Science.gov

Sample records for plume composition control

  1. Environmental controls on phytoplankton community composition in the Thames plume, U.K.

    NASA Astrophysics Data System (ADS)

    Weston, Keith; Greenwood, Naomi; Fernand, Liam; Pearce, David J.; Sivyer, David B.

    2008-11-01

    The aim of this study was to investigate controls on the phytoplankton community composition and biogeochemistry of the estuarine plume zone of the River Thames, U.K. using an instrumented moored buoy for in situ measurements and preserved sample collection, and laboratory-based measurements from samples collected at the same site. Instrumentation on the moored buoy enabled high frequency measurements of a suite of environmental variables including in situ chlorophyll, water-column integrated irradiance, macronutrients throughout an annual cycle for 2001 e.g. nitrate and silicate, and phytoplankton biomass and species composition. The Thames plume region acts as a conduit for fluvial nutrients into the wider southern North Sea with typical winter concentrations of 45 μM nitrate, 17 μM silicate and 2 μM phosphate measured. The spring bloom resulted from water-column integrated irradiance increasing above 60 W h m - 2 d - 1 and was initially dominated by a diatom bloom mainly composed of Nitzschia sp. and Odontella sinesis. The spring bloom then switched after ˜ 30 days to become dominated by the flagellate Phaeocystis reaching a maximum chlorophyll concentration of 37.8 μg L - 1 . During the spring bloom there were high numbers of the heterotrophic dinoflagellates Gyrodinium spirale and Katodinium glaucum that potentially grazed the phytoplankton bloom. This diatom-flagellate switch was predicted to be due to a combination of further increasing water-column integrated irradiance > 100 W h m - 2 d - 1 and/or silicate reaching potentially limiting concentrations (< 1 μM). Post spring bloom, diatom dominance of the lower continuous summer phytoplankton biomass occurred despite the low silicate concentrations (Av. 0.7 μM from June-August). Summer diatom dominance, generally due to Guinardia delicatula, was expected to be as a result of microzooplankton grazing, dominated by the heterotrophic dinoflagellate Noctiluca scintillans, controlling 0.7-5.0

  2. CHLORINATED SOLVENT PLUME CONTROL

    EPA Science Inventory

    This lecture will cover recent success in controlling and assessing the treatment of shallow ground water plumes of chlorinated solvents, other halogenated organic compounds, and methyl tert-butyl ether (MTBE).

  3. Compositional differentiation of Enceladus' plume

    NASA Astrophysics Data System (ADS)

    Khawaja, N.; Postberg, F.; Schmidt, J.

    2014-04-01

    The Cosmic Dust Analyser (CDA) on board the Cassini spacecraft sampled Enceladus' plume ice particles emanated directly from Enceladus' fractured south polar terrain (SPT), the so-called "Tiger Stripes", during two consecutive flybys (E17 and E18) in 2012. The spacecraft passed through the dense plume with a moderate velocity of ~7.5km/s, horizontally to the SPT with a closest approach (CA) at an altitude of ~75km almost directly over the south pole. In both flybys, spectra were recorded during a time interval of ~ ±3 minutes with respect to the closest approach achieving an average sampling rate of about 0.6 sec-1. We assume that the spacecraft passed through the plume during an interval of about ±60(sec) from the CA. Particles encountered before and after this period are predominately from the E-ring background in which Enceladus is embedded. Most CDA TOF-mass spectra are identified as one of three compositional types: (i) almost pure water (ii) organic rich and (iii) salt rich [2]. A Boxcar Analysis (BCA) is performed from a count database for compositional mapping of the plume along the space-craft trajectory. In BCA, counts of each spectrum type are integrated for a certain interval of time (box size). The integral of counts represents frequencies of compositional types in absolute abundances, which are converted later into proportions. This technique has been proven to be a suitable for inferring the compositional profiles from an earlier flyby (E5) [1]. The inferred compositional profiles show similar trends on E17 and E18. The abundances of different compositional types in the plume clearly differ from the Ering background and imply a compositional differentiation inside the plume. Following up the work of Schmidt et al, 2008 and Postberg et al, 2011 we can link different compositional types to different origins. The E17/E18 results are compared with the E5 flyby in 2008, which yielded the currently best compositional profile [2] but was executed at much

  4. Deposition and composition-control of Mn-doped ZnO thin films by combinatorial pulsed laser deposition using two delayed plasma plumes

    SciTech Connect

    Sanchez-Ake, C.; Camacho, R.; Moreno, L.

    2012-08-15

    Thin films of ZnO doped with manganese were deposited by double-beam, combinatorial pulsed laser deposition. The laser-induced plasmas were studied by means of fast photography and using a Langmuir probe, whereas the films were analyzed by x-ray-diffraction and energy-dispersive x-ray spectroscopy. The effect of the relative delay between plasma plumes on the characteristics of the films was analyzed. It was found that using this parameter, it is possible to control the dopant content keeping the oriented wurtzite structure of the films. The minimum content of Mn was found for plume delays between 0 and 10 {mu}s as the interaction between plasmas scatters the dopant species away from the substrate, thus reducing the incorporation of Mn into the films. Results suggest that for delays shorter than {approx}100 {mu}s, the expansion of the second plume through the region behind the first plume affects the composition of the film.

  5. The composition of mantle plumes and the deep Earth

    NASA Astrophysics Data System (ADS)

    Hastie, Alan R.; Fitton, J. Godfrey; Kerr, Andrew C.; McDonald, Iain; Schwindrofska, Antje; Hoernle, Kaj

    2016-06-01

    Determining the composition and geochemical diversity of Earth's deep mantle and subsequent ascending mantle plumes is vital so that we can better understand how the Earth's primitive mantle reservoirs initially formed and how they have evolved over the last 4.6 billion years. Further data on the composition of mantle plumes, which generate voluminous eruptions on the planet's surface, are also essential to fully understand the evolution of the Earth's hydrosphere and atmosphere with links to surface environmental changes that may have led to mass extinction events. Here we present new major and trace element and Sr-Nd-Pb-Hf isotope data on basalts from Curacao, part of the Caribbean large igneous province. From these and literature data, we calculate combined major and trace element compositions for the mantle plumes that generated the Caribbean and Ontong Java large igneous provinces and use mass balance to determine the composition of the Earth's lower mantle. Incompatible element and isotope results indicate that mantle plumes have broadly distinctive depleted and enriched compositions that, in addition to the numerous mantle reservoirs already proposed in the literature, represent large planetary-scale geochemical heterogeneity in the Earth's deep mantle that are similar to non-chondritic Bulk Silicate Earth compositions.

  6. The interaction of plume heads with compositional discontinuities in the Earth's mantle

    NASA Technical Reports Server (NTRS)

    Manga, Michael; Stone, Howard A.; O'Connell, Richard J.

    1993-01-01

    The effects of compositional discontinuities of density and viscosity in the Earth's mantle on the ascent of mantle plume heads is studied using a boundary integral numerical technique. Three specific problems are considered: (1) a plume head rising away from a deformable interface, (2) a plume head passing through an interface, and (3) a plume head approaching the surface of the Earth. For the case of a plume attached to a free-surface, the calculated time-dependent plume shapesare compared with experimental results. Two principle modes of plume head deformation are observed: plume head elingation or the formation of a cavity inside the plume head. The inferred structure of mantle plumes, namely, a large plume head with a long tail, is characteristic of plumes attached to their source region, and also of buoyant material moving away from an interface and of buoyant material moving through an interface from a high- to low-viscosity region. As a rising plume head approaches the upper mantle, most of the lower mantle will quickly drain from the gap between the plume head and the upper mantle if the plume head enters the upper mantle. If the plume head moves from a high- to low-viscosity region, the plume head becomes significantly elongated and, for the viscosity contrasts thought to exist in the Earth, could extend from the 670 km discontinuity to the surface. Plume heads that are extended owing to a viscosity decrease in the upper mantle have a cylindrical geometry. The dynamic surface topography induced by plume heads is bell-shaped when the top of the plume head is at depths greater than about 0.1 plume head radii. As the plume head approaches the surface and spreads, the dynamic topography becomes plateau-shaped. The largest stresses are produced in the early stages of plume spreading when the plume head is still nearly spherical, and the surface expression of these stresses is likely to be dominated by radial extension. As the plume spreads, compressional

  7. Biodegradation at Dynamic Plume Fringes: Mixing Versus Reaction Control

    NASA Astrophysics Data System (ADS)

    Cirpka, O. A.; Eckert, D.; Griebler, C.; Haberer, C.; Kürzinger, P.; Bauer, R.; Mellage, A.

    2014-12-01

    Biodegradation of continuously emitted plumes is known to be most pronounced at the plume fringe, where mixing of contaminated water and ambient groundwater, containing dissolved electron acceptors, stimulates microbial activity. Under steady-state conditions, physical mixing of contaminant and electron acceptor by transverse dispersion was shown to be the major bottleneck for biodegradation, with plume lengths scaling inversely with the bulk transverse dispersivity in quasi two-dimensional settings. Under these conditions, the presence of suitable microbes is essential but the biokinetic parameters do not play an important role. When the location of the plume shifts (caused, e.g., by a fluctuating groundwater table), however, the bacteria are no more situated at the plume fringe and biomass growth, decay, activation and deactivation determine the time lag until the fringe-controlled steady state is approached again. During this time lag, degradation is incomplete. The objective of the presented study was to analyze to which extent flow and transport dynamics diminish effectiveness of fringe-controlled biodegradation and which microbial processes and related biokinetic parameters determine the system response in overall degradation to hydraulic fluctuations. We performed experiments in quasi-two-dimensional flow through microcosms on aerobic toluene degradation by Pseudomonas putida F1. Plume dynamics were simulated by vertical alteration of the toluene plume position and experimental results were analyzed by reactive-transport modeling. We found that, even after disappearance of the toluene plume for two weeks, the majority of microorganisms stayed attached to the sediment and regained their full biodegradation potential within two days after reappearance of the toluene plume. Our results underline that besides microbial growth and maintenance (often subsumed as "biomass decay") microbial dormancy (that is, change into a metabolically inactive state) and

  8. Plume and plate controlled hotspot trails in the South Atlantic

    NASA Astrophysics Data System (ADS)

    O'Connor, John; Jokat, Wilfried; le Roex, Anton; Class, Cornelia; Wijbrans, Jan; Keßling, Stefanie; Kuiper, Klaudia; Nebel, Oliver

    2013-04-01

    Discovering if hotspots observed on the Earth's surface are explained by underlying plumes rising from the deep mantle or by shallow plate-driven processes continues to be an essential goal in Earth Science. Key evidence underpinning the mantle plume concept is the existence of age-progressive volcanic trails recording past plate motion relative to surface hotspots and their causal plumes. Using the icebreaker RV Polarstern, we sampled scattered hotspot trails on the 2,000 km-wide southeast Atlantic hotspot swell, which projects down to one of the Earth's two largest and deepest regions of slower-than-average seismic wave speed - the Africa Low Shear Wave Velocity Province - caused by a massive thermo-chemical 'pile' on the core-mantle boundary. We showed recently using Ar/Ar isotopic ages - and crustal structure and seafloor ages - that these hotspot trails are age progressive and formed synchronously across the swell, consistent with African plate motion over plumes rising from the stable edge of a Low Shear Wave Velocity Province (LLSVP) (O'Connor et al., 2012). We showed furthermore that hotspot trails formed initially only at spreading boundaries at the outer edges of the swell until roughly 44 million years ago, when they started forming across the swell, far from spreading boundaries in lithosphere that was sufficiently weak (young) for plume melts to reach the surface. We concluded that if plume melts formed synchronous age progressive hotspot trails whenever they could penetrate the lithosphere, then hotspot trails in the South Atlantic are controlled by the interplay between deep plumes and the shallow motion and structure of the African plate. If the distribution of hotspot trails reflects where plume melts could or could not penetrate the continental or oceanic lithosphere then plumes could have been active for significantly longer than indicated by their volcanic chains. This provides a mechanism for extended late stage interplay between deep mantle

  9. Controlling plume deflection by acoustic excitation - An experimental demonstration

    NASA Astrophysics Data System (ADS)

    Ahuja, K. K.

    1990-10-01

    Effect of imposing an external sound field on a Coanda jet was investigated experimentally. It was found that the exhaust angle of a Coanda plume can be varied by changing the level of excitation. Limited experiments were also performed in a wind tunnel to study the effects of flight simulation on plume deflection controllability by sound using a hollow airfoil fitted with a Coanda jet. Pressure coefficients are measured over this airfoil with and without acoustic excitation of the Coanda Jet. This exploratory study provided a number of new ideas for future work for controlling flow over curved surfaces.

  10. A new technique to estimate volcanic gas composition: plume measurements with a portable multi-sensor system

    NASA Astrophysics Data System (ADS)

    Shinohara, Hiroshi

    2005-05-01

    A portable multi-sensor system was developed to measure volcanic plumes in order to estimate the chemical composition and temperature of volcanic gases. The multi-sensor system consists of a humidity-temperature sensor, SO 2 electrochemical sensor, CO 2 IR analyzer, pump and flow control units, pressure sensor, data logger, and batteries; the whole system is light (˜5 kg) and small enough to carry in a medium-size backpack. Volcanic plume is a mixture of atmosphere and volcanic gas; therefore volcanic gas composition and temperature can be estimated by subtracting the atmospheric gas background from the plume data. In order to obtain the contrasting data of the plume and the atmosphere, measurements were repeated in and out of the plume. The multi-sensor technique was applied to measure the plume of Tarumae, Tokachi, and Meakan volcanoes, Hokkaido, Japan. Repeated measurements at each volcano gave a consistent composition with ±10-30% errors, depending on the stability of the background atmospheric conditions. Fumarolic gas samples were also collected at the Tokachi volcano by a conventional method, and we found a good agreement (the difference <10%) between the composition estimated by the multi-sensor technique and conventional method. Those results demonstrated that concentration ratios of major volcanic gas species (i.e., H 2O, CO 2, and SO 2) and temperature can be estimated by the new technique without any complicated chemical analyses even for gases emitted from an inaccessible open vent. Estimation of a more detailed gas composition can be also achieved by the combination of alkaline filter techniques to measure Cl/F/S ratios in the plume and other sensors for H 2S and H 2.

  11. The He isotope composition of the earliest picrites erupted by the Ethiopia plume, implications for mantle plume source

    NASA Astrophysics Data System (ADS)

    Stuart, Finlay; Rogers, Nick; Davies, Marc

    2016-04-01

    The earliest basalts erupted by mantle plumes are Mg-rich, and typically derived from mantle with higher potential temperature than those derived from the convecting upper mantle at mid-ocean ridges and ocean islands. The chemistry and isotopic composition of picrites from CFB provide constraints on the composition of deep Earth and thus the origin and differentiation history. We report new He-Sr-Nd-Pb isotopic composition of the picrites from the Ethiopian flood basalt province from the Dilb (Chinese Road) section. They are characterized by high Fe and Ti contents for MgO = 10-22 wt. % implying that the parent magma was derived from a high temperature low melt fraction, most probably from the Afar plume head. The picrite 3He/4He does not exceed 21 Ra, and there is a negative correlation with MgO, the highest 3He/4He corresponding to MgO = 15.4 wt. %. Age-corrected 87Sr/86Sr (0.70392-0.70408) and 143Nd/144Nd (0.512912-0.512987) display little variation and are distinct from MORB and OIB. Age-corrected Pb isotopes display a significant range (e.g. 206Pb/204Pb = 18.70-19.04) and plot above the NHRL. These values contrast with estimates of the modern Afar mantle plume which has lower 3He/4He and Sr, Nd and Pb isotope ratios that are more comparable with typical OIB. These results imply either interaction between melts derived from the Afar mantle plume and a lithospheric component, or that the original Afar mantle plume had a rather unique radiogenic isotope composition. Regardless of the details of the origins of this unusual signal, our observations place a minimum 3He/4He value of 21 Ra for the Afar mantle plume, significantly greater than the present day value of 16 Ra, implying a significant reduction over 30 Myr. In addition the Afar source was less degassed than convecting mantle but more degassed than mantle sampled by the proto-Iceland plume (3He/4He ~50 Ra). This suggests that the largest mantle plumes are not sourced in a single deep mantle domain with a

  12. Plume composition and volatile flux from Nyamulagira volcano

    NASA Astrophysics Data System (ADS)

    Calabrese, Sergio; Bobrowski, Nicole; Giuffrida, Giovanni Bruno; Scaglione, Sarah; Liotta, Marcello; Brusca, Lorenzo; D'Alessandro, Walter; Arellano, Santiago; Yalire, Matiew; Galle, Bo; Tedesco, Dario

    2015-04-01

    Nyamulagira, in the Virunga volcanic province (VVP), Democratic Republic of Congo, is one of the most active volcanoes in Africa. The volcano is located about 25 km north-northwest of Lake Kivu in the Western Branch of the East African Rift System (EARS). The activity is characterized by frequent eruptions (on average, one eruption every 2-4 years) which occur both from the summit crater and from the flanks (31 flank eruptions over the last 110 years). Due to the peculiar low viscosity of its lava and its location in the floor of the rift, Nyamulagira morphology is characterized by a wide lava field that covers over 1100 km2 and contains more than 100 flank cones. Indeed, Nyamulagira is a SiO2- undersaturated and alkali-rich basaltic shield volcano with a 3058 m high summit caldera with an extension of about 2 km in diameter. In November 2014 a field expedition was carried out at Nyamulagira volcano and we report here the first assessment of the plume composition and volatile flux from Nyamulagira volcano. Helicopter flights and field observations allowed us to recognize the presence of lava fountains inside an about 350-meter wide pit crater. The lava fountains originated from an extended area of about 20 to 40 m2, in the northeast sector of the central caldera. A second smaller source, close to the previous described one, was clearly visible with vigorous spattering activity. There was no evidence of a lave lake but the persistence of intense activity and the geometry of the bottom of the caldera might evolve in a new lava lake. Using a variety of in situ and remote sensing techniques, we determined the bulk plume concentrations of major volatiles, halogens and trace elements. We deployed a portable MultiGAS station at the rim of Nyamulagira crater, measuring (at 0.5 Hz for about 3 hours) the concentrations of major volcanogenic gas species in the plume (H2O, CO2, SO2, H2S). Simultaneously, scanning differential optical absorption spectroscopy instruments were

  13. Upstream versus downstream control of meltwater plumes under ice shelves

    NASA Astrophysics Data System (ADS)

    Wells, Andrew

    2013-11-01

    In many locations the Greenland and Antarctic ice sheets discharge into the ocean through ice shelves floating on top of a warm salty ocean. The turbulent buoyancy-driven flow of meltwater beneath the sloping ice-shelf base enhances heat transfer and provides a feedback on ice melting rates, with consequences for ice sheet dynamics and predictions of sea-level rise. Previous steady-state models of meltwater plumes under ice shelves have solved for the development of flow along the slope from an initial source, corresponding to solely upstream control of the plume dynamics. I re-interpret the plume dynamics embedded within the framework of a time-dependent model, and show that the flow exhibits distinct regimes depending on the source conditions. Solutions with upstream control are physically consistent for certain source conditions, but the plume is influenced by a combination of upstream and downstream conditions in other regions of parameter space. The dynamics are illustrated for flow underneath a two-dimensional ice shelf of initially constant basal slope, and stable attracting states are determined. The implications for modelling meltwater flow under ice shelves are discussed.

  14. El Chichon - Composition of plume gases and particles

    NASA Technical Reports Server (NTRS)

    Kotra, J. P.; Finnegan, D. L.; Zoller, W. H.; Hart, M. A.; Moyers, J. L.

    1983-01-01

    Aircraft measurements were made of trace gases, atmospheric particles, and condensed acid volatiles in the plume of El Chichon volcano, Chiapas, Mexico, in November 1982. Hydrogen sulfide was the primary gaseous sulfur species in the plume at the time of collection. Concentrations of 28 elements were determined by neutron activation analysis of particulate material from the plume. The volatile elements sulfur, chlorine, arsenic, selenium, bromine, antimony, iodine, tungsten, and mercury were enriched relative to bulk pyroclastic material by factors of 60 to 20,000. Arsenic, antimony, and selenium were associated predominantly with small (not greater than 3 micrometer) particles. Calcium and sodium were present almost exclusively on larger particles and aluminum and manganese were bimodally distributed. Ashladen particulate material injected into the stratosphere during the early violent eruptions was enriched by factors of 10 to 30 relative to ash in some of the same elements observed in the quiescent plume.

  15. Method and device for controlling plume during laser welding

    SciTech Connect

    Fuerschbach, P.W.; Jellison, J.L.; Keicher, D.M.; Oberkampf, W.L.

    1989-08-25

    A method and apparatus for enhancing the weldment of a laser welding system is provided. The laser weld plume control device is provided as a cylindrical body defining an upside-down cone cavity, the upper surface of the body circumscribing the base of the cone cavity, the vertex of the cavity forming an orifice which converts the flow of gas, directed through inlets in the upper surface of the body through channels in the wall of the body, from radial flow to an axisymmetric gas jet perpendicular to the surface of the weldment in a direction opposite to the direction of the laser beam. The orifice of the control device is concentrically located with respect to the laser beam and the plume which forms as a result of the welding operation. 6 figs.

  16. Distribution and composition of hydrothermal plume particles from the ASHES vent field at Axial Volcano, Juan de Fuca Ridge. [Axial Seamount Hydrothermal Emission Study

    SciTech Connect

    Feely, R.A.; Geiselman, T.L.; Baker, E.T.; Massoth, G.J. ); Hammond, S.R. )

    1990-08-10

    In 1986 and 1987, buoyant and neutrally buoyant hydrothermal plume particles from the ASHES vent field within Axial Volcano were sampled to study their variations in composition with height above the seafloor. Individual mineral phases were identified using standard X ray diffraction procedures. Elemental composition and particle morphologies were determined by X ray fluorescence spectrometry and scanning electron microscopy/X ray energy spectrometry techniques. The vent particles were primarily composed of sphalerite, anhydrite, pyrite, pyrrhotite, chalcopyrite, barite, hydrous iron oxides, and amorphous silica. Grain size analyses of buoyant plume particles showed rapid particle growth in the first few centimeters above the vent orifice, followed by differential sedimentation of the larger sulfide and sulfate minerals out of the buoyant plume. The neutrally buoyant plume consisted of a lower plume, which was highly enriched in Fe, S, Zn, and Cu, and an upper plume, which was highly enriched in Fe and Mn. The upper plume was enriched in Fe and Mn oxyhydroxide particles, and the lower plume was enriched in suspended sulfide particles in addition to the Fe and Mn oxyhydroxide particles. The chemical data for the water column particles indicate that chemical scavenging and differential sedimentation processes are major factors controlling the composition of the dispersing hydrothermal particles. Short-term sediment trap experiments indicate that the fallout from the ASHES vent field is not as large as some of the other vent fields on the Juan de Fuca Ridge.

  17. Method and device for controlling plume during laser welding

    DOEpatents

    Fuerschbach, Phillip W.; Jellison, James L.; Keicher, David M.; Oberkampf, William L.

    1991-01-01

    A method and apparatus for enhancing the weldment of a laser welding system is provided. The laser weld plume control device includes a cylindrical body defining an upside-down cone cavity; the upper surface of the body circumscribes the base of the cone cavity, and the vertex of the cone cavity forms an orifice concentrically located with respect to the laser beam and the plume which forms as a result of the welding operation. According to the method of the invention, gas is directed radially inward through inlets in the upper surface of the body into and through channels in the wall of the body and finally through the orifice of the body, and downward onto the surface of the weldment. The gas flow is then converted by the orifice of the device from radial flow to an axisymmetric gas jet flowing away from the weldment surface in a direction perpendicular to the surface and opposite to that of the laser.

  18. Method and device for controlling plume during laser welding

    SciTech Connect

    Fuerschbach, P.W.; Jellison, J.L.; Keicher, D.M.; Oberkampf, W.L.

    1991-02-12

    This patent describes a method and apparatus for enhancing the weldment of a laser welding system. The laser weld plume control device includes a cylindrical body defining an upside-down cone cavity; the upper surface of the body circumscribes the base of the cone cavity, and the vertex of the cone cavity forms an orifice concentrically located with respect to the laser beam and the plume which forms as a result of the welding operation. According to the method of the invention, gas is directed radially inward through inlets in the upper surface of the body into and through channels in the wall of the body and finally through the orifice of the body, and downward onto the surface of the weldment.

  19. A 10-year climatology of Northern Hemisphere tropical cloud plumes and their composite flow patterns

    SciTech Connect

    Iskenderian, H.

    1995-06-01

    A 10-year cool season climatology of tropical cloud plumes in the Northern Hemisphere was generated by visual inspection of infrared satellite imagery. The sample included 1062 plume events during the months of October to May for the years 1974 to 1984. The results show that the westerly ducts of the tropical eastern Pacific and central Atlantic are preferred regions for tropical cloud plume development. Composite fields of streamfunction and outgoing longwave radiation for eastern Pacific plumes indicate that both low-latitude westerlies in the planetary-scale basic-state flow and the presence of synoptic-scale transients appear to be favorable for plume formation. With a knowledge of these features, some of the interannual and intraannual variability shown in the climatology can be explained. 14 refs., 6 figs.

  20. Comparing the composition of the earliest basalts erupted by the Iceland and Afar mantle plumes.

    NASA Astrophysics Data System (ADS)

    Stuart, Finlay M.

    2013-04-01

    The first basalts erupted by mantle plumes are typically generated by mantle melting at temperatures 200-300°C higher than average ambient mantle. This is consistent with the derivation of from a thermal boundary layer at the core-mantle boundary. Mantle plume temperatures decrease with time, likely as large plume heads give way to thin plume conduits. Consequently the early, hot plume basalts are a window into the deep mantle. At it's simplest they provide a test of whether the discrete plume source regions are primordial mantle that have been isolated since soon after Earth accretion, or have substantial contributions from subducted slabs. Here I present new isotopic and trace element determinations of the earliest picritic basalts from the ~30 Ma Afar plume in Ethiopia. They will be compared with similar material from the ~60 Ma proto-Iceland plume (PIP) in an effort to test prevailing models regarding the source of mantle plumes. The extremely primordial nature of the helium in the PIP picrites (3He/4He ~ 50 Ra) contrasts with much lower values of the Ethiopian flood basalt province (~21 Ra). The Iceland plume 3He/4He has decreased (linearly) with time, mirroring the secular cooling of the Iceland mantle plume identified by decreasing MgO and FeO in primary melts. In 60 million years the Iceland plume 3He/4He is still higher than the maximum Afar plume value. The Sr-Nd-Pb isotopic composition of the high 3He/4He Ethiopian flood basalt province picrites are remarkably homogenous (e.g. 87Sr/86Sr = 0.70396-0.70412; 206Pb/204Pb = 18.82-19.01). In comparison the PIP picrites have ranges that span nearly the global range of E-MORB and N-MORB. The Afar and proto-Iceland mantle plumes are clearly not initiated in a single deep mantle domain with the same depletion/enrichment and degassing histories, and the same scale of heterogeneity. This implies that there is more than one plume source region/mechanism that is capable of generating comparable volumes of basalt melt

  1. El chichon: composition of plume gases and particles.

    PubMed

    Kotra, J P; Finnegan, D L; Zoller, W H; Hart, M A; Moyers, J L

    1983-12-01

    Aircraft measurements were made of trace gases, atmospheric particles, and condensed acid volatiles in the plume of El Chichón volcano, Chiapas, Mexico, in November 1982. Hydrogen sulfide was the primary gaseous sulfur species in the plume at the time of collection. Concentrations of 28 elements were determined by neutron activation analysis of particulate material from the plume. Rates of trace element emission to the atmosphere for each species were estimated by normlization to the simultaneously determined total sulfur emission rate. The volatile elements sulfur, chlorine, arsenic, selenium, bromine, antimony, iodine, tungsten, and mercury were enriched relative to bulk pyroclastic material by factors of 60 to 20,000. Arsenic, antimony, and selenium were associated predominantly with small (>/= 3 micrometer) particles. Calcium and sodium were present almost exclusively on larger particles and aluminum and manganese were bimodally distributed. Ashladen particulate material injected into the stratosphere during the early violent eruptions was enriched by factors of 10 to 30 relative to ash in some of the same elements observed in the quiescent plume. PMID:17776246

  2. Statistical analyses of plume composition and deposited radionuclide mixture ratios

    SciTech Connect

    Kraus, Terrence D.; Sallaberry, Cedric Jean-Marie; Eckert-Gallup, Aubrey Celia; Brito, Roxanne; Hunt, Brian D.; Osborn, Douglas M.

    2014-01-01

    A proposed method is considered to classify the regions in the close neighborhood of selected measurements according to the ratio of two radionuclides measured from either a radioactive plume or a deposited radionuclide mixture. The subsequent associated locations are then considered in the area of interest with a representative ratio class. This method allows for a more comprehensive and meaningful understanding of the data sampled following a radiological incident.

  3. The origin of the Line Islands: plate or plume controlled volcanism?

    NASA Astrophysics Data System (ADS)

    Storm, L. P.; Konter, J. G.; Koppers, A. A.

    2011-12-01

    Geochemical compositions of melts produced in the Earth's mantle provide key data for our understanding of the Earth's internal structure. Particularly, the range in compositions for oceanic intraplate volcanism has fueled the ongoing debate on the dynamic origin of hotspots. Traditionally, hotspots have been interpreted to originate from narrow, upwelling plumes of hot mantle material that reach the bottom of the tectonic plates. Progressively younger volcanoes, as seen at, for example, Hawaii, are then derived from plume melts. However, such a plume may originate from the core-mantle boundary, the top of seismically defined superplumes, or the origin may not lie in a buoyantly upwelling plume at all. The presence of an age progressive volcanic chain and a large igneous province, a high buoyancy flux, the geochemical composition of the erupted lavas, and seismically slow velocities have been used to distinguish different hotspot origins. Volcanic chains that lack most of these features may originate from the eruption of shallow melts along lithospherically controlled cracks. A unique area to study this type of volcanism is the Line Islands. These islands define a complex chain of volcanoes south of Hawaii that morphologically define multiple sub-groups. Moreover, recent age dating has revealed a complex geochronology. Combined geochronological and geochemical data from the Line Islands allude to the presence of shallow mantle melts that feed eruptions where there are weaknesses in the plates due to fractures or fissures. The Line Islands consist of elongated ridges, seamounts, atolls and islands that form the northern segment of the Line-Tuamotu chain of volcanoes. The volcanic chain is divided into three morphologically distinct regions; the northern, central and southern provinces. Long en echelon ridges of the Line Islands Cross Trend intersect the northern province at 14-16°N, which consists of the section between the Molokai and Clarion fracture zones. The

  4. Composite structure of plumes in stratus-topped boundary layers

    SciTech Connect

    Moeng, C.H. ); Schumann, U. )

    1991-10-15

    Knowledge of convective plumes within the clear convective boundary layer (CBL) is quite advanced owing to direct measurements, tank experiments, and large-eddy simulation studies. As a result, modeling of the CBL is relatively successful. Progress for the stratus-topped boundary layer (STBL), however, is slow. This study compares the plume structure of the surface-heated CBL with that of the cloud-top-cooled STBL in the hope of extending knowledge of the CBL to the STBL. A conditional sampling technique is applied to the STBL flow fields that are generated through large-eddy simulations, so that the structures of typical updrafts and downdrafts may be derived. For the purpose of comparing the surface-heated CBL and the cloud-top-cooled STBL, an idealized STBL, the compensating updrafts are nearly as strong as the top-cooling-generated downdrafts, and they contribute a significant amount to the heat, moisture, and momentum transports. This differs very much from the CBL, where the compensating downdrafts are much weaker than the surface-heating-generated updrafts and contribute much less to the transports. The mechanism that results in such an asymmetry between the CBL and STBL is examined, and suggestions on how the asymmetry affects the entrainment process are made. 25 refs., 26 figs.

  5. Deriving the Structure and Composition of Enceladus’ Plume from Cassini UVIS Observations

    NASA Astrophysics Data System (ADS)

    Hansen, Candice; Esposito, Larry; Colwell, Josh; Hendrix, Amanda; Portyankina, Ganna; Shemansky, Don; West, Robert

    2015-11-01

    Cassini’s Ultraviolet Imaging Spectrograph (UVIS) has observed 4 stellar and one solar occultation by Enceladus’ water vapor plume. The July 2005 occultation observation established that water is the primary constituent of the plume [1], and allowed us to calculate the flux of water coming from the plume; the 2007 occultation showed super-sonic jets of gas imbedded within the plume [2]. The solar occultation observation set upper limits for N2 as a constituent of the plume and provided higher resolution data on the jets [3]. On 19 October 2011, epsilon and zeta Orionis were simultaneously occulted by the plume. The stars were in separate pixels on the detector, separated by 24 mrad, or ~20 km, with the lower altitude star (epsilon Orionis) 18 km above the limb at its closest point. The profile at two altitudes shows evidence for a new gas jet location, possibly between dust jet #50 and #51 identified in [4].Results from the assemblage of these data sets, with implications for the composition and vertical structure of the plume and jets, will be described. Gas being expelled from the “tiger stripe” fissures is largely on a vertical escape trajectory away from Enceladus. Upper limits are set for water vapor near the limb at latitudes well away from the south pole at 3 x 1015 cm-2. Upper limits are set for the amount of ethylene and H2 in the plume, two species of interest to the chemistry of the plume [5]. No hydrogen or oxygen emission features have been observed from Enceladus’ water vapor plume, in contrast to the purported plumes at Europa, probably due to the very different plasma environment at Saturn. Data have now been processed consistently for all occultations with slightly different results for water vapor supply to the Saturn magnetosphere than previously reported. Overall, eruptive activity has been steady to within ~20% from 2005 to 2011.References: [1] Hansen, C. J. et al., Science 311:1422 (2006). Hansen, C. J. et al., Nature 456:477 (2008

  6. Space simulation experiments on reaction control system thruster plumes

    NASA Technical Reports Server (NTRS)

    Cassidy, J. F.

    1972-01-01

    A space simulation procedure was developed for studying rocket plume contamination effects using a 5-pound bipropellant reaction control system thruster. Vacuum chamber pressures of 3 x 10 to the minus 5 torr (70 miles altitude) were achieved with the thruster firing in pulse trains consisting of eight pulses (50 msec on, 100 msec off, and seven minutes between pulse trains). The final vacuum was achieved by cooling all vacuum chamber surfaces to liquid helium temperature and by introducing a continuous argon leak of 48 std. cc/sec into the test chamber. An effort was made to simulate propellant system flow dynamics corresponding to actual spacecraft mission use. Fast time response liquid flow rate measurements showed that large variations occurred in the ratio of oxidizer to fuel flow for pulse-on times up to 120 msec. These variations could lead to poor combustion efficiency and the production of contamination.

  7. Optical Emission Spectroscopy of the Laser Ablation Plume Controled by RF Plasma

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiyuki; Nishimura, Takuma; Mizuno, Manabu; Bratescu, Maria Antoaneta; Sakai, Yosuke

    1999-10-01

    Recently, film deposition has been investigated using laser ablation methods which have a lot of advantages. For the purpose of control of the laser ablation plume, we introduced a radio frequency (RF) plasma. In this report we present position resolved optical emission spectra of the plume observed by an OMA (optical multichannel analyzer). The plume current is also measured. The RF plasma is generated in a helical coil installed between the substrate and the target. An ArF excimer laser (wavelength 193 nm, pulse duration time 20 ns) is used as a light source, and the target material is sintered carbon graphite. The laser fluence on the target surface is changed in a range from 1.2 to 6.4 J/cm^2. Ar gas is introduced to sustain the RF plasma. When the plume goes through the RF plasma, interaction of the plume with the plasma is expected. The possibility of control of the plume behavior is discussed.

  8. Calculations of the Chemical Composition of the Sacramento Urban Plume

    NASA Astrophysics Data System (ADS)

    Perez, I. M.; Cohen, R. C.

    2007-12-01

    Recent measurements within the Sacramento urban plume have provided a detailed benchmark for testing our understanding of tropospheric chemistry. Available measurements include a wide suite of VOC and BVOC, NOy,i, O3, and CO at the source and at a receptor site five hours downwind. Further, the meteorology in the region is extremely regular making it possible to evaluate effects of temperature or day-of-week patterns with a single season of measurements. Here we use a Lagrangian model representing transport from Granite Bay, a suburb at the eastern edge of Sacramento, to the University of California Blodgett Forest Research Station (UC- BFRS). The model represents chemistry based on MCM v3.1 along with mixing and dilution. The model is initiated with concentrations of NOx, peroxynitrates, alkyl and multifunctional nitrates, HNO3, VOCs and O3 based on measurements at the edge of the Sacramento suburban sprawl east of the city. Biogenic VOC emissions throughout the transect are included. The outputs of the model are compared with ozone measurements at Cool three hours downwind, and detailed measurements of VOC, the speciation of the nitrogen oxides and O3 at UC-BFRS, 5 hours downwind of the Sacramento suburbs in the center of the Mountain counties air basin. The comparisons indicate 1) O3 at UC-BFRS and Cool is largely driven by the combination of rural biogenic emissions and urban NOx emissions, 2) that OH is underestimated by standard chemical models, 3) that partitioning of NOy is dominated by peroxy and other multifunctional nitrates that are not represented in standard chemical models and which have a strong impact on how much NO2 is available for ozone production. We also investigate model representation of temperature and weekend/weekday effects.

  9. Orion Service Module Reaction Control System Plume Impingement Analysis Using PLIMP/RAMP2

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Gati, Frank; Yuko, James R.; Motil, Brian J.; Lumpkin, Forrest E.

    2009-01-01

    The Orion Crew Exploration Vehicle Service Module Reaction Control System engine plume impingement was computed using the plume impingement program (PLIMP). PLIMP uses the plume solution from RAMP2, which is the refined version of the reacting and multiphase program (RAMP) code. The heating rate and pressure (force and moment) on surfaces or components of the Service Module were computed. The RAMP2 solution of the flow field inside the engine and the plume was compared with those computed using GASP, a computational fluid dynamics code, showing reasonable agreement. The computed heating rate and pressure using PLIMP were compared with the Reaction Control System plume model (RPM) solution and the plume impingement dynamics (PIDYN) solution. RPM uses the GASP-based plume solution, whereas PIDYN uses the SCARF plume solution. Three sets of the heating rate and pressure solutions agree well. Further thermal analysis on the avionic ring of the Service Module showed that thermal protection is necessary because of significant heating from the plume.

  10. Orion Service Module Reaction Control System Plume Impingement Analysis Using PLIMP/RAMP2

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Lumpkin, Forrest E., III; Gati, Frank; Yuko, James R.; Motil, Brian J.

    2009-01-01

    The Orion Crew Exploration Vehicle Service Module Reaction Control System engine plume impingement was computed using the plume impingement program (PLIMP). PLIMP uses the plume solution from RAMP2, which is the refined version of the reacting and multiphase program (RAMP) code. The heating rate and pressure (force and moment) on surfaces or components of the Service Module were computed. The RAMP2 solution of the flow field inside the engine and the plume was compared with those computed using GASP, a computational fluid dynamics code, showing reasonable agreement. The computed heating rate and pressure using PLIMP were compared with the Reaction Control System plume model (RPM) solution and the plume impingement dynamics (PIDYN) solution. RPM uses the GASP-based plume solution, whereas PIDYN uses the SCARF plume solution. Three sets of the heating rate and pressure solutions agree well. Further thermal analysis on the avionic ring of the Service Module was performed using MSC Patran/Pthermal. The obtained temperature results showed that thermal protection is necessary because of significant heating from the plume.

  11. Estimation and Modeling of Enceladus Plume Jet Density Using Reaction Wheel Control Data

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Wang, Eric K.; Pilinski, Emily B.; Macala, Glenn A.; Feldman, Antonette

    2010-01-01

    The Cassini spacecraft was launched on October 15, 1997 by a Titan 4B launch vehicle. After an interplanetary cruise of almost seven years, it arrived at Saturn on June 30, 2004. In 2005, Cassini completed three flybys of Enceladus, a small, icy satellite of Saturn. Observations made during these flybys confirmed the existence of a water vapor plume in the south polar region of Enceladus. Five additional low-altitude flybys of Enceladus were successfully executed in 2008-9 to better characterize these watery plumes. The first of these flybys was the 50-km Enceladus-3 (E3) flyby executed on March 12, 2008. During the E3 flyby, the spacecraft attitude was controlled by a set of three reaction wheels. During the flyby, multiple plume jets imparted disturbance torque on the spacecraft resulting in small but visible attitude control errors. Using the known and unique transfer function between the disturbance torque and the attitude control error, the collected attitude control error telemetry could be used to estimate the disturbance torque. The effectiveness of this methodology is confirmed using the E3 telemetry data. Given good estimates of spacecraft's projected area, center of pressure location, and spacecraft velocity, the time history of the Enceladus plume density is reconstructed accordingly. The 1 sigma uncertainty of the estimated density is 7.7%. Next, we modeled the density due to each plume jet as a function of both the radial and angular distances of the spacecraft from the plume source. We also conjecture that the total plume density experienced by the spacecraft is the sum of the component plume densities. By comparing the time history of the reconstructed E3 plume density with that predicted by the plume model, values of the plume model parameters are determined. Results obtained are compared with those determined by other Cassini science instruments.

  12. Estimation and Modeling of Enceladus Plume Jet Density Using Reaction Wheel Control Data

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Wang, Eric K.; Pilinski, Emily B.; Macala, Glenn A.; Feldman, Antonette

    2010-01-01

    The Cassini spacecraft was launched on October 15, 1997 by a Titan 4B launch vehicle. After an interplanetary cruise of almost seven years, it arrived at Saturn on June 30, 2004. In 2005, Cassini completed three flybys of Enceladus, a small, icy satellite of Saturn. Observations made during these flybys confirmed the existence of a water vapor plume in the south polar region of Enceladus. Five additional low-altitude flybys of Enceladus were successfully executed in 2008-9 to better characterize these watery plumes. The first of these flybys was the 50-km Enceladus-3 (E3) flyby executed on March 12, 2008. During the E3 flyby, the spacecraft attitude was controlled by a set of three reaction wheels. During the flyby, multiple plume jets imparted disturbance torque on the spacecraft resulting in small but visible attitude control errors. Using the known and unique transfer function between the disturbance torque and the attitude control error, the collected attitude control error telemetry could be used to estimate the disturbance torque. The effectiveness of this methodology is confirmed using the E3 telemetry data. Given good estimates of spacecraft's projected area, center of pressure location, and spacecraft velocity, the time history of the Enceladus plume density is reconstructed accordingly. The 1-sigma uncertainty of the estimated density is 7.7%. Next, we modeled the density due to each plume jet as a function of both the radial and angular distances of the spacecraft from the plume source. We also conjecture that the total plume density experienced by the spacecraft is the sum of the component plume densities. By comparing the time history of the reconstructed E3 plume density with that predicted by the plume model, values of the plume model parameters are determined. Results obtained are compared with those determined by other Cassini science instruments.

  13. Groundwater plume control with phytotechnologies at Argonne National Laboratory.

    SciTech Connect

    Rock, S.; Negri, M. C.; Quinn, J.; Wozniak, J.,; McPherson, J.

    2002-07-16

    In 1999, Argonne National Laboratory-East (ANL-E) designed and installed a series of engineered plantings consisting of a vegetative cover system and approximately 800 hybrid poplars and willows rooting at various predetermined depths. The plants were installed using various methods including Applied Natural Science's TreeWell{reg_sign} system. The goal of the installation was to protect downgradient surface and groundwater by hydraulic control of the contaminated plume. This goal was to be accomplished by intercepting the contaminated groundwater with the tree roots, removing moisture from the upgradient soil area, reducing water infiltration, preventing soil erosion, degrading and/or transpiring the residual VOCs, and removing tritium from the subsoil and groundwater. The U.S. EPA Superfund Innovative Technology Evaluation Program (SITE) and ANL-E evaluated the demonstration. The effectiveness of the various plantings was monitored directly through groundwater measurements and samples, and indirectly via soil moisture probes, plant tissue analysis, microbial studies, geochemical analysis, and sap flow monitoring. A weather station with data logging equipment was installed. ANL-E modeled the predicted effect of the plants on the groundwater using MODFLOW. The demonstration has lasted three growing seasons and continues. This paper presents the results of the sampling, monitoring, and modeling efforts to date. The project was not only successful in reducing the groundwater contaminant flow and the contaminants at the source; it also provides insight into the techniques that are useful for measuring and predicting the effectiveness of future similar projects.

  14. Enceladus Plume Density Modeling and Reconstruction for Cassini Attitude Control System

    NASA Technical Reports Server (NTRS)

    Sarani, Siamak

    2010-01-01

    In 2005, Cassini detected jets composed mostly of water, spouting from a set of nearly parallel rifts in the crust of Enceladus, an icy moon of Saturn. During an Enceladus flyby, either reaction wheels or attitude control thrusters on the Cassini spacecraft are used to overcome the external torque imparted on Cassini due to Enceladus plume or jets, as well as to slew the spacecraft in order to meet the pointing needs of the on-board science instruments. If the estimated imparted torque is larger than it can be controlled by the reaction wheel control system, thrusters are used to control the spacecraft. Having an engineering model that can predict and simulate the external torque imparted on Cassini spacecraft due to the plume density during all projected low-altitude Enceladus flybys is important. Equally important is being able to reconstruct the plume density after each flyby in order to calibrate the model. This paper describes an engineering model of the Enceladus plume density, as a function of the flyby altitude, developed for the Cassini Attitude and Articulation Control Subsystem, and novel methodologies that use guidance, navigation, and control data to estimate the external torque imparted on the spacecraft due to the Enceladus plume and jets. The plume density is determined accordingly. The methodologies described have already been used to reconstruct the plume density for three low-altitude Enceladus flybys of Cassini in 2008 and will continue to be used on all remaining low-altitude Enceladus flybys in Cassini's extended missions.

  15. Trace element composition of the Mount St. Helens plume - Stratospheric samples from the 18 May eruption

    NASA Technical Reports Server (NTRS)

    Vossler, T.; Anderson, D. L.; Aras, N. K.; Phelan, J. M.; Zoller, W. H.

    1981-01-01

    Atmospheric particulate material collected from the stratosphere in the plume of the 18 May 1980 eruption of the Mount St. Helens volcano was quite similar in composition to that of ash that fell to the ground in western Washington. However, there were small but significant differences in concentrations of some elements with altitude, indicating that the stratospheric material was primarily produced from fresh magma, not fragments of the mountain.

  16. Trace element composition of the Mount St. Helens plume: stratospheric samples from the 18 May eruption

    SciTech Connect

    Vossler, T.; Anderson, D.L.; Aras, N.K.; Phelan, J.M.; Zoller, W.H.

    1981-01-01

    Atmospheric particulate material collected from the stratosphere in plume of the 18 May 1980 eruption of the Mount St. Helens volcano was quite similar in composition to that of ash that fell to the ground in western Washington. However, there were small but significant differences in concentrations of some elements with altitude, indicating that the statospheric material was primarily produced from fresh magma, but fragments of the mountain.

  17. Impact of rocket exhaust plumes on atmospheric composition and climate ― an overview

    NASA Astrophysics Data System (ADS)

    Voigt, Ch.; Schumann, U.; Graf, K.; Gottschaldt, K.-D.

    2013-03-01

    Rockets are the only direct anthropogenic emission sources into the upper atmosphere. Gaseous rocket emissions include CO, N2, H2, H2O, and CO2, while solid rocket motors (SRM) additionally inject significant amounts of aluminum oxide (Al2O3) particles and gaseous chlorine species into the atmosphere. These emissions strongly perturb local atmospheric trace gas and aerosol distributions. Here, previous aircraft measurements in various rocket exhaust plumes including several large space shuttle launch vehicles are compiled. The observed changes of the lower stratospheric composition in the near field are summarized. The injection of chlorine species and particles into the stratosphere can lead to ozone loss in rocket exhaust plumes. Local observations are compared with global model simulations of the effects of rocket emissions on stratospheric ozone concentrations. Large uncertainties remain concerning individual ozone loss reaction rates and the impact of small-scale plume effects on global chemistry. Further, remote sensing data from satellite indicate that rocket exhaust plumes regionally increase iron and water vapor concentrations in the mesosphere potentially leading to the formation of mesospheric clouds at 80- to 90-kilometer altitude. These satellite observations are summarized and the rocket emission inventory is compared with other natural and anthropogenic sources to the stratosphere such as volcanism, meteoritic material, and aviation.

  18. Secular trends in plume composition of Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Ilanko, Tehnuka; Oppenheimer, Clive; Kyle, Philip; Burgisser, Alain

    2015-04-01

    Long-lived active lava lakes, such as that in the summit crater of Erebus volcano, Antarctica, provide a rare insight into sustained magma convection and degassing over long timescales. Erebus lava lake has been persistently active since 1972, and potentially for several decades or more previously (Ross, 1847). Since the 1970s, regular scientific expeditions, lasting a few weeks in the austral summers, have made observations of the lake activity. Annual Fourier transform infrared (FTIR) spectroscopic gas measurements began in 2004 (Oppenheimer and Kyle, 2008; Oppenheimer et al., 2009), yielding an extensive, if discontinuous, time series of infrared absorption spectra. These data, once processed, provide insights into temporal evolution of the gas geochemistry in terms of seven molecular species: H2O, CO2, CO, SO2, HCl, HF, and OCS. FTIR spectroscopic data are now available over ten field seasons, totalling roughly 1.8 million spectra and increasing each year. This period spans changes to crater morphology, fluctuations in lava lake surface area (Jones et al., 2014), and two episodes of increased explosive activity (2005-06 and 2013). The dataset captures both long-term degassing trends and short-lived features, such as cyclicity in gas emissions during passive degassing (Ilanko et al., 2015) and compositions released by explosive bubble-burst eruptions. We consider the longer-term changes to gas ratios occurring within (i.e. over days to weeks) and between annual field seasons, their potential causes, and their relationship to observations of eruptive behaviour and crater morphology.

  19. Contamination control and plume assessment of low-energy thrusters

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1993-01-01

    Potential contamination of a spacecraft cryogenic surface by a xenon (Xe) ion generator was evaluated. The analysis involves the description of the plume exhausted from the generator with its relative component fluxes on the spacecraft surfaces, and verification of the conditions for condensation, adsorption, and sputtering at those locations. The data describing the plume fluxes and their effects on surfaces were obtained from two sources: the tests carried out with the Xe generator in a small vacuum chamber to indicate deposits and sputter on monitor slides; and the extensive tests with a mercury (Hg) ion thruster in a large vacuum chamber. The Hg thruster tests provided data on the neutrals, on low-energy ion fluxes, on high-energy ion fluxes, and on sputtered materials at several locations within the plume.

  20. Magnetic Detachment and Plume Control in Escaping Magnetized Plasma

    SciTech Connect

    P. F. Schmit and N. J. Fisch

    2008-11-05

    The model of two-fluid, axisymmetric, ambipolar magnetized plasma detachment from thruster guide fields is extended to include plasmas with non-zero injection angular velocity profiles. Certain plasma injection angular velocity profiles are shown to narrow the plasma plume, thereby increasing exhaust efficiency. As an example, we consider a magnetic guide field arising from a simple current ring and demonstrate plasma injection schemes that more than double the fraction of useful exhaust aperture area, more than halve the exhaust plume angle, and enhance magnetized plasma detachment.

  1. Composition of the excimer laser-induced plume produced during LASIK refractive surgery

    NASA Astrophysics Data System (ADS)

    Glickman, Randolph D.; Liu, Yun; Mayo, George L.; Baribeau, Alan D.; Starck, Tomy; Bankhead, Tom

    2003-07-01

    Because of concerns about potential hazards to surgical personnel of the plume associated with laser refractive surgery, this study was performed to characterize the composition of such plumes. Filter elements were removed from the smoke evacuator of a VISX S3 excimer laser (filter pore size ~0.3 microns) and from a Mastel Clean Room ( filter pore size ~0.2 microns) used with a LADARVISION excimer laser. The filters from both laser systems captured the laser-induced plumes from multiple, routine, LASIK patient procedures. Some filters were processed for scanning electron microscopy, while others were extracted with methanol and chloroform for biochemical analysis. Both the VISX "Final Air" filter and the Mastel "Clean Room" filter captured material that was not observed in filters that had clean operating room air only passed through them. In the VISX system, air flows through the filter unit parallel to the filter matrix. SEM analysis showed these filters captured discrete particles of 0.3 to 3.0 microns in size. In the Mastel Clean Room unit, air flows orthogonally through the filter, and the filter matrix was heavily layered with captured debris so that individual particles were not readily distinguished. Amino acid analysis and gel electrophoresis of extracted material revealed proteinaceous molecules as large as 5000 molecular weight. Such large molecules in the laser plume are not predicted by the existing theory of photochemical ablation. The presence of relatively large biomolecules may constitute a risk of allergenic reactions in personnel exposed to the plume, and also calls into question the precise mechanism of excimer laser photochemical ablation. Supported by the RMG Research Endowment, and Research to Prevent Blindness

  2. Estuarine and coastal water dynamics controlling sediment movement and plume development in Long Island Sound

    NASA Technical Reports Server (NTRS)

    Ruggles, F. H., Jr. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. As the Connecticut River flows into Long Island Sound, large plumes develop during the mixing of ocean and estuarine waters. Plumes were delineated for July 28, October 8, October 27, and December 2, 1972, by analyzing ERTS-1 imagery with the SRI Electronic Satellite Image Analysis Console (ESIAC). Because the chemical and physical composition of the plume and ocean water were not too different, the ESIAC was utilized to expand the scenes and subject the transparencies to varying combinations of viewing techniques to identify and delineate the plumes. Best results were obtained when band 5 transparencies were used. Indications are, when the scene being analyzed is predominantly in the first two steps of the gray scale, it is best to use the negative transparencies. When the analysis is being done above the first two steps of the gray scale, it is best to use the positive transparencies.

  3. Plume composition changes during the birth of a new lava lake - Nyamulagira volcano, DR Congo

    NASA Astrophysics Data System (ADS)

    Bobrowski, Nicole; Giuffrida, Giovanni Bruno; Calabrese, Sergio; Scaglione, Sarah; Yalire, Mathieu; Liotta, Marcello; Brusca, Lorenzo; Arellano, Santiago; Rüdiger, Julian; Galle, Bo; Castro, Jonathan; Tedesco, Dario

    2016-04-01

    Nyamulagira, in the Virunga Volcanic Province (VVP), Democratic Republic of Congo, is one of the most active volcanoes in Africa. The volcano is located about 25 km north-northwest of Lake Kivu in the Western Branch of the East African Rift System (EARS) with a distance of only 15 km to Nyiragongo, which is well known for its decades-old active lava lake. Nyamulagira is a shield volcano with a 3058 m high and ~2000 m wide summit caldera. The volcano is characterized by frequent eruptions, which occur both from the summit crater and from the flanks (31 flank eruptions over the last 110 years). Due to the low viscosity lava, although significantly higher than the one of Nyiragongo, wide lava fields cover over 1100 km2 and lava flows often reach > 20 km length. More than 100 flank cones can be counted around the summit crater. A part from its frequent eruptions Nyamulagira had a long period of lava lake activity in the past, at least from 1912 to 1938. During the past decades, gas emissions from Nyamulagira have been only reported during eruptions. This changed in 2012, however, when Nyamulagira began emitting a persistent gas plume above its crater. By the end of 2014, and beginning in 2015, a lava lake was born, a feature that - as of the time of this writing - is still growing. To date, very little is known about gas emissions of Nyamulagira volcano with the only exception for SO2. Very few studies have been conducted regarding the volatile chemistry of Nyamulagira. We try to fill this gap by reporting gas composition measurements of Nyamulagira's volcanic plume during the birth of the lava lake, and in the first year of the lake's activity. Two field surveys have been carried out, the first one on November 1st, 2014 and the second one October 13th - 15th, 2015. Applying the broad toolbox of volcanic gas composition measurement techniques offered us the opportunity to characterize Nyamulagira's plume in excruciating detail. Nyamulagira is known to be a significant

  4. Flow field description of the Space Shuttle Vernier reaction control system exhaust plumes

    NASA Technical Reports Server (NTRS)

    Cerimele, Mary P.; Alred, John W.

    1987-01-01

    The flow field for the Vernier Reaction Control System (VRCS) jets of the Space Shuttle Orbiter has been calculated from the nozzle throat to the far-field region. The calculations involved the use of recently improved rocket engine nozzle/plume codes. The flow field is discussed, and a brief overview of the calculation techniques is presented. In addition, a proposed on-orbit plume measurement experiment, designed to improve future estimations of the Vernier flow field, is addressed.

  5. Hydrologic controls on coastal suspended sediment plumes around the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Chu, V. W.; Smith, L. C.; Rennermalm, A. K.; Forster, R. R.; Box, J. E.

    2011-12-01

    Increasing surface melting on the Greenland ice sheet and rising sea level have furthered the need for direct observations of meltwater release from the ice sheet to ocean. Buoyant sediment plumes develop in fjords downstream of outlet glaciers and are controlled by a variety of complex factors, including ice sheet meltwater runoff and fluvial processes. This study classifies average plume suspended sediment concentrations (SSC) around the Greenland ice sheet derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery and field data over the period 2000-2009. Spatial and temporal variations in SSC are compared with ice sheet positive-degree-days (PDD), a proxy for ice sheet surface melting, as modeled from the Polar MM5 regional climate model, and outlet glacier environment, as represented by land- or marine-terminating glaciers. Buoyant plume SSCs are successfully retrieved around most of Greenland. Higher ice sheet melting around Greenland produces higher SSCs in surrounding coastal waters. The southwest region, dominated by land-terminating glaciers, experiences highest PDDs and produces plumes with highest SSCs, which typically persist late into the meltwater runoff season. Interannual variations in ice sheet PDD and plume SSC are not coupled as previously demonstrated in Kangerlussuaq Fjord (Chu et al. 2009), suggesting plume dimensions better capture interannual runoff dynamics than SSC. This first exploration of coastal sediment plumes around Greenland demonstrates that while complex factors influence their development and detection, ice sheet hydrology is a dominant control on plume distribution. Satellite remote sensing thus offers a unique methodology for detecting meltwater release from the ice sheet to global ocean.

  6. Analysis of Plume Impingement Effects from Orion Crew Service Module Dual Reaction Control System Engine Firings

    NASA Technical Reports Server (NTRS)

    Prisbell, Andrew; Marichalar, J.; Lumpkin, F.; LeBeau, G.

    2010-01-01

    Plume impingement effects on the Orion Crew Service Module (CSM) were analyzed for various dual Reaction Control System (RCS) engine firings and various configurations of the solar arrays. The study was performed using a decoupled computational fluid dynamics (CFD) and Direct Simulation Monte Carlo (DSMC) approach. This approach included a single jet plume solution for the R1E RCS engine computed with the General Aerodynamic Simulation Program (GASP) CFD code. The CFD solution was used to create an inflow surface for the DSMC solution based on the Bird continuum breakdown parameter. The DSMC solution was then used to model the dual RCS plume impingement effects on the entire CSM geometry with deployed solar arrays. However, because the continuum breakdown parameter of 0.5 could not be achieved due to geometrical constraints and because high resolution in the plume shock interaction region is desired, a focused DSMC simulation modeling only the plumes and the shock interaction region was performed. This high resolution intermediate solution was then used as the inflow to the larger DSMC solution to obtain plume impingement heating, forces, and moments on the CSM and the solar arrays for a total of 21 cases that were analyzed. The results of these simulations were used to populate the Orion CSM Aerothermal Database.

  7. Analysis of Plume Impingement Effects from Orion Crew Service Module Dual Reaction Control System Engine Firings

    NASA Astrophysics Data System (ADS)

    Prisbell, A.; Marichalar, J.; Lumpkin, F.; LeBeau, G.

    2011-05-01

    Plume impingement effects on the Orion Crew Service Module (CSM) were analyzed for various dual Reaction Control System (RCS) engine firings and various configurations of the solar arrays. The study was performed using a decoupled computational fluid dynamics (CFD) and Direct Simulation Monte Carlo (DSMC) approach. This approach included a single jet plume solution for the R1E RCS engine computed with the General Aerodynamic Simulation Program (GASP) CFD code. The CFD solution was used to create an inflow surface for the DSMC solution based on the Bird continuum breakdown parameter. The DSMC solution was then used to model the dual RCS plume impingement effects on the entire CSM geometry with deployed solar arrays. However, because the continuum breakdown parameter of 0.05 could not be achieved due to geometrical constraints and because high resolution in the plume shock interaction region is desired, a focused DSMC simulation modeling only the plumes and the shock interaction region was performed. This high resolution intermediate solution was then used as the inflow to the larger DSMC solution to obtain plume impingement heating, forces, and moments on the CSM and the solar arrays for a total of 21 cases that were analyzed. The results of these simulations were used to populate the Orion CSM Aerothermal Database.

  8. Inferences of Particle Size and Composition From Video-like Images Based on Acoustic Data: Grotto Plume, Main Endeavor Field

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Rona, P. A.; Santilli, K.; Dastur, J.; Silver, D.

    2004-12-01

    Optical and acoustic scattering from particles in a seafloor hydrothermal plume can be related if the particle properties and scattering mechanisms are known. We assume Rayleigh backscattering of sound and Mie forward scattering of light. We then use the particle concentrations implicit in the observed acoustic backscatter intensity to recreate the optical image a camera would see given a particular lighting level. The motivation for this study is to discover what information on particle size and composition in the buoyant plume can be inferred from a comparison of the calculated optical images (based on acoustic data) with actual video images from the acoustic acquisition cruise and the IMAX film "Volcanoes of the Deep Sea" (Stephen Low Productions, Inc.). Because the geologists, biologists and oceanographers involved in the study of seafloor hydrothermal plumes all "see" plumes in different ways, an additional motivation is to create more realistic plume images from the acoustic data. By using visualization techniques, with realistic lighting models, we can convert the plume image from mechanical waves (sound) to electromagnetic waves (light). The resulting image depends on assumptions about the particle size distribution and composition. Conversion of the volume scattering coefficients from Rayleigh to Mie scattering is accomplished by an extinction scale factor that depends on the wavelengths of light and sound and on the average particle size. We also make an adjustment to the scattered light based on the particles reflectivity (albedo) and color. We present a series of images of acoustic data for Grotto Plume, Main Endeavour Field (within the Endeavour ISS Site) using both realistic lighting models and traditional visualization techniques to investigate the dependence of the images on assumptions about particle composition and size. Sensitivity analysis suggests that the visibility of the buoyant plume increases as the intensity of supplied light increases

  9. Plume radiation

    NASA Astrophysics Data System (ADS)

    Dirscherl, R.

    1993-06-01

    The electromagnetic radiation originating from the exhaust plume of tactical missile motors is of outstanding importance for military system designers. Both missile- and countermeasure engineer rely on the knowledge of plume radiation properties, be it for guidance/interference control or for passive detection of adversary missiles. To allow access to plume radiation properties, they are characterized with respect to the radiation producing mechanisms like afterburning, its chemical constituents, and reactions as well as particle radiation. A classification of plume spectral emissivity regions is given due to the constraints imposed by available sensor technology and atmospheric propagation windows. Additionally assessment methods are presented that allow a common and general grouping of rocket motor properties into various categories. These methods describe state of the art experimental evaluation techniques as well as calculation codes that are most commonly used by developers of NATO countries. Dominant aspects influencing plume radiation are discussed and a standardized test technique is proposed for the assessment of plume radiation properties that include prediction procedures. These recommendations on terminology and assessment methods should be common to all employers of plume radiation. Special emphasis is put on the omnipresent need for self-protection by the passive detection of plume radiation in the ultraviolet (UV) and infrared (IR) spectral band.

  10. Composite hardbody and missile plume (CHAMP 98) IR scene generation program

    NASA Astrophysics Data System (ADS)

    Crow, Dennis R.; Coker, Charles F.

    1998-07-01

    The Composite Hardbody and Missile Plume (CHAMP) program is a computer simulation used to provide time dependent high- fidelity infrared (IR) simulations of airborne vehicles. CHAMP computational algorithms are based on first principle physics that compute hardbody and exhaust plume radiation (absorption, emission, and reflection) for arbitrary vehicle operational state, position, orientation and atmospheric condition. All computations are performed as a function of time to allow complex vehicle dynamics to be simulated. Image processing functions are included to generate anti-aliased focal plane imagery. CHAMP can be utilized to simulate post-boost vehicle, re-entry vehicle, boost missile, theater missile, cruise missile, aircraft, and helicopter applications. CHAMP development is sponsored by the Kinetic Kill Vehicle Hardware- In-the-Loop Simulator (KHILS) facility at Eglin AFB, Florida. CHAMP is routinely utilized by KHILS to support on-going hardware-in-the-loop testing of IR seekers. Many of these tests are complex and diversified. CHAMP has been structured to support these tests by employing current generation object oriented design methodologies that facilitate adaptation to specific test requirements.

  11. COMPOSITE CONTROL ROD

    DOEpatents

    Rock, H.R.

    1963-12-24

    A composite control rod for use in controlling a nuclear reactor is described. The control rod is of sandwich construction in which finned dowel pins are utilized to hold together sheets of the neutron absorbing material and nonabsorbing structural material thereby eliminating the need for being dependent on the absorbing material for structural support. The dowel pins perform the function of absorbing the forces due to differential thermal expansion, seating further with the fins into the sheets of material and crushing before damage is done either to the absorbing or non-absorbing material. (AEC)

  12. Near-realtime monitoring of the 2014 Holuhraun volcanic plume, its composition and dispersion.

    NASA Astrophysics Data System (ADS)

    Björk Jónasdóttir, Elín; Barsotti, Sara; Bergsson, Baldur; Pfeffer, Melissa Anne; Arason, Þórður; Björnsson, Halldór; Nína Petersen, Guðrún; Þorsteinsson, Hróbjartur; Yeo, Richard; Arngrímsson, Hermann; Jóhannsson, Þorsteinn

    2015-04-01

    Icelandic Civil Protection Authorities. Samples of rainwater and snow are also collected and analyzed for acidity and chemical composition. The SO2 emission rate has been measured since the start of the eruption using DOASes. Three scanning DOASes capable of streaming data in near real-time were installed less than 15 km from the fissure. Long-distance traverses with a car-mounted DOAS are made along the ring road down-wind from the eruption as well as near-source traverses when conditions allow. The plume composition is measured by FTIR, MultiGAS, DOAS and filter packs when conditions allow. Forecasting of the volcanic gas dispersion has developed rapidly since the onset of the eruption. CALPUFF dispersion model was set up in early September and the forecast duty meteorologists produce gas dispersion forecasts twice a day and issue both a text forecast as well as a foreacast map indicating where levels of ground concentration fo SO2 might exceed health limits.

  13. Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2011-01-01

    We have learned it is conceivable that the Neutral Mass Spectrometer on board the Lunarr Atmosphere Dust Environment Explorer (LADEE) could measure gases from surface-reflected Attitude Control System (ACS) thruster plume. At minimum altitude, the measurement would be maximized, and gravitational influence minimized ("short" time-of-flight (TOF) situation) Could use to verify aspects of thruster plume modeling Model the transient disturbance to NMS measurements due to ACS gases reflected from lunar surface Observe evolution of various model characteristics as measured by NMS Species magnitudes, TOF measurements, angular distribution, species separation effects

  14. Mixing-controlled biodegradation in a toluene plume — Results from two-dimensional laboratory experiments

    NASA Astrophysics Data System (ADS)

    Bauer, Robert D.; Maloszewski, Piotr; Zhang, Yanchun; Meckenstock, Rainer U.; Griebler, Christian

    2008-02-01

    Various abiotic and biotic processes such as sorption, dilution, and degradation are known to affect the fate of organic contaminants, such as petroleum hydrocarbons in saturated porous media. Reactive transport modeling of such plumes indicates that the biodegradation of organic pollutants is, in many cases, controlled by mixing and therefore occurs locally at the plume's fringes, where electron donors and electron-acceptors mix. Herein, we aim to test whether this hypothesis can be verified by experimental results obtained from aerobic and anaerobic degradation experiments in two-dimensional sediment microcosms. Toluene was selected as a model compound for oxidizable contaminants. The two-dimensional microcosm was filled with quartz sand and operated under controlled flow conditions simulating a contaminant plume in otherwise uncontaminated groundwater. Aerobic degradation of toluene by Pseudomonas putida mt-2 reduced a continuous 8.7 mg L - 1 toluene concentration by 35% over a transport distance of 78 cm in 15.5 h. In comparison, under similar conditions Aromatoleum aromaticum strain EbN1 degraded 98% of the toluene infiltrated using nitrate (68.5 ± 6.2 mg L - 1 ) as electron acceptor. A major part of the biodegradation activity was located at the plume fringes and the slope of the electron-acceptor gradient was steeper during periods of active biodegradation. The distribution of toluene and the significant overlap of nitrate at the plume's fringe indicate that biokinetic and/or microscale transport processes may constitute additional limiting factors. Experimental data is corroborated with results from a reactive transport model using double Monod kinetics. The outcome of the study shows that in order to simulate degradation in contaminant plumes, detailed data sets are required to test the applicability of models. These will have to deal with the incorporation of existing parameters coding for substrate conversion kinetics and microbial growth.

  15. Impingement effect of service module reaction control system engine plumes. Results of service module reaction control system plume model force field application to an inflight Skylab mission proximity operation situation with the inflight Skylab response

    NASA Technical Reports Server (NTRS)

    Lobb, J. D., Jr.

    1978-01-01

    Plume impingement effects of the service module reaction control system thruster firings were studied to determine if previous flight experience would support the current plume impingement model for the orbiter reaction control system engines. The orbiter reaction control system is used for rotational and translational maneuvers such as those required during rendezvous, braking, docking, and station keeping. Therefore, an understanding of the characteristics and effects of the plume force fields generated by the reaction control system thruster firings were examined to develop the procedures for orbiter/payload proximity operations.

  16. Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas

    NASA Astrophysics Data System (ADS)

    Dawood, Mahmoud S.; Hamdan, Ahmad; Margot, Joëlle

    2015-10-01

    In this article, we present a comprehensive study of the plume dynamics of plasmas generated by laser ablation of an aluminum target. The effect of both ambient gas composition (helium, nitrogen or argon) and pressure (from ˜5 × 10-7 Torr up to atmosphere) is studied. The time- and space- resolved observation of the plasma plume are performed from spectrally integrated images using an intensified Charge Coupled Device (iCCD) camera. The iCCD images show that the ambient gas does not significantly influence the plume as long as the gas pressure is lower than 20 Torr and the time delay below 300 ns. However, for pressures higher than 20 Torr, the effect of the ambient gas becomes important, the shortest plasma plume length being observed when the gas mass species is highest. On the other hand, space- and time- resolved emission spectroscopy of aluminum ions at λ = 281.6 nm are used to determine the Time-Of-Flight (TOF) profiles. The effect of the ambient gas on the TOF profiles and therefore on the propagation velocity of Al ions is discussed. A correlation between the plasma plume expansion velocity deduced from the iCCD images and that estimated from the TOF profiles is presented. The observed differences are attributed mainly to the different physical mechanisms governing the two diagnostic techniques.

  17. Controls of Plume Dispersal at the Slow Spreading Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Walter, M.; Mertens, C.; Koehler, J.; Sueltenfuss, J.; Rhein, M.; Keir, R. S.; Schmale, O.; Schneider v. Deimling, J.; German, C. R.; Yoerger, D. R.; Baker, E. T.

    2011-12-01

    valley since the depth of the valley exceeds the rise height of the plume. Velocities observed with a Lowered Acoustic Doppler Current Profiler (LADCP), and the gradient of the stratification across the sill show a hydraulic control of the background flow over the sill, resulting in a northward advection of plume material. Downstream, the particle plume is modified by a dominant across-valley tide, and strong vertical mixing in the wake of the hydraulic jump. The Logatchev hydrothermal field (14°45'N) consists of seven vent sites, mostly smoking craters, located up on the eastern flank of the axial graben. The current field as observed with LADCP is irregular, but follows to some extent the topography in the range of the particle plume. This plume is sheared in the vertical, indicating the influence of the local tides.

  18. Near Vent Volcanic Plume Measurement by a Portable Multi-Gas-Sensor System to Estimate Volcanic Gas Composition

    NASA Astrophysics Data System (ADS)

    Shinohara, H.

    2006-12-01

    Near vent plume measurement technique by the use of the Portable Multi-Gas-Sensor System was developed to obtain volcanic gas composition of the major components including H2O, CO2, SO2, H2S and H2. By the combination with the Alkaline Filter Technique, the near vent plume measurement can provide almost full set of the volcanic gas composition including also HCl and HF. The Portable Multi-Gas-Sensor System measures concentration of the volcanic gas species by pumping the atmosphere (plume) through IR H2O-CO2 gas analyzer, SO2, H2S and H2 chemical sensors. The full system weight including battery and data logger is about 5 kg and can be easily carried in a backpack to the volcano summit. Among the various advantages and disadvantages of this techniques to other techniques such as the FT-IR measurements and the air-borne plume measurements with various gas analyzers, the most important advantage of the Portable Multi-Gas-Sensor System is the ability of the near vent measurement which enables the quantitative estimate of the H2O content in the volcanic gas. Since H2O content in the atmosphere is large and variable, a large mixing ratio of the volcanic gas in the plume is necessary to quantify the H2O excess over the atmospheric content. The atmospheric H2O content commonly ranges 5,000-20,000 ppm often with about 10% fluctuation whereas the CO2 content is about 370 ppm with minor (1 ppm) changes. Therefore we can quantify the excess CO2 content even at <1 ppm level, but we need at least 500 times larger excess H2O content derived from the volcanic gas for the quantification. By the near vent plume measurements, we could obtain the volcanic gas compositions of various volcanoes including Miyakejima, Asama and Villarrica as well as Etna whose gas composition is quite H2O-poor of H2O/CO2=1. Since H2O is commonly the most abundant volatile components both in the volcanic gases and magmas, and its solubility is quantitatively well constrained, the measured composition can

  19. Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations

    SciTech Connect

    Woronowicz, M. S.

    2011-05-20

    The Lunar Atmosphere Dust Environment Explorer (LADEE) spacecraft is being designed for a mission featuring low altitude orbits of the Moon to take relevant ambient measurements before that environment becomes altered by future exploration activities. Instruments include a neutral mass spectrometer capable of measuring ambient species density levels below 100 molecules/cm{sup 3}. Coincidentally, with a favorable combination of spacecraft orientations, it is also possible to measure plume gases from LADEE attitude control system thruster operations as they are reflected from the daytime lunar surface and subsequently intercepted by the spacecraft as it orbits overhead. Under such circumstances, it may be possible to test a variety of properties and assumptions associated with various transient plume models or to infer certain aspects regarding lunar surface properties.

  20. CFD Simulation of the Space Shuttle Launch Vehicle with Booster Separation Motor and Reaction Control Plumes

    NASA Technical Reports Server (NTRS)

    Gea, L. M.; Vicker, D.

    2006-01-01

    The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.

  1. Transient Plume Model Testing Using LADEE Spacecraft Attitude Control System Operations

    NASA Technical Reports Server (NTRS)

    Woronowicz, M. S.

    2010-01-01

    The Lunar Atmosphere Dust Environment Explorer (LADEE) spacecraft is being designed for a mission featuring low altitude orbits of the Moon to take relevant ambient measurements before that environment becomes altered by future exploration activities. Instruments include a neutral mass spectrometer capable of measuring ambient species density levels below 100 molecules/cu cm. Coincidentally, with a favorable combination of spacecraft orientations, it is also possible to measure plume gases from LADEE attitude control system thruster operations as they are reflected from the daytime lunar surface and subsequently intercepted by the spacecraft as it orbits overhead. Under such circumstances, it may be possible to test a variety of properties and assumptions associated with various transient plume models or to infer certain aspects regarding lunar surface properties.

  2. Chemical composition of fine particles in fresh smoke plumes from boreal wild-land fires in Europe.

    PubMed

    Saarnio, Karri; Aurela, Minna; Timonen, Hilkka; Saarikoski, Sanna; Teinilä, Kimmo; Mäkelä, Timo; Sofiev, Mikhail; Koskinen, Jarkko; Aalto, Pasi P; Kulmala, Markku; Kukkonen, Jaakko; Hillamo, Risto

    2010-05-15

    A series of smoke plumes was detected in Helsinki, Finland, during a one-month-lasting period in August 2006. The smoke plumes originated from wildfires close to Finland, and they were short-term and had a high particulate matter (PM) concentration. Physical and chemical properties of fine particles in those smokes were characterised by a wide range of real-time measurements that enabled the examination of individual plume events. Concurrently PM(1) filter samples were collected and analysed off-line. Satellite observations employing MODIS sensor on board of NASA EOS Terra satellite with the dispersion model SILAM and the Fire Assimilation System were used for evaluation of the emission fluxes from wildfires. The model predicted well the timing of the plumes but the predicted PM concentrations differed from the observed. The measurements showed that the major growth in PM concentration was caused by submicrometer particles consisting mainly of particulate organic matter (POM). POM had not totally oxidised during the transport based on the low WSOC-to-OC ratio. The fresh plumes were compared to another major smoke episode that was observed in Helsinki during April-May 2006. The duration and the source areas of the two episode periods differed. The episode in April-May was a period of nearly constantly upraised level of long-range transported PM and it was composed of aged particles when arriving in Helsinki. The two episodes had differences also in the chemical composition of PM. The mass concentrations of biomass burning tracers (levoglucosan, potassium, and oxalate) increased during both the episodes but different concentration levels of elemental carbon and potassium indicated that the episodes differed in the form of burning as well as in the burning material. In spring dry crop residue and hay from the previous season were burnt whereas in August smokes from smouldering and incomplete burning of fresh vegetation were detected. PMID:20359735

  3. The structure, dynamics, and chemical composition of noneruptive plumes from Mount St. Helens, 1980-1988

    USGS Publications Warehouse

    McGee, K.A.

    1992-01-01

    From May 1980 to September 1988, more than 1000 fixed-wing aircraft flights were made with a correlation spectrometer to measure the sulfur dioxide flux from Mount St. Helens volcano. These flights also provided valuable data on the structure and dynamics of noneruptive plumes emanating from Mount St. Helens. During 1980 and part of 1981, an infrared spectrometer was also used to measure carbon dioxide emission rates. At distances up to 25 km from Mount St. Helens, plume widths can range up to 20 km or more, with width/thickness ratios from 3 to about 30. Maximum sulfur dioxide concentrations in these plumes depend on wind speed and are typically under 5 ppm and usually 1 ppm or less. Close examination of the plume data reveals that the characteristics of quiescent plumes from Mount St. Helens are strongly affected by certain meteorological conditions such as thermal and wind stratification in the troposphere, as well as by the topography of the volcano. ?? 1992.

  4. Fast changes in chemical composition and size distribution of fine particles during the near-field transport of industrial plumes.

    PubMed

    Marris, Hélène; Deboudt, Karine; Augustin, Patrick; Flament, Pascal; Blond, François; Fiani, Emmanuel; Fourmentin, Marc; Delbarre, Hervé

    2012-06-15

    Aerosol sampling was performed inside the chimneys and in the close environment of a FeMn alloys manufacturing plant. The number size distributions show a higher abundance of ultrafine aerosols (10-100 nm) inside the plume than upwind of the plant, indicating the emissions of nanoparticles by the industrial process. Individual analysis of particles collected inside the plume shows a high proportion of metal bearing particles (Mn-/Fe-) consisting essentially of internally mixed aluminosilicate and metallic compounds. These particles evolve rapidly (in a few minutes) after emission by adsorption of VOC gas and sulfuric acid emitted by the plant but also by agglomeration with pre-existing particles. At the moment, municipalities require a monitoring of industrial emissions inside the chimneys from manufacturers. However those measures are insufficient to report such rapid changes in chemical composition and thus to evaluate the real impact of industrial plumes in the close environment of plants (when those particles leave the industrial site). Consequently, environmental authorities will have to consider such fast evolutions and then to adapt future regulations on air pollution sources. PMID:22542297

  5. Gaseous composition measured by a chemical ionization mass spectrometer in fresh and aged ship plumes

    NASA Astrophysics Data System (ADS)

    Faxon, Cameron; Psichoudaki, Magda; Kuuluvainen, Heino; Hallquist, Åsa; Thomson, Erik; Pettersson, Jan; Hallquist, Mattias

    2015-04-01

    The port of Gothenburg is the largest port of the Nordic countries with numerous ships calling the port daily. The ship exhausts contain numerous pollutants including gases such as SO2 and NOx as well as particulate matter and soot. The exhaust also contains numerous organic compounds, a large fraction of which are unidentified. These organics are oxidized in the atmosphere producing more oxygenated and potentially less volatile compounds that may contribute to the secondary organic aerosol (SOA). This work focuses on the characterization of fresh gaseous species present in the exhaust plumes of the passing ships and also on their photochemical aging. Between 26 September and 12 November 2014 measurements were conducted at a sampling site located on a small peninsula at the entrance of Gothenburg's port. The campaign was divided in two periods. During the first period, the fresh plumes of the passing ships were measured through a main inlet. During the second period, the sample passed through the same inlet and was then introduced into a Potential Aerosol Mass (PAM) reactor. The PAM reactor uses UV lamps and high concentrations of oxidants (OH radicals and O3) to oxidize the organic species present in the plumes. The oxidation that takes place within the reactor can be equivalent to up to one week of atmospheric oxidation. Preliminary tests showed that the oxidation employed in the current camping corresponded to 3.4 days in the atmosphere. A Time-of-Flight Chemical Ionization Mass Spectrometer (ToF-CIMS) was employed to monitor the concentration of different organic species present in the fresh and aged plumes. Water (positive) and iodide (negative) ionization methods were employed were water was primarily used for fresh plumes (large fraction of non-polar compounds) while iodide was used for the aged plumes (primarily oxidised products). The H2O, O3 and SO2 concentrations inside the PAM chamber were monitored, and an organic tracer for OH exposure determination

  6. Simulating the Black Saturday 2009 smoke plume with an interactive composition-climate model: Sensitivity to emissions amount, timing, and injection height

    NASA Astrophysics Data System (ADS)

    Field, Robert D.; Luo, Ming; Fromm, Mike; Voulgarakis, Apostolos; Mangeon, Stéphane; Worden, John

    2016-04-01

    We simulated the high-altitude smoke plume from the early February 2009 Black Saturday bushfires in southeastern Australia using the NASA Goddard Institute for Space Studies ModelE2. To the best of our knowledge, this is the first single-plume analysis of biomass burning emissions injected directly into the upper troposphere/lower stratosphere (UTLS) using a full-complexity composition-climate model. We compared simulated carbon monoxide (CO) to a new Aura Tropospheric Emission Spectrometer/Microwave Limb Sounder joint CO retrieval, focusing on the plume's initial transport eastward, anticyclonic circulation to the north of New Zealand, westward transport in the lower stratospheric easterlies, and arrival over Africa at the end of February. Our goal was to determine the sensitivity of the simulated plume to prescribed injection height, emissions amount, and emissions timing from different sources for a full-complexity model when compared to Aura. The most realistic plumes were obtained using injection heights in the UTLS, including one drawn from ground-based radar data. A 6 h emissions pulse or emissions tied to independent estimates of hourly fire behavior produced a more realistic plume in the lower stratosphere compared to the same emissions amount being released evenly over 12 or 24 h. Simulated CO in the plume was highly sensitive to the differences between emissions amounts estimated from the Global Fire Emissions Database and from detailed, ground-based estimates of fire growth. The emissions amount determined not only the CO concentration of the plume but also the proportion of the plume that entered the stratosphere. We speculate that this is due to either or both nonlinear CO loss with a weakened OH sink or plume self-lofting driven by shortwave absorption of the coemitted aerosols.

  7. Numerical Simulations of Europa Hydrothermal Plumes

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.; Lenferink, E.

    2009-12-01

    The liquid water interiors of Europa and other icy moons of the outer solar system are likely to be driven by geothermal heating from the sea floor, leading to the development of buoyant hydrothermal plumes. These plumes potentially control icy surface geomorphology, and are of interest to astrobiologists. We have performed a series of simulations of these plumes using the MITGCM. We assume in this experiment that Europa's ocean is deep (of order 100 km) and unstratified, and that plume buoyancy is controlled by temperature, not composition. A series of experiments was performed to explore a limited region of parameter space, with ocean depth H ranging from 50 to 100 km deep, source heat flux Q between 1 and 10 GW, and values of the Coriolis parameter f between 30% and 90% of the Europa average value. As predicted by earlier work, the plumes in our simulations form narrow cylindrical chimneys (a few km across) under the influence of the Coriolis effect. These plumes broaden over time until they become baroclinically unstable, breaking up into cone-shaped eddies when they become 20-35 km in diameter; the shed eddies are of a similar size. Large-scale currents in the region of the plume range between 1.5 and 5 cm/s; temperature anomalies in the plume far from the seafloor are tiny, varying between 30 and 160 microkelvin. Variations in plume size, shape, speed, and temperature are in excellent agreement with previous laboratory tank experiments, and in rough agreement with theoretical predictions. Plume dynamics and geometry are controlled by a "natural Rossby number" which depends strongly on depth H and Coriolis parameter f, but only weakly on source heat flux Q. However, some specific theoretical predictions are not borne out by these simulations. The time elapsed between startup of the source and the beginning of eddy-shedding is much less variable than predicted; also, the plume temperature varies with ocean depth H when our theory says it should not. Both of

  8. Characterizing the Chemical Composition of the Columbia River Plume: the use of Silicic Acid, Nitrate, Manganese and Salinity as Tracers of Sources of Waters Contributing to the Plume.

    NASA Astrophysics Data System (ADS)

    Bruland, K. W.; Aguilar-Islas, A. M.; Lohan, M. C.

    2004-12-01

    The RISE program is examining the influence of the Columbia River plume on the coastal waters off Washington and Oregon. It is important to define the macro and micro nutrient chemistry of the plume as it enters these coastal waters. Low salinity waters of the Columbia River are encountered just a short distance inside the mouth of the Columbia River estuary. These low salinity waters (salinities of 1 to 5) are low in nitrate (3 to 10 μ M), high in silicic acid (140 to 160 μ M), high in dissolved manganese and relatively high in dissolved iron. Within a remarkably short distance of exiting the mouth of the estuary into the coastal waters, the plume has attained salinities of roughly 13 to 22. The source of seawater that is entrained together with the river water in this near-field mixing regime to form the Columbia River plume can be defined using silicic acid, nitrate, manganese and salinity as tracers. During June and July of 2004, it appears that the seawater being initially entrained with the plume is subsurface, high salinity (>33), nutrient rich (nitrate 25 μ M and silicic acid 35 μ M) water. This is particularly important for the macronutrient nitrate, as this adds a substantial amount of additional nitrate to the plume. The plume water then advects and mixes further away from the source. The combination of these same tracers is useful in identifying the far-field mixing as well. We will present examples of these processes and tracers using data from the 2004 RISE cruises.

  9. Effects of the Orion Launch Abort Vehicle Plumes on Aerodynamics and Controllability

    NASA Technical Reports Server (NTRS)

    Vicker, Darby; Childs, Robert; Rogers,Stuart E.; McMullen, Matthew; Garcia, Joseph; Greathouse, James

    2013-01-01

    Characterization of the launch abort system of the Multi-purpose Crew Vehicle (MPCV) for control design and accurate simulation has provided a significant challenge to aerodynamicists and design engineers. The design space of the launch abort vehicle (LAV) includes operational altitudes from ground level to approximately 300,000 feet, Mach numbers from 0-9, and peak dynamic pressure near 1300psf during transonic flight. Further complicating the characterization of the aerodynamics and the resultant vehicle controllability is the interaction of the vehicle flowfield with the plumes of the two solid propellant motors that provide attitude control and the main propulsive impulse for the LAV. These interactions are a function of flight parameters such as Mach number, altitude, dynamic pressure, vehicle attitude, as well as parameters relating to the operation of the motors themselves - either as a function of time for the AM, or as a result of the flight control system requests for control torque from the ACM. This paper discusses the computational aerodynamic modeling of the aerodynamic interaction caused by main abort motor and the attitude control motor of the MPCV LAV, showing the effects of these interactions on vehicle controllability.

  10. Volcanic controls on ash iron solubility: thermodynamic modeling of gas-ash interaction in the hot core of volcanic plumes

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, G.; Hort, M.; Langmann, B.

    2012-04-01

    Recently it has been shown that volcanic ash can act as a fertilizer for phytoplankton bloom by injecting bio-available iron into the surface ocean. However, it is also well known that iron in volcanic ash at least at its generation point (i.e. magma) is mostly in insoluble form, i.e. not bio-available. Although different volcanic and atmospheric processes are assumed to contribute to the transformation of insoluble iron into soluble salts, the causes of iron mobilization in volcanic ash are poorly constrained. Here we explore the volcanic control on the mobilization of iron in volcanic ash in the hot core of volcanic plumes (T>600° C) based on thermodynamic equilibrium considerations. A conceptual box model is considered for the hot core in which 1000° C magmatic gas, ash and 25° C ambient air are mixed. The initial composition of volcanic gas and ash are parameterized based on three types of tectonic settings (convergent plate, divergent plate, and hot spot) and basaltic to rhyolitic magmas. The effect of the initial oxidation state is also considered by changing the oxygen fugacity. First, magmatic oxides (i.e. SiO2, FeO, MgO etc) are titrated into the magmatic gas at constant temperature and fugacity in order to generate the initial iron carrying minerals. Since the alteration of ash composition is mainly diffusion controlled, we assume that inside the hot core of the volcanic plume the Fe speciation is only affected at or near to the ash surface. Results show that the main initial iron carrying minerals are usually ilmenite and fayalite with some addition of pyhrrotite at reduced conditions in divergent plate and hot spot settings. Then the 1000° C magmatic gas-ash mixture is mixed with the 25° C air (N2 79%, O2 21%) until a temperature of 600° C is reached. Results demonstrate that the hot core functions as an oxidizing reactor for the ash surface transforming the whole Fe2+ minerals to Fe3+ species while being cooled to 600° C. However, in reduced

  11. Measurements of the stratospheric plume from the Mount St. Helens eruption: radioactivity and chemical composition

    SciTech Connect

    Leifer, R.; Hinchliffe, L.; Fisenne, I.; Franklin, H.; Knutson, E.; Olden, M.; Sedlacek, W.; Mroz, E.; Cahill, T.

    1981-11-20

    Gas measurements made in the stratospheric plume from the eruption of Mount St. Helens on 18 May 1980 were not consistent with a reported large injection of radon-222 into the atmosphere. No enrichment in the volatile element polonium was found in filter samples, and the ratio of polonium-210 to lead-210 was not different from background values. Data obtained with an experimental impactor, flown shortly after the eruption, showed an increase of 10/sup 3/ in the stratospheric number concentration of submicrometer sulfate particles compared to concentrations before the eruption.

  12. Measurements of the stratospheric plume from the mount st. Helens eruption: radioactivity and chemical composition.

    PubMed

    Leifer, R; Hinchliffe, L; Fisenne, I; Franklin, H; Knutson, E; Olden, M; Sedlacek, W; Mroz, E; Cahill, T

    1981-11-20

    Gas measurements made in the stratospheric plume from the eruption of Mount St. Helens on 18 May 1980 were not consistent with a reported large injection of radon-222 into the atmosphere. No enrichment in the volatile element polonium was found in filter samples, and the ratio of polonium-210 to lead-210 was not different from background values. Data obtained with an experimental impactor, flown shortly after the eruption, showed an increase of 10(3) in the stratospheric number concentration of submicrometer sulfate particles compared to concentrations before the eruption. PMID:17782443

  13. Mapping methane plumes and the delta C-13 composition of anthropogenic sources in southwest Germany

    NASA Astrophysics Data System (ADS)

    Schmidt, Martina; Yeman, Christiane; Dinger, Florian; Ars, Sebastien; Yver Kwok, Camille

    2016-04-01

    A mobile analyser based on Cavity-Ring-Down Spectroscopy was installed on a vehicle, together with a GPS receiver. This allows us to measure atmospheric methane and carbon dioxide mole fractions and the C-13 isotopes of both gases while driving. Methane mole fraction measurements show a good repeatability even for high frequency measurements whereas the 13CH4 measurements need a longer averaging time of 1 minute for 1 ‰ repeatability and 15 minutes for 0.23 ‰ repeatability. Driving through an emission plume, the signal is typically only 60 seconds long. To overcome the precision problem for the isotope measurements we filled a 25 m tubing when driving through the plume, which was then flushed back through our analyser during 30 minutes. During several campaigns we visited a land fill site, a biogas plant, a dairy cow farm and a natural gas storage and measured an averaged isotopic methane signature(C-13) of -58.3 ±3 ‰, -62.5 ± 1‰, -62.2 ± 2‰, -51 ± 7‰, respectively.

  14. The Effect of Reaction Control System Thruster Plume Impingement on Orion Service Module Solar Array Power Production

    NASA Technical Reports Server (NTRS)

    Bury, Kristen M.; Kerslake, Thomas W.

    2008-01-01

    NASA's new Orion Crew Exploration Vehicle has geometry that orients the reaction control system (RCS) thrusters such that they can impinge upon the surface of Orion's solar array wings (SAW). Plume impingement can cause Paschen discharge, chemical contamination, thermal loading, erosion, and force loading on the SAW surface, especially when the SAWs are in a worst-case orientation (pointed 45 towards the aft end of the vehicle). Preliminary plume impingement assessment methods were needed to determine whether in-depth, timeconsuming calculations were required to assess power loss. Simple methods for assessing power loss as a result of these anomalies were developed to determine whether plume impingement induced power losses were below the assumed contamination loss budget of 2 percent. This paper details the methods that were developed and applies them to Orion's worst-case orientation.

  15. Mobile colloid generation induced by a cementitious plume: mineral surface-charge controls on mobilization.

    PubMed

    Li, Dien; Kaplan, Daniel I; Roberts, Kimberly A; Seaman, John C

    2012-03-01

    Cementitious materials are increasingly used as engineered barriers and waste forms for radiological waste disposal. Yet their potential effect on mobile colloid generation is not well-known, especially as it may influence colloid-facilitated contaminant transport. Whereas previous papers have studied the introduction of cement colloids into sediments, this study examined the influence of cement leachate chemistry on the mobilization of colloids from a subsurface sediment collected from the Savannah River Site, USA. A sharp mobile colloid plume formed with the introduction of a cement leachate simulant. Colloid concentrations decreased to background concentrations even though the aqueous chemical conditions (pH and ionic strength) remained unchanged. Mobile colloids were mainly goethite and to a lesser extent kaolinite. The released colloids had negative surface charges and the mean particle sizes ranged primarily from 200 to 470 nm. Inherent mineralogical electrostatic forces appeared to be the controlling colloid removal mechanism in this system. In the background pH of ~6.0, goethite had a positive surface charge, whereas quartz (the dominant mineral in the immobile sediment) and kaolinite had negative surface charges. Goethite acted as a cementing agent, holding kaolinite and itself onto the quartz surfaces due to the electrostatic attraction. Once the pH of the system was elevated, as in the cementitious high pH plume front, the goethite reversed to a negative charge, along with quartz and kaolinite, then goethite and kaolinite colloids were mobilized and a sharp spike in turbidity was observed. Simulating conditions away from the cementitious source, essentially no colloids were mobilized at 1:1000 dilution of the cement leachate or when the leachate pH was ≤ 8. Extreme alkaline pH environments of cementitious leachate may change mineral surface charges, temporarily promoting the formation of mobile colloids. PMID:22316126

  16. Utilization of a hydraulic barrier to control migration of a uranium plume

    SciTech Connect

    Brettschneider, D.J.; Simmons, R.A. Jr.; Kappa, J.D.; Stover, J.A.

    1995-01-25

    A uranium plume emanating from the U.S. Department of Energy`s Fernald Environmental Management Project (FEMP) in Fernald, Ohio had migrated off site and the leading edge of the plume had already mixed with an organic and inorganic plume emanating from two industries south of the FEMP. A method was needed to prevent the further southern migration of the plume, minimize any impacts to the geometry, concentrations, distribution or flow patterns of the organic and inorganic plumes emanating from the off-site industries, while meeting the ultimate cleanup goals for the FEMP. This paper discusses the use of a hydraulic barrier created to meet these goals by pumping a five well recovery system and the problems associated with the disposition of over 2 million gallons per day of water with low concentrations of uranium.

  17. Characterization of Vapour Plume Species and Deposition Residues Resulting from Pulsed Laser Ablation of a Graphite/Epoxy Composite

    NASA Astrophysics Data System (ADS)

    Roybal, R. E.; Miglionico, C. J.; Stein, C.; Murr, L. E.; Lincoln, K. A.

    1995-01-01

    A modified time-of-flight mass spectrometer fitted with a special collection stage for carbon-coated transmission electron microscope specimen grids is used to monitor laser-pulse ablation products from graphite/epoxy composite targets. Scanning electron microscopy observations show ablation damage to consist of matrix pyrolysis, fibre fracture and spallation of fragments which include elemental hydrogen, carbon epoxide and acetylene groups. Transmission electron microscope examination of specimen grids showed a variety of crystals and polycrystalline hexagonal graphites having a wide range of shapes including spheres and faceted polyhedra and platelets, textured flake structures, microrosettes. These observations lend some credibility to a model for laser-shock and pyrolysis effects which create molecular plume fragments and deposition fragments of hexagonal graphite.

  18. Organic composition of carbonaceous aerosols in an aged prescribed fire plume

    NASA Astrophysics Data System (ADS)

    Yan, B.; Zheng, M.; Hu, Y. T.; Lee, S.; Kim, H. K.; Russell, A. G.

    2007-12-01

    Aged smoke from a prescribed fire (dominated by conifers) impacted Atlanta, GA on 28 February 2007 and dramatically increased hourly ambient concentrations of PM2.5 and organic carbon (OC) up to 140 and 72 μg m-3, respectively. It was estimated that over 1 million residents were exposed to the smoky air lasting from the late afternoon to midnight. To better understand the processes impacting the aging of fire plumes, a detailed chemical speciation of carbonaceous aerosols was conducted by gas chromatography/mass spectrometry (GC/MS) analysis. Ambient concentrations of many organic species (levoglucosan, resin acids, retene, n-alkanes, n-alkanoic acids) associated with wood burning emission were significantly elevated on the event day. Levoglucosan increased by a factor of 10, while hopanes, steranes, cholesterol and major polycyclic aromatic hydrocarbons (PAHs) did not show obvious increases. Strong odd over even carbon number predominance was found for n-alkanes versus even over odd predominance for n-alkanoic acids. Alteration of resin acids during transport from burning sites to monitors is suggested by the observations. Our study also suggests that large quantities of biogenic volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) were released both as products of combustion and unburned vegetation heated by the fire. Higher leaf temperature can stimulate biogenic VOC and SVOC emissions, which enhanced formation of secondary organic aerosols (SOA) in the atmosphere. This is supported by elevated ambient concentrations of secondary organic tracers (dicarboxylic acids, 2-methyltetrols, pinonic acid and pinic acid). An approximate source profile was built for the aged fire plume to help better understand evolution of wood smoke emission and can be used for source apportionment.

  19. Organic composition of carbonaceous aerosols in an aged prescribed fire plume

    NASA Astrophysics Data System (ADS)

    Yan, B.; Zheng, M.; Hu, Y. T.; Lee, S.; Kim, H. K.; Russell, A. G.

    2008-11-01

    Aged smoke from a prescribed fire (dominated by conifers) impacted Atlanta, GA on 28 February 2007 and dramatically increased hourly ambient concentrations of PM2.5 and organic carbon (OC) up to 140 and 72 μg m-3, respectively. It was estimated that over 1 million residents were exposed to the smoky air lasting from the late afternoon to midnight. To better understand the processes impacting the aging of fire plumes, a detailed chemical speciation of carbonaceous aerosols was conducted by gas chromatography/mass spectrometry (GC/MS) analysis. Ambient concentrations of many organic species (levoglucosan, resin acids, retene, n-alkanes and n-alkanoic acids) associated with wood burning emission were significantly elevated on the event day. Levoglucosan increased by a factor of 10, while hopanes, steranes, cholesterol and major polycyclic aromatic hydrocarbons (PAHs) did not show obvious increases. Strong odd over even carbon number predominance was found for n-alkanes versus even over odd predominance for n-alkanoic acids. Alteration of resin acids during transport from burning sites to monitors is suggested by the observations. Our study also suggests that large quantities of biogenic volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) were released both as products of combustion and unburned vegetation heated by the fire. Higher leaf temperature can stimulate biogenic VOC and SVOC emissions, which enhanced formation of secondary organic aerosols (SOA) in the atmosphere. This is supported by elevated ambient concentrations of secondary organic tracers (dicarboxylic acids, 2-methyltetrols, pinonic acid and pinic acid). An approximate source profile was built for the aged fire plume to help better understand evolution of wood smoke emission and for use in source impact assessment.

  20. Lithospheric controls on magma composition along Earth's longest continental hotspot track

    NASA Astrophysics Data System (ADS)

    Davies, D. R.; Rawlinson, N.; Iaffaldano, G.; Campbell, I. H.

    2015-09-01

    Hotspots are anomalous regions of volcanism at Earth's surface that show no obvious association with tectonic plate boundaries. Classic examples include the Hawaiian-Emperor chain and the Yellowstone-Snake River Plain province. The majority are believed to form as Earth's tectonic plates move over long-lived mantle plumes: buoyant upwellings that bring hot material from Earth's deep mantle to its surface. It has long been recognized that lithospheric thickness limits the rise height of plumes and, thereby, their minimum melting pressure. It should, therefore, have a controlling influence on the geochemistry of plume-related magmas, although unambiguous evidence of this has, so far, been lacking. Here we integrate observational constraints from surface geology, geochronology, plate-motion reconstructions, geochemistry and seismology to ascertain plume melting depths beneath Earth's longest continental hotspot track, a 2,000-kilometre-long track in eastern Australia that displays a record of volcanic activity between 33 and 9 million years ago, which we call the Cosgrove track. Our analyses highlight a strong correlation between lithospheric thickness and magma composition along this track, with: (1) standard basaltic compositions in regions where lithospheric thickness is less than 110 kilometres; (2) volcanic gaps in regions where lithospheric thickness exceeds 150 kilometres; and (3) low-volume, leucitite-bearing volcanism in regions of intermediate lithospheric thickness. Trace-element concentrations from samples along this track support the notion that these compositional variations result from different degrees of partial melting, which is controlled by the thickness of overlying lithosphere. Our results place the first observational constraints on the sub-continental melting depth of mantle plumes and provide direct evidence that lithospheric thickness has a dominant influence on the volume and chemical composition of plume-derived magmas.

  1. Lithospheric Controls on Magma Composition along Earth's Longest Continental Hotspot-Track

    NASA Astrophysics Data System (ADS)

    Rawlinson, N.; Davies, R.; Iaffaldano, G.; Campbell, I. H.

    2015-12-01

    Hotspots are anomalous regions of volcanism at Earth's surface that show no obvious association with tectonic plate boundaries. Classic examples include the Hawaiian-Emperor chain and the Yellowstone-Snake River Plain province. The majority are believed to form as Earth's tectonic plates move over long-lived mantle plumes: buoyant upwellings that bring hot material from Earth's deep-mantle to its surface. It has long been recognised that lithospheric thickness limits the rise height of plumes and, thereby, their minimum melting pressure. It should, therefore, have a controlling influence on the geochemistry of plume-related magmas, although unambiguous evidence of this has, thus far, been lacking. Here we integrate observational constraints from surface geology, geochronology, plate-motion reconstructions, geochemistry and seismology to ascertain plume melting depths beneath Earth's longest continental hotspot-track, a ~2000 km long track in eastern Australia that displays a record of volcanic activity between ~33 and ~9 Ma, which we call the Cosgrove track. Our analyses highlight a strong correlation between lithospheric thickness and magma composition along this track, with: (i) standard basaltic compositions in regions where lithospheric thickness is less than ~110 km; (ii) volcanic gaps in regions where lithospheric thickness exceeds ~150 km; and (iii) low-volume, leucitite-bearing volcanism in regions of intermediate lithospheric thickness. Trace-element concentrations from samples along this track support the notion that these compositional variations result from different degrees of partial-melting, which is controlled by the thickness of overlying lithosphere. Our results place the first observational constraints on the subcontinental melting depth of mantle plumes and provide direct evidence that lithospheric thickness has a dominant influence on the volume and chemical composition of plume-derived magmas.

  2. Lithospheric controls on magma composition along Earth's longest continental hotspot track.

    PubMed

    Davies, D R; Rawlinson, N; Iaffaldano, G; Campbell, I H

    2015-09-24

    Hotspots are anomalous regions of volcanism at Earth's surface that show no obvious association with tectonic plate boundaries. Classic examples include the Hawaiian-Emperor chain and the Yellowstone-Snake River Plain province. The majority are believed to form as Earth's tectonic plates move over long-lived mantle plumes: buoyant upwellings that bring hot material from Earth's deep mantle to its surface. It has long been recognized that lithospheric thickness limits the rise height of plumes and, thereby, their minimum melting pressure. It should, therefore, have a controlling influence on the geochemistry of plume-related magmas, although unambiguous evidence of this has, so far, been lacking. Here we integrate observational constraints from surface geology, geochronology, plate-motion reconstructions, geochemistry and seismology to ascertain plume melting depths beneath Earth's longest continental hotspot track, a 2,000-kilometre-long track in eastern Australia that displays a record of volcanic activity between 33 and 9 million years ago, which we call the Cosgrove track. Our analyses highlight a strong correlation between lithospheric thickness and magma composition along this track, with: (1) standard basaltic compositions in regions where lithospheric thickness is less than 110 kilometres; (2) volcanic gaps in regions where lithospheric thickness exceeds 150 kilometres; and (3) low-volume, leucitite-bearing volcanism in regions of intermediate lithospheric thickness. Trace-element concentrations from samples along this track support the notion that these compositional variations result from different degrees of partial melting, which is controlled by the thickness of overlying lithosphere. Our results place the first observational constraints on the sub-continental melting depth of mantle plumes and provide direct evidence that lithospheric thickness has a dominant influence on the volume and chemical composition of plume-derived magmas. PMID:26367795

  3. Plume shape optimization of small attitude control thrusters with respect to impingement and thrust

    NASA Astrophysics Data System (ADS)

    Naumann, K. W.

    1988-08-01

    A comparative description of plumes emanating from different nozzles, similar to those of typical small hydrazine thrusters, is presented. The objective is to point out the effect of nozzle design on free jet expansion. The investigation shows an optimum nozzle wall angle exists which causes the minimal spreading plume. With increasing nozzle size and stagnation pressure the plume spreads wider. In this case the optimum nozzle wall angle is clearly marked concerning the thrust efficiency and minimization of impingement effects, the use of smaller thrusters with large wall angles is favorable.

  4. The Composition and Structure of Enceladus' Plume from a Cassini UVIS Observation of a Solar Occultation

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Shemansky, D. E.; Esposito, L. W.; Stewart, I.; Hendrix, A. R.

    2010-12-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed an occultation of the sun by Enceladus’ water vapor plume on May 18, 2010. UVIS used its extreme ultraviolet (EUV) channel for this new observation, to detect absorptions in the wavelength range 55 to 110 nm. Molecular nitrogen and water vapor have absorptions in this range. The N2 b(3,0) line is at 97.2 nm, extinguishing the solar H Lyman gamma emission. Cassini’s Ion and Neutral Mass Spectrometer (INMS) detected a species with an atomic mass of 28 amu, which could be CO, C2H4 or N2 [1, 2]. Definitive UVIS detection of N2 was important to clear up this ambiguity, and this was an important goal of the observation, as the presence or lack of N2 is key to models of the geochemistry in the interior [3, 4, 5]. UVIS did not detect N2 and we set an upper limit for the column density of 3 x 10^13 cm^-2. The absorption features in the spectrum are best fit by a water vapor column density of 0.9 x 10^16 cm^-2. This column density is in family with previous UVIS measurements from stellar occultations in 2005 and 2007 at far ultraviolet wavelengths, suggesting that Enceladus’ activity has been stable for the last 5 years [6, 7]. We used fluctuations in the signal to probe the structure of the gas jets again, as was analyzed in the 2007 occultation of zeta Orionis [7]. Gas jets are correlated to the dust jets detected by Cassini’s Imaging Science Subsystem [8]. The path of the sun cut through the jets horizontally at an altitude above the limb of ~15 km at the closest point. The resolution of the solar occultation is higher than the stellar occultation, and collimation of the gas jets observed in the solar occultation is greater than estimated in 2007. The observed collimation allows us to derive a mach number of ~4 for the ratio of the vertical velocity in the jet to the thermal velocity of the plume gas. The new opportunity afforded by this solar occultation is used to further model the structure and

  5. Velocity control as a tool for optimal plume containment in the Equus Beds aquifer, Kansas

    USGS Publications Warehouse

    Heidari, M.; Sadeghipour, J.; Drici, O.

    1987-01-01

    A ground-water-management model was developed to investigate the best management options for the containment of an oil-field-brine plume in the Equus Beds aquifer in south-central Kansas. The main purpose of the management model was to find the optimal locations and minimum rates of pumpage of a set of plume-interception wells, to successfully reverse the velocity vectors at observation wells located along the plume front, and also to satisfy freshwater demands from supply wells. The effects of the calculated minimum withdrawals from the interception wells on the migration of contaminants throughout the ground-water system were evaluated utilizing a solute-transport model. This latter analysis was carried out to ensure the containment of the plume. Whereas application of the management model to the study area achieves the management objectives, the implementation of the results is believed to be impractical and expensive.

  6. Control of trichloroethylene plume migration using a biobarrier system: a field-scale study.

    PubMed

    Kuo, Y C; Wang, S Y; Chang, Y M; Chen, S H; Kao, C M

    2014-01-01

    The objective of this field-scale study was to evaluate the effectiveness of controlling trichloroethylene (TCE) plume migration using the polycolloid substrate (PS) biobarrier. The developed PS (containing soybean oil, lactate and surfactants) could release substrate to enhance the TCE dechlorination. In this study, a biobarrier comprising PS injection wells was installed. Injection wells were installed at 5-m intervals, and approximately 15 L of PS was injected into each well. Results show that TCE concentrations in the injection wells dropped from an average of 87 μg/L to below 1 μg/L after 35 days of PS injection. The total organic carbon concentrations in the injection wells increased from an average of 2.1-543 mg/L after 30 days of PS injection. The dissolved oxygen (DO) concentrations and oxidation-reduction potential (ORP) values dropped from an average of 1.6 mg/L to below 0.1 mg/L and from 124 mv to -14 mv after 20 days of injection, respectively. The DO and ORP remained in anaerobic conditions during the remaining 100 days of the operational period. TCE degradation by-products were observed in groundwater samples during the operational period. This reveals that the addition of PS could effectively enhance the reductive dechlorinating of TCE. PMID:24845323

  7. Using Hydrothermal Plumes and Their Chemical Composition to Identify and Understand Hydrothermal Activity at Explorer Ridge

    NASA Astrophysics Data System (ADS)

    Resing, J.; Lebon, G.; Baker, E.; Walker, S.; Nakamura, K.; Silvers, B.

    2002-12-01

    During June and July, 2002, an extensive survey of the hydrothermal systems of the Explorer Ridge was made aboard the R/V Thomas Thompson. This survey employed hydrocasts and the Autonomous Benthic Explorer (ABE) to locate and map hydrothermal vent fields. A total of 28 hydrocasts (17 verticals and 11 tow-yos) were used to search for hydrothermal activity from 49.5°N to 50.3°N on the Explorer Ridge. During the hydrocasts continuous measurements were made of conductivity, temperature, pressure, light backscatter, eH, Fe, Mn, and pH. Discrete samples were collected for total dissolved Fe and Mn, methane, pH, total CO2, and particulate matter. Most of the strong hydrothermal venting was near the Magic Mountain area of the Explorer Ridge at ~49.76° N, 130.26° W, where strong particulate backscatter signals (~0.130 NTUs) and moderate temperature anomalies (~ 0.05 °C) were detected. The particulate matter causing the backscatter was made up primarily of volatile particulate sulfur (PS) with little to no hydrothermal PFe. PS:PFe ratios exceeded 25 in the areas of most intense venting, . These PFe and PS data suggest that the hydrothermal Fe, if any, is deposited as sulfide minerals beneath the sea floor and that S is far in excess of Fe in the hydrothermal fluids. In the most intense plumes,total dissolvable Fe and Mn were between 20 and 30 nM, pH anomalies exceeded 0.025 pH units (indicating an increase of ~10uM CO2), and methane reached 16nM. These results suggest that the fluids exiting the sea floor are metal-poor and moderately gas-rich.

  8. Support to Aviation Control Service (SACS): an online service for near-real-time satellite monitoring of volcanic plumes

    NASA Astrophysics Data System (ADS)

    Brenot, H.; Theys, N.; Clarisse, L.; van Geffen, J.; van Gent, J.; Van Roozendael, M.; van der A, R.; Hurtmans, D.; Coheur, P.-F.; Clerbaux, C.; Valks, P.; Hedelt, P.; Prata, F.; Rasson, O.; Sievers, K.; Zehner, C.

    2014-05-01

    Volcanic eruptions emit plumes of ash and gases into the atmosphere, potentially at very high altitudes. Ash-rich plumes are hazardous for airplanes as ash is very abrasive and easily melts inside their engines. With more than 50 active volcanoes per year and the ever-increasing number of commercial flights, the safety of airplanes is a real concern. Satellite measurements are ideal for monitoring global volcanic activity and, in combination with atmospheric dispersion models, to track and forecast volcanic plumes. Here we present the Support to Aviation Control Service (SACS, http://sacs.aeronomie.be/ecosystem), which is a free online service initiated by the European Space Agency (ESA) for the near-real-time (NRT) satellite monitoring of volcanic plumes of SO2 and ash. It combines data from three ultraviolet (UV)-visible and three infrared (IR) spectrometers. The UV-vis sensors are the Ozone Monitoring Instrument (OMI) and the Global Ozone Monitoring Experiment-2 (GOME-2) on-board the two polar orbiting meteorological satellites (MetOp-A & MetOp-B) operated by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). The IR sensors are the Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) on-board MetOp-A & MetOp-B. This new multi-sensor warning system of volcanic emissions is based on the selective detection of SO2 and ash. This system is optimised to avoid false alerts while at the same time limiting the number of notifications in case of large plumes. A successful rate with more than 95% of notifications corresponding to true volcanic activity is obtained by the SACS system.

  9. CFD Simulation of the Space Shuttle Launch Vehicle with Booster Separation Motor and Reaction Control System Plumes

    NASA Technical Reports Server (NTRS)

    Gea, L. M.; Vicker, D.

    2006-01-01

    The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.

  10. Influence of Chemical Composition on Microbial Communities in Deep Water Plumes After the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Redmond, M. C.; Valentine, D. L.

    2012-12-01

    After the Deepwater Horizon oil spill, large amounts of natural gas and oil remained dissolved or suspended in the deep Gulf of Mexico. These deep water plumes were preferentially enriched in soluble hydrocarbons, including methane, ethane, propane, cyclohexane, benzene, toluene, and xylenes. Microbial communities responded rapidly to the influx of hydrocarbons, and were initially dominated by a novel group of Oceanospirillales. As the summer progressed, Colwellia and Cycloclasticus became more abundant, followed by an increase in methanotrophs and methylotrophs. DNA stable isotope probing experiments showed that Colwellia spp. were the primary bacteria assimilating carbon from ethane and propane, suggesting that the presence of natural gas had a significant effect on the microbes that responded to the spill. Additional incubation experiments suggested that Colwellia could also consume benzene and other hydrocarbons in crude oil, but it was unclear whether the presence of natural gas stimulated or inhibited the consumption of other hydrocarbons. In order to determine the effect of natural gas on microbial community composition and the degradation of petroleum hydrocarbons, we conducted a series of incubation experiments with seawater from the deep Gulf of Mexico. We also conducted experiments to determine the effect of individual hydrocarbon compounds on the microbial community response. We will present results from both sets of experiments.

  11. Composition of the Tarim mantle plume: Constraints from clinopyroxene antecrysts in the early Permian Xiaohaizi dykes, NW China

    NASA Astrophysics Data System (ADS)

    Wei, Xun; Xu, Yi-Gang; Luo, Zhen-Yu; Zhao, Jian-Xin; Feng, Yue-Xing

    2015-08-01

    Numerous alkaline basaltic dykes crosscut the Early Permian Xiaohaizi wehrlite in drill-cores and syenite intrusion in the Tarim large igneous province, NW China. One basaltic dyke contains abundant clinopyroxene macrocrysts with strong resorption textures. Such a textural disequilibrium is consistent with their contrasting chemistry between the macrocrysts (Mg# = 80-89) and the host dyke (Mg# = 39, corresponding to Mg# = 73 of clinopyroxene in equilibrium with the dyke), indicating that they are not phenocrysts. The clinopyroxene macrocrysts are characterized by low TiO2 (0.26-1.09 wt.%), Al2O3 (1.15-3.10 wt.%) and Na2O (0.16-0.37 wt.%), unlike those in mantle peridotites but resembling those in layered mafic intrusions in the same area. The clinopyroxene macrocrysts and the clinopyroxenes from the Xiaohaizi cumulate wehrlites define a coherent compositional trend and have identical trace element patterns, pointing to a comagmatic origin for these crystals. Accordingly, the macrocrysts cannot be xenocrysts foreign to the magmatic system. Rather they are antecrysts that crystallized from progenitor magmas and have been reincorporated into the host dyke before intrusion. The 87Sr/86Sri (0.7035-0.7037) and εNdi (4.5-4.8) of the clinopyroxene macrocrysts with high Mg# (80-89) are apparently lower and higher than their respective ratios of the clinopyroxenes in the wehrlites (Mg# = 75-84, 87Sr/86Sri = 0.7038-0.7041, εNdi = 1.0-1.9). This difference in isotopes can be accounted for by assimilation and fractional crystallization (AFC) process operated during the formation of the Xiaohaizi intrusion. In this sense, the clinopyroxene macrocrysts record the composition of the uncontaminated Tarim plume-derived melts.

  12. The planet beyond the plume hypothesis

    NASA Astrophysics Data System (ADS)

    Smith, Alan D.; Lewis, Charles

    1999-12-01

    Acceptance of the theory of plate tectonics was accompanied by the rise of the mantle plume/hotspot concept which has come to dominate geodynamics from its use both as an explanation for the origin of intraplate volcanism and as a reference frame for plate motions. However, even with a large degree of flexibility permitted in plume composition, temperature, size, and depth of origin, adoption of any limited number of hotspots means the plume model cannot account for all occurrences of the type of volcanism it was devised to explain. While scientific protocol would normally demand that an alternative explanation be sought, there have been few challenges to "plume theory" on account of a series of intricate controls set up by the plume model which makes plumes seem to be an essential feature of the Earth. The hotspot frame acts not only as a reference but also controls plate tectonics. Accommodating plumes relegates mantle convection to a weak, sluggish effect such that basal drag appears as a minor, resisting force, with plates having to move themselves by boundary forces and continents having to be rifted by plumes. Correspondingly, the geochemical evolution of the mantle is controlled by the requirement to isolate subducted crust into plume sources which limits potential buffers on the composition of the MORB-source to plume- or lower mantle material. Crustal growth and Precambrian tectonics are controlled by interpretations of greenstone belts as oceanic plateaus generated by plumes. Challenges to any aspect of the plume model are thus liable to be dismissed unless a counter explanation is offered across the geodynamic spectrum influenced by "plume theory". Nonetheless, an alternative synthesis can be made based on longstanding petrological evidence for derivation of intraplate volcanism from volatile-bearing sources (wetspots) in conjunction with concepts dismissed for being incompatible or superfluous to "plume theory". In the alternative Earth, the sources for

  13. The composition and distribution of the rejuvenated component across the Hawaiian plume: Hf-Nd-Sr-Pb isotope systematics of Kaula lavas and pyroxenite xenoliths

    NASA Astrophysics Data System (ADS)

    Bizimis, Michael; Salters, Vincent J. M.; Garcia, Michael O.; Norman, Marc D.

    2013-10-01

    Rejuvenated volcanism refers to the reemergence of volcanism after a hiatus of 0.5-2 Ma following the voluminous shield building stage of Hawaiian volcanoes. The composition of the rejuvenated source and its distribution relative to the center of the plume provide important constraints on the origin of rejuvenated volcanism. Near-contemporaneous lavas from the Kaula-Niihau-Kauai ridge and the North Arch volcanic field that are aligned approximately orthogonally to the plume track can constrain the lateral geochemical heterogeneity and distribution of the rejuvenated source across the volcanic chain. Nephelinites, phonolites and pyroxenite xenoliths from Kaula Island have radiogenic Hf, Nd and unradiogenic Sr isotope compositions consistent with a time-integrated depleted mantle source. The pyroxenites and nephelinites extend to the lowest 208Pb/204Pb reported in Hawaiian rocks. These data, along with new Pb isotope data from pyroxenites from the Salt Lake Crater (Oahu) redefine the composition of the depleted end-member of the Hawaiian rejuvenated source at 208Pb/204Pb=37.35±0.05, 206Pb/204Pb = 17.75±0.03, ɛNd = 9-10, ɛHf ˜16-17 and 87Sr/88Sr <0.70305. The revised isotope composition also suggests that this depleted component may contribute to LOA and KEA trend shield stage Hawaiian lavas, consistent with the rejuvenated source being part of the Hawaiian plume and not entrained upper mantle. The isotope systematics of rejuvenated magmas along the Kaula-Niihau-Kauai-North Arch transect are consistent with a larger proportion of the rejuvenated depleted component in the periphery of the plume track rather than along its axis.

  14. Indications for control of the Iceland plume on the Eocene-Oligocene "greenhouse-icehouse" climate transition

    NASA Astrophysics Data System (ADS)

    Abelson, M.; Agnon, A.; Almogi-Labin, A.

    2009-12-01

    The Eocene/Oligocene boundary, at about 33.5 Myr ago, marks the transition from ‘greenhouse-’ to ‘icehouse-world', accompanied by a sudden cooling of ocean bottom-water. We show that this global event is simultaneous with a deep rooted mantle process: an abrupt suppression of the Iceland plume triggered rapid deepening of the Greenland-Scotland Ridge (GSR) - the sill moderating deep circulation between the Nordic seas and North Atlantic. Striking coincidence of several sets of events reflects the abrupt suppression of the Iceland plume and a rapid removal of its influence on the nearby Reykjanes Ridge (RR): 1) A sudden segmentation of the paleo-RR seen on seafloor magnetic anomalies, 2) a drop in spreading rate of the North Atlantic, 3) a transition from thick to normal oceanic crust, and 4) a rapid deepening and accelerated subsidence of the GSR, inferred from the sedimentary record of DSDP site 336. The plume suppression and the concomitant GSR deepening coincide with the initiation of North Atlantic Deep Water (NADW) at the Eocene/Oligocene (E/O) transition, attested by onset of drift sedimentation in the Faeroe-Shetland Channel (FSC), the deepest spill-point on the GSR, and in the North Atlantic, the Feni Drift. These processes have influenced global deepwater composition and temperature as indicated by the striking correlation with the jump in global δ18O (>1‰) measured on benthic foraminifers that reflects the E/O global cooling, and with enrichment of unradiogenic Nd isotopes in the southeastern Atlantic and Southern Ocean. The initiation of Atlantic thermohaline circulation at that time is inferred from the abrupt split between planktonic and benthic δ18O, indicating the building of ocean water stratification. This scenario is further corroborated by a reversal in benthic δ18O at the late Oligocene, coincident with the renewal of vigorous Iceland plume some 25 Myr ago, causing a considerable retardation in NADW fluxes. The plume renewal is

  15. Indications for control of the Iceland plume on the Eocene Oligocene “greenhouse icehouse” climate transition

    NASA Astrophysics Data System (ADS)

    Abelson, Meir; Agnon, Amotz; Almogi-Labin, Ahuva

    2008-01-01

    The Eocene/Oligocene boundary, at about 33.5 Myr ago, marks the transition from 'greenhouse-' to 'icehouse-world', accompanied by a sudden cooling of ocean bottom-water. We show that this global event is simultaneous with a deep rooted mantle process: an abrupt suppression of the Iceland plume triggered rapid deepening of the Greenland-Scotland Ridge (GSR) — the sill moderating deep circulation between the Nordic seas and North Atlantic. Striking coincidence of several sets of events reflects the abrupt suppression of the Iceland plume and a rapid removal of its influence on the nearby Reykjanes Ridge (RR): 1) A sudden segmentation of the paleo-RR seen on seafloor magnetic anomalies, 2) a drop in spreading rate of the North Atlantic, 3) a transition from thick to normal oceanic crust, and 4) a rapid deepening and accelerated subsidence of the GSR, inferred from the sedimentary record of DSDP site 336. The plume suppression and the concomitant GSR deepening coincide with the initiation of North Atlantic Deep Water (NADW) at the Eocene/Oligocene (E/O) transition, attested by onset of drift sedimentation in the Faroe-Shetland Channel (FSC), the deepest spill-point on the GSR, and in the North Atlantic, the Feni Drift. These processes have influenced global deepwater composition and temperature as indicated by the striking correlation with the jump in global δ18O (> 1‰) measured on benthic foraminifers that reflects the E/O global cooling, and with enrichment of unradiogenic Nd isotopes in the southeastern Atlantic and Southern Ocean. The initiation of Atlantic thermohaline circulation at that time is inferred from the abrupt split between planktonic and benthic δ18O, indicating the building of ocean-water stratification. This scenario is further corroborated by a reversal in benthic δ18O at the late Oligocene, coincident with the renewal of vigorous Iceland plume some 25 Myr ago, causing a considerable retardation in NADW fluxes. The plume renewal is inferred

  16. Evolution of North Atlantic Passive Margins Controlled by the Iceland Mantle Plume

    NASA Astrophysics Data System (ADS)

    Parnell-Turner, R. E.; White, N. J.; Henstock, T.; Murton, B. J.; Jones, S. M.

    2015-12-01

    Evolution of North Atlantic passive margins has been profoundly influenced by the Iceland mantle plume over the past 60 Ma. Residual depth anomalies of oceanic lithosphere, long wavelength gravity anomalies and seismic tomographic models show that upwelling mantle material extends from Baffin Bay to Western Norway. At fringing passive margins such as Northwest Scotland, there is evidence for present-day dynamic support of the crust. The Iceland plume is bisected by the Reykjanes Ridge ridge, which acts as a tape-recorder of the temporal variability of the plume. We present regional seismic reflection profiles that traverse the oceanic basin between northwest Europe and Greenland. A diachronous pattern of V-shaped ridges and troughs are imaged beneath marine sediments, revealing a complete record of transient periodicity that can be traced continuously back to ~55 Myrs. This periodicity increases from ~3 to ~8 Ma with clear evidence for minor, but systematic, asymmetric crustal accretion. V-shaped ridges grow with time and reflect small (5-30°C) changes in mantle temperature, consistent with episodic generation of hot solitary waves triggered by growth of thermal boundary layer instabilities within the mantle. Our continuous record of convective activity suggests that the otherwise uniform thermal subsidence of sedimentary basins, which fringe the North Atlantic Ocean, has been punctuated by periods of variable dynamic topography. This record can explain a set of diverse observations from the geologic record. Paleogene unconformities in the Faroe-Shetland Basin, the punctuated deposition of contourite drifts and variations in deep-water current strength can all be explained by transient mantle plume behavior. These signals of convective activity should lead to improved insights into the fluid dynamics of the mantle, and into the evolution of volcanic passive margins.

  17. Electrification of volcanic plumes

    NASA Astrophysics Data System (ADS)

    Mather, T. A.; Harrison, R. G.

    2006-07-01

    Volcanic lightning, perhaps the most spectacular consequence of the electrification of volcanic plumes, has been implicated in the origin of life on Earth, and may also exist in other planetary atmospheres. Recent years have seen volcanic lightning detection used as part of a portfolio of developing techniques to monitor volcanic eruptions. Remote sensing measurement techniques have been used to monitor volcanic lightning, but surface observations of the atmospheric electric Potential Gradient (PG) and the charge carried on volcanic ash also show that many volcanic plumes, whilst not sufficiently electrified to produce lightning, have detectable electrification exceeding that of their surrounding environment. Electrification has only been observed associated with ash-rich explosive plumes, but there is little evidence that the composition of the ash is critical to its occurrence. Different conceptual theories for charge generation and separation in volcanic plumes have been developed to explain the disparate observations obtained, but the ash fragmentation mechanism appears to be a key parameter. It is unclear which mechanisms or combinations of electrification mechanisms dominate in different circumstances. Electrostatic forces play an important role in modulating the dry fall-out of ash from a volcanic plume. Beyond the local electrification of plumes, the higher stratospheric particle concentrations following a large explosive eruption may affect the global atmospheric electrical circuit. It is possible that this might present another, if minor, way by which large volcanic eruptions affect global climate. The direct hazard of volcanic lightning to communities is generally low compared to other aspects of volcanic activity.

  18. Real-time in situ measurements of volcanic plume physico-chemical properties using Controlled METeorological balloons

    NASA Astrophysics Data System (ADS)

    Durant, Adam; Voss, Paul; Watson, Matthew; Roberts, Tjarda; Thomas, Helen; Prata, Fred; Sutton, Jeff; Mather, Tamsin; Witt, Melanie; Patrick, Matthew

    2010-05-01

    While the climatic effects of volcanogenic sulphate aerosol in the stratosphere are well characterised, the nature and global impact of sustained tropospheric volcanic degassing is less well understood. In situ measurement of volcanic emissions can be used to understand plume processes (e.g., microphysics and chemistry), and used to validate and improve remote sensing techniques. New developments in sensor and communication technologies have led to the production of miniaturized lightweight unmanned atmospheric measurement platforms. Controlled METeorological (CMET) balloons collect real-time observations of atmospheric physico-chemical properties at altitudes of up to 5 km for hours or even days at a time. Standard measurements include pressure (± 10 mb), aspirated temperature (± 0.3 C), relative humidity (± 5 %) and location (GPS position ± 5 m horizontal, ± 50 m vertical). Balloon platform-based measurements of volcanic plume properties were made for the first time using CMET balloons equipped with miniature electrochemical sensors during the eruption of Halema'uma'u crater (Kilauea) in Hawai'i in 2008. In addition, multiple measurement platforms were simultaneously deployed that included (1) ground-based remote measurements (mini-DOAS and UV camera); (2) satellite-based sensors (MODIS and OMI); and (3) in situ sampling at the emission source using ground-based electrochemical sensor instrumentation. During the 25 July 2008 flight, a single CMET balloon remained in the plume and collected data for several hours. Ratios of [H2O] and [SO2] correlate in proximal regions of the plume, though were found to anti-correlate further downwind. Correlation is explained through co-emission of SO2 and H2O at source, as has been frequently previously observed e.g. by FTIR. Anti-correlation of [H2O] and [SO2] ratios has not previously been reported and may reflect dehydration of the aged plume through condensation of water vapour on volcanogenic sulphate aerosol. The

  19. Multi-sensor satellite monitoring of ash and SO2 volcanic plume in support to aviation control

    NASA Astrophysics Data System (ADS)

    Brenot, Hugues; Theys, Nicolas; Clarisse, Lieven; van Geffen, Jos; van Gent, Jeroen; Van Roozendael, Michel; van der A, Ronald; Hurtmans, Daniel; Coheur, Pierre-Francois; Clerbaux, Cathy; Valks, Pieter; Hedelt, Pascal; Prata, Fred; Rasson, Olivier; Sievers, Klaus; Zehner, Claus

    2014-05-01

    The 'Support to Aviation Control Service' (SACS; http://sacs.aeronomie.be) is an ESA-funded project hosted by the Belgian Institute for Space Aeronomy since 2007. The service provides near real-time (NRT) global volcanic ash and SO2 observations, as well as notifications in case of volcanic eruptions (success rate >95% for ash and SO2). SACS is based on the combined use of UV-visible (OMI, GOME-2 MetOp-A, GOME-2 MetOp-B) and infrared (AIRS, IASI MetOp-A, IASI MetOp-B) satellite instruments. The SACS service is primarily designed to support the Volcanic Ash Advisory Centers (VAACs) in their mandate to gather information on volcanic clouds and give advice to airline and air traffic control organisations. SACS also serves other users that subscribe to the service, in particular local volcano observatories, research scientists and airliner pilots. When a volcanic eruption is detected, SACS issues a warning that takes the form of a notification sent by e-mail to users. The SACS notification points to a dedicated web page where all relevant information is available and can be visualised with user-friendly tools. Information about the volcanic plume height from GOME-2 (MetOp-A and MetOp-B) are also available. The strength of a multi-sensor approach relies in the use of satellite data with different overpasses times, minimising the time-lag for detection and enhancing the reliability of such alerts. This presentation will give an overview of the SACS service, and of the different techniques used to detect volcanic plumes (ash, SO2 and plume height). It will also highlight the strengths and limitations of the service and measurements, and some perspectives.

  20. Factors controlling pollutant plume length downwind of major roadways in nocturnal surface inversions

    NASA Astrophysics Data System (ADS)

    Choi, W.; Winer, A. M.; Paulson, S. E.

    2014-07-01

    A fitting method using a semi-empirical Gaussian dispersion model solution was successfully applied to obtain both dispersion coefficients and a particle number emission factor (PNEF) directly from ultrafine particle (UFP; particles smaller than <0.1 μm in diameter) concentration profiles observed downwind of major roadways in California's South Coast Air Basin (SoCAB). The effective Briggs' formulation for the vertical dispersion parameter σz was adopted in this study due to its better performance in describing the observed profiles compared to other formulations examined. The two dispersion coefficients in Briggs' formulation, α and β, ranged from 0.02 to 0.07 and from -0.5 × 10-3 to 2.8 × 10-3, respectively, for the four freeway transects studied and are significantly different for freeways passing over vs. under the street on which measurements of the freeway plume were made. These ranges are wider than literature values for α and β under stable conditions. The dispersion coefficients derived from observations showed strong correlations with both surface meteorology (wind speed/direction, temperature, and air stability) and differences in concentrations between the background and plume peak. The relationships were applied to predict freeway plume transport using a multivariate regression, and produced excellent agreement with observed UFP concentration profiles. The mean PNEF for a mixed vehicle fleet on the four freeways was estimated as 7.5 × 1013 particles km-1 vehicle-1, which is about 15% of the value estimated in 2001 for the I-405 freeway, implying significant reductions in UFP emissions over the past decade in the SoCAB.

  1. North Atlantic magmatism controlled by temperature, mantle composition and buoyancy

    NASA Astrophysics Data System (ADS)

    Brown, Eric L.; Lesher, Charles E.

    2014-11-01

    Large igneous provinces are characterized by anomalously high rates of magma production. Such voluminous magmatism is commonly attributed to partial melting of hot, buoyantly upwelling mantle plume material. However, compositional heterogeneity in the mantle, caused by the subduction of oceanic crust, can also enhance magma production, diminishing the need for elevated temperatures associated with upwelling plumes. A plume origin for the North Atlantic large igneous province has been questioned because lava compositions correlate with crustal thickness, implying a link between magma productivity and mantle source composition. Here we use a numerical model that simulates upwelling and melting of compositionally heterogeneous mantle material to constrain the conditions that gave rise to magmatism in the North Atlantic. Using observations of lava compositions and volumes from the North Atlantic, we show that subducted crustal material represented less than 10% of the mantle source. We further show that mantle temperatures have remained elevated by 85-210 °C and increased mantle upwelling up to 14 times the rate of plate separation has occurred over the past 56 Myr. The enhanced temperatures and upwelling rates extended along more than 1,000 km of the Palaeogene rift, but are substantially more restricted along the modern Mid-Atlantic Ridge. These findings reflect the long-term manifestation of a mantle plume.

  2. Plume flowfield analysis of the shuttle primary Reaction Control System (RCS) rocket engine

    NASA Technical Reports Server (NTRS)

    Hueser, J. E.; Brock, F. J.

    1990-01-01

    A solution was generated for the physical properties of the Shuttle RCS 4000 N (900 lb) rocket engine exhaust plume flowfield. The modeled exhaust gas consists of the five most abundant molecular species, H2, N2, H2O, CO, and CO2. The solution is for a bare RCS engine firing into a vacuum; the only additional hardware surface in the flowfield is a cylinder (=engine mount) which coincides with the nozzle lip outer corner at X = 0, extends to the flowfield outer boundary at X = -137 m and is coaxial with the negative symmetry axis. Continuum gas dynamic methods and the Direct Simulation Monte Carlo (DSMC) method were combined in an iterative procedure to produce a selfconsistent solution. Continuum methods were used in the RCS nozzle and in the plume as far as the P = 0.03 breakdown contour; the DSMC method was used downstream of this continuum flow boundary. The DSMC flowfield extends beyond 100 m from the nozzle exit and thus the solution includes the farfield flow properties, but substantial information is developed on lip flow dynamics and thus results are also presented for the flow properties in the vicinity of the nozzle lip.

  3. Electrification of volcanic plumes

    NASA Astrophysics Data System (ADS)

    Mather, T. A.; Harrison, R. G.

    We present a review of our current understanding of the electrification of volcanic plumes on Earth and discuss the possible implications both in terms of the volcanic monitoring, early Earth evolution and planetary exploration. Volcanic lightning is perhaps the most spectacular consequence of the electrification of volcanic plumes. Recent years have seen volcanic lightning detection used as part of a portfolio of developing techniques to monitor volcanic eruptions. Remote sensing measurement techniques have been used to monitor volcanic lightning, but surface observations of the atmospheric electric Potential Gradient (PG) and the charge carried on volcanic ash also show that many volcanic plumes, whilst not sufficiently electrified to produce lightning, have detectable electrification exceeding that of their surrounding environment. Electrification has only been observed associated with ash-rich explosive plumes, but there is little evidence that the composition of the ash is critical to its occurrence. Different conceptual theories for charge generation and separation in volcanic plumes have been developed to explain the disparate observations obtained, but the ash fragmentation mechanism appears to be a key parameter. It is unclear which mechanisms or combinations of electrification mechanisms dominate in different circumstances. Electrostatic forces play an important role in modulating the dry fall-out of ash from a volcanic plume. Beyond the local electrification of plumes, the higher stratospheric particle concentrations following a large explosive eruption may affect the global atmospheric electrical circuit. It is possible that this might present another, if minor, way by which large volcanic eruptions affect global climate. Volcanic lightning has been implicated in a number of ways in the origin of life on Earth, and may also exist in other planetary atmospheres where measurements of its occurrence might give clues about the nature of volcanism on other

  4. Evaluation of diesel fleet emissions and control policies from plume chasing measurements of on-road vehicles

    NASA Astrophysics Data System (ADS)

    Lau, Chui Fong; Rakowska, Agata; Townsend, Thomas; Brimblecombe, Peter; Chan, Tat Leung; Yam, Yat Shing; Močnik, Griša; Ning, Zhi

    2015-12-01

    Vehicle emissions are an important source of urban air pollution. Diesel fuelled vehicles, although constituting a relatively small fraction of fleet population in many cities, are significant contributors to the emission inventory due to their often long mileage for goods and public transport. Recent classification of diesel exhaust as carcinogenic by the World Health Organization also raises attention to more stringent control of diesel emissions to protect public health. Although various mandatory and voluntary based emission control measures have been implemented in Hong Kong, there have been few investigations to evaluate if the fleet emission characteristics have met desired emission reduction objectives and if adoption of an Inspection/Maintenance (I/M) programme has been effective in achieving these objectives. The limitations are partially due to the lack of cost-effective approaches for the large scale characterisation of fleet based emissions to assess the effectiveness of control measures and policy. This study has used a plume chasing method to collect a large amount of on-road vehicle emission data of Hong Kong highways and a detailed analysis was carried out to provide a quantitative evaluation of the emission characteristics in terms of the role of high and super-emitters in total emission reduction, impact of after-treatment on the multi-pollutants reduction strategy and the trend of NO2 emissions with newer emission standards. The study revealed that not all the high-emitters are from those vehicles of older Euro emission standards. Meanwhile, there is clear evidence that high-emitters for one pollutant may not be a high-emitter for another pollutant. Multi-pollutant control strategy needs to be considered in the enactment of the emission control policy which requires more comprehensive retrofitting technological solutions and matching I/M programme to ensure the proper maintenance of fleets. The plume chasing approach used in this study also

  5. Lack of Correlated Isotopic and Compositional Variations in Mauna Loa Lavas: A Serious Problem for Pyroxenite/Eclogite Plume Source Models

    NASA Astrophysics Data System (ADS)

    Rhodes, J. M.; Weis, D.; Norman, M. D.; Garcia, M. O.

    2007-12-01

    The long held notion that basaltic magmas are produced by decompressional melting of peridotite is under challenge. Recent models for the Hawaiian and other plumes argue that they consist of a heterogeneous mix of peridotite and discrete eclogite blobs, the latter derived from recycled subducted crust. Eclogite melting produces relatively siliceous magmas (dacite to andesite) which either mix with picritic melts from the peridotite, or, more plausibly, react with the peridotite to produce pyroxenite. Melting of varying proportions of the peridotite/pyroxenite mix is thought to produce the correlated compositional and isotopic characteristics of Hawaiian volcanoes. Magmas from Mauna Loa and Koolau volcanoes are thought to contain more of the recycled component; those from Loihi and Kilauea volcanoes contain less. A simple test of these mixed source models examines whether isotopic changes within the long magmatic history of a single volcano are accompanied by corresponding changes in major and trace element characteristics. Mauna Loa, where we have sampled around 400 - 500 ka of the volcano's eruptive history, provides an excellent opportunity for such a test. During this time, Mauna Loa will have traversed almost half the Hawaiian plume. According to the models, it should have erupted magmas produced from a range of pyroxenite/peridotite mixes with corresponding differences in both isotopic ratios and major and trace elements. Our data show that there is only minor isotopic (Sr, Pb, Nd, Hf) diversity in young lavas (<100 ka), but older lavas are highly diverse, ranging from modern values to those that are close to, and overlap with, those of Loihi volcano. If this isotopic diversity is a consequence of different proportions of pyroxenite and peridotite in the plume source, as the new models predict, we should expect to see correlated changes in bulk composition, particularly. in normalized SiO2, CaO/Al2O3, FeO/MgO and Ni - MgO relationships, as well as changes in

  6. Two views of Hawaiian plume structure

    NASA Astrophysics Data System (ADS)

    Hofmann, Albrecht W.; Farnetani, Cinzia G.

    2013-12-01

    Fundamentally contradictory interpretations of the isotopic compositions of Hawaiian basalts persist, even among authors who agree that the Hawaiian hotspot is caused by a deep-mantle plume. One view holds that the regional isotopic pattern of the volcanoes reflects large-scale heterogeneities in the basal thermal boundary layer of the mantle. These are drawn into the rising plume conduit, where they are vertically stretched and ultimately sampled by volcanoes. The alternative view is that the plume resembles a "uniformly heterogeneous plum pudding," with fertile plums of pyroxenite and/or enriched peridotite scattered in a matrix of more refractory peridotite. In a rising plume, the plums melt before the matrix, and the final melt composition is controlled significantly by the bulk melt fraction. Here we show that the uniformly heterogeneous plum pudding model is inconsistent with several geochemical observations: (1) the relative melt fractions inferred from La/Yb ratios in shield-stage basalts of the two parallel (Kea- and Loa-) volcanic chains, (2) the systematic Pb-isotopic differences between the chains, and the absence of such differences between shield and postshield phases, (3) the systematic shift to uniformly depleted Nd-isotopic compositions during rejuvenated volcanism. We extend our previous numerical simulation to the low melt production rates calculated far downstream (200-400 km) from shield volcanism. Part of these melts, feeding rejuvenated volcanism, are formed at pressures of ˜5 GPa in the previously unmelted underside of the plume, from material that originally constituted the uppermost part of the thermal boundary layer at the base of the mantle.

  7. Evaluation of Visible Plumes.

    ERIC Educational Resources Information Center

    Brennan, Thomas

    Developed for presentation at the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971, this outline discusses plumes with contaminants that are visible to the naked eye. Information covers: (1) history of air pollution control regulations, (2) need for methods of evaluating…

  8. The chemical structure of the Hawaiian mantle plume.

    PubMed

    Ren, Zhong-Yuan; Ingle, Stephanie; Takahashi, Eiichi; Hirano, Naoto; Hirata, Takafumi

    2005-08-11

    The Hawaiian-Emperor volcanic island and seamount chain is usually attributed to a hot mantle plume, located beneath the Pacific lithosphere, that delivers material sourced from deep in the mantle to the surface. The shield volcanoes of the Hawaiian islands are distributed in two curvilinear, parallel trends (termed 'Kea' and 'Loa'), whose rocks are characterized by general geochemical differences. This has led to the proposition that Hawaiian volcanoes sample compositionally distinct, concentrically zoned, regions of the underlying mantle plume. Melt inclusions, or samples of local magma 'frozen' in olivine phenocrysts during crystallization, may record complexities of mantle sources, thereby providing better insight into the chemical structure of plumes. Here we report the discovery of both Kea- and Loa-like major and trace element compositions in olivine-hosted melt inclusions in individual, shield-stage Hawaiian volcanoes--even within single rock samples. We infer from these data that one mantle source component may dominate a single lava flow, but that the two mantle source components are consistently represented to some extent in all lavas, regardless of the specific geographic location of the volcano. We therefore suggest that the Hawaiian mantle plume is unlikely to be compositionally concentrically zoned. Instead, the observed chemical variation is probably controlled by the thermal structure of the plume. PMID:16100780

  9. Effect of In-Plume Aerosol Processing on the Efficacy of Marine Cloud Albedo Enhancement from Controlled Sea-Spray Injections

    NASA Astrophysics Data System (ADS)

    Stuart, G. S.; Stevens, R. G.; Spracklen, D. V.; Korhonen, H.; Pierce, J. R.

    2012-12-01

    The intentional enhancement of cloud albedo via controlled sea-spray injection from ships has been proposed as a possible method to control anthropogenic global warming (1); however, there remains significant uncertainty in the efficacy of this method due to uncertainties in aerosol and cloud microphysics. A major assumption used in multiple recent studies (2,3) is that all sea-spray was emitted uniformly into some oceanic grid boxes, and thus did not account for sub-grid aerosol microphysics within the sea-spray plumes. However, as a consequence of the fast sea-spray injection rates which are proposed, in the order of 10^17 1/s (1), particle concentrations in these plumes may be quite high and particle coagulation may significantly reduce the number of emitted particles and increase their average size. Therefore, it is possible that the emissions necessary to reach a desired cooling may be even larger than currently assumed. We explore the evolution of these sea-salt plumes using a multi-shelled Gaussian plume model with size-resolved aerosol coagulation. We determine how the final number and size of particles depends on the emission rate and size distribution of the emitted sea-spray plume and local atmospheric conditions, including wind speed and boundary-layer stability. Under the injection rates reported in (1) and typical marine conditions, we find that the number of aerosol particles is reduced by about 40%. This fraction decreases for decreasing emission rates or increasing wind speeds due to lower particle concentrations in the plume. Finally, we make suggestions for effective size-resolved emissions for use in climate models. (1) Salter, S. et al., Phil. Trans. R. Soc. A., 2008. (2) Korhonen, H. et al., Atmos. Chem. Phys., 10, 4133-4143, 2010. (3) Partanen, A.-I. et al., J. Geophys. Res., 117, D02203, 2012.

  10. Numerical simulations of marine hydrothermal plumes for Europa and other icy worlds

    NASA Astrophysics Data System (ADS)

    Goodman, Jason C.; Lenferink, Erik

    2012-11-01

    The liquid water interiors of Europa and other icy moons of the outer Solar System are likely to be driven by geothermal heating from the sea floor, leading to the development of buoyant hydrothermal plumes. These plumes potentially control icy surface geomorphology, and are of interest to astrobiologists. We have performed a series of simulations of these plumes using the MIT GCM ocean circulation model. We assume here that Europa’s ocean is deep (of order 100 km) and unstratified, and that plume buoyancy is controlled by temperature, not composition. Our experiments explore a limited region of parameter space, with ocean depth H ranging from 50 to 100 km deep, source heat flux Q between 0.1 and 10 GW, and Coriolis parameter f corresponding to Europa latitudes between 9° and 47°. As predicted by earlier work, the plumes in our simulations form narrow cylindrical chimneys (a few km across) under the influence of the Coriolis effect. These plumes broaden over time until they become baroclinically unstable, breaking up into cone-shaped eddies when they become 10-35 km in diameter; the shed eddies are of a similar size. Large-scale currents in the region of the plume range between 1 and 5 cm/s; temperature anomalies in the plume far from the seafloor are tiny, varying between 10 and 180 μK. Variations in plume size, shape, speed, and temperature are in excellent agreement with previous laboratory tank experiments, and in rough agreement with theoretical predictions. Plume dynamics and geometry are controlled by a “natural Rossby number” which depends strongly on depth H and Coriolis parameter f, but only weakly on source heat flux Q. However, some specific theoretical predictions are not borne out by these simulations: this may occur because the plumes are “reingesting” their own emissions, a process not considered in our earlier theory.

  11. Issues related to aircraft take-off plumes in a mesoscale photochemical model.

    PubMed

    Bossioli, Elissavet; Tombrou, Maria; Helmis, Costas; Kurtenbach, Ralf; Wiesen, Peter; Schäfer, Klaus; Dandou, Aggeliki; Varotsos, Kostas V

    2013-07-01

    The physical and chemical characteristics of aircraft plumes at the take-off phase are simulated with the mesoscale CAMx model using the individual plume segment approach, in a highly resolved domain, covering the Athens International Airport. Emission indices during take-off measured at the Athens International Airport are incorporated. Model predictions are compared with in situ point and path-averaged observations (NO, NO₂) downwind of the runway at the ground. The influence of modeling process, dispersion properties and background air composition on the chemical evolution of the aircraft plumes is examined. It is proven that the mixing properties mainly determine the plume dispersion. The initial plume properties become significant for the selection of the appropriate vertical resolution. Besides these factors, the background NOx and O₃ concentration levels control NOx distribution and their conversion to nitrogen reservoir species. PMID:23584035

  12. Fractures, not Plumes, Have Controlled Major Seamount Volcanism in the Pacific over 170 Million Years

    NASA Astrophysics Data System (ADS)

    Natland, J. H.; Winterer, E. L.

    2003-12-01

    shift laterally in response to whatever was occurring along its eastern spreading boundaries. A very consistent and strong stress regime therefore developed across the Pacific plate with a NNE direction of least principal stress. The change in stress orientation may have taken up to 10 million years, during an interval marked by little or no volcanic productivity at the western end of the Hawaiian chain. Since that time, the predominant alignment of both linear island chains and Puka Puka-type ridges, from the Kodiak-Bowie chain in the Gulf of Alaska to the Louisville Ridge south of the Antarctic convergence, has been orthogonal to this direction. Development of large-volume persistent chains and shorter small-volume chains indicates patterns of differential stress in the plate, variable fertility and geochemistry of the asthenosphere and/or shallow convective overturn of the asthenosphere rather than the action of mantle plumes of different sizes and depths of origin. Tapping of enriched mantle by widespread volcano clusters during the Mesozoic suggests the presence of a shallow asthenospheric source layer rather than multiple narrow conduits. (1) Hieronymus, C.F., and Bercovici, D. 2000. Earth Planet. Sci. Lett. 181, 539-554. (2) Davis, A.S., Gray, L.B., Clague, D.A., and Hein, J.R., 2002 Geochem. Geophys. Geosyst. 3: 10.1029/2001GC0000190, 1-28.

  13. Species separation in rocket exhaust plumes and analytic plume flow models

    NASA Astrophysics Data System (ADS)

    Koppenwallner, G.

    2001-08-01

    Species separation in the exhaust plume of control thrusters of satellites is of main importance for the contamination analysis. Contamination concerns mainly scientific instruments or sensitive surfaces.. In continuum fluid dynamics a multi- component gas mixture can be treated as mixture with mean properties and with a flow field independent composition. This basic feature of continuum flow ceases to be valid in the rarefied flow regimes. In this regime there are two main mechanism which cause a separation of species in the flow field. a. Strong velocity gradients or streamline curvature. Strong stream line curvatures with large centrifugal forces exist close to the nozzle throat of sonic free jets [Sherman] or at the nozzle lip. Heavy gas constituents will not be able to follow these strong stream line curvatures. b. Different thermal velocity or thermal diffusivity of heavy and light gas constituents The transition from continuum to free molecular plume expansion can approximately be described by the sudden freeze model of Bird. At the freezing point molecular collisions suddenly cease and the further expansion is given by the velocity vector of the individual molecules at this freezing point. As light molecules have a larger thermal speed c than the heavy ones their spreading potential is also higher. This mechanism will also produce an enrichment of the plume boundary with light molecules. The approaches to model species separation in exhaust plumes as result of the above mechanism will be reviewed. To gain more insight into the separation the following cases are analyzed in detail: [B ]The free molecular supersonic expansion from a freezing plane. □ The various analytic plume flow models and their capability to predict the lateral spreading at the plume boundary (e.g. Simmons, Boynton, Brook, DLR) □ DSMC test case calculations of single and two-species plumes with mass separation. (M. Ivanov, ITAM) Based on this analysis a new 3 region model for species

  14. High performance composites with active stiffness control.

    PubMed

    Tridech, Charnwit; Maples, Henry A; Robinson, Paul; Bismarck, Alexander

    2013-09-25

    High performance carbon fiber reinforced composites with controllable stiffness could revolutionize the use of composite materials in structural applications. Here we describe a structural material, which has a stiffness that can be actively controlled on demand. Such a material could have applications in morphing wings or deployable structures. A carbon fiber reinforced-epoxy composite is described that can undergo an 88% reduction in flexural stiffness at elevated temperatures and fully recover when cooled, with no discernible damage or loss in properties. Once the stiffness has been reduced, the required deformations can be achieved at much lower actuation forces. For this proof-of-concept study a thin polyacrylamide (PAAm) layer was electrocoated onto carbon fibers that were then embedded into an epoxy matrix via resin infusion. Heating the PAAm coating above its glass transition temperature caused it to soften and allowed the fibers to slide within the matrix. To produce the stiffness change the carbon fibers were used as resistance heating elements by passing a current through them. When the PAAm coating had softened, the ability of the interphase to transfer load to the fibers was significantly reduced, greatly lowering the flexural stiffness of the composite. By changing the moisture content in PAAm fiber coating, the temperature at which the PAAm softens and the composites undergo a reduction in stiffness can be tuned. PMID:23978266

  15. Constraining the source of mantle plumes

    NASA Astrophysics Data System (ADS)

    Cagney, N.; Crameri, F.; Newsome, W. H.; Lithgow-Bertelloni, C.; Cotel, A.; Hart, S. R.; Whitehead, J. A.

    2016-02-01

    In order to link the geochemical signature of hot spot basalts to Earth's deep interior, it is first necessary to understand how plumes sample different regions of the mantle. Here, we investigate the relative amounts of deep and shallow mantle material that are entrained by an ascending plume and constrain its source region. The plumes are generated in a viscous syrup using an isolated heater for a range of Rayleigh numbers. The velocity fields are measured using stereoscopic Particle-Image Velocimetry, and the concept of the 'vortex ring bubble' is used to provide an objective definition of the plume geometry. Using this plume geometry, the plume composition can be analysed in terms of the proportion of material that has been entrained from different depths. We show that the plume composition can be well described using a simple empirical relationship, which depends only on a single parameter, the sampling coefficient, sc. High-sc plumes are composed of material which originated from very deep in the fluid domain, while low-sc plumes contain material entrained from a range of depths. The analysis is also used to show that the geometry of the plume can be described using a similarity solution, in agreement with previous studies. Finally, numerical simulations are used to vary both the Rayleigh number and viscosity contrast independently. The simulations allow us to predict the value of the sampling coefficient for mantle plumes; we find that as a plume reaches the lithosphere, 90% of its composition has been derived from the lowermost 260-750 km in the mantle, and negligible amounts are derived from the shallow half of the lower mantle. This result implies that isotope geochemistry cannot provide direct information about this unsampled region, and that the various known geochemical reservoirs must lie in the deepest few hundred kilometres of the mantle.

  16. JV Task 104 - Risk Reduction Using Innovative Vacuum-Enhanced Plume Controls

    SciTech Connect

    Jaroslav Solc; Barry Botnen

    2009-03-01

    The Energy & Environmental Research Center (EERC) conducted remediation of hydrocarbon-contaminated soils and groundwater at the Vining Oil site in Carrington, North Dakota. The primary technological synergies included (1) contaminant recovery using simultaneous operation of multiphase recovery and high-vacuum soil vapor extraction (SVE) and (2) vacuum-controlled air and ozone sparging on the periphery of an induced hydraulic and pneumatic depression. Final risk reduction steps included design and retrofit for the municipal well. The successful remediation effort resulted in the reduction of long-term health risks associated with rate-limited contaminant release within the capture zone for the municipal well and allowed for its reintegration into the water supply system. Contaminant recovery for the remediation period of September 2006 to June 2008 totaled over 12,653 lb (5,740 kg) of hydrocarbons, an equivalent to 2022 gallons (7653 l) of product. Integration of the air-sparging subsystem operated simultaneously with multiphase extraction and SVE systems resulted in accelerated volatile organic contaminant transport from the saturated zone and increased contaminants of concern recovery. Delivery of over 7.7 million ft{sup 3} of oxygen (219.8 thousand m{sup 3}) into the contaminated aquifer would translate into in situ biodegradation of 2007 kg (4424 lb) of benzene and provide for long term stimulation of the natural attenuation process.

  17. Orbital Maneuvering Vehicle (OMV) plume and plume effects study

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon D.

    1991-01-01

    The objective was to characterize the Orbital Maneuvering Vehicle (OMV) propulsion and attitude control system engine exhaust plumes and predict the resultant plume impingement pressure, heat loads, forces, and moments. Detailed description is provided of the OMV gaseous nitrogen (GN2) thruster exhaust plume flow field characteristics calculated with the RAMP2 snd SFPGEN computer codes. Brief descriptions are included of the two models, GN2 thruster characteristics and RAMP2 input data files. The RAMP2 flow field could be recalculated by other organizations using the information presented. The GN2 flow field can be readily used by other organizations who are interested in GN2 plume induced environments which require local flow field properties which can be supplied using the SFPGEN GN2 model.

  18. Radiation Chemistry of Potential Europa Plumes

    NASA Astrophysics Data System (ADS)

    Gudipati, M. S.; Henderson, B. L.

    2014-12-01

    Recent detection of atomic hydrogen and atomic oxygen and their correlation to potential water plumes on Europa [Roth, Saur et al. 2014] invoked significant interest in further understanding of these potential/putative plumes on Europa. Unlike on Enceladus, Europa receives significant amount of electron and particle radiation. If the plumes come from trailing hemisphere and in the high radiation flux regions, then it is expected that the plume molecules be subjected to radiation processing. Our interest is to understand to what extent such radiation alterations occur and how they can be correlated to the plume original composition, whether organic or inorganic in nature. We will present laboratory studies [Henderson and Gudipati 2014] involving pulsed infrared laser ablation of ice that generates plumes similar to those observed on Enceladus [Hansen, Esposito et al. 2006; Hansen, Shemansky et al. 2011] and expected to be similar on Europa as a starting point; demonstrating the applicability of laser ablation to simulate plumes of Europa and Enceladus. We will present results from electron irradiation of these plumes to determine how organic and inorganic composition is altered due to radiation. Acknowledgments:This research was enabled through partial funding from NASA funding through Planetary Atmospheres, and the Europa Clipper Pre-Project. B.L.H. acknowledges funding from the NASA Postdoctoral Program for an NPP fellowship. Hansen, C. J., L. Esposito, et al. (2006). "Enceladus' water vapor plume." Science 311(5766): 1422-1425. Hansen, C. J., D. E. Shemansky, et al. (2011). "The composition and structure of the Enceladus plume." Geophysical Research Letters 38. Henderson, B. L. and M. S. Gudipati (2014). "Plume Composition and Evolution in Multicomponent Ices Using Resonant Two-Step Laser Ablation and Ionization Mass Spectrometry." The Journal of Physical Chemistry A 118(29): 5454-5463. Roth, L., J. Saur, et al. (2014). "Transient Water Vapor at Europa's South

  19. Process and control systems for composites manufacturing

    NASA Technical Reports Server (NTRS)

    Tsiang, T. H.; Wanamaker, John L.

    1992-01-01

    A precise control of composite material processing would not only improve part quality, but it would also directly reduce the overall manufacturing cost. The development and incorporation of sensors will help to generate real-time information for material processing relationships and equipment characteristics. In the present work, the thermocouple, pressure transducer, and dielectrometer technologies were investigated. The monitoring sensors were integrated with the computerized control system in three non-autoclave fabrication techniques: hot-press, self contained tool (self heating and pressurizing), and pressure vessel). The sensors were implemented in the parts and tools.

  20. Top-down, bottom-up and physical controls on diatom-diazotroph assemblage growth in the Amazon River Plume

    NASA Astrophysics Data System (ADS)

    Stukel, M. R.; Coles, V. J.; Brooks, M. T.; Hood, R. R.

    2013-08-01

    The nutrient-rich waters of the Amazon River Plume (ARP) support dense blooms of diatom-diazotroph assemblages (DDA) that introduce large quantities of new nitrogen to the planktonic ecosystem and, unlike other nitrogen-fixers, are likely to directly fuel vertical carbon flux. To investigate the factors controlling DDA blooms, we develop a five phytoplankton (cyanobacteria, diatoms, unicellular microbial diazotrophs, DDA, and Trichodesmium), two zooplankton model and embed it within a 1/6° resolution physical model of the tropical and subtropical Atlantic. The model generates realistic DDA blooms in the ARP and also exhibits basin-wide primary production, nitrogen fixation, and grazing rates consistent with observed values. By following ARP water parcels with synthetic Lagrangian drifters released at the river mouth we are able to assess the relative impacts of grazing, nutrient supply, and physical forcing on DDA bloom formation. DDA bloom formation is stimulated in the silica-rich water of the ARP by decreases in grazing pressure when mesozooplankton (which co-occur in high densities with coastal diatom blooms) concentrations decrease. Bloom termination is driven primarily by silica limitation of the DDA. In agreement with in situ data, this net growth niche for DDA exists in a salinity range from ~ 20-34 PSU, although this co-occurrence is coincidental rather than causative. Because net growth rates are relatively modest, bloom formation in ARP water parcels depends critically on the time spent in this ideal habitat, with high DDA biomass only occurring when water parcels spent > 23 days in the optimal habitat niche.

  1. Top-down, bottom-up and physical controls on diatom-diazotroph assemblage growth in the Amazon River plume

    NASA Astrophysics Data System (ADS)

    Stukel, M. R.; Coles, V. J.; Brooks, M. T.; Hood, R. R.

    2014-06-01

    The nutrient-rich waters of the Amazon River plume (ARP) support dense blooms of diatom-diazotroph assemblages (DDAs) that introduce large quantities of new nitrogen to the planktonic ecosystem and, unlike other nitrogen-fixers, are likely to directly fuel vertical carbon flux. To investigate the factors controlling DDA blooms, we develop a five phytoplankton (cyanobacteria, diatoms, unicellular microbial diazotrophs, DDAs, and Trichodesmium), two zooplankton model and embed it within a 1/6° resolution physical model of the tropical and subtropical Atlantic. The model generates realistic DDA blooms in the ARP and also exhibits basin-wide primary production, nitrogen fixation, and grazing rates consistent with observed values. By following ARP water parcels with synthetic Lagrangian drifters released at the river mouth we are able to assess the relative impacts of grazing, nutrient supply, and physical forcing on DDA bloom formation. DDA bloom formation is stimulated in the nitrogen-poor and silica-rich water of the ARP by decreases in grazing pressure when mesozooplankton (which co-occur in high densities with coastal diatom blooms) concentrations decrease. Bloom termination is driven primarily by silica limitation of the DDAs. In agreement with in situ data, this net growth niche for DDAs exists in a salinity range from ∼20-34 PSU, although this co-occurrence is coincidental rather than causative. Because net growth rates are relatively modest, bloom formation in ARP water parcels depends critically on the time spent in this ideal habitat, with high DDA biomass only occurring when water parcels spent >23 days in the optimal habitat niche.

  2. Dust Plumes off Libya

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Two-toned dust plumes blew northward off the coast of Libya on October 26, 2007, as the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite took this picture. While plumes in the west are beige, reminiscent of the Sahara's sands, the plumes in the east are distinctly darker. The differences in color can be traced to the plumes's varied origins.

  3. Effect of In-Plume Aerosol Processing on the Efficacy of Marine Cloud Albedo Enhancement from Controlled Sea-Spray Injections

    NASA Astrophysics Data System (ADS)

    Stevens, R. G.; Spracklen, D.; Korhonen, H.; Pierce, J. R.

    2010-12-01

    The intentional enhancement of cloud albedo via controlled sea-spray injection from ships has been suggested as a possible means to control anthropogenic global warming (1); however, there remains significant uncertainty in the efficacy of this method due to uncertainties in aerosol and cloud microphysics. Recent analysis showed that more sea-spray may be necessary than previously assumed to reach a desired cooling due to nonlinearities in the aerosol/cloud microphysics (2). A major assumption used in (2) is that all sea-spray was emitted uniformly into some oceanic grid boxes, and thus did not account for sub-grid aerosol microphysics within the sea-spray plumes. However, as a consequnce of the fast sea-spray injection rates which are proposed, in the order of 1x10^17 1/s (1), particle concentrations in these plumes may be quite high and particle coagulation may significantly reduce the number of emitted particles and increase their average size. Therefore, it is possible that the emissions necessary to reach a desired cooling may be even larger than currently assumed. We explore the processing of the freshly emitted sea-spray plumes in the Large-Eddy Simulation (LES)/Cloud Resolving Model (CRM) the System for Atmospheric Modelling (SAM, 3) with the online aerosol microphysics module TOMAS (4). We determine how the final number and size of particles (once well mixed with background air) depends on the emission rate and size distribution of the sea-spray plume and on the pre-existing aerosol concentrations and local atmospheric conditions. Finally, we make suggestions for effective size-resolved emissions for use in climate models. (1) Salter, S. et al., Phil. Trans. R. Soc. A., 2008. (2) Korhonen, H. et al., Atmos. Chem. Phys., 10, 4133-4143, 2010. (3) Khairoutdinov, M., and Randall, D.,. J. Atmos. Sci., 60, 607-625, 2003. (4) Pierce, J. and Adams, P., Atmos. Chem. Phys., 9, 1339-1356, 2009.

  4. Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities

    SciTech Connect

    Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.; Millings, Margaret R.; Kautsky, Mark

    2014-01-08

    Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P&T) operations have had minimal impact on the contaminant plume – primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exits the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (“brownfield”) scenario for Tuba City. This alternative approach would have low risks, similar to the current P&T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations.

  5. Active Volcanic Plumes on Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This color image, acquired during Galileo's ninth orbit around Jupiter, shows two volcanic plumes on Io. One plume was captured on the bright limb or edge of the moon (see inset at upper right), erupting over a caldera (volcanic depression) named Pillan Patera after a South American god of thunder, fire and volcanoes. The plume seen by Galileo is 140 kilometers (86 miles) high and was also detected by the Hubble Space Telescope. The Galileo spacecraft will pass almost directly over Pillan Patera in 1999 at a range of only 600 kilometers (373 miles).

    The second plume, seen near the terminator (boundary between day and night), is called Prometheus after the Greek fire god (see inset at lower right). The shadow of the 75-kilometer (45- mile) high airborne plume can be seen extending to the right of the eruption vent. The vent is near the center of the bright and dark rings. Plumes on Io have a blue color, so the plume shadow is reddish. The Prometheus plume can be seen in every Galileo image with the appropriate geometry, as well as every such Voyager image acquired in 1979. It is possible that this plume has been continuously active for more than 18 years. In contrast, a plume has never been seen at Pillan Patera prior to the recent Galileo and Hubble Space Telescope images.

    North is toward the top of the picture. The resolution is about 6 kilometers (3.7 miles) per picture element. This composite uses images taken with the green, violet and near infrared filters of the solid state imaging (CCD) system on NASA's Galileo spacecraft. The images were obtained on June 28, 1997, at a range of more than 600,000 kilometers (372,000 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page

  6. Lidar sounding of volcanic plumes

    NASA Astrophysics Data System (ADS)

    Fiorani, Luca; Aiuppa, Alessandro; Angelini, Federico; Borelli, Rodolfo; Del Franco, Mario; Murra, Daniele; Pistilli, Marco; Puiu, Adriana; Santoro, Simone

    2013-10-01

    Accurate knowledge of gas composition in volcanic plumes has high scientific and societal value. On the one hand, it gives information on the geophysical processes taking place inside volcanos; on the other hand, it provides alert on possible eruptions. For this reasons, it has been suggested to monitor volcanic plumes by lidar. In particular, one of the aims of the FP7 ERC project BRIDGE is the measurement of CO2 concentration in volcanic gases by differential absorption lidar. This is a very challenging task due to the harsh environment, the narrowness and weakness of the CO2 absorption lines and the difficulty to procure a suitable laser source. This paper, after a review on remote sensing of volcanic plumes, reports on the current progress of the lidar system.

  7. Control of DWPF melter feed composition

    SciTech Connect

    Brown, K.G.; Edwards, R.E.; Postles, R.L.; Randall, C.T.

    1989-01-01

    The Defense Waste Processing Facility will be used to immobilize Savannah River Site high-level waste into a stable borosilicate glass for disposal in a geologic repository. Proper control of the melter feed composition in this facility is essential to the production of glass which meets product durability constraints dictated by repository regulations and facility processing constraints dictated by melter design. A technique has been developed which utilizes glass property models to determine acceptable processing regions based on the multiple constraints imposed on the glass product and to display these regions graphically. This system along with the batch simulation of the process is being used to form the basis for the statistical process control system for the facility.

  8. Control of DWPF melter feed composition

    SciTech Connect

    Brown, K.G.; Edwards, R.E.; Postles, R.L.; Randall, C.T.

    1989-12-31

    The Defense Waste Processing Facility will be used to immobilize Savannah River Site high-level waste into a stable borosilicate glass for disposal in a geologic repository. Proper control of the melter feed composition in this facility is essential to the production of glass which meets product durability constraints dictated by repository regulations and facility processing constraints dictated by melter design. A technique has been developed which utilizes glass property models to determine acceptable processing regions based on the multiple constraints imposed on the glass product and to display these regions graphically. This system along with the batch simulation of the process is being used to form the basis for the statistical process control system for the facility.

  9. Thermal Analysis on Plume Heating of the Main Engine on the Crew Exploration Vehicle Service Module

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Yuko, James R.

    2007-01-01

    The crew exploration vehicle (CEV) service module (SM) main engine plume heating is analyzed using multiple numerical tools. The chemical equilibrium compositions and applications (CEA) code is used to compute the flow field inside the engine nozzle. The plume expansion into ambient atmosphere is simulated using an axisymmetric space-time conservation element and solution element (CE/SE) Euler code, a computational fluid dynamics (CFD) software. The thermal analysis including both convection and radiation heat transfers from the hot gas inside the engine nozzle and gas radiation from the plume is performed using Thermal Desktop. Three SM configurations, Lockheed Martin (LM) designed 604, 605, and 606 configurations, are considered. Design of multilayer insulation (MLI) for the stowed solar arrays, which is subject to plume heating from the main engine, among the passive thermal control system (PTCS), are proposed and validated.

  10. Long-term mass transfer and mixing-controlled reactions of a DNAPL plume from persistent residuals

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Illangasekare, Tissa H.; Kitanidis, Peter K.

    2014-02-01

    Understanding and being able to predict the long-term behavior of DNAPL (i.e., PCE and TCE) residuals after active remediation has ceased have become increasingly important as attention at many sites turns from aggressive remediation to monitored natural attenuation and long-term stewardship. However, plume behavior due to mass loading and reactions during these later phases is less studied as they involve large spatial and temporal scales. We apply both theoretical analysis and pore-scale simulations to investigate mass transfer from DNAPL residuals and subsequent reactions within the generated plume, and, in particular, to show the differences between early- and late-time behaviors of the plume. In the zone of entry of the DNAPL entrapment zone where the concentration boundary layer in the flowing groundwater has not fully developed, the pore-scale simulations confirm the past findings based on laboratory studies that the mass transfer increases as a power-law function of the Peclét number, and is enhanced due to reactions in the plume. Away from the entry zone and further down gradient, the long-term reactions are limited by the available additive and mixing in the porous medium, thereby behave considerably differently from the entry zone. For the reaction between the contaminant and an additive with intrinsic second-order bimolecular kinetics, the late-time reaction demonstrates a first-order decay macroscopically with respect to the mass of the limiting additive, not with respect to that of the contaminant. The late-time decay rate only depends on the intrinsic reaction rate and the solubility of the entrapped DNAPL. At the intermediate time, the additive decays exponentially with the square of time (t2), instead of time (t). Moreover, the intermediate decay rate also depends on the initial conditions, the spatial distribution of DNAPL residuals, and the effective dispersion coefficient.

  11. Rhenium and chalcophile elements in basaltic glasses from Ko'olau and Moloka'i volcanoes: Magmatic outgassing and composition of the Hawaiian plume

    NASA Astrophysics Data System (ADS)

    Norman, Marc D.; Garcia, Michael O.; Bennett, Victoria C.

    2004-09-01

    The behavior of chalcophile metals in volcanic environments is important for a variety of economic and environmental applications, and for understanding large-scale processes such as crustal recycling into the mantle. In order to better define the behavior of chalcophile metals in ocean island volcanoes, we measured the concentrations of Re, Cd, Bi, Cu, Pb, Zn, Pt, S, and a suite of major elements and lithophile trace elements in moderately evolved (6-7% MgO) tholeiitic glasses from Ko'olau and Moloka'i volcanoes. Correlated variations in the Re, Cd, and S contents of these glasses are consistent with loss of these elements as volatile species during magmatic outgassing. Bismuth also shows a good correlation with S in the Ko'olau glasses, but undegassed glasses from Moloka'i have unexpectedly low Bi contents. Rhenium appears to have been more volatile than either Cd or Bi in these magmas. Undegassed glasses with 880-1400 ppm S have 1.2-1.5 ppb Re and 130-145 ppb Cd. In contrast, outgassed melts with low S (<200 ppm) are depleted in these elements by factors of 2-5. Key ratios such as Re/Yb and Cu/Re are fractionated significantly from mantle values. Copper, Pb, and Pt contents of these glasses show no correlation with S, ruling out segregation of an immiscible magmatic sulfide phase as the cause of these variations. Undegassed Hawaiian tholeiites have Re/Yb ratios significantly higher than those of MORB, and extend to values greater than that of the primitive mantle. Loss of Re during outgassing of ocean island volcanoes, may help resolve the apparent paradox of low Re/Os ratios in ocean island basalts with radiogenic Os isotopic compositions. Plume source regions with Re/Yb ratios greater than that of the primitive mantle may provide at least a partial solution to the "missing Re" problem in which one or more reservoirs with high Re/Yb are required to balance the low Re/Yb of MORB. Lithophile trace element compositions of most Ko'olau and Moloka'i tholeiites are

  12. Constraints on the noble gas composition of the Icelandic plume source by laser analyses of individual vesicles in the volcanic glass DICE 11

    NASA Astrophysics Data System (ADS)

    Colin, A. P.; Moreira, M. A.; Gautheron, C.; Burnard, P.

    2014-12-01

    Models of Earth's volatile acquisition and evolution attempt to reproduce the current noble gas abundances and isotopic composition of the mantle reservoirs. The volatile composition of the OIB reservoir - assumed to preserve a higher proportion of primordial noble gases than the degassed MORB reservoir - is a strong constraint for those models. However, the correct values of the neon and argon isotopic ratios in OIBs are still a subject of debate, because of the contamination of the samples by air-derived noble gases. Although there is no consensus on the origin of this contamination - is it empty vesicles or cracks in volcanic glasses filled with seawater; air dissolution in the magma at the timing of magma eruption; assimilation of oceanic crust in the magma chamber?- targeting directly with a laser the vesicle to analyse in volcanic glasses is an efficient way to reduce this contamination. Here we present analyses of individual vesicles of an Icelandic volcanic glass, DICE 11, that was extensively studied in the past by crushing pieces of the volcanic glass under vacuum, because it was considered to have a pure plume origin. The mm-sized sample was imaged tomographically with a 5μm resolution. For opening bubbles, we used a 193nm Excimer laser to avoid diffusion of noble gases by local heating. CO2 contents were estimated by pressure measurement in the laser cell using a sensitive manometer. We analysed He and Ar isotopes, plus 22Ne abundance on a Helix SFT mass-spectrometer. We also present new He, Ne and Ar compositions obtained by step crushing on similar samples (DICE 10 and DICE 11). 3He/4He isotopic ratios are homogeneous in all the vesicles and consistent with analyses by crushing, about 18Ra. Precise 40Ar/36Ar isotopic ratios were obtained on the largest vesicles only, due to high blank contribution to the smallest vesicles, and are about 9000, i.e. the highest values obtained by step-crushing. Considering that the Ar and He isotopic compositions

  13. Controls on coal-bed gas composition

    SciTech Connect

    Rice, D. )

    1993-09-01

    Coal-bed gases are quite variable in composition. In addition to methane, they can contain significant amounts of heavier hydrocarbon gases (C2+>20%) and carbon dioxide (>99%). Coal-bed gases are also variable in their isotopic composition: [delta][sup 13]C[sub 1]:-70.4 to - 16.8 ppt, [delta][sup 13]C[sub 2]:-29.2 to -22.8 ppt, [delta]D[sub 1]:-333 to -117 ppt, and [delta]C[sub CO2]:26.6 to +18.6 ppt. the primary controls of hydrocarbon gas composition are coal rank and composition and depth/temperature. Biogenic gas is generated by the degradation of organic matter at shallow depths and low temperatures in coals of any rank and is mainly methane. Thermogenic coal-bed gas results from devolatilization of coal at ranks of high- volatile bituminous and higher. These gases can be wet at intermediate ranks (high- to medium-volatile bituminous) and are dry at higher ranks. [delta][sup 13]C and [delta]D values become more positive with increasing rank. In addition, at intermediate ranks, hydrogen-rich coals generate wetter gases than do oxygen-rich coals. Shallow coal-bed gas is relatively dry with isotopically light methane as compared to gas from deeper coal, regardless of rank. This trend results from the original gases being altered by relatively recent bacterial activity (aerobic oxidation of heavier hydrocarbons and/or anaerobic generation of biogenic methane). This alteration occurs at depths <3,000 ft and is controlled by the physical characteristics of the coal beds, burial history, and groundwater flow. Carbon dioxide generated during devolatilization commonly is not preserved in present-day coal-bed gases because it is highly reactive and soluble in water. Significant present-day amounts of carbon dioxide can be the result of several processes not related to coalification, such as recent bacterial activity, thermal destruction of carbonates, and migration from magma chambers or the upper mantle.

  14. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.

    PubMed

    Bea, Sergio A; Wainwright, Haruko; Spycher, Nicolas; Faybishenko, Boris; Hubbard, Susan S; Denham, Miles E

    2013-08-01

    Acidic low-level waste radioactive waste solutions were discharged to three unlined seepage basins at the F-Area of the Department of Energy (DOE) Savannah River Site (SRS), South Carolina, USA, from 1955 through 1989. Despite many years of active remediation, the groundwater remains acidic and contaminated with significant levels of U(VI) and other radionuclides. Monitored Natural Attenuation (MNA) is a desired closure strategy for the site, based on the premise that regional flow of clean background groundwater will eventually neutralize the groundwater acidity, immobilizing U(VI) through adsorption. An in situ treatment system is currently in place to accelerate this in the downgradient portion of the plume and similar measures could be taken upgradient if necessary. Understanding the long-term pH and U(VI) adsorption behavior at the site is critical to assess feasibility of MNA along with the in-situ remediation treatments. This paper presents a reactive transport (RT) model and uncertainty quantification (UQ) analyses to explore key controls on the U(VI)-plume evolution and long-term mobility at this site. Two-dimensional numerical RT simulations are run including the saturated and unsaturated (vadose) zones, U(VI) and H(+) adsorption (surface complexation) onto sediments, dissolution and precipitation of Al and Fe minerals, and key hydrodynamic processes are considered. UQ techniques are applied using a new open-source tool that is part of the developing ASCEM reactive transport modeling and analysis framework to: (1) identify the complex physical and geochemical processes that control the U(VI) plume migration in the pH range where the plume is highly mobile, (2) evaluate those physical and geochemical parameters that are most controlling, and (3) predict the future plume evolution constrained by historical, chemical and hydrological data. The RT simulation results show a good agreement with the observed historical pH and concentrations of U(VI), nitrates

  15. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Bea, Sergio A.; Wainwright, Haruko; Spycher, Nicolas; Faybishenko, Boris; Hubbard, Susan S.; Denham, Miles E.

    2013-08-01

    Acidic low-level waste radioactive waste solutions were discharged to three unlined seepage basins at the F-Area of the Department of Energy (DOE) Savannah River Site (SRS), South Carolina, USA, from 1955 through 1989. Despite many years of active remediation, the groundwater remains acidic and contaminated with significant levels of U(VI) and other radionuclides. Monitored Natural Attenuation (MNA) is a desired closure strategy for the site, based on the premise that regional flow of clean background groundwater will eventually neutralize the groundwater acidity, immobilizing U(VI) through adsorption. An in situ treatment system is currently in place to accelerate this in the downgradient portion of the plume and similar measures could be taken upgradient if necessary. Understanding the long-term pH and U(VI) adsorption behavior at the site is critical to assess feasibility of MNA along with the in-situ remediation treatments. This paper presents a reactive transport (RT) model and uncertainty quantification (UQ) analyses to explore key controls on the U(VI)-plume evolution and long-term mobility at this site. Two-dimensional numerical RT simulations are run including the saturated and unsaturated (vadose) zones, U(VI) and H+ adsorption (surface complexation) onto sediments, dissolution and precipitation of Al and Fe minerals, and key hydrodynamic processes are considered. UQ techniques are applied using a new open-source tool that is part of the developing ASCEM reactive transport modeling and analysis framework to: (1) identify the complex physical and geochemical processes that control the U(VI) plume migration in the pH range where the plume is highly mobile, (2) evaluate those physical and geochemical parameters that are most controlling, and (3) predict the future plume evolution constrained by historical, chemical and hydrological data. The RT simulation results show a good agreement with the observed historical pH and concentrations of U(VI), nitrates and

  16. Particle-resolved simulation of aerosol size, composition, mixing state, and the associated optical and cloud condensation nuclei activation properties in an evolving urban plume

    SciTech Connect

    Zaveri, Rahul A.; Barnard, James C.; Easter, Richard C.; Riemer, Nicole; West, Matthew

    2010-09-11

    The recently developed particle-resolved aerosol box model PartMC-MOSAIC was used to simulate the evolution of aerosol mixing state and the associated optical and cloud condensation nuclei (CCN) activation properties in an idealized urban plume. The model explicitly resolved the size and composition of individual particles from a number of sources and tracked their evolution due to condensation/evaporation, coagulation, emission, and dilution. The ensemble black carbon (BC) specific absorption cross section increased by 40% over the course of two days as a result of BC aging by condensation and coagulation. Three- and four-fold enhancements in CCN/CN ratios were predicted to occur within 6 hours for 0.2% and 0.5% supersaturations (S), respectively. The particle-resolved results were used to evaluate the errors in the optical and CCN activation properties that would be predicted by a conventional sectional framework that assumes monodisperse, internally-mixed particles within each bin. This assumption artificially increased the ensemble BC specific absorption by 14-30% and decreased the single scattering albedo by 0.03-0.07 while the bin resolution had a negligible effect. In contrast, the errors in CCN/CN ratios were sensitive to the bin resolution, and they depended on the chosen supersaturation. For S = 0.2%, the CCN/CN ratio predicted using 100 internally-mixed bins was up to 25% higher than the particle-resolved results, while it was up to 125% higher using 10 internally-mixed bins. Errors introduced in the predicted optical and CCN properties by neglecting coagulation were also quantified.

  17. Simulation of Europa's water plume .

    NASA Astrophysics Data System (ADS)

    Lucchetti, A.; Cremonese, G.; Schneider, N. M.; Plainaki, C.; Mazzotta Epifani, E.; Zusi, M.; Palumbo, P.

    Plumes on Europa would be extremely interesting science and mission targets, particularly due to the unique opportunity to obtain direct information on the subsurface composition, thereby addressing Europa's potential habitability. The existence of water plume on the Jupiter's moon Europa has been long speculated until the recent discover. HST imaged surpluses of hydrogen Lyman alpha and oxygen emissions above the southern hemisphere in December 2012 that are consistent with two 200 km high plumes of water vapor (Roth et al. 2013). In previous works ballistic cryovolcanism has been considered and modeled as a possible mechanism for the formation of low-albedo features on Europa's surface (Fagents et al. 2000). Our simulation agrees with the model of Fagents et al. (2000) and consists of icy particles that follow ballistic trajectories. The goal of such an analysis is to define the height, the distribution and the extension of the icy particles falling on the moon's surface as well as the thickness of the deposited layer. We expect to observe high albedo regions in contrast with the background albedo of Europa surface since we consider that material falling after a cryovolcanic plume consists of snow. In order to understand if this phenomenon is detectable we convert the particles deposit in a pixel image of albedo data. We consider also the limb view of the plume because, even if this detection requires optimal viewing geometry, it is easier detectable in principle against sky. Furthermore, we are studying the loss rates due to impact electron dissociation and ionization to understand how these reactions decrease the intensity of the phenomenon. We expect to obtain constraints on imaging requirements necessary to detect potential plumes that could be useful for ESA's JUICE mission, and in particular for the JANUS camera (Palumbo et al. 2014).

  18. Tracking Iceland Plume Motion Using Trace Element Geochemistry

    NASA Astrophysics Data System (ADS)

    Fitton, J. G.; Walters, R. L.; Jones, S. M.

    2011-12-01

    The Greenland-Scotland Ridge (GSR) is a hotspot track built by interaction between the Mid Atlantic Ridge (MAR) and the Iceland mantle plume. Unlike most other hotspot tracks built by ridge-plume interaction, the GSR is 2 to 3 times wider than the plume conduit in the upper mantle. (This unusual wide morphology arises because Icelandic crust changes significantly in thickness within a few million years of accretion, probably mainly by viscous flow in the hot lower crust). The upshot is that the GSR cannot be compared directly with theoretical plume tracks from hotspot reference frame models. However, it is possible to track the position of the Iceland plume conduit using the trace element geochemistry of basaltic lavas. Away from the plume conduit, plate spreading drives upwelling of mantle through the melting region. Above the plume conduit, plume-driven flow forces mantle through the lower part of the melting region faster than the plate-driven upwelling rate. The average depth of melting is therefore greater directly above the plume conduit than away from the plume conduit, and this difference in average melting depth means that melts generated directly above the plume conduit are relatively enriched in incompatible trace elements. Joint modelling of trace element compositions and crustal thickness can also be used to establish location of melting relative to the plume conduit. To date, these concepts have been used only to explain compositional variations in modern (post-glacial) Icelandic lavas; in this study we show that the same concepts can be applied to map the location of the plume conduit throughout the onshore Icelandic geological record (since the middle Miocene, c. 16 Ma). The plume track thus determined is in reasonable agreement with theoretical tracks calculated under the assumption that the Iceland Plume has remained fixed relative to other Indo-Atlantic hotspots. This result also supports the idea that episodic relocations of the onshore part of

  19. Turbulent Plumes in Nature

    NASA Astrophysics Data System (ADS)

    Woods, Andrew W.

    2010-01-01

    This review describes a range of natural processes leading to the formation of turbulent buoyant plumes, largely relating to volcanic processes, in which there are localized, intense releases of energy. Phenomena include volcanic eruption columns, bubble plumes in lakes, hydrothermal plumes, and plumes beneath the ice in polar oceans. We assess how the dynamics is affected by heat transfer, particle fallout and recycling, and Earth's rotation, as well as explore some of the mixing of the ambient fluid produced by plumes in a confined geometry.

  20. Elemental abundances variations in plume and interplume regions

    NASA Astrophysics Data System (ADS)

    Guennou, Chloé; Savin, Daniel; Hahn, Michael

    2016-07-01

    Plumes are relatively bright, narrow structures in coronal holes that extend along open magnetic field lines far out into the corona. Extensive coronal measurements show abundances anomalies in the solar corona, in which elements with a low first ionization potential (FIP) < 10 eV are enhanced relative to the high FIP elements. Remote sensing spectroscopic measurements show that interplume regions have a photospheric composition. In contrast, the elemental composition of plume material is still unclear, previous spectroscopic measurements have reached contradictory results as to whether the elemental abundances in plumes are the same as or different from interplume regions. In this work, we measured the FIP bias, i.e. the ratio of coronal to photospheric abundances, in both interplumes and plumes using Hinode/Extreme Ultraviolet Imaging Spectrometer (EIS) data. Using spectral line intensities and Differential Emission Measure analysis, we assess the chemical composition of plumes and interplumes over an ~24 hour period in March, 2007. We find that some plumes do show different elemental abundances relative to interplumes. Moreover, the abundance anomaly in plumes is time dependent. If previous studies observed plumes at different stages in their evolution, this time dependence may explain the lack of consistency among previous results. Our work on plume and interplume elemental composition may also enable in situ measurements to answer the longstanding question of whether plumes contribute to the fast solar wind, which originates from coronal holes.

  1. Dust Plume off Mauritania

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A thick plume of dust blew off the coast of Mauritania in western Africa on October 2, 2007. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite observed the dust plume as it headed toward the southwest over the Atlantic Ocean. In this image, the dust varies in color from nearly white to medium tan. The dust plume is easier to see over the dark background of the ocean, but the plume stretches across the land surface to the east, as well. The dust plume's structure is clearest along the coastline, where relatively clear air pockets separate distinct puffs of dust. West of that, individual pillows of dust push together to form a more homogeneous plume. Near its southwest tip, the plume takes on yet another shape, with stripes of pale dust fanning out toward the northwest. Occasional tiny white clouds dot the sky overhead, but skies are otherwise clear.

  2. Modeling Europa's dust plumes

    NASA Astrophysics Data System (ADS)

    Southworth, B. S.; Kempf, S.; Schmidt, J.

    2015-12-01

    The discovery of Jupiter's moon Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we simulate possible Europa plume configurations, analyze particle number density and surface deposition results, and estimate the expected flux of ice grains on a spacecraft. Due to Europa's high escape speed, observing an active plume will require low-altitude flybys, preferably at altitudes of 5-100 km. At higher altitudes a plume may escape detection. Our simulations provide an extensive library documenting the possible structure of Europa dust plumes, which can be quickly refined as more data on Europa dust plumes are collected.

  3. A Composite PWM Control Strategy for Boost Converter

    NASA Astrophysics Data System (ADS)

    Qingfeng, Liu; Zhaoxia, Leng; Jinkun, Sun; Huamin, Wang

    In order to improve the control performance of boost converter with large signal disturbance, a composite PWM control strategy for boost converter operating in continuous condition mode (CCM) was proposed in this paper. The parasitical loss of Boost converter was analyzed and a loss compensation strategy was adopted to design feed-forward tracker for converter. The composite PWM controller consisted of the tracker and PID controller. Simulation and experiment results validated the validity of the control strategy presented in this paper.

  4. Mantle source of the 2.44-2.50-Ga mantle plume-related magmatism in the Fennoscandian Shield: evidence from Os, Nd, and Sr isotope compositions of the Monchepluton and Kemi intrusions

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Hong; Hanski, Eero; Li, Chao; Maier, Wolfgang D.; Huhma, Hannu; Mokrushin, Artem V.; Latypov, Rais; Lahaye, Yann; O'Brien, Hugh; Qu, Wen-Jun

    2016-08-01

    Significant PGE and Cr mineralization occurs in a number of 2.44-2.50-Ga mafic layered intrusions located across the Karelian and Kola cratons. The intrusions have been interpreted to be related to mantle plume activity. Most of the intrusions have negative ɛNd values of about -1 to -2 and slightly radiogenic initial Sr isotope compositions of about 0.702 to 0.703. One potential explanation is crustal contamination of a magma derived from a mantle plume, but another possibility is that the magma was derived from metasomatized sub-continental lithospheric mantle. Samples from the upper chromitite layers of the Kemi intrusion and most samples from the previously studied Koitelainen and Akanvaara intrusions have supra-chondritic γOs values indicating some crustal contamination, which may have contributed to the formation of chromitites in these intrusions. Chromite separates from the main ore zone of the Kemi and Monchepluton intrusions show nearly chondritic γOs, similar to the coeval Vetreny belt komatiites. We suggest that the Os isotope composition of the primitive magma was not significantly changed by crustal contamination due to a high Os content of the magma and a low Os content of the contaminant. Modeling suggests that the Os and Nd isotope compositions of the Monchepluton and Kemi intrusions cannot be explained by assuming a magma source in the sub-continental lithospheric mantle with sub-chondritic γOs. A better match for the isotope data would be a plume mantle source with chondritic Re/Os and Os isotope composition, followed by crustal contamination.

  5. Source components of the Hawaiian shield lavas and their distribution in the plume

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Hanyu, T.; Chang, Q.; Kawabata, H.; Miyazaki, T.; Takahashi, T.; Hirahara, Y.; Tatsumi, Y.

    2006-12-01

    We examined major, trace elements and Sr-, Nd-, Pb-, He- isotope compositions in a suite of fresh lavas from the submarine Koolau, Kilauea and Loihi volcanoes, as these volcanoes are believed to have sampled the three distinct Hawaiian plume components. The trace element ratios and isotopic variations imply that, to a first order, the composition of the Hawaiian shield lavas appears to be dominated by a mixture of two components: a relatively enriched component (Koolau) and a relatively depleted component (Loihi). The Koolau component consists of a higher proportion of ancient recycled oceanic crust (lower crust); the Loihi and Kea component contains a higher proportion relatively depleted FOZO like component that is from the lower mantle. On the basis of our new data involving previous whole rock (Ren et al., J. Petrol., 2004; 2006) and melt inclusion data (Ren et al., 2005, Nature), combined with the geochemical evolutions of the individual shield volcanoes, we propose a Hawaiian mantle plume characterized by more random heterogeneity than would be present in a simple compositionally zoned mantle plume. The plume may have a peridotite matrix from the lower mantle with recycled oceanic crust that may remain distinct geochemistry, forming streaks or ribbons distributed throughout the entire plume. The dominant component sampled at a given stage of the shield volcanoes is likely to be controlled by the thermal structure of the plume and the melting points of the different materials in the plume. References: (1)Ren, Z.-Y., Takahashi, E., Orihashi, Y., K. M. T. Johnson (2004), J. Petrol., 45, 2067-2099. (2)Ren, Z.-Y., T. Shibata, M. Yoshikawa, K. Johnson, E. Takahashi (2006), J. Petrol., 47, 255-275. (3)Ren, Z.-Y., S. Stephanie, E. Takahashi, N. Hirano, T. Hirata (2005), Nature, 436, 837-840.

  6. Volcanic Plume Chemistry: Models, Observations and Impacts

    NASA Astrophysics Data System (ADS)

    Roberts, Tjarda; Martin, Robert; Oppenheimer, Clive; Griffiths, Paul; Braban, Christine; Cox, Tony; Jones, Rod; Durant, Adam; Kelly, Peter

    2010-05-01

    mercury. Excitingly, we can now begin to compare the model simulations to very recently reported in-situ aircraft and balloon measurements in downwind volcanic plumes, which found e.g. ozone depletion at Redoubt, ozone depletion and elevated HNO3 at Erebus and sulfate-H2O interactions at Kilauea. Satellite observations of volcanic BrO, and DOAS observations of BrO under varying plume conditions have also recently been reported. Such comparisons may highlight additional chemistry (e.g. HO2NO2 at Erebus), identify further underlying processes (e.g. the role of plume dispersion and gas fluxes in controlling plume chemistry), guide future field-observation strategies, and support and improve the model simulations that aim to understand volcanic emissions, plume chemistry, and predict the environmental impacts of volcanic plumes.

  7. Composite flight-control actuator development

    NASA Technical Reports Server (NTRS)

    Bott, Richard; Ching, Fred

    1992-01-01

    The composite actuator is 'jam resistant', satisfying a survivability requirement for the Navy. Typically, the push-pull force needed to drive through the wound area of the composite actuator is 73 percent less than that of an all-metal actuator. In addition to improving the aircraft's combat survivability, significant weight savings were realized. The current design of the survivable, composite actuator cylinder is 36 percent lighter than that of the production steel cylinder, which equates to a 15 percent overall actuator weight savings.

  8. Modeling Europa's Dust Plumes

    NASA Astrophysics Data System (ADS)

    Southworth, B.; Kempf, S.; Schmidt, J.

    2015-12-01

    The discovery of Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring the properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we adjust the ejection model by Schmidt et al. [2008] to the conditions at Europa. In this way, we estimate properties of a possible, yet unobserved dust component of the Europa plume. For a size-dependent speed distribution of emerging ice particles we use the model from Kempf et al. [2010] for grain dynamics, modified to run simulations of plumes on Europa. Specifically, we model emission from the two plume locations determined from observations by Roth et al. [2014] and also from other locations chosen at the closest approach of low-altitude flybys investigated in the Europa Clipper study. This allows us to estimate expected fluxes of ice grains on the spacecraft. We then explore the parameter space of Europa dust plumes with regard to particle speed distribution parameters, plume location, and spacecraft flyby elevation. Each parameter set results in a 3-dimensional particle density structure through which we simulate flybys, and a map of particle fallback ('snowfall') on the surface of Europa. Due to the moon's high escape speed, a Europa plume will eject few to no particles that can escape its gravity, which has several further consequences: (i) For given ejection velocity a Europa plume will have a smaller scale height, with a higher particle number densities than the plume on Enceladus, (ii) plume particles will not feed the diffuse Galilean dust ring, (iii) the snowfall pattern on the surface will be more localized about the plume location, and will not induce a global m = 2 pattern as seen on Enceladus, and (iv) safely observing an active plume will require low altitude flybys, preferably at 50

  9. Investigation of ship-plume chemistry using a newly-developed photochemical ship-plume model

    NASA Astrophysics Data System (ADS)

    Kim, H. S.; Park, R. S.; Song, C. H.

    2009-05-01

    A photochemical ship-plume model, which can consider the ship-plume dynamics and ship-plume chemistry, simultaneously, was developed to gain a better understanding of atmospheric impact of ship emissions. The model performance was then evaluated by a comparison with the observation data measured on a NOAA WP-3D flight during the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) airborne field campaign. The simulation conditions and parameters, such as meteorological conditions, emission rates, and background gas and particulate species concentrations, were obtained directly and/or inferred indirectly from the ITCT 2K2 observation data. The model-predicted concentrations showed good agreement with the observed concentrations of five ambient species (NOx, NOy, O3, HNO3, and H2SO4) at the eight plume transects by the WP-3D flight with strong correlations around the 1:1 line (0.66≤R≤0.85). In addition, a set of tests were carried out to approximate the magnitude of the reaction probability of HNO3 onto sea-salt particles in the model-observation comparison framework. These results suggest that the reaction probability of HNO3 onto sea-salt particles may be in the order of 10-3 or smaller. The equivalent NOx lifetime throughout the "entire" plume was also estimated from ship-plume chemistry modeling. The NOx lifetimes estimated throughout the "entire ship plume" was 3.36 h. The short NOx lifetime over the entire ship plume clearly shows that the ship-plume chemistry shortens the NOx lifetime considerably. Therefore, the ship-plume chemistry model should be used to model the changes in ship-plume chemical compositions and better evaluate the atmospheric impact of ocean-going ship emissions.

  10. Fracture Control Requirements for Composite and Bonded Structures

    NASA Technical Reports Server (NTRS)

    Faile, Gwyn C.

    2004-01-01

    Current new requirements document are top level or specific to shuttle payloads. NASA-STD-5007 top level requirement that imposes fracture control on all manned spacecraft hardware. Composites addressed at very top level. NASA_SDT-5003 imposes fracture control on payloads for the space shuttle. Imposes fracture control on composite and bonded structures. Silent on many important issues such as post proof NDE, residual strength, and reuse. Not adequate for or directly applicable to next generation of spacecraft.

  11. Dynamics and Deposits of Coignimbrite Plumes

    NASA Astrophysics Data System (ADS)

    Engwell, Samantha; de'Michieli Vitturi, Mattia; Esposti Ongaro, Tomaso; Neri, Augusto

    2014-05-01

    Fine ash in the atmosphere poses a significant hazard, with potentially disastrous consequences for aviation and, on deposition, health and infrastructure. Fine-grained particles form a large proportion of ejecta in Plinian volcanic clouds. However, another common, but poorly studied phenomena exists whereby large amounts of fine ash are injected into the atmosphere. Coignimbrite plumes form as material is elutriated from the top of pyroclastic density currents. The ash in these plumes is considerably finer grained than that in Plinian plumes and can be distributed over thousands of kilometres in the atmosphere. Despite their significance, very little is known regarding coignimbrite plume formation and dispersion, predominantly due to the poor preservation of resultant deposits. As a result, consequences of coignimbrite plume formation are usually overlooked when conducting hazard and risk analysis. In this study, deposit characteristics and numerical models of plumes are combined to investigate the conditions required for coignimbrite plume formation. Coignimbrite deposits from the Campanian Ignimbrite eruption (Magnitude 7.7, 39 ka) are well sorted and very fine, with a mode of between 30 and 50 microns, and a significant component of respirable ash (less than 10 microns). Analogous distributions are found for coignimbrite deposits from Tungurahua 2006 and Volcan de Colima (2004-2006), amongst others, regardless of magnitude, type or chemistry of eruption. These results indicate that elutriation processes are the dominant control on coignimbrite grainsize distribution. To further investigate elutriation and coignimbrite plume dynamics, the numerical plume model of Bursik (2001) is applied. Model sensitivity analysis demonstrates that neutral buoyancy conditions (required for the formation of the plume) are controlled by a balance between temperature and gas mass flux in the upper most parts of the pyroclastic density current. In addition, results emphasize the

  12. Evidence for Little Shallow Entrainment in Starting Mantle Plumes

    NASA Astrophysics Data System (ADS)

    Lohmann, F. C.; Phipps Morgan, J.; Hort, M.

    2005-12-01

    Basalts from intraplate or hotspot ocean islands show distinct geochemical signatures. Their diversity in composition is generally believed to result from the upwelling plume entraining shallow mantle material during ascent, while potentially also entraining other deep regions of the mantle. Here we present results from analogue laboratory experiments and numerical modelling that there is evidence for little shallow entrainment into ascending mantle plumes, i.e. most of the plume signature is inherited from the source. We conducted laboratory experiments using glucose syrup contaminated with glass beads to visualize fluid flow and origin. The plume is initiated by heating from below or by injecting hot, uncontaminated syrup. Particle movement is captured by a CCD camera. In our numerical experiments we solve the Stokes equations for a viscous fluid at infinite Prandtl number with passive tracer particles being used to track fluid flow and entrainment rates, simulating laboratory as well as mantle conditions. In both analogue experiments and numerical models we observe the classical plume structure being embedded in a `sheath' of material from the plume source region that retains little of the original temperature anomaly of the plume source. Yet, this sheath ascends in the `slipstream' of the plume at speeds close to the ascent speed of the plume head, and effectively prevents the entrainment of surrounding material into the plume head or plume tail. We find that the source region is most effectively sampled by an ascending plume and that compositional variations in the source region are preserved during plume ascent. The plume center and plume sheath combined are composed of up to 85% source material. However, there is also evidence of significant entrainment of up to 30% of surrounding material into the outer layers of the plume sheath. Entrainment rates are found to be influenced by mantle composition and structure, with the radial viscosity profile of the

  13. COOLING TOWER PLUME MODEL

    EPA Science Inventory

    A review of recently reported cooling tower plume models yields none that is universally accepted. The entrainment and drag mechanisms and the effect of moisture on the plume trajectory are phenomena which are treated differently by various investigators. In order to better under...

  14. Dissolved and particulate Fe in a hydrothermal plume at 9{degree}45 minutes N, East Pacific Rise: Slow Fe (II) oxidation kinetics in Pacific plumes

    SciTech Connect

    Field, M.P.; Sherrell, R.M.

    2000-02-01

    Production of Fe(III) particles in hydrothermal plumes is of fundamental importance to the long-term effect of hydrothermal circulation on seawater composition. To elucidate the fundamental controls on Fe redox kinetics and solution/particle partitioning in neutrally buoyant plumes, the authors sampled near-field (<3 km) plume particles at 9{degree}45 minutes N on the East Pacific Rise in 1996, returning in 1997 to sample both particulate and dissolved phases (0.40 {micro}m filter). Concentrations of dissolved Fe varied from 320 to 20 nM in proximal (<0.3 km from vent site) to distal samples (1--3 km downfield), constituting {approximately}85--50% of total Fe, respectively. Based on vent fluid dilution factors calculated from dissolved Mn, a mass balance for vent fluid Fe at this site indicates that {approximately}65% of Fe is lost to particulate sulfide settling in the buoyant plume, and that particulate Fe in distal (1--3 km) samples is twice as concentrated as predicted from dilution of particles in proximal plume water. These observations are consistent with a calculated Fe(II) oxidation half-time of 3.3 h, long enough that Fe(III) colloid production and aggregation occurs primarily in the neutrally buoyant plume at relatively high dilutions, preventing generation of high particular Fe concentrations (11--56 nM observed). A general investigation of Fe(II) oxidation rates in plumes worldwide gives Fe(II) oxidation half-lives as short as 17 min at some Atlantic sites, and as long as 6 h at some Pacific sites. The calculations indicate that the distribution of Fe particles in plumes depends chiefly on inter-basin differences in ambient deep water chemistry (primarily pH and dissolved O{sub 2}) and on local currents driving plume dilution, and to a much lesser extent on variations in primary vent fluid composition. Long-term changes in thermohaline circulation or ocean biogeochemistry may therefore alter Fe dynamics and minor element fluxes associated with global

  15. Stealth Plumes on Io

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.; Matson, Dennis L.; Blaney, Diana L.; Veeder, Glenn J.; Davies, Ashley

    1995-01-01

    We suggest that Io's eruptive activity may include a class of previously undetected SO2 geysers. The thermodynamic models for the eruptive plumes discovered by Voyager 'involve low to moderate entropy SO2 eruptions. The resulting plumes are a mixture of solid and gas which emerge from the vent and follow essentially ballistic trajectories. We show that intrusion of silicate magma into buried SO2 deposits can create the required conditions for high entropy eruptions which proceed entirely in the vapor phase. These purely gaseous plumes would have been invisible to Voyager's instruments. Hence, we call them "stealth" plumes. Such eruptions could explain the "patchy" SO2 atmosphere inferred from recent UV and micro-wave spectral observations. The magma intrusion rate required to support the required gas production for these plumes is a negligible fraction of estimated global magma intrusion rates.

  16. Plumes on Enceladus: Lessons for Europa?

    NASA Astrophysics Data System (ADS)

    Nimmo, F.

    2014-12-01

    The possible detection of a water vapour plume on Europa [1] suggests resemblances to Enceladus, a cryovolcanically active satellite [2]. How does this activity work, and what lesson does Enceladus have for plumes on Europa? The inferred vapour column densities of the Europa [1] and Enceladus [3] plumes are similar, but the inferred velocity and mass flux of the former are higher. At Enceladus, the inferred plume strength is modulated by its orbital position [4,5], suggesting that tides opening and closing cracks control the eruption behaviour [6,7]. An additional source of stress potentially driving eruptions is the effect of slow freezing of the ice shell above[7,8]. The original detection of the Europa plume was close to apocentre, when polar fractures are expected to be in tension [1]. Follow-up observations at the same orbital phase did not detect a plume [9], although the Galileo E12 magnetometer data may provide evidence for an earlier plume [Khurana, pers. comm.]. One possible explanation for the plume's disappearance is that longer-period tidal effects are playing a role; there are hints of similar secular changes in the Enceladus data [4,5]. Another is that detectability of the Europa plumein the aurora observations also depends on variations in electron density (which affects the UV emission flux) [9]. Or it may simply be that eruptive activity on Europa is highly time-variable, as on Io. At Enceladus, the plume scale height is independent of orbital position and plume brightness [5]. This suggests that the vapour velocity does not depend on crack width, consistent with supersonic flow through a near-surface throat. The large scale height inferred for the Europa plume likewise suggests supersonic behaviour. Continuous fallback of solid plume material at Enceladus affects both the colour [10] and surface texture [2] of near-polar regions. Less frequent plume activity would produce subtler effects; whether the sparse available imagery at Europa [11

  17. The ice plumes of Europa

    NASA Astrophysics Data System (ADS)

    Sparks, William

    2014-10-01

    It is of extreme interest to NASA and the scientific community that evidence has been found for plumes of water ice venting from the polar regions of Europa (Roth et al 2014) - spectroscopic detection of off-limb line emission from the dissociation products of water. We were awarded Cycle 21 time to seek direct images of the Europa exosphere, including Enceladus-like plumes if present, basing our study on FUV images of Europa as it transits the smooth face of Jupiter. We also obtained a necessary FUV image of Europa out of transit. These observations provide additional evidence for the presence of ice plumes on Europa. Here, we propose to augment our previous imaging work and to seek an initial, efficient characterization of off-limb emission as Europa orbits Jupiter. Such images provide sensitive flux and column density limits, with exceptional spatial resolution. In transit, our strategy can place firm limits on, or measurements of, absorbing columns, their distribution with altitude above the surface of Europa, and constrain their wavelength dependence and hence composition. Out of transit, geometrical and surface brightness considerations can help us distinguish between continuum FUV emission from forward- or back-scattering, from line emission, or, though we might prefer otherwise, from more subtle instrumental artifacts than hitherto understood. If the ice fountains of Europa arise from the deep ocean, we have gained access to probably the most astrobiologically interesting location in the Solar System.

  18. Composite Gauss-Legendre Quadrature with Error Control

    ERIC Educational Resources Information Center

    Prentice, J. S. C.

    2011-01-01

    We describe composite Gauss-Legendre quadrature for determining definite integrals, including a means of controlling the approximation error. We compare the form and performance of the algorithm with standard Newton-Cotes quadrature. (Contains 1 table.)

  19. Lateral plume spreading in a medium size river plume using surface Lagrangian drifters

    NASA Astrophysics Data System (ADS)

    Kakoulaki, Georgia; MacDonald, Daniel; Cole, Kelly

    2016-04-01

    Groups of 27 Lagrangian drifters deployed in the Merrimack River plume over twelve tides, with river discharges ranging between 150-800 m3/s, are used to understand the external forcing mechanisms responsible for the extent of spreading in river plumes. The transition of buoyant flow from a confined estuary to an unconfined coastal ocean introduces the complicated phenomenon of lateral spreading, which occurs preferentially near the surface and results in a flow that spreads laterally as plume water propagates forward in the direction of mean flow. In this work, the temporal and spatial scales of the active spreading region are estimated in the sampled plumes and related to environmental parameters at the river mouth such as inflow river discharge, initial drifter velocity at the point of release, initial reduced gravity and initial internal wave speed. The initial wave speed was found to be the environmental parameter that best predicts the magnitude of the spatial and temporal scales of the active spreading region. Previous studies have asserted the importance of initial plume parameters in near-field plume evolution and here we extrapolate this idea to the mid-field. Interestingly, we find that that lateral plume spreading is arrested at approximately one inertial radius from the river mouth. We therefore propose that the shutdown of spreading is controlled almost exclusively by Coriolis force and it is responsible for converting spreading motion to spinning motion after the mid field region. The outcomes of this research are widely applicable to other energetic, medium size river plume systems and to the author's knowledge this is the first study to estimate lateral plume expansion using observations beyond the immediate near field region of a river plume. This work will provide further development in understanding plume dynamics and the fundamental physical processes that influence coastal ecosystems.

  20. Relative Abundance Measurements in Plumes and Interplumes

    NASA Astrophysics Data System (ADS)

    Guennou, C.; Hahn, M.; Savin, D. W.

    2015-07-01

    We present measurements of relative elemental abundances in plumes and interplumes. Plumes are bright, narrow structures in coronal holes that extend along open magnetic field lines far out into the corona. Previous work has found that in some coronal structures the abundances of elements with a low first ionization potential (FIP) <10 eV are enhanced relative to their photospheric abundances. This coronal-to-photospheric abundance ratio, commonly called the FIP bias, is typically 1 for elements with a high-FIP (>10 eV). We have used Extreme Ultraviolet Imaging Spectrometer observations made on 2007 March 13 and 14 over a ≈24 hr period to characterize abundance variations in plumes and interplumes. To assess their elemental composition, we used a differential emission measure analysis, which accounts for the thermal structure of the observed plasma. We used lines from ions of iron, silicon, and sulfur. From these we estimated the ratio of the iron and silicon FIP bias relative to that for sulfur. From the results, we have created FIP-bias-ratio maps. We find that the FIP-bias ratio is sometimes higher in plumes than in interplumes and that this enhancement can be time dependent. These results may help to identify whether plumes or interplumes contribute to the fast solar wind observed in situ and may also provide constraints on the formation and heating mechanisms of plumes.

  1. Composition control in laser surface alloying

    NASA Astrophysics Data System (ADS)

    Chande, T.; Mazumder, J.

    1983-06-01

    Laser surface alloying, a process of growing interest for local surface modification, relies upon a suitable composition and microstructure for satisfactory on-the-job performance. This paper reports the results of an initial systematic study of laser surface alloying nickel onto AISI 1020 steel substrates using a statistical experimental design technique. The objective was to relate processing conditions to dimensions, solute content, and microstructural refinement of the laser alloyed zones. Solute content was of principal concern as it is the single most important factor affecting the properties of laser surface alloys. The effects of varying the laser power, beam diameter, and speed on the width, depth, nickel content, and fluctuations in nickel content are reported. Interactions between process parameters are discussed, the reproducibility assessed, contour plots for solute content drawn. Dimensionless plots are developed that relate average solute content and microstructural refinement to process parameters. Previously published data for alloying chromium into 1018 steels are shown to contain similar trends. It is felt that such an approach would facilitate selection of processing conditions to obtain reproducibly the compositions and microstructures necessary for gainful utilization of laser surface alloys.

  2. Prometheus: Io's wandering plume.

    PubMed

    Kieffer, S W; Lopes-Gautier, R; McEwen, A; Smythe, W; Keszthelyi, L; Carlson, R

    2000-05-19

    Unlike any volcanic behavior ever observed on Earth, the plume from Prometheus on Io has wandered 75 to 95 kilometers west over the last 20 years since it was first discovered by Voyager and more recently observed by Galileo. Despite the source motion, the geometric and optical properties of the plume have remained constant. We propose that this can be explained by vaporization of a sulfur dioxide and/or sulfur "snowfield" over which a lava flow is moving. Eruption of a boundary-layer slurry through a rootless conduit with sonic conditions at the intake of the melted snow can account for the constancy of plume properties. PMID:10817989

  3. Controlled densification of mullite for composite applications.

    SciTech Connect

    Cruse, T. A.

    1999-05-19

    As part of an effort to fabricate oxide-based fibrous monolithic ceramics, sintering of mullite has been examined. The effects of Y{sub 2}O{sub 3} additions on sinterability of sol-gel-derived mullite and on the resulting microstructure were evaluated over a range of compositions, sintering times, and temperatures. Electron microscopy, X-ray diffraction, differential thermal analysis, and density measurements indicated that the Y{sub 2}O{sub 3} additions promoted densification through formation of a Y-Si-Al-O liquid phase. This phase tended to solidify as a glass during normal processing, but could be crystallized by a two-step annealing process at 1300 and 1200 C. The four-point flexural strengths of mullite and mullite-5 Wt.% Y{sub 2}O{sub 3} were also examined.

  4. Method for controlling corrosion using molybdate compositions

    SciTech Connect

    Boffardi, B.P.; Rey, S.P.

    1989-01-17

    A method is described for inhibiting corrosion in an aqueous system comprising adding to the system an effective amount of a corrosion inhibiting composition comprising: (a) a molybdate ion source; and (b) a water-soluble component selected from the group consisting of polymaleic anhydride; amine adducts of polymaleic anhydride; polymers prepared by polymerizing maleic anhydride with dimethyl diallyl ammonium chloride or homologs thereof; polymers prepared from 50-70%, by weight, acrylic acid or methacrylic acid, 10-40%, by weight, 2-acrylamido-2-methylpropyl sulfonic acid or 2-methyacrylamido-2-methylpropyl sulfonic acid and 10-30%, by weight, of a polyalkyleneoxide compound; salts of the above described polymers; phosphonates selected from the group consisting of 2-phosnphonobutane-1,2,4 tricarboxylic acid and hydroxyphosphono acetic acid; phosphino carboxylic acids; polyphosphoric acid and polyhydroxy esters of polyphosphoric acid; wherein the weight of (a):(b), on an active basis, ranges from about 10:1 to about 1:10.

  5. Fuzzy Modal Control Applied to Smart Composite Structure

    NASA Astrophysics Data System (ADS)

    Koroishi, E. H.; Faria, A. W.; Lara-Molina, F. A.; Steffen, V., Jr.

    2015-07-01

    This paper proposes an active vibration control technique, which is based on Fuzzy Modal Control, as applied to a piezoelectric actuator bonded to a composite structure forming a so-called smart composite structure. Fuzzy Modal Controllers were found to be well adapted for controlling structures with nonlinear behavior, whose characteristics change considerably with respect to time. The smart composite structure was modelled by using a so called mixed theory. This theory uses a single equivalent layer for the discretization of the mechanical displacement field and a layerwise representation of the electrical field. Temperature effects are neglected. Due to numerical reasons it was necessary to reduce the size of the model of the smart composite structure so that the design of the controllers and the estimator could be performed. The role of the Kalman Estimator in the present contribution is to estimate the modal states of the system, which are used by the Fuzzy Modal controllers. Simulation results illustrate the effectiveness of the proposed vibration control methodology for composite structures.

  6. Genome-resolved metagenomics reveals that sulfur metabolism dominates the microbial ecology of rising hydrothermal plumes

    NASA Astrophysics Data System (ADS)

    Anantharaman, K.; Breier, J. A., Jr.; Jain, S.; Reed, D. C.; Dick, G.

    2015-12-01

    Deep-sea hydrothermal plumes occur when hot fluids from hydrothermal vents replete with chemically reduced elements and compounds like sulfide, methane, hydrogen, ammonia, iron and manganese mix with cold, oxic seawater. Chemosynthetic microbes use these reduced chemicals to power primary production and are pervasive throughout the deep sea, even at sites far removed from hydrothermal vents. Although neutrally-buoyant hydrothermal plumes have been well-studied, rising hydrothermal plumes have received little attention even though they represent an important interface in the deep-sea where microbial metabolism and particle formation processes control the transformation of important elements and impact global biogeochemical cycles. In this study, we used genome-resolved metagenomic analyses and thermodynamic-bioenergetic modeling to study the microbial ecology of rising hydrothermal plumes at five different hydrothermal vents spanning a range of geochemical gradients at the Eastern Lau Spreading Center (ELSC) in the Western Pacific Ocean. Our analyses show that differences in the geochemistry of hydrothermal vents do not manifest in microbial diversity and community composition, both of which display only minor variance across ELSC hydrothermal plumes. Microbial metabolism is dominated by oxidation of reduced sulfur species and supports a diversity of bacteria, archaea and viruses that provide intriguing insights into metabolic plasticity and virus-mediated horizontal gene transfer in the microbial community. The manifestation of sulfur oxidation genes in hydrogen and methane oxidizing organisms hints at metabolic opportunism in deep-sea microbes that would enable them to respond to varying redox conditions in hydrothermal plumes. Finally, we infer that the abundance, diversity and metabolic versatility of microbes associated with sulfur oxidation impart functional redundancy that could allow it to persist in the dynamic settings of hydrothermal plumes.

  7. Methane Plumes on Mars

    NASA Video Gallery

    Spectrometer instruments attached to several telescopes detect plumes of methane emitted from Mars during its summer and spring seasons. High levels of methane are indicated by warmer colors. The m...

  8. Sulfur plumes off Namibia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Sulfur plumes rising up from the bottom of the ocean floor produce colorful swirls in the waters off the coast of Namibia in southern Africa. The plumes come from the breakdown of marine plant matter by anaerobic bacteria that do not need oxygen to live. This image was acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra satellite on April 24, 2002 Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  9. Microstructurally Controlled Composites with Optimal Elastodynamic Properties

    NASA Astrophysics Data System (ADS)

    Sadeghi, Hossein

    Periodic composites (PCs) are artificial materials with specially designed microstructure to manage stress waves. The objective of this dissertation is to study various techniques for microstructural design of PCs for a desired elastodynamic response. A mixed variational formulation is studied for band structure calculation of PCs. Dynamic homogenization is studied for calculation of the frequency dependent effective properties of PCs. Optimization techniques are used together with mixed variational formulation and dynamic homogenization to make a computational platform for microstructural design of PCs. Several PCs are designed and fabricated, and various tests are performed for experimental verification. First, band-gap in one- and two-dimensional PCs is investigated experimentally. Mixed variational formulation is used to design samples with band-gaps at frequencies convenient to conduct experiment. Samples are fabricated and their transmission coefficient is measured. Experimental data are compared with theoretical results for evaluation of the band structure. Using constituent materials with temperature dependent material properties, it is also shown that band structure of PCs can be tuned by changing the ambient temperature. Furthermore, dynamic homogenization is used to design a one-dimensional PC for acoustic impedance matching. As a result, the reflection of stress waves at the interface of two impedance matched media becomes zero. Samples are fabricated and ultrasound tests are performed to measure the reflection coefficient for experimental verification. In addition, a one-dimensional PC with metamaterial response is designed to achieve a composite with both high stiffness-to-density ratio and high attenuation at low frequency regime. Samples are fabricated and the attenuation coefficient is measured for experimental verification. Moreover, optimal design of PCs for shock wave mitigation is investigated. A genetic algorithm is used to design the

  10. HOUSTON URBAN PLUME STUDY, 1974. MICROSCOPICAL IDENTIFICATION OF COLLECTED AEROSOLS

    EPA Science Inventory

    An urban plume study was conducted in Houston during July 1974 to gain preliminary data on the concentration and composition of primary and secondary aerosols contributing to Houston's air pollution problem. Selected membrane filter samples containing urban aerosols were analyzed...

  11. MICROCOMPUTER PROGRAMS FOR PARTICULATE CONTROL: SECTION FAILURE; BAGHOUSE; PLUME OPACITY PREDICTION; AND IN-STACK OPACITY CALCULATOR

    EPA Science Inventory

    IBM-PC usable versions of several computer models useful in particulate control are provided. The models were originally written for the TRS-80 Model I-III series of microcomputers and have been translated to run on the IBM-PC. The documentation for the TRS-80 versions applies to...

  12. Hubble Captures Volcanic Eruption Plume From Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Hubble Space Telescope has snapped a picture of a 400-km-high (250-mile-high) plume of gas and dust from a volcanic eruption on Io, Jupiter's large innermost moon.

    Io was passing in front of Jupiter when this image was taken by the Wide Field and Planetary Camera 2 in July 1996. The plume appears as an orange patch just off the edge of Io in the eight o'clock position, against the blue background of Jupiter's clouds. Io's volcanic eruptions blasts material hundreds of kilometers into space in giant plumes of gas and dust. In this image, material must have been blown out of the volcano at more than 2,000 mph to form a plume of this size, which is the largest yet seen on Io.

    Until now, these plumes have only been seen by spacecraft near Jupiter, and their detection from the Earth-orbiting Hubble Space Telescope opens up new opportunities for long-term studies of these remarkable phenomena.

    The plume seen here is from Pele, one of Io's most powerful volcanos. Pele's eruptions have been seen before. In March 1979, the Voyager 1 spacecraft recorded a 300-km-high eruption cloud from Pele. But the volcano was inactive when the Voyager 2 spacecraft flew by Jupiter in July 1979. This Hubble observation is the first glimpse of a Pele eruption plume since the Voyager expeditions.

    Io's volcanic plumes are much taller than those produced by terrestrial volcanos because of a combination of factors. The moon's thin atmosphere offers no resistance to the expanding volcanic gases; its weak gravity (one-sixth that of Earth) allows material to climb higher before falling; and its biggest volcanos are more powerful than most of Earth's volcanos.

    This image is a contrast-enhanced composite of an ultraviolet image (2600 Angstrom wavelength), shown in blue, and a violet image (4100 Angstrom wavelength), shown in orange. The orange color probably occurs because of the absorption and/or scattering of ultraviolet light in the plume. This light from Jupiter passes through

  13. Coronal Plumes in the Fast Solar Wind

    NASA Technical Reports Server (NTRS)

    Velli, Marco; Lionello, Roberto; Linker, Jon A.; Mikic, Zoran

    2011-01-01

    The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfven waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of the study. Time dependence due to plume ignition and disappearance is also discussed. Velocity differences of the order of approximately 50 km/s, such as those found in microstreams in the high-speed solar wind, may be easily explained by slightly different heat deposition profiles in different plumes. Statistical pressure balance in the fast wind data may be masked by the large variety of body and surface waves which the higher density filaments may carry, so the absence of pressure balance in the microstreams should not rule out their interpretation as the extension of coronal plumes into interplanetary space. Mixing of plume-interplume material via the Kelvin-Helmholtz instability seems to be possible within the parameter ranges of the models defined here, only at large di stances from the Sun, beyond 0.2-0.3 AU. Plasma and composition measurements in the inner heliosphere, such as those which will become available with Solar Orbiter and Solar Probe Plus, should therefore definitely be able to identify plume remnants in the solar wind.

  14. CORONAL PLUMES IN THE FAST SOLAR WIND

    SciTech Connect

    Velli, Marco; Lionello, Roberto; Linker, Jon A.; Mikic, Zoran E-mail: lionel@predsci.com E-mail: mikicz@predsci.com

    2011-07-20

    The expansion of a coronal hole filled with a discrete number of higher density coronal plumes is simulated using a time-dependent two-dimensional code. A solar wind model including an exponential coronal heating function and a flux of Alfven waves propagating both inside and outside the structures is taken as a basic state. Different plasma plume profiles are obtained by using different scale heights for the heating rates. Remote sensing and solar wind in situ observations are used to constrain the parameter range of the study. Time dependence due to plume ignition and disappearance is also discussed. Velocity differences of the order of {approx}50 km s{sup -1}, such as those found in microstreams in the high-speed solar wind, may be easily explained by slightly different heat deposition profiles in different plumes. Statistical pressure balance in the fast wind data may be masked by the large variety of body and surface waves which the higher density filaments may carry, so the absence of pressure balance in the microstreams should not rule out their interpretation as the extension of coronal plumes into interplanetary space. Mixing of plume-interplume material via the Kelvin-Helmholtz instability seems to be possible within the parameter ranges of the models defined here, only at large distances from the Sun, beyond 0.2-0.3 AU. Plasma and composition measurements in the inner heliosphere, such as those which will become available with Solar Orbiter and Solar Probe Plus, should therefore definitely be able to identify plume remnants in the solar wind.

  15. A neural network controller for automated composite manufacturing

    NASA Technical Reports Server (NTRS)

    Lichtenwalner, Peter F.

    1994-01-01

    At McDonnell Douglas Aerospace (MDA), an artificial neural network based control system has been developed and implemented to control laser heating for the fiber placement composite manufacturing process. This neurocontroller learns an approximate inverse model of the process on-line to provide performance that improves with experience and exceeds that of conventional feedback control techniques. When untrained, the control system behaves as a proportional plus integral (PI) controller. However after learning from experience, the neural network feedforward control module provides control signals that greatly improve temperature tracking performance. Faster convergence to new temperature set points and reduced temperature deviation due to changing feed rate have been demonstrated on the machine. A Cerebellar Model Articulation Controller (CMAC) network is used for inverse modeling because of its rapid learning performance. This control system is implemented in an IBM compatible 386 PC with an A/D board interface to the machine.

  16. A Brilliant Plume

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Long Range Reconnaissance Imager (LORRI) on New Horizons captured another dramatic picture of Jupiter's moon Io and its volcanic plumes, 19 hours after the spacecraft's closest approach to Jupiter on Feb. 28, 2007. LORRI took this 75 millisecond exposure at 0035 Universal Time on March 1, 2007, when Io was 2.3 million kilometers (1.4 million miles) from the spacecraft.

    Io's dayside is deliberately overexposed to bring out faint details in the plumes and on the moon's night side. The continuing eruption of the volcano Tvashtar, at the 1 o'clock position, produces an enormous plume roughly 330 kilometers (200 miles) high, which is illuminated both by sunlight and 'Jupiter light.'

    The shadow of Io, cast by the Sun, slices across the plume. The plume is quite asymmetrical and has a complicated wispy texture, for reasons that are still mysterious. At the heart of the eruption incandescent lava, seen here as a brilliant point of light, is reminding scientists of the fire fountains spotted by the Galileo Jupiter orbiter at Tvashtar in 1999.

    The sunlit plume faintly illuminates the surface underneath. 'New Horizons and Io continue to astonish us with these unprecedented views of the solar system's most geologically active body' says John Spencer, deputy leader of the New Horizons Jupiter Encounter Science Team and an Io expert from Southwest Research Institute.

    Because this image shows the side of Io that faces away from Jupiter, the large planet does not illuminate the moon's night side except for an extremely thin crescent outlining the edge of the disk at lower right. Another plume, likely from the volcano Masubi, is illuminated by Jupiter just above this lower right edge. A third and much fainter plume, barely visible at the 2 o'clock position, could be the first plume seen from the volcano Zal Patera.

    As in other New Horizons images of Io, mountains catch the setting Sun just beyond the terminator (the line dividing day and night

  17. Cellulose, Chitosan, and Keratin Composite Materials. Controlled Drug Release

    PubMed Central

    2015-01-01

    A method was developed in which cellulose (CEL) and/or chitosan (CS) were added to keratin (KER) to enable [CEL/CS+KER] composites to have better mechanical strength and wider utilization. Butylmethylimmidazolium chloride ([BMIm+Cl–]), an ionic liquid, was used as the sole solvent, and because the [BMIm+Cl–] used was recovered, the method is green and recyclable. Fourier transform infrared spectroscopy results confirm that KER, CS, and CEL remain chemically intact in the composites. Tensile strength results expectedly show that adding CEL or CS into KER substantially increases the mechanical strength of the composites. We found that CEL, CS, and KER can encapsulate drugs such as ciprofloxacin (CPX) and then release the drug either as a single or as two- or three-component composites. Interestingly, release rates of CPX by CEL and CS either as a single or as [CEL+CS] composite are faster and independent of concentration of CS and CEL. Conversely, the release rate by KER is much slower, and when incorporated into CEL, CS, or CEL+CS, it substantially slows the rate as well. Furthermore, the reducing rate was found to correlate with the concentration of KER in the composites. KER, a protein, is known to have secondary structure, whereas CEL and CS exist only in random form. This makes KER structurally denser than CEL and CS; hence, KER releases the drug slower than CEL and CS. The results clearly indicate that drug release can be controlled and adjusted at any rate by judiciously selecting the concentration of KER in the composites. Furthermore, the fact that the [CEL+CS+KER] composite has combined properties of its components, namely, superior mechanical strength (CEL), hemostasis and bactericide (CS), and controlled drug release (KER), indicates that this novel composite can be used in ways which hitherto were not possible, e.g., as a high-performance bandage to treat chronic and ulcerous wounds. PMID:25548871

  18. Reactive halogen chemistry in volcanic plumes

    NASA Astrophysics Data System (ADS)

    Bobrowski, N.; von Glasow, R.; Aiuppa, A.; Inguaggiato, S.; Louban, I.; Ibrahim, O. W.; Platt, U.

    2007-03-01

    Bromine monoxide (BrO) and sulphur dioxide (SO2) abundances as a function of the distance from the source were measured by ground-based scattered light Multiaxis Differential Optical Absorption Spectroscopy (MAX-DOAS) in the volcanic plumes of Mt. Etna on Sicily, Italy, in August-October 2004 and May 2005 and Villarica in Chile in November 2004. BrO and SO2 spatial distributions in a cross section of Mt. Etna's plume were also determined by Imaging DOAS. We observed an increase in the BrO/SO2 ratio in the plume from below the detection limit near the vent to about 4.5 × 10-4 at 19 km (Mt. Etna) and to about 1.3 × 10-4 at 3 km (Villarica) distance, respectively. Additional attempts were undertaken to evaluate the compositions of individual vents on Mt. Etna. Furthermore, we detected the halogen species ClO and OClO. This is the first time that OClO could be detected in a volcanic plume. Using calculated thermodynamic equilibrium compositions as input data for a one-dimensional photochemical model, we could reproduce the observed BrO and SO2 vertical columns in the plume and their ratio as function of distance from the volcano as well as vertical BrO and SO2 profiles across the plume with current knowledge of multiphase halogen chemistry, but only when we assumed the existence of an "effective source region," where volcanic volatiles and ambient air are mixed at about 600°C (in the proportions of 60% and 40%, respectively).

  19. Volcanic Plume Measurements with UAV (Invited)

    NASA Astrophysics Data System (ADS)

    Shinohara, H.; Kaneko, T.; Ohminato, T.

    2013-12-01

    Volatiles in magmas are the driving force of volcanic eruptions and quantification of volcanic gas flux and composition is important for the volcano monitoring. Recently we developed a portable gas sensor system (Multi-GAS) to quantify the volcanic gas composition by measuring volcanic plumes and obtained volcanic gas compositions of actively degassing volcanoes. As the Multi-GAS measures variation of volcanic gas component concentrations in the pumped air (volcanic plume), we need to bring the apparatus into the volcanic plume. Commonly the observer brings the apparatus to the summit crater by himself but such measurements are not possible under conditions of high risk of volcanic eruption or difficulty to approach the summit due to topography etc. In order to overcome these difficulties, volcanic plume measurements were performed by using manned and unmanned aerial vehicles. The volcanic plume measurements by manned aerial vehicles, however, are also not possible under high risk of eruption. The strict regulation against the modification of the aircraft, such as installing sampling pipes, also causes difficulty due to the high cost. Application of the UAVs for the volcanic plume measurements has a big advantage to avoid these problems. The Multi-GAS consists of IR-CO2 and H2O gas analyzer, SO2-H2O chemical sensors and H2 semiconductor sensor and the total weight ranges 3-6 kg including batteries. The necessary conditions of the UAV for the volcanic plumes measurements with the Multi-GAS are the payloads larger than 3 kg, maximum altitude larger than the plume height and installation of the sampling pipe without contamination of the exhaust gases, as the exhaust gases contain high concentrations of H2, SO2 and CO2. Up to now, three different types of UAVs were applied for the measurements; Kite-plane (Sky Remote) at Miyakejima operated by JMA, Unmanned airplane (Air Photo Service) at Shinomoedake, Kirishima volcano, and Unmanned helicopter (Yamaha) at Sakurajima

  20. Redox conditions for mantle plumes

    NASA Astrophysics Data System (ADS)

    Heister, L. E.; Lesher, C. E.

    2005-12-01

    The vanadium to scandium ratio (V/Sc) for basalts from mid-ocean ridge (MOR) and arc environments has been proposed as a proxy for fO2 conditions during partial melting (e.g. [1] and [2]). Contrary to barometric measurements of the fO2 of primitive lavas, the V/Sc ratio of the upper mantle at mid-ocean ridges and arcs is similar, leading previous authors to propose that the upper mantle has uniform redox potential and is well-buffered. We have attempted to broaden the applicability of the V/Sc parameter to plume-influenced localities (both oceanic and continental), where mantle heterogeneities associated with recycled sediments, mafic crust, and metasomatized mantle, whether of shallow or deep origin, exist. We find that primitive basalts from the North Atlantic Igneous Province (NAIP), Hawaii (both the Loa and Kea trends), Deccan, Columbia River, and Siberian Traps show a range of V/Sc ratios that are generally higher (average ~9) than those for MOR (average ~ 6.7) or arc (average ~7) lavas. Based on forward polybaric decompression modeling, we attribute these differences to polybaric melting and melt segregation within the garnet stability field rather than the presence of a more oxidized mantle in plume-influenced settings. Like MORB, the V/Sc ratios for plume-influenced basalts can be accounted for by an oxidation state approximately one log unit below the Ni-NiO buffer (NNO-1). Our analysis suggests that source heterogeneities have little, if any, resolvable influence on mantle redox conditions, although they have significant influence on the trace element and isotopic composition of mantle-derived melts. We suggest that variations in the redox of erupted lavas is largely a function of shallow lithospheric processes rather than intrinsic to the mantle source, regardless of tectonic setting. [1] Li and Lee (2004) EPSL, [2] Lee et al. (2005) J. of Petrology

  1. Fabrication of high I c film for GdBCO coated conductor by continuous in-plume PLD

    NASA Astrophysics Data System (ADS)

    Sutoh, Y.; Miura, M.; Yoshizumi, M.; Izumi, T.; Miyata, S.; Yamada, Y.; Shiohara, Y.

    2009-10-01

    GdBa 2Cu 3O y(GdBCO) films were fabricated on pulsed laser deposition (PLD)-CeO 2/ion-beam-assisted deposition (IBAD)-Gd 2Zr 2O 7/Hastelloy C276 metal substrate tapes using the continuous in-plume PLD method. The control of the target composition is important to improve the critical current density ( J c) property, especially in the case of a short target-substrate distance. As a result, the critical current ( I c) value of 320 A/cm-W and the J c value of 3.2 MA/cm 2 were obtained by using the target composition of Gd:Ba:Cu = 1:2:3.4 (GdBa 2Cu 3.4O y) in a short sample. It was also found that a high growth rate for the GdBCO film could be realized by crystal growth in the plume (in-plume) for the target. A twice higher growth rate was achieved by the in-plume PLD technique comparing with that in the conventional condition in which crystal growth takes place near the plume edge. In addition, in order to improve the I c values in the external magnetic fields, we introduced the artificial pinning centers using a 5 mol%BaZrO 3 doped GdBa 2Cu 3.4O y target by the in-plume method. The BaZrO 3 nanorods were effectively introduced by in-plume PLD and the obtained sample showed improved I c-B- θ properties due to enhanced B|| c; the minimum I c value of 25.6 A/cm-W at 3 T in the 1.6 μm thick film.

  2. African Equatorial and Subtropical Ozone Plumes: Recurrences Timescales of the Brown Cloud Trans-African Plumes and Other Plumes

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Thompson, Anne M.; Guan, Hong; Witte, Jacquelyn C.

    2004-01-01

    We have found repeated illustrations in the maps of Total Tropospheric Ozone (TTO) of apparent transport of ozone from the Indian Ocean to the Equatorial Atlantic Ocean. Most interesting are examples that coincide with the INDOEX observations of late northern winter, 1999. Three soundings associated with the SHADOZ (Southern Hemisphere Additional Ozonesondes) network help confirm and quantify degree of influence of pollution, lightning, and stratospheric sources, suggesting that perhaps 40% of increased Atlantic ozone could be Asian pollution during periods of maximum identified in the TTO maps. We outline recurrent periods of apparent ozone transport from Indian to Atlantic Ocean regions both during and outside the late-winter period. These are placed in the context of some general observations about factors controlling recurrence timescales for the expression of both equatorial and subtropical plumes. Low-level subtropical plumes are often controlled by frontal systems approaching the Namib coast; these direct mid-level air into either easterly equatorial plumes or westerly mid- troposphere plumes. Equatorial plumes of ozone cross Africa on an easterly path due to the occasional coincidence of two phenomena: (1) lofting of ozone to mid and upper levels, often in the Western Indian Ocean, and (2) the eastward extension of an Equatorial African easterly jet.

  3. Fracture mechanisms and fracture control in composite structures

    NASA Astrophysics Data System (ADS)

    Kim, Wone-Chul

    Four basic failure modes--delamination, delamination buckling of composite sandwich panels, first-ply failure in cross-ply laminates, and compression failure--are analyzed using linear elastic fracture mechanics (LEFM) and the J-integral method. Structural failures, including those at the micromechanical level, are investigated with the aid of the models developed, and the critical strains for crack propagation for each mode are obtained. In the structural fracture analyses area, the fracture control schemes for delamination in a composite rib stiffener and delamination buckling in composite sandwich panels subjected to in-plane compression are determined. The critical fracture strains were predicted with the aid of LEFM for delamination and the J-integral method for delamination buckling. The use of toughened matrix systems has been recommended for improved damage tolerant design for delamination crack propagation. An experimental study was conducted to determine the onset of delamination buckling in composite sandwich panel containing flaws. The critical fracture loads computed using the proposed theoretical model and a numerical computational scheme closely followed the experimental measurements made on sandwich panel specimens of graphite/epoxy faceskins and aluminum honeycomb core with varying faceskin thicknesses and core sizes. Micromechanical models of fracture in composites are explored to predict transverse cracking of cross-ply laminates and compression fracture of unidirectional composites. A modified shear lag model which takes into account the important role of interlaminar shear zones between the 0 degree and 90 degree piles in cross-ply laminate is proposed and criteria for transverse cracking have been developed. For compressive failure of unidirectional composites, pre-existing defects play an important role. Using anisotropic elasticity, the stress state around a defect under a remotely applied compressive load is obtained. The experimentally

  4. Controlled degradation pattern of hydroxyapatite/calcium carbonate composite microspheres.

    PubMed

    Yang, Ning; Zhong, Qiwei; Zhou, Ying; Kundu, Subhas C; Yao, Juming; Cai, Yurong

    2016-06-01

    Hydroxyapatite (HAP) is widely used in clinic due to its good biocompatibility and osteoconductivity except for its slow degradation speed. In the present study, spherical calcium carbonate (CaCO3 ) is fabricated in the presence of silk protein sericin, which is transmuted into HAP microsphere in phosphate solution with the assistance of microwave irradiation. The effect of reaction conditions on the conversion of CaCO3 is investigated including reaction time, chemical composition of phosphate solution, and microwave power to get a series of HAP/CaCO3 composites. The degradation property of the composites is evaluated in vitro. Results show the degradation speed of the composite with higher HAP content is slower. The degradation rate of the composite could be changed effectively by modulating the proportion of HAP and CaCO3 . This work provides a feasible method for the preparation of spherical HAP/CaCO3 composite with controllable degradability. The composite thus obtained may be an ideal material for bone tissue engineering application. Microsc. Res. Tech. 79:518-524, 2016. © 2016 Wiley Periodicals, Inc. PMID:27037606

  5. Collapse in Thermal Plumes

    NASA Astrophysics Data System (ADS)

    Pears, M. I.; Lithgow-Bertelloni, C. R.; Dobson, D. P.; Davies, R.

    2013-12-01

    Collapsing thermal plumes have been investigated through experimental and numerical simulations. Collapsing plumes are an uncommon fluid dynamical phenomenon, usually seen when the buoyancy source is turned off. A series of fluid dynamical experiments were conducted on thermal plumes at a variety of temperature and viscosity contrasts, in a 26.5 cm^3 cubic tank heated by a constant temperature heater 2 cm in diameter and no-slip bottom and top surfaces. Working fluids included Lyle's Golden Syrup and ADM's Liquidose 436 syrup, which have strongly-temperature dependent viscosity and high Pr number (10^3-10^7 at experimental conditions). Visualisation included white light shadowgraphs and PIV of the central plane. Temperature contrasts ranged from 3-60°C, and two differing forms of collapse were identified. At very low temperature differences 'no rise' collapse was discovered, where the plumes stagnate in the lower third of the tank before collapsing. At temperature differences between 10-23°C normal evolution occurred until 'lens shape' collapse developed between midway and two-thirds of the distance from the base. The lens shape originated in the top of the conduit and was present throughout collapse. At temperatures above ΔT=23°C the plumes follow the expected growth and shape and flatten out at the top of the tank. Thermal collapse remains difficult to explain given experimental conditions (continuous heating). Instead it is possible that small density differences arising from crystallization at ambient temperatures changes plume buoyancy-inducing collapse. We show results on the evolution of the refractive index of the syrup through time to ascertain this possibility. Preliminary numerical results using Fluidity will be presented to explore a greater parameter range of viscosity contrasts and tank aspect ratios.

  6. Io Pele plume

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Voyager 1 took this narrow-angle camera image on 5 March 1979 from a distance of 450,000 kilometers. At this geometry, the camera looks straight down through a volcanic plume at one of Io's most active volcanos, Pele. The large heart-shaped feature is the region where Pele's plume falls to the surface. At the center of the 'heart' is the small dark fissure that is the source of the eruption. The Voyager Project is managed by the Jet Propulsion Laboratory for NASA's Office of Space Science.

  7. Evidence for mantle plumes?

    PubMed

    Anderson, Don L; Natland, James H

    2007-11-22

    Geophysical hotspots have been attributed to partially molten asthenosphere, fertile blobs, small-scale convection and upwellings driven by core heat. Most are short-lived or too close together to be deeply seated, and do not have anomalous heat flow or temperature; many are related to tectonic features. Bourdon et al. investigate the dynamics of mantle plumes from uranium-series geochemistry and interpret their results as evidence for thermal plumes. Here we show why alternative mechanisms of upwelling and melting should be considered. PMID:18033248

  8. Hydrostatic Modeling of Buoyant Plumes

    NASA Astrophysics Data System (ADS)

    Stroman, A.; Dewar, W. K.; Wienders, N.; Deremble, B.

    2014-12-01

    The Deepwater Horizon oil spill in the Gulf of Mexico has led to increased interest in understanding point source convection dynamics. Most of the existing oil plume models use a Lagrangian based approach, which computes integral measures such as plume centerline trajectory and plume radius. However, this approach doesn't account for feedbacks of the buoyant plume on the ambient environment. Instead, we employ an Eulerian based approach to acquire a better understanding of the dynamics of buoyant plumes. We have performed a series of hydrostatic modeling simulations using the MITgcm. Our results show that there is a dynamical response caused by the presence of the buoyant plume, in that there is a modification of the background flow. We find that the buoyant plume becomes baroclinically unstable and sheds eddies at the neutral buoyancy layer. We also explore different scenarios to determine the effect of the buoyancy source and the temperature stratification on the evolution of buoyant plumes.

  9. LAMP Observes the LCROSS Plume

    NASA Video Gallery

    This video shows LAMP’s view of the LCROSS plume. The first half of the animation shows the LAMP viewport scanning across the horizon, passing through the plume, and moving on. The second half of...

  10. Modeling the Effects of Aircraft Emissions on Atmospheric Photochemistry Using Layered Plume Dynamics

    NASA Astrophysics Data System (ADS)

    Cameron, M. A.; Jacobson, M. Z.; Naiman, A. D.; Lele, S. K.

    2012-12-01

    Aviation is an expanding industry, experiencing continued growth and playing an increasingly noticed role in upper tropospheric/lower stratospheric composition. Nitrogen oxides and other gas-phase emissions from aircraft react to affect ozone photochemistry. This research investigates the effects of treating aircraft gas-phase chemistry within an expanding layered plume versus at the grid scale. SMVGEAR II, a sparse-matrix, vectorized Gear-type solver for ordinary differential equations, is used to solve chemical equations at both the grid scale and subgrid scale. A Subgrid Plume Model (SPM) is used to advance the expanding plume, accounting for wind shear and diffusion. Simulations suggest that using a layered plume approach results in noticeably different final NOx concentrations, demonstrating the importance of these plume dynamics in predicting the effects of aircraft on ozone concentrations. Results showing the effects of a layered plume, single plume, and no plume on ozone after several hours will be presented.

  11. A two-way interaction between the Hainan plume and the Manila subduction zone

    NASA Astrophysics Data System (ADS)

    Mériaux, Catherine A.; Duarte, João. C.; Schellart, Wouter P.; Mériaux, Anne-Sophie

    2015-07-01

    The interaction between mantle plumes and subducting slabs is well accepted, but the influence of slabs on plumes has more often been portrayed than the reverse. Here we present three-dimensional upper mantle laboratory models in which a compositional plume rises underneath a subducting plate. Slab/plume buoyancy flux ratios ranged between 7 and 18. The models exhibit a two-way interaction. While the plume conduit increasingly tilts away from the trench as a result of slab rollback-induced toroidal mantle flow, the slab subduction rate decreases as a function of the amount of plume buoyancy opposing that of the slab, which gets subducted beneath the slab. We propose that our models apply to the Hainan/Manila system and explain the recently imaged tilt of the Hainan plume by the Manila slab-induced mantle return flow. The Hainan plume could lessen the Manila subduction rate from 8 Ma into the future.

  12. Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on Hanford’s 300 Area Uranium Plume January 2010 to January 2011

    SciTech Connect

    Zachara, John M.; Bjornstad, Bruce N.; Christensen, John N.; Conrad, Mark S.; Fredrickson, Jim K.; Freshley, Mark D.; Haggerty, Roy; Hammond, Glenn E.; Kent, Douglas B.; Konopka, Allan; Lichtner, Peter C.; Liu, Chongxuan; McKinley, James P.; Murray, Christopher J.; Rockhold, Mark L.; Rubin, Yoram; Vermeul, Vincent R.; Versteeg, Roelof J.; Ward, Anderson L.; Zheng, Chunmiao

    2011-02-01

    The Integrated Field Research Challenge (IFRC) at the Hanford Site 300 Area uranium (U) plume addresses multi-scale mass transfer processes in a complex subsurface hydrogeologic setting where groundwater and riverwater interact. A series of forefront science questions on reactive mass transfer focus research. These questions relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements and approaches needed to characterize and model a mass-transfer dominated system. The project was initiated in February 2007, with CY 2007, CY 2008, and CY 2009 progress summarized in preceding reports. A project peer review was held in March 2010, and the IFRC project has responded to all suggestions and recommendations made in consequence by reviewers and SBR/DOE. These responses have included the development of “Modeling” and “Well-Field Mitigation” plans that are now posted on the Hanford IFRC web-site. The site has 35 instrumented wells, and an extensive monitoring system. It includes a deep borehole for microbiologic and biogeochemical research that sampled the entire thickness of the unconfined 300 A aquifer. Significant, impactful progress has been made in CY 2010 including the quantification of well-bore flows in the fully screened wells and the testing of means to mitigate them; the development of site geostatistical models of hydrologic and geochemical properties including the distribution of U; developing and parameterizing a reactive transport model of the smear zone that supplies contaminant U to the groundwater plume; performance of a second passive experiment of the spring water table rise and fall event with a associated multi-point tracer test; performance of downhole biogeochemical experiments where colonization substrates and discrete water and gas samplers were deployed to the lower aquifer zone; and modeling of past injection experiments for

  13. Buoyant plume calculations

    SciTech Connect

    Penner, J.E.; Haselman, L.C.; Edwards, L.L.

    1985-01-01

    Smoke from raging fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in surface temperatures. However, the extent of the decrease and even the sign of the temperature change, depend on how the smoke is distributed with altitude. We present a model capable of evaluating the initial distribution of lofted smoke above a massive fire. Calculations are shown for a two-dimensional slab version of the model and a full three-dimensional version. The model has been evaluated by simulating smoke heights for the Hamburg firestorm of 1943 and a smaller scale oil fire which occurred in Long Beach in 1958. Our plume heights for these fires are compared to those predicted by the classical Morton-Taylor-Turner theory for weakly buoyant plumes. We consider the effect of the added buoyancy caused by condensation of water-laden ground level air being carried to high altitude with the convection column as well as the effects of background wind on the calculated smoke plume heights for several fire intensities. We find that the rise height of the plume depends on the assumed background atmospheric conditions as well as the fire intensity. Little smoke is injected into the stratosphere unless the fire is unusually intense, or atmospheric conditions are more unstable than we have assumed. For intense fires significant amounts of water vapor are condensed raising the possibility of early scavenging of smoke particles by precipitation. 26 references, 11 figures.

  14. PLUME and research sotware

    NASA Astrophysics Data System (ADS)

    Baudin, Veronique; Gomez-Diaz, Teresa

    2013-04-01

    The PLUME open platform (https://www.projet-plume.org) has as first goal to share competences and to value the knowledge of software experts within the French higher education and research communities. The project proposes in its platform the access to more than 380 index cards describing useful and economic software for this community, with open access to everybody. The second goal of PLUME focuses on to improve the visibility of software produced by research laboratories within the higher education and research communities. The "development-ESR" index cards briefly describe the main features of the software, including references to research publications associated to it. The platform counts more than 300 cards describing research software, where 89 cards have an English version. In this talk we describe the theme classification and the taxonomy of the index cards and the evolution with new themes added to the project. We will also focus on the organisation of PLUME as an open project and its interests in the promotion of free/open source software from and for research, contributing to the creation of a community of shared knowledge.

  15. COLD WEATHER PLUME STUDY

    EPA Science Inventory

    While many studies of power plant plume transport and transformation have been performed during the summer, few studies of these processes during the winter have been carried out. Accordingly, the U.S. Environmental Protection Agency and the Electric Power Research Institute join...

  16. Improving operational plume forecasts

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-04-01

    Forecasting how plumes of particles, such as radioactive particles from a nuclear disaster, will be transported and dispersed in the atmosphere is an important but computationally challenging task. During the Fukushima nuclear disaster in Japan, operational plume forecasts were produced each day, but as the emissions continued, previous emissions were not included in the simulations used for forecasts because it became impractical to rerun the simulations each day from the beginning of the accident. Draxler and Rolph examine whether it is possible to improve plume simulation speed and flexibility as conditions and input data change. The authors use a method known as a transfer coefficient matrix approach that allows them to simulate many radionuclides using only a few generic species for the computation. Their simulations work faster by dividing the computation into separate independent segments in such a way that the most computationally time consuming pieces of the calculation need to be done only once. This makes it possible to provide real-time operational plume forecasts by continuously updating the previous simulations as new data become available. They tested their method using data from the Fukushima incident to show that it performed well. (Journal of Geophysical Research-Atmospheres, doi:10.1029/2011JD017205, 2012)

  17. Enceladus' Water Vapour Plumes

    NASA Technical Reports Server (NTRS)

    Hansen, Candice J.; Esposito, L.; Colwell, J.; Hendrix, A.; Matson, Dennis; Parkinson, C.; Pryor, W.; Shemansky, D.; Stewart, I.; Tew, J.; Yung, Y.

    2006-01-01

    A viewgraph presentation on the discovery of Enceladus water vapor plumes is shown. Conservative modeling of this water vapor is also presented and also shows that Enceladus is the source of most of the water required to supply the neutrals in Saturn's system and resupply the E-ring against losses.

  18. Chemical and physical processes controlling aerosol compositions during Asian dust in May, 2008

    NASA Astrophysics Data System (ADS)

    Park, I.; Lee, M.; Han, J.; Lee, G.; Han, J.; Lim, S.; Kim, J.

    2008-12-01

    Asian dust events took place on May 29-31, 2008, which was the latest dust event ever observed in the spring. To examine chemical and physical processes controlling compositions of Asian dust particles, PM10, PM2.5 and PM1.0 samples were collected using cyclone along with MOUDI (Micro Orifice Uniform Deposit Impactor) samples from May 29 to June 2, 2008. For these particles, water soluble ions, and elemental and organic carbons were analyzed. Also, the morphology and elemental composition were examined using SEM/EDX. When dust intensity reached the maximum, the mass concentrations of PM10, PM2.5 and PM1.0 were 299.68ug/m3, 42.35ug/m3, 19.01ug/m3, respectively. During that period, all ions except NH4+ showed the maximum concentration for PM10. Particularly, the concentrations of NO3- and Ca2+ were remarkably elevated to 7.83¥ìg/m3 and 2.76¥ìg/m3, respectively. In contrast, NH4+, SO42- and NO3- concentrations of PM2.5 and PM1.0 were the highest on May 29, which was a day before the maximum dust intensity. This elevated levels of NH4+, SO42- and NO3- concentrations suggested the mixed plume of pollutants and dust particles on 29 May. For MOUDI samples, Ca2+ concentration were relatively uniform through the whole size range during the maximum dust intensity (30 May). In the following day, Ca2+ and NO3- concentrations increased noticeably at 0.1~0.18um. Sulfate concentrations were decreased during dust event. Detailed discussion will be presented in the meeting.

  19. Paducah Gaseous Diffusion Plant Northwest Plume interceptor system evaluation

    SciTech Connect

    Laase, A.D.; Clausen, J.L.

    1998-07-01

    The Paducah Gaseous Diffusion Plant (PGDP) recently installed an interceptor system consisting of four wells, evenly divided between two well fields, to contain the Northwest Plume. As stated in the Northwest Plume Record of Decision (ROD), groundwater will be pumped at a rate to reduce further contamination and initiate control of the northwest contaminant plume. The objective of this evaluation was to determine the optimum (minimal) well field pumping rates required for plume hotspot containment. Plume hotspot, as defined in the Northwest Plume ROD and throughout this report, is that portion of the plume with trichloroethene (TCE) concentrations greater than 1,000 {micro}g/L. An existing 3-dimensional groundwater model was modified and used to perform capture zone analyses of the north and south interceptor system well fields. Model results suggest that the plume hotspot is not contained at the system design pumping rate of 100 gallons per minute (gal/min) per well field. Rather, the modeling determined that north and south well field pumping rates of 400 and 150 gal/min, respectively, are necessary for plume hotspot containment. The difference between the design and optimal pumping rates required for containment can be attributed to the discovery of a highly transmissive zone in the vicinity of the two well fields.

  20. Plume Collection Strategies for Icy World Sample Return

    NASA Technical Reports Server (NTRS)

    Neveu, M.; Glavin, D. P.; Tsou, P.; Anbar, A. D.; Williams, P.

    2015-01-01

    Three icy worlds in the solar system display evidence of pluming activity. Water vapor and ice particles emanate from cracks near the south pole of Saturn's moon Enceladus. The plume gas contains simple hydrocarbons that could be fragments of larger, more complex organics. More recently, observations using the Hubble and Herschel space telescopes have hinted at transient water vapor plumes at Jupiter's moon Europa and the dwarf planet Ceres. Plume materials may be ejected directly from possible sub-surface oceans, at least on Enceladus. In such oceans, liquid water, organics, and energy may co-exist, making these environments habitable. The venting of habitable ocean material into space provides a unique opportunity to capture this material during a relatively simple flyby mission and return it to Earth. Plume collection strategies should enable investigations of evidence for life in the returned samples via laboratory analyses of the structure, distribution, isotopic composition, and chirality of the chemical components (including biomolecules) of plume materials. Here, we discuss approaches for the collection of dust and volatiles during flybys through Enceladus' plume, based on Cassini results and lessons learned from the Stardust comet sample return mission. We also highlight areas where sample collector and containment technology development and testing may be needed for future plume sample return missions.

  1. Investigation of ship-plume chemistry using a newly-developed photochemical/dynamic ship-plume model

    NASA Astrophysics Data System (ADS)

    Kim, H. S.; Song, C. H.; Park, R. S.; Huey, G.; Ryu, J. Y.

    2009-10-01

    A photochemical/dynamic ship-plume model, which can consider the ship-plume dynamics and ship-plume chemistry, simultaneously, was developed to gain a better understanding of atmospheric impact of ship emissions. The model performance was then evaluated by a comparison with the observation data measured on a NOAA WP-3D flight during the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) airborne field campaign. The simulation conditions and parameters, such as meteorological conditions, emission rates, and background gas and particulate species concentrations, were obtained directly and/or inferred indirectly from the ITCT 2K2 observation data. The model-predicted concentrations showed good agreement with the observed concentrations of five ambient species (NOx, NOy, ozone, HNO3, and H2SO4) at the eight plume transects by the WP-3D flight with strong correlations around the 1:1 line (0.64≤R≤0.85). In addition, a set of tests were carried out to approximate the magnitude of the reaction probability of HNO3 onto sea-salt particles in the model-observation comparison framework. These results suggest that the reaction probability of HNO3 onto sea-salt particles may be in the order of 0.05-0.1. The equivalent NOx lifetime throughout the "entire plume" was also estimated from photochemical/dynamic ship-plume modeling. The NOx lifetimes estimated throughout the entire ship plume ranged from 2.64 h to 3.76 h under stable to neutral stability conditions. The short NOx lifetime over the entire ship plume clearly shows that the ship-plume chemistry shortens the NOx lifetime considerably. Therefore, the ship-plume chemistry model should be used to model the changes in ship-plume chemical compositions and better evaluate the atmospheric impact of ocean-going ship emissions.

  2. a Lagrangian Philosophy for Plume Modeling.

    NASA Astrophysics Data System (ADS)

    Frick, Walter Eugen

    A Lagrangian plume model is described that has proven useful in water and air applications. It contrasts sharply with earlier Eulerian integral flux models even though they are shown to be equivalent. As an alternative and complementary approach, the Lagrangian formulation offers new insights into the problem. As a result, it furnished the first accurate statement of the Projected Area Entrainment (PAE) hypothesis that describes the assimilation of moving ambient fluid into the plume. The hypothesis allows--without tuning--average motion and dilution characteristics to be predicted for the first time. Further contemplation of the Lagrangian plume element resulted in the identification of the Negative Volume Anomaly (NVA). The NVA is an inconsistency in control volume conception resulting from the intersection of the cross-sections that bound it, causing the anomalous production of negative volume. Although the Lagrangian plume model, UM, has been adopted by the U.S. Environmental Protection Agency, is used in over a dozen foreign countries, and has been verified independently, a pervasive bias against the approach makes it difficult to publish findings in the peer reviewed literature. A case study describing the problem is presented. This analysis suggests that the phenomenon is not unique to plume modeling. The contributing causes are perpetuated by the closedness of the peer review system. Recommendations are given for improving peer review procedures to open the process to inspection. They include simple measures modifying anonymity and allowing authors to submit to multiple journals simultaneously.

  3. Access Control Model for Sharing Composite Electronic Health Records

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Ahn, Gail-Joon; Covington, Michael J.; Zhang, Xinwen

    The adoption of electronically formatted medical records, so called Electronic Health Records (EHRs), has become extremely important in healthcare systems to enable the exchange of medical information among stakeholders. An EHR generally consists of data with different types and sensitivity degrees which must be selectively shared based on the need-to-know principle. Security mechanisms are required to guarantee that only authorized users have access to specific portions of such critical record for legitimate purposes. In this paper, we propose a novel approach for modelling access control scheme for composite EHRs. Our model formulates the semantics and structural composition of an EHR document, from which we introduce a notion of authorized zones of the composite EHR at different granularity levels, taking into consideration of several important criteria such as data types, intended purposes and information sensitivities.

  4. Bioinspired Composites with Spatial and Orientational Control of Reinforcement

    NASA Astrophysics Data System (ADS)

    Demiroers, Ahmet; Studart, Andre; Complex Materials Team

    Living organisms combine soft and hard components to fabricate composite materials with out-standing mechanical properties. The optimum design and assembly of the anisotropic components reinforce the material in specific directions against multidirectional external loads. Although nature does it quite readily, it is still a challenge for material scientists to control the orientation and position of the colloidal components in a matrix. Here, we use external electric and magnetic fields to achieve positional and orientational control over colloid-polymer composites to fabricate mechanically robust materials to capture some of the essential features of natural systems. We first investigated the assembly of spherical micron-sized colloids using dielectrophoresis, as these particles provided an easily accessible and instructive length scale for performing initial experiments. We used dielectrophoresis for spatial control of reinforcing anisotropic components and magnetic fields to provide control over the orientation of these reinforcing constituents. The obtained composites with different orientational and spatial reinforcement showed enhanced mechanical properties, such as wear resistance, which exhibits similarities to tooth enamel. SNSF Ambizione Grant PZ00P2_148040.

  5. Noise transmission properties and control strategies for composite structures

    NASA Technical Reports Server (NTRS)

    Silcox, Richard J.; Beyer, Todd B.; Lester, Harold C.

    1991-01-01

    A study of several component technologies required to apply active control techniques to reduce interior noise in composite aircraft structures is described. The mechanisms of noise transmission in an all composite, large-scale, fuselage model are studied in an experimental program and found similar to mechanisms found in conventional aircraft construction. Two primary conditions of structural acoustic response are found to account for the dominant interior acoustic response. A preliminary study of active noise control in cylinders used piezoceramic actuators as force inputs for a simple aluminum fuselage model. These actuators provided effective control for the same two conditions of noise transmission found in the composite fuselage structure. The use of piezoceramic actuators to apply force inputs overcomes the weight and structural requirements of conventional shaker actuators. Finally, in order to accurately simulate these types of actuators in a cylindrical shell, two analytical models are investigated that apply either in-plane forces or bending moments along the boundaries of a finite patch. It is shown that the bending model may not be as effective as the force model for exciting the low order azimuthal modes that typically dominate the structural acoustic response in these systems. This result will affect the arrangement and distribution of actuators required for effective active control systems.

  6. Experimental studies on active vibration control of a smart composite beam using a PID controller

    NASA Astrophysics Data System (ADS)

    Jovanović, Miroslav M.; Simonović, Aleksandar M.; Zorić, Nemanja D.; Lukić, Nebojša S.; Stupar, Slobodan N.; Ilić, Slobodan S.

    2013-11-01

    This paper presents experimental verification of the active vibration control of a smart cantilever composite beam using a PID controller. In order to prevent negative occurrences in the derivative and integral terms in a PID controller, first-order low-pass filters are implemented in the derivative action and in the feedback of the integral action. The proposed application setup consists of a composite cantilever beam with a fiber-reinforced piezoelectric actuator and strain gage sensors. The beam is modeled using a finite element method based on third-order shear deformation theory. The experiment considers vibration control under periodic excitation and an initial static deflection. A control algorithm was implemented on a PIC32MX440F256H microcontroller. Experimental results corresponding to the proposed PID controller are compared with corresponding results using proportional (P) control, proportional-integral (PI) control and proportional-derivative (PD) control. Experimental results indicate that the proposed PID controller provides 8.93% more damping compared to a PD controller, 14.41% more damping compared to a PI controller and 19.04% more damping compared to a P controller in the case of vibration under periodic excitation. In the case of free vibration control, the proposed PID controller shows better performance (settling time 1.2 s) compared to the PD controller (settling time 1.5 s) and PI controller (settling time 2.5 s).

  7. CALIOP-derived Smoke Plume Injection Height

    NASA Astrophysics Data System (ADS)

    Soja, A. J.; Winker, D. M.; Choi, H. D.; Fairlie, T. D.; Westberg, D. J.; Roller, C. M.; Pouliot, G.; Vaughan, M.; Pierce, T. E.; Trepte, C. R.; Rao, V.

    2014-12-01

    Biomass burning is a dominant natural and anthropogenic disturbance that feeds back to the climate system. Fire regimes, ecosystem fuels, fire severity and intensity vary widely, even within the same system, largely under the control of weather and climate. These strongly influence fire plume injection height and thus the transport of related biomass burning emissions, affecting air quality, human health and the climate system. If our knowledge of plume injection height is incorrect, transport models of those emissions will likewise be incorrect, adversely affecting our ability to analyze and predict climate feedbacks (i.e. black carbon to the Arctic, precipitation, cloud-radiation relationships) and public health (air quality forecast). Historically, plume height was based on the pioneering work of G.A. Briggs [1969; 1971] and verified with limited field campaigns. However, we currently have two satellite instruments, Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) onboard CALIPSO (afternoon overpass) and Multi-angle Imaging SpectroRadiometer (MISR) onboard TERRA (morning overpass), that can provide the statistics necessary to verify our assumptions and improve fire plume injection height estimates for use in both small- and large-scale models. We have developed a methodology to assess fire plume injection height using the Langley Trajectory Model (LaTM), CALIOP, Hazard Mapping System (HMS) smoke plume, and MODerate Resolution Imaging Spectrometer (MODIS) thermal anomaly data that is capable of generating two distinct types of verification data. A single CALIOP smoke-filled aerosol envelop can be traced back to numerous fire events, and using multiple CALIOP transects from numerous days, a daily smoke plume injection height evolution from a single fire can be defined. Additionally, we have linked the smoke plumes to ecosystems and the meteorological variables that define fire weather. In concert, CALIOP and MISR data can produce the statistical knowledge

  8. Model-predictive control of polymer composite manufacturing processes

    NASA Astrophysics Data System (ADS)

    Voorakaranam, Srikanth

    Quality control is crucial for reducing costs and enabling a more widespread use of fiber-resin composites. This research focuses on development of model-based control strategies for controlling product quality in continuous processes for manufacturing polymer composites with injected pultrusion as a prototype. The control objective is to maximize production rates, meeting quality criteria such as eliminating voids, achieving desired degree of cure and preventing backflow of resin from the die entrance. A 2-D mathematical model of IP developed by Kommu is extended to incorporate die dynamics. Exercising the model over a range of operating conditions, the requirements for a control system are formulated. Simultaneous requirements of optimization and control are met by using a cascade strategy consisting of supervisory and regulatory layers. The supervisory layer consists of an optimizer in conjunction with a steady-state cure model and an injection pressure model. The cure model is linear in important process variables. The injection pressure model is also linear in pullspeed. A linear program generates setpoints for pullspeed, injection pressure and temperatures in the three zones of the die which are implemented by the regulatory layer using multiple PID controllers. This formulation operates the process optimally. A major problem in feedback control of the IP process is the inability to measure quality variables on-line. An inferential control strategy is proposed to tackle this. It is then extended so that it can be implemented in a model predictive control formulation. This novel strategy called model predictive inferential control is general enough to accommodate multiple secondary measurements as well as nonlinear estimators and controllers. Collinearity among multiple measurements is addressed through principal component regression. The estimator uses frequent secondary measurements to estimate the effect of the disturbances on the primary variable which are

  9. Emission control devices, fuel additive, and fuel composition changes.

    PubMed Central

    Piver, W T

    1977-01-01

    Emission control devices are installed to meet the exhaust standards of the Clean Air Act for carbon monoxide and hydrocarbons, and it is necessary to know, from a public health point of view, how exhaust emissions may be affected by changes in fuel additives and fuel composition. Since these topics are concerned with developing technologies, the available literature on exhaust emission characteristics and the limited information on health effects, is reviewed. PMID:71235

  10. Emission control devices, fuel additive, and fuel composition changes.

    PubMed

    Piver, W T

    1977-08-01

    Emission control devices are installed to meet the exhaust standards of the Clean Air Act for carbon monoxide and hydrocarbons, and it is necessary to know, from a public health point of view, how exhaust emissions may be affected by changes in fuel additives and fuel composition. Since these topics are concerned with developing technologies, the available literature on exhaust emission characteristics and the limited information on health effects, is reviewed. PMID:71235

  11. Hydrothermal outflow plume of Valles caldera, New Mexico, and a comparison with other outflow plumes

    SciTech Connect

    Goff, F.; Shevenell, L.; Gardner, J.N.; Vuataz, F.; Grigsby, C.O.

    1988-06-10

    Stratigraphic, temperature gradient, hydrogeochemical, and hydrologic data have been integrated with geologic data from previous studies to show the structural configuration of the Valles caldera hydrothermal outflow plume. Hydrologic data suggest that 25--50% of the discharge of the Valles outflow is confined to the Jemez fault zone, which predates caldera formation. Thermal gradient data from bores penetrating the plume show that shallow gradients are highest in the vicinity of the Jemez fault zone (up to 190 /sup 0/C/km). Shallow heat flow above the hydrothermal plume is as high as 500 mW m/sup -2/ near core hole VC-1 (Jemez fault zone) to 200 mW m/sup -2/ at Fenton Hill (Jemez Plateau). Chemical and isotopic data indicate that two source reservoirs within the caldera (Redondo Creek and Sulphur Springs reservoirs) are parents to mixed fluids flowing in the hydrothermal plume. However, isotopic data, borehole data, basic geology, and inverse relations between temperature and chloride content at major hot springs indicate that no single reservoir fluid and no single diluting fluid are involved in mixing. The Valles caldera hydrothermal plume is structurally dominated by lateral flow through a belt of vertical conduits (Jemez fault zone) that strike away from the source reservoir. Stratigraphically confined flow is present but dispersed over a wide area in relatively impermeable rocks. The Valles configuration is contrasted with the configuration of the hydrothermal plume at Roosevelt Hot Springs, which is dominated by lateral flow through a near-surface, widespread, permeable aquifer. Data from 12 other representative geothermal systems show that outflow plumes occur in a variety of magmatic and tectonic settings, have varying reservoir compositions, and have different flow characteristics.

  12. The Kea- and Loa- trends and magma genesis in the Hawaiian mantle plume

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Ingle, S.; Takahashi, E.; Hirano, N.; Hirata, T.; Tatsumi, Y.

    2005-12-01

    the shield volcanoes likely reflect different mixing proportions of subducted recycled gabbroic oceanic crust and peridotite from the lower mantle. The dominant component sampled at a given shield volcano is likely controlled by the thermal structure. As the volcano grows, it migrates away from the hot plume axis with plate motion. In the plume core, higher temperatures are able to generate melts with Kea-like composition from the more refractory component (i.e. peridotite from lower mantle) during the early shield stages. In contrast, lavas from some of the late-stages of the Hawaiian shields are Loa-like with isotopically enriched characteristics, implying that the proportion of the subducted oceanic crust (eclogite) component contributing to the melt may be higher relative to the peridotitic matrix. This is because during the generation of the later-stage lavas, their mantle source is located significantly away from the mantle plume axis where the temperature is lower than in the center of plume, and therefore the lower melting point component (eclogite) is preferentially sampled by the melt.

  13. Photocatalytic studies of Ho–Zr–O nano-composite with controllable composition and defects

    SciTech Connect

    Du, Weimin; Zhao, Guoyan; Chang, Hongxun; Shi, Fei; Zhu, Zhaoqiang; Qian, Xuefeng

    2013-09-15

    With the help of sol–gel method assisted by melting salt, a series of Ho–Zr–O nano-composite with controllable composition and defects have been successfully prepared. Characterization results show that the positions, intensity, and width of the X-ray diffraction peaks of the products have a regular variation with the increase of zirconium element which implies the gradual changes of crystal spacing and product size. At the same time, the molar ratios between holmium and zirconium ions are consistent with the chemical formula and both of them are uniformly distributed in products further showing the perfect formation of targeted materials. Optical properties reveal that diversified defect forms of Ho–Zr–O nano-composite lead to the different absorptions of visible light. Photocatalytic experiments demonstrate Zr{sub 0.8}Ho{sub 0.2}O{sub 2−δ} nano-crystals have excellent visible-light-responsive photocatalytic activities on some familiar dyes (e.g.: methylene blue and Rhodamine B) which results from the special defect structure, better absorption of visible light and larger specific surface area. It follows that Zr{sub 0.8}Ho{sub 0.2}O{sub 2−δ} nano-crystals are a new kind of visible-light-responsive photocatalysts with better prospects in conversion and utilization of solar energy. Also, the present melting salt assisted route might be generalized to synthesize other AxByOz composite oxide nano-crystals with more complicated structures. - Highlights: • Ho–Zr–O nano-composite with controllable composition and defects has been obtained. • Diversified defect forms of products lead to the different visible light absorption. • Zr{sub 0.8}Ho{sub 0.2}O{sub 2−δ} nano-crystals have excellent photocatalytic activities.

  14. Natural and seamless image composition with color control.

    PubMed

    Yang, Wenxian; Zheng, Jianmin; Cai, Jianfei; Rahardja, Susanto; Chen, Chang Wen

    2009-11-01

    While the state-of-the-art image composition algorithms subtly handle the object boundary to achieve seamless image copy-and-paste, it is observed that they are unable to preserve the color fidelity of the source object, often require quite an amount of user interactions, and often fail to achieve realism when there exists salient discrepancy between the background textures in the source and destination images. These observations motivate our research towards color controlled natural and seamless image composition with least user interactions. In particular, based on the Poisson image editing framework, we first propose a variational model that considers both the gradient constraint and the color fidelity. The proposed model allows users to control the coloring effect caused by gradient domain fusion. Second, to have less user interactions, we propose a distance-enhanced random walks algorithm, through which we avoid the necessity of accurate image segmentation while still able to highlight the foreground object. Third, we propose a multiresolution framework to perform image compositions at different subbands so as to separate the texture and color components to simultaneously achieve smooth texture transition and desired color control. The experimental results demonstrate that our proposed framework achieves better and more realistic results for images with salient background color or texture differences, while providing comparable results as the state-of-the-art algorithms for images without the need of preserving the object color fidelity and without significant background texture discrepancy. PMID:19596637

  15. Active shape control of composite structures under thermal loading

    NASA Astrophysics Data System (ADS)

    Binette, P.; Dano, M.-L.; Gendron, G.

    2009-02-01

    Maintaining the shape of high-precision structures such as space antennas and optical mirrors is still a challenging issue for designers. These structures are subjected to varying temperature conditions which often introduce thermal distortions. The development of smart materials offers great potential to correct the shape and to minimize the surface error. In this study, shape control of a composite structure under thermal loading using piezocomposites is investigated. The composite structure is made of a foam core and two carbon-epoxy face sheets. Macro-fiber composite (MFC™) patches are bonded on one side of the structure. The structure is subjected to a through-the-thickness temperature gradient which induces thermal distortion, essentially in the form of bending. The objective is to apply electric potential to the MFC™ actuators such that the deflection can be minimized. Finite-element analyses are conducted using the commercial software ABAQUS. Experiments are performed to study thermally induced distortion, piezoelectric actuation, and compensation of thermal distortion using MFC™ actuators. Numerical and experimental results are compared. A control loop based on strain measurements is used to actively control the structure. The results show that MFC™ actuators can compensate thermal distortion at all times, and that this is an efficient methodology.

  16. Colloid Formation at Waste Plume Fronts

    SciTech Connect

    Wan, Jiamin; Tokunaga, Tetsu K.; Saiz, Eduardo; Larsen, Joern T.; Zheng, Zuoping; Couture, Rex A.

    2004-05-22

    Highly saline and caustic tank waste solutions containing radionuclides and toxic metals have leaked into sediments at U. S. Department of Energy (DOE) facilities such as the Hanford Site (Washington State). Colloid transport is frequently invoked to explain migration of radionuclides and metals in the subsurface. To understand colloid formation during interactions between highly reactive fluids and sediments and its impact on contaminant transport, we simulated tank waste solution (TWS) leakage processes in laboratory columns at ambient and elevated (70 C) temperatures. We found that maximum formation of mobile colloids occurred at the plume fronts (hundreds to thousands times higher than within the plume bodies or during later leaching). Concentrations of suspended solids were as high as 3 mass%, and their particle-sizes ranged from tens of nm to a few {micro}m. Colloid chemical composition and mineralogy depended on temperature. During infiltration of the leaked high Na{sup +} waste solution, rapid and completed Na{sup +} replacement of exchangeable Ca{sup 2+} and Mg{sup 2+} from the sediment caused accumulation of these divalent cations at the moving plume front. Precipitation of supersaturated Ca{sup 2+}/Mg{sup 2+}-bearing minerals caused dramatic pH reduction at the plume front. In turn, the reduced pH caused precipitation of other minerals. This understanding can help predict the behavior of contaminant trace elements carried by the tank waste solutions, and could not have been obtained through conventional batch studies.

  17. Vibroacoustic behavior and noise control studies of advanced composite structures

    NASA Astrophysics Data System (ADS)

    Li, Deyu

    The research presented in this thesis is devoted to the problems of sound transmission and noise transmission control for advanced composite payload fairings. There are two advanced composite fairings under study. The first is a tapered, cylindrical advanced grid-stiffened composite fairing, and the second is a cylindrical ChamberCore composite fairing. A fully coupled mathematical model for characterizing noise transmission into a finite elastic cylindrical structure with application to the ChamberCore fairing is developed. It combines advantages of wave radiation principles and structural-acoustic modal interaction, and provides an ideal noise transmission model that can be extended to other finite cylindrical structures. Structural-acoustic dynamic parameters of the two fairings are obtained using a combination of numerical, analytical, and experimental approaches. An in-situ method for experimentally characterizing sound transmission into the fairings called noise reduction spectrum (NRS) is developed based on noise reduction. The regions of interest in the NRS curves are identified and verified during a passive control investigation, where various fill materials are added into wall-chambers of the ChamberCore fairing. Both Helmholtz resonators (HRs) and long T-shaped acoustic resonators (ARs) are also used to successfully control noise transmission into the ChamberCore fairing. In the process, an accurate model for the resonant frequency calculation and design of cylindrical HRs is derived. Further, a novel and more general model for the design of multi-modal, long, T-shaped ARs is developed, including three new end-correction equations that are validated experimentally. The control results show that noise attenuation is significant in the controlled modes, and the control is also observed in some modes that are not targeted, due to acoustic modal coupling via the structure. Helmholtz resonators are found to produce between 2.0 and 7.7 dB increase in NRS in

  18. Controllable coherent perfect absorption in a composite film.

    PubMed

    Dutta-Gupta, Shourya; Martin, O J F; Gupta, S Dutta; Agarwal, G S

    2012-01-16

    We exploit the versatility provided by metal-dielectric composites to demonstrate controllable coherent perfect absorption (CPA) or anti-lasing in a slab of heterogeneous medium. The slab is illuminated by coherent light from both sides, at the same angle of incidence and the conditions required for CPA are investigated as a function of the different system parameters. Our calculations clearly elucidate the role of absorption as a necessary prerequisite for CPA. We further demonstrate the controllability of the CPA frequency to the extent of having the same at two distinct frequencies even in presence of dispersion, rendering the realization of anti-lasers more flexible. PMID:22274478

  19. Mineralogical controls on garnet composition in the cratonic mantle

    NASA Astrophysics Data System (ADS)

    Hill, P. J. A.; Kopylova, M.; Russell, J. K.; Cookenboo, H.

    2015-02-01

    Garnet concentrates are a rich source of geochemical information on the mantle, but the mineralogical implications of wide ranging garnet compositions are poorly understood. We model chemical reactions between mantle minerals that may buffer the Ca-Cr lherzolitic garnet trend common in the lithospheric mantle. A harzburgitic trend of garnet compositions featuring a lower increase in Cr with Ca relative to the conventional lherzolitic trend is reported for the first time. Representation of garnet chemistry in terms of additive and exchange components in the Thompson space shows that the lherzolitic and harzburgitic trends are controlled by the cation exchanges MgFeAl ↔ Ca2Cr and MgFeAl4 ↔ Ca2Cr4, respectively. Various equilibrium reactions are presented to explain the trends assuming a closed or open system mantle. The compositional variability of the natural garnets from the Canastra 8 kimberlite (Brazil) is modeled by a linear system of mass balance equations. The solution returns the reaction coefficients of products (positive values) and reactants (negative values), which are then evaluated against the observed mantle mineralogy. In the isochemical mantle, the lherzolitic trend can form in the absence of clinopyroxene, but requires the presence of spinel and reflects the thickness of the spinel-garnet transition zone. This requirement contradicts observations on natural occurrences of the trend and the thermobarometry of the host peridotites. In the preferred model of a variably depleted mantle, the lherzolitic trend critically depends on the presence of clinopyroxene. The occurrence of lherzolitic garnet compositions in harzburgite can be explained by exhaustion of clinopyroxene as a result of garnet buffering. The open system behavior of the peridotitic mantle also provides a better explanation for the harzburgitic trend in garnet compositions. In an isochemical mantle, the trend can be controlled by many possible reactions, and no single mineral is

  20. Chemical plume source localization.

    PubMed

    Pang, Shuo; Farrell, Jay A

    2006-10-01

    This paper addresses the problem of estimating a likelihood map for the location of the source of a chemical plume using an autonomous vehicle as a sensor probe in a fluid flow. The fluid flow is assumed to have a high Reynolds number. Therefore, the dispersion of the chemical is dominated by turbulence, resulting in an intermittent chemical signal. The vehicle is capable of detecting above-threshold chemical concentration and sensing the fluid flow velocity at the vehicle location. This paper reviews instances of biological plume tracing and reviews previous strategies for a vehicle-based plume tracing. The main contribution is a new source-likelihood mapping approach based on Bayesian inference methods. Using this Bayesian methodology, the source-likelihood map is propagated through time and updated in response to both detection and nondetection events. Examples are included that use data from in-water testing to compare the mapping approach derived herein with the map derived using a previously existing technique. PMID:17036813

  1. Composite disturbance rejection control based on generalized extended state observer.

    PubMed

    Zhang, Yanjun; Zhang, Jun; Wang, Lu; Su, Jianbo

    2016-07-01

    Traditional extended state observer (ESO) design method does not focus on analysis of system reconstruction strategy. The prior information of the controlled system cannot be used for ESO implementation to improve the control accuracy. In this paper, composite disturbance rejection control strategy is proposed based on generalized ESO. First, the disturbance rejection performance of traditional ESO is analyzed to show the essence of the reconstruction strategy. Then, the system is reconstructed based on the equivalent disturbance model. The generalized ESO is proposed based on the reconstructed model, while convergence of the proposed ESO is analyzed along with the outer loop feedback controller. Simulation results on a second order mechanical system show that the proposed generalized ESO can deal with the external disturbance with known model successfully. Experiment of attitude tracking task on an aircraft is also carried out to show the effectiveness of the proposed method. PMID:27129764

  2. Parametric optimal bounded feedback control for smart parameter-controllable composite structures

    NASA Astrophysics Data System (ADS)

    Ying, Z. G.; Ni, Y. Q.; Duan, Y. F.

    2015-03-01

    Deterministic and stochastic parametric optimal bounded control problems are presented for smart composite structures such as magneto-rheological visco-elastomer based sandwich beam with controllable bounded parameters subjected to initial disturbances and stochastic excitations. The parametric controls by actively adjusting system parameters differ from the conventional additive controls by systemic external inputs. The dynamical programming equations for the optimal parametric controls are derived based on the deterministic and stochastic dynamical programming principles. The optimal bounded functions of controls are firstly obtained from the equations with the bounded control constraints based on the bang-bang control strategy. Then the optimal bounded parametric control laws are obtained by the inversion of the nonlinear functions. The stability of the optimally controlled systems is proved according to the Lyapunov method. Finally, the proposed optimal bounded parametric feedback control strategy is applied to single-degree-of-freedom and two-degree-of-freedom dynamic systems with nonlinear parametric bounded control terms under initial disturbances and earthquake excitations and then to a magneto-rheological visco-elastomer based sandwich beam system with nonlinear parametric bounded control terms under stochastic excitations. The effective vibration suppression is illustrated with numerical results. The proposed optimal parametric control strategy is applicable to other smart composite structures with nonlinear controllable parameters.

  3. Optimized Field Sampling and Monitoring of Airborne Hazardous Transport Plumes; A Geostatistical Simulation Approach

    SciTech Connect

    Chen, DI-WEN

    2001-11-21

    Airborne hazardous plumes inadvertently released during nuclear/chemical/biological incidents are mostly of unknown composition and concentration until measurements are taken of post-accident ground concentrations from plume-ground deposition of constituents. Unfortunately, measurements often are days post-incident and rely on hazardous manned air-vehicle measurements. Before this happens, computational plume migration models are the only source of information on the plume characteristics, constituents, concentrations, directions of travel, ground deposition, etc. A mobile ''lighter than air'' (LTA) system is being developed at Oak Ridge National Laboratory that will be part of the first response in emergency conditions. These interactive and remote unmanned air vehicles will carry light-weight detectors and weather instrumentation to measure the conditions during and after plume release. This requires a cooperative computationally organized, GPS-controlled set of LTA's that self-coordinate around the objectives in an emergency situation in restricted time frames. A critical step before an optimum and cost-effective field sampling and monitoring program proceeds is the collection of data that provides statistically significant information, collected in a reliable and expeditious manner. Efficient aerial arrangements of the detectors taking the data (for active airborne release conditions) are necessary for plume identification, computational 3-dimensional reconstruction, and source distribution functions. This report describes the application of stochastic or geostatistical simulations to delineate the plume for guiding subsequent sampling and monitoring designs. A case study is presented of building digital plume images, based on existing ''hard'' experimental data and ''soft'' preliminary transport modeling results of Prairie Grass Trials Site. Markov Bayes Simulation, a coupled Bayesian/geostatistical methodology, quantitatively combines soft information

  4. Past Plate Motions and The Evolution of Earth's Lower Mantle: Relating LLSVPs and Plume Distribution

    NASA Astrophysics Data System (ADS)

    Bull, A. L.; Torsvik, T. H.; Shephard, G. E.

    2015-12-01

    Seismic tomography elucidates broad, low shear-wave velocity structures in the lower mantle beneath Africa and the central Pacific with uncertain physical and compositional origins. The anomalously slow areas, which cover nearly 50% of the core-mantle boundary, are often referred to as Large Low Shear Velocity Provinces (LLSVPs) due to the reduced velocity of seismic waves passing through them. Several hypotheses have arisen to explain the LLSVPs in the context of large-scale mantle convection. One end-member scenario infers a spatial correlation between LLSVP margins at depth and the reconstructed surface eruption sites of hotspots, kimberlites, and Large Igneous Provinces. Such a correlation has been explained by the preferential triggering of plumes at LLSVP margins by impingement of the subducting lithosphere upon the lower thermal boundary layer at the interface between ambient mantle and the higher density structures. This scenario propounds that Earth's plate motion history plays a controlling role in plume development, and that the location, geometry and morphology of plumes may be influenced by the movement of subducting slabs. Here, we investigate what is necessary to create such a pattern of plume distribution in relation to LLSVPs. We consider what effect past plate motions may have had on the evolution of Earth's lower mantle, and discuss the development of mantle plumes in terms of subduction dynamics. We integrate plate tectonic histories and numerical models of mantle convection to investigate the role that subduction history plays in the development and evolution of plumes in the presence of LLSVPs. To test whether an interaction exists between the surface location of subduction and plume eruption sites, and if so, to what degree over time, we apply varying shifts to the absolute reference frame of the plate reconstruction. With this method, we are able to change the location of subduction at the surface and thus the global flow field. This in turn

  5. Active vibration control of basic structures using macro fiber composites

    NASA Astrophysics Data System (ADS)

    Yi, Guo; Wang, Jinming; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2011-03-01

    In the modern naval battle, as the anti-detection technique developing fleetly, enhancing submarine's hidden ability is becoming more and more important. However, in view of the worse control effect at low-frequency and weak adjustability to external influence, conventional passive vibration control can't satisfy the modern naval rigorous demands. Fortunately, active vibration control technology not only monitors the structure's real-time vibration, but also has more remarkable control effects and superior suitability. At the present time, it has a primary application in the vibration damping of ship engineering. In addition, due to functional materials rapidly developing, with the coming of piezoelectric composite materials, the advanced active control techniques have more applicability, lager damp amplitude and wider applied field, which basing on the piezoelectric-effect and inverse- piezoelectric-effect of piezoelectric materials. Especially, in the end of nineties, NASA had successfully manufactured the excellent macro fiber composite (MFC), which assembles actuating and sensing abilities. Comparing with the conventional piezoelectric ceramic materials, it provides the required durability, excellent flexibility, higher electromechanical coupling factors and stronger longitudinal actuating force by using interdigital electrodes. On the basis of the application of cantilever beam' active vibration control by using MFC actuators, this paper started with the mechanical characteristics of its actuating and sensing equations, and then investigated its piezoelectric feedback scale factor when equipped on the honeycomb aluminous panel. Finally, in order to validate the theoretical analysis method, the vibration control experiment of cantilever beam and honeycomb aluminous panel are built and tested with different activating force. The experimental results verify that MFC used in submarine structures' active vibration control are feasible and effective.

  6. Active Piezoelectric Vibration Control of Subscale Composite Fan Blades

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Min, James B.; Kray, Nicholas

    2012-01-01

    As part of the Fundamental Aeronautics program, researchers at NASA Glenn Research Center (GRC) are investigating new technologies supporting the development of lighter, quieter, and more efficient fans for turbomachinery applications. High performance fan blades designed to achieve such goals will be subjected to higher levels of aerodynamic excitations which could lead to more serious and complex vibration problems. Piezoelectric materials have been proposed as a means of decreasing engine blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. To investigate this idea, spin testing was performed on two General Electric Aviation (GE) subscale composite fan blades in the NASA GRC Dynamic Spin Rig Facility. The first bending mode (1B) was targeted for vibration control. Because these subscale blades are very thin, the piezoelectric material was surface-mounted on the blades. Three thin piezoelectric patches were applied to each blade two actuator patches and one small sensor patch. These flexible macro-fiber-composite patches were placed in a location of high resonant strain for the 1B mode. The blades were tested up to 5000 rpm, with patches used as sensors, as excitation for the blade, and as part of open- and closed-loop vibration control. Results show that with a single actuator patch, active vibration control causes the damping ratio to increase from a baseline of 0.3% critical damping to about 1.0% damping at 0 RPM. As the rotor speed approaches 5000 RPM, the actively controlled blade damping ratio decreases to about 0.5% damping. This occurs primarily because of centrifugal blade stiffening, and can be observed by the decrease in the generalized electromechanical coupling with rotor speed.

  7. A simple behaviour provides accuracy and flexibility in odour plume tracking--the robotic control of sensory-motor coupling in silkmoths.

    PubMed

    Ando, Noriyasu; Kanzaki, Ryohei

    2015-12-01

    Odour plume tracking is an essential behaviour for animal survival. A fundamental strategy for this is to move upstream and then across-stream. Male silkmoths, Bombyx mori, display this strategy as a pre-programmed sequential behaviour. They walk forward (surge) in response to the female sex pheromone and perform a zigzagging 'mating dance'. Though pre-programmed, the surge direction is modulated by bilateral olfactory input and optic flow. However, the nature of the interaction between these two sensory modalities and contribution of the resultant motor command to localizing an odour source are still unknown. We evaluated the ability of the silkmoth to localize an odour source under conditions of disturbed sensory-motor coupling, using a silkmoth-driven mobile robot. The significance of the bilateral olfaction of the moth was confirmed by inverting the olfactory input to the antennae, or its motor output. Inversion of the motor output induced consecutive circling, which was inhibited by covering the visual field of the moth. This suggests that the corollary discharge from the motor command and the reafference of self-generated optic flow generate compensatory signals to guide the surge accurately. Additionally, after inverting the olfactory input, the robot successfully tracked the odour plume by using a combination of behaviours. These results indicate that accurate guidance of the reflexive surge by integrating bilateral olfactory and visual information with innate pre-programmed behaviours increases the flexibility to track an odour plume even under disturbed circumstances. PMID:26486361

  8. Geographic Variations in Hotspot Geochemistry Caused by 3D Dynamics and Melting of a Heterogeneous Mantle Plume

    NASA Astrophysics Data System (ADS)

    Bianco, T. A.; Ito, G.; van Hunen, J.; Ballmer, M.; Mahoney, J. J.

    2006-12-01

    Spatial variations in magma geochemistry among hotspot volcanoes hold clues to the dynamics and composition of the mantle feeding hotspot volcanism. We use a 3D geodynamic model of plume-lithosphere interaction to explore the causes of spatial patterns of magmatic volumes and compositions at intraplate hotspots. This study focuses on coupling between upper mantle flow, heat transfer, and melting of a heterogeneous (veined) plume. We assume multiple lithologies have different solidi, trace-element, and isotope composition. We use the Cartesian finite-element code, CITCOM, (Zhong and Watts, 2002) to simulate mantle convection with the extended Boussinesq approximation in a volume of upper mantle 400 km in thickness. A parameterized melting model is used to simulate melting of materials with different water contents (Katz et al., 2003). Melt depletion (F) for each lithology is calculated at finite element nodes as a function of temperature, pressure, and water content and is advected using particle tracers. We quantify the response of the geographic pattern of the volume and composition of magmas to different lithospheric thicknesses, and plume temperatures and viscosities, which together control the melting rates and sizes of the melting zones for the different lithologies. In the case of two-lithologies, preliminary results of a sluggishly convecting plume rising beneath thick lithosphere (60-100 km) predict that the melting zone of the least refractory "lithology 1" is wider than that of the more refractory "lithology 2". This leads to the prediction that on the surface, the isotope signature of lithology 1 is most prominent at the leading edge (i.e., upwind edge of plate motion) of the hotspot, whereas the isotope signature of lithology 2 is strongest at the hotspot center. This pattern will likely change for plumes convecting more vigorously or thinner lithosphere.

  9. Formation of secondary aerosols from biomass burning plumes: chamber simulation study

    NASA Astrophysics Data System (ADS)

    Wang, X.; Hu, Q.; Fang, Z.; Deng, W.

    2015-12-01

    Biomass burning contributed substantially to carbonaceous aerosols in China's ambient air, even in its highly industrialized megacities, based on recent source attributions by receptor modeling or by molecular and isotopic tracers. Although chemical evolution of biomass burning plumes in the ambient is a vital issue for the study of climatic and health effects, the understanding of secondary pollutants formation during the aging of biomass burning plumes is far from complete. Here we collected typical agriculture residues and forest plant branches in the Pearl River Delta in south China, and got them burned in laboratory-controlled conditions and introduced the plumes from burning these biomass directly into the GIGCAS indoor smog chamber with a reactor of 30 m3 to investigate the photochemical aging of the plumes. The inorganic trace gases, including SO2, NOx, NH3 and O3, were monitored online with chemiluminescence gas analyzers, precursor volatile organic compounds (VOCs) were monitor online with a PTR-ToF-MS and offline by a preconcentrator coupled with a gas chromatography-mass selective detector/flame ionization detector/electron capture detector (GC-MSD/FID/ECD), particle number concentrations and size distributions were obtained using a scanning mobility particle sizer (SMPS), and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) was used to measure the chemical compositions and evolutions of submicron aerosols and to trace the change in the average element ratios of organics, like H/C, O/C, and N/C. The results from the study were summarized in the following aspects: 1) primary emission factors of gaseous and particulate pollutants from burning of typical biomass including agricultural remains and forest wood plants; 2) yields of secondary pollutants, including secondary inorganic and organic aerosols and gaseous products (like O3) during photochemical aging of biomass burning plumes; 3) relationship between the formed secondary

  10. Effects of pressure and composition on Pt-Re-Os partitioning behavior between solid and liquid metal in the Fe-Ni-S system: Implication for Os isotopic anomalies in plume-derived lavas

    NASA Astrophysics Data System (ADS)

    Hayashi, H.; Ohtani, E.; Terasaki, H.; Ito, Y.

    2008-12-01

    Coupled 186Os/188Os and 187Os/188Os enrichments of plume-derived lavas have been suggested to reflect material contribution from the outer core (e.g., Brandon, 1998). This geochemical hypothesis is based on an assumption that the outer core shows coupled enrichments in 186Os/ 188Os and 187Os/ 188Os ratio, reflecting the decay of 190Pt and 187Re to 186Os and 187Os, respectively. In order to examine this hypothesis, partitioning experiments of Pt-Re-Os between solid metal and liquid metal were performed using an MA-8 Kawai-type multi-anvil apparatus at 5-20 GPa and 1250-1400C. Starting materials of Fe metal, Ni (7 wt.%) metal and FeS (5 wt.% S in the bulk) were doped with 3 wt.% of Pt, Re and Os metals. Concentrations of all elements were determined using JXA-8800M electron probe microanalyzer with wave-dispersive spectrometry. Measured partition coefficients of Pt, Re and Os increase with increasing sulfur content and almost constant with increasing pressure. Therefore, the effect of liquid composition on the partitioning behavior of highly siderophile elements is much more significant compared to the effect of pressure and temperature. On the basis of the present experimental results, it is unlikely to generate the required Pt-Re-Os fractionation during inner core crystallization assuming that the light element in the Earth"fs core is sulfur only.

  11. Geometry adaptive control of a composite reflector using PZT actuator

    NASA Astrophysics Data System (ADS)

    Lan, Lan; Jiang, Shuidong; Zhou, Yang; Fang, Houfei; Tan, Shujun; Wu, Zhigang

    2015-04-01

    Maintaining geometrical high precision for a graphite fiber reinforced composite (GFRC) reflector is a challenging task. Although great efforts have been placed to improve the fabrication precision, geometry adaptive control for a reflector is becoming more and more necessary. This paper studied geometry adaptive control for a GFRC reflector with piezoelectric ceramic transducer (PZT) actuators assembled on the ribs. In order to model the piezoelectric effect in finite element analysis (FEA), a thermal analogy was used in which the temperature was applied to simulate the actuation voltage, and the piezoelectric constant was mimicked by a Coefficient of Thermal Expansion (CTE). PZT actuator's equivalent model was validated by an experiment. The deformations of a triangular GFRC specimen with three PZT actuators were also measured experimentally and compared with that of simulation. This study developed a multidisciplinary analytical model, which includes the composite structure, thermal, thermal deformation and control system, to perform an optimization analysis and design for the adaptive GFRC reflector by considering the free vibration, gravity deformation and geometry controllability.

  12. Model based control of polymer composite manufacturing processes

    NASA Astrophysics Data System (ADS)

    Potaraju, Sairam

    2000-10-01

    The objective of this research is to develop tools that help process engineers design, analyze and control polymeric composite manufacturing processes to achieve higher productivity and cost reduction. Current techniques for process design and control of composite manufacturing suffer from the paucity of good process models that can accurately represent these non-linear systems. Existing models developed by researchers in the past are designed to be process and operation specific, hence generating new simulation models is time consuming and requires significant effort. To address this issue, an Object Oriented Design (OOD) approach is used to develop a component-based model building framework. Process models for two commonly used industrial processes (Injected Pultrusion and Autoclave Curing) are developed using this framework to demonstrate the flexibility. Steady state and dynamic validation of this simulator is performed using a bench scale injected pultrusion process. This simulator could not be implemented online for control due to computational constraints. Models that are fast enough for online implementation, with nearly the same degree of accuracy are developed using a two-tier scheme. First, lower dimensional models that captures essential resin flow, heat transfer and cure kinetics important from a process monitoring and control standpoint are formulated. The second step is to reduce these low dimensional models to Reduced Order Models (ROM) suited for online model based estimation, control and optimization. Model reduction is carried out using Proper Orthogonal Decomposition (POD) technique in conjunction with a Galerkin formulation procedure. Subsequently, a nonlinear model-based estimation and inferential control scheme based on the ROM is implemented. In particular, this research work contributes in the following general areas: (1) Design and implementation of versatile frameworks for modeling and simulation of manufacturing processes using object

  13. Design of an artificial skin. II. Control of chemical composition.

    PubMed

    Yannas, I V; Burke, J F; Gordon, P L; Huang, C; Rubenstein, R H

    1980-03-01

    Detailed methodology is described for the reproducible preparation of collagen--glycosaminoglycan (GAG) membranes with known chemical composition. These membranes have been used to cover satisfactorily large experimental full-thickness skin wounds in guinea pigs over the past few years. Such membranes have effectively protected these wounds from infection and fluid loss for over 25 days without rejection and without requiring change or other invasive manipulation. When appropriately designed for the purpose, the membranes have also strongly retarded wound contraction and have become replaced by newly synthesized, stable connective tissue. In our work, purified, fully native collagen from two mammalian sources is precipitated from acid dispersion by addition of chondroitin 6-sulfate. The relative amount of GAG in the coprecipitate varies with the amount of GAG added and with the pH. Since coprecipitated GAG is generally eluted from collagen fibers by physiological fluids, control of the chemical composition of membranes is arrived at by crosslinking the collagen--GAG ionic complex with glutaraldehyde, or, alternately, by use of high-temperature vacuum dehydration. Appropriate use of the crosslinking treatment allows separate study of changes in membrane composition due to elution of GAG by extracellular fluid in animal studies from changes in composition due to enzymatic degradation of the grafted or implanted membrane in these studies. Exhaustive in vitro elution studies extending up to 20 days showed that these crosslinking treatments insolubilize in an apparently permanent manner a fraction of the ionically complexed GAG, although it could not be directly confirmed that glutaraldehyde treatment covalently crosslinks GAG to collagen. By contrast, the available evidence suggests strongly that high-temperature vacuum dehydration leads to formation of chemical bonds between collagen and GAG. Procedures are described for control of insolubilized and "free" GAG in

  14. INVESTIGATION OF SHIP-PLUME CHEMISTRY USING A NEWLY-DEVELOPED PHOTOCHEMICAL/DYNAMIC SHIP-PLUME MODEL

    NASA Astrophysics Data System (ADS)

    Song, C. H.; Kim, H.

    2009-12-01

    A photochemical/dynamic ship-plume model, which can consider the ship-plume dynamics and ship-plume chemistry, simultaneously, was developed to gain a better understanding of atmospheric impact of ship emissions. The model performance was then evaluated by a comparison with the observation data measured on a NOAA WP-3D flight during the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) airborne field campaign. The simulation conditions and parameters, such as meteorological conditions, emission rates, and background gas and particulate species concentrations, were obtained directly and/or inferred indirectly from the ITCT 2K2 observation data. The model-predicted concentrations showed good agreement with the observed concentrations of five ambient species (NOx, NOy, ozone, HNO3, and H2SO4) at the eight plume transects by the WP-3D flight with strong correlations around the 1:1 line (0.64≤R≤0.85). In addition, a set of tests were carried out to approximate the magnitude of the reaction probability of HNO3 onto sea-salt particles in the model-observation comparison framework. These results suggest that the reaction probability of HNO3 onto sea-salt particles may be in the order of 0.05-0.1. The equivalent NOx lifetime throughout the “entire plume” was also estimated from photochemical/dynamic ship-plume modeling. The NOx lifetimes estimated throughout the entire ship plume ranged from 2.64 hrs to 3.76 hrs under stable to neutral stability conditions. The short NOx lifetime over the entire ship plume clearly shows that the ship-plume chemistry shortens the NOx lifetime considerably. Therefore, the ship-plume chemistry model should be used to model the changes in ship-plume chemical compositions and better evaluate the atmospheric impact of ocean-going ship emissions.

  15. On fractional order composite model reference adaptive control

    NASA Astrophysics Data System (ADS)

    Wei, Yiheng; Sun, Zhenyuan; Hu, Yangsheng; Wang, Yong

    2016-08-01

    This paper presents a novel composite model reference adaptive control approach for a class of fractional order linear systems with unknown constant parameters. The method is extended from the model reference adaptive control. The parameter estimation error of our method depends on both the tracking error and the prediction error, whereas the existing method only depends on the tracking error, which makes our method has better transient performance in the sense of generating smooth system output. By the aid of the continuous frequency distributed model, stability of the proposed approach is established in the Lyapunov sense. Furthermore, the convergence property of the model parameters estimation is presented, on the premise that the closed-loop control system is stable. Finally, numerical simulation examples are given to demonstrate the effectiveness of the proposed schemes.

  16. Zone radiometer measurements on a model rocket exhaust plume

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Radiometer for analytical prediction of rocket plume-to-booster thermal radiation and convective heating is described. Applications for engine combustion analysis, incineration, and pollution control by high temperature processing are discussed. Illustrations of equipment are included.

  17. Low altitude plume impingement handbook

    NASA Technical Reports Server (NTRS)

    Smith, Sheldon D.

    1991-01-01

    Plume Impingement modeling is required whenever an object immersed in a rocket exhaust plume must survive or remain undamaged within specified limits, due to thermal and pressure environments induced by the plume. At high altitudes inviscid plume models, Monte Carlo techniques along with the Plume Impingement Program can be used to predict reasonably accurate environments since there are usually no strong flowfield/body interactions or atmospheric effects. However, at low altitudes there is plume-atmospheric mixing and potential large flowfield perturbations due to plume-structure interaction. If the impinged surface is large relative to the flowfield and the flowfield is supersonic, the shock near the surface can stand off the surface several exit radii. This results in an effective total pressure that is higher than that which exists in the free plume at the surface. Additionally, in two phase plumes, there can be strong particle-gas interaction in the flowfield immediately ahead of the surface. To date there have been three levels of sophistication that have been used for low altitude plume induced environment predictions. Level 1 calculations rely on empirical characterizations of the flowfield and relatively simple impingement modeling. An example of this technique is described by Piesik. A Level 2 approach consists of characterizing the viscous plume using the SPF/2 code or RAMP2/LAMP and using the Plume Impingement Program to predict the environments. A Level 3 analysis would consist of using a Navier-Stokes code such as the FDNS code to model the flowfield and structure during a single calculation. To date, Level 1 and Level 2 type analyses have been primarily used to perform environment calculations. The recent advances in CFD modeling and computer resources allow Level 2 type analysis to be used for final design studies. Following some background on low altitude impingement, Level 1, 2, and 3 type analysis will be described.

  18. Seismic Imaging of Mantle Plumes

    NASA Astrophysics Data System (ADS)

    Nataf, Henri-Claude

    The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires specific developments as well as dedicated field experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it deflects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very difficult to detect, so specific methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high-resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface. Among the many phenomena that seem to take place in the lowermost mantle (or D''), there are also signs there of the presence of plumes. In this article I review the main results obtained so far from these studies and discuss their implications for plume dynamics. Seismic imaging of mantle plumes is still in its infancy but should soon become a turbulent teenager.

  19. Digital imaging technique for optical emission spectroscopy of a hydrogen arcjet plume

    NASA Astrophysics Data System (ADS)

    Litchford, Ron J.; Ruyten, Wim M.

    1995-07-01

    A digital imaging technique has been developed for optical emission spectroscopy measurements of a 1.6-kW hydrogen arcjet plume. Emissions from the Balmer alpha and beta transitions of excited atomic hydrogen were measured with a computer-controlled red-green-blue color CCD detector with and without line-centered bandpass interference filters. A method for extending the effective dynamic range of the detector was developed, whereby images obtained with a wide range of exposure times are combined to form a single composite nonsaturated map of the plume emission structure. The line-of-sight measurements were deconvoluted to obtain the true radial intensity distribution with an inverse Abel transformation. Analysis of the inverted measurements indicates that the upper levels of the Balmer alpha and beta transitions are not thermalized with the electrons in the plasma. The local thermodynamic equilibrium assumption fails for this plasma, and the electron temperature is not equivalent to the apparent excitation

  20. Double layering of a thermochemical plume in the upper mantle beneath Hawaii

    NASA Astrophysics Data System (ADS)

    Ballmer, Maxim D.; Ito, Garrett; Wolfe, Cecily J.; Solomon, Sean C.

    2013-08-01

    According to classical plume theory, purely thermal upwellings rise through the mantle, pond in a thin layer beneath the lithosphere, and generate hotspot volcanism. Neglected by this theory, however, are the dynamical effects of compositional heterogeneity carried by mantle plumes even though this heterogeneity has been commonly identified in sources of hotspot magmas. Numerical models predict that a hot, compositionally heterogeneous mantle plume containing a denser eclogite component tends to pool at ∼300-410 km depth before rising to feed a shallower sublithospheric layer. This double-layered structure of a thermochemical plume is more consistent with seismic tomographic images at Hawaii than the classical plume model. The thermochemical structure as well as time dependence of plume material rising from the deeper into the shallower layer can further account for long-term fluctuations in volcanic activity and asymmetry in bathymetry, seismic structure, and magma chemistry across the hotspot track, as are observed.

  1. Chemical processing of volcanic ash within eruption plume and cloud: a numerical modeling approach

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, Gholam Ali; Hort, Matthias; Langmann, Baerbel; Brasseur, Guy

    2015-04-01

    Volcanic ash is recently identified as an active chemical agent in the Earth system. Generated mainly through lithospheric processes and magma fragmentation, it can pose significant impacts upon different components of the Earth system for e.g. atmosphere and hydrosphere on various temporal and spatial scales. While airborne in the atmosphere, transition metals contained in the ash can catalyze the sulfur oxidation cycle thereby indirectly affecting the volcanic radiative forcing. Moreover, upon deposition on the surface ocean, ash can release soluble iron that fertilizes Fe-limited areas of the ocean and stimulate the marine productivity and CO2 drawdown. Such impacts are provoked through interfacial processes and thus, are mainly induced by the ash surface composition. Recent studies suggest that in-plume and in-cloud processing of volcanic ash primarily control its surface composition. Direct evidences concerning such processes are, however, lacking. Here we present the results of our recent investigations on in-plume and in-cloud processing of volcanic ash. A 1D numerical model is developed that simulates the gas-ash-aerosol interactions in volcanic eruption plume and cloud at temperatures between 600 C and 0 C focusing on iron, sulfur and halogen chemistry. Results show that sulfuric acid and water vapor condense at 150 C and 50 C, respectively, generating a liquid coating at the ash surface that scavenges the surrounding gases (>95extremely acidic (pH

  2. 3-D numerical modeling of plume-induced subduction initiation

    NASA Astrophysics Data System (ADS)

    Baes, Marzieh; Gerya, taras; Sobolev, Stephan

    2016-04-01

    Investigation of mechanisms involved in formation of a new subduction zone can help us to better understand plate tectonics. Despite numerous previous studies, it is still unclear how and where an old oceanic plate starts to subduct beneath the other plate. One of the proposed scenarios for nucleation of subduction is plume-induced subduction initiation, which was investigated in detail, using 2-D models, by Ueda et al. (2008). Recently. Gerya et al. (2015), using 3D numerical models, proposed that plume-lithosphere interaction in the Archean led to the subduction initiation and onset of plate tectonic. In this study, we aim to pursue work of Ueda et al. (2008) by incorporation of 3-D thermo-mechanical models to investigate conditions leading to oceanic subduction initiation as a result of thermal-chemical mantle plume-lithosphere interaction in the modern earth. Results of our experiments show four different deformation regimes in response to plume-lithosphere interaction, that are a) self-sustaining subduction initiation where subduction becomes self-sustained, b) freezing subduction initiation where subduction stops at shallow depths, c) slab break-off where subducting circular slab breaks off soon after formation and d) plume underplating where plume does not pass through the lithosphere but spreads beneath it (failed subduction initiation). These different regimes depend on several parameters such as plume's size, composition and temperature, lithospheric brittle/plastic strength, age of the oceanic lithosphere and presence/absence of lithospheric heterogeneities. Results show that subduction initiates and becomes self-sustained when lithosphere is older than 10 Myr and non-dimensional ratio of the plume buoyancy force and lithospheric strength above the plume is higher than 2.

  3. Processing of aerosol particles within the Habshan pollution plume

    NASA Astrophysics Data System (ADS)

    Semeniuk, T. A.; Bruintjes, R.; Salazar, V.; Breed, D.; Jensen, T.; Buseck, P. R.

    2015-03-01

    The Habshan industrial site in the United Arab Emirates produces a regional-scale pollution plume associated with oil and gas processing, discharging high loadings of sulfates and chlorides into the atmosphere, which interact with the ambient aerosol population. Aerosol particles and trace gas chemistry at this site were studied on two flights in the summer of 2002. Measurements were collected along vertical plume profiles to show changes associated with atmospheric processing of particle and gas components. Close to the outlet stack, particle concentrations were over 10,000 cm-3, dropping to <2000 cm-3 in more dilute plume around 1500 m above the stack. Particles collected close to the stack and within the dilute plume were individually measured for size, morphology, composition, and mixing state using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy. Close to the stack, most coarse particles consisted of mineral dust and NaCl crystals from burning oil brines, while sulfate droplets dominated the fine mode. In more dilute plume, at least 1500 m above the stack, the particle spectrum was more diverse, with a significant increase in internally mixed particle types. Dilute plume samples consisted of coarse NaCl/silicate aggregates or NaCl-rich droplets, often with a sulfate component, while fine-fraction particles were of mixed cation sulfates, also internally mixed with nanospherical soot or silicates. Thus, both chloride and sulfate components of the pollution plume rapidly reacted with ambient mineral dust to form coated and aggregate particles, enhancing particle size, hygroscopicity, and reactivity of the coarse mode. The fine-fraction sulfate-bearing particles formed in the plume contribute to regional transport of sulfates, while coarse sulfate-bearing fractions locally reduced the SO2 loading through sedimentation. The chloride- and sulfate-bearing internally mixed particles formed in the plume markedly changed the

  4. Expert model process control of composite materials in a press

    NASA Astrophysics Data System (ADS)

    Saliba, Tony E.; Quinter, Suzanne R.; Abrams, Frances L.

    An expert model for the control of the press processing of thermoset composite materials has been developed. The knowledge base written using the PC PLUS expert system shell was interfaced with models written in FORTRAN. The expert model, which is running on a single computer with a single processor, takes advantage of the symbol-crunching capability of LISP and the number crunching capability of FORTRAN. The Expert Model control system is a qualitative-quantitative process automation (QQPA) system since it includes both quantitative model-based and qualitative rule-based expert system operations. Various physical and mechanical properties were measured from panels processed using the two cycles. Using QQPA, processing time has been reduced significantly without altering product quality.

  5. Active vibration control based on piezoelectric smart composite

    NASA Astrophysics Data System (ADS)

    Gao, Le; Lu, Qingqing; Fei, Fan; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2013-12-01

    An aircraft’s vertical fin may experience dramatic buffet loads in high angle of attack flight conditions, and these buffet loads would cause huge vibration and dynamic stress on the vertical fin structure. To reduce the dynamic vibration of the vertical fin structure, macro fiber composite (MFC) actuators were used in this paper. The drive moment equations and sensing voltage equations of the MFC actuators were developed. Finite element analysis models based on three kinds of models of simplified vertical fin structures with surface-bonded MFC actuators were established in ABAQUS. The equivalent damping ratio of the structure was employed in finite element analysis, in order to measure the effectiveness of vibration control. Further, an open-loop test for the active vibration control system of the vertical fin with MFC actuators was designed and developed. The experimental results validated the effectiveness of the MFC actuators as well as the developed methodology.

  6. The Milan photooxidant plume

    NASA Astrophysics Data System (ADS)

    PréVôT, André S. H.; Staehelin, Johannes; Kok, Gregory L.; Schillawski, Richard D.; Neininger, Bruno; Staffelbach, Thomas; Neftel, Albrecht; Wernli, Heini; Dommen, Josef

    1997-10-01

    In Switzerland, measurement campaigns including aircraft measurements were carried out in the summers of 1992 and 1993 as part of the Pollution and Meteorology (POLLUMET) study. Ozone (O3) concentrations, up to 185 ppb, with a large spatial variability were found south of the Alps in the afternoon. Comparison to measurements north of the Alps shows that these concentration levels are extraordinarily high for central Europe. Backward trajectories reveal that the highest O3 levels were found 4-5 hours downwind of Milan, Italy. The measurements suggest a reactive organic gas (ROG) sensitive O3 production regime 1-3 hours downwind in the plume, and a NOx (sum of nitrogen oxide (NO) and nitrogen dioxide (NO2)) limitation in air masses not affected by the Milan plume. Air masses originating north of Milan are probably close to the transition zone between the two photochemical regimes. This was found by using measurements of total odd nitrogen (NOy,), NO, NO2, formaldehyde (HCHO), and hydrogen peroxide (H2O2) yielding indicators for ROG and NOx sensitive O3 production. The slope of ozone versus NOz (=NOy-NOx: photochemical products of NOx) were markedly higher in NOx limited conditions (ΔO3/ΔNOz=13.6) than in air masses close to the transition zone (ΔO3/ΔNOz=4.2).

  7. Nuclear rocket plume studies

    NASA Astrophysics Data System (ADS)

    Hastings, Daniel

    1993-05-01

    A description and detailed computational analysis of a vortex cleaning system designed to remove radioactive material from the plumes of nuclear rockets is included. The proposed system is designed to remove both particulates and radioactive gaseous material from the plume. A two part computational model is used to examine the system's ability to remove particulates, and the results indicate that under some conditions, the system can remove over 99% of the particles in the flow. Two critical parameters which govern the effectiveness of the system are identified and the information necessary to estimate cleaning efficiencies for particles of known sizes and densities is provided. A simple steady analytical solution is also developed to examine the system's ability to remove gaseous radioactive material. This analysis, while inconclusive, suggests that the swirl rates necessary to achieve useful efficiencies are too high to be achieved in any practical manner. Therefore, this system is probably not suitable for use, with gaseous radioactive material. It was concluded that the system can cause negligible specific impulse losses, though there may be a substantial mass penalty associated with its use.

  8. Method for continuous control of composition and doping of pulsed laser deposited films by pressure control

    DOEpatents

    Lowndes, Douglas H.; McCamy, James W.

    1996-01-01

    A method for growing a deposit upon a substrate of semiconductor material involves the utilization of pulsed laser deposition techniques within a low-pressure gas environment. The substrate and a target of a first material are positioned within a deposition chamber and a low-pressure gas atmosphere is developed within the chamber. The substrate is then heated, and the target is irradiated, so that atoms of the target material are ablated from the remainder of the target, while atoms of the gas simultaneously are adsorbed on the substrate/film surface. The ablated atoms build up upon the substrate, together with the adsorbed gas atoms to form the thin-film deposit on the substrate. By controlling the pressure of the gas of the chamber atmosphere, the composition of the formed deposit can be controlled, and films of continuously variable composition or doping can be grown from a single target of fixed composition.

  9. Controls over the strontium isotope composition of river water

    SciTech Connect

    Palmer, M.R. ); Edmond, J.M. )

    1992-05-01

    Strontium concentrations and isotope ratios have been measured in river and ground waters from the Granges, Orinoco, and Amazon river basins. When compared with major element concentrations, the data set has allowed a detailed examination of the controls over the strontium isotope systematics of riverine input to the oceans in the following environments: (1) typical drainage basins containing limestones, evaporites, shales, and alumino-silicate metamorphic and igneous rocks; (2) shield terrains containing no chemical or biogenic sediments; and (3) the flood plains that constitute the largest areas of many large rivers. The strontium concentration and isotope compositions of river waters are largely defined by mixing of strontium derived from limestones and evaporites with strontium derived from silicate rocks. The strontium isotope composition of the limestone end member generally lies within the Phanerozoic seawater range, which buffers the [sup 87]Sr/[sup 86]Sr ratios of major rivers. A major exception is provided by the rivers draining the Himalayas, where widescale regional metamorphism appears to have led to an enrichment in limestones of radiogenic strontium derived from coexisting silicate rocks. The strontium isotope systematics of rivers draining shield areas are controlled by the intense, transport-limited, nature of the weathering reactions, and thereby limits variations in the strontium flux from these terrains. Flood plains are only a minor source of dissolved strontium to river waters, and precipitation of soil salts in some flood plains can reduce the riverine flux of dissolved strontium to the oceans.

  10. Linking Europa's plume activity to tides, tectonics, and liquid water

    NASA Astrophysics Data System (ADS)

    Rhoden, Alyssa Rose; Hurford, Terry A.; Roth, Lorenz; Retherford, Kurt

    2015-06-01

    Much of the geologic activity preserved on Europa's icy surface has been attributed to tidal deformation, mainly due to Europa's eccentric orbit. Although the surface is geologically young (30-80 Myr), there is little information as to whether tidally-driven surface processes are ongoing. However, a recent detection of water vapor near Europa's south pole suggests that it may be geologically active. Initial observations indicated that Europa's plume eruptions are time-variable and may be linked to its tidal cycle. Saturn's moon, Enceladus, which shares many similar traits with Europa, displays tidally-modulated plume eruptions, which bolstered this interpretation. However, additional observations of Europa at the same time in its orbit failed to yield a plume detection, casting doubt on the tidal control hypothesis. The purpose of this study is to analyze the timing of plume eruptions within the context of Europa's tidal cycle to determine whether such a link exists and examine the inferred similarities and differences between plume activity on Europa and Enceladus. To do this, we determine the locations and orientations of hypothetical tidally-driven fractures that best match the temporal variability of the plumes observed at Europa. Specifically, we identify model faults that are in tension at the time in Europa's orbit when a plume was detected and in compression at times when the plume was not detected. We find that tidal stress driven solely by eccentricity is incompatible with the observations unless additional mechanisms are controlling the eruption timing or restricting the longevity of the plumes. The addition of obliquity tides, and corresponding precession of the spin pole, can generate a number of model faults that are consistent with the pattern of plume detections. The locations and orientations of these hypothetical source fractures are robust across a broad range of precession rates and spin pole directions. Analysis of the stress variations across