strong magnetostatic interactions and SD properties). Glacial horizons contain hematite (maxima in HIRM and S-Ratio consistent with a reddish hue) and exhibit higher ARM anisotropy and pronounced sedimentary fabrics. We infer that post depositional processes affected the magnetic grain size and mineralogy of Bermuda rise sediments deposited during the late Pleistocene. Hematite concentration is interpreted to reflect primary terrigenous input that is likely derived from the Canadian Maritime Provinces. A close correlation between HIRM and magnetic foliation suggests that changes in sediment composition (terrigenous vs. marine biogenic) were accompanied by changes in the depositional processes at the site.

  8. Mid-late Pleistocene glacial evolution in the Grove Mountains, East Antarctica, constraints from cosmogenic 10Be surface exposure dating of glacial erratic cobbles

    NASA Astrophysics Data System (ADS)

    Dong, Guocheng; Huang, Feixin; Yi, Chaolu; Liu, Xiaohan; Zhou, Weijian; Caffee, Marc W.

    2016-08-01

    Glacial histories from the East Antarctic Ice Sheet (EAIS) provide keys to understanding correlations between the EAIS and global climate. They are especially helpful in the assessment of global sea level change, and as a means of quantifying the magnitude of past glacial activity and the rate at which ice responded to climate change. Given the significance of EAIS glacial histories, it is imperative that more glacial chronologic data for this region be obtained, especially for the mid-to-late Pleistocene. We report cosmogenic 10Be surface exposure dating results from glacially transported cobbles embedded in blue-ice moraine material at Mount Harding, the Grove Mountains, EAIS. Forty exotic cobbles sampled along two profiles (A and B) on this blue-ice moraine present apparent exposure-ages ranging from 7.2 to 542.2 ka. We explore this scattered dataset by using Principal Component Analysis (PCA) to identify statistically significant trends in the data. We identify a correlation between exposure-age and distance of the cobbles from Mount Harding. In profile A, cobbles further from Mount Harding yield older exposure-ages than those that are relatively close. In profile B, cobbles closer to Mount Harding are found to have relatively older exposure-ages. In term of glacial history we suggest that the direction of ice flow changed during the period from ∼60 to 200 ka, and that multiple glacial fluctuations occurred in the mid-late Pleistocene.

  9. Late Pleistocene oscillations of Lake Owens, eastern California

    SciTech Connect

    Orme, A.J. . Dept. of Geography); Orme, A.R. . Dept. of Geography)

    1993-04-01

    Just before diversion of the Owens River drainage to Los Angeles in 1912--13, Owens Lake had a maximum depth of 14m and covered 290 km[sup 2] at a water-surface elevation of 1,095m. Indeed throughout most of Holocene time, the lake formed the sump for the Owens River drainage, its level fluctuating in response to variable inflow and evaporation. In late Pleistocene time, however, Lake Owens' spilled south towards Lake Searles' on reaching an elevation of 1,145m, at which level the lake was 64m deep and covered 694 km[sup 2]. Aided by radiometric dating, stratigraphic and sedimentological analyses of beach ridges and associated deposits around its northeast margin reveal complex oscillations of Lake Owens between 13,000 and 9,000 years B.P.. Following an earlier high stand, lake level fell until around 13,000 B.P. it rose again to at least 1138m, probably linked to late Wisconsinan glacier melt in the Sierra Nevada. Across the Pleistocene/Holocene transition, lake level fell to around 1100m and then rose to about 1,120m around 9,600 B.P., before falling away during Holocene time. This pattern is consistent with fluctuations in glacier budgets and meltwater regimes, and with late Pleistocene-early Holocene climatic oscillations postulated elsewhere in the region. Correlation with lake-level fluctuations observed at other localities around Owens Lake is complicated by tectonism, but the above sequence invites comparison with the detailed record obtained from Searles Lake farther south.

  10. The upper Pleistocene on the northern face of the Guadarrama Mountains (central Spain): Palaeoclimatic phases and glacial activity

    NASA Astrophysics Data System (ADS)

    Bullón, Teresa

    2016-09-01

    The present paper provides new information on Pleistocene glacial activity in a mountainous area of the Iberian Central System. A sediment analysis associated with Pleistocene modelling was carried out using: (1) granulometric and morphometric procedures, (2) quartz grain microtexture techniques (SEM) to discriminate between glacial and no glacial origins of sediments, (3) clay X-ray diffraction study to determine intra-Pleistocene climate variability, and (4) optically stimulated luminescence (OSL) absolute dating. The results show that the sediments were formed in two different phases associated with glacial dynamics, one of them was 35-30 ky BP and another was 25-20 ky BP, separated by a short intermediate warm-wet period. Identification of glacial phenomena is new for the northern slopes of the Guadarrama Mountains (facing the north Meseta, Duero basin), although they are not unusual within the general context of the Iberian Central System. From the data provided, we deduce that glaciation in these mountains was much more intense and widespread than had previously been thought because, on the northern slopes, glaciers occupied large areas reaching the base of the mountains. The evidence favours new interpretations of Pleistocene morphology in the centre of the Iberian Peninsula and, by extension, on the southwestern edge of Europe; it also highlights the sensitivity of mountainous areas with regard to Quaternary climate changes.

  11. Early Pleistocene Glacial Lake Lesley, West Branch Susquehanna River valley, central Pennsylvania

    NASA Astrophysics Data System (ADS)

    Ramage, Joan M.; Gardner, Thomas W.; Sasowsky, Ira D.

    1998-02-01

    Laurentide glaciers extended into north central Pennsylvania repeatedly during at least the last 2 million years. Early Pleistocene glaciation extended farther south into central Pennsylvania than any subsequent glaciation, reaching the West Branch Susquehanna River (WBSR) valley. Early Pleistocene ice dammed the northeast-flowing West Branch Susquehanna River at Williamsport, forming Glacial Lake Lesley, a 100-km-long proglacial lake. In this paper, we present compelling evidence for the lake and its age. Maximum lake volume (˜ 100 km 3) was controlled by the elevation of the lowest drainage divide, ˜ 340 m above sea level at Dix, Pennsylvania. Stratified deposits at McElhattan and Linden are used to reconstruct depositional environments in Glacial Lake Lesley. A sedimentary section 40 m thick at McElhattan fines upward from crossbedded sand to fine, wavy to horizontally laminated clay, consistent with lake deepening and increasing distance from the sediment source with time. At Linden, isolated cobbles, interpreted as dropstones, locally deform glacio-lacustrine sediment. We use paleomagnetism as an age correlation tool in the WBSR valley to correlate contemporaneous glaciofluvial and proglacial lacustrine sediments. Reversed remanent polarity in finely-laminated lacustrine clay and silt at McElhattan ( I = 20.4°, D = 146.7°, α95 = 17.7°) and in interbedded silt and sand at Linden ( I = 55.3°, D = 175.2°, α95 = 74.6°) probably corresponds to the latter part of the Matuyama Reversed Polarity Chron, indicating an age between ˜ 770 and ˜ 970 ka. At McElhattan, a diamicton deformed the finely laminated silt and clay by loading and partial fluidization during or soon after lake drainage. As a result, the deformed clay at McElhattan lacks discrete bedding and records a different characteristic remanent magnetism from underlying, undeformed beds. This difference indicates that the characteristic remanent magnetism is detrital. An electrical resistivity

  12. Extensive deposits on the Pacific plate from Late Pleistocene North American glacial lake outbursts

    USGS Publications Warehouse

    Normark, W.R.; Reid, J.A.

    2003-01-01

    One of the major unresolved issues of the Late Pleistocene catastrophic-flood events in the northwestern United States (e.g., from glacial Lake Missoula) has been what happened when the flood discharge reached the ocean. This study compiles available 3.5-kHz high-resolution and airgun seismic reflection data, long-range sidescan sonar images, and sediment core data to define the distribution of flood sediment in deepwater areas of the Pacific Ocean. Upon reaching the ocean at the mouth of the Columbia River near the present-day upper continental slope, sediment from the catastrophic floods continued flowing downslope as hyperpycnally generated turbidity currents. The turbidity currents resulting from the Lake Missoula and other latest Pleistocene floods followed the Cascadia Channel into and through the Blanco Fracture Zone and then flowed west to the Tufts Abyssal Plain. A small part of the flood sediment, which was stripped off the main flow at a bend in the Cascadia Channel at its exit point from the Blanco Fracture Zone, continued flowing more than 400 km to the south and reached the Escanaba Trough, a rift valley of the southern Gorda Ridge. Understanding the development of the pathway for the Late Pleistocene flood sediment reaching Escanaba Trough provides insight for understanding the extent of catastrophic flood deposits on the Pacific plate.

  13. Meltwater pathways and grain size transformation in a Pleistocene Mediterranean glacial-fluvial system

    NASA Astrophysics Data System (ADS)

    Adamson, Kathryn; Woodward, Jamie; Hughes, Philip

    2013-04-01

    The Pleistocene sedimentary records of Mount Orjen, western Montenegro, have been used to investigate changes in grain size characteristics of fine sediments transported from the glaciated mountains to the fluvial systems downstream. Understanding the particle size characteristics of the fine sediments transported by these cold stage river systems is important for several reasons. The braided rivers draining the glaciated mountains of the western Balkans may have been an important source of loess for example. It is also important to establish the grain size signature of suspended sediment delivered to the marine environment to aid land-marine correlations. The fine-grained component of the tills is dominated by glacially-comminuted limestone particles. Detailed particle size analysis of the fine sediment matrix component (<63 μm) of glacial till and alluvial deposits has been undertaken using multiple samples at 12 sites surrounding the Orjen massif. This limestone karst terrain includes a range of meltwater pathways and depositional contexts, including: river valleys, alluvial fans, poljes, and ice marginal settings. 35 U-series ages and soil development indices have been used to develop a robust geochronology for the Pleistocene records Two dominant surface meltwater and sediment pathways have been identified around Mount Orjen. The particle size distributions reveal that these transportation routes can have distinctive sedimentological signatures. Type 1 pathways deliver meltwater and sediments downstream via bedrock gorges. In these settings, the fine grained alluvial matrix presents a largely bimodal particle size distribution (PSD). Type 2 pathways represent meltwater channels draining directly from the ice margin. Alluvial sediments within these environments more closely resemble the normally distributed PSD of the glacial tills. The transition to bimodal PSDs, downstream of Type 1 meltwater routes, suggests that the glacially-comminuted sediments are

  14. Climatic implications of correlated upper Pleistocene glacial and fluvial deposits on the Cinca and Gallego rivers, NE Spain

    SciTech Connect

    Lewis, Claudia J; Mcdonald, Eric; Sancho, Carlos; Pena, Jose- Luis

    2008-01-01

    We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gallego River valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence dates, and time-related trends in soil development. The ages obtained from glacial deposits indicate glacial periods at 85 {+-} 5 ka, 64 {+-} 11 ka, and 36 {+-} 3 ka (from glacial till) and 20 {+-} 3 ka (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive terrace systems in the Cinca River valley at 178 {+-} 21 ka, 97 {+-} 16 ka, 61 {+-} 4 ka, 47 {+-} 4 ka, and 11 {+-} 1 ka, and in the Gallego River valley at 151 {+-} 11 ka, 68 {+-} 7 ka, and 45 {+-} 3 ka. The times of maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine isotope stages and heinrich events. The maximum extent of glaciers during the last glacial occurred at 64 {+-} 11 ka, and the terraces correlated with this glacial phase are the most extensive in both the Cinca (61 {+-} 4 ka) and Gallego (68 {+-} 7 ka) valleys, indicating a strong increase in fluvial discharge and availability of sediments related to the transition to deglaciation. The global Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly dry conditions at that time. Precipitation must be controlled by the position of the Iberian Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems and the associated fluvial dynamic seem sensitive to (1) global climate changes controlled by insolation, (2) North Atlantic thermohaline circulation influenced by freshwater pulses into the North Atlantic, and (3) anomalies in atmospheric circulation in the North Atlantic controlling precipitation on the Iberian peninsula. The model of glacial and fluvial evolution during the Late Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in southern Europe.

  15. Pleistocene glaciations in the weatern Arctic Ocean: Tentative age model of marine glacial landforms

    NASA Astrophysics Data System (ADS)

    Niessen, Frank; Stein, Rüdiger; Matthiessen, Jens; Jensen, Laura; Nam, Seung-Il; Schreck, Michael

    2015-04-01

    Recently glacial landforms were presented and interpreted as complex pattern of Pleistocene glaciations in the western Arctic Ocean along the continental margin of the East Siberian and Chukchi seas, (Niessen et al. 2013, Dove et al. 2014). These landforms include moraines, drumlins, glacigenic debris flows, till wedges and mega-scale glacial lineations. Orientations of some of the landforms suggest the presence of former ice sheets on the Chukchi Borderland and the East Siberian shelf. Here we present a tentative age model for some of the younger glacial events by correlation of sediment cores with glacial landforms as seen in subbottom profiles. The database was obtained during RV "Polarstern" cruise ARK-XIII/3 (2008) and RV "Araon" cruise ARA03B (2012), which investigated an area between the Chukchi Borderland and the East Siberian Sea between 165°W and 170°E. The stratigraphic correlation of sediment cores is based on physical properties (wet-bulk density and magnetic susceptibility), lithology and color. The chronology of the area has been proposed by Stein et al. (2010) for a core from the Chukchi Abyssal Plain (PS72/340-5) and includes brown layers B1 to B9 (marine isotope stages MIS 1 to MIS 7), which are used as marker horizons for lateral core correlation. Our tentative age model suggests that the youngest and shallowest (480 m below present water level; mbpwl) grounding event of an ice sheet on the Chukchi Borderland is younger than B2 (interpreted as Last Glacial Maximum; LGM). There is no clear evidence for a LGM glaciation along the East Siberian margin because intensive post LGM iceberg scouring occurred above 350 m present water level. On the slopes of the East Siberian Sea two northerly directed ice advances occurred, both of which are older and younger than B2 and B3, respectively. The younger advance grounded to about 700 m present water depth along the continental slope and the older to 900 m and 1100 m on the Arlis Plateau and the East

  16. Late Pleistocene and Holocene Glacial Evolution and Isotasy in the Antarctic Peninsula

    NASA Technical Reports Server (NTRS)

    Ivins, E. R.; Raymond, Carol A.; Heflin, M. B.; James, T. S.

    1989-01-01

    Employing a numerical model of Payne et al. that simulates the late-Pleistocene evolution of the former Antarctic Peninsula Ice Sheet (APIS) as a basis, we compute the present-day postglacial vertical isostasy of this region. The region may also experience significant mid-to late-Holocene glacial mass changes. Climate and oceanographic studies indicate that the ice mass imbalance of this region may be of larger magnitude that elsewhere in Antarctica. We compute the crustal response to these more recent ice mass changes and Holocene fluctuations with a simple gravitating Earth model consisting of an elastic lithosphere and a viscoelastic mantle (half-space). The calculations demonstrate that the present-day response could be significant, possibly at the level of about 4 - 11 mm/yr. Such significant crustal motion could be driven by glacial mass changes integrated over the last 1000 years if the regional mantle viscosity is below about 2 x 10(exp 20) Pa sec. In this lower viscosity range, present-day crustal motion has a significant phase-lagged character and the composite lithosphere/mantle viscoelastic response to late-Holocene events dominates over purely elastic (instantaneous) responses to present-day ice mass changes. For a higher mantle viscosity, greater than about 5 x 10(exp 20) Pa sec, the predicted present-day vertical isostasy is dominated by gravitational response to glacial unloading during the 18 - 6 kyr BP collapse of the APIS, and is analogous to that known to be occurring in the Gulf of Bothnia and Hudson Bay.

  17. Late Pleistocene glacial chronology of the Retezat Mts, Southern Carpathians, using 10Be exposure ages

    NASA Astrophysics Data System (ADS)

    Ruszkiczay-Rüdiger, Zsófia; Kern, Zoltán; Urdea, Petru; Braucher, Régis; Madarász, Balázs; Schimmelpfennig, Irene

    2015-04-01

    Our knowledge on the timing of glacial advances in the Southern Carpathians is limited. Recently, some attempts have been made to develop an improved temporal framework for the glaciations of the region using cosmogenic 10Be exposure dating. However, glacial chronology of the Romanian Carpathians remains contradictory. E.g. the timing of the maximum ice advance appears to be asynchronous within the area and also with other dated glacial events in Europe. Main objective of our study is to utilize cosmogenic in situ produced 10Be dating to disentangle the contradictions of the Southern Carpathian Late Pleistocene glacial chronology. Firstly, previously published 10Be data are recalculated in accordance with the new half-life, standardization and production rate of 10Be. The recalculated 10Be exposure ages of the second largest (M2) moraines in the Retezat Mts. appear to be ca. 19-24% older than exposure ages calculated by Reuther et al. (2007, Quat. Int. 164-165, 151-169). This contradicts the earlier conclusions suggesting post LGM age of M2 glacial advance and suggests that M2 moraines can be connected to the end of the LGM with final stabilization possibly at the beginning of the Late Glacial. We emphasize that it is ambiguous to correlate directly the exposure-dated glacier chronologies with millennial scale climate changes due to uncertainties in sample collection and in computation of exposure ages from measured nuclide concentrations. New 10Be samples were collected in order to determine the 10Be exposure age of moraines outside the most prominent generation (M2) including the largest and oldest moraine (M1) and the landforms connected to the smallest ice advances (M4), which remained undated so far. The new exposure ages of M2 moraines are well in harmony with the recalculated ages of Reuther at al. (2007). 10Be exposure age of boulders on the smallest moraine suggest that the last glaciers disappeared in the area during the Late Glacial, indicating no

  18. Glacial and pluvial periods: their relationship revealed by pleistocene sediments of the red sea and gulf of aden.

    PubMed

    Deuser, W G; Ross, E H; Waterman, L S

    1976-03-19

    Oxygen isotope analyses of planktonic foraminifera from the Red Sea and Gulf of Aden indicate that during periods of maximum continental and polar glaciation in the late Pleistocene, the Red Sea was subject to strong evaporation. Between glacial maximums the salinity of the Red Sea was equal to or below that of the open ocean. This suggests that high-latitude glacial periods corresponded in time to interpluvial stages in the present-day desert belt of northern Africa, whereas high-latitude interglacial periods coincided with pluvial stages. PMID:17781646

  19. Isotopically-depleted late Pleistocene groundwater in Columbia River Basalt aquifers: Evidence for recharge of glacial Lake Missoula floodwaters?

    NASA Astrophysics Data System (ADS)

    Brown, Kyle B.; McIntosh, Jennifer C.; Baker, Victor R.; Gosch, Damian

    2010-11-01

    Late Pleistocene outburst flooding of ice-dammed glacial Lake Missoula, and possible discharge from the Cordilleran Ice Sheet (CIS), catastrophically altered the northwestern United States landscape, yet little is known about potential infiltration of flood waters into the subsurface. This study provides compelling evidence for the presence of late Pleistocene CIS-related recharge waters in the Columbia River Basalt Aquifers (CRBAs) in central Washington. CRBA groundwaters with corrected 14C ages from 15.7 and 33.3 k yrs BP (during periods of flood events) have anomalously low δ18O values (-18.9 to -17.6‰), compared to late Pleistocene soil waters (-16.1 to -13.4‰) and modern precipitation in the region (average -15.9‰), consistent with CIS-related meltwater recharge. These results have implications for our understanding of megaflood phenomena on earth and Mars.

  20. Pleistocene coquinas of the glaciomarine Yakataga Formation, Alaska: implications for mixed glacial/carbonate sequences

    SciTech Connect

    Kaye, B.G.; Eyles, N.; Lagoe, M.B.

    1985-01-01

    Of the several models available to students of mixed ancient glacial/carbonate rocks, most accommodate extreme climatic changes by fluctuations in either the Earth's orbital parameters, continental drift rates or the chemistry of early atmospheres and oceans. The Yakataga Formation, where it is exposed on Middleton Island, Alaska is dominated by thick sequences of massive muddy diamicts in which marine micro- and macrofaunas occur. The sequence records the influx onto the Gulf of Alaska continental shelf of large volumes of pelagic and ice-rafted debris from expanded temperate glaciers and ice shelves during the Early Pleistocene with deposition rates of 1m/1000 years. Diamicts contain multiple coquina bands up to 1m thick composed predominantly of cemented molluscan debris and traceable over several kilometers along strike. Analysis of foraminifera indicates that coquinas record episodic changes in relative sea level and non-deposition of mud when extensive communities of bottom dwelling molluscan faunas became established; ice-rafting continued during the formation and development of coquinas. Recent work stresses the accumulation of carbonates in clastic-starved polar glaciomarine environments; the Alaskan coquinas show that significant bioclastic carbonate accumulations also occur under more temperate glaciomarine conditions with higher sedimentation rates.

  1. Seismic characteristics of Pleistocene glacial cycles near shelf edge, offshore Louisiana, Gulf of Mexico

    SciTech Connect

    Watkins, J.S.; Schneider, L.; Hilterman, F.

    1987-05-01

    Seismic stratigraphic studies of the shelf edge and the upper slope basins in the southern parts of the South Marsh Island, Eugene Island, Ship Shoal, and Green Canyon areas of the Louisiana outer continental shelf reveal at least four Pleistocene seismic stratigraphic cycles. These apparently reflect cyclic depositional patterns associated with glacially driven highstands and lowstands of sea level during this time. In the upper slope basins, a strong continuous reflector probably of turbiditic origin marks the base of each cycle. This reflector is thought caused by initial slumping occurring as sea level begins to fall. Overlying this reflector is a zone of chaotic-to-hummocky reflectors thought caused by slumping associated with knick-point erosion and channel-cutting during falling sea level. The upper portion of the cycle is largely reflectorless or weakly reflective punctuated with occasional strong, continuous turbidite reflectors. The reflectorless portion of the cycles is thought to represent homogeneous hemipelagic sedimentation during highstands. Shelf reflectors are usually moderately strong and continuous. A strong reflection(s), identified in some instances with gas sands, marks several sea level lowstands. Erosion is locally evident during lowstands. Otherwise, shelf reflectors are relatively uniform and show few characteristics associated with rising, falling, or highstanding parts of the sea level cycle.

  2. Provenance of Palouse Loess and Relation to Late Pleistocene Glacial Outburst Flooding, Washington State

    NASA Astrophysics Data System (ADS)

    Sweeney, M. R.; Busacca, A. J.; Gaylord, D. R.; Zender, C. S.

    2002-12-01

    The eolian system of the Pacific Northwest is a product of long-term deflation of expansive sedimentary units by prevailing winds throughout the Quaternary. The Palouse loess is a deposit of wind-blown silt that covers approximately 10,000 sqare km up to 75 m thick. Late Quaternary units of the loess become finer texturally and thinner to the northeast, suggesting that they were derived from sedimentary basins south and west. The source of the loess has been inferred and hypothesized but never directly determined. A geochemical study of the late-Pleistocene to Holocene L1 unit of the Palouse loess and its possible sources was conducted to determine its provenance. There are two sedimentary units that lie upwind of the loess that may have contributed sediment via eolian deflation: 1) sand- and silt-rich slackwater sediment derived from late-Pleistocene outburst flooding of glacial Lake Missoula, and 2) sand- and silt-rich sediment from the Miocene-Pliocene Ringold Formation. Both are very similar in mineral composition, being derived from plutonic, metamorphic, and volcanic rocks of the western United States and southern British Columbia. Major and trace element data determined by x-ray fluorescence (XRF) of silt to very fine sand from loess and potential source sediments was used to pinpoint the exact source of the loess. A one-to-one relationship of major and trace elements exists between eolian and flood sediments, whereas Ringold Formation sediments have elevated Ti, P, Mg, and Ca oxides and lower K oxide values as well as scattered trace element values relative to Palouse loess. These trends may be due to the presence of basalt lithic grains in flood sediment that have been broken down and distributed throughout the loess. The Ringold Formation lacks appreciable amounts of basalt. The geochemical data from this study demonstrates that flood sediment is the dominant source of eolian material for the Palouse loess. The spatial distribution of the possible source

  3. 3D-seismic observations of Late Pleistocene glacial dynamics on the central West Greenland margin

    NASA Astrophysics Data System (ADS)

    Hofmann, Julia; Knutz, Paul; Cofaigh, Colm Ó.

    2016-04-01

    Fast-flowing ice streams and outlet glaciers exert a major control on glacial discharge from contemporary and palaeo ice sheets. Improving our understanding of the extent and dynamic behaviour of these palaeo-ice streams is therefore crucial for predictions of the response of ice sheets to present and future climate warming and the associated implications for global sea level. This poster presents results from two 3D-seismic surveys located on the shelf adjoining the Disko Bay trough-mouth fan (TMF), one of the largest glacial outlet systems in Greenland. Located at the seaward terminus of the c. 370 km long cross-shelf Disko Trough, the Disko Bay TMF was generated by highly efficient subglacial sediment delivery onto the continental slopes during repeated ice-stream advances. A variety of submarine glacial landform assemblages are recognised on the seabed reflecting past ice-stream activity presumably related to glacial-interglacial cycles. The 3D-seismic volumes cover the shallow banks located north and south of the Disko Trough. The focus of this study is the seabed and the uppermost stratigraphic interval associated with the Late Stage of TMF development, presumably covering the late Pleistocene (Hofmann et al., submitted). Seabed morphologies include multiple sets of ridges up to 20 m high that extend in NW-SE direction for c. 30 km, and cross-cutting curvilinear furrows with maximum lengths of c. 9 km and average depths of c. 4.5 m. Back-stepping, arcuate scarps facing NW define the shelf break on the northern survey, comprising average widths of c. 4.5 km and incision depths of c. 27.5 m. The large transverse ridge features on the southern survey are likely ice-marginal and are interpreted as terminal moraine ridges recording the existence of a shelf-edge terminating, grounded Late Weichselian ice sheet. The furrows, most prominent on the outer shelf adjoining the shallow banks and partly incising the moraine ridges, are interpreted as iceberg ploughmarks

  4. Submarine glacial landforms record Late Pleistocene ice-sheet dynamics, Inner Hebrides, Scotland

    NASA Astrophysics Data System (ADS)

    Dove, Dayton; Arosio, Riccardo; Finlayson, Andrew; Bradwell, Tom; Howe, John A.

    2015-09-01

    We use ˜7000 km2 of high-resolution swath bathymetry data to describe and map the submarine glacial geomorphology, and reconstruct Late Pleistocene ice sheet flow configurations and retreat dynamics within the Inner Hebrides, western Scotland. Frequently dominated by outcrops of structurally complex bedrock, the seabed also comprises numerous assemblages of well-preserved glacigenic landforms typical of grounded ice sheet flow and punctuated ice-margin retreat. The occurrence and character of the glacially streamlined landforms is controlled in part by the shallow geology and topography, however these factors alone cannot account for the location, orientation, and configuration of the observed landforms. We attribute the distribution of these elongate streamlined landforms to the onset zone of the former Hebrides Ice Stream (HIS) - part of a major ice stream system that drained 5-10% of the last British-Irish Ice Sheet (BIIS). We suggest this geomorphic signature represents the transition from slow 'sheet flow' to 'streaming flow' as ice accelerated out from an environment characterized by numerous bedrock obstacles (e.g. islands, headlands), towards the smooth, sediment dominated shelf. The majority of streamlined landforms associated with the HIS indicate ice sheet flow to the southwest, with regional-scale topography clearly playing a major role in governing the configuration of flow. During maximal glacial conditions (˜29-23 ka) we infer that the HIS merged with the North Channel-Malin Shelf Ice Stream to form a composite ice stream system that ultimately reached the continental shelf edge at the Barra-Donegal Trough-Mouth Fan. Taken collectively however, the pattern of landforms now preserved at seabed (e.g. convergent flow indicators, cross-cutting flow sets) is more indicative of a thinning ice mass, undergoing reorganization during overall ice sheet retreat (during latter stages of Late Weischselian glaciation). Suites of moraines overprinting the

  5. All together now? Sensitivity, dynamics, and predictability of planktonic foraminiferal species abundance versus community structure across Plio-Pleistocene glacial-interglacial cycles

    NASA Astrophysics Data System (ADS)

    Hull, P. M.; Norris, R. D.; Sexton, P.

    2012-12-01

    Most studies to date of biospheric sensitivity to global change have focused on understanding the sensitivity of modern species and communities to recent or experimental environmental change. However, it is unclear how to scale these results towards predicting the response of the biosphere to ongoing global change given that i) similar species often respond individualistically the same perturbation, ii) biotic response often scales nonlinearly with the size and/or duration of environmental change, and iii) many terrestrial and marine community types known from the recent past lack modern analogs. In this context, marine microfossils from deep sea sediments hold enormous promise for furthering our understanding of biotic sensitivity as they capture temporally expanded records of paleoceanographic and biotic response across a range climatic regimes (e.g., icehouse versus greenhouse climates), disturbance types (e.g., from background climate oscillations to mass extinctions), and habitats (e.g., low vs. high latitudes, upwelling vs. gyre ecosystems, etc). Here we use the repeated glacial-interglacial cycles and longer term trend of intensifying Northern Hemisphere glaciation from the Pliocene-Pleistocene to examine issues related to the sensitivity of planktonic foraminiferal species and communities to global change in an icehouse world. More specifically, we quantify the sensitivity and predictability of changes in planktonic foraminiferal species abundance (species specific mass accumulation rates) and community structure (dissimilarity indices and community classification) to glacial-interglacial cycles in the Plio-Pleistocene in two Atlantic sites (ODP Sites 999 and 662). We first examine whether the sensitivity of species and communities to glacial-interglacial cycles in the early Pliocene (~5-3 million years ago) is predictive of i) their sensitivity to the intensification of Northern Hemisphere glaciation (~3-2 million years ago), or ii) their sensitivity to

  6. Latest Pleistocene glacial chronology of the Uinta Mountains: support for moisture-driven asynchrony of the last deglaciation

    NASA Astrophysics Data System (ADS)

    Laabs, Benjamin J. C.; Refsnider, Kurt A.; Munroe, Jeffrey S.; Mickelson, David M.; Applegate, Patrick J.; Singer, Brad S.; Caffee, Marc W.

    2009-06-01

    Recent estimates of the timing of the last glaciation in the southern and western Uinta Mountains of northeastern Utah suggest that the start of ice retreat and the climate-driven regression of pluvial Lake Bonneville both occurred at approximately 16 cal. ka. To further explore the possible climatic relationship of Uinta Mountain glaciers and the lake, and to add to the glacial chronology of the Rocky Mountains, we assembled a range-wide chronology of latest Pleistocene terminal moraines based on seventy-four cosmogenic 10Be surface-exposure ages from seven glacial valleys. New cosmogenic-exposure ages from moraines in three northern and eastern valleys of the Uinta Mountains indicate that glaciers in these parts of the range began retreating at 22-20 ka, whereas previously reported cosmogenic-exposure ages from four southern and western valleys indicate that ice retreat began there between 18 and 16.5 ka. This spatial asynchrony in the start of the last deglaciation was accompanied by a 400-m east-to-west decline in glacier equilibrium-line altitudes across the Uinta Mountains. When considered together, these two lines of evidence support the hypothesis that Lake Bonneville influenced the mass balance of glaciers in southern and western valleys of the range, but had a lesser impact on glaciers located farther east. Regional-scale variability in the timing of latest Pleistocene deglaciation in the Rocky Mountains may also reflect changing precipitation patterns, thereby highlighting the importance of precipitation controls on the mass balance of Pleistocene mountain glaciers.

  7. Cyclic magnetite dissolution in Pleistocene sediments of the abyssal northwest Pacific Ocean: Evidence for glacial oxygen depletion and carbon trapping

    NASA Astrophysics Data System (ADS)

    Korff, Lucia; Dobeneck, Tilo; Frederichs, Thomas; Kasten, Sabine; Kuhn, Gerhard; Gersonde, Rainer; Diekmann, Bernhard

    2016-05-01

    The carbonate-free abyss of the North Pacific defies most paleoceanographic proxy methods and hence remains a "blank spot" in ocean and climate history. Paleomagnetic and rock magnetic, geochemical, and sedimentological methods were combined to date and analyze seven middle to late Pleistocene northwest Pacific sediment cores from water depths of 5100 to 5700 m. Besides largely coherent tephra layers, the most striking features of these records are nearly magnetite-free zones corresponding to glacial marine isotope stages (MISs) 22, 12, 10, 8, 6, and 2. Magnetite depletion is correlated with organic carbon and quartz content and anticorrelated with biogenic barite and opal content. Within interglacial sections and mid-Pleistocene transition glacial stages MIS 20, 18, 16, and 14, magnetite fractions of detrital, volcanic, and bacterial origin are all well preserved. Such alternating successions of magnetic iron mineral preservation and depletion are known from sapropel-marl cycles, which accumulated under periodically changing bottom water oxygen and redox conditions. In the open central northwest Pacific Ocean, the only conceivable mechanism to cause such abrupt change is a modified glacial bottom water circulation. During all major glaciations since MIS 12, oxygen-depleted Antarctic Bottom Water (AABW)-sourced bottom water seems to have crept into the abyssal northwest Pacific below ~5000 m depth, thereby changing redox conditions in the sediment, trapping and preserving dissolved and particulate organic matter and, in consequence, reducing and dissolving both, biogenic and detrital magnetite. At deglaciation, a downward progressing oxidation front apparently remineralized and released these sedimentary carbon reservoirs without replenishing the magnetite losses.

  8. Dating Plio-Pleistocene glacial sediments using the cosmic-ray-produced radionuclides 10Be and 26Al

    USGS Publications Warehouse

    Balco, G.; Stone, J.O.H.; Jennings, C.

    2005-01-01

    We use the cosmic-ray-produced radionuclides 26Al and 10Be to date Plio-Pleistocene glacial sediment sequences. These two nuclides are produced in quartz at a fixed ratio, but have different decay constants. If a sample is exposed at the surface for a time and then buried by overburden and thus removed from the cosmic-ray flux, the 26Al/10Be ratio is related to the duration of burial. We first attempted to date pre-Wisconsinan tills by measuring 26Al and 10Be in fluvial sediments beneath them and applying the method of "burial dating," which previous authors have used to date river sediment carried into caves. This method, however, requires simplifying assumptions about the 26Al and 10Be concentrations in the sediment at the time of burial. We show that these assumptions are not valid for river sediment in glaciated regions. 26Al and 10Be analyses of such sediment do not provide accurate ages for these tills, although they do yield limiting ages in some cases. We overcome this difficulty by instead measuring 26Al and 10Be in quartz from paleosols that are buried by tills. We use a more general mathematical approach to determine the initial nuclide concentrations in the paleosol at the time it was buried, as well as the duration of burial. This technique provides a widely applicable improvement on other means of dating Plio-Pleistocene terrestrial glacial sediments, as well as a framework for applying cosmogenic-nuclide dating techniques in complicated stratigraphic settings. We apply it to pre-Wisconsinan glacial sediment sequences in southwest Minnesota and eastern South Dakota. Pre-Wisconsinan tills underlying the Minnesota River Valley were deposited 0.5 to 1.5 Ma, and tills beneath the Prairie Coteau in eastern South Dakota and adjacent Minnesota were deposited 1 to 2 Ma.

  9. Simulated Trends in African Glacial and Interglacial Vegetation: Implications for Late-Pleistocene Hominid-Plant Interactions

    NASA Astrophysics Data System (ADS)

    Cowling, S. A.; Cox, P. M.; Jones, C. D.; Maslin, M. A.; Spall, S. A.

    2004-12-01

    Most theories of human evolution in south, central and eastern Africa are predicated on the assumption that savannas and grasslands almost exclusively dominated Pleistocene (glacial) landscapes. It was our aim to evaluate this assumption using a state-of-the-art fully-coupled earth system model (HadCM3LC), which we used to predict potential palaeovegetation following representative glacial and interglacial climate-forcing. Our glacial simulations indicate that tropical broadleaf forest was not severely displaced by grassland expanding into central Africa, although the outer extent of closed forest decreases, particularly in the north. Our vegetation-climate simulations also indicate that the extent of closed tropical forest during typical interglacials is not represented by today's observed vegetation distributions. Simulated interglacial climate results in expansion of tropical forest from coast-to-coast across much of central Africa. Our modelling experiments have implications for interpreting biogeography and phylogenies of various African plant and animal species, including the evolution of our own species, Homo sapiens sapiens.

  10. Timing of late Pleistocene glaciation in Mongolia: Surface exposure dating reveals a differentiated pattern of glacial forcing

    NASA Astrophysics Data System (ADS)

    Pötsch, Steffen; Rother, Henrik; Lorenz, Sebastian; Walther, Michael; Lehmkuhl, Frank

    2015-04-01

    The focus of this study is on the geochronological and paleoclimatic characterization of Pleistocene glaciation in central (Khangai Mountains) and western (Turgen Mountains, Mongolian Altai) Mongolia. These two mountain ranges form a 700 km long SE-NW transect through Mongolia and allow assumptions of the temporal and causal dynamics of regional glaciation and their correlation to other mountain glacier records from Central and High Asia. In order to evaluate the Pleistocene glaciations in Mongolia we undertook geomorphological mapping and cosmogenic radionuclide (CRN) surface exposure dating (10Be) in four valley systems located in the Khangai Mountains and Turgen Mountains. In total 46 glacial boulders and roche moutonnées were sampled, prepared and AMS measured to determine their 10Be surface exposure ages. Of these, 26 samples were obtained from the Khangai Mountains (three separate moraine sequences) and 20 samples were taken from the Turgen Mountains (one moraine sequence). Our results give evidence of major ice advances during early MIS-4 (74-71 ka) and MIS-2 (25-20 and 18- 17 ka) in both mountain ranges. However, in the Khangai Mountains of central Mongolia very significant ice advances also occurred during MIS-3 (37-32 ka), which exceeded the ice limits set during the MIS-2 glaciation. These results show that climatic conditions during phases of insolation minima characterized by extremely cold and dry conditions (MIS-4 and MIS-2) produced a favorable setting for major ice expansion in Mongolia. Yet, glacial accumulation in the Khangai Mountains also increased substantially in response to the cool-wet conditions of MIS-3, associated with a possibly greater-than-today input from winter precipitation. These records indicate that in addition to the thermally induced glaciations of MIS-4 and MIS-2, variations in atmospheric moisture supply are also capable of triggering large ice advances as observed during MIS-3. Taken together, this suggests that the role

  11. Glacial chronology and palaeoclimate in the Bystra catchment, Western Tatra Mountains (Poland) during the Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Makos, Michał; Rinterknecht, Vincent; Braucher, Régis; Żarnowski, Michał

    2016-02-01

    Deglaciation chronology of the Bystra catchment (Western Tatra Mountains) has been reconstructed based on 10Be exposure age dating. Fourteen rock samples were collected from boulders located on three moraines that limit the horizontal extent of the LGM maximum advance and the Lateglacial recessional stage. The oldest preserved, maximum moraine was dated at 15.5 ± 0.8 ka, an age that could be explained more likely by post-depositional erosion of the moraine. Such scenario is supported by geomorphologic and palaeoclimatological evidence. The younger cold stage is represented by well-preserved termino-lateral moraine systems in the Kondratowa and Sucha Kasprowa valleys. The distribution of the moraine ridges in both valleys suggest a complex history of deglaciation of the area. The first Late-glacial re-advance (LG1) was followed by a cold oscillation (LG2), that occurred at around 14.0 ± 0.7-13.7 ± 1.2 ka. Glaciers during both stages had nearly the same horizontal extent, however, their thickness and geometry changed significantly, mainly due to local climatic conditions triggered by topography, controlling the exposition to solar radiation. The LG1 stage occurred probably during the pre-Bølling cold stage (Greenland Stadial 2.1a), however, the LG2 stage can be correlated with the cooling at around 14 ka during the Greenland Interstadial 1 (GI-1d - Older Dryas). This is the first chronological evidence of the Older Dryas in the Tatra Mountains. The ELA of the maximum Bystra glacier was located at 1480 m a.s.l. in accordance with the ELA in the High Tatra Mountains during the LGM. During the LG1 and LG2 stages, the ELA in the catchment rose up to 1520-1530 m a.s.l. and was located approximately 100-150 m lower than in the eastern part of the massif. Climate modelling results show that the Bystra glacier (maximum advance) could have advanced in the catchment when mean annual temperature was lower than today by 11-12 °C and precipitation was reduced by 40-60%. This

  12. Millennial-Scale Climate Variability During a mid-Pleistocene Glacial (MIS 12) from a Terrestrial Lacustrine Record in the Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Fawcett, P. J.; Brown, E. T.; Werne, J. P.; Contreras, S.; Anderson, R. S.; Dodd, J. P.; Sharp, Z. D.; Heikoop, J. M.; Allen, C. D.

    2011-12-01

    We present a high-resolution terrestrial climate record from the Valles Caldera, New Mexico which spans some 200,000 years from mid MIS 14 to early MIS 10. The glacial periods represented in the record exhibit millennial-scale Dansgaard-Oeschger like variability, especially in MIS 12, one of the coldest glacials in the Pleistocene. High resolution proxies from core VC-3 including scanning XRF data, sediment density, color, and magnetic susceptibility show approximately 23 millennial-scale oscillations in MIS 12 with an average duration of 2,300 years. Many of these oscillations are characterized by relatively slow coolings followed by abrupt warmings, similar to D-O events in the Greenland ice core record. MBT/CBT MAT estimates in the MIS 12 portion of the core show stadial to interstadial warmings of up to 6 °C. The VC-3 stadials correlate with high percentages of boreal taxa pollen ( Picea, Abies ) (up to 25%) while interstadials have lower boreal pollen percentages (~5%) and many correlate with local maxima in Juniperus> and Quercus> . Significant changes in the hydrologic cycle also occur at these millennial timescales. Oxygen isotope data from diatom silica record changes of up to 10 per mil from stadial to interstadial, probably reflecting a combination of changes in moisture source (Pacific vs. Gulf of Mexico), moisture transport pathway, and the seasonality of precipitation. Several interstadials correlate with increases in Cyperaceae (sedge) pollen suggesting a shallower lake with a broad marshy zone around its margin. This zone was minimized during stadials when the lake was deeper. Interstadial shallowing probably resulted from higher evaporation rates and/or a reduction in winter precipitation. This combination of proxies from the Valles Caldera suggests that glacial stage millennial-scale climate variability in the American southwest was strongly driven by changes in the strength and location of the winter polar jet, which in turn affected the local

  13. Millennial-scale climate variability in response to changing glacial and orbital boundary conditions during the Mid-Pleistocene transition

    NASA Astrophysics Data System (ADS)

    Ferretti, Patrizia; Crowhurst, Simon; Drysdale, Russell; Bajo, Petra; Barbante, Carlo

    2016-04-01

    The Mid-Pleistocene transition represents perhaps the most important climate transition in the Quaternary period, yet it is one of the most poorly understood. Although the exact timing and mechanism of the onset of the "100 kyr" regime remain a matter of debate, it is well established that the overall periodicity of the glacial-interglacial cycles changed from a dominant 41 kyr obliquity periodicity prior to ~0.9 Ma to a dominant late Pleistocene 100 kyr variance. This change in the frequency domain was associated with an increase in the amplitude of global ice volume variations that, superimposed on a long-term climatic trend towards more glacial conditions over millions of years, produced some of the most extreme glaciations recorded. This interval of time has often been considered to be important in relation to long-term Milankovitch-scale climate variability. In contrast, here, special emphasis will be placed on assessing the presence and the characteristics of the suborbital-scale variability, and reconstructing the evolution of millennial-scale climate variability as the average climate state evolve toward generally colder conditions with larger ice sheets, and the spectral character of climate variability shifted from dominantly 41 kyr to 100 kyr. Appealing evidence suggests that millennial-scale climate variability is amplified during times of intense forcing changes, but this rapid variability has not been thoroughly explored yet at the time when the major changes in climate periodicity occurred. To address these questions, we have examined the record of climatic conditions from Marine Isotope Stages 25 to 16 (~970-650 ka) using high-resolution stable isotope records from benthic and planktonic foraminifera from a sedimentary sequence in the North Atlantic (Integrated Ocean Drilling Program Expedition 306, Site U1313) in order to assess millennial-scale changes in sea-surface and deep-water conditions, the dynamics of thermohaline deep-water circulation

  14. Pleistocene glacial/interglacial contrasts in the Labrador Sea prior and after the Mid-Brunhes transition

    NASA Astrophysics Data System (ADS)

    Hillaire-Marcel, Claude; de Vernal, Anne; Teboulle, Oury; Aubry, Aurélie; Fréchette, Bianca

    2016-04-01

    Isotopic, microfaunal and palynological records from the northern (Eirik Ridge) and southern (Orphan Knoll) Labrador Sea -LS- (Eirik Ridge and Orphan Knoll) are used to document paleoceanographic conditions in the basin during a few interglacials from MIS 31, to MIS 5e, with some specific attention to MIS 13, 11 and 5e. Most features, particularly oxygen isotope records in planktics highlight a major difference between the pre Mid-Brunhes (MB) and post-MB intervals (i.e, before MIS 11 and from MIS 11 to MIS 1), with the exception of MIS 7 showing features resembling those of the pre-MB interglacials. In a similar fashion, glacials from MIS 12 and later differ significantly from earlier ones by their more pronounced 18O-enrichments in planktic foraminifers, thus possibly larger continental ice volume. Another feature of interest concerning glacials is found in the relative abundance of reworked palynomorphs, in the Northern Labrador Sea record, during pre-MB glacials (MIS 12 and earlier) and during a short mid-MIS 7 glacial excursion. These reworked microfossils suggest significant ice streaming over Paleozoic outcrops either along the western Scandinavian Ice Sheet margin and/or in the Fram Strait area. Within interglacials, MIS 13 records large amplitude coolings, the presence of continental ice over NE Canada indicated by sporadic detrital carbonate-rich IRD-pulses. Evidence for the persistence of a relatively large interglacial Greenland Ice Sheet is found for post MIS 11 interglacials only. Finally, density conditions in surface water (calculated using paleo-SSTs and paleo-SSs from dinocysts), suggest that if convection with production of Labrador Sea Water (LSW), as observed since ca 7 ka BP, was unlikely during most interglacials (and notably MIS 5e), but very likely during MIS 11, due to relatively high salinity conditions at surface. A conclusion from this overview of t mid- to late Pleistocene glacial vs interglacial stages is that glacials were pre

  15. Pleistocene Mitochondrial Genomes Suggest a Single Major Dispersal of Non-Africans and a Late Glacial Population Turnover in Europe.

    PubMed

    Posth, Cosimo; Renaud, Gabriel; Mittnik, Alissa; Drucker, Dorothée G; Rougier, Hélène; Cupillard, Christophe; Valentin, Frédérique; Thevenet, Corinne; Furtwängler, Anja; Wißing, Christoph; Francken, Michael; Malina, Maria; Bolus, Michael; Lari, Martina; Gigli, Elena; Capecchi, Giulia; Crevecoeur, Isabelle; Beauval, Cédric; Flas, Damien; Germonpré, Mietje; van der Plicht, Johannes; Cottiaux, Richard; Gély, Bernard; Ronchitelli, Annamaria; Wehrberger, Kurt; Grigorescu, Dan; Svoboda, Jiří; Semal, Patrick; Caramelli, David; Bocherens, Hervé; Harvati, Katerina; Conard, Nicholas J; Haak, Wolfgang; Powell, Adam; Krause, Johannes

    2016-03-21

    How modern humans dispersed into Eurasia and Australasia, including the number of separate expansions and their timings, is highly debated [1, 2]. Two categories of models are proposed for the dispersal of non-Africans: (1) single dispersal, i.e., a single major diffusion of modern humans across Eurasia and Australasia [3-5]; and (2) multiple dispersal, i.e., additional earlier population expansions that may have contributed to the genetic diversity of some present-day humans outside of Africa [6-9]. Many variants of these models focus largely on Asia and Australasia, neglecting human dispersal into Europe, thus explaining only a subset of the entire colonization process outside of Africa [3-5, 8, 9]. The genetic diversity of the first modern humans who spread into Europe during the Late Pleistocene and the impact of subsequent climatic events on their demography are largely unknown. Here we analyze 55 complete human mitochondrial genomes (mtDNAs) of hunter-gatherers spanning ∼35,000 years of European prehistory. We unexpectedly find mtDNA lineage M in individuals prior to the Last Glacial Maximum (LGM). This lineage is absent in contemporary Europeans, although it is found at high frequency in modern Asians, Australasians, and Native Americans. Dating the most recent common ancestor of each of the modern non-African mtDNA clades reveals their single, late, and rapid dispersal less than 55,000 years ago. Demographic modeling not only indicates an LGM genetic bottleneck, but also provides surprising evidence of a major population turnover in Europe around 14,500 years ago during the Late Glacial, a period of climatic instability at the end of the Pleistocene. PMID:26853362

  16. Beyond the Seafloor: a Plio-Pleistocene Archive of Glacial Geomorphology from Basin-Wide 3D Seismic Reflection Data on the Mid-Norwegian Shelf

    NASA Astrophysics Data System (ADS)

    Newton, A.; Huuse, M.

    2015-12-01

    Oil and gas exploration on the mid-Norwegian shelf has created an extensive geophysical and geological database. As such, this margin has become one of the most comprehensively studied formerly-glaciated continental margins in the world. Industrial operations have concentrated on the structure and geohazard potential of glacial sediments whilst academic work has looked at reconstructing environmental conditions during and since the Last Glacial Maximum (LGM). This has generally consisted of mapping seafloor glacial geomorphology and a limited number of shallow sediment cores. Despite the increasingly large volume of 3D seismic reflection data available across the majority of the shelf, only limited work has been carried out investigating the oldest glaciations. A Plio-Pleistocene archive of glacial-interglacial history is preserved offshore and represents a unique study site because of the availability of 100s of 3D seismic reflection datasets. This database allows numerous different glacial erosion events and glacial landforms to be imaged throughout the glacially-derived NAUST Formation. We present an inventory of glacial history for the mid-Norwegian shelf and review the implications for the glacial history of Northwest Europe. This record shows glacial landforms such as iceberg scours, mega-scale glacial lineations and grounding-zone wedges, each of which provides an insight into ice characteristics. Dating is limited to a few tentative dates based on side-wall core data but we infer a further dating chronology based on dated sediments from the Voring Plateau, fluctuations in the benthic δ18O derived global sea level record, interpretation of seismic facies and the overall architecture. Glacial evidence is present regularly throughout the stratigraphy with the earliest evidence for marine terminating ice found at the base of the NAUST Formation at ~2.8 Ma.

  17. Sensitivity of Photosynthetic Gas Exchange and Growth of Lodgepole Pine to Climate Variability Depends on the Age of Pleistocene Glacial Surfaces

    NASA Astrophysics Data System (ADS)

    Osborn, B.; Chapple, W.; Ewers, B. E.; Williams, D. G.

    2014-12-01

    The interaction between soil conditions and climate variability plays a central role in the ecohydrological functions of montane conifer forests. Although soil moisture availability to trees is largely dependent on climate, the depth and texture of soil exerts a key secondary influence. Multiple Pleistocene glacial events have shaped the landscape of the central Rocky Mountains creating a patchwork of soils differing in age and textural classification. This mosaic of soil conditions impacts hydrological properties, and montane conifer forests potentially respond to climate variability quite differently depending on the age of glacial till and soil development. We hypothesized that the age of glacial till and associated soil textural changes exert strong control on growth and photosynthetic gas exchange of lodgepole pine. We examined physiological and growth responses of lodgepole pine to interannual variation in maximum annual snow water equivalence (SWEmax) of montane snowpack and growing season air temperature (Tair) and vapor pressure deficit (VPD) across a chronosequence of Pleistocene glacial tills ranging in age from 700k to 12k years. Soil textural differences across the glacial tills illustrate the varying degrees of weathering with the most well developed soils with highest clay content on the oldest till surfaces. We show that sensitivity of growth and carbon isotope discrimination, an integrated measure of canopy gas exchange properties, to interannual variation SWEmax , Tair and VPD is greatest on young till surfaces, whereas trees on old glacial tills with well-developed soils are mostly insensitive to these interannual climate fluctuations. Tree-ring widths were most sensitive to changes in SWEmax on young glacial tills (p < 0.01), and less sensitive on the oldest till (p < 0.05). Tair correlates strongly with δ13C values on the oldest and youngest tills sites, but shows no significant relationship on the middle aged glacial till. It is clear that

  18. Late Pleistocene glacial history of central Marquette and northern Dickinson counties, Michigan

    NASA Astrophysics Data System (ADS)

    Regis, Robert Stephen

    New techniques for mapping glacial landscape units located in the central Upper Peninsula of Michigan were developed using image processing software. Digital Elevation Model (DEM), Side-Looking Airborne Radar (SLAR), Landsat Thematic Mapper (TM) and overburden thickness (OBT) datasets were used. Many combinations of the DEM, SLAR, and TM datasets using the Intensity-Hue-Saturation (IHS) and Principal Components Analysis (PCA) transformations were valuable for visual interpretation of glacial landscape units. Such combinations showed relative elevations of landscape units, relief variations, and surface cover types in a single image. Also in the study, relief images and three-dimensional perspective views derived from the DEM were used to map ice-marginal positions and interpret how glacial ice receded from the area. The stair-step appearance of glacial outwash terraces at progressively lower elevations toward the east became evident using the perspective view technique. Visualization of glaciated terrain using these datasets in an image processor proved to be more effective for interpreting glacial landscapes than traditional topographic map or aerial photograph analyses. Texture analysis of the DEM was used to provide a measure of terrain ruggedness (or roughness) as input to a supervised maximum likelihood classification algorithm. Standard deviation of the DEM was assessed as a measure of texture in four moving windows of the following sizes; 64 pixelssp2, 32 pixelssp2, 16 pixelssp2, and 3 pixelssp2. Windows of different sizes were used to match the frequency of natural variation in size and spacing of features that comprise each of the landscape units in the study area. Texture files were combined with the TM, DEM, and OBT datasets into a single multi-band file. The maximum likelihood classification algorithm was then applied to the multiple-dataset file. The algorithm was first applied only to the two principal components (PC1 and PC2) of the TM's six non

  19. Physiological and growth responses of C3 and C4 plants at the Pleistocene glacial maximum

    SciTech Connect

    Strain, B.R.

    1995-06-01

    A C3 plant (Abutilon theophrasti) and a C4 plant (Amaranthus retroflexus) were grown from seed in the Duke University Phytotron under four CO2 concentrations (15 Pa, below the Pleistocene minimum), 27 Pa (pre-industrial), 35 Pa (current), and 70 Pa (future) to examine photosynthetic, growth and reproduction responses of annual plants to historic and future levels of CO2. Net photosynthesis and growth were greatly inhibited at 15 Pa and greatly stimulated at 70 Pa. in the C3 Abutilon but only slightly affected in the C4 Amaranthus. Flower bud initiation was not affected by CO2 treatment in either species but all flower buds in 15 Pa CO2 aborted in the C3 within two days of appearance while no inhibition of reproduction was observed at low CO2 in the C4. Differences in physiology, growth and reproduction to the low levels of atmospheric CO2 of the Pleistocene suggest that competitive interactions of C3 and C4 annuals have changed through geologic time. A major question concerning the survival and evolution of obligate C3 annuals during the CO2 minima of the Pleistocene is raised by the results of this study.

  20. The sequence and timing of large late Pleistocene floods from glacial Lake Missoula

    NASA Astrophysics Data System (ADS)

    Hanson, Michelle A.; Lian, Olav B.; Clague, John J.

    2012-01-01

    Glacial Lake Missoula formed when the Purcell Trench lobe of the Cordilleran ice sheet dammed Clark Fork River in Montana during the Fraser Glaciation (marine oxygen isotope stage 2). Over a period of several thousand years, the lake repeatedly filled and drained through its ice dam, and floodwaters coursed across the landscape in eastern Washington. In this paper, we describe the stratigraphy and sedimentology of a significant new section of fine-grained glacial Lake Missoula sediment and compare this section to a similar, previously described sequence of sediments at Ninemile Creek, 26 km to the northwest. The new exposure, which we informally term the rail line section, is located near Missoula, Montana, and exposes 29 units, each of which consists of many silt and clay couplets that we interpret to be varves. The deposits are similar to other fine-grained sediments attributed to glacial Lake Missoula. Similar varved sediments overlie gravelly flood deposits elsewhere in the glacial Lake Missoula basin. Each of the 29 units represents a period when the lake was deepening, and all units show evidence for substantial draining of glacial Lake Missoula that repeatedly exposed the lake floor. The evidence includes erosion and deformation of glaciolacustrine sediment that we interpret happened during draining of the lake, desiccation cracks that formed during exposure of the lake bottom, and fluvial sand deposited as the lake began to refill. The floods date to between approximately 21.4 and 13.4 cal ka ago based on regional chronological data. The total number of varves at the rail line and Ninemile sites are, respectively, 732 and 583. Depending on lake refilling times, each exposure probably records 1350-1500 years of time. We present three new optical ages from the rail line and Ninemile sites that further limit the age of the floods. These ages, in calendar years, are 15.1 ± 0.6 ka at the base of the Ninemile exposure, and 14.8 ± 0.7 and 12.6 ± 0.6 ka midway

  1. Climatic impact of glacial cycle polar motion: Coupled oscillations of ice sheet mass and rotation pole position

    USGS Publications Warehouse

    Bills, Bruce G.; James, Thomas S.; Mengel, John G.

    1999-01-01

    Precessional motion of Earth's rotation axis relative to its orbit is a well-known source of long-period climatic variation. It is less well appreciated that growth and decay of polar ice sheets perturb the symmetry of the global mass distribution enough that the geographic location of the rotation axis will change by at least 15 km and possibly as much as 100 km during a single glacial cycle. This motion of the pole will change the seasonal and latitudinal pattern of temperatures. We present calculations, based on a diurnal average energy balance, which compare the summer and winter temperature anomalies due to a 1° decrease in obliquity with those due to a 1° motion of the rotation pole toward Hudson Bay. Both effects result in peak temperature perturbations of about 1° Celsius. The obliquity change primarily influences the amplitude of the seasonal cycle, while the polar motion primarily changes the annual mean temperatures. The polar motion induced temperature anomaly is such that it will act as a powerful negative feedback on ice sheet growth. We also explore the evolution of the coupled system composed of ice sheet mass and pole position. Oscillatory solutions result from the conflicting constraints of rotational and thermal stability. A positive mass anomaly on an otherwise featureless Earth is in rotational equilibrium only at the poles or the equator. The two polar equilibria are rotationally unstable, and the equatorial equilibrium, though rotationally stable, is thermally unstable. We find that with a plausible choice for the strength of coupling between the thermal and rotational systems, relatively modest external forcing can produce significant response at periods of 104–106 years, but it strongly attenuates polar motion at longer periods. We suggest that these coupled oscillations may contribute to the observed dominance of 100 kyr glacial cycles since the mid-Pleistocene and will tend to stabilize geographic patterns that are suitable to

  2. Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia

    NASA Astrophysics Data System (ADS)

    Janssen, Renée; Joordens, Josephine C. A.; Koutamanis, Dafne S.; Puspaningrum, Mika R.; de Vos, John; van der Lubbe, Jeroen H. J. L.; Reijmer, John J. G.; Hampe, Oliver; Vonhof, Hubert B.

    2016-07-01

    The carbon (δ13C) and oxygen (δ18O) isotope compositions of fossilized animal tissues have become important proxies of paleodiet and paleoenvironment, but such stable isotope studies have not yet been extensively applied to the fossil assemblages of Sundaland (the biogeographical region comprising most of the Indonesian Archipelago). Here, we use the isotope composition of tooth enamel to investigate the diet and habitat of bovids, cervids, and suids from several Holocene and Pleistocene sites on Java and Sumatra. Our carbon isotope results indicate that individual sites are strongly dominated by either C3-browsers or C4-grazers. Herbivores from the Padang Highlands (Sumatra) and Hoekgrot (Java) cave faunas were mainly C3-browsers, while herbivores from Homo erectus-bearing sites Trinil and Sangiran (Java) utilized an almost exclusive C4 diet. The suids from all sites show a wide range of δ13C values, corroborating their omnivorous diet. For the dataset as a whole, oxygen and carbon isotope values are positively correlated. This suggests that isotopic enrichment of rainwater and vegetation δ18O values coincides with an increase of C4-grasslands. We interpret this pattern to mainly reflect the environmental contrast between glacial (drier, more C4) and interglacial (wetter, more C3) conditions. Intermediate herbivore δ13C values indicating mixed C3/C4 feeding is relatively rare, which we believe to reflect the abruptness of the transition between glacial and interglacial precipitation regimes in Sundaland. For seven Homo erectus bone samples we were not able distinguish between diagenetic overprint and original isotope values, underlining the need to apply this isotopic approach to Homo erectus tooth enamel instead of bone. Importantly, our present results on herbivore and omnivore faunas provide the isotopic framework that will allow interpretation of such Homo erectus enamel isotope data.

  3. Isotopic record of Pleistocene glacial/interglacial cycles in pelagic carbonates: Revisiting historical data from the Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Hermoso, Michaël

    2016-04-01

    The glacial/interglacial cycles of the Pleistocene were first recognised by variations in the oxygen isotopic composition of planktonic foraminifera from cores in the Caribbean Sea. Since this pioneering work by Emiliani, this proxy has been extensively applied to a variety of carbonate biominerals over the entirety of the Meso-Cenozoic. However, palaeoceanographic studies have overwhelmingly focused on foraminifera compared to other calcifying microorganism fossils, such as the coccoliths. In this study, I revisit coccolith stable isotopic data obtained from the classic P6304-4 core in light of recent developments in the biogeochemistry of coccolithophores. In particular, I show that the coccolith stable isotope record of the last 13 Marine Isotope Stages (∼480 kyrs) is significantly biased by large vital effects. The magnitude of coccolith carbon and oxygen isotope vital effects is not uniform, but shows remarkable co-variance with the Vostok CO2 ice record. During periods of relatively elevated CO2 (interstadials), the expression of the vital effect is relatively small, whereas it can as high as +3‰ for the oxygen isotopes during glacial stadials, which I argue is a result of enhanced CO2 limitation of coccolithophores. Using this paradigm, I propose that coccolithophore vital effects are not a complicating factor, but rather the signal of interest. As the magnitude of the coccolith vital effect is shown to scale with pCO2, coccolith carbon and oxygen isotopes may be used in conjunction with foraminifera data to reconstruct and refine aqueous CO2 concentrations in the past.

  4. Last Glacial-magnitude Ice-Rafted Debris Deposition and its Provenance in the Earliest Pleistocene Sub-Polar North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Bailey, I.; Foster, G. L.; Wilson, P. A.; Jovane, L.; Storey, C.; Becker, J.; Bolton, C. T.

    2011-12-01

    We present the first spatial reconstruction of ice-rafted debris (IRD) deposition and its provenance in the sub-polar North Atlantic Ocean during the earliest large amplitude Pleistocene glacial, marine isotope stage (MIS) 100 (~2.52 Ma). Our flux estimates indicate that the magnitude of IRD deposition during MIS 100 was large with maximum inputs (at ~53 N) comparable to the Last Glacial Maximum (LGM). IRD provenance was determined using laser ablation lead (Pb) isotope analyses of single feldspar grains. We find that the Pb isotope composition (206Pb/204Pb and 207Pb/204Pb) of individual ice-rafted (>150μm) feldspars deposited at DSDP Site 611A, ODP Site 981 and IODP Site U1308 during MIS 100 are very similar to those deposited at the centre of the LGM IRD belt during ambient ice-rafting episodes (Gwiazda et al., 1996a). Based on a comparison to known Pb isotopic composition of potential source regions we propose that abundant iceberg calving sourced from large, multiple circum-North Atlantic Ocean ice-sheets (located on North America, Scandinavia, Greenland and possibly Britain) characterised MIS 100. However, unlike for the LGM, the locus of abundant iceberg melting and IRD deposition may have been situated north of the Last Glacial IRD-belt (~50 N) due to a reduced glacial meridional sea-surface temperature gradient relative to the late Pleistocene scenario.

  5. Reflection of global late glacial and Holocene paleoclimate oscillations in the palynological record from bottom sediments of Tavatui Lake (Middle Urals)

    NASA Astrophysics Data System (ADS)

    Maslennikova, A. V.; Udachin, V. N.; Anfilogov, V. N.; Deryagin, V. V.

    2016-06-01

    The palynological analysis of the reliably dated core section of bottom sediments from Tavatui Lake revealed consistency between the chronology and succession of Late Pleistocene and Early Pliocene events (GI-a/b, CS-1, GH-11.2) in the Middle Urals and the North Atlantic region. It is established that the Holocene thermal maximum (5.3-8.0 cal. ka ago) in the Middle Urals was characterized by high temperatures and humidity. The initial stage of the Subboreal cooling was reffered to the interval of 4.5-5.3 cal. ka ago. The data obtained provided grounds for the conclusion that the palynological record in the Tavatui Lake section reflects in detail global and regional climate oscillations, which allows it to be used as a Holocene and late glacial reference section, as well as for predicting the behavior of the natural system of the Middle Urals in response to future climate change.

  6. Size and shape stasis in late Pleistocene mammals and birds from Rancho La Brea during the Last Glacial-Interglacial cycle

    NASA Astrophysics Data System (ADS)

    Prothero, Donald R.; Syverson, Valerie J.; Raymond, Kristina R.; Madan, Meena; Molina, Sarah; Fragomeni, Ashley; DeSantis, Sylvana; Sutyagina, Anastasiya; Gage, Gina L.

    2012-11-01

    Conventional neo-Darwinian theory views organisms as infinitely sensitive and responsive to their environments, and considers them able to readily change size or shape when they adapt to selective pressures. Yet since 1863 it has been well known that Pleistocene animals and plants do not show much morphological change or speciation in response to the glacial-interglacial climate cycles. We tested this hypothesis with all of the common birds (condors, golden and bald eagles, turkeys, caracaras) and mammals (dire wolves, saber-toothed cats, giant lions, horses, camels, bison, and ground sloths) from Rancho La Brea tar pits in Los Angeles, California, which preserves large samples of many bones from many well-dated pits spanning the 35,000 years of the Last Glacial-Interglacial cycle. Pollen evidence showed the climate changed from chaparral/oaks 35,000 years ago to snowy piñon-juniper forests at the peak glacial 20,000 years ago, then back to the modern chaparral since the glacial-interglacial transition. Based on Bergmann's rule, we would expect peak glacial specimens to have larger body sizes, and based on Allen's rule, peak glacial samples should have shorter and more robust limbs. Yet statistical analysis (ANOVA for parametric samples; Kruskal-Wallis test for non-parametric samples) showed that none of the Pleistocene pit samples is statistically distinct from the rest, indicating complete stasis from 35 ka to 9 ka. The sole exception was the Pit 13 sample of dire wolves (16 ka), which was significantly smaller than the rest, but this did not occur in response to climate change. We also performed a time series analysis of the pit samples. None showed directional change; all were either static or showed a random walk. Thus, the data show that birds and mammals at Rancho La Brea show complete stasis and were unresponsive to the major climate change that occurred at 20 ka, consistent with other studies of Pleistocene animals and plants. Most explanations for such

  7. Postglacial development of the eastern Gulf of Finland: from Pleistocene glacial lake basins to Holocene lagoon systems

    NASA Astrophysics Data System (ADS)

    Ryabchuk, Daria; Sergeev, Alexander; Kotilainen, Aarno; Hyttinen, Outi; Grigoriev, Andrey; Gerasimov, Dmitry; Anisimov, Mikhail; Gusentsova, Tatiana; Zhamoida, Vladimir; Amantov, Aleksey; Budanov, Leonid

    2016-04-01

    Despite significant amount of data, there are still lots of debatable questions and unsolved problems concerning postglacial geological history of the Eastern Gulf of Finland, the Baltic Sea. Among these problems are: 1) locations of the end moraine and glacio-fluvial deposits; 2) time and genesis of the large accretion forms (spits, bars, dunes); 3) basinwide correlations of trangression/regression culminations with the other parts of the Baltic Sea basin; 4) study of salinity, timing, frequency and intensity of Holocene saline water inflows and their links of sedimentation processes associated with climate change. Aiming to receive new data about regional postglacial development, the GIS analyses of bottom relief and available geological and geophysical data was undertaken, the maps of preQuaternary relief, moraine and Late Pleistocene surfaces, glacial moraine and Holocene sediments thicknesses were compiled. High-resolution sediment proxy study of several cores, taken from eastern Gulf of Finland bottom, allows to study grain-size distribution and geochemical features of glacial lake and Holocene sediments, to reveal sedimentation rates and paleoenvironment features of postglacial basins. Interdisciplinary geoarcheological approaches offer new opportunities for studying the region's geological history and paleogeography. Based on proxy marine geological and coastal geoarcheological studies (e.g. off-shore acoustic survey, side-scan profiling and sediment sampling, on-shore ground-penetrating radar (GPR SIR 2000), leveling, drilling, grain-size analyses and radiocarbon dating and archeological research) detailed paleogeographical reconstruction for three micro-regions - Sestroretsky and Lahta Lowlands, Narva-Luga Klint Bay and Southern Ladoga - were compiled. As a result, new high resolution models of Holocene geological development of the Eastern Gulf of Finland were received. Model calibration and verification used results from proxy geoarcheological research

  8. Assessing the persistence of millennial-scale oscillations during the penultimate glacial phase in southern Europe

    NASA Astrophysics Data System (ADS)

    Wilson, Graham; Frogley, Mick; Jones, Tim; Leng, Melanie

    2016-04-01

    There is growing evidence that millennial-scale climate oscillations are a pervasive feature of glacial intervals. During the last glaciation (Marine Isotope Stage (MIS) 2-4), incursions of cold water into the North Atlantic appeared to coincide with abrupt reductions in southern European tree populations (Tzedakis et al., 2004: Geology 32, 109-112), suggesting down-stream impacts on continental temperature and hydroclimate. Ice-rafting into the North Atlantic during the penultimate glacial (MIS 6) is thought to be less extensive than at times during MIS 2-4, perhaps resulting in more subdued climate oscillations. Published pollen data from Lake Ioannina core I-284 (Epirus, NW Greece) suggest pronounced oscillations in tree population extent during early MIS 6 (185-155 ka), followed by much-reduced tree populations and subdued oscillations throughout late MIS 6 (155-135 ka) (Roucoux et al., 2011: Journal of Quaternary Science 26, 616-626). Previous studies of the diatom and isotope records from the MIS 7/6, 6/5e and 2/1 transitions, and from MIS 5e and 1 in Lake Ioannina core I-284 demonstrate the sensitivity of these proxies to changes in regional climate. Here we apply a combined diatom and stable isotope (carbon and oxygen) approach to evaluate the influence of millennial-scale oscillations on southern Europe hydroclimate during MIS 6. The new isotope data from Lake Ioannina core I-284 demonstrates higher precipitation / evaporation (P/E) ratios between c. 178 and 164 ka, associated with peak insolation during MIS 6e, and episodes of planktonic diatom expansion likely reflecting the interstadials of the 6e complex. Close correspondence between diatom planktonic frequencies, arboreal pollen and regional sea-surface temperatures together provide strong evidence for millennial-scale oscillations in regional precipitation at times during the early‒mid MIS 6. The isotope data suggest overall cooler and drier conditions during the mid-late MIS 6, consistent with

  9. The hierarchical structure of glacial climatic oscillations: Interactions between ice-sheet dynamics and climate

    SciTech Connect

    Paillard, D.

    1995-04-01

    Abrupt climatic oscillations around the North Atlantic have been identified recently in Greenland ice cores as well as in North Atlantic marine sediment cores. The good correlation between the {open_quote}Dansgaard Oeschger events{close_quote} in the ice and the {open_quote}Heinrich events{close_quote} in the ocean suggests climate, in the North Atlantic region, underwent several massive reorganizations in the last glacial period. A characteristic feature seems to be their hierarchical structure. Every 7 to 10-thousand years, when the temperature is close to its minimum, the ice-sheet undergoes a massive iceberg discharge. This Heinrich event is followed by an abrupt warming. then by other oscillations, each lasting between one and two thousand years. These secondary oscillations do not have a clear signature in marine sediments but constitute most of the{open_quote} Dansgaard-Oeschger events{close_quote} found in the ice. A simplified model coupling an ice-sheet and an ocean basin, to illustrate how the interactions between these two components can lead to such a hierarchical structure. The ice-sheet model exhibits internal oscillations composed of growing phases and basal ice melting phases that induce massive iceberg discharges. These fresh water inputs in the ocean stop for a moment the thermohaline circulation, enhancing the temperature contrast between low- and high-latitudes. Just after this event, the thermohaline circulation restarts and an abrupt warming of high-latitude regions is observed. For some parameter values, these warmer temperatures have some influence on the ice-sheet, inducing secondary oscillations similar to those found in paleoclimatic records. Although the mechanism presented here may be too grossly simplified. it nevertheless underlines the potential importance of the coupling between ice-sheet dynamics and oceanic thermohaline circulation on the structure of the climatic records during the last glacial period. 33 refs., 14 figs., 1 tab.

  10. Pleistocene glacial refugia across the Appalachian Mountains and coastal plain in the millipede genus Narceus: Evidence from population genetic, phylogeographic, and paleoclimatic data

    PubMed Central

    Walker, Matt J; Stockman, Amy K; Marek, Paul E; Bond, Jason E

    2009-01-01

    Background Species that are widespread throughout historically glaciated and currently non-glaciated areas provide excellent opportunities to investigate the role of Pleistocene climatic change on the distribution of North American biodiversity. Many studies indicate that northern animal populations exhibit low levels of genetic diversity over geographically widespread areas whereas southern populations exhibit relatively high levels. Recently, paleoclimatic data have been combined with niche-based distribution modeling to locate possible refugia during the Last Glacial Maximum. Using phylogeographic, population, and paleoclimatic data, we show that the distribution and mitochondrial data for the millipede genus Narceus are consistent with classical examples of Pleistocene refugia and subsequent post-glacial population expansion seen in other organismal groups. Results The phylogeographic structure of Narceus reveals a complex evolutionary history with signatures of multiple refugia in southeastern North America followed by two major northern expansions. Evidence for refugial populations were found in the southern Appalachian Mountains and in the coastal plain. The northern expansions appear to have radiated from two separate refugia, one from the Gulf Coastal Plain area and the other from the mid-Atlantic coastal region. Distributional models of Narceus during the Last Glacial Maximum show a dramatic reduction from the current distribution, with suitable ecological zones concentrated along the Gulf and Atlantic coastal plain. We found a strong correlation between these zones of ecological suitability inferred from our paleo-model with levels of genetic diversity derived from phylogenetic and population estimates of genetic structuring. Conclusion The signature of climatic change, during and after the Pleistocene, on the distribution of the millipede genus Narceus is evident in the genetic data presented. Niche-based historical distribution modeling strengthens the

  11. Effect of Pleistocene climatic oscillations on the phylogeography and demography of red knobby newt (Tylototriton shanjing) from southwestern China.

    PubMed

    Yu, Guohua; Zhang, Mingwang; Rao, Dingqi; Yang, Junxing

    2013-01-01

    Factors that determine the genetic structure of species in southwestern China remain largely unknown. In this study, phylogeography and demography of Tylototriton shanjing was investigated from a mitochondrial perspective to address the role of the Quaternary ice ages in shaping phylogeographic history and genetic diversity of Yunnan. A total of 146 individuals from 19 populations across the entire range of the species were collected. We detected four maternal phylogenetic lineages corresponding to four population groups, and found that major glaciation events during the Pleistocene have triggered the intra-specific divergence. Coalescent simulations indicated that the populations retreated to different refugia located in southern Yunnan, northwestern Yunnan, the border region of western Yunnan with Myanmar, and middle-western Yunnan, respectively, during previous glacial periods in the Pleistocene, and these four refugia were not retained during the Last Glacial Maximum. Population expansions occurred during the last inter-glaciation, during which ice core and pollen data indicated that the temperature and precipitation gradually increased, and declines of population sizes started after the beginning of the Last Glacial Maximum when the climate became cooler and dryer. The paleo-drainage system had no contribution to the current genetic structure and the rivers were not dispersal barriers for this salamander. PMID:23424644

  12. Effect of Pleistocene Climatic Oscillations on the Phylogeography and Demography of Red Knobby Newt (Tylototriton shanjing) from Southwestern China

    PubMed Central

    Rao, Dingqi; Yang, Junxing

    2013-01-01

    Factors that determine the genetic structure of species in southwestern China remain largely unknown. In this study, phylogeography and demography of Tylototriton shanjing was investigated from a mitochondrial perspective to address the role of the Quaternary ice ages in shaping phylogeographic history and genetic diversity of Yunnan. A total of 146 individuals from 19 populations across the entire range of the species were collected. We detected four maternal phylogenetic lineages corresponding to four population groups, and found that major glaciation events during the Pleistocene have triggered the intra-specific divergence. Coalescent simulations indicated that the populations retreated to different refugia located in southern Yunnan, northwestern Yunnan, the border region of western Yunnan with Myanmar, and middle-western Yunnan, respectively, during previous glacial periods in the Pleistocene, and these four refugia were not retained during the Last Glacial Maximum. Population expansions occurred during the last inter-glaciation, during which ice core and pollen data indicated that the temperature and precipitation gradually increased, and declines of population sizes started after the beginning of the Last Glacial Maximum when the climate became cooler and dryer. The paleo-drainage system had no contribution to the current genetic structure and the rivers were not dispersal barriers for this salamander. PMID:23424644

  13. On the timing and forcing mechanisms of late Pleistocene glacial terminations: Insights from a new high-resolution benthic stable oxygen isotope record of the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Konijnendijk, T. Y. M.; Ziegler, M.; Lourens, L. J.

    2015-12-01

    Benthic oxygen isotope records of deep marine sedimentary archives have yielded a wealth of information regarding ice sheet dynamics and climate change during the Pleistocene. However, since they often lack independent age control, these records are generally bound by a fixed phase relationship between orbital forcing and the climate response, e.g. ice volume changes. We present the first long (˜1.2 Ma) benthic oxygen isotope record from the eastern Mediterranean, based on ODP Sites 967 and 968, which clearly reflects the behavior of global climate on a glacial-interglacial scale throughout the late Pleistocene time period. The age model for our record is based on tuning the elemental ratio of titanium versus aluminum (Ti/Al) against insolation. The Ti/Al record is dominated by the precession-related changes in northern African climate, i.e. monsoonal forcing, and hence largely independent of glacial-interglacial variability. We found the largest offset between our chronology and that of the widely applied, open ocean stacked record LR04 (Lisiecki and Raymo, 2005) for TVII (˜624 ka), which occurred ˜9 kyr earlier according to our estimates, though in agreement with the AICC2012 δDice chronology of EPICA Dome C (Bazin et al., 2013). Spectral cross-correlation analysis between our benthic δ18O record and 65°N summer insolation reveals significant amounts of power in the obliquity and precession range, with an average lag of 5.5 ± 0.8 kyr for obliquity, and 6.0 ± 1.0 kyr for precession. In addition, our results show that the obliquity-related time lag was smaller (3.0 ± 3.3 kyr) prior to ˜900 ka than after (5.7 ± 1.1 kyr), suggesting that on average the glacial response time to obliquity forcing increased during the mid-Pleistocene transition, much later than assumed by Lisiecki and Raymo (2005). Finally, we found that almost all glacial terminations have a consistent phase relationship of ˜45 ± 45° with respect to the precession and obliquity

  14. Late Pleistocene ages for the most recent volcanism and glacial-pluvial deposits at Big Pine volcanic field, California, USA, from cosmogenic 36Cl dating

    NASA Astrophysics Data System (ADS)

    Vazquez, J. A.; Woolford, J. M.

    2015-09-01

    The Big Pine volcanic field is one of several Quaternary volcanic fields that poses a potential volcanic hazard along the tectonically active Owens Valley of east-central California, and whose lavas are interbedded with deposits from Pleistocene glaciations in the Sierra Nevada Range. Previous geochronology indicates an ˜1.2 Ma history of volcanism, but the eruption ages and distribution of volcanic products associated with the most-recent eruptions have been poorly resolved. To delimit the timing and products of the youngest volcanism, we combine field mapping and cosmogenic 36Cl dating of basaltic lava flows in the area where lavas with youthful morphology and well-preserved flow structures are concentrated. Field mapping and petrology reveal approximately 15 vents and 6 principal flow units with variable geochemical composition and mineralogy. Cosmogenic 36Cl exposure ages for lava flow units from the top, middle, and bottom of the volcanic stratigraphy indicate eruptions at ˜17, 27, and 40 ka, revealing several different and previously unrecognized episodes of late Pleistocene volcanism. Olivine to plagioclase-pyroxene phyric basalt erupted from several vents during the most recent episode of volcanism at ˜17 ka, and produced a lava flow field covering ˜35 km2. The late Pleistocene 36Cl exposure ages indicate that moraine and pluvial shoreline deposits that overlie or modify the youngest Big Pine lavas reflect Tioga stage glaciation in the Sierra Nevada and the shore of paleo-Owens Lake during the last glacial cycle.

  15. Late Pleistocene ages for the most recent volcanism and glacial-pluvial deposits at Big Pine volcanic field, California, USA, from cosmogenic 36Cl dating

    USGS Publications Warehouse

    Vazquez, Jorge A.; Woolford, Jeff M

    2015-01-01

    The Big Pine volcanic field is one of several Quaternary volcanic fields that poses a potential volcanic hazard along the tectonically active Owens Valley of east-central California, and whose lavas are interbedded with deposits from Pleistocene glaciations in the Sierra Nevada Range. Previous geochronology indicates an ∼1.2 Ma history of volcanism, but the eruption ages and distribution of volcanic products associated with the most-recent eruptions have been poorly resolved. To delimit the timing and products of the youngest volcanism, we combine field mapping and cosmogenic 36Cl dating of basaltic lava flows in the area where lavas with youthful morphology and well-preserved flow structures are concentrated. Field mapping and petrology reveal approximately 15 vents and 6 principal flow units with variable geochemical composition and mineralogy. Cosmogenic 36Cl exposure ages for lava flow units from the top, middle, and bottom of the volcanic stratigraphy indicate eruptions at ∼17, 27, and 40 ka, revealing several different and previously unrecognized episodes of late Pleistocene volcanism. Olivine to plagioclase-pyroxene phyric basalt erupted from several vents during the most recent episode of volcanism at ∼17 ka, and produced a lava flow field covering ∼35 km2. The late Pleistocene 36Cl exposure ages indicate that moraine and pluvial shoreline deposits that overlie or modify the youngest Big Pine lavas reflect Tioga stage glaciation in the Sierra Nevada and the shore of paleo-Owens Lake during the last glacial cycle.

  16. Reduced El Niño-Southern Oscillation during the Last Glacial Maximum.

    PubMed

    Ford, Heather L; Ravelo, A Christina; Polissar, Pratigya J

    2015-01-16

    El Niño-Southern Oscillation (ENSO) is a major source of global interannual variability, but its response to climate change is uncertain. Paleoclimate records from the Last Glacial Maximum (LGM) provide insight into ENSO behavior when global boundary conditions (ice sheet extent, atmospheric partial pressure of CO2) were different from those today. In this work, we reconstruct LGM temperature variability at equatorial Pacific sites using measurements of individual planktonic foraminifera shells. A deep equatorial thermocline altered the dynamics in the eastern equatorial cold tongue, resulting in reduced ENSO variability during the LGM compared to the Late Holocene. These results suggest that ENSO was not tied directly to the east-west temperature gradient, as previously suggested. Rather, the thermocline of the eastern equatorial Pacific played a decisive role in the ENSO response to LGM climate. PMID:25593181

  17. Does an asymmetric thermohaline-ice-sheet oscillator drive 100 000-yr glacial cycles?

    NASA Astrophysics Data System (ADS)

    Denton, George H.

    2000-05-01

    A hypothesis is presented that late Quaternary 100 000-yr glacial cycles are driven by an asymmetric thermohaline-ice-sheet oscillator that emerged in the global climate system 650 000-950 000 yr ago, perhaps when the main source of Northern Hemisphere deep-water production shifted south from the Arctic into the Nordic seas. It is hypothesised that the asymmetry is due to the increasing difficulty after 950 000 years ago of resetting an interglacial mode of the critical Nordic limb of the salinity conveyor once it switches off and an ensuing iceberg flux enters the areas of downwelling. A possible reason for both a southward shift and the resulting asymmetry is uplift of the Greenland-Scotland submarine ridge from activity of the Iceland mantle plume.In this hypothesis an individual 100 000-yr glacial cycle begins when the northernmost limb of the salinity conveyor in the Nordic seas is curtailed, or even switched off, perhaps due to the growing strength of competing Antarctic Bottom Water (AABW) generated by interglacial recession of the West Antarctic Ice Sheet (WAIS) from the West Antarctic Rift System. Such recession produces southern marginal seas where dense shelf water can collect and overflow into the abyss. When northern ice sheets, nucleated by this circulation switch, develop marine components that calve icebergs into the Nordic seas, the salinity conveyor can no longer revert to an interglacial mode from orbital forcing, as it did prior to 950 000 yr ago. In order to reset an interglacial circulation mode of the conveyor, ice sheets must continue to grow for 100 000 years until they capture enough excess volume to produce a gravitational collapse of marine-based components, so massive that all grounded ice is flushed from North Atlantic continental shelves. The outburst of icebergs produced by this collapse cripples the glacial mode of overturning in the northern North Atlantic. Once this collapse ends, however, the Nordic seas become nearly free of

  18. Linking Late Pleistocene alpine glacial erosion and continental margin sedimentation: Insights from 40Ar/39Ar dating of silt-sized sediment, Canterbury Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Villaseñor, Tania; Jaeger, John M.; Foster, David A.

    2016-01-01

    Quaternary climatic and eustatic cycles in mid-latitude regions have led to more extensive alpine glaciations and continental shelf progradation, respectively. However, the glacial influence on sediment fluxes to the ocean creating continental margin strata is poorly documented. This contribution analyzes the provenance of fine sediment accumulating on the continental shelf during the Late Pleistocene to evaluate the influence of glacial cycles on sediment erosion and routing to the continental shelf. Taking advantage of the contrasting bedrock ages exposed across the Southern Alps, New Zealand, we perform 40Ar/39Ar incremental heating on the bulk silt-size sediment from three drill sites of IODP Expedition 317, Canterbury Basin, New Zealand. The results suggest that a large proportion of sediment accumulating on the continental shelf results from erosion within the Main Divide fault zone of the Southern Alps. Sediment 40Ar/39Ar age fluctuations over this time period suggest that bedrock with various 40Ar/39Ar cooling ages has been differentially eroded in the upper Waitaki River catchment and mixed in the Waitaki-Canterbury sediment-routing system. Across-shelf variations in sediment 40Ar/39Ar age reflect changing modes of sediment dispersal on the continental shelf. Fluvial material, likely derived from the main drainage divide zone, preferentially accumulates in the middle continental shelf, whereas material representing erosion of older bedrock (Torlesse Terrane), located lower in the drainage basin, is dispersed uniformly across the shelf. The age signature of the muddy sediment accumulating on the continental shelf reflects Late Pleistocene landscape evolution of the Southern Alps and its influence on sediment dispersal to the continental shelf.

  19. Low but structured chloroplast diversity in Atherosperma moschatum (Atherospermataceae) suggests bottlenecks in response to the Pleistocene glacials

    PubMed Central

    Worth, James R. P.; Marthick, James R.; Jordan, Gregory J.; Vaillancourt, René E.

    2011-01-01

    Background and Aims The cool temperate rainforests of Australia were much reduced in range during the cold and dry glacial periods, although genetic evidence indicates that two key rainforest species, Nothofagus cunninghamii and Tasmannia lanceolata, survived within multiple locations and underwent only local range expansions at the end of the Last Glacial. To better understand the glacial response of a co-occurring but wind-dispersed and less cold-tolerant rainforest tree species, Atherosperma moschatum, a chloroplast phylogeographic study was undertaken. Methods A total of 3294 bp of chloroplast DNA sequence was obtained for 155 samples collected from across the species' range. Key Results The distribution of six haplotypes observed in A. moschatum was geographically structured with an inferred ancestral haplotype restricted to Tasmania, while three non-overlapping and endemic haplotypes were found on the mainland of south-eastern Australia. Last glacial refugia for A. moschatum are likely to have occurred in at least one location in western Tasmania and in Victoria and within at least two locations in the Great Dividing Range of New South Wales. Nucleotide diversity of A. moschatum was lower (π = 0·00021) than either N. cunninghamii (0·00101) or T. lanceolata (0·00073), and was amongst the lowest recorded for any tree species. Conclusions This study provides evidence for past bottlenecks having impacted the chloroplast diversity of A. moschatum as a result of the species narrower climatic niche during glacials. This hypothesis is supported by the star-like haplotype network and similar estimated rates of chloroplast DNA substitution for A. moschatum and the two more cold tolerant and co-occurring species that have higher chloroplast diversity, N. cunninghamii and T. lanceolata. PMID:21856633

  20. Did glacial advances during the Pleistocene influence differently the demographic histories of benthic and pelagic Antarctic shelf fishes? – Inferences from intraspecific mitochondrial and nuclear DNA sequence diversity

    PubMed Central

    Janko, Karel; Lecointre, Guillaume; DeVries, Arthur; Couloux, Arnaud; Cruaud, Corinne; Marshall, Craig

    2007-01-01

    Background Circum-Antarctic waters harbour a rare example of a marine species flock – the Notothenioid fish, most species of which are restricted to the continental shelf. It remains an open question as to how they survived Pleistocene climatic fluctuations characterised by repeated advances of continental glaciers as far as the shelf break that probably resulted in a loss of habitat for benthic organisms. Pelagic ecosystems, on the other hand, might have flourished during glacial maxima due to the northward expansion of Antarctic polar waters. In order to better understand the role of ecological traits in Quaternary climatic fluctuations, we performed demographic analyses of populations of four fish species from the tribe Trematominae, including both fully benthic and pelagic species using the mitochondrial cytochrome b gene and an intron from the nuclear S7 gene. Results Nuclear and cytoplasmic markers showed differences in the rate and time of population expansions as well as the likely population structure. Neutrality tests suggest that such discordance comes from different coalescence dynamics of each marker, rather than from selective pressure. Demographic analyses based on intraspecific DNA diversity suggest a recent population expansion in both benthic species, dated by the cyt b locus to the last glacial cycle, whereas the population structure of pelagic feeders either did not deviate from a constant-size model or indicated that the onset of the major population expansion of these species by far predated those of the benthic species. Similar patterns were apparent even when comparing previously published data on other Southern Ocean organisms, but we observed considerable heterogeneity within both groups with regard to the onset of major demographic events and rates. Conclusion Our data suggest benthic and pelagic species reacted differently to the Pleistocene ice-sheet expansions that probably significantly reduced the suitable habitat for benthic

  1. Unusual configuration of the Devonian-Pleistocene unconformity in the Susquehanna Valley, Oneonta, New York: Evidence for a subglacial meltwater inlet to glacial Lake Otego

    SciTech Connect

    Kucewicz, J. Jr.; Ebert, J.; Rasquin, C.; Sherman, R.; Nethaway, R.; Gardner, J.; Milunich, K.; Weber, J.; Wohlford, T.; Franz, J.; Brillon, S. . Dept. of Earth Sciences)

    1993-03-01

    A recently drilled test well and nearby abandoned bore hole have revealed anomalously shallow bedrock in a portion of the Susquehanna Valley near Oneonta, New York. Gravimetric and seismic refraction studies were conducted in the area to better delineate the Devonian--Pleistocene unconformity. On the northern flank of the valley, geophysical surveys indicate the presence of a shallowly buried bedrock shelf that is rimmed by a bedrock ridge. South of the ridge, bedrock drops abruptly beneath the thickening valley fill. This configuration contradicts predictions based upon projection of the valley walls to a classic U shape. These unusual features coincide with an extremely narrow portion of the valley, a recessional moraine and other stagnant ice features. The bedrock shelf may represent the initial glaciated valley floor. Incision of the valley floor below this surface can be attributed to scour by subglacial meltwaters at a nick point. As such, the narrow, deepest part of the bedrock valley may represent a subglacial inlet to glacial Lake Otego.

  2. Preliminary Vertical Slip Rate for the West Tahoe Fault from six new Cosmogenic 10Be Exposure Ages of Late Pleistocene Glacial Moraines at Cascade Lake, Lake Tahoe, California

    NASA Astrophysics Data System (ADS)

    Pierce, I. K. D.; Wesnousky, S. G.; Kent, G. M.; Owen, L. A.

    2015-12-01

    The West Tahoe Fault is the primary range bounding fault of the Sierra Nevada at the latitude of Lake Tahoe. It is a N-NW striking, east dipping normal fault that has a pronounced onshore quaternary scarp extending from highway 50 southwest of Meyers, CA to Emerald Bay. At Cascade Lake, the fault cuts and progressively offsets late Pleistocene right lateral moraines. The fault vertically offsets the previously mapped Tahoe moraine ~83 m and the Tioga moraine ~23 m, measured from lidar data. Seventeen samples were collected for 10Be cosmogenic age analysis from boulders on both the hanging and footwalls of the fault along the crests of these moraines.We report here the initial analysis of 6 of these boulders and currently await processing of the remainder. The 10Be exposure ages of 3 boulders each on the younger Tioga and older Tahoe moraines range from 12.7 +/- 1.6 to 20.7 +/- 3.3 ka and 13.3 +/- 2.1 to 72.5 +/- 8.8 ka, respectively. Using the oldest ages as minima, these preliminary results suggest that the slip rate has averaged ~1 mm/yr since the penultimate glaciation, in accord with estimates of previous workers, and place additional bounds on the age of glaciation in the Lake Tahoe basin. The Last Glacial Maxima and penultimate glaciation near Lake Tahoe thus appear to coincide with the Tioga and Tahoe II glaciations of the Eastern Sierra.

  3. Turbidite megabeds in an Oceanic Rift Valley recording jokulhlaups of late Pleistocene glacial lakes of the western United States

    USGS Publications Warehouse

    Zuffa, G.G.; Normark, W.R.; Serra, F.; Brunner, C.A.

    2000-01-01

    Escanaba Trough is the southernmost segment of the Gorda Ridge and is filled by sandy turbidites locally exceeding 500 m in thickness. New results from Ocean Drilling Program (ODP) Sites 1037 and 1038 that include accelerator mass spectrometry (AMS) 14C dates and revised petrographic evaluation of the sediment provenance, combined with high-resolution seismic-reflection profiles, provide a lithostratigraphic framework for the turbidite deposits. Three fining-upward units of sandy turbidites from the upper 365 m at ODP Site 1037 can be correlated with sediment recovered at ODP Site 1038 and Deep Sea Drilling Program (DSDP) Site 35. Six AMS 14C ages in the upper 317 m of the sequence at Site 1037 indicate that average deposition rates exceeded 10 m/k.yr. between 32 and 11 ka, with nearly instantaneous deposition of one ~60-m interval of sand. Petrography of the sand beds is consistent with a Columbia River source for the entire sedimentary sequence in Escanaba Trough. High-resolution acoustic stratigraphy shows that the turbidites in the upper 60 m at Site 1037 provide a characteristic sequence of key reflectors that occurs across the floor of the entire Escanaba Trough. Recent mapping of turbidite systems in the northeast Pacific Ocean suggests that the turbidity currents reached the Escanaba Trough along an 1100-km-long pathway from the Columbia River to the west flank of the Gorda Ridge. The age of the upper fining-upward unit of sandy turbidites appears to correspond to the latest Wisconsinan outburst of glacial Lake Missoula. Many of the outbursts, or jokulhlaups, from the glacial lakes probably continued flowing as hyperpycnally generated turbidity currents on entering the sea at the mouth of the Columbia River.

  4. Water versus ice: The competing roles of modern climate and Pleistocene glacial erosion in the Central Alps of Switzerland

    NASA Astrophysics Data System (ADS)

    Schlunegger, Fritz; Norton, Kevin P.

    2013-08-01

    Recent studies have identified relationships between landscape form, erosion and climate in regions of landscape rejuvenation, associated with increased denudation. Most of these landscapes are located in non-glaciated mountain ranges and are characterized by transient geomorphic features. The landscapes of the Swiss Alps are likewise in a transient geomorphic state as seen by multiple knickzones. In this mountain belt, the transient state has been related to erosional effects during the Late Glacial Maximum (LGM). Here, we focus on the catchment scale and categorize hillslopes based on erosional mechanisms, landscape form and landcover. We then explore relationships of these variables to precipitation and extent of LGM glaciers to disentangle modern versus palaeo controls on the modern shape of the Alpine landscape. We find that in grasslands, the downslope flux of material mainly involves unconsolidated material through hillslope creep, testifying a transport-limited erosional regime. Alternatively, strength-limited hillslopes, where erosion is driven by bedrock failure, are covered by forests and/or expose bedrock, and they display oversteepened hillslopes and channels. There, hillslope gradients and relief are more closely correlated with LGM ice occurrence than with precipitation or the erodibility of the underlying bedrock. We relate the spatial occurrence of the transport- and strength-limited process domains to the erosive effects of LGM glaciers. In particular, strength-limited, rock dominated basins are situated above the equilibrium line altitude (ELA) of the LGM, reflecting the ability of glaciers to scour the landscape beyond threshold slope conditions. In contrast, transport-limited, soil-mantled landscapes are common below the ELA. Hillslopes covered by forests occupy the elevations around the ELA and are constrained by the tree line. We conclude that the current erosional forces at work in the Central Alps are still responding to LGM glaciation, and

  5. Post-Last Glacial Maximum (Latest Pleistocene to Holocene) geology of the Santa Barbara shelf, southern California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Ritchie, A. C.; Conrad, J. E.; Dartnell, P.; Phillips, E.; Sliter, R. W.

    2011-12-01

    High-resolution bathymetric and seismic-reflection data collected for the California Seafloor Mapping Program (http://walrus.wr.usgs.gov/mapping/csmp/) provide new insights for understanding the post-Last Glacial Maximum (LGM) evolution of the Santa Barbara shelf, highlighting relationships between tectonics, eustasy, and sediment supply. The west-trending shelf extends offshore for 5 to 7 km and is bounded on the south by the deep Santa Barbara basin and on the north by a narrow coastal zone and the steep, rapidly uplifting Santa Ynez Mountains. The active, west-trending, north-dipping Ventura-Pitas Point-North Channel and Red Mountain fault systems form the structural boundary between two distinct shelf domains. The smooth, gently sloping, southern shelf is flooded by thick (35 to 40 m), prograding Santa Clara and Ventura River deltaic deposits. These thick strata drape the shelfbreak and fill the accommodation space created by rising sea level, largely masking the influence of active tectonics. In contrast, the northern shelf has complex bathymetry and a well-defined, sharp shelfbreak at ~90 m water depth. The northern shelf is relatively sediment starved (mean sediment thickness is 3 to 4 m), with thickest accumulations (up to ~18 m) forming shallow (< 30 m), discontinuous to laterally coalescing, inner-shelf bars that are best developed at the mouths of steep coastal watersheds. These watersheds also feed several distinct, coarse-grained sediment lobes (as large as ~1.5 km2, extending to 3 km offshore and depths of 70 m) that probably formed during massive flood events. The relative lack of offshore deposits on the northern shelf suggests sediment transport is dominated by easterly nearshore drift. Faulting and folding on the northern shelf are significant controls on sediment distribution and thickness, the occurrence of bedrock uplifts, and common hydrocarbon-associated seeps, pockmarks, and mounds. Bedrock, typically "soft" Neogene strata, is especially

  6. Lithologic expressions of glacial/interglacial and millennial-scale variability in the Pacific sub-Arctic record during the Pleistocene (Bering Sea, IODP Exp. 323)

    NASA Astrophysics Data System (ADS)

    Drake, M.; Aiello, I. W.

    2012-12-01

    Diatom-rich, Pleistocene sediments collected in the Bering Sea during IODP Exp. 323 in the Bering Slope (Sites U1339 and U1344) and at the Bowers Ridge (Site U1340) show prominent variability of physical properties (e.g. bulk density), lithology and in the preservation of diatom valves. Using the shipboard physical property data in combination with newly generated smear slide counts and laser particle size (LPS) analyses we were able to quantify the sedimentary components for statistical analysis. Our data confirm that bulk density is negatively correlated with mean grain size (~30%) and abundance of diatoms (~40%) while it positively correlates with clay size particles (~20%) and silt-size siliciclastic particles (~20%). However, clay size particles and silt-size siliciclastic show no significant correlation, suggesting independent sources. We also found that diatom valve integrity is correlated with the abundance of diatoms (~40%) suggesting that diatom preservation increases with increasing opal fluxes. Finally, we found a surprisingly low correlation (only ~30%) between abundance of clay minerals (from smear slide counts) and percent clay-sized particles (LPS); SEM analysis supports the interpretation that a significant portion of clay-sized particles could derive from the dissolution/fragmentation of diatom biosilica. In conclusion, more than 40% of lithologic variability in the Bering Sea sediments reflects changes in the abundance of diatoms and siliciclastic particles: glacial/stadial (interglacial/interstadial) conditions were characterized by lower (higher) primary productivity, higher (lower) terrigenous input, and diatom valve dissolution and formation of clay-size biosilica particles (higher diatom valve preservation). Our approach offers new insights on the links between changes in sedimentation and oceanography at different scales of climate variability in the Bering Sea and potentially in other similar high latitude basins.

  7. Tempo of genetic diversification in southern African rodents: The role of Plio-Pleistocene climatic oscillations as drivers for speciation

    NASA Astrophysics Data System (ADS)

    Montgelard, Claudine; Matthee, Conrad A.

    2012-07-01

    The evolution of the southern African faunal assemblages is thought to have been largely influenced by climatic oscillations of the Plio-Pleistocene. These fluctuations presumably had a major impact in the form of vicariant diversification of taxa by causing simultaneous speciation/cladogenetic events due to habitat fragmentation. We aimed to test this hypothesis by comparing the timing of diversification observed for several rodent lineages with three peaks of aridification described at approximately 2.8, 1.7 and 1.0 Mya. Our study included nine rodent taxa (Nannomys, Aethomys, Otomys, Myotomys, Rhabdomys and Mastomys for the Muridae, Saccostomus for the Nesomyidae, Cryptomys for the Bathyergidae, and Xerus for the Sciuridae) that showed intrageneric mitochondrial cytochrome b cladogenesis during the last 5 Ma. Phylogenetic analysis performed with maximum likelihood and Bayesian methods supported the monophyly of all subgenera and genera. Most diversifications are also well supported and in agreement with previously published studies. Divergence dates between lineages were estimated using a Bayesian relaxed molecular clock and the 7 Myr split between different Apodemus species as well as the divergence between Tatera and Gerbillurus at 6.3 Myr were used as calibration points. Our results did not provide any convincing evidence of a correspondence between rodent diversification events and peaks in aridity during the Plio-Pleistocene. The nearly perfect linear correlation between cladogenesis and time, during the last 5 Myr, strongly suggests that the diversification of southern African rodent lineages is driven by complex interactions between different factors, including life history, climatic changes, and topographic barriers.

  8. Spatial and temporal variations of glacial erosion in the Rhône valley (Swiss Alps): insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Sternai, Pietro; Herman, Frédéric; Valla, Pierre; Champagnac, Jean-Daniel; Willett, Sean

    2013-04-01

    The present-day topography of the European Alps shows evidence of intense glacial reshaping. However, significant questions regarding Alpine landscape evolution during glaciations still persist. For example, large-scale topographic analyses suggest that glacial erosion is maximized at and above the glaciers' long-term Equilibrium Line Altitude. In contrast, measurements of long-term denudation rates from low temperature thermochronology suggest high erosion towards low altitudes, leading to an increase of local relief in response to glacial erosion. Based on sediment record, low-temperature thermochronology and burial cosmogenic nuclide dating, it has also been proposed that the mid-Pleistocene climatic transition from symmetric, 40kyr to asymmetric, 100kyr glacial/interglacial oscillations sets the onset of intense glacial erosion within the Alps. However, this climate threshold in glacial erosion has not been showed in other orogens, and positive feedbacks between climate periodicity and glacial erosion efficiency still remain to be proven. We focus on the Rhône valley (Swiss Alps), and use a numerical model to estimate patterns and magnitudes of glacial erosion. Comparing modeling results on an advanced reconstruction of the pre-glacial topography (Sternai et al., 2012) and the present-day landforms, we found that erosion propagates headward as the landscape evolves from a fluvial to a glacial state, leading to an initial increase of local relief in the major valley trunk followed by subsequent erosion at high elevations. We also test the mid-Pleistocene transition hypothesis by running a 2Myr numerical experiment including a shift from symmetric, 40kyr to asymmetric, 100kyr glacial/interglacial oscillations at 1Myr. Although the change of climate periodicity may have produced an intensification of glacial erosion, our results suggest that other factors such as an increase of rock uplift and/or progressive climate cooling are required to explain enhanced valley

  9. Periodic jökulhlaups from Pleistocene glacial Lake Missoula—New evidence from varved sediment in northern Idaho and Washington

    NASA Astrophysics Data System (ADS)

    Waitt, Richard B.

    1984-07-01

    Newly examined exposures in northern Idaho and Washington show that catastrophic floods from glacial Lake Missoula during late Wisconsin time were repeated, brief jökulhlaups separated by decades of quiet glaciolacustrine and subaerial conditions. Glacial Priest Lake, dammed in the Priest River valley by a tongue of the Purcell trench lobe of the Cordilleran ice sheet, generally accumulated varved mud; the varved mud is sharply interrupted by 14 sand beds deposited by upvalley-running currents. The sand beds are texturally and structurally similar to slackwater sediment in valleys in southern Washington that were backflooded by outbursts from glacial Lake Missoula. Beds of varved mud also accumulated in glacial Lake Spokane (or Columbia?) in Latah Creek valley and elsewhere in northeastern Washington; the mud beds were disrupted, in places violently, during emplacement of each of 16 or more thick flood-gravel beds. This history corroborates evidence from southern Washington that only one graded bed is deposited per flood, refuting a conventional idea that many beds accumulated per flood. The total number of such floodlaid beds in stratigraphic succession near Spokane is at least 28. The mud beds between most of the floodlaid beds in these valleys each consist of between 20 and 55 silt-to-clay varves. Lacustrine environments in northern Idaho and Washington therefore persisted for two to six decades between regularly recurring, colossal floods from glacial Lake Missoula.

  10. Late Pleistocene ice margin fluctuations in the Nahanni National Park-UNESCO World Heritage Site and their impact on glacial lake formation and architecture of drainage systems across the Yukon-NWT continental divide

    NASA Astrophysics Data System (ADS)

    Duk-Rodkin, A.; Barendregt, R. W.

    2009-12-01

    In the late Pleistocene the southern Mackenzie region was glaciated by ice masses from a Cordilleran and continental source (Laurentide). Stratigraphic and geomorphologic evidence indicate that the two glaciers occupied this region at different times during the Late Pleistocene. The continental ice sheet advanced over the foothills and up major valleys reaching its maximum extent, ca. 30 ka. B. P. This took place when Cordilleran glaciers were in their initial stages of development. The Laurentide Ice Sheet blocked the drainage of the South Nahanni River near Virginia Falls, forming a glacial lake which inundated an area of approximately 900 km2 at its maximum stand, and had an outlet to the southwest, across the continental divide into the Yukon Territory and eventually into the Pacific Ocean. Lacustrine sediments at various sites reach thicknesses ranging from 110 to 120 metres, at an elevation of around 700 m. Cordilleran glaciers advanced eastward and approximately 5000 years later blocked this southwestward drainage, rerouting it to the east and north along the Mackenzie Mountain front. The drainage was confined between the mountains and continental ice margin where it incised major canyons into the limestone bedrock, and produced a spectacular karst landscape, which today forms part of the Nahanni National Park. During the retreat of the Laurentide and advance of Cordilleran glaciers, glacial Lake Nahanni cut an outlet to the east at First Canyon. This outlet drained into a continuous northbound network of marginal meltwater channels joining the north-flowing drainage that eventually reached the Arctic Ocean, and during further retreat of the ice sheet established the Mackenzie River in its modern location. The presence of Laurentide ice in this region is evidenced by large granite boulders carried from the Canadian Shield. Erratics are found up to 100 km west of the mountain front. Neotectonic activity in the area is interpreted from exposures such as those

  11. Carbon cycle instability as a cause of the late Pleistocene ice age oscillations - Modeling the asymmetric response

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry; Maasch, Kirk A.

    1988-01-01

    A dynamical model of the Pleistocene ice ages is presented, which incorporates many of the qualitative ideas advanced recently regarding the possible role of ocean circulation, chemistry, temperature, and productivity in regulating long-term atmospheric carbon dioxide variations. This model involves one additional term (and free parameter) beyond that included in a previous model (Saltzman and Sutera, 1987), providing the capacity for an asymmetric response. It is shown that many of the main features exhibited by the delta(O-18)-derived ice record and the Vostok core/delta(C-13)-derived carbon dioxide record in the late Pleistocene can be deduced as a free oscillatory solution of the model.

  12. Climatic Oscillations 10,000-155,000 yr B.P. at Owens Lake, California Reflected in Glacial Rock Flour Abundance and Lake Salinity in Core OL-92

    USGS Publications Warehouse

    Bischoff, J.L.; Menking, K.M.; Fitts, J.P.; Fitzpatrick, J.A.

    1997-01-01

    Chemical analyses of the acid-soluble and clay-size fractions of sediment samples (1500-yr resolution) reveal oscillations of lake salinity and of glacial advances in core OL-92 back to 155,000 yr B.P. Relatively saline conditions are indicated by the abundance of carbonate and smectite (both pedogenic and authigenic), reflected by Ca, Sr, and Mg in the acid-soluble suite, and by Cs2O, excess MgO, and LOI (loss on ignition) in the clay-size fraction. Rock flour produced during glacial advances is represented by the abundance of detrital plagioclase and biotite in the clay-size fraction, the ratio of which remains essentially constant over the entire time span. These phases are quantitatively represented by Na2O, TiO2, Ba, and Mn in the clay fraction. The rock-flour record indicates two major ice-advances during the penultimate glacial cycle corresponding to marine isotope stage (MIS) 6, no major advances during the last interglaciation (entire MIS 5), and three major advances during the last glacial cycle (MIS 2, 3, and 4). The ages of the latter three correspond rather well to 36Cl dates reported for Sierra Nevada moraines. The onset of the last interglaciation is shown by abrupt increases in authigenic CaCO3 and an abrupt decrease in rock flour, at about 118,000 yr B.P. according to our time scale. In contrast, the boundary appears to be gradual in the ??18O record in which the change from light to heavy values begins at about 140,000 yrs B.P. The exact position of the termination, therefore, may be proxy-dependent. Conditions of high carbonate and low rock flour prevailed during the entire period from 118,000 yr B.P. until the glacial advance at 53,000 yr B.P. signaled the end of this long interglaciation. ?? 1997 University of Washington.

  13. Carbon cycle instability as a cause of the late Pleistocene ice age oscillations - Modeling the asymmetric response

    SciTech Connect

    Saltzman, B.; Maasch, K.A. )

    1988-06-01

    A dynamical model of the Pleistocene ice ages is presented, which incorporates many of the qualitative ideas advanced recently regarding the possible role of ocean circulation, chemistry, temperature, and productivity in regulating long-term atmospheric carbon dioxide variations. This model involves one additional term (and free parameter) beyond that included in a previous model (Saltzman and Sutera, 1987), providing the capacity for an asymmetric response. It is shown that many of the main features exhibited by the delta(O-18)-derived ice record and the Vostok core/delta(C-13)-derived carbon dioxide record in the late Pleistocene can be deduced as a free oscillatory solution of the model. 35 refs.

  14. High-amplitude, centennial-scale climate oscillations during the last glacial in the western Third Pole as recorded in the Guliya ice cap

    NASA Astrophysics Data System (ADS)

    Thompson, L. G.; Yao, T.; Mosley-Thompson, E.; Wu, G.; Davis, M. E.; Tian, L.; Lin, P. N.

    2015-12-01

    The Guliya ice cap, located in the Kunlun Mountains in the western Third Pole (TP) region near the northern limit of the southwest monsoon influence, may be the only non-polar ice field that provides detailed histories of climate and environment over the last glacial cycle. A continuous climate record from an ice core drilled in 1992 contains Eemian ice, and basal temperatures measured that year confirmed that the record was not being removed from the bottom. The δ18O record throughout Marine Isotope Stage 2 (MIS2) displays the occurrence of high-amplitude (~20‰) episodes of ~200-year periodicity, and the aerosol records suggest snow cover, regional vegetation and fire frequency that vary in synchrony. These oscillations might reflect the movement of the northernmost penetration of the monsoon precipitation through the Late Glacial Stage, which is restricted by the topographic barrier posed by the Kunlun range, and might also reflect solar-driven nonlinearities in the climate system such as sudden shifts in the jet stream. Recent model simulations suggest that glacial cooling over China was significantly amplified by stationary waves, and the Guliya MIS2 oscillations could reflect cyclical variability in these waves. These results are supported by clumped isotope thermometry of carbonates from the Chinese Loess Plateau, which indicate a 6 to 7oC decrease in Last Glacial Maximum summer temperatures. These studies will lead to a better understanding of the mechanisms driving such high-frequency, high-amplitude oscillations. A review of the 2015 Sino-American cooperative ice core drilling program on Guliya is presented. This program will serve as a flagship for the TP Environment Program, an international, multidisciplinary collaboration among professionals and students in 14 countries designed to investigate environmental changes across the TP. The rapidly warming TP contains ~46,000 glaciers that collectively hold one of Earth's largest stores of fresh water that

  15. Spatial and temporal variations of glacial erosion in the European Alps: numerical models and implications for slope stability (Invited)

    NASA Astrophysics Data System (ADS)

    Sternai, P.; Herman, F.; Willett, S.; Champagnac, J.; Fox, M.; Valla, P.; Salcher, B.

    2013-12-01

    Glacial erosion in alpine landscapes can be highly variable in space and time and lead to significant morphologic modification and mass redistribution at virtually all scales. Because they affect the near-surface stress and strain distribution by producing cyclic variations of the surface load, removing and abrading rocks, storing/releasing sediments and affecting the surface and subsurface hydrology, glaciations have multiple effects on slope stability. Understanding how glacial erosion evolves in space and time is thus important for investigating potential feedbacks between glacial erosion and deep-seated gravitational slope deformation (DSGSD). The present-day topography of the European Alps shows evidence of intense glacial erosion. However, significant questions regarding Alpine landscape evolution during glaciations still persist. For example, large-scale topographic analyses suggest that glacial erosion is maximized at and above the glaciers' long-term Equilibrium Line Altitude. In contrast, measurements of long-term denudation rates from low-temperature thermochronology and reconstructions of the pre-glacial Alpine topography suggest high erosion towards low altitudes and formation of overdeepnenings, in turn indicating an increase of local relief in response to glacial processes. Based on sediment record, low-temperature thermochronology and burial cosmogenic nuclide dating, it has also been proposed that the mid-Pleistocene climatic transition from symmetric, 40kyr to asymmetric, 100kyr glacial/interglacial oscillations sets the onset of intense glacial erosion within the Alps. However, this climate threshold in glacial erosion has not been showed in other orogens, and positive feedbacks between climate periodicity and glacial erosion efficiency still remain to be proven. Numerical modeling provides estimates of the patterns and magnitudes of glacial erosion through time. Modeling results on an advanced reconstruction of the pre-glacial topography and the

  16. Continental Refugium in the Mongolian Plateau during Quaternary Glacial Oscillations: Phylogeography and Niche Modelling of the Endemic Desert Hamster, Phodopus roborovskii.

    PubMed

    Lv, Xue; Xia, Lin; Ge, Deyan; Wen, Zhixin; Qu, Yanhua; Lu, Liang; Yang, Qisen

    2016-01-01

    The Mongolian Plateau (MP), which is situated in the interior of Asia and possesses a typical continental climate, experienced harsh climatic conditions during the Quaternary glacial fluctuations. Although these events likely had huge impacts on the local animal populations, the current effects have hardly been explored. To investigate whether the MP supported a refugium along an oceanic-continental gradient (ROCG), and whether this refugium was glacial or interglacial, we investigated the demographic and phylogeographic history of an endemic mammal species, the desert hamster Phodopus roborovskii. We reconstructed the demographic variation, the phylogeographic diffusion, and modelled the potential habitat during historical periods. The genetic diversity in the MP was the highest among all the localities, and the MP was a suitable habitat throughout the modelled historical periods. A phylogeographic diffusion analysis emphasized the importance of the MP as the centre of origin, preservation and spread for P. roborovskii. The homogeneous landscape provided the opportunity for a wide gene flow, which resulted in low resolution of the phylogenetic relationships. Moreover, P. roborovskii was favoured by the interglacial condition, with both its demographical and geographical ranges expanded within the interglacial periods. The range variation from the Last Glacial Maximum to the current condition reflects a distinct longitudinal shift, while both ranges largely contracted from that of the Last Interglacial. Our results support that the MP served as a refugium and spread centre for P. roborovskii during the Quaternary climate fluctuations. The interglacial expansion and the longitudinal shifts highlighted the important effects of precipitations on the distribution range of species adapted to arid and semi-arid during glacial oscillations. PMID:26839955

  17. Continental Refugium in the Mongolian Plateau during Quaternary Glacial Oscillations: Phylogeography and Niche Modelling of the Endemic Desert Hamster, Phodopus roborovskii

    PubMed Central

    Lv, Xue; Xia, Lin; Ge, Deyan; Wen, Zhixin; Qu, Yanhua; Lu, Liang; Yang, Qisen

    2016-01-01

    The Mongolian Plateau (MP), which is situated in the interior of Asia and possesses a typical continental climate, experienced harsh climatic conditions during the Quaternary glacial fluctuations. Although these events likely had huge impacts on the local animal populations, the current effects have hardly been explored. To investigate whether the MP supported a refugium along an oceanic-continental gradient (ROCG), and whether this refugium was glacial or interglacial, we investigated the demographic and phylogeographic history of an endemic mammal species, the desert hamster Phodopus roborovskii. We reconstructed the demographic variation, the phylogeographic diffusion, and modelled the potential habitat during historical periods. The genetic diversity in the MP was the highest among all the localities, and the MP was a suitable habitat throughout the modelled historical periods. A phylogeographic diffusion analysis emphasized the importance of the MP as the centre of origin, preservation and spread for P. roborovskii. The homogeneous landscape provided the opportunity for a wide gene flow, which resulted in low resolution of the phylogenetic relationships. Moreover, P. roborovskii was favoured by the interglacial condition, with both its demographical and geographical ranges expanded within the interglacial periods. The range variation from the Last Glacial Maximum to the current condition reflects a distinct longitudinal shift, while both ranges largely contracted from that of the Last Interglacial. Our results support that the MP served as a refugium and spread centre for P. roborovskii during the Quaternary climate fluctuations. The interglacial expansion and the longitudinal shifts highlighted the important effects of precipitations on the distribution range of species adapted to arid and semi-arid during glacial oscillations. PMID:26839955

  18. South China Sea Surface Waters During the Late Pleistocene: Records of the Relationship Between South East Asian Monsoon Variability and Glacial-Interglacial Cycles

    NASA Astrophysics Data System (ADS)

    McIntyre, K.; Oppo, D.

    2001-05-01

    One of the major goals of Ocean Drilling Program Leg 184 in the South China Sea was to recover sediment records that could be used to examine the history of the South East Asian monsoon relative to external variation in the global climate, on both orbital and millennial timescales. Examinations of how monsoonal variability in this region interacts with larger changes in global climate speak to the ongoing debate about the role of the tropical and equatorial regions in climate change. In order to reconstruct this interaction we have generated a new 700 kyr record of planktonic foraminiferal (G. ruber) oxygen and carbon isotopes from Ocean Drilling Program site 1145 in the South China Sea (19° 35.04'N, 117° 37.86'E, 3175 m. water depth). The oxygen isotope record reflects both global ice volume and a composite of sea surface salinity and temperature that varies in response to monsoonally driven changes in sea surface circulation and regional precipitation. The carbon isotopic record reflects changes in local productivity and global changes in the carbon budget. Since our record has both a strong 100-kyr glacial component and a strong precessional component, it allows us to examine the interaction between high-latitude glacial influence and local precessional influence on the South East Asian monsoon. As seen at other sites in the South China Sea, there is an overall increase in sedimentation rates coming toward the present. Sedimentation rates at this site decrease threefold at 400 Ka, with sedimentation rates ~6 cm/kyr prior to this time and rates of ~20 cm/kyr after. As a consequence, temporal resolution for the latter part of the record varies between 400 and 1000 years, and is >2000 years before 400 ka. We find that sub-Milankovitch variability in both oxygen and carbon isotopes is consistently high throughout glacial-interglacial cycles, +/-0.6 ‰ in δ 18O and +/-0.4 ‰ in δ 13C. Over the last 400 kyrs we find both variability on 3-4 kyr timescales and on

  19. A GCM comparison of Plio-Pleistocene interglacial-glacial periods in relation to Lake El'gygytgyn, NE Arctic Russia

    NASA Astrophysics Data System (ADS)

    Coletti, A. J.; DeConto, R. M.; Brigham-Grette, J.; Melles, M.

    2014-08-01

    Until now, the lack of time-continuous, terrestrial paleoenvironmental data from the Pleistocene Arctic has made model simulations of past interglacials difficult to assess. Here, we compare climate simulations of four warm interglacials at Marine Isotope Stage (MIS) 1 (9 ka), 5e (127 ka), 11c (409 ka), and 31 (1072 ka) with new proxy climate data recovered from Lake El'gygytgyn, NE Russia. Climate reconstructions of the Mean Temperature of the Warmest Month (MTWM) indicate conditions 2.1, 0.5 and 3.1 °C warmer than today during MIS 5e, 11c, and 31, respectively. While the climate model captures much of the observed warming during each interglacial, largely in response to boreal summer orbital forcing, the extraordinary warmth of MIS 11c relative to the other interglacials in the proxy records remain difficult to explain. To deconvolve the contribution of multiple influences on interglacial warming at Lake El'gygytgyn, we isolated the influence of vegetation, sea ice, and circum-Arctic land ice feedbacks on the climate of the Beringian interior. Simulations accounting for climate-vegetation-land surface feedbacks during all four interglacials show expanding boreal forest cover with increasing summer insolation intensity. A deglaciated Greenland is shown to have a minimal effect on Northeast Asian temperature during the warmth of stage 11c and 31 (Melles et al., 2012). A prescribed enhancement of oceanic heat transport into the Arctic ocean has some effect on Beringian climate, suggesting intrahemispheric coupling seen in comparisons between Lake El'gygytgyn and Antarctic sediment records might be related to linkages between Antarctic ice volume and ocean circulation. The exceptional warmth of MIS 11c remains enigmatic however, relative to the modest orbital and greenhouse gas forcing during that interglacial. Large Northern Hemisphere ice sheets during Plio-Pleistocene glaciation causes a substantial decrease in Mean Temperature of the Coldest Month (MTCM) and

  20. Correlation of Late-Pleistocene Lake-Level Oscillations in Mono Lake, California, with North Atlantic Climate Events

    USGS Publications Warehouse

    Benson, L.V.; Lund, S.P.; Burdett, J.W.; Kashgarian, Michaele; Rose, T.P.; Smoot, J.P.; Schwartz, M.

    1998-01-01

    Oxygen-18 (18O) values of sediment from the Wilson Creek Formation, Mono Basin, California, indicate three scales of temporal variation (Dansgaard-Oeschger, Heinrich, and Milankovitch) in the hydrologic balance of Mono Lake between 35,400 and 12,900 14C yr B.P. During this interval, Mono Lake experienced four lowstands each lasting from 1000 to 2000 yr. The youngest low-stand, which occurred between 15,500 and 14,000 14C yr B.P., was nearly synchronous with a desiccation of Owens Lake, California. Paleomagnetic secular variation (PSV) data indicate that three of four persistent lowstands occurred at the same times as Heinrich events H1, H2, and H4. 18O data indicate the two highest lake levels occurred ???18,000 and ???13,100 14C yr B.P., corresponding to passages of the mean position of the polar jet stream over the Mono Basin. Extremely low values of total inorganic carbon between 26,000 and 14,000 14C yr B.P. indicate glacial activity, corresponding to a time when summer insolation was much reduced. ?? 1998 University of Washington.

  1. Evidence of Last Interglacial sea-level oscillations and recent tectonism in the Late Pleistocene Falmouth Formation of Jamaica

    NASA Astrophysics Data System (ADS)

    Skrivanek, A.; Dutton, A.; Stemann, T.

    2015-12-01

    The timing and rates of sea-level change during Marine Isotope Stage 5e (MIS 5e) are poorly constrained. Across the Caribbean, many MIS 5e reefs are exposed above modern sea level, and have been studied extensively to understand sea level and ice sheet dynamics during an interglacial climate. This study investigates potential evidence for sub-orbital sea-level oscillations in the limestone Falmouth Formation from the northern and southwestern coastlines of Jamaica, a tectonically active island on the northern boundary of the Caribbean Plate. Vertical exposures of MIS 5e reefs contain multiple facies transitions that are sometimes associated with sharp unconformities. Outcrops at East Rio Bueno contain a distinct change in coral taxonomy from an assemblage of in situ Montastraea spp., Siderastrea and Diploria sp. encrusted by coralline algae, next to a repeated succession of Porites furcata, Acropora cervicornis, coralline algae and Porites astreoides, to in situ P. furcata. This is overlain by a fining-upwards sequence of coral rubble, a laterally persistent layer of small in situ Siderastrea and a ~1-m thick caprock. Near Oracabessa, a unit dominated by Acropora palmata clearly transitions into in situ Montastraea spp., Siderastrea, Colpophyllia natans, and Diploria sp. overlain by A. cervicornis. An abrupt vertical displacement of the sequence, indicating faulting, was observed at Oracabessa. Along the south coast, transitions in coral assemblages were also noted upsection. Common facies observed include in situ A. palmata and/or rubble, with a trend of reduction in algal encrustation upsection, capped by head corals and a regressive beach unit. The structure and composition of reefs preserved in the Falmouth Formation provide detailed information about sea-level behavior during MIS 5e, that will be used to test the hypothesis that sub-orbital sea-level oscillations occurred during the MIS 5e highstand. Evidence of tectonic activity along portions of the northern

  2. Age of the crowfoot advance in the Canadian Rocky Mountains. A glacial event coeval with the Younger Dryas oscillation

    SciTech Connect

    Reasoner, M.A.; Rutter, N.W. ); Osborn, G. )

    1994-05-01

    A suite of sediment core samples was recovered from two lakes, Crowfoot and Bow lakes, that are adjacent to the Crowfoot moraine type locality, to identify and radiocarbon date sediments related to the Crowfoot advance. The Crowfoot moraine system, widely recognized throughout northwestern North America, represents a glacial advance that is post-Wisconsin and pre-Mazama tephra in age. An interval of inorganic sediments bracketed by accelerator mass spectrometry radiocarbon ages of ca. 11,330 and 10,100 [sup 14]C yr B.P. is associated with the Crowfoot moraine. The Crowfoot advance is therefore approximately synchronous with the European Younger Dryas cold event (ca. 11,000-10,000 [sup 14]C yr B.P.). Furthermore, the termination of the Crowfoot advance also appears to have been abrupt. These findings illustrate that the climatic change responsible for the European Younger Dryas event extended beyond the northern Atlantic basin and western Europe. Equilibrium-line altitude (ELA) depressions associated with the Crowfoot advance are similar to those determined for the Little Ice Age advance, whereas Younger Dryas ELA depressions in Europe significantly exceed Little Ice Age ELA depressions. 26 refs., 3 figs., 1 tab.

  3. The Thermal Evolution of the Western Equatorial Pacific During the Midde and Early Pleistocene

    NASA Astrophysics Data System (ADS)

    Medina, M. A.; Lea, D. W.; Spero, H. J.

    2004-12-01

    Magnesium/calcium data from planktonic foraminifera in the equatorial Pacific sediment cores suggested that tropical Pacific sea surface temperatures (SST's) were about 3 deg.C colder than modern conditions during glacial episodes of the last 500 thousand years (ky). We have extended the Western Equatorial Pacific (WEP) Globigerinoides ruber Mg/Ca and d18O records, from the Ontong Java Plateau, Ocean Drilling Program Hole 806B (0 19.11'N, 159 21.69'E, 2520m), back to 1.3 ma. For temperature conversion we used a G. ruber calibration based on core-tops from the tropical Pacific (Lea and Martin, 1996), which yields the following relationship: Mg/Ca(mmol/mol)= 0.30exp[0.089 X SST deg. C)]. Our SST record shows that the previously observed 3 deg C-colder SST's than modern conditions during glacial episodes are generally the rule for the entire 1.3 ma period. Glacial-interglacial temperature differences as great as 4 deg. C are observed, even in the Early Pleistocene (1-1.8 ma). Preliminary observations suggest the presence of ~40 Ky SST cycles during the Early Pleistocene, of similar amplitude to the dominant SST cycles seen in Late Pleistocene Tropical records. Early Pleistocene WEP SST's, as suggested by our record, oscillated between 26 and 30 deg. C. MIS 11 stands out as the most prominent feature of the WEP SST record. The potential bias on temperature estimates due to the influence of changes in lysocline depth (Farrell and Prell, 1989) and decrease preservation with depth (Lea et al., 2000) is ± 0.8 deg.C. Preliminary point to point comparison between the SST and the d18O records shows that Mg/Ca-based temperatures lead over d18O by about 3 ky as previously determined by Lea et al. (2000).

  4. Luminescence Chronology for the Formation of Glacial Lake Calgary, Southern Alberta, Canada: Age Constraints for the Initiation of the Late Pleistocene Retreat of the Laurentide Ice Sheet from its Western Margin

    NASA Astrophysics Data System (ADS)

    Munyikwa, K.; Rittenour, T. M.

    2014-12-01

    Glacial Lake Calgary in southern Alberta, Canada, was a Late Pleistocene proglacial lake that formed along the southwest margin of the Laurentide Ice Sheet (LIS), dammed by the retreating ice sheet margin. Attempts to constrain the age of the lake using radiocarbon methods have been hampered by the lack of datable organic material. In an effort to apply an alternative chronometer, this study uses two optically stimulated luminescence (OSL) dating approaches to date fine grained sand and silt that were deposited in the lake during its existence. OSL dating determines the depositional ages of sediments by measuring the energy from ionizing radiation that is stored in mineral grains such as quartz and feldspar. Dividing the stored energy, also referred to as the paleodose, by the rate at which the dose accumulated, allows an age to be ascertained. In one method applied in this study, the paleodose stored in the feldspar component of the sediment is determined using normalized infrared stimulated luminescence signals acquired using a portable OSL reader. In the second method, blue optically stimulated luminescence signals obtained from quartz separates from the sediment by employing a regular OSL reader and standard protocols are used to determine the paleodose. After correcting the feldspar data for anomalous fading, the age results from the two dating approaches are compared. The ages signify a time period by which the LIS had retreated from the study area and, hence, serve as constraints for the initiation of the retreat of the ice sheet from its western limit. Advantages and limitations of the dating methods are briefly discussed. Constraining the chronology of the retreat of the LIS from western Canada allows for a better understanding of the driving forces behind ice sheet retreat. Secondly, assigning a temporal scale to the postglacial evolution of the environment of the region permits a better insight into the dynamics of the physical and biological

  5. Phylogeography of the Alcippe morrisonia (Aves: Timaliidae): long population history beyond late Pleistocene glaciations

    PubMed Central

    Song, Gang; Qu, Yanhua; Yin, Zuohua; Li, Shouhsien; Liu, Naifa; Lei, Fumin

    2009-01-01

    Background The role of Pleistocene glacial oscillations in current biodiversity and distribution patterns varies with latitude, physical topology and population life history and has long been a topic of discussion. However, there had been little phylogeographical research in south China, where the geophysical complexity is associated with great biodiversity. A bird endemic in Southeast Asia, the Grey-cheeked Fulvetta, Alcippe morrisonia, has been reported to show deep genetic divergences among its seven subspecies. In the present study, we investigated the phylogeography of A. morrisonia to explore its population structure and evolutionary history, in order to gain insight into the effect of geological events on the speciation and diversity of birds endemic in south China. Results Mitochondrial genes cytochrome b (Cytb) and cytochrome c oxidase I (COI) were represented by 1236 nucleotide sites from 151 individuals from 29 localities. Phylogenetic analysis showed seven monophyletic clades congruent with the geographically separated groups, which were identified as major sources of molecular variance (90.92%) by AMOVA. TCS analysis revealed four disconnected networks, and that no haplotype was shared among the geographical groups. The common ancestor of these populations was dated to 11.6 Mya and several divergence events were estimated along the population evolutionary history. Isolation by distance was inferred by NCPA to be responsible for the current intra-population genetic pattern and gene flow among geographical groups was interrupted. A late Pleistocene demographic expansion was detected in the eastern geographical groups, while the expansion time (0.2–0.4 Mya) was earlier than the Last Glacial Maximum. Conclusion It is proposed that the complicated topology preserves high genetic diversity and ancient lineages for geographical groups of A. morrisonia in China mainland and its two major islands, and restricts gene exchange during climate oscillations

  6. Arctic ocean sediment texture and the Pleistocene climate cycle

    SciTech Connect

    Clark, D.L.; Morris, T.H.

    1985-01-01

    Arctic Ocean sediment texture accurately reflects the Plio-Pleistocene climate cycle. The precision of paleoclimate interpretation is improved when deglaciation is recognized as a distinct climate stage, overlapping both glacial and interglacial stages, and for the later Pleistocene, perhaps never completed. Oxygen isotope stratigraphy and foraminifera productivity are out of phase but can be understood in the context of the transitional nature of the glacial, deglacial and interglacial climate stages of the Arctic Ocean.

  7. Large Glacitectonic structures on the Dogger Bank, southern North Sea; Implications for glacial dynamics, glacial limits, and interplay between the British and Fennoscandinavian Ice Sheets

    NASA Astrophysics Data System (ADS)

    Dove, Dayton; Cotterill, Carol; Long, Dave; Ruiter, Astrid; Phillips, Emrys; James, Leo; Forsberg, Carl Fredrik

    2013-04-01

    Recently acquired 2D seismic data (sparker) acquired over the Dogger Bank (DB) reveal large glacitectonic structures associated with late-Pleistocene glacial incursion into the southern North Sea. The densely populated survey data (100m line spacing) collected for the purposes of offshore windfarm development on the DB, allow for pseudo-3D interpretation. The sparker data show discrete thrust faults extending from within ~5 m of the seabed to ~200 m depth, and consistently terminate at one of two décollement surfaces. Preliminary mapping and amplitude extraction maps reveal the thrusts to occur in a series of thrust blocks (5-8 faults), with each set encompassing an area of approximately 6 km along-strike and 2 km at right angles. The overall zone of thrusting is up to 16 x 6 km on the western edge of the DB. The strike of the faults indicates ice-flow from the west. Other deformation structures include: open, recumbent, and fault propagation folds, as well as back thrusts, and pop-up structures. The relief of the DB (dimensions) is entirely accounted for by what has historically been termed the 'DB Formation'. These new data reveal that this seismostratigraphic unit likely consists of deposits from a variety of glacially influenced depositional regimes. The observed thrusts penetrate through the 'DB formation', indicating this phase of intense deformation post-dated the initial construction of the bank. Less pronounced glacial deformation affects much of the rest of the DB, and the products of this deformation (push-moraine complexes?) were possibly integral to the construction of the bank itself. While the style and fabric (NS?) of this deformation is less clear, it is likely there were multiple incursions of glacial ice, from different directions (and sources?), into this area where late-Pleistocene glaciation limits are poorly understood. Several mechanisms for forming such glacitectonic features have been proposed, and the thrust blocks here may have been

  8. Obliquity-driven expansion of North Atlantic sea ice during the last glacial

    NASA Astrophysics Data System (ADS)

    Turney, Chris S. M.; Thomas, Zoë A.; Hutchinson, David K.; Bradshaw, Corey J. A.; Brook, Barry W.; England, Matthew H.; Fogwill, Christopher J.; Jones, Richard T.; Palmer, Jonathan; Hughen, Konrad A.; Cooper, Alan

    2015-12-01

    North Atlantic late Pleistocene climate (60,000 to 11,650 years ago) was characterized by abrupt and extreme millennial duration oscillations known as Dansgaard-Oeschger (D-O) events. However, during the Last Glacial Maximum (LGM) 23,000 to 19,000 cal years ago (23 to 19 ka), no D-O events are observed in the Greenland ice cores. Our new analysis of the Greenland δ18O record reveals a switch in the stability of the climate system around 30 ka, suggesting that a critical threshold was passed. Climate system modeling suggests that low axial obliquity at this time caused vastly expanded sea ice in the Labrador Sea, shifting Northern Hemisphere westerly winds south and reducing the strength of meridional overturning circulation. The results suggest that these feedbacks tipped the climate system into full glacial conditions, leading to maximum continental ice growth during the LGM.

  9. What Drives Mediterranean Outflow Water Variability during the Mid-Pleistocene Transition and Early Pleistocene at IODP Site U1387 in the Gulf of Cadiz?

    NASA Astrophysics Data System (ADS)

    Voelker, A. H. L.; Jimenez-Espejo, F. J.; Bahr, A.; Acton, G.; Alberto, A.; Rebotim, A.; Salgueiro, E.; Roehl, U.

    2014-12-01

    The Mediterranean Outflow Water (MOW) forms extensive contourite drift deposits along the Iberian margin, especially in the Gulf of Cadiz, and injects heat and salt into the intermediate depths of the North Atlantic. The sediments recovered during IODP Expedition 339 allow studying MOW's history throughout the Pleistocene and Pliocene and thus under varying climate forcing. Here we present centennial-to-millennial scale proxy records for surface water and MOW variations as recorded at IODP Site U1387, drilled into the Faro Drift, which is formed by the upper MOW core. We focus our study on the early to middle Pleistocene with special attention on the Mid-Pleistocene Transition (MPT) when the dominant climate cyclicity changed from 41 kyr to 100 kyr. Surface water and MOW proxy records show millennial-scale stadial/ interstadial oscillations on top of the glacial/ interglacial cycles. Planktonic and benthic δ18O records are tightly coupled highlighting the constant exchange between the (sub)surface waters and the MOW. Low benthic δ13C values during deglacial and peak interglacial periods, coinciding with insolation maxima, reveal a poorly ventilated upper MOW core and a causal link between MOW ventilation and sapropel formation in the Mediterranean Sea. Better ventilation was recorded during glacial and stadial intervals, often in association with the formation of contourites. During the warmer MIS contourites, often more pronounced than their glacial counterparts, were formed during the stadial(s) following the peak interglacial period when northern hemisphere summer insolation was low. Thus, changes in the upper MOW core are tightly coupled to summer insolation with poor ventilation occurring during insolation maxima and higher current velocity marking insolation minima. This insolation forcing reveals a close link between MOW and Mediterranean Sea climate conditions.

  10. Evolution of salt diapir and karst morphology during the last glacial cycle: Effects of sea-level oscillation, diapir and regional uplift, and erosion (Persian Gulf, Iran)

    NASA Astrophysics Data System (ADS)

    Bruthans, Jiří; Filippi, Michal; Zare, Mohammad; Churáčková, Zdenka; Asadi, Naser; Fuchs, Markus; Adamovič, Jiří

    2010-09-01

    Marine, fluvial and cave sediments, and karst phenomena were studied and dated by 14C, U-series, and OSL methods to determine the evolution of the Namakdan diapir and the world's longest salt cave (3N Cave) during the Holocene and the Last Glacial. Sea-level oscillations, the uplift rate of the diapir and its surroundings, and erosion are the main factors influencing the diapir morphology. Although the diapir uplift rate has been constant for the last 50 kyr (˜ 4 mm/yr at a distance 600 m from the diapir edge), the uplift rate decreases with the distance from the diapir center. Drag-induced host rock deformation extends for ˜ 300 m from the outside edge of the diapir, and host rocks in this zone have an uplift rate of 0.4-0.6 mm/yr, which is 2-3 times greater than the regional uplift rate. Based on known sea-level oscillations, radiometric dating, and geological evidence, the Namakdan diapir was repeatedly flooded by sea water between 130 and 80 kyr BP. Submarine residuum composed mainly of gypsum and dolomite formed cap rock on the diapir. After ˜ 80 kyr BP, surficial drainage network and karst development started. Blind valleys and their corresponding cave systems evolved continuously for ˜ 20-30 kyr. Between 9 and 6 cal kyr BP the rate of sea-level rise exceeded the Namakdan diapir uplift rate by the factor of 3. As a consequence upward incision of cave streams (paragenetic trend) occurred, and blind valleys near the seashore were filled with gravels. Cave passages now accessible on the Namakdan and Hormoz diapirs started to form 3-6 cal kyr BP when sea level stabilized and downward stream incision began. Older cave levels are still preserved but are filled with sediments and salt precipitates. A comparison of the Namakdan diapir evolution with data from the Hormoz and Larak diapirs shows that the evolution of diapir morphology is strongly affected by the differences in uplift rates and geological settings. The general scheme of the evolution of the Namakdan

  11. Guatemalan forest synthesis after Pleistocene aridity

    PubMed Central

    Leyden, Barbara W.

    1984-01-01

    Sediments from two lakes in the Peten Department, Guatemala, provide palynological evidence from Central America of late Pleistocene aridity and subsequent synthesis of mesic forests. Late Glacial vegetation consisted of marsh, savanna, and juniper scrub. An early Holocene temperate forest preceded a mesic tropical forest with Brosimum (ramon). Thus “primeval” rain forests of Guatemala are no older than 10,000 to 11,000 years and are considerably younger in the Peten due to Mayan disturbances. Among dated Neotropical sites, the Peten has the most mesic vegetation yet shown to have supplanted xeric vegetation present during the Pleistocene. The arid late Glacial-humid early Holocene transition appears to have been pantropical in the lowlands. The Peten was not a Pleistocene refugium for mesophytic taxa, as has been suggested. Thus genesis of extant rain forests in northern Central America and southern Mexico remains unexplained. Images PMID:16593498

  12. Miocene and Pliocene dominated diversification of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota) and Pleistocene population expansions

    PubMed Central

    2012-01-01

    Background Factors promoting diversification in lichen symbioses remain largely unexplored. While Pleistocene events have been important for driving diversification and affecting distributions in many groups, recent estimates suggest that major radiations within some genera in the largest clade of macrolichens (Parmeliaceae, Ascomycota) vastly predate the Pleistocene. To better understand the temporal placement and sequence of diversification events in lichens, we estimated divergence times in a common lichen-forming fungal genus, Melanohalea, in the Northern Hemisphere. Divergence times were estimated using both concatenated gene tree and coalescent-based multilocus species tree approaches to assess the temporal context of major radiation events within Melanohalea. In order to complement our understanding of processes impacting genetic differentiation, we also evaluated the effects of Pleistocene glacial cycles on population demographics of distinct Melanohalea lineages, differing in reproductive strategies. Results We found that divergence estimates, from both concatenated gene tree and coalescent-based multilocus species tree approaches, suggest that diversification within Melanohalea occurred predominantly during the Miocene and Pliocene, although estimated of divergence times differed by up to 8.3 million years between the two methods. These results indicate that, in some cases, taxonomically diagnostic characters may be maintained among divergent lineages for millions of years. In other cases, similar phenotypic characters among non-sister taxa, including reproductive strategies, suggest the potential for convergent evolution due to similar selective pressures among distinct lineages. Our analyses provide evidence of population expansions predating the last glacial maximum in the sampled lineages. These results suggest that Pleistocene glaciations were not inherently unfavorable or restrictive for some Melanohalea species, albeit with apparently different

  13. Investigating the effects of Pleistocene events on genetic divergence within Richardsonius balteatus, a widely distributed western North American minnow

    PubMed Central

    2014-01-01

    Background Biogeographers seek to understand the influences of global climate shifts and geologic changes to the landscape on the ecology and evolution of organisms. Across both longer and shorter timeframes, the western North American landscape has experienced dynamic transformations related to various geologic processes and climatic oscillations, including events as recently as the Last Glacial Maximum (LGM; ~20 Ka) that have impacted the evolution of the North American biota. Redside shiner is a cyprinid species that is widely distributed throughout western North America. The species’ native range includes several well-documented Pleistocene refugia. Here we use mitochondrial DNA sequence data to assess phylogeography, and to test two biogeographic hypotheses regarding post-glacial colonization by redside shiner: 1) Redside shiner entered the Bonneville Basin at the time of the Bonneville Flood (Late Pleistocene; 14.5 Ka), and 2) redside shiner colonized British Columbia post-glacially from a single refugium in the Upper Columbia River drainage. Results Genetic diversification in redside shiner began in the mid to late Pleistocene, but was not associated with LGM. Different clades of redside shiner were distributed in multiple glacial age refugia, and each clade retains a signature of population expansion, with clades having secondary contact in some areas. Conclusions Divergence times between redside shiner populations in the Bonneville Basin and the Upper Snake/Columbia River drainage precedes the Bonneville Flood, thus it is unlikely that redside shiner invaded the Bonneville Basin during this flooding event. All but one British Columbia population of redside shiner are associated with the Upper Columbia River drainage with the lone exception being a population near the coast, suggesting that the province as a whole was colonized from multiple refugia, but the inland British Columbia redside shiner populations are affiliated with a refugium in the Upper

  14. Inherent characteristics of sawtooth cycles can explain different glacial periodicities

    NASA Astrophysics Data System (ADS)

    Omta, Anne Willem; Kooi, Bob W.; van Voorn, George A. K.; Rickaby, Rosalind E. M.; Follows, Michael J.

    2016-01-01

    At the Mid-Pleistocene Transition about 1 Ma, the dominant periodicity of the glacial-interglacial cycles shifted from 40 to 100 kyr. Here, we use a previously developed mathematical model to investigate the possible dynamical origin of these different periodicities. The model has two variables, one of which exhibits sawtooth oscillations, resembling the glacial-interglacial cycles, whereas the other variable exhibits spikes at the rapid transitions. When applying a sinusoidal forcing with a fixed period, there emerges a rich variety of cycles with different periodicities, each being a multiple of the forcing period. Furthermore, the dominant periodicity of the system can change, while the forcing periodicity remains fixed, due to either random variations or different frequency components of the orbital forcing. Two key relationships stand out as predictions to be tested against observations: (1) the amplitude and the periodicity of the cycles are approximately linearly proportional to each other, a relationship that is also found in the δ ^{18}O temperature proxy. (2) The magnitude of the spikes increases with increasing periodicity and amplitude of the sawtooth. This prediction could be used to identify one or more currently hidden spiking variables driving the glacial-interglacial transitions. Essentially, the quest would be for any proxy record, concurrent with a dynamical model prediction, that exhibits deglacial spikes which increase at times when the amplitude/periodicity of the glacial cycles increases. In the specific context of our calcifier-alkalinity mechanism, the records of interest would be calcifier productivity and calcite accumulation. We believe that such a falsifiable hypothesis should provide a strong motivation for the collection of further records.

  15. Persistence across Pleistocene ice ages in Mediterranean and extra-Mediterranean refugia: phylogeographic insights from the common wall lizard

    PubMed Central

    2013-01-01

    Background Pleistocene climatic oscillations have played a major role in structuring present-day biodiversity. The southern Mediterranean peninsulas have long been recognized as major glacial refugia, from where Northern Europe was post-glacially colonized. However, recent studies have unravelled numerous additional refugia also in northern regions. We investigated the phylogeographic pattern of the widespread Western Palaearctic lizard Podarcis muralis, using a range-wide multilocus approach, to evaluate whether it is concordant with a recent expansion from southern glacial refugia or alternatively from a combination of Mediterranean and northern refugia. Results We analyzed DNA sequences of two mitochondrial (cytb and nd4) and three nuclear (acm4, mc1r, and pdc) gene fragments in individuals from 52 localities across the species range, using phylogenetic and phylogeographic methods. The complex phylogeographic pattern observed, with 23 reciprocally monophyletic allo- parapatric lineages having a Pleistocene divergence, suggests a scenario of long-term isolation in multiple ice-age refugia across the species distribution range. Multiple lineages were identified within the three Mediterranean peninsulas – Iberia, Italy and the Balkans - where the highest genetic diversity was observed. Such an unprecedented phylogeographic pattern - here called “refugia within all refugia” – compasses the classical scenario of multiple southern refugia. However, unlike the southern refugia model, various distinct lineages were also found in northern regions, suggesting that additional refugia in France, Northern Italy, Eastern Alps and Central Balkans allowed the long-term persistence of this species throughout Pleistocene glaciations. Conclusions The phylogeography of Podarcis muralis provides a paradigm of temperate species survival in Mediterranean and extra-Mediterranean glacial refugia. Such refugia acted as independent biogeographic compartments for the long

  16. Lineage-specific late pleistocene expansion of an endemic subtropical gossamer-wing damselfly, Euphaea formosa, in Taiwan

    PubMed Central

    2011-01-01

    Background Pleistocene glacial oscillations have significantly affected the historical population dynamics of temperate taxa. However, the general effects of recent climatic changes on the evolutionary history and genetic structure of extant subtropical species remain poorly understood. In the present study, phylogeographic and historical demographic analyses based on mitochondrial and nuclear DNA sequences were used. The aim was to investigate whether Pleistocene climatic cycles, paleo-drainages or mountain vicariance of Taiwan shaped the evolutionary diversification of a subtropical gossamer-wing damselfly, Euphaea formosa. Results E. formosa populations originated in the middle Pleistocene period (0.3 Mya) and consisted of two evolutionarily independent lineages. It is likely that they derived from the Pleistocene paleo-drainages of northern and southern Minjiang, or alternatively by divergence within Taiwan. The ancestral North-central lineage colonized northwestern Taiwan first and maintained a slowly growing population throughout much of the early to middle Pleistocene period. The ancestral widespread lineage reached central-southern Taiwan and experienced a spatial and demographic expansion into eastern Taiwan. This expansion began approximately 30,000 years ago in the Holocene interglacial period. The ancestral southern expansion into eastern Taiwan indicates that the central mountain range (CMR) formed a barrier to east-west expansion. However, E. formosa populations in the three major biogeographic regions (East, South, and North-Central) exhibit no significant genetic partitions, suggesting that river drainages and mountains did not form strong geographical barriers against gene flow among extant populations. Conclusions The present study implies that the antiquity of E. formosa's colonization is associated with its high dispersal ability and larval tolerance to the late Pleistocene dry grasslands. The effect of late Pleistocene climatic changes on the

  17. Modeling past abrupt climate changes: driven oscillators and synchronization phenomena in Paleoclimate theory

    NASA Astrophysics Data System (ADS)

    Marchionne, Arianna

    2014-05-01

    According to Milankovitch theory of ice ages, summer insolation at high northern latitudes drives the glacial cycles, i.e. the growth and reduction of Northern Hemisphere ice sheets, and there is evidence that astronomical forcing controls indeed the timing of Pleistocene glacial-interglacial cycles. However, the δ18Otime series (the δ18O is a proxy for global ice volume) available for the last few million years reveal a non-linear response of the climate to the external forcing: transitions from the glacial to the interglacial states occur more rapidly than the transitions from the interglacials to the glacials, resulting in the so-called saw-tooth shape of the signal. These terminations were very abrupt compared to the smooth changes in insolation. Moreover, insolation alone cannot explain the Mid-Pleistocene transition. During this event, occurred about one million years ago, the dominant 41 kyr glacial cycles, were replaced by longer saw-tooth shaped cycles with a time scale around 100 kyr. The asymmetry in the oscillations indicates a non-linear response to the orbital forcing, expressed through a bifurcation, or tipping point. As an introduction to the problem, we studied simple driven oscillators that can exhibit asymmetric oscillations between the glacial and interglacial states under the effect of the astronomical forcing, such as the Van der Pool and the Duffing oscillators. In order to understand how these simple low-dimensional models enter theories of ice ages and rapid events, we studied synchronization phenomena between simple driven oscillators and astronomical forcing, focusing on distinguishing between the so-called resonance scenario and the so-called phase locking scenario. We next examined the possible mechanisms for the Mid-Pleistocene transition. Here we show that the transition could be explained as a result of frequency-locking to the external forcing. This change can be interpreted as a result of an internal change in climate response

  18. African climate change and faunal evolution during the Pliocene-Pleistocene

    NASA Astrophysics Data System (ADS)

    deMenocal, Peter B.

    2004-03-01

    Environmental theories of African faunal evolution state that important evolutionary changes during the Pliocene-Pleistocene interval (the last ca. 5.3 million years) were mediated by changes in African climate or shifts in climate variability. Marine sediment sequences demonstrate that subtropical African climate periodically oscillated between markedly wetter and drier conditions, paced by earth orbital variations, with evidence for step-like (±0.2 Ma) increases in African climate variability and aridity near 2.8 Ma, 1.7 Ma, and 1.0 Ma, coincident with the onset and intensification of high-latitude glacial cycles. Analysis of the best dated and most complete African mammal fossil databases indicates African faunal assemblage and, perhaps, speciation changes during the Pliocene-Pleistocene, suggesting more varied and open habitats at 2.9-2.4 Ma and after 1.8 Ma. These intervals correspond to key junctures in early hominid evolution, including the emergence of our genus Homo. Pliocene-Pleistocene shifts in African climate, vegetation, and faunal assemblages thus appear to be roughly contemporary, although detailed comparisons are hampered by sampling gaps, dating uncertainties, and preservational biases in the fossil record. Further study of possible relations between African faunal and climatic change will benefit from the accelerating pace of important new fossil discoveries, emerging molecular biomarker methods for reconstructing African paleovegetation changes, tephra correlations between terrestrial and marine sequences, as well as continuing collaborations between the paleoclimatic and paleoanthropological communities.

  19. The Mid-Pleistocene Transition In The Tropical Pacific

    NASA Astrophysics Data System (ADS)

    Medina-Elizalde, M. A.; Lea, D. W.

    2005-12-01

    During the mid-Pleistocene transition (MPT) at ~950 kyr B.P., the climate of the Earth underwent profound changes. As suggested by foraminiferal oxygen isotopic records, high latitude climate switched from 41,000 years (kyr) to ~100 kyr dominant cycles at this time. A number of hypotheses have been proposed to explain the MPT which involve high latitude northern hemisphere processes. Recent paleoclimate reconstructions, however, indicate that the tropics also experienced climate changes resembling those at high latitude but also with their own unique patterns, which cannot be fully explained by current hypotheses. A sea surface temperature (SST) record based on planktonic foraminiferal Mg/Ca from the western equatorial Pacific (WEP) warm pool ODP Hole 806B reveals that glacial-interglacial (G-I) oscillations in SST also shifted from a period of 41 kyr to 100 kyr during the MPT. This observation is in agreement with the SST records from core MD97-2140, a site to the northwest of Hole 806B, and from ODP Hole 846 in the eastern equatorial Pacific cold tongue, which also show a shift in the dominant periodicity. Hole 806B SST average (27.8°C) and range (3°C) remained the same over the MPT with typical glacial and interglacial SSTs of 26°C and 29°C, respectively. Hole 806B SST lead foraminiferal d18O by 4± 3 kyr over the MPT in agreement with paired records from core MD97-2140 and Hole 846. SST cycles across the MPT have similar magnitude and are synchronous in both the western and the eastern equatorial Pacific but preceded changes in continental ice volume. Today, eastern equatorial Pacific SSTs are strongly influenced by wind-driven thermocline depth changes. In contrast, in the WEP, where the thermocline is very deep, SSTs are less likely to be affected by thermocline depth changes. The nature of tropical SST variability over the mid-Pleistocene transition is remarkably similar to late Pleistocene climate observations and implicates atmospheric greenhouse

  20. Human environment and climate during the Middle Pleistocene in southern Italy (Boiano basin, Molise)

    NASA Astrophysics Data System (ADS)

    Orain, R.; Lebreton, V.; Russo Ermolli, E.; Sémah, A.-M.; Nomade, S.; Shao, Q.; Bahain, J.-J.; Peretto, C.

    2012-04-01

    Palaeobotanical investigations undertaken on early prehistoric sites of Western Europe, as Pont-de-Lavaud (France, ca 1.2 - 1 Ma) and Ca' Belvedere di Monte Poggiolo (Italy, ca 1.2 - 0.8 Ma), indicate that hominins have settled in different types of environments. During the "Mid-Pleistocene Transition (MPT)", at about 1 to 0.6 Ma, the transition from 41-ka to 100-ka dominant climatic oscillations occurring within a long-term cooling trend is associated with an aridity crisis and strongly modified the structure of environments. Since the MPT, the specific climate and environment evolution of the southern Italy provided propitious conditions for a long-term human occupation even during glacial times and the density of prehistoric sites could probably be explained by the amount of sustainable environments. The human strategy of occupation of a territory probably was motivated by availabilities of resources for subsistence in the local ecosystems. Sites such as La Pineta (ca 600 ka), Notarchirico (ca 600 ka), San Nicola di Monteroduni (ca 400 ka) or Ceprano (ca 350 ka) testify to the preferential occupation of the valleys of the central and southern Apennines during this period. In this area, the Boiano basin (Molise, Italy) recorded a lacustrine and fluvio-palustrine sedimentation, with basal deposits older than 440 ka deduced from tephrochronology. Pollen analyse of the Boiano sequence aims to describe the evolution of vegetation and climates between OIS 13 and 9, at regional and micro-regional scales. The characteristics of the Boiano basin are enlightened within the progressive reduction of the deciduous forest diversity along the Middle Pleistocene. The main palaeoecological information consists of an important persistence of edaphic humidity during the glacial phases. The peculiar conditions recorded in the region could have constituted a refuge for arboreal flora during the Middle Pleistocene and provided subsistence resources to the animal and human communities.

  1. Pleistocene Speciation in the Genus Populus (Salicaceae)

    PubMed Central

    Levsen, Nicholas D.; Tiffin, Peter; Olson, Matthew S.

    2012-01-01

    The macroevolutionary consequences of recent climate change remain controversial, and there is little paleobotanical or morphological evidence that Pleistocene (1.8–0.12 Ma) glacial cycles acted as drivers of speciation, especially among lineages with long generation times, such as trees. We combined genetic and ecogeographic data from 2 closely related North American tree species, Populus balsamifera and P. trichocarpa (Salicacaeae), to determine if their divergence coincided with and was possibly caused by Pleistocene climatic events. We analyzed 32 nuclear loci from individuals of P. balsamifera and P. trichocarpa to produce coalescent-based estimates of the divergence time between the 2 species. We coupled the coalescent analyses with paleodistribution models to assess the influence of climate change on species' range. Furthermore, measures of niche overlap were used to investigate patterns of ecological differentiation between species. We estimated the divergence date of P. balsamifera and P. trichocarpa at approximately 75 Ka, which corresponds closely with the onset of Marine Isotope Stage 4 (∼76 Ka) and a rapid increase in global ice volume. Significance tests of niche overlap, in conjunction with genetic estimates of migration, suggested that speciation occurred in allopatry, possibly resulting from the environmental effects of Pleistocene glacial cycles. Our results indicate that the divergence of keystone tree species, which have shaped community diversity in northern North American ecosystems, was recent and may have been a consequence of Pleistocene-era glaciation and climate change. PMID:22213709

  2. Early to Mid-Pleistocene Variability at IODP Site U1387 (Faro Drift): Surface and Mediterranean Outflow Water Responses

    NASA Astrophysics Data System (ADS)

    Voelker, A. H.; Jimenez, F. J.; Bahr, A.

    2013-12-01

    During the mid-Pleistocene transition (MPT; 500-1250 ka) the dominant pacing of glacial/ interglacial cycles changed from the 41 ky obliquity to the 100 ky eccentricity cycle. Superimposed on the orbital-scale changes are millennial-scale climate instabilities that in the mid-latitude Atlantic are related to insolation. In the Mediterranean Sea, on the other hand, sapropel layers were formed during insolation maxima and the associated circulation changes in the basin also affected the water exiting through the Strait of Gibraltar and forming the Mediterranean Outflow Water (MOW). MOW's hydrographic history is unknown prior to 100 ka but this is changing now with the complete sequences of Plio-/Pleistocene contourite deposits recovered by IODP Exp. 339 in the Gulf of Cádiz. Hydrographic changes during Marine Isotope Stages 16 to 32 (630-1100 ka) are being reconstructed at IODP Site U1387 (36.8°N; 7.7°W; 559 m). Variations in the Atlantic-sourced surface waters are revealed by G. bulloides stable isotope data and carbonate and organic carbon concentrations. Upper MOW core history is extracted from benthic stable isotope records, the weight percent of the sand fraction, and XRF data. Besides the glacial/ interglacial cycles both surface water and MOW records show millennial-scale stadial/ interstadial oscillations, in particular during the interglacials. Planktonic and benthic oxygen isotope records are strongly correlated on the orbital but not the millennial-scale level indicating that during the latter the subsurface North Atlantic Central Water played an important role in modifying the MOW signal. Ventilation in the MOW level varied significantly with better ventilation occurring during glacial and stadial intervals and periods of contouritic layer formation. The new records indicate that MOW was sensitive to abrupt climate instabilities during the MPT and, like during the last glacial cycle, provided an important component to the stability of the Atlantic

  3. Onset of major Pleistocene glaciations in the Alps

    NASA Astrophysics Data System (ADS)

    Muttoni, G.; Carcano, C.; Garzanti, E.; Ghielmi, M.; Piccin, A.; Pini, R.; Rogledi, S.; Sciunnach, D.

    2003-04-01

    Since alligators patrolled Greenland swamps in the Eocene, the Earth's climate underwent significant cooling, which culminated in the Pleistocene Ice Age with recurring glaciations in vast regions of the Alps, Eurasia and North America, and overgrowth of polar icecaps in Antarctica and Greenland. During main Pleistocene glacial penetrations, the Alpine icecap invaded the low gradients of the Central Europe uplands and Italian Po plain. Peri-glacial sedimentary basins such as the Po Basin are natural collectors of past biological and climatic changes involving the waxing and waning of major icecaps. We have found in a 200m-thick core from the central Po plain near Milan stratigraphic evidence for a major glacial pulsation of the nearby Alpine icecap, which occurred in correspondence of a seismically traceable unconformity of regional relevance, termed the "Red Unconformity" (RU) in Eni/Agip terminology. The RU is associated with a major reorganization of vegetation cover and Alpine drainage pattern. The age of the RU was constrained magnetostratigraphically to the the first major Pleistocene glacio-eustatic low-stand at 0.87Ma (Oxygen Isotope Stage 22). This corresponds to the end of the "Mid Pleistocene Revolution" (MPR), a marked reorganization of northern hemisphere glaciation pattern which took place in the late Early Pleistocene. We suggest that the MPR/MIS 22 was associated with the onset of the first major Pleistocene glaciation in the Alps. Noticing the similarity in number of major Pleistocene glacieustatic low-stands starting with MIS 22, and the four-fold Alpine glacial subdivision of Penck and Brückner (1909), we conclude that "Penck and Brückner in 1909 may not have been, after all, that wrong" (Kukla and Cilek, 1996).

  4. Pliocene-Pleistocene Surface and Intermediate Water Hydrography of the South Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Elmore, A.; McClymont, E.; Elderfield, H.; Kender, S.

    2014-12-01

    The reconstruction of past sea surface (SST) and intermediate water temperatures (IWT) is critical for understanding feedbacks within the ocean-climate system. Pliocene Southern Ocean dynamics are largely ambiguous, especially at intermediate water depths. However, the intermediate water reconstructions are particularly important since intermediate waters, including Antarctic Intermediate Water (AAIW), may be an important driver in high-low latitude teleconnections. Herein, we present the first Pliocene SST and IWT records from a sediment core in the Southwest Pacific (DSDP 593; 1068m water depth), in the core of modern AAIW. Benthic paleotemperature proxies have caveats, including the 'Carbonate Ion Effect' on the magnesium to calcium ratio (Mg/Ca) of benthic foraminifera. However, recent studies demonstrated that the infaunal species, Uvigerina peregrina, is carbonate ion independent, affording the use of Mg/CaU.peregrina as a paleotemperature proxy (Elderfield et al., 2010). Our results suggest that Southern Ocean IWT was warmer during the Pliocene than during the Mid- to Late-Pleistocene. The range of IWT values during the Pliocene is nearly as large as the glacial-interglacial-scale IWT changes during the Pleistocene, despite smaller ice volume oscillations suggested by benthic δ18O time series (Lisiecki & Raymo, 2005). Alkenone-derived UK37' data show Pliocene SSTs are also, on average, warmer than those estimated for the Mid- to Late-Pleistocene. Orbital-scale SST changes are evident through the Pliocene, although the range is smaller than during the late Pleistocene. Our data are consistent with modeled SST and IWT reconstructions by Dowsett et al. (2009), but raise questions about the stability or dynamism of Pliocene climate relative to the modern. References:Dowsett et al. (2009) www.clim-past.net/5/769/2009. Elderfield et al. (2010) doi:10.1594/PANGAEA.817473. Lisiecki & Raymo (2005) doi:10.1029/2004PA001071.

  5. The role of stochastic noise in the abrupt climatic transitions of the pleistocene

    SciTech Connect

    Matteucci, G.

    1991-01-01

    Analyses of marine [delta][sup 18]O records suggest that the variations of the Earth's orbital parameters have induced and provided the timing of the Pleistocene climatic oscillations. This dissertation analyses some statistical properties of the Pleistocene climate by estimating the Probability Density Function (PDF) of the [delta][sup 18]O record. The results allow to define statistically what were the [open quotes]typical conditions[close quotes] (in a probabilistic sense) of the Quaternary, to identify the modes of the PDF as the mean glacial and interglacial climatic states, and to clarify the meaning and the abruptness of the climatic transitions. A zero-dimensional Energy Balance Model is developed. The nonlinearity of the ice albedo-temperature feedback leads to multiple steady-state equilibria. The role of stochastic perturbations and their interaction with the orbital forcing in producing the periodic and abrupt climatic transitions of the late Pleistocene are illustrated. A stochastic sensitivity analysis is used to clarify the results, especially the selective amplification of the orbitally-induced 100 kyr cycle, and the predictability of the system on the time scales of the orbital cycles. From the analysis of GCM simulations and observational zonally- averaged data a one-dimensional EBM is then developed. The strong nonlinearity of this model and the occurrence of multiple equilibria is caused by the presence of the Thin Ice Cap Instability. A discussion of the features that stochastic perturbations would introduce, follows. Finally a GCM sensitivity study to atmospheric CO[sub 2] shows how the effects of varying CO[sub 2] concentrations can be included in simple EBMs. The role that stochastic perturbations, orbital forcing, and the known past concentrations of atmospheric CO[sub 2] have played in producing the abrupt climatic transitions of the late Pleistocene is discussed.

  6. The Role of Glacial Erosion in Limiting Ice Sheet Extents

    NASA Astrophysics Data System (ADS)

    Jamieson, S.; Hulton, N.

    2007-12-01

    We aim to identify and quantify feedbacks between ice dynamics and glacial erosion. Whilst geological and geomorphological evidence indicates that ice sheets generally oscillate in time with orbital forcing, their extents are not necessarily a direct function of the amplitude of this forcing. Benthic δ18O records document glacial-interglacial fluctuations and indicate that maximum Pleistocene global ice volume occurs around 400 ka. However, geomorphological evidence in a number of regions is contradictory, with the most extensive ice masses often occurring 100's of kyrs prior to peaks in the δ18O record. For example, the glacial landforms of Patagonia preserve a record of just such behaviour with each successive glacial advance since 1.15 Ma covering an area less extensive than the previous expansion. This implies that other processes are modifying the linkages between ice sheets and climate. We ask: Could glacial erosion of bedrock have caused ice sheets to self-regulate their extents? Ground-breaking experiments by Oerlemans (1984) demonstrated that erosion induced margin retreat was indeed possible. He showed that retreat could be achieved but only where eroding ice streams were smaller in width than the wavelength of lithospheric response. In Patagonia however, the scales of retreat are much larger than this lithospheric wavelength - but could erosion still be an important factor? We use the GLIMMER 3-D thermomechanical ice sheet model (Payne, 1999) with an added erosion component to simulate long-term landscape evolution under theoretical ice sheets (Jamieson et al., 2007). We show that models of glacial erosion can generate feedbacks on a significant scale such that ice sheets can self-limit their extents over periods of 105 - 106 years regardless of the flexural response of the land surface. Erosion around the ELA enables increasingly efficient ice drainage, and the mass balance of the ice sheet thus shifts towards a more negative state. At the same time

  7. Plio-pleistocene African climate

    SciTech Connect

    deMenocal, P.B.

    1995-10-06

    Marine records of African climate variability document a shift toward more arid conditions after 2.8 million years ago (Ma), evidently resulting from remote forcing by cold North Atlantic sea-surface temperatures associated with the onset of Northern Hemisphere glacial cycles. African climate before 2.8 Ma was regulated by low-latitude insolation forcing of monsoonal climate due to Earth orbital precession. Major steps in the evolution of African hominids and other vertebrates are coincident with shifts to more arid, open conditions near 2.8 Ma, 1.7 Ma, and 1.0 Ma, suggesting that some Pliocene (Plio)-Pleistocene speciation events may have been climatically mediated. 65 refs., 6 figs.

  8. Plio-Pleistocene African Climate

    NASA Astrophysics Data System (ADS)

    Demenocal, Peter B.

    1995-10-01

    Marine records of African climate variability document a shift toward more arid conditions after 2.8 million years ago (Ma), evidently resulting from remote forcing by cold North Atlantic sea-surface temperatures associated with the onset of Northern Hemisphere glacial cycles. African climate before 2.8 Ma was regulated by low-latitude insolation forcing of monsoonal climate due to Earth orbital precession. Major steps in the evolution of African hominids and other vertebrates are coincident with shifts to more arid, open conditions near 2.8 Ma, 1.7 Ma, and 1.0 Ma, suggesting that some Pliocene (Plio)-Pleistocene speciation events may have been climatically mediated.

  9. Probability of moraine survival in a succession of glacial advances.

    USGS Publications Warehouse

    Gibbons, A.B.; Megeath, J.D.; Pierce, K.L.

    1984-01-01

    Emplacement of glacial moraines normally results in obliteration of older moraines deposited by less extensive glacial advances, a process we call 'obliterative overlap'. Assuming randomness and obliterative overlap, after 10 glacial episodes the most likely number of surviving moraines is only three. The record of the Pleistocene is in agreement with the probability analysis: the 10 glaciations during the past 0.9 Myr inferred from the deep-sea record resulted in moraine sequences in which only two or three different-aged moraine belts can generally be distinguished. -from Authors

  10. Phylogeography of the Cape velvet worm (Onychophora: Peripatopsis capensis) reveals the impact of Pliocene/Pleistocene climatic oscillations on Afromontane forest in the Western Cape, South Africa.

    PubMed

    McDonald, D E; Daniels, S R

    2012-05-01

    Habitat specialists such as soft-bodied invertebrates characterized by low dispersal capability and sensitivity to dehydration can be employed to examine biome histories. In this study, the Cape velvet worm (Peripatopsis capensis) was used to examine the impacts of climatic oscillations on historical Afromontane forest in the Western Cape, South Africa. Divergence time estimates suggest that the P. capensis species complex diverged during the Pliocene epoch. This period was characterized by dramatic climatic and topographical change. Subsequently, forest expansion and contraction cycles led to diversification within P. capensis. Increased levels of genetic differentiation were observed along a west-to-south-easterly trajectory because the south-eastern parts of the Cape Fold Mountain chain harbour larger, more stable fragments of forest patches, have more pronounced habitat heterogeneity and have historically received higher levels of rainfall. These results suggest the presence of three putative species within P. capensis, which are geographically discreet and genetically distinct. PMID:22409213

  11. Late Pleistocene- Holocene transgressive sedimentation in deltaic and non-deltaic areas of the northeastern Bering epicontinental shelf.

    USGS Publications Warehouse

    Nelson, C.H.

    1982-01-01

    The distribution of late Pleistocene and Holocene surface sediments on the northern Bering Seafloor is patchy and dependent upon locations of seafloor bedrock and pre-late Pleistocene glacial debris, late Holocene river sediment influx, and modern strong bottom currents. Seafloor vibracores and high-resolution profiles record two different sedimentary environments in the northern Bering shelf: late Pleistocene-Holocene shoreline transgression in Chirikov Basin, and Holocene deposition from the Yukon River in Norton Sound.-from Author

  12. Pleistocene variability of Antarctic Ice Sheet extent in the Ross Embayment

    NASA Astrophysics Data System (ADS)

    McKay, Robert; Naish, Tim; Powell, Ross; Barrett, Peter; Scherer, Reed; Talarico, Franco; Kyle, Philip; Monien, Donata; Kuhn, Gerhard; Jackolski, Chris; Williams, Trevor

    2012-02-01

    Cores acquired by the ANDRILL McMurdo Ice Shelf Project (AND-1B) provide the basis for a new sedimentation model for glacimarine depositional sequences that reflect cyclic glacial-interglacial fluctuations of a marine-based ice sheet in the western Ross Embayment over the past 2.0 Ma. Notwithstanding periodic erosion during advances of the ice sheet, uncertainties inherent to the sedimentological interpretation, and a limited number of chronological datums, it is clear that subglacial to grounding-zone sedimentation was dominant at the AND-1B site during the Late Pleistocene with interglacials being represented only by thin intervals of ice-shelf sediment. Each sequence is characterised by subglacial, massive diamictite that pass upwards into glacimarine diamictites and mudstones. This provides the first direct evidence that the marine-based Antarctic Ice Sheet has oscillated between a grounded and floating state at least 7 times in the Ross Embayment over the last 780ka, implying a Milankovitch orbital influence. An unconformity in AND-1B, that spans most (˜200 kyr) of the Mid-Pleistocene Transition is inferred to represent widespread expansion of a marine-based ice sheet in the Ross Embayment at 0.8 Ma. Prior to 1.0 Ma, interglacial periods are characterised by open-water conditions at the drill site with high abundances of volcanoclastic deposits and occasional diatomaceous sediments. These may have responded to precession (˜20-kyr) or obliquity (˜40-kyr) orbital control. The occurrence of 6.7 m of phonolitic glass reworked from Mt Erebus in interglacial deposits beneath Last Glacial Maximum till requires open ocean or ice shelf conditions in the western Ross Sea around the drill site within the past 250 ka and implies a Ross Ice Shelf similar to or less extensive than today during Marine Isotope Stage 7 or 5.

  13. Late Pleistocene lithostratigraphy and sequences in the southwestern Mesopotamia (Argentina): Evidences of the last interglacial stage

    NASA Astrophysics Data System (ADS)

    Ernesto, Brunetto; Soledad, Ferrero Brenda; Ignacio, Noriega Jorge

    2015-03-01

    The aim of this paper is to show the stratigraphic record of the Late Pleistocene corresponding to the distal region of the Paraná River basin. It displays sedimentological, paleontological and geochronological evidences that characterise the last interglacial-glacial cycle. In particular, strong environmental records are shown for the Last Interglacial Stage (LIS). Salto Ander Egg Formation (SAEF) is defined as a new lithostratigraphic unit representative of the Late Pleistocene in southwestern Mesopotamia. This unit is formed of complex fluvial deposits, which contains a heterogeneous collection of sub-environments, of ages ranging from 120 to 60 ky BP. The clast-supported gravel facies containing sparse boulders indicate high flow during a humid climate. The large and middle-scale architectures of fluvial sedimentary bodies evidence the relationship between the sediment accommodation and the sea level oscillations. Three sub-sequences identified in the succession suggest a transgressive trend during the MIS5e, a highstand stage in MIS5c, and a minor transgressive cycle during MIS3. A Brazilian faunal association collected at the bottom of the sequence and sedimentological interpretations display wet and warm climatic conditions, typical of tropical or subtropical environments. Such environmental conditions are characteristic of the maximum of the last interglacial stage (MIS5e) and show a signal stronger than the signal of the current interglacial stage. All these data show a direct correlation between the increases of paleodischarges and the elevation of the sea level. The whole sequence is completed with transitional swampy deposits, accumulated probably during the MIS3/MIS2 transition, and the typical loess of the Tezanos Pinto Formation, mantled during the Last Maximum Glacial.

  14. The Middle Pleistocene transition as a generic bifurcation on a slow manifold

    NASA Astrophysics Data System (ADS)

    Ditlevsen, Peter; Ashwin, Peter

    2015-04-01

    The Quaternary Period has been characterised by a cyclical series of glaciations, which are attributed to the change in the insolation (incoming solar radiation) from changes in the Earth's orbit around the Sun. The spectral power in the climate record is very different from that of the orbital forcing: Prior to 1000 kyr before present (BP) most of the spectral power is in the 41 kyr band while since then the power has been in the 100 kyr band. The change defines the middle Pleistocene transition (MPT). The MPT does not indicate any noticeable difference in the orbital forcing. The climate response to the insolation is thus far from linear, and appears to be structurally different before and after the MPT. This paper presents a low order conceptual model for the oscillatory dynamics of the ice sheets in terms of a relaxation oscillator with multiple levels subject to the Milankovitch forcing. The model exhibits smooth transitions between three different climate states; an interglacial (i), a mild glacial (g) and a deep glacial (G) as proposed by Paillard (1998). The model suggests a dynamical explanation in terms of the structure of a slow manifold for the observed allowed and ``forbidden'' transitions between the three climate states. With the model we propose that the synchrony of the climate oscillations with the astronomical forcing is through the mechanism of phase-resetting oscillation in which the internal frequency of oscillation is increased to match the frequency of the forcing, while the opposite possibility of a faster internal oscillation cannot be slowed down to match a longer period forcing. In spite of its simplicity as a forced ODE, the model is able to reproduce many of the details of oscillations observed in the climate record. A particular novelty is that it includes a slow drift in the form of the slow manifold that reproduces the observed dynamical change at the MPT. We explain this change in terms of a transcritical bifurcation in the fast

  15. Late Pleistocene dune activity in the central Great Plains, USA

    USGS Publications Warehouse

    Mason, J.A.; Swinehart, J.B.; Hanson, P.R.; Loope, D.B.; Goble, R.J.; Miao, X.; Schmeisser, R.L.

    2011-01-01

    Stabilized dunes of the central Great Plains, especially the megabarchans and large barchanoid ridges of the Nebraska Sand Hills, provide dramatic evidence of late Quaternary environmental change. Episodic Holocene dune activity in this region is now well-documented, but Late Pleistocene dune mobility has remained poorly documented, despite early interpretations of the Sand Hills dunes as Pleistocene relicts. New optically stimulated luminescence (OSL) ages from drill cores and outcrops provide evidence of Late Pleistocene dune activity at sites distributed across the central Great Plains. In addition, Late Pleistocene eolian sands deposited at 20-25 ka are interbedded with loess south of the Sand Hills. Several of the large dunes sampled in the Sand Hills clearly contain a substantial core of Late Pleistocene sand; thus, they had developed by the Late Pleistocene and were fully mobile at that time, although substantial sand deposition and extensive longitudinal dune construction occurred during the Holocene. Many of the Late Pleistocene OSL ages fall between 17 and 14 ka, but it is likely that these ages represent only the later part of a longer period of dune construction and migration. At several sites, significant Late Pleistocene or Holocene large-dune migration also probably occurred after the time represented by the Pleistocene OSL ages. Sedimentary structures in Late Pleistocene eolian sand and the forms of large dunes potentially constructed in the Late Pleistocene both indicate sand transport dominated by northerly to westerly winds, consistent with Late Pleistocene loess transport directions. Numerical modeling of the climate of the Last Glacial Maximum has often yielded mean monthly surface winds southwest of the Laurentide Ice Sheet that are consistent with this geologic evidence, despite strengthened anticyclonic circulation over the ice sheet. Mobility of large dunes during the Late Pleistocene on the central Great Plains may have been the result of

  16. A high resolution history of the El Niño - Southern Oscillation and of the solar activity during the Late Glacial - Early Holocene in the subtropical Andean region.

    NASA Astrophysics Data System (ADS)

    Giralt, S.; Schimmel, M.; Hernández, A.; Bao, R.; Valero-Garcés, B. L.; Sáez, A.; Pueyo, J. J.

    2009-04-01

    High-resolution laminated lacustrine sediments are excellent archives of the past hydrological changes and they provide valuable insights about the climatic processes that trigger these changes. The paleoclimatic records located in the Southern Hemisphere are fundamental for understanding the evolution of the El Niño - Southern Oscillation (ENSO) since this climatic phenomena is the main cause of droughts and floods in many areas of South America and other regions of the world, like Spain and Egypt. Available regional paleoclimate reconstructions show that modern climatic patterns in South America were established during the Late Holocene. The laminated sediments of Lago Chungará (18° 15' S - 69° 10' W, 4520 m a.s.l., Chilean altiplano) have allowed us to characterize the evolution of this climatic phenomena for the transition Late Glacial - Early Holocene (12,300 - 9,500 calendar years BP) as well as its relationship with other climate forcings, namely the solar activity. The studied sediments correspond to the lowermost 2.4 m of 8 m long Kullemberg cores recovered from this lake. These sediments are mainly made up of greenish and whitish laminae and thin layers constituted by diatomaceous oozes with carbonates and organic matter, arranged in rhythms and cycles. X-ray fluorescence (XRF) (Al, Si, S, K, Ca, Ti, Mn, Fe, Rb, Sr, Zn, Sb and Ba) analyses, total organic carbon (TOC), total carbon (TC), x-ray diffraction (XRD), biogenic silica, stable isotopes (delta18O and delta13C) on carbonates and on diatoms (delta18O) and magnetic susceptibility were determined in order to characterize the sediments of Lago Chungará. Previous statistical studies (cluster and Principal Component Analyses (PCA)) were used to disentangle the paleoclimatic signal from the other ones (volcanic and tectonic). The chronological model framework was built using 6 radiocarbon dates, allowing us to establish that laminated couplets were deposited on a pluriannual basis. These couplets are

  17. The middle Pleistocene transition as a generic bifurcation on a slow manifold

    NASA Astrophysics Data System (ADS)

    Ashwin, Peter; Ditlevsen, Peter

    2015-11-01

    The Quaternary period has been characterised by a cyclical series of glaciations, which are attributed to the change in the insolation (incoming solar radiation) from changes in the Earth's orbit around the Sun. The spectral power in the climate record is very different from that of the orbital forcing: prior to 1000 kyr before present most of the spectral power is in the 41 kyr band while since then the power has been in the 100 kyr band. The change defines the middle Pleistocene transition (MPT). The MPT does not indicate any noticeable difference in the orbital forcing. The climate response to the insolation is thus far from linear, and appears to be structurally different before and after the MPT. This paper presents a low order conceptual model for the oscillatory dynamics of the ice sheets in terms of a relaxation oscillator with multiple levels subject to the Milankovitch forcing. The model exhibits smooth transitions between three different climate states; an interglacial (i), a mild glacial (g) and a deep glacial (G) as proposed by Paillard (Nature 391:378-381, 1998). The model suggests a dynamical explanation in terms of the structure of a slow manifold for the observed allowed and "forbidden" transitions between the three climate states. With the model, the pacing of the climate oscillations by the astronomical forcing is through the mechanism of phase-resetting of relaxation oscillations in which the internal phase of the oscillation is affected by the forcing. In spite of its simplicity as a forced ODE, the model is able to reproduce not only general features but also many of the details of oscillations observed in the climate record. A particular novelty is that it includes a slow drift in the form of the slow manifold that reproduces the observed dynamical change at the MPT. We explain this change in terms of a transcritical bifurcation in the fast dynamics on varying the slow variable; this bifurcation can induce a sudden change in periodicity and

  18. Quaternary evolution of glaciated gneiss terrains: pre-glacial weathering vs. glacial erosion

    NASA Astrophysics Data System (ADS)

    Krabbendam, Maarten; Bradwell, Tom

    2014-07-01

    Vast areas previously covered by Pleistocene ice sheets consist of rugged bedrock-dominated terrain of innumerable knolls and lake-filled rock basins - the ‘cnoc-and-lochan' landscape or ‘landscape of areal scour'. These landscapes typically form on gneissose or granitic lithologies and are interpreted (1) either to be the result of strong and widespread glacial erosion over numerous glacial cycles; or (2) formed by stripping of a saprolitic weathering mantle from an older, deeply weathered landscape. We analyse bedrock structure, erosional landforms and weathering remnants and within the ‘cnoc-and-lochan' gneiss terrain of a rough peneplain in NW Scotland and compare this with a geomorphologically similar gneiss terrain in a non-glacial, arid setting (Namaqualand, South Africa). We find that the topography of the gneiss landscapes in NW Scotland and Namaqualand closely follows the old bedrock-saprolite contact (weathering front). The roughness of the weathering front is caused by deep fracture zones providing a highly irregular surface area for weathering to proceed. The weathering front represents a significant change in bedrock physical properties. Glacial erosion (and aeolian erosion in Namaqualand) is an efficient way of stripping saprolite, but is far less effective in eroding hard, unweathered bedrock. Significant glacial erosion of hard gneiss probably only occurs beneath palaeo-ice streams. We conclude that the rough topography of glaciated ‘cnoc-and-lochan' gneiss terrains is formed by a multistage process: 1) Long-term, pre-glacial chemical weathering, forming deep saprolite with an irregular weathering front; 2) Stripping of weak saprolite by glacial erosion during the first glaciation(s), resulting in a rough land surface, broadly conforming to the pre-existing weathering front (‘etch surface'); 3) Further modification of exposed hard bedrock by glacial erosion. In most areas, glacial erosion is limited, but can be significant beneath palaeo

  19. Hybridization among Arctic white-headed gulls (Larus spp.) obscures the genetic legacy of the Pleistocene

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Chesser, R. Terry; Bell, Douglas A.; Dove, Carla J.

    2012-01-01

    We studied the influence of glacial oscillations on the genetic structure of seven species of white-headed gull that breed at high latitudes (Larus argentatus, L. canus, L. glaucescens, L. glaucoides, L. hyperboreus, L. schistisagus, and L. thayeri). We evaluated localities hypothesized as ice-free areas or glacial refugia in other Arctic vertebrates using molecular data from 11 microsatellite loci, mitochondrial DNA (mtDNA) control region, and six nuclear introns for 32 populations across the Holarctic. Moderate levels of genetic structure were observed for microsatellites (FST= 0.129), introns (ΦST= 0.185), and mtDNA control region (ΦST= 0.461), with among-group variation maximized when populations were grouped based on subspecific classification. Two haplotype and at least two allele groups were observed across all loci. However, no haplotype/allele group was composed solely of individuals of a single species, a pattern consistent with recent divergence. Furthermore, northernmost populations were not well differentiated and among-group variation was maximized when L. argentatus and L. hyberboreus populations were grouped by locality rather than species, indicating recent hybridization. Four populations are located in putative Pleistocene glacial refugia and had larger t estimates than the other 28 populations. However, we were unable to substantiate these putative refugia using coalescent theory, as all populations had genetic signatures of stability based on mtDNA. The extent of haplotype and allele sharing among Arctic white-headed gull species is noteworthy. Studies of other Arctic taxa have generally revealed species-specific clusters as well as genetic structure within species, usually correlated with geography. Aspects of white-headed gull behavioral biology, such as colonization ability and propensity to hybridize, as well as their recent evolutionary history, have likely played a large role in the limited genetic structure observed.

  20. Outburst floods from glacial Lake Missoula

    NASA Astrophysics Data System (ADS)

    Clarke, G. K. C.; Mathews, W. H.; Pack, R. T.

    1984-11-01

    The Pleistocene outburst floods from glacial Lake Missoula, known as the "Spokane Floods", released as much as 2184 km 3 of water and produced the greatest known floods of the geologic past. A computer simulation model for these floods that is based on physical equations governing the enlargement by water flow of the tunnel penetrating the ice dam is described. The predicted maximum flood discharge lies in the range 2.74 × 10 6-13.7 × 10 6 m 3 sec -1, lending independent glaciological support to paleohydrologic estimates of maximum discharge.

  1. Pleistocene Niche Stability and Lineage Diversification in the Subtropical Spider Araneus omnicolor (Araneidae)

    PubMed Central

    Peres, Elen A.; Sobral-Souza, Thadeu; Perez, Manolo F.; Bonatelli, Isabel A. S.; Silva, Daniel P.; Silva, Márcio J.; Solferini, Vera N.

    2015-01-01

    The influence of Quaternary climate oscillations on the diversification of the South American fauna is being increasingly explored. However, most of these studies have focused on taxa that are endemic to tropical environments, and relatively few have treated organisms restricted to subtropical biomes. Here we used an integrative phylogeographical framework to investigate the effects of these climate events on the ecological niche and genetic patterns of the subtropical orb-weaver spider Araneus omnicolor (Araneidae). We analyzed the mitochondrial (Cytochrome Oxidase I, COI) and nuclear (Internal Transcribed Subunit II, ITS2) DNA of 130 individuals throughout the species’ range, and generated distribution models in three different climate scenarios [present, Last Glacial Maximum (LGM), and Last Interglacial Maximum (LIG)]. Additionally, we used an Approximate Bayesian Computation (ABC) approach to compare possible demographic scenarios and select the hypothesis that better explains the genetic patterns of A. omnicolor. We obtained high haplotype diversity but low nucleotide variation among sequences. The population structure and demographic analyses showed discrepancies between markers, suggesting male-biased dispersal in the species. The time-calibrated COI phylogenetic inference showed a recent diversification of lineages (Middle/Late Pleistocene), while the paleoclimate modeling indicated niche stability since ~120 Kya. The ABC results agreed with the niche models, supporting a panmictic population as the most likely historical scenario for the species. These results indicate that A. omnicolor experienced no niche or population reductions during the Late Pleistocene, despite the intense landscape modifications that occurred in the subtropical region, and that other factors beside LGM and LIG climate oscillations might have contributed to the demographic history of this species. This pattern may be related to the high dispersal ability and wide environmental

  2. Pleistocene niche stability and lineage diversification in the subtropical spider Araneus omnicolor (Araneidae).

    PubMed

    Peres, Elen A; Sobral-Souza, Thadeu; Perez, Manolo F; Bonatelli, Isabel A S; Silva, Daniel P; Silva, Márcio J; Solferini, Vera N

    2015-01-01

    The influence of Quaternary climate oscillations on the diversification of the South American fauna is being increasingly explored. However, most of these studies have focused on taxa that are endemic to tropical environments, and relatively few have treated organisms restricted to subtropical biomes. Here we used an integrative phylogeographical framework to investigate the effects of these climate events on the ecological niche and genetic patterns of the subtropical orb-weaver spider Araneus omnicolor (Araneidae). We analyzed the mitochondrial (Cytochrome Oxidase I, COI) and nuclear (Internal Transcribed Subunit II, ITS2) DNA of 130 individuals throughout the species' range, and generated distribution models in three different climate scenarios [present, Last Glacial Maximum (LGM), and Last Interglacial Maximum (LIG)]. Additionally, we used an Approximate Bayesian Computation (ABC) approach to compare possible demographic scenarios and select the hypothesis that better explains the genetic patterns of A. omnicolor. We obtained high haplotype diversity but low nucleotide variation among sequences. The population structure and demographic analyses showed discrepancies between markers, suggesting male-biased dispersal in the species. The time-calibrated COI phylogenetic inference showed a recent diversification of lineages (Middle/Late Pleistocene), while the paleoclimate modeling indicated niche stability since ~120 Kya. The ABC results agreed with the niche models, supporting a panmictic population as the most likely historical scenario for the species. These results indicate that A. omnicolor experienced no niche or population reductions during the Late Pleistocene, despite the intense landscape modifications that occurred in the subtropical region, and that other factors beside LGM and LIG climate oscillations might have contributed to the demographic history of this species. This pattern may be related to the high dispersal ability and wide environmental

  3. Palaeoenvironmental conditions in the Gulf of Alaska (NE Pacific) during the Mid Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Müller, J.; Romero, O. E.; McClymont, E.; Stein, R. H.; Fahl, K.

    2014-12-01

    The Mid Pleistocene Transition (MPT) constitutes a fundamental shift in Earth's climate system from a 41 ka to a 100 ka periodicity in glacial oscillations. The exact timing and mechanism(s) that caused this change from a low- to high-amplitude glacial variability are still under debate and only recently Pena & Goldstein (2014) suggested that a disruption of the thermohaline circulation at about 900 ka BP and a subsequent change in ocean circulation might have acted as a trigger for the onset of 100 ka glacial-interglacial cycles. Most studies targeting the MPT are based on Atlantic sediment records whereas only few data sets are available from the North Pacific (see e.g. Clark et al., 2006 and McClymont et al., 2013 for reviews). IODP Expedition 341 distal deep-water site U1417 in the Gulf of Alaska (subpolar NE Pacific) now provided a continuous sediment record for reconstructing Miocene to Late Pleistocene changes in the sea surface conditions and how these relate to orbital and millennial scale climate variability. Here we present organic geochemical biomarker data covering the 1.5 Ma to 0.1 Ma time interval with special focus on the MPT. Alkenone, sterol, n-alkane and C25 highly branched isoprenoid data are used to reconstruct sea surface temperatures, primary productivity and terrigenous organic matter input (via sea ice, icebergs, meltwater discharge or aeolian transport). In addition, the diatom concentration and the species composition of the diatom assemblage deliver information on changes in palaeoproductivity and nutrient (silicate) availability. A major change in the environmental setting between 1.2 and 0.8 Ma is recorded by the biomarkers. This shift seems to be associated with a significant cooling of the surface waters in the Gulf of Alaska. Matching this shift, a significant change in the main components of the diatom community occurred between 1.2 and 0.8 Ma. References Clark, P.U., Archer, D., Pollard, D., Blum, J.D., Rial, J.A., Brovkin, V

  4. Atmospheric carbon dioxide concentration across the mid-Pleistocene transition.

    PubMed

    Hönisch, Bärbel; Hemming, N Gary; Archer, David; Siddall, Mark; McManus, Jerry F

    2009-06-19

    The dominant period of Pleistocene glacial cycles changed during the mid-Pleistocene from 40,000 years to 100,000 years, for as yet unknown reasons. Here we present a 2.1-million-year record of sea surface partial pressure of CO2 (Pco2), based on boron isotopes in planktic foraminifer shells, which suggests that the atmospheric partial pressure of CO2 (pco2) was relatively stable before the mid-Pleistocene climate transition. Glacial Pco2 was approximately 31 microatmospheres higher before the transition (more than 1 million years ago), but interglacial Pco2 was similar to that of late Pleistocene interglacial cycles (<450,000 years ago). These estimates are consistent with a close linkage between atmospheric CO2 concentration and global climate, but the lack of a gradual decrease in interglacial Pco2 does not support the suggestion that a long-term drawdown of atmospheric CO2 was the main cause of the climate transition. PMID:19541994

  5. Antemortem trauma and survival in the late Middle Pleistocene human cranium from Maba, South China

    PubMed Central

    Wu, Xiu-Jie; Schepartz, Lynne A.; Liu, Wu; Trinkaus, Erik

    2011-01-01

    Paleopathological assessment of the late Middle Pleistocene archaic human cranium from Maba, South China, has documented a right frontal squamous exocranially concave and ridged lesion with endocranial protrusion. Differential diagnosis indicates that it resulted from localized blunt force trauma, due to an accident or, more probably, interhuman aggression. As such it joins a small sample of pre-last glacial maximum Pleistocene human remains with probable evidence of humanly induced trauma. Its remodeled condition also indicates survival of a serious pathological condition, a circumstance that is increasingly documented for archaic and modern Homo through the Pleistocene. PMID:22106311

  6. Impact of the Pleistocene Glaciations on Net Erosion Development in the Western Barents Sea

    NASA Astrophysics Data System (ADS)

    Zieba, K. J.; Felix, M.

    2015-12-01

    The Barents Sea shelf was subjected to both tectonic- and glacially-driven erosion during the Cenozoic. It is however unclear which of the erosion mechanisms had the most important role in generating net erosion that indicates a total effect of all erosion events. The literature estimates of glacial to tectonic erosion ratio vary significantly and often do not account for regional variations. The tectonic erosion is often attributed to plate reorganization in the Norwegian-Greenland Sea during the Cenozoic. The literature shows wide diversity of opinions regarding timing and thickness of the tectonic erosion. In contrast, glacial erosion thickness estimates are well constrained and show lower discrepancy in results. The glacial erosion thickness estimates are therefore key information that can be used for constraining the ratio between tectonic and glacial erosion. The glacial contribution to the net erosion is however also controlled by on-shelf deposition that counteracts the process of glacial erosion. However the on-shelf deposition rates have never been calculated. In result, the Pleistocene sediment budget and glacial contribution to the net erosion has never been assessed yet. The Pleistocene contribution to the net erosion was approached by a new Monte-Carlo-type method where the Pleistocene-Holocene sediment budget is calculated and the net erosion thickness is determined as a balance between total deposition and erosion thicknesses. The proposed method requires definite ages of glacial and interglacial periods what is not available in the literature. The timeframe was established by using a new approach based on the regional ice-sheet volume curve. Also, the new glacial/interglacial timeframe enables calculating the erosion rates for glacial duration (103 - 104 yr) timescale what have not been performed before. The results show that the western Barents Sea was glaciated during 4 marine isotope stages for a total duration of 29 kyr. The glacial erosion

  7. Pleistocene and Holocene Iberian flora: a complete picture and review

    NASA Astrophysics Data System (ADS)

    González Sampériz, Penélope

    2010-05-01

    A detailed analysis of the location and composition of Iberian vegetation types during the whole Pleistocene and Holocene periods shows a complex patched landscape with persistence of different types of ecosystems, even during glacial times. In addition, recent, high-resolution palaeoecological records are changing the traditional picture of post-glacial vegetation succession in the Iberian Peninsula. The main available charcoal and pollen sequences include, coniferous and deciduous forest, steppes, shrublands, savannahs and glacial refugia during the Pleistocene for Meso-thermophytes (phytodiversity reservoirs), in different proportions. This panorama suggests an environmental complexity that relates biotic responses to climate changes forced by Milankovitch cycles, suborbital forcings and by the latitudinal and physiographic particularities of the Iberian Peninsula. Thus, many factors are critical in the course of vegetational developments and strong regional differences are observed since the Early Pleistocene. Currently, the flora of Iberia is located in two biogeographical/climatic regions: the Eurosiberian and the Mediterranean. The first one includes northern and northwestern areas of the peninsula, where post-glacial responses of vegetation are very similar to Central Europe, although with some particularities due to its proximity to both the Atlantic Ocean and the Mediterranean region. The second one comprises the main territory of Iberia and shows more complex patterns and singularities, now and in the past. Steppe landscapes dominated extensive areas over all the territory during the cold spells of the Quaternary, especially during the Late Pleistocene up to the Last Glacial Maximum, but differences in composition of the dominant taxa (Compositae versus Artemisia) are observed since the Early Pleistocene, probably related to moisture regional gradients. Coastal shelves and intramountainous valleys, even in continental areas, are spots of floristic

  8. Glaciers and rivers: Pleistocene uncoupling in a Mediterranean mountain karst

    NASA Astrophysics Data System (ADS)

    Adamson, K. R.; Woodward, J. C.; Hughes, P. D.

    2014-06-01

    Large-scale coupling between headwater catchments and downstream depocentres is a critical influence on long-term fluvial system behaviour and on the creation of the fluvial sedimentary record. However, it is often difficult to examine this control over multiple Quaternary glacial cycles and it has not been fully explored in karst basins. By investigating the Pleistocene glacial and fluvial records on and around Mount Orjen (1894 m) in Montenegro, we show how the changing connectivity between glaciated mountain headwater source zones and downstream alluvial basins is a key feature of long-term karst system behaviour - especially in relation to the creation and preservation of the surface sedimentary record. Middle and Late Pleistocene glacial deposits are well preserved on Mount Orjen. Uranium-series dating of 27 carbonate cements in fluvial sediments shows that many alluvial depocentres were completely filled with coarse glacial outwash before 350 ka during the largest recorded glaciation. This major glaciation is correlated with the Skamnellian Stage in Greece and Marine Isotope Stage 12 (MIS 12, c 480-420 ka). This was a period of profound landscape change in many glaciated catchments on the Balkan Peninsula. Later glaciations were much less extensive and sediment supply to fluvial systems was much diminished. The extreme base level falls of the Late Miocene produced the world's deepest karst networks around the Mediterranean. After MIS 12, the subterranean karst of Mount Orjen formed the dominant pathway for meltwater and sediment transfer so that the depositional basins below 1000 m became disconnected (uncoupled) from the glaciated headwaters. There is little evidence of post-MIS 12 aggradation or incision in these basins. This absence of later Pleistocene and Holocene fluvial activity means these basins contain some of the thickest and best-preserved outwash deposits in the Mediterranean.

  9. Bivalve shells as high resolution biomineral archives of early Pleistocene seasonality

    NASA Astrophysics Data System (ADS)

    Crippa, Gaia; Angiolini, Lucia; Leng, Melanie

    2016-04-01

    and the distinct growth lines of the Arda taxa makes them a powerful archive to study, through sclerochemistry, the change in seasonality during the early Pleistocene, a time interval characterized by several climatic oscillations linked to glacial/interglacial cycles, in the Mediterranean area.

  10. Pleistocene Indian Monsoon Rainfall Variability

    NASA Astrophysics Data System (ADS)

    Yirgaw, D. G.; Hathorne, E. C.; Giosan, L.; Collett, T. S.; Sijingeo, A. V.; Nath, B. N.; Frank, M.

    2014-12-01

    The past variability of the Indian Monsoon is mostly known from records of wind strength over the Arabian Sea. Here we investigate proxies for fresh water input and runoff in a region of strong monsoon precipitation that is a major moisture source for the east Asian Monsoon. A sediment core obtained by the IODP vessel JOIDES Resolution and a gravity core from the Alcock Seamount complex in the Andaman Sea are used to examine the past monsoon variability on the Indian sub-continent and directly over the ocean. The current dataset covers the last glacial and deglacial but will eventually provide a Pleistocene record. We utilise the ecological habitats of G. sacculifer and N. dutertrei to investigate the freshwater-induced stratification with paired Mg/Ca and δ18O analyses to estimate seawater δ18O (δ18Osw). During the last 60 kyrs, Ba/Ca ratios and δ18Osw values generally agree well between the two cores and suggest the weakest surface runoff and monsoon during the LGM and strongest monsoon during the Holocene. The difference in δ18O between the species, interpreted as a proxy for upper ocean stratification, implies stratification developed around 37 ka and remained relatively constant during the LGM, deglacial and Holocene. To investigate monsoon variability for intervals in the past, single shell Mg/Ca and δ18O analyses have been conducted. Mg/Ca ratios from individual shells of N. dutertrei suggest relatively small changes in temperature. However, individual N. dutertrei δ18O differ greatly between the mid-Holocene and samples from the LGM and a nearby core top. The mid-Holocene individuals have a greater range and large skew towards negative values indicating greater fresh water influence.

  11. Pleistocene Lake Bonneville and Eberswalde Crater of Mars: Quantitative Methods for Recognizing Poorly Developed Lacustrine Shorelines

    NASA Astrophysics Data System (ADS)

    Jewell, P. W.

    2014-12-01

    The ability to quantify shoreline features on Earth has been aided by advances in acquisition of high-resolution topography through laser imaging and photogrammetry. Well-defined and well-documented features such as the Bonneville, Provo, and Stansbury shorelines of Late Pleistocene Lake Bonneville are recognizable to the untrained eye and easily mappable on aerial photos. The continuity and correlation of lesser shorelines must rely quantitative algorithms for processing high-resolution data in order to gain widespread scientific acceptance. Using Savitsky-Golay filters and the geomorphic methods and criteria described by Hare et al. [2001], minor, transgressive, erosional shorelines of Lake Bonneville have been identified and correlated across the basin with varying degrees of statistical confidence. Results solve one of the key paradoxes of Lake Bonneville first described by G. K. Gilbert in the late 19th century and point the way for understanding climatically driven oscillations of the Last Glacial Maximum in the Great Basin of the United States. Similar techniques have been applied to the Eberswalde Crater area of Mars using HRiSE DEMs (1 m horizontal resolution) where a paleolake is hypothesized to have existed. Results illustrate the challenges of identifying shorelines where long term aeolian processes have degraded the shorelines and field validation is not possible. The work illustrates the promises and challenges of indentifying remnants of a global ocean elsewhere on the red planet.

  12. Pleistocene drainage incision in the upper Mississippi Valley Driftless Area

    SciTech Connect

    Knox, J.C.

    1985-01-01

    The deep dissection of the Wisconsin Driftless Area and topographically similar, but glaciated areas in adjacent states is generally acknowledged to have occurred during the Pleistocene, but the precise chronology has been poorly understood. The distribution of pre-Illinoian glacial outwash gravels on uplands and valley side benches near the Mississippi River, on the western margin of the Wisconsin Driftless Area, indicates that the major incision (50-60 m) of drainage had occurred during the very early Pleistocene. Deposits in cut-off valley meanders, a common feature in the lower reaches of Driftless Area rivers, provide a basis for relative dating of the valley incision. The cut-offs appear to have evolved episodically when, at various times during the Pleistocene, glacial debris blocked the drainages of the Mississippi and Wisconsin Rivers causing massive alluviation of side valley tributaries. A radiocarbon date of 21,910 +/- 350 year B.P., representing a buried soil horizon at 22 m depth and about 9 m above the bedrock floor of a cut-off valley meander and 18 m above the bedrock floor of the adjacent present-day valley, supports stratigraphic interpretations that suggest modest valley incision into bedrock probably occurred during the Illinoian and may have also occurred during the early Wisconsinan.

  13. Mammalian responses to Pleistocene climate change in southeastern Australia

    NASA Astrophysics Data System (ADS)

    Prideaux, Gavin J.; Roberts, Richard G.; Megirian, Dirk; Westaway, Kira E.; Hellstrom, John C.; Olley, Jon M.

    2007-01-01

    Resolving faunal responses to Pleistocene climate change is vital for differentiating human impacts from other drivers of ecological change. While 90% of Australia's large mammals were extinct by ca. 45 ka, their responses to glacial-interglacial cycling have remained unknown, due to a lack of rigorous biostratigraphic studies and the rarity of terrestrial climatic records that can be related directly to faunal records. We present an analysis of faunal data from the Naracoorte Caves in southeastern Australia, which are unique not only because of the species richness and time-depth of the assemblages that they contain, but also because this faunal record is directly comparable with a 500 k.y. speleothem-based record of local effective moisture. Our data reveal that, despite significant population fluctuations driven by glacial-interglacial cycling, the species composition of the mammal fauna was essentially stable for 500 k.y. before the late Pleistocene extinctions. Larger species declined during a drier interval between 270 and 220 ka, likely reflecting range contractions away from Naracoorte, but they then recovered locally, persisting well into the late Pleistocene. Because the speleothem record and prior faunal response imply that local conditions should have been favorable for megafauna until at least 30 ka, climate change is unlikely to have been the principal cause of the extinctions.

  14. On the glacial erosion of the south-western Barents Sea shelf

    NASA Astrophysics Data System (ADS)

    Sverre Laberg, Jan; Andreassen, Karin; Vorren, Tore O.

    2010-05-01

    The Barents Sea has experienced profound glacial erosion during the late Pliocene and Pleistocene which resulted in the development of a characteristic glacial morphology of the continental shelf and deposition of a several km thick sediment wedge/fan along the western margin prograding into the deep sea. During the middle and late Pleistocene, glacial erosion was most severe beneath the paleo-ice streams of the Barents Sea Ice Sheet and affected mainly the trough areas (~200.000 km2). The total erosion is estimated to 435 - 530 m, the average erosion 0.6 - 0.8 mm/yr and the average sedimentation rates on the continental slope were 18 - 22 cm/kyr. The first-order control on the amount of erosion was probably the glaciations duration and velocity of the ice streams. Erosion by paleo-ice streams affected a larger area (~575.000 km2) during the early and middle Pleistocene because they were less topographically stable due to a less pronounced paleo-relief. Also, glaciotectonism was more extensive during this period. The total erosion was estimated to 330 - 420 m and the average erosion 0.4 - 0.5 mm/yr. The average sedimentation rates were 50 - 64 cm/kyr, 2 - 3 times higher than during the succeeding period. In the late Pliocene - early Pleistocene period, proglacial processes including glacifluvial erosion dominated. The total erosion was found to be 170 - 230 m, the average erosion 0.15 - 0.2 mm/yr and the average sedimentation rates were 16 - 22 cm/kyr. In total, the glacial erosion of the troughs has been relatively high throughout the late Pliocene - Pleistocene period, about 1000 - 1100 m. For the banks the erosion is inferred to have increased from late Pliocene to peak in early - middle Pleistocene, later there has been little erosion in these areas which implies a total of 500 - 650 m of erosion. The average glacial erosion during the whole late Pliocene and Pleistocene period is 38 cm/kyr, one order of magnitude higher than the average glacial erosion of the

  15. Earth's glacial record and its tectonic setting

    NASA Astrophysics Data System (ADS)

    Eyles, N.

    1993-09-01

    Glaciations have occurred episodically at different time intervals and for different durations in Earth's history. Ice covers have formed in a wide range of plate tectonic and structural settings but the bulk of Earth's glacial record can be shown to have been deposited and preserved in basins within extensional settings. In such basins, source area uplift and basin subsidence fulfill the tectonic preconditions for the initiation of glaciation and the accomodation and preservation of glaciclastic sediments. Tectonic setting, in particular subsidence rates, also dictates the type of glaciclastic facies and facies successions that are deposited. Many pre-Pleistocene glaciated basins commonly contain well-defined tectonostratigraphic successions recording the interplay of tectonics and sedimentation; traditional climatostratigraphic approaches involving interpretation in terms of either ice advance/retreat cycles or glacio-eustatic sea-level change require revision. The direct record of continental glaciation in Earth history, in the form of classically-recognised continental glacial landforms and "tillites", is meagre; it is probable that more than 95% of the volume of preserved "glacial" strata are glacially-influenced marine deposits that record delivery of large amounts of glaciclastic sediment to offshore basins. This flux has been partially or completely reworked by "normal" sedimentary processes such that the record of glaciation and climate change is recorded in marine successions and is difficult to decipher. The dominant "glacial" facies in the rock record are subaqueous debris flow diamictites and turbidites recording the selective preservation of poorly-sorted glaciclastic sediment deposited in deep water basins by sediment gravity flows. However, these facies are also typical of many non-glacial settings, especially volcanically-influenced environments; numerous Archean and Proterozoic diamictites, described in the older literature as tillites, have no

  16. Middle-Upper Pleistocene climate changes shaped the divergence and demography of Cycas guizhouensis (Cycadaceae): Evidence from DNA sequences and microsatellite markers

    PubMed Central

    Feng, Xiuyan; Zheng, Ying; Gong, Xun

    2016-01-01

    Climatic oscillations in the Pleistocene have had profound effects on the demography and genetic diversity of many extant species. Cycas guizhouensis Lan & R.F. Zou is an endemic and endangered species in Southwest China that is primarily distributed along the valleys of the Nanpan River. In this study, we used four chloroplast DNAs (cpDNA), three nuclear genes (nDNA) and 13 microsatellite (SSR) loci to investigate the genetic structure, divergence time and demographic history of 11 populations of C. guizhouensis. High genetic diversity and high levels of genetic differentiation among the populations were observed. Two evolutionary units were revealed based on network and Structure analysis. The divergence time estimations suggested that haplotypes of C. guizhouensis were diverged during the Middle-Upper Pleistocene. Additionally, the demographic histories deduced from different DNA sequences were discordant, but overall indicated that C. guizhouensis had experienced a recent population expansion during the post-glacial period. Microsatellite data revealed that there was a contraction in effective population size in the past. These genetic features allow conservation measures to be taken to ensure the protection of this endangered species from extinction. PMID:27270859

  17. Middle-Upper Pleistocene climate changes shaped the divergence and demography of Cycas guizhouensis (Cycadaceae): Evidence from DNA sequences and microsatellite markers.

    PubMed

    Feng, Xiuyan; Zheng, Ying; Gong, Xun

    2016-01-01

    Climatic oscillations in the Pleistocene have had profound effects on the demography and genetic diversity of many extant species. Cycas guizhouensis Lan &R.F. Zou is an endemic and endangered species in Southwest China that is primarily distributed along the valleys of the Nanpan River. In this study, we used four chloroplast DNAs (cpDNA), three nuclear genes (nDNA) and 13 microsatellite (SSR) loci to investigate the genetic structure, divergence time and demographic history of 11 populations of C. guizhouensis. High genetic diversity and high levels of genetic differentiation among the populations were observed. Two evolutionary units were revealed based on network and Structure analysis. The divergence time estimations suggested that haplotypes of C. guizhouensis were diverged during the Middle-Upper Pleistocene. Additionally, the demographic histories deduced from different DNA sequences were discordant, but overall indicated that C. guizhouensis had experienced a recent population expansion during the post-glacial period. Microsatellite data revealed that there was a contraction in effective population size in the past. These genetic features allow conservation measures to be taken to ensure the protection of this endangered species from extinction. PMID:27270859

  18. New exposure ages for the Last Glacial Cycle in the Sanabria Lake region (northwestern Spain)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rodríguez, Laura; Jiménez-Sánchez, Montserrat; Domínguez-Cuesta, María Jose; Rinterknecht, Vincent; Pallàs, Raimon; Braucher, Régis; Bourlès, Didier; Valero-Garcés, Blas

    2013-04-01

    The Sanabria Lake region is located in the Trevinca Massif, a mid-latitude mountain area up to 2128 m asl in the northwest corner of the Iberian Peninsula (42oN 6oW). An ice cap glaciation took place during the Last Glacial Cycle in this massif, with an equilibrium line altitude of 1687 m for the Tera glacial outlet at its local maximum (Cowton et al., 2009). A well preserved glacial sequence occurs on an area of 45 km2 around the present Sanabria Lake (1000 m asl) and is composed by lateral and end moraines in close relationship with glaciolacustrine deposits. This sequence shows the ice snout oscillations of the former Tera glacier during the Last Glacial Cycle and offers a good opportunity to compare radiocarbon and OSL- based chronological models with new cosmogenic isotope dates. The new dataset of 10Be exposure ages presented here for the Sanabria Lake moraines is based on measurements conducted on 23 boulders and is compared with previous radiocarbon and OSL data conducted on ice related deposits (Pérez-Alberti et al., 2011; Rodríguez-Rodríguez et al., 2011). Our results are coherent with the available deglaciation radiocarbon chronology, and support a last deglaciation origin for the whole set of end moraines that are downstream the Sanabria Lake (19.2 - 15.7 10Be ka). Discrepancies between results of the different dating methods concern the timing of the local glacial maximum, with the cosmogenic exposure method always yielding the youngest minimum ages. As proposed to explain similar observations made elsewhere (Palacios et al., 2012), reconciling the ages from different dating methods would imply the occurrence of two glacial advances close enough in extent to generate an overlapping polygenic moraine. Cowton, T., Hughes, P.D., Gibbard, P.L., 2009. Palaeoglaciation of Parque Natural Lago de Sanabria, northwest Spain. Geomorphology 108, 282-291. Rodríguez-Rodríguez, L., Jiménez-Sánchez, M., Domínguez-Cuesta, M.J., Rico, M.T., Valero-Garcés, B

  19. Extended Late Pleistocene Sea Level Record

    NASA Astrophysics Data System (ADS)

    Fairbanks, R. G.; Cao, L.; Mortlock, R. A.

    2006-12-01

    Several hundred new closed system 230Th/234U and radiocarbon dates and the addition of more cores and coral samples from the islands of Barbados, Kiritimati and Araki contribute to an enhanced sea level record for the late Pleistocene ranging from the present to 240,000 yrs BP. Application of more rigorous sample screening criteria, including redundant 231Pa/235U dates have resulted in more closed system ages and better sea level resolution. In addition, a multibeam survey has mapped an extensive glacial lowstand reef on a ridge south of Barbados that is capped by a set of pinnacle reefs that grew during the early deglaciation. Among our new observations, the more detailed Barbados sea level record now resolves a Younger Dryas still- stand and a sea level drop between 16,140 and 14,690, overlapping the timing of H1 by some age estimates. The coral ages bracketing melt water pulse 1A have been further refined to 14,082 +/- 28 yrs BP and 13,632 +/- 32 yrs BP (2-sigma). The Isotope Stage 3 interstadial ended with sea level near 87.5 meters below present at 29,500 years ago before dropping to full glacial levels. The last glacial sea level lowstand began as early as 26,000 yrs BP. Extensive dating of Marine Isotope Stage 3 interstadial reefs on the islands of Araki and Barbados have added considerable resolution to this time interval and reliably bracket lowstand intervals separating the interstadials. A new diagenesis model has improved our prospecting success for closed system ages from older reefs and added some critical dates to the sparse closed-system data set for MIS-5 and MIS-7 high stand reefs..

  20. Deep-sea pleistocene biostratigraphy.

    PubMed

    Lidz, L

    1966-12-16

    The first detailed paleontological analysis of a deep-sea pistoncore from the Caribbean Sea has been completed. The core, P6304-8, was raised from 3927 meters, east of Beata Ridge at 14 degrees 59'N, 69 degrees 20'W. Formerly, stratigraphic works in this area were based on studies of paleotemperature, measured by the oxygen isotope mass spectrometry method, or on micropaleontological analysis by means of rapid or cursory examinations. For core P6304-8, samples for foraminiferal analysis were taken at 10-centimeter intervals and split into smaller samples containing an average of 710 individuals (smallest sample, 517 individuals); all individuals were then identified and counted. By use of data derived from populations of this size, a statistical reliability was insured within a 5 percent limnit. Temperature oscillations, the best method of portraying Pleistocene stratigraphy, were shown by using ratios of the relative abundances of tropical and subtropical planktonic foraminifera to those found in temperate and cooler waters. These ratios correlate well with existing paleotemperature measurements for the same core, obtained by the oxygen isotope mass spectrometry method. PMID:17821563

  1. Subsurface warming in the subpolar North Atlantic during rapid climate events in the Early and Mid-Pleistocene

    NASA Astrophysics Data System (ADS)

    Hernández-Almeida, Iván; Sierro, Francisco; Cacho, Isabel; Abel Flores, José

    2014-05-01

    A new high-resolution reconstruction of the temperature and salinity of the subsurface waters using paired Mg/Ca-δ18O measurements on the planktonic foraminifera Neogloboquadrina pachyderma sinistrorsa (sin.) was conducted on a deep-sea sediment core in the subpolar North Atlantic (Site U1314). This study aims to reconstruct millennial-scale subsurface hydrography variations during the Early and Mid-Pleistocene (MIS 31-19). These rapid climate events are characterized by abrupt shifts between warm/cold conditions, and ice-sheet oscillations, as evidenced by major ice rafting events recorded in the North Atlantic sediments (Hernández-Almeida et al., 2012), similar to those found during the Last Glacial period (Marcott et al, 2011). The Mg/Ca derived paleotemperature and salinity oscillations prior and during IRD discharges at Site U1314 are related to changes in intermediate circulation. The increases in Mg/Ca paleotemperatures and salinities during the IRD event are preceded by short episodes of cooling and freshening of subsurface waters. The response of the AMOC to this perturbation is an increased of warm and salty water coming from the south, transported to high latitudes in the North Atlantic beneath the thermocline. This process is accompanied by a southward shift in the convection cell from the Nordic Seas to the subpolar North Atlantic and better ventilation of the North Atlantic at mid-depths. Poleward transport of warm and salty subsurface subtropical waters causes intense basal melting and thinning of marine ice-shelves, that culminates in large-scale instability of the ice sheets, retreat of the grounding line and iceberg discharge. The mechanism proposed involves the coupling of the AMOC with ice-sheet dynamics, and would explain the presence of these fluctuations before the establishment of high-amplitude 100-kyr glacial cycles. Hernández-Almeida, I., Sierro, F.J., Cacho, I., Flores, J.A., 2012. Impact of suborbital climate changes in the North

  2. Terrestrial cosmogenic nuclide surface exposure dating of the oldest glacial successions in the Himalayan orogen: Ladakh Range, northern India

    USGS Publications Warehouse

    Owen, L.A.; Caffee, M.W.; Bovard, K.R.; Finkel, R.C.; Sharma, M.C.

    2006-01-01

    Terrestrial cosmogenic nuclide surface exposure dating of moraine boulders and alluvial fan sediments define the timing of five glacial advances over at least the last five glacial cycles in the Ladakh Range of the Transhimalaya. The glacial stages that have been identified are: the Indus Valley glacial stage, dated at older than 430 ka; the Leh glacial stage occurring in the penultimate glacial cycle or older; the Karglacial stage, occurring during the early part of the last glacial cycle; the Bazgo glacial stage, at its maximum during the middle of the last glacial cycle; and the early Holocene Khalling glacial stage. The exposure ages of the Indus Valley moraines are the oldest observed to date throughout the Himalayan orogen. We observe a pattern of progressively more restricted glaciation during the last five glacial cycles, likely indicating a progressive reduction in the moisture supply necessary to sustain glaciation. A possible explanation is that uplift of Himalayan ranges to the south and/or of the Karakoram Mountains to the west of the region may have effectively blocked moisture supply by the south Asian summer monsoon and mid-latitude westerlies, respectively. Alternatively, this pattern of glaciation may reflect a trend of progressively less extensive glaciation in mountain regions that has been observed globally throughout the Pleistocene. ?? 2006 Geological Society of America.

  3. Sources and distribution of upper Pleistocene sand, Eastern United States Atlantic Shelf

    SciTech Connect

    Leschak, P.; Prusak, D.; Mazzullo, J.

    1985-02-01

    A 2-yr study of the sources and distribution of upper Pleistocene and Holocene sand on the eastern US shelf between the Bay of Fundy and Cape Hatteras reveals that 3 sand types are found on this shelf: (1) glacially transported, very angular sands, (2) fluvially transported, well-rounded sands derived from unlithified coastal plan deposits, and (3) fluvially transported, moderately angular sands derived from lithified sedimentary and crystalline rocks of the Appalachian and New England areas. For the most part, the distribution of these sand types reflects the late Pleistocene paleogeography of this shelf. Glacial sands are found in the areas of upper Pleistocene till, moraine, and outwash-plain deposits east and northeast of the Hudson Canyon; the 2 fluvial sands are found in coast-normal stripes that correspond to the ancestral paths of the many rivers that traversed this shelf during the late Pleistocene. The preservation of relict paleogeographic patterns of these sorts are an indication of diffusive transport of sand through most of this shelf. The exceptions to this are found in the shallow waters of Nantucket Shoals and Geoges Bank, where glacial sands are presently being advected to the southwest by the strong tidal currents that prevail.

  4. Glacial integrative modelling.

    PubMed

    Ganopolski, Andrey

    2003-09-15

    Understanding the mechanisms of past climate changes requires modelling of the complex interaction between all major components of the Earth system: atmosphere, ocean, cryosphere, lithosphere and biosphere. This paper reviews attempts at such an integrative approach to modelling climate changes during the glacial age. In particular, the roles of different factors in shaping glacial climate are compared based on the results of simulations with an Earth-system model of intermediate complexity, CLIMBER-2. It is shown that ice sheets, changes in atmospheric compositions, vegetation cover, and reorganization of the ocean thermohaline circulation play important roles in glacial climate changes. Another example of this approach is the modelling of two major types of abrupt glacial climate changes: Dansgaard-Oeschger and Heinrich events. Our results corroborate some of the early proposed mechanisms, which relate abrupt climate changes to the internal instability of the ocean thermohaline circulation and ice sheets. At the same time, it is shown that realistic representation of the temporal evolution of the palaeoclimatic background is crucial to simulate observed features of the glacial abrupt climate changes. PMID:14558899

  5. Glacial landscape evolution and sediment export: insights from digital topographic analyses and numerical modelling (Invited)

    NASA Astrophysics Data System (ADS)

    Brocklehurst, S. H.; MacGregor, K. R.

    2013-12-01

    Sediment accumulation rates in the Gulf of Alaska and low-temperature thermochronology from the European Alps, amongst other lines of evidence, indicate accelerated glacial incision and sediment export associated with the Middle Pleistocene Transition (MPT), ~1 Ma. At this time, the change from symmetrical 40-kyr temperature cycles to larger amplitude, asymmetric 100-kyr cycles would have allowed larger, longer lived glaciers to develop, which is inferred as a key contributor to accelerated glacial erosion. Digital topographic analyses comparing glaciated drainage basins of different sizes in the Southern Alps, New Zealand, and Teton Range, western US, amongst others, indicate the importance of scale in glacial landscape development. In smaller drainage basins, or those at the limit of glaciation, landscape modification is primarily restricted to carving characteristic cirques at the heads of valleys. Glaciers may have occasionally spilled from these to carve U-shaped cross-sections downvalley, but without substantial vertical incision. In larger drainage basins with a longer history of glacial occupation, glacial incision has produced shallower downvalley profiles with characteristic glacial steps, presumably accompanied by greater sediment export. A numerical glacial longitudinal profile evolution model, driven by temperature cycles representing either side of the MPT, is used to compare glacial erosion and sediment export from initial Pleistocene glaciations with post-MPT behaviour. The modelled landscape response to the MPT is strongly dependent on the tectonic setting and the behaviour of the fluvial system downstream of the glacier. With no imposed tectonic rock uplift, the major change in the landscape is the carving of cirque forms and glacial longitudinal profiles at the start of the Pleistocene; the MPT would have had little impact on landscape morphology or sediment export. Imposing tectonic as well as isostatic rock uplift, alongside inefficient fluvial

  6. A first 10Be cosmogenic glacial chronology from the High Atlas, Morocco, during the last glacial cycle.

    NASA Astrophysics Data System (ADS)

    Fink, David; Hughes, Philip; Fenton, Cassie

    2014-05-01

    Glacial geomorphological mapping, 10Be cosmogenic exposure ages of 21 erratics from cirque-valley systems and paleo-glacier climate modelling in the High Atlas Mountains, Morocco (31.1° N, 7.9° W), provides new and novel insights as to the history and evolution of the largest desert region on Earth. The Atlas Mountains display evidence of extensive and multiple Late Pleistocene glaciations whose extent is significantly larger than that recognised by previous workers. The largest glaciers formed in the Toubkal massif where we find 3 distinct phases of glacial advances within the last glacial cycle. The oldest moraines occurring at the lowest elevations have yielded eight 10Be ages ranging from 30 to 88 ka. Six of eight samples from moraines at intermediate elevations gave ages of 19 to 25 ka (2 outliers) which correlates well with the global Last Glacial Maximum (ca. 26-21 ka) and the last termination during marine isotope stage 2. Five erratics from the youngest and most elevated moraines yielded a suite of normally distributed exposure ages from 11 to 13 ka which supports a correlation with the northern hemisphere Younger Dryas (12.9-11.7 ka). The glacial record of the High Atlas effectively reflects moisture supply to the north-western Sahara Desert and can provide an indication of shifts between arid and pluvial conditions. The plaeo equilibrium line altitudes (ELA) of these three glacier phases was more than 1000 m lower than the predicted ELA based on today's temperatures. Glacier-climate modelling indicates that for each of these glacier phases climate was not only significantly cooler than today, but also much wetter. The new evidence on the extent, timing and palaeoclimatic significance of glaciations in this region has major implications for understanding moisture transfer between the North Atlantic Ocean and the Sahara Desert during Pleistocene cold stages.

  7. Aspects of conducting site investigations in glacial terrain

    SciTech Connect

    Schilling, K.E. )

    1993-03-01

    Much of northern US is mantled by Pleistocene glacial drift consisting of heterogeneous deposits of fine to coarse-textured sediments. Hazardous waste site investigations in glacial settings can often present unique design and implementation considerations. Complex glacial stratigraphy encountered during drilling activities demands flexibility built into work plans to allow for field decisions based on field conditions. Continuous cores should be collected from boreholes on a routine basis for stratigraphic purposes with particular importance assigned to field identification of relative permeabilities of stratigraphic units. Selection of appropriate field screening methodology should be based on site conditions. Utilization of open borehole groundwater sampling is recommended for fine-textured glacial settings where soil gas and well point sampling are ineffective. Installation of boreholes allows for collection of stratigraphic information and enables more surface area exposed beneath the water table for groundwater recharge and sampling. Water level determinations can be made on open boreholes for an initial assessment of the horizontal direction of groundwater flow. Placement of screens for monitoring wells should be based on field determination of likely groundwater flow paths. Nested wells are necessary to define the vertical groundwater flow system at most sites. Evaluation of the vertical flow system can often dominate site investigations in fine-textured glacial terrain. Two case studies from Iowa illustrate the usefulness of incorporating the above considerations in planning and implementing in fine-textured glacial sediments. Field investigations utilizing open borehole groundwater sampling successfully delineated site glacial geology and hydrogeology for determination of the nature and extent of groundwater contamination and better located the horizontal and vertical placement of monitoring wells.

  8. Differentiation of pleistocene deposits in northeastern Kansas by clay minerals

    USGS Publications Warehouse

    Tien, P.-L.

    1968-01-01

    Seventy-four samples from eight stratigraphic sections of lower Pleistocene glacial and glaciofluvial deposits in Doniphan County, extreme northeastern Kansas, were analyzed using X-ray diffraction techniques. Clay-mineral assemblages of the <2 ?? fraction of these deposits are nearly identical, consisting of a mixed-layer clay mineral associated with minor amounts of kaolinite and illite. An attempt was made to differentiate units of till and nontill deposits by using the relative intensities of 001 reflections of "mixed-layer mineral," kaolinite, and illite. At least two tills were recognizable. Associated nontill deposits, could not be differentiated from one another, although the nontills are easily distinguished from tills. ?? 1968.

  9. Glacial isostatic uplift of the European Alps

    NASA Astrophysics Data System (ADS)

    Mey, Juergen; Scherler, Dirk; Wickert, Andrew D.; Egholm, David L.; Tesauro, Magdala; Schildgen, Taylor F.; Strecker, Manfred R.

    2016-04-01

    Present-day vertical movements of the Earth's surface are mostly due to tectonic deformation, volcanic processes, and crustal loading/unloading. In tectonically stable regions of North America and Scandinavia, vertical movements are almost entirely attributable to glacial isostatic rebound after the melting of the Laurentide and Fennoscandian ice sheets. In contrast, the Pleistocene Alpine icecap grew on a younger mountain belt that formed by collision of the European and African plates, still subject to shortening. Therefore, measured uplift is potentially a composite signal of tectonic shortening and unloading after deglaciation and concomitant erosion. Deciphering the contributions of tectonics and crustal unloading to present-day uplift rates in formerly-glaciated mountain belts is a prerequisite to using uplift data to estimate the viscosity structure of the Earth's mantle, a key variable in geodynamics. We evaluate the post-LGM glacial-isostatic rebound of the Alps following a 4-tiered procedure. First, we estimated the thickness distribution of sedimentary valley fills to create a bedrock map of the entire mountain belt. Second, this map was used as topographic basis for the reconstruction of the Alpine icecap using a numerical ice-flow model. Third, we estimated the equilibrium deflection of the Alpine lithosphere, using the combined loads of ice and sediments with a variable effective elastic thickness. Finally, we used an exponential decay function to infer the residual deflection and the present-day uplift rate for a range of upper mantle viscosities. Our analysis shows that virtually all of the geodetically measured surface uplift in the Swiss and the Austrian Alps can be attributed to glacial unloading and redistribution of sediments, assuming an upper-mantle viscosity lower than that inferred for an old craton (e.g., Fennoscandia), but higher than that for a region with recent crustal thinning (e.g., Basin and Range province).

  10. Evidence against a Pleistocene desert refugium in the Lower Colorado River Basin

    USGS Publications Warehouse

    Holmgren, Camille A.; Betancourt, Julio L.; Peñalba, M. Cristina; Delgadillo, José; Zuravnsky, Kristin; Hunter, Kimberly L.; Rylander, Kate A.; Weiss, Jeremy L.

    2014-01-01

    Main conclusions The assemblage of chaparral, woodland and select desert elements refutes the hypothesis that the Lower Colorado River Basin served as a late Pleistocene refugium for Sonoran Desert flora. The rapid arrival of most missing desert species by the early Holocene suggests they did not have far to migrate. They probably survived the last glacial period as smaller, disparate populations in dry microsites within chaparral and pinyon–juniper–oak woodlands. Diploid and tetraploid races of Larrea tridentata were present during the Pleistocene, but hexaploids did not appear until the mid-Holocene. This demonstrates that individualistic responses to climate involved genetic variants, in this case cytotypes, and not just species.

  11. Glacial Geology of Wisconsin.

    ERIC Educational Resources Information Center

    Madison Public Schools, WI.

    This publication is a teacher's resource and guidebook for the presentation of the three filmstrips in the "Glacial Geology of Wisconsin" series. The first filmstrip is subtitled, "Evidence of the Glaciers," the second "How the Glaciers Reshaped the Landscape," and the third "Fossils of the Ice Age." Included are a list of objectives, an outline…

  12. Vegetation context and climatic limits of the Early Pleistocene hominin dispersal in Europe

    NASA Astrophysics Data System (ADS)

    Leroy, S. A. G.; Arpe, K.; Mikolajewicz, U.

    2011-06-01

    The vegetation and the climatic context in which the first hominins entered and dispersed in Europe during the Early Pleistocene are reconstructed, using literature review and a new climatic simulation. Both in situ fauna and in situ pollen at the twelve early hominin sites under consideration indicate the occurrence of open landscapes: grasslands or forested steppes. The presence of ancient hominins ( Homo of the erectus group) in Europe is only possible at the transition from glacial to interglacial periods, the full glacial being too cold for them and the transition interglacial to glacial too forested. Glacial-interglacial cycles forced by obliquity showed paralleled vegetation successions, which repeated c. 42 times during the course of the Early Pleistocene (2.58-0.78 Ma), providing 42 narrow windows of opportunity for hominins to disperse into Europe. The climatic conditions of this Early Pleistocene vegetation at glacial-interglacial transitions are compared with a climatic simulation for 9 ka ago without ice sheet, as this time period is so far the best analogue available. The climate at the beginning of the present interglacial displayed a stronger seasonality than now. Forest cover would not have been hampered though, clearly indicating that other factors linked to refugial location and soils leave this period relatively free of forests. Similar situations with an offset between climate and vegetation at the beginning of interglacials repeated themselves throughout the Quaternary and benefitted the early hominins when colonising Europe. The duration of this open phase of vegetation at the glacial-interglacial transition was long enough to allow colonisation from the Levant to the Atlantic. The twelve sites fall within rather narrow ranges of summer precipitation and temperature of the coldest month, suggesting the hominins had only a very low tolerance to climate variability.

  13. Mid-Pleistocene Orbital and Millennial Scale Climate Change in a 200 ky lacustrine sediment core from SW North America

    NASA Astrophysics Data System (ADS)

    Fawcett, P. J.; Werne, J. P.; Anderson, R. S.; Heikoop, J. M.; Brown, E. T.; Berke, M. A.; Smith, S.; Goff, F. E.; Hurley, L. L.; Cisneros Dozal, L. M.; Schouten, S.; Sinninghe Damsté, J. S.; Huang, Y.; Toney, J. L.; Fessenden, J. E.; Woldegabriel, G. W.; Geissman, J. W.; Allen, C. D.

    2009-12-01

    How anthropogenic climate change will affect hydroclimate of the arid regions of SW North America over the next century is a concern. Model projections suggest permanent “dust bowl-like” conditions; however, any anthropogenic change will be superimposed on long-term natural climate variability. We use the paleoclimatic record from an 82-m deep lacustrine sediment core (VC-3) from the Valles Caldera, New Mexico to examine continental climate variations spanning two glacial cycles through the middle Pleistocene from MIS 14 to MIS 10 (552 ka to ~360 ka). Both orbital and millennial-scale variations are evident in multiple proxies, and a strong relationship occurs between the warmest temperatures in the record and periods of extended aridity. We suggest that these periods of aridity are characterized by decreased winter as well as summer precipitation amounts. A new group of organic geochemical proxies (MBT and CBT) allow us to reconstruct the annual mean air temperature (MAT) of the Valles Caldera watershed as well as the watershed soil pH down the length of the core. We compare these proxies to climatically sensitive pollen taxa and other core properties. The MAT record of VC-3 shows considerable glacial-interglacial variation and significant variability within individual glacial and interglacial periods. The warmest interglacial MATs (5 to 7°C) compare favorably with modern MATs of ~5°C in the Valle Grande. MIS 11 has three warm substages, based on MAT estimates (2°C warmer than the cool substages), warm (Juniperus, Quercus, Rosaceae) vs. cool (Abies, Picea, Artemisia) pollen taxa and variation in aquatic productivity proxies (TOC, Si:Ti). The three warm substages of MIS 11 appear to correspond to the three precessional peaks that occur during this interval. Glacial MATs range from -5 to +2°C, with multiple millennial-scale temperature oscillations evident. Several of the interstadials show a distinct pattern of relatively slower temperature increases and

  14. Evidence for Obliquity Forcing of Glacial Termination II

    NASA Astrophysics Data System (ADS)

    Drysdale, R. N.; Hellstrom, J. C.; Zanchetta, G.; Fallick, A. E.; Sánchez Goñi, M. F.; Couchoud, I.; McDonald, J.; Maas, R.; Lohmann, G.; Isola, I.

    2009-09-01

    Variations in the intensity of high-latitude Northern Hemisphere summer insolation, driven largely by precession of the equinoxes, are widely thought to control the timing of Late Pleistocene glacial terminations. However, recently it has been suggested that changes in Earth’s obliquity may be a more important mechanism. We present a new speleothem-based North Atlantic marine chronology that shows that the penultimate glacial termination (Termination II) commenced 141,000 ± 2500 years before the present, too early to be explained by Northern Hemisphere summer insolation but consistent with changes in Earth’s obliquity. Our record reveals that Terminations I and II are separated by three obliquity cycles and that they started at near-identical obliquity phases.

  15. Glacial geomorphic evidence for a late climatic change on Mars

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.; Strom, R. G.

    1992-01-01

    In a series of preliminary reports, we documented evidence of former glacial epochs on Mars. Apparent glacial landforms seemed to be concentrated primarily at middle to high southern latitudes. We now have additional evidence supporting the view that Martian glaciation appears to have been more extensive than previously recognized. The growth and collapse of ice sheets on Mars seems closely analogous to the growth and decline of Earth's great Pleistocene ice sheets. This implies that climate change was probably somewhat comparable on the two planets, although in the case of Mars the entire planet seems to have changed rapidly to a cold, dry present-day environment after the collapse of the ice sheets.

  16. Glacial cycles drive variations in the production of oceanic crust

    NASA Astrophysics Data System (ADS)

    Crowley, John W.; Katz, Richard F.; Huybers, Peter; Langmuir, Charles H.; Park, Sung-Hyun

    2015-03-01

    Glacial cycles redistribute water between oceans and continents, causing pressure changes in the upper mantle, with consequences for the melting of Earth’s interior. Using Plio-Pleistocene sea-level variations as a forcing function, theoretical models of mid-ocean ridge dynamics that include melt transport predict temporal variations in crustal thickness of hundreds of meters. New bathymetry from the Australian-Antarctic ridge shows statistically significant spectral energy near the Milankovitch periods of 23, 41, and 100 thousand years, which is consistent with model predictions. These results suggest that abyssal hills, one of the most common bathymetric features on Earth, record the magmatic response to changes in sea level. The models and data support a link between glacial cycles at the surface and mantle melting at depth, recorded in the bathymetric fabric of the sea floor.

  17. Glacial cycles drive variations in the production of oceanic crust.

    PubMed

    Crowley, John W; Katz, Richard F; Huybers, Peter; Langmuir, Charles H; Park, Sung-Hyun

    2015-03-13

    Glacial cycles redistribute water between oceans and continents, causing pressure changes in the upper mantle, with consequences for the melting of Earth's interior. Using Plio-Pleistocene sea-level variations as a forcing function, theoretical models of mid-ocean ridge dynamics that include melt transport predict temporal variations in crustal thickness of hundreds of meters. New bathymetry from the Australian-Antarctic ridge shows statistically significant spectral energy near the Milankovitch periods of 23, 41, and 100 thousand years, which is consistent with model predictions. These results suggest that abyssal hills, one of the most common bathymetric features on Earth, record the magmatic response to changes in sea level. The models and data support a link between glacial cycles at the surface and mantle melting at depth, recorded in the bathymetric fabric of the sea floor. PMID:25766231

  18. Glacial geomorphic evidence for a late climatic change on Mars

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Strom, R. G.

    1992-12-01

    In a series of preliminary reports, we documented evidence of former glacial epochs on Mars. Apparent glacial landforms seemed to be concentrated primarily at middle to high southern latitudes. We now have additional evidence supporting the view that Martian glaciation appears to have been more extensive than previously recognized. The growth and collapse of ice sheets on Mars seems closely analogous to the growth and decline of Earth's great Pleistocene ice sheets. This implies that climate change was probably somewhat comparable on the two planets, although in the case of Mars the entire planet seems to have changed rapidly to a cold, dry present-day environment after the collapse of the ice sheets.

  19. The fluvial system response to abrupt climate change during the last cold stage: the Upper Pleistocene River Thames fluvial succession at Ashton Keynes, UK

    NASA Astrophysics Data System (ADS)

    Lewis, S. G.; Maddy, D.; Scaife, R. G.

    2001-02-01

    The last interglacial-glacial cycle (125-10 ka BP) is characterised by numerous rapid shifts in global climate on sub-Milankovitch timescales, recorded in the ocean and ice core records. These climatic fluctuations are clearly recorded in those European terrestrial sedimentary sequences that span this time period without interruption. In the UK, only fragmentary Upper Pleistocene sequences exist, mainly within the fluvial archive of the major river systems such as the Thames. The response of the upper River Thames to abrupt fluctuations in climate is documented in the fluvial sediments beneath the Floodplain Terrace (Northmoor Member of the Upper Thames Formation) at Ashton Keynes, Wiltshire. A number of criteria are set out by which significant changes in the fluvial system may be established from the sedimentological, palaeoecological and geochronological information contained within the succession. The sedimentary succession is divisible into four facies associations, on the basis of their sedimentology and bounding surface characteristics. These represent distinct phases of fluvial activity at the site and allow changes in fluvial style to be inferred. Palaeoecological reconstructions from pollen analysis of peats within the sequence provides an indication of the nature and direction of Late Glacial environmental change and optically stimulated luminescence and radiocarbon dating methods provide chronological control on the sequence. These data suggest that major changes in fluvial style are recorded within the succession, which can be related to the climatic fluctuations that took place on the oxygen isotope stage 5a/4 transition (approximately 70 ka BP) and the Devensian Late Glacial climatic warm-cold-warm oscillation (13-11 ka BP). The changes in fluvial style are a result of variations in sediment supply to the river resulting from changes in slope stability, vegetation cover and cold-climate mass movement processes and variations in discharge regime

  20. Giant glacial cirques of non-mountainous terrains

    NASA Astrophysics Data System (ADS)

    Amantov, A.; Amantova, M.

    2012-04-01

    Cirques are usually considered as specific landforms of hill and mountain terrains produced by alpine glaciers, and/or slope failures (landslides). However, glacial cirques seem to be present also in non-mountainous terrains that underwent extensive Pleistocene ice-sheet glaciations and strong glacial and fluvio-glacial erosion. The largest form in the Baltic region is Severoladozhsky (North Lake Ladoga) cirque, probably the world's largest representative, with the length and width close to 100 km. Another example is the deepest Landsort basin of the Baltic Sea. In those cases Meso-Neoproterozoic sediments were subject to selected erosion, with evident overdeepening of the bedrock surface in comparison with surrounding crystalline frame. The bowl headwall shape of the cirque-like landforms was determined by the outline of the margin of exhumed basin. The origin of the major basins of margins of the Baltic and Canadian shields are similar. However, direct analogues of giant cirques are not well developed in this part of North America due to geological deviations and dominant directions of ice movement. Comparable landforms (like the South Chippewa basin of the Lake Michigan) are therefore less mature. We define glacial cirque as an amphitheatre-shape depression with comparable values of length and width, steep headwall with adjacent side slopes and gentle lip with commonly increased glacial accumulation. They are usually located within an ice stream that created typical relief profile with normal horseshoe overdeepening, and in areas predefined by geological and geomorphological peculiarities. This definition likely fits both classic mountain cirques, and giant ones created in favorable conditions in domains that underwent extensive glaciations and relevant selective glacial erosion. Length/width ratio typical for giant cirques group is close to 1:1, being comparable with classical alpine ones. Major differences (like length/height ratio of other order and possible

  1. The permafrost glacial hypothesis: Is permafrost carbon the black box between insolation forcing and global climate?

    NASA Astrophysics Data System (ADS)

    Zech, R.

    2012-04-01

    Global climate is tightly correlated with and controlled by the amount of CO2 in the atmosphere, and both show frequencies of orbital insolation on glacial-interglacial timescales. However, the 'black box', i.e. the mechanisms that control atmospheric CO2 and climate, remain enigmatic. Soil organic carbon pools in northern permafrost regions have long been extremely underestimated and may exceed 1670 Pg - more than twice the atmospheric carbon pool. The reason for this large 'permafrost carbon' storage is that cold and waterlogging conditions are favorable for the preservation of soil organic matter, which more than compensates for low biomass productivity. Recent findings of increasing CO2 and methane emissions from warming and thawing permafrost ecosystems have fueled concerns about strong positive climate feedbacks, but the potential role of permafrost carbon dynamics for atmospheric CO2 levels and global climate on glacial-interglacial timescales has largely been ignored. I propose a conceptual model - the permafrost glacial hypothesis - to explain the rhythm of the Pleistocene ice ages based on the strong positive climate feedback related to insolation-driven permafrost carbon dynamics: 1. Obliquity is the dominant mean annual insolation signal at high latitudes, and obliquity forcing of permafrost carbon dynamics can thus readily help explaining the '40 ka world', i.e. the pronounced 40 ka cyclicity of the ice ages, during the early Pleistocene. 2. The long-term Pleistocene cooling trend led to an expansion of permafrost areas to lower (~45°N) latitudes at ~1 Ma. Here, integrated annual insolation is no longer controlled by obliquity, but by eccentricity. As a consequence, obliquity cycles (glacial terminations) were skipped, unless they coincided with increasing eccentricity, resulting in ~80 or 120 ka glacial cycles and marking the Mid-Pleistocene Transition. The characteristic saw-tooth pattern of the ~100 ka ice ages during the Late and Middle

  2. A new benchmark study for post-glacial rebound codes

    NASA Astrophysics Data System (ADS)

    Spada, Giorgio

    2010-05-01

    Modern modelling approaches to post-glacial rebound (PGR) are based on several techniques ranging from purely analytical formulations to fully numerical methods. Various European teams nowadays are independently working on the post-glacial rebound process in order to constrain the rheological profile of the mantle and the extent and chronology of the late-Pleistocene ice sheets which are prerequisites for the determination of the PGR contribution to geodetic observables. With the aim of i) testing the codes currently in use by the various teams, ii) to establish a minimum set of agreed results, iii) correct possible systematic errors embedded in the various physical formulations and/or computer implementations, and iv) facilitate the dissemination of numerical tools for surface loading studies to the geodynamical community and to young scientists, we present a set of benchmark computations mainly based on models with spherical symmetry and viscoelastic rheology but also including inputs from finite elements modelers. This study is performed within the Working Group 4 of the ESF COST Action ES0701 "Improved constraints on models of Glacial Isostatic Adjustment" and focuses on i) load Love numbers and relaxation spectra, ii) the deformation and gravity variations driven by surface loads characterized by simple geometry and time-history, and iii) the rotational fluctuations in response to glacial unloading.

  3. Palaeogeography of the Caspian Sea marine Pleistocene

    NASA Astrophysics Data System (ADS)

    Yanina, Tamara; Svitoch, Aleksander; Makshaev, Radik; Khomchenko, Denis

    2016-04-01

    , which probably corresponded to the major part of the Pleistocene epoch, were regulated by different components of the sea water balance. As a whole, water salinity in the Central and Southern Caspian Sea experienced only slight changes during the Pleistocene epoch and was, in general, similar to the present salinity in these areas. In the Northern Caspian Sea Region, salinity variations were considerably more significant. During transgressive epochs salinity was growing. During the Pleistocene, correlations between different tendencies of the Caspian sea-level changes varied considerably. They were either coincident, or opposite, or partly coincident. Duration of regressive epochs was comparable with that of the transgressive phases and stages. Judging from the duration of ancient regressive stages, the modern Caspian Sea is either at the beginning or at the middle of the regressive epoch, and the presently observed sharp sea-level rise is nothing but a positive sea-level change (oscillation-convulsion) within a big negative rhythm. The work was supported by the Russian Foundation for Basic Research (grant 14-05-00227).

  4. Quaternary glacial landforms and evolution in the Cantabrian Mountains (Northern Spain): a synthesis from current data

    NASA Astrophysics Data System (ADS)

    Serrano, Enrique; José González-Trueba, Juan; Pellitero, Ramón; González-García, María; Gómez-Lende, Manuel

    2014-05-01

    In Northern Iberian Peninsula are located the Cantabrian Mountains, a mountain system of 450 km length, reaching 2648 m in the Picos de Europa. It is an Atlantic mountain in the North slope, with a Atlantic Mediterranean transitional climate in the South slope.More than thirty-five massifs developed glaciers during the Pleistocene. Studies on glacial morphology are known from the XIX century and they have focused mainly on the maximum extent of glaciers. Nowadays there are detailed geomorphological maps, morphostratigraphic surveys and estimation of Equilibrium Line Altitude in different massifs and on different stages. During the last decade studies on glacial evolution and glaciation phases have been made, and the first chronological data have been published. In this work we presents the reconstruction of the glacial evolution in the Cantabrian Mountains during the Pleistocene and Holocene, based on recent chronological data (30 dates made using OSL, AMS and C14) and morphostratigraphic correlations obtained by several research groups. The number of reconstructed glacial stages varies among the different massifs, form one to four different stages. The highest massifs located in the central portion of the Cantabrian Mountains have the most complex glacial features, with at least four different moraine complexes stepped between the 400 m a.s.l in the Northern slope and 800 m a.s.l. in the Southern slope for the lowest moraine complexes, and the highest and youngest, located above 2100 m a.s.l. An ancient glacial phase has been pointed to MIS 12 -more than 400 ka-, disconnected from the present day glacial morphology. During Upper Pleistocene three main stages have been identified. The first one, the local glacial maximum, could be prior to the LGM, as all dates refer to chronologies prior to 28-38 ka. Some authors locate this stage prior to 45 and 65 ka, during the 50-70 ka cold stage. It could be a wet stage, when the main fronts reached the Iberian Peninsula from

  5. A high resolution Late Glacial to Holocene record of climatic and environmental change in the Mediterranean from Lake Ohrid (Macedonia/Albania)

    NASA Astrophysics Data System (ADS)

    Lacey, Jack; Francke, Alexander; Leng, Melanie; Vane, Chris; Wagner, Bernd

    2015-04-01

    Lake Ohrid (Macedonia/Albania) is one of the world's oldest lakes and is renowned for its high degree of biological diversity. It is the target site for the ICDP SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid) project, an international research initiative to study the links between geology, environment and the evolution of endemic taxa. In 2011 a 10-meter core was recovered from the western shore of Lake Ohrid adjacent to the Lini Peninsula. Here we present high-resolution stable isotope and geochemical data from this core through the Late Glacial to Holocene to reconstruct past climate and hydrology (TIC, δ18Ocalcite, δ13Ccalcite) as well as the terrestrial and aquatic vegetation response to climate (TOC, TOC/N, δ13Corganic, Rock-Eval pyrolysis). The data identify 3 main zones: (1) the Late Glacial-Holocene transition represented by low TIC, TOC and higher isotope values, (2) the early to mid-Holocene characterised by higher TOC, TOC/N and lower δ18Ocalcite, and (3) the late Holocene which shows a marked decrease in TIC and TOC. In general there is an overall trend of increasing δ18Ocalcite from 9 ka to present, suggesting progressive aridification through the Holocene, which is consistent with previous records from Lake Ohrid and the wider Mediterranean region. Several proxies show commensurate excursions that imply the impact of short-term climate oscillations, such as the 8.2 ka event and the Little Ice Age. This is the best-dated and highest resolution archive of Late Glacial and Holocene climate from Lake Ohrid and confirms the overriding influence of the North Atlantic in the north-eastern Mediterranean. The data presented set the context for the SCOPSCO project cores recovered in spring-summer 2013 dating back into the Lower Pleistocene, and will act as a recent calibration to reconstruct climate and hydrology over the entire lake history.

  6. A high-resolution Late Glacial to Holocene record of environmental change in the Mediterranean from Lake Ohrid (Macedonia/Albania)

    NASA Astrophysics Data System (ADS)

    Lacey, Jack H.; Francke, Alexander; Leng, Melanie J.; Vane, Christopher H.; Wagner, Bernd

    2015-09-01

    Lake Ohrid (Macedonia/Albania) is the oldest extant lake in Europe and exhibits an outstanding degree of endemic biodiversity. Here, we provide new high-resolution stable isotope and geochemical data from a 10 m core (Co1262) through the Late Glacial to Holocene and discuss past climate and lake hydrology (TIC, δ13Ccalcite, δ18Ocalcite) as well as the terrestrial and aquatic vegetation response to climate (TOC, TOC/N, δ13Corganic, Rock Eval pyrolysis). The data identifies 3 main zones: (1) the Late Glacial-Holocene transition represented by low TIC and TOC contents, (2) the early to mid-Holocene characterised by high TOC and increasing TOC/N and (3) the Late Holocene-Present which shows a marked decrease in TIC and TOC. In general, an overall trend of increasing δ18Ocalcite from 9 ka to present suggests progressive aridification through the Holocene, consistent with previous records from Lake Ohrid and the wider Mediterranean region. Several proxies show commensurate excursions that imply the impact of short-term climate oscillations, such as the 8.2 ka event and the Little Ice Age. This is the best-dated and highest resolution archive of past Late Glacial and Holocene climate from Lake Ohrid and confirms the overriding influence of the North Atlantic in the north-eastern Mediterranean. The data presented set the context for the International Continental scientific Drilling Program Scientific Collaboration On Past Speciation Conditions in Lake Ohrid project cores recovered in spring-summer 2013, potentially dating back into the Lower Pleistocene, and will act as a recent calibration to reconstruct climate and hydrology over the entire lake history.

  7. Millenial-scale lag times in vegetation response to glacial climate in Siberia

    NASA Astrophysics Data System (ADS)

    Herzschuh, Ulrike; Birks, John H.; Andreev, Andrei; Melles, Martin; Brigham-Grette, Julie

    2016-04-01

    Vegetation change on all relevant temporal scales is assumed to be primarily driven by contemporary climate change, which would imply that vegetation-climate feedbacks become effective without long-term delay. However, our results from multivariate analyses of pollen assemblages from Lake Eĺgygytgyn (NE Siberia) and other data covering the Mid-Pliocene-Warm-Period and the Plio-Pleistocene-Transition challenge this concept of broad-scale vegetation-climate equilibrium. Our results indicate that interglacial vegetation during the Plio-Pleistocene transition mainly reflects the condition of the preceding glacial instead of contemporary interglacial climate. We assume that the observed vegetation-climate disequilibrium, in particular the absence of pine and spruce in interglacials following strong glacial stages, originates from the combined effects of permafrost persistence, distant glacial refugia, and fire plus possible interactions. Our results imply that today's widespread larch ecosystem on permafrost is not in climate-equilibrium but rather represents a transient vegetation type which is still responding to the extreme glacial condition of the last glacial. This also implies that feedback between vegetation and climate and between permafrost and climate in northern mid- and high latitudes becomes active with long-term delay, which is of relevance for global climate change.

  8. Thriving in the Cold: Glacial Expansion and Post-Glacial Contraction of a Temperate Terrestrial Salamander (Plethodon serratus)

    PubMed Central

    Newman, Catherine E.; Austin, Christopher C.

    2015-01-01

    The dynamic geologic history of the southeastern United States has played a major role in shaping the geographic distributions of amphibians in the region. In the phylogeographic literature, the predominant pattern of distribution shifts through time of temperate species is one of contraction during glacial maxima and persistence in refugia. However, the diverse biology and ecology of amphibian species suggest that a “one-size-fits-all” model may be inappropriate. Nearly 10% of amphibian species in the region have a current distribution comprised of multiple disjunct, restricted areas that resemble the shape of Pleistocene refugia identified for other temperate taxa in the literature. Here, we apply genetics and spatially explicit climate analyses to test the hypothesis that the disjunct regions of these species ranges are climatic refugia for species that were more broadly distributed during glacial maxima. We use the salamander Plethodon serratus as a model, as its range consists of four disjunct regions in the Southeast. Phylogenetic results show that P. serratus is comprised of multiple genetic lineages, and the four regions are not reciprocally monophyletic. The Appalachian salamanders form a clade sister to all other P. serratus. Niche and paleodistribution modeling results suggest that P. serratus expanded from the Appalachians during the cooler Last Glacial Maximum and has since been restricted to its current disjunct distribution by a warming climate. These data reject the universal applicability of the glacial contraction model to temperate taxa and reiterate the importance of considering the natural history of individual species. PMID:26132077

  9. Glacial atmospheric phosphorus deposition

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid; Dallmayr, Remi; Gabrieli, Jacopo; Goto-Azuma, Kumiko; Hirabayashi, Motohiro; Svensson, Anders; Vallelonga, Paul

    2016-04-01

    Phosphorus in the atmosphere is poorly studied and thus not much is known about atmospheric phosphorus and phosphate transport and deposition changes over time, though it is well known that phosphorus can be a source of long-range nutrient transport, e.g. Saharan dust transported to the tropical forests of Brazil. In glacial times it has been speculated that transport of phosphorus from exposed shelves would increase the ocean productivity by wash out. However whether the exposed shelf would also increase the atmospheric load to more remote places has not been investigated. Polar ice cores offer a unique opportunity to study the atmospheric transport of aerosols on various timescales, from glacial-interglacial periods to recent anthropogenic influences. We have for the first time determined the atmospheric transport of phosphorus to the Arctic by means of ice core analysis. Both total and dissolved reactive phosphorus were measured to investigate current and past atmospheric transport of phosphorus to the Arctic. Results show that glacial cold stadials had increased atmospheric total phosphorus mass loads of 70 times higher than in the past century, while DRP was only increased by a factor of 14. In the recent period we find evidence of a phosphorus increase over the past 50 yrs in ice cores close to human occupation likely correlated to forest fires. References: Kjær, Helle Astrid, et al. "Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores." Environmental science & technology 47.21 (2013): 12325-12332. Kjær, Helle Astrid, et al. "Greenland ice cores constrain glacial atmospheric fluxes of phosphorus." Journal of Geophysical Research: Atmospheres120.20 (2015).

  10. Ecological structure of recent and last glacial mammalian faunas in northern Eurasia: the case of Altai-Sayan refugium.

    PubMed

    Pavelková Řičánková, Věra; Robovský, Jan; Riegert, Jan

    2014-01-01

    Pleistocene mammalian communities display unique features which differ from present-day faunas. The paleocommunities were characterized by the extraordinarily large body size of herbivores and predators and by their unique structure consisting of species now inhabiting geographically and ecologically distinct natural zones. These features were probably the result of the unique environmental conditions of ice age ecosystems. To analyze the ecological structure of Last Glacial and Recent mammal communities we classified the species into biome and trophic-size categories, using Principal Component analysis. We found a marked similarity in ecological structure between Recent eastern Altai-Sayan mammalian assemblages and comparable Pleistocene faunas. The composition of Last Glacial and Recent eastern Altai-Sayan assemblages were characterized by the occurrence of large herbivore and predator species associated with steppe, desert and alpine biomes. These three modern biomes harbor most of the surviving Pleistocene mammals. None of the analyzed Palearctic Last Glacial faunas showed affinity to the temperate forest, taiga, or tundra biome. The Eastern part of the Altai-Sayan region could be considered a refugium of the Last Glacial-like mammalian assemblages. Glacial fauna seems to persist up to present in those areas where the forest belt does not separate alpine vegetation from the steppes and deserts. PMID:24454791

  11. Ecological Structure of Recent and Last Glacial Mammalian Faunas in Northern Eurasia: The Case of Altai-Sayan Refugium

    PubMed Central

    Pavelková Řičánková, Věra; Robovský, Jan; Riegert, Jan

    2014-01-01

    Pleistocene mammalian communities display unique features which differ from present-day faunas. The paleocommunities were characterized by the extraordinarily large body size of herbivores and predators and by their unique structure consisting of species now inhabiting geographically and ecologically distinct natural zones. These features were probably the result of the unique environmental conditions of ice age ecosystems. To analyze the ecological structure of Last Glacial and Recent mammal communities we classified the species into biome and trophic-size categories, using Principal Component analysis. We found a marked similarity in ecological structure between Recent eastern Altai-Sayan mammalian assemblages and comparable Pleistocene faunas. The composition of Last Glacial and Recent eastern Altai-Sayan assemblages were characterized by the occurrence of large herbivore and predator species associated with steppe, desert and alpine biomes. These three modern biomes harbor most of the surviving Pleistocene mammals. None of the analyzed Palearctic Last Glacial faunas showed affinity to the temperate forest, taiga, or tundra biome. The Eastern part of the Altai-Sayan region could be considered a refugium of the Last Glacial-like mammalian assemblages. Glacial fauna seems to persist up to present in those areas where the forest belt does not separate alpine vegetation from the steppes and deserts. PMID:24454791

  12. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Ciais, P.; Tagliabue, A.; Cuntz, M.; Bopp, L.; Scholze, M.; Hoffmann, G.; Lourantou, A.; Harrison, S. P.; Prentice, I. C.; Kelley, D. I.; Koven, C.; Piao, S. L.

    2012-01-01

    During each of the late Pleistocene glacial-interglacial transitions, atmospheric carbon dioxide concentrations rose by almost 100ppm. The sources of this carbon are unclear, and efforts to identify them are hampered by uncertainties in the magnitude of carbon reservoirs and fluxes under glacial conditions. Here we use oxygen isotope measurements from air trapped in ice cores and ocean carbon-cycle modelling to estimate terrestrial and oceanic gross primary productivity during the Last Glacial Maximum. We find that the rate of gross terrestrial primary production during the Last Glacial Maximum was about 40+/-10 Pg C yr-1, half that of the pre-industrial Holocene. Despite the low levels of photosynthesis, we estimate that the late glacial terrestrial biosphere contained only 330 Pg less carbon than pre-industrial levels. We infer that the area covered by carbon-rich but unproductive biomes such as tundra and cold steppes was significantly larger during the Last Glacial Maximum, consistent with palaeoecological data. Our data also indicate the presence of an inert carbon pool of 2,300 Pg C, about 700 Pg larger than the inert carbon locked in permafrost today. We suggest that the disappearance of this carbon pool at the end of the Last Glacial Maximum may have contributed to the deglacial rise in atmospheric carbon dioxide concentrations.

  13. An Early Pleistocene Till, Okanagan Valley, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Barendregt, R. W.; Roed, M.; Smith, S.; Sanborn, P.; Greenough, J.; Layer, P. W.; Huscroft, C.; Mathewes, R.; Benowitz, J.; Tessler, D.

    2011-12-01

    During construction of a road cut related to the Westside Road Interchange Project in West Kelowna, British Columbia, a till was encountered below one of the Lambly Creek valley basalts. The basalts are composed of a number of flows, ranging in age from 0.97 +- 0.05 Ma to 1.62 +-0.25 Ma based on new and available 40Ar/39Ar dating of basalt ground mass. Paleomagnetic data from all major units at the study site fall within one of the normal subchrons of the late Matuyama Reversed Chron and are in general agreement with the radiometric dates. Chemical signatures of the basalt are nearly identical to similar flows belonging to the Chilcotin Group of plateau lavas. This newly identified Chilcotin flow, combined with coeval flows at other locations imply that Chilcotin volcanism was more active during the Quaternary than previously thought. The underlying till is up to four metres thick and is mantled by a minimal Ah horizon in a paleosol. The till overlies laminated and cross bedded fluvial silty sand up to five metres thick that displays injection features and minor faulting. A layer of stratified gravel underlain by gray banded clay of unknown thickness underlies the sand. The till represents the earliest evidence of glaciation in the Okanagan Valley. Till fabric analysis indicates a southeasterly flow of this glacier. The present study site has yielded radiometric ages and polarities similar to those described by Mathews and Rouse for the Dog Creek locality, 320 km to the northwest in south-central British Columbia, where basalts occur below and above glacial deposits. The newly identified glacial till, here referred to as the Westbank First Nations till, is discussed in relation to other Early Pleistocene glaciations in the Cordillera and to the global paleoclimate record. Key Words: Early Pleistocene glaciations, Cordilleran glaciations in western Canada, magnetostratigraphy of glacial sediments, Lambly Creek basalt, Chilcotin Group, Ar/Ar ages of basalts

  14. A Late Pleistocene sea level stack

    NASA Astrophysics Data System (ADS)

    Spratt, Rachel M.; Lisiecki, Lorraine E.

    2016-04-01

    Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0 to 430 ka and five records from 0 to 798 ka. The first principal component, which we use as the stack, describes ˜ 80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). Bootstrapping and random sampling yield mean uncertainty estimates of 9-12 m (1σ) for the scaled stack. Sea level change accounts for about 45 % of the total orbital-band variance in benthic δ18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the δ18O of seawater.

  15. Late Pleistocene carbonate dissolution in the Venezuela Basin, Caribbean Sea

    SciTech Connect

    Cofer-Shabica, N.B.; Peterson, L.C.

    1985-01-01

    Piston cores from water depths greater than 4000 m in the Venezuela Basin (Caribbean Sea) provide continuous late Pleistocene records of carbonate dissolution and accumulation. The authors examination of multiple dissolution indices indicate that, at least for the last 150,000 years, dissolution of carbonate in the Venezuela Basin has been more intense during interglacial than glacial periods, a pattern opposite to more general observations from the deep Atlantic and Gulf of Mexico. By virtue of its shallow sill depth (1815 m), the Venezuela Basin is relatively isolated from the mainstream of Atlantic thermohaline circulation, and presently is filled with homogeneous, relatively warm (3.8/sup 0/C) waters primarily derived from Upper North Atlantic Deep Water. During the last glacial, the enhanced preservation of carbonate in the Venezuela Basin suggests the presence of a less corrosive, more oxygenated water mass in the Atlantic near sill depth. However, this simple interpretations is potentially complicated by past changes in the rain of biogenic materials from surface waters to the deep basin in what must be an essentially closed system below sill depth. Their observations of increased interglacial dissolution may help to explain previously noted discrepancies in the local glacial to interglacial amplitude of delta/sup 18/O variations recorded by coccoliths and planktonic foraminifera.

  16. Atmosphere-ocean linkages in the eastern equatorial Pacific over the early Pleistocene

    NASA Astrophysics Data System (ADS)

    Povea, Patricia; Cacho, Isabel; Moreno, Ana; Pena, Leopoldo D.; Menéndez, Melisa; Calvo, Eva; Canals, Miquel; Robinson, Rebecca S.; Méndez, Fernando J.; Flores, Jose-Abel

    2016-05-01

    Here we present a new set of high-resolution early Pleistocene records from the eastern equatorial Pacific (EEP). Sediment composition from Ocean Drilling Program Sites 1240 and 1238 is used to reconstruct past changes in the atmosphere-ocean system. Particularly remarkable is the presence of laminated diatom oozes (LDOs) during glacial periods between 1.85 and 2.25 Ma coinciding with high fluxes of opal and total organic carbon. Relatively low lithic particles (coarse and poorly sorted) and iron fluxes during these glacial periods indicate that the increased diatom productivity did not result from dust-stimulated fertilization events. We argue that glacial fertilization occurred through the advection of nutrient-rich waters from the Southern Ocean. In contrast, glacial periods after 1.85 Ma are characterized by enhanced dust transport of finer lithic particles acting as a new source of nutrients in the EEP. The benthic ecosystem shows dissimilar responses to the high productivity recorded during glacial periods before and after 1.85 Ma, which suggests that the transport processes delivering organic matter to the deep sea also changed. Different depositional processes are interpreted to be the result of two distinct glacial positions of the Intertropical Convergence Zone (ITCZ). Before 1.85 Ma, the ITCZ was above the equator, with weak local winds and enhanced wet deposition of dust. After 1.85 Ma, the glacial ITCZ was displaced northward, thus bringing stronger winds and stimulating upwelling in the EEP. The glacial period at 1.65 Ma with the most intense LDOs supports a rapid southward migration of the ITCZ comparable to those glacial periods before 1.85 Ma.

  17. Constraining Late Pleistocene Pluvial Lake Chronologies in Northeastern Nevada

    NASA Astrophysics Data System (ADS)

    Munroe, J. S.; Laabs, B. J.

    2011-12-01

    The presence of lakes in closed basins of the northern Great Basin during pluvial episodes of the Pleistocene has been recognized for over a century. Some of these lakes, such as Bonneville in western Utah and Lahontan in western Nevada, were large, and their histories are well constrained by field mapping, stratigraphic investigations, and geochronology. Dozens of other lakes with smaller dimensions are known to have existed, however with few exceptions their histories are virtually unknown. This situation is unfortunate because smaller, hydrologically closed lakes should be particularly sensitive to climatic changes that shifted the balance of precipitation and evaporation. Records of their fluctuations, therefore, could provide important information about atmospheric reorganization during the last glacial-interglacial transition. Ongoing work in northeastern Nevada is aimed at developing these records through detailed mapping, investigation of natural exposures and artificial excavations, and radiocarbon dating. Gastropod shells recovered from two sites along a beach ridge in the northeast Independence Valley indicate that Lake Clover reached its late Pleistocene highstand between 14,400 and 14,200 14C years BP (~17.5 cal. ka BP). Similarly, radiocarbon dating of gastropod shells from a beach ridge in the Ruby Valley indicates that Lake Franklin was near its late Pleistocene highstand at 13,400 14C years BP (~16.4 cal. ka BP). These ages are essentially synchronous with the highstands of Lakes Newark and Jakes ~150 km to the south, overlap with the hydrologic maximum of Lake Bonneville, and appear to predate the highstand of Lake Lahontan. Additional radiocarbon dating will refine these age relationships and attempt to constrain the timing of stillstands during the overall regression of these lakes in the latest Pleistocene.

  18. Abrupt glacial climate shifts controlled by ice sheet changes.

    PubMed

    Zhang, Xu; Lohmann, Gerrit; Knorr, Gregor; Purcell, Conor

    2014-08-21

    During glacial periods of the Late Pleistocene, an abundance of proxy data demonstrates the existence of large and repeated millennial-scale warming episodes, known as Dansgaard-Oeschger (DO) events. This ubiquitous feature of rapid glacial climate change can be extended back as far as 800,000 years before present (BP) in the ice core record, and has drawn broad attention within the science and policy-making communities alike. Many studies have been dedicated to investigating the underlying causes of these changes, but no coherent mechanism has yet been identified. Here we show, by using a comprehensive fully coupled model, that gradual changes in the height of the Northern Hemisphere ice sheets (NHISs) can alter the coupled atmosphere-ocean system and cause rapid glacial climate shifts closely resembling DO events. The simulated global climate responses--including abrupt warming in the North Atlantic, a northward shift of the tropical rainbelts, and Southern Hemisphere cooling related to the bipolar seesaw--are generally consistent with empirical evidence. As a result of the coexistence of two glacial ocean circulation states at intermediate heights of the ice sheets, minor changes in the height of the NHISs and the amount of atmospheric CO2 can trigger the rapid climate transitions via a local positive atmosphere-ocean-sea-ice feedback in the North Atlantic. Our results, although based on a single model, thus provide a coherent concept for understanding the recorded millennial-scale variability and abrupt climate changes in the coupled atmosphere-ocean system, as well as their linkages to the volume of the intermediate ice sheets during glacials. PMID:25119027

  19. Abrupt glacial climate shifts controlled by ice sheet changes

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Lohmann, Gerrit; Knorr, Gregor; Purcell, Conor

    2014-08-01

    During glacial periods of the Late Pleistocene, an abundance of proxy data demonstrates the existence of large and repeated millennial-scale warming episodes, known as Dansgaard-Oeschger (DO) events. This ubiquitous feature of rapid glacial climate change can be extended back as far as 800,000 years before present (BP) in the ice core record, and has drawn broad attention within the science and policy-making communities alike. Many studies have been dedicated to investigating the underlying causes of these changes, but no coherent mechanism has yet been identified. Here we show, by using a comprehensive fully coupled model, that gradual changes in the height of the Northern Hemisphere ice sheets (NHISs) can alter the coupled atmosphere-ocean system and cause rapid glacial climate shifts closely resembling DO events. The simulated global climate responses--including abrupt warming in the North Atlantic, a northward shift of the tropical rainbelts, and Southern Hemisphere cooling related to the bipolar seesaw--are generally consistent with empirical evidence. As a result of the coexistence of two glacial ocean circulation states at intermediate heights of the ice sheets, minor changes in the height of the NHISs and the amount of atmospheric CO2 can trigger the rapid climate transitions via a local positive atmosphere-ocean-sea-ice feedback in the North Atlantic. Our results, although based on a single model, thus provide a coherent concept for understanding the recorded millennial-scale variability and abrupt climate changes in the coupled atmosphere-ocean system, as well as their linkages to the volume of the intermediate ice sheets during glacials.

  20. Plio-Pleistocene stratigraphy and relative sea level estimates: an emerging global perspective

    NASA Astrophysics Data System (ADS)

    Hearty, Paul; O'Leary, Michael; Rovere, Alessio; Raymo, Maureen; Sandstrom, Michael

    2015-04-01

    The historical rise of atmospheric CO2 to over 400 ppmv amplifies the need to better understand natural systems during past warmer interglacials. This change over the past 150 years approximates the CO2 range of full glacial-interglacial cycles. Resulting future global impacts are likely, and accurate geological field data would help us better understand the past behavior of sea level (SL) and ice sheets. The middle Pliocene warm period (MPWP) offers an approximate analogue for a 400-ppmv world. Before PLIOMAX (www.pliomax.org), only a handful of estimates of relative sea levels (RSL) along with considerable uncertainties were available for the MPWP. Precise elevations of Plio-Pleistocene RSL indicators were measured with decimeter accuracy using an OmniStar dGPS at sites in Australia, South Africa, Argentina, and other seemingly stable locations. High-resolution SL indicators include wave abrasion surfaces, sub- and intertidal sedimentary structures, and in situ marine invertebrates such as shallow water oysters and barnacles. In addition, thousands of km of terraced coastline was surveyed with dGPS between study sites. The coastal geomorphic expression of Pliocene SL is profound. From ~5 to 3 Ma, high frequency orbitally-paced, low amplitude SL oscillations acted as a shoreline "buzz saw" on hard bedrock, forming extensive high terraces. In high sediment environments such as that of the southeast US Atlantic Coastal Plain, relatively stable Pliocene ocean levels trapped huge volumes of fluvial sediments in the coastal zone, resulting in broad sandy terraces and extensive dune fields. However, glacio-isostatic adjustment (GIA), dynamic topography (DT), and other post-depositional processes have warped these marine terraces by tens of meters since the Pliocene (Raymo et al. 2011, Rovere et al 2014). The PLIOMAX team has documented precise RSLs from numerous global sites that clearly indicate that global ice volume was significantly reduced during intervals of the

  1. Last glacial aeolian dynamics at the Titel loess plateau (Vojvodina, Serbia)

    NASA Astrophysics Data System (ADS)

    Marković, S. B.; Bokhorst, M. P.; Machalett, B.; Štrbac, D.; Hambach, U.; Basarin, B.; Svirčev, Z.; Stevens, T.; Frechen, M.; Vandenberghe, J.

    2009-04-01

    The Titel loess plateau (Vojvodina, Serbia) is situated at the confluence of the rivers Danube and Tisa, in the southeastern part of the Bačka subregion. Various phases of fluvial erosion have shaped the ellipsoid form of the plateau, which is characterized by steep slopes on the margins. The Titel loess plateau is a unique geomorphologic feature, further emphasising the wide diversity of the loess landforms. The plateau is an island of loess with a maximum length of about 16 km and a maximum width of 7.2 km. Thick loess deposits of between 35 and 55 m are intercalated by 5 main pedocomplexes likely deposited thought the last 5 glacial/interglacial cycles. Steep loess cliffs expose several important sections for understanding climatic and environmental change during the middle and late Pleistocene in the region. The succession of palaeosols through the sequence strongly suggests a transition from humid interglacial climates in the middle Pleistocene, to drier interglacial climates in the late Pleistocene. Past aeolian dynamics have been reconstructed using magnetic susceptibility, grain size, geochemical and malacological investigations by depth in the thick last glacial unit. Luminescence dating and magnetic susceptibility inter-profile correlation provide the chronological framework. Lower last glacial loess unit V-L1L2 is loosely cemented porous sandy loess, with occasional fine laminations and thin, fine sand beds. Identified malacofauna indicates very dry climatic conditions and poor steppic vegetation. It is hypothesized that while the last glacial vegetation cover is extremely sparse, significant sedimentation rates during the lower last glacial can be explained by the presence of a cyanobacterial crust. Protection of loess sediments from deflation by the presence of a cyanobacterial crust is observed at present in loess quarries (Ruma, Crvenka, Petrovaradin). The middle glacial was warmer and relatively moist, as indicated by an increase in clay content

  2. The Last Interglacial-Glacial cycle (MIS 5-2) re-examined based on long proxy records from central and northern Europe

    NASA Astrophysics Data System (ADS)

    Helmens, Karin F.

    2014-02-01

    Current multi-proxy studies on a long sediment sequence preserved at Sokli (N Finland), i.e. in the central area of Fennoscandian glaciations, are drastically changing classic ideas of glaciations, vegetation and climate in northern Europe during the Late Pleistocene. The sediments in the Sokli basin have escaped major glacial erosion due to non-typical bedrock conditions. In this review, the Sokli record is compared in great detail with other long proxy records from central, temperate and northern, boreal Europe. These comprise the classic records of La Grande Pile (E France) and Oerel (N Germany) and more recently obtained records from Horoszki Duże (E Poland) and Lake Yamozero (NW Russia). The focus of the review is on pollen, lithology and macrofossil- and insect-based temperature inferences. The long records are further compared with recent proxy data from nearby terrestrial sites as well as with the rapidly accumulating high-resolution proxy data from the ocean realm. The comparison allows a re-examination of the environmental history and climate evolution of the Last Interglacial-Glacial (LI-G) cycle (MIS 5-2). It shows that environmental and climate conditions during MIS 5 (ca 130-70 ka BP) were distinctly different from those during MIS 4-2 (ca 70-15 ka BP). MIS 5 is characterized by three long forested intervals (broadly corresponding to MIS 5e, 5c, 5a), both in temperate and northern boreal Europe. These mild periods were interrupted by two short, relatively cold and dry intervals (MIS 5d and 5b) with mountain-centered glaciation in Fennoscandia. Millennial scale climate events were superimposed upon these longer lasting climate fluctuations. The time interval encompassing MIS 4-2 shows open vegetation. It is characterized by two glacial maxima (MIS 4 and 2) with sub-continental scale glaciation over northern Europe and dry conditions in strongly continental eastern European settings. High amplitude climate oscillations of millennial duration

  3. Glacial refugia, recolonization patterns and diversification forces in Alpine-endemic Megabunus harvestmen.

    PubMed

    Wachter, Gregor A; Papadopoulou, Anna; Muster, Christoph; Arthofer, Wolfgang; Knowles, L Lacey; Steiner, Florian M; Schlick-Steiner, Birgit C

    2016-06-01

    The Pleistocene climatic fluctuations had a huge impact on all life forms, and various hypotheses regarding the survival of organisms during glacial periods have been postulated. In the European Alps, evidence has been found in support of refugia outside the ice shield (massifs de refuge) acting as sources for postglacial recolonization of inner-Alpine areas. In contrast, evidence for survival on nunataks, ice-free areas above the glacier, remains scarce. Here, we combine multivariate genetic analyses with ecological niche models (ENMs) through multiple timescales to elucidate the history of Alpine Megabunus harvestmen throughout the ice ages, a genus that comprises eight high-altitude endemics. ENMs suggest two types of refugia throughout the last glacial maximum, inner-Alpine survival on nunataks for four species and peripheral refugia for further four species. In some geographic regions, the patterns of genetic variation are consistent with long-distance dispersal out of massifs de refuge, repeatedly coupled with geographic parthenogenesis. In other regions, long-term persistence in nunataks may dominate the patterns of genetic divergence. Overall, our results suggest that glacial cycles contributed to allopatric diversification in Alpine Megabunus, both within and at the margins of the ice shield. These findings exemplify the power of ENM projections coupled with genetic analyses to identify hypotheses about the position and the number of glacial refugia and thus to evaluate the role of Pleistocene glaciations in driving species-specific responses of recolonization or persistence that may have contributed to observed patterns of biodiversity. PMID:27037513

  4. Reduced ventilation and enhanced magnitude of the deep Pacific carbon pool during the last glacial period

    NASA Astrophysics Data System (ADS)

    Skinner, L.; McCave, I. N.; Carter, L.; Fallon, S.; Scrivner, A. E.; Primeau, F.

    2015-02-01

    It has been proposed that the ventilation of the deep Pacific carbon pool was not significantly reduced during the last glacial period, posing a problem for canonical theories of glacial-interglacial CO2 change. However, using radiocarbon dates of marine tephra deposited off New Zealand, we show that deep- (> 2000 m) and shallow sub-surface ocean-atmosphere 14C age offsets (i.e. "reservoir-" or "ventilation" ages) in the southwest Pacific increased by ˜1089 and 337 yrs respectively, reaching ˜2689 and ˜1037 yrs during the late glacial. A comparison with other radiocarbon data from the southern high-latitudes suggests that broadly similar changes were experienced right across the Southern Ocean. If, like today, the Southern Ocean was the main source of water to the glacial ocean interior, these observations would imply a significant change in the global radiocarbon inventory during the last glacial period, possibly equivalent to an increase in the average radiocarbon age > 2 km of ˜ 700 yrs. Simple mass balance arguments and numerical model sensitivity tests suggest that such a change in the ocean's mean radiocarbon age would have had a major impact on the marine carbon inventory and atmospheric CO2, possibly accounting for nearly half of the glacial-interglacial CO2 change. If confirmed, these findings would underline the special role of high latitude shallow sub-surface mixing and air-sea gas exchange in regulating atmospheric CO2 during the late Pleistocene.

  5. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations

    NASA Astrophysics Data System (ADS)

    Lund, D. C.; Asimow, P. D.; Farley, K. A.; Rooney, T. O.; Seeley, E.; Jackson, E. W.; Durham, Z. M.

    2016-01-01

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Melt production is apparently modulated by glacial-interglacial changes in sea level, raising the possibility that magmatic flux acts as a negative feedback on ice-sheet size. The timing of melt variability is poorly constrained, however, precluding a clear link between ridge magmatism and Pleistocene climate transitions. Here we present well-dated sedimentary records from the East Pacific Rise that show evidence of enhanced hydrothermal activity during the last two glacial terminations. We suggest that glacial maxima and lowering of sea level caused anomalous melting in the upper mantle and that the subsequent magmatic anomalies promoted deglaciation through the release of mantle heat and carbon at mid-ocean ridges.

  6. Enhanced East Pacific Rise hydrothermal activity during the last two glacial terminations.

    PubMed

    Lund, D C; Asimow, P D; Farley, K A; Rooney, T O; Seeley, E; Jackson, E W; Durham, Z M

    2016-01-29

    Mid-ocean ridge magmatism is driven by seafloor spreading and decompression melting of the upper mantle. Melt production is apparently modulated by glacial-interglacial changes in sea level, raising the possibility that magmatic flux acts as a negative feedback on ice-sheet size. The timing of melt variability is poorly constrained, however, precluding a clear link between ridge magmatism and Pleistocene climate transitions. Here we present well-dated sedimentary records from the East Pacific Rise that show evidence of enhanced hydrothermal activity during the last two glacial terminations. We suggest that glacial maxima and lowering of sea level caused anomalous melting in the upper mantle and that the subsequent magmatic anomalies promoted deglaciation through the release of mantle heat and carbon at mid-ocean ridges. PMID:26823422

  7. Late Pleistocene palaeoclimatic and palaeoenvironmental reconstruction of the Dead Sea area (Israel), based on speleothems and cave stromatolites

    NASA Astrophysics Data System (ADS)

    Sorin, Lisker; Anton, Vaks; Miryam, Bar-Matthews; Roi, Porat; Amos, Frumkin

    2010-05-01

    Calcite speleothems are a hitherto hardly documented occurrence in the nowadays arid to hyper-arid rain-shadow Dead Sea area of eastern Israel. Speleothem ages (U-Th) from two caves on the Dead Sea Fault Escarpment and two caves from arid rain-shadow areas surrounding the Dead Sea, span the last three glacial cycles from ca 354 to 12 ka and suggest episodic moist local palaeoclimate mainly during glacial periods of Marine Isotopic Stages (MIS) 6 and 4 to 2. Previously reported U-Th ages of stromatolites deposited in the Late Pleistocene Lake Lisan and preserved in caves of the Dead Sea Fault Escarpment, suggest that regional relatively moist climate affected the lake catchment area during the late part of (relatively warm) MIS-3 lasting until middle (cold) MIS-2, as well as at the MIS-5 to 4 (interglacial-glacial) transition. Speleothem deposition periods spanning the 38.4 ± 0.5 to 16.4 ± 0.3 ka time interval, i.e. late MIS-3 to early MIS-2, representing moist periods in the lake area, are coeval to regional moist conditions inferred by the stromatolite record. A direct connection is thus implied between local and regional climate at the latest Pleistocene based on correlation between two independent data sets. This connection implies that glacial climate has generally been moister than interglacial climate during the last glacial-interglacial cycle at both local and regional scales around the Dead Sea and its predecessors.

  8. Geomorphic controls on Pleistocene knickpoint migration in Alpine valleys

    NASA Astrophysics Data System (ADS)

    Leith, Kerry; Fox, Matt; Moore, Jeffrey R.; Brosda, Julian; Krautblatter, Michael; Loew, Simon

    2014-05-01

    Recent insights into sub-glacial bedrock stress conditions suggest that the erosional efficiency of glaciers may reduce markedly following a major erosional cycle [Leith et al., 2013]. This implies that the formation of large glacial valleys within the Alps is likely to have occurred shortly after the onset of 100 ky glacial-interglacial cycles (at the mid-Pleistocene Revolution (MPR)). The majority of landscape change since this time may have therefore been driven by sub-aerial processes. This hypothesis is supported by observations of hillslope and channel morphology within Canton Valais (Switzerland), where major tributary valleys display a common morphology along their length, hinting at a shared geomorphic history. Glaciers currently occupy the headwaters of many catchments, while the upper reaches of rivers flow across extensive alluvial planes before abruptly transitioning to steep channels consisting of mixed bedrock and talus fan deposits. The rivers then converge to flow out over the alluvial plane of the Rhone Valley. Characteristically rough topographies within the region are suggested to mark the progressive transition from a glacial to fluvially-dominated landscape, and correlate well with steepened river channel sections determined from a 2.5 m resolution LiDAR DEM. We envisage a landscape in which ongoing tectonic uplift drives the emergence of Alpine bedrock through massive sedimentary valley infills (currently concentrated in the Rhone Valley), whose elevation is fixed by the consistent fluvial baselevel at Lake Geneva. As fluvial incision ceases at the onset of glaciation, continued uplift causes the formation of knickpoints at the former transition from bedrock to sedimentary infill. These knickpoints will then propagate upstream during subsequent interglacial periods. By investigating channel morphologies using an approach based on the steady-state form of the stream power equation, we can correlate steepened channel reaches (degraded

  9. Marine ice sheets of Pleistocene age on the East Siberian Continental Margin (Invited)

    NASA Astrophysics Data System (ADS)

    Niessen, F.; Hong, J.; Hegewald, A.; Matthiessen, J. J.; Stein, R. H.; Kim, H.; Kim, S.; Jensen, L.; Jokat, W.; Nam, S.; Kang, S.

    2013-12-01

    Based on swath bathymetry, sediment echosounding, seismic profiling and sediment coring we present results of the RV "Polarstern' cruise ARK-XIII/3 (2008) and RV "Araon" cruise ARA03B (2012), which investigated an area between the Chukchi Borderland and the East Siberian Sea between 165°W and 170°E. At the southern end of the Mendeleev Ridge, close to the Chukchi and East Siberian shelves, evidence is found for the existence of Pleistocene ice sheets/ice shelves, which have grounded several times in up to 1200 m present water depth. We found mega-scale glacial lineations associated with deposition of glaciogenic wedges and debris-flow deposits indicative of sub-glacial erosion and deposition close to the former grounding lines. Glacially lineated areas are associated with large-scale erosion, accentuated by a conspicuous truncation of pre-glacial strata typically capped with mostly thin layers of diamicton draped by pelagic sediments. Our tentative age model suggests that the youngest and shallowest grounding event of an ice sheet should be within Marine Isotope Stage (MIS) 3. The oldest and deepest event predates MIS 6. According to our results, ice sheets of more than one km in thickness continued onto, and likely centered over, the East Siberian Shelf. They were possibly linked to previously suggested ice sheets on the Chukchi Borderland and the New Siberian Islands. We propose that the ice sheets extended northward as thick ice shelves, which grounded on the Mendeleev Ridge to an area up to 78°N within MIS 5 and/or earlier. These results have important implication for the former distribution of thick ice masses in the Arctic Ocean during the Pleistocene. They are relevant for global sea-level variations, albedo, ocean-atmosphere heat exchange, freshwater export from the Arctic Ocean at glacial terminations and the formation of submarine permafrost. The existence of km-thick Pleistocene ice sheets in the western Arctic Ocean during glacial times predating

  10. Coalescent-based hypothesis testing supports multiple Pleistocene refugia in the Pacific Northwest for the Pacific giant salamander (Dicamptodon tenebrosus).

    PubMed

    Steele, Craig A; Storfer, Andrew

    2006-08-01

    Phylogeographic patterns of many taxa are explained by Pleistocene glaciation. The temperate rainforests within the Pacific Northwest of North America provide an excellent example of this phenomenon, and competing phylogenetic hypotheses exist regarding the number of Pleistocene refugia influencing genetic variation of endemic organisms. One such endemic is the Pacific giant salamander, Dicamptodon tenebrosus. In this study, we estimate this species' phylogeny and use a coalescent modeling approach to test five hypotheses concerning the number, location and divergence times of purported Pleistocene refugia. Single refugium hypotheses include: a northern refugium in the Columbia River Valley and a southern refugium in the Klamath-Siskiyou Mountains. Dual refugia hypotheses include these same refugia but separated at varying times: last glacial maximum (20,000 years ago), mid-Pleistocene (800,000 years ago) and early Pleistocene (1.7 million years ago). Phylogenetic analyses and inferences from nested clade analysis reveal distinct northern and southern lineages expanding from the Columbia River Valley and the Klamath-Siskiyou Mountains, respectively. Results of coalescent simulations reject both single refugium hypotheses and the hypothesis of dual refugia with a separation date in the late Pleistocene but not hypotheses predicting dual refugia with separation in early or mid-Pleistocene. Estimates of time since divergence between northern and southern lineages also indicate separation since early to mid-Pleistocene. Tests for expanding populations using mismatch distributions and 'g' distributions reveal demographic growth in the northern and southern lineages. The combination of these results provides strong evidence that this species was restricted into, and subsequently expanded from, at least two Pleistocene refugia in the Pacific Northwest. PMID:16842421

  11. The aftermath of megafaunal extinction: ecosystem transformation in Pleistocene Australia.

    PubMed

    Rule, Susan; Brook, Barry W; Haberle, Simon G; Turney, Chris S M; Kershaw, A Peter; Johnson, Christopher N

    2012-03-23

    Giant vertebrates dominated many Pleistocene ecosystems. Many were herbivores, and their sudden extinction in prehistory could have had large ecological impacts. We used a high-resolution 130,000-year environmental record to help resolve the cause and reconstruct the ecological consequences of extinction of Australia's megafauna. Our results suggest that human arrival rather than climate caused megafaunal extinction, which then triggered replacement of mixed rainforest by sclerophyll vegetation through a combination of direct effects on vegetation of relaxed herbivore pressure and increased fire in the landscape. This ecosystem shift was as large as any effect of climate change over the last glacial cycle, and indicates the magnitude of changes that may have followed megafaunal extinction elsewhere in the world. PMID:22442481

  12. The consequences of pleistocene climate change on lowland neotropical vegetation

    SciTech Connect

    De Oliveira, P.E.; Colinvaux, P.A. )

    1994-06-01

    Palynological reconstructions indicate that lowland tropical America was subject to intense cooling during the last ice-age. The descent of presently montane taxa into the lowlands of Amazonia and Minas Gerais indicate temperature depressions ranging from 5[degrees]C to 9[degrees]C cooler-than-present. The strengthened incursion of southerly airmasses caused a reassortment of vegetation throughout Amazonia. Presently allopatric species are found to have been sympatric as novel forest assemblages and formed and dissolved. Modest drying, perhaps a 20% reduction in precipitation, accounts for all the records that show a Pleistocene expansion of savanna. No evidence is found to support the fragmentation of Amazonian forests during glacial times, and the hypothesis of forest refuges as an explanation of tropical speciation is rejected on empirical grounds.

  13. Live birth among Iguanian lizards predates Pliocene–Pleistocene glaciations

    PubMed Central

    Schulte, James A.; Moreno-Roark, Franck

    2010-01-01

    Among tetrapods, viviparity is estimated to have evolved independently within Squamata (lizards and snakes) more than 100 times, most frequently in species occupying cold climate environments. Because of this relationship with cold climates, it is sometimes assumed that many origins of squamate viviparity occurred over the past 2.5–4 Myr during the Pliocene–Pleistocene glaciations; however, this hypothesis is untested. Divergence-dating analysis on a 733-species tree of Iguanian lizards recovers 20 independent lineages that have evolved viviparity, of which 13 multispecies groups derived live birth prior to glacial advances (8–66 Myr ago). These results place the transitions from egg-laying to live birth among squamates in a well-supported historical context to facilitate examination of the underlying phenotypic and genetic changes associated with this complex shift in reproduction. PMID:19812068

  14. Pleistocene extinctions: haunting the survivors.

    PubMed

    Hofreiter, Michael

    2007-08-01

    For many years, the megafaunal extinctions at the end of the Pleistocene have been assumed to have affected only those species that became extinct. However, recent analyses show that the surviving species may also have experienced losses in terms of genetic and ecological diversity. PMID:17686436

  15. Polymorphism in pleistocene land snails.

    PubMed

    Owen, D F

    1966-04-01

    Under suitable conditions the colors and patterns of the shells of land snails may be preserved for thousands of years. In a late Pleistocene population of Limicolaria martensiana all the major color forms that occur in modern living snails may be distinguished, and the basic polymorphism is at least 8,000 to 10,000 year old. PMID:17830234

  16. Kennebunk glacial advance: A reappraisal

    NASA Astrophysics Data System (ADS)

    Smith, Geoffrey W.

    1981-06-01

    Evidence for the Kennebunk glacial advance (readvance) in southwestern Maine is discussed in light of recent geologic mapping. Orientations of glacially produced lineations record the response of ice to major topographic controls and do not indicate glacial readvance. Minor end moraines and large stratified end moraines associated with deformed marine sediments of the Presumpscot Formation occur throughout the southwestern coastal zone. These features outline the general pattern of ice retreat from this part of the coastal zone and suggest that withdrawal of the last ice from southwestern Maine occurred with minor stillstands and local frontal fluctuations but without significant readvance. The Kennebunk glacial advance (readvance) appears to have been one of many local fluctuations of the ice front during general recession, occurring at about 13,200 yr B.P.

  17. Constraining Middle Pleistocene Glaciations in Birmingham, England; Using Optical Stimulated Luminescence (OSL) Dating.

    NASA Astrophysics Data System (ADS)

    Gibson, S. M.; Gibbard, P. L.; Bateman, M. D.; Boreham, S.

    2014-12-01

    Birmingham is built on a complex sequence of Middle Pleistocene sediments, representing at least three lowland glaciations (MIS12, MIS6, and MIS2). British Geological Survey mapping accounts 75% of the land mass as Quaternary deposits; predominantly glacial-sandy tills, glacial-fluvial sands, clays and organic silts and peats. Understanding the age of fluvial-glacial outwash, related to specific glaciations, is critical in establishing a Geochronology of Birmingham. Shotton (1953) found a series of Middle Pleistocene glacial sediments, termed the Wolstonian, intermediate in age between MIS11 and MIS5e Interglacial's. Uncertainty surrounding the relation to East Anglian sequences developed by Rose (1987) implies Birmingham sequences should be referred to MIS12. Despite this, younger Middle Pleistocene glacial sequences occur in Birmingham, yet uncertainty has deepened over our understanding of the complex, inaccessible sediments, especially as deposits have similar extent with MIS2 sequences. Five Optical Stimulated Luminescence (OSL) dates from three sites around Birmingham have been sampled. East of Birmingham, ice advanced from the Irish Sea and later the North East. In Wolston, a sample of outwash sand, associated with the Thurssington Till, is dated. In Meriden, two samples of outwash sands, associated with a distal Oadby Till, are dated. West of Birmingham, ice advanced from the Welsh Ice Sheet. In Seisdon, two samples of an Esker and outwash sand, associated with a Ridgeacre Till, are dated. Correlation of OSL dates provide an important constraint on understanding the history of Birmingham. Using GSI3D modeling to correlate geochronology and sedimentology, the significance of OSL dating can be understood within the complex sequences (and regional stratigraphy), complimented by Cosmogenic and Palynology dates taken in South West and North East. OSL dating on Birmingham's outwash sands, deposited by extensive repeated Middle Pleistocene glaciations, asserts the

  18. U-series and oxygen isotope chronology of the mid-Pleistocene Lake Amora (Dead Sea basin)

    NASA Astrophysics Data System (ADS)

    Torfstein, Adi; Haase-Schramm, Alexandra; Waldmann, Nicolas; Kolodny, Yehoshua; Stein, Mordechai

    2009-05-01

    This study establishes for the first time the chronology and limnological history of Lake Amora (Dead Sea basin, Israel), whose deposits (the Amora Formation) comprise one of the longest exposed lacustrine records of the Pleistocene time. The Amora Formation consists of sequences of laminated primary aragonite and silty-detritus, Ca-sulfate minerals, halite and clastic units. This sedimentary sequence was uplifted and tilted by the rising Sedom salt diapir, exposing ˜320 m of sediments on the eastern flanks of Mt. Sedom (the Arubotaim Cave (AC) section). The chronology of the AC section is based on U-disequilibrium dating ( 230Th- 234U and 234U- 238U ages) combined with floating δ18O stratigraphy and paleomagnetic constraints. The determination of the 230Th- 234U ages required significant corrections to account for detrital Th and U. These corrections were performed on individual samples and on suites of samples from several stratigraphic horizons. The most reliable corrected ages were used to construct an age-elevation model that was further tuned to the oxygen isotope record of east Mediterranean foraminifers (based on the long-term similarity between the sea and lake oxygen isotope archives). The combined U-series- δ18O age-elevation model indicates that the (exposed) Amora sequence was deposited between ˜740 and 70 ka, covering seven glacial-interglacial cycles (Marine Isotope Stages (MIS) 18 to 5). Taking the last glacial Lake Lisan and the Holocene Dead Sea lacustrine systems as analogs of the depositional-limnological environment of Lake Amora, the latter oscillated between wet (glacial) and more arid (interglacial) conditions, represented by sequences of primary evaporites (aragonite and gypsum that require enhanced supply of freshwater to the lakes) and clastic sediments, respectively. The lake evolved from a stage of rapid shifts between high and low-stand conditions during ˜740 to 550 ka to a sabkha-like environment that existed (at the AC site

  19. Pleistocene pollen stratigraphy from borehole 81/34, devil's hole area, central north sea

    NASA Astrophysics Data System (ADS)

    Ekman, Sten R.

    1998-09-01

    Twelve pollen assemblage zones are identified in a 229 m deep borehole (BH 81/34) from the Devil's Hole area in the central North Sea (British sector). The sediment from this borehole is Early to Late Pleistocene in age and the observation of massulae from Azolla filiculoides in sediment with reversed polarity indicates an age younger than the Olduvai geomagnetic event for the entire sequence. The Early Pleistocene sediments were at least partly deposited in the vicinity of a river outlet and can be correlated either with the Eburonian or the Menapian cold stage and with the Bavel interglacial and the Linge glacial within the Bavelian stage in the Dutch stratigraphy. The Middle Pleistocene sequence contains an interval rich in Abies, Picea and Pinus, probably deposited during the end of either Cromerian Complex interglacial IV (Noordbergum) or possibly the Holsteinian. The uppermost 80 m of the core contains high frequencies of pre-Quaternary and deteriorated palynomorphs indicating extensive glacial or glaciofluvially reworked sediment.

  20. Pleistocene glaciation leaves deep signature on the freshwater crab Aegla alacalufi in Chilean Patagonia.

    PubMed

    Xu, Jiawu; Pérez-Losada, Marcos; Jara, Carlos G; Crandall, Keith A

    2009-03-01

    Quaternary glacial cycles have played an important role in shaping the biodiversity in temperate regions. This is well documented in Northern Hemisphere, but much less understood for Southern Hemisphere. We used mitochondrial DNA and nuclear elongation factor 1α intron sequences to examine the Pleistocene glacial impacts on the phylogeographical pattern of the freshwater crab Aegla alacalufi in Chilean Patagonia. Phylogenetic analyses, which separated the glaciated populations on eastern continent into a north group (seven populations) and a south group (one population), revealed a shallow phylogenetic structure in the north group but a deep one in the non-glaciated populations on western islands, indicating the significant influence of glaciation on these populations. Phylogenies also identified the Yaldad population on Chiloé Island as a potentially unrecognized new species. The non-glaciated populations showed higher among population genetic divergence than the glaciated ones, but lower population genetic diversity was not detected in the latter. The two glaciated groups, which diverged from the non-glaciated populations at ~96,800-29,500 years ago and ~104,200-73,800 years ago, respectively, seem to have different glacial refugia. Unexpectedly, the non-glaciated islands did not serve as refugia for them. Demographic expansion was detected in the glaciated north group, with a constant population increase after the last glacial maximum. Nested clade analyses suggest a possible colonization from western islands to eastern continent. After arriving on the continent and surviving the last glacial period there, populations likely have expanded from high to low altitude, following the flood of melting ice. Aegla alacalufi genetic diversity has been primarily affected by Pleistocene glaciation and minimally by drainage isolation. PMID:19207249

  1. Ages and inferred causes of late Pleistocene glaciations on Mauna Kea, Hawai'i

    USGS Publications Warehouse

    Pigati, J.S.; Zreda, M.; Zweck, C.; Almasi, P.F.; Elmore, D.; Sharp, W.D.

    2008-01-01

    Glacial landforms on Mauna Kea, Hawai'i, show that the summit area of the volcano was covered intermittently by ice caps during the Late Pleistocene. Cosmogen 36Cl dating of terminal moraines and other glacial landforms indicates that the last two ice caps, called Older Makanaka and Younger Makanaka, retreated from their maximum positions approximately 23ka and 13ka, respectively. The margins and equilibrium line altitudes of these ice caps on the remote, tropical Pacific island were nearly identical, which would seem to imply the same mechanism for ice growth. But modelling of glacier mass balance, combined with palaeotemperature proxy data from the subtropical North Pacific, suggests that the causes of the two glacial expansions may have been different. Older Makanaka airatop Mauna Kea was likely wetter than today and cold, whereas Younger Makanaka times were slightly warmer but significantly wetter than the previous glaciation. The modelled increase in precipitation rates atop Mauna Kea during the Late Pleistocene is consistent with that near sea level inferred from pollen data, which suggests that the additional precipitation was due to more frequent and/ or intense tropical storms associated with eastward-moving cold fronts. These conditions were similar to modern La Ni??a (weak ENSO) conditions, but persisted for millennia rather than years. Increased precipitation rates and the resulting steeper temperature lapse rates created glacial conditions atop Mauna Kea in the absence of sufficient cooling at sea level, suggesting that if similar correlations existed elsewhere in the tropics, the precipitation-dependent lapse rates could reconcile the apparent difference between glacial-time cooling of the tropics at low and high altitudes. Copyright ?? 2008 John Wiley & Sons, Ltd.

  2. Dynamics of Pleistocene population extinctions in Beringian brown bears.

    PubMed

    Barnes, I; Matheus, P; Shapiro, B; Jensen, D; Cooper, A

    2002-03-22

    The climatic and environmental changes associated with the last glaciation (90,000 to 10,000 years before the present; 90 to 10 ka B.P.) are an important example of the effects of global climate change on biological diversity. These effects were particularly marked in Beringia (northeastern Siberia, northwestern North America, and the exposed Bering Strait) during the late Pleistocene. To investigate the evolutionary impact of these events, we studied genetic change in the brown bear, Ursus arctos, in eastern Beringia over the past 60,000 years using DNA preserved in permafrost remains. A marked degree of genetic structure is observed in populations throughout this period despite local extinctions, reinvasions, and potential interspecies competition with the short-faced bear, Arctodus simus. The major phylogeographic changes occurred 35 to 21 ka B.P., before the glacial maximum, and little change is observed after this time. Late Pleistocene histories of mammalian taxa may be more complex than those that might be inferred from the fossil record or contemporary DNA sequences alone. PMID:11910112

  3. Optically Stimulated Luminescence Dating of Glacial Outwash Spanning the Last Glacial Cycle on the Western Olympic Peninsula, Washington, USA

    NASA Astrophysics Data System (ADS)

    Marshall, K. J.; Thackray, G. D.; Rittenour, T. M.

    2012-12-01

    Valley glaciers in the Olympic Mountains, Washington coalesced and advanced onto the Pacific coastal lowlands six times during Late Pleistocene time. With each advance, the valley glaciers constructed extensive landforms and thick stratigraphic sequences. Along the coast of the Olympic Peninsula, between the Hoh and Queets Rivers, wave-cut sea cliffs expose alternating sequences of outwash fans formed during periods of glacial advance and marine transgressive facies formed during periods of sea-level high stand. Previous work, encompassing geomorphic mapping of inland and coastal outcrops, stratigraphy, stratigraphic correlation, and radiocarbon dating, established a provisional glacial chronology for the Olympic coast, but was limited to the range of radiocarbon dating. Within the sea cliffs, three primary units of outwash were identified: the Hoh Oxbow (MIS 3), Lyman Rapids (MIS 4 or 5b), and Steamboat Creek outwash (MIS 6 or older). The outwash units are generally bounded by interglacial sea-level high stand sediments or interstadial terrestrial sediment. Our new investigations utilize detailed sedimentology and stratigraphy, mapping of geomorphic sequences, and optically stimulated luminescence (OSL) dating to extend and solidify the coastal glacial chronology. OSL methods provide a means to date outwash sequences directly and enable dating of previously undateable older sediments. The quartz in these sediments appears to be fully bleached and retains the luminescence signal. Furthermore, at two locations where both radiocarbon and OSL methods were applied on the same sediments, the ages are indistinguishable, indicating that OSL is reliable in these settings. Preliminary OSL ages from the outwash units indicate valley glacier advances on the Olympic Peninsula during Hoh Oxbow (MIS 3, ca. 30-50 ka), Lyman Rapids (MIS 4, ca. 50-80 ka), and Steamboat Creek (MIS 5d or older, >/= 105 ka). Additionally, general sediment fining up-section suggests a decrease in

  4. Glacially induced stresses in sedimentary rocks of northern Poland

    NASA Astrophysics Data System (ADS)

    Trzeciak, Maciej; Dąbrowski, Marcin

    2016-04-01

    During the Pleistocene large continental ice sheets developed in Scandinavia and North America. Ice-loading caused bending of the lithosphere and outward flow in the mantle. Glacial loading is one of the most prominent tectono-mechanical event in the geological history of northern Poland. The Pomeranian region was subjected several times to a load equivalent of more than 1 km of rocks, which led to severe increase in both vertical and horizontal stresses in the upper crustal rocks. During deglaciation a rapid decrease in vertical stress is observed, which leads to destabilization of the crust - most recent postglacial faults scarps in northern Sweden indicate glacially induced earthquakes of magnitude ~Mw8. The presence of the ice-sheet altered as well the near-surface thermal structure - thermal gradient inversion is still observable in NW Poland. The glacially related processes might have left an important mark in the sedimentary cover of northern Poland, especially with regard to fracture reopening, changes in stress state, and damage development. In the present study, we model lithospheric bending caused by glacial load, but our point of interest lies in the overlying sediments. Typical glacial isostatic studies model the response of (visco-) elastic lithosphere over viscoelastic or viscous asthenosphere subjected to external loads. In our model, we introduce viscoelastic sedimentary layers at the top of this stack and examine the stress relaxation patterns therein. As a case study for our modelling, we used geological profiles from northern Poland, near locality of Wejherowo, which are considered to have unconventional gas potential. The Paleozoic profile of this area is dominated by almost 1 km thick Silurian-Ordovician shale deposits, which are interbedded with thin and strong limestone layers. This sequence is underlain by Cambrian shales and sandstones, and finally at ~3 km depth - Precambrian crystalline rocks. Above the Silurian there are approximately

  5. Millennial-scale varnish microlamination dating of late Pleistocene geomorphic features in the drylands of western USA

    NASA Astrophysics Data System (ADS)

    Liu, Tanzhuo; Broecker, Wallace S.

    2013-04-01

    period of the last interglacial (MIS 5a) and the other finishing at 66.15 ka during the wet period of the last glacial (MIS 4). The VML and 36Cl dating of the distal Q2c fan surfaces on Hanaupah Canyon fan reveal two episodes of large-scale fan aggradation ended at 72 + 24/- 20 ka and 73.55 ka during the wet period of MIS 4. Fanhead incision and associated within-channel or fantoe aggradation are found to take place during the relatively dry period of the glacial-to-interglacial climatic transition (12-24 ka) and the Holocene interglacial dry period (0-12 ka). These data indicate that, on the millennial to sub-Milankovitch timescale (~ 103-104 years), fan aggradation is a discrete sedimentational process under various climatic conditions. Because fan aggradation is ultimately controlled by the intensity and frequency of precipitation events - which in turn are modulated by major climatic oscillations such as Heinrich events, Dansgaard/Oeschger (DO) events, and glacial/interglacial shifts - these major climatic changes could be the pacemaker of regionally contemporaneous large-area fan segmentation.

  6. Pliocene-Pleistocene paleo-productivity changes in the Bering Sea: results from IODP Expedition 323 (Invited)

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Ravelo, A. C.; Alvarez Zarikian, C. A.; Nagashima, T.; Kanematsu, Y.; Hioki, Y.; Ikehara, M.; Kim, S.; Khim, B.; Aiello, I. W.; Onodera, J.; Radi, T.; Sakamoto, T.; Stroynowski, Z. N.; Asahi, H.; Chen, M.; Colmenero-Hidalgo, E.; Husum, K.; Ijiri, A.; Kender, S.; Lund, S.; Okada, M.; Okazaki, Y.; Horikawa, K.; Seki, O.; Iodp Expedition 323 Shipboard Scientists

    2010-12-01

    IODP Exp 323 drilled 7 sites to study Bering Sea paleoceanography, and recovered 5741 m of high quality sediments with high sedimentation rates covering the last 5 myrs. The sites included hemipelagic Bowers Ridge and a N-S transect of slope sites proximal to the Bering shelf, covering water depths from 818 to 3174 m. The bulk of the cores were obtained with APC and thus the disturbance was minimal so that detailed high resolution paleoceanographic studies are feasible for the first time in this high latitude climate sensitive Pacific marginal sea setting. Objectives include the characterization of changes that occurred in the Bering Sea around the times of (1) onset of the Northern Hemisphere Glaciation (NHG, 2.7 Ma); (2) Mid Pleistocene Transition (MPT, ca. 1 Ma); and (3) glacial-interglacial cycles (<1 Ma). Changes in biological productivity can be depicted by studying diatom assemblages together with biogenic opal concentrations. Extent of sea-ice cover can be monitored by examining sea-ice related diatoms, dinoflagellates and Cycladophora davisiana, an intermediate water dwelling radiolarian taxon whose %values increase when sea-ice cover becomes extensive. Biogenic opal values typically range from 10 to 60% at Bowers Ridge, whereas those at slope sites typically range from 5 to 25% because of dilution by siliciclastics despite high productivity underneath the Green Belt (with the exception of site U1339 which has ca. 50% biogenic opal due to its isolated location on a topographic high beyond the shelf break). Sea-ice cover, illustrated by sea-ice related Thalassiosira antarctica spores and others, occurred more extensively at the slope sites and further north than Bowers Ridge, reflecting an anticyclonic circulation pattern in both the Pliocene and Pleistocene. Since the main entry points of the relatively warm Pacific waters of the Alanskan Stream were located at the central to the western end of the Aleutians, Bowers Ridge sites are influenced by Pacific

  7. Pleistocene sea-level fluctuations and human evolution on the southern coastal plain of South Africa

    NASA Astrophysics Data System (ADS)

    Compton, John S.

    2011-03-01

    Humans evolved in Africa, but where and how remain unclear. Here it is proposed that the southern coastal plain (SCP) of South Africa may have served as a geographical point of origin through periodic expansion and contraction (isolation) in response to glacial/interglacial changes in sea level and climate. During Pleistocene interglacial highstands when sea level was above -75 m human populations were isolated for periods of 360-3400 25-yr generations on the SCP by the rugged mountains of the Cape Fold Belt, climate and vegetation barriers. The SCP expands five-fold as sea level falls from -75 to -120 m during glacial maxima to form a continuous, unobstructed coastal plain accessible to the interior. An expanded and wet glacial SCP may have served as a refuge to humans and large migratory herds and resulted in the mixing of previously isolated groups. The expansive glacial SCP habitat abruptly contracts, by as much as one-third in 300 yr, during the rapid rise in sea level associated with glacial terminations. Rapid flooding may have increased population density and competition on the SCP to select for humans who expanded their diet to include marine resources or hunted large animals. Successful adaptations developed on an isolated SCP are predicted to widely disperse during glacial terminations when the SCP rapidly contracts or during the initial opening of the SCP in the transition to glacial maxima. The hypothesis that periodic expansion and contraction of the SCP, as well as the coastal plain of North Africa, contributed to the stepwise origin of our species over the last 800 thousand years (kyr) is evaluated by comparing the archeological, DNA and sea-level records. These records generally support the hypothesis, but more complete and well dated records are required to resolve the extent to which sea-level fluctuations influenced the complex history of human evolution.

  8. Simulating the mid-Pleistocene transition through regolith removal

    NASA Astrophysics Data System (ADS)

    Tabor, Clay R.; Poulsen, Christopher J.

    2016-01-01

    Quaternary δ18O ice-volume proxy records show a transition from high frequency, small-amplitude glacial cycles to low frequency, large-amplitude glacial cycles. This reorganization of the climate system, termed the mid-Pleistocene transition (MPT), is thought to reflect a change in land-ice response to orbital forcing, despite no significant change in orbital cycles during this period. One potential explanation for the MPT proposes that gradual erosion of high-latitude northern hemisphere regolith by multiple cycles of glaciation caused a transition in ice sheet response to external forcing. Here, we explore this "regolith hypothesis" using a complex Earth system model. We show that simulating a transition from deformable sediment to crystalline bedrock produces an evolution in ice-volume response similar to proxy reconstructions of the MPT. The simulated change in ice-volume response is due to a combination of climate and ice-flow changes, with crystalline bedrock producing thicker, colder ice sheets that accumulate more snowfall and have a smaller ablation zone. Further, experiments that include transient eccentricity-amplifying CO2 forcing show only small differences in ice response compared to those with orbital forcing only, suggesting that cycles of CO2 were not the primary cause of the MPT.

  9. Range wide molecular data and niche modeling revealed the Pleistocene history of a global invader (Halyomorpha halys)

    PubMed Central

    Zhu, Geng-Ping; Ye, Zhen; Du, Juan; Zhang, Dan-Li; Zhen, Ya-hui; Zheng, Chen-guang; Zhao, Li; Li, Min; Bu, Wen-Jun

    2016-01-01

    Invasive species’ Pleistocene history contains much information on its present population structure, dispersability and adaptability. In this study, the Pleistocene history of a global invasive pest (Brown Marmorated Stink Bug BMSB, Halyomorpha halys) was unveiled using the coupled approach of phylogeography and ecological niche modelling. Rangewide molecular data suggests that the Taiwan and other native populations had diverged in mid-Pleistocene. In mainland China, the native BMSB did not experience population contraction and divergence during last glacial, but persisted in interconnected populations. Combined Bayesian Skyline Plot (BSP) and niche modelling revealed a rapid expansion occurred during the transition of Last Inter Glacial (LIG) to Last Glacial Maximum (LGM). High genetic diversity and multi-reticular haplotypes network exist in the original sources populations of BMSB invasion in northern China. They were speculated to be colonized from the central China, with many derived haplotypes evolved to adapt the novel environment. The ENM future prediction suggest that BMSB may expand northward to higher latitudes in the US and Europe, because of its high invasive ability, together with the available suitable climate space there. PMID:26996353

  10. Range wide molecular data and niche modeling revealed the Pleistocene history of a global invader (Halyomorpha halys).

    PubMed

    Zhu, Geng-Ping; Ye, Zhen; Du, Juan; Zhang, Dan-Li; Zhen, Ya-hui; Zheng, Chen-guang; Zhao, Li; Li, Min; Bu, Wen-Jun

    2016-01-01

    Invasive species' Pleistocene history contains much information on its present population structure, dispersability and adaptability. In this study, the Pleistocene history of a global invasive pest (Brown Marmorated Stink Bug BMSB, Halyomorpha halys) was unveiled using the coupled approach of phylogeography and ecological niche modelling. Rangewide molecular data suggests that the Taiwan and other native populations had diverged in mid-Pleistocene. In mainland China, the native BMSB did not experience population contraction and divergence during last glacial, but persisted in interconnected populations. Combined Bayesian Skyline Plot (BSP) and niche modelling revealed a rapid expansion occurred during the transition of Last Inter Glacial (LIG) to Last Glacial Maximum (LGM). High genetic diversity and multi-reticular haplotypes network exist in the original sources populations of BMSB invasion in northern China. They were speculated to be colonized from the central China, with many derived haplotypes evolved to adapt the novel environment. The ENM future prediction suggest that BMSB may expand northward to higher latitudes in the US and Europe, because of its high invasive ability, together with the available suitable climate space there. PMID:26996353

  11. Sedimentary architecture of the Amundsen Sea Embayment shelf, West Antarctica, from pre-glacial to glacial processes

    NASA Astrophysics Data System (ADS)

    Gohl, Karsten; Uenzelmann-Neben, Gabriele; Hillenbrand, Claus-Dieter; Larter, Robert; Nitsche, Frank

    2013-04-01

    Studies of the sedimentary architecture and characteristics of Antarctic shelves provide clues of past ice sheet advance-retreat cycles and help improve constraints for paleo-ice dynamic models since early glacial periods. A first seismostratigraphic analysis of the Amundsen Sea Embayment shelf and slope of West Antarctica reveals insights into the structural architecture of the continental margin and shows stages of sediment deposition, erosion and transport history from pre-glacial times to early glaciation and to the most recent glacial periods. The shelf geometry consists of a large pre- and syn-rift basin in the middle shelf region between outcropping basement of the inner shelf and basement ridges and highs beneath the outer shelf. A middle shelf sub-basin exists which may have formed as a result of motion along an early West Antarctic Rift System branch. At least 4 km of pre-glacial strata has been eroded from the present inner shelf and coastal hinterland by ice sheet advances since the onset of glaciation. Some of the eroded sediments were deposited as a progradational wedge extending the outer shelf by 25 to 65 km oceanward of the pre-glacial shelf-break. Comparing the observed seismic characteristics with those of other Antarctic shelf sequences, we assign an Early Cretaceous age for bottom sedimentary unit ASS-1, a Late Cretaceous to Oligocene age for unit ASS-2, an Early to Mid-Miocene age for unit ASS-3, a Mid-Miocene age for unit ASS-4, a Late Miocene to Early Pliocene age for unit ASS-5, and a Pliocene to Pleistocene age for the top unit ASS-6. The survival of buried grounding zone wedges in the upper part of unit ASS-5 of the outer shelf is consistent with the onset of a long warming phase and a retreated ice sheet in the early Pliocene as observed for the Ross Sea shelf and reconstructed from paleo-ice sheet models. Our data also reveal that the paleo-ice flow paths of the central Pine Island Trough system have remained stationary across the

  12. Unstable AMOC during glacial intervals and millennial variability: The role of mean sea ice extent

    NASA Astrophysics Data System (ADS)

    Sévellec, Florian; Fedorov, Alexey V.

    2015-11-01

    A striking feature of paleoclimate records is the greater stability of the Holocene epoch relative to the preceding glacial interval, especially apparent in the North Atlantic region. In particular, strong irregular variability with an approximately 1500 yr period, known as the Dansgaard-Oeschger (D-O) events, punctuates the last glaciation, but is absent during the interglacial. Prevailing theories, modeling and data suggest that these events, seen as abrupt warming episodes in Greenland ice cores and sea surface temperature records in the North Atlantic, are linked to reorganizations of the Atlantic Meridional Overturning Circulation (AMOC). In this study, using a new low-order ocean model that reproduces a realistic power spectrum of millennial variability, we explore differences in the AMOC stability between glacial and interglacial intervals of the 100 kyr glacial cycle of the Late Pleistocene (1 kyr = 1000 yr). Previous modeling studies show that the edge of sea ice in the North Atlantic shifts southward during glacial intervals, moving the region of the North Atlantic Deep Water formation and the AMOC also southward. Here we demonstrate that, by shifting the AMOC with respect to the mean atmospheric precipitation field, such a displacement makes the system unstable, which explains chaotic millennial variability during the glacials and the persistence of stable ocean conditions during the interglacials.

  13. Glacial landforms of the southern Ungava Bay region (Canada): implications for the late-glacial dynamics and the damming of glacial Lake Naskaupi

    NASA Astrophysics Data System (ADS)

    Dube-Loubert, Hugo; Roy, Martin

    2014-05-01

    The Laurentide ice sheet played an important role in the late Pleistocene climate, notably through discharges of icebergs and meltwater. In this context, the Ungava Bay region in northern Quebec-Labrador appears particularly important, especially during the last deglaciation when the retreating ice margin dammed major river valleys, creating large proglacial lakes (e.g., McLean, aux Feuilles). The history of these lakes is closely related to the temporal evolution of the Labrador-Quebec ice dome. There are, however, large uncertainties regarding the position of its ice divide system through time, thereby limiting our understanding of the history of these glacial lakes. Here we focus on glacial and deglacial landforms present in the George River valley, south of Ungava Bay, in order to bring additional constraints on the late-glacial ice dynamics of this region, which also comprised glacial Lake Naskaupi. This work is based on surficial mapping using aerial photos and satellite imagery, combined with extensive fieldwork and sediment sampling. Our investigation showed significant differences in the distribution of glacial landforms across the region. The area east of the George River is characterized by well-developed Naskaupi shorelines while the elevated terrains show a succession of geomorphological features indicative of cold-based ice or ice with low basal velocities. In the easternmost part of this sector, ice flow directional data indicate that the ice was flowing towards ENE, against the regional slope. Eskers show paleocurrent directions indicating a general ice retreat from east to west. In the western part of this sector, near the George River valley, eskers are absent and the region is covered by felsenmeer and ground moraine that likely reflect the presence of a residual ice mass that was no longer dynamic. The presence of a stagnant ice represents the best mechanism to explain the formation of glacial lakes in the George River valley and its main

  14. Could brown bears (Ursus arctos) have survived in Ireland during the Last Glacial Maximum?

    PubMed

    Leonard, Saoirse A; Risley, Claire L; Turvey, Samuel T

    2013-08-23

    Brown bears are recorded from Ireland during both the Late Pleistocene and early-mid Holocene. Although most of the Irish landmass was covered by an ice sheet during the Last Glacial Maximum (LGM), Irish brown bears are known to have hybridized with polar bears during the Late Pleistocene, and it is suggested that the Irish brown bear population did not become extinct but instead persisted in situ through the LGM in a southwestern ice-free refugium. We use historical population modelling to demonstrate that brown bears are highly unlikely to have survived through the LGM in Ireland under any combination of life-history parameters shown by living bear populations, but instead would have rapidly become extinct following advance of the British-Irish ice sheet, and probably recolonized Ireland during the end-Pleistocene Woodgrange Interstadial from a closely related nearby source population. The time available for brown bear-polar bear hybridization was therefore restricted to narrow periods at the beginning or end of the LGM. Brown bears would have been extremely vulnerable to extinction in Quaternary habitat refugia and required areas substantially larger than southwestern Ireland to survive adverse glacial conditions. PMID:23676655

  15. Glacial and periglacial geomorphology and its paleoclimatological significance in three North Ethiopian Mountains, including a detailed geomorphological map

    NASA Astrophysics Data System (ADS)

    Hendrickx, Hanne; Jacob, Miro; Frankl, Amaury; Nyssen, Jan

    2015-10-01

    Geomorphological investigations and detailed mapping of past and present (peri)glacial landforms are required in order to understand the impact of climatic anomalies. The Ethiopian Highlands show a great variety in past and contemporary climate, and therefore, in the occurrence of glacial and periglacial landforms. However, only a few mountain areas have been studied, and detailed geomorphological understanding is lacking. In order to allow a fine reconstruction of the impact of the past glacial cycle on the geomorphology, vegetation complexes, and temperature anomalies, a detailed geomorphological map of three mountain areas (Mt. Ferrah Amba, 12°51‧N 39°29‧E; Mt. Lib Amba, 12°04‧N 39°22‧; and Mt. Abuna Yosef, 12°08‧N 39°11‧E) was produced. In all three study areas, inactive solifluction lobes, presumably from the Last Glacial Maximum (LGM), were found. In the highest study area of Abuna Yosef, three sites were discovered bearing morainic material from small late Pleistocene glaciers. These marginal glaciers occurred below the modeled snowline and existed because of local topo-climatic conditions. Evidence of such Pleistocene avalanche-fed glaciers in Ethiopia (and Africa) has not been produced earlier. Current frost action is limited to frost cracks and small-scale patterned ground phenomena. The depression of the altitudinal belts of periglacial and glacial processes during the last cold period was assessed through periglacial and glacial landform mapping and comparisons with data from other mountain areas taking latitude into account. The depression of glacial and periglacial belts of approximately 600 m implies a temperature drop around 6 °C in the last cold period. This cooling is in line with temperature depressions elsewhere in East Africa during the LGM. This study serves as a case study for all the intermediate mountains (3500-4200 m) of the North Ethiopian highlands.

  16. Small mammal diversity loss in response to late-Pleistocene climatic change.

    PubMed

    Blois, Jessica L; McGuire, Jenny L; Hadly, Elizabeth A

    2010-06-10

    Communities have been shaped in numerous ways by past climatic change; this process continues today. At the end of the Pleistocene epoch about 11,700 years ago, North American communities were substantially altered by the interplay of two events. The climate shifted from the cold, arid Last Glacial Maximum to the warm, mesic Holocene interglacial, causing many mammal species to shift their geographic distributions substantially. Populations were further stressed as humans arrived on the continent. The resulting megafaunal extinction event, in which 70 of the roughly 220 largest mammals in North America (32%) became extinct, has received much attention. However, responses of small mammals to events at the end of the Pleistocene have been much less studied, despite the sensitivity of these animals to current and future environmental change. Here we examine community changes in small mammals in northern California during the last 'natural' global warming event at the Pleistocene-Holocene transition and show that even though no small mammals in the local community became extinct, species losses and gains, combined with changes in abundance, caused declines in both the evenness and richness of communities. Modern mammalian communities are thus depauperate not only as a result of megafaunal extinctions at the end of the Pleistocene but also because of diversity loss among small mammals. Our results suggest that across future landscapes there will be some unanticipated effects of global change on diversity: restructuring of small mammal communities, significant loss of richness, and perhaps the rising dominance of native 'weedy' species. PMID:20495547

  17. A morphometric analysis of the Late Pleistocene Human Skeleton from the Moh Khiew Cave in Thailand.

    PubMed

    Matsumura, Hirofumi; Pookajorn, Surin

    2005-01-01

    Few Late Pleistocene human remains have been found in Southeast Asia and the morphological features of the people of that age are still largely unknown due to the virtual lack of human remains in the area. Recent excavations at the Moh Khiew Cave in Thailand resulted in the discovery of a Late Pleistocene human skeleton in a relatively good state of preservation. An AMS radiocarbon date on the charcoal sample gathered from the burial gave a result of 25,800 +/- 600 BP, implying that the inhabitants of Moh Khiew Cave resided in a part of Sundaland during the last glacial age. In debates on the population history of Southeast Asia, it has been repeatedly advocated that Southeast Asia was occupied by indigenous people akin to present-day Australo-Melanesians prior to an expansion of migrants from Northeast Asia into this area. Morphometric analyses were undertaken to test the validity of this hypothesis. In the present study, cranial and dental measurements recorded from the Moh Khiew remains are compared with those of early and modern samples from Southeast Asia and Australia. These comparisons demonstrate that the Moh Khiew specimen resembles the Late Pleistocene series from Coobool Creek, Australia in both cranial and dental measurements. These results suggest that the Moh Khiew skeleton, as well as other fossil remains from the Tabon, Niah and Gua Gunung sites, represents a member of the Sundaland population during the Late Pleistocene, who may share common ancestry with the present-day Australian Aborigines and Melanesians. PMID:16130834

  18. Exceptional record of mid-Pleistocene vertebrates helps differentiate climatic from anthropogenic ecosystem perturbations.

    PubMed

    Barnosky, Anthony D; Bell, Christopher J; Emslie, Steven D; Goodwin, H Thomas; Mead, Jim I; Repenning, Charles A; Scott, Eric; Shabel, Alan B

    2004-06-22

    Mid-Pleistocene vertebrates in North America are scarce but important for recognizing the ecological effects of climatic change in the absence of humans. We report on a uniquely rich mid-Pleistocene vertebrate sequence from Porcupine Cave, Colorado, which records at least 127 species and the earliest appearances of 30 mammals and birds. By analyzing >20,000 mammal fossils in relation to modern species and independent climatic proxies, we determined how mammal communities reacted to presumed glacial-interglacial transitions between 1,000,000 and 600,000 years ago. We conclude that climatic warming primarily affected mammals of lower trophic and size categories, in contrast to documented human impacts on higher trophic and size categories historically. Despite changes in species composition and minor changes in small-mammal species richness evident at times of climatic change, overall structural stability of mammal communities persisted >600,000 years before human impacts. PMID:15197254

  19. Sudbury Breccia and suevite as glacial indicators transported 800 km to Kentland Astrobleme, Indiana

    NASA Technical Reports Server (NTRS)

    Mchone, John F.; Dietz, Robert S.; Peredery, Walter V.

    1992-01-01

    A glacial erratic whose place of origin is known by direct comparison with bedrock is known as an indicator. In 1971, while visiting the known astrobleme at Kentland, Indiana, Peredery recognized and sampled in the overlying glacial drift deposits a distinctive boulder of Sudbury suevite (black member, Onaping Formation) that normally occurs within the Sudbury Basin as an impact fall-back or wash-in deposit. The rock was sampled (but later mislaid) from a farmer's cairn next to a cleared field. Informal reports of this discovery prompted the other authors to recently reconnoiter the Kentland locality in an attempt to relocate the original boulder. Several breccia blocks were sampled but laboratory examination proved most of these probably to be diamictites from the Precambrian Gowganda Formation, which outcrops extensively in the southern Ontario. However, one sample was confirmed as typical Sudbury Breccia, which outcrops in the country rock surrounding the Sudbury Basin. Thus two glacial indicators were transported by Pleistocene continental glaciers about 820 km over a tightly proscribed path and, curiously, from one astrobleme to another. Brecciated boulders in the Illinois/Indiana till plain are usually ascribed to the Gowganda or Mississagi formations in Ontario. But impact-generated rocks need not be confused. The carbonaceous matrix of the suevite, for example, was sufficiently distinctive to assign it to the upper portion of the black Onaping. The unique and restricted source area of these indicators provide an accurate and reliable control for estimating Pleistocene ice movement.

  20. A fundamental Precambrian-Phanerozoic shift in earth's glacial style?

    NASA Astrophysics Data System (ADS)

    Evans, D. A. D.

    2003-11-01

    It has recently been found that Neoproterozoic glaciogenic sediments were deposited mainly at low paleolatitudes, in marked qualitative contrast to their Pleistocene counterparts. Several competing models vie for explanation of this unusual paleoclimatic record, most notably the high-obliquity hypothesis and varying degrees of the snowball Earth scenario. The present study quantitatively compiles the global distributions of Miocene-Pleistocene glaciogenic deposits and paleomagnetically derived paleolatitudes for Late Devonian-Permian, Ordovician-Silurian, Neoproterozoic, and Paleoproterozoic glaciogenic rocks. Whereas high depositional latitudes dominate all Phanerozoic ice ages, exclusively low paleolatitudes characterize both of the major Precambrian glacial epochs. Transition between these modes occurred within a 100-My interval, precisely coeval with the Neoproterozoic-Cambrian "explosion" of metazoan diversity. Glaciation is much more common since 750 Ma than in the preceding sedimentary record, an observation that cannot be ascribed merely to preservation. These patterns suggest an overall cooling of Earth's longterm climate, superimposed by developing regulatory feedbacks involving an increasingly complex biosphere.

  1. Early Pleistocene sea level and millennial-scale climate fluctuations: a view from the tropical Pacific

    NASA Astrophysics Data System (ADS)

    Alix Jakob, Kim; Friedrich, Oliver; Pross, Jörg

    2015-04-01

    This project aims at deciphering the rate of sea level variability and its effect on millennial-scale climate fluctuations during the final phase of the intensification of northern hemisphere glaciation (NHG). Millennial-scale climate fluctuations appear to have changed significantly at glacial-interglacial time scales during the late Pliocene and Pleistocene. Thereby, millennial-scale climate fluctuations under a warmer climate during late Pliocene and early Pleistocene show markedly lower ampitudes compared to the fluctuations of the late Pleistocene. Numerous Pleistocene proxy records (e.g. McManus et al., 1999) suggest that this difference can be explained by an ice-volume/sea-level threshold that amplifies millennial-scale climate fluctuations and was not reached prior to the Mid-Pleistocene Transition (MPT). However, new records question the existence of this threshold (Bolton et al., 2010) and indicate that either the amplification of millennial-scale climate fluctuations before the MPT required a higher ice-volume threshold than in the late Pleistocene, that ice-volume had no significant effect on the amplitude of climate fluctuations, and/or the available sea level estimates for the early Pleistocene are inaccurate. For identifying the mechanisms underlying the dynamics of early Pleistocene ice sheets, material from the tropical Pacific Ocean (ODP Site 849) is studied over a time interval from 2.6 to 2.4 Ma (marine isotope stages 104 to 96). In summary, the main deliverables are (1) the establishment of a precise δ18O chemostratigraphy using the benthic foraminifera Cibicidoides wuellerstorfi by tuning the δ18O dataset to the LR04 benthic isotope stack (Lisiecki & Raymo, 2005), and (2) providing high-resolution (˜700 years) Mg/Ca and δ18O datasets using the benthic foraminifera Oridorsalis umbonatus and the planktonic foraminifera Globigerinoides ruber. This combined geochemical approach will be used to address the following research questions: (1

  2. A Pleistocene coastal alluvial fan complex produced by Middle Pleistocene glacio-fluvial processes

    NASA Astrophysics Data System (ADS)

    Adamson, Kathryn; Woodward, Jamie; Hughes, Philip; Giglio, Federico; Del Bianco, Fabrizio

    2014-05-01

    contains deeply incised (up to 10 m) channels which are similar in morphology to those exposed onshore. It is likely that strong cementation of the fan sediments, and associated channel forms, has protected them from coastal erosion during several regression-transgression cycles. These records provide important opportunities to correlate the Pleistocene terrestrial glacial and fluvial records with the marine archive.

  3. Pleistocene Aridification Cycles Shaped the Contemporary Genetic Architecture of Southern African Baboons

    PubMed Central

    Sithaldeen, Riashna; Ackermann, Rebecca Rogers; Bishop, Jacqueline M.

    2015-01-01

    Plio-Pleistocene environmental change influenced the evolutionary history of many animal lineages in Africa, highlighting key roles for both climate and tectonics in the evolution of Africa’s faunal diversity. Here, we explore diversification in the southern African chacma baboon Papio ursinus sensu lato and reveal a dominant role for increasingly arid landscapes during past glacial cycles in shaping contemporary genetic structure. Recent work on baboons (Papio spp.) supports complex lineage structuring with a dominant pulse of diversification occurring 1-2Ma, and yet the link to palaeoenvironmental change remains largely untested. Phylogeographic reconstruction based on mitochondrial DNA sequence data supports a scenario where chacma baboon populations were likely restricted to refugia during periods of regional cooling and drying through the Late Pleistocene. The two lineages of chacma baboon, ursinus and griseipes, are strongly geographically structured, and demographic reconstruction together with spatial analysis of genetic variation point to possible climate-driven isolating events where baboons may have retreated to more optimum conditions during cooler, drier periods. Our analysis highlights a period of continuous population growth beginning in the Middle to Late Pleistocene in both the ursinus and the PG2 griseipes lineages. All three clades identified in the study then enter a state of declining population size (Nef) through to the Holocene; this is particularly marked in the last 20,000 years, most likely coincident with the Last Glacial Maximum. The pattern recovered here conforms to expectations based on the dynamic regional climate trends in southern Africa through the Pleistocene and provides further support for complex patterns of diversification in the region’s biodiversity. PMID:25970269

  4. A low-order dynamical model of global climatic variability over the full Pleistocene

    SciTech Connect

    Maasch, K.A.; Saltzman, B. )

    1990-02-20

    A previously formulated dynamical model of the late Pleistocene ice ages (based on the hypothesis that the global CO{sub 2} system can provide the instability to drive a natural oscillation involving feedbacks between the cryosphere, atmosphere, and ocean) is extended to include (1) additive earth orbital forcing (summer insolation changes at 65{degree}N) and (2) tectonic forcing in the form of a postulated variation in the multiplicative parameters (rate constants) of the model system. The structural (e.g., bifurcation) properties of the model are examined in detail to reveal the regions of parameter space wherein the geologically inferred features of the full Pleistocene can be simulated, including the observed chronology, the phase relationships between ice, CO{sub 2}, and North Atlantic Deep Water formation, and the mid-Pleistocene transition.

  5. Glacial History of a Modern Invader: Phylogeography and Species Distribution Modelling of the Asian Tiger Mosquito Aedes albopictus

    PubMed Central

    Porretta, Daniele; Mastrantonio, Valentina; Bellini, Romeo; Somboon, Pradya; Urbanelli, Sandra

    2012-01-01

    Background The tiger mosquito, Aedes albopictus, is one of the 100 most invasive species in the world and a vector of human diseases. In the last 30 years, it has spread from its native range in East Asia to Africa, Europe, and the Americas. Although this modern invasion has been the focus of many studies, the history of the species’ native populations remains poorly understood. Here, we aimed to assess the role of Pleistocene climatic changes in shaping the current distribution of the species in its native range. Methodology/Principal Findings We investigated the phylogeography, historical demography, and species distribution of Ae. albopictus native populations at the Last Glacial Maximum (LGM). Individuals from 16 localities from East Asia were analyzed for sequence variation at two mitochondrial genes. No phylogeographic structure was observed across the study area. Demographic analyses showed a signature of population expansion that started roughly 70,000 years BP. The occurrence of a continuous and climatically suitable area comprising Southeast China, Indochinese Peninsula, and Sundaland during LGM was indicated by species distribution modelling. Conclusions/Significance Our results suggest an evolutionary scenario in which, during the last glacial phase, Ae. albopictus did not experience a fragmentation phase but rather persisted in interconnected populations and experienced demographic growth. The wide ecological flexibility of the species probably played a crucial role in its response to glacial-induced environmental changes. Currently, there is little information on the impact of Pleistocene climatic changes on animal species in East Asia. Most of the studies focused on forest-associated species and suggested cycles of glacial fragmentation and post-glacial expansion. The case of Ae. albopictus, which exhibits a pattern not previously observed in the study area, adds an important piece to our understanding of the Pleistocene history of East Asian biota

  6. The early rise and late demise of New Zealand’s last glacial maximum

    PubMed Central

    Rother, Henrik; Fink, David; Shulmeister, James; Mifsud, Charles; Evans, Michael; Pugh, Jeremy

    2014-01-01

    Recent debate on records of southern midlatitude glaciation has focused on reconstructing glacier dynamics during the last glacial termination, with different results supporting both in-phase and out-of-phase correlations with Northern Hemisphere glacial signals. A continuing major weakness in this debate is the lack of robust data, particularly from the early and maximum phase of southern midlatitude glaciation (∼30–20 ka), to verify the competing models. Here we present a suite of 58 cosmogenic exposure ages from 17 last-glacial ice limits in the Rangitata Valley of New Zealand, capturing an extensive record of glacial oscillations between 28–16 ka. The sequence shows that the local last glacial maximum in this region occurred shortly before 28 ka, followed by several successively less extensive ice readvances between 26–19 ka. The onset of Termination 1 and the ensuing glacial retreat is preserved in exceptional detail through numerous recessional moraines, indicating that ice retreat between 19–16 ka was very gradual. Extensive valley glaciers survived in the Rangitata catchment until at least 15.8 ka. These findings preclude the previously inferred rapid climate-driven ice retreat in the Southern Alps after the onset of Termination 1. Our record documents an early last glacial maximum, an overall trend of diminishing ice volume in New Zealand between 28–20 ka, and gradual deglaciation until at least 15 ka. PMID:25071171

  7. The early rise and late demise of New Zealand's last glacial maximum.

    PubMed

    Rother, Henrik; Fink, David; Shulmeister, James; Mifsud, Charles; Evans, Michael; Pugh, Jeremy

    2014-08-12

    Recent debate on records of southern midlatitude glaciation has focused on reconstructing glacier dynamics during the last glacial termination, with different results supporting both in-phase and out-of-phase correlations with Northern Hemisphere glacial signals. A continuing major weakness in this debate is the lack of robust data, particularly from the early and maximum phase of southern midlatitude glaciation (∼30-20 ka), to verify the competing models. Here we present a suite of 58 cosmogenic exposure ages from 17 last-glacial ice limits in the Rangitata Valley of New Zealand, capturing an extensive record of glacial oscillations between 28-16 ka. The sequence shows that the local last glacial maximum in this region occurred shortly before 28 ka, followed by several successively less extensive ice readvances between 26-19 ka. The onset of Termination 1 and the ensuing glacial retreat is preserved in exceptional detail through numerous recessional moraines, indicating that ice retreat between 19-16 ka was very gradual. Extensive valley glaciers survived in the Rangitata catchment until at least 15.8 ka. These findings preclude the previously inferred rapid climate-driven ice retreat in the Southern Alps after the onset of Termination 1. Our record documents an early last glacial maximum, an overall trend of diminishing ice volume in New Zealand between 28-20 ka, and gradual deglaciation until at least 15 ka. PMID:25071171

  8. Pleistocene-Holocene transition in the central Mississippi River valley

    NASA Astrophysics Data System (ADS)

    Van Arsdale, Roy B.; Cupples, William B.; Csontos, Ryan M.

    2014-06-01

    Within the northern Mississippi embayment the ancestral Mississippi River flowed south through the Western Lowlands and the ancestral Ohio River flowed through the Eastern Lowlands for most of the Pleistocene. Previous investigators have mapped and dated the terraces of their respective braid belts. This current research investigates the three-dimensional aspect of the Quaternary alluvium north of Memphis, Tennessee, through the interpretation of 3374 geologic well logs that are 91.4 m (300 ft) deep. The braid belts are capped by a thin silt/clay horizon (Pleistocene loess) that overlies gravelly sand, which in turn overlies sandy gravel. The base of the Pleistocene alluvium beneath the Ash Hill (27.3-24.6 ka), Melville Ridge (41.6-34.5 ka), and Dudley (63.5-50.1 ka) terraces of the Western Lowland slope southerly by 0.275 m/km and all have an average basal elevation of 38 m. Near Beedeville, Arkansas, the bases of these terraces descend 20 m across a northeast-striking down-to-the-southeast fault that coincides with the western margin of the Cambrian Reelfoot rift. The maximum depth of flow (lowest elevation of base of alluvium) occurred in the Eastern Lowlands and appears to have been the downstream continuation of the ancestral Ohio River Cache valley course in southern Illinois. In traversing from west to east in the Eastern Lowlands, the Sikeston braid belt (19.7-17.8 ka) has a basal elevation averaging 7 m, the Kennett braid belt (16.1-14.4 ka) averages 13 m, the Morehouse (12 ka) braid belt averages 24 m, and the Holocene (≤ 10 ka) Mississippi River floodplain has the highest average basal elevation at 37 m. Along this easterly traverse the base of the Quaternary alluvium rises and the age of alluvium decreases. The eastward thinning of the floodplain alluvium in the Eastern Lowlands appears to be caused by decreasing Mississippi River discharge as it transitioned from the Wisconsinan glacial maximum to the Holocene. The base of the Holocene Mississippi

  9. Sub-glacial volcanic eruptions

    USGS Publications Warehouse

    White, Donald Edward

    1956-01-01

    The literature on sub-glacial volcanic eruptions and the related flood phenomena has been reviewed as a minor part of the larger problem of convective and conductive heat transfer from intrusive magma. (See Lovering, 1955, for a review of the extensive literature on this subject.) This summary of data on sub-glacial eruptions is part of a program that the U.S. Geological Survey is conducting in connection with its Investigations of Geologic Processes project on behalf of the Division of Research, U.S. Atomic Energy Commission.

  10. Tentative correlation of midcontinent glacial sequence with marine chronology

    SciTech Connect

    Dube, T.E.

    1985-01-01

    A tentative glacial-interglacial 3-million-year chronology is synthesized by regional correlation of Midcontinent tills and paleosols to marine paleotemperature/eustatic cycles and oxygen isotope stages. The paleotemperature curves of Beard et al. (1982), based on planktonic foraminiferal abundances, correspond directly with eustatic cycles during the last 3 Ma. These generalized curves are shown to correlate reasonably well with standard oxygen isotope stages at least for the past 900 ka. This indicates that paleotemperature and Vail-type eustatic cycles have been glacially induced during the last 3 Ma. The chronology developed here utilizes both paleotemperature and oxygen isotope stages; however, below the Jaramillo magnetic subchron, isotope curves are more variable and only paleotemperature stages are used. Tills and paleosols at type localities in the Midcontinent area of the US are correlated to the SPECMAP oxygen isotope time scale. Because mid-Brunhes events are poorly constrained by radiometric dates, alternative correlations are possible. The oldest known Midcontinent tills correlate to the first Plio-Pleistocene cold paleotemperature stage and drop in sea level at 2.4 Ma. This Late Pliocene event also corresponds to the first major isotopic enrichment and the onset of late Cenozoic ice-rafting in the North Atlantic region.

  11. Thermohaline circulation crisis and impacts during the mid-Pleistocene transition.

    PubMed

    Pena, Leopoldo D; Goldstein, Steven L

    2014-07-18

    The mid-Pleistocene transition (MPT) marked a fundamental change in glacial-interglacial periodicity, when it increased from ~41-thousand-year to 100-thousand-year cycles and developed higher-amplitude climate variability without substantial changes in the Milankovitch forcing. Here, we document, by using Nd isotopes, a major disruption of the ocean thermohaline circulation (THC) system during the MPT between marine isotope stages (MISs) 25 and 21 at ~950 to 860 thousand years ago, which effectively marks the first 100-thousand-year cycle, including an exceptional weakening through a critical interglacial (MIS 23) at ~900 thousand years ago. Its recovery into the post-MPT 100-thousand-year world is characterized by continued weak glacial THC. The MPT ocean circulation crisis facilitated the coeval drawdown of atmospheric CO2 and high-latitude ice sheet growth, generating the conditions that stabilized 100-thousand-year cycles. PMID:24968939

  12. Molecular analysis of the Pleistocene history of Saxifraga oppositifolia in the Alps.

    PubMed

    Holderegger, R; Stehlik, I; Abbott, R J

    2002-08-01

    A recent circumpolar survey of chloroplast DNA (cpDNA) haplotypes identified Pleistocene glacial refugia for the Arctic-Alpine Saxifraga oppositifolia in the Arctic and, potentially, at more southern latitudes. However, evidence for glacial refugia within the ice sheet covering northern Europe during the last glacial period was not detected either with cpDNA or in another study of S. oppositifolia that surveyed random amplified polymorphic DNA (RAPD) variation. If any genotypes survived in such refugia, they must have been swamped by massive postglacial immigration of periglacial genotypes. The present study tested whether it is possible to reconstruct the Pleistocene history of S. oppositifolia in the European Alps using molecular methods. Restriction fragment length polymorphism (RFLP) analysis of cpDNA of S. oppositifolia, partly sampled from potential nunatak areas, detected two common European haplotypes throughout the Alps, while three populations harboured two additional, rare haplotypes. RAPD analysis confirmed the results of former studies on S. oppositifolia; high within, but low among population genetic variation and no particular geographical patterning. Some Alpine populations were not perfectly nested in this common gene pool and contained private RAPD markers, high molecular variance or rare cpDNA haplotypes, indicating that the species could possibly have survived on ice-free mountain tops (nunataks) in some parts of the Alps during the last glaciation. However, the overall lack of a geographical genetic pattern suggests that there was massive immigration of cpDNA and RAPD genotypes by seed and pollen flow during postglacial times. Thus, the glacial history of S. oppositifolia in the Alps appears to resemble closely that suggested previously for the species in northern Europe. PMID:12144661

  13. Late Pleistocene bryozoan reef mounds of the Great Australian Bight: Isotope stratigraphy and benthic foraminiferal record

    NASA Astrophysics Data System (ADS)

    Holbourn, Ann; Kuhnt, Wolfgang; James, Noel

    2002-08-01

    Cores from Sites 1129, 1131, and 1132 (Ocean Drilling Program (ODP) Leg 182) on the uppermost slope at the edge of the continental shelf in the Great Australian Bight reveal the existence of upper Pleistocene bryozoan reef mounds, previously only detected on seismic lines. Benthic foraminiferal oxygen isotope data for the last 450,000 years indicate that bryozoan reef mounds predominantly accumulated during periods of lower sea level and colder climate since stage 8 at Sites 1129 and 1132 and since stage 4 at the deeper Site 1131. During glacials and interstadials (stages 2-8) the combination of lowered sea level, increased upwelling, and absence of the Leeuwin Current probably led to an enhanced carbon flux at the seafloor that favored prolific bryozoan growth and mound formation at Site 1132. At Site 1129, higher temperatures and downwelling appear to have inhibited the full development of bryozoan mounds during stages 2-4. During that time, favorable hydrographic conditions for the growth of bryozoan mounds shifted downslope from Site 1129 to Site 1131. Superimposed on these glacial-interglacial fluctuations is a distinct long-term paleoceanographic change. Prior to stage 8, benthic foraminiferal assemblages indicate low carbon flux to the seafloor, and bryozoan mounds, although present closer inshore, did not accumulate significantly at Sites 1129 and 1132, even during glacials. Our results show that the interplay of sea level change (eustatic and local, linked to platform progradation), glacial-interglacial carbon flux fluctuations (linked to local hydrographic variations), and possibly long-term climatic change strongly influenced the evolution of the Great Australian Bight carbonate margin during the late Pleistocene.

  14. SEM microfabric analysis of glacial varves, Geneseo, N. Y

    SciTech Connect

    Pietraszek, S.R. . Geology Dept.)

    1993-03-01

    A detailed study of the microfabric of Pleistocene varved silty-clay from Geneseo Valley (Geneseo, N.Y.) indicates rapid deposition of sediment in a flocculated state into a glacial lake. Ten varve couplets of a 10 cm thick sample were studied using the Scanning Electron Microscope to determine their microfabric. Each varve ranges from 0.5 cm to 2.0 cm and represents an annual ( ) deposit. Varves consists of a lower light colored, coarse zone of silt and clay, and an upper darker colored, organic fine clayey zone. Graded bedding is observed in each couplet, and random clay particle orientation is dominant throughout a varve, with the exception of the top 0.5 mm of the fine layer. The upper and lower contacts are sharp. Fabric features are instrumental in reconstructing a depositional environment. Microfabric results of the glacial unit indicate that an initial heavy concentration of clay and silt was introduced into the basin in a single pulse during spring runoff. The majority of silt settled together with clay in a flocculated or aggregated state, forming the lower coarse zone of random orientation. As the silt concentration diminished, the clay continued to flocculate and settled as a fine clay aggregate. It is proposed that the settling took place during the spring and summer months. Finally, during the winter months, the sediment surface of the varve was disturbed by nemotode burrows, which reoriented the clay flakes into a zone of preferred fabric. Microfabric analysis of these glacial varves, thus suggests that sediment was rapidly deposited in a flocculated state.

  15. Landscape evolution and origin of Lake Fúquene (Colombia): Tectonics, erosion and sedimentation processes during the Pleistocene

    NASA Astrophysics Data System (ADS)

    Sarmiento, Gustavo; Gaviria, Sergio; Hooghiemstra, Henry; Berrio, Juan Carlos; Van der Hammen, Thomas

    2008-08-01

    The Basin of Ubaté-Chichinquirá (5°28'N, 73°45' W, c. 2580 m altitude) includes the Fúquene Valley and is located in the central part of the Eastern Cordillera of Colombia. Rocks and sediments were folded and faulted during the Miocene, uplifted during the (late) Pliocene, and affected by glaciers during the Pleistocene. Successive glacial and interglacial periods left significant marks in the landscape which were used to reconstruct six stages in the development of the landscape along a relative chronology. During early Pleistocene episode 1 glaciers formed U-shape valleys. Evidence of the impact of ice sheets has been found as far downslope as ca. 2900 m elevation. During episode 2 moraines developed which were cut by the present San José River. During episode 3 abundant sediment was produced by glacial erosion. It accentuated the sculpturing of hard rock and deepening of the drainage basin. The ancestral Ubaté-Suarez River constituted a dynamic erosive system that gave rise to deep V-shaped valleys and progressively formed a set of intricate valleys with a high sediment production. Finally, intense glacial and fluvio-glacial erosion led to a geomorphological system with high energy levels and intensive sediment transport leading to wide valleys. During episode 4 the Ubaté-Suarez River eroded and deepened its valley until it captured the old El Hato-San José Valley. It caused intense erosion of the moraine and the fluvio-glacial gravels. Deep V-shaped valleys stabilized in the high areas of the main drainage system and these valleys form the present-day fluvial sub-basins. During episode 5 the deep valley in the northern part of the Basin of Ubaté-Chichinquirá developed. During middle Pleistocene episode 6 colluvial sediments formed the Saboya dam and a lake was formed in the river valley of which the present Lake Fúquene is only a small remnant. Lithological changes indicate fluctuating water levels and Lake Fúquene must have expanded periodically

  16. Reorganization of ice sheet flow patterns in Arctic Canada and the mid-Pleistocene transition

    NASA Astrophysics Data System (ADS)

    Refsnider, Kurt A.; Miller, Gifford H.

    2010-07-01

    Evidence for the evolution of Laurentide Ice Sheet (LIS) basal thermal regime patterns during successive glaciations is poorly preserved in the geologic record. Here we explore a new approach to constrain the distribution of cold-based ice across central Baffin Island in the eastern Canadian Arctic over many glacial-interglacial cycles by combining till geochemistry and cosmogenic radionuclide (CRN) data. Parts of the landscaped with geomorphic evidence for limited glacial erosion are covered by till characterized by high chemical index of alteration (CIA) values and CRN concentrations requiring complicated burial-exposure histories. Till from regions scoured by glacial erosion have CIA values indistinguishable from local bedrock and CRN concentrations that can be explained by simple exposure following deglaciation. CRN modeling results based on these constraints suggest that the weathered tills were deposited by 1.9 to 1.2 Ma, and by that time the fiorded Baffin Island coastline must have developed close to its modern configuration as piracy of ice flow by the most efficient fiord systems resulted in a major shift in the basal thermal regime across the northeastern LIS. The resultant concentration of ice flow in fewer outlet systems may help explain the cause of the mid-Pleistocene transition from 41- to 100-kyr glacial cycles.

  17. Chronology of latest Pleistocene mountain glaciation in the western Wasatch Mountains, Utah, U.S.A.

    NASA Astrophysics Data System (ADS)

    Laabs, Benjamin J. C.; Marchetti, David W.; Munroe, Jeffrey S.; Refsnider, Kurt A.; Gosse, John C.; Lips, Elliott W.; Becker, Richard A.; Mickelson, David M.; Singer, Brad S.

    2011-09-01

    Understanding the timing of mountain glacier and paleolake expansion and retraction in the Great Basin region of the western United States has important implications for regional-scale climate change during the last Pleistocene glaciation. The relative timing of mountain glacier maxima and the well-studied Lake Bonneville highstand has been unclear, however, owing to poor chronological limits on glacial deposits. Here, this problem is addressed by applying terrestrial cosmogenic 10Be exposure dating to a classic set of terminal moraines in Little Cottonwood and American Fork Canyons in the western Wasatch Mountains. The exposure ages indicate that the main phase of deglaciation began at 15.7 ± 1.3 ka in both canyons. This update to the glacial chronology of the western Wasatch Mountains can be reconciled with previous stratigraphic observations of glacial and paleolake deposits in this area, and indicates that the start of deglaciation occurred during or at the end of the Lake Bonneville hydrologic maximum. The glacial chronology reported here is consistent with the growing body of data suggesting that mountain glaciers in the western U.S. began retreating as many as 4 ka after the start of northern hemisphere deglaciation (at ca. 19 ka).

  18. Quaternary glacial and post-glacial depositional history associated with the Green Bay lobe, east-central Wisconsin

    SciTech Connect

    Thieme, L.D.; Smith, G.L. . Dept. of Geology)

    1993-03-01

    Multiple layers of peat and wood fragments indicate that Quaternary glaciation of the east-central region of Wisconsin was punctuated by at least two interglacial periods. Till, outwash, and glaciolacustrine deposits suggest that deposition took place in alternating glacial and non-glacial environments due to oscillations in the position of the Green Bay Lobe terminus. The data for this study consists of 36 auger borings, 70 geologic logs and 100 well-construction reports from water wells. Nine vibracores were taken at the northern margin of Lake Winnebago in order to document in detail the post-glacial history of Glacial Lake Oshkosh/Lake Winnebago. Local bedrock consists of limestones and dolomites of the Middle Ordovician Sinnipee Group. Bedrock elevations range from 211--237 m; bedding dips regionally to the southeast at 1--2 degrees. Bedrock is overlain by a 3--13 m-thick layer of alternating red clay and gray silty-clay (basal Kewaunee Formation ) perhaps deposited in a proglacial lake. These sediments are overlain by apeat/wood layer indicating marsh deposition. This peat/wood layer is overlain by more proglacial lake sediment, 3--10 m of gray brown clay to silty-clay. A second peat/wood layer overlies the gray/brown sediment and may correlate with the Two Creeks buried forest bed. The uppermost unit consists of 2--3 m red silty-clay till (Middle Inlet Member of the Kewaunee Formation). Along the northern margin of present-day Lake Winnebago, red silty-clay is overlain by silty-sand deposited by Glacial Lake Oshkosh. Future work includes obtaining radiocarbon dates from buried peat/wood layers to verify these tentative correlations between east-central Wisconsin and the Lake Michigan Basin.

  19. Pleistocene Glaciations on the Northwestern Tibet

    NASA Astrophysics Data System (ADS)

    Kong, P.; Na, C.; Huang, F.; Fink, D.

    2003-12-01

    As a result of its immense size and high elevation, the Tibetan plateau plays a major role in affecting global climatic changes, and in particular the Asian monsoon system. Consequently knowledge of its glacial evolution during the Quaternary is an essential parameter. However, the chronology and extent of Quaternary glaciations on the Tibetan plateau is still in debate. Based on ice cores and other geological settings from the Tibetan plateau, it is inferred that temperatures during LGM were depressed by 6-9 ° C. Kuhle (1998) proposed an extensive ice sheet on the Tibetan plateau during LGM, whereas others believe that, because of extreme aridity, the ELA depression in the western and interior sections is less than 300m. Thus, given that a large fraction of the Tibetan plateau surface would be below the ELA during LGM times, the extent of the proposed ice sheet would presumably be limited. We determined in situ cosmogenic nuclides Be-10 and Al-26 in young volcano samples located in Ashikule basin, western Kunlun Shan. The eruption ages of the samples are 130+/-40ka, 340+/-10ka and 780+/-140ka, dated by the K-Ar method. The exposure ages of the samples are, however, 70+/-7ka, 150+/-7ka, 160+/-8ka, respectively. All samples analyzed possess lava flowing textures, which suggests no erosion since eruption. Field observations indicate no sediment nor vegetation on the samples. Thus, the age differences most likely reflect ice and snow cover on the samples. The current ELA in western Kunlun Shan is about 6000m, whereas the samples are located at an elevation of 4800m. This implies that ELA depression in the western part of the Tibetan plateau was most likely larger than 1200m during LGM. If the interior of Tibetan plateau has a similar ELA depression, a large part of Tibetan plateau surface would be above the ELA during LGM. Therefore, Pleistocene ice coverage on the Tibetan plateau may be more extensive than previously recognized. Kuhle (1998) Quaternary International

  20. Fractional oscillator.

    PubMed

    Stanislavsky, A A

    2004-11-01

    We consider a fractional oscillator which is a generalization of the conventional linear oscillator in the framework of fractional calculus. It is interpreted as an ensemble average of ordinary harmonic oscillators governed by a stochastic time arrow. The intrinsic absorption of the fractional oscillator results from the full contribution of the harmonic oscillator ensemble: these oscillators differ a little from each other in frequency so that each response is compensated by an antiphase response of another harmonic oscillator. This allows one to draw a parallel in the dispersion analysis for media described by a fractional oscillator and an ensemble of ordinary harmonic oscillators with damping. The features of this analysis are discussed. PMID:15600586

  1. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends

    PubMed Central

    Schmitt, Thomas

    2007-01-01

    The climatic cycles with subsequent glacial and intergalcial periods have had a great impact on the distribution and evolution of species. Using genetic analytical tools considerably increased our understanding of these processes. In this review I therefore give an overview of the molecular biogeography of Europe. For means of simplification, I distinguish between three major biogeographical entities: (i) "Mediterranean" with Mediterranean differentiation and dispersal centres, (ii) "Continental" with extra-Mediterranean centres and (iii) "Alpine" and/or "Arctic" with recent alpine and/or arctic distribution patterns. These different molecular biogeographical patterns are presented using actual examples. Many "Mediterranean" species are differentiated into three major European genetic lineages, which are due to glacial isolation in the three major Mediterranean peninsulas. Postglacial expansion in this group of species is mostly influenced by the barriers of the Pyrenees and the Alps with four resulting main patterns of postglacial range expansions. However, some cases are known with less than one genetic lineage per Mediterranean peninsula on the one hand, and others with a considerable genetic substructure within each of the Mediterranean peninsulas, Asia Minor and the Maghreb. These structures within the Mediterranean sub-centres are often rather strong and in several cases even predate the Pleistocene. For the "Continental" species, it could be shown that the formerly supposed postglacial spread from eastern Palearctic expansion centres is mostly not applicable. Quite the contrary, most of these species apparently had extra-Mediterranean centres of survival in Europe with special importance of the perialpine regions, the Carpathian Basin and parts of the Balkan Peninsula. In the group of "Alpine" and/or "Arctic" species, several molecular biogeographical patterns have been found, which support and improve the postulates based on distribution patterns and pollen

  2. Glacial-interglacial organic carbon record from the Makassar Strait, Indonesia: Implications for regional changes in continental vegetation

    USGS Publications Warehouse

    Visser, K.; Thunell, R.; Goni, M.A.

    2004-01-01

    Recent studies convincingly show that climate in the Western Pacific Warm Pool and other equatorial/tropical regions was significantly colder (by ???3-4??C) during glacial periods, prompting a reexamination of the late Pleistocene paleoenvironments of these regions. This study examines changes in continental vegetation during the last two deglaciations (Terminations I and II) using a sediment core (MD9821-62) recovered from the Makassar Strait, Indonesia. Evidence based on the lignin phenol ratios suggests that vegetation on Borneo and other surrounding islands did not significantly change from tropical rainforest during the last two glacial periods relative to subsequent interglacial periods. This supports the hypothesis that the winter monsoon increased in strength during glacial periods, allowing Indonesia to maintain high rainfall despite the cooler conditions. ?? 2003 Elsevier Ltd. All rights reserved.

  3. Size variation in Middle Pleistocene humans.

    PubMed

    Arsuaga, J L; Carretero, J M; Lorenzo, C; Gracia, A; Martínez, I; Bermúdez de Castro, J M; Carbonell, E

    1997-08-22

    It has been suggested that European Middle Pleistocene humans, Neandertals, and prehistoric modern humans had a greater sexual dimorphism than modern humans. Analysis of body size variation and cranial capacity variation in the large sample from the Sima de los Huesos site in Spain showed instead that the sexual dimorphism is comparable in Middle Pleistocene and modern populations. PMID:9262474

  4. Managing the effects of accelerated glacial melting on volcanic collapse and debris flows: Planchon-Peteroa Volcano, Southern Andes

    NASA Astrophysics Data System (ADS)

    Tormey, Daniel

    2010-11-01

    Glaciated mountains are among the most sensitive environments to climatic changes, and recent work has shown that large-scale glacial melting, including at the end of the Pleistocene, caused a significant increase in the incidence of large volcanic sector collapse and debris flows on then-active volcanoes. With current accelerated rates of glacial melting, glaciated active volcanoes are at an increasing risk of sector collapse, debris flow and landslide. These catastrophic events are Earth's most damaging erosion phenomenon, causing extensive property damage and loss of life. This paper illustrates these effects in well-studied settings, focusing on the end-Pleistocene to Holocene glaciovolcanic growth and destruction of the cone of the active volcano Planchon-Peteroa in the Andean Southern Volcanic Zone at latitude 35° 15' S, along the border between Chile and Argentina. The development of the volcano over the last 14,000 years illustrates how glacial melting and magmatic activity can trigger landslides and sector collapses. Planchon had a large sector collapse that produced a highly mobile and erosive debris avalanche 11,000 years BP, and other slope instabilities during the end-Pleistocene/early Holocene deglaciation. The summit amphitheater left after the sector collapse was subject to alternating periods of glaciation and melting-induced lake formation. Breaching of the moraine dams then formed lahars and landslides originating at the western edge of the summit amphitheater, and the deposits are preserved along the western flank of the volcano. Deep incision of moraine deposits further down the western slope of the volcano indicates that the lahars and landslides were water-rich and had high erosive power. As illustrated by Planchon-Peteroa, the interplay among glacial growth and melting, magmatic activity, and slope stability is complex, but must be accounted for in volcanic hazard assessment. Planchon-Peteroa currently has the southernmost temperate zone

  5. Chronology for fluctuations in late pleistocene Sierra Nevada glaciers and lakes

    SciTech Connect

    Phillips, F.M.; Zreda, M.G.; Plummer, M.A.

    1996-11-01

    Mountain glaciers, because of their small size, are usually close to equilibrium with the local climate and thus should provide a test of whether temperature oscillations in Greenland late in the last glacial period are part of global-scale climate variability or are restricted to the North Atlantic region. Correlation of cosmogenic chlorine-36 dates on Sierra Nevada moraines with a continuous radiocarbon-dated sediment record from nearby Owens Lake shows that Sierra Nevada glacial advances were associated with Heinrich events 5, 3, and 1. 27 refs., 2 figs., 1 tab.

  6. Chronology for fluctuations in late Pleistocene Sierra Nevada glaciers and lakes

    USGS Publications Warehouse

    Phillips, F.M.; Zreda, M.G.; Benson, L.V.; Plummer, M.A.; Elmore, D.; Sharma, Prakash

    1996-01-01

    Mountain glaciers, because of their small size, are usually close to equilibrium with the local climate and thus should provide a test of whether temperature oscillations in Greenland late in the last glacial period are part of global-scale climate variability or are restricted to the North Atlantic region. Correlation of cosmogenic chlorine-36 dates on Sierra Nevada moraines with a continuous radiocarbon-dated sediment record from nearby Owens Lake shows that Sierra Nevada glacial advances were associated with Heinrich events 5, 3, 2, and 1.

  7. Mammal diversity during the Pleistocene-Holocene transition in Eastern Europe.

    PubMed

    Puzachenko, Andrei Yurievich; Markova, Anastasia Konstantinovna

    2014-08-01

    Fossil record data on the mammal diversity and species richness are of importance for the reconstruction of the evolution of terrestrial ecosystems during the Late Pleistocene-Holocene transition. In Eastern Europe, the transformations during the Pleistocene-Holocene transition consisted mainly in changes in zonal structure and local fauna composition (Markova & Kolfschoten 2008). We investigated the species richness and the analogues of the α, β diversity indexes (in the sense of Whittaker 1972) of large and medium size mammals for 13 climate-stratigraphic units dating to the Late Pleistocene and the Holocene, from the Hasselo Stadial (44-39 kBP) to the Subatlantic period and the present day. The biological diversity of the Last Glacial Maximum (LGM) and the Holocene thermal optimum was investigated in more detail using information about all mammalian taxa (PALEOFAUNA database; Markova 1995). One of our results show that the α, β diversity values show only a negative correlation with the temperature conditions during the Late Pleistocene, the period that is characterized by the so-called 'Mammoth Fauna' complex. For the Holocene faunas the diversity indexes are nearly independent from physical conditions; the α diversity index decreased and the β diversity index increased. The relatively low α diversity and high β diversity indexes for the present-day faunas are referred to the decrease of the population number of some forest species in historical time and the increase of the dominance of unspecialized species or the species connected with intra-zonal ecosystems. The study shows furthermore the occurrence of several East European 'centers' with a high mammal diversity, which are relatively stable during the Pleistocene-Holocene transition. The orientation of the boundaries between the large geographical mammal assemblages depended, particularly in the northwestern part of Eastern Europe, on the expansion of the Scandinavian ice sheet. PMID:25236416

  8. Subglacial morphology and glacial evolution of the Palmer deep outlet system, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Domack, Eugene; Amblàs, David; Gilbert, Robert; Brachfeld, Stefanie; Camerlenghi, Angelo; Rebesco, Michele; Canals, Miquel; Urgeles, Roger

    2006-04-01

    The Palmer Deep is an erosional, inner-shelf trough located at the convergence of ice flow from three distinct accumulation centers. It served as a funnel for ice flow out across the continental shelf of the Antarctic Peninsula. Swath mapping of 1440 km 2 of seafloor in and adjacent to the Palmer Deep basin defines a large paleo-ice stream that flowed 230 km across the Antarctic Peninsula continental shelf during the Last Glacial Maximum (MIS-2). The unique perspective and detail of the Palmer Deep physiography allow us to recognize several phases of erosion and deposition in the outlet basin. These events are uniquely constrained by two ODP drill cores (sites 1099 and 1098) that together recovered over 150 m of latest Pleistocene and Holocene sediment. We divide this region of the continental shelf into three zones based upon mega- to meso-scale bathymetric features and emphasize that all three were part of one glacial outlet during the most recent period of glaciation. These zones include from inner shelf to outer shelf: the Palmer Deep basin, the Palmer Deep Outlet Sill and the Hugo Island Trough. Specific seafloor features associated with these zones include: relict terraces, sub-glacial lake deltas, channels and levees, debris slopes, spindle and out bed forms, mega-scale glacial lineations, morainal banks, and bank breach points. The origin of many of these features can be linked to the development of a sub-glacial lake basin within the Palmer Deep during or prior to MIS-2, its subsequent drainage, and recession of the Palmer Deep ice stream system. This sub-glacial lake system is reconstructed at the head of a major paleo-ice stream.

  9. Refugia of Marine Fish in the Northeast Atlantic During the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Kettle, Anthony; Morales, Arturo; Rosello, Eufrasia; Heinrich, Dirk; Vollestad, Asbjorn

    2010-05-01

    Archaeozoological finds of the remains of marine and amphihaline fish from the Last Glacial Maximum (LGM) ca. 21 ka ago show evidence of very different species ranges compared to the present. Recent genetic results of some marine species also indicate the presence of a local population structure that further suggests a dramatic southward displacement of species ranges during the LGM. There are very few studies that have attempted to delimit the glacial refugia of marine fish from our present understanding of LGM climate conditions. The few studies that exist make predictions that may not agree with the data from archaeozoology and genetics. In this contribution, we show how an ecological niche model based on sea surface temperature and bathymetry can be used to effectively predict the spatial range of marine fish during the LGM. The results are startling especially for the northern species because the glacial refugia are almost completely displaced from the modern distribution. The results are important for understanding the present spatial genetic structure of marine populations that arose during the Pleistocene glaciations, and they present a challenge for future archaeozoological work to test the model predictions and delimit the glacial refugia.

  10. Arsenic Geochemistry and Hydrostratigraphy in Midwestern U.S. Glacial Deposits

    USGS Publications Warehouse

    Root, T.L.; Gotkowitz, M.B.; Bahr, J.M.; Attig, J.W.

    2010-01-01

    Arsenic concentrations exceeding the U.S. EPA's 10 ??g/L standard are common in glacial aquifers in the midwestern United States. Previous studies have indicated that arsenic occurs naturally in these aquifers in association with metal-(hydr)oxides and is released to groundwater under reducing conditions generated by microbial oxidation of organic matter. Despite this delineation of the arsenic source and mechanism of arsenic mobilization, identification of arsenic-impacted aquifers is hindered by the heterogeneous and discontinuous nature of glacial sediments. In much of the Midwest, the hydrostratigraphy of glacial deposits is not sufficiently characterized to predict where elevated arsenic concentrations are likely to occur. This case study from southeast Wisconsin presents a detailed characterization of local stratigraphy, hydrostratigraphy, and geochemistry of the Pleistocene glacial deposits and underlying Silurian dolomite. Analyses of a single core, water chemistry data, and well construction reports enabled identification of two aquifers separated by an organic-rich aquitard. The upper, unconfined aquifer provides potable water, whereas arsenic generally exceeds 10 ??g/L in the deeper aquifer. Although coring and detailed hydrostratigraphic characterization are often considered impractical, our results demonstrate that a single core improved interpretation of the complex lithology and hydrostratigraphy. This detailed characterization of hydrostratigraphy facilitated development of well construction guidelines and lays the ground work for further studies of the complex interactions among aquifer sediments, hydrogeology, water chemistry, and microbiology that lead to elevated arsenic in groundwater. Copyright ?? 2009 The Author(s). Journal compilation ?? 2009 National Ground Water Association.

  11. Early Pleistocene origin of reefs around Lanai, Hawaii

    USGS Publications Warehouse

    Webster, Jody M.; Clague, David A.; Faichney, Iain D.E.; Fullagar, Paul D.; Hein, James R.; Moore, James G.; Paull, Charles K.

    2010-01-01

    A sequence of submerged terraces (L1–L12) offshore Lanai was previously interpreted as reefal, and correlated with a similar series of reef terraces offshore Hawaii island, whose ages are known to be <500 ka. We present bathymetric, observational, lithologic and 51 87Sr/86Sr isotopic measurements for the submerged Lanai terraces ranging from −300 to −1000 m (L3–L12) that indicate that these terraces are drowned reef systems that grew in shallow coral reef to intermediate and deeper fore-reef slope settings since the early Pleistocene. Age estimates based on 87Sr/86Sr isotopic measurements on corals, coralline algae, echinoids, and bulk sediments, although lacking the precision (∼±0.23 Ma) to distinguish the age–depth relationship and drowning times of individual reefs, indicate that the L12–L3 reefs range in age from ∼1.3–0.5 Ma and are therefore about 0.5–0.8 Ma older than the corresponding reefs around the flanks of Hawaii. These new age data, despite their lack of precision and the influence of later-stage submarine diagenesis on some analyzed corals, clearly revise the previous correlations between the reefs off Lanai and Hawaii. Soon after the end of major shield building (∼1.3–1.2 Ma), the Lanai reefs initiated growth and went through a period of rapid subsidence and reef drowning associated with glacial/interglacial cycles similar to that experienced by the Hawaii reefs. However, their early Pleistocene initiation means they experienced a longer, more complex growth history than their Hawaii counterparts.

  12. Holocene glacial discharge fluctuations and recent instability in East Antarctica

    NASA Astrophysics Data System (ADS)

    Crespin, Julien; Yam, Ruth; Crosta, Xavier; Massé, Guillaume; Schmidt, Sabine; Campagne, Philippine; Shemesh, Aldo

    2014-05-01

    Antarctica holds the largest ice sheet in the world, the East Antarctic Ice Sheet (EAIS), and plays a significant role in both local and global climate through the interactions between ice sheets, ocean, sea ice, and atmosphere. Our understanding of East Antarctica Holocene climate variability relies mainly on ice cores that however do not document glacial discharge history. Here, we present the first high resolution δ18Odiatom record derived from two marine sediment cores retrieved on the East Antarctic continental shelf to reconstruct glacial discharge off Adélie Land and George V Land (AL-GVL) over the last 11,000 years from decadal to centennial resolution. Our results suggest multi-centennial glacier advances and retreats until 2000 cal yr BP, followed by a period of relative instability marked by two major glacial retreats centered at ˜1700 cal yr BP and ˜1980 CE. We suggest that the multi-centennial oscillations during the Early/Mid-Holocene reflect glacier fluctuations in response to long-term local seasonal insolation and short-term solar variability. We also propose that δ18Odiatom variability over the last 2000 years was the result of a recent change in the AL-GVL region to increasing atmospheric influence, linked to ENSO intensification and teleconnections strengthening between low and high latitudes.

  13. Ice shelves in the Pleistocene Arctic Ocean inferred from glaciogenic deep-sea bedforms.

    PubMed

    Polyak, L; Edwards, M H; Coakley, B J; Jakobsson, M

    2001-03-22

    It has been proposed that during Pleistocene glaciations, an ice cap of 1 kilometre or greater thickness covered the Arctic Ocean. This notion contrasts with the prevailing view that the Arctic Ocean was covered only by perennial sea ice with scattered icebergs. Detailed mapping of the ocean floor is the best means to resolve this issue. Although sea-floor imagery has been used to reconstruct the glacial history of the Antarctic shelf, little data have been collected in the Arctic Ocean because of operational constraints. The use of a geophysical mapping system during the submarine SCICEX expedition in 1999 provided the opportunity to perform such an investigation over a large portion of the Arctic Ocean. Here we analyse backscatter images and sub-bottom profiler records obtained during this expedition from depths as great as 1 kilometre. These records show multiple bedforms indicative of glacial scouring and moulding of sea floor, combined with large-scale erosion of submarine ridge crests. These distinct glaciogenic features demonstrate that immense, Antarctic-type ice shelves up to 1 kilometre thick and hundreds of kilometres long existed in the Arctic Ocean during Pleistocene glaciations. PMID:11260709

  14. Late to middle Pleistocene climate variability recorded in stalagmites from Sofular Cave, Northern Turkey

    NASA Astrophysics Data System (ADS)

    Fleitmann, D.; Cheng, H.; Edwards, R. L.; Badertscher, S.; Tüysüz, O.

    2012-04-01

    The modern climate in Turkey and the eastern Mediterranean is strongly affected by two major climate systems; the North Atlantic/Siberian pressure system in winter and the Indian monsoon in summer. Turkey is thus ideally situated to study how and to what extent both systems were dynamically linked during the Holocene and Pleistocene. Our current knowledge of continental climate variability in Turkey relies almost entirely on lake records with only a few extending back to the Last Glacial Maximum and beyond. Another source of information on Pleistocene and Holocene climate variability is speleothems, which can be found in caves throughout Turkey. Here we present composite stalagmite oxygen and carbon isotope records from Sofular Cave located at the Black Sea coast in north-western Turkey, which cover the last 670.000 discontinuously. Uranium-series dates with unprecedented small age uncertainties of only 0.25-2% and highly resolved isotope profiles allow us to (1) identify the climatic impacts of Dansgaard-Oeschger and Heinrich events, (2) compare climatic and environmental conditions during different interglacial and glacial periods (Marine Isotope Stages 1-7, 9, 13 and 15) and (3) reveal changes in the hydrological state of the Black Sea in unprecedented detail.

  15. Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100.

    PubMed

    Alter, S Elizabeth; Meyer, Matthias; Post, Klaas; Czechowski, Paul; Gravlund, Peter; Gaines, Cork; Rosenbaum, Howard C; Kaschner, Kristin; Turvey, Samuel T; van der Plicht, Johannes; Shapiro, Beth; Hofreiter, Michael

    2015-04-01

    Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range. PMID:25753251

  16. Extraterrestrial accretion and glacial cycles

    NASA Technical Reports Server (NTRS)

    Muller, R. A.

    1994-01-01

    We propose that the approx. 100-k.y. cycle seen in terrestrial glaciation is due to changes in meteor flux that come from changes in the Earth's orbit. This model can explain a 70-k.y. 'anomalous' period in climate data and the apparent discrepancy between present extraterrestrial fluxes and those in oceanic sediments. It can be tested by measuring Ir densities in sediments and ice during glacials and interglacials.

  17. Late Pleistocene Stratigraphy and Palaeobotany of the Isles of Scilly

    NASA Astrophysics Data System (ADS)

    Scourse, J. D.

    1991-12-01

    A re-evaluation of the Pleistocene stratigraphy of the Isles of Scilly has enabled the formal definition of eight lithostratigraphic units of member status grouped into two formations. A chronology of events has been provided by radiocarbon (14C) determinations, optical and thermoluminescene (TL) dates. Intersite correlations have been strengthened by palynology, which has aided palaeoenvironmental reconstruction. The defined units have been incorporated into two lithostratigraphic models, one for the `northern' (glacial) Scillies and one for the `southern' (extra-glacial) Scillies. Raised beach sediments of the Watermill Sands and Gravel in the southern Scillies are overlain by the Porthloo Breccia, a unit of soliflucted material derived exclusively from the weathering of local granite. Organic sequences at Carn Morval, Watermill Cove, Porth Askin, Porth Seal and Bread and Cheese Cove occur within the Porthloo Breccia, and are interpreted as the infillings of ponds associated with active solifluction. Radiocarbon determinations from these organic sediments are critical because they pre-date units associated with a glacial event. The 14C determinations indicate deposition of the organic material between 34500-800+885 (Q-2410) and 21500-800+890 (Q-2358) years BP and provide a maximum age for the glacial event and the first radiometric dates for the coastal `head' sediments of southwest England. The pollen assemblages from these organic sites all record open grassland vegetation, and represent the earliest vegetational record for the Scillies. High Pinus values are interpreted as evidence of climatic deterioration. In the southern Scillies, the Porthloo Breccia is overlain by the Old Man Sandloess, a coarse aeolian silt with subdominant fine sand, TL-dated to 18600-3700+3700 years (QTL-ld and lf; Wintle 1981) and optically dated to 20000-7000+7000 and 26000-9000+10000 years (two samples; 738al and 741al; Smith et al. 1990). This material occurs in a variety of facies

  18. Glacial-Interglacial, Orbital and Millennial-Scale Climate Variability for the Last Glacial Cycle at Shackleton Site U1385 based on Dinoflagellate Cysts

    NASA Astrophysics Data System (ADS)

    Datema, M.

    2015-12-01

    The Shackleton Site (IODP Expedition 339 Site U1385), located off the West-Portuguese Margin, preserves a continuous high-fidelity record of millennial-scale climate variability for the last several glacial cycles (~1.4 Myr) that can be correlated precisely to patterns observed in polar ice cores. In addition, rapid delivery of terrestrial material to the deep-sea environment allows the correlation of these marine records to European terrestrial climate records. This unique marine-ice-terrestrial linkage makes the Shackleton Site the ideal reference section for studying Quaternary abrupt climate change. The main objective of studying Site U1385 is to establish a marine reference section of Pleistocene climate change. We generated (sub)millennial-scale (~600 year interval) dinoflagellate cyst (dinocyst) assemblage records from Shackleton Site U1385 (IODP Expedition 339) to reconstruct sea surface temperature (SST) and productivity/upwelling over the last 152 kyrs. In addition, our approach allows for detailed land-sea correlations, because we also counted assemblages of pollen and spores from higher plants. Dinocyst SST and upwelling proxies, as well as warm/cold pollen proxies from Site U1385 show glacial-interglacial, orbital and stadial-interstadial climate variability and correlate very well to Uk'37, planktic foraminifer δ18O and Ca/Ti proxies of previously drilled Shackleton Sites and Greenland Ice Core δ18O. The palynological proxies capture (almost) all Dansgaard-Oeschger events of the last glacial cycle, also before ~70 ka, where millennial-scale variability is overprinted by precession. We compare the performance and results of the palynology of Site U1385 to proxies of previously drilled Shackleton Sites and conclude that palynology strengthens the potential of this site to form a multi-proxy reference section for millennial scale climate variability across the Pleistocene-Holocene. Finally, we will present a long-term paleoceanographic perspective down

  19. Paleoclimatic modeling and phylogeography of least killifish, Heterandria formosa: insights into Pleistocene expansion-contraction dynamics and evolutionary history of North American Coastal Plain freshwater biota

    PubMed Central

    2013-01-01

    Background Climatic and sea-level fluctuations throughout the last Pleistocene glacial cycle (~130-0 ka) profoundly influenced present-day distributions and genetic diversity of Northern Hemisphere biotas by forcing range contractions in many species during the glacial advance and allowing expansion following glacial retreat ('expansion-contraction’ model). Evidence for such range dynamics and refugia in the unglaciated Gulf-Atlantic Coastal Plain stems largely from terrestrial species, and aquatic species Pleistocene responses remain relatively uninvestigated. Heterandria formosa, a wide-ranging regional endemic, presents an ideal system to test the expansion-contraction model within this biota. By integrating ecological niche modeling and phylogeography, we infer the Pleistocene history of this livebearing fish (Poeciliidae) and test for several predicted distributional and genetic effects of the last glaciation. Results Paleoclimatic models predicted range contraction to a single southwest Florida peninsula refugium during the Last Glacial Maximum, followed by northward expansion. We inferred spatial-population subdivision into four groups that reflect genetic barriers outside this refuge. Several other features of the genetic data were consistent with predictions derived from an expansion-contraction model: limited intraspecific divergence (e.g. mean mtDNA p-distance = 0.66%); a pattern of mtDNA diversity (mean Hd = 0.934; mean π = 0.007) consistent with rapid, recent population expansion; a lack of mtDNA isolation-by-distance; and clinal variation in allozyme diversity with higher diversity at lower latitudes near the predicted refugium. Statistical tests of mismatch distributions and coalescent simulations of the gene tree lent greater support to a scenario of post-glacial expansion and diversification from a single refugium than to any other model examined (e.g. multiple-refugia scenarios). Conclusions Congruent results from diverse data

  20. Vicariance biogeography in the Pleistocene and speciation in North American wood warblers: a test of Mengel's model.

    PubMed Central

    Bermingham, E; Rohwer, S; Freeman, S; Wood, C

    1992-01-01

    It is widely believed that habitat fragmentation during the Pleistocene initiated speciation events in many songbird genera. One such vicariance model for avian speciation in the Pleistocene was developed by R. M. Mengel for North American birds. This model suggests that the first Pleistocene glacial advance reduced the area of an extensive, eastern North American deciduous forest, forcing adaptation by some species to boreal forest. This, in turn, facilitated the development of transcontinental range expansions during interglacials. Subsequent glacial advances repeatedly fragmented the ranges of these species into eastern and western populations; western isolates speciated to form the multispecies groups observed among various North American birds. We used mtDNA restriction site data to reconstruct the phylogeny of the black-throated green warbler complex-the group that Mengel considered the best fit to his model. Contrary to Mengel's model, the phylogeny indicates that not all western endemics were derived from an eastern ancestor. Instead, our results imply a mix, wherein some western endemics were budded off an eastern source, as Mengel posits, while others probably resulted from intermontane isolations in the west. PMID:11607307

  1. Composite sedimentary record of falling stages of Pleistocene glacio-eustatic cycles in a shelf setting (Crotone basin, south Italy)

    NASA Astrophysics Data System (ADS)

    Massari, F.; Sgavetti, M.; Rio, D.; D'Alessandro, A.; Prosser, G.

    1999-08-01

    reworking of sediments on the topset platform and gravity spreading on the foreset slope of the prograding wedges. Well-oxygenated conditions over the shelf due to intensified storm activity during glacial periods may have enhanced the rate of production of skeletal, foramol-type carbonates. It can reasonably be assumed that progradation took place from a line source and that the sand bodies are to be regarded as coastal prograding bodies. In spite of active syndepositional tectonics, the cycles can be correlated to Pleistocene high-amplitude sea-level oscillations. The older of the two wedges can be correlated, through bio-magnetostratigraphy, to the major climatic transition which occurred from the marine oxygen-isotope stage 25 to 24-22 ( Rio et al., 1996). The younger probably developed during the sea-level fall that ended with substage 18.2, as suggested by sequence- and bio-stratigraphic data. The prograding wedges are thus interpreted to record long-lived sea-level falls of fourth-order cycles. Due to the particular depositional setting, we are inclined to exclude authigenic mechanisms in the origin of small-scale cyclicity. Although the concomitance and interaction of different controlling factors may be taken into account, it is tempting to ascribe this cyclicity to minor eustatic changes punctuating long-lived, erratic falling stages, possibly accompanied by climate-driven fluctuations of sediment supply. Shelf-perched and shelf-edge prograding units consisting of foramol-type carbonates are apparently a common falling-stage to lowstand depositional feature in the Mediterranean area during the Late Pliocene and Pleistocene.

  2. Glacial sequence stratigraphy reveal the Weichselian glacial history of the SE sector of the Eurasian Ice Sheet

    NASA Astrophysics Data System (ADS)

    Räsänen, Matti

    2016-04-01

    Reconstructions of the last Weichselian glacial cycle 117,000-11,700 years (kyr) ago propose that S Finland, adjacent Russia and the Baltic countries in the SE sector of the Eurasian Ice Sheet (EIS), were glaciated during the Middle Weichselian time [marine isotope stage (MIS) 4, 71-57 kyr ago] and that this glaciation was preceded in S Finland by an Early Weichselian interstadial (MIS 5c, 105-93 kyr ago) with pine forest. Here glacial sequence stratigraphy (Powell and Cooper 2002) is applied to isolated Late Pleistocene onshore outcrop sections in S Finland. The analysed sedimentary records have traditionally been investigated, interpreted and published separately by different authors without an attempt to a methodologically more systematic survey. By putting new field data and old observations into a regional sequence stratigraphic framework it is shown how previously unnoticed regularities can be found in the lithofacies and fossil successions. It is shown that the proposed Middle Weichselian glaciation or the pine dominated interstadial did not take place at all (Räsänen et al. 2015). The one Late Weichselian glaciation (MIS 2, 29-11 kyr ago) at the SE sector of EIS was preceded in S Finland by a nearly 90 kyr long still poorly known non-glacial period, featuring tundra with permafrost and probably birch forest. The new Middle Weichselian paleoenvironmental scenario revises the configuration and hydrology of the S part of EIS and gives new setting for the evolution of Scandinavian biota. References Powell, R. D., and Cooper, J. M., 2002, A glacial sequence stratigraphic model for temperate, glaciated continental shelves, in Dowdeswell, J. A., and Cofaig, C. Ó. eds., Glacier-Influenced Sedimentation on High-Latitude Continental Margins: The Geological Society of London, London, Geological Society London, Special Publication v. 203, p. 215-244. Räsänen, M.E., Huitti, J.V., Bhattarai, S. Harvey, J. and Huttunen, S. 2015, The SE sector of the Middle

  3. Glacial climate in the tropics

    SciTech Connect

    Broecker, W.

    1996-06-28

    New findings have caused ideas about the Earth`s climate during the Pleistocene glaciation to change. A consensus seems to be forming that during times of glaciation, climatic conditions in the tropics were quite different from those today. However still to be explained is why strontium-calcium measurements on corals and moble gas measurements of ground water suggest a tropical cooling of 4-6 C while foraminiferal speciation, oxygen isotope, and alkenone results suggest a cooling of no more than 3 C. This article discusses different aspects of the debate. 9 refs., 1 fig.

  4. The INTIMATE event stratigraphy of the last glacial period

    NASA Astrophysics Data System (ADS)

    Olander Rasmussen, Sune; Svensson, Anders

    2015-04-01

    The North Atlantic INTIMATE (INtegration of Ice-core, MArine and TErrestrial records) group has previously recommended an Event Stratigraphy approach for the synchronisation of records of the Last Termination using the Greenland ice core records as the regional stratotypes. A key element of these protocols has been the formal definition of numbered Greenland Stadials (GS) and Greenland Interstadials (GI) within the past glacial period as the Greenland expressions of the characteristic Dansgaard-Oeschger events that represent cold and warm phases of the North Atlantic region, respectively. Using a recent synchronization of the NGRIP, GRIP, and GISP2 ice cores that allows the parallel analysis of all three records on a common time scale, we here present an extension of the GS/GI stratigraphic template to the entire glacial period. In addition to the well-known sequence of Dansgaard-Oeschger events that were first defined and numbered in the ice core records more than two decades ago, a number of short-lived climatic oscillations have been identified in the three synchronized records. Some of these events have been observed in other studies, but we here propose a consistent scheme for discriminating and naming all the significant climatic events of the last glacial period that are represented in the Greenland ice cores. In addition to presenting the updated event stratigraphy, we make a series of recommendations on how to refer to these periods in a way that promotes unambiguous comparison and correlation between different proxy records, providing a more secure basis for investigating the dynamics and fundamental causes of these climatic perturbations. The work presented is a part of a newly published paper in an INTIMATE special issue of Quaternary Science Reviews: Rasmussen et al., 'A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event

  5. Across the southern Andes on fin: glacial refugia, drainage reversals and a secondary contact zone revealed by the phylogeographical signal of Galaxias platei in Patagonia.

    PubMed

    Zemlak, Tyler S; Habit, Evelyn M; Walde, Sandra J; Battini, Miguel A; Adams, Emily D M; Ruzzante, Daniel E

    2008-12-01

    We employed DNA sequence variation at two mitochondrial (control region, COI) regions from 212 individuals of Galaxias platei (Pisces, Galaxiidae) collected throughout Patagonia (25 lakes/rivers) to examine how Andean orogeny and the climatic cycles throughout the Quaternary affected the genetic diversity and phylogeography of this species. Phylogenetic analyses revealed four deep genealogical lineages which likely represent the initial division of G. platei into eastern and western lineages by Andean uplift, followed by further subdivision of each lineage into separate glacial refugia by repeated Pleistocene glacial cycles. West of the Andes, refugia were likely restricted to the northern region of Patagonia with small relicts in the south, whereas eastern refugia appear to have been much larger and widespread, consisting of separate northern and southern regions that collectively spanned most of Argentinean Patagonia. The retreat of glacial ice following the last glacial maximum allowed re-colonization of central Chile from nonlocal refugia from the north and east, representing a region of secondary contact between all four glacial lineages. Northwestern glacial relicts likely followed pro-glacial lakes into central Chilean Patagonia, whereas catastrophic changes in drainage direction (Atlantic --> Pacific) for several eastern palaeolakes were the likely avenues for invasions from the east. These mechanisms, combined with evidence for recent, rapid and widespread population growth could explain the extensive contemporary distribution of G. platei throughout Patagonia. PMID:19017262

  6. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Böhm, E.; Lippold, J.; Gutjahr, M.; Frank, M.; Blaser, P.; Antz, B.; Fohlmeister, J.; Frank, N.; Andersen, M. B.; Deininger, M.

    2015-01-01

    Extreme, abrupt Northern Hemisphere climate oscillations during the last glacial cycle (140,000 years ago to present) were modulated by changes in ocean circulation and atmospheric forcing. However, the variability of the Atlantic meridional overturning circulation (AMOC), which has a role in controlling heat transport from low to high latitudes and in ocean CO2 storage, is still poorly constrained beyond the Last Glacial Maximum. Here we show that a deep and vigorous overturning circulation mode has persisted for most of the last glacial cycle, dominating ocean circulation in the Atlantic, whereas a shallower glacial mode with southern-sourced waters filling the deep western North Atlantic prevailed during glacial maxima. Our results are based on a reconstruction of both the strength and the direction of the AMOC during the last glacial cycle from a highly resolved marine sedimentary record in the deep western North Atlantic. Parallel measurements of two independent chemical water tracers (the isotope ratios of 231Pa/230Th and 143Nd/144Nd), which are not directly affected by changes in the global cycle, reveal consistent responses of the AMOC during the last two glacial terminations. Any significant deviations from this configuration, resulting in slowdowns of the AMOC, were restricted to centennial-scale excursions during catastrophic iceberg discharges of the Heinrich stadials. Severe and multicentennial weakening of North Atlantic Deep Water formation occurred only during Heinrich stadials close to glacial maxima with increased ice coverage, probably as a result of increased fresh-water input. In contrast, the AMOC was relatively insensitive to submillennial meltwater pulses during warmer climate states, and an active AMOC prevailed during Dansgaard-Oeschger interstadials (Greenland warm periods).

  7. Strong and deep Atlantic meridional overturning circulation during the last glacial cycle.

    PubMed

    Böhm, E; Lippold, J; Gutjahr, M; Frank, M; Blaser, P; Antz, B; Fohlmeister, J; Frank, N; Andersen, M B; Deininger, M

    2015-01-01

    Extreme, abrupt Northern Hemisphere climate oscillations during the last glacial cycle (140,000 years ago to present) were modulated by changes in ocean circulation and atmospheric forcing. However, the variability of the Atlantic meridional overturning circulation (AMOC), which has a role in controlling heat transport from low to high latitudes and in ocean CO2 storage, is still poorly constrained beyond the Last Glacial Maximum. Here we show that a deep and vigorous overturning circulation mode has persisted for most of the last glacial cycle, dominating ocean circulation in the Atlantic, whereas a shallower glacial mode with southern-sourced waters filling the deep western North Atlantic prevailed during glacial maxima. Our results are based on a reconstruction of both the strength and the direction of the AMOC during the last glacial cycle from a highly resolved marine sedimentary record in the deep western North Atlantic. Parallel measurements of two independent chemical water tracers (the isotope ratios of (231)Pa/(230)Th and (143)Nd/(144)Nd), which are not directly affected by changes in the global cycle, reveal consistent responses of the AMOC during the last two glacial terminations. Any significant deviations from this configuration, resulting in slowdowns of the AMOC, were restricted to centennial-scale excursions during catastrophic iceberg discharges of the Heinrich stadials. Severe and multicentennial weakening of North Atlantic Deep Water formation occurred only during Heinrich stadials close to glacial maxima with increased ice coverage, probably as a result of increased fresh-water input. In contrast, the AMOC was relatively insensitive to submillennial meltwater pulses during warmer climate states, and an active AMOC prevailed during Dansgaard-Oeschger interstadials (Greenland warm periods). PMID:25517093

  8. Controls on aggradation and incision in the NE Negev, Israel, since the middle Pleistocene

    DOE PAGESBeta

    Matmon, A.; Elfasi, S.; Hidy, A. J.; Geller, Y.; Porat, N.; Team, ASTER

    2016-02-23

    Here, we investigated the mid-Pleistocene to recent aggradation-incision pattern of two drainage systems (Nahal Peres and Nahal Tahmas) in the hyperarid north eastern Negev desert, southern Israel. Although these drainage systems drain into the tectonically active Dead Sea basin, lake level fluctuations cannot account for the aggradation-incision pattern as bedrock knickpoints disconnect the investigated parts of these drainage systems from base level influence. We applied geomorphic mapping, soil stratigraphy, optically stimulated luminescence (OSL) and cosmogenic (in situ 10Be) exposure dating to reconstruct cycles of aggradation and incision of alluvial terraces and to study their temporal association with regional periods ofmore » humidity and aridity and global glacial-interglacial cycles. The spatial and temporal relationships between the alluvial units suggest changes in the drainage system behavior since the middle Pleistocene, and show a pattern in which prolonged periods of sediment aggradation alternated with short periods of rapid and intense degradation through erosion and incision into sediment and bedrock. We obtain ages for several Pleistocene-Holocene periods of incision: ~ 1.1 Ma, ~ 300 ka, ~ 120 ka, ~ 20 ka, ~ 12 ka and ~ 2 ka. Although broadly synchronous, the Nahal Peres and Nahal Tahmas systems exhibit temporal differences in aggradation and incision.« less

  9. An early to mid-Pleistocene deep Arctic Ocean ostracode fauna with North Atlantic affinities

    USGS Publications Warehouse

    DeNinno, Lauren H.; Cronin, Thomas M.; Rodriquez-Lazaro, J.; Brenner, Alec R.

    2015-01-01

    An early to middle Pleistocene ostracode fauna was discovered in sediment core P1-93-AR-23 (P23, 76.95°N, 155.07°W) from 951 meter water depth from the Northwind Ridge, western Arctic Ocean. Piston core P23 yielded more than 30,000 specimens and a total of about 30 species. Several early to mid-Pleistocene species in the genera Krithe,Echinocythereis, Pterygocythereis, and Arcacythere are now extinct in the Arctic and show taxonomic affinities to North Atlantic Ocean species. Our results suggest that there was a major ostracode faunal turnover during the global climate transitions known as the Mid-Pleistocene Transition (MPT, ~ 1.2 to 0.7 Ma) and the Mid-Brunhes Event (MBE, ~ 400 ka) reflecting the development of perennial sea ice during interglacial periods and large ice shelves during glacial periods over the last 400,000 years.

  10. Is Gene Flow Promoting the Reversal of Pleistocene Divergence in the Mountain Chickadee (Poecile gambeli)?

    PubMed Central

    Manthey, Joseph D.; Klicka, John; Spellman, Garth M.

    2012-01-01

    The Pleistocene glacial cycles left a genetic legacy on taxa throughout the world; however, the persistence of genetic lineages that diverged during these cycles is dependent upon levels of gene flow and introgression. The consequences of secondary contact among taxa may reveal new insights into the history of the Pleistocene’s genetic legacy. Here, we use phylogeographic methods, using 20 nuclear loci from regional populations, to infer the consequences of secondary contact following divergence in the Mountain Chickadee (Poecile gambeli). Analysis of nuclear data identified two geographically-structured genetic groups, largely concordant with results from a previous mitochondrial DNA (mtDNA) study. Additionally, the estimated multilocus divergence times indicate a Pleistocene divergence, and are highly concordant with mtDNA. The previous mtDNA study showed a paucity of sympatry between clades, while nuclear patterns of gene flow show highly varied patterns between populations. The observed pattern of gene flow, from coalescent-based analyses, indicates southern populations in both clades exhibit little gene flow within or between clades, while northern populations are experiencing higher gene flow within and between clades. If this pattern were to persist, it is possible the historical legacy of Pleistocene divergence may be preserved in the southern populations only, and the northern populations would become a genetically diverse hybrid species. PMID:23152877

  11. Pleistocene landscapes in central Iberia inferred from pollen analysis of hyena coprolites

    NASA Astrophysics Data System (ADS)

    Carrión, J. S.; Scott, L.; Arribas, A.; Fuentes, N.; Gil-Romera, G.; Montoya, E.

    2007-02-01

    New pollen data from hyena coprolites from central Spain are presented. The fossil faecal material has been recovered from two karstic systems in different localities, Villacastín and Los Torrejones, which are both around 1000 m a.s.l. The combined findings of bone remains and coprolites in both locations suggest the following chronology: late Middle Pleistocene for Villacastín and early Upper Pleistocene for Los Torrejones. The environments inferred from pollen are broadly in keeping with evidence from associated vertebrate fossil remains, and include a shifting mosaic of open and wooded habitats with abundant pine and juniper species, steppe-grassland areas with composites and chenopods, and enclaves with mixed oak forests. However, Los Torrejones appears to have been less forested than Villacastín. The abundance of oaks in Villacastín may imply the presence of refugia within an interconnected network of several enclaves during the glacial stages in the Upper Pleistocene. A possible explanation for the patchiness of the landscape may be in the role of herbivores, although the long distances and variety of habitats that hyenas had to roam through could be another explanation for the heterogeneous pollen contents in their dung. Copyright

  12. Migration of the Antarctic Polar Front through the mid-Pleistocene transition: evidence and climatic implications

    NASA Astrophysics Data System (ADS)

    Kemp, A. E. S.; Grigorov, I.; Pearce, R. B.; Naveira Garabato, A. C.

    2010-08-01

    The Antarctic Polar Front is an important biogeochemical divider in the Southern Ocean. Laminated diatom mat deposits record episodes of massive flux of the diatom Thalassiothrix antarctica beneath the Antarctic Polar Front and provide a marker for tracking the migration of the Front through time. Ocean Drilling Program Sites 1091, 1093 and 1094 are the only deep piston cored record hitherto sampled from the sediments of the circumpolar biogenic opal belt. Mapping of diatom mat deposits between these sites indicates a glacial-interglacial front migration of up to 6 degrees of latitude in the early/mid Pleistocene. The mid-Pleistocene transition marks a stepwise minimum 7° northward migration of the locus of the Polar Front sustained for about 450 kyr until an abrupt southward return to a locus similar to its modern position and further south than any mid-Pleistocene locus. This interval from a "900 ka event" that saw major cooling of the oceans and a δ 13C minimum through to the 424 ka Mid-Brunhes Event at Termination V is also seemingly characterised by 1) sustained decreased carbonate in the sub-tropical south Atlantic, 2) reduced strength of Antarctic deep meridional circulation, 3) lower interglacial temperatures and lower interglacial atmospheric CO 2 levels (by some 30 per mil) than those of the last 400 kyr, evidencing less complete deglaciation. This evidence is consistent with a prolonged period lasting 450 kyr of only partial ventilation of the deep ocean during interglacials and suggests that the mechanisms highlighted by recent hypotheses linking mid-latitude atmospheric conditions to the extent of deep ocean ventilation and carbon sequestration over glacial-interglacial cycles are likely in operation during the longer time scale characteristic of the mid-Pleistocene transition. The cooling that initiated the "900 ka event" may have been driven by minima in insolation amplitude related to eccentricity modulation of precession that also affected low

  13. Predicting Pleistocene climate from vegetation

    NASA Astrophysics Data System (ADS)

    Loehle, C.

    2006-10-01

    Climates at the Last Glacial Maximum have been inferred from fossil pollen assemblages, but these inferred climates are colder than those produced by climate simulations. Biogeographic evidence also argues against these inferred cold climates. The recolonization of glaciated zones in eastern North America following the last ice age produced distinct biogeographic patterns. It has been assumed that a wide zone south of the ice was tundra or boreal parkland (Boreal-Parkland Zone or BPZ), which would have been recolonized from southern refugia as the ice melted, but the patterns in this zone differ from those in the glaciated zone, which creates a major biogeographic anomaly. In the glacial zone, there are few endemics but in the BPZ there are many across multiple taxa. In the glacial zone, there are the expected gradients of genetic diversity with distance from the ice-free zone, but no evidence of this is found in the BPZ. Many races and related species exist in the BPZ which would have merged or hybridized if confined to the same refugia. Evidence for distinct southern refugia for most temperate species is lacking. Extinctions of temperate flora were rare. The interpretation of spruce as a boreal climate indicator may be mistaken over much of the region if the spruce was actually an extinct temperate species. All of these anomalies call into question the concept that climates in the zone south of the ice were very cold or that temperate species had to migrate far to the south. Similar anomalies exist in Europe and on tropical mountains. An alternate hypothesis is that low CO2 levels gave an advantage to pine and spruce, which are the dominant trees in the BPZ, and to herbaceous species over trees, which also fits the observed pattern. Most temperate species could have survived across their current ranges at lower abundance by retreating to moist microsites. These would be microrefugia not easily detected by pollen records, especially if most species became rare

  14. Gulf coastal Pleistocene units and time stratigraphy; reevaluation and problems of Atlantic correlation

    SciTech Connect

    Otvos, E.G. . Geology Section)

    1993-03-01

    Outdated glacial subdivisions and misinterpretations of alluvial interfluve ridges as marine terraces hampered advances in coastal stratigraphy. One problem involves C.W. Cooke's extension of his Atlantic shorelines along the NE Gulf into the Mississippi Embayment. The mirage of an inter-Wisconsinan interglacial gave way to beliefs in high glacial Wisconsinan sea levels that were assumed to have resulted in barriers and intensive alluvial aggradation on the TX-LA coastal plain. Without vertical definitions, Fisk assigned formation status to alluvial and brackish-marine sediments that directly underlie four coastwise Pleistocene terraces in SW Louisiana. The youngest (Prairie) and associated formations were recently (re)defined and correlated with other coastal areas. Brackish and marine deposits in the subsurface have been correlated with Fisk's second youngest coastwise surface. Detailed facies analyses of cores from hundreds of drillholes indicated that, in sharp contrast with Plio-Pleistocene barriers on the Atlantic coast, only a single, Sangamonian (Sg) barrier shore complex remains on the NE Gulf coastal plain after intensive uplift/erosion. Few isolated remnants of pre-Sg Pleistocene alluvial units occur, including flora elements in peat lenses at one location. An early, low Sg sea level stand near Apalachicola is marked by transgressive deposits at c. [minus]37.5m. Thin NE Gulf Sg sequence includes the fine-grained, open marine-to-estuarine Biloxi, the regressive, shallow subtidal-to-supratidal, mainland Gulfport barrier and the alluvial Prairie Formations. These are correlatable Gulfwide. Contrary to widespread assumption, the Gulfport-Ingleside barriers were not islands but mainland strandplains. The Sg complex correlates with oxygen isotope Stage 5 units of the Mid/South Atlantic coastal plain and shelf. Thick LA-TX shelf/slope intervals display about ten fourth-order cycles within 4 primary ones.

  15. Neurodynamic oscillators

    NASA Technical Reports Server (NTRS)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  16. Environmental Influences on Pleistocene Hominid Dental Evolution

    ERIC Educational Resources Information Center

    Greene, David L.

    1970-01-01

    Considers natural and cultural environmental factors likely to have been responsible for reduction in size of hominid teeth and simplification of their morphology during the Pleistocene. Cites fossil evidence and postulates selective mechanisms. (EB)

  17. Lake core record of Grinnell Glacier dynamics during the latest Pleistocene deglaciation and the Younger Dryas, Glacier National Park, Montana, USA

    NASA Astrophysics Data System (ADS)

    Schachtman, Nathan S.; MacGregor, Kelly R.; Myrbo, Amy; Hencir, Nora Rose; Riihimaki, Catherine A.; Thole, Jeffrey T.; Bradtmiller, Louisa I.

    2015-07-01

    Few records in the alpine landscape of western North America document the geomorphic and glaciologic response to climate change during the Pleistocene-Holocene transition. While moraines can provide snapshots of glacier extent, high-resolution records of environmental response to the end of the Last Glacial Maximum, Younger Dryas cooling, and subsequent warming into the stable Holocene are rare. We describe the transition from the late Pleistocene to the Holocene using a ~ 17,000-yr sediment record from Swiftcurrent Lake in eastern Glacier National Park, MT, with a focus on the period from ~ 17 to 11 ka. Total organic and inorganic carbon, grain size, and carbon/nitrogen data provide evidence for glacial retreat from the late Pleistocene into the Holocene, with the exception of a well-constrained advance during the Younger Dryas from 12.75 to 11.5 ka. Increased detrital carbonate concentration in Swiftcurrent Lake sediment reflects enhanced glacial erosion and sediment transport, likely a result of a more proximal ice terminus position and a reduction in the number of alpine lakes acting as sediment sinks in the valley.

  18. Effects of climatic and geological processes during the pleistocene on the evolutionary history of the northern cavefish, Amblyopsis spelaea (teleostei: amblyopsidae).

    PubMed

    Niemiller, Matthew L; McCandless, James R; Reynolds, R Graham; Caddle, James; Near, Thomas J; Tillquist, Christopher R; Pearson, William D; Fitzpatrick, Benjamin M

    2013-04-01

    Climatic and geological processes associated with glaciation cycles during the Pleistocene have been implicated in influencing patterns of genetic variation and promoting speciation of temperate flora and fauna. However, determining the factors promoting divergence and speciation is often difficult in many groups because of our limited understanding of potential vicariant barriers and connectivity between populations. Pleistocene glacial cycles are thought to have significantly influenced the distribution and diversity of subterranean invertebrates; however, impacts on subterranean aquatic vertebrates are less clear. We employed several hypothesis-driven approaches to assess the impacts of Pleistocene climatic and geological changes on the Northern Cavefish, Amblyopsis spelaea, whose current distribution occurs near the southern extent of glacial advances in North America. Our results show that the modern Ohio River has been a significant barrier to dispersal and is correlated with patterns of genetic divergence. We infer that populations were isolated in two refugia located north and south of the Ohio River during the most recent two glacial cycles with evidence of demographic expansion in the northern isolate. Finally, we conclude that climatic and geological processes have resulted in the formation of cryptic forms and advocate recognition of two distinct phylogenetic lineages currently recognized as A. spelaea. PMID:23550752

  19. The Watinglo mandible: a second terminal Pleistocene Homo sapiens fossil from tropical Sahul with a test on existing models for the human settlement of the region.

    PubMed

    Bulbeck, D; O'Connor, S

    2011-02-01

    This paper analyses a fossil human mandible, dated to circa 10ka, from Watinglo rockshelter on the north coast of Papua New Guinea. The fossil is metrically and morphologically similar to male mandibles of recent Melanesians and Australian Aborigines. It is distinguished from Kow Swamp and Coobool Creek male mandibles (Murray Valley, terminal Pleistocene) by being smaller and having different shape characteristics, as well as smaller teeth and a slower rate of tooth wear. It pairs with the Liang Lemdubu female (Late Glacial Maximum, Aru Islands) in suggesting that the morphology of the terminal Pleistocene inhabitants of tropical Sahul was gracile compared to their contemporaries within the southern Murray drainage. An explanatory scenario for this morphological contrast is developed in the context of the Homo sapiens early fossil record, Australasian mtDNA evidence, terminal Pleistocene climatic variation, and the possibility of multiple entry points into Sahul. PMID:21216399

  20. The distinct roles of the Antarctic and Subantarctic Zones in ocean productivity and atmospheric CO2 across the Mid-Pleistocene transition

    NASA Astrophysics Data System (ADS)

    Jaccard, S.; Martinez-Garcia, A.; Hasenfratz, A.; Sigman, D. M.; Haug, G. H.

    2012-12-01

    The emergence of low frequency, high-amplitude, quasi-periodic (100-kyr) glacial variability during the middle Pleistocene in the absence of any significant change in orbital forcing indicates a fundamental change internal to the climate system. The mid-Pleistocene transition (MPT), which occurred between 1.2 and 0.7 Myr, has variably been attributed to either global cooling possibly associated with a long-term decrease in greenhouse gas concentrations or changes in internal ice-sheet dynamics independent of changes in atmospheric pCO2. The available low-resolution pCO2 estimates indicate that atmospheric CO2 concentrations were 30 ppm higher during glacial stages before the MPT, but also that interglacial values were similar to those of the late Pleistocene. This resulted in no significant change in the atmospheric CO2 trend. However, the higher atmospheric CO2 concentrations during glacial stages resulted in an increase in glacial temperatures in the tropics, and a 30% decrease in glacial/interglacial amplitude before 450 kyr. During this period Southern Ocean dust fluxes doubled and reached values that are comparable to those of the LGM. Thus, an increase in Fe availability may have potentially contributed, in combination with other mechanisms to explain part of the 30 ppm decrease in glacial atmospheric CO2 observed across the MPT. This observation is coherent with a progressive increase in glacial carbon sequestration due to Fe fertilization in the Southern Ocean as Northern Hemisphere glaciations intensify. Here, we investigate how the combined changes in Fe supply and in the strength of vertical convection have affected the sequestration of remineralized carbon in the ocean interior over the last 1.6 Myrs. We will show highly-resolved, continuous records from two South Atlantic ODP sedimentary archives located on either side of the Antarctic polar front highlighting the existence of a strong positive feedback mechanism between ice volume, Southern Ocean dust

  1. Periglacial fires and trees in a continental setting of Central Canada, Upper Pleistocene.

    PubMed

    Bélanger, N; Carcaillet, C; Padbury, G A; Harvey-Schafer, A N; Van Rees, K J C

    2014-03-01

    Fire is a key factor controlling global vegetation patterns and carbon cycling. It mostly occurs under warm periods during which fuel builds up with sufficient moisture, whereas such conditions stimulate fire ignition and spread. Biomass burning increased globally with warming periods since the last glacial era. Data confirming periglacial fires during glacial periods are very sparse because such climates are likely too cold to favour fires. Here, tree occurrence and fires during the Upper Pleistocene glacial periods in Central Canada are inferred from botanical identification and calibrated radiocarbon dates of charcoal fragments. Charcoal fragments were archived in sandy dunes of central Saskatchewan and were dated >50000-26600 cal BP. Fragments were mostly gymnosperms. Parallels between radiocarbon dates and GISP2-δ¹⁸O records deciphered relationships between fire and climate. Fires occurred either hundreds to thousands of years after Dansgaard-Oeschger (DO) interstadial warming events (i.e., the time needed to build enough fuel for fire ignition and spread) or at the onset of the DO event. The chronological uncertainties result from the dated material not precisely matching the fires and from the low residual ¹⁴C associated with old sample material. Dominance of high-pressure systems and low effective moisture during post-DO coolings likely triggered flammable periglacial ecosystems, while lower moisture and the relative abundance of fuel overshadowed lower temperatures for fire spread. Laurentide ice sheet (LIS) limits during DO events are difficult to assess in Central Canada due to sparse radiocarbon dates. Our radiocarbon data set constrains the extent of LIS. Central Saskatchewan was not covered by LIS throughout the Upper Pleistocene and was not a continental desert. Instead, our results suggest long-lasting periods where fluctuations of the northern tree limits and fires after interstadials occurred persistently. PMID:24405713

  2. Paleoceanography of the mid-Pleistocene South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Qianyu; Wang, Pinxian; Zhao, Quanhong; Tian, Jun; Cheng, Xinrong; Jian, Zhimin; Zhong, Guangfa; Chen, Muhong

    2008-06-01

    High-frequency fluctuations in paleoenvironmental proxies from the South China Sea, including stable isotopes and abundance of planktonic foraminifers, nannofossils, radiolarians, and palynomorphs, reveal a dynamic local response to the stepwise development of the mid-Pleistocene climate transition (MPT). These proxies indicate a dramatic drop in sea surface temperature (SST) at about 900 ka, the first largest SST decrease in the region during the Quaternary. Estimated winter SST declined from 24-25 °C to 17-18 °C in the northern and from 26-27 °C to 23-24 °C in the southern South China Sea. Subsequent changes in the thermocline depth and faunal-floral turnovers imply a period of about 300 ka in the final stage of the MPT. Winter monsoons increased at ˜900 ka and reached a maximum strength toward the end of the MPT when summer monsoons also strengthened in interglacials. As a result, thermal gradient between the northern and southern South China Sea increased substantially, with stronger winter monsoon influence in the north and warm and saline conditions in the south especially during glacial periods. These N-S paleoceanographic contrasts indicate an initial establishment of the modern-styled semi-enclosed South China Sea about 900 ka ago when passages in the south started to become completely exposed during glacial lowstands. Coupled with deep water cooling and ventilation, uplift of the sill depth in the Bashi Strait to near the present-2400 m during this period caused sudden decline and extinction of Pacific Deep Water benthic foraminifers in the isolated deep sea basin. Together with data from the oceanic western Pacific, these results further imply a considerable weakening of the western Pacific warm pool during MIS 23-22 and in subsequent glacial periods. While the MPT may have invoked high latitude processes especially an increased ice volume, tropical processes more likely have facilitated the restoration of heat and energy to the western Pacific in

  3. Climate change and evolving human diversity in Europe during the last glacial.

    PubMed Central

    Gamble, Clive; Davies, William; Pettitt, Paul; Richards, Martin

    2004-01-01

    A link between climate change and human evolution during the Pleistocene has often been assumed but rarely tested. At the macro-evolutionary level Foley showed for hominids that extinction, rather than speciation, correlates with environmental change as recorded in the deep sea record. Our aim is to examine this finding at a smaller scale and with high-resolution environmental and archaeological archives. Our interest is in changing patterns of human dispersal under shifting Pleistocene climates during the last glacial period in Europe. Selecting this time frame and region allows us to observe how two hominid taxa, Neanderthals and Crô-Magnons, adapted to climatic conditions during oxygen isotope stage 3. These taxa are representative of two hominid adaptive radiations, termed terrestrial and aquatic, which exhibited different habitat preferences but similar tolerances to climatic factors. Their response to changing ecological conditions was predicated upon their ability to extend their societies in space and time. We examine this difference further using a database of all available radiocarbon determinations from western Europe in the late glacial. These data act as proxies for population history, and in particular the expansion and contraction of regional populations as climate changed rapidly. Independent assessment of these processes is obtained from the genetic history of Europeans. The results indicate that climate affects population contraction rather than expansion. We discuss the consequences for genetic and cultural diversity which led to the legacy of the Ice Age: a single hominid species, globally distributed. PMID:15101580

  4. Polar front shift and atmospheric CO2 during the glacial maximum of the Early Paleozoic Icehouse

    PubMed Central

    Vandenbroucke, Thijs R. A.; Armstrong, Howard A.; Williams, Mark; Paris, Florentin; Zalasiewicz, Jan A.; Sabbe, Koen; Nõlvak, Jaak; Challands, Thomas J.; Verniers, Jacques; Servais, Thomas

    2010-01-01

    Our new data address the paradox of Late Ordovician glaciation under supposedly high pCO2 (8 to 22× PAL: preindustrial atmospheric level). The paleobiogeographical distribution of chitinozoan (“mixed layer”) marine zooplankton biotopes for the Hirnantian glacial maximum (440 Ma) are reconstructed and compared to those from the Sandbian (460 Ma): They demonstrate a steeper latitudinal temperature gradient and an equatorwards shift of the Polar Front through time from 55°–70° S to ∼40° S. These changes are comparable to those during Pleistocene interglacial-glacial cycles. In comparison with the Pleistocene, we hypothesize a significant decline in mean global temperature from the Sandbian to Hirnantian, proportional with a fall in pCO2 from a modeled Sandbian level of ∼8× PAL to ∼5× PAL during the Hirnantian. Our data suggest that a compression of midlatitudinal biotopes and ecospace in response to the developing glaciation was a likely cause of the end-Ordovician mass extinction. PMID:20696937

  5. Phylogeographical Analysis of mtDNA Data Indicates Postglacial Expansion from Multiple Glacial Refugia in Woodland Caribou (Rangifer tarandus caribou)

    PubMed Central

    Klütsch, Cornelya F. C.; Manseau, Micheline; Wilson, Paul J.

    2012-01-01

    Glacial refugia considerably shaped the phylogeographical structure of species and may influence intra-specific morphological, genetic, and adaptive differentiation. However, the impact of the Quaternary ice ages on the phylogeographical structure of North American temperate mammalian species is not well-studied. Here, we surveyed ∼1600 individuals of the widely distributed woodland caribou (Rangifer tarandus caribou) using mtDNA control region sequences to investigate if glacial refugia contributed to the phylogeographical structure in this subspecies. Phylogenetic tree reconstruction, a median-joining network, and mismatch distributions supported postglacial expansions of woodland caribou from three glacial refugia dating back to 13544–22005 years. These three lineages consisted almost exclusively of woodland caribou mtDNA haplotypes, indicating that phylogeographical structure was mainly shaped by postglacial expansions. The putative centres of these lineages are geographically separated; indicating disconnected glacial refugia in the Rocky Mountains, east of the Mississippi, and the Appalachian Mountains. This is in congruence with the fossil record that caribou were distributed in these areas during the Pleistocene. Our results suggest that the last glacial maximum substantially shaped the phylogeographical structure of this large mammalian North American species that will be affected by climatic change. Therefore, the presented results will be essential for future conservation planning in woodland caribou. PMID:23285137

  6. Unstable Atlantic Meridional Overturning Circulation during Glacial Intervals and Millennial Variability: The Role of Mean Sea Ice Extent

    NASA Astrophysics Data System (ADS)

    Fedorov, A. V.; Sevellec, F.

    2014-12-01

    A striking feature of paleoclimate records is the strong irregular variability with an approximately 1500 yr period, known as the Dansgaard-Oeschger (D-O) events, which punctuate the last glacial interval but disappear during the Holocene. Many theories, modeling and data suggest that these events, seen as abrupt warming episodes in Greenland ice cores and sea surface temperature records in the North Atlantic, are linked to reorganizations of the Atlantic Meridional Overturning Circulation (AMOC). In this study, using a new low-order ocean model, we are able to reproduce a realistic power spectrum of this millennial variability, which emerges in the model as a result of unstable AMOC dynamics rather than due to external freshwater forcing. Within this model we explore differences in the AMOC stability between glacial and interglacial intervals of the 100 kyr glacial cycle of the Late Pleistocene. Previous modeling studies show that the edge of sea ice in the North Atlantic shifts southward during glacial intervals, moving the region of the North Atlantic Deep Water formation and the entire AMOC also southward. Here we demonstrate that, by altering the precipitation structure that the AMOC feels, such an expansion of sea ice cover makes the system unstable, which explains chaotic millennial variability during the glacials and the persistence of stable ocean conditions during the interglacials.

  7. Pleistocene glaciations of Central Asia: results from 10Be surface exposure ages of erratic boulders from the Pamir (Tajikistan), and the Alay Turkestan range (Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Abramowski, U.; Bergau, A.; Seebach, D.; Zech, R.; Glaser, B.; Sosin, P.; Kubik, P. W.; Zech, W.

    2006-05-01

    We have determined the timing of glaciations in the Pamir (Tajikistan) and the Alay-Turkestan Range (Kyrgyzstan) using 10Be surface exposure dating. Glacial advances in the area have occurred >93-136, ˜60-80, (40-55), ˜27-25, ˜22-20, ˜19-17, ˜16-15, ˜15-13, and 11-9 cal ka BP. All Late Pleistocene glaciers in the Pamir, and the Alay-Turkestan Ranges have been valley glaciers except for the most extended glaciers on the Pamir plateau, which have formed local piedmont glaciations. In the eastern Pamir, these are characterized by ELA depressions of ˜370-380 m (THAR 0.5). In the Turkestan Range and Alay Range, ELA depressions at the same time were >750 and 600 m, respectively. Late Pleistocene glacier advances all over western High Asia were contemporaneous with climatic cold phases rather than monsoonal maxima. Their maximum extent and that of the western hemisphere ice sheets were asynchronous, due to increasing aridity in the region over the course of the Last Glacial. Late Pleistocene climate in Central Asia seems to have been influenced by the interplay of the westerly circulation and the Siberian anticyclone. Some indirect monsoonal influence in the eastern Pamir may be responsible for the existence of some of the Lateglacial moraine stages in this area. High altitude glaciers seem to have reached their maximum extent earlier (MIS 5-4) than low altitude glaciers (first half of MIS 3), possibly due to prolonged glacial aridity imparting with moisture advection onto high altitude sites, inducing glacial retreat, but prolonged cold during the same time imparting with glacier ablation at lower altitude sites, inducing glacial advance.

  8. Quaternary history of an endemic passerine bird on Corsica Island: Glacial refugium and impact of recent forest regression

    NASA Astrophysics Data System (ADS)

    Thibault, Jean-Claude; Cibois, Alice; Prodon, Roger; Pasquet, Eric

    2016-03-01

    Molecular studies support the hypothesis that Corsica Island was a glacial refugium for a number of forest birds during the Pleistocene. We focused on the Corsican nuthatch (Sitta whiteheadi), an endemic passerine strongly associated with the laricio pine (Pinus nigra laricio). The range of laricio pine has been impacted by the Pleistocene glacial periods and forest has been recently fragmented by cutting and fires. Using both molecular (mitochondrial and nuclear) and morphological characters, we assessed the variation within the nuthatch population. Our results are consistent with the hypothesis that the Corsican nuthatch endured through the late Pleistocene and Holocene climatic variations, and sustained the subsequent cycles of forests reduction/expansion. The results also suggest that the recent anthropization of the landscape resulted in the isolation of a cluster of populations in the northern part of the island. The fragmentation of the habitat of the nuthatch may impede the future of the bird by creating isolated population units between which the gene flow is reduced.

  9. Galactic oscillations

    NASA Technical Reports Server (NTRS)

    Miller, R. H.

    1991-01-01

    Long-lived oscillations that act like normal modes are described. The total kinetic energy is found to vary with time by amounts far in excess of the fluctuations expected from the virial theorem, and the variation shows periodic patterns that suggest oscillations. Experimental results indicate that oscillation amplitudes depend on the nature of the model. It is noted that it is difficult to answer questions about likely amplitudes in real galaxies with any confidence at the present time.

  10. Phylogeography and conservation genetics of the Iowa pleistocene snail.

    PubMed

    Ross, T K

    1999-09-01

    The Iowa Pleistocene snail, Discus macclintocki, is an endangered species that survives only in relictual populations on algific (cold-air) talus slopes in northeast Iowa and northwest Illinois in the central region of the USA. These populations are believed to have been isolated since the temperatures began to warm at the end of the last glacial period around 16 500 years ago. DNA sequencing of the 16s rRNA gene of the mitochondria was used to determine the genetic relationship among 10 populations and the genetic diversity within these populations. Genetic diversity is extremely high within this species with 40 haplotypes spread across the 10 populations sampled within a 4000 km2 region. Phylogenetic analyses showed that haplotypes formed monophyletic groups by the watershed on which they were found, suggesting that watersheds were important historical avenues of gene flow. Genetic distances were strongly related to the geographical distance among all populations, but this relationship was dependent on the scale being considered. PMID:10564443

  11. Late Pleistocene Vertebrates and Other Fossils from Epiguruk, Northwestern Alaska

    NASA Astrophysics Data System (ADS)

    Hamilton, Thomas D.; Ashley, Gall M.; Reed, Katherine M.; Schweger, Charles E.

    1993-05-01

    Sediments exposed at Epiguruk, a large cutbank on the Kobuk River about 170 km inland from Kotzebue Sound, record multiple episodes of glacial-age alluviation followed by interstadial downcutting and formation of paleosols. Vertebrate remains from Epiguruk include mammoth, bison, caribou, an equid, a canid, arctic ground squirrel, lemmings, and voles. Radiocarbon ages of bone validated by concordant ages of peat and wood span the interval between about 37,000 and 14,000 yr B.P. The late Pleistocene pollen record is dominated by Cyperaceae, with Artemisia, Salix, Betula, and Gramineae also generally abundant. The fossil record from Epiguruk indicates that the Kobuk River valley supported tundra vegetation with abundant riparian willows during middle and late Wisconsin time. Large herbivores were present during the height of late Wisconsin glaciation as well as during its waning stage and the preceding interstadial interval. The Kobuk River valley would have been a favorable refugium for plants, animals, and possibly humans throughout the last glaciation.

  12. Calcium Oscillations

    PubMed Central

    Dupont, Geneviève; Combettes, Laurent; Bird, Gary S.; Putney, James W.

    2011-01-01

    Calcium signaling results from a complex interplay between activation and inactivation of intracellular and extracellular calcium permeable channels. This complexity is obvious from the pattern of calcium signals observed with modest, physiological concentrations of calcium-mobilizing agonists, which typically present as sequential regenerative discharges of stored calcium, a process referred to as calcium oscillations. In this review, we discuss recent advances in understanding the underlying mechanism of calcium oscillations through the power of mathematical modeling. We also summarize recent findings on the role of calcium entry through store-operated channels in sustaining calcium oscillations and in the mechanism by which calcium oscillations couple to downstream effectors. PMID:21421924

  13. Interhemispheric controls on deep ocean circulation and carbon chemistry during the last two glacial cycles

    NASA Astrophysics Data System (ADS)

    Wilson, David J.; Piotrowski, Alexander M.; Galy, Albert; Banakar, Virupaxa K.

    2015-06-01

    Changes in ocean circulation structure, together with biological cycling, have been proposed for trapping carbon in the deep ocean during glacial periods of the Late Pleistocene, but uncertainty remains in the nature and timing of deep ocean circulation changes through glacial cycles. In this study, we use neodymium (Nd) and carbon isotopes from a deep Indian Ocean sediment core to reconstruct water mass mixing and carbon cycling in Circumpolar Deep Water over the past 250 thousand years, a period encompassing two full glacial cycles and including a range of orbital forcing. Building on recent studies, we use reductive sediment leaching supported by measurements on isolated phases (foraminifera and fish teeth) in order to obtain a robust seawater Nd isotope reconstruction. Neodymium isotopes record a changing North Atlantic Deep Water (NADW) component in the deep Indian Ocean that bears a striking resemblance to Northern Hemisphere climate records. In particular, we identify both an approximately in-phase link to Northern Hemisphere summer insolation in the precession band and a longer-term reduction of NADW contributions over the course of glacial cycles. The orbital timescale changes may record the influence of insolation forcing, for example via NADW temperature and/or Antarctic sea ice extent, on deep stratification and mixing in the Southern Ocean, leading to isolation of the global deep oceans from an NADW source during times of low Northern Hemisphere summer insolation. That evidence could support an active role for changing deep ocean circulation in carbon storage during glacial inceptions. However, mid-depth water mass mixing and deep ocean carbon storage were largely decoupled within glacial periods, and a return to an interglacial-like circulation state during marine isotope stage (MIS) 6.5 was accompanied by only minor changes in atmospheric CO2. Although a gradual reduction of NADW export through glacial periods may have produced slow climate feedbacks

  14. Comparison of glacial periods reveals systematic cold climate variability

    NASA Astrophysics Data System (ADS)

    Bauch, Henning

    2013-04-01

    On a global scale, major variations in Pleistocene temperatures correlate well with glacial-interglacial changes of northern hemisphere ice sheet sizes. While a discharge of icebergs from the ice sheets surrounding the polar North Atlantic region directly reflects the rates of growth and decay of the ice sheet margins at sea level, it is also the result of a rapidly changing climate which affected both the meridional overturning in the ocean and the pattern in ocean-atmosphere circulation. Ice cores and many deep-sea sediment records from this region have demonstrated such complex interrelations between these main environmental processes for the last glaciation (Weichselian). In ice cores, the millennial-scale climate variabilities of the Weichselian are recognized in both hemispheres, albeit with apparently a significant time lag between the southern and northern pole regions. Comparing records of iceberg discharge from the polar and subpolar North Atlantic now reveals a very similar millennial-scale variability between the Weichselian and the penultimate glaciation (Saalian) during which warmer, interstadial times alternated with rather cold polar conditions. Because cold conditions in the polar North were also time-coeval with enhanced aridity and atmospheric dust content (e.g. at least over northern Africa due to changes in the monsoon system), the glacial dust records of Antarctica, which extend back in time much farther than Greenland ice records, could be used to also make an interhemispheric climate comparison. For the last two glaciations such a comparison would indeed indicate a strong linkage between iceberg discharge events in the polar North and increased dust content in the atmosphere.

  15. Constraints on the Pleistocene chronology of sediments from the Lomonosov Ridge

    USGS Publications Warehouse

    O'Regan, M.; King, J.; Backman, J.; Jakobsson, M.; Palike, H.; Moran, K.; Heil, C.; Sakamoto, T.; Cronin, T. M.; Jordan, R.W.

    2008-01-01

    Despite its importance in the global climate system, age-calibrated marine geologic records reflecting the evolultion of glacial cycles through the Pleistocene are largely absent from the central Arctic Ocean. This is especially true for sediments older than 200 ka. Three sites cored during the Integrated Ocean Drilling Program's Expedition 302, the Arctic Coring Expedition (ACEX), provide a 27 m continuous sedimentary section from the Lomonosov Ridge in the central Arctic Ocean. Two key biostratigraphic datums and constraints from the magnetic inclination data are used to anchor the chronology of these sediments back to the base of the Cobb Mountain subchron (1215 ka). Beyond 1215 ka, two best fitting geomagnetic models are used to investigate the nature of cyclostratigraphic change. Within this chronology we show that bulk and mineral magnetic properties of the sediments vary on predicted Milankovitch frequencies. These cyclic variations record "glacial" and "interglacial" modes of sediment deposition on the Lomonosov Ridge as evident in studies of ice-rafted debris and stable isotopic and faunal assemblages for the last two glacial cycles and were used to tune the age model. Potential errors, which largely arise from uncertainties in the nature of downhole paleomagnetic variability, and the choice of a tuning target are handled by defining an error envelope that is based on the best fitting cyclostratigraphic and geomagnetic solutions. Copyright 2008 by the American Geophysical Union.

  16. The timing of Late Pleistocene glaciation at Mount Wilhelm, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Mills, Stephanie; Barrows, Timothy; Hope, Geoff; Pillans, Brad; Fifield, Keith

    2016-04-01

    The highlands of New Guinea were the most extensively glaciated area in the Asian tropical region during the Late Pleistocene. Evidence for glaciation is widespread on most of the mountain peaks above ~3500 m. Glacial landforms include both valley and ice cap forms, but the timing of glaciation remains constrained to only a few local areas. This paper focuses on Mount Wilhelm, which is situated in the central southern region of Papua New Guinea at 5.78°S and is the highest peak (4510 m a.s.l.) We focus on a south easterly valley (Pindaunde Valley) emanating from the peak, where large moraines indicate the maximum ice extent of a valley glacier ~5 km long. Within this extensive moraine complex, recessional moraines document the retreat of the glacier towards the summit region. In order to determine the timing of deglaciation, we collected samples for surface exposure dating using 36Cl and 10Be from diorite boulders positioned on moraine crests. The ages indicate that maximum ice extent was attained during the last glacial maximum (LGM) and that ice remained near its maximum extent until after 15 ka but persisted at higher elevations almost until the Holocene. These results are similar to those described from Mt Giluwe to the northwest of Mount Wilhelm, where an ice cap reached its maximum extent at the LGM and remained there for around 3-4,000 years. This indicates that full glacial conditions were only brief in this region of the tropics.

  17. The Pleistocene history of the sheepshead minnow (Cyprinodon variegatus): Non-equilibrium evolutionary dynamics within a diversifying species complex.

    PubMed

    Haney, Robert A; Silliman, Brian R; Fry, Adam J; Layman, Craig A; Rand, David M

    2007-06-01

    The sheepshead minnow, Cyprinodon variegatus, is a widespread fish species that typically inhabits coastal tidal marsh and mangrove swamp environments, ranging from Cape Cod, Massaschusetts to northern Mexico and into the Caribbean. This wide range crosses several biogeographic boundaries which are coincident with genetic structuring within numerous species originating in the Pleistocene. In addition, the more northerly reaches of this species range have been further subject to the evolutionary consequences of Pleistocene glaciation due to local extinction and recolonization of formerly glaciated sites. C. variegatus thus provides an excellent vertebrate model system within which to test the extent of genetic differentiation among populations in a dominant coastal ecosystem and examine patterns of historical demography in populations distributed along a latitudinal gradient. Using mitochondrial control region and ND2 sequence data, we discovered monophyletic clades within C. variegatus with divergence times within the Pleistocene, and very low gene flow between most sites. Intraspecific genetic breaks appear to correspond broadly to biogeographic or oceanic boundaries. Pleistocene climate change appears to have had dramatic impacts on the size and distribution of populations within and near the glacial margins, but has also affected populations far from formerly glaciated regions. PMID:17081774

  18. Glacial geomorphology of the Torres del Paine region (southern Patagonia): Implications for glaciation, deglaciation and paleolake history

    NASA Astrophysics Data System (ADS)

    García, Juan-Luis; Hall, Brenda L.; Kaplan, Michael R.; Vega, Rodrigo M.; Strelin, Jorge A.

    2014-01-01

    The processes affecting paleoclimate variability and Pleistocene glacial landscape development in the southern mid-latitudes remain poorly understood, in part because of the scarcity of comprehensive, well-studied records. Glacial landforms are invaluable for reconstructing past ice-sheet, climate, and associated environmental changes along the southern Andes, but there are significant spatial and temporal gaps in existing data. In this paper, we present new geomorphic and sedimentologic analyses, including surficial maps, for the Torres del Paine region (51°S, 73°W), southern South America. Our findings provide a new framework for understanding changes in the regional glacier history and Pleistocene landscape development. Glacial extent during the local last glacial maximum (LGM) remains unknown but new chronological data supported by geomorphic evidence afford evidence for a larger ice sheet at Torres del Paine than previously assumed. Deglaciation from the local LGM was underway by 17,400 ± 200 (1σ) cal. yr. BP. As opposed to previous suggestions, we have found that most of the moraines fringing the lakes in the Torres del Paine national park were deposited during a late-glacial expansion that occurred between 14,100 and 12,500 cal. yr. BP. Late-glacial advances also have been documented recently for the Última Esperanza and Lago Argentino basins to the south and north of Torres del Paine, respectively, suggesting an overall regional ice response to a climate signal. The Tehuelche paleolake accompanied each of the ice-sheet fluctuations in Torres del Paine. New data document at least three main phases of this paleolake, which drained eastward to the Atlantic Ocean, while the Andes gaps were blocked with ice. During the late phase of glacial lake formation, when water levels reached 125-155 m a.s.l., the lake likely merged with paleolake Consuelo in the Última Esperanza area at the end of the last glaciation. Lake Tehuelche in Torres del Paine had drained

  19. Migration of the subtropical front as a modulator of glacial climate.

    PubMed

    Bard, Edouard; Rickaby, Rosalind E M

    2009-07-16

    Ice cores extracted from the Antarctic ice sheet suggest that glacial conditions, and the relationship between isotopically derived temperatures and atmospheric PCO(2) have been constant over the last 800,000 years of the Late Pleistocene epoch. But independent lines of evidence, such as the extent of Northern Hemisphere ice sheets, sea level and other temperature records, point towards a fluctuating severity of glacial periods, particularly during the more extreme glacial stadials centred around 340,000 and 420,000 years ago (marine isotope stages 10 and 12). Previously unidentified mechanisms therefore appear to have mediated the relationship between insolation, CO(2) and climate. Here we test whether northward migration of the subtropical front (STF) off the southeastern coast of South Africa acts as a gatekeeper for the Agulhas current, which controls the transport of heat and salt from the Indo-Pacific Ocean to the Atlantic Ocean. Using a new 800,000-year record of sea surface temperature and ocean productivity from ocean sediment core MD962077, we demonstrate that during cold stadials (particularly marine isotope stages 10 and 12), productivity peaked and sea surface temperature was up to 6 degrees C cooler than modern temperatures. This suggests that during these cooler stadials, the STF moved northward by up to 7 degrees latitude, nearly shutting off the Agulhas current. Our results, combined with faunal assemblages from the south Atlantic show that variable northwards migration of the Southern Hemisphere STF can modulate the severity of each glacial period by altering the strength of the Agulhas current carrying heat and salt to the Atlantic meridional overturning circulation. We show hence that the degree of northwards migration of the STF can partially decouple global climate from atmospheric partial pressure of carbon dioxide, P CO(2), and help to resolve the long-standing puzzle of differing glacial amplitudes within a consistent range of atmospheric

  20. Glacially driven formation of high-elevation, low-relief landscapes in eastern Tibet

    NASA Astrophysics Data System (ADS)

    Oskin, M. E.; Zhang, H.; Liu-Zeng, J.; Zhang, P.; Reiners, P. W.; Xiao, P.

    2014-12-01

    Low-relief landscapes in central and eastern Tibet have been interpreted as relicts formed by lowland fluvial erosion before being uplifted to elevations exceeding 4 km a.s.l. The timing and amount of surface uplift indicated by these surfaces in Tibet and other orogens provide important constraints on geodynamic processes of crustal thickening and plateau formation. Low-temperature thermochronology and catchment-average 10Be concentrations indicate limited and low rates of long- and short-term erosion of these landscapes. But it is their morphology, dominated by gentle stream gradients, that drives the interpretation that these landscapes formed at much lower elevations than at present. Here we show for the plateau landscape of eastern Tibet that glacial erosion is ubiquitous along drainage divides that separate low-relief areas from deeply incised river gorges. The extent of late Pleistocene glaciation increases along a gradient of late Cenozoic exhumation from ~1 to >4 km indicated by apatite- and zircon-helium cooling ages. We interpret that glacial erosion effectively limits ridgeline elevations and promotes formation of low-relief landscapes in arid plateau interiors undergoing modest (<50 m Myr-1) exhumation rates. More intensive glacial erosion, associated with higher (>200 m Myr-1) exhumation rates nearer to plateau margins, produces bimodal topography, with low-relief cirques at high elevation and gentle, U-shape valleys below the equilibrium line altitudes (ELA). This yields similar mean elevations as nearby plateau surfaces, but with more rugged local relief. As rock uplift rate declines, these nascent plateau surfaces inherit low-gradient glaciated valley networks pinned by glacial erosion at their headwaters and smoothed by periglacial hillslope processes and transport-limited streams. Glacially driven formation of low-relief plateau landscapes within high-elevation eastern Tibet occurs in tandem with external drainage, and does not require uplift of

  1. The Glacial and Relative Sea Level History of Southern Banks Island, NT, Canada

    NASA Astrophysics Data System (ADS)

    Vaughan, Jessica Megan

    The mapping and dating of surficial glacial landforms and sediments across southern Banks Island document glaciation by the northwest Laurentide Ice Sheet (LIS) during the last glacial maximum. Geomorphic landforms confirm the operation of an ice stream at least 1000 m thick in Amundsen Gulf that was coalescent with thin, cold-based ice crossing the island's interior, both advancing offshore onto the polar continental shelf. Raised marine shorelines across western and southern Banks Island are barren, recording early withdrawal of the Amundsen Gulf Ice Stream prior to the resubmergence of Bering Strait and the re-entry of Pacific molluscs ~13,750 cal yr BP. This withdrawal resulted in a loss of ~60,000 km2 of ice --triggering drawdown from the primary northwest LIS divide and instigating changes in subsequent ice flow. The Jesse moraine belt on eastern Banks Island records a lateglacial stillstand and/or readvance of Laurentide ice in Prince of Wales Strait (13,750 -- 12,750 cal yr BP). Fossiliferous raised marine sediments that onlap the Jesse moraine belt constrain final deglaciation to ~12,600 cal yr BP, a minimum age for the breakup of the Amundsen Gulf Ice Stream. The investigation of a 30 m thick and 6 km wide stratigraphic sequence at Worth Point, southwest Banks Island, identifies an advance of the ancestral LIS during the Mid-Pleistocene (sensu lato), substantially diversifying the glacial record on Banks Island. Glacial ice emplaced during this advance has persisted through at least two glacial-interglacial cycles, demonstrating the resilience of circumpolar permafrost. Pervasive deformation of the stratigraphic sequence also records a detailed history of glaciotectonism in proglacial and subglacial settings that can result from interactions between cold-based ice and permafrost terrain. This newly recognized history rejects the long-established paleoenvironmental model of Worth Point that assumed a simple 'layer-cake' stratigraphy.

  2. Glacial reorganization of topography in a tectonically active mountain range

    NASA Astrophysics Data System (ADS)

    Adams, Byron; Ehlers, Todd

    2016-04-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns, and not tectonic rock uplift rates. Alpine glaciers drastically altered the relief structure of the Olympic Mountains. The details of these relief changes are recorded in channel profiles as overdeepenings, reduced slopes, and associated knickpoints. We find the position of these relief changes within the orogen is dependent on the position of the Pleistocene ELA. While alpine glaciers overdeepened valleys in regions near the Pleistocene ELA (which has a tendency to increase relief), headward erosion of west and north flowing glacier systems captured significant area from opposing systems and caused drainage divide lowering. This divide lowering reduced relief throughout the range. We demonstrate similar topographic effects recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on

  3. Glacial cycles and the growth and destruction of Alaska volcanoes

    NASA Astrophysics Data System (ADS)

    Coombs, M. L.; Calvert, A. T.; Bacon, C. R.

    2014-12-01

    Glaciers have affected profoundly the growth, collapse, preservation, and possibly, eruptive behavior of Quaternary stratovolcanoes in Alaska. Holocene alpine glaciers have acted as effective agents of erosion on volcanoes north of ~55 °N and especially north of 60 °N. Cook Inlet volcanoes are particularly vulnerable as they sit atop rugged intrusive basement as high as 3000 m asl. Holocene glaciers have swept away or covered most of the deposits and dome lavas of frequently active Redoubt (60.5 °N); carved through the flanks of Spurr's active vent, Crater Peak (61.3 °N); and all but obscured the edifice of Hayes (61.6 °N), whose Holocene eruptive history is known almost exclusively though far-traveled tephra and flowage deposits. Relationships between Pleistocene eruptive histories, determined by high-precision Ar-Ar dating of lava flows, and marine oxygen isotope stages (MIS) 2-8 (Bassinot et al., 1994, EPSL, v. 126, p. 91­-108) vary with a volcano's latitude, size, and elevation. At Spurr, 26 ages cluster in interglacial periods. At Redoubt, 28 ages show a more continual eruptive pattern from the end of MIS 8 to the present, with a slight apparent increase in output following MIS 6, and almost no preservation before 220 ka. Veniaminof (56.2 °N) and Emmons (55.5°N), large, broad volcanoes with bases near sea level, had voluminous eruptive episodes during the profound deglaciations after MIS 8 and MIS 6. At Akutan (54.1 °N), many late Pleistocene lavas show evidence for ice contact; ongoing dating will be able to pinpoint ice thicknesses. Furthest south and west, away from thick Pleistocene ice on the Alaska Peninsula and mainland, the Tanaga volcanic cluster (51.9 °N) has a relatively continuous eruptive record for the last 200 k.y. that shows no clear-cut correlation with glacial cycles, except a possible hiatus during MIS 6. Finally, significant edifice collapse features have been temporally linked with deglaciations. A ~10-km3 debris

  4. Glacially conditioned specific stream powers in low-relief river catchments of the southern Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    Phillips, R. T. J.; Desloges, J. R.

    2014-02-01

    Fluvial systems of the southern Laurentian Great Lakes region are carved into a complex glacial landscape shaped by continental ice and meltwater of the late Pleistocene. These glacially conditioned river catchments are typically small with drainage areas < 104 km2. A 10-m digital elevation model (DEM) is used to map the spatial distribution of stream gradient for 22 major river catchments of peninsular southern Ontario, which drain to base levels in the lower Great Lakes (Huron, St. Clair, Erie, and Ontario). Raw data from the DEM show stream gradients that exhibit multiscale variance from real and from artifact sources. Based on a vertical slice and multiple-pass moving-window averaging approach, slope data are generalised to the river reach scale (1-2 km) as a representative spatial scale for fluvial processes operating over Holocene timescales. Models of specific stream power are then compared with glacial landform and surface geology mapping. Inherited glacial signatures in river slope appear as deviations in a stream length-gradient index (SL/K index), where river reaches are frequently oversteepened or understeepened. Based on a slope-area analysis, and complementary to theories of channel pattern discrimination, constant stream power curves (with power-law exponent of - 0.4) provide a first-order approach to stratify river reaches in terms of glacial conditioning and expected planform morphologies. However, multiple-channel planform types are rare and localised in southern Ontario, indicating that oversteepened reaches with high stream powers may often be moderated by (1) sediment calibre, with cobble-beds from inherited glacial sediments; and/or (2) relative bank strength, with limited channel widening particularly in gravel and sand-bed channels. Further discrimination of glacially conditioned fluvial process domains will ultimately require consideration of alluvial floodplain characteristics in addition to general observations of river morphology and

  5. Increased late Pleistocene erosion rates during fluvial aggradation in the Garhwal Himalaya, northern India

    NASA Astrophysics Data System (ADS)

    Scherler, Dirk; Bookhagen, Bodo; Wulf, Hendrik; Preusser, Frank; Strecker, Manfred R.

    2015-10-01

    The response of surface processes to climatic forcing is fundamental for understanding the impacts of climate change on landscape evolution. In the Himalaya, most large rivers feature prominent fill terraces that record an imbalance between sediment supply and transport capacity, presumably due to past fluctuations in monsoon precipitation and/or effects of glaciation at high elevation. Here, we present volume estimates, chronological constraints, and 10Be-derived paleo-erosion rates from a prominent valley fill in the Yamuna catchment, Garhwal Himalaya, to elucidate the coupled response of rivers and hillslopes to Pleistocene climate change. Although precise age control is complicated due to methodological problems, the new data support formation of the valley fill during the late Pleistocene and its incision during the Holocene. We interpret this timing to indicate that changes in discharge and river-transport capacity were major controls. Compared to the present day, late Pleistocene hillslope erosion rates were higher by a factor of ∼2-4, but appear to have decreased during valley aggradation. The higher late Pleistocene erosion rates are largely unrelated to glacial erosion and could be explained by enhanced sediment production on steep hillslopes due to increased periglacial activity that declined as temperatures increased. Alternatively, erosion rates that decrease during valley aggradation are also consistent with reduced landsliding from threshold hillslopes as a result of rising base levels. In that case, the similarity of paleo-erosion rates near the end of the aggradation period with modern erosion rates might imply that channels and hillslopes are not yet fully coupled everywhere and that present-day hillslope erosion rates may underrepresent long-term incision rates.

  6. Evidence for Early Pleistocene Glaciation obtained from borecores collected in East-Central Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Barendregt, R. W.; Andriashek, L. D.; Jackson, L. E.

    2014-12-01

    Borecores collected from the east-central region of Alberta, Canada have recently been sub-sampled and studied for paleomagnetic remanence characteristics. A preliminary magnetostratigraphy has been established for sediments previously assumed to represent multiple continental (Laurentide) glaciations, but for which no geochronology was available for the pre-late Wisconsin units. Comprised primarily of tills and lesser thicknesses of interbedded glacio-lacustrine and outwash sediments, the record is extensive, reaching to thicknesses of 300 metres within buried valleys. Most of the sampled units are not accessible from outcrop, and their sedimentology and stratigraphy is derived from core data only. The lowermost tills are reversely magnetized in the majority of borecores sampled to date. These tills are underlain by Empress Formation sediments and/or Colorado Group shales, and overlain by normally magnetized sediments. Both tills contain substantial weathering horizons at their surface, suggesting that interglacial or nonglacial conditions persisted for some time after each period of till deposition. Whether these tills represent a single Early Pleistocene glaciation, or perhaps two, will require additional borecore measurements. This new record of Early Pleistocene glaciation(s) in east-central Alberta places the westernmost extent of earliest Laurentide ice some 300 km farther westward from its previously established limit in the Saskatoon to Regina region of the western Canadian prairies, but still well short of the all-time limit and elevation reached during the Late Wisconsin (Late Pleistocene) in the foothills of the Alberta and Montana Rocky Mountains. Key Words: East-Central Alberta glacial history, Early Pleistocene (Laurentide) glaciation, till magnetostratigraphy, Quaternary history of Western Canadian Prairies, continental glaciations of North America.

  7. Pleistocene vegetation change in central Africa recorded off the Congo River

    NASA Astrophysics Data System (ADS)

    Dupont, L. M.

    2003-04-01

    Marine sediments from the Congo Canyon accumulate material and information from one of Africa's large inland basins that is covered, at present, mainly with lowland rain forest and swamp forests. The sediments provide a record of monsoon related hydrological and vegetation change. Multiproxy studies were carried out on ODP Site 1075 located north of the undersea canyon, and GeoB Site 1008 located south of the canyon. Pollen records are compared with other terrestrial signals (iron, clay minerals, biomarkers). The differentiated responses of mangroves, grasslands and swamps, lowland rain forest, and Afromontane forest to environmental fluctuations give insight in several aspects of Pleistocene climate cycles. The record of Rhizophora (mangrove tree) pollen is consolidated by biomarker data and shows maxima during interglacial periods and during periods of rapid sea-level rise. While the latter might be the effect of increased erosion of mangrove peat, the first indicates extension of mangrove swamps during periods with increased run-off. The record of lowland forest pollen indicates extension of the rain forest as a response to increased precipitation in periods of strong monsoons of the past 150 ka which is corroborated by clay mineral fluctuations. During the humid periods, Poaceae (grasses) and Cyperaceae pollen percentages are low indicating a closed canopy in large areas of the basin. During interglacial stages of the early Pleistocene, maxima of tropical forest elements combine with maxima of grass and cyperaceous pollen indicating that the warm periods might have been drier than those of the late Pleistocene. Podocarpus pollen percent maxima register extension of the Afromontane forest during cool periods from 1.05 to 0.6 Ma. Restricted distribution of mountainous forest during the late Pleistocene glacial stages (MIS 6, 4-2) is concurrent with extension of open vegetation types indicating more arid conditions in equatorial areas.

  8. Orbital- to Sub-Orbital-Scale Cyclicity in Seismic Reflections and Sediment Character in Early to Middle Pleistocene Mudstone, Santa Barbara Basin, California

    NASA Astrophysics Data System (ADS)

    Peterson, C. D.; Behl, R. J.; Nicholson, C.; Lisiecki, L. E.; Sorlien, C. C.

    2009-12-01

    High-resolution seismic reflection records and well logs from the Santa Barbara Channel suggest that large parts of the Pleistocene succession records climate variability on orbital to sub-orbital scales with remarkable sensitivity, much like the well-studied sediments of the last glacial cycle (ODP Site 893). Spectral analysis of seismic reflection data and gamma ray logs from stratigraphically similar Pleistocene sections finds similar cyclic character and shifts through the section. This correlation suggests that acoustic impedance and physical properties of sediment are linked by basin-scale, likely climatically-driven, oscillations in lithologic composition and fabric during deposition, and that seismic profiling can provide a method for remote identification and correlation of orbital- and sub-orbital-scale sedimentary cyclicity. Where it crops out along the northern shelf of the central Santa Barbara Channel, the early to middle Pleistocene succession (~1.8-1.2 Ma) is a bathyal hemipelagic mudstone with remarkably rhythmic planar bedding, finely laminated fabric, and well-preserved foraminifera, none of which have been significantly altered, or obscured by post-depositional diagenesis or tectonic deformation. Unlike the coarser, turbiditic successions in the central Ventura and Los Angeles basins, this sequence has the potential to record Quaternary global climate change at high resolution. Seismic reflection data (towed chirp) collected on the R/V Melville 2008 Cruise (MV08) penetrate 10's of meters below seafloor into a ~1 km-long sequence of south-dipping seismic reflectors. Sampling parallel to the seafloor permits acquisition of consistent signal amplitude for similar reflectors without spreading loss. Based on established age ranges for this section, sedimentation rates may range from 0.4 to 1.4 meters/kyr, therefore suggesting that the most powerful cycles are orbital- to sub-orbital-scale. Discrete sets of cycles with high power show an abrupt shift

  9. Meltwater palaeohydrology of the Baker River basin (Chile/Argentina) during Late Pleistocene deglaciation of the Northern Patagonia Icefield

    NASA Astrophysics Data System (ADS)

    Thorndycraft, Varyl; Bendle, Jacob; Benito, Gerardo; Sancho, Carlos; Palmer, Adrian; Rodríguez, Xavier

    2016-04-01

    The Late Pleistocene deglaciation of the Northern Patagonia Icefield (NPI) was characterised by rapid ice sheet thinning and retreat, and the development of large proglacial lake systems characterised by continental scale drainage reversals. In this region, research has focused primarily on the identification of former ice-limits (e.g. moraine ridges) for geochronological analyses, with little attention given to the meltwater palaeohydrology of major river valleys. The Baker River catchment drains the majority of the eastern ice shed of the NPI, with a basin area of 29,000 km2 that includes the large transboundary lakes of General Carrera/Buenos Aires and Cochrane/Puerreydón. The Baker River valley is aligned north to south, crossing the east-west valleys of the main NPI outflow glaciers, and thus represents an important aspect of regional Late Pleistocene palaeogeography. The Baker River valley therefore has the potential to refine regional models of deglaciation through better understanding of relationships between glacier dynamics, ice dammed lakes and meltwater pathways. Here we present geomorphological mapping from the Atlantic-Pacific drainage divide (over 150 km east of the Cordillera) to the lower Baker valley, in order to reconstruct Late Pleistocene palaeohydrology. We provide new mapping of palaeolake shoreline elevations and evidence for glacial lake outburst flood (GLOF) pathways that require a re-evaluation of the currently accepted palaeogeographic models. For example, the palaeohydrological evidence does not support existing models of a unified Buenos Aires/Puerreydón mega-lake at ca. 400m elevation. We propose a relative chronology of palaeohydrological events that help refine the published moraine chronology derived from cosmogenic nuclide exposure dating. Controls on Late Pleistocene meltwater palaeohydrology of the Baker catchment are discussed, including the interplay of glacial processes and regional tectonics, in particular, dynamic

  10. Amazonian and neotropical plant communities on glacial time-scales: The failure of the aridity and refuge hypotheses

    NASA Astrophysics Data System (ADS)

    Colinvaux, P. A.; De Oliveira, P. E.; Bush, M. B.

    2000-01-01

    Plants respond to Pleistocene climatic change as species, not as associations or biomes. This has been demonstrated unequivocally by paleobotanical data for temperate latitudes. In the far richer vegetations of the tropics species populations also fluctuated independently in response to climatic forcing, from their longlasting glacial states to the patterns of brief interglacials like the present and back again. We use pollen data to reconstruct the vegetation of the Amazon basin in oxygen isotope stages 3 and 2 of the last glaciation in order to measure how the plant populations of the Amazon responded to the global warming at the onset of the Holocene. We find that plant communities of the neotropics vent copious pollen to lake sediments and that this pollen yields powerful signals for community composition. Three continuous sedimentary records reaching through oxygen isotope stage 2 are available from the Amazon lowlands, those from Carajas, Lake Pata and marine deposits off the mouth of the Amazon River. All three records yield pollen histories of remarkable constancy and stability. By comparing them with deposits of equal antiquity from the cerrado (savanna) of central Brazil, we show that most of the Amazon lowlands remained under forest throughout a glacial cycle. This forest was never fragmented by open vegetation as postulated by the refugia hypothesis. Instead the intact forest of glacial times included significant populations of plants that are now montane, suggesting that the global warming of the early Holocene resulted in the expulsion of heat intolerant plants from the lowland forest. Pollen data from the Amazonian flank of the Andes and from Pacific Panama provide evidence that populations of these heat intolerant plants survive the heat of interglacials in part by maintaining large populations at cooler montane altitudes. Our conclusion that the Amazon lowlands were forested in glacial times specifically refutes the hypothesis of Amazonian glacial

  11. First ancient DNA sequences from the Late Pleistocene red deer (Cervus elaphus) in the Crimea, Ukraine

    NASA Astrophysics Data System (ADS)

    Stanković, Ana; Nadachowski, Adam; Doan, Karolina; Stefaniak, Krzysztof; Baca, Mateusz; Socha, Paweł; Wegleński, Piotr; Ridush, Bogdan

    2010-05-01

    The Late Pleistocene has been a period of significant population and species turnover and extinctions among the large mammal fauna. Massive climatic and environmental changes during Pleistocene significantly influenced the distribution and also genetic diversity of plants and animals. The model of glacial refugia and habitat contraction to southern peninsulas in Europe as areas for the survival of temperate animal species during unfavourable Pleistocene glaciations is at present widely accepted. However, both molecular data and the fossil record indicate the presence of northern and perhaps north-eastern refugia in Europe. In recent years, much new palaeontological data have been obtained in the Crimean Peninsula, Ukraine, following extensive investigations. The red deer (Cervus elaphus) samples for aDNA studies were collected in Emine-Bair-Khosar Cave, situated on the north edge of Lower Plateau of the Chatyrdag Massif (Crimean Mountains). The cave is a vertical shaft, which functioned as a huge mega-trap over a long period of time (probably most of the Pleistocene). The bone assemblages provided about 5000 bones belonging to more than 40 species. The C. elaphus bones were collected from three different stratigraphical levels, radiocarbon dated by accelerator mass spectrometry (AMS) method. The bone fragments of four specimens of red deer were used for the DNA isolation and analysis. The mtDNA (Cytochome b) was successfully isolated from three bone fragments and the cytochrome b sequences were amplified by multiplex PCR. The sequences obtained so far allowed for the reconstruction of only preliminary phylogenetic trees. A fragment of metatarsus from level dated to ca. 48,500±2,000 years BP, yielded a sequence of 513 bp, allowing to locate the specimen on the phylogenetic tree within modern C. elaphus specimens from southern and middle Europe. The second bone fragment, a fragment of mandible, collected from level dated approximately to ca. 33,500±400 years BP

  12. Extending the Chatham Rise (ODP Site 1123) Deep Ocean Temperature Record into the Plio-Pleistocene: Inception of Northern Hemisphere Glaciation

    NASA Astrophysics Data System (ADS)

    Weidle, I.; Elderfield, H.

    2014-12-01

    The Plio-Pleistocene was a time of global climate cooling: a transition from a state of significant and prolonged climate warmth (Mid Pliocene) to a state of bi-polar glacials (Pleistocene), marked by the onset and intensification of continental ice sheets in the Northern hemisphere (Late Pliocene) and the reorganization of glacial cycle amplitude and frequencies (Mid Pleistocene Transition). This is an interesting and important chapter of climate history for understanding the sensitivity of large ice sheets to perturbations in the climate system on glacial-interglacial and much longer timescales. Of possible priming mechanisms (incl. closure of Panama seaway, orographic uplift), the decline of atmospheric carbon dioxide is considered to have a strong connection with the late Pliocene cooling and ice sheet inception, although the causal mechanism for its decline remains relatively unknown. High-resolution, long term climate records are necessary to further constrain the timings of ice volume evolution and the associated driving factors during the Plio-Pleistocene, however such records are presently limited. ODP Site 1123 (Chatham Rise, southwest Pacific, 3290m) records the evolution of the deep western boundary current of the southwest Pacific, a primary feeder of Antarctic Bottom Water to the global deep ocean. By calculating the oxygen stable isotope composition of past seawater, a proxy calculation combining Mg/Ca-palaeothermometry and δ18O from benthic foraminifera, we present a high-resolution record of global ice volume as a measure of climate change, extending the existing 0-1.5 Ma record (Elderfield et al., 2012) at ODP 1123 to the Plio-Pleistocene (1.5-3.0 Ma). We use this measure of global ice volume evolution to assess the relative timing and magnitude of northern hemisphere glaciation and concomitant deep ocean temperature decline, which aids to infer temperatures around Antarctica during this time. Deep ocean temperature results show high frequency

  13. Push moraines in the upper valley of Santa Cruz river, southwest Argentina. Structural analysis and relationship with Late Pleistocene paleoclimate

    NASA Astrophysics Data System (ADS)

    Goyanes, Gabriel; Massabie, Armando

    2015-01-01

    The upper cliff of the Santa Cruz River was used to assess the proglacial environments of the Argentino Glacier outlet of Late Pleistocene age. These cliffs show glaciolacustrine, fluvioglacial and till deposits, where only the first one are deformed. Glacial landforms in the area and these structures suggest that the ice mass advanced, topographically controlled, towards the east from the Patagonian Ice Sheet pushing up the proglacial sediments. The spatial arrangement of thrusts and overturned folds, the drumlins-flutes moraine directions and the end moraines shape, allow inferring the dynamic and the Argentino glacier profile. Detailed analyses of the glaciotectonic structures indicate that these have two origins: load in the north with stress transfer to the southeast, and push from the west. Through the analysis of deformed sediments, their thickness and their sedimentary and structural features, three zones of deformations were recognized. Each of these zones was associated to glacial advances because of changes of the regional climate conditions.

  14. Surface exposure chronology of the Waimakariri glacial sequence in the Southern Alps of New Zealand: Implications for MIS-2 ice extent and LGM glacial mass balance

    NASA Astrophysics Data System (ADS)

    Rother, Henrik; Shulmeister, James; Fink, David; Alexander, David; Bell, David

    2015-11-01

    During the late Quaternary, the Southern Alps of New Zealand experienced multiple episodes of glaciation with large piedmont glaciers reaching the coastal plains in the west and expanding into the eastern alpine forelands. Here, we present a new 10Be exposure age chronology for a moraine sequence in the Waimakariri Valley (N-Canterbury), which has long been used as a reference record for correlating glacial events across New Zealand and the wider Southern Hemisphere. Our data indicate that the Waimakariri glacier reached its maximum last glaciation extent prior to ∼26 ka well before the global last glaciation maximum (LGM). This was followed by a gradual reduction in ice volume and the abandonment of the innermost LGM moraines at about 17.5 ka. Significantly, we find that during its maximum extent, the Waimakariri glacier overflowed the Avoca Plateau, previously believed to represent a mid-Pleistocene glacial surface (i.e. MIS 8). At the same time, the glacier extended to a position downstream of the Waimakariri Gorge, some 15 km beyond the previously mapped LGM ice limit. We use a simple steady-state mass balance model to test the sensitivity of past glacial accumulation to various climatic parameters, and to evaluate possible climate scenarios capable of generating the ice volume required to reach the full local-LGM extent. Model outcomes indicate that under New Zealand's oceanic setting, a cooling of 5 °C, assuming modern precipitation levels, or a cooling of 6.5 °C, assuming a one third reduction in precipitation, would suffice to drive the Waimakariri glacier to the eastern alpine forelands (Canterbury Plains). Our findings demonstrate that the scale of LGM glaciation in the Waimakariri Valley and adjacent major catchments, both in terms of ice volume and downvalley ice extent, has been significantly underestimated. Our observation that high-lying glacial surfaces, so far believed to represent much older glacial episodes, were glaciated during the LGM

  15. Late-glacial to holocene changes in winds, upwelling, and seasonal production of the northern California current system

    USGS Publications Warehouse

    Sancetta, C.; Lyle, M.; Heusser, L.; Zahn, R.; Bradbury, J.P.

    1992-01-01

    A core 120 km off the coast of southern Oregon was examined for changes in lithology, diatoms, and pollen over the past 30,000 yr. Primary production during the late Pleistocene was about half that of the Holocene. Evidence from diatoms and pollen indicates that summer upwelling was much weaker, implying an absence of strong northerly winds. Early Pliocene diatoms found throughout the late Pleistocene section were probably derived from diatomites east of the Cascades and provide evidence for strong easterly winds over a dry continental interior. The findings verify predictions of a climate model based on glacial maximum conditions. There is no compelling evidence for a climatic reversal corresponding to the European Younger Dryas chron. During the early Holocene (9000-7000 yr B.P.) there may have been years when winds were insufficiently strong to support upwelling, so that warm stratified waters lay closer to the coast. ?? 1992.

  16. Late-glacial to holocene changes in winds, upwelling, and seasonal production of the northern California current system

    NASA Astrophysics Data System (ADS)

    Sancetta, Constance; Lyle, Michell; Heusser, Linda; Zahn, Rainer; Bradbury, J. Platt

    1992-11-01

    A core 120 km off the coast of southern Oregon was examined for changes in lithology, diatoms, and pollen over the past 30,000 yr. Primary production during the late Pleistocene was about half that of the Holocene. Evidence from diatoms and pollen indicates that summer upwelling was much weaker, implying an absence of strong northerly winds. Early Pliocene diatoms found throughout the late Pleistocene section were probably derived from diatomites east of the Cascades and provide evidence for strong easterly winds over a dry continental interior. The findings verify predictions of a climate model based on glacial maximum conditions. There is no compelling evidence for a climatic reversal corresponding to the European Younger Dryas chron. During the early Holocene (9000-7000 yr B.P.) there may have been years when winds were insufficiently strong to support upwelling, so that warm stratified waters lay closer to the coast.

  17. The dispersion of fibrous amphiboles by glacial processes in the area surrounding Libby, Montana, USA

    USGS Publications Warehouse

    Langer, William H.; Van Gosen, Bradley S.; Meeker, Gregory P.; Adams, David T.; Hoefen, Todd M.

    2011-01-01

    Mining operations began at a world-class vermiculite deposit at Vermiculite Mountain near Libby, Montana, circa 1920 and ended in 1990. Fibrous and asbestiform amphiboles intergrown with vermiculite ore are suspected to be a causative factor in an abnormally high number of cases of respiratory diseases in former mine and mill workers, and in residents of Libby. The question addressed in this report is whether some of the amphibole from Vermiculite Mountain could have been dispersed by Pleistocene glacial processes rather than by human activity after vermiculite mining began. The history of Pinedale glaciation in the Libby area provides a framework for estimating the presence and distribution of asbestiform amphiboles derived from Vermiculite Mountain and found in naturally occurring sediments of Glacial Lake Kootenai that underlie the Libby Valley area. There were two situations where sediments derived from Vermiculite Mountain were deposited into Glacial Lake Kootenai: (1) as lake-bottom sediments derived from meltwater flowing down Rainy Creek when the valley south of Vermiculite Mountain was free of ice but active ice still covered Vermiculite Mountain; and (2) as lake-bottom sediments eroded from the Rainy Creek outwash and re-deposited during a re-advance of the Purcell Trench Glacier lobe near Moyie Springs, Idaho.

  18. Incursions of southern-sourced water into the deep North Atlantic during late Pliocene glacial intensification

    NASA Astrophysics Data System (ADS)

    Lang, David C.; Bailey, Ian; Wilson, Paul A.; Chalk, Thomas B.; Foster, Gavin L.; Gutjahr, Marcus

    2016-05-01

    The circulation and internal structure of the oceans exert a strong influence on Earth's climate because they control latitudinal heat transport and the segregation of carbon between the atmosphere and the abyss. Circulation change, particularly in the Atlantic Ocean, is widely suggested to have been instrumental in the intensification of Northern Hemisphere glaciation when large ice sheets first developed on North America and Eurasia during the late Pliocene, approximately 2.7 million years ago. Yet the mechanistic link and cause/effect relationship between ocean circulation and glaciation are debated. Here we present new records of North Atlantic Ocean structure using the carbon and neodymium isotopic composition of marine sediments recording deep water for both the Last Glacial to Holocene (35-5 thousand years ago) and the late Pliocene to earliest Pleistocene (3.3-2.4 million years ago). Our data show no secular change. Instead we document major southern-sourced water incursions into the deep North Atlantic during prominent glacials from 2.7 million years ago. Our results suggest that Atlantic circulation acts as a positive feedback rather than as an underlying cause of late Pliocene Northern Hemisphere glaciation. We propose that, once surface Southern Ocean stratification and/or extensive sea-ice cover was established, cold-stage expansions of southern-sourced water such as those documented here enhanced carbon dioxide storage in the deep ocean, helping to increase the amplitude of glacial cycles.

  19. Enhanced subarctic Pacific stratification and nutrient utilization during glacials over the last 1.2 Myr

    NASA Astrophysics Data System (ADS)

    Knudson, Karla P.; Ravelo, Ana Christina

    2015-11-01

    The relationship between climate, biological productivity, and nutrient flux is of considerable interest in the subarctic Pacific, which represents an important high-nitrate, low-chlorophyll region. While previous studies suggest that changes in iron supply and/or physical ocean stratification could hypothetically explain orbital-scale fluctuations in subarctic Pacific nutrient utilization and productivity, previous records of nutrient utilization are too short to evaluate these relationships over many glacial-interglacial cycles. We present new, high-resolution records of sedimentary δ15N, which offer the first opportunity to evaluate systematic, orbital-scale variations in subarctic Pacific nitrate utilization from 1.2 Ma. Nitrate utilization was enhanced during all glacials, varied with orbital-scale periodicity since the mid-Pleistocene transition, was strongly correlated with enhanced aeolian dust and low atmospheric CO2, but was not correlated with productivity. These results suggest that glacial stratification, rather than iron fertilization, systematically exerted an important regional control on nutrient utilization and air-sea carbon flux.

  20. Glacitectonic rafting and associated deformation of mid-Pleistocene glacigenic sediments, near Central Graben, central North Sea; results of a 2D High-Resolution Geophysical Survey

    NASA Astrophysics Data System (ADS)

    Vaughan-Hirsch, David

    2013-04-01

    Glacitectonic rafts are defined as dislocated slabs of bedrock or unconsolidated sediments, transported from their original position by glacial action. These relatively thin, slab-like bodies feature transport distances ranging from tens of meters to hundreds of kilometers. They occur as either single rafts, or multiple stacked bodies associated with a variety of ice-pushed landforms. Internally, rafts frequently appear undeformed although at a larger scale, they may be folded or cut by shear zones and brittle faults. However, the processes leading to the detachment, transport and subsequent emplacement of the rafts remain uncertain. This work describes the results of a geophysical 2D seismic survey of thrust-bound glacitectonic rafts and associated deformation structures, occurring within mid-Pleistocene glacigenic sediments of the Central Graben, central North Sea. The total shortened length of the rafted section is 2.4km, comprising a series of nine discrete rafts which individually range from 235m to 1018m in length. The principle basal detachment occurs at the erosive contact between Aberdeen Ground Formation and overlying Ling Bank Formation. The ice-proximal (northern) limit of rafting is defined by the presence of a large-scale palaeo-channel oriented perpendicular to the direction of rafting, composed of sediments of the Ling Bank Formation and the Forth Formation. The observed deformation structures infer a mean tectonic direction of 178°, indicating that they are associated with an active glacial advance from the north. The resulting deformation creates a minimum lateral shortening throughout the observed sequence of 35%, typifying a strongly compressional regieme associated with rafting. Throughout the surveyed area, structurally younger rafts are found to be emplaced towards the south, compared to the structurally older rafts which are emplaced towards the south-east. This distinction is suggested to be caused by early rafts creating an obstacle to

  1. Development of a glacially dominated shelf-slope-fan system in tectonically active southeast Alaska: Results of IODP Expedition 341 core-log-seismic integrated studies at glacial cycle resolution

    NASA Astrophysics Data System (ADS)

    Gulick, Sean; Jaeger, John; Mix, Alan; Swartz, John; Worthington, Lindsay; Reece, Robert

    2014-05-01

    Collision of the Yakutat microplate with North American formed the St. Elias Mountains in coastal Gulf of Alaska. While the tectonic driver for orogenesis has been ongoing since the Miocene, results from the Integrated Ocean Drilling Program Expedition 341 suggests that direct climatic perturbation of active orogenesis through glacial erosion is non-linear. Geophysical studies of the glaciated continental margin, slope, and adjacent deep-sea Surveyor Fan allow examination of the glaciated orogen from source to sink. Using high-resolution and crustal-scale seismic data and through comparison with other glaciated margins, we can identify key diagnostic seismic morphologies and facies indicative of glacial proximity and sediment routing. Expedition drilling results calibrated these images suggesting a timeline for initial advances of the Cordilleran ice sheet related glacial systems onto the shelf and a further timeline for the development of ice streams that reach the shelf edge. Comparisons can be made within this single margin between evolution of the tectonic-glacial system where erosion and sediment transport are occurring within a fold and thrust belt versus on a more stable shelf region. Onshore the Bering-Bagley glacial system in the west flows across the Yakataga fold and thrust belt, allowing examination of whether glacial erosion can cause tectonic feedbacks, whereas offshore the Bering-Bagley system interacts with the Pamplona Zone thrusts in a region of significant sediment accommodation. Results from Expedition 341 imply that timing of glacial advance to the shelf edge in this region may be driven by the necessity of filling up the accommodation through aggradation followed by progradation and thus is autogenic. In contrast the Malaspina-Hubbard glacial system to the east encountered significantly less accommodation and more directly responded to climatic forcing including showing outer shelf glacial occupation since the mid-Pleistocene transition-MPT to

  2. Accelerator dating of a mixed assemblage of late Pleistocene insect fossils from the Lamb Spring site, Colorado

    NASA Astrophysics Data System (ADS)

    Elias, Scott A.; Toolin, Laurence J.

    1990-01-01

    Fossil insects from the late-glacial deposits at the Lamb Spring archaeological site, near Denver, Colorado, are relatively abundant and diverse, providing considerable paleoecological data for the site. The late Pleistocene insect fauna from the site comprises 72 identified taxa, principally beetles. However, the fauna presented an interpretive problem because it contained a mixture of prairie and alpine tundra species. This was initially considered to be the result of a mixing of faunal elements during the climatic transition of late-glacial times, a "no-modern-analog" fauna. Accelerator dating of insect fossil specimens from the two ecological groups helped resolve the paleoecological problem. Fossil specimens of the prairie-associated species were dated at 17,850 ± 550 yr B.P., while specimens of the tundra-associated species yielded an age of 14,500 ± 500 yr B.P. These dates reveal that what appeared to be an ecological mixing was probably a taphonomic problem, wherein full-glacial-age fossils were probably reworked into latest Wisconsin sediments. While both faunal assemblages reflect climatic conditions substantially colder than present, initial results suggest that the full-glacial fauna represents a cold, dry grassland or steppe environment, while the younger fauna suggests moister and more tundra-like conditions.

  3. Obsidian hydration dates glacial loading?

    PubMed

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow. PMID:17806883

  4. Obsidian hydration dates glacial loading?

    USGS Publications Warehouse

    Friedman, I.; Pierce, K.L.; Obradovich, J.D.; Long, W.D.

    1973-01-01

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming . The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  5. Pleistocene history of the subarctic pacific: periodic and step-wise changes in temperature and precipitation

    SciTech Connect

    Sancetta, C.

    1985-01-01

    Piston core V20-110 records the last 1.8 Ma of North Pacific conditions. Samples at 11 Ka intervals were analyzed for calcite, foraminifera, diatoms, and IRD. Data implies that precipitation varied on a 41-Ka cycle from latest Pliocene to 700 Ka. During the late Pleistocene precipitation, like temperature, has been dominated by a 100 Ka period. There are six distinct intervals, bounded by rapid, unidirectional changes: a) 1.8-1.6 Ma-mostly ice-free, warm (approx.15/sup 0/C), high precipitation, moderately well-mixed waters; b) 1.6-1.3 Ma-slightly cooler (approx.12/sup 0/C), precipitation increasing to maximum, waters well mixed; c) 1.3-1.1 Ma-change to winter precipitation, slightly colder, increased seasonal contrast. d) 1.1 Ma-700 Ka-beginning of glacial mode; periods of high annual precipitation and strong stratification alternate with lower precipitation and more mixing, temperatures cool (approx.10/sup 0/C); e) 700-300 Ka-strong 100-ka cycles, high winter precipitation and low temperatures (5-10/sup 0/C) during glacials; interglacials drier and warmer, more mixing; summer precipitation low throughout; f) 300-0 Ka-glacial maxima cold (<5/sup 0/C), dry, well-mixed; interglacial maxima cool (approx.10/sup 0/C), summer precipitation, well-mixed; transitions high winter precipitation and strong vertical stratification. CCD fluctuating close to 2700 m, being above during glacials and transitions, below only during peak interglacials.

  6. Siphateles (Gila) sp. and Catostomus sp. from the Pleistocene OIS-6 Lake Gale, Panamint Valley, Owens River system, California

    NASA Astrophysics Data System (ADS)

    Jayko, A. S.; Forester, R. M.; Smith, G. R.

    2014-12-01

    Panamint Valley lies within the Owens River system which linked southeastern Sierra Nevada basins between Mono Lake and Death Valley during glacial-pluvial times. Previous work indicates that late Pleistocene glacial-pluvial Lake Gale, Panamint Valley was an open system during OIS-6, a closed ground water supported shallow lake during OIS-4, and the terminal lake basin for the Owens River system during OIS-2. We here report the first occurrence of fossil fish from the Plio-Pleistocene Panamint basin. Fish remains are present in late Pleistocene OIS-6 nearshore deposits associated with a highstand that was spillway limited at Wingate Wash. The deposits contain small minnow-sized remains from both Siphateles or Gila sp. (chubs) and Catostomus sp. (suckers) from at least four locations widely dispersed in the basin. Siphateles or Gila sp. and Catostomus are indigenous to the Pleistocene and modern Owens River system, in particular to the historic Owens Lake area. Cyprinodon (pupfish) and Rhinichthys (dace) are known from the modern Amargosa River and from Plio-Pleistocene deposits in Death Valley to the east. The late Pleistocene OIS-6 to OIS-2 lacustrine and paleohydrologic record in Panamint basin is interpreted from ostracod assemblages, relative abundance of Artemia sp. pellets, shallow water indicators including tufa fragments, ruppia sp. fragments and the relative abundance of charophyte gyrogonites obtained from archived core, as well as faunal assemblages from paleoshoreline and nearshore deposits. The OIS-4 groundwater supported shallow saline lake had sufficiently low ratios of alkalinity to calcium (alk/Ca) to support the occurrence of exotic Elphidium sp. (?) foraminfera which are not observed in either OIS-2 or OIS-6 lacustrine deposits. The arrival of Owens River surface water into Panamint Basin during OIS-2 is recorded by the first appearance of the ostracod Limnocythere sappaensis at ~27 m depth in an ~100 m archived core (Smith and Pratt, 1957) which

  7. Glacial and Postglacial Geologic History of Isle Royale National Park, Michigan

    USGS Publications Warehouse

    Huber, N. King

    1973-01-01

    Isle Royale was overridden by glacial ice during each of the four major glaciations of the Pleistocene Epoch, and each successive glaciation essentially obliterated all direct evidence of preceding glaciations on the island. In the waning phase of the last major glaciation, the Wisconsin Glaciation, the frontal ice margin retreated northward from at least the greater part of the Lake Superior basin, then readvanced into the basin during Valders time, about 11,000 years ago. We can attribute to the Valders ice the final aspect of glaciation on Isle Royale, including both erosional and depositional features. It is impossible to estimate the quantity of glacial debris or other surficial materials that might have been present on Isle Royale prior to the Valders readvance, but the readvancing ice appears to have removed most of what might have been present, as judged by the thin surficial cover on the eastern two-thirds of the island today. During the Valders retreat, a series of lakes formed in the Lake Superior basin in front of the retreating ice margin. The retreating ice opened successively lower outlets, and thus the general trend of lake elevations is downward. Distinct lake stages reflect periods of relative stability during which well- defined shoreline features developed. The ice front forming the north margin of the earlier lakes probably remained south of Isle Royale until about the time of glacial Lake Beaver Bay, when it retreated to a position straddling Isle Royale west of Lake Desor. Abundant deposits of glacial debris were left upon the newly deglaciated west end of the island, and the ice front remained stable long enough to build a complex of ice-margin deposits across the island. Shorelines formed by the glacial lake associated with this ice front are found on the western part of the island about 200 feet above present Lake Superior. Subsequent renewed and complete retreat of the ice margin from Isle Royale was rapid enough that only a minor amount

  8. Raindrop oscillations

    NASA Technical Reports Server (NTRS)

    Beard, K. V.

    1982-01-01

    A model of the change in shape of a raindrop is presented. Raindrops measured by two orthogonal cameras were classified by shape and orientation to determine the nature of the oscillation. A physical model based on potential energy was then developed to study the amplitude variation of oscillating drops. The model results show that oscillations occur about the equilibrium axis ratio, but the time average axis ratio if significantly more spherical for large amplitudes because of asymmetry in the surface potential energy. A generalization of the model to oscillations produced by turbulence yields average axis ratios that are consistent with the camera measurements. The model results for average axis ratios were applied to rainfall studies with a dual polarized radar.

  9. Microelectronic oscillator

    NASA Technical Reports Server (NTRS)

    Kleinberg, L. L.

    1969-01-01

    Bipolar transistor operated in a grounded base configuration is used as the inductor in a microelectronic oscillator. This configuration is employed using thin-film hybrid technology and is also applicable to monolithic technology.

  10. Power oscillator

    DOEpatents

    Gitsevich, Aleksandr

    2001-01-01

    An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  11. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes.

    PubMed

    Schmittner, Andreas; Galbraith, Eric D

    2008-11-20

    Earth's climate and the concentrations of the atmospheric greenhouse gases carbon dioxide (CO(2)) and nitrous oxide (N(2)O) varied strongly on millennial timescales during past glacial periods. Large and rapid warming events in Greenland and the North Atlantic were followed by more gradual cooling, and are highly correlated with fluctuations of N(2)O as recorded in ice cores. Antarctic temperature variations, on the other hand, were smaller and more gradual, showed warming during the Greenland cold phase and cooling while the North Atlantic was warm, and were highly correlated with fluctuations in CO(2). Abrupt changes in the Atlantic meridional overturning circulation (AMOC) have often been invoked to explain the physical characteristics of these Dansgaard-Oeschger climate oscillations, but the mechanisms for the greenhouse-gas variations and their linkage to the AMOC have remained unclear. Here we present simulations with a coupled model of glacial climate and biogeochemical cycles, forced only with changes in the AMOC. The model simultaneously reproduces characteristic features of the Dansgaard-Oeschger temperature, as well as CO(2) and N(2)O fluctuations. Despite significant changes in the land carbon inventory, CO(2) variations on millennial timescales are dominated by slow changes in the deep ocean inventory of biologically sequestered carbon and are correlated with Antarctic temperature and Southern Ocean stratification. In contrast, N(2)O co-varies more rapidly with Greenland temperatures owing to fast adjustments of the thermocline oxygen budget. These results suggest that ocean circulation changes were the primary mechanism that drove glacial CO(2) and N(2)O fluctuations on millennial timescales. PMID:19020618

  12. Gradual and abrupt changes during the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Ford, Heather L.; Sosdian, Sindia M.; Rosenthal, Yair; Raymo, Maureen E.

    2016-09-01

    During the Mid-Pleistocene Transition (MPT), the dominant glacial-interglacial cyclicity as inferred from the marine δ18O records of benthic foraminifera (δ18Obenthic) changed from 41 kyr to 100 kyr years in the absence of a comparable change in orbital forcing. Currently, only two Mg/Ca-derived, high-resolution bottom water temperature (BWT) records exist that can be used with δ18Obenthic records to separate temperature and ice volume signals over the Pleistocene. However, these two BWT records suggest a different pattern of climate change occurred over the MPT-a record from North Atlantic DSDP Site 607 suggests BWT decreased with no long-term trend in ice volume over the MPT, while South Pacific ODP Site 1123 suggests that BWT has been relatively stable over the last 1.5 Myr but that there was an abrupt increase in ice volume at ∼900 kyr. In this paper we attempt to reconcile these two views of climate change across the MPT. Specifically, we investigated the suggestion that the secular BWT trend obtained from Mg/Ca measurements on Cibicidoides wuellerstorfi and Oridorsalis umbonatus species from N. Atlantic Site 607 is biased by the possible influence of Δ[CO32-] on Mg/Ca values in these species by generating a low-resolution BWT record using Uvigerina spp., a genus whose Mg/Ca values are not thought to be influenced by Δ[CO32-]. We find a long-term BWT cooling of ∼2-3°C occurred from 1500 to ∼500 kyr in the N. Atlantic, consistent with the previously generated C. wuellerstorfi and O. umbonatus BWT record. We also find that changes in ocean circulation likely influenced δ18Obenthic, BWT, and δ18Oseawater records across the MPT. N. Atlantic BWT cooling starting at ∼1.2 Ma, presumably driven by high-latitude cooling, may have been a necessary precursor to a threshold response in climate-ice sheet behavior at ∼900 ka. At that point, a modest increase in ice volume and thermohaline reorganization may have caused enhanced sensitivity to the 100 kyr

  13. Global sensitivity analysis of the Indian monsoon during the Pleistocene

    NASA Astrophysics Data System (ADS)

    Araya-Melo, P. A.; Crucifix, M.; Bounceur, N.

    2015-01-01

    The sensitivity of the Indian monsoon to the full spectrum of climatic conditions experienced during the Pleistocene is estimated using the climate model HadCM3. The methodology follows a global sensitivity analysis based on the emulator approach of Oakley and O'Hagan (2004) implemented following a three-step strategy: (1) development of an experiment plan, designed to efficiently sample a five-dimensional input space spanning Pleistocene astronomical configurations (three parameters), CO2 concentration and a Northern Hemisphere glaciation index; (2) development, calibration and validation of an emulator of HadCM3 in order to estimate the response of the Indian monsoon over the full input space spanned by the experiment design; and (3) estimation and interpreting of sensitivity diagnostics, including sensitivity measures, in order to synthesise the relative importance of input factors on monsoon dynamics, estimate the phase of the monsoon intensity response with respect to that of insolation, and detect potential non-linear phenomena. By focusing on surface temperature, precipitation, mixed-layer depth and sea-surface temperature over the monsoon region during the summer season (June-July-August-September), we show that precession controls the response of four variables: continental temperature in phase with June to July insolation, high glaciation favouring a late-phase response, sea-surface temperature in phase with May insolation, continental precipitation in phase with July insolation, and mixed-layer depth in antiphase with the latter. CO2 variations control temperature variance with an amplitude similar to that of precession. The effect of glaciation is dominated by the albedo forcing, and its effect on precipitation competes with that of precession. Obliquity is a secondary effect, negligible on most variables except sea-surface temperature. It is also shown that orography forcing reduces the glacial cooling, and even has a positive effect on precipitation

  14. Remote identification of a gravel laden Pleistocene river bed

    NASA Technical Reports Server (NTRS)

    Scholen, Douglas E.

    1993-01-01

    The abundance of gravel deposits is well known in certain areas across the Gulf of Mexico coastal plain, including lands within several National Forests. These Pleistocene gravels were deposited following periods of glacial buildup when ocean levels were down and the main river channels had cut deep gorges, leaving the subsidiary streams with increased gradients to reach the main channels. During the warm interglacial periods that followed each glaciation, melting ice brought heavy rainfall and torrents of runoff carrying huge sediment loads that separated into gravel banks below these steeper reaches where abraiding streams, developed. As the oceans rose again, filling in the main channels, these abraiding areas were gradually flattened and covered over by progressively finer material. Older terraces were uplifted by tectonic movements associated with the Gulf Coastal Plain, and the subsequent erosional processes gradually brought the gravels closer to the surface. The study area is located on the Kisatchie National Forest, in central Louisiana, near Alexandria. Details of the full study have been discussed elsewhere. The nearest source of chert is in the Ouachita Mountains located to the northeast. The Ouachita River flows south, out of these mountains, and in Pleistocene times probably carried these chert gravels into the vicinity of the present day Little River Basin which lies along the eastern boundary of the National Forest. Current day drainages cross the National Forest from west to east, emptying into the Little River on the east side. However, a north-south oriented ridge of hills along the west side of the Forest appears to be a recent uplift associated with the hinge line of the Mississippi River depositional basin further to the east, and 800,000 years ago, when these gravels were first deposited during the Williana interglacial period, the streams probably flowed east to west, from the Little River basin to the Red River basin on the west side of the

  15. Mediterranean Outflow and surface water variability off southern Portugal during the early Pleistocene: A snapshot at Marine Isotope Stages 29 to 34 (1020-1135 ka)

    NASA Astrophysics Data System (ADS)

    Voelker, Antje H. L.; Salgueiro, Emilia; Rodrigues, Teresa; Jimenez-Espejo, Francisco J.; Bahr, André; Alberto, Ana; Loureiro, Isabel; Padilha, Maria; Rebotim, Andreia; Röhl, Ursula

    2015-10-01

    Centennial-to-millennial scale records from IODP Site U1387, drilled during IODP Expedition 339 into the Faro Drift at 558 m water depth, now allow evaluating the climatic history of the upper core of the Mediterranean Outflow (MOW) and of the surface waters in the northern Gulf of Cadiz during the early Pleistocene. This study focuses on the period from Marine Isotope Stages (MIS) 29 to 34, i.e. the interval surrounding extreme interglacial MIS 31. Conditions in the upper MOW reflect obliquity, precession and millennial-scale variations. The benthic δ18O signal follows obliquity with the exception of an additional, smaller δ18O peak that marks the MIS 32/31 transition. Insolation maxima (precession minima) led to poor ventilation and a sluggish upper MOW core, whereas insolation minima were associated with enhanced ventilation and often also increased bottom current velocity. Millennial-scale periods of colder sea-surface temperatures (SST) were associated with short-term maxima in flow velocity and better ventilation, reminiscent of conditions known from MIS 3. A prominent contourite layer, coinciding with insolation cycle 100, was formed during MIS 31 and represents one of the few contourites developing within an interglacial period. MIS 31 surface water conditions were characterized by an extended period (1065-1091 ka) of warm SST, but SST were not much warmer than during MIS 33. Interglacial to glacial transitions experienced 2 to 3 stadial/interstadial cycles, just like their mid-to-late Pleistocene counterparts. Glacial MIS 30 and 32 recorded periods of extremely cold (< 12 °C) SST that in their climatic impact were comparable with the Heinrich events of the mid and late Pleistocene. Glacial MIS 34, on the other hand, was a relative warm glacial period off southern Portugal. Overall, surface water and MOW conditions at Site U1387 show a strong congruence with Mediterranean climate, whereas millennial-scale variations are closely linked to North Atlantic

  16. Ice Age Reboot: Thermohaline Circulation Crisis during the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Pena, L.; Goldstein, S. L.

    2014-12-01

    The mid-Pleistocene transition (MPT) marked a fundamental change in glacial-interglacial periodicity, when it increased from ~41- to 100-kyr cycles and developed higher amplitude climate variability. Because it took place without significant changes in the Milankovitch forcing, this fundamental change must reflect either non-linear responses of the climate system to these external forcings, or internal changes in the ocean-atmosphere-cryosphere system that led to longer periodicities and more intense glacial periods. We document using Nd isotopes a major disruption of the ocean thermohaline circulation (THC) system during the MPT between MIS 25-21 at ~950-860 ka, which effectively marks the first 100-kyr cycle, including an exceptional weakening through critical interglacial MIS 23 at ~900 ka. The data are from ODP Sites 1088 (41°8.163'S, 13°33.77'E, 2082m) and 1090 (42°54.82'S, 8°53.98E', 3702m) in the SE Atlantic Subantarctic Zone, near the upper and lower boundaries of NADW and Circumpolar Deep Water (CDW). Given evidence for nearly stable NADW and North Pacific Water (NPW) ɛNd-values over the last 2 Ma, we interpret the ɛNd variations to reflect changes in the NADW:NPW mixing fractions. During the studied pre-MPT 41-kyr world (MIS 31-25, 1,100-950 ka), at both sites the differences in glacial and interglacial ɛNd-values are small, indicating strong glacial as well as interglacial export of NADW. A major weakening of NADW export occurred during MIS 24-22, including MIS 23, which is unique as the only known interglacial in which the THC did not strengthen, and thus can be considered as a 'trans-glacial' period. The recovery into the post-MPT 100-kyr world is characterized by continued weak glacial THC. We conclude that the MPT ocean circulation crisis 'rebooted' the pacing and intensity of ice ages and facilitated the coeval drawdown of atmospheric CO2 and high latitude ice sheet growth, generating the conditions that stabilized 100-kyr cycles.

  17. Thermohaline Circulation Crisis and Changes Through the Mid-Pleistocene Transition

    NASA Astrophysics Data System (ADS)

    Goldstein, S. L.; Pena, L.

    2013-12-01

    The Mid-Pleistocene Transition (MPT) marked a fundamental change in glacial-interglacial periodicity, transitioning from ~41,000 to 100,000 year cycles, accompanied by higher amplitude climate variability. It occurred without a significant change in orbital forcing, and thus its causes are poorly understood. We report major changes in the pre- and post-MPT mode of the ocean thermohaline circulation (THC), and a THC crisis during the MPT, from Nd isotopes in ODP Sites 1088 (~42S, 2082m) and 1090 (~43S, 3702m). The core locations are at the transition between the South Atlantic and the Southern oceans, a major gateway for the exchange of northern- and southern-sourced water masses. The new data show that in the ';40-kyr world' prior to the MPT, NADW export was strong during both interglacials and glacials. At ~900 ka the THC system underwent a major crisis, with an unprecedented weakening in NADW export during Marine Isotope Stages (MIS) 22-24. The recovery of the THC system in the post-MPT ';100-kyr world' is characterized by strong THC during interglacials, similar to pre-MPT interglacials, but much weaker THC during glacials. The ';THC crisis' interval includes MIS 23, which is unique as an interglacial where the THC operated in the same weak mode as post-MPT glacials. The MIS 22-24 interval has been recognized as a time of abrupt atmospheric pCO2 drawdown (Hoenisch et al. 2009) and significant cooling of ocean deep water, and Antarctic ice sheet expansion (Elderfield et al. Science 2012). Our data indicate that THC changes played an important role as a primary driving force, and helped to generate a series of positive feedbacks. This drastic change in deep-ocean circulation had important implications for the coeval drawdown of atmospheric pCO2, and the absence of a strong THC system through a glacial-to-interglacial-to-glacial cycle had a major impact on high latitude ice sheet growth. We suggest that the weak NADW export during MIS 24-22 resulted in reduced

  18. Vegetation of the Central Beringian Lowlands: Evidence of a Glacial Refugium Found in IODP Expedition 323 Sediment

    NASA Astrophysics Data System (ADS)

    Westbrook, R.; Fowell, S. J.; Bigelow, N. H.; VanLaningham, S.

    2011-12-01

    The lowlands of central Beringia may have acted as a glacial refugium for boreal vegetation, which expanded into eastern and western Beringia as climate changed and glaciers retreated. Persistence of trees, shrubs and mesic-adapted vegetation in the vicinity of the modern Bering Strait and Bering Sea Shelf could have presented a barrier to migrating fauna during Pleistocene glacial stages. These hypotheses have been difficult to test, because sampling has been restricted to lacustrine sediment and peat deposits accessible in eastern and western Beringia. Pollen analysis of cores from IODP Expedition 323 (Bering Sea Expedition) sites U1339 and U1343, on the edge of the Bering Sea Shelf, permits reconstruction of the terrestrial vegetation of adjacent south-central Beringia. Palynological assemblages extracted from sediment that accumulated during Marine Isotope Stages 2 and 6 are dominated by grass (Poaceae ≥ 15%) and sedge (Cyperaceae ≥ 20%). Spruce (Picea ≥ 5%), birch (Betula ≥ 10%) and alder (Alnus ≥ 5%) are also consistently present throughout glacial/interglacial cycles, suggesting that small populations of trees and shrubs remained in central Beringia during glacial maxima. These results support the refugium hypothesis. Although it is possible that some of the boreal plant pollen deposited during glacial stages is derived from interglacial sediment reworked by rivers flowing across the emergent shelf, we postulate that such sources only contribute about 1-5% of the total sediment found at these Bering slope sites. Thus we consider the palynological assemblages from IODP Expedition 323 a robust proxy for the glacial vegetation of central Beringia.

  19. A Long Pleistocene Paleoclimate Record from Stoneman Lake, Arizona

    NASA Astrophysics Data System (ADS)

    Fawcett, P. J.; Anderson, R. S.; Brown, E. T.; Werne, J. P.; Jimenez-Moreno, G.; Toney, J. L.; Garcia, D.; Garrett, H. L.; Dunbar, N. W.

    2015-12-01

    Long continuous lake sediment cores provide enormous potential for interpreting climate change. In the American Southwest, long records are revolutionizing our understanding of megadroughts, which have occurred in the past and will most certainly occur in the future with rapidly changing climate. One site with the potential to study ancient megadroughts is Stoneman Lake, central Arizona, whose basin is a circular depression formed by a collapse in late Tertiary volcanics. The lake is spring fed, most recently alternating between a marsh and a lake, with water levels having fluctuated by > 3 meters over the last 25 years. Its small closed drainage basin (ca. 2.5 km2) with one small inflowing stream is key to the sensitivity of the record. Two parallel lacustrine sediment cores (70 m and 30 m deep) were recovered in October of 2014. Our preliminary chronology includes 8 AMS dates in the upper 7 m and two distinct tephras at 30.8 m depth and 36.3 m depth. Radiocarbon dates show a 2.7-m-thick Holocene section, and then a low Pleistocene SAR with an age of 11,000 cal yr B.P. at ~2.8 m to an age of 46,500 cal yr B.P. at 4.2 m depth. We estimate that the 70-m deep hole will provide a climate record back to ~1.3 million years ago. Of particular interest are the interglacials that serve as good analogs for future climate including MIS 11 and MIS 19. Initial core description includes MS, bulk density and high-resolution images. Holocene sediments are characterized by massive, dark organic rich silty clays with no distinct lamination. Sediments from the Last Glacial Maximum are well-laminated, light brown silty clays with few organics present. The distinctive laminations probably represent a very deep lake and therefore a wet cold climate, also verified by pollen data. There are several repeated intervals of laminated sediments deeper in the core that may represent older glacial maxima. Future work will include detailed pollen, plant macrofossil and charcoal analysis

  20. Record of glacial Lake Missoula floods in glacial Lake Columbia, Washington

    NASA Astrophysics Data System (ADS)

    Hanson, Michelle A.; Clague, John J.

    2016-02-01

    During the last glaciation (marine oxygen isotope stage 2), outburst floods from glacial Lake Missoula deposited diagnostic sediments within glacial Lake Columbia. Two dominant outburst flood lithofacies are present within glacial Lake Columbia deposits: a flood expansion bar facies and a finer-grained hyperpycnite facies. We conclude that the flood sediments have a glacial Lake Missoula source because: (1) current indicators indicate westward flow through the lake, and upvalley flow followed by downvalley flow in tributary valleys; (2) no flood sediments are found north of a certain point; (3) there is a dominance of Belt-Purcell Supergroup clasts in a flood expansion bar; and (4) some of the finer-grained beds have a pink colour, reflective of glacial Lake Missoula lake-bottom sediments. A new radiocarbon age of 13,400 ± 100 14C BP on plant detritus found below 37 flood beds helps constrain the timing of outburst flooding from glacial Lake Missoula.

  1. Diagenesis in coastal carbonates related to Pleistocene sea level, Bermuda Platform

    SciTech Connect

    Vollbrecht, R.; Meischner, D.

    1996-01-01

    Pleistocene glacioeustatic sea-level oscillation on the stable Bermuda Platform is expressed in a succession of shallow-water carbonates interrupted by lowstand unconformities. In Bermuda, the maximum highstands of the last 400,000 yr ranged within 10 m around the present level. Coastal carbonates of various highstands are exposed along the present shoreline. These carbonates were penetrated by meteoric and marine pore waters during lowstands and highstands following on deposition. Two representative Pleistocene shoreline sections were studied to see whether early diagenesis has recorded these pore-water changes. The sediments of both sections show multiple generations of cement. Optical and scanning electron microscopy, cathodoluminescence microscopy, X-ray diffraction, microprobe studies and stable-isotope analyses were used to determine the diagenetic environments involved. Regardless of the degree of substrate cementation, freshwater alteration was mainly vadose whereas marine cementation was either phreatic or vadose or both. Early diagenetic oscillation is easier recorded in coastal successions than in lagoonal sediments, mainly because marine cementation is more active nearshore.Because the coastal environment is prone to wave destruction, the potential for preserving these diagenetic features is usually low. Data published on tectonically unstable areas suggest that early diagenetic oscillation may characterize stable coastlines.

  2. Paleoecology of central Kentucky since the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Wilkins, Gary R.; Delcourt, Paul A.; Delcourt, Hazel R.; Harrison, Frederick W.; Turner, Manson R.

    1991-09-01

    Pollen grains and spores, plant macrofossils, and sponge spicules from a 7.2-m sediment core from Jackson Pond dating back to 20,000 yr B.P. are the basis for new interpretations of vegetational, limnological, and climatic changes in central Kentucky. During the full-glacial interval (20,400 to 16,800 yr B.P.) upland vegetation was closed spruce forest with jack pine as a subdominant. Aquatic macrophyte and sponge assemblages indicate that the site was a relatively deep, open pond with low organic productivity. During late-glacial time (16,800 to 11,300 yr B.P.) spruce populations continued to dominate while jack pine declined and sedge increased as the vegetation became a more open, taiga-like boreal woodland. Between 11,300 and 10,000 yr B.P., abundances of spruce and oak pollen oscillated reciprocally, possibly reflecting the Younger Dryas oscillation as boreal taxa underwent a series of declines and increases at the southern limit of their ranges before becoming extirpated and replaced by deciduous forest. In the early Holocene (10,000 to 7300 yr B.P.) a mesic deciduous woodland developed; it was replaced by xeric oak-hickory forest during the middle Holocene between 7300 and 3900 yr B.P. Grass increased after 3900 yr B.P., indicating that the presettlement vegetation mosaic of mixed deciduous forest and prairie (the "Kentucky Barrens") became established in central Kentucky after the Hypsithermal interval. Sponge spicules increased in number during the Holocene, reflecting reduced water depths in the pond. Sediment infilling, as well as climatic warming and the expansion of fringing shrub thickets, increased nutrient and habitat availability for freshwater sponges.

  3. Fast Vegetational Responses to Late-Glacial Climate Change

    NASA Astrophysics Data System (ADS)

    Williams, J. W.; Post, D. M.; Cwynar, L. C.; Lotter, A. F.; Levesque, A. J.

    2001-12-01

    How rapidly can natural ecosystems respond to rapid climate change? This question can be addressed by studying paired paleoecological and paleoclimatological records spanning the last deglaciation. Between 16 and 10 ka, abrupt climatic oscillations (e.g. Younger Dryas, Gerzensee/Killarney Oscillations) interrupted the general warming trend. Rates of climate change during these events were as fast or faster than projected rates of change for this century. We compiled a dozen high-resolution lacustrine records in North America and Europe with a pollen record and independent climatic proxy, a clear Younger Dryas signal, and good age control. Cross-correlation analysis suggests that vegetation responded rapidly to late-glacial climate change, with significant changes in vegetation composition occurring within the lifespan of individual trees. At all sites, vegetation lagged climate by less than 200 years, and at two-thirds of the sites, the initial vegetational response occurred within 100 years. The finding of rapid vegetational responses is consistent across sites and continents, and is similar to the 100-200 year response times predicted by gap-scale forest models. Likely mechanisms include 1) increased susceptibility of mature trees to disturbances such as fire, wind, and disease, thereby opening up gaps for colonization, 2) the proximity of these sites to late-glacial treeline, where climate may directly control plant population densities and range limits, 3) the presence of herbaceous taxa with short generation times in these plant communities, and 4) rapid migration due to rare long-distance seed dispersals. Our results are consistent with reports that plant ranges are already shifting in response to recent climate change, and suggest that these shifts will persist for the next several centuries. Widespread changes in plant distributions may affect surface-atmosphere interactions and will challenge attempts to manage ecosystems and conserve biodiversity.

  4. Fossil hyrax dung and evidence of Late Pleistocene and Holocene vegetation types in the Namib Desert

    NASA Astrophysics Data System (ADS)

    Scott, Louis; Marais, Eugene; Brook, George A.

    2004-12-01

    Pollen was derived from fossil dung of herbivorous hyraxes, deposited in a rock shelter on the highest mountain in Namibia, Dâures or Brandberg, situated on the Namib Desert margin. Radiocarbon dating ranging in age between modern times and 30 000 yr BP showed it represents the first empirical pollen evidence of continental palaeovegetation during the Late Pleistocene along the western escarpment of southern Africa. The initial results indicate Last Glacial Maximum vegetation differed totally from the current pattern as vegetation types were dominated by small Asteraceae shrubs, in contrast to those of the Holocene and modern times which show more succulents, grass and woody elements (arboreal pollen). The results suggest that Cape floral communities did not reach into the tropics along the western escarpment of Africa, despite such pollen types occurring in marine cores. Copyright

  5. {13C }/{12C } ratios of pleistocene mummified remains from beringia

    NASA Astrophysics Data System (ADS)

    Bombin, Miguel; Muehlenbachs, Karlis

    1985-01-01

    During the Quaternary glacial episodes, when sea level was considerably lower, Asia and North America were linked by large extensions of circumarctic land (Beringia), which remained unglaciated. This land mass served not only as a biogeographical bridge for plants, animals, and humans, but also supported a biome very different from present tundra or boreal coniferous forests, which was dominated by steppes and a rich mammalian megafauna. Carbon stable isotope ratios of Beringian late Pleistocene mummified remains of bison, equids, mammoth, caribou, musk-ox, moose, woolly rhino, and other undetermined species, found preserved in permafrost, indicate that these megaherbivores fed exclusively on C 3 plants, and that C 4 grasses were not differentially ingested by bison, as previously suggested. Paleoclimatic constraints probably prevented the formation of a warm-season (C 4) guild during the later part of the growing season in the steppes of Beringia during the last glaciation.

  6. Expanding Ice Sheets on the Antarctic Peninsula during the Plio/Pleistocene Recorded in Continental Rise Sediment Drifts

    NASA Astrophysics Data System (ADS)

    Cowan, E. A.; Hillenbrand, C.

    2007-12-01

    Sediment drifts on the continental rise west of the Antarctic Peninsula are located within 125 km from the continental shelf edge, the main contributor of terrigenous sediment during both glacial and interglacial periods. The composition of drift deposits continuously recorded changes in ice sheet volume and thermal regime as well as sea surface temperatures (SSTs) and sea ice extent. The coarse-grained terrigenous sediment (pebbles and coarse sand), a proxy for iceberg-rafted debris (IRD), was analyzed in sediments spanning the last 3.1 m.y. at Ocean Drilling Program (ODP) Sites 1101 and 1096. IRD is deposited in both glacial intervals, dominated by fine-grained laminated mud and interglacial units consisting of bioturbated muds enriched in biogenic components. Contents of biogenic opal, which reflect diatom abundance, are relatively high from 3.1-2.2 Ma. Calcareous nannofossils are present within interglacial sediments from 2.2-0.76 Ma. Both findings suggest warm SSTs and limited sea ice over the drifts during interglacial periods before the Late Pleistocene. Quartz grains picked from the IRD fraction and imaged with a scanning electron microscope (SEM) show an abrupt change in surface microtextures at 1.35 Ma. During the Late Pliocene to Early Pleistocene, many quartz grains are completely weathered and only a few show signs of crushing and abrasion, indicating that glaciers were too small to inundate the Antarctic Peninsula topography. Debris shed from mountain peaks was transported supraglacially or englacially allowing weathered grains to pass unmodified through the glaciers. Glaciers expanded in size during glacial periods from 1.35-0.76 Ma. The IRD accumulation during those periods was very high and diverse dropstone lithologies document supply from sources throughout the Antarctica Peninsula. Conditions that spawned the large polar ice sheet identified at the Last Glacial Maximum have been present on the Antarctic Peninsula during glacial periods since

  7. Sensitivity simulations with direct shortwave radiative forcing by aeolian dust during glacial cycles

    NASA Astrophysics Data System (ADS)

    Bauer, E.; Ganopolski, A.

    2014-07-01

    Possible feedback effects between aeolian dust, climate and ice sheets are studied for the first time with an Earth system model of intermediate complexity over the late Pleistocene period. Correlations between climate and dust deposition records suggest that aeolian dust potentially plays an important role for the evolution of glacial cycles. Here climatic effects from the dust direct radiative forcing (DRF) caused by absorption and scattering of solar radiation are investigated. Key elements controlling the dust DRF are the atmospheric dust distribution and the absorption-scattering efficiency of dust aerosols. Effective physical parameters in the description of these elements are varied within uncertainty ranges known from available data and detailed model studies. Although the parameters can be reasonably constrained, the simulated dust DRF spans a~wide uncertainty range related to the strong nonlinearity of the Earth system. In our simulations, the dust DRF is highly localized. Medium-range parameters result in negative DRF of several watts per square metre in regions close to major dust sources and negligible values elsewhere. In the case of high absorption efficiency, the local dust DRF can reach positive values and the global mean DRF can be insignificantly small. In the case of low absorption efficiency, the dust DRF can produce a significant global cooling in glacial periods, which leads to a doubling of the maximum glacial ice volume relative to the case with small dust DRF. DRF-induced temperature and precipitation changes can either be attenuated or amplified through a feedback loop involving the dust cycle. The sensitivity experiments suggest that depending on dust optical parameters, dust DRF has the potential to either damp or reinforce glacial-interglacial climate changes.

  8. Sensitivity simulations with direct radiative forcing by aeolian dust during glacial cycles

    NASA Astrophysics Data System (ADS)

    Bauer, E.; Ganopolski, A.

    2014-01-01

    Possible feedback effects between aeolian dust, climate and ice sheets are studied for the first time with an Earth system model of intermediate complexity over the late Pleistocene period. Correlations between climate variables and dust deposits suggest that aeolian dust potentially plays an important role for the evolution of glacial cycles. Here climatic effects from the dust direct radiative forcing (DRF) caused by absorption and scattering of solar radiation are investigated. Key factors controlling the dust DRF are the atmospheric dust distribution and the absorption-scattering efficiency of dust aerosols. Effective physical parameters in the description of these factors are varied within uncertainty ranges known from available data and detailed model studies. Although the parameters are reasonably constrained by use of these studies, the simulated dust DRF spans a wide uncertainty range related to nonlinear dependencies. In our simulations, the dust DRF is highly localized. Medium-range parameters result in negative DRF of several W m-2 in regions close to major dust sources and negligible values elsewhere. In case of high absorption efficiency, the local dust DRF can reach positive values and the global mean DRF can be insignificantly small. In case of low absorption efficiency, the dust DRF can produce a significant global cooling in glacial periods which leads to a doubling of the maximum glacial ice volume relative to the case with small dust DRF. DRF-induced temperature and precipitation changes can either be attenuated or amplified through a feedback loop involving the dust cycle. The sensitivity experiments suggest that depending on dust optical parameters the DRF has the potential to either damp or reinforce glacial-interglacial climate changes.

  9. Temporal labyrinths of eastern Eurasian Pleistocene humans

    PubMed Central

    Wu, Xiu-Jie; Crevecoeur, Isabelle; Liu, Wu; Xing, Song; Trinkaus, Erik

    2014-01-01

    One of the morphological features that has been identified as uniquely derived for the western Eurasian Neandertals concerns the relative sizes and positions of their semicircular canals. In particular, they exhibit a relatively small anterior canal, a relatively larger lateral one, and a more inferior position of the posterior one relative to the lateral one. These discussions have not included full paleontological data on eastern Eurasian Pleistocene human temporal labyrinths, which have the potential to provide a broader context for assessing Pleistocene Homo trait polarities. We present the temporal labyrinths of four eastern Eurasian Pleistocene Homo, one each of Early (Lantian 1), Middle (Hexian 1), and Late (Xujiayao 15) Pleistocene archaic humans and one early modern human (Liujiang 1). The labyrinths of the two earlier specimens and the most recent one conform to the proportions seen among western early and recent modern humans, reinforcing the modern human pattern as generally ancestral for the genus Homo. The labyrinth of Xujiayao 15 is in the middle of the Neandertal variation and separate from the other samples. This eastern Eurasian labyrinthine dichotomy occurs in the context of none of the distinctive Neandertal external temporal or other cranial features. As such, it raises questions regarding possible cranial and postcranial morphological correlates of Homo labyrinthine variation, the use of individual “Neandertal” features for documenting population affinities, and the nature of late archaic human variation across Eurasia. PMID:25002467

  10. Observational and Model Constraints on Glacial Erosion

    NASA Astrophysics Data System (ADS)

    Ehlers, T. A.; Enkelmann, E.; Yanites, B. J.

    2012-12-01

    Quantifying the controls on glacial erosion over geologic timescales is necessary to understand the role of Cenozoic climate change on the development of modern mountain belts. Unfortunately, understanding the spatial distribution of glacial erosion during repeated glaciations has proven difficult. We present results that integrate bedrock and detrital thermochronometer cooling ages with a glacial landscape evolution model. We use this to quantify the spatial distribution and temporal variability of glacial erosion in the Coast Mountains, British Columbia, Canada. A total of 100 apatite (U-Th)/He and 106 fission track single grain ages are presented from modern outwash of the Tiedemann Glacier whose catchment elevations range from 530-3960 m a.s.l.. Detrital thermochronometer ages utilize the tendency of thermochronometer cooling ages to increase with elevation and provide a sediment tracer for the elevation that eroded sediment is derived from. Bedrock ages used include 79 apatite (U-Th)/He ages collected in multiple catchments. Erosion rates derived from bedrock ages are compared to predicted erosion rates from a shallow-ice approximation glacial landscape evolution model of the region. Results from the observed distribution of detrital ages indicate that maximum glacial erosion occurs between elevations of 1200-1800m. Furthermore, near-uniform erosion is documented beneath the glacier with nearly all sediment derived from between elevations of 650- 3000 m a.s.l. Second, comparison of erosion rates derived from bedrock thermochronometer ages with the landscape evolution model suggest that a linear glacial sliding velocity is the primary control on erosion (r2=0.6). This result is important as it provides observational validation of the linear slide velocity erosion rule for million-year timescales. Finally, comparison of model and thermochronometer derived erosion rates reveals that active subglacial erosion occurs for only ~10-20% of a glacial-interglacial cycle

  11. Climate-driven sediment aggradation and incision since the late Pleistocene in the NW Himalaya, India

    NASA Astrophysics Data System (ADS)

    Dey, Saptarshi; Thiede, Rasmus C.; Schildgen, Taylor F.; Wittmann, Hella; Bookhagen, Bodo; Scherler, Dirk; Jain, Vikrant; Strecker, Manfred R.

    2016-09-01

    Deciphering the response of sediment routing systems to climatic forcing is fundamental for understanding the impacts of climate change on landscape evolution. In the Kangra Basin (northwest Sub-Himalaya, India), upper Pleistocene to Holocene alluvial fills and fluvial terraces record periodic fluctuations of sediment supply and transport capacity on timescales of 103 to 105 yr. To evaluate the potential influence of climate change on these fluctuations, we compare the timing of aggradation and incision phases recorded within remnant alluvial fans and terraces with climate archives. New surface-exposure dating of six terrace levels with in-situ cosmogenic 10Be indicates the onset of incision phases. Two terrace surfaces from the highest level (T1) sculpted into the oldest preserved alluvial fan (AF1) date back to 53.4 ± 3.2 ka and 43.0 ± 2.7 ka (1σ). T2 surfaces sculpted into the remnants of AF1 have exposure ages of 18.6 ± 1.2 ka and 15.3 ± 0.9 ka, while terraces sculpted into the upper Pleistocene-Holocene fan (AF2) provide ages of 9.3 ± 0.4 ka (T3), 7.1 ± 0.4 ka (T4), 5.2 ± 0.4 ka (T5) and 3.6 ± 0.2 ka (T6). Together with previously published OSL ages yielding the timing of aggradation, we find a correlation between variations in sediment transport with oxygen-isotope records from regions affected by the Indian Summer Monsoon. During periods of increased monsoon intensity and post-Last Glacial Maximum glacial retreat, aggradation occurred in the Kangra Basin, likely due to high sediment flux, whereas periods of weakened monsoon intensity or lower sediment supply coincide with incision.

  12. American mastodon extirpation in the Arctic and Subarctic predates human colonization and terminal Pleistocene climate change.

    PubMed

    Zazula, Grant D; MacPhee, Ross D E; Metcalfe, Jessica Z; Reyes, Alberto V; Brock, Fiona; Druckenmiller, Patrick S; Groves, Pamela; Harington, C Richard; Hodgins, Gregory W L; Kunz, Michael L; Longstaffe, Fred J; Mann, Daniel H; McDonald, H Gregory; Nalawade-Chavan, Shweta; Southon, John R

    2014-12-30

    Existing radiocarbon ((14)C) dates on American mastodon (Mammut americanum) fossils from eastern Beringia (Alaska and Yukon) have been interpreted as evidence they inhabited the Arctic and Subarctic during Pleistocene full-glacial times (∼ 18,000 (14)C years B.P.). However, this chronology is inconsistent with inferred habitat preferences of mastodons and correlative paleoecological evidence. To establish a last appearance date (LAD) for M. americanum regionally, we obtained 53 new (14)C dates on 36 fossils, including specimens with previously published dates. Using collagen ultrafiltration and single amino acid (hydroxyproline) methods, these specimens consistently date to beyond or near the ∼ 50,000 y B.P. limit of (14)C dating. Some erroneously "young" (14)C dates are due to contamination by exogenous carbon from natural sources and conservation treatments used in museums. We suggest mastodons inhabited the high latitudes only during warm intervals, particularly the Last Interglacial [Marine Isotope Stage (MIS) 5] when boreal forests existed regionally. Our (14)C dataset suggests that mastodons were extirpated from eastern Beringia during the MIS 4 glacial interval (∼ 75,000 y ago), following the ecological shift from boreal forest to steppe tundra. Mastodons thereafter became restricted to areas south of the continental ice sheets, where they suffered complete extinction ∼ 10,000 (14)C years B.P. Mastodons were already absent from eastern Beringia several tens of millennia before the first humans crossed the Bering Isthmus or the onset of climate changes during the terminal Pleistocene. Local extirpations of mastodons and other megafaunal populations in eastern Beringia were asynchrononous and independent of their final extinction south of the continental ice sheets. PMID:25453065

  13. Paleomagnetism of Early and Middle Pleistocene Cataclysmic Flood Deposits in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Pluhar, C. J.; Burns, S. F.; Carpenter, B.; Yazzie, K.; Melton, D.

    2014-12-01

    Evidence is growing that cataclysmic floods, such as jokulhlaups, have scoured parts of the Pacific Northwest not only during the last glacial maximum (such as the Missoula Floods), but also during earlier parts of the Quaternary. These floods left large erosional features in the "Channeled Scablands" such as colossal flood gravel bars, as well as sediments deposited in backflooded tributary valleys. Evidence for pre-last-glacial cataclysmic floods in the region includes very-well-developed paleosols capping flood deposits, middle Pleistocene U-series disequilibrium dates on some flood sediments, and reversed-paleomagnetic-polarity flood sediments, indicating early Pleistocene age. We document additional evidence for ancient cataclysmic floods at two site, near The Dalles, OR and Othello, WA. The Dalles site consists of 8 flood sediment - capping Stage I to III calcic paleosol couplets, with the third unit from the top containing tephra of the Dibekulewe volcanic ash (0.5 Ma). The sandy nature of the proposed flood sediments is too coarse-grained to attribute to aeolian transport. The Othello site consists of 2 meters of caliche over 40 cm of ancient flood sands and fine gravels We collected paleomagnetic samples from both sites, conducting low temperature cycling (LT), alternating field (AF), and thermal demagnetization experiments on them. These experiments indicate that most samples contain: 1) a large magnetization component in multi-domain magnetite (demagnetized by LT), 2) a large component in goethite (demagnetized by 150°C), and 3) a primary magnetization in pseudo-single and single domain magnetite. The Dalles site spans the Matuyama-Brunhes reversal (0.78 Ma). These and previously published data indicate that one or more mechanisms for generating cataclysmic floods have existed in the Pacific Northwest for much of the Quaternary.

  14. The intensification of northern component deepwater formation during the mid-Pleistocene climate transition

    NASA Astrophysics Data System (ADS)

    Poirier, Robert K.; Billups, Katharina

    2014-11-01

    We reconstruct mid-Pleistocene (marine isotope stages (MISs) 13-18) deepwater hydrography at Ocean Drilling Program Site 1063 (4583 m water depth, subtropical North Atlantic) using benthic foraminiferal stable isotope records. These new records complete an ~900 kyr long stratigraphy spanning MISs 8-29 (~250-1030 Ka) when combined with previously published records from Site 1063. The results indicate a change in the circulation regime of the abyssal subtropical North Atlantic during MIS 17. Prior to MIS 17, no significant glacial or interglacial δ13C gradients are evident between Site 1063 and the deep South Atlantic. After MIS 17, interglacial intervals at Site 1063 are characterized by δ13C values that consistently approach those recorded in the deep North Atlantic. Comparing Site 1063 δ13C values to 26 additional published records throughout the entire Atlantic basin supports the idea that this δ13C increase is unique to the deep North Atlantic. After MIS 17, the basin-wide influence of higher δ13C values suggests an increased relative flux of northern sourced bottom waters during interglacial periods. The timing of northern sourced water influence at Site 1063 is consistent with the timing of a shift in the orientation of the Arctic Front. Thus, this shift may signify a link between the northward penetration of relatively warm, saline surface waters into the Norwegian-Greenland Seas stimulating deep convection. Our findings fit well with the model of Imbrie et al. (1993) for the importance of the Nordic heat pump in establishing strong 100 kyr cyclicity in late Pleistocene glacial cycles.

  15. Climate-driven sediment aggradation and incision since the late Pleistocene in the NW Himalaya, India

    NASA Astrophysics Data System (ADS)

    Dey, Saptarshi; Thiede, Rasmus C.; Schildgen, Taylor F.; Wittmann, Hella; Bookhagen, Bodo; Scherler, Dirk; Jain, Vikrant; Strecker, Manfred R.

    2016-09-01

    Deciphering the response of sediment routing systems to climatic forcing is fundamental for understanding the impacts of climate change on landscape evolution. In the Kangra Basin (northwest Sub-Himalaya, India), upper Pleistocene to Holocene alluvial fills and fluvial terraces record periodic fluctuations of sediment supply and transport capacity on timescales of 103 to 105 yr. To evaluate the potential influence of climate change on these fluctuations, we compare the timing of aggradation and incision phases recorded within remnant alluvial fans and terraces with climate archives. New surface-exposure dating of six terrace levels with in-situ cosmogenic 10Be indicates the onset of incision phases. Two terrace surfaces from the highest level (T1) sculpted into the oldest preserved alluvial fan (AF1) date back to 53.4 ± 3.2 ka and 43.0 ± 2.7 ka (1σ). T2 surfaces sculpted into the remnants of AF1 have exposure ages of 18.6 ± 1.2 ka and 15.3 ± 0.9 ka, while terraces sculpted into the upper Pleistocene-Holocene fan (AF2) provide ages of 9.3 ± 0.4 ka (T3), 7.1 ± 0.4 ka (T4), 5.2 ± 0.4 ka (T5) and 3.6 ± 0.2 ka (T6). Together with previously published OSL ages yielding the timing of aggradation, we find a correlation between variations in sediment transport with oxygen-isotope records from regions affected by the Indian Summer Monsoon. During periods of increased monsoon intensity and post-Last Glacial Maximum glacial retreat, aggradation occurred in the Kangra Basin, likely due to high sediment flux, whereas periods of weakened monsoon intensity or lower sediment supply coincide with incision.

  16. American mastodon extirpation in the Arctic and Subarctic predates human colonization and terminal Pleistocene climate change

    PubMed Central

    Zazula, Grant D.; MacPhee, Ross D. E.; Metcalfe, Jessica Z.; Reyes, Alberto V.; Brock, Fiona; Druckenmiller, Patrick S.; Groves, Pamela; Harington, C. Richard; Hodgins, Gregory W. L.; Kunz, Michael L.; Longstaffe, Fred J.; Mann, Daniel H.; McDonald, H. Gregory; Nalawade-Chavan, Shweta; Southon, John R.

    2014-01-01

    Existing radiocarbon (14C) dates on American mastodon (Mammut americanum) fossils from eastern Beringia (Alaska and Yukon) have been interpreted as evidence they inhabited the Arctic and Subarctic during Pleistocene full-glacial times (∼18,000 14C years B.P.). However, this chronology is inconsistent with inferred habitat preferences of mastodons and correlative paleoecological evidence. To establish a last appearance date (LAD) for M. americanum regionally, we obtained 53 new 14C dates on 36 fossils, including specimens with previously published dates. Using collagen ultrafiltration and single amino acid (hydroxyproline) methods, these specimens consistently date to beyond or near the ∼50,000 y B.P. limit of 14C dating. Some erroneously “young” 14C dates are due to contamination by exogenous carbon from natural sources and conservation treatments used in museums. We suggest mastodons inhabited the high latitudes only during warm intervals, particularly the Last Interglacial [Marine Isotope Stage (MIS) 5] when boreal forests existed regionally. Our 14C dataset suggests that mastodons were extirpated from eastern Beringia during the MIS 4 glacial interval (∼75,000 y ago), following the ecological shift from boreal forest to steppe tundra. Mastodons thereafter became restricted to areas south of the continental ice sheets, where they suffered complete extinction ∼10,000 14C years B.P. Mastodons were already absent from eastern Beringia several tens of millennia before the first humans crossed the Bering Isthmus or the onset of climate changes during the terminal Pleistocene. Local extirpations of mastodons and other megafaunal populations in eastern Beringia were asynchrononous and independent of their final extinction south of the continental ice sheets. PMID:25453065

  17. Spatial and temporal patterns of Pleistocene biogenic sediment accumulation in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Moy, C. M.; Bahlburg, H.; Childress, L. B.; Cowan, E. A.; Forwick, M.; Müller, J.; Ribeiro, F.; Ridgway, K. D.; Mix, A. C.

    2013-12-01

    Reconstructing the timing and nature of past changes in aquatic productivity in the Gulf of Alaska (GoA) can shed light on the primary processes driving biogeochemical cycling over geologic timescales. Today, Fe is an important micronutrient that limits primary productivity in surface waters beyond the continental shelf in much of the GoA. However, we have a relatively poor understanding of how Fe-delivery processes, combined with changing climate, environmental, and oceanographic conditions, interact to influence primary production over glacial-interglacial timescales. An important first step is to identify the spatial and temporal patterns of increased productivity in the sediment record. Here, we present sedimentologic and physical property data from IODP Expedition 341 and identify intervals where diatom ooze and diatom-rich mud lithofacies are prevalent during the Pleistocene. Among the Expedition 341 recovered cores, were high-recovery intervals in the outer (Site U1417) and inner (U1418) Surveyor Fan, and from a small slope basin at the edge of the continental shelf (Site U1419). In general, greenish gray diatomaceous ooze (containing >50 % diatoms in smear slides) and diatom-rich mud (>25% diatoms) is found in beds ranging in thickness from 20 to 150 cm, interbedded with gray mud that commonly contains lonestones. Ooze is occasionally found immediately overlying volcanic ash. Compared to non-biogenic mud, diatomaceous sediments are generally characterized by lower magnetic susceptibility, natural gamma ray, bulk density, and higher b* color reflectance. At Site U1417, we observe a frequent occurrence of diatomaceous ooze during the middle Pleistocene relative to the early and late Pleistocene. At Site U1418, intervals containing diatom ooze are less common than at U1417 and biogenic sediments are mainly observed within the late Pleistocene portion of the record. However, higher sedimentation rates at U1418 relative to U1417, and the co-occurrence of sand

  18. Evolution of the Late Pleistocene Aspe River (Western Pyrenees, France). Signature of climatic events and active tectonics

    NASA Astrophysics Data System (ADS)

    Nivière, Bertrand; Lacan, Pierre; Regard, Vincent; Delmas, Magali; Calvet, Marc; Huyghe, Damien; Roddaz, Bernard

    2016-03-01

    We make use of the cosmogenic nuclide 10Be exposure to date an alluvial terrace of the Aspe River in the foothills of the northwestern Pyrenees. Initially ascribed to the Rissian glaciation, our dating shows that the terrace was abandoned at 18 ± 2 kyr. In reference to the Late Pleistocene climatic chronology, two kinds of terraces can be distinguished: high-standing fill terraces probably deposited during glacial events and lower cut-in-fill and strath terraces cut during the postglacial river incision. A part of the terrace aggradations could have occurred during the Würmian glacial episodes. Hence, the dated terrace fits in with the prevailing view of incision during climate transitions. Our study also shows that elevation is not a good criterion of terrace correlation, which should be better carried out on the basis of absolute dating. In addition, this dating also suggests a potential Late Pleistocene fault reactivation of the Mail Arrouy thrust in this tectonically active area of the Western Pyrenees.

  19. Glacial migrations of plants: island biogeographical evidence.

    PubMed

    Simpson, B B

    1974-08-23

    Analyses of the floras of the high north Andean habitat islands (paramos) and the Galápagos Islands show that plant species diversity conforms to the MacArthur and Wilson model of island biogeography but that immigration occurred primarily during glacial periods. Modern plant species diversity is more significantly correlated with area and distance measures of the glacial forms of the islands than with similar measures of the present-day islands. PMID:17736375

  20. Analysis of recent glacial earthquakes in Greenland

    NASA Astrophysics Data System (ADS)

    Olsen, K.; Nettles, M.

    2015-12-01

    Large calving events at Greenland's outlet glaciers produce teleseismically detectable glacial earthquakes. These events are observed in the seismic record for the past 22 years, but the complete catalog of glacial earthquakes still numbers only ~300. The annual occurrence of these long-period events has increased over time, which makes recent years especially valuable in expanding the global dataset. Glacial earthquakes from 1993- 2010 have been analyzed systematically (Tsai and Ekström, 2007; Veitch and Nettles, 2012). Here, we analyze more recent events using the same centroid—single-force (CSF) approach as previous authors, focusing initially on data from 2013. In addition, we perform a focused study of selected events from 2009-2010 to assess the reliability of the force azimuths obtained from such inversions. Recent spatial and temporal patterns of glacial earthquakes in Greenland differ from those in previous years. In 2013, three times as many events occurred on the west coast as on the east, and these events originated predominantly from two glaciers: Jakobshavn Glacier on the west coast and Helheim Glacier on the east. Kangerdlugssuaq Glacier, on the east coast, produced no glacial earthquakes in 2013, though it produced many events in earlier years. Previous CSF results for glacial earthquakes show force azimuths perpendicular to the glacier front during a calving event, with force plunges near horizontal. However, some azimuths indicate forces initially oriented upglacier, while others are oriented downglacier (seaward). We perform a set of experiments on events from 2009 and 2010 and find two acceptable solutions for each glacial earthquake, oriented 180° apart with plunges of opposite sign and centroid times differing by approximately one half of the assumed duration of the earthquake time function. These results suggest the need for a more complex time function to model glacial earthquakes more accurately.

  1. A fresh look at glacial foods

    USGS Publications Warehouse

    Colman, Steven M.

    2002-01-01

    Over the last 20 years, it has become clear that ice ages are characterized by glacial as well as climatic instability on millennial time scales. In his Perspective, Colman highlights two recent papers investigating the role of glacial meltwater and continental drainage in this instability. The results suggest a fundamental instability feedback between ocean circulation and ice sheet dynamics and provides an explanation for why instability was greatest at times of intermediate ice volume.

  2. Canyon Creek: A late Pleistocene vertebrate locality in interior Alaska

    NASA Astrophysics Data System (ADS)

    Weber, Florence R.; Hamilton, Thomas D.; Hopkins, David M.; Repenning, Charles A.; Haas, Herbert

    1981-09-01

    The Canyon Creek vertebrate-fossil locality is an extensive road cut near Fairbanks that exposes sediments that range in age from early Wisconsin to late Holocene. Tanana River gravel at the base of the section evidently formed during the Delta Glaciation of the north-central Alaska Range. Younger layers and lenses of fluvial sand are interbedded with arkosic gravel from Canyon Creek that contains tephra as well as fossil bones of an interstadial fauna about 40,000 years old. Solifluction deposits containing ventifacts, wedge casts, and rodent burrows formed during a subsequent period of periglacial activity that took place during the maximum phase of Donnelly Glaciation about 25,000-17,000 years ago. Overlying sheets of eolian sand are separated by a 9500-year-old paleosol that may correlate with a phase of early Holocene spruce expansion through central Alaska. The Pleistocene fauna from Canyon Creek consists of rodents (indicated by burrows), Mammuthus primigenius (woolly mammoth), Equus lambei (Yukon wild ass), Camelops hesternus (western camel), Bison sp. cf. B. crassicornis (large-horned bison), Ovis sp. cf. O. dalli (mountain sheep), Canis sp. cf. C. lupus (wolf), Lepus sp. cf. L. othus or L. arcticus (tundra hare), and Rangifer sp. (caribou). This assemblage suggests an open landscape in which trees and tall shrubs were either absent or confined to sheltered and moist sites. Camelops evidently was present in eastern Beringia during the middle Wisconsin interstadial interval but may have disappeared during the following glacial episode. The stratigraphic section at Canyon Creek appears to demonstrate that the Delta Glaciation of the north-central Alaska Range is at least in part of early Wisconsin age and was separated from the succeeding Donnelly Glaciation by an interstadial rather than interglacial episode.

  3. Canyon Creek: A late Pleistocene vertebrate locality in interior Alaska

    USGS Publications Warehouse

    Weber, F.R.; Hamilton, T.D.; Hopkins, D.M.; Repenning, C.A.; Haas, H.

    1981-01-01

    The Canyon Creek vertebrate-fossil locality is an extensive road cut near Fairbanks that exposes sediments that range in age from early Wisconsin to late Holocene. Tanana River gravel at the base of the section evidently formed during the Delta Glaciation of the north-central Alaska Range. Younger layers and lenses of fluvial sand are interbedded with arkosic gravel from Canyon Creek that contains tephra as well as fossil bones of an interstadial fauna about 40,000 years old. Solifluction deposits containing ventifacts, wedge casts, and rodent burrows formed during a subsequent period of periglacial activity that took place during the maximum phase of Donnelly Glaciation about 25,000-17,000 years ago. Overlying sheets of eolian sand are separated by a 9500-year-old paleosol that may correlate with a phase of early Holocene spruce expansion through central Alaska. The Pleistocene fauna from Canyon Creek consists of rodents (indicated by burrows), Mammuthus primigenius (woolly mammoth), Equus lambei (Yukon wild ass), Camelops hesternus (western camel), Bison sp. cf. B. crassicornis (large-horned bison), Ovis sp. cf. O. dalli (mountain sheep), Canis sp. cf. C. lupus (wolf), Lepus sp. cf. L. othus or L. arcticus (tundra hare), and Rangifer sp. (caribou). This assemblage suggests an open landscape in which trees and tall shrubs were either absent or confined to sheltered and moist sites. Camelops evidently was present in eastern Beringia during the middle Wisconsin interstadial interval but may have disappeared during the following glacial episode. The stratigraphic section at Canyon Creek appears to demonstrate that the Delta Glaciation of the north-central Alaska Range is at least in part of early Wisconsin age and was separated from the succeeding Donnelly Glaciation by an interstadial rather than interglacial episode. ?? 1981.

  4. Introduction to Pliocene-Pleistocene paleoceanography of the Bering Sea

    NASA Astrophysics Data System (ADS)

    Takahashi, Kozo; Ravelo, A. Christina; Okazaki, Yusuke

    2016-03-01

    High resolution paleoceanography of the Pliocene-Pleistocene is important in understanding climate forcing mechanisms and associated environmental changes during this major transition from global warmth to the Ice Ages. This is particularly true in high latitude marginal seas such as the Bering Sea. The Bering Sea has been very sensitive to changes in global climate during interglacial and glacial, or Milankovitch, time scales. This is due to significant changes in water circulation, land-ocean interaction, and sea-ice formation. With the aim to reveal the climate and oceanographic history of the Bering Sea over the past 5 My, IODP Expedition 323 cored a total of 5741 m of sediment (97.4% recovery) at seven sites in 2009 on D/V JOIDES Resolution covering three regions: the Umnak Plateau, the Bowers Ridge, and the Bering Slope. The water depths of the drill sites range from 818 m to 3174 m, allowing for the characterization of past vertical water mass distribution including changes in the oxygen minimum zone. The four deepest holes range from 600 m to 745 m below the seafloor, and resulted in the recovery of long sediment sequences ranging from 1.9 My to 5 My in age. Following the expedition, two sampling parties at Kochi Core Center (for acquisition of ca. 58,000 subsamples) and two scientific meetings were conducted in order to proceed with the analyses of sediment core samples and discussions. Here, pertinent results, primarily from IODP Expedition 323, are consolidated as a single special volume of Deep-Sea Research Part II Topical Studies in Oceanography.

  5. Ecological consequences of early Late Pleistocene megadroughts in tropical Africa.

    PubMed

    Cohen, Andrew S; Stone, Jeffery R; Beuning, Kristina R M; Park, Lisa E; Reinthal, Peter N; Dettman, David; Scholz, Christopher A; Johnson, Thomas C; King, John W; Talbot, Michael R; Brown, Erik T; Ivory, Sarah J

    2007-10-16

    Extremely arid conditions in tropical Africa occurred in several discrete episodes between 135 and 90 ka, as demonstrated by lake core and seismic records from multiple basins [Scholz CA, Johnson TC, Cohen AS, King JW, Peck J, Overpeck JT, Talbot MR, Brown ET, Kalindekafe L, Amoako PYO, et al. (2007) Proc Natl Acad Sci USA 104:16416-16421]. This resulted in extraordinarily low lake levels, even in Africa's deepest lakes. On the basis of well dated paleoecological records from Lake Malawi, which reflect both local and regional conditions, we show that this aridity had severe consequences for terrestrial and aquatic ecosystems. During the most arid phase, there was extremely low pollen production and limited charred-particle deposition, indicating insufficient vegetation to maintain substantial fires, and the Lake Malawi watershed experienced cool, semidesert conditions (<400 mm/yr precipitation). Fossil and sedimentological data show that Lake Malawi itself, currently 706 m deep, was reduced to an approximately 125 m deep saline, alkaline, well mixed lake. This episode of aridity was far more extreme than any experienced in the Afrotropics during the Last Glacial Maximum (approximately 35-15 ka). Aridity diminished after 95 ka, lake levels rose erratically, and salinity/alkalinity declined, reaching near-modern conditions after 60 ka. This record of lake levels and changing limnological conditions provides a framework for interpreting the evolution of the Lake Malawi fish and invertebrate species flocks. Moreover, this record, coupled with other regional records of early Late Pleistocene aridity, places new constraints on models of Afrotropical biogeographic refugia and early modern human population expansion into and out of tropical Africa. PMID:17925446

  6. Late Pleistocene environments of the western Noatak basin, northwestern Alaska

    USGS Publications Warehouse

    Elias, S.A.; Hamilton, T.D.; Edwards, M.E.; Beget, J.E.; Krumhardt, A.P.; Lavoie, C.

    1999-01-01

    Glacial Lake Noatak formed repeatedly during middle and late Pleistocene time as expanding glaciers from the DeLong Mountains blocked the Noatak River valley. Downcutting by the Noatak River has exposed thick sediment successions in bluffs up to 86 m high. Two river bluffs, Nk-26 and Nk-29A, contain correlative organic-rich flood-plain deposits that were formed during and after deposition of the Old Crow tephra at about the transition between oxygen isotope stage 6 and oxygen isotope stage 5, at the beginning of the last interglaciation. Both bluffs also contain older interglacial or interstadial flood-plain deposits of uncertain age. Pollen and beetle remains were recovered from the older and younger flood-plain deposits at each bluff. Pollen from the younger flood-plain deposits suggests tundra vegetation with local dominance of sedge. Juniperus abundances were locally high, especially around the time of Old Crow tephra deposition. Mutual climatic range (MCR) estimates from the insect fossil assemblages suggest that mean summer temperatures (Tmax) near the time of Old Crow tephra deposition were about 2 ??C colder than modern; mean winter temperatures were very similar to those of today. A younger sample from the same interglacial deposit yielded a Tmax estimate of 2 ??C warmer than modern, signaling interglacial warming. Pollen from the older interglacial deposit at Nk-29A suggests mesic tundra, with boreal forest more distant than it is today. MCR analysis of a possibly correlative older interglacial deposit at Nk-26 suggests a Tmax about 2 ??C below present.

  7. The Relationship between Atlantic Overturning and Climate in the Pleistocene

    NASA Astrophysics Data System (ADS)

    Howe, J. N. W.; Piotrowski, A. M.

    2015-12-01

    Changes in Atlantic Meridional Overturning Circulation play an important role in modulating global climate by controlling northward heat transport in the surface ocean and carbon storage in the deep ocean. We present a new high resolution 1.2 Myr record of neodymium isotopes (ɛNd) - a proxy for water mass mixing - measured on foraminifera and fish debris from site ODP 929 [6.0°N, 43.7°W, 4356 m] on the Ceara Rise in the western equatorial Atlantic Ocean. This record reveals a fundamental step-change in the nature of glacial Atlantic overturning across the Mid-Pleistocene Transition as well as providing new insight into the relationship between ocean circulation and greenhouse gas forcing during the period known as the "lukewarm" interglacials.Comparison with benthic foraminiferal carbon isotopes from the same core reveals periods of significant decoupling between ɛNd and δ13C, demonstrating that deep Atlantic water mass mixing proportions and nutrient chemistry can vary independently of one another. In contrast, comparison of the ɛNd record with benthic foraminiferal oxygen isotopes reveals a tight coupling, exhibiting the control of Northern Hemisphere climate on both ice volume and Atlantic overturning. The high resolution of the records allows cross spectral analysis of the phasing between authigenic ɛNd and both benthic foraminiferal δ13C and δ18O. This reveals that the different proxy records are coherent at time periods of 100-, 40- and 23-kyr which correlate with orbital forcing. However, the changes in each variable at these periods are not always in phase, indicating that the proxies exhibit different temporal responses to climatic forcings.

  8. Late Pleistocene voles (Arvicolinae, Rodentia) from the Baranica Cave (Serbia)

    NASA Astrophysics Data System (ADS)

    Bogićević, Katarina; Nenadić, Draženko; Mihailović, Dušan

    2012-02-01

    Baranica is a cave system situated in the south-eastern part of Serbia, four kilometers south to Knjaževac, on the right bank of the Trgovi\\vski Timok. The investigations in Baranica were conducted from 1994 to 1997 by the Faculty of Philosophy from Belgrade and the National Museum of Knjaževac. Four geological layers of Quaternary age were recovered. The abundance of remains of both large and small mammals was noticed in the early phase of the research. In this paper, the remains of eight vole species are described: Arvicola terrestris (Linnaeus, 1758), Chionomys nivalis (Martins, 1842), Microtus (Microtus) arvalis (Pallas, 1778) and Microtus (Microtus) agrestis (Linnaeus, 1761), Microtus (Stenocranius) gregalis (Pallas, 1779), Microtus (Terricola) subterraneus (de Sélys-Longchamps, 1836), Clethrionomys glareolus (Schreber, 1780) and Lagurus lagurus (Pallas, 1773). Among them, steppe and open area inhabitants prevail. Based on the evolutionary level and dimensions of the Arvicola terrestris molars, as well as the overall characteristics of the fauna, it was concluded that the deposits were formed in the last glacial period of the Late Pleistocene. These conclusions are rather consistent with the absolute dating of large mammal bones (23.520 ± 110 B.P. for Layer 2 and 35.780 ± 320 B.P. for Layer 4).

  9. Programmable Oscillator

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Patawaran, Ferze D.; Nguyen, Danh H.; Lee, Clement G.; Nguyen, Huy

    2011-01-01

    A programmable oscillator is a frequency synthesizer with an output phase that tracks an arbitrary function. An offset, phase-locked loop circuit is used in combination with an error control feedback loop to precisely control the output phase of the oscillator. To down-convert the received signal, several stages of mixing may be employed with the compensation for the time-base distortion of the carrier occurring at any one of those stages. In the Goldstone Solar System Radar (GSSR), the compensation occurs in the mixing from an intermediate frequency (IF), whose value is dependent on the station and band, to a common IF used in the final stage of down-conversion to baseband. The programmable oscillator (PO) is used in the final stage of down-conversion to generate the IF, along with a time-varying phase component that matches the time-base distortion of the carrier, thus removing it from the final down-converted signal.

  10. Low Florida coral calcification rates in the Plio-Pleistocene

    NASA Astrophysics Data System (ADS)

    Brachert, T. C.; Reuter, M.; Krüger, S.; Klaus, J. S.; Helmle, K.; Lough, J. M.

    2015-12-01

    environment of coral growth, stable isotope proxy data from the fossil corals and the overall structure of the ancient shallow marine communities are consistent with a well-mixed, open marine environment similar to the present-day Florida Reef Tract, but variably affected by intermittent upwelling. Upwelling along the platform may explain low rates of reef coral calcification and inorganic cementation, but is too localized to account for low extension rates of Pliocene z-corals recorded throughout the tropical Caribbean in the western Atlantic region. Low aragonite saturation on a more global scale in response to rapid glacial/interglacial CO2 cyclicity is also a potential factor, but Plio-Pleistocene atmospheric pCO2 is believed to have been broadly similar to the present-day. Heat stress related to globally high interglacial SST, only episodically moderated by intermittent upwelling affecting the Florida platform seems to be the most likely reason for low calcification rates. From these observations we suggest some present coral reef systems to be endangered from future ocean warming.

  11. Low Florida coral calcification rates in the Plio-Pleistocene

    NASA Astrophysics Data System (ADS)

    Brachert, Thomas C.; Reuter, Markus; Krüger, Stefan; Klaus, James S.; Helmle, Kevin; Lough, Janice M.

    2016-08-01

    temperature window during the Plio-Pleistocene. With regard to the environment of coral growth, stable isotope proxy data from the fossil corals and the overall structure of the ancient shallow marine communities are consistent with a well-mixed, open marine environment similar to the present-day Florida Reef Tract, but variably affected by intermittent upwelling. Upwelling along the platform may explain low rates of reef coral calcification and inorganic cementation, but is too localised to account also for low extension rates of Pliocene z corals throughout the tropical WA region. Low aragonite saturation on a more global scale in response to rapid glacial-interglacial CO2 cyclicity is also a potential factor, but Plio-Pleistocene atmospheric pCO2 is generally believed to have been broadly similar to the present day. Heat stress related to globally high interglacial SST only episodically moderated by intermittent upwelling affecting the Florida platform seems to be another likely reason for low calcification rates. From these observations we suggest some present coral reef systems to be endangered from future ocean warming.

  12. Variability in Sediment Supply to the Pleistocene Eastern Arctic Ocean: A Mineralogical Perspective

    NASA Astrophysics Data System (ADS)

    Mildner, T.; Matthiessen, J.; Vogt, C.

    2007-12-01

    ODP Leg 151 Hole 910A is located on the Yermak Plateau which is a crucial area for monitoring the Pleistocene variability of Atlantic Water inflow to the Arctic Ocean and the history of glaciations at the Eurasian continental margin. In contrast to other Arctic Ocean records, a well-constrained chronostratigraphy based on stable isotopes, biostratigraphy and magnetostratigraphy allows the identification of glacial-interglacial cycles and a detailed reconstruction of paleoenvironmental conditions in the past 800,000 years. Thus, stable isotope studies revealed that the glacial-interglacial cycles are superimposed by short-term freshwater supply to the Eastern Arctic Ocean on sub-Milankovitch time-scales (Knies et al. in press, Effects of Arctic freshwater forcing on thermohaline circulation during the Pleistocene, Geology). The sources of freshwater and the history of glaciations in the Brunhes Chron prior to the late Pleistocene are virtually unknown. Previous studies on clay mineral assemblages revealed a pronounced variability on various time-scales in the past 150,000 years, reflecting shifts in sediment input between different source areas in response to freshwater input and waxing and waning of ice sheets. Based on these results, the middle to late Pleistocene of Hole 910A has been studied at sub-Milankovitch time-scales to decipher a possible relationship between climate cycles and input of fine sediments from various source areas during the Brunhes Chron. Despite of a strong imprint of local sources on clay mineral sedimentation on the southern Yermak Plateau, a distinct variability has been recognized in the past 800,000 years. The strongest supply from northern Spitsbergen occurred only during the LGM associated with a maximum input of coarse sediments. Previous reconstructions that suggest a pronounced advance of the northern Barents Sea Ice Sheet across the southern Yermak Plateau are refuted since sediments of Hole 910A are normally consolidated in the

  13. Vegetation and climate changes in western Amazonia during a previous Interglacial- Glacial transition

    NASA Astrophysics Data System (ADS)

    Cardenas, M. L.; Gosling, W. D.; Sherlock, S. C.; Poole, I.; Pennington, R. T.

    2009-12-01

    Amazonia is one of the most biodiverse areas of the world and its vegetation plays a crucial role in controlling the global climate through the regulation of the levels of atmospheric CO2. However, Amazonian ecosystems and their role in the climate system are threatened by ongoing the human impact (already estimated loss of 60% of the species in western Amazonia) and predicted climate change (+1.1-6.4oC by 2100). Unfortunately, there is absence of data relating to the ecological baseline function and response to global climate change of western Amazonian ecosystems in the absence of humans. To help anticipate the impact of future climate change predictions an improved understanding of the natural responses of tropical vegetation to known past climate change is required. Here we present the first study that shows the response of pristine tropical ecosystems in western Amazonia biodiversity hotspot to a major global climate change event (a Quaternary Interglacial-Glacial transition). Pleistocene lake/swamp sediments preserved at the Erazo study site (Lat. 00o 33’S, Long. 077o 52’W, 1927m alt.) today within tropical cloud forest vegetation provide a unique opportunity to examine the impact of past climate shifts. The sediment are >40,000 years old (radiocarbon infinite) and younger than 1 million years (presence of Alder biomarker) and consist of organic layers interbedded with volcanic ash (tephra). This study presents data from multiple proxies (fossil pollen, wood macrofossils and charcoal) to establish a comprehensive picture of regional and local vegetation change prior to human arrival. Our data show a change of vegetation from palm-dominated forest indicative of warm and wet conditions similar to the present at the base of this record, to a forest dominated by Podocarpus sp. suggesting cold and wet conditions at the top of the record. The transition between these two vegetation communities appears to be progressive with small sharp changes along the

  14. Phylogeographic Structure of a Tethyan Relict Capparis spinosa (Capparaceae) Traces Pleistocene Geologic and Climatic Changes in the Western Himalayas, Tianshan Mountains, and Adjacent Desert Regions

    PubMed Central

    Wang, Qian; Zhang, Ming-Li; Yin, Lin-Ke

    2016-01-01

    Complex geological movements more or less affected or changed floristic structures, while the alternation of glacials and interglacials is presumed to have further shaped the present discontinuous genetic pattern of temperate plants. Here we consider Capparis spinosa, a xeromorphic Tethyan relict, to discuss its divergence pattern and explore how it responded in a stepwise fashion to Pleistocene geologic and climatic changes. 267 individuals from 31 populations were sampled and 24 haplotypes were identified, based on three cpDNA fragments (trnL-trnF, rps12-rpl20, and ndhF). SAMOVA clustered the 31 populations into 5 major clades. AMOVA suggests that gene flow between them might be restricted by vicariance. Molecular clock dating indicates that intraspecific divergence began in early Pleistocene, consistent with a time of intense uplift of the Himalaya and Tianshan Mountains, and intensified in mid-Pleistocene. Species distribution modeling suggests range reduction in the high mountains during the Last Glacial Maximum (LGM) as a result of cold climates when glacier advanced, while gorges at midelevations in Tianshan appear to have served as refugia. Populations of low-altitude desert regions, on the other hand, probably experienced only marginal impacts from glaciation, according to the high levels of genetic diversity. PMID:27314028

  15. Phylogeographic Structure of a Tethyan Relict Capparis spinosa (Capparaceae) Traces Pleistocene Geologic and Climatic Changes in the Western Himalayas, Tianshan Mountains, and Adjacent Desert Regions.

    PubMed

    Wang, Qian; Zhang, Ming-Li; Yin, Lin-Ke

    2016-01-01

    Complex geological movements more or less affected or changed floristic structures, while the alternation of glacials and interglacials is presumed to have further shaped the present discontinuous genetic pattern of temperate plants. Here we consider Capparis spinosa, a xeromorphic Tethyan relict, to discuss its divergence pattern and explore how it responded in a stepwise fashion to Pleistocene geologic and climatic changes. 267 individuals from 31 populations were sampled and 24 haplotypes were identified, based on three cpDNA fragments (trnL-trnF, rps12-rpl20, and ndhF). SAMOVA clustered the 31 populations into 5 major clades. AMOVA suggests that gene flow between them might be restricted by vicariance. Molecular clock dating indicates that intraspecific divergence began in early Pleistocene, consistent with a time of intense uplift of the Himalaya and Tianshan Mountains, and intensified in mid-Pleistocene. Species distribution modeling suggests range reduction in the high mountains during the Last Glacial Maximum (LGM) as a result of cold climates when glacier advanced, while gorges at midelevations in Tianshan appear to have served as refugia. Populations of low-altitude desert regions, on the other hand, probably experienced only marginal impacts from glaciation, according to the high levels of genetic diversity. PMID:27314028

  16. Glacial erosion and expected permafrost thickness of Fennoscandia and adjacent regions

    NASA Astrophysics Data System (ADS)

    Amantov, Aleksey

    2013-04-01

    Linked geological, geomorphological and tectonic features of Fennoscandia with adjacent regions of East-European plain and Barents-Kara shelf indirectly influenced the history of glacial grows and decays. The first-order bedrock landscape elements (often created or exhumed during pre-glacial Cenozoic stages) were the major factors that could partly control centers of ice nucleation and basal velocities, serve natural barriers shaping ice sheet margin during some time intervals, etc. On the hand, many landforms were powerfully modified by glacial and periglacial processes, in particular by strong glacial erosion with lithological and structural control. Quantitative estimation of Plio-Pleistocene erosion and deposition was performed combining regional geological-geomorphological analysis (GA) and modeling with rate-based time-scale reconstructions (RR), and mass-balance control. Of special GA importance was to compare and extract changes of preserved elements of pre-glacial Neogene topography from areas that underwent different duration of glacial activity, in comparison with bordering non-glaciated ones. More distinct radial glacial erosion pattern and larger basal ice velocities seem likely at the beginning of the early ice-age stage, with partial widening of pre-glacial drainage elements. Few wide lowlands with meandering rivers in permafrost condition could provoke early stage onset of topographic ice-streams. Over time, further complication of the pattern from radial to "spider web" is expected due to developing of topographic ice-streams. Worth to mention is progressive exhumation of resistant formations, additional complications of the pattern by fluvioglacial activity and glacial sedimentation, "pendulum" principle, with increasing amount of glacial and interglacial sedimentation in eroded material. Approximated variable permafrost distribution seems to be additional weighty aspect, changing erosion rates at some time intervals. To estimate mean annual

  17. Glacio-eustatic Control on Plio-Pleistocene Sedimentation Along the Northern California Ocean Margin

    NASA Astrophysics Data System (ADS)

    Green Nylen, N. M.; Zinniker, D. A.; Ingle, J. C.; Moldowan, J. M.

    2002-12-01

    Over the last 3.5 million years major climatic and tectonic changes have resulted in high frequency fluctuations in relative sea level adjacent to the northern California shoreline. A detailed record of these changes is preserved in two sedimentary sequences currently exposed along the coast: the neritic to nonmarine Merced Formation near San Francisco and the bathyal to neritic Rio Dell Formation north of Cape Mendocino. With the goal of deciphering the Plio-Pleistocene paleoenvironmental histories of these expanded ocean margin sequences, detailed stratigraphic sections were measured and described from the lower portion of the Merced Formation and from the Upper Rio Dell Formation. Samples are being analyzed for benthic foraminiferal assemblage, palynological assemblage, stable carbon and oxygen isotope composition of foraminiferal carbonate, and organic geochemistry. These data provide insight into paleo-water characteristics and paleobathymetry, global ice volume and climate, terrestrial and marine ecosystem composition and structure, specific sources of sedimentary organic material, the frequency and magnitude of wildfires on land during deposition, and redox conditions during early diagenesis. Variations in these climate and environmental proxies appear to demarcate glacial and interglacial cycles. These results generally support previous interpretations of glacio-eustatic control on the cyclicity of sedimentary facies within the Merced and Rio Dell formations. Ongoing work aims to explore the relationship between local and global climate proxies and to develop a more detailed model of northern California ocean margin sedimentary response to rapid Plio-Pleistocene sea-level change.

  18. Co-occurrence of mylodontid sloths and insights on their potential distributions during the late Pleistocene

    NASA Astrophysics Data System (ADS)

    Varela, Luciano; Fariña, Richard A.

    2016-01-01

    Species distribution models (SDMs) for the last interglacial (LIG), the global last glacial maximum (LGM) and the Holocene climatic optimum (HCO) were generated for three extinct South American Pleistocene mylodontid giant sloths, Glossotherium robustum, Lestodon armatus and Mylodon darwinii. They are recorded co-occurring in some localities including Arroyo del Vizcaíno site (AdV) in Uruguay. Co-occurrence records were studied based on the overlap of their generated areas of potential distributions, and compared with the available biome reconstructions of South America during the LGM to analyze their distribution patterns, ecological requirements and possible interactions between them. Our results suggest that these sloths could have co-existed mainly in the Chaco-Paraná Basin and the plains in the Río de la Plata area. Areas of high suitability were observed for submerged parts of the continental shelf that were exposed during the LGM showing an overall increase in potential habitat compared to the LIG and HCO. This suggests that there was a drastic reduction in total available areas of preferred habitat at the end of the Pleistocene. The co-occurrence of these sloths at the AdV site suggests the presence of vegetation indicative of mainly open, cold to temperate habitats but with mixed patches typical of humid climates.

  19. Timing and dynamics of Late Pleistocene mammal extinctions in southwestern Australia.

    PubMed

    Prideaux, Gavin J; Gully, Grant A; Couzens, Aidan M C; Ayliffe, Linda K; Jankowski, Nathan R; Jacobs, Zenobia; Roberts, Richard G; Hellstrom, John C; Gagan, Michael K; Hatcher, Lindsay M

    2010-12-21

    Explaining the Late Pleistocene demise of many of the world's larger terrestrial vertebrates is arguably the most enduring and debated topic in Quaternary science. Australia lost >90% of its larger species by around 40 thousand years (ka) ago, but the relative importance of human impacts and increased aridity remains unclear. Resolving the debate has been hampered by a lack of sites spanning the last glacial cycle. Here we report on an exceptional faunal succession from Tight Entrance Cave, southwestern Australia, which shows persistence of a diverse mammal community for at least 100 ka leading up to the earliest regional evidence of humans at 49 ka. Within 10 millennia, all larger mammals except the gray kangaroo and thylacine are lost from the regional record. Stable-isotope, charcoal, and small-mammal records reveal evidence of environmental change from 70 ka, but the extinctions occurred well in advance of the most extreme climatic phase. We conclude that the arrival of humans was probably decisive in the southwestern Australian extinctions, but that changes in climate and fire activity may have played facilitating roles. One-factor explanations for the Pleistocene extinctions in Australia are likely oversimplistic. PMID:21127262

  20. A late Pleistocene steppe bison ( Bison priscus) partial carcass from Tsiigehtchic, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Zazula, Grant D.; MacKay, Glen; Andrews, Thomas D.; Shapiro, Beth; Letts, Brandon; Brock, Fiona

    2009-12-01

    A partial steppe bison ( Bison priscus) carcass was recovered at Tsiigehtchic, near the confluence of the Arctic Red and Mackenzie Rivers, Northwest Territories, Canada in September of 2007. The carcass includes a complete cranium with horn cores and sheaths, several complete post-cranial elements (many of which have some mummified soft tissue), intestines and a large piece of hide. A piece of metacarpal bone was subsampled and yielded an AMS radiocarbon age of 11,830 ± 45 14C yr BP (OxA-18549). Mitochondrial DNA sequenced from a hair sample confirms that Tsiigehtchic steppe bison ( Bison priscus) did not belong to the lineage that eventually gave rise to modern bison ( Bison bison). This is the first radiocarbon dated Bison priscus in the Mackenzie River valley, and to our knowledge, the first reported Pleistocene mammal soft tissue remains from the glaciated regions of northern Canada. Investigation of the recovery site indicates that the steppe bison was released from the permafrost during a landslide within unconsolidated glacial outwash gravel. These data indicate that the lower Mackenzie River valley was ice free and inhabited by steppe bison by ˜11,800 14C years ago. This date is important for the deglacial chronology of the Laurentide Ice Sheet and the opening of the northern portal to the Ice Free Corridor. The presence of steppe bison raises further potential for the discovery of more late Pleistocene fauna, and possibly archaeological evidence, in the region.

  1. The role of Pleistocene refugia and rivers in shaping gorilla genetic diversity in central Africa

    PubMed Central

    Anthony, Nicola M.; Johnson-Bawe, Mireille; Jeffery, Kathryn; Clifford, Stephen L.; Abernethy, Kate A.; Tutin, Caroline E.; Lahm, Sally A.; White, Lee J. T.; Utley, John F.; Wickings, E. Jean; Bruford, Michael W.

    2007-01-01

    The role of Pleistocene forest refugia and rivers in the evolutionary diversification of tropical biota has been the subject of considerable debate. A range-wide analysis of gorilla mitochondrial and nuclear variation was used to test the potential role of both refugia and rivers in shaping genetic diversity in current populations. Results reveal strong patterns of regional differentiation that are consistent with refugial hypotheses for central Africa. Four major mitochondrial haplogroups are evident with the greatest divergence between eastern (A, B) and western (C, D) gorillas. Coalescent simulations reject a model of recent east–west separation during the last glacial maximum but are consistent with a divergence time within the Pleistocene. Microsatellite data also support a similar regional pattern of population genetic structure. Signatures of demographic expansion were detected in eastern lowland (B) and Gabon/Congo (D3) mitochondrial haplogroups and are consistent with a history of postglacial expansion from formerly isolated refugia. Although most mitochondrial haplogroups are regionally defined, limited admixture is evident between neighboring haplogroups. Mantel tests reveal a significant isolation-by-distance effect among western lowland gorilla populations. However, mitochondrial genetic distances also correlate with the distance required to circumnavigate intervening rivers, indicating a possible role for rivers in partitioning gorilla genetic diversity. Comparative data are needed to evaluate the importance of both mechanisms of vicariance in other African rainforest taxa. PMID:18077351

  2. Timing and dynamics of Late Pleistocene mammal extinctions in southwestern Australia

    PubMed Central

    Prideaux, Gavin J.; Gully, Grant A.; Couzens, Aidan M. C.; Ayliffe, Linda K.; Jankowski, Nathan R.; Jacobs, Zenobia; Roberts, Richard G.; Hellstrom, John C.; Gagan, Michael K.; Hatcher, Lindsay M.

    2010-01-01

    Explaining the Late Pleistocene demise of many of the world's larger terrestrial vertebrates is arguably the most enduring and debated topic in Quaternary science. Australia lost >90% of its larger species by around 40 thousand years (ka) ago, but the relative importance of human impacts and increased aridity remains unclear. Resolving the debate has been hampered by a lack of sites spanning the last glacial cycle. Here we report on an exceptional faunal succession from Tight Entrance Cave, southwestern Australia, which shows persistence of a diverse mammal community for at least 100 ka leading up to the earliest regional evidence of humans at 49 ka. Within 10 millennia, all larger mammals except the gray kangaroo and thylacine are lost from the regional record. Stable-isotope, charcoal, and small-mammal records reveal evidence of environmental change from 70 ka, but the extinctions occurred well in advance of the most extreme climatic phase. We conclude that the arrival of humans was probably decisive in the southwestern Australian extinctions, but that changes in climate and fire activity may have played facilitating roles. One-factor explanations for the Pleistocene extinctions in Australia are likely oversimplistic. PMID:21127262

  3. Recycling of Pleistocene valley fills dominates 125 ka of sediment flux, upper Indus River

    NASA Astrophysics Data System (ADS)

    Munack, Henry; Blöthe, Jan Henrik; Fülöp, Réka-Hajnalka; Codilean, Alexandru T.; Fink, David; Korup, Oliver

    2016-04-01

    Rivers draining the semiarid Transhimalayan Ranges along the western Tibetan Plateau margin underwent alternating phases of massive valley infill and incision in Pleistocene times. The imprints of these cut-and-fill cycles on long-term sediment fluxes have remained largely elusive. We investigate the timing and geomorphic consequences of headward incision of the Zanskar River, which taps the vast More Plains valley fill that currently impedes drainage of the endorheic high-altitude basins of Tso Kar and Tso Moriri. In situ 10Be exposure dating and topographic analyses indicate that a phase of valley infill gave way to net dissection of the >250-m thick sedimentary stacks ˜125 ka ago, i.e. during the last interglacial (MIS 5e). Rivers eroded >14.7 km3 of sediment from the Zanskar headwaters since then, fashioning specific sediment yields that surpass 10Be-derived denudation rates from neighbouring catchments by factors of two to ten. We conclude that recycling of Pleistocene valley fills has provided Transhimalayan headwater rivers with more sediment than bedrock denudation, at least since the beginning of the last glacial cycle. This protracted liberation of sediment stored in thick valley fills could bias rate estimates of current sediment loads and long-term bedrock denudation.

  4. Nearly synchronous climate change in the Northern Hemisphere during the last glacial termination

    USGS Publications Warehouse

    Benson, L.; Burdett, J.; Lund, S.; Kashgarian, Michaele; Mensing, S.

    1997-01-01

    The climate of the North Atlantic region underwent a series of abrupt cold/warm oscillations when the ice sheets of the Northern Hemisphere retreated during the last glacial termination (17.711.5 kyr ago). Evidence for these oscillations, which are recorded in European terrestrial sediments as the Oldest Dryas/Bolling/Older Dryas/Allerod/Younger Dryas vegetational sequence, has been found in Greenland ice cores. The geographical extent of many of these oscillations is not well known, but the last major cold event (the Younger Dryas) seems to have been global in extent. Here we present evidence of four major oscillations in the hydrological balance of the Owens basin, California, that occurred during the last glacial termination. Dry events in western North America occurred at approximately the same time as cold events recorded in Greenland ice, with transitions between climate regimes in the two regions taking place within a few hundred years of each other. Our observations thus support recent climate simulations which indicate that cooling of the North Atlantic Ocean results in cooling of the North Pacific Ocean which, in turn, leads to a drier climate in western North America.

  5. Stratigraphic framework of a late pleistocene shelf-edge delta, northeast Gulf of Mexico

    SciTech Connect

    Sydow, J.; Roberts, H.H. )

    1994-08-01

    Lithologic, biostratrigraphic, and chronostratigraphic data from a 92-m continuous surface boring, in the Main Pass area of the outer Mississippi-Alabama shelf, were used to calibrate high-resolution seismic profiles in a study of a late Pleistocene shelf-edge delta. The boring is the first of its kind through a shelf-edge clinoform wedge and the first [open quotes]ground-truth[close quotes] confirmation that the clinoforms in the study area are deltaic in origin. Chronologic control for the late Pleistocene outer shelf stratigraphy is based on the identification of Ericson Zones X, Y, and Z (alternating warm and cold water planktonic foraminifera zones) in the boring, representing at least the last 130 k.y. During sea level lowering related to the previous glacial maximum, the delta system prograded onto a carbonate-rich outer shelf and upper slope starved of terrigenous sediments. The ancestral Mobile River, possibly joined by the Pascagoula River, was the fluvial feeder of the shelf-edge delta. The upper portion of the delta wedge is extensively eroded, primarily by a broad swath of significant fluvial scour centered along the northeast- to southwest-oriented dip axis of the delta, and to a lesser extent by subsequent transgressive truncation. Fluvial scour resulted in a broad erosional trough filled with fluvial and estuarine facies. Thin estuarine and overlying marine units reflect transgression of the Lagniappe delta during the late Pleistocene-early Holocene transgression. According to standard sequence stratigraphic definitions, the extent of the sequence boundary, identified as the erosional base of the fluvial facies, places the majority of the outer shelf delta in the highstand systems tract. The portion of the delta thus categorized as highstand was built during the falling to lowstand minimum part of the relative sea level curve. 64 refs., 18 figs.

  6. Southeast Asian primate communities: the effects of ecology and Pleistocene refuges on species richness.

    PubMed

    Hassel-Finnegan, Heather; Borries, Carola; Zhao, Qing; Phiapalath, Phaivanh; Koenig, Andreas

    2013-12-01

    We examined historical and ecological factors affecting current primate biodiversity in Southeast Asia. In Africa, Madagascar and South America, but not Southeast Asia, primate species richness is positively associated with average rainfall and distance from the equator (latitude). We predicted that Southeast Asia's non-conformance may be due to the effect of dispersed Pleistocene refuges (locations of constricted tropical forests during glacial maxima which today are at least 305 m in altitude). Based on 45 forested sites (13 on large islands; 32 on the mainland) of at least 100 km(2) to minimize recent human impact, we determined correlations between extant primate species richness and rainfall, latitude and supplementary ecological variables, while controlling for refuges and islands. We found that refuge sites had significantly higher primate species richness than non-refuges (t = -2.76, P < 0.05), and distance from the nearest Pleistocene refuge was negatively correlated with species richness for non-refuge sites (r = -0.51, P < 0.05). There was no difference in species richness between sites on large islands and the mainland (t = -1.4, P = 0.16). The expected positive relationship between rainfall and species richness was not found (r = 0.17, P = 0.28). As predicted, primate species richness was negatively correlated with latitude (r = -0.39, P < 0.05) and positively correlated with mean temperature (r = 0.45, P < 0.05). General linear models indicated that a site's latitude (F1,38 = 6.18, P < 0.05) and Pleistocene refuge classification (F1,42 = 5.96, P < 0.05) were the best predictors of species richness. Both ecological and historical factors contribute to present day primate species richness in Southeast Asia, making its biodiversity less of an outlier than previously believed. PMID:24344966

  7. Geographic and temporal trends in proboscidean and human radiocarbon histories during the late Pleistocene

    NASA Astrophysics Data System (ADS)

    Ugan, Andrew; Byers, David

    2007-12-01

    The causes of large animal extinctions at the end of the Pleistocene remain a hotly debated topic focused primarily on the effects of human over hunting and climate change. Here we examine multiple, large radiocarbon data sets for humans and extinct proboscideans and explore how variation in their temporal and geographic distributions were related prior to proboscidean extinction. These data include 4532 archaeological determinations from Europe and Siberia and 1177 mammoth and mastodont determinations from Europe, Siberia, and North America. All span the period from 45,000 to 12,000 calendar years BP. We show that while the geographic ranges of dated human occupations and proboscidean remains overlap across the terminal Pleistocene of the Old World, the two groups remain largely segregated and increases in the frequency of human occupations do not coincide with declines in proboscidean remains. Prior to the Last Glacial Maximum (LGM; ca 21,000 years BP), archaeological 14C determinations increase slightly in frequency worldwide while the frequency of dated proboscidean remains varies depending on taxon and location. After the LGM, both sympatric and allopatric groups of humans and proboscideans increase sharply as climatic conditions ameliorate. Post-LGM radiocarbon frequencies among proboscideans peak at different times, also depending upon taxon and location. Woolly mammoths in Beringia reach a maximum and then decline beginning between 16,000 and 15,500 years BP, woolly mammoths in Europe and Siberia ca 14,500 and 13,500 BP, and Columbian mammoth and American mastodont only after 13,000 BP. Declines among woolly mammoths appear to coincide with the restructuring of biotic communities following the Pleistocene-Holocene transition.

  8. Prospects for Complete Middle Pleistocene Loess Records in Interior Alaska: A Role for Tephrochronology

    NASA Astrophysics Data System (ADS)

    Jensen, B. J.; Reyes, A.; Froese, D. G.

    2009-12-01

    Loess records in unglaciated Yukon and Alaska (eastern Beringia) are exceptional repositories for paleoenvironmental studies. The volcanic ash (tephra) beds found within the loess provide a means to date and correlate these deposits across this region. However, the middle Pleistocene (~780-130 ka) is poorly represented and/or has not been fully recognized at most previously examined sites. This is problematic because important events took place in the middle Pleistocene, including the transition from 40 to 100 ka interglacial-glacial cycles, the evolution and dispersion of steppe fauna, and interglacials that are thought to have been longer and warmer than the Holocene. However, studies at several sites in the interior of Alaska in recent years demonstrate that middle Pleistocene loess deposits are widespread across the interior of Alaska, some of which are relatively continuous. Here we focus on loess and tephra exposures at Gold Hill (<70 ka to ~3 Ma) near Fairbanks, the Palisades (<125 ka to >2 Ma) in west-central Alaska, and Birch Creek (<125 to >220 ka) and Chester Bluff (~70 to 780 ka) in east-central Alaska. Multiple tephra beds are present in these sections, and allow correlation of sites to one another, strengthening their respective chronologies. The tephra beds also highlight unconformities, which are common in loess deposits but often difficult to identify by lithostratigraphy alone. The improved chronologic control will allow more robust interpretation of high-resolution paleoenvironmental proxy records from these sites, including a 5-cm-resolution magnetic susceptibility profile through ~30 m of Gold Hill loess, from the ~1 Ma old AT tephra to several metres above the ~80 ka VT tephra. Dated tephra beds present in this sequence, such as GI (~560 ka), HP (~610 ka) and SP (~870 ka), provide critical chronostratigraphic control for this magnetic susceptibility record.

  9. Assessing the Pleistocene hemispheric climate links through correlating loess, marine and ice-core records

    NASA Astrophysics Data System (ADS)

    Guo, Z.

    2015-12-01

    Near continuous loess-soil records in China cover the past 22 million years. Here, we compare various independent climate proxies from the terrestrial, marine and ice-core domains to re-evaluate the regional and global significance of the China loess with special emphases to the Quaternary portion. The results confirm that the intensity of loess deposition in China is closely coupled with the northern high latitude climate from the over-orbital to millennial scales, and that loess accumulation rates (LAR) and loess particle-size reflect many features of the northern high latitude ice conditions. Consequently, correlating the loess and marine records could offer the possibility for addressing the hemispheric climate links. Our loess-marine correlations show that both records are broadly coupled during the Pleistocene. However, numerous decoupled features exist between the two records. Marine oxygen isotope record shows a general trend of increased ice-volume during the Pleistocene. This trend has no clear reflection in the loess LAR and grain-size data. A prominent change at ~ 430 ka, referred to as the Mid-Brunhes Event (MBE), is clearly documented in both marine and EPICA ice records while its reflections in loess are rather ambiguous. Both marine and EPICA data show a cooler-than-average interglacial for the marine-oxygen isotope stage 13 (MIS-13) while a series of terrestrial records show a warm-extreme interglacial for the northern hemisphere. During a number of glacial intervals, such as MIS-16, MIS 14, MIS-12 and MIS-3, interglacial-level of loess grain-size are observed while they have no obvious reflections in the marine and EPICA ice records. Based on a multi-proxy approach, we argue that these decoupled features between the loess and marine records are attributable to the asymmetrical behaviors of the Pleistocene climates between the southern and northern hemispheres.

  10. Synchronous genetic turnovers across Western Eurasia in Late Pleistocene collared lemmings.

    PubMed

    Palkopoulou, Eleftheria; Baca, Mateusz; Abramson, Natalia I; Sablin, Mikhail; Socha, Paweł; Nadachowski, Adam; Prost, Stefan; Germonpré, Mietje; Kosintsev, Pavel; Smirnov, Nickolay G; Vartanyan, Sergey; Ponomarev, Dmitry; Nyström, Johanna; Nikolskiy, Pavel; Jass, Christopher N; Litvinov, Yuriy N; Kalthoff, Daniela C; Grigoriev, Semyon; Fadeeva, Tatyana; Douka, Aikaterini; Higham, Thomas F G; Ersmark, Erik; Pitulko, Vladimir; Pavlova, Elena; Stewart, John R; Węgleński, Piotr; Stankovic, Anna; Dalén, Love

    2016-05-01

    Recent palaeogenetic studies indicate a highly dynamic history in collared lemmings (Dicrostonyx spp.), with several demographical changes linked to climatic fluctuations that took place during the last glaciation. At the western range margin of D. torquatus, these changes were characterized by a series of local extinctions and recolonizations. However, it is unclear whether this pattern represents a local phenomenon, possibly driven by ecological edge effects, or a global phenomenon that took place across large geographical scales. To address this, we explored the palaeogenetic history of the collared lemming using a next-generation sequencing approach for pooled mitochondrial DNA amplicons. Sequences were obtained from over 300 fossil remains sampled across Eurasia and two sites in North America. We identified five mitochondrial lineages of D. torquatus that succeeded each other through time across Europe and western Russia, indicating a history of repeated population extinctions and recolonizations, most likely from eastern Russia, during the last 50 000 years. The observation of repeated extinctions across such a vast geographical range indicates large-scale changes in the steppe-tundra environment in western Eurasia during the last glaciation. All Holocene samples, from across the species' entire range, belonged to only one of the five mitochondrial lineages. Thus, extant D. torquatus populations only harbour a small fraction of the total genetic diversity that existed across different stages of the Late Pleistocene. In North American samples, haplotypes belonging to both D. groenlandicus and D. richardsoni were recovered from a Late Pleistocene site in south-western Canada. This suggests that D. groenlandicus had a more southern and D. richardsoni a more northern glacial distribution than previously thought. This study provides significant insights into the population dynamics of a small mammal at a large geographical scale and reveals a rather complex

  11. Caribbean Salinity Variation During the Last Glacial Cycle

    NASA Astrophysics Data System (ADS)

    Schmidt, M. W.; Spero, H. J.; Lea, D. W.

    2003-12-01

    Evaporation exceeds precipitation in the tropical Atlantic, resulting in a net freshwater removal across the Central American Isthmus. Because most of the north Atlantic's subtropical gyre water circulates through the Caribbean before flowing north to sub-polar regions via the Gulf Stream, changes in tropical atmospheric circulation have the potential to affect the salinity and density structure of the entire north Atlantic, thereby influencing glacial-interglacial oscillations in North Atlantic Deep Water (NADW) formation. Here, we combine Mg/Ca measurements (a proxy for the temperature of calcification) and δ 18O analyses of shells from the surface-dwelling foraminifera Globigerinoides ruber s.s. (white var.) from the western Caribbean Colombian Basin at ODP Site 999A (2827m; 4cm/ka sed. rate) and VM28-122 (3623m; 4-10cm/ka sed. rate) to produce the first continuous record of western tropical Atlantic δ 18OSEAWATER (δ 18OSW) during the last 130ka. In order to generate a record for sea surface salinity (SSS) due to regional hydrological change, we removed the δ 18OSW signal due to glacial ice volume variation and normalized the residual to the modern δ 18OSW value for the Colombian Basin (0.8‰ ). The resulting ice volume-free (Δ δ 18OIVF-SW) record shows that Caribbean Δ δ 18OIVF-SW increased by ˜0.5‰ during the Last Glacial Maximum and Marine Isotope Stage 4. Using a modern western Caribbean δ 18OSW:SSS relationship, these enriched δ 18OSW values suggest glacial Caribbean salinities were 2.3 - 2.8‰ higher than modern after removing the influence of ice-volume. Our data supports the hypothesis that the tropics might have been in a state more similar to the modern El Nino mode, characterized by a more southerly position of the ITCZ, during cold phases of the last glacial cycle. Within the resolution of our Δ δ 18OIVF-SW record from VM28-122, elevated glacial Caribbean salinity decreased to modern levels at the onset of the Bolling-Allerod (B

  12. The Role of Orbital Forcing in the Early-Middle Pleistocene Transition: Continuing the Precession Verses Obliquity Debate

    NASA Astrophysics Data System (ADS)

    Maslin, M. A.; Brierley, C. M.

    2015-12-01

    The Early-Middle Pleistocene Transition (EMPT) is the term used to describe the prolongation and intensification of glacial-interglacial climate cycles that initiated after 900,000 years ago. During the transition glacial-interglacial cycles shift from lasting 41,000 years to an average of 100,000 years. The structure of these glacial-interglacial cycles shifts from smooth to more abrupt 'saw-toothed' like transitions. In fact we argue there is shift from a bimodal climate to a tripartite climate system (see Figure). Despite eccentricity having by far the weakest influence on insolation received at the Earth's surface of any of the orbital parameters; it is often assumed to be the primary driver of the post-EMPT 100,000 years climate cycles because of the similarity in duration. The traditional solution to this is to call for a highly nonlinear response by the global climate system to eccentricity. This 'eccentricity myth' is due to an artefact of spectral analysis which means that the last 8 glacial-interglacial average out at about 100,000 years in length despite ranging from 80,000 to 120,000 years. With the realisation that eccentricity is not the major driving force a debate has emerged as to whether precession or obliquity controlled the timing of the most recent glacial-interglacial cycles. Some argue that post-EMPT deglaciations occurred every four or five precessional cycle while others argue it is every second or third obliquity cycle. We review these current theories and suggest that though phase-locking between orbital forcing and global ice volume may occur and seem to primarily driven by the timing of precession; the chaotic nature of the climate system response means the relationship is not consistent through the last 900,000 years.

  13. Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint

    NASA Astrophysics Data System (ADS)

    Hemming, Sidney R.

    2004-03-01

    Millennial climate oscillations of the glacial interval are interrupted by extreme events, the so-called Heinrich events of the North Atlantic. Their near-global footprint is a testament to coherent interactions among Earth's atmosphere, oceans, and cryosphere on millennial timescales. Heinrich detritus appears to have been derived from the region around Hudson Strait. It was deposited over approximately 500 ± 250 years. Several mechanisms have been proposed for the origin of the layers: binge-purge cycle of the Laurentide ice sheet, jökulhlaup activity from a Hudson Bay lake, and an ice shelf buildup/collapse fed by Hudson Strait. To determine the origin of the Heinrich events, I recommend (1) further studies of the timing and duration of the events, (2) further sedimentology study near the Hudson Strait, and (3) greater spatial and temporal resolution studies of the layers as well as their precursory intervals. Studies of previous glacial intervals may also provide important constraints.

  14. Pleistocene paleoenvironmental reconstructions and mammalian evolution in South-East Asia: focus on fossil faunas from Thailand

    NASA Astrophysics Data System (ADS)

    Tougard, C.; Montuire, S.

    2006-01-01

    Mammalian faunal studies have provided various clues for a better reconstruction of hominid Quaternary paleoenvironments. In this work, two methods were used: (1) the cenogram method, based on a graphical representation of the mammalian community structure, and (2) the species richness of murine rodents to estimate climatic parameters. These methods were applied to Middle and Late Pleistocene mammalian faunas of South-East Asia, from South China to Indonesia. Special emphasis was laid on a fauna from north-east Thailand dated back to approximately 170,000 years (i.e. a glacial period). This Thai fauna seems characteristic of a slightly open forested environment intermediate between those of present-day central Myanmar and the northern part of South China. In the Thai fauna, the occurrence of both cool-loving mammalian taxa, currently living further north, and species of larger body size than their living counterparts, indicates cooler and probably drier climatic conditions than present-day climates in Thailand. These results are quite consistent with Middle Pleistocene palynological records from South China and eastern Java. From other less well-documented Pleistocene faunas, taken into account in this work, humid climatic conditions of interglacial periods were revealed from large mammalian taxa.

  15. Late Pleistocene age and archaeological context for the hominin calvaria from GvJm-22 (Lukenya Hill, Kenya)

    PubMed Central

    Tryon, Christian A.; Crevecoeur, Isabelle; Faith, J. Tyler; Ekshtain, Ravid; Nivens, Joelle; Patterson, David; Mbua, Emma N.; Spoor, Fred

    2015-01-01

    Kenya National Museums Lukenya Hill Hominid 1 (KNM-LH 1) is a Homo sapiens partial calvaria from site GvJm-22 at Lukenya Hill, Kenya, associated with Later Stone Age (LSA) archaeological deposits. KNM-LH 1 is securely dated to the Late Pleistocene, and samples a time and region important for understanding the origins of modern human diversity. A revised chronology based on 26 accelerator mass spectrometry radiocarbon dates on ostrich eggshells indicates an age range of 23,576–22,887 y B.P. for KNM-LH 1, confirming prior attribution to the Last Glacial Maximum. Additional dates extend the maximum age for archaeological deposits at GvJm-22 to >46,000 y B.P. (>46 kya). These dates are consistent with new analyses identifying both Middle Stone Age and LSA lithic technologies at the site, making GvJm-22 a rare eastern African record of major human behavioral shifts during the Late Pleistocene. Comparative morphometric analyses of the KNM-LH 1 cranium document the temporal and spatial complexity of early modern human morphological variability. Features of cranial shape distinguish KNM-LH 1 and other Middle and Late Pleistocene African fossils from crania of recent Africans and samples from Holocene LSA and European Upper Paleolithic sites. PMID:25730861

  16. Late Pleistocene Southeast Amazonia Paleoenvironmental reconstruction inferred by bulk, isotopic and molecular organic matter. Saci lake-Para-Brazil

    NASA Astrophysics Data System (ADS)

    Martins, G. S.; Cordeiro, R. C.; Turcq, B.; Moreira, L. S.; Bouloubassi, I.; Sifeddine, A.

    2014-12-01

    Bulk, Isotope and biolomecular analysis supported by 22 14C AMS dates, allowed the reconstruction of environmental changes during the last 35 000 years BP in the Southeast Amazonian basin. A terrestrial origin has been inferred for the odd carbon-numbered long-chain (>C27) n-alkanes. The entire n-alkane δ13C range between -31.7‰ and -36.8‰, which is the isotopic range occupied by C3 vegetation. The C29:C31 ratio shows that a gramineae contribution is higher during the Pleistocene than in Holocene. The n-alkanes concentration decrease between 32 000 - 18 000, suggesting a increase in arid conditions. The ACL index confirm this interpretation showing high values due the Pleistocene linked to more hydrological stress. A shift in the abundance of n-alkane and isotopic values are observed across the late Pleistocene glacial-Holocene interglacial climate change, suggesting a climate-induced vegetational change. During the middle Holocene the n-alcanes values decreases indicating rain forest regression accompanied by increase in the ACL values confirming the dry climate conditions. Comparison with other South American records, our record indicates regression/expansion of the rain forest linked to the South American System monsoon activity since 35 kyrs.

  17. Pliocene-Pleistocene continental deposits in western Kentucky: A new look at regional stratigraphy and depositional history

    SciTech Connect

    Phillips, B.E. )

    1992-01-01

    Pliocene and Pleistocene age sediments of the northernmost Mississippi Embayment consist of a thick sequence of continental deposits which rest unconformably on Cretaceous through Eocene strata. The continental deposits have been tentatively correlated to the Pliocene Mounds Gravel and Pleistocene Henry and Equality Formations of southern Illinois. These sediments have previously been interpreted as representing alluvial fan and fluvial deposits. The continental deposits are generally divided into three lithofacies: (1) silt/clay dominated; (2) sand dominated, and (3) gravel dominated. A subsurface study utilizing approximately 300 soil borings has shown that (1) the continental deposits, particularly the gravel facies, exhibit significant local changes in thickness, (2) the upper portion of the sequence consists predominantly of finer-grained silt/clay lithofacies, and (3) sand and gravel lithofacies within the upper sequence often occur at predictable horizons. These observations indicate a paleovalley fill with distinct depositional episodes. As a result of Pleistocene base level fluctuations, stream systems became deeply entrenched in the Pliocene alluvial fan and older sediments. Fan deposits were initially transported and redeposited in a braided fluvial system. As valley alluviation continued and gradients decreased, the braided fluvial system evolved into a meandering system. During Woodfordian time, slackwater lakes created by glacial outwash dams produced extensive lacustrine deposits. At least two major episodes of lacustrine sedimentation are apparent. Significant fluctuations of lake level are recognized in the subsurface by local erosional surfaces overlain by coarser-grained sediments deposited in basinward-migrating channel and shoreline facies.

  18. Geomorphic and sedimentary responses of the Bull Creek Valley (Southern High Plains, USA) to Pleistocene and Holocene environmental change

    NASA Astrophysics Data System (ADS)

    Arauza, Hanna M.; Simms, Alexander R.; Bement, Leland C.; Carter, Brian J.; Conley, Travis; Woldergauy, Ammanuel; Johnson, William C.; Jaiswal, Priyank

    2016-01-01

    Fluvial geomorphology and stratigraphy often reflect past environmental and climate conditions. This study examines the response of Bull Creek, a small ephemeral creek in the Oklahoma panhandle, to environmental conditions through the late Pleistocene and Holocene. Fluvial terraces were mapped and their stratigraphy and sedimentology documented throughout the course of the main valley. Based on their elevations, terraces were broadly grouped into a late-Pleistocene fill terrace (T3) and two Holocene fill-cut terrace sets (T2 and T1). Terrace systems are marked by similar stratigraphies recording the general environmental conditions of the time. Sedimentary sequences preserved in terrace fills record the transition from a perennial fluvial system during the late glacial period and the Younger Dryas to a semiarid environment dominated by loess accumulation and punctuated by flood events during the middle to late Holocene. The highest rates of aeolian accumulation within the valley occurred during the early to middle Holocene. Our data provide significant new information regarding the late-Pleistocene and Holocene environmental history for this region, located between the well-studied Southern and Central High Plains of North America.

  19. Early mixed-water dolomitization in the Pleistocene reef limestones, west coast of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Durgaprasada Rao, N. V. N.; Al-Imam, O. A. O.; Behairy, A. K. A.

    1987-07-01

    Raised Pleistocene reef limestone characterizes the western coastal plain of Jeddah on the eastern margin of the Red Sea. Soon after the Mid-Pleistocene regression, the subaerially exposed limestone was subjected to meteoric processes during which Mg-calcite was converted to stable low Mg-calcite and partial or complete dissolution of aragonite occurred at various depths. Early meteoric diagenesis through dissolution-precipitation processes had produced sparry calcite in the voids formed by the dissolution of aragonite in the limestone. Following the late Pleistocene-Holocene marine transgression, dolomitization was initiated in the reef in a meteoric-marine water mixing zone. Lack of correlation between dolomite and the evaporite minerals and the low Sr concentrations argue against hypersaline solutions as agents of dolomitization. Mineralogical and chemical data suggest that most diagenetic dolomite is formed at the expense of primary aragonite. Vertical and lateral variations in the distribution of dolomite, aragonite and calcite indicate that dolomitization processes have been affected by the fluctuating mixed-water zone associated with sea-level oscillations. Holocene rise in the sea level terminated dolomitization in the lower layers and shifted the dolomitizing front to the upper sections of the limestone. Dolomite is low in the upper horizons of the reef and occurs as scattered perfect rhombs, while in the lower layers it is fine-grained and subhedral.

  20. Orbital obliquity cycles recorded in Kuroshio Current region, eastern Asia, around Plio-Pleistocene boundary

    NASA Astrophysics Data System (ADS)

    Iwatani, Hokuto; Kondo, Yasuo; Irizuki, Toshiaki; Iwai, Masao; Ikehara, Minoru

    2016-05-01

    Global climate underwent a period of significant cooling at the Plio-Pleistocene Transition (∼2.6 Ma). The influence of this change on the Kuroshio Current region in the Pacific Ocean, off eastern Asia, is not well known. In this study, we clarify temporal changes in the paleoenvironment under the influence of the Kuroshio Current during the late Pliocene and early Pleistocene using high-resolution faunal proxy records of fossil Ostracoda (Crustacea). The study unit is the Ananai Formation in the southeastern region of Shikoku, southwest Japan. The modern analog technique (MAT) is employed for the quantitative estimation of paleo-bottom water temperatures (PBWTs) and paleo-water depth (PWD) during the deposition of the formation. Ostracode MAT results show PBWT fluctuations during warmest and coldest months, with values of 16°C-20 °C and 12°C-16 °C, respectively, and a PWD of 70-140 m, reflecting sea-level oscillations. Moreover, the PBWT in the coldest month is 3 °C-4 °C lower than present-day water temperatures at the same shallow water depths. Temporal changes in these paleoenvironmental variables based on MAT are in good agreement with global oxygen isotope records. Orbital obliquity cycles with 41-kyr periodicity are recorded for the first time in an onshore section in the Kuroshio Current region at the Plio-Pleistocene boundary interval.

  1. [Diversity of bacterial forms in ice wedge of the Mamontova Gora Glacial complex (central Yakutiya)].

    PubMed

    Filippova, S N; Surgucheva, N A; Sorokin, V V; Cherbunina, M Iu; Karnysheva, E A; Brushkov, A V; Gal'chenko, V F

    2014-01-01

    Electron microscopic investigation of four samples of ancient ice wedge from the Pleistocene glacial complex of Mamontova Gora (Yakutiya, Russia) revealed high diversity of bacteriomorphic particles. Their structural features included the presence of electron-transparent zones, presumably inclusions containing storage compounds, and microenvironment (capsules or external sheaths). These features may be a result of adaptive strategies providing for microbial survival under permafrost conditions. Predominance of rod-shaped forms morphologically resembling coryneform actinobacteria was found. X-ray microanalysis revealed organic origin of bacteriomorphic particles. Some particles were characterized by incomplete spectra of the major biogenic elements, resulting probably from low-temperature damage to the cellular structures. Total numbers of aerobic heterotrophic bacteria determined by plating on nutrient media were comparable to the values obtained for permafrost soils and Arctic ice. Predominance of coryneform actinobacteria was observed. Abundance of these evolutionarily early groups of actinobacteria may indicate the ancient origin of the microflora of the relic frozen rocks. PMID:25423726

  2. Periodic floods from glacial Lake Missoula into the Sanpoil arm of glacial Lake Columbia, northeastern Washington.

    USGS Publications Warehouse

    Atwater, B.F.

    1984-01-01

    At least 15 floods ascended the Sanpoil arm of glacial Lake Columbia during a single glaciation. Varves between 14 of the flood beds indicate one backflooding every 35 to 55 yr. This regularity suggests that the floods came from an ice-dammed lake that was self-dumping, probably glacial Lake Missoula, Montana. -from Author

  3. What Controls the Pacing of 100-ky Glacial Cycles?

    NASA Astrophysics Data System (ADS)

    Raymo, M. E.; Kawamura, K.; Lisiecki, L.; Thompson, W. G.; Severinghaus, J. P.

    2006-12-01

    level) owing to the high accuracy of the chronologies. Our results are consistent with the hypothesis that high northern latitude summer insolation is the primary pacemaker of the late Pleistocene glacial cycles.

  4. Color characteristics of Chinese loess and its paleoclimatic significance during the last glacial-interglacial cycle

    NASA Astrophysics Data System (ADS)

    Wang, Qiansuo; Song, Yougui; Zhao, Zhijun; Li, Jijun

    2016-02-01

    The soil color is widely used in paleoclimate and paleoenvironment reconstructions in the Chinese Loess Plateau. To better understand the color spatial changes during the glacial-interglacial cycle, the soil color lightness (L*), characteristic spectra, magnetic susceptibilities and mean grain sizes of three loess-paleosol sequences were compared. Results showed that high L* and low hematite to goethite ratios (Hm/Gt) appeared in loess units, and low L* and high Hm/Gt ratios accompanied paleosol layers, indicating glacial-interglacial hydrothermal oscillation. L* in the Yulin section was higher than in the Chaona and Lihuacun sections, indicating that different precipitations have great effect on L*. Furthermore, Hm/Gt, magnetic susceptibility (χlf), and mean grain size are correlated closely with L*. L* and Hm/Gt not only document climatic variations in the glacial-interglacial cycle vis-à-vis loess-paleosol sequences, but also can identify Heinrich cold events and millennial scale Dansgaard-Oeschger (D-O) warm events. It suggests that soil color responds sensitively to global climate change driven by ice volumes. L* and Hm/Gt curves exhibit higher frequencies and larger amplitudes than magnetic susceptibility (χlf) curves, indicating that L* and Hm/Gt can be regarded as sensitive and reliable proxies for characterizing high-resolution climate change during the last glacial-interglacial cycle.

  5. New evidence for mid-Pliocene-early Pleistocene glaciation in the northern Patagonian Andes Argentina

    SciTech Connect

    Stephens, G.C.; Evenson, E.B.; Rabassa, J.

    1985-01-01

    Mount Tronador is an extinct, glacially eroded strato-volcano located in the northern Patagonian Andes. With a summit elevation of 3556 m, Mount Tronador lies mostly above the present regional snowline (2000 m) and is largely covered by extensive snow fields and glaciers. The rocks of Mount Tronador comprise the Tronador Formation, a 2000 m thick sequence of interlayered basalts, andesites, ignimbrites, agglomerates, volcanic mudflows and lahars. This volcanic edifice is built on an erosional land surface of Tertiary age. Three K-Ar dates from the Tronador Formation yield radiometric ages of 3.2, 0.34 and 0.18 m.y. Striated clasts have been found included in several large glacial boulders derived from volcanic mudflows and lahars of the Tronador Fm. These boulders have been eroded by the Rio Manso Glacier and deposited in its Neoglacial moraines. The lahar boulders themselves contain pebbles and boulders of andesitic rocks in a vitroclastic matrix of pyroclastic origin. The striated clasts are well-rounded, shaped and polished, and the striations can be traced beneath the volcanic matrix. Thus these striated clasts represent a pre-Holocene cycle of glaciation. Mercer (1976) and Ciesielski (1982) document glaciations from southern Patagonia (2.1-3.5 m.y.) and from the southwestern Atlantic (2.1-3.9 m.y.) respectively. The discovery of striated clasts in lahars and mudflows of the Tronador Fm. indicates the existence of a heretofore undocumented Pliocene-Pleistocene glaciation in northern Patagonia.

  6. Rapid thinning of the late Pleistocene Patagonian Ice Sheet followed migration of the Southern Westerlies

    PubMed Central

    Boex, J.; Fogwill, C.; Harrison, S.; Glasser, N. F.; Hein, A.; Schnabel, C.; Xu, S.

    2013-01-01

    Here we present the first reconstruction of vertical ice-sheet profile changes from any of the Southern Hemisphere's mid-latitude Pleistocene ice sheets. We use cosmogenic radio-nuclide (CRN) exposure analysis to record the decay of the former Patagonian Ice Sheet (PIS) from the Last Glacial Maximum (LGM) and into the late glacial. Our samples, from mountains along an east-west transect to the east of the present North Patagonian Icefield (NPI), serve as ‘dipsticks' that allow us to reconstruct past changes in ice-sheet thickness, and demonstrates that the former PIS remained extensive and close to its LGM extent in this region until ~19.0 ka. After this time rapid ice-sheet thinning, initiated at ~18.1 ka, saw ice at or near its present dimension by 15.5 ka. We argue this rapid thinning was triggered by a combination of the rapid southward migration of the precipitation bearing Southern Hemisphere (SH) westerlies and regional warming. PMID:23817136

  7. The Pleistocene archaeology and environments of the Wasiriya Beds, Rusinga Island, Kenya.

    PubMed

    Tryon, Christian A; Tyler Faith, J; Peppe, Daniel J; Fox, David L; McNulty, Kieran P; Jenkins, Kirsten; Dunsworth, Holly; Harcourt-Smith, Will

    2010-12-01

    Western Kenya is well known for abundant early Miocene hominoid fossils. However, the Wasiriya Beds of Rusinga Island, Kenya, preserve a Pleistocene sedimentary archive with radiocarbon age estimates of >33-45 ka that contains Middle Stone Age artifacts and abundant, well-preserved fossil fauna: a co-occurrence rare in eastern Africa, particularly in the region bounding Lake Victoria. Artifacts and fossils are associated with distal volcanic ash deposits that occur at multiple localities in the Wasiriya Beds, correlated on the basis of geochemical composition as determined by electron probe microanalysis. Sediment lithology and the fossil ungulates suggest a local fluvial system and associated riparian wooded habitat within a predominantly arid grassland setting that differs substantially from the modern environment, where local climate is strongly affected by moisture availability from Lake Victoria. In particular, the presence of oryx (Oryx gazella) and Grevy's zebra (Equus grevyi) suggest a pre-Last Glacial Maximum expansion of arid grasslands, an environmental reconstruction further supported by the presence of several extinct specialized grazers (Pelorovis antiquus, Megalotragus sp., and a small alcelaphine) that are unknown from Holocene deposits in eastern Africa. The combination of artifacts, a rich fossil fauna, and volcaniclastic sediments makes the Wasiriya Beds a key site for examining the Lake Victoria basin, a biogeographically important area for understanding the diversification and dispersal of Homo sapiens from Africa, whose pre-Last Glacial Maximum history remains poorly understood. PMID:20880570

  8. Parallel responses of bees to Pleistocene climate change in three isolated archipelagos of the southwestern Pacific

    PubMed Central

    Groom, Scott V. C.; Stevens, Mark I.; Schwarz, Michael P.

    2014-01-01

    The impacts of glacial cycles on the geographical distribution and size of populations have been explored for numerous terrestrial and marine taxa. However, most studies have focused on high latitudes, with only a few focused on the response of biota to the last glacial maximum (LGM) in equatorial regions. Here, we examine how population sizes of key bee fauna in the southwest Pacific archipelagos of Fiji, Vanuatu and Samoa have fluctuated over the Quaternary. We show that all three island faunas suffered massive population declines, roughly corresponding in time to the LGM, followed by rapid expansion post-LGM. Our data therefore suggest that Pleistocene climate change has had major impacts across a very broad tropical region. While other studies indicate widespread Holarctic effects of the LGM, our data suggest a much wider range of latitudes, extending to the tropics, where these climate change repercussions were important. As key pollinators, the inferred changes in these bee faunas may have been critical in the development of the diverse Pacific island flora. The magnitude of these responses indicates future climate change scenarios may have alarming consequences for Pacific island systems involving pollinator-dependent plant communities and agricultural crops. PMID:24807250

  9. Isotopic composition of old ground water from Lake Agassiz: Implications for late Pleistocene climate

    SciTech Connect

    Remenda, V.H.; Cherry, J.A.; Edwards, T.W.D. )

    1994-12-23

    A uniform oxygen isotope value of -25 per mil was obtained from old ground water at depths of 20 to 30 meters in a thick deposit of clay in the southern part of the glacial Lake Agassiz basin. The lake occupied parts of North Dakota and southern Manitoba at the end of the last glacial maximum and received water from the ice margin and the interior plains region of Canada. Ground water from thick late Pleistocene-age clay deposits elsewhere, a till in southern Saskatchewan, and a glaciolacustrine deposit in northern Ontario show the same value at similar depths. These sites are at about 50[degrees]N latitude, span a distance of 2000 kilometers, and like the Lake Agassiz sites, have a ground-water velocity of less than a few millimeters per year. The value of -25 per mil is characteristic of meltwater impounded in the southern basin of Lake Agassiz. This value corresponds to an estimated air temperature of -16[degrees]C, compared with the modern temperature of 0[degrees]C for this area. 15 refs., 5 figs.

  10. Late Pleistocene deglaciation in the upper Gállego Valley, central Pyrenees

    NASA Astrophysics Data System (ADS)

    Palacios, David; de Andrés, Nuria; López-Moreno, Juan I.; García-Ruiz, José M.

    2015-05-01

    Deglaciation processes in the upper Gállego Valley, central-southern Pyrenees, were studied using geomorphological mapping and 36Cl cosmogenic dating of moraine and rock glacier boulders, as well as polished bedrock. Although the precise position of the Gállego Glacier during the global last glacial maximum is not known, there is evidence that ice tongues retreated to the headwaters, which caused subdivision of the main glacier into a number of individual glaciers prior to 17 ka. A range of ages (16 to 11 ka) was found among three tributary valleys within the general trend of deglaciation. The retreat rate to cirque was estimated to be relatively rapid (approximately 5 km per ka). The mapped glacial sedimentology and geomorphology appears to support the occurrence of multiple minor advances and retreats, or periods of stasis during the late deglaciation. Geomorphological and geological differences among the tributary valleys, and error estimates associated with the results obtained, prevented unambiguous correlations of the advances with the late Pleistocene cold periods. During the latter advances, small glaciers and rock glaciers developed close to the cirque headwalls, and co-occurred under the same climatic conditions. No evidence for Holocene re-advance was found for any of the three tributary valleys.

  11. Parallel responses of bees to Pleistocene climate change in three isolated archipelagos of the southwestern Pacific.

    PubMed

    Groom, Scott V C; Stevens, Mark I; Schwarz, Michael P

    2014-06-22

    The impacts of glacial cycles on the geographical distribution and size of populations have been explored for numerous terrestrial and marine taxa. However, most studies have focused on high latitudes, with only a few focused on the response of biota to the last glacial maximum (LGM) in equatorial regions. Here, we examine how population sizes of key bee fauna in the southwest Pacific archipelagos of Fiji, Vanuatu and Samoa have fluctuated over the Quaternary. We show that all three island faunas suffered massive population declines, roughly corresponding in time to the LGM, followed by rapid expansion post-LGM. Our data therefore suggest that Pleistocene climate change has had major impacts across a very broad tropical region. While other studies indicate widespread Holarctic effects of the LGM, our data suggest a much wider range of latitudes, extending to the tropics, where these climate change repercussions were important. As key pollinators, the inferred changes in these bee faunas may have been critical in the development of the diverse Pacific island flora. The magnitude of these responses indicates future climate change scenarios may have alarming consequences for Pacific island systems involving pollinator-dependent plant communities and agricultural crops. PMID:24807250

  12. Spawning sockeye salmon fossils in Pleistocene lake beds of Skokomish Valley, Washington

    NASA Astrophysics Data System (ADS)

    Smith, Gerald R.; Montgomery, David R.; Peterson, N. Phil; Crowley, Bruce

    2007-09-01

    An assemblage of fossil sockeye salmon was discovered in Pleistocene lake sediments along the South Fork Skokomish River, Olympic Peninsula, Washington. The fossils were abundant near the head of a former glacial lake at 115 m elevation. Large adult salmon are concentrated in a sequence of death assemblages that include individuals with enlarged breeding teeth and worn caudal fins indicating migration, nest digging, and spawning prior to death. The specimens were 4 yr old and 45-70 cm in total length, similar in size to modern sockeye salmon, not landlocked kokanee. The fossils possess most of the characteristics of sockeye salmon, Oncorhynchus nerka, but with several minor traits suggestive of pink salmon, O. gorbuscha. This suggests the degree of divergence of these species at about 1 million yr ago, when geological evidence indicates the salmon were deposited at the head of a proglacial lake impounded by the Salmon Springs advance of the Puget lobe ice sheet. Surficial geology and topography record a complicated history of glacial damming and river diversion that implies incision of the modern gorge of the South Fork Skokomish River after deposition of the fossil-bearing sediments.

  13. Missing the forests for the trees: classical Pleistocene multiproxy records versus new geochemical tracers

    NASA Astrophysics Data System (ADS)

    Mudie, P.; Aksu, A. E.; McCarthy, F. M.; Rashid, H.

    2009-12-01

    We present traditional paleoceanographic records from five DSDP/ODP cores ranging from 58.1N (Site 646), off W. Greenland to 41.5N (Site 607)on the Mid Atlantic Ridge, MAR(Fig. 1). The suite of proxies includes: grain size, clay mineral abundance, IRD and its source rock palynomorphs; foraminifera & their stable isotopes, SSTs and SSTw, coccoliths, dinocyst assemblages, SST and PP, and pollen markers of terrigenous carbon influx. Inter-site comparison shows major latitudinal shifts in intensity of glacial cooling cycles beginning in the Mid-Pleistocene (MIS 13-11), accompanied by floral and faunal re-organizations, shifts in carbon production and burial, and IRD sources. This reorganization clearly correlates with long-term shifts in Milankovitch orbital parameters. We compare these results with three sites where new proxies were used to reinterpret paleoceanography for the last 4 glacial cycles: Grand Banks site CH69-K09 (near site HU89-007-3) and MAR sites CHN82-2040 and IODP U1313 (re-occupation of DSDP site 607). New Fe and Ti markers of sediment remobilization confirm and refine our traditional palynological data. However, new interpretations of warmest and coldest conditions based on Mg/Ca-SSTs need to be re-evaluated against the old foraminifera-based SSTs from northern sites closer to icesheet margins, and in the context of updated, more precise surface current data.

  14. Multiple evolutionary units and demographic stability during the last glacial maximum in the Scytalopus speluncae complex (Aves: Rhinocryptidae).

    PubMed

    Pulido-Santacruz, Paola; Bornschein, Marcos Ricardo; Belmonte-Lopes, Ricardo; Bonatto, Sandro L

    2016-09-01

    The Atlantic Forest (AF) of South America harbors one of the world's highest bird species richness, but to date there is a deficient understanding of the spatial patterns of genetic diversity and the evolutionary history of this biome. Here we estimated the phylogenetic and populational history of the widespread Mouse-colored Tapaculo (Scytalopus speluncae) complex across the Brazilian AF, using data from two mitochondrial genes and 12 microsatellite loci. Both markers uncovered several cryptic, mostly allopatric and well-supported lineages that may represent distinct species-level taxa. We investigated whether diversification in S. speluncae is compatible with the Carnaval-Moritz model of Pleistocene refugia. We found that northern lineages have high levels of genetic diversity, agreeing with predictions of more stable forest refugia in these areas. In contrast, southern lineages have lower levels of mtDNA diversity with a signature of population expansion that occurred earlier (∼0.2Mya) than the last glacial maximum. This result suggests that the AF may be stable enough to maintain endemic taxa through glacial cycles. Moreover, we propose that the "mid-Pleistocene climate transition" between 1.2 and 0.7million years ago, from a warmer to a colder climate, may have played an important but mostly overlooked role in the evolution of AF montane taxa. PMID:27233438