Note: This page contains sample records for the topic plutonium metal buttons from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, A MAN-MADE SUBSTANCE, WAS RARE. SCRAPS RESULTING FROM PRODUCTION AND PLUTONIUM RECOVERED FROM RETIRED NUCLEAR WEAPONS WERE REPROCESSED INTO VALUABLE PURE-PLUTONIUM METAL (9/19/73). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

2

Lithium metal reduction of plutonium oxide to produce plutonium metal  

Microsoft Academic Search

A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used

Coops; Melvin S

1992-01-01

3

Lithium metal reduction of plutonium oxide to produce plutonium metal.  

National Technical Information Service (NTIS)

A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha 5 plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by s...

M. S. Coops

1991-01-01

4

Lithium metal reduction of plutonium oxide to produce plutonium metal  

Microsoft Academic Search

This patent describes a method for production of plutonium metal from plutonium oxide by metallic lithium reduction, with regeneration of lithium reactant. It comprises: reacting the plutonium oxide with metallic lithium; oxides and unreacted lithium; subliming the product lithium oxide and unreacted lithium from unreacted plutonium oxide with high heat and low pressure; recapturing the product lithium oxides; reacting the

Coops

1992-01-01

5

Production of ``X`` buttons in the 234-5 Building  

Microsoft Academic Search

Since 1945 the routine production of plutonium (``A`` buttons) at Atomic Energy plants has been accomplished by heating mixtures of plutonium tetrafluoride, calcium and iodine in crucible-bomb assemblies. Yields above 97% and metal of adequate purity are consistently obtained by this process. Plutonium (``X`` button) production has also been carried out routinely by including plutonium turnings with the powder mixture

1952-01-01

6

Lithium metal reduction of plutonium oxide to produce plutonium metal  

DOEpatents

A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

Coops, Melvin S. (Livermore, CA)

1992-01-01

7

Preparation of Plutonium Metal, (I)  

Microsoft Academic Search

Ammonium plutonium(IV) fluorides, PuF4.7\\/6NH4F and PuF4.2NH4F, were prepared by the addition of an acidic solution containing Pu(IV) to a mixed solution of NH4F and HF. Anhydrous PuF3 was obtained by thermal decomposition of the ammonium plutonium(IV) fluorides under reduced pressure or else in an inert gas flow. The anhydrous fluoride was then reduced with Li vapor to Pu metal. Cerium

Keiji NAITO; Masaru KOJIMA; Kinji OUCHI; Taneaki YAHATA

1971-01-01

8

PLUTONIUM METAL: OXIDATION CONSIDERATIONS AND APPROACH  

SciTech Connect

Plutonium is arguably the most unique of all metals when considered in the combined context of metallurgical, chemical, and nuclear behavior. Much of the research in understanding behavior and characteristics of plutonium materials has its genesis in work associated with nuclear weapons systems. However, with the advent of applications in fuel materials, the focus in plutonium science has been more towards nuclear fuel applications, as well as long term storage and disposition. The focus of discussion included herein is related to preparing plutonium materials to meet goals consistent with non-proliferation. More specifically, the emphasis is on the treatment of legacy plutonium, in primarily metallic form, and safe handling, packaging, and transport to meet non-proliferation goals of safe/secure storage. Elevated temperature oxidation of plutonium metal is the treatment of choice, due to extensive experiential data related to the method, as the oxide form of plutonium is one of only a few compounds that is relatively simple to produce, and stable over a large temperature range. Despite the simplicity of the steps required to oxidize plutonium metal, it is important to understand the behavior of plutonium to ensure that oxidation is conducted in a safe and effective manner. It is important to understand the effect of changes in environmental variables on the oxidation characteristics of plutonium. The primary purpose of this report is to present a brief summary of information related to plutonium metal attributes, behavior, methods for conversion to oxide, and the ancillary considerations related to processing and facility safety. The information provided is based on data available in the public domain and from experience in oxidation of such materials at various facilities in the United States. The report is provided as a general reference for implementation of a simple and safe plutonium metal oxidation technique.

Estochen, E.

2013-03-20

9

Characterization of Delta Phase Plutonium Metal  

Microsoft Academic Search

The FB-Line facility has developed the capability to recast plutonium metal using an M-18 reduction furnace with a new casting chamber. Plutonium metal is recast by charging a standard FB-Line magnesia crucible and placing the charge in the casting chamber. The loaded casting chamber is raised into the M-18 reduction furnace and sealed against the furnace head using a copper

Rudisill

2000-01-01

10

Characterization of Delta Phase Plutonium Metal  

SciTech Connect

The FB-Line facility has developed the capability to recast plutonium metal using an M-18 reduction furnace with a new casting chamber. Plutonium metal is recast by charging a standard FB-Line magnesia crucible and placing the charge in the casting chamber. The loaded casting chamber is raised into the M-18 reduction furnace and sealed against the furnace head using a copper gasket following the same procedure used for a bomb reduction run. The interior volume of the chamber is evacuated and backfilled with argon gas. The M-18 motor-generator set is used to heat the surface of the casting chamber to nominally 750 Degrees C. Within about 2 hr, the plutonium metal reaches its melting temperature of approximately 640 Degrees C.

Rudisill, T.S.

2000-09-21

11

Study of Single and Dual Band Wearable Metallic Button Antennas for Personal Area Networks (PANs)  

Microsoft Academic Search

A small WLAN\\/Bluetooth antenna with the appearance of a metallic button is reported for use with wearable computer systems\\u000a and covert communications. A single band version is discussed in addition to a dual band design that also covers the HiperLAN\\/2\\u000a band. No external matching circuits are required when the antenna is fed with a 50 ? coaxial line. A lumped

Benito Sanz-Izquierdo; Fengxi Huang; John C. Batchelor; Mohammed I. Sobhy

12

Air transport of plutonium metal: content expansion initiative for the plutonium air transportable (PAT01) packaging  

SciTech Connect

The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

Caviness, Michael L [Los Alamos National Laboratory; Mann, Paul T [NNSA/ALBUQUERQUE; Yoshimura, Richard H [SNL

2010-01-01

13

Air transport of plutonium metal : content expansion initiative for the Plutonium Air Transportable (PAT-1) packaging.  

SciTech Connect

The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

Mann, Paul T. (National Nuclear Security Administration); Caviness, Michael L. (Los Alamos National Laboratory); Yoshimura, Richard Hiroyuki

2010-06-01

14

PLUTONIUM METALLIC FUELS FOR FAST REACTORS  

SciTech Connect

Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

2007-02-07

15

15. VIEW OF THE SAFE GEOMETRY PLUTONIUM METAL STORAGE PALLETS ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

15. VIEW OF THE SAFE GEOMETRY PLUTONIUM METAL STORAGE PALLETS FROM THE INSIDE OF AN INPUT-OUTPUT STATION. INDIVIDUAL CONTAINERS OF PLUTONIUM ARE STORED IN THE WATER-FILLED, DOUBLE-WALLED STAINLESS STEEL TUBES THAT ARE WELDED ONTO THE PALLETS. (12/3/88) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

16

Statistics: Button, Button  

NSDL National Science Digital Library

In this 27-minute professional development video, educators observe a class lesson in which students develop number sense, count, estimate, classify data and analyze it through the construction of a line plot. First grade teacher Lorraine Gutierrez uses a literature source to initiate a lesson based on a button collection. A lesson plan and a list of Professional Development Discussion Topics (pdfs) can be downloaded from the Support Materials tab.

Mathline

1997-01-01

17

Investigation on the heavy-metal content of zinc-air button cells.  

PubMed

Within the framework of a German government project (initiated by the Federal Environment Agency) to check the compliance of commercially available batteries with the German Battery Ordinance concerning their heavy metal contents, 18 different types of commercially available zinc-air button cells were analysed for their cadmium, lead and mercury contents. After microwave assisted dissolution with aqua regia, Cd and Pb were determined using inductively coupled plasma mass spectrometry (ICP-MS), and Hg was determined using inductively coupled plasma optical emission spectrometry (ICP OES) and atomic absorption spectrometry. Cd contents were found to be much lower than the permitted limits; Pb contents were also found to be below the limits. Hg contents were found to be near the limits, and in one case the limit was exceeded. PMID:18280730

Richter, Andrea; Richter, Silke; Recknagel, Sebastian

2008-01-01

18

Fused salt processing of impure plutonium dioxide to high-purity plutonium metal  

SciTech Connect

A process for converting impure plutonium dioxide (approx. 96% pure) to high-purity plutonium metal (>99.9%) was developed. The process consists of reducing the oxide to an impure plutonium metal intermediate with calcium metal in molten calcium chloride. The impure intermediate metal is cast into an anode and electrorefined to produce high-purity plutonium metal. The oxide reduction step is being done now on a 0.6-kg scale with the resulting yield being >99.5%. The electrorefining is being done on a 4.0-kg scale with the resulting yield being 80 to 85%. The purity of the product, which averages 99.98%, is essentially insensitive to the purity of the feed metal. The yield, however, is directly dependent on the chemical composition of the feed. To date, approximately 250 kg of impure oxide has been converted to pure metal by this processing sequence. The availability of impure plutonium dioxide, together with the need for pure plutonium metal, makes this sequence a valuable plutonium processing tool.

Mullins, L.J.; Christensen, D.C.; Babcock, B.R.

1982-01-01

19

Liquid-metal embrittlement of refractory metals by molten plutonium  

SciTech Connect

Embrittlement by molten plutonium of the refractory metals and alloys W-25 wt % Re, tantalum, molybdenum, and Ta-10 wt % W was studied. At 900/sup 0/C and a strain rate of 10/sup -4/ s/sup -1/, the materials tested may be ranked in order of decreasing susceptibility to liquid-plutonium embrittlement as follows: molybdenum, W-25 wt % Re, Ta-10 wt % W, and tantalum. These materials exhibited a wide range in susceptibility. Embrittlement was found to exhibit a high degree of temperature and strain-rate dependence, and we present arguments that strongly support a stress-assisted, intergranular, liquid-metal corrosion mechanism. We also believe microstructure plays a key role in the extent of embrittlement. In the case of W-25 wt % Re, we have determined that a dealloying corrosion takes place in which rhenium is selectively withdrawn from the alloy.

Lesuer, D.R.; Bergin, J.B.; McInturff, S.A.; Kuhn, B.A.

1980-07-01

20

Dose Rates from Plutonium Metal and Beryllium Metal in a 9975 Shipping Container  

SciTech Connect

A parametric study was performed of the radiation dose rates that might be produced if plutonium metal and beryllium metal were shipped in the 9975 shipping package. These materials consist of heterogeneous combinations plutonium metal and beryllium. The plutonium metal content varies up to 4.4 kilograms while the beryllium metal varies up to 4 kilograms. This paper presents the results of that study.

Nathan, S.J.

2002-02-04

21

Plutonium metal and oxide container weld development and qualification  

SciTech Connect

Welds were qualified for a container system to be used for long-term storage of plutonium metal and oxide. Inner and outer containers are formed of standard tubing with stamped end pieces gas-tungsten-arc (GTA) welded onto both ends. The weld qualification identified GTA parameters to produce a robust weld that meets the requirements of the Department of Energy standard DOE-STD-3013-94, ``Criteria for the Safe Storage of Plutonium Metals and Oxides.``

Fernandez, R.; Horrell, D.R.; Hoth, C.W.; Pierce, S.W.; Rink, N.A.; Rivera, Y.M.; Sandoval, V.D.

1996-01-01

22

Lost Buttons  

NSDL National Science Digital Library

In this lesson, students investigate subtraction, beginning with the easier "take away" mode. They model "take away" subtraction with buttons and write subtraction sentences. They also work with the additive identity (0) as an addend and as a difference and find missing addends. This is lesson 6 of 8 in the "Begin with Buttons" unit form NCTM's Illuminations.

Math, Illuminations N.

2009-01-13

23

Packaging of Plutonium Metal and Oxide in the ARIES Project  

SciTech Connect

The objective of the Advanced Recovery and Integrated Extraction System (ARIES) Project is to demonstrate technology to dismantle plutonium pits from excess nuclear weapons, convert the plutonium to a metal ingot or an oxide powder, package the metal or oxide, and verify the contents of the package by nondestructive assay. The packaged weapons plutonium will be converted to mixed-oxide reactor fuel or immobilized in ceramic forms suitable for geologic storage. The packaging of the material must therefore be suitable for storage until the material is further processes. A set of containers for plutonium metal and oxide has been developed to meet the needs of the ARIES process and the Department of Energy requirements for long-term storage. The package has been developed and qualified with the participation of private companies.

Rofer, C.K.; Martinez, D.A.; Trujillo, V.L.

1998-11-09

24

Plutonium metal preparation and purification at Los Alamos, 1984  

SciTech Connect

Plutonium metal preparation and purification are well established at Los Alamos. Metal is prepared by calcothermic reduction of both PuF/sub 4/ and PuO/sub 2/. Metal is purified by halide slagging, casting, and electrorefining. The product from the production sequence is ultrapure plutonium metal. All of the processes involve high temperature operation and all but casting involve molten salt media. Development efforts are fourfold: (1) recover plutonium values from residues; (2) reduce residue generation through process improvements and changes; (3) recycle of reagents, and (4) optimize and integrate all processes into a close-loop system. Plutonium residues are comprised of oxides, chlorides, colloidal metal suspensions, and impure metal heels. Pyrochemical recovery techniques are under development to address each residue. In addition, we are looking back at each residue generation step and are making process changes to reduce plutonium content in each residue. Reagent salt is the principle media used in pyrochemical processing. The regeneration and recycle of these reagents will both reduce our waste handling and operating expense. The fourth area, process optimization, involves both existing processes and new process developments. A status of efforts in all four of these areas will be summarized.

Christensen, D.C.; Williams, J.D.; McNeese, J.A.; Fife, K.W.

1984-01-01

25

Use of microwave energy in powder drying and crucible testing for plutonium metal recovery.  

National Technical Information Service (NTIS)

Microwave technology is being applied to the direct reduction of plutonium fluoride with lithium metal to produce plutonium metal as a replacement for the bomb reduction process currently used. The use of microwaves will provide many advantages. The new p...

M. L. Davis

1991-01-01

26

Criteria for safe storage of plutonium metals and oxides  

SciTech Connect

This standard establishes safety criteria for safe storage of plutonium metals and plutonium oxides at DOE facilities; materials packaged to meet these criteria should not need subsequent repackaging to ensure safe storage for at least 50 years or until final disposition. The standard applied to Pu metals, selected alloys (eg., Ga and Al alloys), and stabilized oxides containing at least 50 wt % Pu; it does not apply to Pu-bearing liquids, process residues, waste, sealed weapon components, or material containing more than 3 wt % {sup 238}Pu. Requirements for a Pu storage facility and safeguards and security considerations are not stressed as they are addressed in detail by other DOE orders.

Not Available

1994-12-01

27

Small size wearable button antenna  

Microsoft Academic Search

A novel small size wearable antenna for WLAN applications is proposed in this paper. The antenna structure is based on a previous development and achieves lower size by implementing different miniaturization techniques. The radiating structure has the shape and dimensions of a standard denim jeans button and is made up of a button shaped cylindrical structure and a top metal

B. Sanz-Izquierdo; F. Huang; J. C. Batchelor

2006-01-01

28

Button Trains  

NSDL National Science Digital Library

In this lesson, students describe order by using vocabulary such as before, after, and between. They also review and use both cardinal and ordinal numbers. This is lesson 1 in an 8-lesson unit called "Begin with Buttons" from NCTM's Illuminations.

Math, Illuminations N.

2009-01-12

29

Use of calorimetric assay for operational and accountability measurements of pure plutonium metal  

Microsoft Academic Search

Plutonium pure metal products (PMP) are high purity plutonium metal items produced by electrorefining. The plutonium metal is produced as an approximately 3-kg ring. Accountability measurements for the electro-refining runs are typically balance\\/weight factor (incoming impure metal), chemistry (pure metal rings), and calorimetric assay or neutron counting of the crucibles and other wastes. The PMP items are qualified for their

Teresa L Cremers; Thomas E Sampson

2010-01-01

30

Minutes of the 28th Annual Plutonium Sample Exchange Meeting. Part II: metal sample exchange  

SciTech Connect

Contents of this publication include the following list of participating laboratories; agenda; attendees; minutes of October 25 and 26 meeting; and handout materials supplied by speakers. The handout materials cover the following: statistics and reporting; plutonium - chemical assay 100% minus impurities; americium neptunium, uranium, carbon and iron data; emission spectroscopy data; plutonium metal sample exchange; the calorimetry sample exchange; chlorine determination in plutonium metal using phyrohydrolysis; spectrophotometric determination of 238-plutonium in oxide; plutonium measurement capabilities at the Savannah River Plant; and robotics in radiochemical laboratory.

Not Available

1984-01-01

31

The reaction of diiodoethane with neptunium and plutonium metals  

SciTech Connect

Neptunium, plutonium, lanthanum, praseodymium, and neodymium metals react with diiodoethane to yield tetrahydrofuran (THF) solvated iodides, MI. xTHF (M = Np, Pu, La, Pr, or Nd; x = 3, 4, or 5). Np metal also reacts with diiodopropane; samarium metal reacts with diiodobutane and o-diiodobenzene as well to produce SmI . 2THF. A comparison of the infrared spectra of SmI . 2THF and NpI/sub 3/ . 4THF was interpreted as showing interference with the normal vibrational modes in the coordinated THF of the trivalent iodides. The trivalent products are slightly soluble in THF, and the Np/sup 3 +/ compound reacted rapidly with T1MeCp to form either NpI/sub 2/(MeCp) . 3THF or NpI(MeCp)/sub 2/ . 3THF. A possible advantage in synthesis is discussed. 7 refs., 2 figs., 1 tab.

Karraker, D.G.

1987-04-01

32

PLUTONIUM TRICHLORIDE: PREPARATION BY REACTION WITH PHOSGENE OR CARBON TETRACHLORIDE, AND BOMB REDUCTION TO METAL  

Microsoft Academic Search

Batches of plutonium dioxide were chlorinated by reaction with phosgene ;\\u000a or carbon tetrachloride. Plutonium trichloride prepared by either method can be ;\\u000a reduced to the metal in an hermetically sealed bomb by reaction with calcium. It ;\\u000a has been demonstrated that a method for the reduction of plutonium trichloride to ;\\u000a the metal without the use of a booster

Tolley

1953-01-01

33

Atomistic models of point defects in plutonium metal.  

SciTech Connect

The aging properties of plutonium (Pu) metal and alloys are. driven by a combination of materials composit ion, p rocessing history, and self-irradiat ion effects . Understanding these driving forces requires a knowledge of both t h ermodynamic and defect properties of the material . The multiplicity of phases and the small changes in tempe rat u re, pressure, and/or stress that can induce phase changes lie at the heart of these properties . In terms of radiation damage, Pu metal represents a unique situation because of the large volume chan ges that accompany the phase changes . The most workable form of the meta l is the fcc (S-) phase, which in practice is stabi l ized by addit io n of a ll oying el eme n ts s u c h as Ga or Al. The thermodynamically stable phase at ambient conditions is the monoclinic (a-) phase, which, however, is 2 0 % lower i n volume th an the S phase . In stabilized Pu metal, there is an in t er play between th e n atu ral swe l li n g tendencies of fcc metals and the volume-contraction tendency of the u n d erlyin g thermodynamicall y stable phase. This study exp lores the point d efect pr operties that are necessary to model the long-term outcome of this interplay.

Valone, S. M. (Steven M.); Baskes, M. I. (Michael I.); Uberuaga, B. P. (Blas Pedro); Voter, A. F.

2003-01-01

34

Plutonium metal and alloy preparation by molten chloride reduction  

SciTech Connect

Satisfactory reduction of molten plutonium trichloride (pure and in combination with 20 wt % sodium chloride) by calcium, lanthanum, and cerium has been demonstrated on the 10-g scale. The yields were satisfactory for this scale of operation, and it is indicated that these reductions may be useful for large-scale operations. Significant separations of plutonium from rare earth impurities was demonstrated for lanthanum and cerium reductions. Preparation of plutonium-cerium and plutonium-cerium-cobalt alloys during reduction was also demonstrated.

Reavis, J.G.

1984-01-01

35

Plutonium  

NASA Astrophysics Data System (ADS)

The element plutonium occupies a unique place in the history of chemistry, physics, technology, and international relations. After the initial discovery based on submicrogram amounts, it is now generated by transmutation of uranium in nuclear reactors on a large scale, and has been separated in ton quantities in large industrial facilities. The intense interest in plutonium resulted fromthe dual-use scenario of domestic power production and nuclear weapons - drawing energy from an atomic nucleus that can produce a factor of millions in energy output relative to chemical energy sources. Indeed, within 5 years of its original synthesis, the primary use of plutonium was for the release of nuclear energy in weapons of unprecedented power, and it seemed that the new element might lead the human race to the brink of self-annihilation. Instead, it has forced the human race to govern itself without resorting to nuclear war over the past 60 years. Plutonium evokes the entire gamut of human emotions, from good to evil, from hope to despair, from the salvation of humanity to its utter destruction. There is no other element in the periodic table that has had such a profound impact on the consciousness of mankind.

Clark, David L.; Hecker, Siegfried S.; Jarvinen, Gordon D.; Neu, Mary P.

36

DISSOLUTION OF PLUTONIUM METAL IN 8-10 M NITRIC ACID  

SciTech Connect

The H-Canyon facility will be used to dissolve Pu metal for subsequent purification and conversion to plutonium dioxide (PuO{sub 2}) using Phase II of HB-Line. To support the new mission, the development of a Pu metal dissolution flowsheet which utilizes concentrated (8-10 M) nitric acid (HNO{sub 3}) solutions containing potassium fluoride (KF) is required. Dissolution of Pu metal in concentrated HNO{sub 3} is desired to eliminate the need to adjust the solution acidity prior to purification by anion exchange. The preferred flowsheet would use 8-10 M HNO{sub 3}, 0.015-0.07 M KF, and 0.5-1.0 g/L Gd to dissolve the Pu up to 6.75 g/L. An alternate flowsheet would use 8-10 M HNO{sub 3}, 0.05-0.2 M KF, and 1-2 g/L B to dissolve the Pu. The targeted average Pu metal dissolution rate is 20 mg/min-cm{sup 2}, which is sufficient to dissolve a standard 2250-g Pu metal button in 24 h. Plutonium metal dissolution rate measurements showed that if Gd is used as the nuclear poison, the optimum dissolution conditions occur in 10 M HNO{sub 3}, 0.04-0.05 M KF, and 0.5-1.0 g/L Gd at 112 to 116 C (boiling). These conditions will result in an estimated Pu metal dissolution rate of ~11-15 mg/min-cm{sup 2} and will result in dissolution times of 36-48 h for standard buttons. The recommended minimum and maximum KF concentrations are 0.03 M and 0.07 M, respectively. The data also indicate that lower KF concentrations would yield dissolution rates for B comparable to those observed with Gd at the same HNO{sub 3} concentration and dissolution temperature. To confirm that the optimal conditions identified by the dissolution rate measurements can be used to dissolve Pu metal up to 6.75 g/L in the presence of representative concentrations of Fe and Gd or B, a series of experiments was performed to demonstrate the flowsheets. In three of the five experiments, the offgas generation rate during the dissolution was measured and samples were analyzed for hydrogen gas (H{sub 2}). The use of 10 M HNO{sub 3} containing 0.03-0.05 M KF, 0.5-1.0 g/L Gd, and 1.9 g/L Fe resulted in complete dissolution of the metal in 2.0-3.5 h. When B was used as the neutron poison, 10 M HNO{sub 3} solutions containing 0.05-0.1 M KF, 1.9 g/L Fe, and 1 g/L B resulted in complete dissolution of the metal in 0.75-2.0 h. Dissolution rates estimated using data from the flowsheet demonstrations agreed reasonably well with the measured rates; although, a discrepancy was observed in the Gd system. The presence of 1 g/L Gd or B in the dissolving solution had about the same effect on the dissolution rate. The predominant Pu valence in the dissolving solution was Pu(IV). The concentration of Pu(VI) was evaluated by UV-visible spectroscopy and was estimated to be significantly less than 1 wt %. The offgas generation rates and H{sub 2} concentrations measured in the offgas from experiments performed using 10 M HNO{sub 3} containing 0.05 M KF, 1.9 g/L Fe and either 1 g/L Gd or B were approximately the same. These data support the conclusion that the presence of either 1 g/L Gd or B had the same general effect on the dissolution rate. The calculated offgas generation during the dissolutions was 0.6 mol offgas/mol of Pu. The H{sub 2} concentration measured in the offgas from the dissolution using Gd as the neutron poison was approximately 0.5 vol %. In the B system, the H{sub 2} ranged from nominally 0.8 to 1 vol % which is about the same as measured in the Gd system within the uncertainty of the analysis. The offgas generation rate for the dissolution performed using 10 M HNO{sub 3} containing 0.03 M KF, 0.5 g/L Gd, and 1.9 g/L Fe was approximately a factor of two less than produced in the other dissolutions; however, the concentration of H{sub 2} measured in the offgas was higher. The adjusted concentration ranged from 2.7 to 8.8 vol % as the dissolution proceeded. Higher concentrations of H{sub 2} occur when the Pu dissolution proceeds by a metal/acid reaction rather than nitrate oxidation. The higher H{sub 2} concentration could be attributed to the reduced activity of the fluoride

Rudisill, T. S.; Pierce, R. A.

2012-07-02

37

1 Cool Button Tool  

NSDL National Science Digital Library

1 Cool button tool creates buttons for Java applets and the supporting HTML from a graphical environment. No Java or HTML programming is required, but of course, knowledge of these languages makes using the tool more intuitive. The background and any text on the button may be specified; actions associated with up, down, and mouse-over states are configurable; and buttons may be linked with a URL which is fetched when clicked. This tool can speed up development of buttons and may be useful to someone learning HTML. 1 Cool Button Tool is available for Windows 95, 98, and NT. A free trial version is available, and it may be registered for $29.95.

38

Virtual button interface  

DOEpatents

An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment are disclosed. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch. 4 figs.

Jones, J.S.

1999-01-12

39

Dissolution of Plutonium Metal Using a HAN Process  

SciTech Connect

Thermal stability tests were conducted with a nitric acid (HNO3)/hydroxylammonium nitrate (HAN)/potassium fluoride (KF) solution. The solution has great potential for use in plutonium dissolution because of the small quantity of hydrogen and other offgases produced. Tests were carried out in a Reactive Systems Screening Tool (RSST). The RSST is a calorimeter equipped with temperature and pressure probes as well as a heater that can heat a liquid sample at a programmed rate. In most cases, the calorimeter was pressurized with nitrogen to reduce evaporation of the liquid sample during heating. For the proposed solution, an autocatalytic reaction occurred between 113 and 131 degrees Celsius with 300 psig or 50 psig nitrogen inside the RSST vapor space. At ambient pressure, the solution boiled at about 110 degrees Celsius. After extensive boiling, the concentrations of HNO3 and HAN increased and the autocatalytic reaction occurred. Tests were also conducted with 1000 ppm Fe present in the solution. The range of the autocatalytic reaction initiation temperature was reduced to 105-120.5 degrees Celsius. With iron at ambient pressure, boiling still occurred above 100 degrees Celsius prior to the autocatalytic reaction, which occurred at 108-109 degrees Celsius. These results demonstrated the stability of the proposed HAN flowsheet, for which the planned dissolving temperature is 50-60 degrees Celsius. Additional tests were carried out with more concentrated solutions to further characterize the autocatalytic reaction initiation temperature. Increasing the nitric acid concentration to 3M decreased the reaction initiation temperature to 102-103 degrees Celsius. Increasing the HAN concentration increased the temperature rise of the reaction from 10-30 degrees Celsius to greater than 40 degrees Celsius. Increasing both reactants-to 3M nitric acid and 0.9M HAN-yielded a reaction initiation temperature of 91 degrees Celsius (with or without iron), the lowest observed in this study. This study was the first part of a larger flowsheet development / demonstration program for the plutonium metal dissolving process. The results of the study may be useful for similar flowsheets.

CROWDER, MARKL.

2004-06-30

40

Glovebox enclosed dc plasma source for the determination of metals in plutonium  

SciTech Connect

The direct current plasma source of a Beckman Spectraspan IIIB emission spectrometer was enclosed in a glovebox at Lawrence Livermore National Laboratory in December 1982. Since that time, the system has been used for the routine determination of alloy and impurity metals in plutonium. This paper presents the systematic steps involved in developing the glovebox and gives information regarding performance of the plasma in the glovebox and the effectiveness of containment of plutonium. 8 refs., 9 figs., 3 tabs.

Morris, W.F.

1986-01-15

41

Separating Metallic Beryllium from Plutonium by Selective Dissolution with Ammonium Fluoride  

SciTech Connect

Plutonium metal is stabilized for long-term storage by calcining to produce PuO{sub 2}. However, if beryllium is present, the calcined product may have a high neutron dose rate because of the {sup 9}Be({alpha},n){sup 12}C reaction in the finely divided oxide mixture. (At LLNL, inadvertent calcining of a mixture of {approx}500 g Pu/50 g Be produced a neutron source of {approx}5 R/hr.) Therefore, for health physics reasons, we would like a convenient procedure to remove beryllium from plutonium with high selectivity. Two reagents, sodium hydroxide and ammonium fluoride, were considered for aqueous processing. Each reagent selectively dissolves beryllium, which can be separated from the insoluble plutonium by decanting/filtering operations followed by water washes to remove the excess reagent. The washed plutonium is calcined for storage; the beryllium and wash fractions are solidified for disposal.

Torres, R A

2006-11-29

42

Dissolution of Plutonium Metal Using a HAN Process  

Microsoft Academic Search

Thermal stability tests were conducted with a nitric acid (HNO3)\\/hydroxylammonium nitrate (HAN)\\/potassium fluoride (KF) solution. The solution has great potential for use in plutonium dissolution because of the small quantity of hydrogen and other offgases produced. Tests were carried out in a Reactive Systems Screening Tool (RSST). The RSST is a calorimeter equipped with temperature and pressure probes as well

2004-01-01

43

Modeling of Diffusion of Plutonium in Other Metals and of Gaseous Species in Plutonium-Based Systems  

SciTech Connect

Establish standards for temperature conditions under which plutonium, uranium, or neptunium from nuclear wastes permeates steel, with which it is in contact, by diffusion processes. The primary focus is on plutonium because of the greater difficulties created by the peculiarities of face-centered-cubic-stabilized (delta) plutonium (the form used in the technology generating the waste).

Bernard R. Cooper; Gayanath W. Fernando; S. Beiden; A. Setty; E.H. Sevilla

2004-07-02

44

CSER 98-003: Criticality safety evaluation report for PFP glovebox HC-21A with button can opening  

SciTech Connect

Glovebox HC-21A is an enclosure where cans containing plutonium metal buttons or other plutonium bearing materials are prepared for thermal stabilization in the muffle furnaces. The Inert Atmosphere Confinement (IAC), a new feature added to Glovebox HC-21A, allows the opening of containers suspected of containing hydrided plutonium metal. The argon atmosphere in the IAC prevents an adverse reaction between oxygen and the hydride. The hydride is then stabilized in a controlled manner to prevent glovebox over pressurization. After removal from the containers, the plutonium metal buttons or plutonium bearing materials will be placed into muffle furnace boats and then be sent to one of the muffle furnace gloveboxes for stabilization. The materials allowed to be brought into GloveboxHC-21 A are limited to those with a hydrogen to fissile atom ratio (H/X) {le} 20. Glovebox HC-21A is classified as a DRY glovebox, meaning it has no internal liquid lines, and no free liquids or solutions are allowed to be introduced. The double contingency principle states that designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible. This criticality safety evaluation report (CSER) shows that the operations to be performed in this glovebox are safe from a criticality standpoint. No single identified event that causes criticality controls to be lost exceeded the criticality safety limit of k{sub eff} = 0.95. Therefore, this CSER meets the requirements for a criticality analysis contained in the Hanford Site Nuclear Criticality Safety Manual, HNF-PRO-334, and meets the double contingency principle.

ERICKSON, D.G.

1999-02-23

45

How Many Buttons?  

NSDL National Science Digital Library

In this lesson, students review classification, make sets of a given number, explore relationships between numbers, and find numbers that are one more and one less than a given number. They apply their knowledge of classification as they play a game similar to Bingo. Lesson 3 of 8 in the "Begin with Buttons" unit from NCTM's Illuminations.

Math, Illuminations N.

2009-01-12

46

The Button Project  

ERIC Educational Resources Information Center

In this article, the author describes The Button Project. It started as a dream, a need to educate future generations about the Holocaust, to teach tolerance, and to remember the past. Under the auspices of the Jewish Federation of Peoria, a small band of people joined together with the goal of teaching people about the Holocaust so that it will

Armstrong, Charley

2005-01-01

47

Disposition of Uranium -233 (233U) in Plutonium Metal and Oxide at the Rocky Flats Environmental Technology Site.  

National Technical Information Service (NTIS)

This report documents the position that the concentration of Uranium-233 ((sup 233)U) in plutonium metal and oxide currently stored at the DOE Rocky Flats Environmental Technology Site (RFETS) is well below the maximum permissible stabilization, packaging...

C. J. Freiboth F. E. Gibbs

2000-01-01

48

PRACTICAL APPLICATION OF THE SINGLE-PARAMETER SUBCRITICAL MASS LIMIT FOR PLUTONIUM METAL  

SciTech Connect

According to ANS-8.1, operations with fissile materials can be performed safely by complying with any of the listed single-parameter subcritical limits. For metallic units, when interspersed moderators are present, the mass limits apply to a single piece having no concave surfaces. On a practical level, when has any operation with fissile metal involved a single piece and absolutely no moderating material, e.g., water, oil, plastic, etc.? This would be rare. This paper explores the application of the single-parameter plutonium metal mass limit for realistic operational environments.

MITCHELL, MARK VON [Los Alamos National Laboratory

2007-01-10

49

THE PREPARATION OF PLUTONIUM(IV) AMMONIUM FLUORIDE AND ITS DECOMPOSITION TO PLUTONIUM TETRAFLUORIDE FOR SUBSEQUENT REDUCTION TO METAL  

Microsoft Academic Search

An exothermic reaction was shown to take place between low temperature ;\\u000a plutonium dioxide and ammonium bifluoride at 50 to 250 deg C, The reaction goes ;\\u000a essentially to completion with the formation of the pink plutonium(IV) ammonium ;\\u000a fluoride, This compound can be decomposed at 300 deg C and the resulting ;\\u000a plutonium tetrafluoride dehydrated at 500 deg C.

Tolley

1954-01-01

50

Export control guide: Spent nuclear fuel reprocessing and preparation of plutonium metal  

SciTech Connect

The international Treaty on the Non-Proliferation of Nuclear Weapons, also referred to as the Non-Proliferation Treaty (NPT), states in Article III, paragraph 2(b) that {open_quotes}Each State Party to the Treaty undertakes not to provide . . . equipment or material especially designed or prepared for the processing, use or production of special fissionable material to any non-nuclear-weapon State for peaceful purposes, unless the source or special fissionable material shall be subject to the safeguards required by this Article.{close_quotes} This guide was prepared to assist export control officials in the interpretation, understanding, and implementation of export laws and controls relating to the international Trigger List for irradiated nuclear fuel reprocessing equipment, components, and materials. The guide also contains information related to the production of plutonium metal. Reprocessing and its place in the nuclear fuel cycle are described briefly; the standard procedure to prepare metallic plutonium is discussed; steps used to prepare Trigger List controls are cited; descriptions of controlled items are given; and special materials of construction are noted. This is followed by a comprehensive description of especially designed or prepared equipment, materials, and components of reprocessing and plutonium metal processes and includes photographs and/or pictorial representations. The nomenclature of the Trigger List has been retained in the numbered sections of this document for clarity.

NONE

1993-10-01

51

Rapid Separation Methods to Characterize Actinides and Metallic Impurities in Plutonium Scrap Materials at SRS  

SciTech Connect

The Nuclear Materials Stabilization and Storage Division at SRS plans to stabilize selected plutonium scrap residue materials for long term storage by dissolution processing and plans to stabilize other plutonium vault materials via high-temperature furnace processing. To support these nuclear material stabilization activities, the SRS Analytical Laboratories Department (ALD) will provide characterization of materials required prior to the dissolution or the high-firing of these materials. Lab renovations to install new analytical instrumentation are underway to support these activities that include glove boxes with simulated-process dissolution and high- pressure microwave dissolution capability. Inductively-coupled plasma atomic emission spectrometry (ICP-AES), inductively- coupled mass spectrometry (ICP-MS) and thermal-ionization mass spectrometry (TIMS) will be used to measure actinide isotopics and metallic impurities. New high-speed actinide separation methods have been developed that will be applied to isotopic characterization of nuclear materials by TIMS and ICP-MS to eliminate isobaric interferences between Pu-238 /U- 238 and Pu-241/Am-241. TEVA Resin, UTEVA Resin, and TRU Resin columns will be used with vacuum-assisted flow rates to minimize TIMS and ICP-MS sample turnaround times. For metallic impurity analysis, rapid column removal methods using UTEVA Resin, AGMP-1 anion resin and AG MP-50 cation resin have also been developed to remove plutonium and uranium matrix interferences prior to ICP-AES and ICP- MS measurements.

Maxwell, S.L. III [Westinghouse Savannah River Company, AIKEN, SC (United States); Jones, V.D.

1998-07-01

52

Polyethylene-reflected plutonium metal sphere : subcritical neutron and gamma measurements.  

SciTech Connect

Numerous benchmark measurements have been performed to enable developers of neutron transport models and codes to evaluate the accuracy of their calculations. In particular, for criticality safety applications, the International Criticality Safety Benchmark Experiment Program (ICSBEP) annually publishes a handbook of critical and subcritical benchmarks. Relatively fewer benchmark measurements have been performed to validate photon transport models and codes, and unlike the ICSBEP, there is no program dedicated to the evaluation and publication of photon benchmarks. Even fewer coupled neutron-photon benchmarks have been performed. This report documents a coupled neutron-photon benchmark for plutonium metal reflected by polyethylene. A 4.5-kg sphere of ?-phase, weapons-grade plutonium metal was measured in six reflected configurations: (1) Bare; (2) Reflected by 0.5 inch of high density polyethylene (HDPE); (3) Reflected by 1.0 inch of HDPE; (4) Reflected by 1.5 inches of HDPE; (5) Reflected by 3.0 inches of HDPE; and (6) Reflected by 6.0 inches of HDPE. Neutron and photon emissions from the plutonium sphere were measured using three instruments: (1) A gross neutron counter; (2) A neutron multiplicity counter; and (3) A high-resolution gamma spectrometer. This report documents the experimental conditions and results in detail sufficient to permit developers of radiation transport models and codes to construct models of the experiments and to compare their calculations to the measurements. All of the data acquired during this series of experiments are available upon request.

Mattingly, John K.

2009-11-01

53

Theoretical confirmation of Ga-stabilized anti-ferromagnetism in plutonium metal  

NASA Astrophysics Data System (ADS)

Density functional theory (DFT) for plutonium metal is shown to be consistent with recent magnetic measurements that suggest anti-ferromagnetism in Pu-Ga alloys at low temperatures. The theoretical model predicts a stabilization of the face-centered-cubic (fcc, ?) form of plutonium in an anti-ferromagnetic configuration when alloyed with gallium. The ordered magnetic phase occurs because Ga removes the mechanical instability that exists for unalloyed ?-Pu. The cause of the Ga-induced stabilization is a combination of a lowering of the band (kinetic) and electrostatic (Coulomb) energies for the cubic relative to the tetragonal phase. Similarly, gallium plays an important role in stabilizing anti-ferromagnetism in the tetragonal P4/mmm Pu3Ga compound.

Sderlind, Per; Landa, Alex

2014-05-01

54

Plutonium pyrophoricity  

SciTech Connect

A review of the published literature on ignition and burning of plutonium metal was conducted in order to better define the characteristic of pyrophoric plutonium. The major parameter affecting ignition is the surface area/mass ratio of the sample. Based on this parameter, plutonium metal can be classified into four categories: (1) bulk metal, (2) film and foils, (3) chips and turnings, and (4) powder. Other parameters that can alter the ignition of the metal include experimental, chemical, physical, and environmental effects. These effects are reviewed in this report. It was concluded from this review that pyrophoric plutonium can be conservatively defined as: Plutonium metal that will ignite spontaneously in air at a temperature of 150{degrees}C or below in the absence of external heat, shock, or friction. The 150{degrees}C temperature was used to compensate for the self-heating of plutonium metal. For a practical definition of whether any given metal is pyrophoric, all of the factors affecting ignition must be considered.

Stakebake, J.L.

1992-06-02

55

Properties of plutonium.  

National Technical Information Service (NTIS)

Plutonium has unique chemical and physical properties. Its uniqueness in use has led to rare publications in Korea. This report covers physical aspects of phase change of metal plutonium, mechanical properties, thermal conductivity, etc, chemical aspects ...

H. K. Yoon H. T. Kim J. S. Ahn J. S. Ahn K. S. Min

1996-01-01

56

Point-detect production and migration in plutonium metal at ambient conditions  

SciTech Connect

Modeling thermodynamics and defect production in plutonium (Pu) metal and its alloys, has proven to be singularly difficult. The multiplicity of phases and the small changes in temperature, pressure, and/or stress that can induce phase changes lie at the heart of this difficulty, In terms of radiation damage, Pu metal represents a unique situation because of the large volume changes that accompany the phase changes. The most workable form of the metal is the fcc (6.) phase, which in practice the 6 phase is stabilized by addition of alloying elements such as Ga or AI. The thermodynamically stable phase at ambient conditions is the between monoclinic (a-) phase, which, however, is approximately 20 % lower in volume than the 6 phase. In stabilized Pu metal, there is an interplay between the natural swelling tendencies of fcc metals and the volume-contraction tendency of the underlying phase transformation to the thermodynamically stable phase. This study explores the point defect production and migration properties that are necessary to eventually model the long-term outcome of this interplay.

Baskes, M. I. (Michael I.); Stan, M. (Marius); Sickafus, K. (Kurt E.); Valone, S. M. (Steven M.)

2001-01-01

57

Evaluation of plutonium oxidation using pulsed neutron measurements with {sup 252}Cf  

SciTech Connect

The unrecognized oxidation of plutonium in {open_quotes}sealed{close_quotes} canisters poses a unique problem for both material control and accountability. A feasibility study was performed to address the use of randomly pulsed neutron measurements with {sup 252}Cf to determine if plutonium metal in a canister has oxidized without opening the container. The Monte Carlo code MCNP-DSP was used to determine if time-of-flight transmission measurements could be used to determine oxidation of plutonium in {open_quotes}sealed{close_quotes} cans. In the Monte Carlo models, a plutonium button in a can was positioned between a {sup 252}Cf source and a scintillation detector, and the time distribution of counts after {sup 252}Cf fission in the detector was calculated. The time distribution of counts after {sup 252}Cf fission differs between plutonium metal and plutonium oxide because resonances in oxygen will affect transmission of certain energy neutrons from {sup 252}Cf sources in ionization chambers. This method could be used to determine the presence of other materials that react with plutonium in {open_quotes}sealed{close_quotes} cans.

Valentine, T.E.; Mihalczo, J.T.

1997-09-01

58

Speciation of plutonium and other metals under UREX process conditIONS  

SciTech Connect

The extractability of various Pu and Np species into tri-n-butyl phosphate (TBP) was investigated. The concentration effects of aceto-hydroxamic acid, nitric acid and nitrate on the distribution ratio of U, Pu and Np were investigated. The considerable ability of AHA to form complexes with the studied elements even under strong acidic conditions was found. While the difference in the extraction of uranyl in the presence and absence of AHA is minimal, extraction yields of Pu and Np decrease significantly. The UV-Vis-NIR and FT-IR spectroscopic investigations of uranium, plutonium, and neptunium species in the presence and absence of AHA in both aqueous and organic extraction phase were also performed. Spectroscopic analysis showed that the organic phase can contain a substantial amount of metal-hydroxamate species. A solvated ternary complex of uranium UO{sub 2}.AHA.NO{sub 3}.2TBP was observed only after prolonged contact between the aqueous and organic phases, whereas the plutonium hydroxamate species, presumably Pu(AHA){sub x}(NO{sub 3}){sub 4-x}.2TBP, appeared in the organic phase after a four minute extraction. (authors)

Paulenova, Alena; Tkac, Peter [Radiation Center, Oregon State University 100 Radiation Center, Corvallis, OR 97331-5903 (United States); Matteson, Brent S. [Department of Chemistry, Oregon State University 100 Radiation Center, Corvallis, OR 97331-5903 (United States)

2007-07-01

59

An Evaluation of Monte Carlo Simulations of Neutron Multiplicity Measurements of Plutonium Metal  

SciTech Connect

In January 2009, Sandia National Laboratories conducted neutron multiplicity measurements of a polyethylene-reflected plutonium metal sphere. Over the past 3 years, those experiments have been collaboratively analyzed using Monte Carlo simulations conducted by University of Michigan (UM), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and North Carolina State University (NCSU). Monte Carlo simulations of the experiments consistently overpredict the mean and variance of the measured neutron multiplicity distribution. This paper presents a sensitivity study conducted to evaluate the potential sources of the observed errors. MCNPX-PoliMi simulations of plutonium neutron multiplicity measurements exhibited systematic over-prediction of the neutron multiplicity distribution. The over-prediction tended to increase with increasing multiplication. MCNPX-PoliMi had previously been validated against only very low multiplication benchmarks. We conducted sensitivity studies to try to identify the cause(s) of the simulation errors; we eliminated the potential causes we identified, except for Pu-239 {bar {nu}}. A very small change (-1.1%) in the Pu-239 {bar {nu}} dramatically improved the accuracy of the MCNPX-PoliMi simulation for all 6 measurements. This observation is consistent with the trend observed in the bias exhibited by the MCNPX-PoliMi simulations: a very small error in {bar {nu}} is 'magnified' by increasing multiplication. We applied a scalar adjustment to Pu-239 {bar {nu}} (independent of neutron energy); an adjustment that depends on energy is probably more appropriate.

Mattingly, John [North Carolina State University; Miller, Eric [University of Michigan; Solomon, Clell J. Jr. [Los Alamos National Laboratory; Dennis, Ben [University of Michigan; Meldrum, Amy [University of Michigan; Clarke, Shaun [University of Michigan; Pozzi, Sara [University of Michigan

2012-06-21

60

Rapid Separation Methods to Characterize Actinides and Metallic Impurities in Plutonium Scrap Materials at SRS.  

National Technical Information Service (NTIS)

The Nuclear Materials Stabilization and Storage Division at SRS plans to stabilize selected plutonium scrap residue materials for long term storage by dissolution processing and plans to stabilize other plutonium vault materials via high-temperature furna...

S. L. Maxwell V. D. Jones

1998-01-01

61

THE RADIOLOGICAL PHYSICS OF PLUTONIUM  

Microsoft Academic Search

Plutonium metal processing operations were developed with the ; utilization of equipment and methods to provide containment for contamination ; control, shields for radiation exposure control, and limitations on plutonium ; mass, concentration, and solution volume for criticality control. Containment of ; plutonium materials in glove boxes and hoods prevents the internal body ; deposition of plutonium radionuclides. The long

Unruh

1962-01-01

62

Plutonium Immobilization Puck Handling  

SciTech Connect

The Plutonium Immobilization Project (PIP) will immobilize excess plutonium and store the plutonium in a high level waste radiation field. To accomplish these goals, the PIP will process various forms of plutonium into plutonium oxide, mix the oxide powder with ceramic precursors, press the mixture into pucks, sinter the pucks into a ceramic puck, load the pucks into metal cans, seal the cans, load the cans into magazines, and load the magazines into a Defense Waste Processing Facility (DPWF) canister. These canisters will be sent to the DWPF, an existing Savannah River Site (SRS) facility, where molten high level waste glass will be poured into the canisters encapsulating the ceramic pucks. Due to the plutonium radiation, remote equipment will perform these operations in a contained environment. The Plutonium Immobilization Project is in the early design stages and the facility will begin operation in 2005. This paper will discuss the Plutonium Immobilization puck handling conceptual design and the puck handling equipment testing.

Kriikku, E.

1999-01-26

63

Method of Test for Cleanness Assessment of Metal Alloys: The Preparation of Button Specimens by Electron Beam Melting and the Characterisation of Recovered Inclusions.  

National Technical Information Service (NTIS)

This report describes a method for the cleanness assessment of metal alloys in which a metal specimen is electron beam melted into a copper crucible to collect the non-metallic inclusions present in the specimen into a small area on the top surface of the...

P. N. Quested D. M. Hayes

1993-01-01

64

Enzymically accelerated biomineralization of heavy metals: application to the removal of americium and plutonium from aqueous flows.  

PubMed

A biological process for the removal of heavy metals from the aqueous flows is described. Metals are precipitated on the surface of immobilized cells of a Citrobacter sp. as cell-bound metal phosphates. This uses phosphate liberated by the activity of a cell-bound phosphatase. Some radionuclides (e.g. 241americium) form metal phosphates readily; efficient removal of 241Am on a continuous basis is demonstrated. At low phosphatase activities, the efficiency of uranium removal correlates with enzyme activity. High phosphatase activities are not realised as an increase in metal removal, suggesting that chemical events become rate-limiting. Studies have suggested that maximal metal uptake occurs only after nucleation and the formation of precipitation foci. A model is presented to illustrate how nucleation and crystallization processes could enhance the removal of plutonium and neptunium from dilute solutions. PMID:7917422

Macaskie, L E; Jeong, B C; Tolley, M R

1994-08-01

65

Dynamic and quasi-static simulation and analysis of the plutonium oxide/metal containers subject to 30-foot dropping  

SciTech Connect

This analysis of the plutonium oxide/metal storage containers is in support of the design and testing project The results from the dynamic analysis show some important facts that have not been considered before. The internal bagless transfer can will have higher stress than the primary container. The quasi-static analysis provides a conservative solution. In both vertical upright drop (dynamic) and inclined upside down drop (quasi-static) the containers are structurally sound.

Gong, C.; Miller, R.F.

1995-01-01

66

Determining analyte concentrations in plutonium metal by x-ray fluorescence using a dried residue method  

Microsoft Academic Search

Accurately determining the concentration of certain elements in plutonium is of vital importance in manufacturing nuclear weapons. X-ray fluorescence (XRF) provides a means of obtaining this type of elemental information accurately, quickly, with high precision, and often with little sample preparation. In the present work, a novel method was developed to analyze the gallium concentration in plutonium samples using wavelength-dispersive

Christopher G. Worley; George J. Havrilla

2000-01-01

67

ButtonFly 1.20  

NSDL National Science Digital Library

ButtonFly is an easy-to-use software for creating professional looking buttons instantly. You can apply graphic effects like natural shadow, dispersion, chromatic effects, and more. You can also establish a button template, define your section headings, and instantly create tens or even hundreds of new buttons for your site. ButtonFly takes care of all of the complex and repetitive operations, allowing graphic artists to focus on their designs. ButtonFly also allows you to generate the files in both .gif and .jpeg formats, including transparent .gifs. Using the Rollover Generator feature, you can automatically create dynamic effects for buttons without having to write the Javascript code. In addition, a multilingual generation utility enables instant translation of Websites.

68

The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal  

NASA Astrophysics Data System (ADS)

Pressure-Composition-Temperature (PCT) data are presented for the plutonium-hydrogen (Pu-H) and plutonium-deuterium (Pu-D) systems in the solubility region up to terminal solubility (precipitation of PuH2). The heats of solution for PuHS and PuDS are determined from PCT data in the ranges 350-625C for gallium alloyed Pu and 400-575C for unalloyed Pu. The solubility of high purity plutonium alloyed with 2 at.% gallium is compared to high purity unalloyed plutonium. Significant differences are found in hydrogen solubility for unalloyed Pu versus gallium alloyed Pu. Differences in hydrogen solubility due to an apparent phase change are observable in the alloyed and unalloyed solubilities. The effect of iron impurities on Pu-Ga alloyed Pu is shown via hydrogen solubility data as preventing complete homogenization.

Richmond, S.; Bridgewater, J. S.; Ward, J. W.; Allen, T. H.

2010-03-01

69

Determining analyte concentrations in plutonium metal by x-ray fluorescence using a dried residue method  

NASA Astrophysics Data System (ADS)

Accurately determining the concentration of certain elements in plutonium is of vital importance in manufacturing nuclear weapons. X-ray fluorescence (XRF) provides a means of obtaining this type of elemental information accurately, quickly, with high precision, and often with little sample preparation. In the present work, a novel method was developed to analyze the gallium concentration in plutonium samples using wavelength-dispersive XRF. A description of the analytical method will be discussed. .

Worley, Christopher G.; Havrilla, George J.

2000-07-01

70

Plutonium oxide dissolution.  

National Technical Information Service (NTIS)

Several processing options for dissolving plutonium oxide (PuO(sub 2)) from high-fired materials have been studied. The scoping studies performed on these options were focused on PuO(sub 2) typically generated by burning plutonium metal and PuO(sub 2) pro...

J. H. Gray

1992-01-01

71

Ignition characteristics of plutonium powder  

Microsoft Academic Search

Two fires occurred recently in a vacuum cleaner used to pick up plutonium powder during brushing of plutonium. The plutonium powder was collected by a conventional canister vacuum cleaner passing directly into the clean bag which was changed daily and sent to Building 771 for recovery. Finely divided metal powder is known to be a potential fire and explosion hazard.

Musgrave

1971-01-01

72

Recovery of plutonium by pyroredox processing  

SciTech Connect

Using pyrochemical oxidation and reduction, we have developed a process to recover the plutonium in impure scrap with less than 95% plutonium. This plutonium metal was further purified by pyrochemical electrorefining. During development of the procedures, depleted electrorefining anodes were processed, and over 80% of the plutonium was recovered as high-purity metal in one electrorefining cycle. Over 40 kg of plutonium has been recovered from 55 kg of impure anodes with our procedures. 6 refs., 2 figs., 5 tabs.

McNeese, J.A.; Bowersox, D.F.; Christensen, D.C.

1985-01-01

73

Deposition of the Trace Heavy Metals Polonium and Plutonium onto Marine Surfaces.  

National Technical Information Service (NTIS)

Plutonium and polonium assays of the giant kelp revealed that most of the Pu and Po was in the surface scrapings. Both nuclides were concentrated to 1000 times their sea water concentrations; there was usually 200 times more Po activity than Pu. Field exp...

V. F. Hodge T. R. Folsom J. P. Cowen G. J. Parks

1974-01-01

74

Plutonium dissolution process  

DOEpatents

A two-step process for dissolving plutonium metal, which two steps can be carried out sequentially or simultaneously. Plutonium metal is exposed to a first mixture containing approximately 1.0M-1.67M sulfamic acid and 0.0025M-0.1M fluoride, the mixture having been heated to a temperature between 45.degree. C. and 70.degree. C. The mixture will dissolve a first portion of the plutonium metal but leave a portion of the plutonium in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alteratively, nitric acid in a concentration between approximately 0.05M and 0.067M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution process is diluted with nitrogen.

Vest, Michael A. (Oak Park, IL); Fink, Samuel D. (Aiken, SC); Karraker, David G. (Aiken, SC); Moore, Edwin N. (Aiken, SC); Holcomb, H. Perry (North Augusta, SC)

1996-01-01

75

Pyrochemical process for extracting plutonium from an electrolyte salt  

DOEpatents

A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

Mullins, L.J.; Christensen, D.C.

1982-09-20

76

Pyrochemical process for extracting plutonium from an electrolyte salt  

DOEpatents

A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

Mullins, Lawrence J. (Los Alamos, NM); Christensen, Dana C. (Los Alamos, NM)

1984-01-01

77

Plutonium and Americium Separation from Salts.  

National Technical Information Service (NTIS)

Salts or materials containing plutonium and americium are dissolved in hydrochloric acid, heated, and contacted with an alkali metal carbonate solution to precipitate plutonium and americium carbonates which are thereafter readily separable from the solut...

P. G. Hagan F. J. Miner

1976-01-01

78

Double Button Spurious Signals Prevention Circuit.  

National Technical Information Service (NTIS)

An analog circuit prevents spurious signals when two buttons are simultaneously pressed in a digital signaling telephone keyboard (telephone console). The analog circuit includes a group of pull-up resistors, with one resistor connected to the high switch...

R. B. Kelleher

1979-01-01

79

Prompt Neutron Decay for Delayed Critical Bare and Natural-Uranium-Reflected Metal Spheres of Plutonium and Highly Enriched Uranium  

SciTech Connect

Prompt neutron decay at delayed criticality was measured by Oak Ridge National Laboratory for uranium-reflected highly enriched uranium (HEU) and Pu metal spheres (FLATTOP), for an unreflected Pu metal (4.5% {sup 240}Pu) sphere (JEZEBEL) at Los Alamos National Laboratory (LANL) and for an unreflected HEU metal sphere at Oak Ridge Critical Experiments Facility. The average prompt neutron decay constants from hundreds of Rossi-{alpha} and randomly pulsed neutron measurements with {sup 252}Cf at delayed criticality are as follows: 3.8458 {+-} 0.0016 x 10{sup 5} s{sup -1}, 2.2139 {+-} 0.0022 x 10{sup 5} s{sup -1}, 6.3126 {+-} 0.0100 x 10{sup 5} s{sup -1}, and 1.1061 {+-} 0.0009 x 10{sup 6} s{sup -1}, respectively. These values agree with previous measurements by LANL for FLATTOP, JEZEBEL, and GODIVA I as follows: 3.82 {+-} 0.02 x 10{sup 5} s{sup -1} for a uranium core; 2.14 {+-} 0.05 x 10{sup 5} s{sup -1} and 2.29 x 10{sup 5} s{sup -1} (uncertainty not reported) for a plutonium core; 6.4 {+-} 0.1 x 10{sup 5} s{sup -1}, and 1.1 {+-} 0.1 x 10{sup 6} s{sup -1}, respectively, but have smaller uncertainties because of the larger number of measurements. For the FLATTOP and JEZEBEL assemblies, the measurements agree with calculations. Traditionally, the calculated decay constants for the bare uranium metal sphere GODIVA I and the Oak Ridge Uranium Metal Sphere were higher than experimental by {approx}10%. Other energy-dependent quantities for the bare uranium sphere agree within 1%.

Mihalczo, John T [ORNL

2011-01-01

80

Pop Through Button Devices for VE Navigation and Interaction  

Microsoft Academic Search

We present a novel class of virtual reality input devices that combine pop through buttons with 6 DOF trackers. Compared to similar devices that use conventional buttons, pop through devices double the number of potential dis- crete interaction modes, since each button has two activa- tion states corresponding to light and firm pressure. This additional state per button provides a

Robert C. Zeleznik; Joseph J. LaViola Jr.; Daniel Acevedo Feliz; Daniel F. Keefe

2002-01-01

81

Plutonium(IV) reduction by the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1.  

PubMed

The bacterial reduction of actinides has been suggested as a possible remedial strategy for actinide-contaminated environments, and the bacterial reduction of Pu(VI/V) has the potential to produce highly insoluble Pu(IV) solid phases. However, the behavior of plutonium with regard to bacterial reduction is more complex than for other actinides because it is possible for Pu(IV) to be further reduced to Pu(III), which is relatively more soluble than Pu(IV). This work investigates the ability of the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1 to enzymatically reduce freshly precipitated amorphous Pu(IV) (OH)(4) [Pu(IV)(OH)(4(am))] and soluble Pu(IV)(EDTA). In cell suspensions without added complexing ligands, minor Pu(III) production was observed in cultures containing S. oneidensis, but little or no Pu(III) production was observed in cultures containing G. metallireducens. In the presence of EDTA, most of the Pu(IV)(OH)(4(am)) present was reduced to Pu(III) and remained soluble in cell suspensions of both S. oneidensis and G. metallireducens. When soluble Pu(IV)(EDTA) was provided as the terminal electron acceptor, cell suspensions of both S. oneidensis and G. metallireducens rapidly reduced Pu(IV)(EDTA) to Pu(III)(EDTA) with nearly complete reduction within 20 to 40 min, depending on the initial concentration. Neither bacterium was able to use Pu(IV) (in any of the forms used) as a terminal electron acceptor to support growth. These results have significant implications for the potential remediation of plutonium and suggest that strongly reducing environments where complexing ligands are present may produce soluble forms of reduced Pu species. PMID:17644643

Boukhalfa, Hakim; Icopini, Gary A; Reilly, Sean D; Neu, Mary P

2007-09-01

82

Solvent anode for plutonium purification  

SciTech Connect

The purpose of this study is to develop a technique to allow complete oxidation of plutonium from the anode during plutonium electrorefining. This will eliminate the generation of a ''spent'' anode heel which requires further treatment for recovery. Our approach is to employ a solvent metal in the anode to provide a liquid anode pool throughout electrorefining. We use molten salts and metals in ceramic crucibles at 700/sup 0/C. Our goal is to produce plutonium metal at 99.9% purity with oxidation and transfer of more than 98% of the impure plutonium feed metal from the anode into the salt and product phases. We have met these criteria in experiments on the 100 to 1000 g scale. We plan to scale our operations to 4 kg of feed plutonium and to optimize the process parameters.

Bowersox, D.F.; Fife, K.W.; Christensen, D.C.

1986-01-01

83

Evaluation of synthetic water-soluble metal-binding polymers with ultrafiltration for selective concentration of americium and plutonium  

SciTech Connect

Routine counting methods and ICP-MS are unable to directly measure the new US Department of Energy (DOE) regulatory level for discharge waters containing alpha-emitting radionuclides of 30 pCi/L total alpha or the 0.05 pCi/L regulatory level for Pu or Am activity required for surface waters at the Rocky Flats site by the State of Colorado. This inability indicates the need to develop rapid, reliable, and robust analytical techniques for measuring actinide metal ions, particularly americium and plutonium. Selective separation or preconcentration techniques would aid in this effort. Water-soluble metal-binding polymers in combination with ultrafiltration are shown to be an effective method for selectively removing dilute actinide ions from acidic solutions of high ionic strength. The actinide-binding properties of commercially available water-soluble polymers and several polymers which have been reported in the literature were evaluated. The functional groups incorporated in the polymers were pyrrolidone, amine, oxime, and carboxylic, phosphonic, or sulfonic acid. The polymer containing phosphonic acid groups gave the best results with high distribution coefficients and concentration factors for {sup 241}Am(III) and {sup 238}Pu(III)/(IV) at pH 4 to 6 and ionic strengths of 0.1 to 4.

Smith, B.F.; Gibson, R.R.; Jarvinen, G.D.; Jones, M.M.; Lu, M.T.; Robison, T.W.; Schroeder, N.C.; Stalnaker, N.

1997-12-31

84

Pyrochemical reduction of uranium dioxide and plutonium dioxide by lithium metal  

Microsoft Academic Search

The lithium reduction process has been developed to apply a pyrochemical recycle process for oxide fuels. This process uses lithium metal as a reductant to convert oxides of actinide elements to metal. Lithium oxide generated in the reduction would be dissolved in a molten lithium chloride bath to enhance reduction. In this work, the solubility of Li2O in LiCl was

T. Usami; M. Kurata; T. Inoue; H. E Sims; S. A Beetham; J. A Jenkins

2002-01-01

85

THE EXTINGUISHING OF PLUTONIUM FIRES  

Microsoft Academic Search

A fusible ternary eutectic salt mixture of barium, sodium, and potassium ; chlorides was developed as an extinguishant for metallic fissile material fires. ; The powder extinguished fires involving massive and finely divided uranium and ; massive plutonium, but was not successful with fires involving finely divided ; plutonium, combustion continuing under the powder. Tests indicated that a ; fusible

J. Holliday; W. A. Conway

1962-01-01

86

AES And XPS Study of Plutonium Oxidation.  

National Technical Information Service (NTIS)

The initial oxidation of plutonium metal at 27 exp 0 C has been studied using AES and XPS. Initially a clean plutonium surface was prepared by Ar exp + bombardment and 500 exp 0 C-Ar exp + bombardment heat cycles. Changes occurring in the plutonium Auger ...

D. T. Larson

1979-01-01

87

Plutonium(V/VI) Reduction by the Metal-Reducing Bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1?  

PubMed Central

We examined the ability of the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1 to reduce Pu(VI) and Pu(V). Cell suspensions of both bacteria reduced oxidized Pu [a mixture of Pu(VI) and Pu(V)] to Pu(IV). The rate of plutonium reduction was similar to the rate of U(VI) reduction obtained under similar conditions for each bacteria. The rates of Pu(VI) and U(VI) reduction by cell suspensions of S. oneidensis were slightly higher than the rates observed with G. metallireducens. The reduced form of Pu was characterized as aggregates of nanoparticulates of Pu(IV). Transmission electron microscopy images of the solids obtained from the cultures after the reduction of Pu(VI) and Pu(V) by S. oneidensis show that the Pu precipitates have a crystalline structure. The nanoparticulates of Pu(IV) were precipitated on the surface of or within the cell walls of the bacteria. The production of Pu(III) was not observed, which indicates that Pu(IV) was the stable form of reduced Pu under these experimental conditions. Experiments examining the ability of these bacteria to use Pu(VI) as a terminal electron acceptor for growth were inconclusive. A slight increase in cell density was observed for both G. metallireducens and S. oneidensis when Pu(VI) was provided as the sole electron acceptor; however, Pu(VI) concentrations decreased similarly in both the experimental and control cultures.

Icopini, Gary A.; Lack, Joe G.; Hersman, Larry E.; Neu, Mary P.; Boukhalfa, Hakim

2009-01-01

88

Benchmark Analysis of Subcritical Noise Measurements on a Nickel-Reflected Plutonium Metal Sphere  

SciTech Connect

Subcritical experiments using californium source-driven noise analysis (CSDNA) and Feynman variance-to-mean methods were performed with an alpha-phase plutonium sphere reflected by nickel shells, up to a maximum thickness of 7.62 cm. Both methods provide means of determining the subcritical multiplication of a system containing nuclear material. A benchmark analysis of the experiments was performed for inclusion in the 2010 edition of the International Handbook of Evaluated Criticality Safety Benchmark Experiments. Benchmark models have been developed that represent these subcritical experiments. An analysis of the computed eigenvalues and the uncertainty in the experiment and methods was performed. The eigenvalues computed using the CSDNA method were very close to those calculated using MCNP5; however, computed eigenvalues are used in the analysis of the CSDNA method. Independent calculations using KENO-VI provided similar eigenvalues to those determined using the CSDNA method and MCNP5. A slight trend with increasing nickel-reflector thickness was seen when comparing MCNP5 and KENO-VI results. For the 1.27-cm-thick configuration the MCNP eigenvalue was approximately 300 pcm greater. The calculated KENO eigenvalue was about 300 pcm greater for the 7.62-cm-thick configuration. The calculated results were approximately the same for a 5-cm-thick shell. The eigenvalues determined using the Feynman method are up to approximately 2.5% lower than those determined using either the CSDNA method or the Monte Carlo codes. The uncertainty in the results from either method was not large enough to account for the bias between the two experimental methods. An ongoing investigation is being performed to assess what potential uncertainties and/or biases exist that have yet to be properly accounted for. The dominant uncertainty in the CSDNA analysis was the uncertainty in selecting a neutron cross-section library for performing the analysis of the data. The uncertainty in the Feynman method was equally shared between the uncertainties in fitting the data to the Feynman equations and the neutron multiplicity of 239Pu. Material and geometry uncertainties in the benchmark experiment were generally much smaller than uncertainties in the analysis methods.

John D. Bess; Jesson Hutchinson

2009-09-01

89

Plutonium breeding in liquid-metal fast breeder reactors and light water reactors  

Microsoft Academic Search

The possibilities of breeding in liquid-metal fast breeder reactors (LMFBRs) and light water reactors (LWRs) are compared in two ways. The feasibility of breeding has been demonstrated in the Phenix reactor with a measured gain of 0.14. The gain in Superphenix will amount to about0.20. The studies show that while maintaining the performance of commercial reactors their breeding gain can

Vendryes

1985-01-01

90

Plutonium storage thermal analysis (U).  

National Technical Information Service (NTIS)

Thermal modeling of plutonium metal ingots stored in food pack cans provides information useful for performing stored material safety evaluations. Four storage can geometries were modeled, and several conclusions can be made from the 14 cases analyzed. Th...

S. J. Hensel S. Y. Lee J. B. Schaade

1997-01-01

91

Button Battery Ingestion: An Analysis of 25 Cases  

Microsoft Academic Search

Background: Button batteries represent a distinct type of foreign body. Serious complica- tions can be resulted, particularly when the battery is impacted in the esopha- gus. The potentially detrimental effects of button battery ingestion have often been overlooked in Taiwan. We surveyed patients following button battery ingestion to define the characteristics and outcomes of this popula- tion. Methods: The records

Yi-Ling Chan; Shy-Shin Chang; Ku-Lien Kao; Hao-Chin Liao; Shiumn-Jen Liaw; Te-Fa Chiu; Ming-Ling Wu; Jou-Fang Deng

92

Activities to Grow On: Buttons, Beads, and Beans.  

ERIC Educational Resources Information Center

Presents new ideas for using buttons, beans, and beads as teaching manipulatives for elementary school children. The ideas include a button scavenger hunt, a button count, a cup puppet bean game, a numbers guessing game with beans in jars, and a bead stringing activity. (SM)

Gonzolis, Amy; And Others

1992-01-01

93

Plutonium(V/VI) Reduction by the Metal-Reducing Bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1.  

PubMed

We examined the ability of the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1 to reduce Pu(VI) and Pu(V). Cell suspensions of both bacteria reduced oxidized Pu [a mixture of Pu(VI) and Pu(V)] to Pu(IV). The rate of plutonium reduction was similar to the rate of U(VI) reduction obtained under similar conditions for each bacteria. The rates of Pu(VI) and U(VI) reduction by cell suspensions of S. oneidensis were slightly higher than the rates observed with G. metallireducens. The reduced form of Pu was characterized as aggregates of nanoparticulates of Pu(IV). Transmission electron microscopy images of the solids obtained from the cultures after the reduction of Pu(VI) and Pu(V) by S. oneidensis show that the Pu precipitates have a crystalline structure. The nanoparticulates of Pu(IV) were precipitated on the surface of or within the cell walls of the bacteria. The production of Pu(III) was not observed, which indicates that Pu(IV) was the stable form of reduced Pu under these experimental conditions. Experiments examining the ability of these bacteria to use Pu(VI) as a terminal electron acceptor for growth were inconclusive. A slight increase in cell density was observed for both G. metallireducens and S. oneidensis when Pu(VI) was provided as the sole electron acceptor; however, Pu(VI) concentrations decreased similarly in both the experimental and control cultures. PMID:19363069

Icopini, Gary A; Lack, Joe G; Hersman, Larry E; Neu, Mary P; Boukhalfa, Hakim

2009-06-01

94

Recycling Of Uranium- And Plutonium-Contaminated Metals From Decommissioning Of The Hanau Fuel Fabrication Plant  

SciTech Connect

Decommissioning of a nuclear facility comprises not only actual dismantling but also, above all, management of the resulting residual materials and waste. Siemens Decommissioning Projects (DP) in Hanau has been involved in this task since 1995 when the decision was taken to decommission and dismantle the Hanau Fuel Fabrication Plant. Due to the decommissioning, large amounts of contaminated steel scrap have to be managed. The contamination of this metal scrap can be found almost exclusively in the form of surface contamination. Various decontamination technologies are involved, as there are blasting and wiping. Often these methods are not sufficient to meet the free release limits. In these cases, SIEMENS has decided to melt the scrap at Siempelkamp's melting plant. The plant is licensed according to the German Radiation Protection Ordinance Section 7 (issue of 20.07.2001). The furnace is a medium frequency induction type with a load capacity of 3.2 t and a throughput of 2 t/h for steel melting. For safety reasons, the furnace is widely operated by remote handling. A highly efficient filter system of cyclone, bag filter and HEPA-filter in two lines retains the dust and aerosol activity from the off-gas system. The slag is solidified at the surface of the melt and gripped before pouring the liquid iron into a chill. Since 1989, in total 15,000 t have been molten in the plant, 2,000 t of them having been contaminated steel scrap from the decommissioning of fuel fabrication plants. Decontamination factors could be achieved between 80 and 100 by the high affinity of the uranium to the slag former. The activity is transferred to the slag up to nearly 100 %. Samples taken from metal, slag and dust are analyzed by gamma measurements of the 186 keV line of U235 and the 1001 keV line of Pa234m for U238. All produced ingots showed a remaining activity less than 1 Bq/g and could be released for industrial reuse.

Kluth, T.; Quade, U.; Lederbrink, F. W.

2003-02-26

95

Device for mechanically stabilizing web ribbon buttons during growth initiation  

NASA Technical Reports Server (NTRS)

The invention relates to a stabilization device for stabilizing dendritic web seed buttons during initiation of crystal growth from a float melt zone. The invention includes angular maintenance means for maintaining a constant angular orientation between the axis of a growth initiation seed and the upper surface of a web button during withdrawal of the web button from the melt. In the preferred embodiment, the angular means includes an adjustable elevation tube which surrounds the seed, the weight of which may be selectively supported by the seed button during web button withdrawal.

Henry, Paul K. (inventor); Fortier, Edward P. (inventor)

1992-01-01

96

EndoButton drill bit failure.  

PubMed

A case of an EndoButton drill bit failure associated with anterior cruciate ligament reconstruction using semitendinosus gracilis autograft is reported. The distal 10 mm flutes of the drill bit sheared off prior to graft passage. This event was likely related to repeated use of this bit, which is intended for single use only. This case highlights another potential pitfall associated with anterior cruciate ligament reconstruction. PMID:11877621

Miller, Mark D

2002-03-01

97

Purification of aqueous plutonium chloride solutions via precipitation and washing.  

SciTech Connect

Pyrochemical operations at Los Alamos Plutonium Facility (TA-55) use high temperature melt s of calcium chloride for the reduction of plutonium oxide to plutonium metal and hi gh temperature combined melts of sodium chloride and potassium chloride mixtures for the electrorefining purification of plutonium metal . The remaining plutonium and americium are recovered from thes e salts by dissolution in concentrated hydrochloric acid followed by either solvent extraction or io n exchange for isolation and ultimately converted to oxide after precipitation with oxalic acid . Figur e 1 illustrates the current aqueous chloride flow sheet used for plutonium processing at TA-55 .

Stroud, M. A. (Mary Ann); Salazar, R. R. (Richard R.); Abney, Kent David; Bluhm, E. A. (Elizabeth A.); Danis, J. A. (Janet A.)

2003-01-01

98

APPLICATION OF A NEW TYPE CRUCIBLE TO THE PREPARATION OF URANIUM AND PLUTONIUM METAL BY THE STATIONARY BOMB METHOD  

Microsoft Academic Search

Magnesium oxide cnucibles were developed which increase the processing ; efficiency of uranium and plutonium production. The thin crucible design, ; allowing for a reduction in the weight of MgO sent to recovery, and other ; characteristics are described. (J.R.D.)

1952-01-01

99

Low temperature oxidation of plutonium  

SciTech Connect

The initial oxidation of gallium stabilized {delta}-plutonium metal at 193 K has been followed using x-ray photoelectron spectroscopy. On exposure to Langmuir quantities of oxygen, plutonium rapidly forms a trivalent oxide followed by a tetravalent plutonium oxide. The growth modes of both oxides have been determined. Warming the sample in vacuum, the tetravalent oxide reduces to the trivalent oxide. The kinetics of this reduction reaction have followed and the activation energy has been determined to be 38.8 kJ mol{sup -1}.

Nelson, Art J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Roussel, Paul [AWE, Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom)

2013-05-15

100

Plutonium aging  

SciTech Connect

The author describes the plutonium aging program at the Los Alamos National Laboratory. The aging of plutonium components in the US nuclear weapons stockpile has become a concern due to several events: the end of the cold war, the cessation of full scale underground nuclear testing as a result of the Comprehensive Test Ban Treaty (CTBT) and the closure of the Rocky Flats Plant--the site where the plutonium components were manufactured. As a result, service lifetimes for nuclear weapons have been lengthened. Dr. Olivas will present a brief primer on the metallurgy of plutonium, and will then describe the technical approach to ascertaining the long-term changes that may be attributable to self-radiation damage. Facilities and experimental techniques which are in use to study aging will be described. Some preliminary results will also be presented.

Olivas, J.D.

1999-03-01

101

Pectoralis Major Repair With Cortical Button Technique  

PubMed Central

Pectoralis major tendon ruptures can lead to significant functional deficits that affect high-level athletic and labor-intensive activities. In active populations operative repair of the ruptured pectoralis major tendon has shown significant advantages over nonoperative treatment. We describe a novel surgical technique for pectoralis major repair with tension button fixation. This study included 12 recreational athletes and 2 professional athletes. The initial results were measured subjectively after a minimum of 6 months by the Single Assessment Numeric Evaluation score, the American Shoulder and Elbow Surgeons score, and the ability to return to the patient's sport at a preinjury level. Objectively, strength was measured with resisted horizontal adduction of the arm for both repaired and contralateral sides. Of the 12 recreational patients, 8 returned to their sport at preinjury levels, and the 2 professional athletes returned to their sport at full capacity in the National Football League. The mean Single Assessment Numeric Evaluation score was 87, and the mean American Shoulder and Elbow Surgeons scores were 99 for both the operative and contralateral sides. Isokinetic strength testing showed no significant differences between the operative and nonoperative sides. Patients with pectoralis major tendons repaired with the proposed tensioned cortical button technique had excellent results. This new technique provides a reliable method of repair in an efficient and safe manner.

Kang, Richard W.; Mahony, Gregory T.; Cordasco, Frank A.

2014-01-01

102

Probing phonons in plutonium  

Microsoft Academic Search

Plutonium (Pu) is well known to have complex and unique physico-chemical properties [1]. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: ' {var_epsilon} liquid. Unalloyed Pu melts at a relatively low temperature 640 C to yield a higher density liquid than that of the solid from

D Farber; T Chiang; M Krisch; F Occelli; A Schwartz; M Wall; R Xu; C Boro

2003-01-01

103

Probing phonons in plutonium  

Microsoft Academic Search

Plutonium (Pu) is well known to have complex and unique physico-chemical properties. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: α β γ δ δ {var_epsilon} liquid. Unalloyed Pu melts at a relatively low temperature 640 C to yield a

Joe Wong; M. Krisch; D. Farber; F. Occelli; A. Schwartz; T. C. Chiang; M. Wall; C. Boro; Ruqing Xu

2010-01-01

104

Method for dissolving delta-phase plutonium  

Microsoft Academic Search

This patent describes a process for dissolving plutonium metal, the process. It comprises: heating a mixture of nitric acid, hydroxylammonium nitrate and potassium fluoride; and immersing the plutonium in the mixture; the nitric acid having a concentration of not more than 2M, the hydroxylammonium nitrate having a concentration of between approximately 0.33 M and 1 M, and the potassium fluoride

Karraker

1992-01-01

105

Broad-band characteristics of circular button pickups  

SciTech Connect

A broad-band.theory of the circular button pickup is presented. Expressions for the longitudinal and transverse transfer impedance of a pair of such pickups are derived in the frequency domain. The broad-band expressions are shown to reduce to the standard electrostatic transfer functions for wavelengths large compared to the button diameter. The theory is shown to be in reasonable agreement with measurements performed on standard LEP button electrodes. In particular, the theory explains a resonance in the response of the LEP buttons which made them unsuitable, in standard form, for their intended application as pickups in the LBL Advanced Light Source feedback system. The buttons were modified to suppress the resonance and subsequently incorporated into the feedback system.

Barry, W.C.

1992-10-01

106

Button battery ingestion: assessment of therapeutic modalities and battery discharge state.  

PubMed

Button batteries immersed in a simulated gastric environment (0.1N hydrochloric acid) demonstrated less crimp dissolution (corrosion of the metal can) after the addition of neutralizing doses of eight of nine antacids tested. Of 64 ingestion episodes in dogs, clinical manifestations of button battery-induced injury were limited to a single animal developing guaiac-positive stools. Endoscopic lesions included only mild gastritis, occurring with a frequency comparable to that observed in dogs prior to battery ingestion. After ingestion blood mercury levels were not significantly elevated. Crimp dissolution was absent in discharged cells, implying a decreased risk of electrolyte leakage or subsequent tissue injury in patients who ingest spent cells. No protective effect of metoclopramide, cimetidine, or magnesium citrate could be demonstrated in the canine model. PMID:6502334

Litovitz, T; Butterfield, A B; Holloway, R R; Marion, L I

1984-12-01

107

Recovery of plutonium from plutonium-beryllium neutron sources.  

National Technical Information Service (NTIS)

At the Los Alamos National Laboratory, plutonium-beryllium neutron sources have traditionally been processed for plutonium recovery by precipitating the plutonium as plutonium oxalate, calcining to plutonium dioxide, redissolving the oxide and then precip...

M. J. Palmer

1990-01-01

108

Ir/PuO/sub 2/ compatibility: transfer of impurities from plutonium dioxide to iridium metal during high temperature aging  

SciTech Connect

Plutonium oxide fuel pellets for powering radioisotopic thermoelectric generators for NASA space vehicles are encapsulated in iridium which has been grain-boundary-stabilized with thorium and aluminum. After aging for 6 months at 1310/sup 0/C under vacuum, enhanced grain growth is observed in the near-surface grains of the iridium next to the PuO/sub 2/. Examination of the grain boundaries by AES and SIMS shows a depletion of thorium and aluminum. Iron, chromium, and nickel from the fuel were found to diffuse into the iridium along the grain boundaries. Enhanced grain growth appears to result from thorium depletion in the grain boundaries of the near-surface grains next to the fuel. However, in one instance grain growth was slowed by the formation of thorium oxide by oxygen diffusing up the grain boundaries.

Taylor, D.H.; Christie, W.H.; Pavone, D.

1984-01-01

109

Prompt Neutron Decay for Delayed Critical Bare and Natural-Uranium-Reflected Metal Spheres of Plutonium and Highly Enriched Uranium  

Microsoft Academic Search

Prompt neutron decay at delayed criticality was measured by Oak Ridge National Laboratory for uranium-reflected highly enriched uranium (HEU) and Pu metal spheres (FLATTOP), for an unreflected Pu metal (4.5% ²⁴°Pu) sphere (JEZEBEL) at Los Alamos National Laboratory (LANL) and for an unreflected HEU metal sphere at Oak Ridge Critical Experiments Facility. The average prompt neutron decay constants from hundreds

Mihalczo; John T

2011-01-01

110

Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0  

SciTech Connect

The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

Wijesinghe, A.M.; Shaffer, R.J.

1996-01-15

111

Weapons-grade plutonium dispositioning. Volume 4. Plutonium dispositioning in light water reactors  

SciTech Connect

This study is in response to a request by the Reactor Panel Subcommittee of the National Academy of Sciences (NAS) Committee on International Security and Arms Control (CISAC) to evaluate the feasibility of using plutonium fuels (without uranium) for disposal in existing conventional or advanced light water reactor (LWR) designs and in low temperature/pressure LWR designs that might be developed for plutonium disposal. Three plutonium-based fuel forms (oxides, aluminum metallics, and carbides) are evaluated for neutronic performance, fabrication technology, and material and compatibility issues. For the carbides, only the fabrication technologies are addressed. Viable plutonium oxide fuels for conventional or advanced LWRs include plutonium-zirconium-calcium oxide (PuO{sub 2}-ZrO{sub 2}-CaO) with the addition of thorium oxide (ThO{sub 2}) or a burnable poison such as erbium oxide (Er{sub 2}O{sub 3}) or europium oxide (Eu{sub 2}O{sub 3}) to achieve acceptable neutronic performance. Thorium will breed fissile uranium that may be unacceptable from a proliferation standpoint. Fabrication of uranium and mixed uranium-plutonium oxide fuels is well established; however, fabrication of plutonium-based oxide fuels will require further development. Viable aluminum-plutonium metallic fuels for a low temperature/pressure LWR include plutonium aluminide in an aluminum matrix (PuAl{sub 4}-Al) with the addition of a burnable poison such as erbium (Er) or europium (Eu). Fabrication of low-enriched plutonium in aluminum-plutonium metallic fuel rods was initially established 30 years ago and will require development to recapture and adapt the technology to meet current environmental and safety regulations. Fabrication of high-enriched uranium plate fuel by the picture-frame process is a well established process, but the use of plutonium would require the process to be upgraded in the United States to conform with current regulations and minimize the waste streams.

Sterbentz, J.W.; Olsen, C.S.; Sinha, U.P.

1993-06-01

112

15. MAGAZINE P INTERIOR, ELEVATOR OPERATIONS BUTTON DETAIL. NIKE ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

15. MAGAZINE P INTERIOR, ELEVATOR OPERATIONS BUTTON DETAIL. - NIKE Missile Base C-84, Underground Storage Magazines & Launcher-Loader Assemblies, Easternmost portion of launch area, Barrington, Cook County, IL

113

Modification of the LaryButton for Tracheoesophageal Speech  

PubMed Central

Tracheoesophageal (TE) speech using a voice prosthesis and hands-free speaking valve with intraluminal attachment is the gold standard for voice restoration after total laryngectomy. Modification of a standard self-retaining silicone cannula or button often aids in the attachment of a speaking valve within the tracheal lumen for hands-free TE speech production. An increased number of laryngectomized individuals are able to achieve hands-free TE speech when the standard length, flange, and diameter of a silicone button is customized to accommodate individual tracheostomal contours. A technique is presented for modification of a standard silicone button, the LaryButton, to facilitate hands-free TE speech after total laryngectomy.

Lewin, Jan S.; Montgomery, Patti C.; Hutcheson, Katherine A.; Chambers, Mark S.

2014-01-01

114

Spectrophotometric determination of plutonium-239 based on the spectrum of plutonium(III) chloride  

SciTech Connect

This report describes a spectrophotometric method for determining plutonium-239 (Pu-239) based on the spectrum of Pu(III) chloride. The authors used the sealed-reflux technique for the dissolution of plutonium oxide with hydrochloric acid (HCl) and small amounts of nitric and hydrofluoric acids. To complex the fluoride, they added zirconium, and to reduce plutonium to Pu(III), they added ascorbic acid. They then adjusted the solution to a concentration of 2 M HCl and measured the absorbances at five wavelengths of the Pu(III) chloride spectrum. This spectrophotometric determination can also be applied to samples of plutonium metal dissolved in HCl.

Temer, D.J.; Walker, L.F.

1994-07-01

115

Robust Elevator Button Recognition in the Presence of Partial Occlusion and Clutter by Specular Reflections  

Microsoft Academic Search

This paper deals with vision-based elevator button recognition for a robot arm manipulating elevator buttons. The major difficulties in elevator button recognition are the presence of partial occlusion of the target objects and image clutter caused by specular reflection from mirrorlike walls inside the elevator. As a remedy for the elevator button recognition problem in highly complicated settings, we propose

Heon-Hui Kim; Dae-Jin Kim; Kwang-Hyun Park

2012-01-01

116

Plutonium stabilization and packaging system  

SciTech Connect

This document describes the functional design of the Plutonium Stabilization and Packaging System (Pu SPS). The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements of the DOE standard for safe storage of these materials for 50 years. This system will support completion of stabilization and packaging campaigns of the inventory at a number of affected sites before the year 2002. The package will be standard for all sites and will provide a minimum of two uncontaminated, organics free confinement barriers for the packaged material.

NONE

1996-05-01

117

From the first milligrams of plutonium to a nuclear warhead  

Microsoft Academic Search

The build-up of the work on the investigation and the development of the production of metallic plutonium, obtaining the first\\u000a milligram quantities of metallic plutonium in the laboratory, and the organization of industrial production are briefly described.

F. G. Reshetnikov

1999-01-01

118

Nondestructive assay methods for solids containing plutonium  

SciTech Connect

Specific nondestructive assay (NDA) methods, e.g. calorimetry, coincidence neutron counting, singles neutron counting, and gamma ray spectrometry, were studied to provide the Savannah River Plant with an NDA method to measure the plutonium content of solid scrap (slag and crucible) generated in the JB-Line plutonium metal production process. Results indicate that calorimetry can be used to measure the plutonium content to within about 3% in 4 to 6 hours by using computerized equilibrium sample power predictive models. Calorimetry results confirm that a bias exists in the present indirect measurement method used to estimate the plutonium content of slag and crucible. Singles neutron counting of slag and crucible can measure plutonium to only +-30%, but coincidence neutron counting methods improve measurement precision to better than +-10% in less than ten minutes. Only four portions of a single slag and crucible sample were assayed, and further study is recommended.

Macmurdo, K.W.; Gray, L.W.; Gibbs, A.

1984-06-01

119

Alternative technical summary report for direct disposition in deep boreholes: Direct disposal of plutonium metal/plutonium dioxide in compound canisters, Version 4.0. Fissile Materials Disposition Program  

SciTech Connect

This report summarizes and compares the Immobilized and Direct Beep Borehole Disposition Alternatives. The important design concepts, facility features and operational procedures are briefly described, and a discussion of the issues that affect the evaluation of each alternative against the programmatic assessment criteria that have been established for selecting the preferred alternatives for plutonium disposition.

Wijesinghe, A.M.

1996-08-23

120

EndoButton-assisted repair of distal biceps tendon ruptures.  

PubMed

This report represents a multifactorial investigation of a new technique in which a titanium EndoButton was used for repair of distal biceps tendon ruptures. Cadaveric cases were used to demonstrate the anatomic efficacy and safety of the procedure. Biomechanical testing was done to compare the fixation strength of traditional techniques with the EndoButton repair. Finally, clinical results of the repair were evaluated. In 15 fresh-frozen cadavers the mean distance of the button from the posterior interosseous nerve was 9.3 mm. Instron testing showed a mean pullout strength of 253 N for the Mitek G4 Superanchor, 177 N for a conventional bone bridge, and 584 N for the titanium button. The button was 3 times stronger than the bone bridge (P =.0001) and 2 times stronger than the Mitek anchor (P =.0007). Fourteen patients who had their tendons repaired by this technique were evaluated at a mean of 20 months postoperatively. BTE (Baltimore Therapeutic Equipment, Baltimore, MD) testing revealed recovery of 97% of flexion strength and 82% of supination strength. Patients were able to participate in an aggressive rehabilitation program and were able to regain strength and function rapidly, with satisfactory return to preinjury activities and occupations. This technique is safe, simple, and stronger than any currently available anchoring techniques and gives the surgeon a choice in bone preparation. By using a single anterior elbow approach, the development of synostosis associated with two incision techniques can be minimized. PMID:14564273

Greenberg, Jeffrey A; Fernandez, John J; Wang, Tongyu; Turner, Charles

2003-01-01

121

Button fixation technique for Achilles tendon reinsertion: a biomechanical study.  

PubMed

Chronic insertional tendinopathy of the Achilles tendon is a frequent and disabling pathologic entity. Operative treatment is indicated for patients for whom nonoperative management has failed. The treatment can consist of the complete detachment of the tendon insertion and extensive debridement. We biomechanically tested a new operative technique that uses buttons for fixation of the Achilles tendon insertion on the posterior calcaneal tuberosity and compared it with 2 standard bone anchor techniques. A total of 40 fresh-frozen cadaver specimens were used to compare 3 fixation techniques for reinserting the Achilles tendon: single row anchors, double row anchors, and buttons. The ultimate loads and failure mechanisms were recorded. The button assembly (median load 764 N, range 713 to 888) yielded a median fixation strength equal to 202% (range 137% to 251%) of that obtained with the double row anchors (median load 412 N, range 301 to 571) and 255% (range 213% to 317%) of that obtained with the single row anchors (median load 338 N, range 241 to 433N). The most common failure mechanisms were suture breakage with the buttons (55%) and pull out of the implant with the double row (70%) and single row (85%) anchors. The results of the present biomechanical cadaver study have shown that Achilles tendon reinsertion fixation using the button technique provides superior pull out strength than the bone anchors tested. PMID:24556479

Awogni, David; Chauvette, Guillaume; Lemieux, Marie-Line; Balg, Frdric; Langelier, ve; Allard, Jean-Pascal

2014-01-01

122

Method for dissolving delta-phase plutonium  

SciTech Connect

This patent describes a process for dissolving plutonium metal, the process. It comprises: heating a mixture of nitric acid, hydroxylammonium nitrate and potassium fluoride; and immersing the plutonium in the mixture; the nitric acid having a concentration of not more than 2M, the hydroxylammonium nitrate having a concentration of between approximately 0.33 M and 1 M, and the potassium fluoride having a concentration between approximately 0.05 M approximately 0.1 M.

Karraker, D.G.

1992-08-04

123

Method for dissolving delta-phase plutonium  

Microsoft Academic Search

A process for dissolving plutonium, and in particular, delta-phase plutonium. The process includes heating a mixture of nitric acid, hydroxylammonium nitrate and potassium fluoride (HAN) to a temperature between 40 and 70 C, then immersing the metal in the mixture. Preferably, the nitric acid has a concentration of not ore than 2M, the HAN approximately 0.66M, and the potassium fluoride

Karraker

1992-01-01

124

Method for dissolving delta-phase plutonium  

Microsoft Academic Search

A process for dissolving plutonium, and in particular, delta-phase plutonium. The process includes heating a mixture of nitric acid, hydroxylammonium nitrate (HAN) and potassium fluoride to a temperature between 40.degree. and 70.degree. C., then immersing the metal in the mixture. Preferably, the nitric acid has a concentration of not more than 2M, the HAN approximately 0.66M, and the potassium fluoride

Karraker; David G

1992-01-01

125

A Note on the Reaction of Hydrogen and Plutonium  

SciTech Connect

Plutonium hydride has many practical and experimental purposes. The reaction of plutonium and hydrogen has interesting characteristics, which will be explored in the following analysis. Plutonium is a radioactive actinide metal that emits alpha particles. When plutonium metal is exposed to air, the plutonium oxides and hydrides, and the volume increases. PuH{sub 2} and Pu{sub 2}O{sub 3} are the products. Hydrogen is a catalyst for plutonium's corrosion in air. The reaction can take place at room temperature because it is fairly insensitive to temperature. Plutonium hydride, or PuH{sub 2}, is black and metallic. After PuH{sub 2} is formed, it quickly flakes off and burns. The reaction of hydrogen and plutonium is described as pyrophoric because the product will spontaneously ignite when oxygen is present. This tendency must be considered in the storage of metal plutonium. The reaction is characterized as reversible and nonstoichiometric. The reaction goes as such: Pu + H{sub 2} {yields} PuH{sub 2}. When PuH{sub 2} is formed, the hydrogen/plutonium ratio is between 2 and 2.75 (approximately). As more hydrogen is added to the system, the ratio increases. When the ratio exceeds 2.75, PuH{sub 3} begins to form along with PuH{sub 2}. Once the ratio surpasses 2.9, only PuH{sub 3} remains. The volume of the plutonium sample increases because of the added hydrogen and the change in crystal structure which the sample undergoes. As more hydrogen is added to a system of metal plutonium, the crystal structure evolves. Plutonium has a crystal structure classified as monoclinic. A monoclinic crystal structure appears to be a rectangular prism. When plutonium reacts with hydrogen, the product PuH{sub 2}, becomes a fluorite structure. It can also be described as a face centered cubic structure. PuH{sub 3} forms a hexagonal crystal structure. As plutonium evolves from metal plutonium to plutonium hydride to plutonium trihydride, the crystal structure evolves from monoclinic to fluorite to hexagonal. This change in crystal structure as a result of adding hydrogen is a shared characteristic with other actinide elements. Americium is isostructural with plutonium because they both form cubic dihyrides and hexagonal trihydrides. Reacting hydrogen with plutonium has the practical application of separating plutonium from other materials that don't react as well with hydrogen. When plutonium is placed in a chamber where there is very little oxygen, it can react with hydrogen without igniting. The hydrogen plutonium reaction can then be reversed, thus regaining the separated plutonium. Another application of this reaction is that it can be used to predict how plutonium reacts with other substances. Deuterium and tritium are two isotopes of hydrogen that are of interest. They are known to react likewise to hydrogen because they have similar properties. The reaction of plutonium and isotopes of hydrogen can prove to be very informative.

Noone, Bailey C [Los Alamos National Laboratory

2012-08-15

126

Dehydration of plutonium or neptunium trichloride hydrate  

DOEpatents

A process is described for preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride.

Foropoulos, J. Jr.; Avens, L.R.; Trujillo, E.A.

1992-03-24

127

PLUTONIUM ELECTROREFINING  

Microsoft Academic Search

The preduction of large amounts of high purity plutoninm metal by bomb ; reduction techniques is a difficult and timeconsuming task. Electrorefining ; processes were developed that provide good yields of the pure metal in- a compact ; form of high density on either the 500-gram or 3.5-kg scale. Because of the ; operational simplicity, the method is also ideally

L. J. Mullins; J. A. Leary; A. N. Morgan; W. J. Maraman

1963-01-01

128

Preparation of fused chloride salts for use in pyrochemical plutonium recovery operations at Los Alamos  

SciTech Connect

The Plutonium Metal Technology Group at Los Alamos routinely uses pyrochemical processes to produce and purify plutonium from impure sources. The basic processes (metal production, metal purification, and residue treatment) involve controlling oxidation and reduction reactions between plutonium and its compounds in molten salts. Current production methods are described, as well as traditional approaches and recent developments in the preparation of solvent salts for electrorefining, molten salt extraction, lean metal (pyroredox) purification, and direct oxide reduction.

Fife, K.W.; Bowersox, D.F.; Christensen, D.C.; Williams, J.D.

1986-07-01

129

Plutonium Immobilization Project -- Can loading  

SciTech Connect

The Savannah River Site (SRS) will immobilize excess plutonium in the proposed Plutonium Immobilization Project (PIP). The PIP scope includes unloading transportation containers, preparing the feed streams, converting the metal feed to an oxide, adding the ceramic precursors, pressing the pucks, inspecting pucks, and sintering pucks. The PIP scope also includes loading the pucks into metal cans, sealing the cans, inspecting the cans, loading the cans into magazines, loading magazines into Defense Waste Processing Facility (DWPF) canisters, and transporting the canisters to the DWPF. The DWPF fills the canister with a mixture of high level radioactive waste and glass for permanent storage. Due to the radiation, remote equipment must perform PIP operations in a contained environment.

Kriikku, E.

2000-01-18

130

Plutonium oxide dissolution  

SciTech Connect

Several processing options for dissolving plutonium oxide (PuO{sub 2}) from high-fired materials have been studied. The scoping studies performed on these options were focused on PuO{sub 2} typically generated by burning plutonium metal and PuO{sub 2} produced during incineration of alpha contaminated waste. At least two processing options remain applicable for dissolving high-fired PuO{sub 2} in canyon dissolvers. The options involve solid solution formation of PuO{sub 2} With uranium oxide (UO{sub 2}) and alloying incinerator ash with aluminum. An oxidative dissolution process involving nitric acid solutions containing a strong oxidizing agent, such as cerium (IV), was neither proven nor rejected. This uncertainty was due to difficulty in regenerating cerium (IV) ions during dissolution. However, recent work on silver-catalyzed dissolution of PuO{sub 2} with persulfate has demonstrated that persulfate ions regenerate silver (II). Use of persulfate to regenerate cerium (IV) or bismuth (V) ions during dissolution of PuO{sub 2} materials may warrant further study.

Gray, J.H.

1992-09-30

131

Plutonium oxide dissolution  

SciTech Connect

Several processing options for dissolving plutonium oxide (PuO[sub 2]) from high-fired materials have been studied. The scoping studies performed on these options were focused on PuO[sub 2] typically generated by burning plutonium metal and PuO[sub 2] produced during incineration of alpha contaminated waste. At least two processing options remain applicable for dissolving high-fired PuO[sub 2] in canyon dissolvers. The options involve solid solution formation of PuO[sub 2] With uranium oxide (UO[sub 2]) and alloying incinerator ash with aluminum. An oxidative dissolution process involving nitric acid solutions containing a strong oxidizing agent, such as cerium (IV), was neither proven nor rejected. This uncertainty was due to difficulty in regenerating cerium (IV) ions during dissolution. However, recent work on silver-catalyzed dissolution of PuO[sub 2] with persulfate has demonstrated that persulfate ions regenerate silver (II). Use of persulfate to regenerate cerium (IV) or bismuth (V) ions during dissolution of PuO[sub 2] materials may warrant further study.

Gray, J.H.

1992-09-30

132

Spiked Alloy Production for Accelerated Aging of Plutonium  

Microsoft Academic Search

The accelerated aging effects on weapons grade plutonium alloys are being studied using ²³⁸Pu-enriched plutonium metal to increase the rate of formation of defect structures. Pyrochemical processing methods have been used to produce two ²³⁸Pu-spiked plutonium alloys with nominal compositions of 7.5 wt% ²³⁸Pu. Processes used in the preparation of the alloys include direct oxide reduction of PuO with calcium

P A Wilk; J A McNeese; K E Dodson; W L Williams; O H Krikorian; M S Blau; J E Schmitz; F G Bajao; D A Mew; T E Matz; R A Torres; D M Holck; K J Moody; J M Kenneally

2009-01-01

133

CLOSEOUT REPORT FOR HYBRID SULFUR PRESSURIZED BUTTON CELL TEST FACILITY  

Microsoft Academic Search

This document is the Close-Out Report for design and partial fabrication of the Pressurized Button Cell Test Facility at Savannah River National Laboratory (SRNL). This facility was planned to help develop the sulfur dioxide depolarized electrolyzer (SDE) that is a key component of the Hybrid Sulfur Cycle for generating hydrogen. The purpose of this report is to provide as much

Steeper

2010-01-01

134

Pyrochemical processing of plutonium. Technology review report  

SciTech Connect

Non-aqueous processes are now in routine use for direct conversion of plutonium oxide to metal, molten salt extraction of americium, and purification of impure metals by electrorefining. These processes are carried out at elevated temperatures in either refractory metal crucibles or magnesium-oxide ceramics in batch-mode operation. Direct oxide reduction is performed in units up to 700 gram PuO/sub 2/ batch size with molten calcium metal as the reductant and calcium chloride as the reaction flux. Americium metal is removed from plutonium metal by salt extraction with molten magnesium chloride. Electrorefining is used to isolate impurities from molten plutonium by molten salt ion transport in a controlled potential oxidation-reduction cell. Such cells can purify five or more kilograms of impure metal per 5-day electrorefining cycle. The product metal obtained is typically > 99.9% pure, starting from impure feeds. Metal scrap and crucible skulls are recovered by hydriding of the metallic residues and recovered either as impure metal or oxide feeds.

Coops, M.S.; Knighton, J.B.; Mullins, L.J.

1982-09-08

135

Radioactive solid waste handling at the Plutonium Finishing Plant  

Microsoft Academic Search

The Plutonium Finishing Plant is located on the Hanford Site in the southeast section of Washington State. It has been in operation since 1949. The mission of the plant is to produce plutonium metal and related products for the US Department of Energy defense programs. Solid transuranic, low-level, and mixed wastes are generated at the plant, the radioactive contaminants in

Manthos

1990-01-01

136

Field comparison of three inhalable samplers (IOM, PGP-GSP 3.5 and Button) for welding fumes.  

PubMed

Inhalable sampler efficiency depends on the aerodynamic size of the airborne particles to be sampled and the wind speed. The aim of this study was to compare the behaviour of three personal inhalable samplers for welding fumes generated by Manual Metal Arc (MMA) and Metal Active Gas (MAG) processes. The selected samplers were the ones available in Spain when the study began: IOM, PGP-GSP 3.5 (GSP) and Button. Sampling was carried out in a welding training center that provided a homogeneous workplace environment. The static sampling assembly used allowed the placement of 12 samplers and 2 cascade impactors simultaneously. 183 samples were collected throughout 2009 and 2010. The range of welding fumes' mass concentrations was from 2 mg m(-3) to 5 mg m(-3). The pooled variation coefficients for the three inhalable samplers were less than or equal to 3.0%. Welding particle size distribution was characterized by a bimodal log-normal distribution, with MMADs of 0.7 ?m and 8.2 ?m. For these welding aerosols, the Button and the GSP samplers showed a similar performance (P = 0.598). The mean mass concentration ratio was 1.00 0.01. The IOM sampler showed a different performance (P < 0.001). The mean mass concentration ratios were 0.90 0.01 for Button/IOM and 0.92 0.02 for GSP/IOM. This information is useful to consider the measurements accomplished by the IOM, GSP or Button samplers together, in order to assess the exposure at workplaces over time or to study exposure levels in a specific industrial activity, as welding operations. PMID:22037834

Zugasti, Agurtzane; Montes, Natividad; Rojo, Jos M; Quintana, M Jos

2012-02-01

137

75 FR 41850 - Amended Notice of Intent to Modify the Scope of the Surplus Plutonium Disposition Supplemental...  

Federal Register 2010, 2011, 2012, 2013

...Supplemental EIS to refine the quantity and types of surplus weapons- usable plutonium material, evaluate additional...SRS) to, among other things, disassemble nuclear weapons pits (a weapons component) and convert the plutonium metal to...

2010-07-19

138

Alpha-plutonium's Grneisen parameter.  

PubMed

Reported Grneisen parameters ? of alpha-plutonium range from 3.0 to 9.6, which is remarkable because typical Grneisen parameter uncertainty seldom exceeds 0.5. Our six new estimates obtained by different methods range from 3.2 to 9.6. The new estimates arise from Grneisen's rule, from Einstein model and Debye model fits to low-temperature ?V/V, from the bulk modulus temperature dependence, from the zero-point-energy contribution to the bulk modulus, and from another Grneisen relationship whereby ? is estimated from only the bulk modulus and volume changes with temperature (or pressure). We disregard several high estimates because of the itinerant-localized 5f-electron changes during temperature changes and pressure changes. Considering all these estimates, for alpha-plutonium, we recommend ? = 3.7 0.4, slightly high compared with values for all elemental metals. PMID:21386421

Ledbetter, Hassel; Lawson, Andrew; Migliori, Albert

2010-04-28

139

Mixed Ligand Chelate Therapy for Plutonium and Toxic Metals from Energy Power Production. Progress Report, October 15, 1978-October 14, 1979.  

National Technical Information Service (NTIS)

It is shown that a mixed ligand chelate (MLC) is superior to that of the primary chelate alone for the decorporation of monomeric plutonium. Thus, EDTA plus Tiron reduces the level of Pu in the skeleton to about 40% less than that of EDTA alone when treat...

J. Schubert

1979-01-01

140

Plasticity of Button-Like Junctions in the Endothelium of Airway Lymphatics in Development and Inflammation  

PubMed Central

Endothelial cells of initial lymphatics have discontinuous button-like junctions (buttons), unlike continuous zipper-like junctions (zippers) of collecting lymphatics and blood vessels. Buttons are thought to act as primary valves for fluid and cell entry into lymphatics. To learn when and how buttons form during development and whether they change in disease, we examined the appearance of buttons in mouse embryos and their plasticity in sustained inflammation. We found that endothelial cells of lymph sacs at embryonic day (E)12.5 and tracheal lymphatics at E16.5 were joined by zippers, not buttons. However, zippers in initial lymphatics decreased rapidly just before birth, as buttons appeared. The proportion of buttons increased from only 6% at E17.5 and 12% at E18.5 to 35% at birth, 50% at postnatal day (P)7, 90% at P28, and 100% at P70. In inflammation, zippers replaced buttons in airway lymphatics at 14 and 28 days after Mycoplasma pulmonis infection of the respiratory tract. The change in lymphatic junctions was reversed by dexamethasone but not by inhibition of vascular endothelial growth factor receptor-3 signaling by antibody mF4-31C1. Dexamethasone also promoted button formation during early postnatal development through a direct effect involving glucocorticoid receptor phosphorylation in lymphatic endothelial cells. These findings demonstrate the plasticity of intercellular junctions in lymphatics during development and inflammation and show that button formation can be promoted by glucocorticoid receptor signaling in lymphatic endothelial cells.

Yao, Li-Chin; Baluk, Peter; Srinivasan, R. Sathish; Oliver, Guillermo; McDonald, Donald M.

2012-01-01

141

Aspiration pneumonia and esophagotracheal fistula secondary to button battery ingestion  

Microsoft Academic Search

We report a case of acute bronchopneumonia and esophagotracheal fistula caused by a swallowed button battery in a 3-year-old\\u000a girl. It was unclear exactly how long the battery had been trapped in the esophagus. The patient had undergone a tonsillectomy\\u000a and adenoidectomy 3weeks before the battery was finally exposed on an X-ray film. She refused to eat solid food after

Delecia R. LaFranceJames; James G. Traylor; Long Jin

2011-01-01

142

Optimization of four-button BPM configuration for small-gap beam chambers.  

SciTech Connect

Configuration of four-button beam position monitors (BPMs) employed in small-gap beam chambers is optimized from 2-D electrostatic calculation of induced charges on the button electrodes. The calculation shows that for a narrow chamber of width/height (2w/2h) >> 1, over 90% of the induced charges are distributed within a distance of 2h from the charged beam position in the direction of the chamber width. The most efficient configuration for a four-button BPM is to have a button diameter of (2-2.5) h with no button offset from the beam. The button sensitivities in this case are maximized and have good linearity with respect to the beam positions in the horizontal and vertical directions. The button sensitivities and beam coefficients are also calculated for the 8-mm and 5-mm chambers used in the insertion device straight sections of the 7-GeV Advanced Photon Source.

Kim, S. H.

1998-05-27

143

Long Head of the Biceps Tenodesis With Cortical Button Technique  

PubMed Central

There are several options for long head of the biceps (LHB) tenodesis and yet no standard of care. This technical note describes a cortical button technique for LHB tenodesis. We have taken the BicepsButton (Arthrex, Naples, FL) for distal biceps acute primary repair and applied it to the LHB. The biceps tenotomy is completed arthroscopically, and a standard subpectoral approach is used. The biceps is pulled out and whipstitched starting at the myotendinous junction and moving proximally. The humerus is drilled in a unicortical manner slightly larger than the tendon, and the button is passed through a small hole to the posterior cortex. A suture through the tendon provides additional fixation strength to the construct. This is an elegant and effective method of tenodesis that uses a smaller-diameter drill hole in the humerus. The goals of LHB tenodesis are to restore function, reduce pain, and improve cosmesis. This technique offers comparable function and cosmesis with the potential advantage of improving postoperative pain outcomes and lowering the rate of complications.

Snir, Nimrod; Hamula, Mathew; Wolfson, Theodore; Laible, Catherine; Sherman, Orrin

2013-01-01

144

Method for dissolving delta-phase plutonium  

DOEpatents

A process for dissolving plutonium, and in particular, delta-phase plutonium. The process includes heating a mixture of nitric acid, hydroxylammonium nitrate (HAN) and potassium fluoride to a temperature between 40.degree. and 70.degree. C., then immersing the metal in the mixture. Preferably, the nitric acid has a concentration of not more than 2M, the HAN approximately 0.66M, and the potassium fluoride 0.1M. Additionally, a small amount of sulfamic acid, such as 0.1M can be added to assure stability of the HAN in the presence of nitric acid. The oxide layer that forms on plutonium metal may be removed with a non-oxidizing acid as a pre-treatment step.

Karraker, David G. (1600 Sherwood Pl., SE., Aiken, SC 29801)

1992-01-01

145

Probing phonons in plutonium  

SciTech Connect

Plutonium (Pu) is well known to have complex and unique physico-chemical properties. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} {yields} {delta}{prime} {yields} {var_epsilon} {yields} liquid. Unalloyed Pu melts at a relatively low temperature {approx}640 C to yield a higher density liquid than that of the solid from which it melts, (Figure 1). Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxic materials. However, both technical and and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimenta l data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter -atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single -grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc d-Pu-Ga alloy using the high resolution inelastic x-ray scattering (HRIXS) capability on ID28. The complete PDCs for an fcc Pu-0.6 wt% Ga alloy are plotted in Figure 2, and represent the first full set of phonon dispersions ever determined for any Pu-bearing materials. The solid curves (red) are calculated using a standard Born-von Karman (B-vK) force constant model. An adequate fit to the experimental data is obtained if interactions up to the fourth-nearest neighbours are included. The dashed curves (blue) are recent dynamical mean field theory (DMFT) results by Dai et al. The elastic moduli calculated from the slopes of the experimental phonon dispersion curves near the {Lambda} point are: C{sub 11} = 35.3 {+-} 1.4 GPa, C{sub 12} = 25.5 {+-} 1.5 GPa and C{sub 44} = 30.53 {+-} 1.1 GPa. These values are in excellent agreement with those of the only other measurement on a similar alloy (1 wt % Ga) using ultrasonic techniques as well as with those recently calculated from a combined DMFT and linear response theory for pure {delta}-Pu. Several unusual features, including a large elastic anisotropy, a small shear elastic modulus C{prime}, a Kohn-like anomaly in the T{sub 1}[011] branch, and a pronounced softening of the [111] transverse modes are found. These features can be related to the phase transitions of plutonium and to strong coupling between the lattice structure and the 5f valence instabilities. The HRIXS results also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for {delta}-plutonium. The experimental-theoretical agreements shown in Figure 2 in terms of a low shear elastic modulus C{prime}, a Kohn-like anomaly in the T{sub 1}[011] branch, and a large softening of the T[111] modes give credence to the DMFT approach for the theoretical treatment of 5f electron systems of which {delta}-Pu is a classic example. However, quantitative differences remain. These are the position of the Kohn anomaly along the T{sub 1}[011] branch, the energy maximum of the T[111] mode s

Wong, Joe; Krisch, M.; Farber, D.; Occelli, F.; Schwartz, A.; Chiang, T.C.; Wall, M.; Boro, C.; Xu, Ruqing (UIUC); (LLNL); (ESRF); (LANL)

2010-11-16

146

Redox speciation of plutonium  

Microsoft Academic Search

Knowledge of the oxidation state distribution of plutonium in natural waters is necessary in modeling its behavior in environmental systems. The redox speciation of plutonium is complicated by such effects as hydrolysis, complexation, disproportionation, solubility, and redox interchange reactions. The insolubility of Pu(OH)4 is often the limiting factor of the net solubility of plutonium in oxic natural waters where Pu(V)O

G. R. Choppin; A. H. Bond; P. M. Hromadka

1997-01-01

147

Trawsfynydd Plutonium Estimate  

SciTech Connect

Report serves to document an estimate of the cumulative plutonium production of the Trawsfynydd Unit II reactor (Traws II) over its operating life made using the Graphite Isotope Ratio Method (GIRM). The estimate of the plutonium production in Traws II provided in this report has been generated under blind conditions. In other words, the estimate ofthe Traws II plutonium production has been generated without the knowledge of the plutonium production declared by the reactor operator (Nuclear Electric). The objective of this report is to demonstrate that the GIRM can be employed to serve as an accurate tool to verify weapons materials production declarations.

Reid, Bruce D.; Gerlach, David C.; Heasler, Patrick G.; Livingston, J.

2009-11-20

148

Bacteria and plutonium in marine environments  

Microsoft Academic Search

Microbes are important in geochemical cycling of many elements. Recent reports emphasize biogenous particulates and bacterial exometabolites as controlling oceanic distribution of plutonium. Bacteria perform oxidation\\/reduction reactions on metals such as mercury, nickel, lead, copper, and cadmium. Redox transformations or uptake of Pu by marine bacteria may well proceed by similar mechanisms. Profiles of water samples and sediment cores were

A. E. Carey; V. T. Bowen

1978-01-01

149

Excess Weapons Plutonium Disposition: Plutonium Packaging, Storage and Transportation and Waste Treatment, Storage and Disposal Activities  

SciTech Connect

A fifth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held February 16-18, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 46 Russian attendees from 14 different Russian organizations and six non-Russian attendees, four from the US and two from France. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C.

Jardine, L J; Borisov, G B

2004-07-21

150

Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options  

SciTech Connect

The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

Brownson, D.A.; Hanson, D.J.; Blackman, H.S. [and others

1993-06-01

151

Plutonium: The Density-Functional-Theory Point of View.  

National Technical Information Service (NTIS)

Density-functional theory (DFT) is a remarkably successful tool for describing many metals throughout the Periodic Table. Here we present the results of this theory when applied to plutonium metal, the perhaps most complex and difficult-to-model metal of ...

A. Landa P. Soderlind

2008-01-01

152

Electrodeposition of Plutonium  

SciTech Connect

Equipment for electrolytic deposition of plutonium from molten salt solutions was designed and built and was tested with cerium as a stand-in for plutonium. The electrolysis cell is a graphite crucible that serves as the anode; the cathode is a molybdenum rod. This paper discusses results of that test.

Kelley, H.M.

2002-10-30

153

Plutonium roundtable discussion  

SciTech Connect

The roundtable discussion began with remarks by the chairman who pointed out the complicated nature of plutonium chemistry. Judging from the papers presented at this symposium, he noticed a pattern which indicated to him the result of diminished funding for investigation of basic plutonium chemistry and funding focused on certain problem areas. Dr. G.L. silver pointed to plutonium chemists' erroneous use of a simplified summary equation involving the disproportionation of Pu(EV) and their each of appreciation of alpha coefficients. To his appreciation of alpha coefficients. To his charges, Dr. J.T. Bell spoke in defense of the chemists. This discussion was followed by W.W. Schulz's comments on the need for experimental work to determine solubility data for plutonium in its various oxidation states under geologic repository conditions. Discussion then turned to plutonium pyrachemical process with Dana C. Christensen as the main speaker. This paper presents edited versions of participants' written version. (ATT)

Penneman, R.A.

1982-01-01

154

Chemical species of plutonium in Hanford radioactive tank waste  

SciTech Connect

Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other potential complexants. The sodium nitrate and sodium phosphate salts that form most of the salt cake layers have little interaction with plutonium in the wastes and contain relatively small plutonium concentrations. For these reasons the authors consider plutonium species in the sludges and supernate solutions only. The low concentrations of plutonium in waste tank supernate solutions and in the solid sludges prevent identification of chemical species of plutonium by ordinary analytical techniques. Spectrophotometric measurements are not sensitive enough to identify plutons oxidation states or complexes in these waste solutions. Identification of solid phases containing plutonium in sludge solids by x-ray diffraction or by microscopic techniques would be extremely difficult. Because of these technical problems, plutonium speciation was extrapolated from known behavior observed in laboratory studies of synthetic waste or of more chemically simple systems.

Barney, G.S.

1997-10-22

155

Review of major plutonium pyrochemical technology  

SciTech Connect

The past twenty years have seen significant growth in the development and application of pyrochemical technology for processing of plutonium. For particular feedstocks and specific applications, non-aqueous high-temperature processes offer key advantages over conventional hydrometallurgical systems. Major processes in use today include: (1) direct oxide reduction for conversion of PuO/sub 2/ to metal, (2) molten salt extraction for americium removal from plutonium, (3) molten salt electrorefining for Pu purification, and (4) hydriding to remove plutonium from host substrates. This paper reviews current major pyrochemical processes from the classical calcination-hydrofluorination-bomb reduction sequence through new techniques under development. Each process is presented and brief descriptions of production equipment are given. 47 references, 5 figures.

Moser, W.S.; Navratil, J.D.

1983-01-01

156

F25 IMPROVEMENTS IN XRF SPECIMEN PREPARATION USING THE DRIED RESIDUE METHOD: GALLIUM IN PLUTONIUM  

Microsoft Academic Search

The concentration of gallium in plutonium metal is critical in manufacturing nuclear weapons, and XRF is a useful method for quantifying the gallium content. A dried residue specimen preparation approach was developed recently to quantify gallium in plutonium metal.1-3 Using this method solids are analyzed, which is safer than the established process of handling radioactive aqueous solutions. The specimen preparation

Christopher G. Worley; Lisa P. Colletti

2003-01-01

157

Prototype fast neutron counter for the assay of impure plutonium  

SciTech Connect

A fast coincident neutron counter using liquid scintillators and gamma-ray/neutron pulse-shape discrimination has been constructed for the analysis of plutonium samples with unknown self-multiplication and (..cap alpha..,n) production. The counter was used to measure plutonium-bearing materials that cover a range of masses and (..cap alpha..,n) reaction rates of importance to the safeguards community. Measured values of the /sup 240/Pu effective mass differed, on average, from their declared values by 0.4% for plutonium oxides and by -2.2% for metal and MgO-loaded samples. Poorer results were obtained for materials with large (..cap alpha..,n) reaction rates and low self-multiplication such as plutonium ash and plutonium fluoride.

Wachter, J.R.; Adams, E.L.; Ensslin, N.

1987-01-01

158

A novel transosseous button technique for rotator cuff repair.  

PubMed

In an attempt to maximize stability by improving the lateral footprint compression of our repair in rotator cuff tears, we have been using a rotator cuff button (Arthrex, Naples, FL) passed through a transosseous tunnel as an anchor for our transosseous sutures. Our new innovation is to pass a rotator cuff button fully loaded with 4 strands around the central post, with 2 leading strands and 2 trailing strands on either end, through our transosseous tunnel. In this way, we can use the 4 central strands through our tunnel to obtain 2 good mattress sutures as a primary repair and the peripheral 4 strands passed around the lateral humerus as over sew mattress sutures to obtain good compression of the lateral tendon and so improve the footprint area. A double row equivalent is achieved. This technique has a good primary hold in the form of a device with proven history and avoids multiple anchors in the lateral humerus. Because it uses only a single fixation device, it is also significantly more economical. Theoretical risks to the axillary nerve or with osteoporosis have not been seen in practice. Tensioning the repair with suture passage through transosseous tunnels is readily achieved. PMID:18760216

Fox, Michael P; Auffarth, Alexander; Tauber, Mark; Hartmann, Andreas; Resch, Herbert

2008-09-01

159

Long-term plutonium storage: Design concepts  

SciTech Connect

An important part of the Department of Energy (DOE) Weapons Complex Reconfiguration (WCR) Program is the development of facilities for long-term storage of plutonium. The WCR design goals are to provide storage for metals, oxides, pits, and fuel-grade plutonium, including material being held as part of the Strategic Reserve and excess material. Major activities associated with plutonium storage are sorting the plutonium inventory, material handling and storage support, shipping and receiving, and surveillance of material in storage for both safety evaluations and safeguards and security. A variety of methods for plutonium storage have been used, both within the DOE weapons complex and by external organizations. This paper discusses the advantages and disadvantages of proposed storage concepts based upon functional criteria. The concepts discussed include floor wells, vertical and horizontal sleeves, warehouse storage on vertical racks, and modular storage units. Issues/factors considered in determining a preferred design include operational efficiency, maintenance and repair, environmental impact, radiation and criticality safety, safeguards and security, heat removal, waste minimization, international inspection requirements, and construction and operational costs.

Wilkey, D.D.; Wood, W.T. [Los Alamos National Lab., NM (United States); Guenther, C.D. [Fluor Daniel, Inc., Irvine, CA (United States)

1994-08-01

160

CLOSEOUT REPORT FOR HYBRID SULFUR PRESSURIZED BUTTON CELL TEST FACILITY  

SciTech Connect

This document is the Close-Out Report for design and partial fabrication of the Pressurized Button Cell Test Facility at Savannah River National Laboratory (SRNL). This facility was planned to help develop the sulfur dioxide depolarized electrolyzer (SDE) that is a key component of the Hybrid Sulfur Cycle for generating hydrogen. The purpose of this report is to provide as much information as possible in case the decision is made to resume research. This report satisfies DOE Milestone M3GSR10VH030107.0. The HyS Cycle is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by watersplitting. The HyS Cycle utilizes the high temperature (>800 C) thermal decomposition of sulfuric acid to produce oxygen and regenerate sulfur dioxide. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Low cell voltage is essential for both high thermodynamic efficiency and low hydrogen cost. Sulfur dioxide is oxidized at the anode, producing sulfuric acid that is sent to the high temperature acid decomposition portion of the cycle. Sulfur dioxide from the decomposer is cycled back to electrolyzers. The electrolyzer cell uses the membrane electrode assembly (MEA) concept. Anode and cathode are formed by spraying a catalyst, typically platinized carbon, on both sides of a Proton Exchange Membrane (PEM). SRNL has been testing SDEs for several years including an atmospheric pressure Button Cell electrolyzer (2 cm{sup 2} active area) and an elevated temperature/pressure Single Cell electrolyzer (54.8 cm{sup 2} active area). SRNL tested 37 MEAs in the Single Cell electrolyzer facility from June 2005 until June 2009, when funding was discontinued. An important result of the final months of testing was the development of a method that prevents the formation of a sulfur layer previously observed in MEAs used in the Hybrid Sulfur Cycle electrolyzer. This result is very important because the sulfur layer increased cell voltage and eventually destroyed the MEA that is the heart of the cell. Steimke and Steeper [2005, 2006, 2007, 2008] reported on testing in the Single Cell Electrolyzer test facility in several periodic reports. Steimke et. al [2010] issued a final facility close-out report summarizing all the testing in the Single Cell Electrolyzer test facility. During early tests, significant deterioration of the membrane occurred in 10 hours or less; the latest tests ran for at least 200 hours with no sign of deterioration. Ironically, the success with the Single Cell electrolyzer meant that it became dedicated to long runs and not available for quick membrane evaluations. Early in this research period, the ambient pressure Button Cell Electrolyzer test facility was constructed to quickly evaluate membrane materials. Its small size allowed testing of newly developed membranes that typically were not available in sizes large enough to test in the Single Cell electrolyzer. The most promising membranes were tested in the Single Cell Electrolyzer as soon as sufficient large membranes could be obtained. However, since the concentration of SO{sub 2} gas in sulfuric acid decreases rapidly with increasing temperature, the ambient pressure Button Cell was no longer able to achieve the operating conditions needed to evaluate the newer improved high temperature membranes. Significantly higher pressure operation was required to force SO{sub 2} into the sulfuric acid to obtain meaningful concentrations at increased temperatures. A high pressure (200 psig), high temperature (120 C) Button Cell was designed and partially fabricated just before funding was discontinued in June 2009. SRNL completed the majority of the design of the test facility, including preparation of a process and instrument drawing (P&ID) and preliminary designs for the major components. SRNL intended to complete the designs and procu

Steeper, T.

2010-09-15

161

Plutonium radiation surrogate  

DOEpatents

A self-contained source of gamma-ray and neutron radiation suitable for use as a radiation surrogate for weapons-grade plutonium is described. The source generates a radiation spectrum similar to that of weapons-grade plutonium at 5% energy resolution between 59 and 2614 keV, but contains no special nuclear material and emits little .alpha.-particle radiation. The weapons-grade plutonium radiation surrogate also emits neutrons having fluxes commensurate with the gamma-radiation intensities employed.

Frank, Michael I. (Dublin, CA)

2010-02-02

162

Plutonium recovery from spent reactor fuel by uranium displacement  

DOEpatents

A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

Ackerman, John P. (Downers Grove, IL)

1992-01-01

163

Plutonium recovery from spent reactor fuel by uranium displacement  

DOEpatents

A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

Ackerman, J.P.

1992-03-17

164

Plutonium: Requiem or reprieve  

SciTech Connect

Many scientific discoveries have had profound effects on humanity and its future. However, the discovery of fissionable characteristics of a man-made element, plutonium, discovered in 1941 by Glenn Seaborg and associates, has probably had the greatest impact on world affairs. Although about 20 new elements have been synthesized since 1940, element 94 unarguably had the most dramatic impact when it was introduced to the world as the core of the nuclear bomb dropped on Nagasaki. Ever since, large quantities of this element have been produced, and it has had a major role in maintaining peace during the past 50 years. in addition, the rapid spread of nuclear power technology worldwide contributed to major growth in the production of plutonium as a by-product. This article discusses the following issues related to plutonium: plutonium from Nuclear Power Generation; environmental safety and health issues; health effects; safeguards issues; extended storage; disposal options.

Pillay, K.K.S. [Los Alamos National Laboratory, Berkeley, CA (United States)

1996-01-01

165

Severe tissue destruction in the ear caused by alkaline button batteries.  

PubMed Central

Button batteries spontaneously leak corrosive electrolyte solution on exposure to moisture. Tissue in contact with such solution will undergo liquefaction necrosis. Three cases of skin, bone and tympanic membrane necrosis caused by a leaking button battery lodged in the external auditory meatus are described. Images Figure 1

Premachandra, D. J.; McRae, D.

1990-01-01

166

Performance of the Button Personal Inhalable Sampler for the measurement of outdoor aeroallergens  

Microsoft Academic Search

No personal aerosol sampler has been evaluated for monitoring aeroallergens in outdoor field conditions and compared to conventional stationary aerobiological samplers. Recently developed Button Personal Inhalable Aerosol Sampler has demonstrated high sampling efficiency for non-biological particles and low sensitivity to the wind direction and velocity. The aim of the present study was to evaluate the Button Sampler for the measurement

Atin Adhikari; Dainius Martuzevicius; Tiina Reponen; Sergey A. Grinshpun; Seung-Hyun Cho; Satheesh K. Sivasubramani; Wei Zhong; Linda Levin; Anna L. Kelley; Harry G. St. Clair; Grace LeMasters

2003-01-01

167

Disposition of separated plutonium  

Microsoft Academic Search

In the immediate term, plutonium, recovered from dismantled nuclear warheads and from civil reprocessing plants, will have to be stored securely, and under international safeguards if possible. In the intermediate term, the principal alternatives for disposition of this plutonium are: irradiation in mixed?oxide (MOX) fuel assemblies in commercial unmodified light?water reactors or in specially adapted light?water reactors capable of operating

Frans Berkhout; Anatoli Diakov; Harold Feiveson; Helen Hunt; Edwin Lyman; Marvin Miller; Frank von Hippel

1993-01-01

168

Plutonium: The disposal decision  

Microsoft Academic Search

Energy`s dual-track disposition strategy was driven by three principal assumptions: (1) Surplus plutonium should not be left indefinitely in storage because it is too easy to reuse it in weapons (the {open_quotes}breakout{close_quotes} scenario) and too vulnerable to theft, particularly in Russia where inventory controls are weak. (2) Given the fact that the world is already awash in civil plutonium (upwards

1997-01-01

169

Wearing and using personal emergency respone system buttons.  

PubMed

Frail older adults living alone are at risk for falling and not being found. A personal emergency response system (PERS) is a technological adjunct to home care for such individuals, but little is known of their experiences with the PERS. The experiences of seven frail women (ages 83 to 96) who lived alone were studied using a descriptive phenomenological method. The key phenomenon was temporizing about the PERS button, and the two component phenomena were deciding when to wear it and deciding whether to use it. Findings were contrasted to the existing literature about wearing and using the PERS, which has been focused on compliance. The variations in the experiences of the women in this small sample warrant further research and individualized interventions to enhance consistent use of the PERS by frail older adults. PMID:16262088

Porter, Eileen J

2005-10-01

170

Non-destructive measurement of solid plutonium waste at Los Alamos National Laboratory  

SciTech Connect

Los Alamos National Laboratory (LANL) is a national defense facility involved in the recovery and processing of plutonium. Wastes and residues are routinely generated here from many stages of plutonium metal fabrication and from pyrochemical and aqueous processing of plutonium scrap. Materials which require measurement include plutonium oxide from burned residues, Pu-bearing salts from production/reduction and metal purification processes, impure plutonium metal, metal reduction slags, ash, undissolved oxide heels, ceramics, and auxiliary implements such as HEPA filters, plastics, and cleaning rags. Nondestructive assays (NDA) of transuranic (TRU) waste from these materials are often troublesome and may pose formidable challenges to the measurement specialist. This document discusses these waste measurement issues at LANL. 25 figs., 2 tabs.

Wachter, J.R. (Los Alamos National Lab., NM (USA))

1989-01-01

171

Recovery of plutonium from molten salt extraction residues  

SciTech Connect

Savannah River Laboratory (SRL), Savannah River Plant (SRP), and Rocky Flats Plant (RFP) are jointly developing a process to recover plutonium from molten salt extraction residues. These NaCl, KCl, MgCl/sub 2/ residues, which are generated in the pyrochemical extraction of /sup 241/Am from aged plutonium metal, contain up to 25 wt % dissolved PUCl/sub 3/ and up to 2 wt % AmCl/sub 3/. The objective is to develop a process to convert these residues to plutonium metal product and discardable waste. The first step of the conceptual process is to convert the actinides to a heterogenous scrub alloy with aluminum and magnesium. This step, performed at RFP, effectively separates the actinides from the bulk of the chloride. This scrub alloy will then be dissolved in a HNO/sub 3/-HF solution at SRP. Residual chloride will be removed by precipitation with Hg/sub 2/(NO/sub 3/)/sub 2/ followed by centrifugation. Plutonium and americium will be separated using the Purex solvent extraction process. The /sup 241/Am will be diverted to the solvent extraction waste stream where it can either be discarded to the waste farm or recovered. The plutonium will be finished via PuF/sub 3/ precipitation, oxidation to a mixture of PUF/sub 4/ and PuO/sub 2/, followed by reduction to plutonium metal with calcium.

Gray, L.W.; Holcomb, H.P.

1983-01-01

172

Unexpected elastic softening in ? -plutonium  

NASA Astrophysics Data System (ADS)

Elastic-constant measurements on a Pu-2.4at.% Ga quasiisotropic polycrystal reveal remarkable elastic softening as temperature increases from ambient to 500K . Unexpected softening appears in both the bulk modulus B and the shear modulus G , thus in all quasiisotropic elastic stiffnesses such as the Young modulus and the Lam constants. The dB/dT slope gives a (lattice) Grneisen parameter ?=3.7 , much higher than a typical fcc-metallic-element value of 2.40.5 . Especially, this high ? from dB/dT measurements disagrees strongly with the ?=-0.260.5 from volume measurements. The dB/dT slope exceeds that measured previously at lower temperatures. Also, it exceeds that expected from high-temperature Debye-Waller-factor measurements. A two-level model used successfully previously to interpret this alloys unusually low thermal expansion also describes the large dB/dT . We comment on possible explanations for plutoniums odd anharmonic behavior. These concepts include magnetism, 5f -electron localization-delocalization, and vibrational entropy. Our measurements on the Pu-Ga polycrystal agree remarkably well with a Krner-theory average of previous measurements on a same-composition monocrystal.

Migliori, A.; Ledbetter, H.; Lawson, A. C.; Ramirez, A. P.; Miller, D. A.; Betts, J. B.; Ramos, M.; Lashley, J. C.

2006-02-01

173

Review of major plutonium pyrochemical technology  

Microsoft Academic Search

The past twenty years have seen significant growth in the development and application of pyrochemical technology for processing of plutonium. For particular feedstocks and specific applications, non-aqueous high-temperature processes offer key advantages over conventional hydrometallurgical systems. Major processes in use today include: (1) direct oxide reduction for conversion of PuO to metal, (2) molten salt extraction for americium removal from

W. S. Moser; J. D. Navratil

1983-01-01

174

Evaluation of adsorbents for removal of plutonium from a low-level process wastewater  

SciTech Connect

Plutonium removal from a low-level wastewater effluent of the Plutonium Finishing Plant at the Hanford Site was tested using ten different commercially available adsorbents. The objective of this work was to select an adsorbent to be used in a new wastewater treatment facility at the plant. Batch plutonium distribution coefficients (Kd) were measured for each adsorbent as well as plutonium breakthrough curves for laboratory columns. Plutonium adsorption was studied over the range of pH values expected for the wastewater (5 to 9) and at several plutonium concentrations (2.5 {times} 10{sup {minus}10} M and 2.5 {times} 10{sup {minus}9} M). The rate of plutonium adsorption was studied by varying the flow rate of Pu-238-spiked wastewater passing through the columns. The ten adsorbents studied included cation and anion exchange resins, activated alumina, bone char, and metal removal agents. In the batch equilibrium measurements, plutonium was most strongly adsorbed on the bone char and on the metal removal agents. Distribution coefficients for bone char and Bioclaim-MRA ranged from 8300 to 31,000 ml/g and from 2400 to 6700 ml/g, respectively. Plutonium adsorption on the anion resins and the activated alumina was strongly dependent on pH (adsorption increased at high pH). Plutonium adsorption on the bone char adsorbent was the most rapid and gave the highest decontamination factors (approximately 400 to 3000, depending on flow rate) for the column experiments. 11 refs., 8 figs., 4 tabs.

Barney, G.S.; Blackman, A.E.; Lueck, K.J.; Green, J.W.

1989-02-01

175

Pyrochemical Reprocessing of Weapons Plutonium as Nuclear Fuel for Power Reactors  

Microsoft Academic Search

Experimental work on transferring compact weapons plutonium by pyrochemical methods into its compounds was generalized. Powdered plutonium dioxide was obtained by interaction with moist air at 480500C. PuH3 was synthesized by interaction of the metal with hydrogen at 280C. PuF3 was formed in an interaction of dioxides with HF and H2. The reaction of plutonium hydride with HF also resulted

V. P. Mashirev; V. V. Shatalov; K. F. Grebenkin; Yu. N. Zuev; A. V. Panov; V. G. Subbotin; D. Yu. Chuvilin

2001-01-01

176

INTERCOMPARISON OF PLUTONIUM-239 MEASUREMENTS  

EPA Science Inventory

In 1977 the U.S. Environmental Protection Agency distributed calibrated solutions of plutonium-239 to laboratories interested in participating in an intercomparison study of plutonium analysis. Participants were asked to perform a quantitative radioactivity analysis of the soluti...

177

Plutonium Disposition Now!  

SciTech Connect

A means for use of existing processing facilities and reactors for plutonium disposition is described which requires a minimum capital investment and allows rapid implementation. The scenario includes interim storage and processing under IAEA control, and fabrication into MOX fuel in existing or planned facilities in Europe for use in operating reactors in the two home countries. Conceptual studies indicate that existing Westinghouse four-loop designs can safety dispose of 0.94 MT of plutonium per calendar year. Thus, it would be possible to consume the expected US excess stockpile of about 50 MT in two to three units of this type, and it is highly likely that a comparable amount of the FSU excess plutonium could be deposed of in a few VVER-1000`s. The only major capital project for this mode of plutonium disposition would be the weapons-grade plutonium processing which could be done in a dedicated international facility or using existing facilities in the US and FSU under IAEA control. This option offers the potential for quick implementation at a very low cost to the governments of the two countries.

Buckner, M.R.

1995-05-24

178

A biomechanical comparison of EndoButton versus suture anchor repair of distal biceps tendon injuries.  

PubMed

The purpose of this study was to compare suture anchor and EndoButton repair of distal biceps injuries in a human bone-tendon model. Right and left arm repairs were alternately performed with either the EndoButton or 2 single-loaded 5-mm suture anchors. Each construct was cyclically loaded by use of a servohydraulic materials testing machine. Initial and final displacements were recorded. All repairs were then loaded to ultimate failure. Ten millimeters of displacement was designated the clinical failure point. The EndoButton group had more stiffness than the suture anchor group during initial cyclic loading (P = .01). There were no differences in final displacement measured after cyclic loading (2.06 mm for suture anchors and 2.58 mm for EndoButton). The EndoButton group had a 16% greater ultimate tensile load than the suture anchor group (274.77 N vs 230.06 N). The EndoButton group also had a 16% higher load to clinical failure (249.95 N vs 209.56 N). These differences were not statistically significant. The EndoButton and suture anchors provide comparable fixation strength for the repair and rehabilitation of distal biceps tendon ruptures. PMID:16831659

Spang, Jeffrey T; Weinhold, Paul S; Karas, Spero G

2006-01-01

179

A glass-encapsulated calcium phosphate wasteform for the immobilization of actinide-, fluoride-, and chloride-containing radioactive wastes from the pyrochemical reprocessing of plutonium metal  

SciTech Connect

The presence of halide anions in four types of wastes arising from the pyrochemical reprocessing of plutonium required an immobilization process to be developed in which not only the actinide cations but also the halide anions were immobilized in a durable waste form. At AWE, we have developed such a process using Ca3(PO4)2 as the host material. Successful trials of the process with actinide- and Cl-bearing Type I waste were carried out at PNNL where the immobilization of the waste in a form resistant to aqueous leaching was confirmed. Normalized mass losses determined at 40C and 28 days were 12 x 10-6 g?m-2 and 2.7 x 10-3 g?m-2 for Pu and Cl, respectively. Accelerated radiation-induced damage effects are being determined with specimens containing 238Pu. No changes in the crystalline lattice have been detected with XRD after the 239Pu equivalent of 400 years ageing. Confirmation of the process for Type II waste (a oxyhydroxide-based waste) is currently underway at PNNL. Differences in the ionic state of Pu in the four types of waste have required different surrogates to be used. Samarium chloride was used successfully as a surrogate for both Pu(III) and Am(III) chlorides. Initial investigations into the use of HfO2 as the surrogate for Pu(IV) oxide in Type II waste indicated no significant differences.

Donald, Ian W.; Metcalfe, Brian; Fong, Shirley K.; Gerrard, Lee A.; Strachan, Denis M.; Scheele, Randall D.

2007-03-31

180

Opportunities in Plutonium Metallurgical Research  

SciTech Connect

This is an exciting time to be involved in plutonium metallurgical research. Over the past few years, there have been significant advances in our understanding of the fundamental materials science of this unusual metal, particularly in the areas of self-irradiation induced aging of Pu, the equilibrium phase diagram, the homogenization of {delta}-phase alloys, the crystallography and morphology of the {alpha}'-phase resulting from the isothermal martensitic phase transformation, and the phonon dispersion curves, among many others. In addition, tremendous progress has been made, both experimentally and theoretically, in our understanding of the condensed matter physics and chemistry of the actinides, particularly in the area of electronic structure. Although these communities have made substantial progress, many challenges still remain. This brief overview will address a number of important challenges that we face in fully comprehending the metallurgy of Pu with a specific focus on aging and phase transformations. (author)

Schwartz, Adam J. [Lawrence Livermore National Laboratory, Livermore, California (United States)

2007-07-01

181

Weapons plutonium: Just can it  

Microsoft Academic Search

The dilemma plaguing the U.S. Energy Department (DOE) in dealing with 50 years of manufacturing nuclear weapons is choosing a way to dispose of surplus warhead plutonium. The Clinton administration pledged in March 1995 to dispose of approximately 200 metric tons of highly enriched uranium and plutonium. It was later disclosed that this included 38.2 tons of plutonium, of which

Lyman

1996-01-01

182

Ignition characteristics of plutonium powder.  

National Technical Information Service (NTIS)

Two fires occurred recently in a vacuum cleaner used to pick up plutonium powder during brushing of plutonium. The plutonium powder was collected by a conventional canister vacuum cleaner passing directly into the clean bag which was changed daily and sen...

L. E. Musgrave

1971-01-01

183

Pyrochemical processes for the recovery of weapons grade plutonium either as a metal or as PuO{sub 2} for use in mixed oxide reactor fuel pellets  

SciTech Connect

The authors have developed two processes for the recovery of weapons grade Pu, as either Pu metal or PuO{sub 2}, that are strictly pyrochemical and do not produce any liquid waste. Large amounts of Pu metal (up to 4 kg.), in various geometric shapes, have been recovered by a hydride/dehydride/casting process (HYDEC) to produce metal ingots of any desired shape. The three processing steps are carried out in a single compact apparatus. The experimental technique and results obtained will be described. The authors have prepared PuO{sub 2} powders from weapons grade Pu by a process that hydrides the Pu metal followed by the oxidation of the hydride (HYDOX process). Experimental details of the best way to carry out this process will be presented, as well as the characterization of both hydride and oxide powders produced.

Colmenares, C.A.; Ebbinghaus, B.B.; Bronson, M.C.

1995-11-03

184

Plutonium 239 Equivalency Calculations  

SciTech Connect

This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

Wen, J

2011-05-31

185

Plutonium in Concentrated Solutions  

SciTech Connect

Complex, high ionic strength media are used throughout the plutonium cycle, from its processing and purification in nitric acid, to waste storage and processing in alkaline solutions of concentrated electrolytes, to geologic disposal in brines. Plutonium oxidation/reduction, stability, radiolysis, solution and solid phase chemistry have been studied in such systems. In some cases, predictive models for describing Pu chemistry under such non-ideal conditions have been developed, which are usually based on empirical databases describing specific ion interactions. In Chapter 11, Non-Ideal Systems, studies on the behavior of Pu in various complex media and available model descriptions are reviewed.

Clark, Sue B.; Delegard, Calvin H.

2002-08-01

186

Hydride-catalyzed corrosion of plutonium by air: Initiation by plutonium monoxide monohydride  

SciTech Connect

Chemistry and kinetics of air reactions with plutonium monoxide monohydride (PuOH) and with mixtures of the oxide hydride and plutonium metal are defined by results of pressure-volume-temperature (PVT) measurements. Test with specimens prepared by total and partial corrosion of plutonium in 0.05 M sodium chloride solution show that reaction of residual water continues to generate H{sub 2} after liquid water is removed by evacuation. Rapid exposure of PuOH to air at room temperature does not produce a detectable reaction, but similar exposure of a partially corroded metal sample containing Pu and PuOH results in hydride (PuH{sub x})-catalyzed corrosion of the residual Pu. Kinetics of he first-order reaction resulting in formation of the PuH{sub x} catalyst and of the indiscriminate reaction of N{sub 2} and O{sub 2} with plutonium metal are defined. The rate of the catalyzed Pu+air reaction is independent of temperature (E{sub a} = 0), varies as the square of air pressure, and equals 0.78 {+-} 0.03 g Pu/cm{sup 2} min in air at one atmosphere. The absence of pyrophoric behavior for PuOH and differences in the reactivities of PuOH and PuOH + Pu mixtures are attributed to kinetic control by gaseous reaction products. Thermodynamic properties of the oxide hydride are estimated, particle size distributions of corrosion products are presented, and potential hazards associated with products formed by aqueous corrosion of plutonium are discussed.

Allen, T.H.; Haschke, J.M.

1998-06-01

187

77 FR 60435 - Announcement of Requirements and Registration for Blue Button Video Challenge  

Federal Register 2010, 2011, 2012, 2013

...change. Eligibility Rules for Participating in...competition under the rules promulgated by HHS...affiliate, subsidiary, advertising agency, or any other...please read the Official Rules on http://BlueButtonVideo...equally weighted): 1. Creativity (Includes elements...

2012-10-03

188

Atomic spectrum of plutonium  

SciTech Connect

This report contains plutonium wavelengths, energy level classifications, and other spectroscopic data accumulated over the past twenty years at Laboratoire Aime Cotton (LAC) Argonne National Laboratory (ANL), and Lawrence Livermore National Laboratory (LLNL). The primary purpose was term analysis: deriving the energy levels in terms of quantum numbers and electron configurations, and evaluating the Slater-Condon and other parameters from the levels.

Blaise, J.; Fred, M.; Gutmacher, R.G.

1984-08-01

189

ESR Dosimetry for Atomic Bomb Survivors Using Shell Buttons and Tooth Enamel  

Microsoft Academic Search

Atomic bomb radiation doses to humans at Nagasaki and Hiroshima are investigated by electron spin resonance (ESR) from shell buttons and tooth enamel voluntarily supplied by survivors. A shell button gives a dose of 2.1 0.2 Gy with ESR signals at g=2.001 and g=1.997 while the signal at g=1.997 for the tooth enamel of the same person is 1.9 0.5

Motoji Ikeya; Junko Miyajima; Shunzo Okajima

1984-01-01

190

Arthroscopic removal of EndoButton after anterior cruciate ligament reconstruction: case report and surgical technique.  

PubMed

Multiple methods of anterior cruciate ligament reconstruction are in use, and femoral fixation has been much discussed. The EndoButton Continuous Loop (Smith & Nephew Endoscopy, Andover, Mass) fixation device has been shown to be efficacious and is in widespread use, but few complications have been reported. In this article, we describe the case of a properly positioned EndoButton that caused symptomatic extensor mechanism irritation necessitating arthroscopic removal. PMID:19212571

Petit, Charles; Millett, Peter J

2008-12-01

191

Mixed Ligand Chelate Therapy for Plutonium and Toxic Metals from Energy Power Production. Final Report, April 15, 1977-October 14, 1980.  

National Technical Information Service (NTIS)

The results of experiments are summarized on the ability of combinations of chelating agents to modify the genotoxicity or tissue distributions. The mutagenicities of Cr and of chelating agents were determined. The metals described in the report are Pu(IV...

J. Schubert

1980-01-01

192

Electron backscatter diffraction of plutonium-gallium alloys  

SciTech Connect

At Los Alamos National Laboratory a recent experimental technique has been developed to characterize reactive metals, including plutonium arid cerium, using electron backscatter diffraction (EBSD). Microstructural characterization of plutonium and its alloys by EBSD had been previously elusive primarily because of the extreme toxicity and rapid surface oxidation rate associated with plutonium metal. The experimental techniques, which included ion-sputtering the metal surface using a scanning auger microprobe (SAM) followed by vacuum transfer of the sample from the SAM to the scanning electron microscope (SEM), used to obtain electron backscatter diffraction Kikuchi patterns (EBSPs) and orientation maps for plutonium-gallium alloys are described and the initial microstructural observations based on the analysis are discussed. Combining the SEM and EBSD observations, the phase transformation behavior between the {delta} and {var_epsilon} structures was explained. This demonstrated sample preparation and characterization technique is expected to be a powerful means to further understand phase transformation behavior, orientation relationships, and texlure in the complicated plutonium alloy systems.

Boehlert, C. J. (Carl J.); Zocco, T. G. (Thomas G.); Schulze, R. K. (Roland K.); Mitchell, J. N. (Jeremy N.); Pereyra, R. A. (Ramiro A.)

2002-01-01

193

Shear Bond Strength of Orthodontic Brackets and Disinclusion Buttons: Effect of Water and Saliva Contamination  

PubMed Central

Purpose. The aim of this study was to assess the effect of water and saliva contamination on the shear bond strength and failure site of orthodontic brackets and lingual buttons. Materials and Methods. 120 bovine permanent mandibular incisors were randomly divided into 6 groups of 20 specimens each. Both orthodontic brackets and disinclusion buttons were tested under three different enamel surface conditions: (a) dry, (b) water contamination, and (c) saliva contamination. Brackets and buttons were bonded to the teeth and subsequently tested using a Instron universal testing machine. Shear bond strength values and adhesive failure rate were recorded. Statistical analysis was performed using ANOVA and Tukey tests (strength values) and Chi squared test (ARI Scores). Results. Noncontaminated enamel surfaces showed the highest bond strengths for both brackets and buttons. Under water and saliva contamination orthodontic brackets groups showed significantly lower shear strengths than disinclusion buttons groups. Significant differences in debond locations were found among the groups under the various enamel surface conditions. Conclusions. Water and saliva contamination of enamel during the bonding procedure lowers bond strength values, more with orthodontic brackets than with disinclusion buttons.

Sfondrini, Maria Francesca; Fraticelli, Danilo; Gandini, Paola

2013-01-01

194

Plutonium Elastic Moduli, Electron Localization, and Temperature  

SciTech Connect

In almost all materials, compression is accompanied naturally by stiffening. Even in materials with zero or negative thermal expansion, where warming is accompanied by volume contraction it is the volume change that primarily controls elastic stiffness. Not so in the metal plutonium. In plutonium, alloying with gallium can change the sign of thermal expansion, but for the positive thermal- expansion monoclinic phase as well as the face-centered-cubic phase with either sign of thermal expansion, and the orthorhombic phase, recent measurements of elastic moduli show soften on warming by an order of magnitude more than expected, the shear and compressional moduli track, and volume seems irrelevant. These effects point toward a novel mechanism for electron localization, and have important implication for the pressure dependence of the bulk compressibility. (authors)

Migliori, Albert; Mihut-Stroe, Izabella; Betts, Jon B. [National High Magnetic Field Lab, Los Alamos National Laboratory, MS E 536, Los Alamos, NM, 87545 (United States)

2008-07-01

195

Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11  

SciTech Connect

The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stable state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.

ULLAH, M K

2001-02-26

196

Magnesium-zinc reduction is effective in preparation of metals  

NASA Technical Reports Server (NTRS)

Uranium, thorium, and plutonium are effectively prepared by magnesium-zinc reduction, using uranium oxides, thorium dioxide, and plutonium dioxide as starting materials. This technique is also useful in performing reduction of metals such as zirconium and titanium.

Knighton, J. B.; Steuneberg, R. K.

1967-01-01

197

Plutonium Finishing Plant. Interim plutonium stabilization engineering study  

SciTech Connect

This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage.

Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J. [Pacific Northwest Lab., Richland, WA (United States); Nass, R. [Nuclear Fuel Services, Inc. (United States)

1995-08-01

198

4. VIEW OF PLUTONIUM CANISTER ON CHAINVEYOR. SCRAP PLUTONIUM WAS ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

4. VIEW OF PLUTONIUM CANISTER ON CHAINVEYOR. SCRAP PLUTONIUM WAS COLLECTED INTO CANS AT INDIVIDUAL WORKSTATIONS. THE CANS WERE TRANSFERRED VIA THE CHAIN CONVEYOR TO A WORKSTATION IN MODULE C WHERE THE MATERIAL WAS COMPRESSED INTO BRIQUETTES FOR LATER USE. (6/20/93) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

199

Plutonium age dating reloaded  

NASA Astrophysics Data System (ADS)

Although the age determination of plutonium is and has been a pillar of nuclear forensic investigations for many years, additional research in the field of plutonium age dating is still needed and leads to new insights as the present work shows: Plutonium is commonly dated with the help of the 241Pu/241Am chronometer using gamma spectrometry; in fewer cases the 240Pu/236U chronometer has been used. The age dating results of the 239Pu/235U chronometer and the 238Pu/234U chronometer are scarcely applied in addition to the 240Pu/236U chronometer, although their results can be obtained simultaneously from the same mass spectrometric experiments as the age dating result of latter. The reliability of the result can be tested when the results of different chronometers are compared. The 242Pu/238U chronometer is normally not evaluated at all due to its sensitivity to contamination with natural uranium. This apparent 'weakness' that renders the age dating results of the 242Pu/238U chronometer almost useless for nuclear forensic investigations, however turns out to be an advantage looked at from another perspective: the 242Pu/238U chronometer can be utilized as an indicator for uranium contamination of plutonium samples and even help to identify the nature of this contamination. To illustrate this the age dating results of all four Pu/U clocks mentioned above are discussed for one plutonium sample (NBS 946) that shows no signs of uranium contamination and for three additional plutonium samples. In case the 242Pu/238U chronometer results in an older 'age' than the other Pu/U chronometers, contamination with either a small amount of enriched or with natural or depleted uranium is for example possible. If the age dating result of the 239Pu/235U chronometer is also influenced the nature of the contamination can be identified; enriched uranium is in this latter case a likely cause for the missmatch of the age dating results of the Pu/U chronometers.

Sturm, Monika; Richter, Stephan; Aregbe, Yetunde; Wellum, Roger; Mayer, Klaus; Prohaska, Thomas

2014-05-01

200

Recovery Studies for Plutonium Machining Oil Coolant.  

National Technical Information Service (NTIS)

Lathe coolant oil, contaminated with plutonium and having a carbon tetrachloride diluent, is generated in plutonium machining areas at Rocky Flats. A research program was initiated to determine the nature of plutonium in this mixture of oil and carbon tet...

J. D. Navratil C. E. Baldwin

1977-01-01

201

Gamma radiation characteristics of plutonium dioxide fuel  

NASA Technical Reports Server (NTRS)

Investigation of plutonium dioxide as an isotopic fuel for Radioisotope Thermoelectric Generators yielded the isotopic composition of production-grade plutonium dioxide fuel, sources of gamma radiation produced by plutonium isotopes, and the gamma flux at the surface.

Gingo, P. J.

1969-01-01

202

Plutonium Air Shipments  

NSDL National Science Digital Library

The Nuclear Control Institute created a web site in response to a proposed standard for the shipment of radioactive materials. This site presents two world maps showing both sea and air routes that are planned or already in use for the shipment of plutonium. A series of papers by NCI-affiliated scientists and observers on the subject of radioactive materials shipments sets out the NCI position against such shipments.

1996-01-01

203

Proliferation aspects of plutonium recycling  

Microsoft Academic Search

Plutonium recycling offers benefits in an energy perspective of sustainable development, and, moreover it contributes to non-proliferation. Prior to recycling, reactor-grade plutonium from light-water reactors does not lend itself easily to the assembly of explosive nuclear devices; thereafter, practically not at all. Control systems for material security and non-proliferation should identify and adopt several categories of plutonium covering various isotopic

Bruno Pellaud

2002-01-01

204

Manufacturing of Plutonium Tensile Specimens  

SciTech Connect

Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

Knapp, Cameron M [Los Alamos National Laboratory

2012-08-01

205

Criticality Experiments with Mixed Plutonium and Uranium Nitrate Solution at a Plutonium Fraction of 0.5 in Annular Cylindrical Geometry  

SciTech Connect

A series of critical experiments was completed with mixed plutonium-uranium solutions having Pu/(Pu + U) ratios of approximately 0.5. These experiments were a part of the Criticality Data Development Program between the United States Department of Energy (USDOE), and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of, and data from, the experiments are included in this report. The experiments were performed with mixed plutonium-uranium solutions in annular cylindrical geometry. The measurements were made with a water reflector. The central region included a concrete annular cylinder containing B{sub 4}C. Interior to the concrete insert was a stainless steel bottle containing plutonium-uranium solution. The concentration of the solution in the annular region was varied from 116 to 433 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was 52% for all experiments.

Lloyd, RC

1988-04-01

206

Review of operating experience at the Los Alamos Plutonium Electrorefining Facility, 1963-1977  

SciTech Connect

This report reviews the operation of the Los Alamos Plutonium Electrorefining Plant at Technical Area 21 for the period 1964 through 1977. During that period, approximately 1568 kg of plutonium metal, > 99.95% pure, was produced in 653 runs from 1930 kg of metal fabrication scrap, 99% pure. General considerations of the electrorefining process and facility operation and recommendations for further improvement of the process are discussed.

Mullins, L.J.; Morgan, A.N.

1981-12-01

207

Prolifration et recyclage du plutonium  

NASA Astrophysics Data System (ADS)

Plutonium recycling offers benefits in an energy perspective of sustainable development, and, moreover it contributes to non-proliferation. Prior to recycling, reactor-grade plutonium from light-water reactors does not lend itself easily to the assembly of explosive nuclear devices; thereafter, practically not at all. Control systems for material security and non-proliferation should identify and adopt several categories of plutonium covering various isotopic mixtures associated with different fuel types, in order to better reflect the risks and to better focus their controls. The author proposes the adoption of three categories of plutonium. To cite this article: B. Pellaud, C. R. Physique 3 (2002) 1067-1079.

Pellaud, Bruno

2002-10-01

208

Results from a Test Fixture for button BPM Trapped Mode Measurements  

SciTech Connect

A variety of measures have been suggested to mitigate the problem of button BPM trapped mode heating. A test fixture, using a combination of commercial-off-the-shelf and custom machined components, was assembled to validate the simulations. We present details of the fixture design, measurement results, and a comparison of the results with the simulations. A brief history of the trapped mode button heating problem and a set of design rules for BPM button optimization are presented elsewhere in these proceedings. Here we present measurements on a test fixture that was assembled to confirm, if possible, a subset of those rules: (1) Minimize the trapped mode impedance and the resulting power deposited in this mode by the beam. (2) Maximize the power re-radiated back into the beampipe. (3) Maximize electrical conductivity of the outer circumference of the button and minimize conductivity of the inner circumference of the shell, to shift power deposition from the button to the shell. The problem is then how to extract useful and relevant information from S-parameter measurements of the test fixture.

Cameron,P.; Bacha, B.; Blednykh, A.; Pinayev, I.; Singh, O.

2009-05-04

209

REVIEW OF PLUTONIUM OXIDATION LITERATURE  

SciTech Connect

A brief review of plutonium oxidation literature was conducted. The purpose of the review was to ascertain the effect of oxidation conditions on oxide morphology to support the design and operation of the PDCF direct metal oxidation (DMO) furnace. The interest in the review was due to a new furnace design that resulted in oxide characteristics that are different than those of the original furnace. Very little of the published literature is directly relevant to the DMO furnace operation, which makes assimilation of the literature data with operating conditions and data a convoluted task. The oxidation behavior can be distilled into three regimes, a low temperature regime (RT to 350 C) with a relatively slow oxidation rate that is influenced by moisture, a moderate temperature regime (350-450 C) that is temperature dependent and relies on more or less conventional oxidation growth of a partially protective oxide scale, and high temperature oxidation (> 500 C) where the metal autocatalytically combusts and oxidizes. The particle sizes obtained from these three regimes vary with the finest being from the lowest temperature. It is surmised that the slow growth rate permits significant stress levels to be achieved that help break up the oxides. The intermediate temperatures result in a fairly compact scale that is partially protective and that grows to critical thickness prior to fracturing. The growth rate in this regime may be parabolic or paralinear, depending on the oxidation time and consequently the oxide thickness. The high temperature oxidation is invariant in quiescent or nearly quiescent conditions due to gas blanketing while it accelerates with temperature under flowing conditions. The oxide morphology will generally consist of fine particles (<15 {micro}m), moderately sized particles (15 < x < 250 {micro}m) and large particles (> 250 {micro}m). The particle size ratio is expected to be < 5%, 25%, and 70% for fine, medium and large particles, respectively, for metal temperatures in the 500-600 C range.

Korinko, P.

2009-11-12

210

Small-Scale Testing of Plutonium (IV) Oxalate Precipitation and Calcination to Plutonium Oxide to Support the MOX Feed Mission.  

National Technical Information Service (NTIS)

The H-Canyon facility will be used to dissolve Pu metal for subsequent purification and conversion to plutonium dioxide (PuO(sub 2)) using Phase II of HB-Line. To support the new mission, SRNL conducted a series of experiments to produce calcined plutoniu...

J. H. Scogin M. L. Crowder R. A. Pierce W. D. King W. E. Daniel

2012-01-01

211

Plutonium Immobilization Program cold pour tests  

SciTech Connect

The Plutonium Immobilization Program (PIP) is a joint venture between the Savannah River Site, Lawrence Livermore National Laboratory, Argonne National Laboratory, and Pacific Northwest National Laboratory to carry out the disposition of excess weapons-grade plutonium. This program uses the can-in-canister (CIC) approach. CIC involves encapsulating plutonium in ceramic forms (or pucks), placing the pucks in sealed stainless steel cans, placing the cans in long cylindrical magazines, latching the magazines to racks inside Defense Waste Processing Facility (DWPF) canisters, and filling the DWPF canisters with high-level waste glass. This process puts the plutonium in a stable form and makes it attractive for reuse. At present, the DWPF pours glass into empty canisters. In the CIC approach, the addition of a stainless steel rack, magazines, cans, and ceramic pucks to the canisters introduces a new set of design and operational challenges: All of the hardware installed in the canisters must maintain structural integrity at elevated (molten-glass) temperatures. This suggests that a robust design is needed. However, the amount of material added to the DWPF canister must be minimized to prevent premature glass cooling and excessive voiding caused by a large internal thermal mass. High metal temperatures, minimizing thermal mass, and glass flow paths are examples of the types of technical considerations of the equipment design process. To determine the effectiveness of the design in terms of structural integrity and glass-flow characteristics, full-scale testing will be conducted. A cold (nonradioactive) pour test program is planned to assist in the development and verification of a baseline design for the immobilization canister to be used in the PIP process. The baseline design resulting from the cold pour test program and CIC equipment development program will provide input to Title 1 design for second-stage immobilization. The cold pour tests will be conducted in two major phases during fiscal years 1999 and 2000.

Hovis, G.L.; Stokes, M.W.; Smith, M.E.; Wong, J.W.

1999-07-01

212

Solubilization of plutonium hydrous oxide by iron-reducing bacteria  

Microsoft Academic Search

The removal of plutonium from soils id challenging because of its strong sorption to soils and limited solubility, Microbial reduction of metals is known to affect the speciation and solubility of sparingly soluble metals in the environment, notably iron and manganese. The similarity in reduction potential for [alpha]-FeOOH(s) and hydrous PuO[sub 2](s) suggests that iron-reducing bacteria may also reduce and

Patricia A. Rusin; Leticia Quintana; James R. Brainard; B. A. Strietelmeler; C. Drew Tait; Scott A. Ekberg; Phillip D. Palmer; Thomas W. Newton; David L. Clark

1994-01-01

213

Lewis base binding affinities and redox properties of plutonium complexes  

NASA Astrophysics Data System (ADS)

As part of the actinide molecular science competency development effort, the initial goal of this work is to synthesize and investigate several series of complexes, varying by actinide metal, ligand set, and oxidation state. We are examining the reactivity of plutonium and neptunium organometallic complexes to elucidate fundamental chemical parameters of the metals. These reactions will be compared to those of the known corresponding uranium complexes in order to recognize trends among the actinide elements and to document differences in chemical behavior. .

Oldham, Susan M.; Schake, Ann R.; Burns, Carol J.; Morgan, Arthur N.; Schnabel, Richard C.; Warner, Benjamin P.; Costa, David A.; Smith, Wayne H.

2000-07-01

214

Ceramic matrices for plutonium disposition  

Microsoft Academic Search

One of the major issues related to the expanded use of nuclear power and the development of advanced nuclear fuel cycles is the fate of plutonium and minor actinides. In addition, substantial quantities of plutonium and highly enriched uranium from dismantled nuclear weapons now require disposition. There are two basic strategies for the disposition of the actinides: (1) to burn

Rodney C. Ewing

2007-01-01

215

Photochemical preparation of plutonium pentafluoride  

DOEpatents

The novel compound plutonium pentafluoride may be prepared by the photodissociation of gaseous plutonium hexafluoride. It is a white solid of low vapor pressure, which consists predominantly of a face-centered cubic structure with a.sub.o =4.2709.+-.0.0005 .ANG..

Rabideau, Sherman W. (Los Alamos, NM); Campbell, George M. (Los Alamos, NM)

1987-01-01

216

A jungle in there: bacteria in belly buttons are highly diverse, but predictable.  

PubMed

The belly button is one of the habitats closest to us, and yet it remains relatively unexplored. We analyzed bacteria and arachaea from the belly buttons of humans from two different populations sampled within a nation-wide citizen science project. We examined bacterial and archaeal phylotypes present and their diversity using multiplex pyrosequencing of 16S rDNA libraries. We then tested the oligarchy hypothesis borrowed from tropical macroecology, namely that the frequency of phylotypes in one sample of humans predicts its frequency in another independent sample. We also tested the predictions that frequent phylotypes (the oligarchs) tend to be common when present, and tend to be more phylogenetically clustered than rare phylotypes. Once rarefied to four hundred reads per sample, bacterial communities from belly buttons proved to be at least as diverse as communities known from other skin studies (on average 67 bacterial phylotypes per belly button). However, the belly button communities were strongly dominated by a few taxa: only 6 phylotypes occurred on >80% humans. While these frequent bacterial phylotypes (the archaea were all rare) are a tiny part of the total diversity of bacteria in human navels (<0.3% of phylotypes), they constitute a major portion of individual reads (~1/3), and are predictable among independent samples of humans, in terms of both the occurrence and evolutionary relatedness (more closely related than randomly drawn equal sets of phylotypes). Thus, the hypothesis that "oligarchs" dominate diverse assemblages appears to be supported by human-associated bacteria. Although it remains difficult to predict which species of bacteria might be found on a particular human, predicting which species are most frequent (or rare) seems more straightforward, at least for those species living in belly buttons. PMID:23144827

Hulcr, Jiri; Latimer, Andrew M; Henley, Jessica B; Rountree, Nina R; Fierer, Noah; Lucky, Andrea; Lowman, Margaret D; Dunn, Robert R

2012-01-01

217

Four-button BPM coefficients in cylindrical and elliptic beam chambers.  

SciTech Connect

Beam position monitor (BPM) coefficients are calculated from induced charges on four-button BPMs in circular and elliptic beam chambers for {gamma} >>1. Since the beam chamber cross-section for the APS storage ring is different from an exact elliptic geometry, numerical values of the BPM coefficients and their inversions are computed from two-dimensional electrostatic field distributions inside an exact geometry of the beam chamber. Utilizing Green's reciprocation theorem, a potential value is applied to the buttons rather than changing the beam position, and potential distributions corresponding to the beam positions are then computed.

Kim, S.H.

1999-04-08

218

SELECTION OF SURPLUS PLUTONIUM MATERIALS FOR DISPOSITION TO WIPP  

SciTech Connect

The U.S. Department of Energy (DOE) is preparing a Surplus Plutonium Disposition (SPD) Supplemental Environmental Impact Statement (SEIS). Included in the evaluation are up to 6 metric tons (MT) of plutonium in the form of impure oxides and metals for which a disposition plan has not been decided, among options that include preparation as feed for the Mixed Oxide Fuel Fabrication Facility; disposing to high-level waste through the Savannah River Site (SRS) HB Line and H Canyon; can-in-canister disposal using the SRS Defense Waste Processing Facility; and preparation for disposal at the Waste Isolation Pilot Plant (WIPP). DOE and SRS have identified at least 0.5 MT of plutonium that, because of high levels of chemical and isotopic impurities, is impractical for disposition by methods other than the WIPP pathway. Characteristics of these items and the disposition strategy are discussed.

Allender, J.; Mcclard, J.; Christopher, J.

2012-06-08

219

Surplus weapons plutonium: Technologies for pit disassembly/conversion and MOX fuel fabrication  

SciTech Connect

This paper will provide a description of the technologies involved in the disposition of plutonium from surplus nuclear weapon components (pits), based on pit disassembly and conversion and on fabrication of mixed oxide (MOX) fuel for disposition through irradiation in nuclear reactors. The MOX/Reactor option is the baseline disposition plan for both the US and russian for plutonium from pits and other clean plutonium metal and oxide. In the US, impure plutonium in various forms will be converted to oxide and immobilized in glass or ceramic, surrounded by vitrified high level waste to provide a radiation barrier. A similar fate is expected for impure material in Russia as well. The immobilization technologies will not be discussed. Following technical descriptions, a discussion of options for monitoring the plutonium during these processes will be provided.

Toevs, J.W.

1997-12-31

220

Reaction kinetics relevant to the recycle hydride-dehydride process for plutonium recovery  

SciTech Connect

Objectives of this one-year, Laboratory Directed Research and Development (LDRD) project were the expansion of fundamental knowledge of plutonium chemistry and the development of information for enhancing plutonium recovery methods and weapons safety. Results of kinetic studies demonstrate that the monoxide monohydride, PuO(H), formed during corrosion of plutonium by water in pyrophoric when dry and acts as an initiator for hydride-catalyzed reaction of the metal with air. The catalyzed corrosion rate of Pu is 10{sup 8} times faster than that in dry air and transforms plutonium into a readily aerosolized material. A potential application for the catalytic reaction is in the direct recovery of plutonium as oxide. Wet PuO(H) is non-pyrophoric and the safety hazard posed by its formation is reduced if the material is not allowed to dry.

Haschke, J.M.; Allen, T.H.

1997-10-01

221

PRODUCTION OF PLUTONIUM FROM PLUTONIUM FLUORIDE  

Microsoft Academic Search

Reduction of PuF to metal is described. In the example given, ; PuF is mixed with 0.3 mole I per mole of Pu and Ca powder 25% in ; excess of that required for eduction of the Pu salt, and I is added. The ; mixture is charged to a magnesia-lined steel bomb which is heated until reacted ; in

1959-01-01

222

Effect of drivers' age and push button locations on visual time off road, steering wheel deviation and safety perception.  

PubMed

The study examined the effects of manual control locations on two groups of randomly selected young and old drivers in relation to visual time off road, steering wheel deviation and safety perception. Measures of visual time off road, steering wheel deviations and safety perception were performed with young and old drivers during real traffic. The results showed an effect of both driver's age and button location on the dependent variables. Older drivers spent longer visual time off road when pushing the buttons and had larger steering wheel deviations. Moreover, the greater the eccentricity between the normal line of sight and the button locations, the longer the visual time off road and the larger the steering wheel deviations. No interaction effect between button location and age was found with regard to visual time off road. Button location had an effect on perceived safety: the further away from the normal line of sight the lower the rating. PMID:16393805

Dukic, T; Hanson, L; Falkmer, T

2006-01-15

223

Perforation of Meckel's Diverticulum by a Button Battery: Report of a Case  

Microsoft Academic Search

A perforation of Meckel's diverticulum (MD) by foreign bodies is an extremely rare cause of acute abdomen in children. We\\u000a herein present a rare case of perforation of Meckel's diverticulum in a child after swallowing an alkaline button battery\\u000a that contained lithium.

Ay?e Karaman; Ibrahim Karaman; Derya Erdo?an; Yusuf Hakan avu?o?lu; Mustafa Kemal Aslan; Onursal Varl?kli; zden akmak

2007-01-01

224

Acceptable Operating Force for Buttons on In-Ear Type Headphones  

Microsoft Academic Search

The touch headphones are a solution for providing playback and volume controls on in-ear type headphones. One of the issues with placing controls on earpieces is that applied pressure is transferred to the inner ear, which potentially creates discomfort. The experiment described in this short paper shows that conventional button switches are not well accepted. Users preferred to operate a

Vincent Buil; Gerard Hollemans

2005-01-01

225

Arthroscopic Treatment of Comminuted Distal Clavicle Fractures (Latarjet Fractures) Using 2 Double-Button Devices  

PubMed Central

Complex distal clavicle fractures associated with a rupture of the coracoclavicular ligaments (Latarjet fractures) can result in delayed union or nonunion. There is no standard treatment for a clavicle fracture. This report introduces an arthroscopic technique for treating distal clavicle fractures associated with ruptured coracoclavicular ligament using 2double-button devices. By use of posterior and anterior standard arthroscopic portals, the base of the coracoid process is exposed through the rotator interval. A 4-mm hole is drilled through the clavicle and the coracoid process with a specific ancillary drill guide. The first button is pushed through both holes down the coracoid process. The device is tightened, and the second button is fixed on top of the clavicle, allowing reduction and fixation of the proximal part of the fracture. Then, the undersurface of the lateral clavicle is dissected through standard posterior and lateral subacromial approaches. The inferior clavicle fragment is reduced and fixed to the clavicle body by a double button fixed down and at the top of the clavicle. With this technique, the arthroscopic treatment of distal clavicle fracture has been extended to comminuted fractures.

Pujol, Nicolas; Desmoineaux, Pierre; Boisrenoult, Philippe; Beaufils, Philippe

2013-01-01

226

Modification of the Barton button for tracheoesophageal speech: An innovative maxillofacial prosthetic technique  

Microsoft Academic Search

Laryngectomized, tracheoesophageal speakers who achieve hands-free speech wear a special breathing valve to automatically shunt air into the pharyngoesophagus for speech production. The standard method of attachment is adherence to the peristomal skin with glues and adhesives. The Barton button is a simpler, more efficient alternative that provides intraluminal attachment within the trachea. Although the device is appealing, constraints in

James C. Lemon; Jan S. Lewin; Mark S. Chambers; Jack W. Martin

2002-01-01

227

Hypermedia User-Interface Design: The Role of Individual Differences in Placement of Icon Buttons.  

ERIC Educational Resources Information Center

Describes a study of students at Purdue University that examined the roles of gender, right- versus left-handedness, and mouse experience in preferences concerning the placement of icon buttons within hypermedia user-interface designs. Response rate is examined, order of presentation is discussed, and further research is suggested. (11 references)

Marquez, Mark E.; Lehman, James D.

1992-01-01

228

Conversion of plutonium scrap and residue to boroilicate glass using the GMODS process  

SciTech Connect

Plutonium scrap and residue represent major national and international concerns because (1) significant environmental, safety, and health (ES&H) problems have been identified with their storage; (2) all plutonium recovered from the black market in Europe has been from this category; (3) storage costs are high; and (4) safeguards are difficult. It is proposed to address these problems by conversion of plutonium scrap and residue to a CRACHIP (CRiticality, Aerosol, and CHemically Inert Plutonium) glass using the Glass Material Oxidation and Dissolution System (GMODS). CRACHIP refers to a set of requirements for plutonium storage forms that minimize ES&H concerns. The concept is several decades old. Conversion of plutonium from complex chemical mixtures and variable geometries into a certified, qualified, homogeneous CRACHIP glass creates a stable chemical form that minimizes ES&H risks, simplifies safeguards and security, provides an easy-to-store form, decreases storage costs, and allows for future disposition options. GMODS is a new process to directly convert metals, ceramics, and amorphous solids to glass; oxidize organics with the residue converted to glass; and convert chlorides to borosilicate glass and a secondary sodium chloride stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium (a plutonium surrogate), Zircaloy, stainless steel, and other materials to glass. GMODS is an enabling technology that creates new options. Conventional glassmaking processes require conversion of feeds to oxide-like forms before final conversion to glass. Such chemical conversion and separation processes are often complex and expensive.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.; Rudolph, J.; Elam, K.R.; Ferrada, J.J.

1995-11-28

229

History and stabilization of the Plutonium Finishing Plant (PFP) complex, Hanford Site  

SciTech Connect

The 231-Z Isolation Building or Plutonium Metallurgy Building is located in the Hanford Site`s 200 West Area, approximately 300 yards north of the Plutonium Finishing Plant (PFP) (234-5 Building). When the Hanford Engineer Works (HEW) built it in 1944 to contain the final step for processing plutonium, it was called the Isolation Building. At that time, HEW used a bismuth phosphate radiochemical separations process to make `AT solution,` which was then dried and shipped to Los Alamos, New Mexico. (AT solution is a code name used during World War II for the final HEW product.) The process was carried out first in T Plant and the 224-T Bulk Reduction Building and B Plant and the 224-B Bulk Reduction Building. The 224-T and -B processes produced a concentrated plutonium nitrate stream, which then was sent in 8-gallon batches to the 231-Z Building for final purification. In the 231-Z Building, the plutonium nitrate solution underwent peroxide `strikes` (additions of hydrogen peroxide to further separate the plutonium from its carrier solutions), to form the AT solution. The AT solution was dried and shipped to the Los Alamos Site, where it was made into metallic plutonium and then into weapons hemispheres.` The 231-Z Building began `hot` operations (operations using radioactive materials) with regular runs of plutonium nitrate on January 16, 1945.

Gerber, M.S., Fluor Daniel Hanford

1997-02-18

230

Coordination chemistry of two heavy metals: I, Ligand preferences in lead(II) complexation, toward the development of therapeutic agents for lead poisoning: II, Plutonium solubility and speciation relevant to the environment.  

National Technical Information Service (NTIS)

The coordination chemistry and solution behavior of the toxic ions lead(II) and plutonium(IV, V, VI) have been investigated. The ligand pK(sub a)s and ligand-lead(II) stability constants of one hydroxamic acid and four thiohydroaxamic acids were determine...

M. P. Neu

1993-01-01

231

Effects on the long term storage container by thermal cycling alpha plutonium  

SciTech Connect

Experiments were conducted to determine the validity of the steady state temperature limit of 100 C established by the DOE-STD-3013-96 for storing alpha plutonium metal. Studies with an alpha plutonium ingot combined with strain gauge measurements indicate that the stainless steel storage container, yields very little (0.005 in.) to the expanding plutonium metal as it undergoes alpha beta phase transformation at temperatures above 112 C. Another experiment using an alpha plutonium rod for point loading of the container wall showed no measured deformation of the container. The results of strain measurements for alpha beta and beta alpha transformations for twenty five thermal cycles are reported. Finite element modeling using the measured data predicts that the compressive yield strength is 3,500 psi versus the literature value of 13,000 psi.

Flamm, B.F.; Prenger, F.C.; Veirs, D.K.; Hill, D.D.; Isom, G.M.

1998-03-01

232

Rapid Nondestructive Plutonium Isotopic Analysis.  

National Technical Information Service (NTIS)

Methods for plutonium isotopic measurements have been evaluated for nuclear safeguards inventory verification. A mobile, real-time, nondestructive assay, gamma-ray spectrometric measurement system has been assembled, moved and operated at several nuclear ...

J. E. Fager F. P. Brauer

1978-01-01

233

40 CFR Appendix A to Part 438 - Typical Products in Metal Products and Machinery Sectors  

Code of Federal Regulations, 2013 CFR

...Fabricated Structural Metal Fasteners, Buttons, Needles & Pins Fluid Power Values & Hose Fittings Hand & Edge Tools Hand...Environmental Controls Coating, Engraving, & Allied Services Dental Equipment & Supplies Ophthalmic Goods Fluid Meters &...

2013-07-01

234

Metals  

NSDL National Science Digital Library

This radio broadcast reviews the evolution of metals since the discovery of copper in ancient times, and looks at how science and technology are continually upgrading the design and development of metal alloys. There are explanations of five ways the chemical composition of an alloy can be modified to produce different properties; how heat treating is used to process metals; how mining metals can be sped up by microwaving metals; how metals are deformed to test them for structural properties; and how nano-crystalline alloys are designed using computer models to find the best chemical composition and processing parameters with minimal experimentation. The broadcast is 30 minutes in length.

2007-02-03

235

Evaluation of plutonium oxidation using pulsed neutron measurements with ²⁵²Cf  

Microsoft Academic Search

The unrecognized oxidation of plutonium in {open_quotes}sealed{close_quotes} canisters poses a unique problem for both material control and accountability. A feasibility study was performed to address the use of randomly pulsed neutron measurements with ²⁵²Cf to determine if plutonium metal in a canister has oxidized without opening the container. The Monte Carlo code MCNP-DSP was used to determine if time-of-flight transmission

T. E. Valentine; J. T. Mihalczo

1997-01-01

236

Plutonium measurements near background levels  

SciTech Connect

The Rocky Flats Plant (RFP) is part of a nationwide nuclear weapons research, development, and production complex administered by the United States Department of Energy (DOE). Low-levels of environmental Plutonium occurs in and about RFP as a result of plant operations. Plutonium is a key element in remediation investigations and surface water discharge limits. Most of the plutonium analyses at RFP measure concentrations at or near background levels. Measurements often show little, if any, plutonium in the media being sampled, except at known contamination sites. Many plutonium results are less than the calculated minimum detectable-level (MDL). (MDL is an a priori estimate of the activity concentration that can be practically achieved under a specified set of typical measurement conditions.) This paper investigates the relationship between plutonium concentrations and the counting uncertainty when measurements are near background, and suggests why the MDL should not be used as a criteria for limiting data. Issues with defining site background and determining attainment of standards are presented.

Not Available

1992-01-01

237

Plutonium measurements near background levels  

SciTech Connect

The Rocky Flats Plant (RFP) is part of a nationwide nuclear weapons research, development, and production complex administered by the United States Department of Energy (DOE). Low-levels of environmental Plutonium occurs in and about RFP as a result of plant operations. Plutonium is a key element in remediation investigations and surface water discharge limits. Most of the plutonium analyses at RFP measure concentrations at or near background levels. Measurements often show little, if any, plutonium in the media being sampled, except at known contamination sites. Many plutonium results are less than the calculated minimum detectable-level (MDL). (MDL is an a priori estimate of the activity concentration that can be practically achieved under a specified set of typical measurement conditions.) This paper investigates the relationship between plutonium concentrations and the counting uncertainty when measurements are near background, and suggests why the MDL should not be used as a criteria for limiting data. Issues with defining site background and determining attainment of standards are presented.

Not Available

1992-08-01

238

Criticality Experiments with Mixed Plutonium and Uranium Nitrate Solution at a Plutonium Fraction of 0.4 in Slab and Cylindrical Geometry  

SciTech Connect

A series of critical experiments was completed with mixed plutonium-uranium solutions having Pu/(Pu + U) ratios of approximately 0.4. These experiments were a part of the Criticality Data Development Program between the United States Department of Energy (USDOE), and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of, and data from, the experiments are included in this report. The experiments were performed with mixed plutonium-uranium solutions in cylinqrical and slab geometries and included measurements with a water reflector, a concrete reflector, and without an added reflector. The concentration was varied from 105 to 436 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was 0.4 for all experiments.

Lloyd, RC

1988-04-01

239

LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY  

SciTech Connect

A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.

Nash, C.

2012-02-03

240

Plutonium oxide transformation kinetics and diffusion coefficient measurement  

Microsoft Academic Search

When subjected to ultra high vacuum (UHV) conditions, a thin surface dioxide covering on a plutonium metal substrate will undergo a spontaneous, thermodynamically driven, reduction to the trivalent sesqui-oxide, Pu2O3. Kinetic information about this surface transformation, from PuO2 to Pu2O3, is gained by following the changing depths of these two oxide layers, using X-ray photoelectron spectroscopy (XPS) as a probe.

Peter Morrall; Simon Tull; Joseph Glascott; Paul Roussel

2007-01-01

241

ESR Dosimetry for Atomic Bomb Survivors Using Shell Buttons and Tooth Enamel  

NASA Astrophysics Data System (ADS)

Atomic bomb radiation doses to humans at Nagasaki and Hiroshima are investigated by electron spin resonance (ESR) from shell buttons and tooth enamel voluntarily supplied by survivors. A shell button gives a dose of 2.1 0.2 Gy with ESR signals at g=2.001 and g=1.997 while the signal at g=1.997 for the tooth enamel of the same person is 1.9 0.5 Gy. Other teeth show doses from about 0.5 Gy to 3 Gy. An apparent shielding converted to a concrete thickness is given using the T65D calculated in 1965. Teeth extracted during dental treatment should be preserved for cumulative radiation dosimetry.

Ikeya, Motoji; Miyajima, Junko; Okajima, Shunzo

1984-09-01

242

Technology-Assisted Patient Access to Clinical Information: An Evaluation Framework for Blue Button  

PubMed Central

Background Patient access to clinical information represents a means to improve the transparency and delivery of health care as well as interactions between patients and health care providers. We examine the movement toward augmenting patient access to clinical information using technology. Our analysis focuses on Blue Button, a tool that many health care organizations are implementing as part of their Web-based patient portals. Objective We present a framework for evaluating the effects that technology-assisted access to clinical information may have on stakeholder experiences, processes of care, and health outcomes. Methods A case study of the United States Department of Veterans Affairs' (VA) efforts to make increasing amounts of clinical information available to patients through Blue Button. Drawing on established collaborative relationships with researchers, clinicians, and operational partners who are engaged in the VAs ongoing implementation and evaluation efforts related to Blue Button, we assessed existing evidence and organizational practices through key informant interviews, review of documents and other available materials, and an environmental scan of published literature and the websites of other health care organizations. Results Technology-assisted access to clinical information represents a significant advance for VA patients and marks a significant change for the VA as an organization. Evaluations of Blue Button should (1) consider both processes of care and outcomes, (2) clearly define constructs of focus, (3) examine influencing factors related to the patient population and clinical context, and (4) identify potential unintended consequences. Conclusions The proposed framework can serve as a roadmap to guide subsequent research and evaluation of technology-assisted patient access to clinical information. To that end, we offer a series of related recommendations.

Nazi, Kim M; Luger, Tana M; Amante, Daniel J; Smith, Bridget M; Barker, Anna; Shimada, Stephanie L; Volkman, Julie E; Garvin, Lynn; Simon, Steven R; Houston, Thomas K

2014-01-01

243

Did I do that? Abnormal predictive processes in schizophrenia when button pressing to deliver a tone.  

PubMed

Motor actions are preceded by an efference copy of the motor command, resulting in a corollary discharge of the expected sensation in sensory cortex. These mechanisms allow animals to predict sensations, suppress responses to self-generated sensations, and thereby process sensations efficiently and economically. During talking, patients with schizophrenia show less evidence of pretalking activity and less suppression of the speech sound, consistent with dysfunction of efference copy and corollary discharge, respectively. We asked if patterns seen in talking would generalize to pressing a button to hear a tone, a paradigm translatable to less vocal animals. In 26 patients [23 schizophrenia, 3 schizoaffective (SZ)] and 22 healthy controls (HC), suppression of the N1 component of the auditory event-related potential was estimated by comparing N1 to tones delivered by button presses and N1 to those tones played back. The lateralized readiness potential (LRP) associated with the motor plan preceding presses to deliver tones was estimated by comparing right and left hemispheres' neural activity. The relationship between N1 suppression and LRP amplitude was assessed. LRP preceding button presses to deliver tones was larger in HC than SZ, as was N1 suppression. LRP amplitude and N1 suppression were correlated in both groups, suggesting stronger efference copies are associated with stronger corollary discharges. SZ have reduced N1 suppression, reflecting corollary discharge action, and smaller LRPs preceding button presses to deliver tones, reflecting the efference copy of the motor plan. Effects seen during vocalization largely extend to other motor acts more translatable to lab animals. PMID:23754836

Ford, Judith M; Palzes, Vanessa A; Roach, Brian J; Mathalon, Daniel H

2014-07-01

244

Performance of Air-O-Cell, Burkard, and Button Samplers for Total Enumeration of Airborne Spores  

Microsoft Academic Search

Performance of three devices used for the total enumeration of airborne sporesthe Air-O-Cell sampling cassette, the Burkard personal volumetric air sampler, and the Button Aerosol Samplerwas evaluated under controlled laboratory conditions. The first two are glass-slide impactors; the third collects spores on a filter. The samplers were challenged with 0.445.10 m polystyrene latex particles and five microorganisms of 0.843.07 m

V. Aizenberg; T. Reponen; S. A. Grinshpun; K. Willeke

2000-01-01

245

Mound Laboratory Environmental Plutonium Study, 1974.  

National Technical Information Service (NTIS)

In 1974, the sediment in certain waterways near the laboratory site appeared to exhibit plutonium-238 concentrations higher than the expected baseline levels. A comprehensive environmental plutonium-238 study to determine the full extent of the contaminat...

D. R. Rogers

1975-01-01

246

Metallic fast reactor fuels  

Microsoft Academic Search

Metallic fuels are neutronically ideal for fast reactors because they produce an extremely hard neutron spectrum. Early metallic fuels had little endurance, due to excessive swelling. By incorporating space for swelling, very high burnups are now routinely achieved. Uranium-plutonium alloys with 10% zirconium to raise the melting point have been shown to be extremely reliable. Fuel swelling, mechanical and chemical

G. L. Hofman; L. C. Walters; T. H. Bauer

1997-01-01

247

Plutonium Proliferation: The Achilles Heel of Disarmament  

ScienceCinema

Plutonium is a byproduct of nuclear fission, and it is produced at the rate of about 70 metric tons a year in the world's nuclear power reactors. Concerns about civilian plutonium ran high in the 1970s and prompted enactment of the Nuclear Non-Proliferation Act of 1978 to give the United States a veto over separating plutonium from U.S.-supplied uranium fuel. Over the years, however, so-called reactor-grade plutonium has become the orphan issue of nuclear non-proliferation, largely as a consequence of pressures from plutonium-separating countries. The demise of the fast breeder reactor and the reluctance of utilities to introduce plutonium fuel in light-water reactors have resulted in large surpluses of civilian, weapons-usable plutonium, which now approach in size the 250 tons of military plutonium in the world. Yet reprocessing of spent fuel for recovery and use of plutonium proceeds apace outside the United States and threatens to overwhelm safeguards and security measures for keeping this material out of the hands of nations and terrorists for weapons. A number of historical and current developments are reviewed to demonstrate that plutonium commerce is undercutting efforts both to stop the spread of nuclear weapons and to work toward eliminating existing nuclear arsenals. These developments include the breakdown of U.S. anti-plutonium policy, the production of nuclear weapons by India with Atoms-for-Peace plutonium, the U.S.-Russian plan to introduce excess military plutonium as fuel in civilian power reactors, the failure to include civilian plutonium and bomb-grade uranium in the proposed Fissile Material Cutoff Treaty, and the perception of emerging proliferation threats as the rationale for development of a ballistic missile defense system. Finally, immobilization of separated plutonium in high-level waste is explored as a proliferation-resistant and disarmament-friendly solution for eliminating excess stocks of civilian and military plutonium.

248

Plutonium Focus Area research and development plan. Revision 1  

SciTech Connect

The Department of Energy (DOE) committed to a research and development program to support the technology needs for converting and stabilizing its nuclear materials for safe storage. The R and D Plan addresses five of the six material categories from the 94-1 Implementation Plan: plutonium (Pu) solutions, plutonium metals and oxides, plutonium residues, highly enriched uranium, and special isotopes. R and D efforts related to spent nuclear fuel (SNF) stabilization were specifically excluded from this plan. This updated plan has narrowed the focus to more effectively target specific problem areas by incorporating results form trade studies. Specifically, the trade studies involved salt; ash; sand, slag, and crucible (SS and C); combustibles; and scrub alloy. The plan anticipates possible disposition paths for nuclear materials and identifies resulting research requirements. These requirements may change as disposition paths become more certain. Thus, this plan represents a snapshot of the current progress and will continue to be updated on a regular basis. The paper discusses progress in safeguards and security, plutonium stabilization, special isotopes stabilization, highly-enriched uranium stabilization--MSRE remediation project, storage technologies, engineered systems, core technology, and proposed DOE/Russian technology exchange projects.

NONE

1996-11-01

249

Plutonium hexaboride is a correlated topological insulator.  

PubMed

We predict that plutonium hexaboride (PuB(6)) is a strongly correlated topological insulator, with Pu in an intermediate valence state of Pu(2.7+). Within the combination of dynamical mean field theory and density functional theory, we show that PuB(6) is an insulator in the bulk, with nontrivial Z(2) topological invariants. Its metallic surface states have a large Fermi pocket at the X[over ] point and the Dirac cones inside the bulk derived electronic states, causing a large surface thermal conductivity. PuB(6) has also a very high melting temperature; therefore, it has ideal solid state properties for a nuclear fuel material. PMID:24206507

Deng, Xiaoyu; Haule, Kristjan; Kotliar, Gabriel

2013-10-25

250

China's HEU and Plutonium Production and Stocks  

Microsoft Academic Search

This article discusses the history of China's production of highly enriched uranium and plutonium for nuclear weapons and uses new public information to estimate the amount of highly enriched uranium and plutonium China produced at its two gaseous diffusion plants and two plutonium production complexes. The new estimates in this article are that China produced 20 4 tons of

HUI ZHANG

2011-01-01

251

Failed distal biceps tendon repair using a single-incision EndoButton technique and its successful treatment: case report.  

PubMed

Surgical repair has become a mainstay in the treatment of ruptures of the distal biceps tendon and multiple surgical techniques have been described advocating anatomic or near-anatomic repair. Fixation with an EndoButton technique has been shown to have superior fixation strength and durable clinical outcomes. Here, we describe a case of failed EndoButton fixation of the distal biceps tendon, and its successful treatment. PMID:21115300

Desai, Shaunak S; Larkin, Brian J; Najibi, Soheil

2010-12-01

252

BIOLOGICALLY-MEDIATED REMOVAL AND RECOVERY OF PLUTONIUM FROM CONTAMINATED SOIL  

SciTech Connect

An innovative biological treatment technology successfully reduced plutonium concentration in soil from the Nevada Test Site (NTS) by over 80%. The final volume of plutonium-contaminated material that required disposal was reduced by over 90%. These results, achieved by an independent testing laboratory, confirm the results reported previously using NTS soil. In the previous test a 2530-gram sample of soil (350 to 400 pCi/g Pu) resulted in production of 131 grams of sludge (6,320 pCi/ g Pu) and a treated soil containing 72 pCi/g of Pu. The technology is based on the biological acidification of the soil and subsequent removal of the plutonium and other dissolved metals by a low volume, low energy water leaching process. The leachate is treated in a sulfate-reducing bioreactor to precipitate the metals as metal sulfides. Water may be recycled as process water or disposed since the treatment process removes over 99% of the dissolved metals including plutonium from the water. The plutonium is contained as a stable sludge that can be containerized for final disposal. Full-scale process costs have been developed which employ widely used treatment technologies such as aerated soil piles (biopiles) and bioreactors. The process costs were less than $10 per cubic foot, which were 40 to 50% lower than the baseline costs for the treatment of the NTS soil. The equipment and materials for water and sludge treatment and soil handling are commercially available.

Jerger, Douglas E., Ph.D.,; Alperin, Edward S., QEP,; Holmes, Robert G., Ph.D.

2003-02-27

253

Vitrification of excess plutonium  

SciTech Connect

As a result of nuclear disarmament activities, many thousands of nuclear weapons are being retired in the US and Russia, producing a surplus of about 50 MT of weapons grade plutonium (Pu) in each country. In addition, the Department of Energy (DOE) has more than 20 MT of Pu scrap, residue, etc., and Russia is also believed to have at least as much of this type of material. The entire surplus Pu inventories in the US and Russia present a clear and immediate danger to national and international security. It is important that a solution be found to secure and manage this material effectively and that such an effort be implemented as quickly as possible. One option under consideration is vitrification of Pu into a relatively safe, durable, accountable, proliferation-resistant form. As a result of decades of experience within the DOE community involving vitrification of a variety of hazardous and radioactive wastes, this existing technology can now be expanded to include immobilization of large amounts of Pu. This technology can then be implemented rapidly using the many existing resources currently available. A strategy to vitrify many different types of Pu will be discussed. In this strategy, the arsenal of vitrification tools, procedures and techniques already developed throughout the waste management community can be used in a staged Pu vitrification effort. This approach uses the flexible vitrification technology already available and can even be made portable so that it may be brought to the source and ultimately, used to produce a common, borosilicate glass form for the vitrified Pu. The final composition of this product can be made similar to nationally and internationally accepted HLW glasses.

Wicks, G.G.; Mckibben, J.M.; Plodinec, M.J.

1994-12-31

254

Fundamental and applied studies of helium ingrowth and aging in plutonium  

SciTech Connect

This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The purpose of this project was to develop new capabilities to assess the nucleation and growth of helium-associated defects in aged plutonium metal. This effort involved both fundamental and applied models to assist in predicting the transport and kinetics of helium in the metal lattice as well as ab initio calculations of the disposition of gallium in the fcc plutonium lattice and its resulting effects on phase stability. Experimentally this project aimed to establish experimental capabilities crucial to the prediction of helium effects in metals, such as transmission electron microscopy, thermal helium effusion, and the development of a laser-driven mini-flyer for understanding the role of helium and associated defects on shock response of plutonium surrogates.

Stevens, M.F.; Zocco, T.; Albers, R.; Becker, J.D.; Walter, K.; Cort, B.; Paisley, D.; Nastasi, M.

1998-12-31

255

SUPPORTING SAFE STORAGE OF PLUTONIUM-BEARING MATERIALS THROUGH SCIENCE, ENGINEERING AND SURVEILLANCE  

SciTech Connect

Reductions in the size of the U. S. nuclear weapons arsenal resulted in the need to store large quantities of plutonium-bearing metals and oxides for prolonged periods of time. To assure that the excess plutonium from the U. S. Department of Energy (DOE) sites was stored in a safe and environmentally friendly manner the plutonium-bearing materials are stabilized and packaged according to well developed criteria published as a DOE Standard. The packaged materials are stored in secure facilities and regular surveillance activities are conducted to assure continuing package integrity. The stabilization, packaging, storage and surveillance requirements were developed through extensive science and engineering activities including those related to: plutonium-environment interactions and container pressurization, corrosion and stress corrosion cracking, plutonium-container material interactions, loss of sealing capability and changes in heat transfer characteristics. This paper summarizes some of those activities and outlines ongoing science and engineering programs that assure continued safe and secure storage of the plutonium-bearing metals and oxides.

Dunn, K.; Chandler, G.; Gardner, C.; Louthan, M.; Mcclard, J.

2009-11-10

256

A Proteomic Approach to Identification of Plutonium Binding Proteins in Mammalian Cells  

PubMed Central

Plutonium can enter the body through different routes and remains there for decades; however its specific biochemical interactions are poorly defined. We, for the first time, have studied plutonium-binding proteins using a metalloproteomic approach with rat PC12 cells. A combination of immobilized metal ion chromatography, 2D gel electrophoresis, and mass spectrometry were employed to analyze potential plutonium-binding proteins. Our results show that several proteins from PC12 cells show affinity towards Pu4+-NTA (plutonium bound to nitrilotriacetic acid). Proteins from seven different spots in the 2D gel were identified. In contrast to the previously known plutonium-binding proteins transferrin and ferritin, which bind ferric ions, most identified proteins in our experiment are known to bind calcium, magnesium, or divalent transition metal ions. The identified plutonium interacting proteins also have functional roles in downregulation of apoptosis and other pro-proliferative processes. MetaCore analysis based on this group of proteins produced a pathway with a statistically significant association with development of neoplastic diseases.

Aryal, Baikuntha P.; Paunesku, Tatjana; Woloschak, Gayle E.; He, Chuan; Jensen, Mark P.

2013-01-01

257

Seating of TightRope RT Button Under Direct Arthroscopic Visualization in Anterior Cruciate Ligament Reconstruction to Prevent Potential Complications  

PubMed Central

The ACL TightRope RT (Arthrex, Naples, FL) is a recently introduced fixation device. The adjustable graft loop allows the surgeon some freedom in terms of the length of the femoral socket, eliminates the need for bothersome intraoperative calculations for selecting loop length, ensures that the socket is completely filled with graft, and provides the possibility of tensioning the graft even after graft fixation. However, the device can be associated with the same complications that have been described with EndoButton (Smith & Nephew Endoscopy, Andover, MA) fixation. For example, in our experience, sometimes the button of the TightRope RT may not flip, may become jammed inside the femoral canal, or may flip in the substance of the vastus lateralis. To prevent this, we have introduced 2 additional steps in our procedure: (1) direct visualization of the TightRope RT button in the femoral socket with the arthroscope during its passage and (2) a controlled push directly on the button with the help of a guide pin. Thus proper seating of the button is ensured by direct visualization and the crucial push helps in flipping and seating of the button.

Nag, Hira L.; Gupta, Himanshu

2012-01-01

258

Plutonium dissolution process  

DOEpatents

A two-step process for dissolving Pu metal is disclosed in which two steps can be carried out sequentially or simultaneously. Pu metal is exposed to a first mixture of 1.0-1.67 M sulfamic acid and 0.0025-0.1 M fluoride, the mixture having been heated to 45-70 C. The mixture will dissolve a first portion of the Pu metal but leave a portion of the Pu in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alternatively, nitric acid between 0.05 and 0.067 M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution is diluted with nitrogen.

Vest, M.A.; Fink, S.D.; Karraker, D.G.; Moore, E.N.; Holcomb, H.P.

1994-01-01

259

Plutonium immobilization feed batching system concept report  

SciTech Connect

The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with high level waste glass for permanent storage. Feed batching is one of the first process steps involved with first stage plutonium immobilization. It will blend plutonium oxide powder before it is combined with other materials to make pucks. This report discusses the Plutonium Immobilization feed batching process preliminary concept, batch splitting concepts, and includes a process block diagram, concept descriptions, a preliminary equipment list, and feed batching development areas.

Erickson, S.

2000-07-19

260

Method of separating thorium from plutonium  

DOEpatents

A method of chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

Clifton, David G. (Los Alamos, NM) [Los Alamos, NM; Blum, Thomas W. (Los Alamos, NM) [Los Alamos, NM

1984-01-01

261

Method of separating thorium from plutonium  

DOEpatents

A method is described for chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.

Clifton, D.G.; Blum, T.W.

1984-07-10

262

Plutonium immobilization form evaluation  

SciTech Connect

The 1994 National Academy of Sciences study and the 1997 assessment by DOE`s Office of Nonproliferation and National Security have emphasized the importance of the overall objectives of the Plutonium Disposition Program of beginning disposition rapidly. President Clinton and other leaders of the G-7 plus one (`Political Eight`) group of states, at the Moscow Nuclear Safety And Security Summit in April 1996, agreed on the objectives of accomplishing disposition of excess fissile material as soon as practicable. To meet these objectives, DOE has laid out an aggressive schedule in which large-scale immobilization operations would begin in 2005. Lawrence Livermore National Laboratory (LLNL), the lead laboratory for the development of Pu immobilization technologies for the Department of Energy`s Office of Fissile Materials Disposition (MD), was requested by MD to recommend the preferred immobilization form and technology for the disposition of excess weapons-usable Pu. In a series of three separate evaluations, the technologies for the candidate glass and ceramic forms were compared against criteria and metrics that reflect programmatic and technical objectives: (1) Evaluation of the R&D and engineering data for the two forms against the decision criteria/metrics by a technical evaluation panel comprising experts from within the immobilization program. (2) Integrated assessment by LLNL immobilization management of the candidate technologies with respect to the weighted criteria and other programmatic objectives, leading to a recommendation to DOE/MD on the preferred technology based on technical factors. (3) Assessment of the decision process, evaluation, and recommendation by a peer review panel of independent experts. Criteria used to assess the relative merits of the immobilization technologies were a subset of the criteria previously used by MD to choose among disposition options leading to the Programmatic Environmental Impact Statement and Record of Decision for the Storage and Disposition of Weapons-Usable Fissile Materials, January 1997. Criteria were: (1) resistance to Pu theft, diversion, and recovery by a terrorist organization or rogue nation; (2) resistance to recovery and reuse by host nation; (3) technical viability, including technical maturity, development risk, and acceptability for repository disposal; (4) environmental, safety, and health factors; (5) cost effectiveness; and (6) timeliness. On the basis of the technical evaluation and assessments, in September, 1997, LLNL recommended to DOE/MD that ceramic technologies be developed for deployment in the planned Pu immobilization plant.

Gray, L. W., LLNL

1998-02-13

263

Plutonium Recycle: The Fateful Step  

ERIC Educational Resources Information Center

Calls attention to the fact that if the Atomic Energy Commission proceeds with its plans to authorize the nuclear power industry to use plutonium as a fuel in commercial nuclear reactors around the country, this will result in a dramatic escalation in the risks posed by nuclear power. (PEB)

Speth, J. Gustave; And Others

1974-01-01

264

Plutonium Chemistry of the Ocean.  

National Technical Information Service (NTIS)

Plutonium is a man-made element whose behavior in the marine environment is inadequately known at present. It has been studied intensively in connection with production of weapons and power sources and has been characterized as an extremely toxic substanc...

T. R. Folsom

1972-01-01

265

Button batteries  

MedlinePLUS

... will measure and monitor your vital signs, including temperature, pulse, breathing rate, and blood pressure. Symptoms will ... make sure the battery is moving along the GI tract. The battery should then be followed with ...

266

Button Basics  

ERIC Educational Resources Information Center

Elementary teachers of science are at a great advantage because observation--collecting information about the world using the five senses--and classification--sorting things by properties--come so naturally to children. Many examples of classification occur in science: Scientists, for example, group things starting with large categories, such as

Carrier, Sarah J.; Thomas, Annie B.

2008-01-01

267

First In-Pile Experimental Results of High-Plutonium-Content Oxide Fuel for Plutonium Burning in Fast Reactors  

SciTech Connect

An experimental program focused not only on the study of high-plutonium-content mixed-oxide fuels but also on more advanced ''Pu without U'' fuel concepts has been launched in the framework of the Consommation Accrue de Plutonium dans les RApides (CAPRA) project. First results of the in-pile and out-of-pile behavior of high-plutonium-content fuels with uranium, such as (U{sub 55%},Pu{sub 45%})O{sub 2}, and (U{sub 55%},Pu{sub 40%},Np{sub 5%})O{sub 2}, and also without uranium, such as (Pu{sub 44%},Ce{sub 56%})O{sub 2}, are now available. In particular, the Irradiation a FOrt Pu (IFOP) experiment in the SILOE reactor and the TRAnsmutation and Burning of ActiNides in Triox carrier (TRABANT1) experiments in the High Flux Reactor are presented and the results are analyzed: Up to a burnup of 1.5 at.%, destructive examinations of the IFOP pin have shown that the high-plutonium-content oxide fuel with a large central hole presents the usual global behavior (good pellet integrity, fuel microstructure). The TRABANT1 oxide fuel pin with a 40% Pu and 5% Np content demonstrates that a burnup of 9.5 at.% can be reached without failure by a high-plutonium-content fuel. However, the TRABANT1 pin 1 (oxide pin with 45% Pu), which had run under severe conditions, has failed at {approx}7 at.% burnup. Destructive examinations of these pins will give more evidence on the causes of the failure. The low-oxygen-to-metal fuel column of (Pu,Ce)O{sub 2-x} melted, thus confirming the poor conductivity of this fuel.

Picard, Emmanuelle [Commissariat a l'Energie Atomique (France); Noirot, Jean [Commissariat a l'Energie Atomique (France); Moss, Raymond L.; Plitz, Helmut [Forschungszentrum Karlsruhe (Germany); Richter, Karl [Institute for Transuranium Elements (Germany); Rouault, Jacques [Commissariat a l'Energie Atomique (France)

2000-01-15

268

Properties of Liquid Plutonium  

SciTech Connect

Unalloyed polycrystalline Pu displays extreme thermal expansion behavior, i.e., {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} increases by 25% in volume and {delta} {yields} {var_epsilon} {yields} liquid decreases by 4.5% in volume. Thus, making it difficult to measure density into the liquid state. Dilatometer outfitted with CaF molten metal cell offers a proven capability to measure thermal expansion in molten metals, but has yet to be proven for Pu. Historic data from the liquid nuclear fuels program will prove extremely useful as a guide to future measurements. 3.3at% Ga changes Pu molten metal properties: 50% increase in viscosity and {approx}3% decrease in density. Fe may decrease the density by a small amount assuming an averaging of densities for Pu-Ga and Pu-Fe liquids. More recent Boivineau (2009) work needs some interpretation, but technique is being employed in (U,Pu)O{sub 2} nuclear fuels program (Pu Futures, 2012).

Freibert, Franz J. [Los Alamos National Laboratory; Mitchell, Jeremy N. [Los Alamos National Laboratory; Schwartz, Daniel S. [Los Alamos National Laboratory; Saleh, Tarik A. [Los Alamos National Laboratory; Migliori, Albert [Los Alamos National Laboratory

2012-08-02

269

Effect of Americium241 Content on Plutonium Radiation Source Terms  

Microsoft Academic Search

The management of excess plutonium by the US Department of Energy includes a number of storage and disposition alternatives. Savannah River Site (SRS) is supporting DOE with plutonium disposition efforts, including the immobilization of certain plutonium materials in a borosilicate glass matrix. Surplus plutonium inventories slated for vitrification include materials with elevated levels of Americium-241. The Am-241 content of plutonium

Rainisch

1998-01-01

270

A development of power button device driver based on Windows CE device driver  

NASA Astrophysics Data System (ADS)

In recent decade, there has been many researches for embedding a small size operating system for mobile hand held systems. In near future, small size operating system will be embedded in every electronic machine for the easiness of developing a man-machine interface. This paper introduced one of the new hot issuing small size operating systems, called as "wince OS", which was developed by Microsoft company and develop a simple device driver based on wince OS which can handles a simple matrix type push button input device. It also demonstrated the well functioning of the proposed device driver in working environment such as Microsoft word processing.

Lim, Samsu; Chon, Sunghwan; Choi, Hyunsok; Ham, Woonchul

2005-12-01

271

The Gold Button Technique for Intraoral Interstitial Implants with Iridium-192 Seeds  

PubMed Central

The higher the radiation dose, the better is tumor control. High tumor doses are feasible only by interstitial irradiation. To achieve uniform dose distribution throughout the area or volume of implant, one has to use established distribution rules. In straight tube technique we have to use heavy endloading to compensate for uncrossed ends. In implants for intraoral lesions, heavy endloading gives a high dose to the opposing normal mucosa. The new gold button technique considerably reduces the dose to the normal mucosa, thus minimizing the morbidity. ImagesFigure 1

Kumar, P. Pradeep; Henschke, Ulrich K.

1977-01-01

272

Plutonium-based superconductivity with a transition temperature above 18K  

NASA Astrophysics Data System (ADS)

Plutonium is a metal of both technological relevance and fundamental scientific interest. Nevertheless, the electronic structure of plutonium, which directly influences its metallurgical properties, is poorly understood. For example, plutonium's 5f electrons are poised on the border between localized and itinerant, and their theoretical treatment pushes the limits of current electronic structure calculations. Here we extend the range of complexity exhibited by plutonium with the discovery of superconductivity in PuCoGa5. We argue that the observed superconductivity results directly from plutonium's anomalous electronic properties and as such serves as a bridge between two classes of spin-fluctuation-mediated superconductors: the known heavy-fermion superconductors and the high-Tc copper oxides. We suggest that the mechanism of superconductivity is unconventional; seen in that context, the fact that the transition temperature, Tc ~ 18.5K, is an order of magnitude greater than the maximum seen in the U- and Ce-based heavy-fermion systems may be natural. The large critical current displayed by PuCoGa5, which comes from radiation-induced self damage that creates pinning centres, would be of technological importance for applied superconductivity if the hazardous material plutonium were not a constituent.

Sarrao, J. L.; Morales, L. A.; Thompson, J. D.; Scott, B. L.; Stewart, G. R.; Wastin, F.; Rebizant, J.; Boulet, P.; Colineau, E.; Lander, G. H.

2002-11-01

273

Options for converting excess plutonium to feed for the MOX fuel fabrication facility  

SciTech Connect

The storage and safekeeping of excess plutonium in the United States represents a multibillion-dollar lifecycle cost to the taxpayers and poses challenges to National Security and Nuclear Non-Proliferation. Los Alamos National Laboratory is considering options for converting some portion of the 13 metric tons of excess plutonium that was previously destined for long-term waste disposition into feed for the MOX Fuel Fabrication Facility (MFFF). This approach could reduce storage costs and security ri sks, and produce fuel for nuclear energy at the same time. Over the course of 30 years of weapons related plutonium production, Los Alamos has developed a number of flow sheets aimed at separation and purification of plutonium. Flow sheets for converting metal to oxide and for removing chloride and fluoride from plutonium residues have been developed and withstood the test oftime. This presentation will address some potential options for utilizing processes and infrastructure developed by Defense Programs to transform a large variety of highly impure plutonium into feedstock for the MFFF.

Watts, Joe A [Los Alamos National Laboratory; Smith, Paul H [Los Alamos National Laboratory; Psaras, John D [Los Alamos National Laboratory; Jarvinen, Gordon D [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory; Joyce, Jr., Edward L [Los Alamos National Laboratory

2009-01-01

274

SORPTION OF URANIUM, PLUTONIUM AND NEPTUNIUM ONTO SOLIDS PRESENT IN HIGH CAUSTIC NUCLEAR WASTE STORAGE TANKS  

SciTech Connect

Solids such as granular activated carbon, hematite and sodium phosphates, if present as sludge components in nuclear waste storage tanks, have been found to be capable of precipitating/sorbing actinides like plutonium, neptunium and uranium from nuclear waste storage tank supernatant liqueur. Thus, the potential may exists for the accumulation of fissile materials in such nuclear waste storage tanks during lengthy nuclear waste storage and processing. To evaluate the nuclear criticality safety in a typical nuclear waste storage tank, a study was initiated to measure the affinity of granular activated carbon, hematite and anhydrous sodium phosphate to sorb plutonium, neptunium and uranium from alkaline salt solutions. Tests with simulated and actual nuclear waste solutions established the affinity of the solids for plutonium, neptunium and uranium upon contact of the solutions with each of the solids. The removal of plutonium and neptunium from the synthetic salt solution by nuclear waste storage tank solids may be due largely to the presence of the granular activated carbon and transition metal oxides in these storage tank solids or sludge. Granular activated carbon and hematite also showed measurable affinity for both plutonium and neptunium. Sodium phosphate, used here as a reference sorbent for uranium, as expected, exhibited high affinity for uranium and neptunium, but did not show any measurable affinity for plutonium.

Oji, L; Bill Wilmarth, B; David Hobbs, D

2008-05-30

275

Development of weld closure stations for plutonium long-term storage containers  

SciTech Connect

Weld closure stations for plutonium long-term storage containers have been designed, fabricated, and tested for the Advanced Recovery and Integrated Extraction System (ARIES) at the TA-55 Plutonium Facility of the Los Alamos National Laboratory. ARIES is a processing system used for the dismantlement of the plutonium pits from nuclear weapons. ARIES prepares the extracted-plutonium in a form which is compatible with long-term storage and disposition options and meets international inspection requirements. The processed plutonium is delivered to the canning module of the ARIES line, where it is packaged in a stainless steel container. This container is then packaged in a secondary container for long-term storage. Each of the containers is hermetically sealed with a full penetration weld closure that meets the requirements of the ASME Section IX Boiler and Pressure Vessel Code. Welding is performed with a gas tungsten arc process in an inert atmosphere of helium. The encapsulated helium in the nested containers allows for leak testing the weld closure and container. The storage package was designed to meet packaging requirements of DOE Standard 3013-96 for long-term storage of plutonium metal and oxides. Development of the process parameters, weld fixture, weld qualification, and the welding chambers is discussed in this paper.

Fernandez, R.; Martinez, D.A.; Martinez, H.E.; Nelson, T.O.; Ortega, R.E.; Rofer, C.K.; Romero, W.; Stewart, J.; Trujillo, V.L.

1998-12-31

276

The AL-R8 SI: The next generation staging container for plutonium pits at the USDOE Pantex Plant  

Microsoft Academic Search

The AL-R8 SI (sealed insert) is the next generation staging container for plutonium pits at the US DOE Pantex Plant. The sealed insert is a stainless steel container that will be placed inside a modified AL-R8 container to stage pits. A pit is a hollow sphere of plutonium metal which is the primary fissionable material in nuclear weapons (warheads and

E. J. Eifert; L. D. Vickers

1999-01-01

277

Comparison of Drilling Performance of Chisel and Button Bits on the Electro Hydraulic Driller  

NASA Astrophysics Data System (ADS)

Electro hydraulic drillers have been widely used in mining for drilling and roof-bolting. In the drilling process, the performance of the machine is predicted by selecting an appropriate bit type prior to drilling operations. In this paper, a series of field drilling studies were conducted in order to examine and compare the performance of chisel and button bits including wear on the bits. The effects of taper angle on chisel bits, which are at angles of 105, 110 and 120, were investigated in terms of rate of penetration, instantaneous drilling rate and specific energy. The results of drilling and abrasivity tests performed in the laboratory supported the outcome of the field studies. Based on laboratory studies and field observations, it was proven that the conglomerate encountered, though it is very abrasive, is easy to drill. The cutter life in the encountered series is also longer in sandstone formation compared to the conglomerate. Additionally, button bits resulted in lower specific energy and higher penetration rates relative to chisel bits, regardless of their taper angles. The results were also supported with statistical analyses.

Su, Okan; Yarali, Olgay; Akcin, Nuri Ali

2013-11-01

278

Plutonium Immobilization Can Loading Concepts  

SciTech Connect

The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses five can loading conceptual designs and the lists the advantages and disadvantages for each concept. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas. The can loading welder and cutter are very similar to the existing Savannah River Site (SRS) FB-Line bagless transfer welder and cutter and thus they are a low priority development item.

Kriikku, E. [Westinghouse Savannah River Company, AIKEN, SC (United States); Ward, C.; Stokes, M.; Randall, B.; Steed, J.; Jones, R.; Hamilton, L.; Rogers, L.; Fiscus, J.; Dyches, G.

1998-05-01

279

Extracting metals directly from metal oxides  

DOEpatents

A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

Wai, Chien M. (Moscow, ID) [Moscow, ID; Smart, Neil G. (Moscow, ID) [Moscow, ID; Phelps, Cindy (Moscow, ID) [Moscow, ID

1997-01-01

280

Extracting metals directly from metal oxides  

DOEpatents

A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

Wai, C.M.; Smart, N.G.; Phelps, C.

1997-02-25

281

Plutonium Proliferation: The Achilles Heel of Disarmament  

Microsoft Academic Search

Plutonium is a byproduct of nuclear fission, and it is produced at the rate of about 70 metric tons a year in the world's nuclear power reactors. Concerns about civilian plutonium ran high in the 1970s and prompted enactment of the Nuclear Non-Proliferation Act of 1978 to give the United States a veto over separating plutonium from U.S.-supplied uranium fuel.

Leventhal

2001-01-01

282

Plutonium Production - ChemCases.com  

NSDL National Science Digital Library

Until 1942, bombardment of targets composed of uranium compounds with deuterons produced by a cyclotron was the only source of plutonium. In December 1942, Fermis controlled chain reaction at the University of Chicago produced tiny quantities of plutonium in addition to energy and fission products. In November 1943, a larger pilot reactor at Oak Ridge, Tennessee, known as X-10, went critical and began to produce plutonium.

Settle, Frank

283

Addressing mixed waste in plutonium processing  

SciTech Connect

The overall goal is the minimization of all waste generated in actinide processing facilities. Current emphasis is directed toward reducing and managing mixed waste in plutonium processing facilities. More specifically, the focus is on prioritizing plutonium processing technologies for development that will address major problems in mixed waste management. A five step methodological approach to identify, analyze, solve, and initiate corrective action for mixed waste problems in plutonium processing facilities has been developed.

Christensen, D.C.; Sohn, C.L. (Los Alamos National Lab., NM (United States)); Reid, R.A. (New Mexico Univ., Albuquerque, NM (United States). Anderson Schools of Management)

1991-01-01

284

TRACHEOSTOMAPLASTY: A SURGICAL METHOD FOR IMPROVING RETENTION OF AN INTRALUMINAL STOMA BUTTON FOR HANDS-FREE TRACHEOESOPHAGEAL SPEECH  

PubMed Central

Background We describe a minimally invasive surgical technique, tracheostomaplasty, to overcome anatomical deformities of the stoma that preclude successful retention of a stoma button for hands free tracheoesophageal (TE) speech. Methods We conducted a retrospective analysis of 21 patients who underwent tracheostomaplasty after laryngectomy to accommodate an intraluminal valve attachment for hands-free TE speech. Results Sixteen men and 5 women (median age, 65 years; median follow-up, 27.7 months) underwent tracheostomaplasty; 6 patients developed a mild cellulitis that required therapy and 5 patients required a minor revision surgery. At last follow-up, 15 (71%) patients successfully achieved hands-free TE speech using an intraluminal stoma button. Three patients only retained the intraluminal device to facilitate digital occlusion. Tracheostomaplasty failed in 3 patients because of granulation tissue formation or stomal stenosis. Conclusions Tracheostomaplasty is a successful technique to improve intraluminal retention of a stoma button for hands-free TE speech in laryngectomy patients.

Moreno, Mauricio A.; Lewin, Jan S.; Hutcheson, Katherine A.; Bishop Leone, Julie K.; Barringer, Denise A.

2014-01-01

285

Plutonium Isotopic Measurements by Gamma-Ray Spectroscopy  

Microsoft Academic Search

The nondestructive assay of plutonium is important as a safeguard tool in accounting for stategic nuclear material. Several nondestructive assay techniques, e.g., calorimetry and spontaneous fission assay detectors, require a knowledge of plutonium and americium isotopic ratios to convert their raw data to total grams of plutonium. This paper describes a nondestructive technique for calculating plutonium-238, plutonium-240, plutonium-241 and americium-241

Francis X. Haas; John F. Lemming

1976-01-01

286

A comparison of the design of Russian and US containers for plutonium oxide storage.  

SciTech Connect

The safe storage of plutonium in the form of plutonium oxide (Pu02) is a major concern in countries with significant plutonium inventories . The goal is to stabilize and package oxide in such a way that the possibility of leaks and failures are unlikely. Currently in Russia, Pu02 is stored 1 at the Mining and Chemical Combine (MCC, Zheleznogorsk) and at the Siberian Chemical Combine (SCC, former Tomsk-7). (Plutonium metal is stored at PA 'Mayak' and is not addressed here) . Current storage containers for Russian Pu02 do not meet modern safety requirements . Further, every three years the gaskets have to be replaced . The containers can become over pressurized due to radiation processes and this results in possible container failures 1 . In the US, Pu02 is present at several Department of Energy (DOE) sites 2 . US reports of long time storage of Pu02 show a few cases of storage container failures 2 among thousand of intact cases. Major causes of malfunction are metal oxidation in non-airtight packages and gas pressurization from inadequately stabilized oxide . Because of these failures the US DOE adopted a standard 3 for stabilization, packaging and storage of plutonium-bearing material that addresses these vulnerabilities .

Mason, C. F. V. (Caroline F. V.); Zygmunt, Stanley J.; Wedman, Douglas E.; Eller, P. G. (Phillip Gary); Erickson, R. M. (Randall M.); Hansen, W. J. (Walter J.); Roberson, G. D.

2003-01-01

287

An Improved Plutonium Trifluoride Precipitation Flowsheet  

SciTech Connect

This report discusses results of the plutonium trifluoride two-stage precipitation study. A series of precipitation experiments was used to identify the significant process variables affecting precipitation performance. A mathematical model of the precipitation process was developed which is based on the formation of plutonium fluoride complexes. The precipitation model relates all process variables, in a single equation, to a single parameter which can be used to control the performance of the plutonium trifluoride precipitation process. Recommendations have been made which will optimize the FB-Line plutonium trifluoride precipitation process.

Harmon, H.D.

2001-06-26

288

Response-related potentials during semantic priming: the effect of a speeded button response task on ERPs.  

PubMed

This study examines the influence of a button response task on the event-related potential (ERP) in a semantic priming experiment. Of particular interest is the N400 component. In many semantic priming studies, subjects are asked to respond to a stimulus as fast and accurately as possible by pressing a button. Response time (RT) is recorded in parallel with an electroencephalogram (EEG) for ERP analysis. In this case, the response occurs in the time window used for ERP analysis and response-related components may overlap with stimulus-locked ones such as the N400. This has led to a recommendation against such a design, although the issue has not been explored in depth. Since studies keep being published that disregard this issue, a more detailed examination of influence of response-related potentials on the ERP is needed. Two experiments were performed in which subjects pressed one of two buttons with their dominant hand in response to word-pairs with varying association strength (AS), indicating a personal judgement of association between the two words. In the first experiment, subjects were instructed to respond as fast and accurately as possible. In the second experiment, subjects delayed their button response to enforce a one second interval between the onset of the target word and the button response. Results show that in the first experiment a P3 component and motor-related potentials (MRPs) overlap with the N400 component, which can cause a misinterpretation of the latter. In order to study the N400 component, the button response should be delayed to avoid contamination of the ERP with response-related components. PMID:24516556

van Vliet, Marijn; Manyakov, Nikolay V; Storms, Gert; Fias, Wim; Wiersema, Jan R; Van Hulle, Marc M

2014-01-01

289

FORM AND AGING OF PLUTONIUM IN SAVANNAH RIVER SITE WASTE TANK 18  

SciTech Connect

This report provides a summary of the effects of aging on and the expected forms of plutonium in Tank 18 waste residues. The findings are based on available information on the operational history of Tank 18, reported analytical results for samples taken from Tank 18, and the available scientific literature for plutonium under alkaline conditions. These findings should apply in general to residues in other waste tanks. However, the operational history of other waste tanks should be evaluated for specific conditions and unique operations (e.g., acid cleaning with oxalic acid) that could alter the form of plutonium in heel residues. Based on the operational history of other tanks, characterization of samples from the heel residues in those tanks would be appropriate to confirm the form of plutonium. During the operational period and continuing with the residual heel removal periods, Pu(IV) is the dominant oxidation state of the plutonium. Small fractions of Pu(V) and Pu(VI) could be present as the result of the presence of water and the result of reactions with oxygen in air and products from the radiolysis of water. However, the presence of Pu(V) would be transitory as it is not stable at the dilute alkaline conditions that currently exists in Tank 18. Most of the plutonium that enters Savannah River Site (SRS) high-level waste (HLW) tanks is freshly precipitated as amorphous plutonium hydroxide, Pu(OH){sub 4(am)} or hydrous plutonium oxide, PuO{sub 2(am,hyd)} and coprecipitated within a mixture of hydrous metal oxide phases containing metals such as iron, aluminum, manganese and uranium. The coprecipitated plutonium would include Pu{sup 4+} that has been substituted for other metal ions in crystal lattice sites, Pu{sup 4+} occluded within hydrous metal oxide particles and Pu{sup 4+} adsorbed onto the surface of hydrous metal oxide particles. The adsorbed plutonium could include both inner sphere coordination and outer sphere coordination of the plutonium. PuO{sub 2(am,hyd)} is also likely to be present in deposits and scales that have formed on the steel surfaces of the tank. Over the operational period and after closure of Tank 18, Ostwald ripening has and will continue to transform PuO{sub 2(am,hyd)} to a more crystalline form of plutonium dioxide, PuO{sub 2(c)}. After bulk waste removal and heel retrieval operations, the free hydroxide concentration decreased and the carbonate concentration in the free liquid and solids increased. Consequently, a portion of the PuO{sub 2(am,hyd)} has likely been converted to a hydroxy-carbonate complex such as Pu(OH){sub 2}(CO{sub 3}){sub (s)}. or PuO(CO{sub 3}) {center_dot} xH{sub 2}O{sub (am)}. Like PuO{sub 2(am,hyd)}, Ostwald ripening of Pu(OH){sub 2}(CO{sub 3}){sub (s)} or PuO(CO{sub 3}) {center_dot} xH{sub 2}O{sub (am)} would be expected to occur to produce a more crystalline form of the plutonium carbonate complex. Due to the high alkalinity and low carbonate concentration in the grout formulation, it is expected that upon interaction with the grout, the plutonium carbonate complexes will transform back into plutonium hydroxide. Although crystalline plutonium dioxide is the more stable thermodynamic state of Pu(IV), the low temperature and high water content of the waste during the operating and heel removal periods in Tank 18 have limited the transformation of the plutonium into crystalline plutonium dioxide. During the tank closure period of thousands of years, transformation of the plutonium into a more crystalline plutonium dioxide form would be expected. However, the continuing presence of water, reaction with water radiolysis products, and low temperatures will limit the transformation, and will likely maintain an amorphous Pu(OH){sub 4} or PuO{sub 2(am,hyd)} form on the surface of any crystalline plutonium dioxide produced after tank closure. X-ray Absorption Spectroscopic (XAS) measurements of Tank 18 residues are recommended to confirm coordination environments of the plutonium. If the presence of PuO(CO{sub 3}){sub (am,hyd)} is confirmed by XAS, it is recommended that e

Hobbs, D.

2012-02-24

290

On-site transportation and handling of plutonium-239 special nuclear material: Preliminary hazards and accident analysis. Revision 1.  

National Technical Information Service (NTIS)

A quantity of special nuclear material (SNM) that is primarily plutonium-239 (Pu-239) and that is currently stored at Mound Laboratory must be transported to Building 38 for repackaging. This SNM is in the form of metal, metal oxide, residue, and/or combi...

T. Solack D. West D. Ullman C. Cox

1996-01-01

291

Apparatus and process for the electrolytic reduction of uranium and plutonium oxides.  

National Technical Information Service (NTIS)

An apparatus and process for reducing uranium and/or plutonium oxides to produce a solid, high-purity metal. The apparatus is an electrolyte cell consisting of a first container, and a smaller second container within the first container. An electrolyte fi...

D. S. Poa L. Burris R. K. Steunenberg Z. Tomczuk

1989-01-01

292

Packaging of plutonium and high-enriched uranium safeguards samples for transport  

Microsoft Academic Search

A method for accommodating both the processing and first-level transportation packaging for plutonium safeguards samples was developed for dry samples of reduced size, to replace an older method that utilized larger samples in liquid form. This method utilizes a quartz vial sealed within a metal canister, which in turn is contained within two sealed containment vessels. This packaging has proved

1983-01-01

293

Production of microspheres of thorium oxide, uranium oxide and plutonium oxide and their mixtures containing carbon  

Microsoft Academic Search

A process is desclosed for the production of microspheres of thorium oxide, uranium oxide or plutonium oxide and mixtures thereof, containing carbon. The microspheres are prepared by first forming an aqueous alkaline solution of a salt of said metals which will precipitate to a solid form in a concentrated alkaline medium together with an alkaline polymerizable organic monomer and carbon,

G. Bezzi; A. Facchini; G. Martignani; M. Pastore

1980-01-01

294

Quantitative analysis of plutonium and uranium using reversed-phase liquid chromatography and spectrophotometric detection  

Microsoft Academic Search

We have developed an efficient method for separating and quantitating uranium and plutonium in dissolver solutions using a CIS reversed-phase column, an eluent containing 2 hydroxyisobtityric acid as a complexant, and 5% methanol at pH 4 with ammonium hydroxide. Postcolumn reaction with Arsenazo III color reagent is followed by an absorbarice measurement at 660 nm. Metal ion interference studies indicated

Y. C. Rogers; V. T. Hamilton; W. D. Spall; B. F. Smith; D. D. Jackson

1992-01-01

295

Comparison of the Solubility of Plutonium-238 and Plutonium-239 Dioxide in in Vitro Bovine Ruminal-Gastrointestinal Fluids.  

National Technical Information Service (NTIS)

The alimentary solubility and behavior of plutonium-238 dioxide and plutonium-239 dioxide were compared in an artificial rumen and simulated bovine gastrointestinal fluids. Rumen juice was augmented with plutonium-238 dioxide particles of 0.096- mu m coun...

1979-01-01

296

Plutonium: The density-functional-theory point of view  

SciTech Connect

Density-functional theory (DFT) is a remarkably successful tool for describing many metals throughout the Periodic Table. Here we present the results of this theory when applied to plutonium metal, the perhaps most complex and difficult-to-model metal of all. The fundamental product of DFT is the ground-state total energy. In the case of Pu, we show that DFT produces total energies that can predict the complex phase diagram accurately. Focusing on the {delta} phase, we show that DFT electronic structure is consistent with measured photoemission spectra. The observed non-magnetic state of {delta}-Pu could possibly be explained in DFT by spin moments, likely disordered, that are magnetically neutralized by anti-parallel aligned orbital moments. As an alternative to this non-magnetic model an extension of DFT with enhanced orbital polarization is presented in which magnetism can be suppressed.

Soderlind, P; Landa, A

2008-10-30

297

Alpha radiation effects on weapons-grade plutonium encapsulating materials  

NASA Astrophysics Data System (ADS)

The scientific understanding of material problems in the long-term storage of plutonium pits is investigated using experimental and theoretical models. The durability of the plutonium pit depends on the integrity of the metal cladding that encapsulates the plutonium. Given sufficient time, the energetic alpha particles (helium nuclei) produced by nuclear decay of the plutonium would degrade the mechanical strength of the metal cladding which could lead to cladding failure and dispersion of plutonium. It is shown that the long-term behavior of the encapsulating materials can be simulated by beam implantation and subsequent analysis using experimental techniques of Electron Microscopy and Neutron Depth Profiling (NDP). In addition computer simulations using the TRIM code were made in order to correlate the measurements to cladding damage. The Neutron Depth Profiling measurements done with samples that had 10 16 cm-2 3He beam implant dose showed no helium redistribution, indicating no microcracking between bubbles, for both beryllium and stainless steel, the pit cladding materials of interest. However, helium redistribution and significant helium loss were observed for samples with a beam implant dose of 1018 cm-2 , indicating microstructural damage. The SEM observations were consistent with the NDP measurements. The proper interpretation of the results rests on the realization that (i)the deleterious effects are related to helium concentration, not implant dose, and (ii)a specified maximum concentration of helium is achieved with a much smaller dose when monoenergetic ions are implanted using beam geometry than for the situation where Pu alphas stop in the pit cladding. Helium is distributed over a much smaller depth interval for beam implantation of monoenergetic ions as compared to the pit cladding implanted ions. Taking this effect into account and using the calculated pit implant dose gives a pit storage time for the 1016 cm-2 beam implant dose results equal to ~300 years for SS-316 cladding and ~1800 years for Be cladding. Based on this argument it is concluded from the results of the measurements that there most likely would be no radiation damage or microstructural changes in bulk SS-316 or Be cladding for 100 years of pit storage.

Saglam, Mehmet

298

Metal recovery from porous materials  

DOEpatents

The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

Sturcken, E.F.

1991-01-01

299

Determination of natural actinides and plutonium in marine particulate material  

Microsoft Academic Search

The natural actinides ²²⁷Ac, ²²⁸Th, ²³°Th, ²³²Th, ²³⁴Th, ²³¹Pa, ²³⁸U, and ²³⁴U and the ..cap alpha..-emitting plutonium isotopes are determined in samples of suspended marine particulate material and sediments. Analysis involves total dissolution of the samples to allow equilibration of the natural isotopes with added isotope yield monitors followed by coprecipitation of hydrolyzable metals at pH 7 with natural Fe

Robert F. Anderson; Alan P. Fleer

1982-01-01

300

Delta to alpha prime transformation of plutonium during microhardness testing  

SciTech Connect

Metallic plutonium is a complex material that can exist in six allotropic phases at ambient pressures; and under stress, it can transform martensitically from the ductile face centered cubic delta phase to the brittle monoclinic alpha prime phase. This investigation found that the pressures generated during microhardness indentation are sufficient for the transformation to occur. Micrographs showing the transformation as well as pressure calculations are presented in support for this finding. Also, based upon the amount of material displaced by the indenter, it was determined that there is at least a 16% error in published hardness values of the delta phase that can be attributed to the delta to alpha prime transformation.

Pereyra, Ramiro A. [Los Alamos National Laboratory, MST-16, PO Box 1663, Los Alamos, NM 87545 (United States)], E-mail: rpereyra@lanl.gov

2008-11-15

301

Plutonium microstructures. Part 2. Binary and ternary alloys  

SciTech Connect

This report is the second of three parts that exhibit illustrations of inclusions in plutonium metal from inherent and tramp impurities, of intermetallic and nonmetallic constituents from alloy additions, and of the effects of thermal and mechanical treatments. This part includes illustrations of the microstructures in binary cast alloys and a few selected ternary alloys that result from measured additions of diluent elements, and of the microconstituents that are characteristic of phase fields in extended alloy systems. Microhardness data are given and the etchant used in the preparation of each sample is described.

Cramer, E.M.; Bergin, J.B.

1983-12-01

302

Evaluation of Possible Surrogates for Validation of the Oxidation Furnace for the Plutonium Disposition Project  

SciTech Connect

The Plutonium Disposition project (PuD) is considering an alternative furnace design for direct metal oxidation (DMO) of plutonium metal to use as a feed for potential disposition routes. The proposed design will use a retort to oxidize the feed at temperatures up to 500 C. The atmosphere will be controlled using a metered mixture of oxygen, helium and argon to control the oxidation at approximately 400 torr. Since plutonium melts at 664 C, and may potentially react with retort material to form a lower melting point eutectic, the oxidation process will be controlled by metering the flow of oxygen to ensure that the bulk temperature of the material does not exceed this temperature. A batch processing time of <24 hours is desirable to meet anticipated furnace throughput requirements. The design project includes demonstration of concept in a small-scale demonstration test (i.e., small scale) and validation of design in a full-scale test. These tests are recommended to be performed using Pu surrogates due to challenges in consideration of the nature of plutonium and operational constraints required when handling large quantities of accountable material. The potential for spreading contamination and exposing workers to harmful levels of cumulative radioactive dose are motivation to utilize non-radioactive surrogates. Once the design is demonstrated and optimized, implementation would take place in a facility designed to accommodate these constraints. Until then, the use of surrogates would be a safer, less expensive option for the validation phase of the project. This report examines the potential for use of surrogates in the demonstration and validation of the DMO furnace for PuD. This report provides a compilation of the technical information and process requirements for the conversion of plutonium metal to oxide by burning in dry environments. Several potential surrogates were evaluated by various criteria in order to select a suitable candidate for large scale demonstration. First, the structure of the plutonium metal/oxide interface was compared to potential surrogates. Second the data for plutonium oxidation kinetics were reviewed and rates for oxidation were compared with surrogates. The criteria used as a basis for recommendation was selected in order to provide a reasonable oxidation rate during the validation phase. Several reference documents were reviewed and used to compile the information in this report. Since oxidation of large monolithic pieces of plutonium in 75% oxygen is the preferable oxidizing atmosphere for the intended process, this report does not focus on the oxidation of powders, but focuses instead on larger samples in flowing gas.

Duncan, A.

2007-12-31

303

Design and operation of a button-probe, beam-position measurements  

SciTech Connect

Beam position measurement systems have been installed on the Advanced Free Electron Laser (AFEL) facility at Los Alamos National Laboratory. The position measurement uses a capacitive- or button-style probe that differentiates the beam-bunch charge distribution induced on each of the four probe lobes. These induced signals are fed to amplitude-to-phase processing electronics that provide output signals proportional to the arc tangent of the probe`s opposite-lobe, signal-voltage ratios. An associated computer system then digitizes and linearizes these processed signals based on theoretical models and measured responses. This paper will review the processing electronics and capacitive probe responses by deriving simple theoretical models and comparing these models to actual measured responses.

Gilpatrick, J.D.; Power, J.F.; Meyer, R.E.; Rose, C.R.

1993-06-01

304

Design and operation of a button-probe, beam-position measurements  

SciTech Connect

Beam position measurement systems have been installed on the Advanced Free Electron Laser (AFEL) facility at Los Alamos National Laboratory. The position measurement uses a capacitive- or button-style probe that differentiates the beam-bunch charge distribution induced on each of the four probe lobes. These induced signals are fed to amplitude-to-phase processing electronics that provide output signals proportional to the arc tangent of the probe's opposite-lobe, signal-voltage ratios. An associated computer system then digitizes and linearizes these processed signals based on theoretical models and measured responses. This paper will review the processing electronics and capacitive probe responses by deriving simple theoretical models and comparing these models to actual measured responses.

Gilpatrick, J.D.; Power, J.F.; Meyer, R.E.; Rose, C.R.

1993-01-01

305

Improving Efficiency with 3-D Imaging: Technology Essential in Removing Plutonium Processing Equipment from Plutonium Finishing Plant Gloveboxes  

SciTech Connect

The Plutonium Finishing Plant at Hanford, Washington began operations in 1949 to process plutonium and plutonium products. Its primary mission was to produce plutonium metal, fabricate weapons parts, and stabilize reactive materials. These operations, and subsequent activities, were performed in remote production lines, consisting primarily of hundreds of gloveboxes. Over the years these gloveboxes and processes have been continuously modified. The plant is currently inactive and Fluor Hanford has been tasked to clean out contaminated equipment and gloveboxes from the facility so it can be demolished in the near future. Approximately 100 gloveboxes at PFP have been cleaned out in the past four years and about 90 gloveboxes remain to be cleaned out. Because specific commitment dates for this work have been established with the State of Washington and other entities, it is important to adopt work practices that increase the safety and speed of this effort. The most recent work practice to be adopted by Fluor Hanford D&D workers is the use of 3-D models to improve the efficiency of cleaning out radioactive gloveboxes at the plant. The use of 3-D models has significantly improved the work planning process by providing workers with a clear image of glovebox construction and composition, which is then used to determine cleanout methods and work sequences. The 3-D visual products enhance safety by enabling workers to more easily identify hazards and implement controls. In addition, the ability to identify and target the removal of radiological materials early in the D&D process provides substantial dose reduction for the workers.

Crow, Stephen H.; Kyle, Richard N.; Minette, Michael J.

2008-09-01

306

USING 3-D MODELING TO IMPROVE THE EFFICIENCY FOR REMOVING PLUTONIUM PROCESSING EQUIMENT FROM GLOVEBOXES AT THE PLUTONIUM FINISHANG PLANT  

SciTech Connect

The Plutonium Finishing Plant at the Department of Energy's Hanford Site in southeastern Washington State began operations in 1949 to process plutonium and plutonium products. Its primary mission was to produce plutonium metal, fabricate weapons parts, and stabilize reactive materials. These operations, and subsequent activities, were performed in production lines, consisting primarily of hundreds of gloveboxes. Over the years, these gloveboxes and attendant processes have been continuously modified. The plant is currently inactive and Fluor Hanford has been tasked with cleaning out contaminated equipment and gloveboxes from the facility so it can be demolished in the near future. Approximately 100 gloveboxes at PFP have been cleaned out in the past four years and about 90 gloveboxes remain to be cleaned out. Because specific commitment dates for this work have been established with the State of Washington and other entities, it is important to adopt work practices that increase the safety and speed of this effort. The most recent work practice to be adopted by Fluor Hanford D and D workers is the use of 3-D models to make the process of cleaning out the radioactive gloveboxes more efficient. The use of 3-D models has significantly improved the work-planning process by giving workers a clear image of glovebox construction and composition, which in turn is used to determine cleanout methods and work sequences. The 3-D visual products also enhance safety by enabling workers to more easily identify hazards and implement controls. Further, the ability to identify and target the removal of radiological material early in the D and D process provides substantial dose reduction for the workers.

CROW SH; KYLE RN; MINETTE MJ

2008-07-15

307

Plutonium Test Plan ORNL-VNIIEF Collaboration  

Microsoft Academic Search

The goal of this test is to collect the cross correlation and HOS signatures from four detectors, arranged in a tetrahedron about different plutonium objects during ORNL\\/VNIIEF collaborative measurements in Sarov, Russia. The four detectors will be arranged in a tetrahedron with the plutonium object in the center of the tetrahedron. The following constraints about the detector geometry should be

L. G. Chiang; J. T. Mihalczo

2000-01-01

308

Accelerator mass spectrometry of plutonium isotopes  

Microsoft Academic Search

The feasibility of measuring plutonium isotope ratios by accelerator mass spectrometry has been demonstrated. Measurements on a test sample of known composition and on a blank showed that isotope ratios could be determined quantitatively, and that the present limit of detection by AMS is ? 106 atoms of plutonium. For 239Pu, this limit is at least two orders of magnitude

L. K. Fifield; R. G. Cresswell; M. L. di Tada; T. R. Ophel; J. P. Day; A. P. Clacher; S. J. King; N. D. Priest

1996-01-01

309

Disposal of Surplus Weapons Grade Plutonium  

Microsoft Academic Search

The Office of Fissile Materials Disposition is responsible for disposing of inventories of surplus US weapons-usable plutonium and highly enriched uranium as well as providing, technical support for, and ultimate implementation of, efforts to obtain reciprocal disposition of surplus Russian plutonium. On January 4, 2000, the Department of Energy issued a Record of Decision to dispose of up to 50

H. Alsaed; P. Gottlieb

2000-01-01

310

Plutonium Immobilization Project -- Robotic canister loading  

SciTech Connect

The Plutonium Immobilization Program (PIP) is a joint venture between the Savannah River Site, Lawrence Livermore National Laboratory, Argonne National Laboratory, and Pacific Northwest National Laboratory. When operational in 2008, the PIP will fulfill the nation's nonproliferation commitment by placing surplus weapons-grade plutonium in a permanently stable ceramic form.

Hamilton, L.

2000-04-28

311

Uses for plutonium: Weapons, reactors, and other  

SciTech Connect

This document begins with a introduction on criticality and supercriticality. Then, types and components, design and engineering, yields, and disassembly of nuclear weapons are discussed. Plutonium is evaluated as a reactor fuel, including neutronics and chemistry considerations. Finally, other uses of plutonium are analyzed.

Condit, R.H.

1994-05-01

312

Dropping of an EndoButton into the knee joint 2 years after anterior cruciate ligament repair using proximal fixation methods.  

PubMed

One of the most discussed subjects regarding anterior cruciate ligament (ACL) repair methods is femoral fixation. One of the materials often used for fixation in recent years is the EndoButton (Acufex Microsurgical, Mansfield, MA), which provides rapid and secure fixation. Although many reports about femoral fixation with EndoButton have been published, insufficient information is available on possible complications. We have used 240 EndoButtons in our clinic for ACL repairs since 1997. The goal of this study was to report a case of ACL repair with an EndoButton, in which we experienced a complication. In this case, the EndoButton dropped into the knee joint after 2 years. PMID:15241318

Yanmi?, Ibrahim; Tunay, Servet; O?uz, Erbil; Yildiz, Cemil; Ozkan, Hseyin; Kirdemir, Vecihi

2004-07-01

313

Preparation of Small Well Characterized Plutonium Oxide Reference Materials and Demonstration of the Usefulness of Such Materials for Nondestructive Analysis  

SciTech Connect

Calibration of neutron coincidence and multiplicity counters for passive nondestructive analysis (NDA) of plutonium requires knowledge of the detector efficiency parameters. These are most often determined empirically. Bias from multiplication and unknown impurities may be incurred even with small plutonium metal samples. Five sets of small, pure plutonium metal standards prepared with well-known geometry and very low levels of impurities now contribute to determining accurate multiplication corrections. Recent measurements of these metal standards, with small but well-defined multiplication and negligible yield of other than fission neutrons, demonstrate an improved characterization and calibration of neutron coincidence/multiplicity counters. The precise knowledge of the mass and isotopic composition of each standard also contributes significantly to verifying the accuracy of the most precise calorimetry and gamma-ray spectroscopy measurements.

B.A. Guillen; S.T. Hsue; J.Y Huang; P.A. Hypes; S.M. Long; C.R. Rudy; P.A. Russo; J.E. Stewart; D.J. Temer

2003-01-01

314

Spicing Things up by Adding Color and Relieving Pain: The Use of "Napoleon's Buttons" in Organic Chemistry  

ERIC Educational Resources Information Center

For some students, organic chemistry can be a distant subject and unrelated to any courses they have seen in their college careers. To develop a more contextual learning experience in organic chemistry, an additional text, "Napoleon's Buttons: 17 Molecules That Changed History," by Penny Le Couteur and Jay Burreson, was incorporated as a

Bucholtz, Kevin M.

2011-01-01

315

A new view of the deterioration and wear of WC\\/Co cemented carbide rock drill buttons  

Microsoft Academic Search

WC\\/Co cemented carbide is a material developed for highly demanding applications. The unique combination of hardness and toughness makes it especially suitable for wear resistant parts of tools for rock drilling.The wear of cemented carbide rock drill buttons has been the focus of numerous studies, and a large amount of wear data has been published. However, the broad range of

Ulrik Beste; Staffan Jacobson

2008-01-01

316

Direct vitrification of plutonium-containing materials (PCM`s) with the glass material oxidation and dissolution system (GMODS)  

SciTech Connect

The end of the cold war has resulted in excess PCMs from nuclear weapons and associated production facilities. Consequently, the US government has undertaken studies to determine how best to manage and dispose of this excess material. The issues include (a) ensurance of domestic health, environment, and safety in handling, storage, and disposition, (b) international arms control agreements with Russia and other countries, and (c) economics. One major set of options is to convert the PCMs into glass for storage or disposal. The chemically inert characteristics of glasses make them a desirable chemical form for storage or disposal of radioactive materials. A glass may contain only plutonium, or it may contain plutonium along with other radioactive materials and nonradioactive materials. GMODS is a new process for the direct conversion of PCMs (i.e., plutonium metal, scrap, and residues) to glass. The plutonium content of these materials varies from a fraction of a percent to pure plutonium. GMODS has the capability to also convert other metals, ceramics, and amorphous solids to glass, destroy organics, and convert chloride-containing materials into a low-chloride glass and a secondary clean chloride salt strewn. This report is the initial study of GMODS for vitrification of PCMs as input to ongoing studies of plutonium management options. Several tasks were completed: initial analysis of process thermodynamics, initial flowsheet analysis, identification of equipment options, proof-of-principle experiments, and identification of uncertainties.

Forsberg, C.W. Beahm, E.C.; Parker, G.W.; Rudolph, J.C.; Haas, P.A.; Malling, G.F.; Elam, K.; Ott, L.

1995-10-30

317

Simulation of moderated plutonium neutron multiplicity measurements.  

SciTech Connect

The purpose of this work is to improve detection methods that can reliably identify special nuclear material (SNM). One method that can be used to identify special nuclear material is neutron multiplicity analysis. This method detects multiple time-correlated neutrons released from a fission event in the SNM. This work investigates the ability of the software code MCNP-PoliMi to simulate neutron multiplicity measurements from a highly moderated SNM source. A measurement of a 4.5-kg alpha-phase metal plutonium sphere surrounded by up to 6 inches of polyethylene shells has recently been performed by Sandia National Laboratories personnel at the Nevada Test Site. A post-processing code was developed to account for dead-time effects within the detector and to determine the neutron multiplicity distributions for various time intervals. With the distributions calculated, the Feynman-Y can be determined. The Feynman-Y is a metric that measures the level of correlation present in a sample. At this time MCNP-PoliMi is able predict the Feynman-Y within 10% of the measured value.

Mattingly, John K.; Pozzi, S. A. (University of Michigan, Ann Arbor, MI); Clarke, S. D. (University of Michigan, Ann Arbor, MI); Dennis, B. (University of Michigan, Ann Arbor, MI); Miller, E. C. (University of Michigan, Ann Arbor, MI)

2010-03-01

318

The growth and evolution of thin oxide films on delta-plutonium surfaces  

SciTech Connect

The common oxides of plutonium are the dioxide (PuO{sub 2}) and the sesquioxide (Pu{sub 2}O{sub 3}). The structure of an oxide on plutonium metal under air at room temperature is typically described as a thick PuO{sub 2} film at the gas-oxide interface with a thinner PuO{sub 2} film near the oxide-metal substrate interface. In a reducing environment, such as ultra high vacuum, the dioxide (Pu{sup 4+}; O/Pu = 2.0) readily converts to the sesquioxide (Pu{sup 3+}; O/Pu = 1.5) with time. In this work, the growth and evolution of thin plutonium oxide films is studied with x-ray photoelectron spectroscopy (XPS) under varying conditions. The results indicate that, like the dioxide, the sesquioxide is not stable on a very clean metal substrate under reducing conditions, resulting in substoichiometric films (Pu{sub 2}O{sub 3-y}). The Pu{sub 2}O{sub 3-y} films prepared exhibit a variety of stoichiometries (y = 0.2-1) as a function of preparation conditions, highlighting the fact that caution must be exercised when studying plutonium oxide surfaces under these conditions and interpreting resulting data.

Garcia Flores, Harry G [Los Alamos National Laboratory; Pugmire, David L [Los Alamos National Laboratory

2009-01-01

319

REMOVAL OF LEGACY PLUTONIUM MATERIALS FROM SWEDEN  

SciTech Connect

U.S. Department of Energys National Nuclear Security Administration (NNSA) Office of Global Threat Reduction (GTRI) recently removed legacy plutonium materials from Sweden in collaboration with AB SVAFO, Sweden. This paper details the activities undertaken through the U.S. receiving site (Savannah River Site (SRS)) to support the characterization, stabilization, packaging and removal of legacy plutonium materials from Sweden in 2012. This effort was undertaken as part of GTRIs Gap Materials Program and culminated with the successful removal of plutonium from Sweden as announced at the 2012 Nuclear Security Summit. The removal and shipment of plutonium materials to the United States was the first of its kind under NNSAs Global Threat Reduction Initiative. The Environmental Assessment for the U.S. receipt of gap plutonium material was approved in May 2010. Since then, the multi-year process yielded many first time accomplishments associated with plutonium packaging and transport activities including the application of the of DOE-STD-3013 stabilization requirements to treat plutonium materials outside the U.S., the development of an acceptance criteria for receipt of plutonium from a foreign country, the development and application of a versatile process flow sheet for the packaging of legacy plutonium materials, the identification of a plutonium container configuration, the first international certificate validation of the 9975 shipping package and the first intercontinental shipment using the 9975 shipping package. This paper will detail the technical considerations in developing the packaging process flow sheet, defining the key elements of the flow sheet and its implementation, determining the criteria used in the selection of the transport package, developing the technical basis for the package certificate amendment and the reviews with multiple licensing authorities and most importantly integrating the technical activities with the Swedish partners.

Dunn, Kerry A. [Savannah River National Laboratory; Bellamy, J. Steve [Savannah River National Laboratory; Chandler, Greg T. [Savannah River National Laboratory; Iyer, Natraj C. [U.S. Department of Energy, National Nuclear Security Administration, Office of; Koenig, Rich E.; Leduc, D. [Savannah River National Laboratory; Hackney, B. [Savannah River National Laboratory; Leduc, Dan R. [Savannah River National Laboratory

2013-08-18

320

Adaptation of the IBM ECR (electric cantilever robot) robot to plutonium processing applications  

SciTech Connect

The changing regulatory climate in the US is adding increasing incentive to reduce operator dose and TRU waste for DOE plutonium processing operations. To help achieve that goal the authors have begun adapting a small commercial overhead gantry robot, the IBM electric cantilever robot (ECR), to plutonium processing applications. Steps are being taken to harden this robot to withstand the dry, often abrasive, environment within a plutonium glove box and to protect the electronic components against alpha radiation. A mock-up processing system for the reduction of the oxide to a metal was prepared and successfully demonstrated. Design of a working prototype is now underway using the results of this mock-up study. 7 figs., 4 tabs.

Armantrout, G.A.; Pedrotti, L.R. (Lawrence Livermore National Lab., CA (USA)); Halter, E.A.; Crossfield, M. (International Business Machines Corp., Armonk, NY (USA))

1990-12-01

321

Evolving Density and Static Mechanical Properties in Plutonium from Self-Irradiation  

SciTech Connect

Plutonium, because of its self-irradiation by alpha decay, ages by means of lattice damage and helium in-growth. These integrated aging effects result in microstructural and physical property changes. Because these effects would normally require decades to measure, studies are underway to assess the effects of extended aging on the physical properties of plutonium alloys by incorporating roughly 7.5 weight % of highly specific activity isotope {sup 238}Pu into the {sup 239}Pu metal to accelerate the aging process. This paper presents updated results of self-irradiation effects on {sup 238}Pu-enriched alloys measured by immersion density, dilatometry, and tensile tests. After nearly 90 equivalent years of aging, both the immersion density and dilatometry show that the enriched alloys continue to decreased in density by {approx}0.002% per year, without void swelling. Quasi-static tensile measurements show that the aging process increases the strength of plutonium alloys.

Chung, B W; Thompson, S R; Lema, K E; Hiromoto, D S; Ebbinghaus, B B

2008-07-31

322

Design of the improved plutonium canister assay system (IPCAS)  

Microsoft Academic Search

The improved Plutonium Canister Assay System (iPCAS) is designed to detect gross and partial defects in the declared plutonium content of plutonium and MOX storage canisters during transfer to storage and process areas of the MOX fuel fabrication facility in Kokkasho, Japan. In addition, an associated Gamma Isotopics System (GIS) will be used to confirm facility-declared plutonium isotopics with accuracy

M. E. Abhold; M. C. Baker; S. C. Bourret; P. J. Polk; Duc T. Vo

2001-01-01

323

Light water breeder reactor using a uranium-plutonium cycle  

Microsoft Academic Search

This patent describes a light water receptor (LWR) for breeding fissile material using a uranium-plutonium cycle. It comprises: a prebreeder section having plutonium fuel containing a Pu-241 component, the prebreeder section being operable to produce enriched plutonium having an increased Pu-241 component; and a breeder section for receiving the enriched plutonium from the prebreeder section, the breeder section being operable

A. Radkowsky; R. Chen

1990-01-01

324

Processing of Non-PFP Plutonium Oxide in Hanford Plants.  

National Technical Information Service (NTIS)

Processing of non-irradiated plutonium oxide, PuO2, scrap for recovery of plutonium values occurred routinely at Hanford's Plutonium Finishing Plant (PFP) in glovebox line operations. Plutonium oxide is difficult to dissolve, particularly if it has been h...

C. H. Delegard S. A. Jones

2011-01-01

325

An iron-dependent and transferrin-mediated cellular uptake pathway for plutonium  

PubMed Central

Plutonium is a toxic synthetic element with no natural biological function, but it is strongly retained by humans when ingested. Using small angle X-ray scattering, receptor binding assays, and synchrotron X-ray fluorescence microscopy we find that rat adrenal gland (PC12) cells can acquire plutonium in vitro through the major iron acquisition pathway, receptor-mediated endocytosis of the iron transport protein serum transferrin; however only one form of the plutonium-transferrin complex is active. Low-resolution solution models of plutonium-loaded transferrins derived from small angle scattering demonstrate that only transferrin with plutonium bound in the proteins C-terminal lobe and iron bound in the N-lobe (PuCFeNTf) adopts the proper conformation for recognition by the transferrin receptor protein. Although the metal binding site in each lobe contains the same donors in the same configuration and both lobes are similar, the differences between transferrins two lobes act to restrict, but not eliminate, cellular Pu uptake.

Jensen, Mark P.; Gorman-Lewis, Drew; Aryal, Baikuntha; Paunesku, Tatjana; Vogt, Stefan; Rickert, Paul G.; Seifert, Soenke; Lai, Barry; Woloschak, Gayle E.; Soderholm, L.

2012-01-01

326

Laboratory-scale evaluations of alternative plutonium precipitation methods  

SciTech Connect

Plutonium(III), (IV), and (VI) carbonate; plutonium(III) fluoride; plutonium(III) and (IV) oxalate; and plutonium(IV) and (VI) hydroxide precipitation methods were evaluated for conversion of plutonium nitrate anion-exchange eluate to a solid, and compared with the current plutonium peroxide precipitation method used at Rocky Flats. Plutonium(III) and (IV) oxalate, plutonium(III) fluoride, and plutonium(IV) hydroxide precipitations were the most effective of the alternative conversion methods tested because of the larger particle-size formation, faster filtration rates, and the low plutonium loss to the filtrate. These were found to be as efficient as, and in some cases more efficient than, the peroxide method. 18 references, 14 figures, 3 tables.

Martella, L.L.; Saba, M.T.; Campbell, G.K.

1984-02-08

327

Plutonium Attribute Estimation From Passive NMIS Measurements at VNIIEF  

SciTech Connect

Currently, the most relevant application of NMIS for plutonium attribute estimation stems from measurements performed jointly by Oak Ridge National Laboratory (ORNL) and Russian Federal Nuclear Center, All-Russia Scientific Research Institute of Experimental Physics (RFNC-VNIIEF) personnel at RFNC-VNIIEF facilities in Sarov, Russia in June and July 2000. During these measurements at VNIIEF, NMIS was applied in its passive mode to eight unclassified plutonium spherical shells. The shells' properties spanned the following ranges: Composition: {delta}-phase plutonium-metal, constant; Relative {sup 240}Pu-content (f{sub 240Pu}): f{sub 240Pu} = 1.77% (g {sup 240}Pu/g Pu), constant; Inner radius (r{sub 1}): 10.0 mm {le} r{sub 1} {le} 53.5 mm, mean r{sub 1} = 33.5 mm; Outer radius (r{sub 2}): 31.5 mm {le} r{sub 2} {le} 60.0 mm, mean r{sub 2} = 46.6 mm; Radial thickness ({Delta}r): 6.4 mm {le} {Delta}r {le} 30.2 mm, mean {Delta}r = 13.1 mm; and Plutonium mass (m{sub Pu}): 1829 g {le} m{sub Pu} {le} 4468 g, mean m{sub Pu} = 3265 g. The features of these measurements were analyzed to extract the attributes of each plutonium shell. Given that the samples measured were of constant composition, geometry, and relative {sup 240}Pu-content, each shell is completely described by any two of the following four properties: Inner radius r{sub 1}; Outer radius r{sub 2}; Mass m, one of {sup 239}Pu mass m{sub {sup 239}Pu}, {sup 240}Pu mass m{sub {sup 240}Pu}, or total Pu mass m{sub Pu}; and Radial thickness {Delta}r. Of these, generally only mass is acknowledged as an attribute of interest; the second property (whichever is chosen) can be considered to be a parameter of the attribute-estimation procedure, much as multiplication is a parameter necessary to accurately estimate fissile mass via most neutron measurements.

Mattingly, J.K.

2002-01-17

328

Plutonium Immobilization Can Loading Conceptual Design  

SciTech Connect

'The Plutonium Immobilization Facility will encapsulate plutonium in ceramic pucks and seal the pucks inside welded cans. Remote equipment will place these cans in magazines and the magazines in a Defense Waste Processing Facility (DWPF) canister. The DWPF will fill the canister with glass for permanent storage. This report discusses the Plutonium Immobilization can loading conceptual design and includes a process block diagram, process description, preliminary equipment specifications, and several can loading issues. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.'

Kriikku, E.

1999-05-13

329

Management of acute acromioclavicular joint dislocation with a double-button fixation system.  

PubMed

INTRODUCTION: Numerous static and dynamic techniques have been described for the management of acute acromioclavicular (AC) joint dislocation. To date, no standard technique has been established and several complications have been described for each of these techniques. The purpose of the present study was to evaluate the functional and radiographic outcomes of acute AC joint reconstruction after a mini-open technique using the double-button fixation system. PATIENTS AND METHODS: Twelve patients with acute AC joint dislocation treated with the double-button fixation system by one surgeon were retrospectively reviewed. Functional assessment was performed by an independent reviewer using the DASH, Constant and the VAS scores. The coracoclavicular (CC) distance of the affected shoulder was assessed on a standard radiograph and compared with the contralateral normal one. RESULTS: Eight patients were operated on for grade III AC joint dislocation and 4 for grade IV. The mean age of the patients at the time of surgery was 27.5 years. The mean follow-up was 18.25 months (range: 12-30 months). At the most recent follow-up, the mean Constant score was 94.8 (range: 84-100) showing a significant increase compared with the mean pre-operative value of 34.4 (range: 25-52) (p<0.001). The mean DASH score was significantly decreased from 19.6 (range: 14-28) preoperatively to 0.25 (range: 0-3) at the last follow-up (p<0.001). The mean VAS score showed a significant decrease from 5.75 (range: 4-7) to 0.2 (range: 0-2) (p<0.001). The mean CC distance on the operated shoulder was found to have no significant difference from the CC distance on the contralateral normal side (10.5 vs. 10mm) (p>0.05). There was no evidence of AC joint osteoarthrosis, CC calcification or osteolysis of the distal clavicle or the coracoid process. CONCLUSIONS: The proposed mini-open technique provides adequate exposure of the base of the coracoid with minimal damage to the soft tissues surrounding the CC ligaments while ensures an excellent cosmetic result. We recommend this fast and relatively simple technique for all type IV injuries and for type III injuries in heavy manual workers and high-demand upper extremities athletes. PMID:23352675

Beris, Alexander; Lykissas, Marios; Kostas-Agnantis, Ioannis; Vekris, Marios; Mitsionis, Gregory; Korompilias, Anastasios

2013-01-23

330

What is plutonium stabilization, and what is safe storage of plutonium?  

SciTech Connect

The end of the cold war has resulted in the shutdown of nuclear weapons production and the start of dismantlement of significant numbers of nuclear weapons. This, in turn, is creating an inventory of plutonium requiring interim and long-term storage. A key question is, ``What is required for safe, multidecade, plutonium storage?`` The requirements for storage, in turn, define what is needed to stabilize the plutonium from its current condition into a form acceptable for interim and long-term storage. Storage requirements determine if research is required to (1) define required technical conditions for interim and long-term storage and (2) develop or improve current stabilization technologies. Storage requirements depend upon technical, policy, and economic factors. The technical issues are complicated by several factors. Plutonium in aerosol form is highly hazardous. Plutonium in water is hazardous. The plutonium inventory is in multiple chemical forms--some of which are chemically reactive. Also, some of the existing storage forms are clearly unsuitable for storage periods over a few years. Gas generation by plutonium compounds complicates storage: (1) all plutonium slowly decays creating gaseous helium and (2) the radiation from plutonium decay can initiate many chemical reactions-some of which generate significant quantities of gases. Gas generation can pressurize sealed storage packages. Last nuclear criticality must be avoided.

Forsberg, C.W.

1995-06-29

331

Design-only conceptual design report: Plutonium Immobilization Plant  

SciTech Connect

This design-only conceptual design report was prepared to support a funding request by the Department of Energy Office of Fissile Materials Disposition for engineering and design of the Plutonium Immobilization Plant, which will be used to immobilize up to 50 tonnes of surplus plutonium. The Plutonium Immobilization Plant will be located at the Savannah River Site pursuant to the Surplus Plutonium Disposition Final Environmental Impact Statement Record of Decision, January 4, 2000. This document reflects a new facility using the ceramic immobilization technology and the can-in-canister approach. The Plutonium Immobilization Plant accepts plutonium oxide from pit conversion and plutonium and plutonium oxide from non-pit sources and, through a ceramic immobilization process, converts the plutonium into mineral-like forms that are subsequently encapsulated within a large canister of high-level waste glass. The final immobilized product must make the plutonium as inherently unattractive and inaccessible for use in nuclear weapons as the plutonium in spent fuel from commercial reactors; it must also be suitable for geologic disposal. Plutonium immobilization at the Savannah River Site uses a new building, the Plutonium Immobilization Plant, which will receive and store feed materials, convert non-pit surplus plutonium to an oxide form suitable for the immobilization process, immobilize the plutonium oxide in a titanate-based ceramic form, place cans of the plutonium-ceramic forms into magazines, and load the magazines into a canister. The existing Defense Waste Processing Facility is used for the pouring of high-level waste glass into the canisters. The Plutonium Immobilization Plant uses existing Savannah River Site infrastructure for analytical laboratory services, waste handling, fire protection, training, and other support utilities and services. This design-only conceptual design report also provides the cost for a Plutonium Immobilization Plant which would process and immobilize 17 tonnes of plutonium in ten years. The project schedule for either case is shown in a table.

DiSabatino, A A

2000-05-01

332

Treatment studies of plutonium-bearing INEEL waste surrogates in a bench-scale arc furnace  

SciTech Connect

Since 1989, the Subsurface Disposal Area (SDA) at the Idaho National Environmental and Engineering Laboratory (INEEL) has been included on the National Priority List for remediation. Arc- and plasma-heated furnaces are being considered for converting the radioactive mixed waste buried in the SDA to a stabilized-vitreous form. Nonradioactive, surrogate SDA wastes have been melted during tests in these types of furnaces, but data are needed on the behavior of transuranic (TRU) constituents, primarily plutonium, during thermal treatment. To begin collecting this data, plutonium-spiked SDA surrogates were processed in a bench-scale arc furnace to quantify the fate of the plutonium and other hazardous and nonhazardous metals. Test conditions included elevating the organic, lead, chloride, and sodium contents of the surrogates. Blends having higher organic contents caused furnace power levels to fluctuate. An organic content corresponding to 50% INEEL soil in a soil-waste blend was the highest achievable before power fluctuations made operating conditions unacceptable. The glass, metal, and off-gas solids produced from each surrogate blend tested were analyzed for elemental (including plutonium) content and the partitioning of each element to the corresponding phase was calculated.

Freeman, C.J.

1997-05-01

333

Criticality Experiments with Mixed Plutonium and Uranium Nitrate Solution at a Plutonium Fraction of 0.2 and 1.0 in Annular Cylindrical Geometry  

SciTech Connect

A series of critical experiments was completed with mixed plutoniumuranium solutions having Pu/(Pu + U) ratios of approximately 0.2 and 1.0. These experiments were a part of the Criticality Data Development Program between the United States Department of Energy (USDOE), and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of, and data from, the experiments are included in this report. The experiments were performed with mixed plutonium-uranium solutions in annular cylindrical geometry. The measurements were made with a water reflector. The central region included a concrete, polyethylene or void annular cylindrical insert. Interior to the insert was a stainless steel bottle containing plutonium-uranium solution or a void region. In one experiment the central region was filled with a solid cadmium-covered polyethylene insert. The concentration of the solution in the annular region was varied from 61 to 489 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was 0.22 or 0.97 for all experiments.

Lloyd, RC

1988-04-01

334

Plutonium Test Plan ORNL-VNIIEF Collaboration.  

National Technical Information Service (NTIS)

The goal of this test is to collect the cross correlation and HOS signatures from four detectors, arranged in a tetrahedron about different plutonium objects during ORNL/VNIIEF collaborative measurements in Sarov, Russia. The four detectors will be arrang...

L. G. Chiang J. T. Mihalezo

2000-01-01

335

Review of Major Plutonium Pyrochemical Technology.  

National Technical Information Service (NTIS)

The past twenty years have seen significant growth in the development and application of pyrochemical technology for processing of plutonium. For particular feedstocks and specific applications, non-aqueous high-temperature processes offer key advantages ...

W. S. Moser J. D. Navratil

1983-01-01

336

Leaching behavior of particulate plutonium oxide  

SciTech Connect

Different size cuts of /sup 238/PuO/sub 2/ particles were mixed with deionized water at two temperatures in a shaker bath. The gross plutonium concentration in the water was measured, as well as that portion of the plutonium retained on a 0.1-..mu..m pore filter. The concentration of the plutonium released was primarily a function of the surface area of the particles. The release rate of plutonium into the water for the size cut with particles having diameters between 30 and 20 ..mu..m was 3 ng/m/sup 2//s; this rate is within the range observed in past experiments involving aquatic environments. The amount of material retained by the 0.1-..mu..m filters decreased with increasing time, suggesting that size reduction or removal processes occurred. 6 refs., 3 figs., 9 tabs.

Kosiewicz, S.T.; Heaton, R.C.

1985-08-01

337

Design and evaluation of plutonium electrorefining cells  

SciTech Connect

A plutonium electrorefining cell was designed for stationary furnace operation. This cell and the LANL electrorefining cell were evaluated. Results of this evaluation and comparison to existing production electrorefining at Rocky Flats are presented.

Not Available

1987-01-01

338

Plutonium Sphere Reflected by Reflected by Beryllium.  

National Technical Information Service (NTIS)

This experiment with an alpha-phase plutonium sphere reflected by beryllium was performed using the Planet critical assembly at the Los Alamos Critical Experiments Facility (LACEF). The beryllium reflector consisted of a pair of inner and outer hemisphere...

D. Loaiza J. Hutchinson

2013-01-01

339

Shielded button electrodes for time-resolved measurements of electron cloud buildup  

NASA Astrophysics Data System (ADS)

We report on the design, deployment and signal analysis for shielded button electrodes sensitive to electron cloud buildup at the Cornell Electron Storage Ring. These simple detectors, derived from a beam-position monitor electrode design, have provided detailed information on the physical processes underlying the local production and the lifetime of electron densities in the storage ring. Digitizing oscilloscopes are used to record electron fluxes incident on the vacuum chamber wall in 1024 time steps of 100 ps or more. The fine time steps provide a detailed characterization of the cloud, allowing the independent estimation of processes contributing on differing time scales and providing sensitivity to the characteristic kinetic energies of the electrons making up the cloud. By varying the spacing and population of electron and positron beam bunches, we map the time development of the various cloud production and re-absorption processes. The excellent reproducibility of the measurements also permits the measurement of long-term conditioning of vacuum chamber surfaces.

Crittenden, J. A.; Billing, M. G.; Li, Y.; Palmer, M. A.; Sikora, J. P.

2014-06-01

340

A 'green button' for using aggregate patient data at the point of care.  

PubMed

Randomized controlled trials have traditionally been the gold standard against which all other sources of clinical evidence are measured. However, the cost of conducting these trials can be prohibitive. In addition, evidence from the trials frequently rests on narrow patient-inclusion criteria and thus may not generalize well to real clinical situations. Given the increasing availability of comprehensive clinical data in electronic health records (EHRs), some health system leaders are now advocating for a shift away from traditional trials and toward large-scale retrospective studies, which can use practice-based evidence that is generated as a by-product of clinical processes. Other thought leaders in clinical research suggest that EHRs should be used to lower the cost of trials by integrating point-of-care randomization and data capture into clinical processes. We believe that a successful learning health care system will require both approaches, and we suggest a model that resolves this escalating tension: a "green button" function within EHRs to help clinicians leverage aggregate patient data for decision making at the point of care. Giving clinicians such a tool would support patient care decisions in the absence of gold-standard evidence and would help prioritize clinical questions for which EHR-enabled randomization should be carried out. The privacy rule in the Health Insurance Portability and Accountability Act (HIPAA) of 1996 may require revision to support this novel use of patient data. PMID:25006150

Longhurst, Christopher A; Harrington, Robert A; Shah, Nigam H

2014-07-01

341

Documentation of Short Stack and Button Cell Experiments Performed at INL and Ceramatec during FY07  

SciTech Connect

This report provides documentation of experimental research activities performed at the Idaho National Laboratory and at Ceramatec, Inc. during FY07 under the DOE Nuclear Hydrogen Initiative, High Temperature Electrolysis Program. The activities discussed in this report include tests on single (button) cells, short planar stacks and tubular cells. The objectives of these small-scale tests are to evaluate advanced electrode, electrolyte, and interconnect materials, alternate modes of operation (e.g., coelectrolysis), and alternate cell geometries over a broad range of operating conditions, with the aim of identifying the most promising material et, cell and stack geometry, and operating conditions for the high-temperature electrolysis application. Cell performance is characterized in erms of initial area-specific resistance and long-term stability in the electrolysis mode. Some of the tests were run in the coelectrolysis mode. Research into coelectrolysis was funded by Laboratory Directed Research and Development (LDRD). Coelectrolysis simultaneously converts steam to hydrogen and carbon dioxide to carbon monoxide. This process is complicated by the reverse shift reaction. An equilibrium model was developed to predict outlet compositions of steam, hydrogen, carbon dioxide, and carbon monoxide resulting from coelectrolysis. Predicted ompositions were compared to measurements obtained with a precision micro-channel gas chromatograph.

J. E. O'Brien; C. M. Stoots; J. J. Hartvigsen; J. S. Herring

2007-09-01

342

Plutonium-238 processing at Savannah River Plant  

SciTech Connect

Plutonium-238 is produced by irradiating NpO/sub 2/-Al cermet slugs or tubes with neutrons. The neptunium-237 is produced as a by-product when natural or enriched uranium is irradiated with neutrons. The neptunium is separated by solvent extraction and ion exchange and precipitated as neptunium oxalate. Neptunium oxalate is calcined to neptunium oxide and fabricated into targets for irradiation. The irradiation conditions are controlled to produce plutonium with 80 to 90 wt % /sup 238/Pu.

Burney, G.A.

1983-01-01

343

Explosive properties of reactor?grade plutonium  

Microsoft Academic Search

The following discussion focuses on the question of whether a terrorist organization or a threshold state could make use of plutonium recovered from light?water?reactor fuel to construct a nuclear explosive device having a significantly damaging yield. Questions persist in some nonproliferation policy circles as to whether a bomb could be made from reactor?grade plutonium of high burn?up, and if so,

J. Carson Marka

1993-01-01

344

Plutonium scrap multiplicity counter operation manual  

Microsoft Academic Search

This manual describes the design features and performance and operating characteristics for the plutonium scrap multiplicity counter (PSMC). It counts neutron multiplicities to quantitatively assay plutonium in many forms, including impure scrap and waste. Monte Carlo neutronic calculations were used to design the high-efficiency (55%) detector using eighty ³He tubes in a high-density polyethylene body. The new multiplicity shift-register electronics

H. O. Menlove; J. Baca; M. S. Krick; K. E. Kroncke; D. G. Langner

1993-01-01

345

Plutonium scrap multiplicity counter operation manual  

Microsoft Academic Search

This manual describes the design features and performance and operating characteristics for the plutonium scrap multiplicity counter (PSMC). It counts neutron multiplicities to quantitatively assay plutonium in many forms, including impure scrap and waste. Monte Carlo neutronic calculations were used to design the high-efficiency (55%) detector using eighty [sup 3]He tubes in a high-density polyethylene body. The new multiplicity shift-register

H. O. Menlove; J. Baca; M. S. Krick; K. E. Kroncke; D. G. Langner

1993-01-01

346

Future role of plutonium technology in society  

SciTech Connect

Until the fall of the Berlin Wall, there was a very clear programmatic use of plutonium: supporting the nuclear deterrent. Since the breakup of the Soviet Union, bilateral agreements concerning the cessation of nuclear testing and the dismantlement of large portions of the nuclear weapon stockpiles by the United States and the states of the former Soviet Union have resulted in new requirements concerning the management and disposition of nuclear materials. This report describes current issues pertaining to the requirements for plutonium management.

Christensen, D.C.; Matthews, R.B.; Trapp, T.J. [Los Alamos National Lab., NM (United States)

1995-12-31

347

Recovery of plutonium from nitric acid waste  

SciTech Connect

Seven candidate materials, each contained in a static-bed column, have been evaluated for removing plutonium from nitric acid waste. Three materials have insufficient capacity for plutonium: TBP (tri-n-butylphosphate) sorbed on Amberlite XAD-4 resin, O phi D(IB)CMPO (octylphenyl-N, N-diisobutylcarbamoylmethylphosphine oxide) sorbed on XAD-4, and Amberlite IRA-938 anion exchange resin. The remaining four materials reduced 10/sup -3/ g/l plutonium in 7.2M HNO/sub 3/ to low 10/sup -5/ g/l for 80 bed volumes (BV). The 10% breakthrough capacities for 3 x 10/sup -2/ g/l plutonium are: TOPO (tri-n-octylphosphine oxide) on XAD-4 - 1800 BV, DHDECMP (dihexyl-N, N-diethylcarbamoylmethylphosphonate) on XAD-4 - 960 BV, Dowex 1 x 4 - 840 BV, and DHDECMP + TBP - 640 BV. Based on these results and generally poor elution of all materials, TOPO on XAD-4 is recommended as the best candidate for recovery of plutonium followed by acid digestion or combustion of the TOPO to recover the concentrated plutonium.

Muscatello, A.C.; Saba, M.T.; Navratil, J.D.

1986-12-21

348

Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus  

Microsoft Academic Search

Essential oils of Matricaria chamommilla, Mentha piperita, M. spicata, Lavandula angusti folia, Ocimum basilicum, Thymus vulgaris, Origanum vulgare, Salvia officinalis, Citrus limon and C. aurantium and their components; linalyl acetate, linalool, limonene, ?-pinene, ?-pinene, 1,8-cineole, camphor, carvacrol, thymol and menthol were assayed for inhibitory activity against the three major pathogens of the button mushroom, Agaricus bisporus, i.e. the fungi Verticillium

Marina Sokovi?

2006-01-01

349

Determination of equivalent plutonium content in MOX fuel assemblies  

SciTech Connect

For the design of a core loaded with mixed-oxide (MOX) fuel, it is frequently necessary to determine the plutonium content in an MOX fuel assembly that is equivalent in burnup to a conventional UO{sub 2} fuel assembly. The equivalent plutonium content can be determined experimentally based on the linear reactivity model (LRM) through a number of assembly depletion calculations. In this study, the equivalent total plutonium content in an MOX fuel is correlated with the plutonium isotopic composition, which makes it possible to estimate the equivalent plutonium content without any assembly depletion calculations for a new plutonium with different isotopic compositions.

Yong Bae Kim; Nam Zin Cho [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Democratic People`s Republic of)

1996-12-31

350

Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility  

SciTech Connect

Eighteen plutonium oxide samples originating from the Plutonium Finishing Plant (PFP) on the Hanford Site were analyzed to provide additional data on the suitability of PFP thermally stabilized plutonium oxides and Rocky Flats oxides as alternate feedstock to the Mixed Oxide Fuel Fabrication Facility (MFFF). Radiochemical and chemical analyses were performed on fusions, acid leaches, and water leaches of these 18 samples. The results from these destructive analyses were compared with nondestructive analyses (NDA) performed at PFP and the acceptance criteria for the alternate feedstock. The plutonium oxide materials considered as alternate feedstock at Hanford originated from several different sources including Rocky Flats oxide, scrap from the Remote Mechanical C-Line (RMC) and the Plutonium Reclamation Facility (PRF), and materials from other plutonium conversion processes at Hanford. These materials were received at PFP as metals, oxides, and solutions. All of the material considered as alternate feedstock was converted to PuO2 and thermally stabilized by heating the PuO2 powder at 950 C in an oxidizing environment. The two samples from solutions were converted to PuO2 by precipitation with Mg(OH)2. The 18 plutonium oxide samples were grouped into four categories based on their origin. The Rocky Flats oxide was divided into two categories, low- and high-chloride Rocky Flats oxides. The other two categories were PRF/RMC scrap oxides, which included scrap from both process lines and oxides produced from solutions. The two solution samples came from samples that were being tested at Pacific Northwest National Laboratory because all of the plutonium oxide from solutions at PFP had already been processed and placed in 3013 containers. These samples originated at the PFP and are from plutonium nitrate product and double-pass filtrate solutions after they had been thermally stabilized. The other 16 samples originated from thermal stabilization batches before canning at PFP. Samples varied in appearance depending on the original source of material. Rocky Flats items were mostly dark olive green with clumps that crushed easily with a mortar and pestle. PRF/RMC items showed more variability. These items were mostly rust colored. One sample contained white particles that were difficult to crush, and another sample was a dark grey with a mixture of fines and large, hard fragments. The appearance and feel of the fragments indicated they might be an alloy. The color of the solution samples was indicative of the impurities in the sample. The double-pass filtrate solution was a brown color indicative of the iron impurities in the sample. The other solution sample was light gray in color. Radiochemical analyses, including thermal ionization mass spectrometry (TIMS), alpha and gamma energy analysis (AEA and GEA), and kinetic phosphorescence analysis (KPA), indicate that these materials are all weapons-grade plutonium with consistent plutonium isotopics. A small amount of uranium (<0.14 wt%) is also present in these samples. The isotopic composition of the uranium varied widely but was consistent among each category of material. The primary water-soluble anions in these samples were Cl-, NO3-, SO42-, and PO43-. The only major anion observed in the Rocky Flats materials was Cl-, but the PRF/RMC samples had significant quantities of all of the primary anions observed. Prompt gamma measurements provide a representative analysis of the Cl- concentration in the bulk material. The primary anions observed in the solution samples were NO3-, and PO43-. The concentration of these anions did not exceed the mixed oxide (MOX) specification limits. Cations that exceeded the MOX specification limits included Cr, Fe, Ni, Al, Cu, and Si. All of the samples exceeded at least the 75% specification limit in one element.

Tingey, Joel M.; Jones, Susan A.

2005-07-01

351

Photoemission Spectroscopy of Delta- Plutonium: Experimental Review  

NASA Astrophysics Data System (ADS)

The electronic structure of Plutonium, particularly delta- Plutonium, remains ill defined and without direct experimental verification. Recently, we have embarked upon a program of study of alpha- and delta- Plutonium, using synchrotron radiation from the Advanced Light Source in Berkeley, CA, USA [1]. This work is set within the context of Plutonium Aging [2] and the complexities of Plutonium Science [3]. The resonant photoemission of delta-plutonium is in partial agreement with an atomic, localized model of resonant photoemission, which would be consistent with a correlated electronic structure. The results of our synchrotron- based studies will be compared with those of recent laboratory- based works [4,5,6]. The talk will conclude with a brief discussion of our plans for the future, such as the performance of spin-resolving and dichroic photoemission measurements of Plutonium [7] and the development of single crystal ultrathin films of Plutonium. This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. 1. J. Terry, R.K. Schulze, J.D. Farr, T. Zocco, K. Heinzelman, E. Rotenberg, D.K. Shuh, G. van der Laan, D.A. Arena, and J.G. Tobin, 5f Resonant Photoemission from Plutonium, UCRL-JC-140782, Surf. Sci. Lett., accepted October 2001. 2. B.D. Wirth, A.J. Schwartz, M.J. Fluss, M.J. Caturla, M.A. Wall, and W.G. Wolfer, MRS Bulletin 26, 679 (2001). 3. S.S. Hecker, MRS Bulletin 26, 667 (2001). 4. T. Gouder, L. Havela, F. Wastin, and J. Rebizant, Europhys. Lett. 55, 705 (2001); MRS Bulletin 26, 684 (2001); Phys. Rev. Lett. 84, 3378 (2000). 5. A.J. Arko, J.J. Joyce, L. Morales, J. Wills, J. Lashley, F. Wastin, and J. Rebizant, Phys. Rev. B 62, 1773 (2000). 6. L.E. Cox, O. Eriksson, and B.R. Cooper, Phys. Rev. B 46, 13571 (1992). 7. J. Tobin, D.A. Arena, B. Chung, P. Roussel, J. Terry, R.K. Schulze, J.D. Farr, T. Zocco, K. Heinzelman, E. Rotenberg, and D.K. Shuh, Photoelectron Spectroscopy of Plutonium at the Advanced Light Source, UCRL-JC-145703, J. Nucl. Sci. Tech./ Proc. of Actinides 2001, submitted November 2001.

Tobin, J. G.

2002-03-01

352

Simple solution for failure of trailing sutures when using the EndoButton in anterior cruciate ligament reconstruction: the "Rescue Rein".  

PubMed

In this article, we introduce the technique of adding a second suture in the distal hole of the EndoButton. This suture, the "Rescue Rein," is kept with the graft and is a simple solution for recovering the graft during anterior cruciate ligament reconstruction when the EndoButton becomes jammed within the femoral tunnel and the trailing sutures cannot be removed. PMID:16086568

Vega, Rafael; Irribarra, Luis; Filippi, Jorge

2005-08-01

353

Extraction and recovery of plutonium and americium from nitric acid waste solutions by the TRUEX process - continuing development studies  

Microsoft Academic Search

This report summarizes the work done to date on the application of the TRUEX solvent extraction process for removing and separately recovering plutonium and americium from a nitric acid waste solution containing these elements, uranium, and a complement of inert metal ions. This simulated waste stream is typical of a raffinate from a tributyl phosphate (TBP)-based solvent extraction process for

R. A. Leonard; G. F. Vandegrift; D. G. Kalina; D. F. Fischer; R. W. Bane; L. Burris; E. P. Horwitz; R. Chiarisia; H. Diamond

1985-01-01

354

Introducing equipment and plutonium glove box modifications for monitoring gas generation over plutonium oxide materials.  

SciTech Connect

DOE is embarking on a program to store large quantities of Pu-bearing materials for up to fifty years. Materials for long-term storage are metals and oxides that are stabilized and packaged according to the DOE storage standard. Experience with PuO, materials has shown that gases generated by catalytic and/or radiolytic processes may accumulate. Of concern are the generation of H, gas from adsorbed water and the generation of HCI or CI, gases from the radiolysis of chloride-containing salts. We have designed instrumented storage containers that mimic the inner storage can specified in the standard. The containers and surveillance equipment are interfaced with a plutonium glovebox and are designed to allow the gas composition and pressure to be monitored over time. The surveillance activities and glovebox interfaces include Raman fiber optic probes, a gas analysis sampling port, corrosion monitors, and pressure and temperature feedthrus. Data collection for these containers is automated in order to reduce worker exposure. The equipment design and glovebox modifications are presented.

Padilla, D. D. (Dennis D.); Berg, J. M. (John M.); Carrillo, A. G. (Alejandro G.); Montoya, A. R. (Adam R.); Morris, J. S. (John S.); Veirs, D. K. (Douglas Kirk); Martinez, M. A. (Max A.); Worl, L. A. (Laura A.); Harradine, D. M. (David M.); Hill, D. D. (Dallas D.)

2002-01-01

355

Actinide metal processing  

DOEpatents

A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

Sauer, N.N.; Watkin, J.G.

1992-03-24

356

The Plutonium Transition from Nuclear Weapons to Crypt  

SciTech Connect

With the end of the ''Cold War'' thousands of nuclear warheads are being dismantled. The National Academy of Sciences termed this growing stockpile of plutonium and highly enriched uranium ''a clear and present danger'' to international security. DOE/MD selected a duel approach to plutonium disposition--burning MOX fuel in existing reactors and immobilization in a ceramic matrix surrounded by HLW glass. MOX material will be pits and clean metal. The challenges come with materials that will be transferred to Immobilization--these range from engineered materials to residues containing < 30% Pu. Impurity knowledge range from guesses to actual data. During packaging, sites will flag ''out of the ordinary'' containers for characterized. If the process history is lost, characterization cost will escalate rapidly. After two step blending and ceramic precursor addition, cold press and sintering will form 0.5-kg ceramic pucks containing {le}50 g Pu. Pucks will be sealed in cans, placed into magazines, then into HLW canisters; these canisters will be filled with HLW glass prior to being transported to the HLW repository. The Immobilization Program must interface with DP, EM, RW, and NN. Overlaid on top of these interfaces are the negotiations with the Russians.

Gray, L.W.

2000-03-14

357

Automatic motor task selection via a bandit algorithm for a brain-controlled button  

NASA Astrophysics Data System (ADS)

Objective. Brain-computer interfaces (BCIs) based on sensorimotor rhythms use a variety of motor tasks, such as imagining moving the right or left hand, the feet or the tongue. Finding the tasks that yield best performance, specifically to each user, is a time-consuming preliminary phase to a BCI experiment. This study presents a new adaptive procedure to automatically select (online) the most promising motor task for an asynchronous brain-controlled button. Approach. We develop for this purpose an adaptive algorithm UCB-classif based on the stochastic bandit theory and design an EEG experiment to test our method. We compare (offline) the adaptive algorithm to a nave selection strategy which uses uniformly distributed samples from each task. We also run the adaptive algorithm online to fully validate the approach. Main results. By not wasting time on inefficient tasks, and focusing on the most promising ones, this algorithm results in a faster task selection and a more efficient use of the BCI training session. More precisely, the offline analysis reveals that the use of this algorithm can reduce the time needed to select the most appropriate task by almost half without loss in precision, or alternatively, allow us to investigate twice the number of tasks within a similar time span. Online tests confirm that the method leads to an optimal task selection. Significance. This study is the first one to optimize the task selection phase by an adaptive procedure. By increasing the number of tasks that can be tested in a given time span, the proposed method could contribute to reducing BCI illiteracy.

Fruitet, Joan; Carpentier, Alexandra; Munos, Rmi; Clerc, Maureen

2013-02-01

358

Residue behaviour of six pesticides in button crimini during home canning.  

PubMed

The effect of home canning (including washing, boiling, cooling, adding solution and sterilisation) on residue levels of imidacloprid, diflubenzuron, abamectin, pyriproxyfen and ?-cypermethrin and chlorothalonilin on button crimini was assessed. Residues of imidacloprid, diflubenzuron, abamectin and pyriproxyfen were measured by UPLC-MS/MS; the residues of ?-cypermethrin and chlorothalonil were measured by GC. Results showed that washing resulted in a 3.8% reduction of the initial residue level of imidacloprid (p?0.05). From washing to sterilisation the processing effect was significant compared with raw crimini (p?0.05), but processing through cooling and adding solution had no effect. For diflubenzuron, from raw crimini to sterilisation the processing effect was significant by comparison with the initial level (p?0.05); the processing effect was not obvious between two sequential steps, and the sequential steps have list: washing and boiling, boiling and cooling, boiling and adding of solution, cooling and adding solution. The changes in abamectin levels were also significant from raw crimini to sterilisation compared with raw crimini (p?0.05), but the changes were not obvious from boiling to adding solution and amongst them. For pyriproxyfen, washing resulted in a 39% reduction, but changes were not obvious from washing to sterilisation, p?0.05 between two consecutive steps. The whole procedure could significantly decrease residues of ?-cypermethrin (p?0.05); washing could significantly reduce residues of ?-cypermethrin; the effects of last procedures were complicated, and p?0.05 between two consecutive steps. Washing resulted in an 80% reduction of chlorothalonil; after washing there were no detectable residues. After the whole process, the processing factors for imidacloprid, diflubenzuron, abamectin, pyriproxyfen, ?-cypermethrin and chlorothalonil were 0.40, 0.22, 0.04, 0.85, 0.28 and 0, respectively. PMID:24761834

Du, Pengqiang; Liu, Xingang; Gu, Xiaojun; Dong, Fengshou; Xu, Jun; Kong, Zhiqiang; Li, Yuanbo; Zheng, Yongquan

2014-06-01

359

Reevaluation of three plutonium\\/highly enriched uranium composite systems for use as critical benchmarks  

Microsoft Academic Search

Work has begun at the Savannah River site (SRS) to validate the new Oak Ridge LAW (Library to Analyze Waste) 44-energy group cross-section library for criticality calculations. During the planning stages of a criticality analysis to support shipping cask safety analysis report-packages (SARPs), a need for validation of composite plutonium\\/highly enriched uranium (HEU) metal (fast) systems was identified. This task

Frost

1994-01-01

360

Recovery of fissile materials from plutonium residues, miscellaneous spent nuclear fuel, and uranium fissile wastes  

SciTech Connect

A new process is proposed that converts complex feeds containing fissile materials into a chemical form that allows the use of existing technologies (such as PUREX and ion exchange) to recover the fissile materials and convert the resultant wastes to glass. Potential feed materials include (1) plutonium scrap and residue, (2) miscellaneous spent nuclear fuel, and (3) uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, and organics. 14 refs., 4 figs.

Forsberg, C.W.

1997-03-01

361

The first materials science investigations of plutonium in the laboratories of NII9  

Microsoft Academic Search

The formation of the institute NII-9 (now the State Science Center of the Russian FederationA. A. Bochvar All-Russia Scientific-Research\\u000a Institute of Standardization in Machine Engineering), by a decree of the State Committee on Defense, in 1945 in Moscow and\\u000a the production at this Institute in 1948 of substantial (milligram) quantities of metallic plutonium from uranium blocks irradiated\\u000a in the F-1

T. S. Menshikova; V. V. Titova

1999-01-01

362

Plutonium dioxide dissolution in glass  

SciTech Connect

In the aftermath of the Cold War, the U.S. Department of Energy`s (DOE) Office of Fissile Materials Disposition (OFMD) is charged with providing technical support for evaluation of disposition options for excess fissile materials manufactured for the nation`s defense. One option being considered for the disposition of excess plutonium (Pu) is immobilization by vitrification. The vitrification option entails immobilizing Pu in a host glass and waste package that are criticality-safe (immune to nuclear criticality), proliferation-resistant, and environmentally acceptable for long-term storage or disposal. To prove the technical and economic feasibility of candidate vitrification options it is necessary to demonstrate that PuO{sub 2} feedstock can be dissolved in glass in sufficient quantity. The OFMD immobilization program has set a Pu solubility goal of 10 wt% in glass. The life cycle cost of the vitrification options are strongly influenced by the rate at which PUO{sub 2} dissolves in glass. The total number of process lines needed for vitrification of 50 t of Pu in 10 years is directly dependent upon the time required for Pu dissolution in glass. The objective of this joint Pacific Northwest National Laboratory (PNNL) - Savannah River Technology Center (SRTC) study was to demonstrate a high Pu solubility in glass and to identify on a rough scale the time required for Pu dissolution in the glass. This study was conducted using a lanthanide borosilicate (LaBS) glass composition designed at the SRTC for the vitrification of actinides.

Vienna, J.D.; Alexander, D.L.; Li, Hong [and others

1996-09-01

363

Molecular Interactions of Plutonium(VI) with Synthetic Manganese-Substituted Goethite  

SciTech Connect

Plutonium(VI) sorption on the surface of well-characterized synthetic manganese-substituted goethite minerals (Fe1-xMnxOOH) was studied using X-ray absorption spectroscopy. We chose to study the influence of manganese as a minor component in goethite, because goethite rarely exists as a pure phase in nature. Manganese X-ray absorption near-edge structure measurements indicated that essentially all the Mn in the goethite existed as Mn(III), even though Mn was added during mineral synthesis as Mn(II). Importantly, energy dispersive X-ray analysis demonstrated that Mn did not exist as discrete phases and that it was homogeneously mixed into the goethite to within the limit of detection of the method. Furthermore, Mssbauer spectra demonstrated that all Fe existed as Fe(III), with no Fe(II) present. Plutonium(VI) sorption experiments were conducted open to air and no attempt was made to exclude carbonate. The use of X-ray absorption spectroscopy allows us to directly and unambiguously measure the oxidation state of plutonium in situ at the mineral surface. Plutonium X-ray absorption near-edge structure measurements carried out on these samples showed that Pu(VI) was reduced to Pu(IV) upon contact with the mineral. This reduction appears to be strongly correlated with mineral solution pH, coinciding with pH transitions across the point of zero charge of the mineral. Furthermore, extended X-ray absorption fine structure measurements show evidence of direct plutonium binding to the metal surface as an inner-sphere complex. This combination of extensive mineral characterization and advanced spectroscopy suggests that sorption of the plutonium onto the surface of the mineral was followed by reduction of the plutonium at the surface of the mineral to form an inner-sphere complex. Because manganese is often found in the environment as a minor component associated with major mineral components, such as goethite, understanding the molecular-level interactions of plutonium with such substituted-mineral phases is important for risk assessment purposes at radioactively contaminated sites and long-term underground radioactive waste repositories.

Hu, Yung-Jin; Schwaiger, Luna Kestrel; Booth, Corwin H.; Kukkadapu, Ravi K.; Cristiano, Elena; Kaplan, Daniel; Nitsche, Heino

2010-03-09

364

Plutonium Recovery at the Los Alamos Scientific Laboratory.  

National Technical Information Service (NTIS)

Research programs have led to the adoption of procedures for all phases of plutonium recovery and purification. This report discusses some of the many procedures required to recover and purify the plutonium contained in the residues generated by LASL rese...

E. L. Christensen

1980-01-01

365

Crystalline plutonium hosts derived from high-level waste formulations.  

National Technical Information Service (NTIS)

The Department of Energy has selected immobilization for disposal in a repository as one approach for disposing of excess plutonium (1). Materials for immobilizing weapons-grade plutonium for repository disposal must meet the 'spent fuel standard' by prov...

T. P. O'Holleran

1998-01-01

366

Recent improvements in plutonium gamma-ray analysis using MGA.  

National Technical Information Service (NTIS)

MGA is a gamma-ray spectrum analysis program for determining relative plutonium isotopic abundances. It can determine plutonium isotopic abundances better than 1% using a high-resolution, low-energy, planar germanium detector and measurement times ten min...

W. D. Ruhter R. Gunnink

1992-01-01

367

Density and Tensile Properties Changed by Aging Plutonium.  

National Technical Information Service (NTIS)

We present volume, density, and tensile property change observed from both naturally and accelerated aged plutonium alloys. Accelerated alloys are plutonium alloys with a fraction of Pu-238 to accelerate the aging process by approximately 18 times the rat...

2005-01-01

368

69. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING SOUTHWEST THROUGH ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

69. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING SOUTHWEST THROUGH DOOR-WAY INTO PLUTONIUM STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

369

71. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING NORTHEAST INTO ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

71. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING NORTHEAST INTO PLUTONIUM STORAGE ROOM SHOWING CUBICLES FOR STORAGE. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

370

Preserving Plutonium-244 as a National Asset  

SciTech Connect

Plutonium-244 (244 Pu) is an extremely rare and long-lived isotope of plutonium with a half-life of 80 million years. Measureable amounts of 244 Pu are found in neither reactor-grade nor weapons-grade plutonium. Production of this isotope requires a very high thermal flux to permit the two successive neutron captures that convert 242 Pu to 243 Pu to 244 Pu, particularly given the short (about 5 hour) half-life of 243 Pu. Such conditions simply do not exist in plutonium production processes. Therefore, 244 Pu is ideal for precise radiochemical analyses measuring plutonium material properties and isotopic concentrations in items containing plutonium. Isotope dilution mass spectrometry is about ten times more sensitive when using 244 Pu rather than 242 Pu for determining plutonium isotopic content. The isotope can also be irradiated in small quantities to produce superheavy elements. The majority of the existing global inventory of 244 Pu is contained in the outer housing of Mark-18A targets at the Savannah River Site (SRS). The total inventory is about 20 grams of 244 Pu in about 400 grams of plutonium distributed among the 65 targets. Currently, there are no specific plans to preserve these targets. Although the cost of separating and preserving this material would be considerable, it is trivial in comparison to new production costs. For all practical purposes, the material is irreplaceable, because new production would cost billions of dollars and require a series of irradiation and chemical separation cycles spanning up to 50 years. This paper will discuss a set of options for overcoming the significant challenges to preserve the 244 Pu as a National Asset: (1) the need to relocate the material from SRS in a timely manner, (2) the need to reduce the volume of material to the extent possible for storage, and (3) the need to establish an operational capability to enrich the 244 Pu in significant quantities. This paper suggests that if all the Mark-18A plutonium is separated, it would occupy a small volume and would be inexpensive to store while an enrichment capability is developed. Very small quantities could be enriched in existing mass separators to support critical needs.

Patton, Bradley D [ORNL; Alexander, Charles W [ORNL; Benker, Dennis [ORNL; Collins, Emory D [ORNL; Romano, Catherine E [ORNL; Wham, Robert M [ORNL

2011-01-01

371

Quantitative analysis of plutonium and uranium using reversed-phase liquid chromatography and spectrophotometric detection  

SciTech Connect

We have developed an efficient method for separating and quantitating uranium and plutonium in dissolver solutions using a CIS reversed-phase column, an eluent containing 2 hydroxyisobtityric acid as a complexant, and 5% methanol at pH 4 with ammonium hydroxide. Postcolumn reaction with Arsenazo III color reagent is followed by an absorbarice measurement at 660 nm. Metal ion interference studies indicated that the combination of the observed separation and the specificity 6f the Arsenazo III for the actinide and lanthanide ions avoided interferences in the direct quantitation of uranium and plutonium by peak integration. Though peak integration for total metal ion content is probably the most direct analytical approach, the metal ions can be collected after separation for further quantitation or other analyses. A possible application is the separation of uranium and plutonium for isotope dilution assay by thermal ionization mass spectrometry or gamma-ray spectroscopy. Only zirconium, hafnium, tantalum, gallium, and aluminum would be expected to coelute in the region of interest.

Rogers, Y.C.; Hamilton, V.T.; Spall, W.D.; Smith, B.F.; Jackson, D.D.

1992-07-17

372

Plutonium and uranium adsorption on monosodium titanate  

SciTech Connect

Adsorption of Pu and U onto monosodium titanate (MST) in alkaline salt solution was measured. Changes in MST particle size distribution do not significantly affect the loadings of actinides. Max loading of plutonium-239 is 0.68 wt% at 0.79 mg/L Pu, below the infinitely safe value of 0.80 wt%. Max loading of uranium-235 onto MST is 1.4 wt% at a concentration of 20.3 {plus_minus} 2.0 mg/L U, slightly higher than the calculated infinitely safe limit of 1.2 wt%. Experimental data indicated there is competition between plutonium and uranium for sites on the MST, and that the loading will favor the higher concentration species. Since the solubility of uranium is 10--100 times higher than of plutonium, uranium will be loaded to its maximum limit, but plutonium will be below its maximum limit. To ensure that the concentration of fissile materials cannot exceed nuclear safety limits, it is recommended that plutonium and uranium solubility tests be conducted with solutions which bound the compositions of waste which will be treated in ITP process.

Hobbs, D.T.; Walker, D.D.

1992-08-13

373

Plutonium and uranium adsorption on monosodium titanate  

SciTech Connect

Adsorption of Pu and U onto monosodium titanate (MST) in alkaline salt solution was measured. Changes in MST particle size distribution do not significantly affect the loadings of actinides. Max loading of plutonium-239 is 0.68 wt% at 0.79 mg/L Pu, below the infinitely safe value of 0.80 wt%. Max loading of uranium-235 onto MST is 1.4 wt% at a concentration of 20.3 [plus minus] 2.0 mg/L U, slightly higher than the calculated infinitely safe limit of 1.2 wt%. Experimental data indicated there is competition between plutonium and uranium for sites on the MST, and that the loading will favor the higher concentration species. Since the solubility of uranium is 10--100 times higher than of plutonium, uranium will be loaded to its maximum limit, but plutonium will be below its maximum limit. To ensure that the concentration of fissile materials cannot exceed nuclear safety limits, it is recommended that plutonium and uranium solubility tests be conducted with solutions which bound the compositions of waste which will be treated in ITP process.

Hobbs, D.T.; Walker, D.D.

1992-08-13

374

Dispersion of plutonium from contaminated pond sediments  

USGS Publications Warehouse

Sediment-water distributions of plutonium as a function of pH and contact time are investigated in a holding pond at the Rocky Flats plant of the Department of Energy. Although plutonium has been shown to sorb from natural waters onto sediments, the results of this study indicate that under the proper conditions it can be redispersed at pH 9 and above. Concentrations greater than 900 pCi Pu/L result after 34 h contact at pH 11 or 12 and the distribution coefficient, defined as the ratio of concentration in the sediment to that in the liquid, decreases from 1.1 ?? 105 at pH 7 to 1.2 ?? 103 at pH 11. The plutonium is probably dispersed as discrete colloids or as hydrolytic species adsorbed onto colloidal sediment particles whose average size decreases with increasing pH above pH 9. About 5% of the total plutonium is dispersed at pH 12, and the dispersion seems to readsorb on the sediment with time. Consequently, migration of plutonium from the pond should be slow, and it would be difficult to remove this element completely from pond sediment by leaching with high pH solutions. ?? 1978 American Chemical Society.

Rees, T. F.; Cleveland, J. M.; Carl, Gottschall, W.

1978-01-01

375

Processing of Non-PFP Plutonium Oxide in Hanford Plants  

Microsoft Academic Search

Processing of non-irradiated plutonium oxide, PuO2, scrap for recovery of plutonium values occurred routinely at Hanfords Plutonium Finishing Plant (PFP) in glovebox line operations. Plutonium oxide is difficult to dissolve, particularly if it has been high-fired; i.e., calcined to temperatures above about 400C and much of it was. Dissolution of the PuO2 in the scrap typically was performed in PFPs

Susan A. Jones; Calvin H. Delegard

2011-01-01

376

Multi Scale Study of Self-irradiation Effects in Plutonium Alloys  

SciTech Connect

Experimental measurements have shown that plutonium alloys exhibit changes of their macroscopic as well as microscopic properties. For example, a swelling of plutonium alloys was observed with aging with dilatometry and X-ray diffraction. The main idea to explain these changes rises in self irradiation undergoing by those materials. Plutonium {alpha} decay is at the origin of displacements cascades creating a large amount of structural defects. These later by annihilation and recombination give rise to larger defects such as voids and clusters. The aim of this work is to study the occurrence of such phenomena combining ab-initio, molecular dynamic and Monte Carlo methods in a coherent multi-scale approach which would help to understand long term behavior of structural defects and consequences of self irradiation. We show that plutonium does not seem to behave like other metals under ion irradiation. We discuss results obtained for high energy displacements cascade simulations. After parametric study of displacements cascade simulations combining temperature and cascade energy has been exposed, superposition of low energies displacements cascades is discussed as a method to construct realistic defect microstructures and to reach a rational use of computational time. At the end, we will present results of preliminary Monte Carlo simulations based on our molecular dynamic data which show that the spatial correlation of the stable defects populations created by the cascades seems to have a great influence on the predicted swelling. (authors)

Berlu, Lilian; Rosa, Gaelle [CEA - Centre de Valduc, Is sur Tille, 21120 (France); Jomard, Gerald [CEA - Bruyeres le Chatel, Bruyeres le Chatel, 91680 (France)

2008-07-01

377

Properties of Plutonium-Containing Colloids Released from Glass-Bonded Sodalite Nuclear Waste Form  

SciTech Connect

In glass-bonded sodalite, which is the ceramic waste form (CWF) to immobilize radioactive electrorefiner salt from spent metallic reactor fuel, uranium and plutonium are found as 20-50 nm (U,Pu)O{sub 2} particles encapsulated in glass near glass-sodalite phase boundaries. In order to determine whether the (U,Pu)O{sub 2} affects the durability of the CWF, and to determine release behavior of uranium and plutonium during CWF corrosion, tests were conducted to measure the release of matrix and radioactive elements from crushed CWF samples into water and the properties of released plutonium. Released colloids have been characterized by sequential filtration of test solutions followed by elemental analysis, dynamic light scattering, transmission electron microscopy (TEM), and X-ray absorption spectroscopy. This paper reports the composition, size, and agglomeration of these colloids. Significant amounts of colloidal, amorphous aluminosilicates and smaller amounts of colloidal crystalline (U,Pu)O{sub 2} were identified in test solutions. The normalized releases of uranium and plutonium were significantly less than the normalized releases of matrix elements.

Morss, L.R.; Mertz, C.J.; Kropf, A.J.; Holly, J.L.

2004-10-11

378

Temperature dependence of elastic moduli of polycrystalline ? plutonium  

NASA Astrophysics Data System (ADS)

The elastic moduli of pure polycrystalline beta plutonium were measured over its full range of existence (417-491 K) using resonant ultrasound spectroscopy. The Debye temperature (138 K), Poisson's ratio (0.28), Gruneisen parameter (2.3), and the zero-temperature atomic volume (21.2 3) were computed from the measurements. Both bulk and shear moduli decrease smoothly on warming with expected discontinuities at the phase boundaries. The shear modulus is surprisingly nearly the same for beta and gamma Pu. The temperature dependence of bulk moduli for beta Pu is, like gamma Pu, unusually small. Poisson's ratio shows very strong differences among alpha, beta, and gamma Pu indicating they are entirely different metals. The zero-temperature elastic moduli were computed for the three phases as well as for gallium-stabilized delta Pu (also measured by us) and compared to calculations.

Suzuki, Yoko; Fanelli, V. R.; Betts, J. B.; Freibert, F. J.; Mielke, C. H.; Mitchell, J. N.; Ramos, M.; Saleh, T. A.; Migliori, A.

2011-08-01

379

Response to suspected or known intakes of plutonium (Draft)  

SciTech Connect

The techniques used at Hanford for routine surveillance, incident detection and prompt assessment of a plutonium intake are reviewed. The techniques described are based on experience from some 80,000 man-years of plutonium work at Hanford which included a variety of manufacturing and R and D programs and involved several isotopes and chemical forms of plutonium.

Heid, K.R.

1983-04-01

380

Application of Fusion Neutron Source for Denaturing of Plutonium  

Microsoft Academic Search

Potential of DT fusion neutron source to enhance proliferation resistance properties of plutonium by means of its isotopic denaturing is addressed. The approach is exemplified by denaturing of pure Pu and plutonium of typical LWR spent fuel through transmutation of neptunium. The essential feature of a fusion driven system proposed in the study is a zero mass balance of plutonium:

Alan TAKIBAYEV; Masaki SAITO; Hiroshi SAGARA

2007-01-01

381

US and Russia face urgent decisions on weapons plutonium  

Microsoft Academic Search

Surplus plutonium poses a clear and present danger to national and international security,'' warns a National Academy of Sciences (NAS) study released in January, titled The Management and Disposition of Excess Weapons Plutonium.'' Over the past few years, many different methods of disposing of plutonium have been proposed. They range from shooting it into the Sun with missiles, to deep-seabed

Hileman

1994-01-01

382

10 CFR 71.88 - Air transport of plutonium.  

Code of Federal Regulations, 2010 CFR

...2009-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy...Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions...applicable, the licensee shall assure that plutonium in any form, whether for...

2009-01-01

383

10 CFR 71.88 - Air transport of plutonium.  

Code of Federal Regulations, 2010 CFR

...2010-01-01 false Air transport of plutonium. 71.88 Section 71.88 Energy...Procedures § 71.88 Air transport of plutonium. (a) Notwithstanding the provisions...applicable, the licensee shall assure that plutonium in any form, whether for...

2010-01-01

384

VIEW OF THE INTERIOR OF THE PLUTONIUM LABORATORY IN BUILDING ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

VIEW OF THE INTERIOR OF THE PLUTONIUM LABORATORY IN BUILDING 559. THE LABORATORY WAS USED TO ANALYZE THE PURITY OF PLUTONIUM. PLUTONIUM SAMPLES WERE CONTAINED WITHIN GLOVE BOXES - Rocky Flats Plant, Chemical Analytical Laboratory, North-central section of Plant, Golden, Jefferson County, CO

385

Plutonium Isotopic Composition by Gamma-Ray Spectroscopy  

Microsoft Academic Search

of plutonium isotopic composition is usually required to interpret the results of neutron coincidence or calorimetry measurements. Several methods have been developed for determining plutonium isotopic composition by gamma-ray spectroscopy;, some of the early approaches are described in Refs. 1 through 5. An American Society for Testing and Materials standard test method has been written for plutonium isotopic analysis using

Z E Sampson

386

Disposition of plutonium in deep boreholes  

SciTech Connect

Substantial inventories of excess plutonium are expected to result from dismantlement of U.S. and Russian nuclear weapons. Disposition of this material should be a high priority in both countries. A variety of disposition options are under consideration. One option is to place the plutonium either directly or in an immobilized form at the bottom of a deep borehole that is then sealed. Deep-borehole disposition involves placing plutonium several kilometers deep into old, stable, rock formations that have negligible free water present. Containment assurance is based on the presence of ancient groundwater indicating lack of migration and communication with the biosphere. Recovery would be extremely difficult (costly) and impossible to accomplish clandestinely.

Halsey, W.G.; Jardine, L.J.; Walter, C.E.

1995-05-01

387

The United States Plutonium Balance, 1944 - 2009  

SciTech Connect

This report updates the report -Plutonium: The first 50 years- which was released by the U.S.Department of Energy (DOE) in 1996. The topic of both reports is plutonium, sometimes referred to as Pu-239, which is capable of sustaining a nuclear chain reaction and is used in nuclear weapons and for nuclear power production. This report updates 1994 data through 2009. The four most significant changes since 1994 include: (a) the completion of cleanup activities at the Rocky Flats Plant in 2005; (b) material consolidation and disposition activities, especially shipments from Hanford to the Savannah River Site; (c) the 2007 declaration of an additional 9.0 MT of weapons grade plutonium to be surplus to defense needs in the coming decades; and (d) the opening of the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in 1999.

none,

2012-06-01

388

ESTIMATING IMPURITIES IN SURPLUS PLUTONIUM FOR DISPOSITION  

SciTech Connect

The United States holds at least 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition of the National Nuclear Security Administration and the DOE Office of Environmental Management. Many of the items that require disposition are only partially characterized, and SRNL uses a variety of techniques to predict the isotopic and chemical properties that are important for processing through the Mixed Oxide Fuel Fabrication Facility and alternative disposition paths. Recent advances in laboratory tools, including Prompt Gamma Analysis and Peroxide Fusion treatment, provide data on the existing inventories that will enable disposition without additional, costly sampling and destructive analysis.

Allender, J.; Moore, E.

2013-07-17

389

Study of the formation, prevention, and recovery of plutonium from plutonium esters in the Purex process  

SciTech Connect

The Savannah River Plant uses the basic Purex process to separate /sup 239/Pu from /sup 238/U and fission products. Dark-brown, dense solids containing up to 30% Pu have previously occurred in rotameters in the plutonium finishing operations. The kinetics of formation of this mixture of DBP- and MBP-Pu esters suggest two methods to prevent the formation of the solids. A selective dissolution method using NaOH metathesis has been developed to separate the phosphate ester from the plutonium before dissolution of the residual plutonium hydroxide in a HNO/sub 3/-HF medium.

Gray, L. W.; Burney, G. A.

1981-01-01

390

Fabrication of zircon for disposition of weapons plutonium  

SciTech Connect

This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). In an effort to address the problems of long term storage and nuclear waste minimization, zircon has been proposed as a host medium for plutonium and other actinides recovered from dismantled nuclear weapons. The objective of this work is to investigate the feasibility of large scale fabrication of Pu-bearing zircon. Since PuO{sub 2} is thermodynamically less stable than ZrO{sub 2}, it is expected that the process parameters determined for synthesizing ZrSiO{sub 4} (zircon) would be applicable to those for PuSiO{sub 4} (Pu-zircon). Furthermore, since the foremost concern in plutonium processing is the potential for contamination release, this work emphasizes the development of process parameters, using zircon first, to anticipate potential material problems in the containment system for reaction mixtures during processing. Stoichiometric mixtures of ZrO{sub 2} and SiO{sub 2}, in hundred-gram batches, have been subjected to hot isostatic pressing (HIP) at temperatures near 1,500 C and pressures approximately 10,000 psi. The product materials have been analyzed by x-ray powder diffraction, and are found to consist of zircon after approximately two hours of reaction time. From this work, it is clear that the fabrication of large quantities of Pu-zircon is feasible. The most notable result of this work is evidence for the existence of container problems. This result, in turn, suggests potential solutions to these problems. Experiments with the quartz inner container, the glass sealant, a sacrificial metal barrier, and a metal outer container are being investigated to mitigate these potential hazards.

Kim, K.C.; Huang, J.Y.; Serrano, P.L. [and others

1997-07-01

391

Waste measurements at a plutonium facility  

SciTech Connect

Solid plutonium contaminated wastes are often highly heterogeneous, span a wide range of chemical compositions and matrix types, and are packaged in a variety of container sizes. NDA analysis of this waste depends on operator knowledge of these parameters so that proper segregation, instrument selection, quality assurance, and uncertainty estimation can take place. This report describes current waste measurement practices and uncertainty estimates at a US plutonium scrap recovery facility and presents a program for determining reproducibility and bias in NDA measurements. Following this, an operator's perspective on desirable NDA upgrades is offered.

Wachter, J.R.

1992-01-01

392

Waste measurements at a plutonium facility  

SciTech Connect

Solid plutonium contaminated wastes are often highly heterogeneous, span a wide range of chemical compositions and matrix types, and are packaged in a variety of container sizes. NDA analysis of this waste depends on operator knowledge of these parameters so that proper segregation, instrument selection, quality assurance, and uncertainty estimation can take place. This report describes current waste measurement practices and uncertainty estimates at a US plutonium scrap recovery facility and presents a program for determining reproducibility and bias in NDA measurements. Following this, an operator`s perspective on desirable NDA upgrades is offered.

Wachter, J.R.

1992-06-01

393

Process for Recovery of Plutonium from Fabrication Residues of Mixed Fuels Consisting of Uranium Oxide and Plutonium Oxide.  

National Technical Information Service (NTIS)

The invention concerns a process for recovery of plutonium from fabrication residues of mixed fuels consisting of uranium oxide and plutonium oxide in the form of PuO sub 2 . Mixed fuels consisting of uranium oxide and plutonium oxide are being used more ...

R. H. Heremanns J. J. Vandersteene

1983-01-01

394

Metal recovery from porous materials  

DOEpatents

A method for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF.sub.4 and HNO.sub.3 and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200.degree. C. The porous material can be pulverized before immersion to further increase the leach rate.

Sturcken, Edward F. (P.O. Box 900, Isle of Palms, SC 29451)

1992-01-01

395

Bilateral second metatarsal stress fractures after hallux valgus correction with the use of a tension wire and button fixation system.  

PubMed

The pathomechanics and treatments of hallux valgus vary widely by deformity and surgeon, and are extensively described in the orthopedic and podiatric literature. With each newly described treatment, new complications can be encountered. In this report, we describe the case of a 22-year-old woman who underwent bilateral hallux valgus repair with a tension wire and button fixation system, and developed bilateral second metatarsal stress fracture at the point of fixation application during the postoperative period. Although this fixation system has been useful in our practice, like other surgical implants, it conveys a certain amount of risk that should be considered by surgeons using the device. PMID:20634102

Mader, David W; Han, Nancy M

2010-01-01

396

Precipitacion de oxalato de plutonio (III) y calcinacion a oxido de plutonio. (Precipitation of plutonium (III) oxalate and calcination to plutonium oxide).  

National Technical Information Service (NTIS)

The plutonium based fuel fabrication requires the conversion of the plutonium nitrate solution from nuclear fuel reprocessing into pure PuO2. The conversion method based on the precipitation of plutonium (III) oxalate and subsequent calcination has been s...

A. Esteban E. H. Orosco P. Cassaniti L. Greco P. Adelfang

1989-01-01

397

Fifty years of plutonium exposure to the Mahattan Project plutonium workers: An update  

Microsoft Academic Search

Twenty-six white male workers who did the original plutonium research and development work at Los Alamos have been examined periodically over the past 50 y to identify possible health effects from internal plutonium depositions. Their effective doses range from 0.1 to 7.2 Sv with a median value of 1.25 Sv. As of the end of 1994, 7 individuals have died

George L. Voelz; James N. P. Lawrence; Emily R. Johnson

1997-01-01

398

Effect of Americium-241 Content on Plutonium Radiation Source Terms  

SciTech Connect

The management of excess plutonium by the US Department of Energy includes a number of storage and disposition alternatives. Savannah River Site (SRS) is supporting DOE with plutonium disposition efforts, including the immobilization of certain plutonium materials in a borosilicate glass matrix. Surplus plutonium inventories slated for vitrification include materials with elevated levels of Americium-241. The Am-241 content of plutonium materials generally reflects in-growth of the isotope due to decay of plutonium and is age-dependent. However, select plutonium inventories have Am-241 levels considerably above the age-based levels. Elevated levels of americium significantly impact radiation source terms of plutonium materials and will make handling of the materials more difficult. Plutonium materials are normally handled in shielded glove boxes, and the work entails both extremity and whole body exposures. This paper reports results of an SRS analysis of plutonium materials source terms vs. the Americium-241 content of the materials. Data with respect to dependence and magnitude of source terms on/vs. Am-241 levels are presented and discussed. The investigation encompasses both vitrified and un-vitrified plutonium oxide (PuO2) batches.

Rainisch, R.

1998-12-28

399

Bone suture anchors versus the pullout button for repair of distal profundus tendon injuries: a comparison of strength in human cadaveric hands.  

PubMed

Avulsion or distal tendon laceration of flexor digitorum profundus (FDP) is classically repaired to the base of the distal phalanx via a pullout suture over a button. Bone suture anchors, used extensively in other surgical areas, have recently been proposed for reattachment of the FDP to the distal phalanx. The FDP tendons of the index, long, and ring fingers in 9 fresh frozen cadeveric hands were randomized to 1 of 3 repair techniques after simulated distal avulsion injuries. These were the pullout button using 3-0 monofilament nylon in a 2-strand Bunnell suture pattern, the 1.8 mm Mini QuickAnchor (Mitek Products, Norwood, MA) using 3-0 braided polyester in a 2-strand Bunnell suture pattern, and the Mitek micro anchor using 3-0 braided polyester with a modified 4-strand Becker suture pattern. Nine specimens were loaded to failure, noting maximum load and mode of failure. The 1.3 mm Micro QuickAnchor (Mitek) technique (69.6 +/- 10.8 N) was significantly stronger than the pullout button (43.3 +/- 4.8 N) or the Mini anchor technique (44.6 +/- 12.7 N). The Micro bone suture anchor provides a stronger tendon to bone repair than the pullout button or the Mini anchor. Given the disadvantages of the pullout button, the Micro bone suture anchor with the modified Becker technique is worth consideration as an alternative method to repair distal FDP avulsions. PMID:11418912

Brustein, M; Pellegrini, J; Choueka, J; Heminger, H; Mass, D

2001-05-01

400

Regeneration and recycle of spent oxide reduction solvent salts used in pyrochemical plutonium recovery operations at Los Alamos  

SciTech Connect

One method used at Los Alamos for producing plutonium metal is to chemically reduce the oxide with calcium metal in molten CaCl/sub 2/ at 850/sup 0/C. The solvent CaCl/sub 2/ from this reduction step is currently discarded as low-level radioactive waste because it is saturated with the reaction by-product, CaO. We have developed and demonstrated a molten salt technique for rechlorinating the CaO, thereby regenerating the CaCl/sub 2/ and incorporating solvent recycle into the batch PuO/sub 2/ reduction process. We discuss results from salt regeneration and recycle experiments, and present our plans for incorporating the technique into an advanced design for semi-continuous plutonium metal production.

Fife, K.W.; Bowersox, D.F.; Simpson, J.J.; Davis, C.C.; Phillips, B.J.; McCormick, E.D.

1986-01-01

401

Remote handling in the Plutonium Immobilization Project: Puck packaging  

SciTech Connect

The Savannah River Site (SRS) will immobilize excess plutonium in the proposed Plutonium Immobilization Project (PIP). The PIP scope includes unloading transportation containers, preparing the feed streams, converting the metal feed to an oxide, adding the ceramic precursors, pressing the pucks, inspecting pucks, and sintering pucks. The PIP scope also includes loading the pucks into metal cans, sealing the cans, inspecting the cans, loading the cans into magazines, loading magazines into Defense Waste Processing Facility (DWPF) canisters, and transporting the canisters to the DWPF. The DWPF will fill the canister with a mixture of high-level waste and glass for permanent storage. Because of the radiation, remote equipment will perform PIP operations in a contained environment. The PIP puck packaging includes loading pucks into metal cans, sealing the cans, and inspecting the cans. A magnetically coupled elevator will lower a tray of pucks onto a magnetically coupled transport cart. This cart will carry the tray through an air lock into the can-loading glove box. Inside the glove box, a magnetically coupled tray lifter will raise the tray off the cart. A three-axis Cartesian robot will use a vacuum cup on a long pipe to lift the 67.3-mm (2.65-in.)-diam, 25.4-mm (1.0-in.)-tall pucks from the transfer tray and place 20 pucks in a 76.2-mm (3.0-in.)-diam stainless steel can. The Cartesian robot will place a custom hood on the open metal can, and this hood will remove the air from the can, insert helium, and place a hollow plug in the can. The SRS-developed bagless transfer system will weld the plug to the can wall and cut the can in the weld area. The can stub and the upper plug half above the cut line will remain in the sphincter seal to maintain the glove-box seal. The puck can and the lower plug half below the cut line is lowered into the bagless transfer enclosure. A floor-mounted robot in this enclosure will swipe the can exterior for contamination and place the can in a leak-detection chamber. If the can passes the swipe and leak-detection tests, the robot will place it on a transfer cart and send it to a nondestructive assay station. If the can fails either test, it will be sent back to the can-loading glove box and opened, and the pucks will be reloaded into another can. The PIP is in the conceptual design stage, and the facility will begin operation in 2007.

Kriikku, E.

1999-07-01

402

NNSS Soils Monitoring: Plutonium Valley (CAU366)  

SciTech Connect

The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

Miller Julianne J.,Mizell Steve A.,Nikolich George, Campbell Scott

2012-02-01

403

Plutonium-no supply, no demand  

Microsoft Academic Search

The article discusses arms control in light of recent world developments, and indicates that an old arms control idea, to stop making the fissile material used in nuclear weapons, has found new life in congress. The status of the International Plutonium Control Act in the congress is discussed. A brief history is provided of proposals to halt production of the

Lanouette

1989-01-01

404

Plutonium to Uranium Fission Ratio Measurements.  

National Technical Information Service (NTIS)

The measurement of the ratio of plutonium to uranium fissions has for some years been used as a method of characterizing the thermal spectrum in reactor lattices. This report describes the method of analysis of this type of measurement which has been deve...

R. H. Waterson

1971-01-01

405

EPRI Programs on Plutonium Fuel Utilization.  

National Technical Information Service (NTIS)

EPRI has initiated a plutonium recycle program with a goal of providing a technical base for the industry to consider in choosing among the various available alternatives. Basic criteria for Pu recycle will be made by the individual user, subject to Unite...

B. A. Zolotar M. E. Lapides F. E. Gelhaus

1975-01-01

406

PLUTONIUM SPECIATION, SOLUBILIZATION, AND MIGRATION IN SOILS  

EPA Science Inventory

The DOE is currently conducting cleanup activities at its nuclear weapons development sites, many of which have accumulated plutonium (Pu) in soils for 50 years. There is scientific uncertainty about the levels of risk to human health posed by this accumulation and whether Pu is ...

407

Development of the plutonium oxide vitrification system  

SciTech Connect

Repository disposal of plutonium in a suitable, immobilized form is being considered as one option for the disposition of surplus weapons-usable plutonium. Accelerated development efforts were completed in 1997 on two potential immobilization forms to facilitate downselection to one form for continued development. The two forms studied were a crystalline ceramic based on Synroc technology and a lanthanide borosilicate (LaBS) glass. As part of the glass development program, melter design activities and component testing were completed to demonstrate the feasibility of using glass as an immobilization medium. A prototypical melter was designed and built in 1997. The melter vessel and drain tube were constructed of a Pt/Rh alloy. Separate induction systems were used to heat the vessel and drain tube. A Pt/Rh stirrer was incorporated into the design to facilitate homogenization of the melt. Integrated powder feeding and off-gas systems completed the overall design. Concurrent with the design efforts, testing was conducted using a plutonium surrogate LaBS composition in an existing (near-scale) melter to demonstrate the feasibility of processing the LaBS glass on a production scale. Additionally, the drain tube configuration was successfully tested using a plutonium surrogate LaBS glass.

Marshall, K.M.; Marra, J.C.; Coughlin, J.T.; Calloway, T.B.; Schumacher, R.F.; Zamecnik, J.R.; Pareizs, J.M.

1998-01-01

408

Physical Property Changes in Aging Plutonium Alloys  

SciTech Connect

Plutonium, because of its self-irradiation by alpha decay, ages by means of lattice damage and helium in-growth. These integrated aging effects result in microstructural and physical property changes. Because these effects would normally require decades to measure, studies are underway to asses the effects of extended aging on the physical properties of plutonium alloys by incorporating roughly 7.5 wt% of highly specific activity isotope {sup 238}Pu into weapons-grade plutonium to accelerate the aging process. This paper presents updated results of self-irradiation effects on enriched and reference alloys measured from immersion density, dilatometry, and mechanical tests. After nearly 90 equivalent years of aging, both the immersion density and dilatometry show that the enriched alloys at 35 deg. C have decreased in density by {approx}0.19% and now exhibit a near linear density decrease, without void swelling. Both tensile and compression measurements show that the aging process continues to increase the strength of plutonium alloys. (authors)

Chung, Brandon W.; Thompson, Stephen R.; Hiromoto, David S. [Lawrence Livermore National Laboratory, Livermore, CA, 94551 (United States)

2008-07-01

409

Measurements of plutonium residues from recovery processes  

Microsoft Academic Search

Conventional methods of nondestructive assay (NDA) have accurately assayed the plutonium content of many forms of relatively pure and homogeneous bulk items. However, physical and chemical heterogeneities and the high and variable impurity levels of many categories of processing scrap bias the conventional NDA results. The materials also present a significant challenge to the assignment of reference values to process

S.-T. Hsue; D. G. Langner; V. L. Longmire; H. O. Menlove; P. A. Russo; J. K. Jr. Sprinkle

1989-01-01

410

Adsorption and Diffusion of Plutonium in Soil.  

National Technical Information Service (NTIS)

The behavior of plutonium (Pu) was studied in three soils that varied in texture, CEC, pH, organic matter content and mineralogy (Fuquay, Muscatine, Burbank). Two isotopes, exp 238 Pu and exp 239 Pu, were used in order to detect Pu over a range of several...

D. A. Brown

1980-01-01

411

Experience of Plutonium Recycle in Italy.  

National Technical Information Service (NTIS)

This paper describes the experimental work undertaken in Italy on the irradiation of plutonium bearing fuel in thermal reactors. 16 MOX fuel assemblies were initially loaded into the Garigliano BWR and a further 46, a full reload, were loaded in 1975. Eig...

A. Ariemma C. Lepscky F. Pistella G. Testa G. M. Paoletti

1978-01-01

412

Plutonium oxide polishing for MOX fuel fabrication  

Microsoft Academic Search

Los Alamos National Laboratory (LANL) successfully polished 120kg of plutonium from surplus nuclear weapons for the European Mixed Oxide (MOX) Lead Test Assembly (LTA), managed by Duke, COGEMA, and Stone & Webster (DCS). The purified oxide was fabricated into fuel pellets, which comprised the LTAs. The LTAs have been inserted into the Catawba (SC, USA) nuclear reactor, where they are

Jennifer Louise Alwin; Fawn Coriz; Jan A. Danis; Brian K. Bluhm; David W. Wayne; Devin W. Gray; Kevin B. Ramsey; David A. Costa; Elizabeth A. Bluhm; Archie E. Nixon; Daniel J. Garcia; Judy D. Roybal; Mark T. Saba; Jose A. Valdez; David Martinez; Joe R. Martinez; Cathy M. Martinez; Yvonne A. Martinez; Carl M. Martinez

2007-01-01

413

Plutonium Management in the Medium Term  

SciTech Connect

For many years various countries with access to commercial reprocessing services have been routinely recycling plutonium as UO{sub 2}/PuO{sub 2} mixed oxide (MOX) fuel in light water reactors (LWRs). This LWR MOX recycle strategy is still widely regarded as an interim step leading to the eventual establishment of sustainable fast reactor fuel cycles. The OECD/NEA Working Party on the Physics of Plutonium Fuels and Innovative Fuel Cycles (WPPR) has recently completed a review of the technical options for plutonium management in what it refers to as the 'medium term'. For the purpose of the review, the WPPR considers the medium term to cover the period from now up to the point at which fast reactor fuel cycles are established on a commercial scale. The review identified a number of different designs of innovative plutonium fuel assemblies intended to be used in current LWR cores, in LWRs with significantly different moderation properties, as well as in high-temperature gas reactors. The full review report describes these various options and highlights their respective advantages and disadvantages. This paper briefly summarizes the main findings of the review.

Hesketh, Kevin [BNFL Nuclear Sciences and Technology Services (United Kingdom); Schlosser, Gerhard; Porsch, Dieter F. [Framatome ANP (France); Wolf, Timm [Framatome ANP (France); Koeberl, Oliver [CEA Cadarache (France); Lance, Benoit [Belgonucleaire (Belgium); Chawla, Rakesh [Paul Scherrer Institut (Switzerland); Gehin, Jess C. [Oak Ridge National Laboratory (United States); Ellis, Ron [Oak Ridge National Laboratory (United States); Uchikawa, Sadao [Japan Atomic Energy Research Institute (Japan); Sato, Osamu [Japan Atomic Energy Research Institute (Japan); Okubo, Tsutomu [Japan Atomic Energy Research Institute (Japan); Mineo, Hideaki [Japan Atomic Energy Research Institute (Japan); Yamamoto, Toru [Nuclear Power Engineering Corporation (Japan); Sagayama, Yutaka [Japan Nuclear Cycle Development Institute (Japan); Sartori, Enrico [Organization for Economic Cooperation and Development (France)

2004-12-15

414

Analysis of femtogram-sized plutonium samples  

SciTech Connect

This report describes a study to determine how well isotopic ratios can be measured for very small samples of plutonium. Resin beads were used to simulate particles; for samples ranging from 5--16 fg, collection efficiencies (ions collected per atom loaded) of 4--9% were obtained. Isotopic ratios with 4% precision and accuracy (240/239) were obtained.

Smith, D.H.; McKown, H.S.; Bostick, D.T.; Coleman, R.M.; Duckworth, D.C.; McPherson, R.L.

1994-01-01

415

Design-Only Conceptual Design Report: Plutonium Immobilization Plant  

SciTech Connect

This design-only conceptual design report was prepared to support a funding request by the Department of Energy Office of Fissile Materials Disposition for engineering and design of the Plutonium Immobilization Plant, which will be used to immobilize up to 50 tonnes of surplus plutonium. The siting for the Plutonium Immobilization Plant will be determined pursuant to the site-specific Surplus Plutonium Disposition Environmental Impact Statement in a Plutonium Deposition Record of Decision in early 1999. This document reflects a new facility using the preferred technology (ceramic immobilization using the can-in-canister approach) and the preferred site (at Savannah River). The Plutonium Immobilization Plant accepts plutonium from pit conversion and from non-pit sources and, through a ceramic immobilization process, converts the plutonium into mineral-like forms that are subsequently encapsulated within a large canister of high-level waste glass. The final immobilized product must make the plutonium as inherently unattractive and inaccessible for use in nuclear weapons as the plutonium in spent fuel from commercial reactors and must be suitable for geologic disposal. Plutonium immobilization at the Savannah River Site uses: (1) A new building, the Plutonium Immobilization Plant, which will convert non-pit surplus plutonium to an oxide form suitable for the immobilization process, immobilize plutonium in a titanate-based ceramic form, place cans of the plutonium-ceramic forms into magazines, and load the magazines into a canister; (2) The existing Defense Waste Processing Facility for the pouring of high-level waste glass into the canisters; and (3) The Actinide Packaging and Storage Facility to receive and store feed materials. The Plutonium Immobilization Plant uses existing Savannah River Site infra-structure for analytical laboratory services, waste handling, fire protection, training, and other support utilities and services. The Plutonium Immobilization Plant may share the disposition of the 50 tonnes of plutonium with the mixed oxide fuel/reactor disposition alternative. For this case, immobilization will process 18.2 tonnes of plutonium in 10 years.

DiSabatino, A.; Loftus, D.

1999-01-01

416

Molecular Interactions of Plutonium(VI) with Synthetic Manganese-Substituted Goethite  

SciTech Connect

Plutonium(VI) sorption on the surface of well-characterized synthetic manganese-substituted goethite minerals (Fe1-xMnxOOH) was studied using X-ray absorption spectroscopy. We chose to study the influence of manganese as a minor component in goethite, since goethite rarely exists as a pure phase in nature. Manganese X-ray absorption near-edge structure measurements indicated that essentially all the Mn in the goethite existed as Mn(III), even though Mn was added during mineral synthesis as Mn(II). Importantly, energy dispersive X-ray analysis demonstrated that Mn did not exist as discrete phases and that it was homogeneously mixed into the goethite to within the limit of detection of the method. Furthermore, Mssbauer spectra demonstrated that all Fe existed as Fe(III), with no Fe(II) present. Plutonium(VI) sorption experiments were conducted open to air and no attempt was made to exclude carbonate. Plutonium X-ray absorption near-edge structure measurements carried out on these samples showed that Pu(VI) was reduced to Pu(IV) upon contact with the mineral. This reduction appears to be strongly correlated with mineral solution pH, coinciding with pH transitions across the point of zero charge of the mineral. Furthermore, extended X-ray absorption fine structure measurements show evidence of direct plutonium binding to the metal surface as an inner-sphere complex. This combination of extensive mineral characterization and advanced spectroscopy suggests that sorption of the plutonium onto the surface of the mineral was followed by reduction of the plutonium at the surface of the mineral to form an inner-sphere complex. Because manganese is often found in the environment as a minor component associated with major mineral components, such as goethite, understanding the molecular-level interactions of plutonium with such substituted-mineral phases is important for risk assessment purposes at radioactively contaminated sites and long-term underground radioactive waste repositories.

Hu, Yung-Jin; Schwaiger, Luna K.; Booth, Corwin H.; Kukkadapu, Ravi K.; Cristiano, Elena; Kaplan, Daniel I.; Nitsche, Heino

2010-10-01

417

Determination of the shape of a plutonium deposit from a leaking crucible  

SciTech Connect

An analytical model was developed which predicts that the leak rate (or drip rate) of molten plutonium onto a substrate must be low in order for plutonium to solidify into a problematical hemispherical shape. The heat transfer to the substrate is the significant factor in how quickly the fuel solidifies. Analysis and experiment show that for a given substrate, the deposit center height is independent of the leakrate. A good conductor, such as copper on the bottom of a fuel casting furnace, will conduct heat away quickly and tend to cause the fuel to form into a hemisphere. A good insulator on the other hand, will keepthe metal molten to allow it to spreads out and solidify as a flat disk. Higher substrate temperatures inhibit the undesirable hemispherical shape. Experiments conducted were in good agreement with the an analytical model.

Solbrig, C.W.; Clarksean, R.

1993-01-01

418

Determination of the shape of a plutonium deposit from a leaking crucible  

SciTech Connect

An analytical model was developed which predicts that the leak rate (or drip rate) of molten plutonium onto a substrate must be low in order for plutonium to solidify into a problematical hemispherical shape. The heat transfer to the substrate is the significant factor in how quickly the fuel solidifies. Analysis and experiment show that for a given substrate, the deposit center height is independent of the leakrate. A good conductor, such as copper on the bottom of a fuel casting furnace, will conduct heat away quickly and tend to cause the fuel to form into a hemisphere. A good insulator on the other hand, will keepthe metal molten to allow it to spreads out and solidify as a flat disk. Higher substrate temperatures inhibit the undesirable hemispherical shape. Experiments conducted were in good agreement with the an analytical model.

Solbrig, C.W.; Clarksean, R.

1993-03-01

419

System specification/system design document comment review: Plutonium Stabilization and Packaging System. Notes of conference  

SciTech Connect

A meeting was held between DOE personnel and the BNFL team to review the proposed resolutions to DOE comments on the initial issue of the system specification and system design document for the Plutonium Stabilization and Packaging System. The objectives of this project are to design, fabricate, install, and start up a glovebox system for the safe repackaging of plutonium oxide and metal, with a requirement of a 50-year storage period. The areas discussed at the meeting were: nitrogen in can; moisture instrumentation; glovebox atmosphere; can marking-bar coding; weld quality; NFPA-101 references; inner can swabbing; ultimate storage environment; throughput; convenience can screw-top design; furnace/trays; authorization basis; compactor safety; schedule for DOE review actions; fire protection; criticality safety; applicable standards; approach to MC and A; homogeneous oxide; resistance welder power; and tray overfill. Revised resolutions were drafted and are presented.

NONE

1996-07-01

420

Changes in non-volatile taste components of button mushroom (Agaricus bisporus) during different stages of freeze drying and freeze drying combined with microwave vacuum drying.  

PubMed

Button mushroom slices were dehydrated using freeze drying (FD) or FD combined with microwave vacuum drying (FMVD), and the non-volatile component profiles were studied. The results showed that the level of non-volatile components in button mushroom firstly increased during sublimation of FD/FMVD process and then fell during desorption in FD process and MVD in FMVD process. Compared to FD products, the contents of soluble sugars and polyols in FMVD products were relatively low, whereas the contents of total free amino acids were significantly higher, close to the level of fresh mushroom. However, there was no significant difference in the contents of 5'-nucleotides and organic acids between FD and FMVD products. The equivalent umami concentration (EUC) values for FD and FMVD products did not differ from fresh, indicating that both drying methods could effectively preserve MSG (monosodium glutamate)-like components in button mushroom. PMID:25038710

Pei, Fei; Shi, Ying; Gao, Xingyang; Wu, Fangning; Mariga, Alfred Mugambi; Yang, Wenjian; Zhao, Liyan; An, Xinxin; Xin, Zhihong; Yang, Fangmei; Hu, Qiuhui

2014-12-15

421

PLUTONIUM CONTAMINATION VALENCE STATE DETERMINATION USING X-RAY ABSORPTION FINE STRUCTURE PERMITS CONCRETE RECYCLE  

SciTech Connect

This paper describes the determination of the speciation of plutonium contamination present on concrete surfaces at the Rocky Flats Environmental Technology Site (RFETS). At RFETS, the plutonium processing facilities have been contaminated during multiple events over their 50 year operating history. Contamination has resulted from plutonium fire smoke, plutonium fire fighting water, milling and lathe operation aerosols, furnace operations vapors and plutonium ''dust'' diffusion.

Ervin, P. F.; Conradson, S. D.

2002-02-25

422

Hazards evaluation of plutonium metal opening and stabilization  

SciTech Connect

Hazards evaluation is the analysis of the significance of hazardous situations associated with an activity OK process. The HE used qualitative techniques of Hazard and Operability (HazOp) analysis and What-If analysis to identify those elements of handling and thermal stabilization processing that could lead to accidents.

JOHNSON, L.E.

1999-08-31

423

Siderophore mediated plutonium accumulation by Microbacterium flavescens (JG-9).  

PubMed

Uptake of plutonium and uranium mediated by the siderophore desferrioxamine-B (DFOB) has been studied for the common soil aerobe Microbacterium flavescens(JG-9). M. flavescens does not bind or take up nitrilotriacetic acid (NTA) complexes of U(VI), Fe(III), or Pu(IV) or U(VI)-DFOB but does take up Fe(III)-DFOB and Pu(IV)-DFOB. Pu(IV)-DFOB and Fe(III)-DFOB accumulations are similar: only living and metabolically active bacteria take up these metal-siderophore complexes. The Fe(III)-DFOB and Pu(IV)-DFOB complexes mutually inhibit uptake of the other, indicating that they compete for shared binding sites or uptake proteins. However, Pu uptake is much slower than Fe uptake, and cumulative Pu uptake is less than Fe, 1.0 nmol of Fe vs 0.25 nmol of Pu per mg of dry weight bacteria. The Pu(IV)-DFOB interactions with M. flavescens suggest that Pu-siderophore complexes could generally be recognized by Fe-siderophore uptake systems of many bacteria, fungi, or plants, thereby affecting Pu environmental mobility and distribution. The results also suggest that the siderophore complexes of tetravalent metals can be recognized by Fe-siderophore uptake proteins. PMID:11478246

John, S G; Ruggiero, C E; Hersman, L E; Tung, C S; Neu, M P

2001-07-15

424

A study of in-line plutonium isotopic analysis for gaseous plutonium hexafluoride  

SciTech Connect

In-line plutonium isotopic analysis of gaseous plutonium hexafluoride (PuF6) is very important for process control and special nuclear material accountability in any plutonium-isotope-separation process that requires a gaseous phase. Although much effort had been devoted to analyze arbitrary plutonium samples, no isotopic analysis had been done on gaseous PuF6 samples. We have initiated a study on the use of a high-resolution, gamma-ray spectroscopy technique to analyze gaseous plutonium hexafluoride. For the first time, PuF6 gas samples with pressures varying from 0.15 to 31 torr, which were directly fed into a gas cell from a process flow loop, were measured. The isotopic results of these measurements agree very well with those of mass spectrometry measurements of solid PuF4. The precision of a 10-min measurement of a 10-torr reactor-grade PuF6 is 1.5% for STYPu, 0.22% for STZPu, 0.87% for SUPu, and 17.5% for SU Pu.

Li, T.K.

1987-01-01

425

Plutonium process control using an advanced on-line gamma monitor for uranium, plutonium, and americium  

SciTech Connect

An on-line gamma monitor has been developed to profile uranium, plutonium, and americium in waste and product streams of the anion exchange process used to recover and purify plutonium at the Los Alamos Plutonium Facility. The gamma monitor employs passive gamma spectrometry to measure /sup 241/Am and /sup 239/Pu, based on their 59.5-keV and 129-keV gamma rays, respectively. Because natural and depleted uranium present in typical process streams have no gamma rays suitable for measurement by such passive methods, uranium measurement requires a novel and less direct technique. Plutonium-241, which is always present in plutonium processed at Los Alamos, decays primarily by beta emission to form /sup 241/Am. However, a small fraction of /sup 241/Pu decays by alpha emission to 6.8-day /sup 237/U. The short half-life and 208-keV gamma energy of /sup 237/U make it an ideal radiotracer to mark the position of macro amounts of uranium impurity in the separation process. The real-time data obtained from an operating process allow operators to optimize many process parameters. The gamma monitor also provides a permanent record of the daily performance of each ion exchange system. 2 refs., 12 figs.

Marsh, S.F.; Miller, M.C.

1987-05-01

426

Who pressed the pause button on global warming: is the answer in the past?  

NASA Astrophysics Data System (ADS)

Although there is coverage bias in the HadCRUT4 temperature series (Cotan and Way, 2013) or in other global surface temperature sequences, IPCC-AR5 still claimed that "much interest has focused on the period since 1998 and an apparent flattening ('hiatus') in trends". According to statistical principle, in fact, this flattening trend is unlikely to be changed by adding the missing 16% area-weighed regional data. In addition, if the "warming hiatus" could not be attributed to the solar output, volcanic eruptions and the green house gases when comparing them to the rhythm of the temperature, then the question arise: who pressed the pause button on global warming? However, it would be a golden opportunity to further understand the ocean as a fundamental role in controlling climate change. The current hypothesis attributed this "hiatus" to a La Nia-like decadal cooling occurring in the central and eastern equatorial Pacific (Kosaka and Die, 2013). Here we separate the global surface temperature into land surface air temperature (LSAT, adopt from HadCRUT4) and sea surface temperatures (SSTs, adopt from different original data). Obviously, the decadal cooling of the central and eastern equatorial Pacific occurred in 1987, a decade earlier than the beginning of the LSAT flattening (1998), whereas the SSTs of the west Pacific warm pool (WPWP), the Indian Ocean (IO, 20S-20N, 40-110E) and the North Atlantic (NA, here its variation is represented by the Atlantic multi-decadal oscillation or hereafter referred to as AMO) are exactly in phase with the LSAT. The combined data (SSTs, arithmetic mean) of the three ocean areas has the highest correlation with the LSAT (0.91), but the correlation coefficient is reduced (0.54) if adding the decadal variation in the central and eastern equatorial Pacific (here it is represented by the Pacific decadal oscillation or hereafter referred to as PDO). Therefore, the tree ocean areas (WPWP, IO and NA) could be regarded as the key ocean area for the atmospheric temperature change. The robust evidence comes from the reconstructed long-term time series. A fact that we all know is that the value of the LSAT is lowest in the Little Ice Age (LIA) over the last millennium. However, both reconstructed PDO (MacDonald et al, 2005) and sea surface temperature index of Nio3.4 (Emile-Gay et al, 2013) illustrate high values in the central and eastern equatorial Pacific during the LIA period. So, if we admit that the ocean could determine the land surface temperature, then the key ocean area could not be the central and eastern equatorial Pacific. And meanwhile, we also need reconstructed the SSTs of WPWP, IO or NA over the last millennium to see how the key ocean area changed. The millennial AMO has been reconstructed by Mann et al (2009) with autocorrelation coefficient of 0.99. It really shows a low value during the LIA period. Here we further present a new reconstructed AMO millennial series derived by combining a tree ring width chronology and a stalagmite-lamina thickness chronology with autocorrelation coefficient of 0.67 (Tan et al, 2009). This new sequence lags the observed winter half year (October of last year to February of current year) AMO by 3 years (with correlation coefficient of 0.59), which also shows a low value within the LIA. After removing the impact of millennial-scale solar radiation, the wavelet analysis on the residual composition shows that the decadal oscillation only occurred within the past 200 years. Therefore, it is still difficult to speculate the future trend of the SSTs according to this reconstructed series. Another related important issue is that the instantaneous growth rates for globally averaged atmospheric CO2 (see Figure 2.1b in IPCC AR5) is kept very precisely in phase with the SSTs of IO, WPWP and NA on annual to decadal time scale (but lags Nio3.4 by 1 year). If it is impossible to imagine that the atmospheric CO2 is a dexterous driver for the SSTs, then the reasonable explanation is that the oceanic carbon pool could finely modula

Tan, Ming

2014-05-01

427

Plutonium stabilization and handling (PuSH)  

SciTech Connect

This Functional Design Criteria (FDC) addresses construction of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM for up to fifty years. The major sections of the project are: site preparation; SPS Procurement, Installation, and Testing; storage vault modification; and characterization equipment additions. The SPS will be procured as part of a Department of Energy nationwide common procurement. Specific design crit1460eria for the SPS have been extracted from that contract and are contained in an appendix to this document.

Weiss, E.V.

1997-01-23

428

Plutonium fractionation in southern Baltic Sea sediments.  

PubMed

In this study, different chemical plutonium fractions (dissolved in water, connected to carbonates, connected to oxides, complexed with organic matter, mineral acids soluble and the rest) in sediments from the Vistula River estuary, the Gda?sk Basin and the Bornholm Deep were determined. The distribution of (239+240)Pu in analysed sediments samples was not uniform but dependent on its chemical form, depth and the sediment geomorphology. The highest amount of plutonium exists in middle parts of sediments and comes from the global atmospheric fallout from nuclear tests in 1958-1961. According to all analysed fractions, the biggest amount of (239+240)Pu was in the mobile form, connected to carbonate fractions from the Vistula River estuary, the Gulf of Gda?sk and the Bornholm Deep sediments. PMID:22612422

Strumi?ska-Parulska, Dagmara I; Skwarzec, Bogdan; Pawlukowska, Magdalena

2012-01-01

429

Los Alamos Plutonium Facility Waste Management System  

SciTech Connect

This paper describes the new computer-based transuranic (TRU) Waste Management System (WMS) being implemented at the Plutonium Facility at Los Alamos National Laboratory (LANL). The Waste Management System is a distributed computer processing system stored in a Sybase database and accessed by a graphical user interface (GUI) written in Omnis7. It resides on the local area network at the Plutonium Facility and is accessible by authorized TRU waste originators, count room personnel, radiation protection technicians (RPTs), quality assurance personnel, and waste management personnel for data input and verification. Future goals include bringing outside groups like the LANL Waste Management Facility on-line to participate in this streamlined system. The WMS is changing the TRU paper trail into a computer trail, saving time and eliminating errors and inconsistencies in the process.

Smith, K.; Montoya, A.; Wieneke, R.; Wulff, D.; Smith, C.; Gruetzmacher, K.

1997-02-01

430

CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES  

SciTech Connect

This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.

WITTEKIND WD

2007-10-03

431

Benefit/Cost Analysis of Plutonium Recycle Options in the United States.  

National Technical Information Service (NTIS)

Predictable effects of the recycle of plutonium and uranium recovered from spent LWR fuels were assessed in a final environmental statement (GESMO). Five alternative dispositions of LWR-produced plutonium ranging from prompt recycle of recovered plutonium...

H. Lowenberg J. B. Burnham F. Fisher W. H. Ray

1977-01-01

432

Autoradiographic Technique for Rapid Inventory of Plutonium-Containing Fast Critical Assembly Fuel.  

National Technical Information Service (NTIS)

A nondestructive autoradiographic technique is described which can provide a verification of the piece count and the plutonium content of plutonium-containing fuel elements. This technique uses the spontaneously emitted gamma rays from plutonium to form i...

S. B. Brumbach R. B. Perry

1977-01-01

433

Redox speciation of plutonium in natural waters  

Microsoft Academic Search

Data on the stability of Pu(V) as the dominant oxidation state of tracer concentrations of plutonium in natural waters is reviewed. Laboratory experiments for solutions of 0.1 and 1.0M (NaCl) ionic strength and pH 310 confirm the dominance of Pu(V) as the state in solution. Humics in the waters can cause reduction to Pu(IV).

G. R. Choppin

1991-01-01

434

Surplus Plutonium Disposition (SPD) Environmental Data Summary  

SciTech Connect

This document provides an overview of existing environmental and ecological information at areas identified as potential locations of the Savannah River Site's (SRS) Surplus Plutonium Disposition (SPD) facilities. This information is required to document existing environmental and baseline conditions from which SPD construction and operation impacts can be defined. It will be used in developing the required preoperational monitoring plan to be used at specific SPD facilities construction sites.

Fledderman, P.D.

2000-08-24

435

Derivation of plutonium-239 materials disposition categories  

SciTech Connect

At this time, the Office of Fissile Materials Disposition within the DOE, is assessing alternatives for the disposition of excess fissile materials. To facilitate the assessment, the Plutonium-Bearing Materials Feed Report for the DOE Fissile Materials Disposition Program Alternatives report was written. The development of the material categories and the derivation of the inventory quantities associated with those categories is documented in this report.

Brough, W.G.

1995-04-27

436

Plutonium-Based Nuclear Power and Nonproliferation  

Microsoft Academic Search

\\u000a The development of the nuclear power got its start in the 50ies based on 235 U thermal reactors of all the types, which had\\u000a been earlier developed for production of arm plutonium and tritium and for submarines. It was assumed that as thermal reactors\\u000a accumulated Pu and fast breeders were being mastered (their first power units were commissioned in 1972-1975

V. V. Orlov

437

Plutonium speciation in water from Mono Lake, California  

USGS Publications Warehouse

The solubility of plutonium in Mono Lake water is enhanced by the presence of large concentrations of indigenous carbonate ions and moderate concentrations of fluoride ions. In spite of the complex chemical composition of this water, only a few ions govern the behavior of plutonium, as demonstrated by the fact that it was possible to duplicate plutonium speciation in a synthetic water containing only the principal components of Mono Lake water.

Cleveland, J. M.; Rees, T. F.; Nash, K. L.

1983-01-01

438

14. END VIEW OF THE PLUTONIUM STORAGE VAULT FROM THE ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

14. END VIEW OF THE PLUTONIUM STORAGE VAULT FROM THE REMOTE CONTROL STATION. THE STACKER-RETRIEVER, A REMOTELY-OPERATED, MECHANIZED TRANSPORT SYSTEM, RETRIEVES CONTAINERS OF PLUTONIUM FROM SAFE GEOMETRY PALLETS STORED ALONG THE LENGTH OF THE VAULT. THE STACKER-RETRIEVER RUNS ALONG THE AISLE BETWEEN THE PALLETS OF THE STORAGE CHAMBER. (3/2/86) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

439

The GT-MHR for destruction of weapons plutonium  

Microsoft Academic Search

The disposal of nearly 100 tonnes of weapons-grade plutonium (WG-Pu) made surplus by the disarmament treaties is receiving urgent attention, highlighted by the recent seizure in Germany of small quantities of weapons-useful plutonium. Unlike highly enriched uranium, simple denaturing cannot make this plutonium worthless for use in future weapons. The use of physical security and institutional barriers, including long-term storage

A. M. Baxter; A. J. Neylan

1995-01-01

440

Detection of plutonium with the microwave plasma continuous emissions monitor  

SciTech Connect

The first successful detection of plutonium with a continuous microwave plasma emissions monitor has been demonstrated. Seven plutonium emission peaks in the 362 - 366 nm and 449 - 454 nm ranges were clearly observed. The strongest peak was at 453.62 nm. This peak and five of the other plutonium peaks were easily distinguishable from possible interference from iron emission peaks with a spectrometer resolution of 0.1 nm. 2 refs., 3 figs.

Rhee, D.Y.; Woskov, P.P. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center; Gervais, K.; Surma, J.E. [Pacific Northwest Lab., Richland, WA (United States)

1995-09-01

441

Investigations of plutonium immobilization into the vitreous compositions  

SciTech Connect

Development and characterizations of phosphate and borosilicate glasses for vitrifying high level waste (HLW) solutions in Russia has been extensive. The technical data generated were for low concentrations (less than 0.05% Pu) of plutonium. Limited studies have been performed with plutonium concentrations one to two orders of magnitude larger. The results of these studies are being used to plan and implement an expanded experimental program to establish the limitations and characteristics of plutonium in similar glass compositions.

Matyunin, Y.I., [State Research Center of Russian Federation, A. A. Bochvar All Russian Research Institute of Inorganic Materials (VNIINM)

1998-04-15

442

PLUTONIUM FUEL PROCESSING AND FABRICATION FOR FAST CERAMIC REACTORS  

Microsoft Academic Search

A study was made of the processes available for fabrication of ;\\u000a plutonium-containing fuel from a fast ceramic reacter, and for chemical ;\\u000a reprocessing of irradiated fuel. Radiations from recycled plutonium are ;\\u000a evaluated. Adaptation of conventional glove-box handling procedures to the ;\\u000a fabrication of recycle plutonium appears practical. It is concluded that ;\\u000a acceptable costs are obtainable using moderate

E. L. Zebroski; H. W. Alter; G. D. Collins

1962-01-01

443

Belly button piercings: a saving grace? A patent urachus presenting in a 17-year-old girl.  

PubMed

We report the case of a 17-year-old girl who presented to the accident and emergency department with dysuria and foul smelling, bloody discharge from her umbilicus. The definitive diagnosis was that of a patent urachus, which is a fistulous communication between the bladder and the umbilicus, usually diagnosed in early infancy. The incidence of a patent urachus is approximately 1 in 70?000 in the general population. It is highly likely that removal of a recent belly button piercing resulted in the acute presentation by completing the fistulous tract to the skin. This case is of clinical relevance as the diagnosis was missed 18?months prior with a milder presentation. The recommended treatment option is surgical excision due to the potential risk of malignant change, with urachal adenocarcinoma accounting for 0.3% of all bladder cancers. PMID:24916980

Bannon, Aidan; Black, Patrick; Turner, Joanna; Gray, Sam; Kirk, Stephen

2014-01-01

444

Assessment of thermal performance for the design of a passively-cooled plutonium storage vault  

NASA Astrophysics Data System (ADS)

A passively-cooled plutonium storage vault, rather than one with a safety-qualified, forced-flow cooling system, could save as much as 100 million over the project lifetime. Either configuration must maintain the temperature of the stored plutonium metal, with its significant internal heat generation, below 239 sp circF. Alpha-phase metal, if allowed to exceed this temperature, will transition to beta-phase metal and undergo a volumetric expansion which could rupture the storage container system. An investigation was performed to determine whether a passively-cooled vault is feasible. Significant temperature drops occurred in two regions, both were gas-filled vertical annuli with heat flux boundary conditions on the inner surfaces and fixed temperature boundary conditions on the outer surfaces. The thermal resistance method was employed to evaluate radial heat transfer across each annulus, coupling natural convection, radiation, and conduction. Correlations from Thomas et al and Kulacki et al were used to evaluate the degree of natural convective enhancement. For the helium-filled region between the plutonium metal rod and the container with a characteristic length of 3.9 centimeters and an aspect ratio of 5.6, the Rayleigh number was 800 when the effect of radiation was removed. This resulted in a Nusselt number of 1.8. For the air-filled region between twelve vertically arranged containers and the storage tube with a characteristic length of 5.8 centimeters and an aspect ratio of 78, the Rayleigh number was 5times10sp5. This resulted in a Nusselt number of approximately 4.5, neglecting the effect of radiation. FIDAP 7.62\\copyright$ (Fluid Dynamics Analysis Package) was used to perform multi-dimensional finite element analyses of these regions employing both buoyant and radiative effects. Both simplified and more geometrically complex models were employed, all of which compared favorably to the results using the thermal resistance method. The results of the overall analysis suggest that a passively-cooled storage vault employing an array of staggered, vertical storage tubes should be capable of maintaining the plutonium metal below the phase-change temperature, albeit with a narrow margin. Methods of improving the system's thermal performance include increasing the exhaust stack height, optimizing the thermal design of the container holding fixture, and treating selected surfaces to improve their radiative emissivity.

Sanders, Joseph Conway

445

Characterizing Surplus US Plutonium for Disposition - 13199  

SciTech Connect

The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems. (authors)

Allender, Jeffrey S. [Savannah River National Laboratory, Aiken SC 29808 (United States)] [Savannah River National Laboratory, Aiken SC 29808 (United States); Moore, Edwin N. [Moore Nuclear Energy, LLC, Savannah River Site, Aiken SC 29808 (United States)] [Moore Nuclear Energy, LLC, Savannah River Site, Aiken SC 29808 (United States)

2013-07-01

446

Characterizing surplus US plutonium for disposition  

SciTech Connect

The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems.

Allender, Jeffrey S.; Moore, Edwin N.

2013-02-26

447

Plutonium Immobilization Project -- Robotic canister loading  

SciTech Connect

The Plutonium Immobilization Program (PIP) is a joint venture between the Savannah River Site (SRS), Lawrence Livermore National Laboratory (LLNL), Argonne National Laboratory (ANL), and Pacific Northwest National Laboratory (PNNL). When operational in 2008, the PIP will fulfill the nation's nonproliferation commitment by placing surplus weapons-grade plutonium in a permanently stable ceramic form and making it unattractive for reuse. Since there are significant radiation and security concerns, the program team is developing novel and unique technology to remotely perform plutonium immobilization tasks. The remote task covered in this paper employs a jointed arm robot to load seven 3.5 inch diameter, 135-pound cylinders (magazines) through the 4 inch diameter neck of a stainless steel canister. Working through the narrow canister neck, the robot secures the magazines into a specially designed rack pre-installed in the canister. To provide the deterrent effect, the canisters are filled with a mixture of high-level waste and glass at the Defense Waste Processing Facility (DWPF).

Hamilton, R.L.

2000-01-04

448

TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION  

SciTech Connect

Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

Allender, J.; Beams, J.; Sanders, K.; Myers, L.

2013-07-16

449

Plutonium isotopic measurement for small product samples  

SciTech Connect

An automated at-line plutonium isotopic analysis system for small-product plutonium samples in the range of 10 to 1000 ..mu..g has been developed. The analysis is based on low-energy gamma rays at 43.48 keV (/sup 238/Pu), 45.23 keV (/sup 240/Pu), 51.63 keV (/sup 239/Pu), 64.83 keV (/sup 241/Pu-/sup 237/U), 129.3 keV (/sup 239/Pu), and 148.6 keV (/sup 241/Pu). Within a 20-ks counting time, we demonstrated that for plutonium masses > 600 ..mu..g the precision is < 0.7% for /sup 238/Pu//sup 239/Pu and /sup 240/Pu//sup 239/Pu ratios and approx. 4% for the /sup 241/Pu//sup 239/Pu ratio. The agreement between the results measured by gamma-ray spectroscopy and those measured by mass spectrometry for seven samples is within the gamma-ray precision limits.

Li, T.K.; Sampson, T.E.; Johnson, S.S.

1983-01-01

450

New nuclear safe plutonium ceramic compositions with neutron poisons for plutonium storage  

NASA Astrophysics Data System (ADS)

A complex of works is conducted to study the possibility of reprocessing surplus weapon-grade plutonium to a critical-mass-free composition with neutron poison. Nuclear safe ceramic compositions of PuO2 with four most efficient neutron poisons, Hf, Gd, Li, and B, are fabricated in the laboratory. Various methods for fabrication of the compositions with PuO2 depending on neutron poison element are used and studied: a - by sintering initial component powders; b - by impregnation of a porous skeleton made of neutron poison oxide with plutonium sol-gel; c - by sintering microspheres made of plutonium oxide with neutron poison (B4C), with the microspheres having a coating completely absorbing alpha particles. .

Nadykto, B. A.; Timofeeva, L. F.

2000-07-01

451

Ambiguous and forbidden parameter combinations for aqueous plutonium  

SciTech Connect

The concepts of forbidden and ambiguous oxidation-state distributions for plutonium are easier to understand when presented graphically. This note describes two diagrams that illustrate the phenomena.

Silver, Gary L [Los Alamos National Laboratory

2008-01-01

452

Design of the improved plutonium canister assay system (IPCAS)  

SciTech Connect

The improved Plutonium Canister Assay System (iPCAS) is designed to detect gross and partial defects in the declared plutonium content of plutonium and MOX storage canisters during transfer to storage and process areas of the MOX fuel fabrication facility in Kokkasho, Japan. In addition, an associated Gamma Isotopics System (GIS) will be used to confirm facility-declared plutonium isotopics with accuracy sufficient to reduce the amount of destructive isotopic analysis needed. The design of the iPCAS instrument and its associated GIS is described and the expected performance of the instrument is discussed.

Abhold, M. E. (Mark E.); Baker, M. C. (Michael C.); Bourret, S. C.; Polk, P. J. (Paul J.); Vo, Duc T.

2001-01-01

453

Geomorphology of plutonium in the Northern Rio Grande  

SciTech Connect

Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi.

Graf, W.L. [Arizona Univ., Tempe, AZ (United States). Dept., of Geography] Arizona Univ., Tempe, AZ (United States). Dept., of Geography