Science.gov

Sample records for plutonium alloys

  1. PLUTONIUM ALLOYS

    DOEpatents

    Chynoweth, W.

    1959-06-16

    The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

  2. PLUTONIUM-THORIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.

    1959-09-15

    New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.

  3. DELTA PHASE PLUTONIUM ALLOYS

    DOEpatents

    Cramer, E.M.; Ellinger, F.H.; Land. C.C.

    1960-03-22

    Delta-phase plutonium alloys were developed suitable for use as reactor fuels. The alloys consist of from 1 to 4 at.% zinc and the balance plutonium. The alloys have good neutronic, corrosion, and fabrication characteristics snd possess good dimensional characteristics throughout an operating temperature range from 300 to 490 deg C.

  4. PLUTONIUM-ZIRCONIUM ALLOYS

    DOEpatents

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  5. PLUTONIUM-CERIUM ALLOY

    DOEpatents

    Coffinberry, A.S.

    1959-01-01

    An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.

  6. PLUTONIUM-URANIUM ALLOY

    DOEpatents

    Coffinberry, A.S.; Schonfeld, F.W.

    1959-09-01

    Pu-U-Fe and Pu-U-Co alloys suitable for use as fuel elements tn fast breeder reactors are described. The advantages of these alloys are ease of fabrication without microcracks, good corrosion restatance, and good resistance to radiation damage. These advantages are secured by limitation of the zeta phase of plutonium in favor of a tetragonal crystal structure of the U/sub 6/Mn type.

  7. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  8. PLUTONIUM-CERIUM-COPPER ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-05-12

    A low melting point plutonium alloy useful as fuel is a homogeneous liquid metal fueled nuclear reactor is described. Vessels of tungsten or tantalum are useful to contain the alloy which consists essentially of from 10 to 30 atomic per cent copper and the balance plutonium and cerium. with the plutontum not in excess of 50 atomic per cent.

  9. TERNARY ALLOY-CONTAINING PLUTONIUM

    DOEpatents

    Waber, J.T.

    1960-02-23

    Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

  10. PLUTONIUM-CERIUM-COBALT AND PLUTONIUM-CERIUM-NICKEL ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-08-25

    >New plutonium-base teroary alloys useful as liquid reactor fuels are described. The alloys consist of 10 to 20 atomic percent cobalt with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 88 atomic percent; or, of from 10 to 25 atomic percent nickel (or mixture of nickel and cobalt) with the remainder plutonium and cerium in any desired proportion, with the plutonium not in excess of 86 atomic percent. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are a lower melting point and a wide range of permissible plutonium dilution.

  11. METHOD FOR OBTAINING PLUTONIUM METAL AND ALLOYS OF PLUTONIUM FROM PLUTONIUM TRICHLORIDE

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Maraman, W.J.

    1962-11-13

    A process is given for both reducing plutonium trichloride to plutonium metal using cerium as the reductant and simultaneously alloying such plutonium metal with an excess of cerium or cerium and cobalt sufficient to yield the desired nuclear reactor fuel composition. The process is conducted at a temperature from about 550 to 775 deg C, at atmospheric pressure, without the use of booster reactants, and a substantial decontamination is effected in the product alloy of any rare earths which may be associated with the source of the plutonium. (AEC)

  12. Real-time monitoring of plutonium content in uranium-plutonium alloys

    SciTech Connect

    Li, Shelly Xiaowei; Westphal, Brian Robert; Herrmann, Steven Douglas

    2015-09-01

    A method and device for the real-time, in-situ monitoring of Plutonium content in U--Pu Alloys comprising providing a crucible. The crucible has an interior non-reactive to a metallic U--Pu alloy within said interior of said crucible. The U--Pu alloy comprises metallic uranium and plutonium. The U--Pu alloy is heated to a liquid in an inert or reducing atmosphere. The heated U--Pu alloy is then cooled to a solid in an inert or reducing atmosphere. As the U--Pu alloy is cooled, the temperature of the U--Pu alloy is monitored. A solidification temperature signature is determined from the monitored temperature of the U--Pu alloy during the step of cooling. The amount of Uranium and the amount of Plutonium in the U--Pu alloy is then determined from the determined solidification temperature signature.

  13. PLUTONIUM ALLOYS CONTAINING CONTROLLED AMOUNTS OF PLUTONIUM ALLOTROPES OBTAINED BY APPLICATION OF HIGH PRESSURES

    DOEpatents

    Elliott, R.O.; Gschneidner, K.A. Jr.

    1962-07-10

    A method of making stabilized plutonium alloys which are free of voids and cracks and have a controlled amount of plutonium allotropes is described. The steps include adding at least 4.5 at.% of hafnium, indium, or erbium to the melted plutonium metal, homogenizing the resulting alloy at a temperature of 450 deg C, cooling to room temperature, and subjecting the alloy to a pressure which produces a rapid increase in density with a negligible increase in pressure. The pressure required to cause this rapid change in density or transformation ranges from about 800 to 2400 atmospheres, and is dependent on the alloying element. (AEC)

  14. Spiked Alloy Production for Accelerated Aging of Plutonium

    SciTech Connect

    Wilk, P A; McNeese, J A; Dodson, K E; Williams, W L; Krikorian, O H; Blau, M S; Schmitz, J E; Bajao, F G; Mew, D A; Matz, T E; Torres, R A; Holck, D M; Moody, K J; Kenneally, J M

    2009-07-10

    The accelerated aging effects on weapons grade plutonium alloys are being studied using {sup 238}Pu-enriched plutonium metal to increase the rate of formation of defect structures. Pyrochemical processing methods have been used to produce two {sup 238}Pu-spiked plutonium alloys with nominal compositions of 7.5 wt% {sup 238}Pu. Processes used in the preparation of the alloys include direct oxide reduction of PuO{sub 2} with calcium and electrorefining. Rolled disks were prepared from the spiked alloys for sampling. Test specimens were cut out of the disks for physical property measurements.

  15. Plutonium microstructures. Part 2. Binary and ternary alloys

    SciTech Connect

    Cramer, E.M.; Bergin, J.B.

    1983-12-01

    This report is the second of three parts that exhibit illustrations of inclusions in plutonium metal from inherent and tramp impurities, of intermetallic and nonmetallic constituents from alloy additions, and of the effects of thermal and mechanical treatments. This part includes illustrations of the microstructures in binary cast alloys and a few selected ternary alloys that result from measured additions of diluent elements, and of the microconstituents that are characteristic of phase fields in extended alloy systems. Microhardness data are given and the etchant used in the preparation of each sample is described.

  16. Thermodynamics and Structure of Plutonium Alloys

    SciTech Connect

    Allen, P G; Turchi, P A; Gallegos, G F

    2004-01-30

    The goal of this project was to investigate the chemical and structural effects of gallium and impurity elements, iron and nickel, on the phase behavior and crystallography of Pu-Ga alloys. This was done utilizing a theoretical chemical approach to predict binary and ternary alloy energetics, phase stability, and transformations. The modeling results were validated with experimental data derived from the synthesis of selected alloys and advanced characterization tools. The ultimate goal of this work was to develop a robust predictive capability for studying the thermodynamics and the structure-properties relationships in complex materials of high relevance to the Laboratory and DOE mission.

  17. Effects of self-irradiation in plutonium alloys

    DOE PAGESBeta

    Chung, B. W.; Lema, K. E.; Allen, P. G.

    2015-09-16

    In this paper, we present updated results of self-irradiation effects on 238Pu-enriched 239Pu alloys measured by immersion density, dilatometry, and tensile tests. We obtained the self-irradiation equivalent time of nearly 200 years, nearly 100 years longer than in our previous papers. At this extended aging, we find the rate of decrease in density has slowed significantly, stabilizing around 15.73 g/cc, without signs of void swelling. The volume expansion measured at 35°C also shows apparent saturation at less than 0.25%. Quasi-static tensile measurement still show gradual increase in the strength of plutonium alloys with age.

  18. Distillation of cadmium from uranium plutonium cadmium alloy

    NASA Astrophysics Data System (ADS)

    Kato, Tetsuya; Iizuka, Masatoshi; Inoue, Tadashi; Iwai, Takashi; Arai, Yasuo

    2005-04-01

    Uranium-plutonium alloy was prepared by distillation of cadmium from U-Pu-Cd ternary alloy. The initial ternary alloy contained 2.9 wt% U and 8.7 wt% Pu other than Cd, which were recovered by molten salt electrolysis with liquid Cd cathode. The distillation experiments were conducted in 10 g scale of the initial alloy using a small-scale distillation furnace equipped with an evaporator and a condenser in a vacuum vessel. After distillation at 1073 K, the weight of the residue was in good agreement with that of the loaded actinides, where the content of Cd decreased to less than 0.05 wt%. The uranium-plutonium alloy product was recovered without adhering to the yttria crucible. The cross section of the product was observed using electron probe micro-analyzer and it was found to consist of a dense material. Almost all of the evaporated Cd was recovered in the condenser and so enclosed well in the apparatus.

  19. Effects of self-irradiation in plutonium alloys

    NASA Astrophysics Data System (ADS)

    Chung, B. W.; Lema, K. E.; Allen, P. G.

    2016-04-01

    In this paper, we present updated results of self-irradiation effects on 238Pu-enriched 239Pu alloys measured by immersion density, dilatometry, and tensile tests. We obtained the self-irradiation equivalent time of nearly 200 years, nearly 100 years longer than in our previous papers. At this extended aging, we find the rate of decrease in density has slowed significantly, stabilizing around 15.73 g/cc, without signs of void swelling. The volume expansion measured at 35 °C also shows apparent saturation at less than 0.25%. Quasi-static tensile measurement still show gradual increase in the strength of plutonium alloys with age.

  20. Effects of self-irradiation in plutonium alloys

    SciTech Connect

    Chung, B. W.; Lema, K. E.; Allen, P. G.

    2015-09-16

    In this paper, we present updated results of self-irradiation effects on 238Pu-enriched 239Pu alloys measured by immersion density, dilatometry, and tensile tests. We obtained the self-irradiation equivalent time of nearly 200 years, nearly 100 years longer than in our previous papers. At this extended aging, we find the rate of decrease in density has slowed significantly, stabilizing around 15.73 g/cc, without signs of void swelling. The volume expansion measured at 35°C also shows apparent saturation at less than 0.25%. Quasi-static tensile measurement still show gradual increase in the strength of plutonium alloys with age.

  1. The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal

    SciTech Connect

    Richmond, Scott; Bridgewater, Jon S; Ward, John W; Allen, Thomas A

    2009-01-01

    Pressure-Composition-Temperature (PCT) data are presented for the plutonium-hydrogen (Pu-H) and plutonium-deuterium (Pu-D) systems in the solubility region up to terminal solubility (precipitation of PuH{sub 2}). The heats of solution for PuH{sub s} and PuD{sub s} are determined from PCT data in the ranges 350-625 C for gallium alloyed Pu and 400-575 C for unalloyed Pu. The solubility of high purity plutonium alloyed with 2 at.% gallium is compared to high purity unalloyed plutonium. Significant differences are found in hydrogen solubility for unalloyed Pu versus gallium alloyed Pu. Differences in hydrogen solubility due to an apparent phase change are observable in the alloyed and unalloyed solubilities. The effect of iron impurities on Pu-Ga alloyed Pu is shown via hydrogen solubility data as preventing complete homogenization.

  2. In situ purification, alloying and casting methodology for metallic plutonium

    NASA Astrophysics Data System (ADS)

    Lashley, Jason C.; Blau, Michael S.; Staudhammer, Karl P.; Pereyra, Ramiro A.

    Plutonium metal that has been double ER (electrorefined/electrorefining) was further purified via zone refining, using a floating molten zone to minimize the introduction of impurities. The temperature of the molten zone was 750°C, and the atmosphere was 10 -5 Pa. A total of ten zone refining passes were made at a travel rate of 1.5 cm/h. There were 19 elements reduced to quantities below the minimum detectable limits (MDL) by zone refining, while P, K, and W were significantly reduced. The zone-refined metal was then used in an in situ distillation, alloying, and casting step to prepare tapered specimens for single-crystal growth experiments. Specifically, 241Am was distilled from Pu metal by levitating Pu metal with 1 wt% Ga in the melt in a Crystallox vertical electromagnetic levitation crucible at 10 -5 Pa. The Pu is alloyed with Ga to stabilize the δ phase (fcc symmetry) upon solidification. The Pu was chill-cast directly from the electromagnetic levitation field into 1- cm tapered specimens. A water-cooled ceramic mold was used, and the Pu metal was cooled at a rate of 100°C/min. A microstructure examination of the specimen showed 10 × 25 μm acicular grains with a density of 15.938 g/cm 3 (±0.002 g/cm 3).

  3. Plutonium and americium recovery from spent molten-salt-extraction salts with aluminum-magnesium alloys

    SciTech Connect

    Cusick, M.J.; Sherwood, W.G.; Fitzpatrick, R.F.

    1984-04-23

    Development work was performed to determine the feasibility of removing plutonium and americium from spent molten-salt-extraction (MSE) salts using Al-Mg alloys. If the product buttons from this process are compatible with subsequent aqueous processing, the complex chloride-to-nitrate aqueous conversion step which is presently required for these salts may be eliminated. The optimum alloy composition used to treat spent 8 wt % MSE salts in the past yielded poor phase-disengagement characteristics when applied to 30 mol % salts. After a limited investigation of other alloy compositions in the Al-Mg-Pu-Am system, it was determined that the Al-Pu-Am system could yield a compatible alloy. In this system, experiments were performed to investigate the effects of plutonium loading in the alloy, excess magnesium, age of the spent salt on actinide recovery, phase disengagement, and button homogeneity. Experimental results indicate that 95 percent plutonium recoveries can be attained for fresh salts. Further development is required for backlog salts generated prior to 1981. A homogeneous product alloy, as required for aqueous processing, could not be produced.

  4. Properties of plutonium and its alloys for use as fast reactor fuels

    NASA Astrophysics Data System (ADS)

    Hecker, Siegfried S.; Stan, Marius

    2008-12-01

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher melting U-Pu-Zr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  5. METHOD OF MAKING ALLOYS OF BERYLLIUM WITH PLUTONIUM AND THE LIKE

    DOEpatents

    Runnals, O.J.C.

    1959-02-24

    The production of alloys of beryllium with one or more of the metals uranium, plutonium, actinium, americium, curium, thorium, and cerium are described. A halide salt of the metal to be alloyed with the beryllium is heated at 1300 deg C in the presence of beryllium to reduce the halide to metal and cause the latter to alloy directly with the beryllium. Although the heavy metal halides are more stable, thermodynamically, than the beryllium halides, the reducing reaction proceeds to completion if the beryllium halide product is continuously removed by vacuum distillation.

  6. Method of making alloys of beryllium with plutonium and the like

    DOEpatents

    Runnals, O J.C.

    1959-02-24

    The production or alloys of beryllium with one or more of the metals uranium, plutonium, actinium, americium, curium, thorium, and cerium is described. A halide salt or the metal to be alloyed with the beryllium is heated at l3O0 deg C in the presence of beryllium to reduce the halide to metal and cause the latter to alloy directly with the beryllium. Although the heavy metal halides are more stable, thermodynamically, than the beryllium halides, the reducing reaction proceeds to completion if the beryllium halide product is continuously removed by vacuum distillation.

  7. Plutonium

    NASA Astrophysics Data System (ADS)

    Clark, David L.; Hecker, Siegfried S.; Jarvinen, Gordon D.; Neu, Mary P.

    The element plutonium occupies a unique place in the history of chemistry, physics, technology, and international relations. After the initial discovery based on submicrogram amounts, it is now generated by transmutation of uranium in nuclear reactors on a large scale, and has been separated in ton quantities in large industrial facilities. The intense interest in plutonium resulted fromthe dual-use scenario of domestic power production and nuclear weapons - drawing energy from an atomic nucleus that can produce a factor of millions in energy output relative to chemical energy sources. Indeed, within 5 years of its original synthesis, the primary use of plutonium was for the release of nuclear energy in weapons of unprecedented power, and it seemed that the new element might lead the human race to the brink of self-annihilation. Instead, it has forced the human race to govern itself without resorting to nuclear war over the past 60 years. Plutonium evokes the entire gamut of human emotions, from good to evil, from hope to despair, from the salvation of humanity to its utter destruction. There is no other element in the periodic table that has had such a profound impact on the consciousness of mankind.

  8. PRODUCTION OF PLUTONIUM METAL

    DOEpatents

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  9. Plutonium Immobilization Task 5.6 Metal Conversion: Milestone Report - Perform Feasibility Demonstrations on Pu-Al Alloys

    SciTech Connect

    Zundelevich, Y; Kerns, J; Bannochie, C

    2001-04-12

    The Plutonium Conversion Task within the Plutonium Immobilization Program (PIP) transforms incoming plutonium (Pu) feed materials into an oxide acceptable for blending with ceramic precursors. One of the feed materials originally planned for PIP was unirradiated fuel, which consisted mainly of the Zero Power Plutonium Reactor (ZPPR) fuel. Approximately 3.5 metric tons of Pu is in ZPPR fuel. The ZPPR fuel is currently stored at the Argonne National Laboratory-West as stainless steel clad metal plates and oxide pellets, with the vast majority of the Pu in the metal plates. The metal plates consist of a Pu-U-Mo alloy (containing 90% of the ZPPR plutonium metal) and a Pu-Al alloy (containing 10% of the ZPPR plutonium metal). The Department of Energy (DOE) decided that ZPPR fuel is a national asset and, therefore, not subject to disposition. This report documents work done prior to that decision. The Hydnde-Oxidation (HYDOX) Process was selected as the method for Metal Conversion in PIP because it provides a universal means for preparing oxide from all feed materials. HYDOX incorporates both the hydride process, originally developed to separate Pu from other pit materials, as well as the oxide formation step. Plutonium hydride is very reactive and is readily converted to either the nitride or the oxide. A previous feasibility study demonstrated that the Pu-U-Mo alloy could be successfully converted to oxide via the HYDOX Process. Another Metal Conversion milestone was to demonstrate the feasibility of the HYDOX Process for converting plutonium-aluminum (Pu-Al) alloy in ZPPR fuel plates to an acceptable oxide. This report documents the results of the latter feasibility study which was performed before the DOE decision to retain ZPPR fuel rather than immobilize it.

  10. Strength and fracture of uranium, plutonium and several their alloys under shock wave loading

    NASA Astrophysics Data System (ADS)

    Golubev, V. K.

    2012-08-01

    Results on studying the spall fracture of uranium, plutonium and several their alloys under shock wave loading are presented in the paper. The problems of influence of initial temperature in a range of - 196 - 800∘C and loading time on the spall strength and failure character of uranium and two its alloys with molybdenum and both molybdenum and zirconium were studied. The results for plutonium and its alloy with gallium were obtained at a normal temperature and in a temperature range of 40-315∘C, respectively. The majority of tests were conducted with the samples in the form of disks 4 mm in thickness. They were loaded by the impact of aluminum plates 4 mm thick through a copper screen 12 mm thick serving as the cover or bottom part of a special container. The character of spall failure of materials and the damage degree of samples were observed on the longitudinal metallographic sections of recovered samples. For a concrete test temperature, the impact velocity was sequentially changed and therefore the loading conditions corresponding to the consecutive transition from microdamage nucleation up to complete macroscopic spall fracture were determined. The conditions of shock wave loading were calculated using an elastic-plastic computer program. The comparison of obtained results with the data of other researchers on the spall fracture of examined materials was conducted.

  11. Spall fracture and strength of uranium, plutonium and their alloys under shock wave loading

    NASA Astrophysics Data System (ADS)

    Golubev, Vladimir

    2015-06-01

    Numerous results on studying the spall fracture phenomenon of uranium, two its alloys with molybdenum and zirconium, plutonium and its alloy with gallium under shock wave loading are presented in the paper. The majority of tests were conducted with the samples in the form of disks 4mm in thickness. They were loaded by the impact of aluminum plates 4mm thick through a copper screen serving as the cover or bottom part of a special container. The initial temperature of samples was changed in the range of -196 - 800 C degree for uranium and 40 - 315 C degree for plutonium. The character of spall failure of materials and the degree of damage for all tested samples were observed on the longitudinal metallographic sections of recovered samples. For a concrete test temperature, the impact velocity was sequentially changed and therefore the loading conditions corresponding to the consecutive transition from microdamage nucleation up to complete macroscopic spall fracture were determined. Numerical calculations of the conditions of shock wave loading and spall fracture of samples were performed in the elastoplastic approach. Several two- and three-dimensional effects of loading were taken into account. Some results obtained under conditions of intensive impulse irradiation and intensive explosive loading are presented too. The rather complete analysis and comparison of obtained results with the data of other researchers on the spall fracture of examined materials were conducted.

  12. Ab initio study of gallium stabilized δ-plutonium alloys and hydrogen-vacancy complexes.

    PubMed

    Hernandez, Sarah C; Schwartz, Daniel S; Taylor, Christopher D; Ray, Asok K

    2014-06-11

    All-electron density functional theory was used to investigate δ-plutonium (δ-Pu) alloyed with gallium (Ga) impurities at 3.125, 6.25, 9.375 atomic (at)% Ga concentrations. The results indicated that the lowest energy structure is anti-ferromagnetic, independent of the Ga concentration. At higher Ga concentrations (>3.125 at%), the position of the Ga atoms are separated by four nearest neighbor Pu-Pu shells. The results also showed that the lattice constant contracts with increasing Ga concentration, which is in agreement with experimental data. Furthermore with increasing Ga concentration, the face-centered-cubic structure becomes more stably coupled with increasing short-range disorder. The formation energies show that the alloying process is exothermic, with an energy range of -0.028 to -0.099 eV/atom. The analyses of the partial density of states indicated that the Pu-Ga interactions are dominated by Pu 6d and Ga 4p hybridizations, as well as Ga 4s-4p hybridizations. Finally, the computed formation energies for vacancy and hydrogen-vacancy complexes within the 3.125 at% Ga cell were 1.12 eV (endothermic) and -3.88 eV (exothermic), respectively. In addition, the hydrogen atom prefers to interact much more strongly to the Pu atom than the Ga atom in the hydrogen-vacancy complex. PMID:24832613

  13. Atomistic model of helium bubbles in gallium-stabilized plutonium alloys

    SciTech Connect

    Valone, S. M.; Baskes, M. I.; Martin, R. L.

    2006-06-01

    The varying thermodynamic stability of gallium- (Ga-) stabilized plutonium (Pu) alloys with temperature affords a unique setting for the development of self-irradiation damage. Here, fundamental characteristics of helium (He) bubbles in these alloys with respect to temperature, gallium concentration, and He-to-vacancy ratio are modeled at the atomistic level with a modified embedded atom potential that takes account of this varying stability. Aside from the bubbles themselves, the surrounding matrix material is single-crystal metal or alloy. As a function of temperature, with a 2:1 He-to-vacancy ratio in a 5-at. % Ga fcc lattice, a 1.25-nm bubble is very stable up to about 1000 K. At 1000 K, the bubble distorts the surrounding lattice and precipitates a liquid zone, as is consistent with the phase diagram for the model material. Between 300 and 500 K, this same bubble relaxes slightly through interstitial emission. At 300 K, with a 2:1 He-to-vacancy ratio in a 2.5-at. % Ga fcc lattice, the Ga stabilization is less effective in the model to the point where the bubble distorts the local lattice and expands significantly. Similarly, at 300 K, if the He-to-vacancy ratio is increased to 3:1, there is significant local lattice distortion, as well as ejection of some He atoms into the lattice. The formation of new bubbles is not observed, because those events take place on a longer time scale than can be simulated with the present approach.

  14. Temperature and concentration dependences of the electrical resistivity for alloys of plutonium with americium under normal conditions

    SciTech Connect

    Tsiovkin, Yu. Yu. Povzner, A. A.; Tsiovkina, L. Yu.; Dremov, V. V.; Kabirova, L. R.; Dyachenko, A. A.; Bystrushkin, V. B.; Ryabukhina, M. V.; Lukoyanov, A. V.; Shorikov, A. O.

    2010-01-15

    The temperature and concentration dependences of the electrical resistivity for alloys of americium with plutonium are analyzed in terms of the multiband conductivity model for binary disordered substitution-type alloys. For the case of high temperatures (T > {Theta}{sub D}, {Theta}{sub D} is the Debye temperature), a system of self-consistent equations of the coherent potential approximation has been derived for the scattering of conduction electrons by impurities and phonons without any constraints on the interaction intensity. The definitions of the shift and broadening operator for a single-electron level are used to show qualitatively and quantitatively that the pattern of the temperature dependence of the electrical resistivity for alloys is determined by the balance between the coherent and incoherent contributions to the electron-phonon scattering and that the interference conduction electron scattering mechanism can be the main cause of the negative temperature coefficient of resistivity observed in some alloys involving actinides. It is shown that the great values of the observed resistivity may be attributable to interband transitions of charge carriers and renormalization of their effective mass through strong s-d band hybridization. The concentration and temperature dependences of the resistivity for alloys of plutonium and americium calculated in terms of the derived conductivity model are compared with the available experimental data.

  15. THERMODYNAMICS AND KINETICS OF PHASE TRANSFORMATIONS IN PLUTONIUM ALLOYS - PART I

    SciTech Connect

    Turchi, P A; Kaufman, L; Liu, Z; Zhou, S

    2004-08-18

    In this report we investigate order, stability, and phase transformations for a series of actinide-based alloys. The statics and kinetics of precipitation and ordering in this class of alloys are modeled with a scheme that couples fundamental information on the alloy energetics obtained from experimental and assessed thermo-chemical data to the CALPHAD approach commonly used in industry for designing alloys with engineering specificity with the help of the Thermo-Calc software application. The CALPHAD approach is applied to the study of the equilibrium thermodynamic properties of Pu-based alloys, Pu-X, where X=Al, Fe, Ga. The assessment of the equilibrium phase diagrams in the whole range of alloy composition has been performed with the PARROT module of the Thermo-Calc application software. Predictions are made on the low temperature and Pu-rich side of the phase diagrams of Pu-Ga and Pu-Al for which controversy has been noted in the past. The validity of the assessed thermo-chemical database will be discussed by comparing predicted heats of transformation for pure Pu with measured values from differential scanning calorimetry analysis. An overall picture for the stability properties of Pu-Ga and Pu-Al that reconciles the results of past studies carried out on these alloys is proposed. Results on phase stability in the ternary Fe-Ga-Pu and Al-Fe-Pu alloys are discussed. The information collected in this study is then used to model metastability, long-term stability and aging for this class of alloys by coupling Thermo-Calc with DICTRA, a series of modules that allow the analysis of DIffusion Controlled TRAnsformations. Kinetics information is then summarized in so-called TTT (temperature-time-transformations) diagrams for the most relevant phases of actinide alloys. Specifically, results are presented on kinetics of phase transformations associated with the eutectoid-phase decomposition reaction occurring at low temperature, and with the martensitic transformation

  16. ISOTHERMAL (DELTA)/(ALPHA-PRIME) TRANSFORMATION AND TTT DIAGRAM IN A PLUTONIUM GALLIUM ALLOY

    SciTech Connect

    Oudot, B P; Blobaum, K M; Wall, M A; Schwartz, A J

    2005-11-11

    Differential scanning calorimetry (DSC) is used as an alternative approach to determining the tine-temperature-transformation (TTT) diagram for the martensitic delta to alpha-prime transformation in a Pu-2.0 at% Ga alloy. Previous work suggests that the TTT diagram for a similar alloy exhibits an unusual double-C curve for isothermal holds of less than 100 minutes. Here, we extend this diagram to 18 hours, and confirm the double-C curve behavior. When the sample is cooled prior to the isothermal holds, the delta to alpha-prime transformation is observed as several overlapping exothermic peaks. These peaks are very reproducible, and they are believed to be the result of different kinds of delta to alpha-prime martensitic transformation. This may be due to the presence of different nucleation sites and/or different morphologies.

  17. The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal

    SciTech Connect

    Richmond, Scott; Bridgewater, Jon S; Ward, John W; Allen, Thomas H

    2010-01-01

    Hydrogen is exothermically absorbed in many transition metals, all rare earths and the actinides. The hydrogen gas adsorbs, dissociates and diffuses into these metals as atomic hydrogen. Absorbed hydrogen is generally detrimental to Pu, altering its properties and greatly enhancing corrosion. Measuring the heat of solution of hydrogen in Pu and its alloys provides significant insight into the thermodynamics driving these changes. Hydrogen is present in all Pu metal unless great care is taken to avoid it. Heats of solution and formation are provided along with evidence for spinodal decomposition.

  18. Phase Transformation Hysteresis in a Plutonium Alloy System: Modeling the Resistivity during the Transformation

    SciTech Connect

    Haslam, J J; Wall, M A; Johnson, D L; Mayhall, D J; Schwartz, A J

    2001-11-14

    We have induced, measured, and modeled the {delta}-{alpha}' martensitic transformation in a Pu-Ga alloy by a resistivity technique on a 2.8-mm diameter disk sample. Our measurements of the resistance by a 4-probe technique were consistent with the expected resistance obtained from a finite element analysis of the 4-point measurement of resistivity in our round disk configuration. Analysis by finite element methods of the postulated configuration of {alpha}' particles within model {delta} grains suggests that a considerable anisotropy in the resistivity may be obtained depending on the arrangement of the {alpha}' lens shaped particles within the grains. The resistivity of these grains departs from the series resistance model and can lead to significant errors in the predicted amount of the {alpha}' phase present in the microstructure. An underestimation of the amount of {alpha}' in the sample by 15%, or more, appears to be possible.

  19. Plutonium microstructures, part 1

    NASA Astrophysics Data System (ADS)

    Cramer, E. M.; Bergin, J. B.

    1981-09-01

    Illustrations of inclusions that are seen in plutonium metal as a consequence of inherent and tramp impurities, alloy additions, and thermal or mechanical treatments are presented. This part includes illustrations of nonmetallic and intermetallic inclusions characteristic of major impurity elements as an aid to identifying unknowns are included. Historical aspects of the increased purity of laboratory plutonium samples are described and the composition of the etchant solutions are given. The etching procedure used in the preparation of each illustrated sample is described.

  20. Plutonium microstructures. Part 1

    SciTech Connect

    Cramer, E.M.; Bergin, J.B.

    1981-09-01

    This report is the first of three parts in which Los Alamos and Lawrence Livermore National Laboratory metallographers exhibit a consolidated set of illustrations of inclusions that are seen in plutonium metal as a consequence of inherent and tramp impurities, alloy additions, and thermal or mechanical treatments. This part includes illustrations of nonmetallic and intermetallic inclusions characteristic of major impurity elements as an aid to identifying unknowns. It also describes historical aspects of the increased purity of laboratory plutonium samples, and it gives the composition of the etchant solutions and describes the etching procedure used in the preparation of each illustrated sample. 25 figures.

  1. Plutonium controversy

    SciTech Connect

    Richmond, C.R.

    1980-01-01

    The toxicity of plutonium is discussed, particularly in relation to controversies surrounding the setting of radiation protection standards. The sources, amounts of, and exposure pathways of plutonium are given and the public risk estimated. (ACR)

  2. Metastability and Delta-Phase Retention in Plutonium Alloys Final Report of LDRD Project 01-ERD-029

    SciTech Connect

    Wong, J; Schwartz, A J; Blobaum, K M; Krenn, C R; Wall, M A; Wolfer, W G; Haslam, J J; Moore, K T

    2004-02-11

    The {delta} to {alpha}' phase transformation in Pu-Ga alloys is intriguing for both scientific and technological reasons. On cooling, the ductile fcc {delta}-phase transforms martensitically to the brittle monoclinic {alpha}'-phase at approximately -120 C (depending on composition). This exothermic transformation involves a 20% volume contraction and a significant increase in resistivity. The reversion of {alpha}' to {delta} involves a large temperature hysteresis beginning just above room temperature. In an attempt to better understand the underlying thermodynamics and kinetics responsible for these unusual features, we have investigated the {delta} {leftrightarrow} {alpha}' phase transformations in a Pu-0.6 wt% Ga alloy using a combination of experimental and modeling techniques.

  3. Plutonium inventories for stabilization and stabilized materials

    SciTech Connect

    Williams, A.K.

    1996-05-01

    The objective of the breakout session was to identify characteristics of materials containing plutonium, the need to stabilize these materials for storage, and plans to accomplish the stabilization activities. All current stabilization activities are driven by the Defense Nuclear Facilities Safety Board Recommendation 94-1 (May 26, 1994) and by the recently completed Plutonium ES&H Vulnerability Assessment (DOE-EH-0415). The Implementation Plan for accomplishing stabilization of plutonium-bearing residues in response to the Recommendation and the Assessment was published by DOE on February 28, 1995. This Implementation Plan (IP) commits to stabilizing problem materials within 3 years, and stabilizing all other materials within 8 years. The IP identifies approximately 20 metric tons of plutonium requiring stabilization and/or repackaging. A further breakdown shows this material to consist of 8.5 metric tons of plutonium metal and alloys, 5.5 metric tons of plutonium as oxide, and 6 metric tons of plutonium as residues. Stabilization of the metal and oxide categories containing greater than 50 weight percent plutonium is covered by DOE Standard {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides{close_quotes} December, 1994 (DOE-STD-3013-94). This standard establishes criteria for safe storage of stabilized plutonium metals and oxides for up to 50 years. Each of the DOE sites and contractors with large plutonium inventories has either started or is preparing to start stabilization activities to meet these criteria.

  4. Plutonium aging

    SciTech Connect

    Olivas, J.D.

    1999-03-01

    The author describes the plutonium aging program at the Los Alamos National Laboratory. The aging of plutonium components in the US nuclear weapons stockpile has become a concern due to several events: the end of the cold war, the cessation of full scale underground nuclear testing as a result of the Comprehensive Test Ban Treaty (CTBT) and the closure of the Rocky Flats Plant--the site where the plutonium components were manufactured. As a result, service lifetimes for nuclear weapons have been lengthened. Dr. Olivas will present a brief primer on the metallurgy of plutonium, and will then describe the technical approach to ascertaining the long-term changes that may be attributable to self-radiation damage. Facilities and experimental techniques which are in use to study aging will be described. Some preliminary results will also be presented.

  5. Plutonium pyrophoricity

    SciTech Connect

    Stakebake, J.L.

    1992-06-02

    A review of the published literature on ignition and burning of plutonium metal was conducted in order to better define the characteristic of pyrophoric plutonium. The major parameter affecting ignition is the surface area/mass ratio of the sample. Based on this parameter, plutonium metal can be classified into four categories: (1) bulk metal, (2) film and foils, (3) chips and turnings, and (4) powder. Other parameters that can alter the ignition of the metal include experimental, chemical, physical, and environmental effects. These effects are reviewed in this report. It was concluded from this review that pyrophoric plutonium can be conservatively defined as: Plutonium metal that will ignite spontaneously in air at a temperature of 150{degrees}C or below in the absence of external heat, shock, or friction. The 150{degrees}C temperature was used to compensate for the self-heating of plutonium metal. For a practical definition of whether any given metal is pyrophoric, all of the factors affecting ignition must be considered.

  6. CONVERSION OF PLUTONIUM TRIFLUORIDE TO PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Fried, S.; Davidson, N.R.

    1957-09-10

    A large proportion of the trifluoride of plutonium can be converted, in the absence of hydrogen fluoride, to the tetrafiuoride of plutonium. This is done by heating plutonium trifluoride with oxygen at temperatures between 250 and 900 deg C. The trifiuoride of plutonium reacts with oxygen to form plutonium tetrafluoride and plutonium oxide, in a ratio of about 3 to 1. In the presence of moisture, plutonium tetrafluoride tends to hydrolyze at elevated temperatures and therefore it is desirable to have the process take place under anhydrous conditions.

  7. Zone refining of plutonium metal

    SciTech Connect

    1997-05-01

    The purpose of this study was to investigate zone refining techniques for the purification of plutonium metal. The redistribution of 10 impurity elements from zone melting was examined. Four tantalum boats were loaded with plutonium impurity alloy, placed in a vacuum furnace, heated to 700{degrees}C, and held at temperature for one hour. Ten passes were made with each boat. Metallographic and chemical analyses performed on the plutonium rods showed that, after 10 passes, moderate movement of certain elements were achieved. Molten zone speeds of 1 or 2 inches per hour had no effect on impurity element movement. Likewise, the application of constant or variable power had no effect on impurity movement. The study implies that development of a zone refining process to purify plutonium is feasible. Development of a process will be hampered by two factors: (1) the effect on impurity element redistribution of the oxide layer formed on the exposed surface of the material is not understood, and (2) the tantalum container material is not inert in the presence of plutonium. Cold boat studies are planned, with higher temperature and vacuum levels, to determine the effect on these factors. 5 refs., 1 tab., 5 figs.

  8. Plutonium story

    SciTech Connect

    Seaborg, G T

    1981-09-01

    The first nuclear synthesis and identification (i.e., the discovery) of the synthetic transuranium element plutonium (isotope /sup 238/Pu) and the demonstration of its fissionability with slow neutrons (isotope /sup 239/Pu) took place at the University of California, Berkeley, through the use of the 60-inch and 37-inch cyclotrons, in late 1940 and early 1941. This led to the development of industrial scale methods in secret work centered at the University of Chicago's Metallurgical Laboratory and the application of these methods to industrial scale production, at manufacturing plants in Tennessee and Washington, during the World War II years 1942 to 1945. The chemical properties of plutonium, needed to devise the procedures for its industrial scale production, were studied by tracer and ultramicrochemical methods during this period on an extraordinarily urgent basis. This work, and subsequent investigations on a worldwide basis, have made the properties of plutonium very well known. Its well studied electronic structure and chemical properties give it a very interesting position in the actinide series of inner transition elements.

  9. Plutonium Story

    DOE R&D Accomplishments Database

    Seaborg, G. T.

    1981-09-01

    The first nuclear synthesis and identification (i.e., the discovery) of the synthetic transuranium element plutonium (isotope /sup 238/Pu) and the demonstration of its fissionability with slow neutrons (isotope /sup 239/Pu) took place at the University of California, Berkeley, through the use of the 60-inch and 37-inch cyclotrons, in late 1940 and early 1941. This led to the development of industrial scale methods in secret work centered at the University of Chicago's Metallurgical Laboratory and the application of these methods to industrial scale production, at manufacturing plants in Tennessee and Washington, during the World War II years 1942 to 1945. The chemical properties of plutonium, needed to devise the procedures for its industrial scale production, were studied by tracer and ultramicrochemical methods during this period on an extraordinarily urgent basis. This work, and subsequent investigations on a worldwide basis, have made the properties of plutonium very well known. Its well studied electronic structure and chemical properties give it a very interesting position in the actinide series of inner transition elements.

  10. Probing phonons in plutonium

    SciTech Connect

    Wong, Joe; Krisch, M.; Farber, D.; Occelli, F.; Schwartz, A.; Chiang, T.C.; Wall, M.; Boro, C.; Xu, Ruqing

    2010-11-16

    Plutonium (Pu) is well known to have complex and unique physico-chemical properties. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} {yields} {delta}{prime} {yields} {var_epsilon} {yields} liquid. Unalloyed Pu melts at a relatively low temperature {approx}640 C to yield a higher density liquid than that of the solid from which it melts, (Figure 1). Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxic materials. However, both technical and and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimenta l data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter -atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single -grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc d-Pu-Ga alloy using the

  11. Plutonium oxide dissolution

    SciTech Connect

    Gray, J.H.

    1992-09-30

    Several processing options for dissolving plutonium oxide (PuO[sub 2]) from high-fired materials have been studied. The scoping studies performed on these options were focused on PuO[sub 2] typically generated by burning plutonium metal and PuO[sub 2] produced during incineration of alpha contaminated waste. At least two processing options remain applicable for dissolving high-fired PuO[sub 2] in canyon dissolvers. The options involve solid solution formation of PuO[sub 2] With uranium oxide (UO[sub 2]) and alloying incinerator ash with aluminum. An oxidative dissolution process involving nitric acid solutions containing a strong oxidizing agent, such as cerium (IV), was neither proven nor rejected. This uncertainty was due to difficulty in regenerating cerium (IV) ions during dissolution. However, recent work on silver-catalyzed dissolution of PuO[sub 2] with persulfate has demonstrated that persulfate ions regenerate silver (II). Use of persulfate to regenerate cerium (IV) or bismuth (V) ions during dissolution of PuO[sub 2] materials may warrant further study.

  12. Plutonium oxide dissolution

    SciTech Connect

    Gray, J.H.

    1992-09-30

    Several processing options for dissolving plutonium oxide (PuO{sub 2}) from high-fired materials have been studied. The scoping studies performed on these options were focused on PuO{sub 2} typically generated by burning plutonium metal and PuO{sub 2} produced during incineration of alpha contaminated waste. At least two processing options remain applicable for dissolving high-fired PuO{sub 2} in canyon dissolvers. The options involve solid solution formation of PuO{sub 2} With uranium oxide (UO{sub 2}) and alloying incinerator ash with aluminum. An oxidative dissolution process involving nitric acid solutions containing a strong oxidizing agent, such as cerium (IV), was neither proven nor rejected. This uncertainty was due to difficulty in regenerating cerium (IV) ions during dissolution. However, recent work on silver-catalyzed dissolution of PuO{sub 2} with persulfate has demonstrated that persulfate ions regenerate silver (II). Use of persulfate to regenerate cerium (IV) or bismuth (V) ions during dissolution of PuO{sub 2} materials may warrant further study.

  13. SEPARATION OF PLUTONIUM

    DOEpatents

    Maddock, A.G.; Smith, F.

    1959-08-25

    A method is described for separating plutonium from uranium and fission products by treating a nitrate solution of fission products, uranium, and hexavalent plutonium with a relatively water-insoluble fluoride to adsorb fission products on the fluoride, treating the residual solution with a reducing agent for plutonium to reduce its valence to four and less, treating the reduced plutonium solution with a relatively insoluble fluoride to adsorb the plutonium on the fluoride, removing the solution, and subsequently treating the fluoride with its adsorbed plutonium with a concentrated aqueous solution of at least one of a group consisting of aluminum nitrate, ferric nitrate, and manganous nitrate to remove the plutonium from the fluoride.

  14. STRIPPING PROCESS FOR PLUTONIUM

    DOEpatents

    Kolodney, M.

    1959-10-01

    A method for removing silver, nickel, cadmium, zinc, and indium coatings from plutonium objects while simultaneously rendering the plutonium object passive is described. The coated plutonium object is immersed as the anode in an electrolyte in which the plutonium is passive and the coating metal is not passive, using as a cathode a metal which does not dissolve rapidly in the electrolyte. and passing an electrical current through the electrolyte until the coating metal is removed from the plutonium body.

  15. Plutonium Metallurgy

    SciTech Connect

    Freibert, Franz J.

    2012-08-09

    Due to its nuclear properties, Pu will remain a material of global interest well into the future. Processing, Structure, Properties and Performance remains a good framework for discussion of Pu materials science Self-irradiation and aging effects continue to be central in discussions of Pu metallurgy Pu in its elemental form is extremely unstable, but alloying helps to stabilize Pu; but, questions remain as to how and why this stabilization occurs. Which is true Pu-Ga binary phase diagram: US or Russian? Metallurgical issues such as solute coring, phase instability, crystallographic texture, etc. result in challenges to casting, processing, and properties modeling and experiments. For Ga alloyed FCC stabilized Pu, temperature and pressure remain as variables impacting phase stability.

  16. PLUTONIUM METALLIC FUELS FOR FAST REACTORS

    SciTech Connect

    STAN, MARIUS; HECKER, SIEGFRIED S.

    2007-02-07

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  17. Plutonium Immobilization Puck Handling

    SciTech Connect

    Kriikku, E.

    1999-01-26

    The Plutonium Immobilization Project (PIP) will immobilize excess plutonium and store the plutonium in a high level waste radiation field. To accomplish these goals, the PIP will process various forms of plutonium into plutonium oxide, mix the oxide powder with ceramic precursors, press the mixture into pucks, sinter the pucks into a ceramic puck, load the pucks into metal cans, seal the cans, load the cans into magazines, and load the magazines into a Defense Waste Processing Facility (DPWF) canister. These canisters will be sent to the DWPF, an existing Savannah River Site (SRS) facility, where molten high level waste glass will be poured into the canisters encapsulating the ceramic pucks. Due to the plutonium radiation, remote equipment will perform these operations in a contained environment. The Plutonium Immobilization Project is in the early design stages and the facility will begin operation in 2005. This paper will discuss the Plutonium Immobilization puck handling conceptual design and the puck handling equipment testing.

  18. METHOD OF SEPARATING PLUTONIUM

    DOEpatents

    Brown, H.S.; Hill, O.F.

    1958-02-01

    Plutonium hexafluoride is a satisfactory fluorinating agent and may be reacted with various materials capable of forming fluorides, such as copper, iron, zinc, etc., with consequent formation of the metal fluoride and reduction of the plutonium to the form of a lower fluoride. In accordance with the present invention, it has been found that the reactivity of plutonium hexafluoride with other fluoridizable materials is so great that the process may be used as a method of separating plutonium from mixures containing plutonium hexafluoride and other vaporized fluorides even though the plutonium is present in but minute quantities. This process may be carried out by treating a mixture of fluoride vapors comprising plutonium hexafluoride and fluoride of uranium to selectively reduce the plutonium hexafluoride and convert it to a less volatile fluoride, and then recovering said less volatile fluoride from the vapor by condensation.

  19. PREPARATION OF PLUTONIUM TRIFLUORIDE

    DOEpatents

    Burger, L.L.; Roake, W.E.

    1961-07-11

    A process of producing plutonium trifluoride by reacting dry plutonium(IV) oxalate with chlorofluorinated methane or ethane at 400 to 450 deg C and cooling the product in the absence of oxygen is described.

  20. PROCESS FOR PURIFYING PLUTONIUM

    DOEpatents

    Mastick, D.F.; Wigner, E.P.

    1958-05-01

    A method is described of separating plutonium from small amounts of uranium and other contaminants. An acidic aqueous solution of higher valent plutonium and hexavalent uranium is treated with a soluble iodide to obtain the plutonium in the plus three oxidation state while leaving the uranium in the hexavalent state, adding a soluble oxalate such as oxalic acid, and then separating the insoluble plus the plutonium trioxalate from the solution.

  1. PLUTONIUM CLEANING PROCESS

    DOEpatents

    Kolodney, M.

    1959-12-01

    A method is described for rapidly removing iron, nickel, and zinc coatings from plutonium objects while simultaneously rendering the plutonium object passive. The method consists of immersing the coated plutonium object in an aqueous acid solution containing a substantial concentration of nitrate ions, such as fuming nitric acid.

  2. Plutonium immobilization -- Can loading

    SciTech Connect

    Kriikku, E.

    2000-02-17

    The Savannah River Site (SRS) will immobilize excess plutonium in the proposed Plutonium Immobilization Project (PIP). The PIP adds the excess plutonium to ceramic pucks, loads the pucks into cans, and places the cans into DWPF canisters. This paper discusses the PIP process steps, the can loading conceptual design, can loading equipment design, and can loading work completed.

  3. Zone refining of plutonium metal

    SciTech Connect

    Blau, M.S.

    1994-08-01

    The zone refining process was applied to Pu metal containing known amounts of impurities. Rod specimens of plutonium metal were melted into and contained in tantalum boats, each of which was passed horizontally through a three-turn, high-frequency coil in such a manner as to cause a narrow molten zone to pass through the Pu metal rod 10 times. The impurity elements Co, Cr, Fe, Ni, Np, U were found to move in the same direction as the molten zone as predicted by binary phase diagrams. The elements Al, Am, and Ga moved in the opposite direction of the molten zone as predicted by binary phase diagrams. As the impurity alloy was zone refined, {delta}-phase plutonium metal crystals were produced. The first few zone refining passes were more effective than each later pass because an oxide layer formed on the rod surface. There was no clear evidence of better impurity movement at the slower zone refining speed. Also, constant or variable coil power appeared to have no effect on impurity movement during a single run (10 passes). This experiment was the first step to developing a zone refining process for plutonium metal.

  4. METHOD AND MEANS FOR ELECTROLYTIC PURIFICATION OF PLUTONIUM

    DOEpatents

    Bjorklund, C.W.; Benz, R.; Maraman, W.J.; Leary, J.A.; Walsh, K.A.

    1960-02-01

    The technique of electrodepositing pure plutonium from a fused salt electrolyte of PuCl/sub 3/ and aixati metal halides is described. When an iron cathode is used, the plutonium deposit alloys therewith in the liquid state at the 400 to 600 deg C operating temperature, such liquid being allowed to drip through holes in the cathode and collect in a massive state in a tantallum cup. The process is adaptable to continuous processing by the use of depleted plutonium fuel as the anode: good to excellent separation from fission products is obtained with a Pu--Fe "fission" anode containing representative fractions of Ce, Ru, Zr, La, Mo, and Nb.

  5. PREPARATION OF PLUTONIUM HALIDES

    DOEpatents

    Davidson, N.R.; Katz, J.J.

    1958-11-01

    A process ls presented for the preparation of plutonium trihalides. Plutonium oxide or a compound which may be readily converted to plutonlum oxide, for example, a plutonium hydroxide or plutonlum oxalate is contacted with a suitable halogenating agent. Speciflc agents mentioned are carbon tetrachloride, carbon tetrabromide, sulfur dioxide, and phosphorus pentachloride. The reaction is carried out under superatmospberic pressure at about 300 icient laborato C.

  6. METHOD OF SEPARATING PLUTONIUM

    DOEpatents

    Heal, H.G.

    1960-02-16

    BS>A method of separating plutonium from aqueous nitrate solutions of plutonium, uranium. and high beta activity fission products is given. The pH of the aqueous solution is adjusted between 3.0 to 6.0 with ammonium acetate, ferric nitrate is added, and the solution is heated to 80 to 100 deg C to selectively form a basic ferric plutonium-carrying precipitate.

  7. PREPARATION OF PLUTONIUM

    DOEpatents

    Kolodney, M.

    1959-07-01

    Methods are presented for the electro-deposition of plutonium from fused mixtures of plutonium halides and halides of the alkali metals and alkaline earth metals. Th salts, preferably chlorides and with the plutonium prefer ably in the trivalent state, are placed in a refractory crucible such as tantalum or molybdenam and heated in a non-oxidizing atmosphere to 600 to 850 deg C, the higher temperatatures being used to obtain massive plutonium and the lower for the powder form. Electrodes of graphite or non reactive refractory metals are used, the crucible serving the cathode in one apparatus described in the patent.

  8. Continuous plutonium dissolution apparatus

    DOEpatents

    Meyer, F.G.; Tesitor, C.N.

    1974-02-26

    This invention is concerned with continuous dissolution of metals such as plutonium. A high normality acid mixture is fed into a boiler vessel, vaporized, and subsequently condensed as a low normality acid mixture. The mixture is then conveyed to a dissolution vessel and contacted with the plutonium metal to dissolve the plutonium in the dissolution vessel, reacting therewith forming plutonium nitrate. The reaction products are then conveyed to the mixing vessel and maintained soluble by the high normality acid, with separation and removal of the desired constituent. (Official Gazette)

  9. Trawsfynydd Plutonium Estimate

    SciTech Connect

    Reid, Bruce D.; Gerlach, David C.; Heasler, Patrick G.; Livingston, J.

    2009-11-20

    Report serves to document an estimate of the cumulative plutonium production of the Trawsfynydd Unit II reactor (Traws II) over its operating life made using the Graphite Isotope Ratio Method (GIRM). The estimate of the plutonium production in Traws II provided in this report has been generated under blind conditions. In other words, the estimate ofthe Traws II plutonium production has been generated without the knowledge of the plutonium production declared by the reactor operator (Nuclear Electric). The objective of this report is to demonstrate that the GIRM can be employed to serve as an accurate tool to verify weapons materials production declarations.

  10. ELECTRODEPOSITION OF PLUTONIUM

    DOEpatents

    Wolter, F.J.

    1957-09-10

    A process of electrolytically recovering plutonium from dilute aqueous solutions containing plutonium ions comprises electrolyzing the solution at a current density of about 0.44 ampere per square centimeter in the presence of an acetate-sulfate buffer while maintaining the pH of the solution at substantially 5 and using a stirred mercury cathode.

  11. PROCESS OF OXIDIZING PLUTONIUM

    DOEpatents

    Coryell, C.D.

    1959-08-25

    The oxidation of plutonium to the plus six valence state is described. The oxidation is accomplished by treating the plutonium in aqueous solution with a solution above 0.01 molar in argentic ion, above 1.1 molar in nitric acid, and above 0.02 molar in argentous ion.

  12. Plutonium storage criteria

    SciTech Connect

    Chung, D.; Ascanio, X.

    1996-05-01

    The Department of Energy has issued a technical standard for long-term (>50 years) storage and will soon issue a criteria document for interim (<20 years) storage of plutonium materials. The long-term technical standard, {open_quotes}Criteria for Safe Storage of Plutonium Metals and Oxides,{close_quotes} addresses the requirements for storing metals and oxides with greater than 50 wt % plutonium. It calls for a standardized package that meets both off-site transportation requirements, as well as remote handling requirements from future storage facilities. The interim criteria document, {open_quotes}Criteria for Interim Safe Storage of Plutonium-Bearing Solid Materials{close_quotes}, addresses requirements for storing materials with less than 50 wt% plutonium. The interim criteria document assumes the materials will be stored on existing sites, and existing facilities and equipment will be used for repackaging to improve the margin of safety.

  13. Plutonium Immobilization Canister Loading

    SciTech Connect

    Hamilton, E.L.

    1999-01-26

    This disposition of excess plutonium is determined by the Surplus Plutonium Disposition Environmental Impact Statement (SPD-EIS) being prepared by the Department of Energy. The disposition method (Known as ''can in canister'') combines cans of immobilized plutonium-ceramic disks (pucks) with vitrified high-level waste produced at the SRS Defense Waste Processing Facility (DWPF). This is intended to deter proliferation by making the plutonium unattractive for recovery or theft. The envisioned process remotely installs cans containing plutonium-ceramic pucks into storage magazines. Magazines are then remotely loaded into the DWPF canister through the canister neck with a robotic arm and locked into a storage rack inside the canister, which holds seven magazines. Finally, the canister is processed through DWPF and filled with high-level waste glass, thereby surrounding the product cans. This paper covers magazine and rack development and canister loading concepts.

  14. Electronic structure, phase transitions and diffusive properties of elemental plutonium

    NASA Astrophysics Data System (ADS)

    Setty, Arun; Cooper, B. R.

    2003-03-01

    We present a SIC-LDA-LMTO based study of the electronic structure of the delta, alpha and gamma phases of plutonium, and also of the alpha and gamma phases of elemental cerium. We find excellent agreement with the experimental densities and magnetic properties [1]. Furthermore, detailed studies of the computational densities of states for delta plutonium, and comparison with the experimental photoemission spectrum [2], provide evidence for the existence of an unusual fluctuating valence state. Results regarding the vacancy formation and self-diffusion in delta plutonium will be presented. Furthermore, a study of interface diffusion between plutonium and steel (technologically relevant in the storage of spent fuel) or other technologically relevant alloys will be included. Preliminary results regarding gallium stabilization of delta plutonium, and of plutonium alloys will be presented. [1] M. Dormeval et al., private communication (2001). [2] A. J. Arko, J. J. Joyce, L. Morales, J. Wills, and J. Lashley et. al., Phys. Rev. B, 62, 1773 (2000). [3] B. R. Cooper et al, Phil. Mag. B 79, 683 (1999); B.R. Cooper, Los Alamos Science 26, 106 (2000)); B.R. Cooper, A.K. Setty and D.L.Price, to be published.

  15. Opportunities in Plutonium Metallurgical Research

    SciTech Connect

    Schwartz, A J

    2006-12-19

    This is an exciting time to be involved in plutonium metallurgical research. Over the past few years, there have been significant advances in our understanding of the fundamental materials science of this unusual metal, particularly in the areas of self-irradiation induced aging of Pu, the equilibrium phase diagram, the homogenization of {delta}-phase alloys, the crystallography and morphology of the {alpha}{prime}-phase resulting from the isothermal martensitic phase transformation, and the phonon dispersion curves, among many others. In addition, tremendous progress has been made, both experimentally and theoretically, in our understanding of the condensed matter physics and chemistry of the actinides, particularly in the area of electronic structure. Although these communities have made substantial progress, many challenges still remain. This brief overview will address a number of important challenges that we face in fully comprehending the metallurgy of Pu with a specific focus on aging and phase transformations.

  16. 31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, A MAN-MADE SUBSTANCE, WAS RARE. SCRAPS RESULTING FROM PRODUCTION AND PLUTONIUM RECOVERED FROM RETIRED NUCLEAR WEAPONS WERE REPROCESSED INTO VALUABLE PURE-PLUTONIUM METAL (9/19/73). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  17. Toward a Deeper Understanding of Plutonium

    SciTech Connect

    Schwartz, A J; Wolfer, W G

    2007-06-21

    Plutonium is a very complex element lying near the middle of the actinide series. On the lower atomic number side of Pu is the element neptunium; its 5f electrons are highly delocalized or itinerant, participating in metallic-like bonding. The electrons in americium, the element to the right of Pu, are localized and do not participant significantly in the bonding. Plutonium is located directly on this rather abrupt transition. In the low-temperature {alpha} phase ground state, the five 5f electrons are mostly delocalized leading to a highly dense monoclinic crystal structure. Increases in temperature take the unalloyed plutonium through a series of five solid-state allotropic phase transformations before melting. One of the high temperature phases, the close-packed face centered cubic {delta} phase, is the least dense of all the phases, including the liquid. Alloying the Pu with Group IIIA elements such as aluminum or gallium retains the {delta} phase in a metastable state at ambient conditions. Ultimately, this metastable {delta} phase will decompose via a eutectoid transformation to {alpha} + Pu{sub 3}Ga. These low solute-containing {delta}-phase Pu alloys are also metastable with respect to low temperature excursions or increases in pressure and will transform to a monoclinic crystal structure at low temperatures via an isothermal martensitic phase transformation or at slightly elevated pressure. The delocalized to localized 5f electron bonding transition that occurs in the light actinides surrounding Pu gives rise to a plethora of unique and anomalous properties but also severely complicates the modeling and simulation. The development of theories and models that are sufficiently sensitive to capture the details of this transition and capable of elucidating the fundamental properties of plutonium and plutonium alloys is currently a grand challenge in actinide science. Recent advances in electronic structure theory, semi-empirical interatomic potentials, and raw

  18. Method for dissolving plutonium dioxide

    DOEpatents

    Tallent, Othar K.

    1978-01-01

    The fluoride-catalyzed, non-oxidative dissolution of plutonium dioxide in HNO.sub.3 is significantly enhanced in rate by oxidizing dissolved plutonium ions. It is believed that the oxidation of dissolved plutonium releases fluoride ions from a soluble plutonium-fluoride complex for further catalytic action.

  19. Plutonium Vulnerability Management Plan

    SciTech Connect

    1995-03-01

    This Plutonium Vulnerability Management Plan describes the Department of Energy`s response to the vulnerabilities identified in the Plutonium Working Group Report which are a result of the cessation of nuclear weapons production. The responses contained in this document are only part of an overall, coordinated approach designed to enable the Department to accelerate conversion of all nuclear materials, including plutonium, to forms suitable for safe, interim storage. The overall actions being taken are discussed in detail in the Department`s Implementation Plan in response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. This is included as Attachment B.

  20. Plutonium radiation surrogate

    DOEpatents

    Frank, Michael I.

    2010-02-02

    A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

  1. Progress on plutonium stabilization

    SciTech Connect

    Hurt, D.

    1996-05-01

    The Defense Nuclear Facilities Safety Board has safety oversight responsibility for most of the facilities where unstable forms of plutonium are being processed and packaged for interim storage. The Board has issued recommendations on plutonium stabilization and has has a considerable influence on DOE`s stabilization schedules and priorities. The Board has not made any recommendations on long-term plutonium disposition, although it may get more involved in the future if DOE develops plans to use defense nuclear facilities for disposition activities.

  2. PLUTONIUM SEPARATION METHOD

    DOEpatents

    Beaufait, L.J. Jr.; Stevenson, F.R.; Rollefson, G.K.

    1958-11-18

    The recovery of plutonium ions from neutron irradiated uranium can be accomplished by bufferlng an aqueous solutlon of the irradiated materials containing tetravalent plutonium to a pH of 4 to 7, adding sufficient acetate to the solution to complex the uranyl present, adding ferric nitrate to form a colloid of ferric hydroxide, plutonlum, and associated fission products, removing and dissolving the colloid in aqueous nitric acid, oxldizlng the plutonium to the hexavalent state by adding permanganate or dichromate, treating the resultant solution with ferric nitrate to form a colloid of ferric hydroxide and associated fission products, and separating the colloid from the plutonlum left in solution.

  3. PLUTONIUM ELECTROREFINING CELLS

    DOEpatents

    Mullins, L.J. Jr.; Leary, J.A.; Bjorklund, C.W.; Maraman, W.J.

    1963-07-16

    Electrorefining cells for obtaining 99.98% plutonium are described. The cells consist of an impure liquid plutonium anode, a molten PuCl/sub 3/-- alkali or alkaline earth metal chloanode, a molten PuCl/sub 3/-alkali or alkaline earth metal chloride electrolyte, and a nonreactive cathode, all being contained in nonreactive ceramic containers which separate anode from cathode by a short distance and define a gap for the collection of the purified liquid plutonium deposited on the cathode. Important features of these cells are the addition of stirrer blades on the anode lead and a large cathode surface to insure a low current density. (AEC)

  4. Plutonium dissolution process

    DOEpatents

    Vest, Michael A.; Fink, Samuel D.; Karraker, David G.; Moore, Edwin N.; Holcomb, H. Perry

    1996-01-01

    A two-step process for dissolving plutonium metal, which two steps can be carried out sequentially or simultaneously. Plutonium metal is exposed to a first mixture containing approximately 1.0M-1.67M sulfamic acid and 0.0025M-0.1M fluoride, the mixture having been heated to a temperature between 45.degree. C. and 70.degree. C. The mixture will dissolve a first portion of the plutonium metal but leave a portion of the plutonium in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alteratively, nitric acid in a concentration between approximately 0.05M and 0.067M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution process is diluted with nitrogen.

  5. Plutonium: Requiem or reprieve

    SciTech Connect

    Pillay, K.K.S.

    1996-01-01

    Many scientific discoveries have had profound effects on humanity and its future. However, the discovery of fissionable characteristics of a man-made element, plutonium, discovered in 1941 by Glenn Seaborg and associates, has probably had the greatest impact on world affairs. Although about 20 new elements have been synthesized since 1940, element 94 unarguably had the most dramatic impact when it was introduced to the world as the core of the nuclear bomb dropped on Nagasaki. Ever since, large quantities of this element have been produced, and it has had a major role in maintaining peace during the past 50 years. in addition, the rapid spread of nuclear power technology worldwide contributed to major growth in the production of plutonium as a by-product. This article discusses the following issues related to plutonium: plutonium from Nuclear Power Generation; environmental safety and health issues; health effects; safeguards issues; extended storage; disposal options.

  6. Dissolution of plutonium metal in HNO/sub 3/-N/sub 2/H/sub 4/-KF

    SciTech Connect

    Karraker, D G

    1983-07-01

    Plutonium metal dissolves in HNO/sub 3/-N/sub 2/H/sub 4/.HNO/sub 3/-KF solution to yield a Pu/sup 3 +/ solution without an accompanying precipitation of plutonium oxide solids. The reaction evolves less than 0.2 mole of gas per mole of plutonium dissolved; the gas contains only 3% H/sub 2/. About 10/sup -3/ moles of HN/sub 3/ are produced per mole of plutonium dissolved. Optimum conditions for dissolving both alpha-phase and delta-phase plutonium metal were developed. Possible applications are to the recovery of plutonium metal or the processing of irradiated plutonium metal and alloys.

  7. Evolving Density and Static Mechanical Properties in Plutonium from Self-Irradiation

    SciTech Connect

    Chung, B W; Thompson, S R; Lema, K E; Hiromoto, D S; Ebbinghaus, B B

    2008-07-31

    Plutonium, because of its self-irradiation by alpha decay, ages by means of lattice damage and helium in-growth. These integrated aging effects result in microstructural and physical property changes. Because these effects would normally require decades to measure, studies are underway to assess the effects of extended aging on the physical properties of plutonium alloys by incorporating roughly 7.5 weight % of highly specific activity isotope {sup 238}Pu into the {sup 239}Pu metal to accelerate the aging process. This paper presents updated results of self-irradiation effects on {sup 238}Pu-enriched alloys measured by immersion density, dilatometry, and tensile tests. After nearly 90 equivalent years of aging, both the immersion density and dilatometry show that the enriched alloys continue to decreased in density by {approx}0.002% per year, without void swelling. Quasi-static tensile measurements show that the aging process increases the strength of plutonium alloys.

  8. Elemental composition in sealed plutonium-beryllium neutron sources.

    PubMed

    Xu, N; Kuhn, K; Gallimore, D; Martinez, A; Schappert, M; Montoya, D; Lujan, E; Garduno, K; Tandon, L

    2014-10-22

    Five sealed plutonium-beryllium (PuBe) neutron sources from various manufacturers were disassembled. Destructive chemical analyses for recovered PuBe materials were conducted for disposition purposes. A dissolution method for PuBe alloys was developed for quantitative plutonium (Pu) and beryllium (Be) assay. Quantitation of Be and trace elements was performed using plasma based spectroscopic instruments, namely inductively coupled plasma mass spectrometry (ICP-MS) and atomic emission spectrometry (ICP-AES). Pu assay was accomplished by an electrochemical method. Variations in trace elemental contents among the five PuBe sources are discussed. PMID:25464182

  9. Plutonium disproportionation: the ambiguity phenomenon.

    PubMed

    Silver, G L

    2003-05-01

    Plutonium oxidation-state studies may yield ambiguous results if the parameters are not carefully chosen. The effect can be related to environmental plutonium as illustrated by an example. PMID:12735968

  10. INTERCOMPARISON OF PLUTONIUM-239 MEASUREMENTS

    EPA Science Inventory

    In 1977 the U.S. Environmental Protection Agency distributed calibrated solutions of plutonium-239 to laboratories interested in participating in an intercomparison study of plutonium analysis. Participants were asked to perform a quantitative radioactivity analysis of the soluti...

  11. METHOD OF MAKING PLUTONIUM DIOXIDE

    DOEpatents

    Garner, C.S.

    1959-01-13

    A process is presented For converting both trivalent and tetravalent plutonium oxalate to substantially pure plutonium dioxide. The plutonium oxalate is carefully dried in the temperature range of 130 to300DEC by raising the temperature gnadually throughout this range. The temperature is then raised to 600 C in the period of about 0.3 of an hour and held at this level for about the same length of time to obtain the plutonium dioxide.

  12. METHOD OF PRODUCING PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Tolley, W.B.; Smith, R.C.

    1959-12-15

    A process is presented for preparing plutonium tetrafluoride from plutonium(IV) oxalate. The oxalate is dried and decomposed at about 300 deg C to the dioxide, mixed with ammonium bifluoride, and the mixture is heated to between 50 and 150 deg C whereby ammonium plutonium fluoride is formed. The ammonium plutonium fluoride is then heated to about 300 deg C for volatilization of ammonium fluoride. Both heating steps are preferably carried out in an inert atmosphere.

  13. Plutonium 239 Equivalency Calculations

    SciTech Connect

    Wen, J

    2011-05-31

    This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

  14. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S.

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  15. Plutonium in Concentrated Solutions

    SciTech Connect

    Clark, Sue B.; Delegard, Calvin H.

    2002-08-01

    Complex, high ionic strength media are used throughout the plutonium cycle, from its processing and purification in nitric acid, to waste storage and processing in alkaline solutions of concentrated electrolytes, to geologic disposal in brines. Plutonium oxidation/reduction, stability, radiolysis, solution and solid phase chemistry have been studied in such systems. In some cases, predictive models for describing Pu chemistry under such non-ideal conditions have been developed, which are usually based on empirical databases describing specific ion interactions. In Chapter 11, Non-Ideal Systems, studies on the behavior of Pu in various complex media and available model descriptions are reviewed.

  16. SULFIDE METHOD PLUTONIUM SEPARATION

    DOEpatents

    Duffield, R.B.

    1958-08-12

    A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.

  17. ALLOY FOR FUEL OF NEUTRONIC REACTORS

    DOEpatents

    Bloomster, C.H.; Katayama, Y.B.

    1963-04-23

    This patent deals with an aluminum alloy suitable as nuclear fuel and consisting mainly of from 1 to 10 wt% of plutonium, from 2 to 3.5 wt% of nickel, the balance being aluminum. The alloy may also contain from 0.9 to 1.1 wt% of silicon and up to 0.7% of iron. (AEC)

  18. Plutonium: An introduction

    SciTech Connect

    Condit, R.H.

    1993-10-01

    This report is a summary of the history and properties of plutonium. It presents information on the atoms, comparing chemical and nuclear properties. It looks at the history of the atom, including its discovery and production methods. It summarizes the metallurgy and chemistry of the element. It also describes means of detecting and measuring the presence and quantity of the element.

  19. Glovebox enclosed dc plasma source for the determination of metals in plutonium

    SciTech Connect

    Morris, W.F.

    1986-01-15

    The direct current plasma source of a Beckman Spectraspan IIIB emission spectrometer was enclosed in a glovebox at Lawrence Livermore National Laboratory in December 1982. Since that time, the system has been used for the routine determination of alloy and impurity metals in plutonium. This paper presents the systematic steps involved in developing the glovebox and gives information regarding performance of the plasma in the glovebox and the effectiveness of containment of plutonium. 8 refs., 9 figs., 3 tabs.

  20. Liquid-metal embrittlement of refractory metals by molten plutonium

    SciTech Connect

    Lesuer, D.R.; Bergin, J.B.; McInturff, S.A.; Kuhn, B.A.

    1980-07-01

    Embrittlement by molten plutonium of the refractory metals and alloys W-25 wt % Re, tantalum, molybdenum, and Ta-10 wt % W was studied. At 900/sup 0/C and a strain rate of 10/sup -4/ s/sup -1/, the materials tested may be ranked in order of decreasing susceptibility to liquid-plutonium embrittlement as follows: molybdenum, W-25 wt % Re, Ta-10 wt % W, and tantalum. These materials exhibited a wide range in susceptibility. Embrittlement was found to exhibit a high degree of temperature and strain-rate dependence, and we present arguments that strongly support a stress-assisted, intergranular, liquid-metal corrosion mechanism. We also believe microstructure plays a key role in the extent of embrittlement. In the case of W-25 wt % Re, we have determined that a dealloying corrosion takes place in which rhenium is selectively withdrawn from the alloy.

  1. Plutonium Finishing Plant. Interim plutonium stabilization engineering study

    SciTech Connect

    Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J.; Nass, R.

    1995-08-01

    This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage.

  2. Plutonium age dating reloaded

    NASA Astrophysics Data System (ADS)

    Sturm, Monika; Richter, Stephan; Aregbe, Yetunde; Wellum, Roger; Mayer, Klaus; Prohaska, Thomas

    2014-05-01

    Although the age determination of plutonium is and has been a pillar of nuclear forensic investigations for many years, additional research in the field of plutonium age dating is still needed and leads to new insights as the present work shows: Plutonium is commonly dated with the help of the 241Pu/241Am chronometer using gamma spectrometry; in fewer cases the 240Pu/236U chronometer has been used. The age dating results of the 239Pu/235U chronometer and the 238Pu/234U chronometer are scarcely applied in addition to the 240Pu/236U chronometer, although their results can be obtained simultaneously from the same mass spectrometric experiments as the age dating result of latter. The reliability of the result can be tested when the results of different chronometers are compared. The 242Pu/238U chronometer is normally not evaluated at all due to its sensitivity to contamination with natural uranium. This apparent 'weakness' that renders the age dating results of the 242Pu/238U chronometer almost useless for nuclear forensic investigations, however turns out to be an advantage looked at from another perspective: the 242Pu/238U chronometer can be utilized as an indicator for uranium contamination of plutonium samples and even help to identify the nature of this contamination. To illustrate this the age dating results of all four Pu/U clocks mentioned above are discussed for one plutonium sample (NBS 946) that shows no signs of uranium contamination and for three additional plutonium samples. In case the 242Pu/238U chronometer results in an older 'age' than the other Pu/U chronometers, contamination with either a small amount of enriched or with natural or depleted uranium is for example possible. If the age dating result of the 239Pu/235U chronometer is also influenced the nature of the contamination can be identified; enriched uranium is in this latter case a likely cause for the missmatch of the age dating results of the Pu/U chronometers.

  3. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  4. 4. VIEW OF PLUTONIUM CANISTER ON CHAINVEYOR. SCRAP PLUTONIUM WAS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF PLUTONIUM CANISTER ON CHAINVEYOR. SCRAP PLUTONIUM WAS COLLECTED INTO CANS AT INDIVIDUAL WORKSTATIONS. THE CANS WERE TRANSFERRED VIA THE CHAIN CONVEYOR TO A WORKSTATION IN MODULE C WHERE THE MATERIAL WAS COMPRESSED INTO BRIQUETTES FOR LATER USE. (6/20/93) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  5. Transmission Electron Microscopy Characterization of Helium Bubbles in Aged Plutonium

    SciTech Connect

    Schwartz, A J; Wall, M A; Zocco, T G; Blobaum, K M

    2004-11-02

    The self-irradiation damage generated by alpha decay of plutonium results in the formation of lattice defects, helium, and uranium atoms. Over time, microstructural evolution resulting from the self-irradiation may influence the physical and mechanical properties of the material. In order to assess microstructural changes, we have developed and applied procedures for the specimen preparation, handling, and transmission electron microscopy characterization of Pu alloys. These transmission electron microscopy investigations of Pu-Ga alloys ranging in age up to 42-years old reveal the presence of nanometer-sized helium bubbles. The number density of bubbles and the average size have been determined for eight different aged materials.

  6. Surprising Coordination for Plutonium in the First Plutonium (III) Borate

    SciTech Connect

    Wang, Shuao; Alekseev, Evgeny V.; Depmeier, Wulf; Albrecht-Schmitt, Thomas E.

    2011-02-22

    The first plutonium(III) borate, Pu2[B12O18(OH)4Br2(H2O)3]·0.5H2O, has been prepared by reacting plutonium(III) with molten boric acid under strictly anaerobic conditions. This compound contains a three-dimensional polyborate network with triangular holes that house the plutonium(III) sites. The plutonium sites in this compound are 9- and 10-coordinate and display atypical geometries.

  7. Oxidation of plutonium dioxide.

    PubMed

    Korzhavyi, Pavel A; Vitos, Levente; Andersson, David A; Johansson, Börje

    2004-04-01

    The physics and chemistry of the actinide elements form the scientific basis for rational handling of nuclear materials. In recent experiments, most unexpectedly, plutonium dioxide has been found to react with water to form higher oxides up to PuO(2.27), whereas PuO(2) had always been thought to be the highest stable oxide of plutonium. We perform a theoretical analysis of this complicated situation on the basis of total energies calculated within density functional theory combined with well-established thermodynamic data. The reactions of PuO(2) with either O(2) or H(2)O to form PuO(2+delta) are calculated to be endothermic: that is, in order to occur they require a supply of energy. However, our calculations show that PuO(2+delta) can be formed, as an intermediate product, by reactions with the products of radiolysis of water, such as H(2)O(2). PMID:15034561

  8. MOLDS FOR CASTING PLUTONIUM

    DOEpatents

    Anderson, J.W.; Miley, F.; Pritchard, W.C.

    1962-02-27

    A coated mold for casting plutonium comprises a mold base portion of a material which remains solid and stable at temperatures as high as the pouring temperature of the metal to be cast and having a thin coating of the order of 0.005 inch thick on the interior thereof. The coating is composed of finely divided calcium fluoride having a particle size of about 149 microns. (AEC)

  9. Utilization of principal component analysis on plutonium EXAFS data from the advanced photon source

    NASA Astrophysics Data System (ADS)

    Terry, Jeff; Schulze, Roland K.; Zocco, Thomas G.; Farr, J. Doug; Archuleta, Jeff; Ramos, Mike; Martinez, Ray; Pereyra, Ramiro; Lashley, Jason; Wasserman, Steve; Antonio, Mark; Skanthakumar, Suntharalingam; Soderholm, Lynne

    2000-07-01

    Since the 1941 discovery of plutonium (Pu) by Glenn Seaborg, this enigmatic metal has been the subject of intense scientific investigation. Despite these efforts, there is still much to be learned about the unusual physical and mechanical properties of plutonium and its alloys. In particular, unalloyed Pu undergoes six allotropic phase transformations upon cooling from the melt to room temperature. Many of these phase transformations result in large volume changes and produce low-symmetry crystal structures. These unusual characteristics have made the metallurgy of Pu and Pu alloys particularly challenging.

  10. Plutonium recovery from organic materials

    DOEpatents

    Deaton, R.L.; Silver, G.L.

    1973-12-11

    A method is described for removing plutonium or the like from organic material wherein the organic material is leached with a solution containing a strong reducing agent such as titanium (III) (Ti/sup +3None)/, chromium (II) (Cr/ sup +2/), vanadium (II) (V/sup +2/) ions, or ferrous ethylenediaminetetraacetate (EDTA), the leaching yielding a plutonium-containing solution that is further processed to recover plutonium. The leach solution may also contain citrate or tartrate ion. (Official Gazette)

  11. PROCESS OF PRODUCING SHAPED PLUTONIUM

    DOEpatents

    Anicetti, R.J.

    1959-08-11

    A process is presented for producing and casting high purity plutonium metal in one step from plutonium tetrafluoride. The process comprises heating a mixture of the plutonium tetrafluoride with calcium while the mixture is in contact with and defined as to shape by a material obtained by firing a mixture consisting of calcium oxide and from 2 to 10% by its weight of calcium fluoride at from 1260 to 1370 deg C.

  12. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect

    Knapp, Cameron M

    2012-08-01

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  13. Gamma radiation characteristics of plutonium dioxide fuel

    NASA Technical Reports Server (NTRS)

    Gingo, P. J.

    1969-01-01

    Investigation of plutonium dioxide as an isotopic fuel for Radioisotope Thermoelectric Generators yielded the isotopic composition of production-grade plutonium dioxide fuel, sources of gamma radiation produced by plutonium isotopes, and the gamma flux at the surface.

  14. Overview of Modeling and Simulations of Plutonium Aging

    SciTech Connect

    Schwartz, A J; Wolfer, W G

    2007-04-24

    Computer-aided materials research is now an integral part of science and technology. It becomes particularly valuable when comprehensive experimental investigations and materials testing are too costly, hazardous, or of excessive duration; then, theoretical and computational studies can supplement and enhance the information gained from limited experimental data. Such is the case for improving our fundamental understanding of the properties of aging plutonium in the nuclear weapons stockpile. The question of the effects of plutonium aging on the safety, security, and reliability of the nuclear weapons stockpile emerged after the United States closed its plutonium manufacturing facility in 1989 and decided to suspend any further underground testing of nuclear weapons in 1992. To address this, the Department of Energy's National Nuclear Security Administration (NNSA) initiated a research program to investigate plutonium aging, i.e., the changes with time of properties of Pu-Ga alloys employed in the nuclear weapons and to develop models describing these changes sufficiently reliable to forecast them for several decades. The November 26, 2006 press release by the NNSA summarizes the conclusions of the investigation, '...there appear to be no serious or sudden changes occurring, or expected to occur, in plutonium that would affect performance of pits beyond the well-understood, gradual degradation of plutonium materials'. Furthermore, 'These studies show that the degradation of plutonium in our nuclear weapons will not affect warhead reliability for decades', then NNSA Administrator Linton Brooks said. 'It is now clear that although plutonium aging contributes, other factors control the overall life expectancy of nuclear weapons systems'. The origin of plutonium aging is the natural decay of certain plutonium isotopes. Specifically, it is the process of alpha decay in which a plutonium atom spontaneously splits into a 5 MeV alpha particle and an 85keV uranium recoil

  15. PREPARATION OF HALIDES OF PLUTONIUM

    DOEpatents

    Garner, C.S.; Johns, I.B.

    1958-09-01

    A dry chemical method is described for preparing plutonium halides, which consists in contacting plutonyl nitrate with dry gaseous HCl or HF at an elevated temperature. The addition to the reaction gas of a small quantity of an oxidizing gas or a reducing gas will cause formation of the tetra- or tri-halide of plutonium as desired.

  16. SEPARATION OF PLUTONIUM FROM URANIUM

    DOEpatents

    Feder, H.M.; Nuttall, R.L.

    1959-12-15

    A process is described for extracting plutonium from powdered neutron- irradiated urarium metal by contacting the latter, while maintaining it in the solid form, with molten magnesium which takes up the plutonium and separating the molten magnesium from the solid uranium.

  17. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOEpatents

    Anderson, H.H.; Asprey, L.B.

    1960-02-01

    A process of separating plutonium in at least the tetravalent state from fission products contained in an aqueous acidic solution by extraction with alkyl phosphate is reported. The plutonium can then be back-extracted from the organic phase by contact with an aqueous solution of sulfuric, phosphoric, or oxalic acid as a complexing agent.

  18. METHOD OF REDUCING PLUTONIUM COMPOUNDS

    DOEpatents

    Johns, I.B.

    1958-06-01

    A method is described for reducing plutonium compounds in aqueous solution from a higher to a lower valence state. This reduction of valence is achieved by treating the aqueous solution of higher valence plutonium compounds with hydrogen in contact with an activated platinum catalyst.

  19. Experience making mixed oxide fuel with plutonium from dismantled weapons

    SciTech Connect

    Blair, H.T.; Ramsey, K.B.

    1995-12-31

    Mixed depleted UO{sub 2} and PuO{sub 2} (MOX) pellets prototypic of fuel proposed for use in commercial power reactors were made with plutonium recovered from dismantled weapons. We characterized plutonium dioxide powders that were produced at the Los Alamos and Lawrence Livermore National Laboratories (LANL and LLNL) using various methods to recover the plutonium from weapons parts and to convert It to oxide. The gallium content of the PUO{sub 2} prepared at LANL was the same as in the weapon alloy while the content of that prepared at LLNL was less. The MOX was prepared with a five weight percent plutonium content. We tested various MOX powders milling methods to improve homogeneity and found vibratory milling superior to ball milling. The sintering behavior of pellets made with the PuO{sub 2} from the two laboratories was similar. We evaluated the effects of gallium and of erbium and gadolinium, that are added to the MOX fuel as deplorable neutron absorbers, on the pellet fabrication process and an the sintered pellets. The gallium content of the sintered pellets was <10 ppm, suggesting that the gallium will not be an issue in the reactor, but that it will be an Issue in the operation of the fuel fabrication processing equipment unless it is removed from the PuO{sub 2} before it is blended with the UO{sub 2}.

  20. Plutonium Focus Area research and development plan. Revision 1

    SciTech Connect

    1996-11-01

    The Department of Energy (DOE) committed to a research and development program to support the technology needs for converting and stabilizing its nuclear materials for safe storage. The R and D Plan addresses five of the six material categories from the 94-1 Implementation Plan: plutonium (Pu) solutions, plutonium metals and oxides, plutonium residues, highly enriched uranium, and special isotopes. R and D efforts related to spent nuclear fuel (SNF) stabilization were specifically excluded from this plan. This updated plan has narrowed the focus to more effectively target specific problem areas by incorporating results form trade studies. Specifically, the trade studies involved salt; ash; sand, slag, and crucible (SS and C); combustibles; and scrub alloy. The plan anticipates possible disposition paths for nuclear materials and identifies resulting research requirements. These requirements may change as disposition paths become more certain. Thus, this plan represents a snapshot of the current progress and will continue to be updated on a regular basis. The paper discusses progress in safeguards and security, plutonium stabilization, special isotopes stabilization, highly-enriched uranium stabilization--MSRE remediation project, storage technologies, engineered systems, core technology, and proposed DOE/Russian technology exchange projects.

  1. SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS FROM NEUTRON- BOMBARDED URANIUM

    DOEpatents

    Martin, A.E.; Johnson, I.; Burris, L. Jr.; Winsch, I.O.; Feder, H.M.

    1962-11-13

    A process is given for removing plutonium and/or fission products from uranium fuel. The fuel is dissolved in molten zinc--magnesium (10 to 18% Mg) alloy, more magnesium is added to obtain eutectic composition whereby uranium precipitates, and the uranium are separated from the Plutoniumand fission-product- containing eutectic. (AEC)

  2. Russian youth forum special session: Youth and the global political challenges of plutonium

    SciTech Connect

    Browne, J.C.

    1998-12-31

    This paper, given by the director of the Los Alamos National Laboratory, briefly points out the unusual properties of plutonium, for example, its most unusual electronic structure, its sensitivity to changes in temperature, pressure, and chemical alloying, and its great propensity for oxygen and hydrogen. The combination of nuclear and electronic processes it undergoes complicate the behavior also.

  3. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOEpatents

    Seaborg, G.T.

    1959-04-14

    The separation of plutonium from aqueous inorganic acid solutions by the use of a water immiscible organic extractant liquid is described. The plutonium must be in the oxidized state, and the solvents covered by the patent include nitromethane, nitroethane, nitropropane, and nitrobenzene. The use of a salting out agents such as ammonium nitrate in the case of an aqueous nitric acid solution is advantageous. After contacting the aqueous solution with the organic extractant, the resulting extract and raffinate phases are separated. The plutonium may be recovered by any suitable method.

  4. Low temperature oxidation of plutonium

    SciTech Connect

    Nelson, Art J.; Roussel, Paul

    2013-05-15

    The initial oxidation of gallium stabilized {delta}-plutonium metal at 193 K has been followed using x-ray photoelectron spectroscopy. On exposure to Langmuir quantities of oxygen, plutonium rapidly forms a trivalent oxide followed by a tetravalent plutonium oxide. The growth modes of both oxides have been determined. Warming the sample in vacuum, the tetravalent oxide reduces to the trivalent oxide. The kinetics of this reduction reaction have followed and the activation energy has been determined to be 38.8 kJ mol{sup -1}.

  5. PLUTONIUM-HYDROGEN REACTION PRODUCT, METHOD OF PREPARING SAME AND PLUTONIUM POWDER THEREFROM

    DOEpatents

    Fried, S.; Baumbach, H.L.

    1959-12-01

    A process is described for forming plutonlum hydride powder by reacting hydrogen with massive plutonium metal at room temperature and the product obtained. The plutonium hydride powder can be converted to plutonium powder by heating to above 200 deg C.

  6. Plutonium Immobilization Can Inspection System

    SciTech Connect

    Kriikku, E.

    2000-12-12

    The Savannah River Site (SRS) will immobilize excess plutonium in the proposed Plutonium Immobilization Plant (PIP) as part of Department of Energy's two-track approach for the disposition of weapons-usable plutonium. The PIP will utilize the ceramic can-in-canister technology in a process that mixes plutonium with ceramic formers and neutron absorbers, presses the mixture into a ceramic puck-like form, sinters the pucks in a furnace, loads the pucks into cans, and places the cans into large canisters. The canisters will subsequently be filled with high level waste glass in the Defense Waste Processing Facility for eventual disposal in a geologic repository. This paper will discuss the PIP can inspection components, control system, and test results.

  7. IODATE METHOD FOR PURIFYING PLUTONIUM

    DOEpatents

    Stoughton, R.W.; Duffield, R.B.

    1958-10-14

    A method is presented for removing radioactive fission products from aqueous solutions containing such fission products together with plutonium. This is accomplished by incorporating into such solutions a metal iodate precipitate to remove fission products which form insoluble iodates. Suitable metal iodates are those of thorium and cerium. The plutonium must be in the hexavalent state and the pH of the solution must be manintained at less than 2.

  8. METHOD OF PREPARING PLUTONIUM TETRAFLUORIDE

    DOEpatents

    Beede, R.L.; Hopkins, H.H. Jr.

    1959-11-17

    C rystalline plutonium tetrafluoride is precipitated from aqueous up to 1.6 N mineral acid solutions of a plutorium (IV) salt with fluosilicic acid anions, preferably at room temperature. Hydrogen fluoride naay be added after precipitation to convert any plutonium fluosilicate to the tetrafluoride and any silica to fluosilicic acid. This process results in a purer product, especially as to iron and aluminum, than does the precipitation by the addition of hydrogen fluoride.

  9. Pu-Zr alloy for high-temperature foil-type fuel

    DOEpatents

    McCuaig, Franklin D.

    1977-01-01

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron reflux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  10. Pu-ZR Alloy high-temperature activation-measurement foil

    DOEpatents

    McCuaig, Franklin D.

    1977-08-02

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron flux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  11. Plutonium focus area

    SciTech Connect

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  12. Plutonium solution analyzer

    SciTech Connect

    Burns, D.A.

    1994-09-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%-O.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40-240 g/L and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4-4.0 g/L. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 mL of each sample and standard, and generates waste at the rate of about 1.5 mL per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded).

  13. Selecting a plutonium vitrification process

    SciTech Connect

    Jouan, A.

    1996-05-01

    Vitrification of plutonium is one means of mitigating its potential danger. This option is technically feasible, even if it is not the solution advocated in France. Two situations are possible, depending on whether or not the glass matrix also contains fission products; concentrations of up to 15% should be achievable for plutonium alone, whereas the upper limit is 3% in the presence of fission products. The French continuous vitrification process appears to be particularly suitable for plutonium vitrification: its capacity is compatible with the required throughout, and the compact dimensions of the process equipment prevent a criticality hazard. Preprocessing of plutonium metal, to convert it to PuO{sub 2} or to a nitric acid solution, may prove advantageous or even necessary depending on whether a dry or wet process is adopted. The process may involve a single step (vitrification of Pu or PuO{sub 2} mixed with glass frit) or may include a prior calcination step - notably if the plutonium is to be incorporated into a fission product glass. It is important to weigh the advantages and drawbacks of all the possible options in terms of feasibility, safety and cost-effectiveness.

  14. Plutonium and americium separation from salts

    DOEpatents

    Hagan, Paul G.; Miner, Frend J.

    1976-01-01

    Salts or materials containing plutonium and americium are dissolved in hydrochloric acid, heated, and contacted with an alkali metal carbonate solution to precipitate plutonium and americium carbonates which are thereafter readily separable from the solution.

  15. PROCESS OF SEPARATING PLUTONIUM FROM URANIUM

    DOEpatents

    Brown, H.S.; Hill, O.F.

    1958-09-01

    A process is presented for recovering plutonium values from aqueous solutions. It comprises forming a uranous hydroxide precipitate in such a plutonium bearing solution, at a pH of at least 5. The plutonium values are precipitated with and carried by the uranium hydroxide. The carrier precipitate is then redissolved in acid solution and the pH is adjusted to about 2.5, causing precipitation of the uranous hydroxide but leaving the still soluble plutonium values in solution.

  16. Plutonium Proliferation: The Achilles Heel of Disarmament

    SciTech Connect

    Leventhal, Paul

    2001-02-07

    Plutonium is a byproduct of nuclear fission, and it is produced at the rate of about 70 metric tons a year in the world's nuclear power reactors. Concerns about civilian plutonium ran high in the 1970s and prompted enactment of the Nuclear Non-Proliferation Act of 1978 to give the United States a veto over separating plutonium from U.S.-supplied uranium fuel. Over the years, however, so-called reactor-grade plutonium has become the orphan issue of nuclear non-proliferation, largely as a consequence of pressures from plutonium-separating countries. The demise of the fast breeder reactor and the reluctance of utilities to introduce plutonium fuel in light-water reactors have resulted in large surpluses of civilian, weapons-usable plutonium, which now approach in size the 250 tons of military plutonium in the world. Yet reprocessing of spent fuel for recovery and use of plutonium proceeds apace outside the United States and threatens to overwhelm safeguards and security measures for keeping this material out of the hands of nations and terrorists for weapons. A number of historical and current developments are reviewed to demonstrate that plutonium commerce is undercutting efforts both to stop the spread of nuclear weapons and to work toward eliminating existing nuclear arsenals. These developments include the breakdown of U.S. anti-plutonium policy, the production of nuclear weapons by India with Atoms-for-Peace plutonium, the U.S.-Russian plan to introduce excess military plutonium as fuel in civilian power reactors, the failure to include civilian plutonium and bomb-grade uranium in the proposed Fissile Material Cutoff Treaty, and the perception of emerging proliferation threats as the rationale for development of a ballistic missile defense system. Finally, immobilization of separated plutonium in high-level waste is explored as a proliferation-resistant and disarmament-friendly solution for eliminating excess stocks of civilian and military plutonium.

  17. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2012-10-01 2012-10-01 false Plutonium shipments. 175.704 Section...

  18. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2014-10-01 2014-10-01 false Plutonium shipments. 175.704 Section...

  19. Plutonium immobilization -- Can loading. Revision 1

    SciTech Connect

    Kriikku, E.

    2000-03-13

    The Savannah River Site (SRS) will immobilize excess plutonium in the proposed Plutonium Immobilization Project (PIP). The PIP adds the excess plutonium to ceramic pucks, loads the pucks into cans, and places the cans into DWPF canisters. This paper discusses the PIP process steps, the can loading conceptual design, can loading equipment design, and can loading work completed.

  20. Plutonium Oxide Process Capability Work Plan

    SciTech Connect

    Meier, David E.; Tingey, Joel M.

    2014-02-28

    Pacific Northwest National Laboratory (PNNL) has been tasked to develop a Pilot-scale Plutonium-oxide Processing Unit (P3U) providing a flexible capability to produce 200g (Pu basis) samples of plutonium oxide using different chemical processes for use in identifying and validating nuclear forensics signatures associated with plutonium production. Materials produced can also be used as exercise and reference materials.

  1. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2013-10-01 2013-10-01 false Plutonium shipments. 175.704 Section...

  2. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2011-10-01 2011-10-01 false Plutonium shipments. 175.704 Section...

  3. 49 CFR 175.704 - Plutonium shipments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Regulations Applicable According to Classification of Material § 175.704 Plutonium shipments. Shipments of plutonium which are subject to 10 CFR 71.88(a)(4) must comply with the following: (a) Each package... 49 Transportation 2 2010-10-01 2010-10-01 false Plutonium shipments. 175.704 Section...

  4. Technology and fabrication of plutonium-238 radionuclide heat sources

    NASA Astrophysics Data System (ADS)

    Malikh, Y. A.; Aldoshin, A. I.; Danilkin, E. A.

    1996-03-01

    This paper outlines a brief technical description of the facility for production of plutonium-238 and fabrication of Radionuclide Heat Sources (RHS) containing Pu-238. Technical capabilities of the RHS fabrication facility are presented. The results of development of the RHS design for sea application are discussed. RHS fuel pellet comprises the tantalum shell with an annular slot intended for release of radiogenic helium and the Pu-238 dioxide core with reinforcing elements inside which contact with the shell. RHS is a double encapsulation consisting of the inner ``power'' capsule and the outer corrosion-resistant capsule. The chromium-nickel-molybdenum XH65MB alloy which is equivalent to Hastelloy-C alloy has been selected as a material for both capsules. Upon expiration of working life, RHS design is capable of withstanding the internal pressure of radiogenic helium at 1073 K within 30 minutes and the external hydrostatic pressure of 100 MPa at normal temperature.

  5. Plutonium stabilization and packaging system

    SciTech Connect

    1996-05-01

    This document describes the functional design of the Plutonium Stabilization and Packaging System (Pu SPS). The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements of the DOE standard for safe storage of these materials for 50 years. This system will support completion of stabilization and packaging campaigns of the inventory at a number of affected sites before the year 2002. The package will be standard for all sites and will provide a minimum of two uncontaminated, organics free confinement barriers for the packaged material.

  6. Plutonium immobilization feed batching system concept report

    SciTech Connect

    Erickson, S.

    2000-07-19

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with high level waste glass for permanent storage. Feed batching is one of the first process steps involved with first stage plutonium immobilization. It will blend plutonium oxide powder before it is combined with other materials to make pucks. This report discusses the Plutonium Immobilization feed batching process preliminary concept, batch splitting concepts, and includes a process block diagram, concept descriptions, a preliminary equipment list, and feed batching development areas.

  7. Method of separating thorium from plutonium

    DOEpatents

    Clifton, D.G.; Blum, T.W.

    A method of chemically separating plutonium from thorium is claimed. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  8. Method of separating thorium from plutonium

    DOEpatents

    Clifton, D.G.; Blum, T.W.

    1984-07-10

    A method is described for chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  9. Method of separating thorium from plutonium

    DOEpatents

    Clifton, David G.; Blum, Thomas W.

    1984-01-01

    A method of chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

  10. Plutonium Speciation, Solubilization and Migration in Soils

    SciTech Connect

    Neu, M.; Runde, W.

    1999-06-01

    This report summarizes research completed in the first half of a three-year project. As outlined in the authors' proposal they are focusing on (1) characterizing the plutonium at an actinide contaminated site, RFETS, including determining the origin, dispersion, and speciation of the plutonium, (2) studying environmentally important plutonium complexes, primarily hydroxides and carbonates, and (3) examining the interactions of plutonium species with manganese minerals. In the first year the authors focused on site based studies. This year they continue to characterize samples from the RFETS, study the formation and structural and spectroscopic features of environmentally relevant Pu species, and begin modeling the environmental behavior of plutonium.

  11. PROCESS FOR SEPARATING PLUTONIUM FROM IMPURITIES

    DOEpatents

    Wahl, A.C.

    1957-11-12

    A method is described for separating plutonium from aqueous solutions containing uranium. It has been found that if the plutonium is reduced to its 3+ valence state, and the uranium present is left in its higher valence state, then the differences in solubility between certain salts (e.g., oxalates) of the trivalent plutonium and the hexavalent uranium can be used to separate the metals. This selective reduction of plutonium is accomplished by adding iodide ion to the solution, since iodide possesses an oxidation potential sufficient to reduce plutonium but not sufficient to reduce uranium.

  12. Plutonium inventory characterization technical evaluation report

    SciTech Connect

    Wittman, G.R., Westinghouse Hanford

    1996-07-10

    This is a technical report on the data, gathered to date, under WHC- SD-CP-TP-086, Rev. 1, on the integrity of the food pack cans currently being used to store plutonium or plutonium compounds at the Plutonium Finishing Plant. Workplan PFP-96-VO-009, `Inspection of Special Nuclear Material Using X-ray`, was used to gather data on material and containment conditions using real time radiography. Some of those images are included herein. A matrix found in the `Plutonium Inventory Characterization Implementation Plan` was used to categorize different plutonium items based upon the type of material being stored and the life expectancy of the containers.

  13. PLUTONIUM COMPOUNDS AND PROCESS FOR THEIR PREPARATION

    DOEpatents

    Wolter, F.J.; Diehl, H.C. Jr.

    1958-01-01

    This patent relates to certain new compounds of plutonium, and to the utilization of these compounds to effect purification or separation of the plutonium. The compounds are organic chelate compounds consisting of tetravalent plutonium together with a di(salicylal) alkylenediimine. These chelates are soluble in various organic solvents, but not in water. Use is made of this property in extracting the plutonium by contacting an aqueous solution thereof with an organic solution of the diimine. The plutonium is chelated, extracted and effectively separated from any impurities accompaying it in the aqueous phase.

  14. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOEpatents

    Ackerman, John P.; Miller, William E.

    1989-01-01

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuel using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuel, and two cathodes, the first cathode composed of either a solid alloy or molten cadmium and the second cathode composed of molten cadmium. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then substantially pure uranium is electrolytically transported and deposited on the first alloy or molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on the second molten cadmium cathode.

  15. The First Weighing of Plutonium

    DOE R&D Accomplishments Database

    Seaborg, Glenn T.

    1967-09-10

    Recollections and reminiscences at the 25th Anniversary of the First Weighing of Plutonium, Chicago, IL, September 10, 1967, tell an important part of the story of this fascinating new element that is destined to play an increasingly significant role in the future of man.

  16. Safe disposal of surplus plutonium

    NASA Astrophysics Data System (ADS)

    Gong, W. L.; Naz, S.; Lutze, W.; Busch, R.; Prinja, A.; Stoll, W.

    2001-06-01

    About 150 tons of weapons grade and weapons usable plutonium (metal, oxide, and in residues) have been declared surplus in the USA and Russia. Both countries plan to convert the metal and oxide into mixed oxide fuel for nuclear power reactors. Russia has not yet decided what to do with the residues. The US will convert residues into a ceramic, which will then be over-poured with highly radioactive borosilicate glass. The radioactive glass is meant to provide a deterrent to recovery of plutonium, as required by a US standard. Here we show a waste form for plutonium residues, zirconia/boron carbide (ZrO 2/B 4C), with an unprecedented combination of properties: a single, radiation-resistant, and chemically durable phase contains the residues; billion-year-old natural analogs are available; and criticality safety is given under all conceivable disposal conditions. ZrO 2/B 4C can be disposed of directly, without further processing, making it attractive to all countries facing the task of plutonium disposal. The US standard for protection against recovery can be met by disposal of the waste form together with used reactor fuel.

  17. Plutonium waste incineration using pyrohydrolysis

    SciTech Connect

    Meyer, M.L.

    1991-01-01

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800{degree}C), while plutonium oxides fired at lower decomposition temperatures (400--800{degrees}C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density.

  18. Plutonium waste incineration using pyrohydrolysis

    SciTech Connect

    Meyer, M.L.

    1991-12-31

    Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800{degree}C), while plutonium oxides fired at lower decomposition temperatures (400--800{degrees}C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density.

  19. Plutonium Recycle: The Fateful Step

    ERIC Educational Resources Information Center

    Speth, J. Gustave; And Others

    1974-01-01

    Calls attention to the fact that if the Atomic Energy Commission proceeds with its plans to authorize the nuclear power industry to use plutonium as a fuel in commercial nuclear reactors around the country, this will result in a dramatic escalation in the risks posed by nuclear power. (PEB)

  20. The radiological hazard of plutonium isotopes and specific plutonium mixtures

    SciTech Connect

    Heindel, G.; Clow, J.; Inkret, W.; Miller, G.

    1995-11-01

    The US Department of Energy defines the hazard categories of its nuclear facilities based upon the potential for accidents to have significant effects on specific populations and the environment. In this report, the authors consider the time dependence of hazard category 2 (significant on-site effects) for facilities with inventories of plutonium isotopes and specific weapons-grade and heat-source mixtures of plutonium isotopes. The authors also define relative hazard as the reciprocal of the hazard category 2 threshold value and determine its time dependence. The time dependence of both hazard category 2 thresholds and relative hazards are determined and plotted for 10,000 years to provide useful information for planning long-term storage or disposal facilities.

  1. Plutonium Immobilization Can Loading Concepts

    SciTech Connect

    Kriikku, E.; Ward, C.; Stokes, M.; Randall, B.; Steed, J.; Jones, R.; Hamilton, L.; Rogers, L.; Fiscus, J.; Dyches, G.

    1998-05-01

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses five can loading conceptual designs and the lists the advantages and disadvantages for each concept. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas. The can loading welder and cutter are very similar to the existing Savannah River Site (SRS) FB-Line bagless transfer welder and cutter and thus they are a low priority development item.

  2. Plutonium Immobilization Project -- Can loading

    SciTech Connect

    Kriikku, E.

    2000-01-18

    The Savannah River Site (SRS) will immobilize excess plutonium in the proposed Plutonium Immobilization Project (PIP). The PIP scope includes unloading transportation containers, preparing the feed streams, converting the metal feed to an oxide, adding the ceramic precursors, pressing the pucks, inspecting pucks, and sintering pucks. The PIP scope also includes loading the pucks into metal cans, sealing the cans, inspecting the cans, loading the cans into magazines, loading magazines into Defense Waste Processing Facility (DWPF) canisters, and transporting the canisters to the DWPF. The DWPF fills the canister with a mixture of high level radioactive waste and glass for permanent storage. Due to the radiation, remote equipment must perform PIP operations in a contained environment.

  3. Plutonium Immobilization Project Baseline Formulation

    SciTech Connect

    Ebbinghaus, B.

    1999-02-01

    A key milestone for the Immobilization Project (AOP Milestone 3.2a) in Fiscal Year 1998 (FY98) is the definition of the baseline composition or formulation for the plutonium ceramic form. The baseline formulation for the plutonium ceramic product must be finalized before the repository- and plant-related process specifications can be determined. The baseline formulation that is currently specified is given in Table 1.1. In addition to the baseline formulation specification, this report provides specifications for two alternative formulations, related compositional specifications (e.g., precursor compositions and mixing recipes), and other preliminary form and process specifications that are linked to the baseline formulation. The preliminary specifications, when finalized, are not expected to vary tremendously from the preliminary values given.

  4. Provenance of unknown plutonium material.

    PubMed

    Nicolaou, G

    2008-10-01

    The determination of the provenance of 'unknown' plutonium material is demonstrated through a simulation study based on an isotopic fingerprinting approach. Plutonium of known provenance was considered as the 'unknown' nuclear material in order to evaluate the potential of the approach and verify its predictive capabilities. Factor analysis was used to compare the Pu isotopic composition of the 'unknown' material with Pu isotopic compositions simulating well known spent fuels from a range of commercial nuclear power stations. The provenance of the 'unknown material' is assigned to the commercial fuel with which exhibits the highest degree of similarity with respect to the Pu composition. The approach appears promising since it accurately predicted the provenance of the one 'unknown' sample considered; nevertheless, the approach is still at the development stage. Important challenging issues related to the simulation uncertainties and its testing on real laboratory samples have to be explored prior to evaluating the potential of the approach. PMID:18639370

  5. Biokinetics of Plutonium in Nonhuman Primates.

    PubMed

    Poudel, Deepesh; Guilmette, Raymond A; Gesell, Thomas F; Harris, Jason T; Brey, Richard R

    2016-10-01

    A major source of data on metabolism, excretion and retention of plutonium comes from experimental animal studies. Although old world monkeys are one of the closest living relatives to humans, certain physiological differences do exist between these nonhuman primates and humans. The objective of this paper was to describe the metabolism of plutonium in nonhuman primates using the bioassay and retention data obtained from macaque monkeys injected with plutonium citrate. A biokinetic model for nonhuman primates was developed by adapting the basic model structure and adapting the transfer rates described for metabolism of plutonium in adult humans. Significant changes to the parameters were necessary to explain the shorter retention of plutonium in liver and skeleton of the nonhuman primates, differences in liver to bone partitioning ratio, and significantly higher excretion of plutonium in feces compared to that in humans. PMID:27575347

  6. SEPARATION OF PLUTONIUM HYDROXIDE FROM BISMUTH HYDROXIDE

    DOEpatents

    Watt, G.W.

    1958-08-19

    An tmproved method is described for separating plutonium hydroxide from bismuth hydroxide. The end product of the bismuth phosphate processes for the separation amd concentration of plutonium is a inixture of bismuth hydroxide amd plutonium hydroxide. It has been found that these compounds can be advantageously separated by treatment with a reducing agent having a potential sufficient to reduce bismuth hydroxide to metalltc bisinuth but not sufficient to reduce the plutonium present. The resulting mixture of metallic bismuth and plutonium hydroxide can then be separated by treatment with a material which will dissolve plutonium hydroxide but not metallic bismuth. Sodiunn stannite is mentioned as a preferred reducing agent, and dilute nitric acid may be used as the separatory solvent.

  7. Air transport of plutonium metal: content expansion initiative for the plutonium air transportable (PAT01) packaging

    SciTech Connect

    Caviness, Michael L; Mann, Paul T

    2010-01-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  8. Air transport of plutonium metal : content expansion initiative for the Plutonium Air Transportable (PAT-1) packaging.

    SciTech Connect

    Mann, Paul T.; Caviness, Michael L.; Yoshimura, Richard Hiroyuki

    2010-06-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  9. PLUTONIUM METAL: OXIDATION CONSIDERATIONS AND APPROACH

    SciTech Connect

    Estochen, E.

    2013-03-20

    Plutonium is arguably the most unique of all metals when considered in the combined context of metallurgical, chemical, and nuclear behavior. Much of the research in understanding behavior and characteristics of plutonium materials has its genesis in work associated with nuclear weapons systems. However, with the advent of applications in fuel materials, the focus in plutonium science has been more towards nuclear fuel applications, as well as long term storage and disposition. The focus of discussion included herein is related to preparing plutonium materials to meet goals consistent with non-proliferation. More specifically, the emphasis is on the treatment of legacy plutonium, in primarily metallic form, and safe handling, packaging, and transport to meet non-proliferation goals of safe/secure storage. Elevated temperature oxidation of plutonium metal is the treatment of choice, due to extensive experiential data related to the method, as the oxide form of plutonium is one of only a few compounds that is relatively simple to produce, and stable over a large temperature range. Despite the simplicity of the steps required to oxidize plutonium metal, it is important to understand the behavior of plutonium to ensure that oxidation is conducted in a safe and effective manner. It is important to understand the effect of changes in environmental variables on the oxidation characteristics of plutonium. The primary purpose of this report is to present a brief summary of information related to plutonium metal attributes, behavior, methods for conversion to oxide, and the ancillary considerations related to processing and facility safety. The information provided is based on data available in the public domain and from experience in oxidation of such materials at various facilities in the United States. The report is provided as a general reference for implementation of a simple and safe plutonium metal oxidation technique.

  10. PROCESS OF SEPARATING PLUTONIUM VALUES BY ELECTRODEPOSITION

    DOEpatents

    Whal, A.C.

    1958-04-15

    A process is described of separating plutonium values from an aqueous solution by electrodeposition. The process consists of subjecting an aqueous 0.1 to 1.0 N nitric acid solution containing plutonium ions to electrolysis between inert metallic electrodes. A current density of one milliampere io one ampere per square centimeter of cathode surface and a temperature between 10 and 60 d C are maintained. Plutonium is electrodeposited on the cathode surface and recovered.

  11. PROCESS FOR THE RECOVERY OF PLUTONIUM

    DOEpatents

    Potratz, H.A.

    1958-12-16

    A process for the separation of plutonium from uranlum and other associated radioactlve fission products ls descrlbed conslstlng of contacting an acid solution containing plutonium in the tetravalent state and uranium in the hexavalent state with enough ammonium carbonate to form an alkaline solution, adding cupferron to selectlvely form plutonlum cupferrlde, then recoverlng the plutonium cupferride by extraction with a water lmmiscible organic solvent such as chloroform.

  12. WET METHOD OF PREPARING PLUTONIUM TRIBROMIDE

    DOEpatents

    Davidson, N.R.; Hyde, E.K.

    1958-11-11

    S> The preparation of anhydrous plutonium tribromide from an aqueous acid solution of plutonium tetrabromide is described, consisting of adding a water-soluble volatile bromide to the tetrabromide to provide additional bromide ions sufficient to furnish an oxidation-reduction potential substantially more positive than --0.966 volt, evaporating the resultant plutonium tribromides to dryness in the presence of HBr, and dehydrating at an elevated temperature also in the presence of HBr.

  13. PRECIPITATION METHOD FOR THE SEPARATION OF PLUTONIUM AND RARE EARTHS

    DOEpatents

    Thompson, S.G.

    1960-04-26

    A method of purifying plutonium is given. Tetravalent plutonium is precipitated with thorium pyrophosphate, the plutonium is oxidized to the tetravalent state, and then impurities are precipitated with thorium pyrophosphate.

  14. PLUTONIUM-CUPFERRON COMPLEX AND METHOD OF REMOVING PLUTONIUM FROM SOLUTION

    DOEpatents

    Potratz, H.A.

    1959-01-13

    A method is presented for separating plutonium from fission products present in solutions of neutronirradiated uranium. The process consists in treating such acidic solutions with cupferron so that the cupferron reacts with the plutonium present to form an insoluble complex. This plutonium cupferride precipitates and may then be separated from the solution.

  15. METHOD OF REDUCING PLUTONIUM WITH FERROUS IONS

    DOEpatents

    Dreher, J.L.; Koshland, D.E.; Thompson, S.G.; Willard, J.E.

    1959-10-01

    A process is presented for separating hexavalent plutonium from fission product values. To a nitric acid solution containing the values, ferrous ions are added and the solution is heated and held at elevated temperature to convert the plutonium to the tetravalent state via the trivalent state and the plutonium is then selectively precipitated on a BiPO/sub 4/ or LaF/sub 3/ carrier. The tetravalent plutonium formed is optionally complexed with fluoride, oxalate, or phosphate anion prior to carrier precipitation.

  16. Work and disproportionation for aqueous plutonium.

    PubMed

    Silver, G L

    2003-10-01

    The relation of two plutonium work integrals has recently been illustrated. One of the integrals applies to the work of disproportionation of tetravalent plutonium in 1 M acid and the other to the work of oxidation of plutonium from the trivalent to a higher oxidation state. This paper generalizes the disproportionation work integral so that it can be applied to tetravalent plutonium at any acid concentration. An equation is provided that can be used to verify work estimations obtained by integration. It applies to oxidation and disproportionation processes and it is easy to use. PMID:14522227

  17. OXIDATIVE METHOD OF SEPARATING PLUTONIUM FROM NEPTUNIUM

    DOEpatents

    Beaufait, L.J. Jr.

    1958-06-10

    A method is described of separating neptunium from plutonium in an aqueous solution containing neptunium and plutonium in valence states not greater than +4. This may be accomplished by contacting the solution with dichromate ions, thus oxidizing the neptunium to a valence state greater than +4 without oxidizing any substantial amount of plutonium, and then forming a carrier precipitate which carries the plutonium from solution, leaving the neptunium behind. A preferred embodiment of this invention covers the use of lanthanum fluoride as the carrier precipitate.

  18. NON-AQUEOUS DISSOLUTION OF MASSIVE PLUTONIUM

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Walsh, K.A.

    1959-05-12

    A method is presented for obtaining non-aqueous solutions or plutonium from massive forms of the metal. In the present invention massive plutonium is added to a salt melt consisting of 10 to 40 weight per cent of sodium chloride and the balance zinc chloride. The plutonium reacts at about 800 deg C with the zinc chloride to form a salt bath of plutonium trichloride, sodium chloride, and metallic zinc. The zinc is separated from the salt melt by forcing the molten mixture through a Pyrex filter.

  19. Plutonium 238 facilities at Los Alamos

    NASA Astrophysics Data System (ADS)

    Rinehart, Gary H.

    1991-01-01

    Plutonium 238 operations at Los Alamos are performed at the Plutonium Facility (TA-55), the Chemistry and Metallurgy Research (CMR) Building, and the Radioisotope Fuels Impact Test Facility. The plutonium 238 facilities at Los Alamos support a wide variety of heat source activities including development of new fuel forms and containment materials, research on the high temperature properties of containment materials, investigation of the high temperature compatibility of fuels with potential container materials, processing plutonium 238 fuel forms, manufacture of heat sources under quality assurance surveillance, and performing safety testing on heat sources and radioisotope thermoelectric generators.

  20. Plutonium-238 facilities at Los Alamos

    NASA Astrophysics Data System (ADS)

    Rinehart, Gary H.

    Plutonium-238 operations at Los Alamos are performed at the Plutonium Facility (TA-55), the Chemistry and Metallurgy Research (CMR) Building, and the Radioisotope Fuels Impact Test Facility. The plutonium-238 facilities at Los Alamos support a wide variety of heat source activities including development of new fuel forms and containment materials, research on the high temperature properties of containment materials, investigation of the high temperature compatibility of fuels with potential container materials, processing plutonium-238 fuel forms, manufacture of heat sources under quality assurance surveillance, and performing safety testing on heat sources and radioisotope thermoelectric generators.

  1. ION EXCHANGE ADSORPTION PROCESS FOR PLUTONIUM SEPARATION

    DOEpatents

    Boyd, G.E.; Russell, E.R.; Taylor, M.D.

    1961-07-11

    Ion exchange processes for the separation of plutonium from fission products are described. In accordance with these processes an aqueous solution containing plutonium and fission products is contacted with a cation exchange resin under conditions favoring adsorption of plutonium and fission products on the resin. A portion of the fission product is then eluted with a solution containing 0.05 to 1% by weight of a carboxylic acid. Plutonium is next eluted with a solution containing 2 to 8 per cent by weight of the same carboxylic acid, and the remaining fission products on the resin are eluted with an aqueous solution containing over 10 per cent by weight of sodium bisulfate.

  2. Plutonium oxalate precipitation for trace elemental determination in plutonium materials

    DOE PAGESBeta

    Xu, Ning; Gallimore, David; Lujan, Elmer; Garduno, Katherine; Walker, Laurie; Taylor, Fiona; Thompson, Pam; Tandon, Lav

    2015-05-26

    In this study, an analytical chemistry method has been developed that removes the plutonium (Pu) matrix from the dissolved Pu metal or oxide solution prior to the determination of trace impurities that are present in the metal or oxide. In this study, a Pu oxalate approach was employed to separate Pu from trace impurities. After Pu(III) was precipitated with oxalic acid and separated by centrifugation, trace elemental constituents in the supernatant were analyzed by inductively coupled plasma-optical emission spectroscopy with minimized spectral interferences from the sample matrix.

  3. Alloy materials

    DOEpatents

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  4. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, Lawrence J.; Christensen, Dana C.

    1984-01-01

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  5. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, L.J.; Christensen, D.C.

    1982-09-20

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  6. URANOUS IODATE AS A CARRIER FOR PLUTONIUM

    DOEpatents

    Miller, D.R.; Seaborg, G.T.; Thompson, S.G.

    1959-12-15

    A process is described for precipitating plutonium on a uranous iodate carrier from an aqueous acid solution conA plutonium solution more concentrated than the original solution can then be obtained by oxidizing the uranium to the hexavalent state and dissolving the precipitate, after separating the latter from the original solution, by means of warm nitric acid.

  7. Plutonium disproportionation: the relation of work integrals.

    PubMed

    Silver, G L

    2003-04-01

    Two plutonium work integrals have been demonstrated in recent years. One of them applies to the work of disproportionation and the other to the work of oxidation of plutonium from the trivalent to a higher oxidation state. This paper illustrates the connection of the integrals by an example and a diagram. PMID:12672623

  8. MOLTEN PLUTONIUM FUELED FAST BREEDER REACTOR

    DOEpatents

    Kiehn, R.M.; King, L.D.P.; Peterson, R.E.; Swickard, E.O. Jr.

    1962-06-26

    A description is given of a nuclear fast reactor fueled with molten plutonium containing about 20 kg of plutonium in a tantalum container, cooled by circulating liquid sodium at about 600 to 650 deg C, having a large negative temperature coefficient of reactivity, and control rods and movable reflector for criticality control. (AEC)

  9. Plutonium Immobilization Project -- Robotic canister loading

    SciTech Connect

    Hamilton, L.

    2000-04-28

    The Plutonium Immobilization Program (PIP) is a joint venture between the Savannah River Site, Lawrence Livermore National Laboratory, Argonne National Laboratory, and Pacific Northwest National Laboratory. When operational in 2008, the PIP will fulfill the nation's nonproliferation commitment by placing surplus weapons-grade plutonium in a permanently stable ceramic form.

  10. RECOVERY OF PLUTONIUM BY CARRIER PRECIPITATION

    DOEpatents

    Goeckermann, R.H.

    1961-04-01

    A process is given for recovering plutonium from an aqueous nitric acid zirconium-containing solution of an acidity between 0.2 and 1 N by adding fluoride anions (1.5 to 5 mg/l) and precipitating the plutonium with an excess of hydrogen peroxide at from 53 to 65 deg C.

  11. Nondestructive assay methods for solids containing plutonium

    SciTech Connect

    Macmurdo, K.W.; Gray, L.W.; Gibbs, A.

    1984-06-01

    Specific nondestructive assay (NDA) methods, e.g. calorimetry, coincidence neutron counting, singles neutron counting, and gamma ray spectrometry, were studied to provide the Savannah River Plant with an NDA method to measure the plutonium content of solid scrap (slag and crucible) generated in the JB-Line plutonium metal production process. Results indicate that calorimetry can be used to measure the plutonium content to within about 3% in 4 to 6 hours by using computerized equilibrium sample power predictive models. Calorimetry results confirm that a bias exists in the present indirect measurement method used to estimate the plutonium content of slag and crucible. Singles neutron counting of slag and crucible can measure plutonium to only +-30%, but coincidence neutron counting methods improve measurement precision to better than +-10% in less than ten minutes. Only four portions of a single slag and crucible sample were assayed, and further study is recommended.

  12. New Fecal Method for Plutonium and Americium

    SciTech Connect

    Maxwell, S.L. III

    2000-06-27

    A new fecal analysis method that dissolves plutonium oxide was developed at the Westinghouse Savannah River Site. Diphonix Resin (Eichrom Industries), is used to pre-concentrate the actinides from digested fecal samples. A rapid microwave digestion technique is used to remove the actinides from the Diphonix Resin, which effectively extracts plutonium and americium from acidic solutions containing hydrofluoric acid. After resin digestion, the plutonium and americium are recovered in a small volume of nitric acid that is loaded onto small extraction chromatography columns, TEVA Resin and TRU Resin (Eichrom Industries). The method enables complete dissolution of plutonium oxide and provides high recovery of plutonium and americium with good removal of thorium isotopes such as thorium-228.

  13. PROCESS FOR THE RECOVERY OF PLUTONIUM

    DOEpatents

    Ritter, D.M.

    1959-01-13

    An improvement is presented in the process for recovery and decontamination of plutonium. The carrier precipitate containing plutonium is dissolved and treated with an oxidizing agent to place the plutonium in a hexavalent oxidation state. A lanthanum fluoride precipitate is then formed in and removed from the solution to carry undesired fission products. The fluoride ions in the reniaining solution are complexed by addition of a borate sueh as boric acid, sodium metaborate or the like. The plutonium is then reduced and carried from the solution by the formation of a bismuth phosphate precipitate. This process effects a better separation from unwanted flssion products along with conccntration of the plutonium by using a smaller amount of carrier.

  14. Reversible expansion of gallium-stabilized delta-plutonium

    SciTech Connect

    Wolfer, W; Oudot, B; Baclet, N

    2006-01-26

    The transient expansion of plutonium-gallium alloys observed both in the lattice parameter as well as in the dimension of a sample held at ambient temperature is explained by assuming incipient precipitation of Pu{sub 3}Ga. However, this ordered {zeta}{prime}-phase is also subject to radiation-induced disordering. As a result, the gallium-stabilized {delta}-phase, being metastable at ambient temperature, is both driven towards thermodynamic equilibrium by radiation-enhanced diffusion of gallium and at the same time pushed back to its metastable state by radiation-induced disordering. A steady state is reached in which only a modest fraction of the gallium present is tied up in the {zeta}{prime}-phase.

  15. Reversible expansion of gallium-stabilized (delta)-plutonium

    SciTech Connect

    Wolfer, W G; Oudot, B; Baclet, N

    2006-02-27

    It is shown that the transient expansion of plutonium-gallium alloys observed both in the lattice parameter as well as in the dimension of a sample held at ambient temperature can be explained by assuming incipient precipitation of Pu{sub 3}Ga. However, this ordered {zeta}-phase is also subject to radiation-induced disordering. As a result, the gallium-stabilized {delta}-phase, being metastable at ambient temperature, is driven towards thermodynamic equilibrium by radiation-enhanced diffusion of gallium and at the same time reverted back to its metastable state by radiation-induced disordering. A steady state is reached in which only a modest fraction of the gallium present is arranged in ordered {zeta}-phase regions.

  16. Probing Radiation Damage in Plutonium Alloys with Multiple Measurement Techniques

    SciTech Connect

    McCall, S K; Fluss, M J; Chung, B W

    2010-04-21

    A material subjected to radiation damage will usually experience changes in its physical properties. Measuring these changes in the physical properties provides a basis to study radiation damage in a material which is important for a variety of real world applications from reactor materials to semiconducting devices. When investigating radiation damage, the relative sensitivity of any given property can vary considerably based on the concentration and type of damage present as well as external parameters such as the temperature and starting material composition. By measuring multiple physical properties, these differing sensitivities can be leveraged to provide greater insight into the different aspects of radiation damage accumulation, thereby providing a broader understanding of the mechanisms involved. In this report, self-damage from {alpha}-particle decay in Pu is investigated by measuring two different properties: magnetic susceptibility and resistivity. The results suggest that while the first annealing stage obeys second order chemical kinetics, the primary mechanism is not the recombination of vacancy-interstitial close pairs.

  17. REMOVAL OF LEGACY PLUTONIUM MATERIALS FROM SWEDEN

    SciTech Connect

    Dunn, Kerry A.; Bellamy, J. Steve; Chandler, Greg T.; Iyer, Natraj C.; Koenig, Rich E.; Leduc, D.; Hackney, B.; Leduc, Dan R.; McClard, J. W.

    2013-08-18

    U.S. Department of Energy’s National Nuclear Security Administration (NNSA) Office of Global Threat Reduction (GTRI) recently removed legacy plutonium materials from Sweden in collaboration with AB SVAFO, Sweden. This paper details the activities undertaken through the U.S. receiving site (Savannah River Site (SRS)) to support the characterization, stabilization, packaging and removal of legacy plutonium materials from Sweden in 2012. This effort was undertaken as part of GTRI’s Gap Materials Program and culminated with the successful removal of plutonium from Sweden as announced at the 2012 Nuclear Security Summit. The removal and shipment of plutonium materials to the United States was the first of its kind under NNSA’s Global Threat Reduction Initiative. The Environmental Assessment for the U.S. receipt of gap plutonium material was approved in May 2010. Since then, the multi-year process yielded many first time accomplishments associated with plutonium packaging and transport activities including the application of the of DOE-STD-3013 stabilization requirements to treat plutonium materials outside the U.S., the development of an acceptance criteria for receipt of plutonium from a foreign country, the development and application of a versatile process flow sheet for the packaging of legacy plutonium materials, the identification of a plutonium container configuration, the first international certificate validation of the 9975 shipping package and the first intercontinental shipment using the 9975 shipping package. This paper will detail the technical considerations in developing the packaging process flow sheet, defining the key elements of the flow sheet and its implementation, determining the criteria used in the selection of the transport package, developing the technical basis for the package certificate amendment and the reviews with multiple licensing authorities and most importantly integrating the technical activities with the Swedish partners.

  18. Plutonium focus area. Technology summary

    SciTech Connect

    1997-09-01

    The Assistant Secretary for the Office of Environmental Management (EM) at the U.S. Department of Energy (DOE) chartered the Plutonium Focus Area (PFA) in October 1995. The PFA {open_quotes}...provides for peer and technical reviews of research and development in plutonium stabilization activities...{close_quotes} In addition, the PFA identifies and develops relevant research and technology. The purpose of this document is to focus attention on the requirements used to develop research and technology for stabilization, storage, and preparation for disposition of nuclear materials. The PFA Technology Summary presents the approach the PFA uses to identify, recommend, and review research. It lists research requirements, research being conducted, and gaps where research is needed. It also summarizes research performed by the PFA in the traditional research summary format. This document encourages researchers and commercial enterprises to do business with PFA by submitting research proposals or {open_quotes}white papers.{close_quotes} In addition, it suggests ways to increase the likelihood that PFA will recommend proposed research to the Nuclear Materials Stabilization Task Group (NMSTG) of DOE.

  19. Ceramification: A plutonium immobilization process

    SciTech Connect

    Rask, W.C.; Phillips, A.G.

    1996-05-01

    This paper describes a low temperature technique for stabilizing and immobilizing actinide compounds using a combination process/storage vessel of stainless steel, in which measured amounts of actinide nitrate solutions and actinide oxides (and/or residues) are systematically treated to yield a solid article. The chemical ceramic process is based on a coating technology that produces rare earth oxide coatings for defense applications involving plutonium. The final product of this application is a solid, coherent actinide oxide with process-generated encapsulation that has long-term environmental stability. Actinide compounds can be stabilized as pure materials for ease of re-use or as intimate mixtures with additives such as rare earth oxides to increase their degree of proliferation resistance. Starting materials for the process can include nitrate solutions, powders, aggregates, sludges, incinerator ashes, and others. Agents such as cerium oxide or zirconium oxide may be added as powders or precursors to enhance the properties of the resulting solid product. Additives may be included to produce a final product suitable for use in nuclear fuel pellet production. The process is simple and reduces the time and expense for stabilizing plutonium compounds. It requires a very low equipment expenditure and can be readily implemented into existing gloveboxes. The process is easily conducted with less associated risk than proposed alternative technologies.

  20. Plutonium Uptake and Distribution in Mammalian Cells: Molecular vs Polymeric Plutonium

    PubMed Central

    ARYAL, BAIKUNTHA P.; GORMAN-LEWIS, DREW; PAUNESKU, TATJANA; WILSON, RICHARD E.; LAI, BARRY; VOGT, STEFAN; WOLOSCHAK, GAYLE E.; JENSEN, MARK P.

    2013-01-01

    Purpose To study the cellular responses to molecular and polymeric forms of plutonium using PC12 cells derived from rat adrenal glands. Materials and methods Serum starved PC12 cells were exposed to polymeric and molecular forms of plutonium for three hours. Cells were washed with 10 mM EGTA, 100 mM NaCl at pH 7.4 to remove surface sorbed plutonium. Localization of plutonium in individual cell was quantitatively analyzed by synchrotron X-ray fluorescence (XRF) microscopy. Results Molecular plutonium complexes introduced to cell growth media in the form of NTA, citrate, or transferrin complexes were taken up by PC12 cells, and mostly co-localized with iron within the cells. Polymeric plutonium prepared separately was not internalized by PC12 cells but it was always found on the cell surface as big agglomerates; however polymeric plutonium formed in situ was mostly found within the cells as agglomerates. Conclusions PC12 cells can differentiate molecular and polymeric forms of plutonium. Molecular plutonium is taken up by PC12 cells and mostly co-localized with iron but aged polymeric plutonium is not internalized by the cells. PMID:21770702

  1. ADSORPTION-BISMUTH PHOSPHATE METHOD FOR SEPARATING PLUTONIUM

    DOEpatents

    Russell, E.R.; Adamson, A.W.; Boyd, G.E.

    1960-06-28

    A process is given for separating plutonium from uranium and fission products. Plutonium and uranium are adsorbed by a cation exchange resin, plutonium is eluted from the adsorbent, and then, after oxidation to the hexavalent state, the plutonium is contacted with a bismuth phosphate carrier precipitate.

  2. Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility

    SciTech Connect

    Tingey, Joel M.; Jones, Susan A.

    2005-07-01

    PFP. Samples varied in appearance depending on the original source of material. Rocky Flats items were mostly dark olive green with clumps that crushed easily with a mortar and pestle. PRF/RMC items showed more variability. These items were mostly rust colored. One sample contained white particles that were difficult to crush, and another sample was a dark grey with a mixture of fines and large, hard fragments. The appearance and feel of the fragments indicated they might be an alloy. The color of the solution samples was indicative of the impurities in the sample. The double-pass filtrate solution was a brown color indicative of the iron impurities in the sample. The other solution sample was light gray in color. Radiochemical analyses, including thermal ionization mass spectrometry (TIMS), alpha and gamma energy analysis (AEA and GEA), and kinetic phosphorescence analysis (KPA), indicate that these materials are all weapons-grade plutonium with consistent plutonium isotopics. A small amount of uranium (<0.14 wt%) is also present in these samples. The isotopic composition of the uranium varied widely but was consistent among each category of material. The primary water-soluble anions in these samples were Cl-, NO3-, SO42-, and PO43-. The only major anion observed in the Rocky Flats materials was Cl-, but the PRF/RMC samples had significant quantities of all of the primary anions observed. Prompt gamma measurements provide a representative analysis of the Cl- concentration in the bulk material. The primary anions observed in the solution samples were NO3-, and PO43-. The concentration of these anions did not exceed the mixed oxide (MOX) specification limits. Cations that exceeded the MOX specification limits included Cr, Fe, Ni, Al, Cu, and Si. All of the samples exceeded at least the 75% specification limit in one element.

  3. Excess Plutonium: Weapons Legacy or National Asset?

    SciTech Connect

    Klipa, G.; Boeke, S.; Hottel, R.

    2002-02-27

    The Nuclear Materials Stewardship Initiative was established in January, 2000, to accelerate the work of achieving integration and cutting long-term costs associated with the management of nuclear materials. As part of that initiative, the Department of Energy (DOE), Office of Environmental Management (EM), has established Nuclear Material Management Groups for the management of excess nuclear materials. As one of these groups, the Plutonium Material Management Group (PMMG) has been chartered to serve as DOE's complex wide resource and point of contact for technical coordination and program planning support in the safe and efficient disposition of the nations excess Plutonium 239. This paper will explain the mission, goals, and objectives of the PMMG. In addition, the paper will provide a broad overview of the status of the plutonium inventories throughout the DOE complex. The DOE currently manages approximately 99.5 MT of plutonium isotopes. Details of the various categories of plutonium, from material designated for national security needs through material that has been declared excess, will be explained. For the plutonium that has been declared excess, the various pathways to disposition (including reuse, recycling, sale, transfer, treatment, consumption, and disposal) will be discussed. At this time 52.5 MT of plutonium has been declared excess and the method of disposition for that material is the subject of study and evaluation within DOE. The role of the PMMG in those evaluations will be outlined.

  4. How much plutonium does North Korea have?

    SciTech Connect

    Albright, D.

    1994-09-01

    U.S. intelligence discovered in the 1980s that North Korea was building a small nuclear reactor. The reactor was described as a gas-cooled, graphite-moderated model similar to those Britian and France used to produce electric power as well as plutonium for nuclear weapons. When Western nations expressed concern about the reactor Russia pressed North Korea to sign the Non-Proliferation Treaty (NPT) which it did on December 12, 1985. However, North Korea stalled on signing the required safeguards agreement that allows the International Atomic Energy Agency (IAEA) to inspect nuclear facilities until January 1992. Inspections by the IAEA revealed discrepancies with the amounts of plutonium separated as declared by the North Koreans. The IAEA also received reports that two North Korean waste sites were hidden. By February 1993 the IAEA and the North Koreans has reached an impasse: North Koreas initial declarations of plutonium inventory could not be confirmed and North Korea refused to cooperate. At the least, North Korea admits to having separated 100 grams of plutonium. At the most, worst case estimate, they could have a total of 6 - 13 kilograms of separated plutonium. A first nuclear weapon can require up to 10 kilograms of weapon-grade plutonium. Any settlement needs to include a way to insure that the IAEA can verify North Korea`s past nuclear activities and determine the amount of plutonium that may have been separated in the past. 2 refs.

  5. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... Appendixes to Part 140 § 140.108 Appendix H—Form of indemnity agreement with licensees possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of...

  6. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... Appendixes to Part 140 § 140.108 Appendix H—Form of indemnity agreement with licensees possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of...

  7. Volatile fluoride process for separating plutonium from other materials

    DOEpatents

    Spedding, F. H.; Newton, A. S.

    1959-04-14

    The separation of plutonium from uranium and/or fission products by formation of the higher fluorides off uranium and/or plutonium is described. Neutronirradiated uranium metal is first converted to the hydride. This hydrided product is then treated with fluorine at about 315 deg C to form and volatilize UF/sub 6/ leaving plutonium behind. Thc plutonium may then be separated by reacting the residue with fluorine at about 5004DEC and collecting the volatile plutonium fluoride thus formed.

  8. VOLATILE FLUORIDE PROCESS FOR SEPARATING PLUTONIUM FROM OTHER MATERIALS

    DOEpatents

    Spedding, F.H.; Newton, A.S.

    1959-04-14

    The separation of plutonium from uranium and/or tission products by formation of the higher fluorides of uranium and/or plutonium is discussed. Neutronirradiated uranium metal is first convcrted to the hydride. This hydrided product is then treatced with fluorine at about 315 deg C to form and volatilize UF/sup 6/ leaving plutonium behind. The plutonium may then be separated by reacting the residue with fluorine at about 500 deg C and collecting the volatile plutonium fluoride thus formed.

  9. NON-CORROSIVE PLUTONIUM FUEL SYSTEMS

    DOEpatents

    Coffinberry, A.S.; Waber, J.T.

    1962-10-23

    An improved plutonium reactor liquid fuel is described for utilization in a nuclear reactor having a tantalum fuel containment vessel. The fuel consists of plutonium and a diluent such as iron, cobalt, nickel, cerium, cerium-- iron, cerium--cobalt, cerium--nickel, and cerium--copper, and an additive of carbon and silicon. The carbon and silicon react with the tantalum container surface to form a coating that is self-healing and prevents the corrosive action of liquid plutonium on the said tantalum container. (AEC)

  10. Plutonium Immobilization Can Loading Conceptual Design

    SciTech Connect

    Kriikku, E.

    1999-05-13

    'The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses the Plutonium Immobilization can loading conceptual design and includes a process block diagram, process description, preliminary equipment specifications, and several can loading issues. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.'

  11. Removal of plutonium from hepatic tissue

    DOEpatents

    Lindenbaum, Arthur; Rosenthal, Marcia W.

    1979-01-01

    A method is provided for removing plutonium from hepatic tissues by introducing into the body and blood stream a solution of the complexing agent DTPA and an adjunct thereto. The adjunct material induces aberrations in the hepatic tissue cells and removes intracellularly deposited plutonium which is normally unavailable for complexation with the DTPA. Once the intracellularly deposited plutonium has been removed from the cell by action of the adjunct material, it can be complexed with the DTPA present in the blood stream and subsequently removed from the body by normal excretory processes.

  12. SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS

    DOEpatents

    Nicholls, C.M.; Wells, I.; Spence, R.

    1959-10-13

    The separation of uranium and plutonium from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in nitric acid to provide an aqueous solution 3N in nitric acid. The fission products of the solution are extruded by treating the solution with dibutyl carbitol substantially 1.8N in nitric acid. The organic solvent phase is separated and neutralized with ammonium hydroxide and the plutonium reduced with hydroxylamine base to the trivalent state. Treatment of the mixture with saturated ammonium nitrate extracts the reduced plutonium and leaves the uranium in the organic solvent.

  13. RECOVERY OF PLUTONIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Reber, E.J.

    1959-09-01

    A process is described for recovering plutonium values from aqueous solutions by precipitation on bismuth phosphate. The plutonium is secured in its tetravalent state. bismuth salt is added to the solution, and ant excess of phosphoric acid anions is added to the solution in two approximately equal installments. The rate of addition of the first installment is about two to three times as high as the rate of addition of the second installment, whereby a precipitate of bismuth phosphate forms, the precipitate carrying the plutonium values. The precipitate is separated from the solution.

  14. Excess Weapons Plutonium Immobilization in Russia

    SciTech Connect

    Jardine, L.; Borisov, G.B.

    2000-04-15

    The joint goal of the Russian work is to establish a full-scale plutonium immobilization facility at a Russian industrial site by 2005. To achieve this requires that the necessary engineering and technical basis be developed in these Russian projects and the needed Russian approvals be obtained to conduct industrial-scale immobilization of plutonium-containing materials at a Russian industrial site by the 2005 date. This meeting and future work will provide the basis for joint decisions. Supporting R&D projects are being carried out at Russian Institutes that directly support the technical needs of Russian industrial sites to immobilize plutonium-containing materials. Special R&D on plutonium materials is also being carried out to support excess weapons disposition in Russia and the US, including nonproliferation studies of plutonium recovery from immobilization forms and accelerated radiation damage studies of the US-specified plutonium ceramic for immobilizing plutonium. This intriguing and extraordinary cooperation on certain aspects of the weapons plutonium problem is now progressing well and much work with plutonium has been completed in the past two years. Because much excellent and unique scientific and engineering technical work has now been completed in Russia in many aspects of plutonium immobilization, this meeting in St. Petersburg was both timely and necessary to summarize, review, and discuss these efforts among those who performed the actual work. The results of this meeting will help the US and Russia jointly define the future direction of the Russian plutonium immobilization program, and make it an even stronger and more integrated Russian program. The two objectives for the meeting were to: (1) Bring together the Russian organizations, experts, and managers performing the work into one place for four days to review and discuss their work with each other; and (2) Publish a meeting summary and a proceedings to compile reports of all the excellent

  15. HENC performance evaluation and plutonium calibration

    SciTech Connect

    Menlove, H.O.; Baca, J.; Pecos, J.M.; Davidson, D.R.; McElroy, R.D.; Brochu, D.B.

    1997-10-01

    The authors have designed a high-efficiency neutron counter (HENC) to increase the plutonium content in 200-L waste drums. The counter uses totals neutron counting, coincidence counting, and multiplicity counting to determine the plutonium mass. The HENC was developed as part of a Cooperative Research and Development Agreement between the Department of Energy and Canberra Industries. This report presents the results of the detector modifications, the performance tests, the add-a-source calibration, and the plutonium calibration at Los Alamos National Laboratory (TA-35) in 1996.

  16. Weapons-grade plutonium dispositioning. Volume 4. Plutonium dispositioning in light water reactors

    SciTech Connect

    Sterbentz, J.W.; Olsen, C.S.; Sinha, U.P.

    1993-06-01

    This study is in response to a request by the Reactor Panel Subcommittee of the National Academy of Sciences (NAS) Committee on International Security and Arms Control (CISAC) to evaluate the feasibility of using plutonium fuels (without uranium) for disposal in existing conventional or advanced light water reactor (LWR) designs and in low temperature/pressure LWR designs that might be developed for plutonium disposal. Three plutonium-based fuel forms (oxides, aluminum metallics, and carbides) are evaluated for neutronic performance, fabrication technology, and material and compatibility issues. For the carbides, only the fabrication technologies are addressed. Viable plutonium oxide fuels for conventional or advanced LWRs include plutonium-zirconium-calcium oxide (PuO{sub 2}-ZrO{sub 2}-CaO) with the addition of thorium oxide (ThO{sub 2}) or a burnable poison such as erbium oxide (Er{sub 2}O{sub 3}) or europium oxide (Eu{sub 2}O{sub 3}) to achieve acceptable neutronic performance. Thorium will breed fissile uranium that may be unacceptable from a proliferation standpoint. Fabrication of uranium and mixed uranium-plutonium oxide fuels is well established; however, fabrication of plutonium-based oxide fuels will require further development. Viable aluminum-plutonium metallic fuels for a low temperature/pressure LWR include plutonium aluminide in an aluminum matrix (PuAl{sub 4}-Al) with the addition of a burnable poison such as erbium (Er) or europium (Eu). Fabrication of low-enriched plutonium in aluminum-plutonium metallic fuel rods was initially established 30 years ago and will require development to recapture and adapt the technology to meet current environmental and safety regulations. Fabrication of high-enriched uranium plate fuel by the picture-frame process is a well established process, but the use of plutonium would require the process to be upgraded in the United States to conform with current regulations and minimize the waste streams.

  17. PLUTONIUM METALLOGRAPHY AT LOS ALAMOS

    SciTech Connect

    PEREYRA, RAMIRO A.; LOVATO, DARRYL

    2007-01-08

    From early days of the Manhattan program to today, scientists and engineers have continued to investigate the metallurgical properties of plutonium (Pu). Although issues like aging was not a concern to the early pioneers, today the reliability of our aging stockpile is of major focus. And as the country moves toward a new generation of weapons similar problems that the early pioneers faced such as compatibility, homogeneity and malleability have come to the forefront. And metallography will continue to be a principle tool for the resolution of old and new issues. Standard metallographic techniques are used for the preparation of plutonium samples. The samples are first cut with a slow speed idamond saw. After mounting in Epon 815 epoxy resin, the samples are ground through 600 grit silicon carbide paper. PF 5070 (a Freon substitute) is used as a coolant, lubricant, and solvent for most operations. Rough mechanical polished is done with 9-{mu} diamond using a nap less cloth, for example nylon or cotton. Final polish is done with 1-{mu} diamond on a nappy cloth such as sylvet. Ethyl alcohol is then used ultrasonically to clean the samples before electro polishing. The sample is then electro-polished and etched in an electrolyte containing 10% nitric acid, and 90% dimethyleneformalmide. Ethyl alcohol is used as a final cleaning agent. Although standard metallographic preparation techniques are used, there are several reasons why metallography of Pu is difficult and challenging. Firstly, because of the health hazards associated with its radioactive properties, sample preparation is conducted in glove boxes. Figure 1 shows the metallography line, in an R and D facility. Since they are designed to be negative in pressure to the laboratory, cross-contamination of abrasives is a major problem. In addition, because of safety concerns and waste issues, there is a limit to the amount of solvent that can be used. Secondly, Pu will readily hydride or oxidize when in contact

  18. PRODUCTION OF PLUTONIUM FLUORIDE FROM BISMUTH PHOSPHATE PRECIPITATE CONTAINING PLUTONIUM VALUES

    DOEpatents

    Brown, H.S.; Bohlmann, E.G.

    1961-05-01

    A process is given for separating plutonium from fission products present on a bismuth phosphate carrier. The dried carrier is first treated with hydrogen fluoride at between 500 and 600 deg C whereby some fission product fluorides volatilize away from plutonium tetrafluoride, and nonvolatile fission product fluorides are formed then with anhydrous fluorine at between 400 and 500 deg C. Bismuth and plutonium distill in the form of volatile fluorides away from the nonvolatile fission product fluorides. The bismuth and plutonium fluorides are condensed at below 290 deg C.

  19. What is plutonium stabilization, and what is safe storage of plutonium?

    SciTech Connect

    Forsberg, C.W.

    1995-06-29

    The end of the cold war has resulted in the shutdown of nuclear weapons production and the start of dismantlement of significant numbers of nuclear weapons. This, in turn, is creating an inventory of plutonium requiring interim and long-term storage. A key question is, ``What is required for safe, multidecade, plutonium storage?`` The requirements for storage, in turn, define what is needed to stabilize the plutonium from its current condition into a form acceptable for interim and long-term storage. Storage requirements determine if research is required to (1) define required technical conditions for interim and long-term storage and (2) develop or improve current stabilization technologies. Storage requirements depend upon technical, policy, and economic factors. The technical issues are complicated by several factors. Plutonium in aerosol form is highly hazardous. Plutonium in water is hazardous. The plutonium inventory is in multiple chemical forms--some of which are chemically reactive. Also, some of the existing storage forms are clearly unsuitable for storage periods over a few years. Gas generation by plutonium compounds complicates storage: (1) all plutonium slowly decays creating gaseous helium and (2) the radiation from plutonium decay can initiate many chemical reactions-some of which generate significant quantities of gases. Gas generation can pressurize sealed storage packages. Last nuclear criticality must be avoided.

  20. Plutonium focus area: Technology summary

    SciTech Connect

    1996-03-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this approach, EM developed a management structure and principles that led to creation of specific focus areas. These organizations were designed to focus scientific and technical talent throughout DOE and the national scientific community on major environmental restoration and waste management problems facing DOE. The focus area approach provides the framework for inter-site cooperation and leveraging of resources on common problems. After the original establishment of five major focus areas within the Office of Technology Development (EM-50), the Nuclear Materials Stabilization Task Group (NMSTG, EM-66) followed EM-50`s structure and chartered the Plutonium Focus Area (PFA). NMSTG`s charter to the PFA, described in detail later in this book, plays a major role in meeting the EM-66 commitments to the Defense Nuclear Facilities Safety Board (DNFSB). The PFA is a new program for FY96 and as such, the primary focus of revision 0 of this Technology Summary is an introduction to the Focus Area; its history, development, and management structure, including summaries of selected technologies being developed. Revision 1 to the Plutonium Focus Area Technology Summary is slated to include details on all technologies being developed, and is currently planned for release in August 1996. The following report outlines the scope and mission of the Office of Environmental Management, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  1. Plutonium residue recovery (PuRR) project: Quarterly progress report, October--December 1988

    SciTech Connect

    Alire, R.M.; Coops, M.S.; Gregg, D.W.; Hickman, R.G.; Landrum, J.H.; Pittenger, L.C.; Johnson, G.K.; Johnson, I.; Mulcahey, T.P.; Piece, R.D.

    1989-02-01

    Substantial progress was made in several areas of the PuRR (plutonium residue recovery) program during the quarter. Criteria were developed for selecting process options, with the goal of process simplification. A modified flowsheet and material balance were selected that reflect these priorities. Efforts to effect a front-end separation by sedimentation were not successful. Experimental liquid-liquid extractions from alloys to salts based on valence change were performed. Results ranged from fair to good, but experimental equipment materials problems occurred. Also, substantial interference from the large excess of tramp metals present, which influence plutonium activity, suggested alternate approaches should be given priority. Estimates of the high-temperature thermodynamic functions of americium chlorides were calculated for the first time. 11 refs., 3 figs., 10 tabs.

  2. Design-only conceptual design report: Plutonium Immobilization Plant

    SciTech Connect

    DiSabatino, A A

    2000-05-01

    This design-only conceptual design report was prepared to support a funding request by the Department of Energy Office of Fissile Materials Disposition for engineering and design of the Plutonium Immobilization Plant, which will be used to immobilize up to 50 tonnes of surplus plutonium. The Plutonium Immobilization Plant will be located at the Savannah River Site pursuant to the Surplus Plutonium Disposition Final Environmental Impact Statement Record of Decision, January 4, 2000. This document reflects a new facility using the ceramic immobilization technology and the can-in-canister approach. The Plutonium Immobilization Plant accepts plutonium oxide from pit conversion and plutonium and plutonium oxide from non-pit sources and, through a ceramic immobilization process, converts the plutonium into mineral-like forms that are subsequently encapsulated within a large canister of high-level waste glass. The final immobilized product must make the plutonium as inherently unattractive and inaccessible for use in nuclear weapons as the plutonium in spent fuel from commercial reactors; it must also be suitable for geologic disposal. Plutonium immobilization at the Savannah River Site uses a new building, the Plutonium Immobilization Plant, which will receive and store feed materials, convert non-pit surplus plutonium to an oxide form suitable for the immobilization process, immobilize the plutonium oxide in a titanate-based ceramic form, place cans of the plutonium-ceramic forms into magazines, and load the magazines into a canister. The existing Defense Waste Processing Facility is used for the pouring of high-level waste glass into the canisters. The Plutonium Immobilization Plant uses existing Savannah River Site infrastructure for analytical laboratory services, waste handling, fire protection, training, and other support utilities and services. This design-only conceptual design report also provides the cost for a Plutonium Immobilization Plant which would process

  3. International shipment of plutonium by air

    SciTech Connect

    Mercado, J.E.; McGrogan, J.P.

    1995-05-01

    In support of the United States (US) Government`s decision to place excess plutonium oxide at the US Department of Energy`s (DOE) Hanford Site under International Atomic Energy Agency (IAEA) safeguards, the Department of State notified the Congress that a plutonium storage vault at the Plutonium Finishing Plant at the Hanford Site would be added to the eligible facilities list. As part of the preparations to transfer the plutonium oxide under IAEA safeguards, samples of the powder were taken from the inventory to be shipped to the IAEA headquarters in Vienna, Austria, for laboratory analysis. The analysis of these samples was of high priority, and the IAEA requested that the material be shipped by aircraft, the most expeditious method.

  4. IMPROVED PROCESS OF PLUTONIUM CARRIER PRECIPITATION

    DOEpatents

    Faris, B.F.

    1959-06-30

    This patent relates to an improvement in the bismuth phosphate process for separating and recovering plutonium from neutron irradiated uranium, resulting in improved decontamination even without the use of scavenging precipitates in the by-product precipitation step and subsequently more complete recovery of the plutonium in the product precipitation step. This improvement is achieved by addition of fluomolybdic acid, or a water soluble fluomolybdate, such as the ammonium, sodium, or potassium salt thereof, to the aqueous nitric acid solution containing tetravalent plutonium ions and contaminating fission products, so as to establish a fluomolybdate ion concentration of about 0.05 M. The solution is then treated to form the bismuth phosphate plutonium carrying precipitate.

  5. Pulmonary carcinogenesis from plutonium-containing particles

    SciTech Connect

    Thomas, R.G.; Smith, D.M.; Anderson, E.C.

    1980-01-01

    Plutonium administered as an alpha radiation source to the respiratory tracts of Syrian hamsters has resulted in various incidences of neoplasia. Adenomas are the primary lung tumor observed, but adenocarcinomas are also prevalent.

  6. SEPARATION OF URANIUM, PLUTONIUM, AND FISSION PRODUCTS

    DOEpatents

    Spence, R.; Lister, M.W.

    1958-12-16

    Uranium and plutonium can be separated from neutron-lrradiated uranium by a process consisting of dissolvlng the lrradiated material in nitric acid, saturating the solution with a nitrate salt such as ammonium nitrate, rendering the solution substantially neutral with a base such as ammonia, adding a reducing agent such as hydroxylamine to change plutonium to the trivalent state, treating the solution with a substantially water immiscible organic solvent such as dibutoxy diethylether to selectively extract the uranium, maklng the residual aqueous solutlon acid with nitric acid, adding an oxidizing agent such as ammonlum bromate to oxidize the plutonium to the hexavalent state, and selectlvely extracting the plutonium by means of an immlscible solvent, such as dibutoxy dlethyletber.

  7. Interaction between stainless steel and plutonium metal

    SciTech Connect

    Dunwoody, John T; Mason, Richard E; Freibert, Franz J; Willson, Stephen P; Veirs, Douglas K; Worl, Laura A; Archuleta, Alonso; Conger, Donald J

    2010-01-01

    Long-term storage of excess plutonium is of great concern in the U.S. as well as abroad. The current accepted configuration involves intimate contact between the stored material and an iron-bearing container such as stainless steel. While many safety scenario studies have been conducted and used in the acceptance of stainless steel containers, little information is available on the physical interaction at elevated temperatures between certain forms of stored material and the container itself. The bulk of the safety studies has focused on the ability of a package to keep the primary stainless steel containment below the plutonium-iron eutectic temperature of approximately 410 C. However, the interactions of plutonium metal with stainless steel have been of continuing interest. This paper reports on a scoping study investigating the interaction between stainless steel and plutonium metal in a pseudo diffusion couple at temperatures above the eutectic melt-point.

  8. Plutonium-238 processing at Savannah River Plant

    SciTech Connect

    Burney, G.A.

    1983-01-01

    Plutonium-238 is produced by irradiating NpO/sub 2/-Al cermet slugs or tubes with neutrons. The neptunium-237 is produced as a by-product when natural or enriched uranium is irradiated with neutrons. The neptunium is separated by solvent extraction and ion exchange and precipitated as neptunium oxalate. Neptunium oxalate is calcined to neptunium oxide and fabricated into targets for irradiation. The irradiation conditions are controlled to produce plutonium with 80 to 90 wt % /sup 238/Pu.

  9. PLUTONIUM CARRIER METATHESIS WITH ORGANIC REAGENT

    DOEpatents

    Thompson, S.G.

    1958-07-01

    A method is described for converting a plutonium containing bismuth phosphate carrier precipitate Into a compositton more readily soluble in acid. The method consists of dissolving the bismuth phosphate precipitate in an aqueous solution of alkali metal hydroxide, and adding one of a certaia group of organic compounds, e.g., polyhydric alcohols or a-hydrorycarboxylic acids. The mixture is then heated causiing formation of a bismuth hydroxide precipitate containing plutonium which may be readily dissolved in nitric acid for further processing.

  10. Plutonium: The first 50 years. United States plutonium production, acquisition, and utilization from 1944 through 1994

    SciTech Connect

    1996-02-01

    The report contains important newly declassified information regarding the US production, acquisition, and removals of plutonium. This new information, when combined with previously declassified data, has allowed the DOE to issue, for the first time, a truly comprehensive report on the total DOE plutonium inventory. At the December 7, 1993, Openness Press Conference, the DOE declassified the plutonium inventories at eight locations totaling 33.5 metric tons (MT). This report declassifies the remainder of the DOE plutonium inventory. Newly declassified in this report is the quantity of plutonium at the Pantex Site, near Amarillo, Texas, and in the US nuclear weapons stockpile of 66.1 MT, which, when added to the previously released inventory of 33.5 MT, yields a total plutonium inventory of 99.5 MT. This report will document the sources which built up the plutonium inventory as well as the transactions which have removed plutonium from that inventory. This report identifies four sources that add plutonium to the DOE/DoD inventory, and seven types of transactions which remove plutonium from the DOE/DoD inventory. This report also discusses the nuclear material control and accountability system which records all nuclear material transactions, compares records with inventory and calculates material balances, and analyzes differences to verify that nuclear materials are in quantities as reported. The DOE believes that this report will aid in discussions in plutonium storage, safety, and security with stakeholders as well as encourage other nations to declassify and release similar data. These data will also be available for formulating policies with respect to disposition of excess nuclear materials. The information in this report is based on the evaluation of available records. The information contained in this report may be updated or revised in the future should additional or more detailed data become available.

  11. Plutonium Finishing Plant safety evaluation report

    SciTech Connect

    Not Available

    1995-01-01

    The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE`s independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91.

  12. PLUTONIUM FINISHING PLANT (PFP) STABILIZATION & PACKAGING PROJECT

    SciTech Connect

    GERBER, M.S.

    2004-01-14

    Fluor Hanford is pleased to submit the Plutonium Finishing Plant (PFP) Stabilization and Packaging Project (SPP) for consideration by the Project Management Institute as Project of the Year for 2004. The SPP thermally stabilized and/or packaged nearly 18 metric tons (MT) of plutonium and plutonium-bearing materials left in PFP facilities from 40 years of nuclear weapons production and experimentation. The stabilization of the plutonium-bearing materials substantially reduced the radiological risk to the environment and security concerns regarding the potential for terrorists to acquire the non-stabilized plutonium products for nefarious purposes. The work was done In older facilities which were never designed for the long-term storage of plutonium, and required working with materials that were extremely radioactive, hazardous, pyrophoric, and In some cases completely unique. I n some Instances, one-of-a-kind processes and equipment were designed, installed, and started up. The SPP was completed ahead of schedule, substantially beating all Interim progress milestone dates set by the Defense Nuclear Facilities Safety Board (DNFSB) and in the Hanford Site's Federal Facility Agreement and Consent Order (Tri-Party Agreement or TPA), and finished $1-million under budget.

  13. Purification of aqueous plutonium chloride solutions via precipitation and washing.

    SciTech Connect

    Stroud, M. A.; Salazar, R. R.; Abney, Kent David; Bluhm, E. A.; Danis, J. A.

    2003-01-01

    Pyrochemical operations at Los Alamos Plutonium Facility (TA-55) use high temperature melt s of calcium chloride for the reduction of plutonium oxide to plutonium metal and hi gh temperature combined melts of sodium chloride and potassium chloride mixtures for the electrorefining purification of plutonium metal . The remaining plutonium and americium are recovered from thes e salts by dissolution in concentrated hydrochloric acid followed by either solvent extraction or io n exchange for isolation and ultimately converted to oxide after precipitation with oxalic acid . Figur e 1 illustrates the current aqueous chloride flow sheet used for plutonium processing at TA-55 .

  14. SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS

    DOEpatents

    Boyd, G.E.; Adamson, A.W.; Schubert, J.; Russell, E.R.

    1958-10-01

    A chromatographic adsorption process is presented for the separation of plutonium from other fission products formed by the irradiation of uranium. The plutonium and the lighter element fission products are adsorbed on a sulfonated phenol-formaldehyde resin bed from a nitric acid solution containing the dissolved uranium. Successive washes of sulfuric, phosphoric, and nitric acids remove the bulk of the fission products, then an eluate of dilute phosphoric and nitric acids removes the remaining plutonium and fission products. The plutonium is selectively removed by passing this solution through zirconium phosphate, from which the plutonium is dissolved with nitric acid. This process provides a convenient and efficient means for isolating plutonium.

  15. PROCESS OF FORMING PLUOTONIUM SALTS FROM PLUTONIUM EXALATES

    DOEpatents

    Garner, C.S.

    1959-02-24

    A process is presented for converting plutonium oxalate to other plutonium compounds by a dry conversion method. According to the process, lower valence plutonium oxalate is heated in the presence of a vapor of a volatile non- oxygenated monobasic acid, such as HCl or HF. For example, in order to produce plutonium chloride, the pure plutonium oxalate is heated to about 700 deg C in a slow stream of hydrogen plus HCl. By the proper selection of an oxidizing or reducing atmosphere, the plutonium halide product can be obtained in either the plus 3 or plus 4 valence state.

  16. On-line monitoring of plutonium in mixed uranium-plutonium solutions. [Coprocessing

    SciTech Connect

    Hofstetter, K. J.; Rebagay, T. V.; Huff, G. A.

    1980-03-01

    The measurement of the total and isotopic plutonium concentrations in mixed uranium-plutonium solutions blended with highly radioactive fission product nuclides and other radionuclides (e.g., Cs-137 and Co-60) has been investigated at the Barnwell Nuclear Fuel Plant (BNFP). An on-line total and isotopic plutonium monitoring system is being tested for its ability to assay the plutonium abundances in solutions as might be found in the process streams of a light water reactor (LWR) spent fuel processing plant. The monitoring system is fully automated and designed to be maintained remotely. It is capable of near real-time inventory of plutonium in process streams and provides the basis for on-line computerized accounting of special nuclear materials.

  17. Soft Phonons in (delta)-Phase Plutonium Near the (delta)-(alpha)' Transition

    SciTech Connect

    Xu, R; Wong, J; Zshack, P; Hong, H; Chiang, T

    2007-09-13

    Plutonium and its alloys exhibit complex phase diagrams that imply anomalous lattice dynamics near phase stability boundaries. Specifically, the TA [111] phonon branch in Ga-stabilized {delta}-Pu at room temperature shows a pronounced soft mode at the zone boundary, which suggests a possible connection to the martensitic transformation from the fcc {delta}-phase to the monoclinic {alpha}{prime}-phase at low temperatures. This work is a study of the lattice dynamics of this system by x-ray thermal diffuse scattering. The results reveal little temperature dependence of the phonon frequencies, thus indicating that kinetic phonon softening is not responsible for this phase transition.

  18. Soft phonons in δ-phase plutonium near the δ-α' transition

    NASA Astrophysics Data System (ADS)

    Xu, Ruqing; Wong, Joe; Zschack, Paul; Hong, Hawoong; Chiang, Tai-C.

    2008-04-01

    Plutonium and its alloys exhibit complex phase diagrams that imply anomalous lattice dynamics near phase stability boundaries. Specifically, the TA [111] phonon branch in Ga-stabilized δ-Pu at room temperature shows a pronounced soft mode at the zone boundary, which suggests a possible connection to the martensitic transformation from the fcc δ-phase to the monoclinic α'-phase at low temperatures. This work is a study of the lattice dynamics of this system by X-ray thermal diffuse scattering. The results reveal little temperature dependence of the phonon frequencies, thus indicating that kinetic phonon softening is not responsible for this phase transition.

  19. Plutonium dioxide dissolution in glass

    SciTech Connect

    Vienna, J.D.; Alexander, D.L.; Li, Hong

    1996-09-01

    In the aftermath of the Cold War, the U.S. Department of Energy`s (DOE) Office of Fissile Materials Disposition (OFMD) is charged with providing technical support for evaluation of disposition options for excess fissile materials manufactured for the nation`s defense. One option being considered for the disposition of excess plutonium (Pu) is immobilization by vitrification. The vitrification option entails immobilizing Pu in a host glass and waste package that are criticality-safe (immune to nuclear criticality), proliferation-resistant, and environmentally acceptable for long-term storage or disposal. To prove the technical and economic feasibility of candidate vitrification options it is necessary to demonstrate that PuO{sub 2} feedstock can be dissolved in glass in sufficient quantity. The OFMD immobilization program has set a Pu solubility goal of 10 wt% in glass. The life cycle cost of the vitrification options are strongly influenced by the rate at which PUO{sub 2} dissolves in glass. The total number of process lines needed for vitrification of 50 t of Pu in 10 years is directly dependent upon the time required for Pu dissolution in glass. The objective of this joint Pacific Northwest National Laboratory (PNNL) - Savannah River Technology Center (SRTC) study was to demonstrate a high Pu solubility in glass and to identify on a rough scale the time required for Pu dissolution in the glass. This study was conducted using a lanthanide borosilicate (LaBS) glass composition designed at the SRTC for the vitrification of actinides.

  20. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1963-02-26

    A brazing alloy which, in the molten state, is characterized by excellent wettability and flowability, said alloy being capable of forming a corrosion resistant brazed joint wherein at least one component of said joint is graphite and the other component is a corrosion resistant refractory metal, said alloy consisting essentially of 20 to 50 per cent by weight of gold, 20 to 50 per cent by weight of nickel, and 15 to 45 per cent by weight of molybdenum. (AEC)

  1. VANADIUM ALLOYS

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  2. Preserving Plutonium-244 as a National Asset

    SciTech Connect

    Patton, Bradley D; Alexander, Charles W; Benker, Dennis; Collins, Emory D; Romano, Catherine E; Wham, Robert M

    2011-01-01

    Plutonium-244 (244 Pu) is an extremely rare and long-lived isotope of plutonium with a half-life of 80 million years. Measureable amounts of 244 Pu are found in neither reactor-grade nor weapons-grade plutonium. Production of this isotope requires a very high thermal flux to permit the two successive neutron captures that convert 242 Pu to 243 Pu to 244 Pu, particularly given the short (about 5 hour) half-life of 243 Pu. Such conditions simply do not exist in plutonium production processes. Therefore, 244 Pu is ideal for precise radiochemical analyses measuring plutonium material properties and isotopic concentrations in items containing plutonium. Isotope dilution mass spectrometry is about ten times more sensitive when using 244 Pu rather than 242 Pu for determining plutonium isotopic content. The isotope can also be irradiated in small quantities to produce superheavy elements. The majority of the existing global inventory of 244 Pu is contained in the outer housing of Mark-18A targets at the Savannah River Site (SRS). The total inventory is about 20 grams of 244 Pu in about 400 grams of plutonium distributed among the 65 targets. Currently, there are no specific plans to preserve these targets. Although the cost of separating and preserving this material would be considerable, it is trivial in comparison to new production costs. For all practical purposes, the material is irreplaceable, because new production would cost billions of dollars and require a series of irradiation and chemical separation cycles spanning up to 50 years. This paper will discuss a set of options for overcoming the significant challenges to preserve the 244 Pu as a National Asset: (1) the need to relocate the material from SRS in a timely manner, (2) the need to reduce the volume of material to the extent possible for storage, and (3) the need to establish an operational capability to enrich the 244 Pu in significant quantities. This paper suggests that if all the Mark-18A plutonium is

  3. Dispersion of plutonium from contaminated pond sediments

    USGS Publications Warehouse

    Rees, T.F.; Cleveland, J.M.; Carl, Gottschall W.

    1978-01-01

    Sediment-water distributions of plutonium as a function of pH and contact time are investigated in a holding pond at the Rocky Flats plant of the Department of Energy. Although plutonium has been shown to sorb from natural waters onto sediments, the results of this study indicate that under the proper conditions it can be redispersed at pH 9 and above. Concentrations greater than 900 pCi Pu/L result after 34 h contact at pH 11 or 12 and the distribution coefficient, defined as the ratio of concentration in the sediment to that in the liquid, decreases from 1.1 ?? 105 at pH 7 to 1.2 ?? 103 at pH 11. The plutonium is probably dispersed as discrete colloids or as hydrolytic species adsorbed onto colloidal sediment particles whose average size decreases with increasing pH above pH 9. About 5% of the total plutonium is dispersed at pH 12, and the dispersion seems to readsorb on the sediment with time. Consequently, migration of plutonium from the pond should be slow, and it would be difficult to remove this element completely from pond sediment by leaching with high pH solutions. ?? 1978 American Chemical Society.

  4. Plutonium Chemistry in the UREX+ Separation Processes

    SciTech Connect

    ALena Paulenova; George F. Vandegrift, III; Kenneth R. Czerwinski

    2009-10-01

    The project "Plutonium Chemistry in the UREX+ Separation Processes” is led by Dr. Alena Paulenova of Oregon State University under collaboration with Dr. George Vandegrift of ANL and Dr. Ken Czerwinski of the University of Nevada at Las Vegas. The objective of the project is to examine the chemical speciation of plutonium in UREX+ (uranium/tributylphosphate) extraction processes for advanced fuel technology. Researchers will analyze the change in speciation using existing thermodynamics and kinetic computer codes to examine the speciation of plutonium in aqueous and organic phases. They will examine the different oxidation states of plutonium to find the relative distribution between the aqueous and organic phases under various conditions such as different concentrations of nitric acid, total nitrates, or actinide ions. They will also utilize techniques such as X-ray absorbance spectroscopy and small-angle neutron scattering for determining plutonium and uranium speciation in all separation stages. The project started in April 2005 and is scheduled for completion in March 2008.

  5. 16. VIEW OF GLOVE BOX WORKSTATIONS WITHIN THE PLUTONIUM BUTTON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF GLOVE BOX WORKSTATIONS WITHIN THE PLUTONIUM BUTTON BREAKOUT ROOM. (9/82) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  6. 17. VIEW OF THE FIRST PLUTONIUM BUTTON PRODUCED FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF THE FIRST PLUTONIUM BUTTON PRODUCED FROM THE BUILDING 371 AQUEOUS RECOVERY OPERATION. (9/30/83) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  7. The Optimum Plutonium Fuel Form in Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Tulenko, James S.; Savela, Michael; Gueorguiev, Gueorgui

    2003-07-01

    The University of Florida has underway a research program to validate the benefits of developing a Pu/ZrH/U matrix fuel for the irradiation of the U.S. weapons plutonium and European reprocessed plutonium from an economic, operational, and performance basis. Thermal reactors using plutonium as a fuel are inherently undermoderated because of the large absorption cross sections of plutonium and the presence of large absorption resonances for plutonium in the thermal and near-thermal energy ranges. The use of the proven TRIGA ZrHx-based fuel with plutonium has shown an extremely large (>20%) increase in reactivity over the conventional UO2/PuO2 fuel form currently being considered, with an additional major increase in the destruction of plutonium, rendering it an extremely attractive fuel form for plutonium disposition.

  8. COLUMBIC OXIDE ADSORPTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM IONS

    DOEpatents

    Beaton, R.H.

    1959-07-14

    A process is described for separating plutonium ions from a solution of neutron irradiated uranium in which columbic oxide is used as an adsorbert. According to the invention the plutonium ion is selectively adsorbed by Passing a solution containing the plutonium in a valence state not higher than 4 through a porous bed or column of granules of hydrated columbic oxide. The adsorbed plutonium is then desorbed by elution with 3 N nitric acid.

  9. PROCESS OF ELIMINATING HYDROGEN PEROXIDE IN SOLUTIONS CONTAINING PLUTONIUM VALUES

    DOEpatents

    Barrick, J.G.; Fries, B.A.

    1960-09-27

    A procedure is given for peroxide precipitation processes for separating and recovering plutonium values contained in an aqueous solution. When plutonium peroxide is precipitated from an aqueous solution, the supernatant contains appreciable quantities of plutonium and peroxide. It is desirable to process this solution further to recover plutonium contained therein, but the presence of the peroxide introduces difficulties; residual hydrogen peroxide contained in the supernatant solution is eliminated by adding a nitrite or a sulfite to this solution.

  10. REVIEW OF PLUTONIUM OXIDATION LITERATURE

    SciTech Connect

    Korinko, P.

    2009-11-12

    A brief review of plutonium oxidation literature was conducted. The purpose of the review was to ascertain the effect of oxidation conditions on oxide morphology to support the design and operation of the PDCF direct metal oxidation (DMO) furnace. The interest in the review was due to a new furnace design that resulted in oxide characteristics that are different than those of the original furnace. Very little of the published literature is directly relevant to the DMO furnace operation, which makes assimilation of the literature data with operating conditions and data a convoluted task. The oxidation behavior can be distilled into three regimes, a low temperature regime (RT to 350 C) with a relatively slow oxidation rate that is influenced by moisture, a moderate temperature regime (350-450 C) that is temperature dependent and relies on more or less conventional oxidation growth of a partially protective oxide scale, and high temperature oxidation (> 500 C) where the metal autocatalytically combusts and oxidizes. The particle sizes obtained from these three regimes vary with the finest being from the lowest temperature. It is surmised that the slow growth rate permits significant stress levels to be achieved that help break up the oxides. The intermediate temperatures result in a fairly compact scale that is partially protective and that grows to critical thickness prior to fracturing. The growth rate in this regime may be parabolic or paralinear, depending on the oxidation time and consequently the oxide thickness. The high temperature oxidation is invariant in quiescent or nearly quiescent conditions due to gas blanketing while it accelerates with temperature under flowing conditions. The oxide morphology will generally consist of fine particles (<15 {micro}m), moderately sized particles (15 < x < 250 {micro}m) and large particles (> 250 {micro}m). The particle size ratio is expected to be < 5%, 25%, and 70% for fine, medium and large particles, respectively, for

  11. Plutonium transport in the environment.

    PubMed

    Kersting, Annie B

    2013-04-01

    The recent estimated global stockpile of separated plutonium (Pu) worldwide is about 500 t, with equal contributions from nuclear weapons and civilian nuclear energy. Independent of the United States' future nuclear energy policy, the current large and increasing stockpile of Pu needs to be safely isolated from the biosphere and stored for thousands of years. Recent laboratory and field studies have demonstrated the ability of colloids (1-1000 nm particles) to facilitate the migration of strongly sorbing contaminants such as Pu. In understanding the dominant processes that may facilitate the transport of Pu, the initial source chemistry and groundwater chemistry are important factors, as no one process can explain all the different field observations of Pu transport. Very little is known about the molecular-scale geochemical and biochemical mechanisms controlling Pu transport, leaving our conceptual model incomplete. Equally uncertain are the conditions that inhibit the cycling and mobility of Pu in the subsurface. Without a better mechanistic understanding for Pu at the molecular level, we cannot advance our ability to model its transport behavior and achieve confidence in predicting long-term transport. Without a conceptual model that can successfully predict long-term Pu behavior and ultimately isolation from the biosphere, the public will remain skeptical that nuclear energy is a viable and an attractive alternative to counter global warming effects of carbon-based energy alternatives. This review summarizes our current understanding of the relevant conditions and processes controlling the behavior of Pu in the environment, gaps in our scientific knowledge, and future research needs. PMID:23458827

  12. ESTIMATING IMPURITIES IN SURPLUS PLUTONIUM FOR DISPOSITION

    SciTech Connect

    Allender, J.; Moore, E.

    2013-07-17

    The United States holds at least 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition of the National Nuclear Security Administration and the DOE Office of Environmental Management. Many of the items that require disposition are only partially characterized, and SRNL uses a variety of techniques to predict the isotopic and chemical properties that are important for processing through the Mixed Oxide Fuel Fabrication Facility and alternative disposition paths. Recent advances in laboratory tools, including Prompt Gamma Analysis and Peroxide Fusion treatment, provide data on the existing inventories that will enable disposition without additional, costly sampling and destructive analysis.

  13. Method for dissolving delta-phase plutonium

    DOEpatents

    Karraker, David G.

    1992-01-01

    A process for dissolving plutonium, and in particular, delta-phase plutonium. The process includes heating a mixture of nitric acid, hydroxylammonium nitrate (HAN) and potassium fluoride to a temperature between 40.degree. and 70.degree. C., then immersing the metal in the mixture. Preferably, the nitric acid has a concentration of not more than 2M, the HAN approximately 0.66M, and the potassium fluoride 0.1M. Additionally, a small amount of sulfamic acid, such as 0.1M can be added to assure stability of the HAN in the presence of nitric acid. The oxide layer that forms on plutonium metal may be removed with a non-oxidizing acid as a pre-treatment step.

  14. Interaction of divalent plutonium and curium

    SciTech Connect

    Mikheev, N.B.; Kazakevich, M.Z.; Rumer, I.A.

    1988-11-01

    It has been established that at plutonium concentrations ranging from 10/sup -5/ to 10/sup -4/ mole % the oxidation potentials of the Pu/sup 3 +//Pu/sup 2 +/ and Cm/sup 3 +//Cm/sup 2 +/ pairs increased by 0.15-0.2 V due to the dimerization of Pu/sup 2 +/ and the formation of mixed dimers of plutonium and curium. Promethium(2+) does not have a similar ability to form mixed dimers owing to the fact that Pm/sup 2 +/ does not have a free d electron. The oxidation potential of the Pm/sup 3 +//Pm/sup 2 +/ pair does not vary in the presence of massive quantities of plutonium

  15. Excess plutonium disposition: The deep borehole option

    SciTech Connect

    Ferguson, K.L.

    1994-08-09

    This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues related to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.

  16. The United States Plutonium Balance, 1944 - 2009

    SciTech Connect

    2012-06-01

    This report updates the report -Plutonium: The first 50 years- which was released by the U.S.Department of Energy (DOE) in 1996. The topic of both reports is plutonium, sometimes referred to as Pu-239, which is capable of sustaining a nuclear chain reaction and is used in nuclear weapons and for nuclear power production. This report updates 1994 data through 2009. The four most significant changes since 1994 include: (a) the completion of cleanup activities at the Rocky Flats Plant in 2005; (b) material consolidation and disposition activities, especially shipments from Hanford to the Savannah River Site; (c) the 2007 declaration of an additional 9.0 MT of weapons grade plutonium to be surplus to defense needs in the coming decades; and (d) the opening of the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in 1999.

  17. Characterization of Delta Phase Plutonium Metal

    SciTech Connect

    Rudisill, T.S.

    2000-09-21

    The FB-Line facility has developed the capability to recast plutonium metal using an M-18 reduction furnace with a new casting chamber. Plutonium metal is recast by charging a standard FB-Line magnesia crucible and placing the charge in the casting chamber. The loaded casting chamber is raised into the M-18 reduction furnace and sealed against the furnace head using a copper gasket following the same procedure used for a bomb reduction run. The interior volume of the chamber is evacuated and backfilled with argon gas. The M-18 motor-generator set is used to heat the surface of the casting chamber to nominally 750 Degrees C. Within about 2 hr, the plutonium metal reaches its melting temperature of approximately 640 Degrees C.

  18. 10 CFR 71.63 - Special requirement for plutonium shipments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Special requirement for plutonium shipments. 71.63 Section... MATERIAL Package Approval Standards § 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in solid form, if the contents contain greater than...

  19. 10 CFR 71.63 - Special requirement for plutonium shipments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Special requirement for plutonium shipments. 71.63 Section... MATERIAL Package Approval Standards § 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in solid form, if the contents contain greater than...

  20. 10 CFR 71.63 - Special requirement for plutonium shipments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Special requirement for plutonium shipments. 71.63 Section... MATERIAL Package Approval Standards § 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in solid form, if the contents contain greater than...

  1. 15. VIEW OF THE SAFE GEOMETRY PLUTONIUM METAL STORAGE PALLETS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF THE SAFE GEOMETRY PLUTONIUM METAL STORAGE PALLETS FROM THE INSIDE OF AN INPUT-OUTPUT STATION. INDIVIDUAL CONTAINERS OF PLUTONIUM ARE STORED IN THE WATER-FILLED, DOUBLE-WALLED STAINLESS STEEL TUBES THAT ARE WELDED ONTO THE PALLETS. (12/3/88) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  2. VIEW OF THE INTERIOR OF THE PLUTONIUM LABORATORY IN BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF THE INTERIOR OF THE PLUTONIUM LABORATORY IN BUILDING 559. THE LABORATORY WAS USED TO ANALYZE THE PURITY OF PLUTONIUM. PLUTONIUM SAMPLES WERE CONTAINED WITHIN GLOVE BOXES - Rocky Flats Plant, Chemical Analytical Laboratory, North-central section of Plant, Golden, Jefferson County, CO

  3. Removal of Uranium from Plutonium Solutions by Anion Exchange

    SciTech Connect

    Rudisill, T.S.

    2002-03-22

    The anion exchange capacity in the HB-Line Phase II Facility will be used to purify plutonium solutions potentially containing significant quantities of depleted uranium. Following purification, the plutonium will be precipitated as an oxalate and calcined to plutonium oxide (PuO2) for storage until final disposition.

  4. 10 CFR 71.63 - Special requirement for plutonium shipments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Special requirement for plutonium shipments. 71.63 Section... MATERIAL Package Approval Standards § 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in solid form, if the contents contain greater than...

  5. 10 CFR 71.63 - Special requirement for plutonium shipments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Special requirement for plutonium shipments. 71.63 Section... MATERIAL Package Approval Standards § 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in solid form, if the contents contain greater than...

  6. Alternating layers of plutonium and lead or indium as surrogate for plutonium

    SciTech Connect

    Rudin, Sven Peter

    2009-01-01

    Elemental plutonium (Pu) assumes more crystal structures than other elements, plausibly due to bonding f electrons becoming non-bonding. Complex geometries hamper understanding of the transition in Pu, but calculations predict this transition in a system with simpler geometry: alternating layers either of plutonium and lead or of plutonium and indium. Here the transition occurs via a pairing-up of atoms within Pu layers. Calculations stepping through this pairing-up reveal valuable details of the transition, for example that the transition from bonding to non-bonding proceeds smoothly.

  7. ZIRCONIUM ALLOY

    DOEpatents

    Wilhelm, H.A.; Ames, D.P.

    1959-02-01

    A binary zirconiuin--antimony alloy is presented which is corrosion resistant and hard containing from 0.07% to 1.6% by weight of Sb. The alloys have good corrosion resistance and are useful in building equipment for the chemical industry.

  8. URANIUM ALLOYS

    DOEpatents

    Seybolt, A.U.

    1958-04-15

    Uranium alloys containing from 0.1 to 10% by weight, but preferably at least 5%, of either zirconium, niobium, or molybdenum exhibit highly desirable nuclear and structural properties which may be improved by heating the alloy to about 900 d C for an extended period of time and then rapidly quenching it.

  9. A Plutonium Ceramic Target for MASHA

    SciTech Connect

    Wilk, P A; Shaughnessy, D A; Moody, K J; Kenneally, J M; Wild, J F; Stoyer, M A; Patin, J B; Lougheed, R W; Ebbinghaus, B B; Landingham, R L; Oganessian, Y T; Yeremin, A V; Dmitriev, S N

    2004-07-06

    We are currently developing a plutonium ceramic target for the MASHA mass separator. The MASHA separator will use a thick plutonium ceramic target capable of tolerating temperatures up to 2000 C. Promising candidates for the target include oxides and carbides, although more research into their thermodynamic properties will be required. Reaction products will diffuse out of the target into an ion source, where they will then be transported through the separator to a position-sensitive focal-plane detector array. Experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide for future experiments where the chemical properties of the heaviest elements are studied.

  10. Closure Welding of Plutonium Bearing Storage Containers

    SciTech Connect

    Cannell, G.R.

    2002-02-28

    A key element in the Department of Energy (DOE) strategy for the stabilization, packaging and storage of plutonium-bearing materials involves closure welding of DOE-STD-3013 Outer Containers (3013 container). The 3013 container provides the primary barrier and pressure boundary preventing release of plutonium-bearing materials to the environment. The final closure (closure weld) of the 3013 container must be leaktight, structurally sound and meet DOE STD 3013 specified criteria. This paper focuses on the development, qualification and demonstration of the welding process for the closure welding of Hanford PFP 3013 outer containers.

  11. Dehydration of plutonium or neptunium trichloride hydrate

    DOEpatents

    Foropoulos, Jr., Jerry; Avens, Larry R.; Trujillo, Eddie A.

    1992-01-01

    A process of preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride is provided.

  12. Dehydration of plutonium or neptunium trichloride hydrate

    DOEpatents

    Foropoulos, J. Jr.; Avens, L.R.; Trujillo, E.A.

    1992-03-24

    A process is described for preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride.

  13. Measurement of Plutonium Isotopic Composition - MGA

    SciTech Connect

    Vo, Duc Ta

    2015-08-21

    In this module, we will use the Canberra InSpector-2000 Multichannel Analyzer with a high-purity germanium detector (HPGe) and the MGA isotopic anlysis software to assay a variety of plutonium samples. The module provides an understanding of the MGA method, its attributes and limitations. You will assess the system performance by measuring a range of materials similar to those you may assay in your work. During the final verification exercise, the results from MGA will be combined with the 240Pueff results from neutron coincidence or multiplicity counters so that measurements of the plutonium mass can be compared with the operator-declared (certified) values.

  14. Waste measurements at a plutonium facility

    SciTech Connect

    Wachter, J.R.

    1992-01-01

    Solid plutonium contaminated wastes are often highly heterogeneous, span a wide range of chemical compositions and matrix types, and are packaged in a variety of container sizes. NDA analysis of this waste depends on operator knowledge of these parameters so that proper segregation, instrument selection, quality assurance, and uncertainty estimation can take place. This report describes current waste measurement practices and uncertainty estimates at a US plutonium scrap recovery facility and presents a program for determining reproducibility and bias in NDA measurements. Following this, an operator's perspective on desirable NDA upgrades is offered.

  15. Modeling of Diffusion of Plutonium in Other Metals and of Gaseous Species in Plutonium-Based Systems

    SciTech Connect

    Bernard R. Cooper; Gayanath W. Fernando; S. Beiden; A. Setty; E.H. Sevilla

    2004-07-02

    Establish standards for temperature conditions under which plutonium, uranium, or neptunium from nuclear wastes permeates steel, with which it is in contact, by diffusion processes. The primary focus is on plutonium because of the greater difficulties created by the peculiarities of face-centered-cubic-stabilized (delta) plutonium (the form used in the technology generating the waste).

  16. 10 CFR 140.107 - Appendix G-Form of indemnity agreement with licensees processing plutonium for use in plutonium...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... processing plutonium for use in plutonium processing and fuel fabrication plants and furnishing insurance... plutonium processing and fuel fabrication plants and furnishing insurance policies as proof of financial... death, or loss of or damage to property, or loss of use of property, arising out of or resulting...

  17. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... for use in plutonium processing and fuel fabrication plants and furnishing proof of financial... death, or loss of or damage to property, or loss of use of property, arising out of or resulting...

  18. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... for use in plutonium processing and fuel fabrication plants and furnishing proof of financial... death, or loss of or damage to property, or loss of use of property, arising out of or resulting...

  19. 10 CFR 140.108 - Appendix H-Form of indemnity agreement with licensees possessing plutonium for use in plutonium...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... possessing plutonium for use in plutonium processing and fuel fabrication plants and furnishing proof of... for use in plutonium processing and fuel fabrication plants and furnishing proof of financial... death, or loss of or damage to property, or loss of use of property, arising out of or resulting...

  20. Using magnetization measurements to detect small amounts of plutonium hydride formation in plutonium metal

    SciTech Connect

    Kim, Jae Wook; Mielke, Charles H.; Zapf, Vivien; Baiardo, Joseph P.; Mitchell, Jeremy N.; Richmond, Scott; Schwartz, Daniel S.; Mun, Eun D.; Smith, Alice Iulia

    2014-10-20

    We report the formation of plutonium hydride in 2 at % Ga-stabilized δ-Pu, with 1 atomic % H charging. We show that magnetization measurements are a sensitive, quantitative measure of ferromagnetic plutonium hydride against the nonmagnetic background of plutonium. It was previously shown that at low hydrogen concentrations, hydrogen forms super-abundant vacancy complexes with plutonium, resulting in a bulk lattice contraction. Here we use magnetization, X-ray and neutron diffraction measurements to show that in addition to forming vacancy complexes, at least 30% of the H atoms bond with Pu to precipitate PuHx, largely on the surface of the sample with x ~ 1.9. We observe magnetic hysteresis loops below 40 K with magnetic remanence, consistent with precipitates of ferromagnetic PuH1.9.

  1. Using magnetization measurements to detect small amounts of plutonium hydride formation in plutonium metal

    NASA Astrophysics Data System (ADS)

    Mielke, C. H.; Kim, J. W.; Mun, E.-D.; Baiardo, J. P.; Smith, A. I.; Richmond, S.; Mitchell, J.; Schwartz, D.; Zapf, V. S.

    2015-03-01

    We report the formation of plutonium hydride in 2 at % Ga-stabilized δ-Pu, with 1 atomic % H charging. We show that magnetization measurements are a sensitive, quantitative measure of ferromagnetic plutonium hydride against the nonmagnetic background of plutonium. It was previously shown that at low hydrogen concentrations, hydrogen forms super-abundant vacancy complexes with plutonium, resulting in a bulk lattice contraction. Here we use magnetization, X-ray and neutron diffraction measurements to show that in addition to forming vacancy complexes, at least 30% of the H atoms bond with Pu to precipitate PuHx, largely on the surface of the sample with x ~ 1.9. We observe magnetic hysteresis loops below 40 K with magnetic remanence, consistent with precipitates of ferromagnetic PuH1.9.

  2. Excess Weapons Plutonium Disposition: Plutonium Packaging, Storage and Transportation and Waste Treatment, Storage and Disposal Activities

    SciTech Connect

    Jardine, L J; Borisov, G B

    2004-07-21

    A fifth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held February 16-18, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 46 Russian attendees from 14 different Russian organizations and six non-Russian attendees, four from the US and two from France. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C.

  3. Plutonium dispersal in fires: Summary of what is known

    SciTech Connect

    Condit, R.H.

    1993-07-01

    In view of the great public apprehension about plutonium and nuclear weapons we should explore ways to prevent, limit, or mitigate possible plutonium dispersals. This review is primarily a tutorial on what is known about plutonium dispersal in fires. It concludes that in most types of fires involving plutonium the amount released will not be an immediate danger to life. Indeed, in many cases very few personnel will receive more than the lung burden allowed by current regulations for plutonium workers. However, the dangers may be significant in special situations, unusual terrains, certain meteorological conditions, and very high burn temperatures.

  4. SEPARATION OF PLUTONIUM FROM LANTHANUM BY CHELATION-EXTRACTION

    DOEpatents

    James, R.A.; Thompson, S.G.

    1958-12-01

    Plutonium can be separated from a mixture of plutonlum and lanthanum in which the lanthanum to plutonium molal ratio ls at least five by adding the ammonium salt of N-nitrosoarylhydroxylamine to an aqueous solution having a pH between about 3 and 0.2 and containing the plutonium in a valence state of at least +3, to form a plutonium chelate compound of N-nitrosoarylhydroxylamine. The plutonium chelate compound may be recovered from the solution by extracting with an immiscible organic solvent such as chloroform.

  5. Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options

    SciTech Connect

    Brownson, D.A.; Hanson, D.J.; Blackman, H.S.

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

  6. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    SciTech Connect

    Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J.; Duncan, D.R.

    1993-04-01

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site`s defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site`s N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX`s physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail.

  7. Quantitative ion-exchange separation of plutonium from impurities

    SciTech Connect

    Pietri, C.E.; Freeman, B.P.; Weiss, J.R.

    1981-09-01

    The methods used at the New Brunswick Laboratory for the quantitative ion exchange separation of plutonium from impurities prior to plutonium assay are described. Other ion exchange separation procedures for impurity determination and for isotopic abundance measurements are given. The primary technique used consists of sorption of plutonium(IV) in 8N HNO/sub 3/ on Dowex-1 anion exchange resin and elution of the purified plutonium with 0.3N HCl-0.01N HF. Other methods consist of the anion exchange separation of plutonium(IV) in 12N HCl and the cation exchange separation of plutonium(III) in 0.2 N HNO/sub 3/. The application of these procedures to the subsequent assay of plutonium, isotopic analysis, and impurity determination is described.

  8. 233-S plutonium concentration facility hazards assessment

    SciTech Connect

    Broz, R.E.

    1994-12-19

    This document establishes the technical basis in support of Emergency Planning activities for the 233-S Plutonium Concentration Facility on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  9. Plutonium isotope ratio variations in North America

    SciTech Connect

    Steiner, Robert E; La Mont, Stephen P; Eisele, William F; Fresquez, Philip R; Mc Naughton, Michael; Whicker, Jeffrey J

    2010-12-14

    Historically, approximately 12,000 TBq of plutonium was distributed throughout the global biosphere by thermo nuclear weapons testing. The resultant global plutonium fallout is a complex mixture whose {sup 240}Pu/{sup 239}Pu atom ratio is a function of the design and yield of the devices tested. The average {sup 240}Pu/{sup 239}Pu atom ratio in global fallout is 0.176 + 014. However, the {sup 240}Pu/{sup 239}Pu atom ratio at any location may differ significantly from 0.176. Plutonium has also been released by discharges and accidents associated with the commercial and weapons related nuclear industries. At many locations contributions from this plutonium significantly alters the {sup 240}Pu/{sup 239}Pu atom ratios from those observed in global fallout. We have measured the {sup 240}Pu/{sup 239}Pu atom ratios in environmental samples collected from many locations in North America. This presentation will summarize the analytical results from these measurements. Special emphasis will be placed on interpretation of the significance of the {sup 240}Pu/{sup 239}Pu atom ratios measured in environmental samples collected in the Arctic and in the western portions of the United States.

  10. Plutonium Management in the Medium Term

    SciTech Connect

    Hesketh, Kevin; Schlosser, Gerhard; Porsch, Dieter F.; Wolf, Timm; Koeberl, Oliver; Lance, Benoit; Chawla, Rakesh; Gehin, Jess C.; Ellis, Ron; Uchikawa, Sadao; Sato, Osamu; Okubo, Tsutomu; Mineo, Hideaki; Yamamoto, Toru; Sagayama, Yutaka; Sartori, Enrico

    2004-12-15

    For many years various countries with access to commercial reprocessing services have been routinely recycling plutonium as UO{sub 2}/PuO{sub 2} mixed oxide (MOX) fuel in light water reactors (LWRs). This LWR MOX recycle strategy is still widely regarded as an interim step leading to the eventual establishment of sustainable fast reactor fuel cycles. The OECD/NEA Working Party on the Physics of Plutonium Fuels and Innovative Fuel Cycles (WPPR) has recently completed a review of the technical options for plutonium management in what it refers to as the 'medium term'. For the purpose of the review, the WPPR considers the medium term to cover the period from now up to the point at which fast reactor fuel cycles are established on a commercial scale. The review identified a number of different designs of innovative plutonium fuel assemblies intended to be used in current LWR cores, in LWRs with significantly different moderation properties, as well as in high-temperature gas reactors. The full review report describes these various options and highlights their respective advantages and disadvantages. This paper briefly summarizes the main findings of the review.

  11. Method for calibration of plutonium NDA

    SciTech Connect

    Lemming, J.F.; Campbell, A.R.; Rodenburg, W.W.

    1980-01-01

    Calibration materials characterized by calorimetric assay can be a practical alternative to synthetic standards for the calibration of plutonium nondestructive assay. Calorimetric assay is an effective measurement system for the characterization because: it can give an absolute assay from first principles when the isotopic composition is known, it is insensitive to most matrix effects, and its traceability to international measurement systems has been demonstrated.

  12. PLUTONIUM PURIFICATION PROCESS EMPLOYING THORIUM PYROPHOSPHATE CARRIER

    DOEpatents

    King, E.L.

    1959-04-28

    The separation and purification of plutonium from the radioactive elements of lower atomic weight is described. The process of this invention comprises forming a 0.5 to 2 M aqueous acidffc solution containing plutonium fons in the tetravalent state and elements with which it is normally contaminated in neutron irradiated uranium, treating the solution with a double thorium compound and a soluble pyrophosphate compound (Na/sub 4/P/sub 2/O/sub 7/) whereby a carrier precipitate of thorium A method is presented of reducing neptunium and - trite is advantageous since it destroys any hydrazine f so that they can be removed from solutions in which they are contained is described. In the carrier precipitation process for the separation of plutonium from uranium and fission products including zirconium and columbium, the precipitated blsmuth phosphate carries some zirconium, columbium, and uranium impurities. According to the invention such impurities can be complexed and removed by dissolving the contaminated carrier precipitate in 10M nitric acid, followed by addition of fluosilicic acid to about 1M, diluting the solution to about 1M in nitric acid, and then adding phosphoric acid to re-precipitate bismuth phosphate carrying plutonium.

  13. Overview of surplus weapons plutonium disposition

    SciTech Connect

    Rudy, G.

    1996-05-01

    The safe disposition of surplus weapons useable plutonium is a very important and urgent task. While the functions of long term storage and disposition directly relate to the Department`s weapons program and the environmental management program, the focus of this effort is particularly national security and nonproliferation.

  14. Electrochemically Modulated Separation for Plutonium Safeguards

    SciTech Connect

    Pratt, Sandra H.; Breshears, Andrew T.; Arrigo, Leah M.; Schwantes, Jon M.; Duckworth, Douglas C.

    2013-12-31

    Accurate and timely analysis of plutonium in spent nuclear fuel is critical in nuclear safeguards for detection of both protracted and rapid plutonium diversions. Gamma spectroscopy is a viable method for accurate and timely measurements of plutonium provided that the plutonium is well separated from the interfering fission and activation products present in spent nuclear fuel. Electrochemically modulated separation (EMS) is a method that has been used successfully to isolate picogram amounts of Pu from nitric acid matrices. With EMS, Pu adsorption may be turned "on" and "off" depending on the applied voltage, allowing for collection and stripping of Pu without the addition of chemical reagents. In this work, we have scaled up the EMS process to isolate microgram quantities of Pu from matrices encountered in spent nuclear fuel during reprocessing. Several challenges have been addressed including surface area limitations, radiolysis effects, electrochemical cell performance stability, and chemical interferences. After these challenges were resolved, 6 µg Pu was deposited in the electrochemical cell with approximately an 800-fold reduction of fission and activation product levels from a spent nuclear fuel sample. Modeling showed that these levels of Pu collection and interference reduction may not be sufficient for Pu detection by gamma spectroscopy. The main remaining challenges are to achieve a more complete Pu isolation and to deposit larger quantities of Pu for successful gamma analysis of Pu. If gamma analyses of Pu are successful, EMS will allow for accurate and timely on-site analysis for enhanced Pu safeguards.

  15. PLUTONIUM SPECIATION, SOLUBILIZATION, AND MIGRATION IN SOILS

    EPA Science Inventory

    The DOE is currently conducting cleanup activities at its nuclear weapons development sites, many of which have accumulated plutonium (Pu) in soils for 50 years. There is scientific uncertainty about the levels of risk to human health posed by this accumulation and whether Pu is ...

  16. Plutonium Immobilization Can Loading Preliminary Specifications

    SciTech Connect

    Kriikku, E.

    1998-11-25

    This report discusses the Plutonium Immobilization can loading preliminary equipment specifications and includes a process block diagram, process description, equipment list, preliminary equipment specifications, plan and elevation sketches, and some commercial catalogs. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.

  17. NNSS Soils Monitoring: Plutonium Valley (CAU366)

    SciTech Connect

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; Campbell, Scott

    2012-02-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

  18. Recovery of Plutonium by Carrier Precipitation

    DOEpatents

    Goeckermann, R. H.

    1961-04-01

    The recovery of plutonium from an aqueous nitric acid Zr-containing solution of 0.2 to 1N acidity is accomplished by adding fluoride anions (1.5 to 5 mg/l), and precipitating the Pu with an excess of H/sub 2/0/sub 2/ at 53 to 65 deg C. (AEC)

  19. Aluminum alloy

    NASA Technical Reports Server (NTRS)

    Blackburn, Linda B. (Inventor); Starke, Edgar A., Jr. (Inventor)

    1989-01-01

    This invention relates to aluminum alloys, particularly to aluminum-copper-lithium alloys containing at least about 0.1 percent by weight of indium as an essential component, which are suitable for applications in aircraft and aerospace vehicles. At least about 0.1 percent by weight of indium is added as an essential component to an alloy which precipitates a T1 phase (Al2CuLi). This addition enhances the nucleation of the precipitate T1 phase, producing a microstructure which provides excellent strength as indicated by Rockwell hardness values and confirmed by standard tensile tests.

  20. Design-Only Conceptual Design Report: Plutonium Immobilization Plant

    SciTech Connect

    DiSabatino, A.; Loftus, D.

    1999-01-01

    This design-only conceptual design report was prepared to support a funding request by the Department of Energy Office of Fissile Materials Disposition for engineering and design of the Plutonium Immobilization Plant, which will be used to immobilize up to 50 tonnes of surplus plutonium. The siting for the Plutonium Immobilization Plant will be determined pursuant to the site-specific Surplus Plutonium Disposition Environmental Impact Statement in a Plutonium Deposition Record of Decision in early 1999. This document reflects a new facility using the preferred technology (ceramic immobilization using the can-in-canister approach) and the preferred site (at Savannah River). The Plutonium Immobilization Plant accepts plutonium from pit conversion and from non-pit sources and, through a ceramic immobilization process, converts the plutonium into mineral-like forms that are subsequently encapsulated within a large canister of high-level waste glass. The final immobilized product must make the plutonium as inherently unattractive and inaccessible for use in nuclear weapons as the plutonium in spent fuel from commercial reactors and must be suitable for geologic disposal. Plutonium immobilization at the Savannah River Site uses: (1) A new building, the Plutonium Immobilization Plant, which will convert non-pit surplus plutonium to an oxide form suitable for the immobilization process, immobilize plutonium in a titanate-based ceramic form, place cans of the plutonium-ceramic forms into magazines, and load the magazines into a canister; (2) The existing Defense Waste Processing Facility for the pouring of high-level waste glass into the canisters; and (3) The Actinide Packaging and Storage Facility to receive and store feed materials. The Plutonium Immobilization Plant uses existing Savannah River Site infra-structure for analytical laboratory services, waste handling, fire protection, training, and other support utilities and services. The Plutonium Immobilization Plant

  1. Crystalline plutonium hosts derived from high-level waste formulations.

    SciTech Connect

    O'Holleran, T. P.

    1998-04-24

    The Department of Energy has selected immobilization for disposal in a repository as one approach for disposing of excess plutonium (1). Materials for immobilizing weapons-grade plutonium for repository disposal must meet the ''spent fuel standard'' by providing a radiation field similar to spent fuel (2). Such a radiation field can be provided by incorporating fission products from high-level waste into the waste form. Experiments were performed to evaluate the feasibility of incorporating high-level waste (HLW) stored at the Idaho Chemical Processing Plant (ICPP) into plutonium dispositioning materials to meet the spent fuel standard. A variety of materials and preparation techniques were evaluated based on prior experience developing waste forms for immobilizing HLW. These included crystalline ceramic compositions prepared by conventional sintering and hot isostatic pressing (HIP), and glass formulations prepared by conventional melting. Because plutonium solubility in silicate melts is limited, glass formulations were intentionally devitrified to partition plutonium into crystalline host phases, thereby allowing increased overall plutonium loading. Samarium, added as a representative rare earth neutron absorber, also tended to partition into the plutonium host phases. Because the crystalline plutonium host phases are chemically more inert, the plutonium is more effectively isolated from the environment, and its attractiveness for proliferation is reduced. In the initial phase of evaluating each material and preparation method, cerium was used as a surrogate for plutonium. For promising materials, additional preparation experiments were performed using plutonium to verify the behavior of cerium as a surrogate. These experiments demonstrated that cerium performed well as a surrogate for plutonium. For the most part, cerium and plutonium partitioned onto the same crystalline phases, and no anomalous changes in oxidation state were observed. The only observed

  2. In search of plutonium: A nonproliferation journey

    NASA Astrophysics Data System (ADS)

    Hecker, Siegfried

    2010-02-01

    In February 1992, I landed in the formerly secret city of Sarov, the Russian Los Alamos, followed a few days later by a visit to Snezhinsk, their Livermore. The briefings we received of the Russian nuclear weapons program and tours of their plutonium, reactor, explosives, and laser facilities were mind boggling considering the Soviet Union was dissolved only two months earlier. This visit began a 17-year, 41 journey relationship with the Russian nuclear complex dedicated to working with them in partnership to protect and safeguard their weapons and fissile materials, while addressing the plight of their scientists and engineers. In the process, we solved a forty-year disagreement about the plutonium-gallium phase diagram and began a series of fundamental plutonium science workshops that are now in their tenth year. At the Yonbyon reprocessing facility in January 2004, my North Korean hosts had hoped to convince me that they have a nuclear deterrent. When I expressed skepticism, they asked if I wanted to see their ``product.'' I asked if they meant the plutonium; they replied, ``Well, yes.'' Thus, I wound up holding 200 grams of North Korean plutonium (in a sealed glass jar) to make sure it was heavy and warm. So began the first of my six journeys to North Korea to provide technical input to the continuing North Korean nuclear puzzle. In Trombay and Kalpakkam a few years later I visited the Indian nuclear research centers to try to understand how India's ambitious plans for nuclear power expansion can be accomplished safely and securely. I will describe these and other attempts to deal with the nonproliferation legacy of the cold war and the new challenges ahead. )

  3. Elastic properties of Pu metal and Pu-Ga alloys

    SciTech Connect

    Soderlind, P; Landa, A; Klepeis, J E; Suzuki, Y; Migliori, A

    2010-01-05

    We present elastic properties, theoretical and experimental, of Pu metal and Pu-Ga ({delta}) alloys together with ab initio equilibrium equation-of-state for these systems. For the theoretical treatment we employ density-functional theory in conjunction with spin-orbit coupling and orbital polarization for the metal and coherent-potential approximation for the alloys. Pu and Pu-Ga alloys are also investigated experimentally using resonant ultrasound spectroscopy. We show that orbital correlations become more important proceeding from {alpha} {yields} {beta} {yields} {gamma} plutonium, thus suggesting increasing f-electron correlation (localization). For the {delta}-Pu-Ga alloys we find a softening with larger Ga content, i.e., atomic volume, bulk modulus, and elastic constants, suggest a weakened chemical bonding with addition of Ga. Our measurements confirm qualitatively the theory but uncertainties remain when comparing the model with experiments.

  4. Plutonium, Mineralogy and Radiation Effects

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.

    2006-05-01

    During the past fifty years, more than 1,800 metric tonnes of Pu and substantial quantities of other "minor" actinides, such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranic elements can be a source of energy in fission reactions (e.g., 239Pu), a source of fissile material for nuclear weapons (e.g., 239Pu and 237Np), or are of environmental concern because of their long half- lives and radiotoxicity (e.g., 239Pu, t1/2 = 24,100 years, and 237Np, t1/2 = 2.1 million years). There are two basic strategies for the disposition of these elements: 1.) to "burn" or transmute the actinides using nuclear reactors or accelerators; 2.) to "sequester" the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, such as zircon or isometric pyrochlore, A2B2O7 (A = rare earths; B = Ti, Zr, Sn, Hf; Fd3m; Z=8), for the immobilization of actinides, particularly plutonium. One of the principal concerns has been the accumulation of structural damage caused by alpha-decay events, particularly from the recoil nucleus. Systematic ion beam irradiation studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high fluences of alpha-decay event damage. Some compositions, Gd2Ti2O7, are amorphized at relatively low doses (0.2 displacements per atom, dpa, at room temperature), while other compositions, Gd2Zr2O7, do not amorphize (even at doses of > 40 dpa at 25K), but instead disorder to a defect fluorite structure. By changing the composition of the A-site (e.g., substitution of different rare earth elements), the temperature above which the pyrochlore composition can no longer be amorphized, Tc, varies by >600 K (e.g., Lu2Ti2O7: Tc = 480 K; Gd2Ti2O7: Tc = 1120 K). The variation in response to irradiation as a function of composition can be used to model the long

  5. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1962-02-20

    A brazing alloy is described which, in the molten state, is characterized by excellent wettability and flowability and is capable of forming a corrosion-resistant brazed joint. At least one component of said joint is graphite and the other component is a corrosion-resistant refractory metal. The brazing alloy consists essentially of 40 to 90 wt % of gold, 5 to 35 wt% of nickel, and 1 to 45 wt% of tantalum. (AEC)

  6. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  7. A Note on the Reaction of Hydrogen and Plutonium

    SciTech Connect

    Noone, Bailey C

    2012-08-15

    Plutonium hydride has many practical and experimental purposes. The reaction of plutonium and hydrogen has interesting characteristics, which will be explored in the following analysis. Plutonium is a radioactive actinide metal that emits alpha particles. When plutonium metal is exposed to air, the plutonium oxides and hydrides, and the volume increases. PuH{sub 2} and Pu{sub 2}O{sub 3} are the products. Hydrogen is a catalyst for plutonium's corrosion in air. The reaction can take place at room temperature because it is fairly insensitive to temperature. Plutonium hydride, or PuH{sub 2}, is black and metallic. After PuH{sub 2} is formed, it quickly flakes off and burns. The reaction of hydrogen and plutonium is described as pyrophoric because the product will spontaneously ignite when oxygen is present. This tendency must be considered in the storage of metal plutonium. The reaction is characterized as reversible and nonstoichiometric. The reaction goes as such: Pu + H{sub 2} {yields} PuH{sub 2}. When PuH{sub 2} is formed, the hydrogen/plutonium ratio is between 2 and 2.75 (approximately). As more hydrogen is added to the system, the ratio increases. When the ratio exceeds 2.75, PuH{sub 3} begins to form along with PuH{sub 2}. Once the ratio surpasses 2.9, only PuH{sub 3} remains. The volume of the plutonium sample increases because of the added hydrogen and the change in crystal structure which the sample undergoes. As more hydrogen is added to a system of metal plutonium, the crystal structure evolves. Plutonium has a crystal structure classified as monoclinic. A monoclinic crystal structure appears to be a rectangular prism. When plutonium reacts with hydrogen, the product PuH{sub 2}, becomes a fluorite structure. It can also be described as a face centered cubic structure. PuH{sub 3} forms a hexagonal crystal structure. As plutonium evolves from metal plutonium to plutonium hydride to plutonium trihydride, the crystal structure evolves from monoclinic to

  8. Interim Storage of Plutonium in Existing Facilities

    SciTech Connect

    Woodsmall, T.D.

    1999-05-10

    'In this era of nuclear weapons disarmament and nonproliferation treaties, among many problems being faced by the Department of Energy is the safe disposal of plutonium. There is a large stockpile of plutonium at the Rocky Flats Environmental Technology Center and it remains politically and environmentally strategic to relocate the inventory closer to a processing facility. Savannah River Site has been chosen as the final storage location, and the Actinide Packaging and Storage Facility (APSF) is currently under construction for this purpose. With the ability of APSF to receive Rocky Flats material an estimated ten years away, DOE has decided to use the existing reactor building in K-Area of SRS as temporary storage to accelerate the removal of plutonium from Rocky Flats. There are enormous cost savings to the government that serve as incentive to start this removal as soon as possible, and the KAMS project is scheduled to receive the first shipment of plutonium in January 2000. The reactor building in K-Area was chosen for its hardened structure and upgraded seismic qualification, both resulting from an effort to restart the reactor in 1991. The KAMS project has faced unique challenges from Authorization Basis and Safety Analysis perspectives. Although modifying a reactor building from a production facility to a storage shelter is not technically difficult, the nature of plutonium has caused design and safety analysis engineers to make certain that the design of systems, structures and components included will protect the public, SRS workers, and the environment. A basic overview of the KAMS project follows. Plutonium will be measured and loaded into DOT Type-B shipping packages at Rocky Flats. The packages are 35-gallon stainless steel drums with multiple internal containment boundaries. DOE transportation vehicles will be used to ship the drums to the KAMS facility at SRS. They will then be unloaded, stacked and stored in specific locations throughout the

  9. PLUTONIUM CONTAMINATION VALENCE STATE DETERMINATION USING X-RAY ABSORPTION FINE STRUCTURE PERMITS CONCRETE RECYCLE

    SciTech Connect

    Ervin, P. F.; Conradson, S. D.

    2002-02-25

    This paper describes the determination of the speciation of plutonium contamination present on concrete surfaces at the Rocky Flats Environmental Technology Site (RFETS). At RFETS, the plutonium processing facilities have been contaminated during multiple events over their 50 year operating history. Contamination has resulted from plutonium fire smoke, plutonium fire fighting water, milling and lathe operation aerosols, furnace operations vapors and plutonium ''dust'' diffusion.

  10. Plutonium process control using an advanced on-line gamma monitor for uranium, plutonium, and americium

    SciTech Connect

    Marsh, S.F.; Miller, M.C.

    1987-05-01

    An on-line gamma monitor has been developed to profile uranium, plutonium, and americium in waste and product streams of the anion exchange process used to recover and purify plutonium at the Los Alamos Plutonium Facility. The gamma monitor employs passive gamma spectrometry to measure /sup 241/Am and /sup 239/Pu, based on their 59.5-keV and 129-keV gamma rays, respectively. Because natural and depleted uranium present in typical process streams have no gamma rays suitable for measurement by such passive methods, uranium measurement requires a novel and less direct technique. Plutonium-241, which is always present in plutonium processed at Los Alamos, decays primarily by beta emission to form /sup 241/Am. However, a small fraction of /sup 241/Pu decays by alpha emission to 6.8-day /sup 237/U. The short half-life and 208-keV gamma energy of /sup 237/U make it an ideal radiotracer to mark the position of macro amounts of uranium impurity in the separation process. The real-time data obtained from an operating process allow operators to optimize many process parameters. The gamma monitor also provides a permanent record of the daily performance of each ion exchange system. 2 refs., 12 figs.

  11. Anthropogenic plutonium-244 in the environment: Insights into plutonium's longest-lived isotope.

    PubMed

    Armstrong, Christopher R; Brant, Heather A; Nuessle, Patterson R; Hall, Gregory; Cadieux, James R

    2016-01-01

    Owing to the rich history of heavy element production in the unique high flux reactors that operated at the Savannah River Site, USA (SRS) decades ago, trace quantities of plutonium with highly unique isotopic characteristics still persist today in the SRS terrestrial environment. Development of an effective sampling, processing, and analysis strategy enables detailed monitoring of the SRS environment, revealing plutonium isotopic compositions, e.g., (244)Pu, that reflect the unique legacy of plutonium production at SRS. This work describes the first long-term investigation of anthropogenic (244)Pu occurrence in the environment. Environmental samples, consisting of collected foot borne debris, were taken at SRS over an eleven year period, from 2003 to 2014. Separation and purification of trace plutonium was carried out followed by three stage thermal ionization mass spectrometry (3STIMS) measurements for plutonium isotopic content and isotopic ratios. Significant (244)Pu was measured in all of the years sampled with the highest amount observed in 2003. The (244)Pu content, in femtograms (fg = 10(-15) g) per gram, ranged from 0.31 fg/g to 44 fg/g in years 2006 and 2003 respectively. In all years, the (244)Pu/(239)Pu atom ratios were significantly higher than global fallout, ranging from 0.003 to 0.698 in years 2014 and 2003 respectively. PMID:26898531

  12. a Plutonium Ceramic Target for Masha

    NASA Astrophysics Data System (ADS)

    Wilk, P. A.; Shaughnessy, D. A.; Moody, K. J.; Kenneally, J. M.; Wild, J. F.; Stoyer, M. A.; Patin, J. B.; Lougheed, R. W.; Ebbinghaus, B. B.; Landingham, R. L.; Oganessian, Yu. Ts.; Yeremin, A. V.; Dmitriev, S. N.

    2005-09-01

    We are currently developing a plutonium ceramic target for the MASHA mass separator. The MASHA separator will use a thick plutonium ceramic target capable of tolerating temperatures up to 2000 °C. Promising candidates for the target include oxides and carbides, although more research into their thermodynamic properties will be required. Reaction products will diffuse out of the target into an ion source, where they will then be transported through the separator to a position-sensitive focal-plane detector array. Experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide for future experiments where the chemical properties of the heaviest elements are studied.

  13. CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES

    SciTech Connect

    WITTEKIND WD

    2007-10-03

    This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.

  14. Concentration and purification of plutonium or thorium

    DOEpatents

    Hayden, John A.; Plock, Carl E.

    1976-01-01

    In this invention a first solution obtained from such as a plutonium/thorium purification process or the like, containing plutonium (Pu) and/or thorium (Th) in such as a low nitric acid (HNO.sub.3) concentration may have the Pu and/or Th separated and concentrated by passing an electrical current from a first solution having disposed therein an anode to a second solution having disposed therein a cathode and separated from the first solution by a cation permeable membrane, the Pu or Th cation permeating the cation membrane and forming an anionic complex within the second solution, and electrical current passage affecting the complex formed to permeate an anion membrane separating the second solution from an adjoining third solution containing disposed therein an anode, thereby effecting separation and concentration of the Pu and/or Th in the third solution.

  15. Plutonium stabilization and handling (PuSH)

    SciTech Connect

    Weiss, E.V.

    1997-01-23

    This Functional Design Criteria (FDC) addresses construction of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM for up to fifty years. The major sections of the project are: site preparation; SPS Procurement, Installation, and Testing; storage vault modification; and characterization equipment additions. The SPS will be procured as part of a Department of Energy nationwide common procurement. Specific design crit1460eria for the SPS have been extracted from that contract and are contained in an appendix to this document.

  16. [Plutonium-239 metabolism in chemical skin burns].

    PubMed

    Il'in, L A; Beliaev, I K

    1983-01-01

    Certain peculiarities of metabolism of plutonium-239 were revealed after skin applications there of in solutions of nitrogen acid, tributyl phosphate and hexychloro-butadiene. It was shown that the absorption of plutonium-239 in 0.1 NHO3 solution for 3 days made up 0.02% of the quantity applied. The increase in the acid concentration up to 0.5-10 N was accompanied by a 2.5-5-fold increase in the resorption. The application of the nuclide in organic solvents was characterized by a 4-5-fold increase in its accretion within the body. There was a 25-fold increase in the absorption of 239Pu after the combined effect of the acid and the organic solvents on the skin. PMID:6657939

  17. Spectroscopy of plutonium-organic complexes

    SciTech Connect

    Richmann, M.K.; Reed, D.T.

    1995-12-31

    Information on the spectroscopy of plutonium-organic complexes is needed to help establish the speciation of these complexes under environmentally relevant conditions. Laser photoacoustic spectroscopy (LPAS) and absorption spectrometry were used to characterize the Pu(IV)-citrate and Pu(IV)-nitrilotriacetic acid (NTA) complexes at concentrations of 10{sup {minus}3}--10{sup {minus}7} M in aqueous solution. Good agreement was observed between the band shape of the LPAS and absorption spectra for the Pu(IV)-NTA complex. Agreement for the Pu(IV)-citrate complex was not quite as good. In both cases, a linear dependence of the LPAS signal on laser power and total concentration of the complexes was noted. This work is part of an ongoing research effort to study key subsurface interactions of plutonium-organic complexes.

  18. Plutonium disposition via immobilization in ceramic or glass

    SciTech Connect

    Gray, L.W.; Kan, T.; Shaw, H.F.; Armantrout, A.

    1997-03-05

    The management of surplus weapons plutonium is an important and urgent task with profound environmental, national, and international security implications. In the aftermath of the Cold War, Presidential Policy Directive 13, and various analyses by renown scientific, technical, and international policy organizations have brought about a focused effort within the Department of Energy to identify and implement paths for the long term disposition of surplus weapons- usable plutonium. The central goal of this effort is to render surplus weapons plutonium as inaccessible and unattractive for reuse in nuclear weapons as the much larger and growing stock of plutonium contained in spent fuel from civilian reactors. One disposition option being considered for surplus plutonium is immobilization, in which the plutonium would be incorporated into a glass or ceramic material that would ultimately be entombed permanently in a geologic repository for high-level waste.

  19. Grain boundary cavitation and weld underbead cracking in DOP-26 iridium alloy

    SciTech Connect

    Mosley, W.C. Jr.

    1983-01-01

    Plutonium-238 oxide fuel pellets for the General Purpose Heat Source Radioisotopic Thermoelectric Generators to be used on the NASA Galileo Mission to Jupiter and the International Solar Polar Mission are produced and encapsulated in DOP-26 iridium alloy at the Savannah River Plant. DOP-26 iridium alloy was developed at the Oak Ridge National Laboratory (ORNL) and contains nominally 0.3 wt.% tungsten, 60 ppm thorium, and 50 ppm aluminum. Underbead cracks occasionally occur in the girth weld on the iridium alloy cladding in the area where the gas tungsten arc is quenched. Various electron-beam techniques have been used to determine the cause of cracking.

  20. Dose estimates of alternative plutonium pyrochemical processes.

    SciTech Connect

    Kornreich, D. E.; Jackson, J. W.; Boerigter, S. T.; Averill, W. A.; Fasel, J. H.

    2002-01-01

    We have coupled our dose calculation tool Pandemonium with a discrete-event, object-oriented, process-modeling system ProMosO to analyze a set of alternatives for plutonium purification operations. The results follow expected trends and indicate, from a dose perspective, that an experimental flowsheet may warrant further research to see if it can be scaled to industrial levels. Flowsheets that include fluoride processes resulted in the largest doses.

  1. Plutonium Immobilization Program cold pour tests

    SciTech Connect

    Hovis, G.L.; Stokes, M.W.; Smith, M.E.; Wong, J.W.

    1999-07-01

    The Plutonium Immobilization Program (PIP) is a joint venture between the Savannah River Site, Lawrence Livermore National Laboratory, Argonne National Laboratory, and Pacific Northwest National Laboratory to carry out the disposition of excess weapons-grade plutonium. This program uses the can-in-canister (CIC) approach. CIC involves encapsulating plutonium in ceramic forms (or pucks), placing the pucks in sealed stainless steel cans, placing the cans in long cylindrical magazines, latching the magazines to racks inside Defense Waste Processing Facility (DWPF) canisters, and filling the DWPF canisters with high-level waste glass. This process puts the plutonium in a stable form and makes it attractive for reuse. At present, the DWPF pours glass into empty canisters. In the CIC approach, the addition of a stainless steel rack, magazines, cans, and ceramic pucks to the canisters introduces a new set of design and operational challenges: All of the hardware installed in the canisters must maintain structural integrity at elevated (molten-glass) temperatures. This suggests that a robust design is needed. However, the amount of material added to the DWPF canister must be minimized to prevent premature glass cooling and excessive voiding caused by a large internal thermal mass. High metal temperatures, minimizing thermal mass, and glass flow paths are examples of the types of technical considerations of the equipment design process. To determine the effectiveness of the design in terms of structural integrity and glass-flow characteristics, full-scale testing will be conducted. A cold (nonradioactive) pour test program is planned to assist in the development and verification of a baseline design for the immobilization canister to be used in the PIP process. The baseline design resulting from the cold pour test program and CIC equipment development program will provide input to Title 1 design for second-stage immobilization. The cold pour tests will be conducted in two

  2. Surplus Plutonium Disposition (SPD) Environmental Data Summary

    SciTech Connect

    Fledderman, P.D.

    2000-08-24

    This document provides an overview of existing environmental and ecological information at areas identified as potential locations of the Savannah River Site's (SRS) Surplus Plutonium Disposition (SPD) facilities. This information is required to document existing environmental and baseline conditions from which SPD construction and operation impacts can be defined. It will be used in developing the required preoperational monitoring plan to be used at specific SPD facilities construction sites.

  3. Characterizing surplus US plutonium for disposition

    SciTech Connect

    Allender, Jeffrey S.; Moore, Edwin N.

    2013-02-26

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems.

  4. Characterizing Surplus US Plutonium for Disposition - 13199

    SciTech Connect

    Allender, Jeffrey S.; Moore, Edwin N.

    2013-07-01

    The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems. (authors)

  5. Proposed Modification to the Plutonium Systemic Model.

    PubMed

    Konzen, Kevin; Miller, Scott; Brey, Richard

    2015-10-01

    The currently accepted biokinetic model for plutonium distribution within the human body was recommended by the International Commission on Radiological Protection in publication 67. This model was developed from human and animal studies and behavioral knowledge acquired from other known bone-seeking radionuclides. The biokinetic model provides a mathematical means of predicting the distribution, retention, and clearance of plutonium within the human body that may be used in deriving organ, tissue, and whole body dose. This work proposed a modification to the ICRP 67 systemic model for plutonium that incorporated the latest knowledge acquired from recent human injection studies with physiologically based improvements. In summary, the changes included a separation of the liver compartments, removed the intermediate soft tissue-to-bladder pathway, and added pathways from the blood compartment to both the cortical and trabecular bone volumes. The proposed model provided improved predictions for several bioassay indicators compared to the ICRP 67 model while also maintaining its basic structure. Additionally, the proposed model incorporated physiologically based improvements for the liver and skeleton and continued to ensure efficient coupling with intake biokinetic models. PMID:26313589

  6. A Plutonium-Contaminated Wound, 1985, USA

    SciTech Connect

    Doran M. Christensen, DO, REAC /TS Associate Director and Staff Physician Eugene H. Carbaugh, CHP, Staff Scientist, Internal Dosimetry Manager, Pacific Northwest National Laboratory, Richland, Washington

    2012-02-02

    A hand injury occurred at a U.S. facility in 1985 involving a pointed shaft (similar to a meat thermometer) that a worker was using to remove scrap solid plutonium from a plastic bottle. The worker punctured his right index finger on the palm side at the metacarpal-phalangeal joint. The wound was not through-and- through, although it was deep. The puncture wound resulted in deposition of ~48 kBq of alpha activity from the weapons-grade plutonium mixture with a nominal 12 to 1 Pu-alpha to {sup 241}Am-alpha ratio. This case clearly showed that DTPA was very effective for decorporation of plutonium and americium. The case is a model for management of wounds contaminated with transuranics: (1) a team approach for dealing with all of the issues surrounding the incident, including the psychological, (2) early surgical intervention for foreign-body removal, (3) wound irrigation with DTPA solution, and (4) early and prolonged DTPA administration based upon bioassay and in vivo dosimetry.

  7. Plutonium immobilization in glass and ceramics

    SciTech Connect

    Knecht, D.A.; Murphy, W.M.

    1996-05-01

    The Materials Research Society Nineteenth Annual Symposium on the Scientific Basis for Nuclear Waste Management was held in Boston on November 27 to December 1, 1995. Over 150 papers were presented at the Symposium dealing with all aspects of nuclear waste management and disposal. Fourteen oral sessions and on poster session included a Plenary session on surplus plutonium dispositioning and waste forms. The proceedings, to be published in April, 1996, will provide a highly respected, referred compilation of the state of scientific development in the field of nuclear waste management. This paper provides a brief overview of the selected Symposium papers that are applicable to plutonium immobilization and plutonium waste form performance. Waste forms that were described at the Symposium cover most of the candidate Pu immobilization options under consideration, including borosilicate glass with a melting temperature of 1150 {degrees}C, a higher temperature (1450 {degrees}C) lanthanide glass, single phase ceramics, multi-phase ceramics, and multi-phase crystal-glass composites (glass-ceramics or slags). These Symposium papers selected for this overview provide the current status of the technology in these areas and give references to the relevant literature.

  8. Plutonium Immobilization Project -- Robotic canister loading

    SciTech Connect

    Hamilton, R.L.

    2000-01-04

    The Plutonium Immobilization Program (PIP) is a joint venture between the Savannah River Site (SRS), Lawrence Livermore National Laboratory (LLNL), Argonne National Laboratory (ANL), and Pacific Northwest National Laboratory (PNNL). When operational in 2008, the PIP will fulfill the nation's nonproliferation commitment by placing surplus weapons-grade plutonium in a permanently stable ceramic form and making it unattractive for reuse. Since there are significant radiation and security concerns, the program team is developing novel and unique technology to remotely perform plutonium immobilization tasks. The remote task covered in this paper employs a jointed arm robot to load seven 3.5 inch diameter, 135-pound cylinders (magazines) through the 4 inch diameter neck of a stainless steel canister. Working through the narrow canister neck, the robot secures the magazines into a specially designed rack pre-installed in the canister. To provide the deterrent effect, the canisters are filled with a mixture of high-level waste and glass at the Defense Waste Processing Facility (DWPF).

  9. TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION

    SciTech Connect

    Allender, J.; Beams, J.; Sanders, K.; Myers, L.

    2013-07-16

    Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

  10. Plutonium speciation in water from Mono Lake, California

    USGS Publications Warehouse

    Cleveland, J.M.; Rees, T.F.; Nash, K.L.

    1983-01-01

    The solubility of plutonium in Mono Lake water is enhanced by the presence of large concentrations of indigenous carbonate ions and moderate concentrations of fluoride ions. In spite of the complex chemical composition of this water, only a few ions govern the behavior of plutonium, as demonstrated by the fact that it was possible to duplicate plutonium speciation in a synthetic water containing only the principal components of Mono Lake water.

  11. 14. END VIEW OF THE PLUTONIUM STORAGE VAULT FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. END VIEW OF THE PLUTONIUM STORAGE VAULT FROM THE REMOTE CONTROL STATION. THE STACKER-RETRIEVER, A REMOTELY-OPERATED, MECHANIZED TRANSPORT SYSTEM, RETRIEVES CONTAINERS OF PLUTONIUM FROM SAFE GEOMETRY PALLETS STORED ALONG THE LENGTH OF THE VAULT. THE STACKER-RETRIEVER RUNS ALONG THE AISLE BETWEEN THE PALLETS OF THE STORAGE CHAMBER. (3/2/86) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

  12. SEPARATION OF PLUTONIUM FROM AQUEOUS SOLUTIONS BY ION-EXCHANGE

    DOEpatents

    Schubert, J.

    1958-06-01

    A process is described for the separation of plutonium from an aqueous solution of a plutonium salt, which comprises adding to the solution an acid of the group consisting of sulfuric acid, phosphoric acid, and oxalic acid, and mixtures thereof to provide an acid concentration between 0.0001 and 1 M, contacting the resultant solution with a synthetic organic anion exchange resin, and separating the aqueous phase and the resin which contains the plutonium.

  13. METHOD FOR RECOVERING PLUTONIUM VALUES FROM SOLUTION USING A BISMUTH HYDROXIDE CARRIER PRECIPITATE

    DOEpatents

    Faris, B.F.

    1961-04-25

    Carrier precipitation processes for separating plutonium values from aqueous solutions are described. In accordance with the invention a bismuth hydroxide precipitate is formed in the plutonium-containing solution, thereby carrying plutonium values from the solution.

  14. Elevated temperature aluminum alloys

    NASA Technical Reports Server (NTRS)

    Meschter, Peter (Inventor); Lederich, Richard J. (Inventor); O'Neal, James E. (Inventor)

    1989-01-01

    Three aluminum-lithium alloys are provided for high performance aircraft structures and engines. All three alloys contain 3 wt % copper, 2 wt % lithium, 1 wt % magnesium, and 0.2 wt % zirconium. Alloy 1 has no further alloying elements. Alloy 2 has the addition of 1 wt % iron and 1 wt % nickel. Alloy 3 has the addition of 1.6 wt % chromium to the shared alloy composition of the three alloys. The balance of the three alloys, except for incidentql impurities, is aluminum. These alloys have low densities and improved strengths at temperatures up to 260.degree. C. for long periods of time.

  15. Plutonium release from pressed plutonium oxide fuel pellets in aquatic environments

    SciTech Connect

    Patterson, J.H.; Steinkruger, F.J.; Matlack, G.M.; Heaton, R.C.; Coffelt, K.P.; Herrera, B.

    1983-12-01

    Plutonium oxide pellets (80% /sup 238/Pu, 40 g each) were exposed to fresh water and sea water at two temperatures for 3 y in enclosed glass chambers. The concentrations of plutonium observed in the waters increased linearly with time throughout the experiment. However, the observed release rates were inversely dependent on temperature and salinity, ranging from 160 ..mu..Ci/day for cold fresh water to 1.4 ..mu..Ci/day for warm sea water. The total releases, including the chamber residues, showed similar dependencies. A major portion (typically greater than 50%) of the released plutonium passed through a 0.1-..mu..m filter, with even larger fractions (greater than 80%) for the fresh water systems.

  16. Geomorphology of plutonium in the Northern Rio Grande

    SciTech Connect

    Graf, W.L.

    1993-03-01

    Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi.

  17. PLUTONIUM RECOVERY FROM NEUTRON-BOMBARDED URANIUM FUEL

    DOEpatents

    Moore, R.H.

    1962-04-10

    A process of recovering plutonium from neutronbombarded uranium fuel by dissolving the fuel in equimolar aluminum chloride-potassium chloride; heating the mass to above 700 deg C for decomposition of plutonium tetrachloride to the trichloride; extracting the plutonium trichloride into a molten salt containing from 40 to 60 mole % of lithium chloride, from 15 to 40 mole % of sodium chloride, and from 0 to 40 mole % of potassium chloride or calcium chloride; and separating the layer of equimolar chlorides containing the uranium from the layer formed of the plutonium-containing salt is described. (AEC)

  18. Weapons-grade plutonium dispositioning. Volume 1: Executive summary

    SciTech Connect

    Parks, D.L.; Sauerbrun, T.J.

    1993-06-01

    The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate dispositioning options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) assisted NAS in this evaluation by investigating the technical aspects of the dispositioning options and their capability for achieving plutonium annihilation levels greater than 90%. Additionally, the INEL investigated the feasibility of using plutonium fuels (without uranium) for disposal in existing light water reactors and provided a preconceptual analysis for a reactor specifically designed for destruction of weapons-grade plutonium. This four-volume report was prepared for NAS to document the findings of these studies. Volume 2 evaluates 12 plutonium dispositioning options. Volume 3 considers a concept for a low-temperature, low-pressure, low-power-density, low-coolant-flow-rate light water reactor that quickly destroys plutonium without using uranium or thorium. This reactor concept does not produce electricity and has no other mission than the destruction of plutonium. Volume 4 addresses neutronic performance, fabrication technology, and fuel performance and compatibility issues for zirconium-plutonium oxide fuels and aluminum-plutonium metallic fuels. This volumes gives summaries of Volumes 2--4.

  19. 30. VIEW OF A GLOVEBOX LINE USED IN PLUTONIUM OPERATIONS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VIEW OF A GLOVEBOX LINE USED IN PLUTONIUM OPERATIONS. SAFETY AND HEALTH CONCERNS WERE OF MAJOR IMPORTANCE AT THE PLANT, BECAUSE OF THE RADIOACTIVE NATURE OF THE MATERIALS USED. PLUTONIUM GIVES OFF ALPHA AND BETA PARTICLES, GAMMA PROTONS, NEUTRONS, AND IS ALSO PYROPHORIC. AS A RESULT, PLUTONIUM OPERATIONS ARE PERFORMED UNDER CONTROLLED CONDITIONS THAT INCLUDE CONTAINMENT, FILTERING, SHIELDING, AND CREATING AN INERT ATMOSPHERE. PLUTONIUM WAS HANDLED WITHIN GLOVEBOXES THAT WERE INTERCONNECTED AND RAN SEVERAL HUNDRED FEET IN LENGTH (5/5/70). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  20. Technical considerations and policy requirements for plutonium management

    SciTech Connect

    Christensen, D.C.; Dinehart, S.M.; Yarbro, S.L.

    1995-12-31

    The goals for plutonium management have changed dramatically over the past few years. Today, the challenge is focused on isolating plutonium from the environment and preparing it for permanent disposition. In parallel, the requirements for managing plutonium are rapidly changing. For example, there is a significant increase in public awareness on how facilities operate, increased attention to environmental safety and health (ES and H) concerns, greater interest in minimizing waste, more emphasis on protecting material from theft, providing materials for international inspection, and a resurgence of interest in using plutonium as an energy source. Of highest concern, in the immediate future, is protecting plutonium from theft or diversion, while the national policy on disposition is debated. These expanded requirements are causing a broadening of responsibilities within the Department of Energy (DOE) to include at least seven organizations. An unavoidable consequence is the divergence in approach and short-term goals for managing similar materials within each organization. The technology base does exist, properly, safely, and cost effectively to extract plutonium from excess weapons, residues, waste, and contaminated equipment and facilities, and to properly stabilize it. Extracting the plutonium enables it to be easily inventoried, packaged, and managed to minimize the risk of theft and diversion. Discarding excess plutonium does not sufficiently reduce the risk of diversion, and as a result, long-term containment of plutonium from the environment may not be able to be proven to the satisfaction of the public.

  1. High temperature adsorption process for solidification of plutonium and neptunium

    SciTech Connect

    Korchenkin, K.; Mashkin, A.; Nardova, A.

    1995-12-31

    The problem of plutonium and neptunium converting into solid form has been considered. It was recently been discovered that plutonium and neptunium absorbed well on inorganic porous matrices (silica gel) under definite conditions. In the work presented in this paper plutonium and neptunium sorption on silica gel followed by calcining saturated granules was experimentally investigated. Calcination may proceed at the different temperatures to give the solid dustless plutonium and neptunium compounds suitable both for controlled temporary storage (with possible return radionuclides in nuclear fuel cycle) and for long life disposal.

  2. Plutonium and Cesium Colloid Mediated Transport

    NASA Astrophysics Data System (ADS)

    Boukhalfa, H.; Dittrich, T.; Reimus, P. W.; Ware, D.; Erdmann, B.; Wasserman, N. L.; Abdel-Fattah, A. I.

    2013-12-01

    Plutonium and cesium have been released to the environment at many different locations worldwide and are present in spent fuel at significant levels. Accurate understanding of the mechanisms that control their fate and transport in the environment is important for the management of contaminated sites, for forensic applications, and for the development of robust repositories for the disposal of spent nuclear fuel and nuclear waste. Plutonium, which can be present in the environment in multiple oxidations states and various chemical forms including amorphous oxy(hydr)oxide phases, adsorbs/adheres very strongly to geological materials and is usually immobile in all its chemical forms. However, when associated with natural colloids, it has the potential to migrate significant distances from its point of release. Like plutonium, cesium is not very mobile and tends to remain adhered to geological materials near its release point, although its transport can be enhanced by natural colloids. However, the reactivity of plutonium and cesium are very different, so their colloid-mediated transport might be significantly different in subsurface environments. In this study, we performed controlled experiments in two identically-prepared columns; one dedicated to Pu and natural colloid transport experiments, and the other to Cs and colloid experiments. Multiple flow-through experiments were conducted in each column, with the effluent solutions being collected and re-injected into the same column two times to examine the persistence and scaling behavior of the natural colloids, Pu and Cs. The data show that that a significant fraction of colloids were retained in the first elution through each column, but the eluted colloids collected from the first run transported almost conservatively in subsequent runs. Plutonium transport tracked natural colloids in the first run but deviated from the transport of natural colloids in the second and third runs. Cesium transport tracked natural

  3. SEPARATION OF PLUTONIUM IONS FROM SOLUTION BY ADSORPTION ON ZIRCONIUM PYROPHOSPHATE

    DOEpatents

    Stoughton, R.W.

    1961-01-31

    A method is given for separating plutonium in its reduced, phosphate- insoluble state from other substances. It involves contacting a solution containing the plutonium with granular zirconium pyrophosphate.

  4. Atomic Structure and Phase Transformations in Pu Alloys

    SciTech Connect

    Schwartz, A J; Cynn, H; Blobaum, K M; Wall, M A; Moore, K T; Evans, W J; Farber, D L; Jeffries, J R; Massalski, T B

    2008-04-28

    Plutonium and plutonium-based alloys containing Al or Ga exhibit numerous phases with crystal structures ranging from simple monoclinic to face-centered cubic. Only recently, however, has there been increased convergence in the actinides community on the details of the equilibrium form of the phase diagrams. Practically speaking, while the phase diagrams that represent the stability of the fcc {delta}-phase field at room temperature are generally applicable, it is also recognized that Pu and its alloys are never truly in thermodynamic equilibrium because of self-irradiation effects, primarily from the alpha decay of Pu isotopes. This article covers past and current research on several properties of Pu and Pu-(Al or Ga) alloys and their connections to the crystal structure and the microstructure. We review the consequences of radioactive decay, the recent advances in understanding the electronic structure, the current research on phase transformations and their relations to phase diagrams and phase stability, the nature of the isothermal martensitic {delta} {yields} {alpha}{prime} transformation, and the pressure-induced transformations in the {delta}-phase alloys. New data are also presented on the structures and phase transformations observed in these materials following the application of pressure, including the formation of transition phases.

  5. Chemical Disposition of Plutonium in Hanford Site Tank Wastes

    SciTech Connect

    Delegard, Calvin H.; Jones, Susan A.

    2015-05-07

    This report examines the chemical disposition of plutonium (Pu) in Hanford Site tank wastes, by itself and in its observed and potential interactions with the neutron absorbers aluminum (Al), cadmium (Cd), chromium (Cr), iron (Fe), manganese (Mn), nickel (Ni), and sodium (Na). Consideration also is given to the interactions of plutonium with uranium (U). No consideration of the disposition of uranium itself as an element with fissile isotopes is considered except tangentially with respect to its interaction as an absorber for plutonium. The report begins with a brief review of Hanford Site plutonium processes, examining the various means used to recover plutonium from irradiated fuel and from scrap, and also examines the intermediate processing of plutonium to prepare useful chemical forms. The paper provides an overview of Hanford tank defined-waste–type compositions and some calculations of the ratios of plutonium to absorber elements in these waste types and in individual waste analyses. These assessments are based on Hanford tank waste inventory data derived from separately published, expert assessments of tank disposal records, process flowsheets, and chemical/radiochemical analyses. This work also investigates the distribution and expected speciation of plutonium in tank waste solution and solid phases. For the solid phases, both pure plutonium compounds and plutonium interactions with absorber elements are considered. These assessments of plutonium chemistry are based largely on analyses of idealized or simulated tank waste or strongly alkaline systems. The very limited information available on plutonium behavior, disposition, and speciation in genuine tank waste also is discussed. The assessments show that plutonium coprecipitates strongly with chromium, iron, manganese and uranium absorbers. Plutonium’s chemical interactions with aluminum, nickel, and sodium are minimal to non-existent. Credit for neutronic interaction of plutonium with these absorbers

  6. Chemical species of plutonium in Hanford radioactive tank waste

    SciTech Connect

    Barney, G.S.

    1997-10-22

    Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other

  7. PLUTONIUM UPTAKE BY PLANTS FROM SOIL CONTAINING PLUTONIUM-238 DIOXIDE PARTICLES

    EPA Science Inventory

    Three plant species--alfalfa, lettuce, and radishes were grown in soils contaminated with plutonium-238 dioxide (238)PuO2 at concentrations of 23, 69, 92, and 342 nanocuries per gram (nCi/g). The length of exposure varied from 60 days for the lettuce and radishes to 358 days for ...

  8. Update on the Department of Energy's 1994 plutonium vulnerability assessment for the plutonium finishing plant

    SciTech Connect

    HERZOG, K.R.

    1999-09-01

    A review of the environmental, safety, and health vulnerabilities associated with the continued storage of PFP's inventory of plutonium bearing materials and other SNM. This report re-evaluates the five vulnerabilities identified in 1994 at the PFP that are associated with SNM storage. This new evaluation took a more detailed look and applied a risk ranking process to help focus remediation efforts.

  9. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

    DOEpatents

    Duffield, R.B.

    1959-02-24

    S>A method is described for separating plutonium, in a valence state of less than five, from an aqueous solution in which it is dissolved. The niethod consists in adding potassium and sulfate ions to such a solution while maintaining the solution at a pH of less than 7.1, and isolating the precipitate of potassium plutonium sulfate thus formed.

  10. Martensitic nature of {delta} {yields} {gamma} allotropic transformation in plutonium

    SciTech Connect

    Lopez, P.C.; Cost, J.R.; Axler, K.M.

    1996-09-01

    Isothermal and isoplethal studies using differential scanning calorimetry have been conducted to characterize the allotropic transformations of plutonium. The {delta}-{gamma} transformation (upon cooling) was observed to have a classic martensitic nature. The work described herein is the first quantitative study of this phenomena in plutonium.

  11. Fuel bundle design for enhanced usage of plutonium fuel

    DOEpatents

    Reese, Anthony P.; Stachowski, Russell E.

    1995-01-01

    A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced.

  12. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any form... carrier, require compliance with 49 CFR 175.704, U.S. Department of Transportation regulations applicable... 10 Energy 2 2010-01-01 2010-01-01 false Air transport of plutonium. 71.88 Section 71.88...

  13. ANNUAL REPORT. PLUTONIUM SPECIATION, SOLUBILIZATION, AND MIGRATION IN SOILS

    EPA Science Inventory

    This report summarizes work performed in the first year of a three-year project. In this year we are focusing on the following: 1) the interactions between plutonium compounds and redox active iron and manganese minerals, 2) the interactions between plutonium compounds and sedime...

  14. Plutonium Immobilization Project Concept for Dustless Transfer of Powder

    SciTech Connect

    Ward, C.R.

    2001-08-15

    Plutonium powder will be brought into the Plutonium Immobilization Plant in Food Pack Cans in 3013 packages. The Food Pack Cans will be removed from the 3013 outer and inner can. This document describes their concept and completes PIP milestone 2.2.3.4/FY01/c, Complete Concept for Material Transfer.

  15. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOEpatents

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  16. Processing of Non-PFP Plutonium Oxide in Hanford Plants

    SciTech Connect

    Jones, Susan A.; Delegard, Calvin H.

    2011-03-10

    Processing of non-irradiated plutonium oxide, PuO2, scrap for recovery of plutonium values occurred routinely at Hanford’s Plutonium Finishing Plant (PFP) in glovebox line operations. Plutonium oxide is difficult to dissolve, particularly if it has been high-fired; i.e., calcined to temperatures above about 400°C and much of it was. Dissolution of the PuO2 in the scrap typically was performed in PFP’s Miscellaneous Treatment line using nitric acid (HNO3) containing some source of fluoride ion, F-, such as hydrofluoric acid (HF), sodium fluoride (NaF), or calcium fluoride (CaF2). The HNO3 concentration generally was 6 M or higher whereas the fluoride concentration was ~0.5 M or lower. At higher fluoride concentrations, plutonium fluoride (PuF4) would precipitate, thus limiting the plutonium dissolution. Some plutonium-bearing scrap also contained PuF4 and thus required no added fluoride. Once the plutonium scrap was dissolved, the excess fluoride was complexed with aluminum ion, Al3+, added as aluminum nitrate, Al(NO3)3•9H2O, to limit collateral damage to the process equipment by the corrosive fluoride. Aluminum nitrate also was added in low quantities in processing PuF4.

  17. Recommended plutonium release fractions from postulated fires. Final report

    SciTech Connect

    Kogan, V.; Schumacher, P.M.

    1993-12-01

    This report was written at the request of EG&G Rocky Flats, Inc. in support of joint emergency planning for the Rocky Flats Plant (RFP) by EG&G and the State of Colorado. The intent of the report is to provide the State of Colorado with an independent assessment of any respirable plutonium releases that might occur in the event of a severe fire at the plant. Fire releases of plutonium are of interest because they have been used by EG&G to determine the RFP emergency planning zones. These zones are based on the maximum credible accident (MCA) described in the RFP Final Environmental Impact Statement (FEIS) of 1980, that MCA is assumed to be a large airplane crashing into a RFP plutonium building.The objective of this report was first, to perform a worldwide literature review of relevant release experiments from 1960 to the present and to summarize those findings, and second, to provide recommendations for application of the experimental data to fire release analyses at Rocky Flats. The latter step requires translation between experimental and expected RFP accident parameters, or ``scaling.`` The parameters of particular concern are: quantities of material, environmental parameters such as the intensity of a fire, and the physico-chemical forms of the plutonium. The latter include plutonium metal, bulk plutonium oxide powder, combustible and noncombustible wastes contaminated with plutonium oxide powder, and residues from plutonium extraction processes.

  18. SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS BY ADSORPTION

    DOEpatents

    Seaborg, G.T.; Willard, J.E.

    1958-01-01

    A method is presented for the separation of plutonium from solutions containing that element in a valence state not higher than 41 together with uranium ions and fission products. This separation is accomplished by contacting the solutions with diatomaceous earth which preferentially adsorbs the plutonium present. Also mentioned as effective for this adsorbtive separation are silica gel, filler's earth and alumina.

  19. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any form... carrier, require compliance with 49 CFR 175.704, U.S. Department of Transportation regulations applicable... shipped in a single package containing no more than an A2 quantity of plutonium in any isotope or...

  20. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any form... carrier, require compliance with 49 CFR 175.704, U.S. Department of Transportation regulations applicable... shipped in a single package containing no more than an A2 quantity of plutonium in any isotope or...

  1. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any form... carrier, require compliance with 49 CFR 175.704, U.S. Department of Transportation regulations applicable... shipped in a single package containing no more than an A2 quantity of plutonium in any isotope or...

  2. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any form... carrier, require compliance with 49 CFR 175.704, U.S. Department of Transportation regulations applicable... shipped in a single package containing no more than an A2 quantity of plutonium in any isotope or...

  3. METHOD FOR OBTAINING PLUTONIUM METAL FROM ITS TRICHLORIDE

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Maraman, W.J.

    1962-08-14

    A method was developed for obtaining plutonium metal by direct reduction of plutonium chloride, without the use of a booster, using calcium and lanthamum as a reductant, the said reduction being carried out at temperature in the range of 700 to 850 deg C and at about atmospheric pressure. (AEC)

  4. METHOD OF SEPARATION OF PLUTONIUM FROM CARRIER PRECIPITATES

    DOEpatents

    Dawson, I.R.

    1959-09-22

    The recovery of plutonium from fluoride carrier precipitates is described. The precipitate is dissolved in zirconyl nitrate, ferric nitrate, aluminum nitrate, or a mixture of these complexing agents, and the plutonium is then extracted from the aqueous solution formed with a water-immiscible organic solvent.

  5. Plutonium finishing plant safety systems and equipment list

    SciTech Connect

    Bergquist, G.G.

    1995-01-06

    The Safety Equipment List (SEL) supports Analysis Report (FSAR), WHC-SD-CP-SAR-021 and the Plutonium Finishing Plant Operational Safety Requirements (OSRs), WHC-SD-CP-OSR-010. The SEL is a breakdown and classification of all Safety Class 1, 2, and 3 equipment, components, or system at the Plutonium Finishing Plant complex.

  6. Removal of plutonium and americium from alkaline waste solutions

    DOEpatents

    Schulz, Wallace W.

    1979-01-01

    High salt content, alkaline waste solutions containing plutonium and americium are contacted with a sodium titanate compound to effect removal of the plutonium and americium from the alkaline waste solution onto the sodium titanate and provide an effluent having a radiation level of less than 10 nCi per gram alpha emitters.

  7. 25. Plutonium Recovery From Contaminated Materials, Architectural Plans & Details, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Plutonium Recovery From Contaminated Materials, Architectural Plans & Details, Building 232-Z, U.S. Atomic Energy Commission, Hanford Atomic Products Operation, General Electric Company, Dwg. No. H-2-23105, 1959. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  8. 26. Plutonium Recovery From Contaminated Materials, Architectural Elevations, Sections & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Plutonium Recovery From Contaminated Materials, Architectural Elevations, Sections & Dets., Building 232-Z, U.S. Atomic Energy Commission, Hanford Atomic Products Operation, General Electric Company, Dwg. No. H-2-23106, 1959. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

  9. Massive subcritical compact arrays of plutonium metal

    SciTech Connect

    Rothe, R.E.

    1998-04-01

    Two experimental critical-approach programs are reported. Both were performed at the Rocky Flats Plant near Denver, Colorado; and both date back to the late 1960s. Both involve very large arrays of massive plutonium ingots. These ingots had been cast in the foundry at the Rocky Flats Plant as part of their routine production operations; they were not specially prepared for either study. Consequently, considerable variation in ingot mass is encountered. This mass varied between approximately 7 kg and a little more than 10 kg. One program, performed in the spring of 1969, involved stacked arrays of ingots contained within cylindrical, disk-shaped, thin, steel cans. This program studied four arrays defined by the pattern of steel cans in a single layer. The four were: 1 x N, 3 x N, 2 x 2 x N, and 3 x 3 x N. The second was a tightly-packed, triangular-pitched patterns; the last two were square-pitched patterns. The other program, performed about a year earlier, involved similar ingots also contained in similar steel cans, but these canned plutonium ingots were placed in commercial steel drums. This study pertained to one-, two-, and three-layered horizontal arrays of drums. All cases proved to be well subcritical. Most would have remained subcritical had the parameters of the array under study been continued infinitely beyond the reciprocal multiplication safety limit. In one case for the drum arrays, an uncertain extrapolation of the data of the earlier program suggests that criticality might have eventually been attained had several thousand additional kilograms of plutonium been available for use.

  10. Hydride-catalyzed corrosion of plutonium by air: Initiation by plutonium monoxide monohydride

    SciTech Connect

    Allen, T.H.; Haschke, J.M.

    1998-06-01

    Chemistry and kinetics of air reactions with plutonium monoxide monohydride (PuOH) and with mixtures of the oxide hydride and plutonium metal are defined by results of pressure-volume-temperature (PVT) measurements. Test with specimens prepared by total and partial corrosion of plutonium in 0.05 M sodium chloride solution show that reaction of residual water continues to generate H{sub 2} after liquid water is removed by evacuation. Rapid exposure of PuOH to air at room temperature does not produce a detectable reaction, but similar exposure of a partially corroded metal sample containing Pu and PuOH results in hydride (PuH{sub x})-catalyzed corrosion of the residual Pu. Kinetics of he first-order reaction resulting in formation of the PuH{sub x} catalyst and of the indiscriminate reaction of N{sub 2} and O{sub 2} with plutonium metal are defined. The rate of the catalyzed Pu+air reaction is independent of temperature (E{sub a} = 0), varies as the square of air pressure, and equals 0.78 {+-} 0.03 g Pu/cm{sup 2} min in air at one atmosphere. The absence of pyrophoric behavior for PuOH and differences in the reactivities of PuOH and PuOH + Pu mixtures are attributed to kinetic control by gaseous reaction products. Thermodynamic properties of the oxide hydride are estimated, particle size distributions of corrosion products are presented, and potential hazards associated with products formed by aqueous corrosion of plutonium are discussed.

  11. Plutonium hexaboride is a correlated topological insulator

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoyu; Haule, Kristjan; Kotliar, Gabriel; Department of Physics and Astronomy, Rutgers University Team

    2014-03-01

    We predict that plutonium hexaboride (PuB6) is a strongly correlated topological insulator, with Pu in an intermediate valence state of Pu2 . 7 +. Within the combination of dynamical mean field theory and density functional theory, we show that PuB6 is an insulator in the bulk, with non-trivial Z2 topological invariants. Its metallic surface states have large Fermi pocket at X point and the Dirac cones inside the bulk derived electronic states causing a large surface thermal conductivity. PB6 has also a very high melting temperature therefore it has ideal solid state properties for a nuclear fuel material.

  12. PLUTONIUM-238 PRODUCTION TARGET DESIGN STUDIES

    SciTech Connect

    Hurt, Christopher J; Wham, Robert M; Hobbs, Randall W; Owens, R Steven; Chandler, David; Freels, James D; Maldonado, G Ivan

    2014-01-01

    A new supply chain is planned for plutonium-238 using existing reactors at the Oak Ridge National Laboratory (ORNL) and Idaho National Laboratory (INL) and existing chemical recovery facilities at ORNL. Validation and testing activities for new irradiation target designs have been conducted in three phases over a 2 year period to provide data for scale-up to production. Target design, qualification, target fabrication, and irradiation of fully-loaded targets have been accomplished. Data from post-irradiation examination (PIE) supports safety analysis and irradiation of future target designs.

  13. Prototype fast neutron counter for the assay of impure plutonium

    SciTech Connect

    Wachter, J.R.; Adams, E.L.; Ensslin, N.

    1987-01-01

    A fast coincident neutron counter using liquid scintillators and gamma-ray/neutron pulse-shape discrimination has been constructed for the analysis of plutonium samples with unknown self-multiplication and (..cap alpha..,n) production. The counter was used to measure plutonium-bearing materials that cover a range of masses and (..cap alpha..,n) reaction rates of importance to the safeguards community. Measured values of the /sup 240/Pu effective mass differed, on average, from their declared values by 0.4% for plutonium oxides and by -2.2% for metal and MgO-loaded samples. Poorer results were obtained for materials with large (..cap alpha..,n) reaction rates and low self-multiplication such as plutonium ash and plutonium fluoride.

  14. Characterization and stability of thin oxide films on plutonium surfaces

    NASA Astrophysics Data System (ADS)

    Flores, H. G. García; Roussel, P.; Moore, D. P.; Pugmire, D. L.

    2011-02-01

    X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were employed to study oxide films on plutonium metal surfaces. Measurements of the relative concentrations of oxygen and plutonium, as well as the resulting oxidation states of the plutonium (Pu) species in the near-surface region are presented. The oxide product of the auto-reduction (AR) of plutonium dioxide films is evaluated and found to be an oxide species which is reduced further than what is expected. The results of this study show a much greater than anticipated extent of auto-reduction and challenge the commonly held notion of the stoichiometric stability of Pu 2O 3 thin-films. The data indicates that a sub-stoichiometric plutonium oxide (Pu 2O 3 - y ) exists at the metal-oxide interface. The level of sub-stoichiometry is shown to depend, in part, on the carbidic contamination of the metal surface.

  15. PROCESS FOR PRODUCTION OF PLUTONIUM FROM ITS OXIDES

    DOEpatents

    Weissman, S.I.; Perlman, M.L.; Lipkin, D.

    1959-10-13

    A method is described for obtaining a carbide of plutonium and two methods for obtaining plutonium metal from its oxides. One of the latter involves heating the oxide, in particular PuO/sub 2/, to a temperature of 1200 to 1500 deg C with the stoichiometrical amount of carbon to fornn CO in a hard vacuum (3 to 10 microns Hg), the reduced and vaporized plutonium being collected on a condensing surface above the reaction crucible. When an excess of carbon is used with the PuO/sub 2/, a carbide of plutonium is formed at a crucible temperature of 1400 to 1500 deg C. The process may be halted and the carbide removed, or the reaction temperature can be increased to 1900 to 2100 deg C at the same low pressure to dissociate the carbide, in which case the plutonium is distilled out and collected on the same condensing surface.

  16. Pyrochemical recovery of plutonium from calcium fluoride reduction slag

    DOEpatents

    Christensen, D.C.

    A pyrochemical method of recovering finely dispersed plutonium metal from calcium fluoride reduction slag is claimed. The plutonium-bearing slag is crushed and melted in the presence of at least an equimolar amount of calcium chloride and a few percent metallic calcium. The calcium chloride reduces the melting point and thereby decreases the viscosity of the molten mixture. The calcium reduces any oxidized plutonium in the mixture and also causes the dispersed plutonium metal to coalesce and settle out as a separate metallic phase at the bottom of the reaction vessel. Upon cooling the mixture to room temperature, the solid plutonium can be cleanly separated from the overlying solid slag, with an average recovery yield on the order of 96 percent.

  17. SEPARATION OF PLUTONIUM VALUES FROM URANIUM AND FISSION PRODUCT VALUES

    DOEpatents

    Maddock, A.G.; Booth, A.H.

    1960-09-13

    Separation of plutonium present in small amounts from neutron irradiated uranium by making use of the phenomenon of chemisorption is described. Plutonium in the tetravalent state is chemically absorbed on a fluoride in solid form. The steps for the separation comprise dissolving the irradiated uranium in nitric acid, oxidizing the plutonium in the resulting solution to the hexavalent state, adding to the solution a soluble calcium salt which by the common ion effect inhibits dissolution of the fluoride by the solution, passing the solution through a bed or column of subdivided calcium fluoride which has been sintered to about 8OO deg C to remove the chemisorbable fission products, reducing the plutonium in the solution thus obtained to the tetravalent state, and again passing the solution through a similar bed or column of calcium fluoride to selectively absorb the plutonium, which may then be recovered by treating the calcium fluoride with a solution of ammonium oxalate.

  18. 23. AERIAL VIEW LOOKING SOUTHEAST AT THE PLUTONIUM OPERATION BUILDINGS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. AERIAL VIEW LOOKING SOUTHEAST AT THE PLUTONIUM OPERATION BUILDINGS 771, 776/777, AND 707. BUILDING 771, IN THE FOREGROUND, WAS BUILT IN 1952 TO HOUSE ALL PLUTONIUM OPERATIONS. BY 1956, BUILDING 771 WAS NO LONGER ADEQUATE FOR PRODUCTION DEMANDS. BUILDING 776/777, TO THE SOUTH OF BUILDING 771, WAS CONSTRUCTED TO HOUSE PLUTONIUM FABRICATION AND FOUNDRY OPERATIONS. PLUTONIUM RECOVERY REMAINED IN BUILDING 771. BY 1967, CONSTRUCTION ON BUILDING 707, TO THE SOUTH OF BUILDING 776/777, BEGAN AS PRODUCTION LEVELS CONTINUED TO EXPAND NECESSITATING THE NEED FOR ADDITIONAL PLUTONIUM FABRICATION SPACE (7/1/69). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

  19. Dynamic characteristics of mixtures of plutonium, Nevada tuff, and water

    SciTech Connect

    Myers, W.; Rojas, S.; Kimpland, R.H.; Jaegers, P.J.; Sanchez, R.G.; Hayes, D.; Paternoster, R.; Anderson, R.; Stratton, W.

    1996-02-01

    One of the technical options being considered for long term disposition of weapons grade plutonium is geologic storage at Yucca Mountain. Multikilogram quantities of plutonium are to be vitrified, placed within a heavy steel container, and buried in the material know as Nevada tuff. It has been postulated that after ten thousand years, geologic and chemical processes would have disintegrated the steel container and created the possibility for plutonium to form mixtures with Nevada tuff and water that could lead to a nuclear explosion in the range of kilotons. A survey and description of critical homogeneous mixtures of plutonium, silicon dioxide, Nevada tuff, and water which also identified the mixture regimes where autocatalytic dynamic behavior is possible was completed. This study is a follow up of this survey and the major objective is to examine the dynamic behavior of the worst case critical and supercritical configurations of plutonium, water and Nevada tuff.

  20. Modelling the distribution of plutonium in the Pacific Ocean.

    PubMed

    Nakano, Masanao; Povinec, Pavel P

    2003-01-01

    An Oceanic General Circulation Model (OGCM) including a plutonium scavenging model as well as an advection-diffusion model has been developed for modelling the distribution of plutonium in the Pacific Ocean. Calculated 239, 240Pu water profile concentrations and 239, 240Pu inventories in water and sediment of the Pacific Ocean have showed a reasonable agreement with the experimental results. The presence of local fallout plutonium in central North Pacific waters has been confirmed. The observed 240Pu/239Pu mass ratios confirm that plutonium originating from local fallout from nuclear weapons tests carried out at Bikini and Enewetak Atolls is more rapidly removed from surface waters to deeper waters than plutonium originating from global fallout. The developed OGCM can be used for modelling the dispersion of other non-conservative tracers in the ocean as well. PMID:12860091

  1. BASIC PEROXIDE PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINANTS

    DOEpatents

    Seaborg, G.T.; Perlman, I.

    1959-02-10

    A process is described for the separation from each other of uranyl values, tetravalent plutonium values and fission products contained in an aqueous acidic solution. First the pH of the solution is adjusted to between 2.5 and 8 and hydrogen peroxide is then added to the solution causing precipitation of uranium peroxide which carries any plutonium values present, while the fission products remain in solution. Separation of the uranium and plutonium values is then effected by dissolving the peroxide precipitate in an acidic solution and incorporating a second carrier precipitate, selective for plutonium. The plutonium values are thus carried from the solution while the uranium remains flissolved. The second carrier precipitate may be selected from among the group consisting of rare earth fluorides, and oxalates, zirconium phosphate, and bismuth lihosphate.

  2. Plutonium immobilization ceramic feed batching component test report

    SciTech Connect

    Erickson, S.A.

    1999-10-04

    The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with high level waste glass for permanent storage. Ceramic feed batching (CFB) is one of the first process steps involved with first stage plutonium immobilization. The CFB step will blend plutonium oxide powder before it is combined with other materials to make pucks. This report discusses the Plutonium Immobilization CFB process preliminary concept (including a process block diagram), batch splitting component test results, CFB development areas, and FY 1999 and 2000 CFB program milestones.

  3. Disposing of the world`s excess plutonium

    SciTech Connect

    McCormick, J.M.; Bullen, D.B.

    1998-12-31

    The authors undertake three key objectives in addressing the issue of plutonium disposition at the end of the Cold War. First, the authors estimate the total global inventory of plutonium both from weapons dismantlement and civil nuclear power reactors. Second, they review past and current policy toward handling this metal by the US, Russia, and other key countries. Third, they evaluate the feasibility of several options (but especially the vitrification and mixed oxide fuel options announced by the Clinton administration) for disposing of the increasing amounts of plutonium available today. To undertake this analysis, the authors consider both the political and scientific problems confronting policymakers in dealing with this global plutonium issue. Interview data with political and technical officials in Washington and at the International Atomic Energy Agency in Vienna, Austria, and empirical inventory data on plutonium from a variety of sources form the basis of their analysis.

  4. Thermal Stability Studies of Candidate Decontamination Agents for Hanford’s Plutonium Finishing Plant Plutonium-Contaminated Gloveboxes

    SciTech Connect

    Scheele, Randall D.; Cooper, Thurman D.; Jones, Susan A.; Ewalt, John R.; Compton, James A.; Trent, Donald S.; Edwards, Matthew K.; Kozelisky, Anne E.; Scott, Paul A.; Minette, Michael J.

    2005-09-29

    This report provides the results of PNNL's and Fluor's studies of the thermal stabilities of potential wastes arising from decontamination of Hanford's Plutonium Finishing Plant's plutonium contaminated gloveboxes. The candidate wastes arising from the decontamination technologies ceric nitrate/nitric acid, RadPro, Glygel, and Aspigel.

  5. 10 CFR 140.107 - Appendix G-Form of indemnity agreement with licensees processing plutonium for use in plutonium...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Appendix G-Form of indemnity agreement with licensees processing plutonium for use in plutonium processing and fuel fabrication plants and furnishing insurance policies as proof of financial protection. 140.107 Section 140.107 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL...

  6. 10 CFR 140.107 - Appendix G-Form of indemnity agreement with licensees processing plutonium for use in plutonium...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Appendix G-Form of indemnity agreement with licensees processing plutonium for use in plutonium processing and fuel fabrication plants and furnishing insurance policies as proof of financial protection. 140.107 Section 140.107 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL...

  7. Final Report for Plutonium and Quantum Criticality LDRD 03-ERD-077

    SciTech Connect

    Fluss, M J; McCall, S K; Chung, B W; Chapline, G F; Jackson, D D; Heffner, R H; Haire, R G

    2008-02-11

    Plutonium possesses the most complicated phase diagram in the periodic table, driven by the complexities of overlapping 5f electron orbitals. Despite the importance of the 5f electrons in defining the structure and physical properties, there is no experimental evidence that these electrons localize to form magnetic moments in pure Pu and the {sup +}{mu}SR measurements included here place an upper limit of <0.001{micro}{sub B} for the magnetic moment on Pu. Instead, a large temperature independent Pauli susceptibility indicates they form narrow conduction bands. Radiation damage from the {alpha}-particle decay of Pu creates numerous defects in the crystal structure which produce a significant temperature dependent magnetic susceptibility {chi}(T), in {alpha}-Pu, {delta}-Pu(4.3at%Ga), and Pu{sub 1-x}Am{sub x} alloys ({delta}-Pu phase). This effect can be removed by thermal annealing above room temperature. By contrast, below 35K the radiation damage is frozen in place permitting the evolution in {chi}(T) with increasing damage to be studied systematically. This leads to a two component model consisting of a Curie-Weiss term and a short-ranged interaction term consistent with disorder induced local moment models. Thus it is shown that self-damage creates localized magnetic moments in previously nonmagnetic plutonium. This effect is greatly magnified in some Pu{sub 1-x}Am{sub x} alloys where an apparent damage-induced phase transition occurs at low temperatures near Stage I annealing which results local moments on the order of 1 {micro}{sub B}/Pu. The phase is metastable, and anneals away at higher temperatures.

  8. Alloy softening in binary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to Mo, while those elements having an equal number or fewer s+d electrons than Mo failed to produce alloy softening. Alloy softening and hardening can be correlated with the difference in number of s+d electrons of the solute element and Mo.

  9. AMS of the Minor Plutonium Isotopes.

    PubMed

    Steier, P; Hrnecek, E; Priller, A; Quinto, F; Srncik, M; Wallner, A; Wallner, G; Winkler, S

    2013-01-01

    VERA, the Vienna Environmental Research Accelerator, is especially equipped for the measurement of actinides, and performs a growing number of measurements on environmental samples. While AMS is not the optimum method for each particular plutonium isotope, the possibility to measure (239)Pu, (240)Pu, (241)Pu, (242)Pu and (244)Pu on the same AMS sputter target is a great simplification. We have obtained a first result on the global fallout value of (244)Pu/(239)Pu = (5.7 ± 1.0) × 10(-5) based on soil samples from Salzburg prefecture, Austria. Furthermore, we suggest using the (242)Pu/(240)Pu ratio as an estimate of the initial (241)Pu/(239)Pu ratio, which allows dating of the time of irradiation based solely on Pu isotopes. We have checked the validity of this estimate using literature data, simulations, and environmental samples from soil from the Salzburg prefecture (Austria), from the shut down Garigliano Nuclear Power Plant (Sessa Aurunca, Italy) and from the Irish Sea near the Sellafield nuclear facility. The maximum deviation of the estimated dates from the expected ages is 6 years, while relative dating of material from the same source seems to be possible with a precision of less than 2 years. Additional information carried by the minor plutonium isotopes may allow further improvements of the precision of the method. PMID:23565016

  10. Expected radiation effects in plutonium immobilization ceramic

    SciTech Connect

    Van Konynenburg, R.A., LLNL

    1997-09-01

    The current formulation of the candidate ceramic for plutonium immobilization consists primarily of pyrochlore, with smaller amounts of hafnium-zirconolite, rutile, and brannerite or perovskite. At a plutonium loading of 10.5 weight %, this ceramic would be made metamict (amorphous) by radiation damage resulting from alpha decay in a time much less than 10,000 years, the actual time depending on the repository temperature as a function of time. Based on previous experimental radiation damage work by others, it seems clear that this process would also result in a bulk volume increase (swelling) of about 6% for ceramic that was mechanically unconfined. For the candidate ceramic, which is made by cold pressing and sintering and has porosity amounting to somewhat more than this amount, it seems likely that this swelling would be accommodated by filling in the porosity, if the material were tightly confined mechanically by the waste package. Some ceramics have been observed to undergo microcracking as a result of radiation-induced anisotropic or differential swelling. It is unlikely that the candidate ceramic will microcrack extensively, for three reasons: (1) its phase composition is dominated by a single matrix mineral phase, pyrochlore, which has a cubic crystal structure and is thus not subject to anisotropic swelling; (2) the proportion of minor phases is small, minimizing potential cracking due to differential swelling; and (3) there is some flexibility in sintering process parameters that will allow limitation of the grain size, which can further limit stresses resulting from either cause.

  11. Low-valent molecular plutonium halide complexes.

    PubMed

    Gaunt, Andrew J; Reilly, Sean D; Enriquez, Alejandro E; Hayton, Trevor W; Boncella, James M; Scott, Brian L; Neu, Mary P

    2008-09-15

    Treatment of plutonium metal with 1.5 equiv of bromine in tetrahydrofuran (thf) led to isolation of PuBr3(thf)4 (1), which is a new versatile synthon for exploration of non-aqueous Pu(III) chemistry. Adventitious water in the system resulted in structural characterization of the eight-coordinate complex [PuBr2(H2O)6][Br] (2). The crystal structure of PuI3(thf)4 (3) has been determined for the first time and is isostructural with UI3(thf)4. Attempts to form a bis(imido) plutonyl(VI) moiety ([Pu(NR)2](2+)) by oxidation of PuI3(py)4 with iodine and (t)BuNH2 resulted in crystallization of the Pu(III) complex [PuI2(thf)4(py)][I3] (4). Dissolution of a Pu(IV) carbonate with a HCl/Et2O solution in thf gave the mixed valent (III/IV) complex salt [PuCl2(thf)5][PuCl5(thf)] (5) as the only tractable product. Oxidation of Pu[N(SiMe3)2]3 with TeCl4 afforded the Pu(IV) complex Pu[N(SiMe3)2]3Cl (6), which may prove to be a useful entry route for investigation of organometallic/non-aqueous tetravalent plutonium chemistry. PMID:18714989

  12. Co-Design: Fabrication of Unalloyed Plutonium

    SciTech Connect

    Korzekwa, Deniece R.; Knapp, Cameron M.; Korzekwa, David A.; Gibbs, John W

    2012-07-25

    The successful induction casting of plutonium is a challenge which requires technical expertise in areas including physical metallurgy, surface and corrosion chemistry, materials science, electromagnetic engineering and a host of other technologies all which must be applied in concert. Here at LANL, we are employing a combined experimental and computational approach to design molds and develop process parameters needed to produce desired temperature profiles and improved castings. Computer simulations are performed using the commercial code FLOW-3D and the LANL ASC computer code TRUCHAS to reproduce the entire casting process starting with electromagnetic or radiative heating of the mold and metal and continuing through pouring with coupled fluid flow, heat transfer and non-isothermal solidification. This approach greatly reduces the time required to develop a new casting designs and also increases our understanding of the casting process, leading to a more homogeneous, consistent product and better process control. We will discuss recent casting development results in support of unalloyed plutonium rods for mechanical testing.

  13. Avoided valence transition in a plutonium superconductor

    PubMed Central

    Ramshaw, B. J.; Shekhter, Arkady; McDonald, Ross D.; Betts, Jon B.; Mitchell, J. N.; Tobash, P. H.; Mielke, C. H.; Bauer, E. D.; Migliori, Albert

    2015-01-01

    The d and f electrons in correlated metals are often neither fully localized around their host nuclei nor fully itinerant. This localized/itinerant duality underlies the correlated electronic states of the high-Tc cuprate superconductors and the heavy-fermion intermetallics and is nowhere more apparent than in the 5f valence electrons of plutonium. Here, we report the full set of symmetry-resolved elastic moduli of PuCoGa5—the highest Tc superconductor of the heavy fermions (Tc = 18.5 K)—and find that the bulk modulus softens anomalously over a wide range in temperature above Tc. The elastic symmetry channel in which this softening occurs is characteristic of a valence instability—therefore, we identify the elastic softening with fluctuations of the plutonium 5f mixed-valence state. These valence fluctuations disappear when the superconducting gap opens at Tc, suggesting that electrons near the Fermi surface play an essential role in the mixed-valence physics of this system and that PuCoGa5 avoids a valence transition by entering the superconducting state. The lack of magnetism in PuCoGa5 has made it difficult to reconcile with most other heavy-fermion superconductors, where superconductivity is generally believed to be mediated by magnetic fluctuations. Our observations suggest that valence fluctuations play a critical role in the unusually high Tc of PuCoGa5. PMID:25737548

  14. Management of disused plutonium sealed sources

    SciTech Connect

    Whitworth, Julia Rose; Pearson, Michael W; Abeyta, Cristy

    2010-01-01

    The Global Threat Reduction Initiative's (GTRI) Offsite Source Recovery Project (OSRP) has been recovering excess and unwanted radioactive sealed sources since 1999, including more than 2,400 Plutonium (Pu)-238 sealed sources and 653 Pu-239-bearing sources that represent more than 10% of the total sources recovered by GTRI/OSRP to date. These sources have been recovered from hundreds of sites within the United States (US) and around the world. OSRP grew out of early efforts at the Los Alamos National Laboratory (LANL) to recover and disposition excess Plutonium-239 (Pu-239) sealed sources that were distributed in the 1960s and 1970s under the Atoms for Peace Program, a loan-lease program that serviced 31 countries, as well as domestic users. In the conduct of these recovery operations, GTRI/OSRP has been required to solve problems related to knowledge-of-inventory, packaging and transportation of fissile and heat-source materials, transfer of ownership, storage of special nuclear material (SNM) both at US Department of Energy (DOE) facilities and commercially, and disposal. Unique issues associated with repatriation from foreign countries, including end user agreements required by some European countries and denials of shipment, will also be discussed.

  15. System for imaging plutonium through heavy shielding

    SciTech Connect

    Kuckertz, T.H.; Cannon, T.M.; Fenimore, E.E.; Moss, C.E.; Nixon, K.V.

    1984-04-01

    A single pinhole can be used to image strong self-luminescent gamma-ray sources such as plutonium on gamma scintillation (Anger) cameras. However, if the source is weak or heavily shielded, a poor signal to noise ratio can prevent acquisition of the image. An imaging system designed and built at Los Alamos National Laboratory uses a coded aperture to image heavily shielded sources. The paper summarizes the mathematical techniques, based on the Fast Delta Hadamard transform, used to decode raw images. Practical design considerations such as the phase of the uniformly redundant aperture and the encoded image sampling are discussed. The imaging system consists of a custom designed m-sequence coded aperture, a Picker International Corporation gamma scintillation camera, a LeCroy 3500 data acquisition system, and custom imaging software. The paper considers two sources - 1.5 mCi /sup 57/Co unshielded at a distance of 27 m and 220 g of bulk plutonium (11.8% /sup 240/Pu) with 0.3 cm lead, 2.5 cm steel, and 10 cm of dense plastic material at a distance of 77.5 cm. Results show that the location and geometry of a source hidden in a large sealed package can be determined without having to open the package. 6 references, 4 figures.

  16. Tags to Track Illicit Uranium and Plutonium

    SciTech Connect

    Haire, M. Jonathan; Forsberg, Charles W.

    2007-07-01

    With the expansion of nuclear power, it is essential to avoid nuclear materials from falling into the hands of rogue nations, terrorists, and other opportunists. This paper examines the idea of detection and attribution tags for nuclear materials. For a detection tag, it is proposed to add small amounts [about one part per billion (ppb)] of {sup 232}U to enriched uranium to brighten its radioactive signature. Enriched uranium would then be as detectable as plutonium and thus increase the likelihood of intercepting illicit enriched uranium. The use of rare earth oxide elements is proposed as a new type of 'attribution' tag for uranium and thorium from mills, uranium and plutonium fuels, and other nuclear materials. Rare earth oxides are chosen because they are chemically compatible with the fuel cycle, can survive high-temperature processing operations in fuel fabrication, and can be chosen to have minimal neutronic impact within the nuclear reactor core. The mixture of rare earths and/or rare earth isotopes provides a unique 'bar code' for each tag. If illicit nuclear materials are recovered, the attribution tag can identify the source and lot of nuclear material, and thus help police reduce the possible number of suspects in the diversion of nuclear materials based on who had access. (authors)

  17. AMS of the Minor Plutonium Isotopes

    PubMed Central

    Steier, P.; Hrnecek, E.; Priller, A.; Quinto, F.; Srncik, M.; Wallner, A.; Wallner, G.; Winkler, S.

    2013-01-01

    VERA, the Vienna Environmental Research Accelerator, is especially equipped for the measurement of actinides, and performs a growing number of measurements on environmental samples. While AMS is not the optimum method for each particular plutonium isotope, the possibility to measure 239Pu, 240Pu, 241Pu, 242Pu and 244Pu on the same AMS sputter target is a great simplification. We have obtained a first result on the global fallout value of 244Pu/239Pu = (5.7 ± 1.0) × 10−5 based on soil samples from Salzburg prefecture, Austria. Furthermore, we suggest using the 242Pu/240Pu ratio as an estimate of the initial 241Pu/239Pu ratio, which allows dating of the time of irradiation based solely on Pu isotopes. We have checked the validity of this estimate using literature data, simulations, and environmental samples from soil from the Salzburg prefecture (Austria), from the shut down Garigliano Nuclear Power Plant (Sessa Aurunca, Italy) and from the Irish Sea near the Sellafield nuclear facility. The maximum deviation of the estimated dates from the expected ages is 6 years, while relative dating of material from the same source seems to be possible with a precision of less than 2 years. Additional information carried by the minor plutonium isotopes may allow further improvements of the precision of the method. PMID:23565016

  18. Avoided valence transition in a plutonium superconductor.

    PubMed

    Ramshaw, B J; Shekhter, Arkady; McDonald, Ross D; Betts, Jon B; Mitchell, J N; Tobash, P H; Mielke, C H; Bauer, E D; Migliori, Albert

    2015-03-17

    The d and f electrons in correlated metals are often neither fully localized around their host nuclei nor fully itinerant. This localized/itinerant duality underlies the correlated electronic states of the high-Tc cuprate superconductors and the heavy-fermion intermetallics and is nowhere more apparent than in the 5f valence electrons of plutonium. Here, we report the full set of symmetry-resolved elastic moduli of PuCoGa5--the highest Tc superconductor of the heavy fermions (Tc = 18.5 K)--and find that the bulk modulus softens anomalously over a wide range in temperature above Tc. The elastic symmetry channel in which this softening occurs is characteristic of a valence instability--therefore, we identify the elastic softening with fluctuations of the plutonium 5f mixed-valence state. These valence fluctuations disappear when the superconducting gap opens at Tc, suggesting that electrons near the Fermi surface play an essential role in the mixed-valence physics of this system and that PuCoGa5 avoids a valence transition by entering the superconducting state. The lack of magnetism in PuCoGa5 has made it difficult to reconcile with most other heavy-fermion superconductors, where superconductivity is generally believed to be mediated by magnetic fluctuations. Our observations suggest that valence fluctuations play a critical role in the unusually high Tc of PuCoGa5. PMID:25737548

  19. Plutonium Detection with Straw Neutron Detectors

    SciTech Connect

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul

    2014-03-27

    A kilogram of weapons grade plutonium gives off about 56,000 neutrons per second of which 55,000 neutrons come from spontaneous fission of 240Pu (~6% by weight of the total plutonium). Actually, all even numbered isotopes (238Pu, 240Pu, and 242Pu) produce copious spontaneous fission neutrons. These neutrons induce fission in the surrounding fissile 239Pu with an approximate multiplication of a factor of ~1.9. This multiplication depends on the shape of the fissile materials and the surrounding material. These neutrons (typically of energy 2 MeV and air scattering mean free path >100 meters) can be detected 100 meters away from the source by vehicle-portable neutron detectors. [1] In our current studies on neutron detection techniques, without using 3He gas proportional counters, we designed and developed a portable high-efficiency neutron multiplicity counter using 10B-coated thin tubes called straws. The detector was designed to perform like commercially available fission meters (manufactured by Ortec Corp.) except instead of using 3He gas as a neutron conversion material, we used a thin coating of 10B.

  20. Solvent extraction system for plutonium colloids and other oxide nano-particles

    DOEpatents

    Soderholm, Lynda; Wilson, Richard E; Chiarizia, Renato; Skanthakumar, Suntharalingam

    2014-06-03

    The invention provides a method for extracting plutonium from spent nuclear fuel, the method comprising supplying plutonium in a first aqueous phase; contacting the plutonium aqueous phase with a mixture of a dielectric and a moiety having a first acidity so as to allow the plutonium to substantially extract into the mixture; and contacting the extracted plutonium with second a aqueous phase, wherein the second aqueous phase has a second acidity higher than the first acidity, so as to allow the extracted plutonium to extract into the second aqueous phase. The invented method facilitates isolation of plutonium polymer without the formation of crud or unwanted emulsions.

  1. Automated monitoring of in-process plutonium concentration

    SciTech Connect

    Rebagay, T.V.; Huff, G.A.; Hofstetter, K.J.

    1982-01-01

    An automated low-level plutonium monitor capable of measuring total and isotopic plutonium abundances in solutions is described. To demonstrate near real-time assay of in-process plutonium, we installed a monitor on a flowing stream of a laboratory experimental facility. The stream was composed of uranium and plutonium in nitric acid at concentrations typical of a plant using a Purex flowsheet modified to permit coprocessing of spent nuclear fuel. The plutonium isotopic abundances were typical of those found in light water reactor grade fuel. The plutonium isotopic concentrations in the stream with the exception of /sup 242/Pu were determined by direct lambda-ray spectrometry. The /sup 242/Pu abundance was calculated by isotope correlation techniques. Additional data were obtained on coprocessed uranium-plutonium solutions denatured with fission products (/sup 103/Ru, /sup 144/Ce//sup 144/Pr, and /sup 95/Zr//sup 95/Nb). /sup 239/Pu and /sup 240/Pu concentrations can be determined to within 2% and 5%, respectively, of the concentrations determined by mass spectrometry.

  2. Plutonium recovery from spent reactor fuel by uranium displacement

    SciTech Connect

    Ackerman, J.P.

    1991-01-01

    This report discusses a process for separating uranium values and transuranic values from fission products containing rare earth values when the values which are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is re-established.

  3. Plutonium recovery from spent reactor fuel by uranium displacement

    DOEpatents

    Ackerman, J.P.

    1992-03-17

    A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  4. Plutonium recovery from spent reactor fuel by uranium displacement

    DOEpatents

    Ackerman, John P.

    1992-01-01

    A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

  5. Global estimation of potential unreported plutonium in thermal research reactors

    SciTech Connect

    Dreicer, J.S.; Rutherford, D.A.

    1996-09-01

    As of November, 1993, 303 research reactors (research, test, training, prototype, and electricity producing) were operational worldwide; 155 of these were in non-nuclear weapon states. Of these 155 research reactors, 80 are thermal reactors that have a power rating of 1 MW(th) or greater and could be utilized to produce plutonium. A previously published study on the unreported plutonium production of six research reactors indicates that a minimum reactor power of 40 MW (th) is required to make a significant quantity (SQ), 8 kg, of fissile plutonium per year by unreported irradiations. As part of the Global Nuclear Material Control Model effort, we determined an upper bound on the maximum possible quantity of plutonium that could be produced by the 80 thermal research reactors in the non-nuclear weapon states (NNWS). We estimate that in one year a maximum of roughly one quarter of a metric ton (250 kg) of plutonium could be produced in these 80 NNWS thermal research reactors based on their reported power output. We have calculated the quantity of plutonium and the number of years that would be required to produce an SQ of plutonium in the 80 thermal research reactors and aggregated by NNWS. A safeguards approach for multiple thermal research reactors that can produce less than 1 SQ per year should be conducted in association with further developing a safeguards and design information reverification approach for states that have multiple research reactors.

  6. Plutonium and tritium produced in the Hanford Site production reactors

    SciTech Connect

    Roblyer, S.P.

    1994-09-28

    In a news release on December 7, 1993, the Secretary of Energy announced declassification action that included totals for plutonium and tritium production in the Hanford Site production reactors. This information was reported as being preliminary because it was not fully supported by documentation. Subsequently, production data were made available from the US Department of Energy-Headquarters (DOE-HQ) records that indicated an increase of about one and one-half metric tons in total plutonium production. The Westinghouse Hanford Company was tasked by the US Department of Energy-Richland Operations Office to substantiate production figures and DOE-HQ data and to provide a defensible report of weapons- (6 wt% {sup 240}Pu) and nonweapons- (fuels-)grade (nominally 9 wt% or higher {sup 240}Pu) plutonium and tritium production in the Hanford Site production reactors. The task was divided into three parts. The first part was to determine plutonium and tritium production based on available reported accountability records. The second part was to determine plutonium production independently by calculational checks based on reactor thermal power generation and plutonium conversion factors representing the various reactor fuels. The third part was to resolve differences, if they occurred, in the reported and calculational results. In summary, the DOE-HQ-reported accountability records of plutonium and tritium production were determined to be the most defensible record of Hanford Site reactor production. The DOE-HQ records were consistently supported by the independent calculational checks and the records of operational data. Total production quantities are 67.4 MT total plutonium, which includes 12.9 MT of nonweapons-grade plutonium. The total tritium production was 10.6 kg.

  7. HANFORD PLUTONIUM FINISHG PLAN (PFP) COMPLETES PLUTONIUM STABILIZATION KEY SAFETY ISSUES CLOSED

    SciTech Connect

    GERBER, M.S.

    2004-02-24

    A long and intense effort to stabilize and repackage nearly 18 metric tons (MT) of plutonium-bearing leftovers from defense production and nuclear experiments concluded successfully in February, bringing universal congratulations to the Department of Energy's Hanford Site in southeast Washington State. The victorious stabilization and packaging endeavor at the Plutonium Finishing Plant (PFP), managed and operated by prime contractor Fluor Hanford, Inc., finished ahead of all milestones in Hanford's cleanup agreement with regulators, and before deadlines set by the Defense Nuclear Facilities Safety Board (DNFSB), a part of the federal Executive Branch that oversees special nuclear materials. The PFP stabilization and packaging project also completed under budget for its four-year tenure, and has been nominated for a DOE Secretarial Award. It won the Project of the Year Award in the local chapter competition of the Project Management Institute, and is being considered for awards at the regional and national level.

  8. Imitators of plutonium and americium in a mixed uranium- plutonium nitride fuel

    NASA Astrophysics Data System (ADS)

    Nikitin, S. N.; Shornikov, D. P.; Tarasov, B. A.; Baranov, V. G.; Burlakova, M. A.

    2016-04-01

    Uranium nitride and mix uranium nitride (U-Pu)N is most popular nuclear fuel for Russian Fast Breeder Reactor. The works in hot cells associated with the radiation exposure of personnel and methodological difficulties. To know the main physical-chemical properties of uranium-plutonium nitride it necessary research to hot cells. In this paper, based on an assessment of physicochemical and thermodynamic properties of selected simulators Pu and Am. Analogues of Pu is are Ce and Y, and analogues Am - Dy. The technique of obtaining a model nitride fuel based on lanthanides nitrides and UN. Hydrogenation-dehydrogenation- nitration method of derived powders nitrides uranium, cerium, yttrium and dysprosium, held their mixing, pressing and sintering, the samples obtained model nitride fuel with plutonium and americium imitation. According to the results of structural studies have shown that all the samples are solid solution nitrides rare earth (REE) elements in UN.

  9. Plutonium immobilization plant using glass in existing facilities at the Savannah River Site

    SciTech Connect

    DiSabatino, A., LLNL

    1998-06-01

    The Plutonium Immobilization Plant (PIP) accepts plutonium (Pu) from pit conversion and from non-pit sources and, through a glass immobilization process, converts the plutonium into an immobilized form that can be disposed of in a high level waste (HLW) repository. The objective is to make an immobilized form, suitable for geologic disposal, in which the plutonium is as inherently unattractive and inaccessible as the plutonium in spent fuel from commercial reactors.

  10. Additional short-term plutonium urinary excretion data from the 1945-1947 plutonium injection studies

    SciTech Connect

    Moss, W.D.; Gautier, M.A.

    1986-01-01

    The amount of plutonium excreted per day following intravenous injection was shown to be significantly higher than predicted by the Langham power function model. Each of the Los Alamos National Laboratory notebooks used to record the original analytical data was studied for details that could influence the findings. It was discovered there were additional urine excretion data for case HP-3. This report presents the additional data, as well as data on case HP-6. (ACR)

  11. Remote handling in the Plutonium Immobilization Project -- Second stage immobilization

    SciTech Connect

    Kriikku, E.

    1999-12-21

    The Savannah River Site (SRS) will immobilize excess plutonium in ceramic pucks and seal the pucks inside welded cans. Automated equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. Due to the radiation, remote equipment will perform these operations in a contained environment. The Plutonium Immobilization Project is in the conceptual design stage and the facility will begin operation in 2008. This paper discusses the Plutonium Immobilization Project phase 2 automation equipment conceptual design, equipment design, and work completed.

  12. Amarillo National Resource Center for Plutonium 1999 plan

    SciTech Connect

    1999-01-30

    The purpose of the Amarillo National Resource Center for Plutonium is to serve the Texas Panhandle, the State of Texas and the US Department of Energy by: conducting scientific and technical research; advising decision makers; and providing information on nuclear weapons materials and related environment, safety, health, and nonproliferation issues while building academic excellence in science and technology. This paper describes the electronic resource library which provides the national archives of technical, policy, historical, and educational information on plutonium. Research projects related to the following topics are described: Environmental restoration and protection; Safety and health; Waste management; Education; Training; Instrumentation development; Materials science; Plutonium processing and handling; and Storage.

  13. Plutonium Immobilization Can Loading Conceptual Design for 13 MT Case

    SciTech Connect

    Peterson, K.D.

    2001-01-31

    The Plutonium Immobilization Plant (PIP) will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses the Plutonium Immobilization Can Loading conceptual design for the 13 Metric Ton (MT) PIP throughput case. This report includes a process block diagram, process description, and preliminary equipment specifications and documents the changes to the original can loading concept documented in previous reports.

  14. Advanced fuels for plutonium management in pressurized water reactors

    NASA Astrophysics Data System (ADS)

    Vasile, A.; Dufour, Ph; Golfier, H.; Grouiller, J. P.; Guillet, J. L.; Poinot, Ch; Youinou, G.; Zaetta, A.

    2003-06-01

    Several fuel concepts are under investigation at CEA with the aim of manage plutonium inventories in pressurized water reactors. This options range from the use of mature technologies like MOX adapted in the case of MOX-EUS (enriched uranium support) and COmbustible Recyclage A ILot (CORAIL) assemblies to more innovative technologies using IMF like DUPLEX and advanced plutonium assembly (APA). The plutonium burning performances reported to the electrical production go from 7 to 60 kg (TW h) -1. More detailed analysis covering economic, sustainability, reliability and safety aspects and their integration in the whole fuel cycle would allow identifying the best candidate.

  15. Strategies for denaturing the weapons-grade plutonium stockpile

    SciTech Connect

    Buckner, M.R.; Parks, P.B.

    1992-10-01

    In the next few years, approximately 50 metric tons of weapons-grade plutonium and 150 metric tons of highly-enriched uranium (HEU) may be removed from nuclear weapons in the US and declared excess. These materials represent a significant energy resource that could substantially contribute to our national energy requirements. HEU can be used as fuel in naval reactors, or diluted with depleted uranium for use as fuel in commercial reactors. This paper proposes to use the weapons-grade plutonium as fuel in light water reactors. The first such reactor would demonstrate the dual objectives of producing electrical power and denaturing the plutonium to prevent use in nuclear weapons.

  16. Gas pycnometry for density determination of plutonium parts

    SciTech Connect

    Collins, S.; Randolph, H.W.

    1997-08-19

    The traditional method for plutonium density determination is by measuring the weight loss of the component when it is immersed in a liquid of known density, Archimedes` Principle. The most commonly used heavy liquids that are compatible for plutonium measurement are freon and monobromobenzene, but these pose serious environmental and health hazards. The contaminated liquid is also a radiological waste concern with difficult disposition. A gaseous medium would eliminate these environmental and health concerns. A collaborative research effort between the Savannah River Technology Center and Los Alamos National Laboratory was undertaken to determine the feasibility of a gaseous density measurement process for plutonium hemishells.

  17. Material transfer system in support of the plutonium immobilization program

    SciTech Connect

    Pak, D

    2000-02-23

    The Plutonium Immobilization Project is currently undertaking formulation and process development to demonstrate the immobilization of surplus plutonium in a titanate-based ceramic. These ceramic forms will be encapsulated within canisters containing high level waste glass for geologic disposal. Process development work is being conducted with sub-scale, process prototypic equipment. Final validation of the process will be done using actual plutonium material and functionally prototypic equipment within a glovebox. Due to the radioactive nature of the material, remote material handling is necessary to reduce the radiation exposure to the operators. A remote operated Material Transfer System to interface with process equipment has been developed.

  18. Material transfer system in support of the plutonium immobilization program

    SciTech Connect

    Pak, D

    2000-12-20

    The Plutonium Immobilization Program requires development of the process and plant prototypic equipment to immobilize surplus plutonium in ceramic for long-term storage. Because of the hazardous nature of plutonium, it was necessary to develop a remotely operable materials transfer system which can function within the confines of a glovebox. In support of this work at LLNL, such a material transfer system (MTS) was developed. This paper presents both the mechanical and controls parts making up this system, and includes photographs of the key components and diagrams of their assemblies, as well as a description of the control sequence used to validate the MTS capabilities.

  19. Accelerator-driven assembly for plutonium transformation (ADAPT)

    SciTech Connect

    Van Tuyle, G.J.; Todosow, M.; Powell, J.; Schweitzer, D.

    1994-11-01

    A particle accelerator-driven spallation target and corresponding blanket region are proposed for the ultimate disposition of weapons-grade plutonium being retired from excess nuclear weapons in the US and Russia. The highly fissile plutonium is contained within .25 to .5 cm diameter silicon-carbide coated graphite beads, which are cooled by helium, within the slightly subcritical blanket region. Major advantages include very high one-pass burnup (over 90 %), a high integrity waste form (the coated beads), and operation in a subcritical mode, thereby minimizing the vulnerability to the positive reactivity feedbacks often associated with plutonium fuel.

  20. Plutonium Immobilization Can Loading FY98 Year End Design Report

    SciTech Connect

    Kriikku, E.

    1998-11-25

    The Plutonium Immobilization Facility will immobilize plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report summarizes FY98 Can Loading work completed for the Plutonium Immobilization Project and it includes summaries of reports on Can Size, Equipment Review, Preliminary Concepts, Conceptual Design, and Preliminary Specification. Plant trip reports for the Greenville Automation and Manufacturing Exposition, Rocky Flats BNFL Pu repackaging glovebox line, and vendor trips are also included.

  1. Accelerator-based conversion (ABC) of reactor and weapons plutonium

    SciTech Connect

    Jensen, R.J.; Trapp, T.J.; Arthur, E.D.; Bowman, C.D.; Davidson, J.W.; Linford, R.K.

    1993-06-01

    An accelerator-based conversion (ABC) system is presented that is capable of rapidly burning plutonium in a low-inventory sub-critical system. The system also returns fission power to the grid and transmutes troublesome long-lived fission products to short lived or stable products. Higher actinides are totally fissioned. The system is suited not only to controlled, rapid burning of excess weapons plutonium, but to the long range application of eliminating or drastically reducing the world total inventory of plutonium. Deployment of the system will require the successful resolution of a broad range of technical issues introduced in the paper.

  2. Safety aspects of Particle Bed Reactor plutonium burner system

    SciTech Connect

    Powell, J.R.; Ludewig, H.; Todosow, M.

    1993-08-01

    An assessment is made of the safety aspects peculiar to using the Particle Bed Reactor (PBR) as the burner in a plutonium disposal system. It is found that a combination of the graphitic fuel, high power density possible with the PBR and engineered design features results in an attractive concept. The high power density potentially makes it possible to complete the plutonium burning without requiring reprocessing and remanufacturing fuel. This possibility removes two hazardous steps from a plutonium burning complex. Finally, two backup cooling systems depending on thermo-electric converters and heat pipes act as ultimate heat removal sinks in the event of accident scenarios which result in loss of fuel cooling.

  3. METHOD OF SEPARATING PLUTONIUM FROM LANTHANUM FLUORIDE CARRIER

    DOEpatents

    Watt, G.W.; Goeckermann, R.H.

    1958-06-10

    An improvement in oxidation-reduction type methods of separating plutoniunn from elements associated with it in a neutron-irradiated uranium solution is described. The method relates to the separating of plutonium from lanthanum ions in an aqueous 0.5 to 2.5 N nitric acid solution by 'treating the solution, at room temperature, with ammonium sulfite in an amount sufficient to reduce the hexavalent plutonium present to a lower valence state, and then treating the solution with H/sub 2/O/sub 2/ thereby forming a tetravalent plutonium peroxide precipitate.

  4. Bayesian methods for interpreting plutonium urinalysis data

    SciTech Connect

    Miller, G.; Inkret, W.C.

    1995-09-01

    The authors discuss an internal dosimetry problem, where measurements of plutonium in urine are used to calculate radiation doses. The authors have developed an algorithm using the MAXENT method. The method gives reasonable results, however the role of the entropy prior distribution is to effectively fit the urine data using intakes occurring close in time to each measured urine result, which is unrealistic. A better approximation for the actual prior is the log-normal distribution; however, with the log-normal distribution another calculational approach must be used. Instead of calculating the most probable values, they turn to calculating expectation values directly from the posterior probability, which is feasible for a small number of intakes.

  5. Measurement and interpretation of plutonium spectra

    SciTech Connect

    Blaise, J.; Fred, M.S.; Carnall, W.T.; Crosswhite, H.M.; Crosswhite, H.

    1982-01-01

    The atomic spectroscopic data available for plutonium are among the rickest of any in the periodic system. They include high-resolution grating and Fourier-transform spectra as well as extensive Zeeman and isotope-shift studies. We summarize the present status of the term analysis and cite the configurations that have been identified. A least-squares adjustment of a parametric Hamiltonian for configurations of both Pu I and Pu II has shown that almost all of the expected low levels are now known. The use of a model Hamiltonian applicable to both lanthanide and actinide atomic species has been applied to the low configurations of Pu I and Pu II making use of trends predicted by ab initio calculations. This same model has been used to describe the energy levels of Pu/sup 3 +/ in LaCl/sub 3/, and an extension has permitted preliminary calculations of the spectra of other valence states.

  6. Plutonium-Based Heavy-Fermion Systems

    NASA Astrophysics Data System (ADS)

    Bauer, E. D.; Thompson, J. D.

    2015-03-01

    An effective mass of charge carriers that is significantly larger than the mass of a free electron develops at low temperatures in certain lanthanide- and actinide-based metals, including those formed with plutonium, owing to strong electron-electron interactions. This heavy-fermion mass is reflected in a substantially enhanced electronic coefficient of specific heat γ, which for elemental Pu is much larger than that of normal metals. By our definition, there are twelve Pu-based heavy-fermion compounds, most discovered recently, whose basic properties are known and discussed. Relative to other examples, these Pu-based heavy-fermion systems are particularly complex owing in part to the possible simultaneous presence of multiple, nearly degenerate 5fn configurations. This complexity poses significant opportunities as well as challenges, including understanding the origin of unconventional superconductivity in some of these materials.

  7. Development of a plutonium-239 recovery incinerator

    SciTech Connect

    Williams, S; Charlesworth, D L

    1988-01-01

    A Plutonium-239 Recovery Incinerator is being developed for the Savannah River Plant (SRP) to reduce the volume of solid glovebox waste and to allow recovery of Pu-239 from the waste. The process will also allow treatment of some waste materials that are not certifiable for disposal at the Waste Isolation Pilot Plant (WIPP). It will consist of two electrically heated combustion chambers (furnace and afterburner) and a dry filtration off-gas system. A unique feature of the process is that it uses pyrohydrolysis to produce an ash that is amenable to Pu recovery through nitric acid/HF dissolution. A series of thermogravimetric (TGA) analyses have been performed to characterize potential incinerator feed materials. A functioning furnace mockup was built and operated to demonstrate electrically-heated pyrohydrolysis operation. 8 refs., 4 figs.

  8. Crashworthy sealed pressure vessel for plutonium transport

    SciTech Connect

    Andersen, J.A.

    1980-01-01

    A rugged transportation package for the air shipment of radioisotopic materials was recently developed. This package includes a tough, sealed, stainless steel inner containment vessel of 1460 cc capacity. This vessel, intended for a mass load of up to 2 Kg PuO/sub 2/ in various isotopic forms (not to exceed 25 watts thermal activity), has a positive closure design consisting of a recessed, shouldered lid fastened to the vessel body by twelve stainless-steel bolts; sealing is accomplished by a ductile copper gasket in conjunction with knife-edge sealing beads on both the body and lid. Follow-on applications of this seal in newer, smaller packages for international air shipments of plutonium safeguards samples, and in newer, more optimized packages for greater payload and improved efficiency and utility, are briefly presented.

  9. CORROSION MONITORING OF PLUTONIUM OXIDE AND SNF

    SciTech Connect

    Douglas, D.G.; Haas, C.M.; Smith, C.M.; Ohl, P.C.

    2003-02-27

    While developing a method to measure pressure in totally sealed stainless steel containers holding spent nuclear fuel at the U.S. DOE Hanford Site, Vista Engineering Technologies, LLC (Vista Engineering) personnel adapted the central concept to corrosion monitoring techniques for the same containers. The ability to monitor corrosion within vessels containing spent nuclear fuel, plutonium and other hazardous materials is imperative for safe storage. Vista Engineering personnel have devised a way to monitor corrosion in a totally sealed stainless steel container using a Magnetically Coupled Corrosion Gauge (MCCG) Patent Pending. The MCCG can be used to detect corrosion as well as measure corrosion rate and does not require any penetration of the containment vessel, which minimizes pressure boundary surface area and sensitive weld materials in the vessels.

  10. Uranium and plutonium isotopes in the atmosphere

    SciTech Connect

    Sakuragi, Y.; Meason, J.L.; Kuroda, P.K.

    1983-04-20

    Uranium 234 and 235 were found to be highly enriched relative to uranium 238 in several rain samples collected at Fayetteville, Arkansas, during the months of April and May 1980. The anomalous uranium appears to have originated from the Soviet satellite Cosmos-954, which fell over Canada on January 24, 1978. The uranium fallout occurred just about the time Mount St. Helens erupted on May 18, 1980. The concentration of /sup 238/U in rain increased markedly after the eruption of Mount St. Helens, and it appeared as if a large quantity of natural uranium was injected into the atmosphere by the volcanic eruption. The pattern of variation of the concentrations of uranium in rain after the eruption of Mount St. Helens was found to be similar to that of plutonium isotopes.

  11. Developments in plutonium waste assay at AWE.

    PubMed

    Miller, T J

    2009-06-01

    In 2002 a paper was presented at the 43rd Annual Meeting of the Institute of Nuclear Materials Management (INMM) on the assay of low level plutonium (Pu) in soft drummed waste (Miller 2002 INMM Ann. Meeting (Orlando, FL, 23-27 July 2002)). The technique described enabled the Atomic Weapons Establishment (AWE), at Aldermaston in the UK, to meet the stringent Low Level Waste Repository at Drigg (LLWRD) conditions for acceptance for the first time. However, it was initially applied to only low density waste streams because it relied on measuring the relatively low energy (60 keV) photon yield from Am-241 during growth. This paper reviews the results achieved when using the technique to assay over 10,000 waste packages and presents the case for extending the range of application to denser waste streams. PMID:19454791

  12. ARRAYS OF BOTTLES OF PLUTONIUM NITRATE SOLUTION

    SciTech Connect

    Margaret A. Marshall

    2012-09-01

    In October and November of 1981 thirteen approaches-to-critical were performed on a remote split table machine (RSTM) in the Critical Mass Laboratory of Pacific Northwest Laboratory (PNL) in Richland, Washington using planar arrays of polyethylene bottles filled with plutonium (Pu) nitrate solution. Arrays of up to sixteen bottles were used to measure the critical number of bottles and critical array spacing with a tight fitting Plexiglas® reflector on all sides of the arrays except the top. Some experiments used Plexiglas shells fitted around each bottles to determine the effect of moderation on criticality. Each bottle contained approximately 2.4 L of Pu(NO3)4 solution with a Pu content of 105 g Pu/L and a free acid molarity H+ of 5.1. The plutonium was of low 240Pu (2.9 wt.%) content. These experiments were sponsored by Rockwell Hanford Operations because of the lack of experimental data on the criticality of arrays of bottles of Pu solution such as might be found in storage and handling at the Purex Facility at Hanford. The results of these experiments were used “to provide benchmark data to validate calculational codes used in criticality safety assessments of [the] plant configurations” (Ref. 1). Data for this evaluation were collected from the published report (Ref. 1), the approach to critical logbook, the experimenter’s logbook, and communication with the primary experimenter, B. Michael Durst. Of the 13 experiments preformed 10 were evaluated. One of the experiments was not evaluated because it had been thrown out by the experimenter, one was not evaluated because it was a repeat of another experiment and the third was not evaluated because it reported the critical number of bottles as being greater than 25. Seven of the thirteen evaluated experiments were determined to be acceptable benchmark experiments. A similar experiment using uranyl nitrate was benchmarked as U233-SOL-THERM-014.

  13. Global plutonium management: A security option

    SciTech Connect

    Sylvester, K.W.B.

    1998-12-31

    The US surplus plutonium disposition program was created to reduce the proliferation risk posed by the fissile material from thousands of retired nuclear weapons. The Department of Energy has decided to process its Put into a form as secure as Pu in civilian spent fuel. While implementation issues have been considered, a major one (Russian reciprocity) remains unresolved. Russia has made disposition action conditional on extracting the fuel value of its Pu but lacks the infrastructure to do so. Assistance in the construction of the required facilities would conflict with official US policy opposing the development of a Pu fuel cycle. The resulting stagnation provides impetus for a reevaluation of US nonproliferation objectives and Pu disposition options. A strategy for satisfying Russian fuel value concerns and reducing the proliferation risk posed by surplus weapons-grade plutonium (WGPu) is proposed. The effectiveness of material alteration (e.g., isotopic, chemical, etc.{hor_ellipsis}) at reducing the desire, ability and opportunity for proliferation is assessed. Virtually all the security benefits attainable by material processing can be obtained by immobilizing Pu in large unit size/mass monoliths without a radiation barrier. Russia would be allowed to extract the Pu at a future date for use as fuel in a verifiable manner. Remote tracking capability, if proven feasible, would further improve safeguarding capability. As an alternate approach, the US could compensate Russia for its Pu, allowing it to be disposed of or processed elsewhere. A market based method for pricing Pu is proposed. Surplus Pu could represent access to nuclear fuel at a fixed price at a future date. This position can be replicated in the uranium market and priced using derivative theory. The proposed strategy attempts to meet nonproliferation objectives by recognizing technical limitations and satisfying political constraints.

  14. Average Structure Evolution of δ-phase Pu-Ga Alloys

    SciTech Connect

    Smith, Alice Iulia; Page, Katharine L.; Gourdon, Olivier; Siewenie, Joan E.; Richmond, Scott; Saleh, Tarik A.; Ramos, Michael; Schwartz, Daniel S.

    2015-03-30

    [Full Text] Plutonium metal is a highly unusual element, exhibiting six allotropes at ambient pressure, from room temperature to its melting point. Many phases of plutonium metal are unstable with temperature, pressure, chemical additions, and time. This strongly affects structure and properties, and becomes of high importance, particularly when considering effects on structural integrity over long time periods. The fcc δ-phase deserves additional attention, not only in the context of understanding the electronic structure of Pu, but also as one of the few high-symmetry actinide phases that can be stabilized down to ambient pressure and room temperature by alloying it with trivalent elements. We will present results on recent work on aging of Pu-2at.%Ga and Pu-7at.%Ga alloys

  15. Metal alloy identifier

    DOEpatents

    Riley, William D.; Brown, Jr., Robert D.

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  16. Process for immobilizing plutonium into vitreous ceramic waste forms

    DOEpatents

    Feng, Xiangdong; Einziger, Robert E.

    1997-01-01

    Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.

  17. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

    DOEpatents

    Sutton, J.B.

    1958-02-18

    This patent relates to an improved method for the decontamination of plutonium. The process consists broadly in an improvement in a method for recovering plutonium from radioactive uranium fission products in aqueous solutions by decontamination steps including byproduct carrier precipitation comprising the step of introducing a preformed aqueous slurry of a hydroxide of a metal of group IV B into any aqueous acidic solution which contains the plutonium in the hexavalent state, radioactive uranium fission products contaminant and a by-product carrier precipitate and separating the metal hydroxide and by-product precipitate from the solution. The process of this invention is especially useful in the separation of plutonium from radioactive zirconium and columbium fission products.

  18. Radial plutonium redistribution in mixed-oxide fuel. [LMFBR

    SciTech Connect

    Lawrence, L.A.; Schwinkendorf, K.N.; Karnesky, R.A.

    1981-10-01

    Alpha autoradiographs from all HEDL fuel pin metallography samples are evaluated and catalogued according to different plutonium distribution patterns. The data base is analyzed for effects of fabrication and operating parameters on redistribution.

  19. Process for immobilizing plutonium into vitreous ceramic waste forms

    DOEpatents

    Feng, X.; Einziger, R.E.

    1997-08-12

    Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.

  20. Process for immobilizing plutonium into vitreous ceramic waste forms

    DOEpatents

    Feng, X.; Einziger, R.E.

    1997-01-28

    Disclosed is a method for converting spent nuclear fuel and surplus plutonium into a vitreous ceramic final waste form wherein spent nuclear fuel is bound in a crystalline matrix which is in turn bound within glass.

  1. Crystalline ceramics: Waste forms for the disposal of weapons plutonium

    SciTech Connect

    Ewing, R.C.; Lutze, W.; Weber, W.J.

    1995-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ``logs``; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.

  2. Ambiguous and forbidden parameter combinations for aqueous plutonium.

    PubMed

    Silver, G L

    2009-01-01

    The concepts of forbidden and ambiguous oxidation-state distributions for plutonium are easier to understand when presented graphically. This note describes two diagrams that illustrate the phenomena. PMID:18986812

  3. Plutonium Immobilization Project - Cold Pour Phase 2 Test Results

    SciTech Connect

    Hamilton, L.

    2001-02-15

    The U.S. Department of Energy will immobilize excess plutonium in the proposed Plutonium Immobilization Plant (PIP) at the Savannah River site (SRS) as part of a two-track approach for dispositioning weapons-usable plutonium. The Department of Energy is funding the development and testing effort for the PIP being conducted by Lawrence Livermore National Laboratory and Argonne National Laboratory. PIP is developing the ''Can-in Canister'' (CIC) technology that immobilizes plutonium by encapsulating it in ceramic forms (or pucks) and ultimately surrounding the forms with high-level waste glass to provide a deterrent to recovery. A cold (non-radioactive) test program was conducted to develop and verify the baseline design for the canister and internal hardware. Tests were conducted in two phases. Phase 1 Cold Pour Tests, conducted in 1999, were scoping tests. This paper describes the Phase 2 tests conducted in 2000 that verified the adequacy of the baseline and demonstrated compliance with repository requirements.

  4. Radiation from plutonium 238 used in space applications

    NASA Technical Reports Server (NTRS)

    Keenan, T. K.; Vallee, R. E.; Powers, J. A.

    1972-01-01

    The principal mode of the nuclear decay of plutonium 238 is by alpha particle emission at a rate of 17 curies per gram. Gamma radiation also present in nuclear fuels arises primarily from the nuclear de-excitation of daughter nuclei as a result of the alpha decay of plutonium 238 and reactor-produced impurities. Plutonium 238 has a spontaneous fission half life of 4.8 x 10 to the 10th power years. Neutrons associated with this spontaneous fission are emitted at a rate of 28,000 neutrons per second per gram. Since the space fuel form of plutonium 238 is the oxide pressed into a cermet with molybdenum, a contribution to the neutron emission rate arises from (alpha, n) reactions with 0-17 and 0-18 which occur in natural oxygen.

  5. Detecting low concentrations of plutonium hydride with magnetization measurements

    NASA Astrophysics Data System (ADS)

    Kim, Jae Wook; Mun, E. D.; Baiardo, J. P.; Smith, A. I.; Richmond, S.; Mitchell, J.; Schwartz, D.; Zapf, V. S.; Mielke, C. H.

    2015-02-01

    We report the formation of plutonium hydride in 2 at. % Ga-stabilized δ-Pu, with 1 at. % H charging. We show that magnetization measurements are a sensitive, quantitative measure of ferromagnetic plutonium hydride against the nonmagnetic background of plutonium. It was previously shown that at low hydrogen concentrations, hydrogen forms super-abundant vacancy complexes with plutonium, resulting in a bulk lattice contraction. Here, we use magnetization, X-ray, and neutron diffraction measurements to show that in addition to forming vacancy complexes, at least 30% of the H atoms bond with Pu to precipitate PuHx on the surface of the sample with x ˜ 1.9. We observe magnetic hysteresis loops below 40 K with magnetic remanence, consistent with ferromagnetic PuH1.9.

  6. Plutonium releases from the 1957 fire at Rocky Flats.

    PubMed

    Mongan, T R; Ripple, S R; Brorby, G P; diTomasso, D G

    1996-10-01

    The Colorado Department of Public Health and Environment sponsored a study to reconstruct contaminant doses to the public from the Rocky Flats nuclear weapons plant. This analysis of the September 1957 fire in a plutonium fabrication building that breached the building air filtration system is part of the Colorado Department of Public Health and Environment study. The plutonium release from this fire is estimated using environmental data collected around the time of the fire and an air dispersion model. The approximate upper bound on the total plutonium release from the fire is 1.9 GBq (0.05 Ci), with an uncertainty of about two orders of magnitude. Off-site air concentrations and deposition of plutonium resulting from the approximate upper-bound release are estimated. The highest predicted off-site effective dose resulting from the approximate upper-bound release is about 13 microSv (1.3 mrem). PMID:8830752

  7. Plutonium and Americium Geochemistry at Hanford: A Site Wide Review

    SciTech Connect

    Cantrell, Kirk J.; Felmy, Andrew R.

    2012-08-23

    This report was produced to provide a systematic review of the state-of-knowledge of plutonium and americium geochemistry at the Hanford Site. The report integrates existing knowledge of the subsurface migration behavior of plutonium and americium at the Hanford Site with available information in the scientific literature regarding the geochemistry of plutonium and americium in systems that are environmentally relevant to the Hanford Site. As a part of the report, key research needs are identified and prioritized, with the ultimate goal of developing a science-based capability to quantitatively assess risk at sites contaminated with plutonium and americium at the Hanford Site and the impact of remediation technologies and closure strategies.

  8. Detecting low concentrations of plutonium hydride with magnetization measurements

    SciTech Connect

    Kim, Jae Wook; Mun, E. D.; Baiardo, J. P.; Zapf, V. S.; Mielke, C. H.; Smith, A. I.; Richmond, S.; Mitchell, J.; Schwartz, D.

    2015-02-07

    We report the formation of plutonium hydride in 2 at. % Ga-stabilized δ-Pu, with 1 at. % H charging. We show that magnetization measurements are a sensitive, quantitative measure of ferromagnetic plutonium hydride against the nonmagnetic background of plutonium. It was previously shown that at low hydrogen concentrations, hydrogen forms super-abundant vacancy complexes with plutonium, resulting in a bulk lattice contraction. Here, we use magnetization, X-ray, and neutron diffraction measurements to show that in addition to forming vacancy complexes, at least 30% of the H atoms bond with Pu to precipitate PuH{sub x} on the surface of the sample with x ∼ 1.9. We observe magnetic hysteresis loops below 40 K with magnetic remanence, consistent with ferromagnetic PuH{sub 1.9}.

  9. Development of the Direct Fabrication Process for Plutonium Immobilization

    SciTech Connect

    Congdon, J.W.

    2001-07-10

    The current baseline process for fabricating pucks for the Plutonium Immobilization Program includes granulation of the milled feed prior to compaction. A direct fabrication process was demonstrated that eliminates the need for granulation.

  10. Handling, Storage, and Disposition of Plutonium and Uranium

    NASA Astrophysics Data System (ADS)

    Haschke, John M.; Stakebake, Jerry L.

    The need to address topics of handling, storage, and disposal of plutonium and uranium is driven by concern about hazards posed by the element and by the worldwide quantity of civilian and military materials. The projected inventory of separated civilian plutonium for use in fabricating mixed-oxide (MOX) reactor fuel during initial decades of this century is constant at about 120 metric tons and a comparable amount of excess military plutonium is anticipated from reductions in nuclear weapon stockpiles (IAEA Report, 1998). Although inventories of civilian material are in oxide form, Pu from weapons programs exists primarily as metal. Plutonium is a radiological toxin (Voelz, 2000); its management in a safe and secure manner is essential for protecting workers, the public, and the environment.

  11. Analysis of Uranium and Plutonium by MC-ICPMS

    SciTech Connect

    Williams, R W

    2005-02-23

    This procedure is written as general guidance for the measurement of elemental isotopic composition by plasma-source inorganic mass spectrometry. Analytical methods for uranium and plutonium are given as examples.

  12. PRESSURIZATION OF CONTAINMENT VESSELS FROM PLUTONIUM OXIDE CONTENTS

    SciTech Connect

    Hensel, S.

    2012-03-27

    Transportation and storage of plutonium oxide is typically done using a convenience container to hold the oxide powder which is then placed inside a containment vessel. Intermediate containers which act as uncredited confinement barriers may also be used. The containment vessel is subject to an internal pressure due to several sources including; (1) plutonium oxide provides a heat source which raises the temperature of the gas space, (2) helium generation due to alpha decay of the plutonium, (3) hydrogen generation due to radiolysis of the water which has been adsorbed onto the plutonium oxide, and (4) degradation of plastic bags which may be used to bag out the convenience can from a glove box. The contributions of these sources are evaluated in a reasonably conservative manner.

  13. Plutonium recovery at the Los Alamos Scientific Laboratory

    SciTech Connect

    Christensen, E.L.

    1980-06-01

    Research programs have led to the adoption of procedures for all phases of plutonium recovery and purification. This report discusses some of the many procedures required to recover and purify the plutonium contained in the residues generated by LASL research, process development, and production activities. The report also discusses general plant facilities, the liquid and gaseous effluents, and solid waste management practices at the New Plutonium Facility, TA-55. Many of the processes or operations are merely steps in preparing the feed for one of the purification systems. For example, the plutonium is currently removed from noncombustibles in the pickling operation with an HNO/sub 3/ leach. The HNO/sub 3/ leach solution is the product of this operation and is sent to one of the nitrate anion-exchange systems for concentration and purification.

  14. Sci-Tech Feature: Plutonium. Fuel for Controversy.

    ERIC Educational Resources Information Center

    Iikubo, Ryuko

    1993-01-01

    Despite opposition by environmental organizations, Japan plans to import plutonium from France and Great Britain. Interviews Toichi Sakata, director of the nuclear fuel division of the Science and Technology Agency, who explains why Japan needs the radioactive substance. (MDH)

  15. Bulging of cans containing plutonium residues. Summary report

    SciTech Connect

    Van Konynenburg, R.A.; Wood, D.H.; Condit, R.H.; Shikany, S.D.

    1996-03-01

    In 1994, two cans in the Lawrence Livermore National Laboratory Plutonium Facility were found to be bulging as a result of the generation of gases form the plutonium ash residues contained in the cans. This report describes the chronology of this discovery, the response actions that revealed other pressurized cans, the analysis of the causes, the short-term remedial action, a followup inspection of the short-term storage packages, and a review of proposed long-term remedial options.

  16. Plutonium Immobilization Project System Design Description for Can Loading System

    SciTech Connect

    Kriikku, E.

    2001-02-15

    The purpose of this System Design Description (SDD) is to specify the system and component functions and requirements for the Can Loading System and provide a complete description of the system (design features, boundaries, and interfaces), principles of operation (including upsets and recovery), and the system maintenance approach. The Plutonium Immobilization Project (PIP) will immobilize up to 13 metric tons (MT) of U.S. surplus weapons usable plutonium materials.

  17. Fuel bundle design for enhanced usage of plutonium fuel

    DOEpatents

    Reese, A.P.; Stachowski, R.E.

    1995-08-08

    A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced. 10 figs.

  18. METHOD FOR DISSOLVING LANTHANUM FLUORIDE CARRIER FOR PLUTONIUM

    DOEpatents

    Koshland, D.E. Jr.; Willard, J.E.

    1961-08-01

    A method is described for dissolving lanthanum fluoride precipitates which is applicable to lanthanum fluoride carrier precipitation processes for recovery of plutonium values from aqueous solutions. The lanthanum fluoride precipitate is contacted with an aqueous acidic solution containing dissolved zirconium in the tetravalent oxidation state. The presence of the zirconium increases the lanthanum fluoride dissolved and makes any tetravalent plutonium present more readily oxidizable to the hexavalent state. (AEC)

  19. Plutonium metal and oxide container weld development and qualification

    SciTech Connect

    Fernandez, R.; Horrell, D.R.; Hoth, C.W.; Pierce, S.W.; Rink, N.A.; Rivera, Y.M.; Sandoval, V.D.

    1996-01-01

    Welds were qualified for a container system to be used for long-term storage of plutonium metal and oxide. Inner and outer containers are formed of standard tubing with stamped end pieces gas-tungsten-arc (GTA) welded onto both ends. The weld qualification identified GTA parameters to produce a robust weld that meets the requirements of the Department of Energy standard DOE-STD-3013-94, ``Criteria for the Safe Storage of Plutonium Metals and Oxides.``

  20. Chinese strategic weapons and the plutonium option (U)

    SciTech Connect

    Lewis, John W.; Xui Litai

    1988-04-01

    In their article "Chinese Strategic Weapons and the Plutonium Option," John W. Lewis and Xue Litai of the Center for International Security and Arms Control at Stanford University's International Strategic Institute present an unclassified look at plutonium processing in the PRC. The article draws heavily on unclassified PRC sources for its short look at this important subject. Interested readers will find more detailed information in the recently available works referenced in the article.

  1. PLUTONIUM PROCESSING OPTIMIZATION IN SUPPORT OF THE MOX FUEL PROGRAM

    SciTech Connect

    GRAY, DEVIN W.; COSTA, DAVID A.

    2007-02-02

    After Los Alamos National Laboratory (LANL) personnel completed polishing 125 Kg of plutonium as highly purified PuO{sub 2} from surplus nuclear weapons, Duke, COGEMA, Stone, and Webster (DCS) required as the next process stage, the validation and optimization of all phases of the plutonium polishing flow sheet. Personnel will develop the optimized parameters for use in the upcoming 330 kg production mission.

  2. Recovery of weapon plutonium as feed material for reactor fuel

    SciTech Connect

    Armantrout, G.A.; Bronson, M.A.; Choi, Jor-Shan

    1994-03-16

    This report presents preliminary considerations for recovering and converting weapon plutonium from various US weapon forms into feed material for fabrication of reactor fuel elements. An ongoing DOE study addresses the disposition of excess weapon plutonium through its use as fuel for nuclear power reactors and subsequent disposal as spent fuel. The spent fuel would have characteristics similar to those of commercial power spent fuel and could be similarly disposed of in a geologic repository.

  3. Wastes from plutonium conversion and scrap recovery operations

    SciTech Connect

    Christensen, D.C.; Bowersox, D.F.; McKerley, B.J.; Nance, R.L.

    1988-03-01

    This report deals with the handling of defense-related wastes associated with plutonium processing. It first defines the different waste categories along with the techniques used to assess waste content. It then discusses the various treatment approaches used in recovering plutonium from scrap. Next, it addresses the various waste management approaches necessary to handle all wastes. Finally, there is a discussion of some future areas for processing with emphasis on waste reduction. 91 refs., 25 figs., 4 tabs.

  4. PLUTONIUM RECOVERY FROM NEUTRON-BOMBARDED URANIUM FUEL

    DOEpatents

    Moore, R.H.

    1964-03-24

    A process of recovering plutonium from fuel by dissolution in molten KAlCl/sub 4/ double salt is described. Molten lithium chloride plus stannous chloride is added to reduce plutonium tetrachloride to the trichloride, which is dissolved in a lithium chloride phase while the uranium, as the tetrachloride, is dissolved in a double-salt phase. Separation of the two phases is discussed. (AEC)

  5. Decontamination of Battelle-Columbus' Plutonium Facility. Final report

    SciTech Connect

    Rudolph, A.; Kirsch, G.; Toy, H.L.

    1984-11-12

    The Plutonium Laboratory, owned and operated by Battelle Memorial Institute's Columbus Division, was located in Battelle's Nuclear Sciences area near West Jefferson, Ohio, approximately 17 miles west of Columbus, Ohio. Originally built in 1960 for plutonium research and processing, the Plutonium Laboratory was enlarged in 1964 and again in 1967. With the termination of the Advanced Fuel Program in March, 1977, the decision was made to decommission the Plutonium Laboratory and to decontaminate the building for unrestricted use. Decontamination procedures began in January, 1978. All items which had come into contact with radioactivity from the plutonium operations were cleaned or disposed of through prescribed channels, maintaining procedures to ensure that D and D operations would pose no risk to the public, the environment, or the workers. The entire program was conducted under the cognizance of DOE's Chicago Operations Office. The building which housed the Plutonium Laboratory has now been decontaminated to levels allowing it to house ordinary laboratory and office operations. A ''Finding of No Significant Impact'' (FNSI) was issued in May, 1980.

  6. Remote material handling in the Plutonium Immobilization Project. Revision 1

    SciTech Connect

    Brault, J.R.

    2000-03-13

    With the downsizing of the US and Russian nuclear stockpiles, large quantities of weapons-usable plutonium in the US are being declared excess and will be disposed of by the Department of Energy Fissile Materials Disposition Program. To implement this program, DOE has selected the Savannah River Site (SRS) for the construction and operation of three new facilities: pit disassembly and conversion; mixed oxide fuel fabrication; and plutonium immobilization. The Plutonium Immobilization Project (PIP) will immobilize a portion of the excess plutonium in a hybrid ceramic and glass form containing high level waste for eventual disposal in a geologic repository. The PIP is divided into three distinct operating areas: Plutonium Conversion, First Stage Immobilization, and Second Stage Immobilization. Processing technology for the PIP is being developed jointly by the Lawrence Livermore National Laboratory and Westinghouse Savannah River Company. This paper will discuss development of the automated unpacking and sorting operations in the conversion area, and the automated puck and tray handling operations in the first stage immobilization area. Due to the high radiation levels and toxicity of the materials to be disposed of, the PIP will utilize automated equipment in a contained (glovebox) facility. Most operations involving plutonium-bearing materials will be performed remotely, separating personnel from the radiation source. Source term materials will be removed from the operations during maintenance. Maintenance will then be performed hands on within the containment using glove ports.

  7. Experience with a routine fecal sampling program for plutonium workers

    SciTech Connect

    Bihl, D.E.; Buschbom, R.L.; Sula, M.J. )

    1993-11-01

    A quarterly fecal sampling program was conducted at the U. S. Department of Energy's Hanford site for congruent to 100 workers at risk for an intake of plutonium oxide and other forms of plutonium. To our surprise, we discovered that essentially all of the workers were excreting detectable activities of plutonium. Further investigation showed that the source was frequent, intermittent intakes at levels below detectability by normal workplace monitoring, indicating the extraordinary sensitivity of fecal sampling. However, the experience of this study also indicated that the increased sensitivity of routine fecal sampling relative to more common bioassay methods is offset by many problems. These include poor worker cooperation; difficulty in distinguishing low-level chronic intakes from a more significant, acute intake; difficulty in eliminating interference from ingested plutonium; and difficulty in interpreting what a single void means in terms of 24-h excretion. Recommendations for a routine fecal program include providing good communication to workers and management about reasons and logistics of fecal sampling prior to starting, using annual (instead of quarterly) fecal sampling for class Y plutonium, collecting samples after workers have been away from plutonium exposure for a least 3 d, and giving serious consideration to improving urinalysis sensitivity rather than going to routine fecal sampling.

  8. Assessment of plutonium exposure in the Enewetak population by urinalysis

    SciTech Connect

    Sun, L.C.; Meinhold, C.B.; Moorthy, A.R.

    1997-07-01

    Since 1980, the inhabitants of Enewetak Atoll have been monitored periodically by scientists from Brookhaven National Laboratory for internally deposited radioactive material. In 1989, the establishment of fission track analysis and of a protocol for shipboard collection of 24-h urine samples significantly improved our ability to assess the internal uptake of plutonium. The purpose of this report is to show the distribution of plutonium concentrations in urine collected in 1989 and 1991, and to assess the associated committed effective doses for the Enewetak population based on a long-term chronic uptake of low-level plutonium. To estimate dose, we derived the plutonium dose-per-unit-uptake coefficients based on the dosimetric system of the International Commission on Radiological Protection. Assuming a continuous uptake, an integrated Jones`s plutonium urine excretion function was developed to interpret the Enewetak urine data. The Appendix shows how these values were derived. The committed effective doses were 0.2 mSv, calculated from the 1991 average plutonium content in 69 urine samples. 29 refs., 3 tabs.

  9. Survey of glass plutonium contents and poison selection

    SciTech Connect

    Plodinec, M.J.; Ramsey, W.G.; Ellison, A.J.G.; Shaw, H.

    1996-05-01

    If plutonium and other actinides are to be immobilized in glass, then achieving high concentrations in the glass is desirable. This will lead to reduced costs and more rapid immobilization. However, glasses with high actinide concentrations also bring with them undersirable characteristics, especially a greater concern about nuclear criticality, particularly in a geologic repository. The key to achieving a high concentration of actinide elements in a glass is to formulate the glass so that the solubility of actinides is high. At the same time, the glass must be formulated so that the glass also contains neutron poisons, which will prevent criticality during processing and in a geologic repository. In this paper, the solubility of actinides, particularly plutonium, in three types of glasses are discussed. Plutonium solubilities are in the 2-4 wt% range for borosilicate high-level waste (HLW) glasses of the type which will be produced in the US. This type of glass is generally melted at relatively low temperatures, ca. 1150{degrees}C. For this melting temperature, the glass can be reformulated to achieve plutonium solubilities of at least 7 wt%. This low melting temperature is desirable if one must retain volatile cesium-137 in the glass. If one is not concerned about cesium volatility, then glasses can be formulated which can contain much larger amounts of plutonium and other actinides. Plutonium concentrations of at least 15 wt% have been achieved. Thus, there is confidence that high ({ge}5 wt%) concentrations of actinides can be achieved under a variety of conditions.

  10. Shielding analysis of glove boxes for handling of plutonium materials

    SciTech Connect

    Rainisch, R.

    1996-12-31

    The end of the Cold War has led the U.S. Department of Energy to adopt new programs for the management of excess plutonium materials. The programs center on placing plutonium is safe, long-term storage (50 yr) prior to final disposition. Before the plutonium can be placed in storage, materials will have to be stabilized and repackaged. Savannah River site (SRS) is pursuing the design of facilities for the stabilization of plutonium materials. Plutonium handling is to be performed in airtight glove boxes or similar enclosures. Glove boxes will incorporate radiation shielding for the protection of operators. This paper addresses the shielding configuration of the glove boxes and protection of operating personnel from external radiation. Shielding analysis of the glove boxes included (a) identification of plutonium source terms; (b) analysis of extremity exposures, which pertains to workers hands and forearms exposure; (c) shielding analysis, which includes shielding windows (transparent shielding) and glove-box walls; and (d) measures to enhance the radiological design of the enclosures.

  11. Supercritical Fluid Extraction of Plutonium and Americium from Soil

    SciTech Connect

    Fox, R.V.; Mincher, B.J.

    2002-05-23

    Supercritical fluid extraction (SFE) of plutonium and americium from soil was successfully demonstrated using supercritical fluid carbon dioxide solvent augmented with organophosphorus and beta-diketone complexants. Spiked Idaho soils were chemically and radiologically characterized, then extracted with supercritical fluid carbon dioxide at 2,900 psi and 65 C containing varying concentrations of tributyl phosphate (TBP) and thenoyltrifluoroacetone (TTA). A single 45 minute SFE with 2.7 mol% TBP and 3.2 mol% TTA provided as much as 88% {+-} 6.0 extraction of americium and 69% {+-} 5.0 extraction of plutonium. Use of 5.3 mol% TBP with 6.8 mol% of the more acidic beta-diketone hexafluoroacetylacetone (HFA) provided 95% {+-} 3.0 extraction of americium and 83% {+-} 5.0 extraction of plutonium in a single 45 minute SFE at 3,750 psi and 95 C. Sequential chemical extraction techniques were used to chemically characterize soil partitioning of plutonium and americium in pre-SFE soil samples. Sequential chemical extraction techniques demonstrated that spiked plutonium resides primarily (76.6%) in the sesquioxide fraction with minor amounts being absorbed by the oxidizable fraction (10.6%) and residual fractions (12.8%). Post-SFE soils subjected to sequential chemical extraction characterization demonstrated that 97% of the oxidizable, 78% of the sesquioxide and 80% of the residual plutonium could be removed using SFE. These preliminary results show that SFE may be an effective solvent extraction technique for removal of actinide contaminants from soil.

  12. Sonochemical Digestion of High-Fired Plutonium Dioxide Samples

    SciTech Connect

    Sinkov, Sergei I.; Lumetta, Gregg J.

    2006-10-12

    This work was performed as part of a broader effort to automate analytical methods for determining plutonium and other radioisotopes in environmental samples. The work described here represented a screening study to evaluate the effect of applying ultrasonic irradiation to dissolve high-fired plutonium oxide. The major findings of this work can be summarized as follows: (1) High-fired plutonium oxide does not undergo measurable dissolution when sonicated in nitric acid solutions, even at a high concentration range of nitric acid where the calculated thermodynamic solubility of plutonium oxide exceeds the ?g/mL level. (2) Applying organic complexants (nitrilotriacetic acid) and reductants (hydroxyurea) in 1.5 M nitric acid does not significantly increase the dissolution compared with digestion in nitric acid alone. Nearly all (99.5%) of the plutonium oxide remains undissolved under these conditions. (3) The action of a strong inorganic reductant, titanium trichloride in 25 wt% HCl, results in 40% dissolution of the plutonium oxide when the titanium trichloride concentration is ?1 wt% under sonication. (4) Oxidative treatment of plutonium oxide by freshly dissolved AgO ({approx}20 mg/mL) in 1.5 M nitric acid with sonication resulted in 95% plutonium oxide dissolution. However, the same treatment of plutonium oxide mechanically mixed with 50 mg of Columbia River sediment (CRS) results in a significant decrease of dissolution yield of plutonium oxide (<20% dissolved at the same AgO loading) because of parasitic consumption of AG(II) by oxidizable components of the CRS. (5) Digesting plutonium oxide in HF resulted in dissolution yields slightly higher than 80% for HF concentration from 6 M to 14 M. Sonication did not result in any improvement in dissolution efficiency in HF. (6) Mixed nitric acid/HF solutions result in a higher dissolution yield of plutonium oxide compared with digestion in HF alone (at the same HF concentrations). Practically quantitative dissolution

  13. The Concentration of (236)Pu Daughters in Plutonium for Application to MOX Production from Plutonium from Dismantled US Nuclear Weapons

    SciTech Connect

    Sampson, T.E.; Cremers, T.L.

    2001-05-01

    The isotope {sup 236}Pu in the weapons-grade plutonium to be used in the US MOX (mixed-oxide) plant is of concern because the daughter products of {sup 236}Pu are sources of high-energy gamma rays. The {sup 208}Tl daughter of {sup 236}Pu emits intense, high-energy gamma rays that are important for radiation exposure calculations for plant design. It is generally thought that the concentrations of {sup 236}Pu and its daughters are well below 10{sup {minus}10}, but these concentrations are generally below the detection limits of most analytical techniques. One technique that can be used to determine the concentration {sup 208}Tl is the direct measurement of the intensity of the {sup 208}Tl gamma rays in the gamma-ray spectrum from plutonium. Thallium-208 will be in equilibrium with {sup 228}Th, and may very well be in equilibrium with {sup 232}U for most aged plutonium samples. We have used the FRAM isotopic analysis software to analyze dozens of archived high-resolution gamma ray spectra from various samples of US and foreign plutonium. We are able to quantify the ratio of minor isotopes with measurable gamma-ray emissions to the major isotope of plutonium and hence, through the measurement of the plutonium isotopic distribution of the sample, to elemental plutonium itself. Excluding items packaged in fluoropolymer vials, all samples analyzed with {sup 240}Pu < 9% gave {sup 228}Th/Pu ratios < 3.4 e-012 and all samples of US-produced plutonium, including {sup 240}Pu values up to 16.4%, gave {sup 228}Th/Pu ratios < 9.4 e-012. None of these values is significant from a radiation dose standpoint.

  14. Examination of the effect of alpha radiolysis on plutonium(V) sorption to quartz using multiple plutonium isotopes.

    PubMed

    Hixon, Amy E; Arai, Yuji; Powell, Brian A

    2013-08-01

    The objective of this research was to determine if radiolysis at the mineral surface was a plausible mechanism for surface-mediated reduction of plutonium. Batch sorption experiments were used to monitor the amount of plutonium sorbed to high-purity quartz as a function of time, pH, and total alpha radioactivity. Three systems were prepared using both (238)Pu and (242)Pu in order to increase the total alpha radioactivity of the mineral suspensions while maintaining a constant plutonium concentration. The fraction of sorbed plutonium increased with increasing time and pH regardless of the total alpha radioactivity of the system. Increasing the total alpha radioactivity of the solution had a negligible effect on the sorption rate. This indicated that surface-mediated reduction of Pu(V) in these systems was not due to radiolysis. Additionally, literature values for the Pu(V) disproportionation rate constant did not describe the experimental results. Therefore, Pu(V) disproportionation was also not a main driver for surface-mediated reduction of plutonium. Batch desorption experiments and X-ray absorption near edge structure spectroscopy were used to show that Pu(IV) was the dominant oxidation state of sorbed plutonium. Thus, it appears that the observed surface-mediated reduction of Pu(V) in the presence of high-purity quartz was based on the thermodynamic favorability of a Pu(IV) surface complex. PMID:23683959

  15. 10 CFR 140.13a - Amount of financial protection required for plutonium processing and fuel fabrication plants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... plutonium processing and fuel fabrication plant is required to have and maintain financial protection in the... use plutonium at two or more plutonium processing and fuel fabrication plants at the same location... protection covers all such plants at the location....

  16. 10 CFR 140.13a - Amount of financial protection required for plutonium processing and fuel fabrication plants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... plutonium processing and fuel fabrication plant is required to have and maintain financial protection in the... use plutonium at two or more plutonium processing and fuel fabrication plants at the same location... protection covers all such plants at the location....

  17. 10 CFR 140.13a - Amount of financial protection required for plutonium processing and fuel fabrication plants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... plutonium processing and fuel fabrication plant is required to have and maintain financial protection in the... use plutonium at two or more plutonium processing and fuel fabrication plants at the same location... protection covers all such plants at the location....

  18. Investigation of Effects of Neutron Irradiation on Tantalum Alloys for Radioisotope Power System Applications

    SciTech Connect

    Barklay, Chadwick D.; Kramer, Daniel P.; Talnagi, Joseph

    2007-01-30

    Tantalum alloys have been used by the U.S. Department of Energy as structural alloys for space nuclear power systems such as Radioisotopic Thermoelectric Generators (RTG) since the 1960s. Tantalum alloys are attractive for high temperature structural applications due to their high melting point, excellent formability, good thermal conductivity, good ductility (even at low temperatures), corrosion resistance, and weldability. A number of tantalum alloys have been developed over the years to increase high-temperature strength (Ta-10%W) and to reduce creep strain (T-111). These tantalum alloys have demonstrated sufficient high-temperature toughness to survive the increasing high pressures of the RTG's operating environment resulting from the alpha decay of the 238-plutonium dioxide fuel. However, 238-plutonium is also a powerful neutron source. Therefore, the RTG operating environment produces large amounts of 3-helium and neutron displacement damage over the 30 year life of the RTG. The literature to date shows that there has been very little work focused on the mechanical properties of irradiated tantalum and tantalum alloys and none at the fluence levels associated with a RTG operating environment. The minimum, reactor related, work that has been reported shows that these alloys tend to follow trends seen in the behavior of other BCC alloys under irradiation. An understanding of these mechanisms is important for the confident extrapolation of mechanical-property trends to the higher doses and gas levels corresponding to actual service lifetimes. When comparing the radiation effects between samples of Ta-10%W and T-111 (Ta-8%W-2%Hf) subjected to identical neutron fluences and environmental conditions at temperatures <0.3Tm ({approx}700 deg. C), evidence suggests the possibility that T-111 will exhibit higher levels of internal damage accumulation and degradation of mechanical properties compared to Ta-10%W.

  19. Investigation of Effects of Neutron Irradiation on Tantalum Alloys for Radioisotope Power System Applications

    NASA Astrophysics Data System (ADS)

    Barklay, Chadwick D.; Kramer, Daniel P.; Talnagi, Joseph

    2007-01-01

    Tantalum alloys have been used by the U.S. Department of Energy as structural alloys for space nuclear power systems such as Radioisotopic Thermoelectric Generators (RTG) since the 1960s. Tantalum alloys are attractive for high temperature structural applications due to their high melting point, excellent formability, good thermal conductivity, good ductility (even at low temperatures), corrosion resistance, and weldability. A number of tantalum alloys have been developed over the years to increase high-temperature strength (Ta-10%W) and to reduce creep strain (T-111). These tantalum alloys have demonstrated sufficient high-temperature toughness to survive the increasing high pressures of the RTG's operating environment resulting from the alpha decay of the 238-plutonium dioxide fuel. However, 238-plutonium is also a powerful neutron source. Therefore, the RTG operating environment produces large amounts of 3-helium and neutron displacement damage over the 30 year life of the RTG. The literature to date shows that there has been very little work focused on the mechanical properties of irradiated tantalum and tantalum alloys and none at the fluence levels associated with a RTG operating environment. The minimum, reactor related, work that has been reported shows that these alloys tend to follow trends seen in the behavior of other BCC alloys under irradiation. An understanding of these mechanisms is important for the confident extrapolation of mechanical-property trends to the higher doses and gas levels corresponding to actual service lifetimes. When comparing the radiation effects between samples of Ta-10%W and T-111 (Ta-8%W-2%Hf) subjected to identical neutron fluences and environmental conditions at temperatures <0.3Tm (˜700 °C), evidence suggests the possibility that T-111 will exhibit higher levels of internal damage accumulation and degradation of mechanical properties compared to Ta-10%W.

  20. Reduction of worldwide plutonium inventories using conventional reactors and advanced fuels: A systems study

    SciTech Connect

    Krakowski, R.A.; Bathke, C.G.; Chodak, P. III

    1997-09-01

    The potential for reducing plutonium inventories in the civilian nuclear fuel cycle through recycle in LWRs of a variety of mixed-oxide forms is examined by means of a cost-based plutonium-flow systems model that includes an approximate measure of proliferation risk. The impact of plutonium recycle in a number of forms is examined, including the introduction of nonfertile fuels into conventional (LWR) reactors to reduce net plutonium generation, to increase plutonium burnup, and to reduce exo-reactor plutonium inventories.

  1. Benchmark Evaluation of Plutonium Nitrate Solution Arrays

    SciTech Connect

    M. A. Marshall; J. D. Bess

    2011-09-01

    In October and November of 1981 thirteen approach-to-critical experiments were performed on a remote split table machine (RSTM) in the Critical Mass Laboratory of Pacific Northwest Laboratory (PNL) in Richland, Washington, using planar arrays of polyethylene bottles filled with plutonium (Pu) nitrate solution. Arrays of up to sixteen bottles were used to measure the critical number of bottles and critical array spacing with a tight fitting Plexiglas{reg_sign} reflector on all sides of the arrays except the top. Some experiments used Plexiglas shells fitted around each bottles to determine the effect of moderation on criticality. Each bottle contained approximately 2.4 L of Pu(NO3)4 solution with a Pu content of 105 g Pu/L and a free acid molarity H+ of 5.1. The plutonium was of low 240Pu (2.9 wt.%) content. These experiments were performed to fill a gap in experimental data regarding criticality limits for storing and handling arrays of Pu solution in reprocessing facilities. Of the thirteen approach-to-critical experiments eleven resulted in extrapolations to critical configurations. Four of the approaches were extrapolated to the critical number of bottles; these were not evaluated further due to the large uncertainty associated with the modeling of a fraction of a bottle. The remaining seven approaches were extrapolated to critical array spacing of 3-4 and 4-4 arrays; these seven critical configurations were evaluation for inclusion as acceptable benchmark experiments in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook. Detailed and simple models of these configurations were created and the associated bias of these simplifications was determined to range from 0.00116 and 0.00162 {+-} 0.00006 ?keff. Monte Carlo analysis of all models was completed using MCNP5 with ENDF/BVII.0 neutron cross section libraries. A thorough uncertainty analysis of all critical, geometric, and material parameters was performed using parameter

  2. Plutonium contamination in soils and sediments at Mayak PA, Russia.

    PubMed

    Skipperud, Lindis; Salbu, Brit; Oughton, Deborah H; Drozcho, Eugeny; Mokrov, Yuri; Strand, Per

    2005-09-01

    The Mayak Production Association (Mayak PA) was established in the late 1940's to produce plutonium for the Soviet Nuclear Weapons Programme. In total, seven reactors and two reprocessing plants have been in operation. Today, the area comprises both military and civilian reactors as well as reprocessing and metallurgical plants. Authorized and accidental releases of radioactive waste have caused severe contamination to the surrounding areas. In the present study, [alpha]-spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS) have been used to determine plutonium activities and isotope ratios in soil and sediment samples collected from reservoirs of the Techa River at the Mayak area and downstream Techa River. The objective of the study was to determine the total inventory of plutonium in the reservoirs and to identify the different sources contributing to the plutonium contamination. Results based on [alpha]-spectrometry and ICP-MS measurements show the presence of different sources and confirmed recent reports of civilian reprocessing at Mayak. Determination of activity levels and isotope ratios in soil and sediment samples from the Techa River support the hypothesis that most of the plutonium, like other radionuclides in the Techa River, originated from the very early waste discharges to the Techa River between 1949 and 1951. Analysis of reservoir sediment samples suggest that about 75% of the plutonium isotopes could have been released to Reservoir 10 during the early weapons production operation of the plant, and that the majority of plutonium in Reservoir 10 originates from discharges from power production or reprocessing. Enhanced 240Pu/239Pu atom ratios in river sediment upper layers (0-2 cm) between 50 and 250 km downstream from the plant indicate a contribution from other, non-fallout sources. PMID:16096501

  3. Measurement and interpretation of plutonium spectra

    SciTech Connect

    Blaise, J.; Fred, M.S.; Carnall, W.T.; Crosswhite, H.M.; Crosswhite, H.

    1983-01-01

    The atomic spectroscopic data available for plutonium are among the richest of any in the periodic system. They include high-resolution grating and Fourier-transform spectra as well as extensive Zeeman and isotope-shift studies. The present status of the term analysis is summarized, and the configurations that have been identified are cited. A least-squares adjustment of a parametric Hamiltonian for configurations of both Pu I and Pu II has shown that almost all of the expected low levels are now known. The use of a model Hamiltonian applicable to both lanthanide and actinide atomic species has been applied to the low configurations of Pu I and Pu II making use of trends predicted by ab initio calculations. This same model has been used to describe the energy levels of Pu/sup 3 +/ in LaCl/sub 3/, and an extension has permitted preliminary calculations of the spectra of other valence states. 46 references, 9 figures, 7 tables.

  4. Plutonium Isotopic Gamma-Ray Analysis

    Energy Science and Technology Software Center (ESTSC)

    1992-01-08

    The MGA8 (Multiple Group Analysis) program determines the relative abundances of plutonium and other actinide isotopes in different materials. The program analyzes spectra taken of such samples using a 4096-channel germanium (Ge) gamma-ray spectrometer. The code can be run in a one or two detector mode. The first spectrum, which is required and must be taken at a gain of 0.075 Kev/channel with a high resolution planar detector, contains the 0-300 Kev energy region. Themore » second spectrum, which is optional, must be taken at a gain of 0.25 Kev/channel; it becomes important when analyzing high burnup samples (concentration of Pu241 greater than one percent). Isotopic analysis precisions of one percent or better can be obtained, and no calibrations are required. The system also measures the abundances of U235, U238, Np237, and Am241. A special calibration option is available to perform a one-time peak-shape characterization when first using a new detector system.« less

  5. Neutron radiation characteristics of plutonium dioxide fuel

    NASA Technical Reports Server (NTRS)

    Taherzadeh, M.

    1972-01-01

    The major sources of neutrons from plutonium dioxide nuclear fuel are considered in detail. These sources include spontaneous fission of several of the Pu isotopes, (alpha, n) reactions with low Z impurities in the fuel, and (alpha, n) reactions with O-18. For spontaneous fission neutrons a value of (1.95 + or - 0.07) X 1,000 n/s/g PuO2 is obtained. The neutron yield from (alpha, n) reactions with oxygen is calculated by integrating the reaction rate equation over all alpha-particle energies and all center-of-mass angles. The results indicate a neutron emission rate of (1.14 + or - 0.26) X 10,000 n/s/g PuO2. The neutron yield from (alpha, n) reactions with low Z impurities in the fuel is presented in tabular form for one part part per million of each impurity. The total neutron yield due to the combined effects of all the impurities depends upon the fractional weight concentration of each impurity. The total neutron flux emitted from a particular fuel geometry is estimated by adding the neutron yield due to the induced fission to the other neutron sources.

  6. Plutonium solution analyzer. Revised February 1995

    SciTech Connect

    Burns, D.A.

    1995-02-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%--0.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40--240 g/l: and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4--4.0 g/y. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 ml of each sample and standard, and generates waste at the rate of about 1.5 ml per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded).

  7. A rationale for maintaining the double containment requirement for plutonium shipments

    SciTech Connect

    Channell, James K.; Anastas, George

    2003-12-31

    Current U.S. Nuclear Regulatory Commission (NRC) transportation regulations (10 CFR 71.63 (b)) require that all shipments containing more than 20 curies of plutonium must be transported in packages that provide double containment. On April 30, 2002 the NRC issued a proposed rule that would eliminate §71.63(b) and the double containment requirement. NRC’s reasons for proposing elimination of §71.63(b) are: (1) compatibility with International Atomic Energy Agency Transportation Safety Standards (which do not have the requirement); (2) the current rule is inconsistent with the A1/A2 system since it applies only to plutonium; (3) double containment causes a heavier package and results in higher transportation costs; (4) the separate inner containment results in additional radiation exposure; and (5) while there would be additional protection from a separate inner container in an accident; this type of approach is not “risk informed nor performance based.” The Environmental Evaluation Group (EEG) has been a proponent of the double containment requirement for the Waste Isolation Pilot Plant (WIPP) shipments for twenty years. This requirement affects shipments to WIPP much more than any other current or planned shipping campaign because reactor fuel elements, metal or metal alloy, and vitrified high-level waste are exempt from §71.63(b). EEG submitted comments on the Proposed Rule on July 26, 2002 (Appendix C). This report is an update and expansion of the July 26, 2002 comments. Actual WIPP experience with shipments in the double contained TRUPACT-II package is used to respond to NRC arguments for deletion of §71.63(b) and offers a rationale for maintaining the current requirement.

  8. Vitrification of simulated radioactive Rocky Flats plutonium containing ash residue with a Stir Melter System

    SciTech Connect

    Marra, J.C.; Kormanyos, K.R.; Overcamp, T.J.

    1996-10-01

    A demonstration trial has been completed in which a simulated Rocky Flats ash consisting of an industrial fly-ash material doped with cerium oxide was vitrified in an alloy tank Stir-Melter{trademark} System. The cerium oxide served as a substitute for plutonium oxide present in the actual Rocky Flats residue stream. The glass developed falls within the SiO{sub 2} + Al{sub 2}O{sub 3}/{Sigma}Alkali/B{sub 2}O{sub 3} system. The glass batch contained approximately 40 wt% of ash, the ash was modified to contain {approximately} 5 wt% CeO{sub 2} to simulate plutonium chemistry in the glass. The ash simulant was mixed with water and fed to the Stir-Melter as a slurry with a 60 wt% water to 40 wt% solids ratio. Glass melting temperature was maintained at approximately 1,050 C during the melting trials. Melting rates as functions of impeller speed and slurry feed rate were determined. An optimal melting rate was established through a series of evolutionary variations of the control variables` settings. The optimal melting rate condition was used for a continuous six hour steady state run of the vitrification system. Glass mass flow rates of the melter were measured and correlated with the slurry feed mass flow. Melter off-gas was sampled for particulate and volatile species over a period of four hours during the steady state run. Glass composition and durability studies were run on samples collected during the steady state run.

  9. A Novel Methodology for Processing of Plutonium-Bearing Waste as Ammonium Plutonium(III)-Oxalate

    SciTech Connect

    Sali, Sanjay Krishnarao; Noronha, Donal Marshal; Mhatre, Hemakant Ramkrishna; Mahajan, Murlidhar Anna; Chander, Keshav; Aggarwal, Suresh Kumar; Venugopal, Venkatarama

    2005-09-15

    A novel methodology has been developed for the recovery of Pu from different types of waste solutions generated during various operations involved in the chemical quality control/assurance of nuclear fuels. The method is based on the precipitation of Pu as ammonium plutonium(III)-oxalate and involves the adjustment of acidity of the Pu solution to 1 N, the addition of ascorbic acid (0.05 M) to reduce Pu to Pu(III), followed by the addition of (NH{sub 4}){sub 2}SO{sub 4} (0.5 M) and a stoichiometric amount of saturated oxalic acid maintaining a 0.2 M excess of oxalic acid concentration in the supernatant. The precipitate was characterized by X-ray powder diffraction and thermal and chemical analysis and was found to have the composition NH{sub 4}Pu(C{sub 2}O{sub 4}){sub 2}.3H{sub 2}O. This compound can be easily decomposed to PuO{sub 2} on heating in air at 823 K. Decontamination factors of U, Fe, and Cr determined showed quantitative removal of these ions during the precipitation of Pu as ammonium plutonium(III)-oxalate.A semiautomatic assembly based on the transfer of solutions by suction arrangement was designed and fabricated for processing large volumes of Pu solution. This assembly reduced the corrosion of the glove-box material and offered the advantage of lower radiation exposure to the working personnel.

  10. PLUTONIUM LOADING CAPACITY OF REILLEX HPQ ANION EXCHANGE COLUMN - AFS-2 PLUTONIUM FLOWSHEET FOR MOX

    SciTech Connect

    Kyser, E.; King, W.; O'Rourke, P.

    2012-07-26

    Radioactive plutonium (Pu) anion exchange column experiments using scaled HB-Line designs were performed to investigate the dependence of column loading performance on the feed composition in the H-Canyon dissolution process for plutonium oxide (PuO{sub 2}) product shipped to the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). These loading experiments show that a representative feed solution containing {approx}5 g Pu/L can be loaded onto Reillex{trademark} HPQ resin from solutions containing 8 M total nitrate and 0.1 M KF provided that the F is complexed with Al to an [Al]/[F] molar ratio range of 1.5-2.0. Lower concentrations of total nitrate and [Al]/[F] molar ratios may still have acceptable performance but were not tested in this study. Loading and washing Pu losses should be relatively low (<1%) for resin loading of up to 60 g Pu/L. Loading above 60 g Pu/L resin is possible, but Pu wash losses will increase such that 10-20% of the additional Pu fed may not be retained by the resin as the resin loading approaches 80 g Pu/L resin.

  11. Turbine Blade Alloy

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca

    2001-01-01

    The High Speed Research Airfoil Alloy Program developed a fourth-generation alloy with up to an +85 F increase in creep rupture capability over current production airfoil alloys. Since improved strength is typically obtained when the limits of microstructural stability are exceeded slightly, it is not surprising that this alloy has a tendency to exhibit microstructural instabilities after high temperature exposures. This presentation will discuss recent results obtained on coated fourth-generation alloys for subsonic turbine blade applications under the NASA Ultra-Efficient Engine Technology (UEET) Program. Progress made in reducing microstructural instabilities in these alloys will be presented. In addition, plans will be presented for advanced alloy development and for computational modeling, which will aid future alloy development efforts.

  12. Testing New Inert Matrix and Thoria Fuels for Plutonium Incineration

    SciTech Connect

    Vettraino, F.; Padovan, E.; Tverberg, T.

    2002-07-01

    One major issue for nuclear power continues to be the public concern about rad-waste and proliferation risk induced by large plutonium stockpiles accumulated worldwide. In this context, nuclear fuels which exhibit no-plutonium production, and possibly allow for an efficient utilization of the plutonium to get rid of, are of great interest. This is the basic reason for the efforts that many international institutions are devoting to R and D on such new U-free fuel concepts as Inert Matrix (IMF) and Thorium fuels. At the moment the major merit of such innovative fuels is primarily related to the safe closure of the nuclear fuel cycle as especially expected from those new concepts like ADS (Accelerated Driven System) for the transmutation of plutonium, minor actinides and LLFP. Both ceramic inert matrix (IM) and thoria (T) fuels have been identified as suitable to the scope of burning weapon and civilian plutonium and to act also as possible carrier for transmutation of minor actinides. For testing the irradiation behaviour of these new materials, three kinds of fuels have been selected: inert matrix (IM) fuel, inert matrix thoria-doped (IMT) fuel, and thoria (T) fuel. A first experiment, IFA-652, 40 MWD/kg burnup target, including high enriched uranium (HEU) as fissile phase, instead of plutonium, is currently underway in the Halden HWBR. The reason for this choice was that manufacturing of Pu containing fuels is more complex and there was no fabrication facility available at the needed time for the Pu fuel. It is expected, however, that the relative behaviour of the different kind of matrices would be only slightly dependent on the adopted fissile material. So, the comparison of the in-pile performance of the three fuels will constitute a significant common database also for plutonium bearing fuels. The primary aim for the IFA-652 experiment is the measurement of basic characteristics under LWR irradiation conditions over a period of 4-5 years. The design of a

  13. Materials identification and surveillance project item evaluation: Items, impure plutonium oxide (ATL27960) and pure plutonium oxide (PEOR3258)

    SciTech Connect

    Allen, T.; Appert, Q.; Davis, C.

    1997-03-01

    In this report, Los Alamos scientists characterize properties relevant to storage of an impure plutonium oxide (74 mass % plutonium) in accordance with the Department of Energy (DOE) standard DOE-STD-3013-96. This oxide is of interest because it is the first impure plutonium oxide sample to be evaluated and it is similar to other materials that must be stored. Methods used to characterize the oxide at certain points during calcination include surface-area analyses, mass loss-on-ignition (LOI) measurements, elemental analysis, moisture-adsorption measurements, and quantitative supercritical-CO{sub 2} extraction of adsorbed water. Significant decreases in the LOI and surface area occurred as the oxide was calcined at progressively increasing temperatures. Studies indicate that supercritical-CO{sub 2} extraction is an effective method for removing adsorbed water from oxides. We extracted the water from powdered oxides (high-purity ZrO{sub 2}, pure PuO{sub 2}, and impure plutonium oxide) using CO{sub 2} at 3000 psi pressure and 75{degrees}C, and we quantitatively determined it by using gravimetric and dew-point procedures. The effectiveness of the extraction method is demonstrated by good agreement between the amounts of water extracted from pure zirconium and plutonium dioxides and the mass changes obtained from LOI analyses. However, the amount of moisture (0.025 mass %) extracted from the impure plutonium oxide after it had been calcined at 950{degrees}C and stored for a period of months is much less than the LOI value (0.97 mass %). These results imply that the impure plutonium oxide is free of adsorbed water after calcination at 950{degrees}C, even though the sample does not satisfy the LOI requirement of <0.50 mass % for storage.

  14. Plutonium Immobilization Project (PIP) Precursor Material Calcine Temperature

    SciTech Connect

    Cozzi, A.D.

    1999-07-29

    As a result of the end of the Cold War, approximately 50 metric tons of plutonium are no longer needed and have been identified for disposition. A ceramic waste form is the chosen option for immobilization of the excess plutonium. The plutonium ceramic form then will be encased in high-level waste glass using can-in-canister technology for final disposition. The precursor materials are the non-radioactive components that are added to the plutonium feed stream to form the desired phases in the immobilization product. The precursor materials are blended and calcined prior to being mixed with the plutonium feed stream. The purpose of the calcine step is to remove any physical or chemical water retained in the precursors and convert any hydroxides or carbonates to the oxides. Initially, a temperature of 750 degrees C for a period of one hour was chosen for the calcining of the precursors. In this effort, several different calcine temperatures were investigated to evaluate the effect on initial phase formation (in the calcined precursors), thermal expansion of the pressed pellets during heating, and mineralogy and porosity of the final product.

  15. PRESSURE DEVELOPMENT IN SEALED CONTAINERS WITH PLUTONIUM BEARING MATERIALS

    SciTech Connect

    Duffey, J.; Livingston, R.

    2010-02-01

    Gas generation by plutonium-bearing materials in sealed containers has been studied. The gas composition and pressure are determined over periods from months to years. The Pu-bearing materials studied represent those produced by all of the major processes used by DOE in the processing of plutonium and include the maximum amount of water (0.5% by weight) allowed by DOE's 3013 Standard. Hydrogen generation is of high interest and the Pu-bearing materials can be classed according to how much hydrogen is generated. Hydrogen generation by high-purity plutonium oxides packaged under conditions typical for actual 3013 materials is minimal, with very low generation rates and low equilibrium pressures. Materials with chloride salt impurities have much higher hydrogen gas generation rates and result in the highest observed equilibrium hydrogen pressures. Other materials such as those with high metal oxide impurities generate hydrogen at rates in between these extremes. The fraction of water that is converted to hydrogen gas as equilibrium is approached ranges from 0% to 25% under conditions typical of materials packaged to the 3013 Standard. Generation of both hydrogen and oxygen occurs when liquid water is present. The material and moisture conditions that result in hydrogen and oxygen generation for high-purity plutonium oxide and chloride salt-bearing plutonium oxide materials have been characterized. Other gases that are observed include nitrous oxide, carbon dioxide, carbon monoxide, and methane.

  16. PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION

    SciTech Connect

    J.A. Ziegler

    2000-11-20

    The purpose of this calculation is to provide a dose consequence analysis of high-level waste (HLW) consisting of plutonium immobilized in vitrified HLW to be handled at the proposed Monitored Geologic Repository at Yucca Mountain for a beyond design basis event (BDBE) under expected conditions using best estimate values for each calculation parameter. In addition to the dose calculation, a plutonium respirable particle size for dose calculation use is derived. The current concept for this waste form is plutonium disks enclosed in cans immobilized in canisters of vitrified HLW (i.e., glass). The plutonium inventory at risk used for this calculation is selected from Plutonium Immobilization Project Input for Yucca Mountain Total Systems Performance Assessment (Shaw 1999). The BDBE examined in this calculation is a nonmechanistic initiating event and the sequence of events that follow to cause a radiological release. This analysis will provide the radiological releases and dose consequences for a postulated BDBE. Results may be considered in other analyses to determine or modify the safety classification and quality assurance level of repository structures, systems, and components. This calculation uses best available technical information because the BDBE frequency is very low (i.e., less than 1.0E-6 events/year) and is not required for License Application for the Monitored Geologic Repository. The results of this calculation will not be used as part of a licensing or design basis.

  17. Solubility of plutonium(VI) carbonate in saline solutions

    NASA Astrophysics Data System (ADS)

    Reilly, Sean D.; Runde, Wolfgang; Neu, Mary P.

    2007-06-01

    Among the plutonium oxidation states found to form in the environment, mobile plutonium(VI) can exist under oxidizing conditions and in waters with high chloride content due to radiolysis effects. We are investigating the solubility and speciation of plutonium(VI) carbonate under conditions relevant to natural waters and brines such as those found near some geologic radioactive waste repositories. The solid Pu(VI) phase PuO 2CO 3(s) was prepared and its solubility was measured in NaCl and NaClO 4 solutions in a CO 2 atmosphere as a function of pH and ionic strength (0.1-5.6 m). The concentration of soluble plutonium in solution was calculated from spectroscopic data and liquid scintillation counting. Spectroscopic measurements also revealed the plutonium oxidation state. The apparent solubility product of PuO 2CO 3(s) was determined at selected electrolyte concentrations to be, log Ks,0 = -13.95 ± 0.07 (0.1 m NaCl), log Ks,0 = -14.07 ± 0.13 (5.6 m NaCl), and log Ks,0 = -15.26 ± 0.11 (5.6 m NaClO 4). Specific ion interaction theory was used to calculate the solubility product at zero ionic strength, logKs,0∘=-14.82±0.05.

  18. Plutonium-DTPA Model Application with USTUR Case 0269.

    PubMed

    Konzen, Kevin; Brey, Richard; Miller, Scott

    2016-01-01

    A plutonium-DTPA (Pu-DTPA) biokinetic model was introduced that had originated from the study of a plutonium-contaminated wound. This work evaluated the extension of the Pu-DTPA model to United States Transuranium and Uranium Registry (USTUR) Case 0269 involving an acute inhalation of a plutonium nitrate aerosol. Chelation was administered intermittently for the first 7 mo as Ca-EDTA, mostly through intravenous injection, with Ca-DTPA treatments administered approximately 2.5 y post intake. Urine and fecal bioassays were collected following intake for several years. Tissues were collected and analyzed for plutonium content approximately 38 y post intake. This work employed the Pu-DTPA model for predicting the urine and fecal bioassay and final tissue quantity at autopsy. The Pu-DTPA model was integrated with two separate plutonium systemic models (i.e., ICRP Publication 67 and its proposed modification). This work illustrated that the Pu-DTPA model was useful for predicting urine and fecal bioassay, including final tissue quantity, 38 y post intake. PMID:26606066

  19. Plutonium release from the 903 pad at Rocky Flats.

    PubMed

    Mongan, T R; Ripple, S R; Winges, K D

    1996-10-01

    The Colorado Department of Public Health and Environment (CDH) sponsored a study to reconstruct contaminant doses to the public from operations at the Rocky Flats nuclear weapons plant. This analysis of the accidental release of plutonium from the area known as the 903 Pad is part of the CDH study. In the 1950's and 1960's, 55-gallon drums of waste oil contaminated with plutonium, and uranium were stored outdoors at the 903 Pad. The drums corroded, leaking contaminated oil onto soil subsequently carried off-site by the wind. The plutonium release is estimated using environmental data from the 1960's and 1970's and an atmospheric transport model for fugitive dust. The best estimate of total plutonium release to areas beyond plant-owned property is about 0.26 TBq (7 Ci). Off-site airborne concentrations and deposition of plutonium are estimated for dose calculation purposes. The best estimate of the highest predicted off-site effective dose is approximately 72 microSv (7.2 mrem). PMID:8830753

  20. Behavior of plutonium oxide particulates in a simulated Florida environment

    SciTech Connect

    Heaton, R.C.; Patterson, J.H.; Coffelt, K.P.

    1985-08-01

    The behavior of /sup 238/Pu oxide particles (20 to 74 ..mu..m in diameter) deposited on a soil surface was studied by using an environmental test chamber. The soil was obtained from Florida orange groves, and the chamber was set up to simulate a Florida climate. After more than 9 months and more than 60 simulated rainfalls, the plutonium oxide particles remained on top of the soil and showed no evidence of having moved down into the soil column. Plutonium was released into the soil drainages at the rate of 18 ng/m/sup 2//L. This release, which represents a minute portion of the source, appears to correlate with the volume of the drainage rather than with time and probably consists of plutonium attached to very fine soil particles. The average concentration of plutonium observed in the air was 7 fCi/L, which on an absolute basis, represents 8 x 10/sup -12/% of the source material. Thus the generation of airborne plutonium constitutes an insignificant release pathway in terms of the original source. However, the air concentration during, and especially at the beginning of, a rainfall was typically much higher (1400 fCi/L). This concentration decayed rapidly after the end of the rainfall. These results are compared with those from past experiments, and their implications are discussed.