Science.gov

Sample records for plutonium alloys

  1. PLUTONIUM ALLOYS

    DOEpatents

    Chynoweth, W.

    1959-06-16

    The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

  2. PLUTONIUM-THORIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  3. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  4. PLUTONIUM-ZIRCONIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  5. PLUTONIUM-CERIUM ALLOY

    DOEpatents

    Coffinberry, A.S.

    1959-01-01

    An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.

  6. PLUTONIUM-URANIUM ALLOY

    DOEpatents

    Coffinberry, A.S.; Schonfeld, F.W.

    1959-09-01

    Pu-U-Fe and Pu-U-Co alloys suitable for use as fuel elements tn fast breeder reactors are described. The advantages of these alloys are ease of fabrication without microcracks, good corrosion restatance, and good resistance to radiation damage. These advantages are secured by limitation of the zeta phase of plutonium in favor of a tetragonal crystal structure of the U/sub 6/Mn type.

  7. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  8. PLUTONIUM-CERIUM-COPPER ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-05-12

    A low melting point plutonium alloy useful as fuel is a homogeneous liquid metal fueled nuclear reactor is described. Vessels of tungsten or tantalum are useful to contain the alloy which consists essentially of from 10 to 30 atomic per cent copper and the balance plutonium and cerium. with the plutontum not in excess of 50 atomic per cent.

  9. TERNARY ALLOY-CONTAINING PLUTONIUM

    DOEpatents

    Waber, J.T.

    1960-02-23

    Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

  10. PLUTONIUM-CERIUM-COBALT AND PLUTONIUM-CERIUM-NICKEL ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-08-25

    >New plutonium-base teroary alloys useful as liquid reactor fuels are described. The alloys consist of 10 to 20 atomic percent cobalt with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 88 atomic percent; or, of from 10 to 25 atomic percent nickel (or mixture of nickel and cobalt) with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 86 atomic percent. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are a lower melting point and a wide range of permissible plutonium dilution.

  11. METHOD FOR OBTAINING PLUTONIUM METAL AND ALLOYS OF PLUTONIUM FROM PLUTONIUM TRICHLORIDE

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Maraman, W.J.

    1962-11-13

    A process is given for both reducing plutonium trichloride to plutonium metal using cerium as the reductant and simultaneously alloying such plutonium metal with an excess of cerium or cerium and cobalt sufficient to yield the desired nuclear reactor fuel composition. The process is conducted at a temperature from about 550 to 775 deg C, at atmospheric pressure, without the use of booster reactants, and a substantial decontamination is effected in the product alloy of any rare earths which may be associated with the source of the plutonium. (AEC)

  12. Real-time monitoring of plutonium content in uranium-plutonium alloys

    SciTech Connect

    Li, Shelly Xiaowei; Westphal, Brian Robert; Herrmann, Steven Douglas

    2015-09-01

    A method and device for the real-time, in-situ monitoring of Plutonium content in U--Pu Alloys comprising providing a crucible. The crucible has an interior non-reactive to a metallic U--Pu alloy within said interior of said crucible. The U--Pu alloy comprises metallic uranium and plutonium. The U--Pu alloy is heated to a liquid in an inert or reducing atmosphere. The heated U--Pu alloy is then cooled to a solid in an inert or reducing atmosphere. As the U--Pu alloy is cooled, the temperature of the U--Pu alloy is monitored. A solidification temperature signature is determined from the monitored temperature of the U--Pu alloy during the step of cooling. The amount of Uranium and the amount of Plutonium in the U--Pu alloy is then determined from the determined solidification temperature signature.

  13. PLUTONIUM ALLOYS CONTAINING CONTROLLED AMOUNTS OF PLUTONIUM ALLOTROPES OBTAINED BY APPLICATION OF HIGH PRESSURES

    DOEpatents

    Elliott, R.O.; Gschneidner, K.A. Jr.

    1962-07-10

    A method of making stabilized plutonium alloys which are free of voids and cracks and have a controlled amount of plutonium allotropes is described. The steps include adding at least 4.5 at.% of hafnium, indium, or erbium to the melted plutonium metal, homogenizing the resulting alloy at a temperature of 450 deg C, cooling to room temperature, and subjecting the alloy to a pressure which produces a rapid increase in density with a negligible increase in pressure. The pressure required to cause this rapid change in density or transformation ranges from about 800 to 2400 atmospheres, and is dependent on the alloying element. (AEC)

  14. Spiked Alloy Production for Accelerated Aging of Plutonium

    SciTech Connect

    Wilk, P A; McNeese, J A; Dodson, K E; Williams, W L; Krikorian, O H; Blau, M S; Schmitz, J E; Bajao, F G; Mew, D A; Matz, T E; Torres, R A; Holck, D M; Moody, K J; Kenneally, J M

    2009-07-10

    The accelerated aging effects on weapons grade plutonium alloys are being studied using {sup 238}Pu-enriched plutonium metal to increase the rate of formation of defect structures. Pyrochemical processing methods have been used to produce two {sup 238}Pu-spiked plutonium alloys with nominal compositions of 7.5 wt% {sup 238}Pu. Processes used in the preparation of the alloys include direct oxide reduction of PuO{sub 2} with calcium and electrorefining. Rolled disks were prepared from the spiked alloys for sampling. Test specimens were cut out of the disks for physical property measurements.

  15. Plutonium microstructures. Part 2. Binary and ternary alloys

    SciTech Connect

    Cramer, E.M.; Bergin, J.B.

    1983-12-01

    This report is the second of three parts that exhibit illustrations of inclusions in plutonium metal from inherent and tramp impurities, of intermetallic and nonmetallic constituents from alloy additions, and of the effects of thermal and mechanical treatments. This part includes illustrations of the microstructures in binary cast alloys and a few selected ternary alloys that result from measured additions of diluent elements, and of the microconstituents that are characteristic of phase fields in extended alloy systems. Microhardness data are given and the etchant used in the preparation of each sample is described.

  16. Thermodynamics and Structure of Plutonium Alloys

    SciTech Connect

    Allen, P G; Turchi, P A; Gallegos, G F

    2004-01-30

    The goal of this project was to investigate the chemical and structural effects of gallium and impurity elements, iron and nickel, on the phase behavior and crystallography of Pu-Ga alloys. This was done utilizing a theoretical chemical approach to predict binary and ternary alloy energetics, phase stability, and transformations. The modeling results were validated with experimental data derived from the synthesis of selected alloys and advanced characterization tools. The ultimate goal of this work was to develop a robust predictive capability for studying the thermodynamics and the structure-properties relationships in complex materials of high relevance to the Laboratory and DOE mission.

  17. Effects of self-irradiation in plutonium alloys

    DOE PAGESBeta

    Chung, B. W.; Lema, K. E.; Allen, P. G.

    2015-09-16

    In this paper, we present updated results of self-irradiation effects on 238Pu-enriched 239Pu alloys measured by immersion density, dilatometry, and tensile tests. We obtained the self-irradiation equivalent time of nearly 200 years, nearly 100 years longer than in our previous papers. At this extended aging, we find the rate of decrease in density has slowed significantly, stabilizing around 15.73 g/cc, without signs of void swelling. The volume expansion measured at 35°C also shows apparent saturation at less than 0.25%. Quasi-static tensile measurement still show gradual increase in the strength of plutonium alloys with age.

  18. Distillation of cadmium from uranium plutonium cadmium alloy

    NASA Astrophysics Data System (ADS)

    Kato, Tetsuya; Iizuka, Masatoshi; Inoue, Tadashi; Iwai, Takashi; Arai, Yasuo

    2005-04-01

    Uranium-plutonium alloy was prepared by distillation of cadmium from U-Pu-Cd ternary alloy. The initial ternary alloy contained 2.9 wt% U and 8.7 wt% Pu other than Cd, which were recovered by molten salt electrolysis with liquid Cd cathode. The distillation experiments were conducted in 10 g scale of the initial alloy using a small-scale distillation furnace equipped with an evaporator and a condenser in a vacuum vessel. After distillation at 1073 K, the weight of the residue was in good agreement with that of the loaded actinides, where the content of Cd decreased to less than 0.05 wt%. The uranium-plutonium alloy product was recovered without adhering to the yttria crucible. The cross section of the product was observed using electron probe micro-analyzer and it was found to consist of a dense material. Almost all of the evaporated Cd was recovered in the condenser and so enclosed well in the apparatus.

  19. Effects of self-irradiation in plutonium alloys

    SciTech Connect

    Chung, B. W.; Lema, K. E.; Allen, P. G.

    2015-09-16

    In this paper, we present updated results of self-irradiation effects on 238Pu-enriched 239Pu alloys measured by immersion density, dilatometry, and tensile tests. We obtained the self-irradiation equivalent time of nearly 200 years, nearly 100 years longer than in our previous papers. At this extended aging, we find the rate of decrease in density has slowed significantly, stabilizing around 15.73 g/cc, without signs of void swelling. The volume expansion measured at 35°C also shows apparent saturation at less than 0.25%. Quasi-static tensile measurement still show gradual increase in the strength of plutonium alloys with age.

  20. Effects of self-irradiation in plutonium alloys

    NASA Astrophysics Data System (ADS)

    Chung, B. W.; Lema, K. E.; Allen, P. G.

    2016-04-01

    In this paper, we present updated results of self-irradiation effects on 238Pu-enriched 239Pu alloys measured by immersion density, dilatometry, and tensile tests. We obtained the self-irradiation equivalent time of nearly 200 years, nearly 100 years longer than in our previous papers. At this extended aging, we find the rate of decrease in density has slowed significantly, stabilizing around 15.73 g/cc, without signs of void swelling. The volume expansion measured at 35 °C also shows apparent saturation at less than 0.25%. Quasi-static tensile measurement still show gradual increase in the strength of plutonium alloys with age.

  1. The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal

    SciTech Connect

    Richmond, Scott; Bridgewater, Jon S; Ward, John W; Allen, Thomas A

    2009-01-01

    Pressure-Composition-Temperature (PCT) data are presented for the plutonium-hydrogen (Pu-H) and plutonium-deuterium (Pu-D) systems in the solubility region up to terminal solubility (precipitation of PuH{sub 2}). The heats of solution for PuH{sub s} and PuD{sub s} are determined from PCT data in the ranges 350-625 C for gallium alloyed Pu and 400-575 C for unalloyed Pu. The solubility of high purity plutonium alloyed with 2 at.% gallium is compared to high purity unalloyed plutonium. Significant differences are found in hydrogen solubility for unalloyed Pu versus gallium alloyed Pu. Differences in hydrogen solubility due to an apparent phase change are observable in the alloyed and unalloyed solubilities. The effect of iron impurities on Pu-Ga alloyed Pu is shown via hydrogen solubility data as preventing complete homogenization.

  2. In situ purification, alloying and casting methodology for metallic plutonium

    NASA Astrophysics Data System (ADS)

    Lashley, Jason C.; Blau, Michael S.; Staudhammer, Karl P.; Pereyra, Ramiro A.

    Plutonium metal that has been double ER (electrorefined/electrorefining) was further purified via zone refining, using a floating molten zone to minimize the introduction of impurities. The temperature of the molten zone was 750°C, and the atmosphere was 10 -5 Pa. A total of ten zone refining passes were made at a travel rate of 1.5 cm/h. There were 19 elements reduced to quantities below the minimum detectable limits (MDL) by zone refining, while P, K, and W were significantly reduced. The zone-refined metal was then used in an in situ distillation, alloying, and casting step to prepare tapered specimens for single-crystal growth experiments. Specifically, 241Am was distilled from Pu metal by levitating Pu metal with 1 wt% Ga in the melt in a Crystallox vertical electromagnetic levitation crucible at 10 -5 Pa. The Pu is alloyed with Ga to stabilize the δ phase (fcc symmetry) upon solidification. The Pu was chill-cast directly from the electromagnetic levitation field into 1- cm tapered specimens. A water-cooled ceramic mold was used, and the Pu metal was cooled at a rate of 100°C/min. A microstructure examination of the specimen showed 10 × 25 μm acicular grains with a density of 15.938 g/cm 3 (±0.002 g/cm 3).

  3. Plutonium and americium recovery from spent molten-salt-extraction salts with aluminum-magnesium alloys

    SciTech Connect

    Cusick, M.J.; Sherwood, W.G.; Fitzpatrick, R.F.

    1984-04-23

    Development work was performed to determine the feasibility of removing plutonium and americium from spent molten-salt-extraction (MSE) salts using Al-Mg alloys. If the product buttons from this process are compatible with subsequent aqueous processing, the complex chloride-to-nitrate aqueous conversion step which is presently required for these salts may be eliminated. The optimum alloy composition used to treat spent 8 wt % MSE salts in the past yielded poor phase-disengagement characteristics when applied to 30 mol % salts. After a limited investigation of other alloy compositions in the Al-Mg-Pu-Am system, it was determined that the Al-Pu-Am system could yield a compatible alloy. In this system, experiments were performed to investigate the effects of plutonium loading in the alloy, excess magnesium, age of the spent salt on actinide recovery, phase disengagement, and button homogeneity. Experimental results indicate that 95 percent plutonium recoveries can be attained for fresh salts. Further development is required for backlog salts generated prior to 1981. A homogeneous product alloy, as required for aqueous processing, could not be produced.

  4. Properties of plutonium and its alloys for use as fast reactor fuels

    NASA Astrophysics Data System (ADS)

    Hecker, Siegfried S.; Stan, Marius

    2008-12-01

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher melting U-Pu-Zr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  5. METHOD OF MAKING ALLOYS OF BERYLLIUM WITH PLUTONIUM AND THE LIKE

    DOEpatents

    Runnals, O.J.C.

    1959-02-24

    The production of alloys of beryllium with one or more of the metals uranium, plutonium, actinium, americium, curium, thorium, and cerium are described. A halide salt of the metal to be alloyed with the beryllium is heated at 1300 deg C in the presence of beryllium to reduce the halide to metal and cause the latter to alloy directly with the beryllium. Although the heavy metal halides are more stable, thermodynamically, than the beryllium halides, the reducing reaction proceeds to completion if the beryllium halide product is continuously removed by vacuum distillation.

  6. Method of making alloys of beryllium with plutonium and the like

    DOEpatents

    Runnals, O J.C.

    1959-02-24

    The production or alloys of beryllium with one or more of the metals uranium, plutonium, actinium, americium, curium, thorium, and cerium is described. A halide salt or the metal to be alloyed with the beryllium is heated at l3O0 deg C in the presence of beryllium to reduce the halide to metal and cause the latter to alloy directly with the beryllium. Although the heavy metal halides are more stable, thermodynamically, than the beryllium halides, the reducing reaction proceeds to completion if the beryllium halide product is continuously removed by vacuum distillation.

  7. Plutonium

    NASA Astrophysics Data System (ADS)

    Clark, David L.; Hecker, Siegfried S.; Jarvinen, Gordon D.; Neu, Mary P.

    The element plutonium occupies a unique place in the history of chemistry, physics, technology, and international relations. After the initial discovery based on submicrogram amounts, it is now generated by transmutation of uranium in nuclear reactors on a large scale, and has been separated in ton quantities in large industrial facilities. The intense interest in plutonium resulted fromthe dual-use scenario of domestic power production and nuclear weapons - drawing energy from an atomic nucleus that can produce a factor of millions in energy output relative to chemical energy sources. Indeed, within 5 years of its original synthesis, the primary use of plutonium was for the release of nuclear energy in weapons of unprecedented power, and it seemed that the new element might lead the human race to the brink of self-annihilation. Instead, it has forced the human race to govern itself without resorting to nuclear war over the past 60 years. Plutonium evokes the entire gamut of human emotions, from good to evil, from hope to despair, from the salvation of humanity to its utter destruction. There is no other element in the periodic table that has had such a profound impact on the consciousness of mankind.

  8. PRODUCTION OF PLUTONIUM METAL

    DOEpatents

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  9. Plutonium Immobilization Task 5.6 Metal Conversion: Milestone Report - Perform Feasibility Demonstrations on Pu-Al Alloys

    SciTech Connect

    Zundelevich, Y; Kerns, J; Bannochie, C

    2001-04-12

    The Plutonium Conversion Task within the Plutonium Immobilization Program (PIP) transforms incoming plutonium (Pu) feed materials into an oxide acceptable for blending with ceramic precursors. One of the feed materials originally planned for PIP was unirradiated fuel, which consisted mainly of the Zero Power Plutonium Reactor (ZPPR) fuel. Approximately 3.5 metric tons of Pu is in ZPPR fuel. The ZPPR fuel is currently stored at the Argonne National Laboratory-West as stainless steel clad metal plates and oxide pellets, with the vast majority of the Pu in the metal plates. The metal plates consist of a Pu-U-Mo alloy (containing 90% of the ZPPR plutonium metal) and a Pu-Al alloy (containing 10% of the ZPPR plutonium metal). The Department of Energy (DOE) decided that ZPPR fuel is a national asset and, therefore, not subject to disposition. This report documents work done prior to that decision. The Hydnde-Oxidation (HYDOX) Process was selected as the method for Metal Conversion in PIP because it provides a universal means for preparing oxide from all feed materials. HYDOX incorporates both the hydride process, originally developed to separate Pu from other pit materials, as well as the oxide formation step. Plutonium hydride is very reactive and is readily converted to either the nitride or the oxide. A previous feasibility study demonstrated that the Pu-U-Mo alloy could be successfully converted to oxide via the HYDOX Process. Another Metal Conversion milestone was to demonstrate the feasibility of the HYDOX Process for converting plutonium-aluminum (Pu-Al) alloy in ZPPR fuel plates to an acceptable oxide. This report documents the results of the latter feasibility study which was performed before the DOE decision to retain ZPPR fuel rather than immobilize it.

  10. Strength and fracture of uranium, plutonium and several their alloys under shock wave loading

    NASA Astrophysics Data System (ADS)

    Golubev, V. K.

    2012-08-01

    Results on studying the spall fracture of uranium, plutonium and several their alloys under shock wave loading are presented in the paper. The problems of influence of initial temperature in a range of - 196 - 800∘C and loading time on the spall strength and failure character of uranium and two its alloys with molybdenum and both molybdenum and zirconium were studied. The results for plutonium and its alloy with gallium were obtained at a normal temperature and in a temperature range of 40-315∘C, respectively. The majority of tests were conducted with the samples in the form of disks 4 mm in thickness. They were loaded by the impact of aluminum plates 4 mm thick through a copper screen 12 mm thick serving as the cover or bottom part of a special container. The character of spall failure of materials and the damage degree of samples were observed on the longitudinal metallographic sections of recovered samples. For a concrete test temperature, the impact velocity was sequentially changed and therefore the loading conditions corresponding to the consecutive transition from microdamage nucleation up to complete macroscopic spall fracture were determined. The conditions of shock wave loading were calculated using an elastic-plastic computer program. The comparison of obtained results with the data of other researchers on the spall fracture of examined materials was conducted.

  11. Spall fracture and strength of uranium, plutonium and their alloys under shock wave loading

    NASA Astrophysics Data System (ADS)

    Golubev, Vladimir

    2015-06-01

    Numerous results on studying the spall fracture phenomenon of uranium, two its alloys with molybdenum and zirconium, plutonium and its alloy with gallium under shock wave loading are presented in the paper. The majority of tests were conducted with the samples in the form of disks 4mm in thickness. They were loaded by the impact of aluminum plates 4mm thick through a copper screen serving as the cover or bottom part of a special container. The initial temperature of samples was changed in the range of -196 - 800 C degree for uranium and 40 - 315 C degree for plutonium. The character of spall failure of materials and the degree of damage for all tested samples were observed on the longitudinal metallographic sections of recovered samples. For a concrete test temperature, the impact velocity was sequentially changed and therefore the loading conditions corresponding to the consecutive transition from microdamage nucleation up to complete macroscopic spall fracture were determined. Numerical calculations of the conditions of shock wave loading and spall fracture of samples were performed in the elastoplastic approach. Several two- and three-dimensional effects of loading were taken into account. Some results obtained under conditions of intensive impulse irradiation and intensive explosive loading are presented too. The rather complete analysis and comparison of obtained results with the data of other researchers on the spall fracture of examined materials were conducted.

  12. Ab initio study of gallium stabilized δ-plutonium alloys and hydrogen-vacancy complexes.

    PubMed

    Hernandez, Sarah C; Schwartz, Daniel S; Taylor, Christopher D; Ray, Asok K

    2014-06-11

    All-electron density functional theory was used to investigate δ-plutonium (δ-Pu) alloyed with gallium (Ga) impurities at 3.125, 6.25, 9.375 atomic (at)% Ga concentrations. The results indicated that the lowest energy structure is anti-ferromagnetic, independent of the Ga concentration. At higher Ga concentrations (>3.125 at%), the position of the Ga atoms are separated by four nearest neighbor Pu-Pu shells. The results also showed that the lattice constant contracts with increasing Ga concentration, which is in agreement with experimental data. Furthermore with increasing Ga concentration, the face-centered-cubic structure becomes more stably coupled with increasing short-range disorder. The formation energies show that the alloying process is exothermic, with an energy range of -0.028 to -0.099 eV/atom. The analyses of the partial density of states indicated that the Pu-Ga interactions are dominated by Pu 6d and Ga 4p hybridizations, as well as Ga 4s-4p hybridizations. Finally, the computed formation energies for vacancy and hydrogen-vacancy complexes within the 3.125 at% Ga cell were 1.12 eV (endothermic) and -3.88 eV (exothermic), respectively. In addition, the hydrogen atom prefers to interact much more strongly to the Pu atom than the Ga atom in the hydrogen-vacancy complex. PMID:24832613

  13. Atomistic model of helium bubbles in gallium-stabilized plutonium alloys

    SciTech Connect

    Valone, S. M.; Baskes, M. I.; Martin, R. L.

    2006-06-01

    The varying thermodynamic stability of gallium- (Ga-) stabilized plutonium (Pu) alloys with temperature affords a unique setting for the development of self-irradiation damage. Here, fundamental characteristics of helium (He) bubbles in these alloys with respect to temperature, gallium concentration, and He-to-vacancy ratio are modeled at the atomistic level with a modified embedded atom potential that takes account of this varying stability. Aside from the bubbles themselves, the surrounding matrix material is single-crystal metal or alloy. As a function of temperature, with a 2:1 He-to-vacancy ratio in a 5-at. % Ga fcc lattice, a 1.25-nm bubble is very stable up to about 1000 K. At 1000 K, the bubble distorts the surrounding lattice and precipitates a liquid zone, as is consistent with the phase diagram for the model material. Between 300 and 500 K, this same bubble relaxes slightly through interstitial emission. At 300 K, with a 2:1 He-to-vacancy ratio in a 2.5-at. % Ga fcc lattice, the Ga stabilization is less effective in the model to the point where the bubble distorts the local lattice and expands significantly. Similarly, at 300 K, if the He-to-vacancy ratio is increased to 3:1, there is significant local lattice distortion, as well as ejection of some He atoms into the lattice. The formation of new bubbles is not observed, because those events take place on a longer time scale than can be simulated with the present approach.

  14. Temperature and concentration dependences of the electrical resistivity for alloys of plutonium with americium under normal conditions

    SciTech Connect

    Tsiovkin, Yu. Yu. Povzner, A. A.; Tsiovkina, L. Yu.; Dremov, V. V.; Kabirova, L. R.; Dyachenko, A. A.; Bystrushkin, V. B.; Ryabukhina, M. V.; Lukoyanov, A. V.; Shorikov, A. O.

    2010-01-15

    The temperature and concentration dependences of the electrical resistivity for alloys of americium with plutonium are analyzed in terms of the multiband conductivity model for binary disordered substitution-type alloys. For the case of high temperatures (T > {Theta}{sub D}, {Theta}{sub D} is the Debye temperature), a system of self-consistent equations of the coherent potential approximation has been derived for the scattering of conduction electrons by impurities and phonons without any constraints on the interaction intensity. The definitions of the shift and broadening operator for a single-electron level are used to show qualitatively and quantitatively that the pattern of the temperature dependence of the electrical resistivity for alloys is determined by the balance between the coherent and incoherent contributions to the electron-phonon scattering and that the interference conduction electron scattering mechanism can be the main cause of the negative temperature coefficient of resistivity observed in some alloys involving actinides. It is shown that the great values of the observed resistivity may be attributable to interband transitions of charge carriers and renormalization of their effective mass through strong s-d band hybridization. The concentration and temperature dependences of the resistivity for alloys of plutonium and americium calculated in terms of the derived conductivity model are compared with the available experimental data.

  15. THERMODYNAMICS AND KINETICS OF PHASE TRANSFORMATIONS IN PLUTONIUM ALLOYS - PART I

    SciTech Connect

    Turchi, P A; Kaufman, L; Liu, Z; Zhou, S

    2004-08-18

    In this report we investigate order, stability, and phase transformations for a series of actinide-based alloys. The statics and kinetics of precipitation and ordering in this class of alloys are modeled with a scheme that couples fundamental information on the alloy energetics obtained from experimental and assessed thermo-chemical data to the CALPHAD approach commonly used in industry for designing alloys with engineering specificity with the help of the Thermo-Calc software application. The CALPHAD approach is applied to the study of the equilibrium thermodynamic properties of Pu-based alloys, Pu-X, where X=Al, Fe, Ga. The assessment of the equilibrium phase diagrams in the whole range of alloy composition has been performed with the PARROT module of the Thermo-Calc application software. Predictions are made on the low temperature and Pu-rich side of the phase diagrams of Pu-Ga and Pu-Al for which controversy has been noted in the past. The validity of the assessed thermo-chemical database will be discussed by comparing predicted heats of transformation for pure Pu with measured values from differential scanning calorimetry analysis. An overall picture for the stability properties of Pu-Ga and Pu-Al that reconciles the results of past studies carried out on these alloys is proposed. Results on phase stability in the ternary Fe-Ga-Pu and Al-Fe-Pu alloys are discussed. The information collected in this study is then used to model metastability, long-term stability and aging for this class of alloys by coupling Thermo-Calc with DICTRA, a series of modules that allow the analysis of DIffusion Controlled TRAnsformations. Kinetics information is then summarized in so-called TTT (temperature-time-transformations) diagrams for the most relevant phases of actinide alloys. Specifically, results are presented on kinetics of phase transformations associated with the eutectoid-phase decomposition reaction occurring at low temperature, and with the martensitic transformation

  16. ISOTHERMAL (DELTA)/(ALPHA-PRIME) TRANSFORMATION AND TTT DIAGRAM IN A PLUTONIUM GALLIUM ALLOY

    SciTech Connect

    Oudot, B P; Blobaum, K M; Wall, M A; Schwartz, A J

    2005-11-11

    Differential scanning calorimetry (DSC) is used as an alternative approach to determining the tine-temperature-transformation (TTT) diagram for the martensitic delta to alpha-prime transformation in a Pu-2.0 at% Ga alloy. Previous work suggests that the TTT diagram for a similar alloy exhibits an unusual double-C curve for isothermal holds of less than 100 minutes. Here, we extend this diagram to 18 hours, and confirm the double-C curve behavior. When the sample is cooled prior to the isothermal holds, the delta to alpha-prime transformation is observed as several overlapping exothermic peaks. These peaks are very reproducible, and they are believed to be the result of different kinds of delta to alpha-prime martensitic transformation. This may be due to the presence of different nucleation sites and/or different morphologies.

  17. The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal

    SciTech Connect

    Richmond, Scott; Bridgewater, Jon S; Ward, John W; Allen, Thomas H

    2010-01-01

    Hydrogen is exothermically absorbed in many transition metals, all rare earths and the actinides. The hydrogen gas adsorbs, dissociates and diffuses into these metals as atomic hydrogen. Absorbed hydrogen is generally detrimental to Pu, altering its properties and greatly enhancing corrosion. Measuring the heat of solution of hydrogen in Pu and its alloys provides significant insight into the thermodynamics driving these changes. Hydrogen is present in all Pu metal unless great care is taken to avoid it. Heats of solution and formation are provided along with evidence for spinodal decomposition.

  18. Phase Transformation Hysteresis in a Plutonium Alloy System: Modeling the Resistivity during the Transformation

    SciTech Connect

    Haslam, J J; Wall, M A; Johnson, D L; Mayhall, D J; Schwartz, A J

    2001-11-14

    We have induced, measured, and modeled the {delta}-{alpha}' martensitic transformation in a Pu-Ga alloy by a resistivity technique on a 2.8-mm diameter disk sample. Our measurements of the resistance by a 4-probe technique were consistent with the expected resistance obtained from a finite element analysis of the 4-point measurement of resistivity in our round disk configuration. Analysis by finite element methods of the postulated configuration of {alpha}' particles within model {delta} grains suggests that a considerable anisotropy in the resistivity may be obtained depending on the arrangement of the {alpha}' lens shaped particles within the grains. The resistivity of these grains departs from the series resistance model and can lead to significant errors in the predicted amount of the {alpha}' phase present in the microstructure. An underestimation of the amount of {alpha}' in the sample by 15%, or more, appears to be possible.

  19. Plutonium microstructures, part 1

    NASA Astrophysics Data System (ADS)

    Cramer, E. M.; Bergin, J. B.

    1981-09-01

    Illustrations of inclusions that are seen in plutonium metal as a consequence of inherent and tramp impurities, alloy additions, and thermal or mechanical treatments are presented. This part includes illustrations of nonmetallic and intermetallic inclusions characteristic of major impurity elements as an aid to identifying unknowns are included. Historical aspects of the increased purity of laboratory plutonium samples are described and the composition of the etchant solutions are given. The etching procedure used in the preparation of each illustrated sample is described.

  20. Plutonium microstructures. Part 1

    SciTech Connect

    Cramer, E.M.; Bergin, J.B.

    1981-09-01

    This report is the first of three parts in which Los Alamos and Lawrence Livermore National Laboratory metallographers exhibit a consolidated set of illustrations of inclusions that are seen in plutonium metal as a consequence of inherent and tramp impurities, alloy additions, and thermal or mechanical treatments. This part includes illustrations of nonmetallic and intermetallic inclusions characteristic of major impurity elements as an aid to identifying unknowns. It also describes historical aspects of the increased purity of laboratory plutonium samples, and it gives the composition of the etchant solutions and describes the etching procedure used in the preparation of each illustrated sample. 25 figures.

  1. Plutonium controversy

    SciTech Connect

    Richmond, C.R.

    1980-01-01

    The toxicity of plutonium is discussed, particularly in relation to controversies surrounding the setting of radiation protection standards. The sources, amounts of, and exposure pathways of plutonium are given and the public risk estimated. (ACR)

  2. Metastability and Delta-Phase Retention in Plutonium Alloys Final Report of LDRD Project 01-ERD-029

    SciTech Connect

    Wong, J; Schwartz, A J; Blobaum, K M; Krenn, C R; Wall, M A; Wolfer, W G; Haslam, J J; Moore, K T

    2004-02-11

    The {delta} to {alpha}' phase transformation in Pu-Ga alloys is intriguing for both scientific and technological reasons. On cooling, the ductile fcc {delta}-phase transforms martensitically to the brittle monoclinic {alpha}'-phase at approximately -120 C (depending on composition). This exothermic transformation involves a 20% volume contraction and a significant increase in resistivity. The reversion of {alpha}' to {delta} involves a large temperature hysteresis beginning just above room temperature. In an attempt to better understand the underlying thermodynamics and kinetics responsible for these unusual features, we have investigated the {delta} {leftrightarrow} {alpha}' phase transformations in a Pu-0.6 wt% Ga alloy using a combination of experimental and modeling techniques.

  3. Plutonium inventories for stabilization and stabilized materials

    SciTech Connect

    Williams, A.K.

    1996-05-01

    The objective of the breakout session was to identify characteristics of materials containing plutonium, the need to stabilize these materials for storage, and plans to accomplish the stabilization activities. All current stabilization activities are driven by the Defense Nuclear Facilities Safety Board Recommendation 94-1 (May 26, 1994) and by the recently completed Plutonium ES&H Vulnerability Assessment (DOE-EH-0415). The Implementation Plan for accomplishing stabilization of plutonium-bearing residues in response to the Recommendation and the Assessment was published by DOE on February 28, 1995. This Implementation Plan (IP) commits to stabilizing problem materials within 3 years, and stabilizing all other materials within 8 years. The IP identifies approximately 20 metric tons of plutonium requiring stabilization and/or repackaging. A further breakdown shows this material to consist of 8.5 metric tons of plutonium metal and alloys, 5.5 metric tons of plutonium as oxide, and 6 metric tons of plutonium as residues. Stabilization of the metal and oxide categories containing greater than 50 weight percent plutonium is covered by DOE Standard {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides{close_quotes} December, 1994 (DOE-STD-3013-94). This standard establishes criteria for safe storage of stabilized plutonium metals and oxides for up to 50 years. Each of the DOE sites and contractors with large plutonium inventories has either started or is preparing to start stabilization activities to meet these criteria.

  4. Plutonium aging

    SciTech Connect

    Olivas, J.D.

    1999-03-01

    The author describes the plutonium aging program at the Los Alamos National Laboratory. The aging of plutonium components in the US nuclear weapons stockpile has become a concern due to several events: the end of the cold war, the cessation of full scale underground nuclear testing as a result of the Comprehensive Test Ban Treaty (CTBT) and the closure of the Rocky Flats Plant--the site where the plutonium components were manufactured. As a result, service lifetimes for nuclear weapons have been lengthened. Dr. Olivas will present a brief primer on the metallurgy of plutonium, and will then describe the technical approach to ascertaining the long-term changes that may be attributable to self-radiation damage. Facilities and experimental techniques which are in use to study aging will be described. Some preliminary results will also be presented.

  5. Plutonium pyrophoricity

    SciTech Connect

    Stakebake, J.L.

    1992-06-02

    A review of the published literature on ignition and burning of plutonium metal was conducted in order to better define the characteristic of pyrophoric plutonium. The major parameter affecting ignition is the surface area/mass ratio of the sample. Based on this parameter, plutonium metal can be classified into four categories: (1) bulk metal, (2) film and foils, (3) chips and turnings, and (4) powder. Other parameters that can alter the ignition of the metal include experimental, chemical, physical, and environmental effects. These effects are reviewed in this report. It was concluded from this review that pyrophoric plutonium can be conservatively defined as: Plutonium metal that will ignite spontaneously in air at a temperature of 150{degrees}C or below in the absence of external heat, shock, or friction. The 150{degrees}C temperature was used to compensate for the self-heating of plutonium metal. For a practical definition of whether any given metal is pyrophoric, all of the factors affecting ignition must be considered.

  6. CONVERSION OF PLUTONIUM TRIFLUORIDE TO PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Fried, S.; Davidson, N.R.

    1957-09-10

    A large proportion of the trifluoride of plutonium can be converted, in the absence of hydrogen fluoride, to the tetrafiuoride of plutonium. This is done by heating plutonium trifluoride with oxygen at temperatures between 250 and 900 deg C. The trifiuoride of plutonium reacts with oxygen to form plutonium tetrafluoride and plutonium oxide, in a ratio of about 3 to 1. In the presence of moisture, plutonium tetrafluoride tends to hydrolyze at elevated temperatures and therefore it is desirable to have the process take place under anhydrous conditions.

  7. Zone refining of plutonium metal

    SciTech Connect

    1997-05-01

    The purpose of this study was to investigate zone refining techniques for the purification of plutonium metal. The redistribution of 10 impurity elements from zone melting was examined. Four tantalum boats were loaded with plutonium impurity alloy, placed in a vacuum furnace, heated to 700{degrees}C, and held at temperature for one hour. Ten passes were made with each boat. Metallographic and chemical analyses performed on the plutonium rods showed that, after 10 passes, moderate movement of certain elements were achieved. Molten zone speeds of 1 or 2 inches per hour had no effect on impurity element movement. Likewise, the application of constant or variable power had no effect on impurity movement. The study implies that development of a zone refining process to purify plutonium is feasible. Development of a process will be hampered by two factors: (1) the effect on impurity element redistribution of the oxide layer formed on the exposed surface of the material is not understood, and (2) the tantalum container material is not inert in the presence of plutonium. Cold boat studies are planned, with higher temperature and vacuum levels, to determine the effect on these factors. 5 refs., 1 tab., 5 figs.

  8. Plutonium story

    SciTech Connect

    Seaborg, G T

    1981-09-01

    The first nuclear synthesis and identification (i.e., the discovery) of the synthetic transuranium element plutonium (isotope /sup 238/Pu) and the demonstration of its fissionability with slow neutrons (isotope /sup 239/Pu) took place at the University of California, Berkeley, through the use of the 60-inch and 37-inch cyclotrons, in late 1940 and early 1941. This led to the development of industrial scale methods in secret work centered at the University of Chicago's Metallurgical Laboratory and the application of these methods to industrial scale production, at manufacturing plants in Tennessee and Washington, during the World War II years 1942 to 1945. The chemical properties of plutonium, needed to devise the procedures for its industrial scale production, were studied by tracer and ultramicrochemical methods during this period on an extraordinarily urgent basis. This work, and subsequent investigations on a worldwide basis, have made the properties of plutonium very well known. Its well studied electronic structure and chemical properties give it a very interesting position in the actinide series of inner transition elements.

  9. Plutonium Story

    DOE R&D Accomplishments Database

    Seaborg, G. T.

    1981-09-01

    The first nuclear synthesis and identification (i.e., the discovery) of the synthetic transuranium element plutonium (isotope /sup 238/Pu) and the demonstration of its fissionability with slow neutrons (isotope /sup 239/Pu) took place at the University of California, Berkeley, through the use of the 60-inch and 37-inch cyclotrons, in late 1940 and early 1941. This led to the development of industrial scale methods in secret work centered at the University of Chicago's Metallurgical Laboratory and the application of these methods to industrial scale production, at manufacturing plants in Tennessee and Washington, during the World War II years 1942 to 1945. The chemical properties of plutonium, needed to devise the procedures for its industrial scale production, were studied by tracer and ultramicrochemical methods during this period on an extraordinarily urgent basis. This work, and subsequent investigations on a worldwide basis, have made the properties of plutonium very well known. Its well studied electronic structure and chemical properties give it a very interesting position in the actinide series of inner transition elements.

  10. Probing phonons in plutonium

    SciTech Connect

    Wong, Joe; Krisch, M.; Farber, D.; Occelli, F.; Schwartz, A.; Chiang, T.C.; Wall, M.; Boro, C.; Xu, Ruqing

    2010-11-16

    Plutonium (Pu) is well known to have complex and unique physico-chemical properties. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} {yields} {delta}{prime} {yields} {var_epsilon} {yields} liquid. Unalloyed Pu melts at a relatively low temperature {approx}640 C to yield a higher density liquid than that of the solid from which it melts, (Figure 1). Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxic materials. However, both technical and and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimenta l data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter -atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single -grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc d-Pu-Ga alloy using the

  11. Plutonium oxide dissolution

    SciTech Connect

    Gray, J.H.

    1992-09-30

    Several processing options for dissolving plutonium oxide (PuO[sub 2]) from high-fired materials have been studied. The scoping studies performed on these options were focused on PuO[sub 2] typically generated by burning plutonium metal and PuO[sub 2] produced during incineration of alpha contaminated waste. At least two processing options remain applicable for dissolving high-fired PuO[sub 2] in canyon dissolvers. The options involve solid solution formation of PuO[sub 2] With uranium oxide (UO[sub 2]) and alloying incinerator ash with aluminum. An oxidative dissolution process involving nitric acid solutions containing a strong oxidizing agent, such as cerium (IV), was neither proven nor rejected. This uncertainty was due to difficulty in regenerating cerium (IV) ions during dissolution. However, recent work on silver-catalyzed dissolution of PuO[sub 2] with persulfate has demonstrated that persulfate ions regenerate silver (II). Use of persulfate to regenerate cerium (IV) or bismuth (V) ions during dissolution of PuO[sub 2] materials may warrant further study.

  12. Plutonium oxide dissolution

    SciTech Connect

    Gray, J.H.

    1992-09-30

    Several processing options for dissolving plutonium oxide (PuO{sub 2}) from high-fired materials have been studied. The scoping studies performed on these options were focused on PuO{sub 2} typically generated by burning plutonium metal and PuO{sub 2} produced during incineration of alpha contaminated waste. At least two processing options remain applicable for dissolving high-fired PuO{sub 2} in canyon dissolvers. The options involve solid solution formation of PuO{sub 2} With uranium oxide (UO{sub 2}) and alloying incinerator ash with aluminum. An oxidative dissolution process involving nitric acid solutions containing a strong oxidizing agent, such as cerium (IV), was neither proven nor rejected. This uncertainty was due to difficulty in regenerating cerium (IV) ions during dissolution. However, recent work on silver-catalyzed dissolution of PuO{sub 2} with persulfate has demonstrated that persulfate ions regenerate silver (II). Use of persulfate to regenerate cerium (IV) or bismuth (V) ions during dissolution of PuO{sub 2} materials may warrant further study.

  13. SEPARATION OF PLUTONIUM

    DOEpatents

    Maddock, A.G.; Smith, F.

    1959-08-25

    A method is described for separating plutonium from uranium and fission products by treating a nitrate solution of fission products, uranium, and hexavalent plutonium with a relatively water-insoluble fluoride to adsorb fission products on the fluoride, treating the residual solution with a reducing agent for plutonium to reduce its valence to four and less, treating the reduced plutonium solution with a relatively insoluble fluoride to adsorb the plutonium on the fluoride, removing the solution, and subsequently treating the fluoride with its adsorbed plutonium with a concentrated aqueous solution of at least one of a group consisting of aluminum nitrate, ferric nitrate, and manganous nitrate to remove the plutonium from the fluoride.

  14. STRIPPING PROCESS FOR PLUTONIUM

    DOEpatents

    Kolodney, M.

    1959-10-01

    A method for removing silver, nickel, cadmium, zinc, and indium coatings from plutonium objects while simultaneously rendering the plutonium object passive is described. The coated plutonium object is immersed as the anode in an electrolyte in which the plutonium is passive and the coating metal is not passive, using as a cathode a metal which does not dissolve rapidly in the electrolyte. and passing an electrical current through the electrolyte until the coating metal is removed from the plutonium body.

  15. Plutonium Metallurgy

    SciTech Connect

    Freibert, Franz J.

    2012-08-09

    Due to its nuclear properties, Pu will remain a material of global interest well into the future. Processing, Structure, Properties and Performance remains a good framework for discussion of Pu materials science Self-irradiation and aging effects continue to be central in discussions of Pu metallurgy Pu in its elemental form is extremely unstable, but alloying helps to stabilize Pu; but, questions remain as to how and why this stabilization occurs. Which is true Pu-Ga binary phase diagram: US or Russian? Metallurgical issues such as solute coring, phase instability, crystallographic texture, etc. result in challenges to casting, processing, and properties modeling and experiments. For Ga alloyed FCC stabilized Pu, temperature and pressure remain as variables impacting phase stability.

  16. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    SciTech Connect

    STAN, MARIUS; HECKER, SIEGFRIED S.

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  17. METHOD OF SEPARATING PLUTONIUM

    DOEpatents

    Brown, H.S.; Hill, O.F.

    1958-02-01

    Plutonium hexafluoride is a satisfactory fluorinating agent and may be reacted with various materials capable of forming fluorides, such as copper, iron, zinc, etc., with consequent formation of the metal fluoride and reduction of the plutonium to the form of a lower fluoride. In accordance with the present invention, it has been found that the reactivity of plutonium hexafluoride with other fluoridizable materials is so great that the process may be used as a method of separating plutonium from mixures containing plutonium hexafluoride and other vaporized fluorides even though the plutonium is present in but minute quantities. This process may be carried out by treating a mixture of fluoride vapors comprising plutonium hexafluoride and fluoride of uranium to selectively reduce the plutonium hexafluoride and convert it to a less volatile fluoride, and then recovering said less volatile fluoride from the vapor by condensation.

  18. Plutonium Immobilization Puck Handling

    SciTech Connect

    Kriikku, E.

    1999-01-26

    The Plutonium Immobilization Project (PIP) will immobilize excess plutonium and store the plutonium in a high level waste radiation field. To accomplish these goals, the PIP will process various forms of plutonium into plutonium oxide, mix the oxide powder with ceramic precursors, press the mixture into pucks, sinter the pucks into a ceramic puck, load the pucks into metal cans, seal the cans, load the cans into magazines, and load the magazines into a Defense Waste Processing Facility (DPWF) canister. These canisters will be sent to the DWPF, an existing Savannah River Site (SRS) facility, where molten high level waste glass will be poured into the canisters encapsulating the ceramic pucks. Due to the plutonium radiation, remote equipment will perform these operations in a contained environment. The Plutonium Immobilization Project is in the early design stages and the facility will begin operation in 2005. This paper will discuss the Plutonium Immobilization puck handling conceptual design and the puck handling equipment testing.

  19. PREPARATION OF PLUTONIUM TRIFLUORIDE

    DOEpatents

    Burger, L.L.; Roake, W.E.

    1961-07-11

    A process of producing plutonium trifluoride by reacting dry plutonium(IV) oxalate with chlorofluorinated methane or ethane at 400 to 450 deg C and cooling the product in the absence of oxygen is described.

  20. PROCESS FOR PURIFYING PLUTONIUM

    DOEpatents

    Mastick, D.F.; Wigner, E.P.

    1958-05-01

    A method is described of separating plutonium from small amounts of uranium and other contaminants. An acidic aqueous solution of higher valent plutonium and hexavalent uranium is treated with a soluble iodide to obtain the plutonium in the plus three oxidation state while leaving the uranium in the hexavalent state, adding a soluble oxalate such as oxalic acid, and then separating the insoluble plus the plutonium trioxalate from the solution.

  1. Plutonium immobilization -- Can loading

    SciTech Connect

    Kriikku, E.

    2000-02-17

    The Savannah River Site (SRS) will immobilize excess plutonium in the proposed Plutonium Immobilization Project (PIP). The PIP adds the excess plutonium to ceramic pucks, loads the pucks into cans, and places the cans into DWPF canisters. This paper discusses the PIP process steps, the can loading conceptual design, can loading equipment design, and can loading work completed.

  2. PLUTONIUM CLEANING PROCESS

    DOEpatents

    Kolodney, M.

    1959-12-01

    A method is described for rapidly removing iron, nickel, and zinc coatings from plutonium objects while simultaneously rendering the plutonium object passive. The method consists of immersing the coated plutonium object in an aqueous acid solution containing a substantial concentration of nitrate ions, such as fuming nitric acid.

  3. Zone refining of plutonium metal

    SciTech Connect

    Blau, M.S.

    1994-08-01

    The zone refining process was applied to Pu metal containing known amounts of impurities. Rod specimens of plutonium metal were melted into and contained in tantalum boats, each of which was passed horizontally through a three-turn, high-frequency coil in such a manner as to cause a narrow molten zone to pass through the Pu metal rod 10 times. The impurity elements Co, Cr, Fe, Ni, Np, U were found to move in the same direction as the molten zone as predicted by binary phase diagrams. The elements Al, Am, and Ga moved in the opposite direction of the molten zone as predicted by binary phase diagrams. As the impurity alloy was zone refined, {delta}-phase plutonium metal crystals were produced. The first few zone refining passes were more effective than each later pass because an oxide layer formed on the rod surface. There was no clear evidence of better impurity movement at the slower zone refining speed. Also, constant or variable coil power appeared to have no effect on impurity movement during a single run (10 passes). This experiment was the first step to developing a zone refining process for plutonium metal.

  4. METHOD AND MEANS FOR ELECTROLYTIC PURIFICATION OF PLUTONIUM

    DOEpatents

    Bjorklund, C.W.; Benz, R.; Maraman, W.J.; Leary, J.A.; Walsh, K.A.

    1960-02-01

    The technique of electrodepositing pure plutonium from a fused salt electrolyte of PuCl/sub 3/ and aixati metal halides is described. When an iron cathode is used, the plutonium deposit alloys therewith in the liquid state at the 400 to 600 deg C operating temperature, such liquid being allowed to drip through holes in the cathode and collect in a massive state in a tantallum cup. The process is adaptable to continuous processing by the use of depleted plutonium fuel as the anode: good to excellent separation from fission products is obtained with a Pu--Fe "fission" anode containing representative fractions of Ce, Ru, Zr, La, Mo, and Nb.

  5. PREPARATION OF PLUTONIUM HALIDES

    DOEpatents

    Davidson, N.R.; Katz, J.J.

    1958-11-01

    A process ls presented for the preparation of plutonium trihalides. Plutonium oxide or a compound which may be readily converted to plutonlum oxide, for example, a plutonium hydroxide or plutonlum oxalate is contacted with a suitable halogenating agent. Speciflc agents mentioned are carbon tetrachloride, carbon tetrabromide, sulfur dioxide, and phosphorus pentachloride. The reaction is carried out under superatmospberic pressure at about 300 icient laborato C.

  6. METHOD OF SEPARATING PLUTONIUM

    DOEpatents

    Heal, H.G.

    1960-02-16

    BS>A method of separating plutonium from aqueous nitrate solutions of plutonium, uranium. and high beta activity fission products is given. The pH of the aqueous solution is adjusted between 3.0 to 6.0 with ammonium acetate, ferric nitrate is added, and the solution is heated to 80 to 100 deg C to selectively form a basic ferric plutonium-carrying precipitate.

  7. Continuous plutonium dissolution apparatus

    DOEpatents

    Meyer, F.G.; Tesitor, C.N.

    1974-02-26

    This invention is concerned with continuous dissolution of metals such as plutonium. A high normality acid mixture is fed into a boiler vessel, vaporized, and subsequently condensed as a low normality acid mixture. The mixture is then conveyed to a dissolution vessel and contacted with the plutonium metal to dissolve the plutonium in the dissolution vessel, reacting therewith forming plutonium nitrate. The reaction products are then conveyed to the mixing vessel and maintained soluble by the high normality acid, with separation and removal of the desired constituent. (Official Gazette)

  8. PREPARATION OF PLUTONIUM

    DOEpatents

    Kolodney, M.

    1959-07-01

    Methods are presented for the electro-deposition of plutonium from fused mixtures of plutonium halides and halides of the alkali metals and alkaline earth metals. Th salts, preferably chlorides and with the plutonium prefer ably in the trivalent state, are placed in a refractory crucible such as tantalum or molybdenam and heated in a non-oxidizing atmosphere to 600 to 850 deg C, the higher temperatatures being used to obtain massive plutonium and the lower for the powder form. Electrodes of graphite or non reactive refractory metals are used, the crucible serving the cathode in one apparatus described in the patent.

  9. Trawsfynydd Plutonium Estimate

    SciTech Connect

    Reid, Bruce D.; Gerlach, David C.; Heasler, Patrick G.; Livingston, J.

    2009-11-20

    Report serves to document an estimate of the cumulative plutonium production of the Trawsfynydd Unit II reactor (Traws II) over its operating life made using the Graphite Isotope Ratio Method (GIRM). The estimate of the plutonium production in Traws II provided in this report has been generated under blind conditions. In other words, the estimate ofthe Traws II plutonium production has been generated without the knowledge of the plutonium production declared by the reactor operator (Nuclear Electric). The objective of this report is to demonstrate that the GIRM can be employed to serve as an accurate tool to verify weapons materials production declarations.

  10. ELECTRODEPOSITION OF PLUTONIUM

    DOEpatents

    Wolter, F.J.

    1957-09-10

    A process of electrolytically recovering plutonium from dilute aqueous solutions containing plutonium ions comprises electrolyzing the solution at a current density of about 0.44 ampere per square centimeter in the presence of an acetate-sulfate buffer while maintaining the pH of the solution at substantially 5 and using a stirred mercury cathode.

  11. PROCESS OF OXIDIZING PLUTONIUM

    DOEpatents

    Coryell, C.D.

    1959-08-25

    The oxidation of plutonium to the plus six valence state is described. The oxidation is accomplished by treating the plutonium in aqueous solution with a solution above 0.01 molar in argentic ion, above 1.1 molar in nitric acid, and above 0.02 molar in argentous ion.

  12. Opportunities in Plutonium Metallurgical Research

    SciTech Connect

    Schwartz, A J

    2006-12-19

    This is an exciting time to be involved in plutonium metallurgical research. Over the past few years, there have been significant advances in our understanding of the fundamental materials science of this unusual metal, particularly in the areas of self-irradiation induced aging of Pu, the equilibrium phase diagram, the homogenization of {delta}-phase alloys, the crystallography and morphology of the {alpha}{prime}-phase resulting from the isothermal martensitic phase transformation, and the phonon dispersion curves, among many others. In addition, tremendous progress has been made, both experimentally and theoretically, in our understanding of the condensed matter physics and chemistry of the actinides, particularly in the area of electronic structure. Although these communities have made substantial progress, many challenges still remain. This brief overview will address a number of important challenges that we face in fully comprehending the metallurgy of Pu with a specific focus on aging and phase transformations.

  13. Plutonium storage criteria

    SciTech Connect

    Chung, D.; Ascanio, X.

    1996-05-01

    The Department of Energy has issued a technical standard for long-term (>50 years) storage and will soon issue a criteria document for interim (<20 years) storage of plutonium materials. The long-term technical standard, {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides,{close_quotes} addresses the requirements for storing metals and oxides with greater than 50 wt % plutonium. It calls for a standardized package that meets both off-site transportation requirements, as well as remote handling requirements from future storage facilities. The interim criteria document, {open_quotes}Criteria for Interim Safe Storage of Plutonium-Bearing Solid Materials{close_quotes}, addresses requirements for storing materials with less than 50 wt% plutonium. The interim criteria document assumes the materials will be stored on existing sites, and existing facilities and equipment will be used for repackaging to improve the margin of safety.

  14. Plutonium Immobilization Canister Loading

    SciTech Connect

    Hamilton, E.L.

    1999-01-26

    This disposition of excess plutonium is determined by the Surplus Plutonium Disposition Environmental Impact Statement (SPD-EIS) being prepared by the Department of Energy. The disposition method (Known as ''can in canister'') combines cans of immobilized plutonium-ceramic disks (pucks) with vitrified high-level waste produced at the SRS Defense Waste Processing Facility (DWPF). This is intended to deter proliferation by making the plutonium unattractive for recovery or theft. The envisioned process remotely installs cans containing plutonium-ceramic pucks into storage magazines. Magazines are then remotely loaded into the DWPF canister through the canister neck with a robotic arm and locked into a storage rack inside the canister, which holds seven magazines. Finally, the canister is processed through DWPF and filled with high-level waste glass, thereby surrounding the product cans. This paper covers magazine and rack development and canister loading concepts.

  15. Electronic structure, phase transitions and diffusive properties of elemental plutonium

    NASA Astrophysics Data System (ADS)

    Setty, Arun; Cooper, B. R.

    2003-03-01

    We present a SIC-LDA-LMTO based study of the electronic structure of the delta, alpha and gamma phases of plutonium, and also of the alpha and gamma phases of elemental cerium. We find excellent agreement with the experimental densities and magnetic properties [1]. Furthermore, detailed studies of the computational densities of states for delta plutonium, and comparison with the experimental photoemission spectrum [2], provide evidence for the existence of an unusual fluctuating valence state. Results regarding the vacancy formation and self-diffusion in delta plutonium will be presented. Furthermore, a study of interface diffusion between plutonium and steel (technologically relevant in the storage of spent fuel) or other technologically relevant alloys will be included. Preliminary results regarding gallium stabilization of delta plutonium, and of plutonium alloys will be presented. [1] M. Dormeval et al., private communication (2001). [2] A. J. Arko, J. J. Joyce, L. Morales, J. Wills, and J. Lashley et. al., Phys. Rev. B, 62, 1773 (2000). [3] B. R. Cooper et al, Phil. Mag. B 79, 683 (1999); B.R. Cooper, Los Alamos Science 26, 106 (2000)); B.R. Cooper, A.K. Setty and D.L.Price, to be published.

  16. 31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, A MAN-MADE SUBSTANCE, WAS RARE. SCRAPS RESULTING FROM PRODUCTION AND PLUTONIUM RECOVERED FROM RETIRED NUCLEAR WEAPONS WERE REPROCESSED INTO VALUABLE PURE-PLUTONIUM METAL (9/19/73). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  17. Toward a Deeper Understanding of Plutonium

    SciTech Connect

    Schwartz, A J; Wolfer, W G

    2007-06-21

    Plutonium is a very complex element lying near the middle of the actinide series. On the lower atomic number side of Pu is the element neptunium; its 5f electrons are highly delocalized or itinerant, participating in metallic-like bonding. The electrons in americium, the element to the right of Pu, are localized and do not participant significantly in the bonding. Plutonium is located directly on this rather abrupt transition. In the low-temperature {alpha} phase ground state, the five 5f electrons are mostly delocalized leading to a highly dense monoclinic crystal structure. Increases in temperature take the unalloyed plutonium through a series of five solid-state allotropic phase transformations before melting. One of the high temperature phases, the close-packed face centered cubic {delta} phase, is the least dense of all the phases, including the liquid. Alloying the Pu with Group IIIA elements such as aluminum or gallium retains the {delta} phase in a metastable state at ambient conditions. Ultimately, this metastable {delta} phase will decompose via a eutectoid transformation to {alpha} + Pu{sub 3}Ga. These low solute-containing {delta}-phase Pu alloys are also metastable with respect to low temperature excursions or increases in pressure and will transform to a monoclinic crystal structure at low temperatures via an isothermal martensitic phase transformation or at slightly elevated pressure. The delocalized to localized 5f electron bonding transition that occurs in the light actinides surrounding Pu gives rise to a plethora of unique and anomalous properties but also severely complicates the modeling and simulation. The development of theories and models that are sufficiently sensitive to capture the details of this transition and capable of elucidating the fundamental properties of plutonium and plutonium alloys is currently a grand challenge in actinide science. Recent advances in electronic structure theory, semi-empirical interatomic potentials, and raw

  18. Method for dissolving plutonium dioxide

    DOEpatents

    Tallent, Othar K.

    1978-01-01

    The fluoride-catalyzed, non-oxidative dissolution of plutonium dioxide in HNO.sub.3 is significantly enhanced in rate by oxidizing dissolved plutonium ions. It is believed that the oxidation of dissolved plutonium releases fluoride ions from a soluble plutonium-fluoride complex for further catalytic action.

  19. PLUTONIUM ELECTROREFINING CELLS

    DOEpatents

    Mullins, L.J. Jr.; Leary, J.A.; Bjorklund, C.W.; Maraman, W.J.

    1963-07-16

    Electrorefining cells for obtaining 99.98% plutonium are described. The cells consist of an impure liquid plutonium anode, a molten PuCl/sub 3/-- alkali or alkaline earth metal chloanode, a molten PuCl/sub 3/-alkali or alkaline earth metal chloride electrolyte, and a nonreactive cathode, all being contained in nonreactive ceramic containers which separate anode from cathode by a short distance and define a gap for the collection of the purified liquid plutonium deposited on the cathode. Important features of these cells are the addition of stirrer blades on the anode lead and a large cathode surface to insure a low current density. (AEC)

  20. Plutonium Vulnerability Management Plan

    SciTech Connect

    1995-03-01

    This Plutonium Vulnerability Management Plan describes the Department of Energy`s response to the vulnerabilities identified in the Plutonium Working Group Report which are a result of the cessation of nuclear weapons production. The responses contained in this document are only part of an overall, coordinated approach designed to enable the Department to accelerate conversion of all nuclear materials, including plutonium, to forms suitable for safe, interim storage. The overall actions being taken are discussed in detail in the Department`s Implementation Plan in response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. This is included as Attachment B.

  1. Plutonium radiation surrogate

    DOEpatents

    Frank, Michael I.

    2010-02-02

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  2. Progress on plutonium stabilization

    SciTech Connect

    Hurt, D.

    1996-05-01

    The Defense Nuclear Facilities Safety Board has safety oversight responsibility for most of the facilities where unstable forms of plutonium are being processed and packaged for interim storage. The Board has issued recommendations on plutonium stabilization and has has a considerable influence on DOE`s stabilization schedules and priorities. The Board has not made any recommendations on long-term plutonium disposition, although it may get more involved in the future if DOE develops plans to use defense nuclear facilities for disposition activities.

  3. PLUTONIUM SEPARATION METHOD

    DOEpatents

    Beaufait, L.J. Jr.; Stevenson, F.R.; Rollefson, G.K.

    1958-11-18

    The recovery of plutonium ions from neutron irradiated uranium can be accomplished by bufferlng an aqueous solutlon of the irradiated materials containing tetravalent plutonium to a pH of 4 to 7, adding sufficient acetate to the solution to complex the uranyl present, adding ferric nitrate to form a colloid of ferric hydroxide, plutonlum, and associated fission products, removing and dissolving the colloid in aqueous nitric acid, oxldizlng the plutonium to the hexavalent state by adding permanganate or dichromate, treating the resultant solution with ferric nitrate to form a colloid of ferric hydroxide and associated fission products, and separating the colloid from the plutonlum left in solution.

  4. Plutonium dissolution process

    DOEpatents

    Vest, Michael A.; Fink, Samuel D.; Karraker, David G.; Moore, Edwin N.; Holcomb, H. Perry

    1996-01-01

    A two-step process for dissolving plutonium metal, which two steps can be carried out sequentially or simultaneously. Plutonium metal is exposed to a first mixture containing approximately 1.0M-1.67M sulfamic acid and 0.0025M-0.1M fluoride, the mixture having been heated to a temperature between 45.degree. C. and 70.degree. C. The mixture will dissolve a first portion of the plutonium metal but leave a portion of the plutonium in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alteratively, nitric acid in a concentration between approximately 0.05M and 0.067M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution process is diluted with nitrogen.

  5. Plutonium: Requiem or reprieve

    SciTech Connect

    Pillay, K.K.S.

    1996-01-01

    Many scientific discoveries have had profound effects on humanity and its future. However, the discovery of fissionable characteristics of a man-made element, plutonium, discovered in 1941 by Glenn Seaborg and associates, has probably had the greatest impact on world affairs. Although about 20 new elements have been synthesized since 1940, element 94 unarguably had the most dramatic impact when it was introduced to the world as the core of the nuclear bomb dropped on Nagasaki. Ever since, large quantities of this element have been produced, and it has had a major role in maintaining peace during the past 50 years. in addition, the rapid spread of nuclear power technology worldwide contributed to major growth in the production of plutonium as a by-product. This article discusses the following issues related to plutonium: plutonium from Nuclear Power Generation; environmental safety and health issues; health effects; safeguards issues; extended storage; disposal options.

  6. Dissolution of plutonium metal in HNO/sub 3/-N/sub 2/H/sub 4/-KF

    SciTech Connect

    Karraker, D G

    1983-07-01

    Plutonium metal dissolves in HNO/sub 3/-N/sub 2/H/sub 4/.HNO/sub 3/-KF solution to yield a Pu/sup 3 +/ solution without an accompanying precipitation of plutonium oxide solids. The reaction evolves less than 0.2 mole of gas per mole of plutonium dissolved; the gas contains only 3% H/sub 2/. About 10/sup -3/ moles of HN/sub 3/ are produced per mole of plutonium dissolved. Optimum conditions for dissolving both alpha-phase and delta-phase plutonium metal were developed. Possible applications are to the recovery of plutonium metal or the processing of irradiated plutonium metal and alloys.

  7. Evolving Density and Static Mechanical Properties in Plutonium from Self-Irradiation

    SciTech Connect

    Chung, B W; Thompson, S R; Lema, K E; Hiromoto, D S; Ebbinghaus, B B

    2008-07-31

    Plutonium, because of its self-irradiation by alpha decay, ages by means of lattice damage and helium in-growth. These integrated aging effects result in microstructural and physical property changes. Because these effects would normally require decades to measure, studies are underway to assess the effects of extended aging on the physical properties of plutonium alloys by incorporating roughly 7.5 weight % of highly specific activity isotope {sup 238}Pu into the {sup 239}Pu metal to accelerate the aging process. This paper presents updated results of self-irradiation effects on {sup 238}Pu-enriched alloys measured by immersion density, dilatometry, and tensile tests. After nearly 90 equivalent years of aging, both the immersion density and dilatometry show that the enriched alloys continue to decreased in density by {approx}0.002% per year, without void swelling. Quasi-static tensile measurements show that the aging process increases the strength of plutonium alloys.

  8. Elemental composition in sealed plutonium-beryllium neutron sources.

    PubMed

    Xu, N; Kuhn, K; Gallimore, D; Martinez, A; Schappert, M; Montoya, D; Lujan, E; Garduno, K; Tandon, L

    2014-10-22

    Five sealed plutonium-beryllium (PuBe) neutron sources from various manufacturers were disassembled. Destructive chemical analyses for recovered PuBe materials were conducted for disposition purposes. A dissolution method for PuBe alloys was developed for quantitative plutonium (Pu) and beryllium (Be) assay. Quantitation of Be and trace elements was performed using plasma based spectroscopic instruments, namely inductively coupled plasma mass spectrometry (ICP-MS) and atomic emission spectrometry (ICP-AES). Pu assay was accomplished by an electrochemical method. Variations in trace elemental contents among the five PuBe sources are discussed. PMID:25464182

  9. Plutonium disproportionation: the ambiguity phenomenon.

    PubMed

    Silver, G L

    2003-05-01

    Plutonium oxidation-state studies may yield ambiguous results if the parameters are not carefully chosen. The effect can be related to environmental plutonium as illustrated by an example. PMID:12735968

  10. INTERCOMPARISON OF PLUTONIUM-239 MEASUREMENTS

    EPA Science Inventory

    In 1977 the U.S. Environmental Protection Agency distributed calibrated solutions of plutonium-239 to laboratories interested in participating in an intercomparison study of plutonium analysis. Participants were asked to perform a quantitative radioactivity analysis of the soluti...

  11. METHOD OF MAKING PLUTONIUM DIOXIDE

    DOEpatents

    Garner, C.S.

    1959-01-13

    A process is presented For converting both trivalent and tetravalent plutonium oxalate to substantially pure plutonium dioxide. The plutonium oxalate is carefully dried in the temperature range of 130 to300DEC by raising the temperature gnadually throughout this range. The temperature is then raised to 600 C in the period of about 0.3 of an hour and held at this level for about the same length of time to obtain the plutonium dioxide.

  12. METHOD OF PRODUCING PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Tolley, W.B.; Smith, R.C.

    1959-12-15

    A process is presented for preparing plutonium tetrafluoride from plutonium(IV) oxalate. The oxalate is dried and decomposed at about 300 deg C to the dioxide, mixed with ammonium bifluoride, and the mixture is heated to between 50 and 150 deg C whereby ammonium plutonium fluoride is formed. The ammonium plutonium fluoride is then heated to about 300 deg C for volatilization of ammonium fluoride. Both heating steps are preferably carried out in an inert atmosphere.

  13. Plutonium 239 Equivalency Calculations

    SciTech Connect

    Wen, J

    2011-05-31

    This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

  14. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S.

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  15. SULFIDE METHOD PLUTONIUM SEPARATION

    DOEpatents

    Duffield, R.B.

    1958-08-12

    A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.

  16. Plutonium in Concentrated Solutions

    SciTech Connect

    Clark, Sue B.; Delegard, Calvin H.

    2002-08-01

    Complex, high ionic strength media are used throughout the plutonium cycle, from its processing and purification in nitric acid, to waste storage and processing in alkaline solutions of concentrated electrolytes, to geologic disposal in brines. Plutonium oxidation/reduction, stability, radiolysis, solution and solid phase chemistry have been studied in such systems. In some cases, predictive models for describing Pu chemistry under such non-ideal conditions have been developed, which are usually based on empirical databases describing specific ion interactions. In Chapter 11, Non-Ideal Systems, studies on the behavior of Pu in various complex media and available model descriptions are reviewed.

  17. ALLOY FOR FUEL OF NEUTRONIC REACTORS

    DOEpatents

    Bloomster, C.H.; Katayama, Y.B.

    1963-04-23

    This patent deals with an aluminum alloy suitable as nuclear fuel and consisting mainly of from 1 to 10 wt% of plutonium, from 2 to 3.5 wt% of nickel, the balance being aluminum. The alloy may also contain from 0.9 to 1.1 wt% of silicon and up to 0.7% of iron. (AEC)

  18. Plutonium: An introduction

    SciTech Connect

    Condit, R.H.

    1993-10-01

    This report is a summary of the history and properties of plutonium. It presents information on the atoms, comparing chemical and nuclear properties. It looks at the history of the atom, including its discovery and production methods. It summarizes the metallurgy and chemistry of the element. It also describes means of detecting and measuring the presence and quantity of the element.

  19. Glovebox enclosed dc plasma source for the determination of metals in plutonium

    SciTech Connect

    Morris, W.F.

    1986-01-15

    The direct current plasma source of a Beckman Spectraspan IIIB emission spectrometer was enclosed in a glovebox at Lawrence Livermore National Laboratory in December 1982. Since that time, the system has been used for the routine determination of alloy and impurity metals in plutonium. This paper presents the systematic steps involved in developing the glovebox and gives information regarding performance of the plasma in the glovebox and the effectiveness of containment of plutonium. 8 refs., 9 figs., 3 tabs.

  20. Liquid-metal embrittlement of refractory metals by molten plutonium

    SciTech Connect

    Lesuer, D.R.; Bergin, J.B.; McInturff, S.A.; Kuhn, B.A.

    1980-07-01

    Embrittlement by molten plutonium of the refractory metals and alloys W-25 wt % Re, tantalum, molybdenum, and Ta-10 wt % W was studied. At 900/sup 0/C and a strain rate of 10/sup -4/ s/sup -1/, the materials tested may be ranked in order of decreasing susceptibility to liquid-plutonium embrittlement as follows: molybdenum, W-25 wt % Re, Ta-10 wt % W, and tantalum. These materials exhibited a wide range in susceptibility. Embrittlement was found to exhibit a high degree of temperature and strain-rate dependence, and we present arguments that strongly support a stress-assisted, intergranular, liquid-metal corrosion mechanism. We also believe microstructure plays a key role in the extent of embrittlement. In the case of W-25 wt % Re, we have determined that a dealloying corrosion takes place in which rhenium is selectively withdrawn from the alloy.

  1. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    SciTech Connect

    Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J.; Nass, R.

    1995-08-01

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage.

  2. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  3. Plutonium age dating reloaded

    NASA Astrophysics Data System (ADS)

    Sturm, Monika; Richter, Stephan; Aregbe, Yetunde; Wellum, Roger; Mayer, Klaus; Prohaska, Thomas

    2014-05-01

    Although the age determination of plutonium is and has been a pillar of nuclear forensic investigations for many years, additional research in the field of plutonium age dating is still needed and leads to new insights as the present work shows: Plutonium is commonly dated with the help of the 241Pu/241Am chronometer using gamma spectrometry; in fewer cases the 240Pu/236U chronometer has been used. The age dating results of the 239Pu/235U chronometer and the 238Pu/234U chronometer are scarcely applied in addition to the 240Pu/236U chronometer, although their results can be obtained simultaneously from the same mass spectrometric experiments as the age dating result of latter. The reliability of the result can be tested when the results of different chronometers are compared. The 242Pu/238U chronometer is normally not evaluated at all due to its sensitivity to contamination with natural uranium. This apparent 'weakness' that renders the age dating results of the 242Pu/238U chronometer almost useless for nuclear forensic investigations, however turns out to be an advantage looked at from another perspective: the 242Pu/238U chronometer can be utilized as an indicator for uranium contamination of plutonium samples and even help to identify the nature of this contamination. To illustrate this the age dating results of all four Pu/U clocks mentioned above are discussed for one plutonium sample (NBS 946) that shows no signs of uranium contamination and for three additional plutonium samples. In case the 242Pu/238U chronometer results in an older 'age' than the other Pu/U chronometers, contamination with either a small amount of enriched or with natural or depleted uranium is for example possible. If the age dating result of the 239Pu/235U chronometer is also influenced the nature of the contamination can be identified; enriched uranium is in this latter case a likely cause for the missmatch of the age dating results of the Pu/U chronometers.

  4. 4. VIEW OF PLUTONIUM CANISTER ON CHAINVEYOR. SCRAP PLUTONIUM WAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF PLUTONIUM CANISTER ON CHAINVEYOR. SCRAP PLUTONIUM WAS COLLECTED INTO CANS AT INDIVIDUAL WORKSTATIONS. THE CANS WERE TRANSFERRED VIA THE CHAIN CONVEYOR TO A WORKSTATION IN MODULE C WHERE THE MATERIAL WAS COMPRESSED INTO BRIQUETTES FOR LATER USE. (6/20/93) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  5. Transmission Electron Microscopy Characterization of Helium Bubbles in Aged Plutonium

    SciTech Connect

    Schwartz, A J; Wall, M A; Zocco, T G; Blobaum, K M

    2004-11-02

    The self-irradiation damage generated by alpha decay of plutonium results in the formation of lattice defects, helium, and uranium atoms. Over time, microstructural evolution resulting from the self-irradiation may influence the physical and mechanical properties of the material. In order to assess microstructural changes, we have developed and applied procedures for the specimen preparation, handling, and transmission electron microscopy characterization of Pu alloys. These transmission electron microscopy investigations of Pu-Ga alloys ranging in age up to 42-years old reveal the presence of nanometer-sized helium bubbles. The number density of bubbles and the average size have been determined for eight different aged materials.

  6. Surprising Coordination for Plutonium in the First Plutonium (III) Borate

    SciTech Connect

    Wang, Shuao; Alekseev, Evgeny V.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.

    2011-02-22

    The first plutonium(III) borate, Pu2[B12O18(OH)4Br2(H2O)3]·0.5H2O, has been prepared by reacting plutonium(III) with molten boric acid under strictly anaerobic conditions. This compound contains a three-dimensional polyborate network with triangular holes that house the plutonium(III) sites. The plutonium sites in this compound are 9- and 10-coordinate and display atypical geometries.

  7. Oxidation of plutonium dioxide.

    PubMed

    Korzhavyi, Pavel A; Vitos, Levente; Andersson, David A; Johansson, Börje

    2004-04-01

    The physics and chemistry of the actinide elements form the scientific basis for rational handling of nuclear materials. In recent experiments, most unexpectedly, plutonium dioxide has been found to react with water to form higher oxides up to PuO(2.27), whereas PuO(2) had always been thought to be the highest stable oxide of plutonium. We perform a theoretical analysis of this complicated situation on the basis of total energies calculated within density functional theory combined with well-established thermodynamic data. The reactions of PuO(2) with either O(2) or H(2)O to form PuO(2+delta) are calculated to be endothermic: that is, in order to occur they require a supply of energy. However, our calculations show that PuO(2+delta) can be formed, as an intermediate product, by reactions with the products of radiolysis of water, such as H(2)O(2). PMID:15034561

  8. MOLDS FOR CASTING PLUTONIUM

    DOEpatents

    Anderson, J.W.; Miley, F.; Pritchard, W.C.

    1962-02-27

    A coated mold for casting plutonium comprises a mold base portion of a material which remains solid and stable at temperatures as high as the pouring temperature of the metal to be cast and having a thin coating of the order of 0.005 inch thick on the interior thereof. The coating is composed of finely divided calcium fluoride having a particle size of about 149 microns. (AEC)

  9. Utilization of principal component analysis on plutonium EXAFS data from the advanced photon source

    NASA Astrophysics Data System (ADS)

    Terry, Jeff; Schulze, Roland K.; Zocco, Thomas G.; Farr, J. Doug; Archuleta, Jeff; Ramos, Mike; Martinez, Ray; Pereyra, Ramiro; Lashley, Jason; Wasserman, Steve; Antonio, Mark; Skanthakumar, Suntharalingam; Soderholm, Lynne

    2000-07-01

    Since the 1941 discovery of plutonium (Pu) by Glenn Seaborg, this enigmatic metal has been the subject of intense scientific investigation. Despite these efforts, there is still much to be learned about the unusual physical and mechanical properties of plutonium and its alloys. In particular, unalloyed Pu undergoes six allotropic phase transformations upon cooling from the melt to room temperature. Many of these phase transformations result in large volume changes and produce low-symmetry crystal structures. These unusual characteristics have made the metallurgy of Pu and Pu alloys particularly challenging.

  10. Plutonium recovery from organic materials

    DOEpatents

    Deaton, R.L.; Silver, G.L.

    1973-12-11

    A method is described for removing plutonium or the like from organic material wherein the organic material is leached with a solution containing a strong reducing agent such as titanium (III) (Ti/sup +3None)/, chromium (II) (Cr/ sup +2/), vanadium (II) (V/sup +2/) ions, or ferrous ethylenediaminetetraacetate (EDTA), the leaching yielding a plutonium-containing solution that is further processed to recover plutonium. The leach solution may also contain citrate or tartrate ion. (Official Gazette)

  11. PROCESS OF PRODUCING SHAPED PLUTONIUM

    DOEpatents

    Anicetti, R.J.

    1959-08-11

    A process is presented for producing and casting high purity plutonium metal in one step from plutonium tetrafluoride. The process comprises heating a mixture of the plutonium tetrafluoride with calcium while the mixture is in contact with and defined as to shape by a material obtained by firing a mixture consisting of calcium oxide and from 2 to 10% by its weight of calcium fluoride at from 1260 to 1370 deg C.

  12. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect

    Knapp, Cameron M

    2012-08-01

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  13. Gamma radiation characteristics of plutonium dioxide fuel

    NASA Technical Reports Server (NTRS)

    Gingo, P. J.

    1969-01-01

    Investigation of plutonium dioxide as an isotopic fuel for Radioisotope Thermoelectric Generators yielded the isotopic composition of production-grade plutonium dioxide fuel, sources of gamma radiation produced by plutonium isotopes, and the gamma flux at the surface.

  14. Overview of Modeling and Simulations of Plutonium Aging

    SciTech Connect

    Schwartz, A J; Wolfer, W G

    2007-04-24

    Computer-aided materials research is now an integral part of science and technology. It becomes particularly valuable when comprehensive experimental investigations and materials testing are too costly, hazardous, or of excessive duration; then, theoretical and computational studies can supplement and enhance the information gained from limited experimental data. Such is the case for improving our fundamental understanding of the properties of aging plutonium in the nuclear weapons stockpile. The question of the effects of plutonium aging on the safety, security, and reliability of the nuclear weapons stockpile emerged after the United States closed its plutonium manufacturing facility in 1989 and decided to suspend any further underground testing of nuclear weapons in 1992. To address this, the Department of Energy's National Nuclear Security Administration (NNSA) initiated a research program to investigate plutonium aging, i.e., the changes with time of properties of Pu-Ga alloys employed in the nuclear weapons and to develop models describing these changes sufficiently reliable to forecast them for several decades. The November 26, 2006 press release by the NNSA summarizes the conclusions of the investigation, '...there appear to be no serious or sudden changes occurring, or expected to occur, in plutonium that would affect performance of pits beyond the well-understood, gradual degradation of plutonium materials'. Furthermore, 'These studies show that the degradation of plutonium in our nuclear weapons will not affect warhead reliability for decades', then NNSA Administrator Linton Brooks said. 'It is now clear that although plutonium aging contributes, other factors control the overall life expectancy of nuclear weapons systems'. The origin of plutonium aging is the natural decay of certain plutonium isotopes. Specifically, it is the process of alpha decay in which a plutonium atom spontaneously splits into a 5 MeV alpha particle and an 85keV uranium recoil

  15. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOEpatents

    Anderson, H.H.; Asprey, L.B.

    1960-02-01

    A process of separating plutonium in at least the tetravalent state from fission products contained in an aqueous acidic solution by extraction with alkyl phosphate is reported. The plutonium can then be back-extracted from the organic phase by contact with an aqueous solution of sulfuric, phosphoric, or oxalic acid as a complexing agent.

  16. PREPARATION OF HALIDES OF PLUTONIUM

    DOEpatents

    Garner, C.S.; Johns, I.B.

    1958-09-01

    A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.

  17. SEPARATION OF PLUTONIUM FROM URANIUM

    DOEpatents

    Feder, H.M.; Nuttall, R.L.

    1959-12-15

    A process is described for extracting plutonium from powdered neutron- irradiated urarium metal by contacting the latter, while maintaining it in the solid form, with molten magnesium which takes up the plutonium and separating the molten magnesium from the solid uranium.

  18. METHOD OF REDUCING PLUTONIUM COMPOUNDS

    DOEpatents

    Johns, I.B.

    1958-06-01

    A method is described for reducing plutonium compounds in aqueous solution from a higher to a lower valence state. This reduction of valence is achieved by treating the aqueous solution of higher valence plutonium compounds with hydrogen in contact with an activated platinum catalyst.

  19. Plutonium Focus Area research and development plan. Revision 1

    SciTech Connect

    1996-11-01

    The Department of Energy (DOE) committed to a research and development program to support the technology needs for converting and stabilizing its nuclear materials for safe storage. The R and D Plan addresses five of the six material categories from the 94-1 Implementation Plan: plutonium (Pu) solutions, plutonium metals and oxides, plutonium residues, highly enriched uranium, and special isotopes. R and D efforts related to spent nuclear fuel (SNF) stabilization were specifically excluded from this plan. This updated plan has narrowed the focus to more effectively target specific problem areas by incorporating results form trade studies. Specifically, the trade studies involved salt; ash; sand, slag, and crucible (SS and C); combustibles; and scrub alloy. The plan anticipates possible disposition paths for nuclear materials and identifies resulting research requirements. These requirements may change as disposition paths become more certain. Thus, this plan represents a snapshot of the current progress and will continue to be updated on a regular basis. The paper discusses progress in safeguards and security, plutonium stabilization, special isotopes stabilization, highly-enriched uranium stabilization--MSRE remediation project, storage technologies, engineered systems, core technology, and proposed DOE/Russian technology exchange projects.

  20. Experience making mixed oxide fuel with plutonium from dismantled weapons

    SciTech Connect

    Blair, H.T.; Ramsey, K.B.

    1995-12-31

    Mixed depleted UO{sub 2} and PuO{sub 2} (MOX) pellets prototypic of fuel proposed for use in commercial power reactors were made with plutonium recovered from dismantled weapons. We characterized plutonium dioxide powders that were produced at the Los Alamos and Lawrence Livermore National Laboratories (LANL and LLNL) using various methods to recover the plutonium from weapons parts and to convert It to oxide. The gallium content of the PUO{sub 2} prepared at LANL was the same as in the weapon alloy while the content of that prepared at LLNL was less. The MOX was prepared with a five weight percent plutonium content. We tested various MOX powders milling methods to improve homogeneity and found vibratory milling superior to ball milling. The sintering behavior of pellets made with the PuO{sub 2} from the two laboratories was similar. We evaluated the effects of gallium and of erbium and gadolinium, that are added to the MOX fuel as deplorable neutron absorbers, on the pellet fabrication process and an the sintered pellets. The gallium content of the sintered pellets was <10 ppm, suggesting that the gallium will not be an issue in the reactor, but that it will be an Issue in the operation of the fuel fabrication processing equipment unless it is removed from the PuO{sub 2} before it is blended with the UO{sub 2}.

  1. SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS FROM NEUTRON- BOMBARDED URANIUM

    DOEpatents

    Martin, A.E.; Johnson, I.; Burris, L. Jr.; Winsch, I.O.; Feder, H.M.

    1962-11-13

    A process is given for removing plutonium and/or fission products from uranium fuel. The fuel is dissolved in molten zinc--magnesium (10 to 18% Mg) alloy, more magnesium is added to obtain eutectic composition whereby uranium precipitates, and the uranium are separated from the Plutoniumand fission-product- containing eutectic. (AEC)

  2. Russian youth forum special session: Youth and the global political challenges of plutonium

    SciTech Connect

    Browne, J.C.

    1998-12-31

    This paper, given by the director of the Los Alamos National Laboratory, briefly points out the unusual properties of plutonium, for example, its most unusual electronic structure, its sensitivity to changes in temperature, pressure, and chemical alloying, and its great propensity for oxygen and hydrogen. The combination of nuclear and electronic processes it undergoes complicate the behavior also.

  3. Low temperature oxidation of plutonium

    SciTech Connect

    Nelson, Art J.; Roussel, Paul

    2013-05-15

    The initial oxidation of gallium stabilized {delta}-plutonium metal at 193 K has been followed using x-ray photoelectron spectroscopy. On exposure to Langmuir quantities of oxygen, plutonium rapidly forms a trivalent oxide followed by a tetravalent plutonium oxide. The growth modes of both oxides have been determined. Warming the sample in vacuum, the tetravalent oxide reduces to the trivalent oxide. The kinetics of this reduction reaction have followed and the activation energy has been determined to be 38.8 kJ mol{sup -1}.

  4. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOEpatents

    Seaborg, G.T.

    1959-04-14

    The separation of plutonium from aqueous inorganic acid solutions by the use of a water immiscible organic extractant liquid is described. The plutonium must be in the oxidized state, and the solvents covered by the patent include nitromethane, nitroethane, nitropropane, and nitrobenzene. The use of a salting out agents such as ammonium nitrate in the case of an aqueous nitric acid solution is advantageous. After contacting the aqueous solution with the organic extractant, the resulting extract and raffinate phases are separated. The plutonium may be recovered by any suitable method.

  5. PLUTONIUM-HYDROGEN REACTION PRODUCT, METHOD OF PREPARING SAME AND PLUTONIUM POWDER THEREFROM

    DOEpatents

    Fried, S.; Baumbach, H.L.

    1959-12-01

    A process is described for forming plutonlum hydride powder by reacting hydrogen with massive plutonium metal at room temperature and the product obtained. The plutonium hydride powder can be converted to plutonium powder by heating to above 200 deg C.

  6. Plutonium Immobilization Can Inspection System

    SciTech Connect

    Kriikku, E.

    2000-12-12

    The Savannah River Site (SRS) will immobilize excess plutonium in the proposed Plutonium Immobilization Plant (PIP) as part of Department of Energy's two-track approach for the disposition of weapons-usable plutonium. The PIP will utilize the ceramic can-in-canister technology in a process that mixes plutonium with ceramic formers and neutron absorbers, presses the mixture into a ceramic puck-like form, sinters the pucks in a furnace, loads the pucks into cans, and places the cans into large canisters. The canisters will subsequently be filled with high level waste glass in the Defense Waste Processing Facility for eventual disposal in a geologic repository. This paper will discuss the PIP can inspection components, control system, and test results.

  7. IODATE METHOD FOR PURIFYING PLUTONIUM

    DOEpatents

    Stoughton, R.W.; Duffield, R.B.

    1958-10-14

    A method is presented for removing radioactive fission products from aqueous solutions containing such fission products together with plutonium. This is accomplished by incorporating into such solutions a metal iodate precipitate to remove fission products which form insoluble iodates. Suitable metal iodates are those of thorium and cerium. The plutonium must be in the hexavalent state and the pH of the solution must be manintained at less than 2.

  8. METHOD OF PREPARING PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Beede, R.L.; Hopkins, H.H. Jr.

    1959-11-17

    C rystalline plutonium tetrafluoride is precipitated from aqueous up to 1.6 N mineral acid solutions of a plutorium (IV) salt with fluosilicic acid anions, preferably at room temperature. Hydrogen fluoride naay be added after precipitation to convert any plutonium fluosilicate to the tetrafluoride and any silica to fluosilicic acid. This process results in a purer product, especially as to iron and aluminum, than does the precipitation by the addition of hydrogen fluoride.

  9. Pu-ZR Alloy high-temperature activation-measurement foil

    DOEpatents

    McCuaig, Franklin D.

    1977-08-02

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron flux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  10. Pu-Zr alloy for high-temperature foil-type fuel

    DOEpatents

    McCuaig, Franklin D.

    1977-01-01

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron reflux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  11. Plutonium focus area

    SciTech Connect

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  12. Plutonium solution analyzer

    SciTech Connect

    Burns, D.A.

    1994-09-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%-O.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40-240 g/L and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4-4.0 g/L. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 mL of each sample and standard, and generates waste at the rate of about 1.5 mL per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded).

  13. Selecting a plutonium vitrification process

    SciTech Connect

    Jouan, A.

    1996-05-01

    Vitrification of plutonium is one means of mitigating its potential danger. This option is technically feasible, even if it is not the solution advocated in France. Two situations are possible, depending on whether or not the glass matrix also contains fission products; concentrations of up to 15% should be achievable for plutonium alone, whereas the upper limit is 3% in the presence of fission products. The French continuous vitrification process appears to be particularly suitable for plutonium vitrification: its capacity is compatible with the required throughout, and the compact dimensions of the process equipment prevent a criticality hazard. Preprocessing of plutonium metal, to convert it to PuO{sub 2} or to a nitric acid solution, may prove advantageous or even necessary depending on whether a dry or wet process is adopted. The process may involve a single step (vitrification of Pu or PuO{sub 2} mixed with glass frit) or may include a prior calcination step - notably if the plutonium is to be incorporated into a fission product glass. It is important to weigh the advantages and drawbacks of all the possible options in terms of feasibility, safety and cost-effectiveness.

  14. Plutonium and americium separation from salts

    DOEpatents

    Hagan, Paul G.; Miner, Frend J.

    1976-01-01

    Salts or materials containing plutonium and americium are dissolved in hydrochloric acid, heated, and contacted with an alkali metal carbonate solution to precipitate plutonium and americium carbonates which are thereafter readily separable from the solution.

  15. Plutonium Proliferation: The Achilles Heel of Disarmament

    SciTech Connect

    Leventhal, Paul

    2001-02-07

    Plutonium is a byproduct of nuclear fission, and it is produced at the rate of about 70 metric tons a year in the world's nuclear power reactors. Concerns about civilian plutonium ran high in the 1970s and prompted enactment of the Nuclear Non-Proliferation Act of 1978 to give the United States a veto over separating plutonium from U.S.-supplied uranium fuel. Over the years, however, so-called reactor-grade plutonium has become the orphan issue of nuclear non-proliferation, largely as a consequence of pressures from plutonium-separating countries. The demise of the fast breeder reactor and the reluctance of utilities to introduce plutonium fuel in light-water reactors have resulted in large surpluses of civilian, weapons-usable plutonium, which now approach in size the 250 tons of military plutonium in the world. Yet reprocessing of spent fuel for recovery and use of plutonium proceeds apace outside the United States and threatens to overwhelm safeguards and security measures for keeping this material out of the hands of nations and terrorists for weapons. A number of historical and current developments are reviewed to demonstrate that plutonium commerce is undercutting efforts both to stop the spread of nuclear weapons and to work toward eliminating existing nuclear arsenals. These developments include the breakdown of U.S. anti-plutonium policy, the production of nuclear weapons by India with Atoms-for-Peace plutonium, the U.S.-Russian plan to introduce excess military plutonium as fuel in civilian power reactors, the failure to include civilian plutonium and bomb-grade uranium in the proposed Fissile Material Cutoff Treaty, and the perception of emerging proliferation threats as the rationale for development of a ballistic missile defense system. Finally, immobilization of separated plutonium in high-level waste is explored as a proliferation-resistant and disarmament-friendly solution for eliminating excess stocks of civilian and military plutonium.

  16. PROCESS OF SEPARATING PLUTONIUM FROM URANIUM

    DOEpatents

    Brown, H.S.; Hill, O.F.

    1958-09-01

    A process is presented for recovering plutonium values from aqueous solutions. It comprises forming a uranous hydroxide precipitate in such a plutonium bearing solution, at a pH of at least 5. The plutonium values are precipitated with and carried by the uranium hydroxide. The carrier precipitate is then redissolved in acid solution and the pH is adjusted to about 2.5, causing precipitation of the uranous hydroxide but leaving the still soluble plutonium values in solution.

  17. Plutonium immobilization -- Can loading. Revision 1

    SciTech Connect

    Kriikku, E.

    2000-03-13

    The Savannah River Site (SRS) will immobilize excess plutonium in the proposed Plutonium Immobilization Project (PIP). The PIP adds the excess plutonium to ceramic pucks, loads the pucks into cans, and places the cans into DWPF canisters. This paper discusses the PIP process steps, the can loading conceptual design, can loading equipment design, and can loading work completed.

  18. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2012-10-01 2012-10-01 false Plutonium shipments. 175.704 Section...

  19. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2014-10-01 2014-10-01 false Plutonium shipments. 175.704 Section...

  20. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2013-10-01 2013-10-01 false Plutonium shipments. 175.704 Section...

  1. Plutonium Oxide Process Capability Work Plan

    SciTech Connect

    Meier, David E.; Tingey, Joel M.

    2014-02-28

    Pacific Northwest National Laboratory (PNNL) has been tasked to develop a Pilot-scale Plutonium-oxide Processing Unit (P3U) providing a flexible capability to produce 200g (Pu basis) samples of plutonium oxide using different chemical processes for use in identifying and validating nuclear forensics signatures associated with plutonium production. Materials produced can also be used as exercise and reference materials.

  2. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2011-10-01 2011-10-01 false Plutonium shipments. 175.704 Section...

  3. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2010-10-01 2010-10-01 false Plutonium shipments. 175.704 Section...

  4. Technology and fabrication of plutonium-238 radionuclide heat sources

    NASA Astrophysics Data System (ADS)

    Malikh, Y. A.; Aldoshin, A. I.; Danilkin, E. A.

    1996-03-01

    This paper outlines a brief technical description of the facility for production of plutonium-238 and fabrication of Radionuclide Heat Sources (RHS) containing Pu-238. Technical capabilities of the RHS fabrication facility are presented. The results of development of the RHS design for sea application are discussed. RHS fuel pellet comprises the tantalum shell with an annular slot intended for release of radiogenic helium and the Pu-238 dioxide core with reinforcing elements inside which contact with the shell. RHS is a double encapsulation consisting of the inner ``power'' capsule and the outer corrosion-resistant capsule. The chromium-nickel-molybdenum XH65MB alloy which is equivalent to Hastelloy-C alloy has been selected as a material for both capsules. Upon expiration of working life, RHS design is capable of withstanding the internal pressure of radiogenic helium at 1073 K within 30 minutes and the external hydrostatic pressure of 100 MPa at normal temperature.

  5. Plutonium stabilization and packaging system

    SciTech Connect

    1996-05-01

    This document describes the functional design of the Plutonium Stabilization and Packaging System (Pu SPS). The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements of the DOE standard for safe storage of these materials for 50 years. This system will support completion of stabilization and packaging campaigns of the inventory at a number of affected sites before the year 2002. The package will be standard for all sites and will provide a minimum of two uncontaminated, organics free confinement barriers for the packaged material.

  6. Method of separating thorium from plutonium

    DOEpatents

    Clifton, D.G.; Blum, T.W.

    A method of chemically separating plutonium from thorium is claimed. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  7. Method of separating thorium from plutonium

    DOEpatents

    Clifton, D.G.; Blum, T.W.

    1984-07-10

    A method is described for chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  8. Method of separating thorium from plutonium

    DOEpatents

    Clifton, David G.; Blum, Thomas W.

    1984-01-01

    A method of chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  9. Plutonium Speciation, Solubilization and Migration in Soils

    SciTech Connect

    Neu, M.; Runde, W.

    1999-06-01

    This report summarizes research completed in the first half of a three-year project. As outlined in the authors' proposal they are focusing on (1) characterizing the plutonium at an actinide contaminated site, RFETS, including determining the origin, dispersion, and speciation of the plutonium, (2) studying environmentally important plutonium complexes, primarily hydroxides and carbonates, and (3) examining the interactions of plutonium species with manganese minerals. In the first year the authors focused on site based studies. This year they continue to characterize samples from the RFETS, study the formation and structural and spectroscopic features of environmentally relevant Pu species, and begin modeling the environmental behavior of plutonium.

  10. Plutonium immobilization feed batching system concept report

    SciTech Connect

    Erickson, S.

    2000-07-19

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with high level waste glass for permanent storage. Feed batching is one of the first process steps involved with first stage plutonium immobilization. It will blend plutonium oxide powder before it is combined with other materials to make pucks. This report discusses the Plutonium Immobilization feed batching process preliminary concept, batch splitting concepts, and includes a process block diagram, concept descriptions, a preliminary equipment list, and feed batching development areas.

  11. PROCESS FOR SEPARATING PLUTONIUM FROM IMPURITIES

    DOEpatents

    Wahl, A.C.

    1957-11-12

    A method is described for separating plutonium from aqueous solutions containing uranium. It has been found that if the plutonium is reduced to its 3+ valence state, and the uranium present is left in its higher valence state, then the differences in solubility between certain salts (e.g., oxalates) of the trivalent plutonium and the hexavalent uranium can be used to separate the metals. This selective reduction of plutonium is accomplished by adding iodide ion to the solution, since iodide possesses an oxidation potential sufficient to reduce plutonium but not sufficient to reduce uranium.

  12. Plutonium inventory characterization technical evaluation report

    SciTech Connect

    Wittman, G.R., Westinghouse Hanford

    1996-07-10

    This is a technical report on the data, gathered to date, under WHC- SD-CP-TP-086, Rev. 1, on the integrity of the food pack cans currently being used to store plutonium or plutonium compounds at the Plutonium Finishing Plant. Workplan PFP-96-VO-009, `Inspection of Special Nuclear Material Using X-ray`, was used to gather data on material and containment conditions using real time radiography. Some of those images are included herein. A matrix found in the `Plutonium Inventory Characterization Implementation Plan` was used to categorize different plutonium items based upon the type of material being stored and the life expectancy of the containers.

  13. PLUTONIUM COMPOUNDS AND PROCESS FOR THEIR PREPARATION

    DOEpatents

    Wolter, F.J.; Diehl, H.C. Jr.

    1958-01-01

    This patent relates to certain new compounds of plutonium, and to the utilization of these compounds to effect purification or separation of the plutonium. The compounds are organic chelate compounds consisting of tetravalent plutonium together with a di(salicylal) alkylenediimine. These chelates are soluble in various organic solvents, but not in water. Use is made of this property in extracting the plutonium by contacting an aqueous solution thereof with an organic solution of the diimine. The plutonium is chelated, extracted and effectively separated from any impurities accompaying it in the aqueous phase.

  14. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOEpatents

    Ackerman, John P.; Miller, William E.

    1989-01-01

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuel using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuel, and two cathodes, the first cathode composed of either a solid alloy or molten cadmium and the second cathode composed of molten cadmium. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then substantially pure uranium is electrolytically transported and deposited on the first alloy or molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on the second molten cadmium cathode.

  15. Plutonium waste incineration using pyrohydrolysis

    SciTech Connect

    Meyer, M.L.

    1991-01-01

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800{degree}C), while plutonium oxides fired at lower decomposition temperatures (400--800{degrees}C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density.

  16. Plutonium waste incineration using pyrohydrolysis

    SciTech Connect

    Meyer, M.L.

    1991-12-31

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800{degree}C), while plutonium oxides fired at lower decomposition temperatures (400--800{degrees}C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density.

  17. The First Weighing of Plutonium

    DOE R&D Accomplishments Database

    Seaborg, Glenn T.

    1967-09-10

    Recollections and reminiscences at the 25th Anniversary of the First Weighing of Plutonium, Chicago, IL, September 10, 1967, tell an important part of the story of this fascinating new element that is destined to play an increasingly significant role in the future of man.

  18. Safe disposal of surplus plutonium

    NASA Astrophysics Data System (ADS)

    Gong, W. L.; Naz, S.; Lutze, W.; Busch, R.; Prinja, A.; Stoll, W.

    2001-06-01

    About 150 tons of weapons grade and weapons usable plutonium (metal, oxide, and in residues) have been declared surplus in the USA and Russia. Both countries plan to convert the metal and oxide into mixed oxide fuel for nuclear power reactors. Russia has not yet decided what to do with the residues. The US will convert residues into a ceramic, which will then be over-poured with highly radioactive borosilicate glass. The radioactive glass is meant to provide a deterrent to recovery of plutonium, as required by a US standard. Here we show a waste form for plutonium residues, zirconia/boron carbide (ZrO 2/B 4C), with an unprecedented combination of properties: a single, radiation-resistant, and chemically durable phase contains the residues; billion-year-old natural analogs are available; and criticality safety is given under all conceivable disposal conditions. ZrO 2/B 4C can be disposed of directly, without further processing, making it attractive to all countries facing the task of plutonium disposal. The US standard for protection against recovery can be met by disposal of the waste form together with used reactor fuel.

  19. Plutonium Recycle: The Fateful Step

    ERIC Educational Resources Information Center

    Speth, J. Gustave; And Others

    1974-01-01

    Calls attention to the fact that if the Atomic Energy Commission proceeds with its plans to authorize the nuclear power industry to use plutonium as a fuel in commercial nuclear reactors around the country, this will result in a dramatic escalation in the risks posed by nuclear power. (PEB)

  20. The radiological hazard of plutonium isotopes and specific plutonium mixtures

    SciTech Connect

    Heindel, G.; Clow, J.; Inkret, W.; Miller, G.

    1995-11-01

    The US Department of Energy defines the hazard categories of its nuclear facilities based upon the potential for accidents to have significant effects on specific populations and the environment. In this report, the authors consider the time dependence of hazard category 2 (significant on-site effects) for facilities with inventories of plutonium isotopes and specific weapons-grade and heat-source mixtures of plutonium isotopes. The authors also define relative hazard as the reciprocal of the hazard category 2 threshold value and determine its time dependence. The time dependence of both hazard category 2 thresholds and relative hazards are determined and plotted for 10,000 years to provide useful information for planning long-term storage or disposal facilities.

  1. Provenance of unknown plutonium material.

    PubMed

    Nicolaou, G

    2008-10-01

    The determination of the provenance of 'unknown' plutonium material is demonstrated through a simulation study based on an isotopic fingerprinting approach. Plutonium of known provenance was considered as the 'unknown' nuclear material in order to evaluate the potential of the approach and verify its predictive capabilities. Factor analysis was used to compare the Pu isotopic composition of the 'unknown' material with Pu isotopic compositions simulating well known spent fuels from a range of commercial nuclear power stations. The provenance of the 'unknown material' is assigned to the commercial fuel with which exhibits the highest degree of similarity with respect to the Pu composition. The approach appears promising since it accurately predicted the provenance of the one 'unknown' sample considered; nevertheless, the approach is still at the development stage. Important challenging issues related to the simulation uncertainties and its testing on real laboratory samples have to be explored prior to evaluating the potential of the approach. PMID:18639370

  2. Plutonium Immobilization Project -- Can loading

    SciTech Connect

    Kriikku, E.

    2000-01-18

    The Savannah River Site (SRS) will immobilize excess plutonium in the proposed Plutonium Immobilization Project (PIP). The PIP scope includes unloading transportation containers, preparing the feed streams, converting the metal feed to an oxide, adding the ceramic precursors, pressing the pucks, inspecting pucks, and sintering pucks. The PIP scope also includes loading the pucks into metal cans, sealing the cans, inspecting the cans, loading the cans into magazines, loading magazines into Defense Waste Processing Facility (DWPF) canisters, and transporting the canisters to the DWPF. The DWPF fills the canister with a mixture of high level radioactive waste and glass for permanent storage. Due to the radiation, remote equipment must perform PIP operations in a contained environment.

  3. Plutonium Immobilization Project Baseline Formulation

    SciTech Connect

    Ebbinghaus, B.

    1999-02-01

    A key milestone for the Immobilization Project (AOP Milestone 3.2a) in Fiscal Year 1998 (FY98) is the definition of the baseline composition or formulation for the plutonium ceramic form. The baseline formulation for the plutonium ceramic product must be finalized before the repository- and plant-related process specifications can be determined. The baseline formulation that is currently specified is given in Table 1.1. In addition to the baseline formulation specification, this report provides specifications for two alternative formulations, related compositional specifications (e.g., precursor compositions and mixing recipes), and other preliminary form and process specifications that are linked to the baseline formulation. The preliminary specifications, when finalized, are not expected to vary tremendously from the preliminary values given.

  4. Plutonium Immobilization Can Loading Concepts

    SciTech Connect

    Kriikku, E.; Ward, C.; Stokes, M.; Randall, B.; Steed, J.; Jones, R.; Hamilton, L.; Rogers, L.; Fiscus, J.; Dyches, G.

    1998-05-01

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses five can loading conceptual designs and the lists the advantages and disadvantages for each concept. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas. The can loading welder and cutter are very similar to the existing Savannah River Site (SRS) FB-Line bagless transfer welder and cutter and thus they are a low priority development item.

  5. Biokinetics of Plutonium in Nonhuman Primates.

    PubMed

    Poudel, Deepesh; Guilmette, Raymond A; Gesell, Thomas F; Harris, Jason T; Brey, Richard R

    2016-10-01

    A major source of data on metabolism, excretion and retention of plutonium comes from experimental animal studies. Although old world monkeys are one of the closest living relatives to humans, certain physiological differences do exist between these nonhuman primates and humans. The objective of this paper was to describe the metabolism of plutonium in nonhuman primates using the bioassay and retention data obtained from macaque monkeys injected with plutonium citrate. A biokinetic model for nonhuman primates was developed by adapting the basic model structure and adapting the transfer rates described for metabolism of plutonium in adult humans. Significant changes to the parameters were necessary to explain the shorter retention of plutonium in liver and skeleton of the nonhuman primates, differences in liver to bone partitioning ratio, and significantly higher excretion of plutonium in feces compared to that in humans. PMID:27575347

  6. SEPARATION OF PLUTONIUM HYDROXIDE FROM BISMUTH HYDROXIDE

    DOEpatents

    Watt, G.W.

    1958-08-19

    An tmproved method is described for separating plutonium hydroxide from bismuth hydroxide. The end product of the bismuth phosphate processes for the separation amd concentration of plutonium is a inixture of bismuth hydroxide amd plutonium hydroxide. It has been found that these compounds can be advantageously separated by treatment with a reducing agent having a potential sufficient to reduce bismuth hydroxide to metalltc bisinuth but not sufficient to reduce the plutonium present. The resulting mixture of metallic bismuth and plutonium hydroxide can then be separated by treatment with a material which will dissolve plutonium hydroxide but not metallic bismuth. Sodiunn stannite is mentioned as a preferred reducing agent, and dilute nitric acid may be used as the separatory solvent.

  7. Air transport of plutonium metal: content expansion initiative for the plutonium air transportable (PAT01) packaging

    SciTech Connect

    Caviness, Michael L; Mann, Paul T

    2010-01-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  8. Air transport of plutonium metal : content expansion initiative for the Plutonium Air Transportable (PAT-1) packaging.

    SciTech Connect

    Mann, Paul T.; Caviness, Michael L.; Yoshimura, Richard Hiroyuki

    2010-06-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  9. WET METHOD OF PREPARING PLUTONIUM TRIBROMIDE

    DOEpatents

    Davidson, N.R.; Hyde, E.K.

    1958-11-11

    S> The preparation of anhydrous plutonium tribromide from an aqueous acid solution of plutonium tetrabromide is described, consisting of adding a water-soluble volatile bromide to the tetrabromide to provide additional bromide ions sufficient to furnish an oxidation-reduction potential substantially more positive than --0.966 volt, evaporating the resultant plutonium tribromides to dryness in the presence of HBr, and dehydrating at an elevated temperature also in the presence of HBr.

  10. PLUTONIUM METAL: OXIDATION CONSIDERATIONS AND APPROACH

    SciTech Connect

    Estochen, E.

    2013-03-20

    Plutonium is arguably the most unique of all metals when considered in the combined context of metallurgical, chemical, and nuclear behavior. Much of the research in understanding behavior and characteristics of plutonium materials has its genesis in work associated with nuclear weapons systems. However, with the advent of applications in fuel materials, the focus in plutonium science has been more towards nuclear fuel applications, as well as long term storage and disposition. The focus of discussion included herein is related to preparing plutonium materials to meet goals consistent with non-proliferation. More specifically, the emphasis is on the treatment of legacy plutonium, in primarily metallic form, and safe handling, packaging, and transport to meet non-proliferation goals of safe/secure storage. Elevated temperature oxidation of plutonium metal is the treatment of choice, due to extensive experiential data related to the method, as the oxide form of plutonium is one of only a few compounds that is relatively simple to produce, and stable over a large temperature range. Despite the simplicity of the steps required to oxidize plutonium metal, it is important to understand the behavior of plutonium to ensure that oxidation is conducted in a safe and effective manner. It is important to understand the effect of changes in environmental variables on the oxidation characteristics of plutonium. The primary purpose of this report is to present a brief summary of information related to plutonium metal attributes, behavior, methods for conversion to oxide, and the ancillary considerations related to processing and facility safety. The information provided is based on data available in the public domain and from experience in oxidation of such materials at various facilities in the United States. The report is provided as a general reference for implementation of a simple and safe plutonium metal oxidation technique.

  11. PROCESS OF SEPARATING PLUTONIUM VALUES BY ELECTRODEPOSITION

    DOEpatents

    Whal, A.C.

    1958-04-15

    A process is described of separating plutonium values from an aqueous solution by electrodeposition. The process consists of subjecting an aqueous 0.1 to 1.0 N nitric acid solution containing plutonium ions to electrolysis between inert metallic electrodes. A current density of one milliampere io one ampere per square centimeter of cathode surface and a temperature between 10 and 60 d C are maintained. Plutonium is electrodeposited on the cathode surface and recovered.

  12. PROCESS FOR THE RECOVERY OF PLUTONIUM

    DOEpatents

    Potratz, H.A.

    1958-12-16

    A process for the separation of plutonium from uranlum and other associated radioactlve fission products ls descrlbed conslstlng of contacting an acid solution containing plutonium in the tetravalent state and uranium in the hexavalent state with enough ammonium carbonate to form an alkaline solution, adding cupferron to selectlvely form plutonlum cupferrlde, then recoverlng the plutonium cupferride by extraction with a water lmmiscible organic solvent such as chloroform.

  13. PRECIPITATION METHOD FOR THE SEPARATION OF PLUTONIUM AND RARE EARTHS

    DOEpatents

    Thompson, S.G.

    1960-04-26

    A method of purifying plutonium is given. Tetravalent plutonium is precipitated with thorium pyrophosphate, the plutonium is oxidized to the tetravalent state, and then impurities are precipitated with thorium pyrophosphate.

  14. PLUTONIUM-CUPFERRON COMPLEX AND METHOD OF REMOVING PLUTONIUM FROM SOLUTION

    DOEpatents

    Potratz, H.A.

    1959-01-13

    A method is presented for separating plutonium from fission products present in solutions of neutronirradiated uranium. The process consists in treating such acidic solutions with cupferron so that the cupferron reacts with the plutonium present to form an insoluble complex. This plutonium cupferride precipitates and may then be separated from the solution.

  15. OXIDATIVE METHOD OF SEPARATING PLUTONIUM FROM NEPTUNIUM

    DOEpatents

    Beaufait, L.J. Jr.

    1958-06-10

    A method is described of separating neptunium from plutonium in an aqueous solution containing neptunium and plutonium in valence states not greater than +4. This may be accomplished by contacting the solution with dichromate ions, thus oxidizing the neptunium to a valence state greater than +4 without oxidizing any substantial amount of plutonium, and then forming a carrier precipitate which carries the plutonium from solution, leaving the neptunium behind. A preferred embodiment of this invention covers the use of lanthanum fluoride as the carrier precipitate.

  16. ION EXCHANGE ADSORPTION PROCESS FOR PLUTONIUM SEPARATION

    DOEpatents

    Boyd, G.E.; Russell, E.R.; Taylor, M.D.

    1961-07-11

    Ion exchange processes for the separation of plutonium from fission products are described. In accordance with these processes an aqueous solution containing plutonium and fission products is contacted with a cation exchange resin under conditions favoring adsorption of plutonium and fission products on the resin. A portion of the fission product is then eluted with a solution containing 0.05 to 1% by weight of a carboxylic acid. Plutonium is next eluted with a solution containing 2 to 8 per cent by weight of the same carboxylic acid, and the remaining fission products on the resin are eluted with an aqueous solution containing over 10 per cent by weight of sodium bisulfate.

  17. METHOD OF REDUCING PLUTONIUM WITH FERROUS IONS

    DOEpatents

    Dreher, J.L.; Koshland, D.E.; Thompson, S.G.; Willard, J.E.

    1959-10-01

    A process is presented for separating hexavalent plutonium from fission product values. To a nitric acid solution containing the values, ferrous ions are added and the solution is heated and held at elevated temperature to convert the plutonium to the tetravalent state via the trivalent state and the plutonium is then selectively precipitated on a BiPO/sub 4/ or LaF/sub 3/ carrier. The tetravalent plutonium formed is optionally complexed with fluoride, oxalate, or phosphate anion prior to carrier precipitation.

  18. Work and disproportionation for aqueous plutonium.

    PubMed

    Silver, G L

    2003-10-01

    The relation of two plutonium work integrals has recently been illustrated. One of the integrals applies to the work of disproportionation of tetravalent plutonium in 1 M acid and the other to the work of oxidation of plutonium from the trivalent to a higher oxidation state. This paper generalizes the disproportionation work integral so that it can be applied to tetravalent plutonium at any acid concentration. An equation is provided that can be used to verify work estimations obtained by integration. It applies to oxidation and disproportionation processes and it is easy to use. PMID:14522227

  19. Plutonium 238 facilities at Los Alamos

    NASA Astrophysics Data System (ADS)

    Rinehart, Gary H.

    1991-01-01

    Plutonium 238 operations at Los Alamos are performed at the Plutonium Facility (TA-55), the Chemistry and Metallurgy Research (CMR) Building, and the Radioisotope Fuels Impact Test Facility. The plutonium 238 facilities at Los Alamos support a wide variety of heat source activities including development of new fuel forms and containment materials, research on the high temperature properties of containment materials, investigation of the high temperature compatibility of fuels with potential container materials, processing plutonium 238 fuel forms, manufacture of heat sources under quality assurance surveillance, and performing safety testing on heat sources and radioisotope thermoelectric generators.

  20. Plutonium-238 facilities at Los Alamos

    NASA Astrophysics Data System (ADS)

    Rinehart, Gary H.

    Plutonium-238 operations at Los Alamos are performed at the Plutonium Facility (TA-55), the Chemistry and Metallurgy Research (CMR) Building, and the Radioisotope Fuels Impact Test Facility. The plutonium-238 facilities at Los Alamos support a wide variety of heat source activities including development of new fuel forms and containment materials, research on the high temperature properties of containment materials, investigation of the high temperature compatibility of fuels with potential container materials, processing plutonium-238 fuel forms, manufacture of heat sources under quality assurance surveillance, and performing safety testing on heat sources and radioisotope thermoelectric generators.

  1. NON-AQUEOUS DISSOLUTION OF MASSIVE PLUTONIUM

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Walsh, K.A.

    1959-05-12

    A method is presented for obtaining non-aqueous solutions or plutonium from massive forms of the metal. In the present invention massive plutonium is added to a salt melt consisting of 10 to 40 weight per cent of sodium chloride and the balance zinc chloride. The plutonium reacts at about 800 deg C with the zinc chloride to form a salt bath of plutonium trichloride, sodium chloride, and metallic zinc. The zinc is separated from the salt melt by forcing the molten mixture through a Pyrex filter.

  2. Plutonium oxalate precipitation for trace elemental determination in plutonium materials

    DOE PAGESBeta

    Xu, Ning; Gallimore, David; Lujan, Elmer; Garduno, Katherine; Walker, Laurie; Taylor, Fiona; Thompson, Pam; Tandon, Lav

    2015-05-26

    In this study, an analytical chemistry method has been developed that removes the plutonium (Pu) matrix from the dissolved Pu metal or oxide solution prior to the determination of trace impurities that are present in the metal or oxide. In this study, a Pu oxalate approach was employed to separate Pu from trace impurities. After Pu(III) was precipitated with oxalic acid and separated by centrifugation, trace elemental constituents in the supernatant were analyzed by inductively coupled plasma-optical emission spectroscopy with minimized spectral interferences from the sample matrix.

  3. Alloy materials

    DOEpatents

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  4. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, Lawrence J.; Christensen, Dana C.

    1984-01-01

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  5. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, L.J.; Christensen, D.C.

    1982-09-20

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  6. MOLTEN PLUTONIUM FUELED FAST BREEDER REACTOR

    DOEpatents

    Kiehn, R.M.; King, L.D.P.; Peterson, R.E.; Swickard, E.O. Jr.

    1962-06-26

    A description is given of a nuclear fast reactor fueled with molten plutonium containing about 20 kg of plutonium in a tantalum container, cooled by circulating liquid sodium at about 600 to 650 deg C, having a large negative temperature coefficient of reactivity, and control rods and movable reflector for criticality control. (AEC)

  7. URANOUS IODATE AS A CARRIER FOR PLUTONIUM

    DOEpatents

    Miller, D.R.; Seaborg, G.T.; Thompson, S.G.

    1959-12-15

    A process is described for precipitating plutonium on a uranous iodate carrier from an aqueous acid solution conA plutonium solution more concentrated than the original solution can then be obtained by oxidizing the uranium to the hexavalent state and dissolving the precipitate, after separating the latter from the original solution, by means of warm nitric acid.

  8. Plutonium disproportionation: the relation of work integrals.

    PubMed

    Silver, G L

    2003-04-01

    Two plutonium work integrals have been demonstrated in recent years. One of them applies to the work of disproportionation and the other to the work of oxidation of plutonium from the trivalent to a higher oxidation state. This paper illustrates the connection of the integrals by an example and a diagram. PMID:12672623

  9. RECOVERY OF PLUTONIUM BY CARRIER PRECIPITATION

    DOEpatents

    Goeckermann, R.H.

    1961-04-01

    A process is given for recovering plutonium from an aqueous nitric acid zirconium-containing solution of an acidity between 0.2 and 1 N by adding fluoride anions (1.5 to 5 mg/l) and precipitating the plutonium with an excess of hydrogen peroxide at from 53 to 65 deg C.

  10. Plutonium Immobilization Project -- Robotic canister loading

    SciTech Connect

    Hamilton, L.

    2000-04-28

    The Plutonium Immobilization Program (PIP) is a joint venture between the Savannah River Site, Lawrence Livermore National Laboratory, Argonne National Laboratory, and Pacific Northwest National Laboratory. When operational in 2008, the PIP will fulfill the nation's nonproliferation commitment by placing surplus weapons-grade plutonium in a permanently stable ceramic form.

  11. Reversible expansion of gallium-stabilized delta-plutonium

    SciTech Connect

    Wolfer, W; Oudot, B; Baclet, N

    2006-01-26

    The transient expansion of plutonium-gallium alloys observed both in the lattice parameter as well as in the dimension of a sample held at ambient temperature is explained by assuming incipient precipitation of Pu{sub 3}Ga. However, this ordered {zeta}{prime}-phase is also subject to radiation-induced disordering. As a result, the gallium-stabilized {delta}-phase, being metastable at ambient temperature, is both driven towards thermodynamic equilibrium by radiation-enhanced diffusion of gallium and at the same time pushed back to its metastable state by radiation-induced disordering. A steady state is reached in which only a modest fraction of the gallium present is tied up in the {zeta}{prime}-phase.

  12. Reversible expansion of gallium-stabilized (delta)-plutonium

    SciTech Connect

    Wolfer, W G; Oudot, B; Baclet, N

    2006-02-27

    It is shown that the transient expansion of plutonium-gallium alloys observed both in the lattice parameter as well as in the dimension of a sample held at ambient temperature can be explained by assuming incipient precipitation of Pu{sub 3}Ga. However, this ordered {zeta}-phase is also subject to radiation-induced disordering. As a result, the gallium-stabilized {delta}-phase, being metastable at ambient temperature, is driven towards thermodynamic equilibrium by radiation-enhanced diffusion of gallium and at the same time reverted back to its metastable state by radiation-induced disordering. A steady state is reached in which only a modest fraction of the gallium present is arranged in ordered {zeta}-phase regions.

  13. New Fecal Method for Plutonium and Americium

    SciTech Connect

    Maxwell, S.L. III

    2000-06-27

    A new fecal analysis method that dissolves plutonium oxide was developed at the Westinghouse Savannah River Site. Diphonix Resin (Eichrom Industries), is used to pre-concentrate the actinides from digested fecal samples. A rapid microwave digestion technique is used to remove the actinides from the Diphonix Resin, which effectively extracts plutonium and americium from acidic solutions containing hydrofluoric acid. After resin digestion, the plutonium and americium are recovered in a small volume of nitric acid that is loaded onto small extraction chromatography columns, TEVA Resin and TRU Resin (Eichrom Industries). The method enables complete dissolution of plutonium oxide and provides high recovery of plutonium and americium with good removal of thorium isotopes such as thorium-228.

  14. PROCESS FOR THE RECOVERY OF PLUTONIUM

    DOEpatents

    Ritter, D.M.

    1959-01-13

    An improvement is presented in the process for recovery and decontamination of plutonium. The carrier precipitate containing plutonium is dissolved and treated with an oxidizing agent to place the plutonium in a hexavalent oxidation state. A lanthanum fluoride precipitate is then formed in and removed from the solution to carry undesired fission products. The fluoride ions in the reniaining solution are complexed by addition of a borate sueh as boric acid, sodium metaborate or the like. The plutonium is then reduced and carried from the solution by the formation of a bismuth phosphate precipitate. This process effects a better separation from unwanted flssion products along with conccntration of the plutonium by using a smaller amount of carrier.

  15. Nondestructive assay methods for solids containing plutonium

    SciTech Connect

    Macmurdo, K.W.; Gray, L.W.; Gibbs, A.

    1984-06-01

    Specific nondestructive assay (NDA) methods, e.g. calorimetry, coincidence neutron counting, singles neutron counting, and gamma ray spectrometry, were studied to provide the Savannah River Plant with an NDA method to measure the plutonium content of solid scrap (slag and crucible) generated in the JB-Line plutonium metal production process. Results indicate that calorimetry can be used to measure the plutonium content to within about 3% in 4 to 6 hours by using computerized equilibrium sample power predictive models. Calorimetry results confirm that a bias exists in the present indirect measurement method used to estimate the plutonium content of slag and crucible. Singles neutron counting of slag and crucible can measure plutonium to only +-30%, but coincidence neutron counting methods improve measurement precision to better than +-10% in less than ten minutes. Only four portions of a single slag and crucible sample were assayed, and further study is recommended.

  16. Probing Radiation Damage in Plutonium Alloys with Multiple Measurement Techniques

    SciTech Connect

    McCall, S K; Fluss, M J; Chung, B W

    2010-04-21

    A material subjected to radiation damage will usually experience changes in its physical properties. Measuring these changes in the physical properties provides a basis to study radiation damage in a material which is important for a variety of real world applications from reactor materials to semiconducting devices. When investigating radiation damage, the relative sensitivity of any given property can vary considerably based on the concentration and type of damage present as well as external parameters such as the temperature and starting material composition. By measuring multiple physical properties, these differing sensitivities can be leveraged to provide greater insight into the different aspects of radiation damage accumulation, thereby providing a broader understanding of the mechanisms involved. In this report, self-damage from {alpha}-particle decay in Pu is investigated by measuring two different properties: magnetic susceptibility and resistivity. The results suggest that while the first annealing stage obeys second order chemical kinetics, the primary mechanism is not the recombination of vacancy-interstitial close pairs.

  17. REMOVAL OF LEGACY PLUTONIUM MATERIALS FROM SWEDEN

    SciTech Connect

    Dunn, Kerry A.; Bellamy, J. Steve; Chandler, Greg T.; Iyer, Natraj C.; Koenig, Rich E.; Leduc, D.; Hackney, B.; Leduc, Dan R.; McClard, J. W.

    2013-08-18

    U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Office of Global Threat Reduction (GTRI) recently removed legacy plutonium materials from Sweden in collaboration with AB SVAFO, Sweden. This paper details the activities undertaken through the U.S. receiving site (Savannah River Site (SRS)) to support the characterization, stabilization, packaging and removal of legacy plutonium materials from Sweden in 2012. This effort was undertaken as part of GTRI’s Gap Materials Program and culminated with the successful removal of plutonium from Sweden as announced at the 2012 Nuclear Security Summit. The removal and shipment of plutonium materials to the United States was the first of its kind under NNSA’s Global Threat Reduction Initiative. The Environmental Assessment for the U.S. receipt of gap plutonium material was approved in May 2010. Since then, the multi-year process yielded many first time accomplishments associated with plutonium packaging and transport activities including the application of the of DOE-STD-3013 stabilization requirements to treat plutonium materials outside the U.S., the development of an acceptance criteria for receipt of plutonium from a foreign country, the development and application of a versatile process flow sheet for the packaging of legacy plutonium materials, the identification of a plutonium container configuration, the first international certificate validation of the 9975 shipping package and the first intercontinental shipment using the 9975 shipping package. This paper will detail the technical considerations in developing the packaging process flow sheet, defining the key elements of the flow sheet and its implementation, determining the criteria used in the selection of the transport package, developing the technical basis for the package certificate amendment and the reviews with multiple licensing authorities and most importantly integrating the technical activities with the Swedish partners.

  18. Plutonium focus area. Technology summary

    SciTech Connect

    1997-09-01

    The Assistant Secretary for the Office of Environmental Management (EM) at the U.S. Department of Energy (DOE) chartered the Plutonium Focus Area (PFA) in October 1995. The PFA {open_quotes}...provides for peer and technical reviews of research and development in plutonium stabilization activities...{close_quotes} In addition, the PFA identifies and develops relevant research and technology. The purpose of this document is to focus attention on the requirements used to develop research and technology for stabilization, storage, and preparation for disposition of nuclear materials. The PFA Technology Summary presents the approach the PFA uses to identify, recommend, and review research. It lists research requirements, research being conducted, and gaps where research is needed. It also summarizes research performed by the PFA in the traditional research summary format. This document encourages researchers and commercial enterprises to do business with PFA by submitting research proposals or {open_quotes}white papers.{close_quotes} In addition, it suggests ways to increase the likelihood that PFA will recommend proposed research to the Nuclear Materials Stabilization Task Group (NMSTG) of DOE.

  19. Ceramification: A plutonium immobilization process

    SciTech Connect

    Rask, W.C.; Phillips, A.G.

    1996-05-01

    This paper describes a low temperature technique for stabilizing and immobilizing actinide compounds using a combination process/storage vessel of stainless steel, in which measured amounts of actinide nitrate solutions and actinide oxides (and/or residues) are systematically treated to yield a solid article. The chemical ceramic process is based on a coating technology that produces rare earth oxide coatings for defense applications involving plutonium. The final product of this application is a solid, coherent actinide oxide with process-generated encapsulation that has long-term environmental stability. Actinide compounds can be stabilized as pure materials for ease of re-use or as intimate mixtures with additives such as rare earth oxides to increase their degree of proliferation resistance. Starting materials for the process can include nitrate solutions, powders, aggregates, sludges, incinerator ashes, and others. Agents such as cerium oxide or zirconium oxide may be added as powders or precursors to enhance the properties of the resulting solid product. Additives may be included to produce a final product suitable for use in nuclear fuel pellet production. The process is simple and reduces the time and expense for stabilizing plutonium compounds. It requires a very low equipment expenditure and can be readily implemented into existing gloveboxes. The process is easily conducted with less associated risk than proposed alternative technologies.

  20. Plutonium Uptake and Distribution in Mammalian Cells: Molecular vs Polymeric Plutonium

    PubMed Central

    ARYAL, BAIKUNTHA P.; GORMAN-LEWIS, DREW; PAUNESKU, TATJANA; WILSON, RICHARD E.; LAI, BARRY; VOGT, STEFAN; WOLOSCHAK, GAYLE E.; JENSEN, MARK P.

    2013-01-01

    Purpose To study the cellular responses to molecular and polymeric forms of plutonium using PC12 cells derived from rat adrenal glands. Materials and methods Serum starved PC12 cells were exposed to polymeric and molecular forms of plutonium for three hours. Cells were washed with 10 mM EGTA, 100 mM NaCl at pH 7.4 to remove surface sorbed plutonium. Localization of plutonium in individual cell was quantitatively analyzed by synchrotron X-ray fluorescence (XRF) microscopy. Results Molecular plutonium complexes introduced to cell growth media in the form of NTA, citrate, or transferrin complexes were taken up by PC12 cells, and mostly co-localized with iron within the cells. Polymeric plutonium prepared separately was not internalized by PC12 cells but it was always found on the cell surface as big agglomerates; however polymeric plutonium formed in situ was mostly found within the cells as agglomerates. Conclusions PC12 cells can differentiate molecular and polymeric forms of plutonium. Molecular plutonium is taken up by PC12 cells and mostly co-localized with iron but aged polymeric plutonium is not internalized by the cells. PMID:21770702

  1. ADSORPTION-BISMUTH PHOSPHATE METHOD FOR SEPARATING PLUTONIUM

    DOEpatents

    Russell, E.R.; Adamson, A.W.; Boyd, G.E.

    1960-06-28

    A process is given for separating plutonium from uranium and fission products. Plutonium and uranium are adsorbed by a cation exchange resin, plutonium is eluted from the adsorbent, and then, after oxidation to the hexavalent state, the plutonium is contacted with a bismuth phosphate carrier precipitate.

  2. Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility

    SciTech Connect

    Tingey, Joel M.; Jones, Susan A.

    2005-07-01

    PFP. Samples varied in appearance depending on the original source of material. Rocky Flats items were mostly dark olive green with clumps that crushed easily with a mortar and pestle. PRF/RMC items showed more variability. These items were mostly rust colored. One sample contained white particles that were difficult to crush, and another sample was a dark grey with a mixture of fines and large, hard fragments. The appearance and feel of the fragments indicated they might be an alloy. The color of the solution samples was indicative of the impurities in the sample. The double-pass filtrate solution was a brown color indicative of the iron impurities in the sample. The other solution sample was light gray in color. Radiochemical analyses, including thermal ionization mass spectrometry (TIMS), alpha and gamma energy analysis (AEA and GEA), and kinetic phosphorescence analysis (KPA), indicate that these materials are all weapons-grade plutonium with consistent plutonium isotopics. A small amount of uranium (<0.14 wt%) is also present in these samples. The isotopic composition of the uranium varied widely but was consistent among each category of material. The primary water-soluble anions in these samples were Cl-, NO3-, SO42-, and PO43-. The only major anion observed in the Rocky Flats materials was Cl-, but the PRF/RMC samples had significant quantities of all of the primary anions observed. Prompt gamma measurements provide a representative analysis of the Cl- concentration in the bulk material. The primary anions observed in the solution samples were NO3-, and PO43-. The concentration of these anions did not exceed the mixed oxide (MOX) specification limits. Cations that exceeded the MOX specification limits included Cr, Fe, Ni, Al, Cu, and Si. All of the samples exceeded at least the 75% specification limit in one element.

  3. Excess Plutonium: Weapons Legacy or National Asset?

    SciTech Connect

    Klipa, G.; Boeke, S.; Hottel, R.

    2002-02-27

    The Nuclear Materials Stewardship Initiative was established in January, 2000, to accelerate the work of achieving integration and cutting long-term costs associated with the management of nuclear materials. As part of that initiative, the Department of Energy (DOE), Office of Environmental Management (EM), has established Nuclear Material Management Groups for the management of excess nuclear materials. As one of these groups, the Plutonium Material Management Group (PMMG) has been chartered to serve as DOE's complex wide resource and point of contact for technical coordination and program planning support in the safe and efficient disposition of the nations excess Plutonium 239. This paper will explain the mission, goals, and objectives of the PMMG. In addition, the paper will provide a broad overview of the status of the plutonium inventories throughout the DOE complex. The DOE currently manages approximately 99.5 MT of plutonium isotopes. Details of the various categories of plutonium, from material designated for national security needs through material that has been declared excess, will be explained. For the plutonium that has been declared excess, the various pathways to disposition (including reuse, recycling, sale, transfer, treatment, consumption, and disposal) will be discussed. At this time 52.5 MT of plutonium has been declared excess and the method of disposition for that material is the subject of study and evaluation within DOE. The role of the PMMG in those evaluations will be outlined.

  4. How much plutonium does North Korea have?

    SciTech Connect

    Albright, D.

    1994-09-01

    U.S. intelligence discovered in the 1980s that North Korea was building a small nuclear reactor. The reactor was described as a gas-cooled, graphite-moderated model similar to those Britian and France used to produce electric power as well as plutonium for nuclear weapons. When Western nations expressed concern about the reactor Russia pressed North Korea to sign the Non-Proliferation Treaty (NPT) which it did on December 12, 1985. However, North Korea stalled on signing the required safeguards agreement that allows the International Atomic Energy Agency (IAEA) to inspect nuclear facilities until January 1992. Inspections by the IAEA revealed discrepancies with the amounts of plutonium separated as declared by the North Koreans. The IAEA also received reports that two North Korean waste sites were hidden. By February 1993 the IAEA and the North Koreans has reached an impasse: North Koreas initial declarations of plutonium inventory could not be confirmed and North Korea refused to cooperate. At the least, North Korea admits to having separated 100 grams of plutonium. At the most, worst case estimate, they could have a total of 6 - 13 kilograms of separated plutonium. A first nuclear weapon can require up to 10 kilograms of weapon-grade plutonium. Any settlement needs to include a way to insure that the IAEA can verify North Korea`s past nuclear activities and determine the amount of plutonium that may have been separated in the past. 2 refs.

  5. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... Appendixes to Part 140 § 140.108 Appendix H—Form of indemnity agreement with licensees possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of...

  6. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... Appendixes to Part 140 § 140.108 Appendix H—Form of indemnity agreement with licensees possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of...

  7. Volatile fluoride process for separating plutonium from other materials

    DOEpatents

    Spedding, F. H.; Newton, A. S.

    1959-04-14

    The separation of plutonium from uranium and/or fission products by formation of the higher fluorides off uranium and/or plutonium is described. Neutronirradiated uranium metal is first converted to the hydride. This hydrided product is then treated with fluorine at about 315 deg C to form and volatilize UF/sub 6/ leaving plutonium behind. Thc plutonium may then be separated by reacting the residue with fluorine at about 5004DEC and collecting the volatile plutonium fluoride thus formed.

  8. VOLATILE FLUORIDE PROCESS FOR SEPARATING PLUTONIUM FROM OTHER MATERIALS

    DOEpatents

    Spedding, F.H.; Newton, A.S.

    1959-04-14

    The separation of plutonium from uranium and/or tission products by formation of the higher fluorides of uranium and/or plutonium is discussed. Neutronirradiated uranium metal is first convcrted to the hydride. This hydrided product is then treatced with fluorine at about 315 deg C to form and volatilize UF/sup 6/ leaving plutonium behind. The plutonium may then be separated by reacting the residue with fluorine at about 500 deg C and collecting the volatile plutonium fluoride thus formed.

  9. RECOVERY OF PLUTONIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Reber, E.J.

    1959-09-01

    A process is described for recovering plutonium values from aqueous solutions by precipitation on bismuth phosphate. The plutonium is secured in its tetravalent state. bismuth salt is added to the solution, and ant excess of phosphoric acid anions is added to the solution in two approximately equal installments. The rate of addition of the first installment is about two to three times as high as the rate of addition of the second installment, whereby a precipitate of bismuth phosphate forms, the precipitate carrying the plutonium values. The precipitate is separated from the solution.

  10. NON-CORROSIVE PLUTONIUM FUEL SYSTEMS

    DOEpatents

    Coffinberry, A.S.; Waber, J.T.

    1962-10-23

    An improved plutonium reactor liquid fuel is described for utilization in a nuclear reactor having a tantalum fuel containment vessel. The fuel consists of plutonium and a diluent such as iron, cobalt, nickel, cerium, cerium-- iron, cerium--cobalt, cerium--nickel, and cerium--copper, and an additive of carbon and silicon. The carbon and silicon react with the tantalum container surface to form a coating that is self-healing and prevents the corrosive action of liquid plutonium on the said tantalum container. (AEC)

  11. Plutonium Immobilization Can Loading Conceptual Design

    SciTech Connect

    Kriikku, E.

    1999-05-13

    'The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses the Plutonium Immobilization can loading conceptual design and includes a process block diagram, process description, preliminary equipment specifications, and several can loading issues. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.'

  12. Removal of plutonium from hepatic tissue

    DOEpatents

    Lindenbaum, Arthur; Rosenthal, Marcia W.

    1979-01-01

    A method is provided for removing plutonium from hepatic tissues by introducing into the body and blood stream a solution of the complexing agent DTPA and an adjunct thereto. The adjunct material induces aberrations in the hepatic tissue cells and removes intracellularly deposited plutonium which is normally unavailable for complexation with the DTPA. Once the intracellularly deposited plutonium has been removed from the cell by action of the adjunct material, it can be complexed with the DTPA present in the blood stream and subsequently removed from the body by normal excretory processes.

  13. SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS

    DOEpatents

    Nicholls, C.M.; Wells, I.; Spence, R.

    1959-10-13

    The separation of uranium and plutonium from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in nitric acid to provide an aqueous solution 3N in nitric acid. The fission products of the solution are extruded by treating the solution with dibutyl carbitol substantially 1.8N in nitric acid. The organic solvent phase is separated and neutralized with ammonium hydroxide and the plutonium reduced with hydroxylamine base to the trivalent state. Treatment of the mixture with saturated ammonium nitrate extracts the reduced plutonium and leaves the uranium in the organic solvent.

  14. HENC performance evaluation and plutonium calibration

    SciTech Connect

    Menlove, H.O.; Baca, J.; Pecos, J.M.; Davidson, D.R.; McElroy, R.D.; Brochu, D.B.

    1997-10-01

    The authors have designed a high-efficiency neutron counter (HENC) to increase the plutonium content in 200-L waste drums. The counter uses totals neutron counting, coincidence counting, and multiplicity counting to determine the plutonium mass. The HENC was developed as part of a Cooperative Research and Development Agreement between the Department of Energy and Canberra Industries. This report presents the results of the detector modifications, the performance tests, the add-a-source calibration, and the plutonium calibration at Los Alamos National Laboratory (TA-35) in 1996.

  15. Excess Weapons Plutonium Immobilization in Russia

    SciTech Connect

    Jardine, L.; Borisov, G.B.

    2000-04-15

    The joint goal of the Russian work is to establish a full-scale plutonium immobilization facility at a Russian industrial site by 2005. To achieve this requires that the necessary engineering and technical basis be developed in these Russian projects and the needed Russian approvals be obtained to conduct industrial-scale immobilization of plutonium-containing materials at a Russian industrial site by the 2005 date. This meeting and future work will provide the basis for joint decisions. Supporting R&D projects are being carried out at Russian Institutes that directly support the technical needs of Russian industrial sites to immobilize plutonium-containing materials. Special R&D on plutonium materials is also being carried out to support excess weapons disposition in Russia and the US, including nonproliferation studies of plutonium recovery from immobilization forms and accelerated radiation damage studies of the US-specified plutonium ceramic for immobilizing plutonium. This intriguing and extraordinary cooperation on certain aspects of the weapons plutonium problem is now progressing well and much work with plutonium has been completed in the past two years. Because much excellent and unique scientific and engineering technical work has now been completed in Russia in many aspects of plutonium immobilization, this meeting in St. Petersburg was both timely and necessary to summarize, review, and discuss these efforts among those who performed the actual work. The results of this meeting will help the US and Russia jointly define the future direction of the Russian plutonium immobilization program, and make it an even stronger and more integrated Russian program. The two objectives for the meeting were to: (1) Bring together the Russian organizations, experts, and managers performing the work into one place for four days to review and discuss their work with each other; and (2) Publish a meeting summary and a proceedings to compile reports of all the excellent

  16. Weapons-grade plutonium dispositioning. Volume 4. Plutonium dispositioning in light water reactors

    SciTech Connect

    Sterbentz, J.W.; Olsen, C.S.; Sinha, U.P.

    1993-06-01

    This study is in response to a request by the Reactor Panel Subcommittee of the National Academy of Sciences (NAS) Committee on International Security and Arms Control (CISAC) to evaluate the feasibility of using plutonium fuels (without uranium) for disposal in existing conventional or advanced light water reactor (LWR) designs and in low temperature/pressure LWR designs that might be developed for plutonium disposal. Three plutonium-based fuel forms (oxides, aluminum metallics, and carbides) are evaluated for neutronic performance, fabrication technology, and material and compatibility issues. For the carbides, only the fabrication technologies are addressed. Viable plutonium oxide fuels for conventional or advanced LWRs include plutonium-zirconium-calcium oxide (PuO{sub 2}-ZrO{sub 2}-CaO) with the addition of thorium oxide (ThO{sub 2}) or a burnable poison such as erbium oxide (Er{sub 2}O{sub 3}) or europium oxide (Eu{sub 2}O{sub 3}) to achieve acceptable neutronic performance. Thorium will breed fissile uranium that may be unacceptable from a proliferation standpoint. Fabrication of uranium and mixed uranium-plutonium oxide fuels is well established; however, fabrication of plutonium-based oxide fuels will require further development. Viable aluminum-plutonium metallic fuels for a low temperature/pressure LWR include plutonium aluminide in an aluminum matrix (PuAl{sub 4}-Al) with the addition of a burnable poison such as erbium (Er) or europium (Eu). Fabrication of low-enriched plutonium in aluminum-plutonium metallic fuel rods was initially established 30 years ago and will require development to recapture and adapt the technology to meet current environmental and safety regulations. Fabrication of high-enriched uranium plate fuel by the picture-frame process is a well established process, but the use of plutonium would require the process to be upgraded in the United States to conform with current regulations and minimize the waste streams.

  17. PLUTONIUM METALLOGRAPHY AT LOS ALAMOS

    SciTech Connect

    PEREYRA, RAMIRO A.; LOVATO, DARRYL

    2007-01-08

    From early days of the Manhattan program to today, scientists and engineers have continued to investigate the metallurgical properties of plutonium (Pu). Although issues like aging was not a concern to the early pioneers, today the reliability of our aging stockpile is of major focus. And as the country moves toward a new generation of weapons similar problems that the early pioneers faced such as compatibility, homogeneity and malleability have come to the forefront. And metallography will continue to be a principle tool for the resolution of old and new issues. Standard metallographic techniques are used for the preparation of plutonium samples. The samples are first cut with a slow speed idamond saw. After mounting in Epon 815 epoxy resin, the samples are ground through 600 grit silicon carbide paper. PF 5070 (a Freon substitute) is used as a coolant, lubricant, and solvent for most operations. Rough mechanical polished is done with 9-{mu} diamond using a nap less cloth, for example nylon or cotton. Final polish is done with 1-{mu} diamond on a nappy cloth such as sylvet. Ethyl alcohol is then used ultrasonically to clean the samples before electro polishing. The sample is then electro-polished and etched in an electrolyte containing 10% nitric acid, and 90% dimethyleneformalmide. Ethyl alcohol is used as a final cleaning agent. Although standard metallographic preparation techniques are used, there are several reasons why metallography of Pu is difficult and challenging. Firstly, because of the health hazards associated with its radioactive properties, sample preparation is conducted in glove boxes. Figure 1 shows the metallography line, in an R and D facility. Since they are designed to be negative in pressure to the laboratory, cross-contamination of abrasives is a major problem. In addition, because of safety concerns and waste issues, there is a limit to the amount of solvent that can be used. Secondly, Pu will readily hydride or oxidize when in contact

  18. PRODUCTION OF PLUTONIUM FLUORIDE FROM BISMUTH PHOSPHATE PRECIPITATE CONTAINING PLUTONIUM VALUES

    DOEpatents

    Brown, H.S.; Bohlmann, E.G.

    1961-05-01

    A process is given for separating plutonium from fission products present on a bismuth phosphate carrier. The dried carrier is first treated with hydrogen fluoride at between 500 and 600 deg C whereby some fission product fluorides volatilize away from plutonium tetrafluoride, and nonvolatile fission product fluorides are formed then with anhydrous fluorine at between 400 and 500 deg C. Bismuth and plutonium distill in the form of volatile fluorides away from the nonvolatile fission product fluorides. The bismuth and plutonium fluorides are condensed at below 290 deg C.

  19. What is plutonium stabilization, and what is safe storage of plutonium?

    SciTech Connect

    Forsberg, C.W.

    1995-06-29

    The end of the cold war has resulted in the shutdown of nuclear weapons production and the start of dismantlement of significant numbers of nuclear weapons. This, in turn, is creating an inventory of plutonium requiring interim and long-term storage. A key question is, ``What is required for safe, multidecade, plutonium storage?`` The requirements for storage, in turn, define what is needed to stabilize the plutonium from its current condition into a form acceptable for interim and long-term storage. Storage requirements determine if research is required to (1) define required technical conditions for interim and long-term storage and (2) develop or improve current stabilization technologies. Storage requirements depend upon technical, policy, and economic factors. The technical issues are complicated by several factors. Plutonium in aerosol form is highly hazardous. Plutonium in water is hazardous. The plutonium inventory is in multiple chemical forms--some of which are chemically reactive. Also, some of the existing storage forms are clearly unsuitable for storage periods over a few years. Gas generation by plutonium compounds complicates storage: (1) all plutonium slowly decays creating gaseous helium and (2) the radiation from plutonium decay can initiate many chemical reactions-some of which generate significant quantities of gases. Gas generation can pressurize sealed storage packages. Last nuclear criticality must be avoided.

  20. Plutonium focus area: Technology summary

    SciTech Connect

    1996-03-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this approach, EM developed a management structure and principles that led to creation of specific focus areas. These organizations were designed to focus scientific and technical talent throughout DOE and the national scientific community on major environmental restoration and waste management problems facing DOE. The focus area approach provides the framework for inter-site cooperation and leveraging of resources on common problems. After the original establishment of five major focus areas within the Office of Technology Development (EM-50), the Nuclear Materials Stabilization Task Group (NMSTG, EM-66) followed EM-50`s structure and chartered the Plutonium Focus Area (PFA). NMSTG`s charter to the PFA, described in detail later in this book, plays a major role in meeting the EM-66 commitments to the Defense Nuclear Facilities Safety Board (DNFSB). The PFA is a new program for FY96 and as such, the primary focus of revision 0 of this Technology Summary is an introduction to the Focus Area; its history, development, and management structure, including summaries of selected technologies being developed. Revision 1 to the Plutonium Focus Area Technology Summary is slated to include details on all technologies being developed, and is currently planned for release in August 1996. The following report outlines the scope and mission of the Office of Environmental Management, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  1. Plutonium residue recovery (PuRR) project: Quarterly progress report, October--December 1988

    SciTech Connect

    Alire, R.M.; Coops, M.S.; Gregg, D.W.; Hickman, R.G.; Landrum, J.H.; Pittenger, L.C.; Johnson, G.K.; Johnson, I.; Mulcahey, T.P.; Piece, R.D.

    1989-02-01

    Substantial progress was made in several areas of the PuRR (plutonium residue recovery) program during the quarter. Criteria were developed for selecting process options, with the goal of process simplification. A modified flowsheet and material balance were selected that reflect these priorities. Efforts to effect a front-end separation by sedimentation were not successful. Experimental liquid-liquid extractions from alloys to salts based on valence change were performed. Results ranged from fair to good, but experimental equipment materials problems occurred. Also, substantial interference from the large excess of tramp metals present, which influence plutonium activity, suggested alternate approaches should be given priority. Estimates of the high-temperature thermodynamic functions of americium chlorides were calculated for the first time. 11 refs., 3 figs., 10 tabs.

  2. Design-only conceptual design report: Plutonium Immobilization Plant

    SciTech Connect

    DiSabatino, A A

    2000-05-01

    This design-only conceptual design report was prepared to support a funding request by the Department of Energy Office of Fissile Materials Disposition for engineering and design of the Plutonium Immobilization Plant, which will be used to immobilize up to 50 tonnes of surplus plutonium. The Plutonium Immobilization Plant will be located at the Savannah River Site pursuant to the Surplus Plutonium Disposition Final Environmental Impact Statement Record of Decision, January 4, 2000. This document reflects a new facility using the ceramic immobilization technology and the can-in-canister approach. The Plutonium Immobilization Plant accepts plutonium oxide from pit conversion and plutonium and plutonium oxide from non-pit sources and, through a ceramic immobilization process, converts the plutonium into mineral-like forms that are subsequently encapsulated within a large canister of high-level waste glass. The final immobilized product must make the plutonium as inherently unattractive and inaccessible for use in nuclear weapons as the plutonium in spent fuel from commercial reactors; it must also be suitable for geologic disposal. Plutonium immobilization at the Savannah River Site uses a new building, the Plutonium Immobilization Plant, which will receive and store feed materials, convert non-pit surplus plutonium to an oxide form suitable for the immobilization process, immobilize the plutonium oxide in a titanate-based ceramic form, place cans of the plutonium-ceramic forms into magazines, and load the magazines into a canister. The existing Defense Waste Processing Facility is used for the pouring of high-level waste glass into the canisters. The Plutonium Immobilization Plant uses existing Savannah River Site infrastructure for analytical laboratory services, waste handling, fire protection, training, and other support utilities and services. This design-only conceptual design report also provides the cost for a Plutonium Immobilization Plant which would process

  3. International shipment of plutonium by air

    SciTech Connect

    Mercado, J.E.; McGrogan, J.P.

    1995-05-01

    In support of the United States (US) Government`s decision to place excess plutonium oxide at the US Department of Energy`s (DOE) Hanford Site under International Atomic Energy Agency (IAEA) safeguards, the Department of State notified the Congress that a plutonium storage vault at the Plutonium Finishing Plant at the Hanford Site would be added to the eligible facilities list. As part of the preparations to transfer the plutonium oxide under IAEA safeguards, samples of the powder were taken from the inventory to be shipped to the IAEA headquarters in Vienna, Austria, for laboratory analysis. The analysis of these samples was of high priority, and the IAEA requested that the material be shipped by aircraft, the most expeditious method.

  4. IMPROVED PROCESS OF PLUTONIUM CARRIER PRECIPITATION

    DOEpatents

    Faris, B.F.

    1959-06-30

    This patent relates to an improvement in the bismuth phosphate process for separating and recovering plutonium from neutron irradiated uranium, resulting in improved decontamination even without the use of scavenging precipitates in the by-product precipitation step and subsequently more complete recovery of the plutonium in the product precipitation step. This improvement is achieved by addition of fluomolybdic acid, or a water soluble fluomolybdate, such as the ammonium, sodium, or potassium salt thereof, to the aqueous nitric acid solution containing tetravalent plutonium ions and contaminating fission products, so as to establish a fluomolybdate ion concentration of about 0.05 M. The solution is then treated to form the bismuth phosphate plutonium carrying precipitate.

  5. Interaction between stainless steel and plutonium metal

    SciTech Connect

    Dunwoody, John T; Mason, Richard E; Freibert, Franz J; Willson, Stephen P; Veirs, Douglas K; Worl, Laura A; Archuleta, Alonso; Conger, Donald J

    2010-01-01

    Long-term storage of excess plutonium is of great concern in the U.S. as well as abroad. The current accepted configuration involves intimate contact between the stored material and an iron-bearing container such as stainless steel. While many safety scenario studies have been conducted and used in the acceptance of stainless steel containers, little information is available on the physical interaction at elevated temperatures between certain forms of stored material and the container itself. The bulk of the safety studies has focused on the ability of a package to keep the primary stainless steel containment below the plutonium-iron eutectic temperature of approximately 410 C. However, the interactions of plutonium metal with stainless steel have been of continuing interest. This paper reports on a scoping study investigating the interaction between stainless steel and plutonium metal in a pseudo diffusion couple at temperatures above the eutectic melt-point.

  6. Pulmonary carcinogenesis from plutonium-containing particles

    SciTech Connect

    Thomas, R.G.; Smith, D.M.; Anderson, E.C.

    1980-01-01

    Plutonium administered as an alpha radiation source to the respiratory tracts of Syrian hamsters has resulted in various incidences of neoplasia. Adenomas are the primary lung tumor observed, but adenocarcinomas are also prevalent.

  7. SEPARATION OF URANIUM, PLUTONIUM, AND FISSION PRODUCTS

    DOEpatents

    Spence, R.; Lister, M.W.

    1958-12-16

    Uranium and plutonium can be separated from neutron-lrradiated uranium by a process consisting of dissolvlng the lrradiated material in nitric acid, saturating the solution with a nitrate salt such as ammonium nitrate, rendering the solution substantially neutral with a base such as ammonia, adding a reducing agent such as hydroxylamine to change plutonium to the trivalent state, treating the solution with a substantially water immiscible organic solvent such as dibutoxy diethylether to selectively extract the uranium, maklng the residual aqueous solutlon acid with nitric acid, adding an oxidizing agent such as ammonlum bromate to oxidize the plutonium to the hexavalent state, and selectlvely extracting the plutonium by means of an immlscible solvent, such as dibutoxy dlethyletber.

  8. Plutonium-238 processing at Savannah River Plant

    SciTech Connect

    Burney, G.A.

    1983-01-01

    Plutonium-238 is produced by irradiating NpO/sub 2/-Al cermet slugs or tubes with neutrons. The neptunium-237 is produced as a by-product when natural or enriched uranium is irradiated with neutrons. The neptunium is separated by solvent extraction and ion exchange and precipitated as neptunium oxalate. Neptunium oxalate is calcined to neptunium oxide and fabricated into targets for irradiation. The irradiation conditions are controlled to produce plutonium with 80 to 90 wt % /sup 238/Pu.

  9. PLUTONIUM CARRIER METATHESIS WITH ORGANIC REAGENT

    DOEpatents

    Thompson, S.G.

    1958-07-01

    A method is described for converting a plutonium containing bismuth phosphate carrier precipitate Into a compositton more readily soluble in acid. The method consists of dissolving the bismuth phosphate precipitate in an aqueous solution of alkali metal hydroxide, and adding one of a certaia group of organic compounds, e.g., polyhydric alcohols or a-hydrorycarboxylic acids. The mixture is then heated causiing formation of a bismuth hydroxide precipitate containing plutonium which may be readily dissolved in nitric acid for further processing.

  10. Plutonium: The first 50 years. United States plutonium production, acquisition, and utilization from 1944 through 1994

    SciTech Connect

    1996-02-01

    The report contains important newly declassified information regarding the US production, acquisition, and removals of plutonium. This new information, when combined with previously declassified data, has allowed the DOE to issue, for the first time, a truly comprehensive report on the total DOE plutonium inventory. At the December 7, 1993, Openness Press Conference, the DOE declassified the plutonium inventories at eight locations totaling 33.5 metric tons (MT). This report declassifies the remainder of the DOE plutonium inventory. Newly declassified in this report is the quantity of plutonium at the Pantex Site, near Amarillo, Texas, and in the US nuclear weapons stockpile of 66.1 MT, which, when added to the previously released inventory of 33.5 MT, yields a total plutonium inventory of 99.5 MT. This report will document the sources which built up the plutonium inventory as well as the transactions which have removed plutonium from that inventory. This report identifies four sources that add plutonium to the DOE/DoD inventory, and seven types of transactions which remove plutonium from the DOE/DoD inventory. This report also discusses the nuclear material control and accountability system which records all nuclear material transactions, compares records with inventory and calculates material balances, and analyzes differences to verify that nuclear materials are in quantities as reported. The DOE believes that this report will aid in discussions in plutonium storage, safety, and security with stakeholders as well as encourage other nations to declassify and release similar data. These data will also be available for formulating policies with respect to disposition of excess nuclear materials. The information in this report is based on the evaluation of available records. The information contained in this report may be updated or revised in the future should additional or more detailed data become available.

  11. PLUTONIUM FINISHING PLANT (PFP) STABILIZATION & PACKAGING PROJECT

    SciTech Connect

    GERBER, M.S.

    2004-01-14

    Fluor Hanford is pleased to submit the Plutonium Finishing Plant (PFP) Stabilization and Packaging Project (SPP) for consideration by the Project Management Institute as Project of the Year for 2004. The SPP thermally stabilized and/or packaged nearly 18 metric tons (MT) of plutonium and plutonium-bearing materials left in PFP facilities from 40 years of nuclear weapons production and experimentation. The stabilization of the plutonium-bearing materials substantially reduced the radiological risk to the environment and security concerns regarding the potential for terrorists to acquire the non-stabilized plutonium products for nefarious purposes. The work was done In older facilities which were never designed for the long-term storage of plutonium, and required working with materials that were extremely radioactive, hazardous, pyrophoric, and In some cases completely unique. I n some Instances, one-of-a-kind processes and equipment were designed, installed, and started up. The SPP was completed ahead of schedule, substantially beating all Interim progress milestone dates set by the Defense Nuclear Facilities Safety Board (DNFSB) and in the Hanford Site's Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA), and finished $1-million under budget.

  12. Plutonium Finishing Plant safety evaluation report

    SciTech Connect

    Not Available

    1995-01-01

    The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE`s independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91.

  13. SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS

    DOEpatents

    Boyd, G.E.; Adamson, A.W.; Schubert, J.; Russell, E.R.

    1958-10-01

    A chromatographic adsorption process is presented for the separation of plutonium from other fission products formed by the irradiation of uranium. The plutonium and the lighter element fission products are adsorbed on a sulfonated phenol-formaldehyde resin bed from a nitric acid solution containing the dissolved uranium. Successive washes of sulfuric, phosphoric, and nitric acids remove the bulk of the fission products, then an eluate of dilute phosphoric and nitric acids removes the remaining plutonium and fission products. The plutonium is selectively removed by passing this solution through zirconium phosphate, from which the plutonium is dissolved with nitric acid. This process provides a convenient and efficient means for isolating plutonium.

  14. Purification of aqueous plutonium chloride solutions via precipitation and washing.

    SciTech Connect

    Stroud, M. A.; Salazar, R. R.; Abney, Kent David; Bluhm, E. A.; Danis, J. A.

    2003-01-01

    Pyrochemical operations at Los Alamos Plutonium Facility (TA-55) use high temperature melt s of calcium chloride for the reduction of plutonium oxide to plutonium metal and hi gh temperature combined melts of sodium chloride and potassium chloride mixtures for the electrorefining purification of plutonium metal . The remaining plutonium and americium are recovered from thes e salts by dissolution in concentrated hydrochloric acid followed by either solvent extraction or io n exchange for isolation and ultimately converted to oxide after precipitation with oxalic acid . Figur e 1 illustrates the current aqueous chloride flow sheet used for plutonium processing at TA-55 .

  15. PROCESS OF FORMING PLUOTONIUM SALTS FROM PLUTONIUM EXALATES

    DOEpatents

    Garner, C.S.

    1959-02-24

    A process is presented for converting plutonium oxalate to other plutonium compounds by a dry conversion method. According to the process, lower valence plutonium oxalate is heated in the presence of a vapor of a volatile non- oxygenated monobasic acid, such as HCl or HF. For example, in order to produce plutonium chloride, the pure plutonium oxalate is heated to about 700 deg C in a slow stream of hydrogen plus HCl. By the proper selection of an oxidizing or reducing atmosphere, the plutonium halide product can be obtained in either the plus 3 or plus 4 valence state.

  16. On-line monitoring of plutonium in mixed uranium-plutonium solutions. [Coprocessing

    SciTech Connect

    Hofstetter, K. J.; Rebagay, T. V.; Huff, G. A.

    1980-03-01

    The measurement of the total and isotopic plutonium concentrations in mixed uranium-plutonium solutions blended with highly radioactive fission product nuclides and other radionuclides (e.g., Cs-137 and Co-60) has been investigated at the Barnwell Nuclear Fuel Plant (BNFP). An on-line total and isotopic plutonium monitoring system is being tested for its ability to assay the plutonium abundances in solutions as might be found in the process streams of a light water reactor (LWR) spent fuel processing plant. The monitoring system is fully automated and designed to be maintained remotely. It is capable of near real-time inventory of plutonium in process streams and provides the basis for on-line computerized accounting of special nuclear materials.

  17. Soft phonons in δ-phase plutonium near the δ-α' transition

    NASA Astrophysics Data System (ADS)

    Xu, Ruqing; Wong, Joe; Zschack, Paul; Hong, Hawoong; Chiang, Tai-C.

    2008-04-01

    Plutonium and its alloys exhibit complex phase diagrams that imply anomalous lattice dynamics near phase stability boundaries. Specifically, the TA [111] phonon branch in Ga-stabilized δ-Pu at room temperature shows a pronounced soft mode at the zone boundary, which suggests a possible connection to the martensitic transformation from the fcc δ-phase to the monoclinic α'-phase at low temperatures. This work is a study of the lattice dynamics of this system by X-ray thermal diffuse scattering. The results reveal little temperature dependence of the phonon frequencies, thus indicating that kinetic phonon softening is not responsible for this phase transition.

  18. Soft Phonons in (delta)-Phase Plutonium Near the (delta)-(alpha)' Transition

    SciTech Connect

    Xu, R; Wong, J; Zshack, P; Hong, H; Chiang, T

    2007-09-13

    Plutonium and its alloys exhibit complex phase diagrams that imply anomalous lattice dynamics near phase stability boundaries. Specifically, the TA [111] phonon branch in Ga-stabilized {delta}-Pu at room temperature shows a pronounced soft mode at the zone boundary, which suggests a possible connection to the martensitic transformation from the fcc {delta}-phase to the monoclinic {alpha}{prime}-phase at low temperatures. This work is a study of the lattice dynamics of this system by x-ray thermal diffuse scattering. The results reveal little temperature dependence of the phonon frequencies, thus indicating that kinetic phonon softening is not responsible for this phase transition.

  19. Plutonium dioxide dissolution in glass

    SciTech Connect

    Vienna, J.D.; Alexander, D.L.; Li, Hong

    1996-09-01

    In the aftermath of the Cold War, the U.S. Department of Energy`s (DOE) Office of Fissile Materials Disposition (OFMD) is charged with providing technical support for evaluation of disposition options for excess fissile materials manufactured for the nation`s defense. One option being considered for the disposition of excess plutonium (Pu) is immobilization by vitrification. The vitrification option entails immobilizing Pu in a host glass and waste package that are criticality-safe (immune to nuclear criticality), proliferation-resistant, and environmentally acceptable for long-term storage or disposal. To prove the technical and economic feasibility of candidate vitrification options it is necessary to demonstrate that PuO{sub 2} feedstock can be dissolved in glass in sufficient quantity. The OFMD immobilization program has set a Pu solubility goal of 10 wt% in glass. The life cycle cost of the vitrification options are strongly influenced by the rate at which PUO{sub 2} dissolves in glass. The total number of process lines needed for vitrification of 50 t of Pu in 10 years is directly dependent upon the time required for Pu dissolution in glass. The objective of this joint Pacific Northwest National Laboratory (PNNL) - Savannah River Technology Center (SRTC) study was to demonstrate a high Pu solubility in glass and to identify on a rough scale the time required for Pu dissolution in the glass. This study was conducted using a lanthanide borosilicate (LaBS) glass composition designed at the SRTC for the vitrification of actinides.

  20. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1963-02-26

    A brazing alloy which, in the molten state, is characterized by excellent wettability and flowability, said alloy being capable of forming a corrosion resistant brazed joint wherein at least one component of said joint is graphite and the other component is a corrosion resistant refractory metal, said alloy consisting essentially of 20 to 50 per cent by weight of gold, 20 to 50 per cent by weight of nickel, and 15 to 45 per cent by weight of molybdenum. (AEC)

  1. VANADIUM ALLOYS

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  2. Preserving Plutonium-244 as a National Asset

    SciTech Connect

    Patton, Bradley D; Alexander, Charles W; Benker, Dennis; Collins, Emory D; Romano, Catherine E; Wham, Robert M

    2011-01-01

    Plutonium-244 (244 Pu) is an extremely rare and long-lived isotope of plutonium with a half-life of 80 million years. Measureable amounts of 244 Pu are found in neither reactor-grade nor weapons-grade plutonium. Production of this isotope requires a very high thermal flux to permit the two successive neutron captures that convert 242 Pu to 243 Pu to 244 Pu, particularly given the short (about 5 hour) half-life of 243 Pu. Such conditions simply do not exist in plutonium production processes. Therefore, 244 Pu is ideal for precise radiochemical analyses measuring plutonium material properties and isotopic concentrations in items containing plutonium. Isotope dilution mass spectrometry is about ten times more sensitive when using 244 Pu rather than 242 Pu for determining plutonium isotopic content. The isotope can also be irradiated in small quantities to produce superheavy elements. The majority of the existing global inventory of 244 Pu is contained in the outer housing of Mark-18A targets at the Savannah River Site (SRS). The total inventory is about 20 grams of 244 Pu in about 400 grams of plutonium distributed among the 65 targets. Currently, there are no specific plans to preserve these targets. Although the cost of separating and preserving this material would be considerable, it is trivial in comparison to new production costs. For all practical purposes, the material is irreplaceable, because new production would cost billions of dollars and require a series of irradiation and chemical separation cycles spanning up to 50 years. This paper will discuss a set of options for overcoming the significant challenges to preserve the 244 Pu as a National Asset: (1) the need to relocate the material from SRS in a timely manner, (2) the need to reduce the volume of material to the extent possible for storage, and (3) the need to establish an operational capability to enrich the 244 Pu in significant quantities. This paper suggests that if all the Mark-18A plutonium is

  3. Plutonium Chemistry in the UREX+ Separation Processes

    SciTech Connect

    ALena Paulenova; George F. Vandegrift, III; Kenneth R. Czerwinski

    2009-10-01

    The project "Plutonium Chemistry in the UREX+ Separation Processes” is led by Dr. Alena Paulenova of Oregon State University under collaboration with Dr. George Vandegrift of ANL and Dr. Ken Czerwinski of the University of Nevada at Las Vegas. The objective of the project is to examine the chemical speciation of plutonium in UREX+ (uranium/tributylphosphate) extraction processes for advanced fuel technology. Researchers will analyze the change in speciation using existing thermodynamics and kinetic computer codes to examine the speciation of plutonium in aqueous and organic phases. They will examine the different oxidation states of plutonium to find the relative distribution between the aqueous and organic phases under various conditions such as different concentrations of nitric acid, total nitrates, or actinide ions. They will also utilize techniques such as X-ray absorbance spectroscopy and small-angle neutron scattering for determining plutonium and uranium speciation in all separation stages. The project started in April 2005 and is scheduled for completion in March 2008.

  4. Dispersion of plutonium from contaminated pond sediments

    USGS Publications Warehouse

    Rees, T.F.; Cleveland, J.M.; Carl, Gottschall W.

    1978-01-01

    Sediment-water distributions of plutonium as a function of pH and contact time are investigated in a holding pond at the Rocky Flats plant of the Department of Energy. Although plutonium has been shown to sorb from natural waters onto sediments, the results of this study indicate that under the proper conditions it can be redispersed at pH 9 and above. Concentrations greater than 900 pCi Pu/L result after 34 h contact at pH 11 or 12 and the distribution coefficient, defined as the ratio of concentration in the sediment to that in the liquid, decreases from 1.1 ?? 105 at pH 7 to 1.2 ?? 103 at pH 11. The plutonium is probably dispersed as discrete colloids or as hydrolytic species adsorbed onto colloidal sediment particles whose average size decreases with increasing pH above pH 9. About 5% of the total plutonium is dispersed at pH 12, and the dispersion seems to readsorb on the sediment with time. Consequently, migration of plutonium from the pond should be slow, and it would be difficult to remove this element completely from pond sediment by leaching with high pH solutions. ?? 1978 American Chemical Society.

  5. 16. VIEW OF GLOVE BOX WORKSTATIONS WITHIN THE PLUTONIUM BUTTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF GLOVE BOX WORKSTATIONS WITHIN THE PLUTONIUM BUTTON BREAKOUT ROOM. (9/82) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  6. 17. VIEW OF THE FIRST PLUTONIUM BUTTON PRODUCED FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF THE FIRST PLUTONIUM BUTTON PRODUCED FROM THE BUILDING 371 AQUEOUS RECOVERY OPERATION. (9/30/83) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  7. The Optimum Plutonium Fuel Form in Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Tulenko, James S.; Savela, Michael; Gueorguiev, Gueorgui

    2003-07-01

    The University of Florida has underway a research program to validate the benefits of developing a Pu/ZrH/U matrix fuel for the irradiation of the U.S. weapons plutonium and European reprocessed plutonium from an economic, operational, and performance basis. Thermal reactors using plutonium as a fuel are inherently undermoderated because of the large absorption cross sections of plutonium and the presence of large absorption resonances for plutonium in the thermal and near-thermal energy ranges. The use of the proven TRIGA ZrHx-based fuel with plutonium has shown an extremely large (>20%) increase in reactivity over the conventional UO2/PuO2 fuel form currently being considered, with an additional major increase in the destruction of plutonium, rendering it an extremely attractive fuel form for plutonium disposition.

  8. PROCESS OF ELIMINATING HYDROGEN PEROXIDE IN SOLUTIONS CONTAINING PLUTONIUM VALUES

    DOEpatents

    Barrick, J.G.; Fries, B.A.

    1960-09-27

    A procedure is given for peroxide precipitation processes for separating and recovering plutonium values contained in an aqueous solution. When plutonium peroxide is precipitated from an aqueous solution, the supernatant contains appreciable quantities of plutonium and peroxide. It is desirable to process this solution further to recover plutonium contained therein, but the presence of the peroxide introduces difficulties; residual hydrogen peroxide contained in the supernatant solution is eliminated by adding a nitrite or a sulfite to this solution.

  9. COLUMBIC OXIDE ADSORPTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM IONS

    DOEpatents

    Beaton, R.H.

    1959-07-14

    A process is described for separating plutonium ions from a solution of neutron irradiated uranium in which columbic oxide is used as an adsorbert. According to the invention the plutonium ion is selectively adsorbed by Passing a solution containing the plutonium in a valence state not higher than 4 through a porous bed or column of granules of hydrated columbic oxide. The adsorbed plutonium is then desorbed by elution with 3 N nitric acid.

  10. REVIEW OF PLUTONIUM OXIDATION LITERATURE

    SciTech Connect

    Korinko, P.

    2009-11-12

    A brief review of plutonium oxidation literature was conducted. The purpose of the review was to ascertain the effect of oxidation conditions on oxide morphology to support the design and operation of the PDCF direct metal oxidation (DMO) furnace. The interest in the review was due to a new furnace design that resulted in oxide characteristics that are different than those of the original furnace. Very little of the published literature is directly relevant to the DMO furnace operation, which makes assimilation of the literature data with operating conditions and data a convoluted task. The oxidation behavior can be distilled into three regimes, a low temperature regime (RT to 350 C) with a relatively slow oxidation rate that is influenced by moisture, a moderate temperature regime (350-450 C) that is temperature dependent and relies on more or less conventional oxidation growth of a partially protective oxide scale, and high temperature oxidation (> 500 C) where the metal autocatalytically combusts and oxidizes. The particle sizes obtained from these three regimes vary with the finest being from the lowest temperature. It is surmised that the slow growth rate permits significant stress levels to be achieved that help break up the oxides. The intermediate temperatures result in a fairly compact scale that is partially protective and that grows to critical thickness prior to fracturing. The growth rate in this regime may be parabolic or paralinear, depending on the oxidation time and consequently the oxide thickness. The high temperature oxidation is invariant in quiescent or nearly quiescent conditions due to gas blanketing while it accelerates with temperature under flowing conditions. The oxide morphology will generally consist of fine particles (<15 {micro}m), moderately sized particles (15 < x < 250 {micro}m) and large particles (> 250 {micro}m). The particle size ratio is expected to be < 5%, 25%, and 70% for fine, medium and large particles, respectively, for