These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

31. VIEW OF A WORKER HOLDING A PLUTONIUM 'BUTTON.' PLUTONIUM, A MAN-MADE SUBSTANCE, WAS RARE. SCRAPS RESULTING FROM PRODUCTION AND PLUTONIUM RECOVERED FROM RETIRED NUCLEAR WEAPONS WERE REPROCESSED INTO VALUABLE PURE-PLUTONIUM METAL (9/19/73). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

2

17. VIEW OF THE FIRST PLUTONIUM BUTTON PRODUCED FROM THE ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

17. VIEW OF THE FIRST PLUTONIUM BUTTON PRODUCED FROM THE BUILDING 371 AQUEOUS RECOVERY OPERATION. (9/30/83) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

3

Lawrence Livermore plutonium button critical experiment benchmark  

SciTech Connect

The end of the Cold War and the subsequent weapons reductions have led to an increased need for the safe storage of large amounts of highly enriched plutonium. In support of code validation required to address this need, a set of critical experiments involving arrays of weapons-grade plutonium metal that were performed at the Lawrence Livermore National Laboratory (LLNL) in the late 1960s has been revisited. Although these experiments are well documented, discrepancies and omissions have been found in the earlier reports. Many of these have been resolved in the current work, and these data have been compiled into benchmark descriptions. In addition, a computational verification has been performed on the benchmarks using multiple computer codes. These benchmark descriptions are also being made available to the US Department of Energy (DOE)-sponsored Nuclear Criticality Safety Benchmark Evaluation Working Group for dissemination in the DOE Handbook on Evaluated Criticality Safety Benchmark Experiments.

Trumble, E.F.; Justice, J.B.; Frost, R.L.

1994-12-31

4

Lithium metal reduction of plutonium oxide to produce plutonium metal  

DOEpatents

A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

Coops, Melvin S. (Livermore, CA)

1992-01-01

5

Dissolution of plutonium metal in sulfamic acid at elevated temperatures  

Microsoft Academic Search

The kinetics of the dissolution of plutonium metal in sulfamic acid at varying temperatures was determined. Hydrogen off-gas rates and plutonium concentrations were determined as functions of time for different dissolving conditions. Nominal 2.2 kg Pu buttons (surface area, 171 cm²) should yield solutions containing 190 to 260 g Pu\\/L and 3.3M sulfamate ion after a one-hour dissolving time at

Gray

1979-01-01

6

Mechanics of plutonium metal aerosolization  

Microsoft Academic Search

Reliable estimates of hazards posed by a plutonium release are contingent on the availability of technical data to define the source term for aerosolization of plutonium oxide particles and the resulting size distribution. The release of aerosols from the oxidation of plutonium metal depends partly on the forces acting on the particles while they remain attached to the bulk material

Alvis

1996-01-01

7

Mechanics of plutonium metal aerosolization  

SciTech Connect

Reliable estimates of hazards posed by a plutonium release are contingent on the availability of technical data to define the source term for aerosolization of plutonium oxide particles and the resulting size distribution. The release of aerosols from the oxidation of plutonium metal depends partly on the forces acting on the particles while they remain attached to the bulk material and partly on the ability of the airstream around the metal ingot to transport the particles when they detach. The forces that attach or detach the plutonium oxide particles can be described as binding of the particle to the metal or oxide layer around it and expansion and contraction stresses and external vibration. Experimental data forms the basis for defining size distributions and release fractions for plutonium oxide. The relevance of the data must be evaluated in the light of the chemical and physical properties of plutonium metal, plutonium oxide, and intermediate Plutonium compounds. The effects of temperature on reaction kinetics must also be understood when evaluating experimental data. Size distribution functions are remarkably similar for products of all Pu+gas reactions. The distributions are all bimodal. Marked differences are seen in the sizes of large particles depending on reaction temperature and reaction rate. However, the size distributions of small particles are very similar. The bimodal distribution of small particles vanishes as the sizes of the large particles decrease to the point of equal dimensions with the small particles. This is the situation realized for the fine plutonium oxide powder produced by air oxidation at room temperature. This report addresses important factors for defining the formation of an aerosol from the oxidation of plutonium metal. These factors are oxidation kinetics of plutonium metal and plutonium hydride, the particle distribution of products formed by the reactions, and the kinetics of processes limiting entrainment of particles.

Alvis, J.M. [Texas A& M Univ., College Station, TX (United States)

1996-06-01

8

Zone refining of plutonium metal  

SciTech Connect

The zone refining process was applied to Pu metal containing known amounts of impurities. Rod specimens of plutonium metal were melted into and contained in tantalum boats, each of which was passed horizontally through a three-turn, high-frequency coil in such a manner as to cause a narrow molten zone to pass through the Pu metal rod 10 times. The impurity elements Co, Cr, Fe, Ni, Np, U were found to move in the same direction as the molten zone as predicted by binary phase diagrams. The elements Al, Am, and Ga moved in the opposite direction of the molten zone as predicted by binary phase diagrams. As the impurity alloy was zone refined, {delta}-phase plutonium metal crystals were produced. The first few zone refining passes were more effective than each later pass because an oxide layer formed on the rod surface. There was no clear evidence of better impurity movement at the slower zone refining speed. Also, constant or variable coil power appeared to have no effect on impurity movement during a single run (10 passes). This experiment was the first step to developing a zone refining process for plutonium metal.

Blau, M.S.

1994-08-01

9

PLUTONIUM METAL: OXIDATION CONSIDERATIONS AND APPROACH  

SciTech Connect

Plutonium is arguably the most unique of all metals when considered in the combined context of metallurgical, chemical, and nuclear behavior. Much of the research in understanding behavior and characteristics of plutonium materials has its genesis in work associated with nuclear weapons systems. However, with the advent of applications in fuel materials, the focus in plutonium science has been more towards nuclear fuel applications, as well as long term storage and disposition. The focus of discussion included herein is related to preparing plutonium materials to meet goals consistent with non-proliferation. More specifically, the emphasis is on the treatment of legacy plutonium, in primarily metallic form, and safe handling, packaging, and transport to meet non-proliferation goals of safe/secure storage. Elevated temperature oxidation of plutonium metal is the treatment of choice, due to extensive experiential data related to the method, as the oxide form of plutonium is one of only a few compounds that is relatively simple to produce, and stable over a large temperature range. Despite the simplicity of the steps required to oxidize plutonium metal, it is important to understand the behavior of plutonium to ensure that oxidation is conducted in a safe and effective manner. It is important to understand the effect of changes in environmental variables on the oxidation characteristics of plutonium. The primary purpose of this report is to present a brief summary of information related to plutonium metal attributes, behavior, methods for conversion to oxide, and the ancillary considerations related to processing and facility safety. The information provided is based on data available in the public domain and from experience in oxidation of such materials at various facilities in the United States. The report is provided as a general reference for implementation of a simple and safe plutonium metal oxidation technique.

Estochen, E.

2013-03-20

10

Air transport of plutonium metal : content expansion initiative for the Plutonium Air Transportable (PAT-1) packaging.  

SciTech Connect

The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

Mann, Paul T. (National Nuclear Security Administration); Caviness, Michael L. (Los Alamos National Laboratory); Yoshimura, Richard Hiroyuki

2010-06-01

11

PLUTONIUM METALLIC FUELS FOR FAST REACTORS  

SciTech Connect

Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

STAN, MARIUS [Los Alamos National Laboratory; HECKER, SIEGFRIED S. [Los Alamos National Laboratory

2007-02-07

12

Liquid-metal embrittlement of refractory metals by molten plutonium  

Microsoft Academic Search

Embrittlement by molten plutonium of the refractory metals and alloys W-25 wt % Re, tantalum, molybdenum, and Ta-10 wt % W was studied. At 900°C and a strain rate of 10⁻⁴ s⁻¹, the materials tested may be ranked in order of decreasing susceptibility to liquid-plutonium embrittlement as follows: molybdenum, W-25 wt % Re, Ta-10 wt % W, and tantalum. These

D. R. Lesuer; J. B. Bergin; S. A. McInturff; B. A. Kuhn

1980-01-01

13

15. VIEW OF THE SAFE GEOMETRY PLUTONIUM METAL STORAGE PALLETS ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

15. VIEW OF THE SAFE GEOMETRY PLUTONIUM METAL STORAGE PALLETS FROM THE INSIDE OF AN INPUT-OUTPUT STATION. INDIVIDUAL CONTAINERS OF PLUTONIUM ARE STORED IN THE WATER-FILLED, DOUBLE-WALLED STAINLESS STEEL TUBES THAT ARE WELDED ONTO THE PALLETS. (12/3/88) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

14

Direct reduction of actinide oxide and carbide to metal: Application to the preparation of plutonium metal  

NASA Astrophysics Data System (ADS)

Three different conversion and refining methods for the preparation of high purity plutonium metal are described: the calciothermic reduction of plutonium oxide followed by electrorefining; the thoriothermic reduction of plutonium oxide followed by selective evaporation; the tantalothermic reduction of plutonium carbide followed by selective evaporation. The calciothermic reduction of plutonium oxide followed by electrorefining is used for the semi-industrial or large scale production of high purity plutonium metal. The rate and yield of preparation and refining is high. With high purity reactants the reduction of the oxide with thorium is well adapted to obtain high purity plutonium metal on the laboratory scale. The tantalothermic reduction of plutonium carbide gives high purity plutonium metal even with impure plutonium starting material (recovered from waste). This results from the high selectivity at the different steps of the process.

Spirlet, J. C.; Mller, W.; Van Audenhove, J.

1985-06-01

15

Plutonium metal preparation and purification at Los Alamos, 1984  

SciTech Connect

Plutonium metal preparation and purification are well established at Los Alamos. Metal is prepared by calcothermic reduction of both PuF/sub 4/ and PuO/sub 2/. Metal is purified by halide slagging, casting, and electrorefining. The product from the production sequence is ultrapure plutonium metal. All of the processes involve high temperature operation and all but casting involve molten salt media. Development efforts are fourfold: (1) recover plutonium values from residues; (2) reduce residue generation through process improvements and changes; (3) recycle of reagents, and (4) optimize and integrate all processes into a close-loop system. Plutonium residues are comprised of oxides, chlorides, colloidal metal suspensions, and impure metal heels. Pyrochemical recovery techniques are under development to address each residue. In addition, we are looking back at each residue generation step and are making process changes to reduce plutonium content in each residue. Reagent salt is the principle media used in pyrochemical processing. The regeneration and recycle of these reagents will both reduce our waste handling and operating expense. The fourth area, process optimization, involves both existing processes and new process developments. A status of efforts in all four of these areas will be summarized.

Christensen, D.C.; Williams, J.D.; McNeese, J.A.; Fife, K.W.

1984-01-01

16

Lost Buttons  

NSDL National Science Digital Library

In this lesson, students investigate subtraction, beginning with the easier "take away" mode. They model "take away" subtraction with buttons and write subtraction sentences. They also work with the additive identity (0) as an addend and as a difference and find missing addends. This is lesson 6 of 8 in the "Begin with Buttons" unit form NCTM's Illuminations.

Illuminations National Council of Teachers of Math

2009-01-13

17

Button Diameters  

NSDL National Science Digital Library

In this line plot activity students measure circular buttons to the nearest eighth of an inch and then measure again the same buttons to the nearest quarter inch. Learners create two line plots of their length and draw conclusions about these line plots. Key concepts involved in this task are measuring to a quarter and an eighth of an inch, creating a line plot, and determining which line plot is more accurate.

2013-01-01

18

Recovery of americium-241 from aged plutonium metal  

SciTech Connect

About 5 kg of ingrown /sup 241/Am was recovered from 850 kg of aged plutonium using a process developed specifically for Savannah River Plant application. The aged plutonium metal was first dissolved in sulfamic acid. Sodium nitrite was added to oxidize the plutonium to Pu(IV) and the residual sulfamate ion was oxidized to nitrogen gas and sulfate. The plutonium and americium were separated by one cycle of solvent extraction. The recovered products were subsequently purified by cation exchange chromatography, precipitated as oxalates, and calcined to the oxides. Plutonium processng was routine. Before cation exchange purification, the aqueous americium solution from solvent extraction was concentrated and stripped of nitric acid. More than 98% of the /sup 241/Am was then recovered from the cation exchange column where it was effectively decontaminated from all major impurities except nickel and chromium. This partially purified product solution was concentrated further by evaporation and then denitrated by reaction with formic acid. Individual batches of americium oxalate were then precipitated, filtered, washed, and calcined. About 98.5% of the americium was recovered. The final product purity averaged 98% /sup 241/AmO/sub 2/; residual impurities were primarily lead and nickel.

Gray, L.W.; Burney, G.A.; Reilly, T.A.; Wilson, T.W.; McKibben, J.M.

1980-12-01

19

Button Trains  

NSDL National Science Digital Library

In this lesson, students describe order by using vocabulary such as before, after, and between. They also review and use both cardinal and ordinal numbers. This is lesson 1 in an 8-lesson unit called "Begin with Buttons" from NCTM's Illuminations.

Math, Illuminations N.

2009-01-12

20

Crystal Structure of Alpha-Plutonium Metal  

Microsoft Academic Search

DSN>12:000173The available evidence on the occurrence and ; identity of inclusions due to C, O, N, H, Fe, Si, and Al in U is reviewed in ; conjunction with observations. Apparently divergent views on interpretation can ; be reconciled by postulating that absolutely pure UO, UN, or UC do not exist in ; normal U metal, but that due to

W. H. Zachariasen; Finley Ellinger

1957-01-01

21

Minutes of the 28th Annual Plutonium Sample Exchange Meeting. Part II: metal sample exchange  

SciTech Connect

Contents of this publication include the following list of participating laboratories; agenda; attendees; minutes of October 25 and 26 meeting; and handout materials supplied by speakers. The handout materials cover the following: statistics and reporting; plutonium - chemical assay 100% minus impurities; americium neptunium, uranium, carbon and iron data; emission spectroscopy data; plutonium metal sample exchange; the calorimetry sample exchange; chlorine determination in plutonium metal using phyrohydrolysis; spectrophotometric determination of 238-plutonium in oxide; plutonium measurement capabilities at the Savannah River Plant; and robotics in radiochemical laboratory.

Not Available

1984-01-01

22

DISSOLUTION OF PLUTONIUM METAL IN 8-10 M NITRIC ACID  

SciTech Connect

The H-Canyon facility will be used to dissolve Pu metal for subsequent purification and conversion to plutonium dioxide (PuO{sub 2}) using Phase II of HB-Line. To support the new mission, the development of a Pu metal dissolution flowsheet which utilizes concentrated (8-10 M) nitric acid (HNO{sub 3}) solutions containing potassium fluoride (KF) is required. Dissolution of Pu metal in concentrated HNO{sub 3} is desired to eliminate the need to adjust the solution acidity prior to purification by anion exchange. The preferred flowsheet would use 8-10 M HNO{sub 3}, 0.015-0.07 M KF, and 0.5-1.0 g/L Gd to dissolve the Pu up to 6.75 g/L. An alternate flowsheet would use 8-10 M HNO{sub 3}, 0.1-0.2 M KF, and 1-2 g/L B to dissolve the Pu. The targeted average Pu metal dissolution rate is 20 mg/min-cm{sup 2}, which is sufficient to dissolve a 'standard' 2250-g Pu metal button in 24 h. Plutonium metal dissolution rate measurements showed that if Gd is used as the nuclear poison, the optimum dissolution conditions occur in 10 M HNO{sub 3}, 0.04-0.05 M KF, and 0.5-1.0 g/L Gd at 112 to 116 C (boiling). These conditions will result in an estimated Pu metal dissolution rate of {approx}11-15 mg/min-cm{sup 2} and will result in dissolution times of 36-48 h for standard buttons. The recommended minimum and maximum KF concentrations are 0.03 M and 0.07 M, respectively. The maximum KF concentration is dictated by a potential room-temperature Pu-Gd-F precipitation issue at low Pu concentrations. The purpose of the experimental work described in this report was two-fold. Initially a series of screening experiments was performed to measure the dissolution rate of Pu metal as functions of the HNO{sub 3}, KF, and Gd or B concentrations. The objective of the screening tests was to propose optimized conditions for subsequent flowsheet demonstration tests. Based on the rate measurements, this study found that optimal dissolution conditions in solutions containing 0.5-1.0 g/L Gd occurred in 8-10 M HNO{sub 3} with 0.04-0.05 M KF at 112 to 116 C (boiling). The testing also showed that solutions containing 8-10 M HNO{sub 3}, 0.1-0.2 M KF, and 1-2 g/L B achieved acceptable dissolution rates in the same temperature range. To confirm that conditions identified by the dissolution rate measurements for solutions containing Gd or B can be used to dissolve Pu metal up to 6.75 g/L in the presence of Fe, demonstration experiments were performed using concentrations in the optimal ranges. In two of the demonstration experiments using Gd and in one experiment using B, the offgas generation during the dissolution was measured and samples were analyzed for H{sub 2}. The experimental methods used to perform the dissolution rate measurements and flowsheet demonstrations and a discussion of the results are presented.

Rudisill, T.; Pierce, R.

2012-02-21

23

Mushroom composite button for orthodontic use.  

PubMed

Composite buttons are a valuable adjunct in orthodontic treatment mechanics and provide an esthetic alternative to metal buttons. In particular, their use warrants application in lingual orthodontic therapy or in any minor tooth movement situations. This paper describes the step by step technique for the fabrication of a mushroom shaped composite button for clinical use. PMID:25109061

Sivakumar, Arunachalam; Varm, Praveen Kumar; Padmapriya, C V; Ravipatti, S V Raghu Ram; Azharuddin, Mohammad; Sudhakar, P

2014-01-01

24

Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons.  

PubMed

Activated carbon (AC) derived from waste coconut buttons (CB) was investigated as a suitable adsorbent for the removal of heavy metal ions such as Pb(II), Hg(II) and Cu(II) from industrial effluents through batch adsorption process. The AC was characterized by elemental analysis, fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermal gravimetric and differential thermal analysis, surface area analyzer and potentiometric titrations. The effects of initial metal concentration, contact time, pH and adsorbent dose on the adsorption of metal ions were studied. The adsorbent revealed a good adsorption potential for Pb(II) and Cu(II) at pH 6.0 and for Hg(II) at pH 7.0. The experimental kinetic data were a better fit with pseudo second-order equation rather than pseudo first-order equation. The Freundlich isotherm model was found to be more suitable to represent the experimental equilibrium isotherm results for the three metals than the Langmuir model. The adsorption capacities of the AC decreased in the order: Pb(II) > Hg(II) > Cu(II). PMID:22432329

Anirudhan, T S; Sreekumari, S S

2011-01-01

25

Experimental critical parameters of plutonium metal cylinders flooded with water  

SciTech Connect

Forty-nine critical configurations are reported for experiments involving arrays of 3 kg plutonium metal cylinders moderated and reflected by water. Thirty-four of these describe systems assembled in the laboratory, while 15 others are derived critical parameters inferred from 46 subcritical cases. The arrays included 2x2xN, N = 2, 3, 4, and 5, in one program and 3x3x3 configurations in a later study. All were three-dimensional, nearly square arrays with equal horizontal lattice spacings but a different vertical lattice spacing. Horizontal spacings ranged from units in contact to 180 mm center-to-center; and vertical spacings ranged from about 80 mm to almost 400 mm center-to-center. Several nearly-equilateral 3x3x3 arrays exhibit an extremely sensitive dependence upon horizontal separation for identical vertical spacings. A line array of unreflected and essentially unmoderated canned plutonium metal units appeared to be well subcritical based on measurements made to assure safety during the manual assembly operations. All experiments were performed at two widely separated times in the mid-1970s and early 1980s under two programs at the Rocky Flats Plant`s Critical Mass Laboratory.

NONE

1996-07-01

26

In situ purification, alloying and casting methodology for metallic plutonium  

NASA Astrophysics Data System (ADS)

Plutonium metal that has been double ER (electrorefined/electrorefining) was further purified via zone refining, using a floating molten zone to minimize the introduction of impurities. The temperature of the molten zone was 750C, and the atmosphere was 10 -5 Pa. A total of ten zone refining passes were made at a travel rate of 1.5 cm/h. There were 19 elements reduced to quantities below the minimum detectable limits (MDL) by zone refining, while P, K, and W were significantly reduced. The zone-refined metal was then used in an in situ distillation, alloying, and casting step to prepare tapered specimens for single-crystal growth experiments. Specifically, 241Am was distilled from Pu metal by levitating Pu metal with 1 wt% Ga in the melt in a Crystallox vertical electromagnetic levitation crucible at 10 -5 Pa. The Pu is alloyed with Ga to stabilize the ? phase (fcc symmetry) upon solidification. The Pu was chill-cast directly from the electromagnetic levitation field into 1- cm tapered specimens. A water-cooled ceramic mold was used, and the Pu metal was cooled at a rate of 100C/min. A microstructure examination of the specimen showed 10 25 ?m acicular grains with a density of 15.938 g/cm 3 (0.002 g/cm 3).

Lashley, Jason C.; Blau, Michael S.; Staudhammer, Karl P.; Pereyra, Ramiro A.

27

MODELING OF DIFFUSION OF PLUTONIUM IN OTHER METALS AND OF GASEOUS SPECIES IN PLUTONIUM-BASED SYSTEMS  

EPA Science Inventory

The research is aimed at developing and utilizing computational-modeling-based methodology to treat two major problems. The first of these is to be able to predict the diffusion of plutonium from the surface into the interior of another metal such as uranium or stainless steel (f...

28

Plutonium  

NASA Astrophysics Data System (ADS)

The element plutonium occupies a unique place in the history of chemistry, physics, technology, and international relations. After the initial discovery based on submicrogram amounts, it is now generated by transmutation of uranium in nuclear reactors on a large scale, and has been separated in ton quantities in large industrial facilities. The intense interest in plutonium resulted fromthe dual-use scenario of domestic power production and nuclear weapons - drawing energy from an atomic nucleus that can produce a factor of millions in energy output relative to chemical energy sources. Indeed, within 5 years of its original synthesis, the primary use of plutonium was for the release of nuclear energy in weapons of unprecedented power, and it seemed that the new element might lead the human race to the brink of self-annihilation. Instead, it has forced the human race to govern itself without resorting to nuclear war over the past 60 years. Plutonium evokes the entire gamut of human emotions, from good to evil, from hope to despair, from the salvation of humanity to its utter destruction. There is no other element in the periodic table that has had such a profound impact on the consciousness of mankind.

Clark, David L.; Hecker, Siegfried S.; Jarvinen, Gordon D.; Neu, Mary P.

29

Site-selective electronic correlation in ?-plutonium metal.  

PubMed

An understanding of the phase diagram of elemental plutonium (Pu) must include both, the effects of the strong directional bonding and the high density of states of the Pu 5f electrons, as well as how that bonding weakens under the influence of strong electronic correlations. Here we present electronic-structure calculations of the full 16-atom per unit cell ?-phase structure within the framework of density functional theory together with dynamical mean-field theory. Our calculations demonstrate that Pu atoms sitting on different sites within the ?-Pu crystal structure have a strongly varying site dependence of the localization-delocalization correlation effects of their 5f electrons and a corresponding effect on the bonding and electronic properties of this complicated metal. In short, ?-Pu has the capacity to simultaneously have multiple degrees of electron localization/delocalization of Pu 5f electrons within a pure single-element material. PMID:24136139

Zhu, Jian-Xin; Albers, R C; Haule, K; Kotliar, G; Wills, J M

2013-01-01

30

DISSOLUTION OF PLUTONIUM METAL IN 8-10 M NITRIC ACID  

SciTech Connect

The H-Canyon facility will be used to dissolve Pu metal for subsequent purification and conversion to plutonium dioxide (PuO{sub 2}) using Phase II of HB-Line. To support the new mission, the development of a Pu metal dissolution flowsheet which utilizes concentrated (8-10 M) nitric acid (HNO{sub 3}) solutions containing potassium fluoride (KF) is required. Dissolution of Pu metal in concentrated HNO{sub 3} is desired to eliminate the need to adjust the solution acidity prior to purification by anion exchange. The preferred flowsheet would use 8-10 M HNO{sub 3}, 0.015-0.07 M KF, and 0.5-1.0 g/L Gd to dissolve the Pu up to 6.75 g/L. An alternate flowsheet would use 8-10 M HNO{sub 3}, 0.05-0.2 M KF, and 1-2 g/L B to dissolve the Pu. The targeted average Pu metal dissolution rate is 20 mg/min-cm{sup 2}, which is sufficient to dissolve a standard 2250-g Pu metal button in 24 h. Plutonium metal dissolution rate measurements showed that if Gd is used as the nuclear poison, the optimum dissolution conditions occur in 10 M HNO{sub 3}, 0.04-0.05 M KF, and 0.5-1.0 g/L Gd at 112 to 116 C (boiling). These conditions will result in an estimated Pu metal dissolution rate of ~11-15 mg/min-cm{sup 2} and will result in dissolution times of 36-48 h for standard buttons. The recommended minimum and maximum KF concentrations are 0.03 M and 0.07 M, respectively. The data also indicate that lower KF concentrations would yield dissolution rates for B comparable to those observed with Gd at the same HNO{sub 3} concentration and dissolution temperature. To confirm that the optimal conditions identified by the dissolution rate measurements can be used to dissolve Pu metal up to 6.75 g/L in the presence of representative concentrations of Fe and Gd or B, a series of experiments was performed to demonstrate the flowsheets. In three of the five experiments, the offgas generation rate during the dissolution was measured and samples were analyzed for hydrogen gas (H{sub 2}). The use of 10 M HNO{sub 3} containing 0.03-0.05 M KF, 0.5-1.0 g/L Gd, and 1.9 g/L Fe resulted in complete dissolution of the metal in 2.0-3.5 h. When B was used as the neutron poison, 10 M HNO{sub 3} solutions containing 0.05-0.1 M KF, 1.9 g/L Fe, and 1 g/L B resulted in complete dissolution of the metal in 0.75-2.0 h. Dissolution rates estimated using data from the flowsheet demonstrations agreed reasonably well with the measured rates; although, a discrepancy was observed in the Gd system. The presence of 1 g/L Gd or B in the dissolving solution had about the same effect on the dissolution rate. The predominant Pu valence in the dissolving solution was Pu(IV). The concentration of Pu(VI) was evaluated by UV-visible spectroscopy and was estimated to be significantly less than 1 wt %. The offgas generation rates and H{sub 2} concentrations measured in the offgas from experiments performed using 10 M HNO{sub 3} containing 0.05 M KF, 1.9 g/L Fe and either 1 g/L Gd or B were approximately the same. These data support the conclusion that the presence of either 1 g/L Gd or B had the same general effect on the dissolution rate. The calculated offgas generation during the dissolutions was 0.6 mol offgas/mol of Pu. The H{sub 2} concentration measured in the offgas from the dissolution using Gd as the neutron poison was approximately 0.5 vol %. In the B system, the H{sub 2} ranged from nominally 0.8 to 1 vol % which is about the same as measured in the Gd system within the uncertainty of the analysis. The offgas generation rate for the dissolution performed using 10 M HNO{sub 3} containing 0.03 M KF, 0.5 g/L Gd, and 1.9 g/L Fe was approximately a factor of two less than produced in the other dissolutions; however, the concentration of H{sub 2} measured in the offgas was higher. The adjusted concentration ranged from 2.7 to 8.8 vol % as the dissolution proceeded. Higher concentrations of H{sub 2} occur when the Pu dissolution proceeds by a metal/acid reaction rather than nitrate oxidation. The higher H{sub 2} concentration could be attributed to the reduced activity of the fluoride

Rudisill, T. S.; Pierce, R. A.

2012-07-02

31

Dissolution of Plutonium Metal Using a HAN Process  

SciTech Connect

Thermal stability tests were conducted with a nitric acid (HNO3)/hydroxylammonium nitrate (HAN)/potassium fluoride (KF) solution. The solution has great potential for use in plutonium dissolution because of the small quantity of hydrogen and other offgases produced. Tests were carried out in a Reactive Systems Screening Tool (RSST). The RSST is a calorimeter equipped with temperature and pressure probes as well as a heater that can heat a liquid sample at a programmed rate. In most cases, the calorimeter was pressurized with nitrogen to reduce evaporation of the liquid sample during heating. For the proposed solution, an autocatalytic reaction occurred between 113 and 131 degrees Celsius with 300 psig or 50 psig nitrogen inside the RSST vapor space. At ambient pressure, the solution boiled at about 110 degrees Celsius. After extensive boiling, the concentrations of HNO3 and HAN increased and the autocatalytic reaction occurred. Tests were also conducted with 1000 ppm Fe present in the solution. The range of the autocatalytic reaction initiation temperature was reduced to 105-120.5 degrees Celsius. With iron at ambient pressure, boiling still occurred above 100 degrees Celsius prior to the autocatalytic reaction, which occurred at 108-109 degrees Celsius. These results demonstrated the stability of the proposed HAN flowsheet, for which the planned dissolving temperature is 50-60 degrees Celsius. Additional tests were carried out with more concentrated solutions to further characterize the autocatalytic reaction initiation temperature. Increasing the nitric acid concentration to 3M decreased the reaction initiation temperature to 102-103 degrees Celsius. Increasing the HAN concentration increased the temperature rise of the reaction from 10-30 degrees Celsius to greater than 40 degrees Celsius. Increasing both reactants-to 3M nitric acid and 0.9M HAN-yielded a reaction initiation temperature of 91 degrees Celsius (with or without iron), the lowest observed in this study. This study was the first part of a larger flowsheet development / demonstration program for the plutonium metal dissolving process. The results of the study may be useful for similar flowsheets.

CROWDER, MARKL.

2004-06-30

32

Simulation and analysis of the plutonium oxide/metal storage containers subject to various loading conditions  

SciTech Connect

The structural and functional requirements of the Plutonium Oxide/Metal Storage Containers are specified in the Report ``Complex 21 Plutonium Storage Facility Material Containment Team Technical Data Report`` [Complex 21, 1993]. There are no existing storage containers designed for long term storage of plutonium and current codes, standards or regulations do not adequately cover this case. As there is no extensive experience with the long term (50+ years) storage of plutonium, the design of high integrity storage containers must address many technical considerations. This analysis discusses a few potential natural phenomena that could theoretically adversely affect the container integrity over time. The plutonium oxide/metal storage container consists of a primary containment vessel (the outer container), a bagless transfer can (the inner container), two vertical plates on top of the primary containment vessel, a circular plate (the flange) supported by the two plates, tube for gas sampling operations mounted at the center of the primary containment vessel top and a spring system being inserted in the cavity between the primary containment vessel and the cap of the bagless transfer can. The dimensions of the plutonium oxide/metal storage container assembly can be found in Figure 2-1. The primary container, the bagless transfer can, and all the attached components are made of Type 304L stainless steel.

Gong, C.; Miller, R.F.

1995-05-01

33

Separating Metallic Beryllium from Plutonium by Selective Dissolution with Ammonium Fluoride  

SciTech Connect

Plutonium metal is stabilized for long-term storage by calcining to produce PuO{sub 2}. However, if beryllium is present, the calcined product may have a high neutron dose rate because of the {sup 9}Be({alpha},n){sup 12}C reaction in the finely divided oxide mixture. (At LLNL, inadvertent calcining of a mixture of {approx}500 g Pu/50 g Be produced a neutron source of {approx}5 R/hr.) Therefore, for health physics reasons, we would like a convenient procedure to remove beryllium from plutonium with high selectivity. Two reagents, sodium hydroxide and ammonium fluoride, were considered for aqueous processing. Each reagent selectively dissolves beryllium, which can be separated from the insoluble plutonium by decanting/filtering operations followed by water washes to remove the excess reagent. The washed plutonium is calcined for storage; the beryllium and wash fractions are solidified for disposal.

Torres, R A

2006-11-29

34

Plutonium metal vs. oxide determination with the pulse-shape-discrimination-capable plastic scintillator EJ-299-33  

NASA Astrophysics Data System (ADS)

Neutron measurements can be used to distinguish plutonium in metal or oxide form, a capability that is of great interest in nuclear nonproliferation, treaty verification, and other applications. This paper describes measurements performed on well-characterized samples of plutonium oxide and plutonium metal using the pulse-shape-discrimination-capable plastic scintillator EJ-299-33. Results are compared to those obtained with a same-sized detector cell using the liquid scintillator EJ-309. The same optimized, digital pulse shape discrimination technique is applied to both detectors and the neutron pulse height distributions are compared. Results show that the EJ-299-33 plastics can be successfully used for plutonium measurements, where the gamma ray to neutron detection ratio is much higher than for typical radioactive sources. Results also show that EJ-299-33 detectors can be used to characterize plutonium samples, specifically to discriminate between plutonium metal and oxide.

Pozzi, S. A.; Bourne, M. M.; Dolan, J. L.; Polack, K.; Lawrence, C.; Flaska, M.; Clarke, S. D.; Tomanin, A.; Peerani, P.

2014-12-01

35

SAFETY CONSIDERATIONS FOR HANDLING PLUTONIUM, URANIUM, THORIUM, THE ALKALI METALS, ZIRCONIUM, TITANIUM, MAGNESIUM, AND CALCIUM  

Microsoft Academic Search

BS>This report compiles from various sources safety considerations for ;\\u000a work with the special metals plutonium, uranium, thorium, the alkali group, ;\\u000a magnesium, titanium, calcium, and zirconium. General criteria to be observed in ;\\u000a handling all of these metals and their alloys are listed, as well as ;\\u000a characteristics of individual metals with regard to health hazards, ;\\u000a pyrophoricity, explosiveness,

Stout; E. L. comp

1957-01-01

36

Virtual button interface  

DOEpatents

An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment are disclosed. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch. 4 figs.

Jones, J.S.

1999-01-12

37

Virtual button interface  

DOEpatents

An apparatus and method of issuing commands to a computer by a user interfacing with a virtual reality environment. To issue a command, the user directs gaze at a virtual button within the virtual reality environment, causing a perceptible change in the virtual button, which then sends a command corresponding to the virtual button to the computer, optionally after a confirming action is performed by the user, such as depressing a thumb switch.

Jones, Jake S. (Albuquerque, NM)

1999-01-01

38

Hydride/oxidation (HYDOX) process for conversion of plutonium metal to oxide  

SciTech Connect

Options for plutonium disposition require PuO2 that can be used as feed material for mixed oxide (MOX) reactor fuel pellets, or glass and ceramic immobilization forms (cf. Federal Register Doc. 97-1355, Vol. 62, No. 13, January 2 1,1997). As part of a DOE-sponsored demonstration known as the Advanced Recovery and Integrated Extraction System (ARIES), conversion of plutonium to oxide by the Hydride/Oxidation (HYDOX) process will be used, along with other supporting technologies, to recover plutonium from the cores or *#34;pits" of nuclear weapons that have been determined to be surplus to national defense needs. This demonstration will be performed jointly by the Los Alamos and the Lawrence Livermore National Laboratories at the Los Alamos Plutonium Facility. The pyrochemical methods employed by HYDOX offer a simple and reliable process to recover plutonium in oxide form from various sources. This process will: Separate plutonium from other nuclear and non-nuclear materials, Convert massive metallic shapes into fine oxide particles, Produce oxide directly acceptable for MOX fuel fabrication, and Produce no solid or liquid waste. The paper describes the reactor module and operational sequences, provides up-to-date experimental results, identifies rate-controlling factors, and discusses their impact on the reactor design.

Bronson, M C; Zundelevich, Y

1998-06-19

39

Accurate quantification of radioactive materials by x-ray fluorescence : gallium in plutonium metal /.  

SciTech Connect

Two XRF specimen preparation methods were investigated for quantifying gallium in plutonium metal. Gallium in plutonium was chosen here as an example for demonstrating the efficacy of wavelength dispersive XRF for quantifying radioactive materials. The steps necessary to handle such materials safely will also be discussed. Quantification of plutonium samples by a well-established aqueous specimen preparation method resulted in relative precision and accuracy values of well less than 1%. As an alternative to the aqueous approach, a dried residue method was studied. Quantification of gallium in samples using this method resulted in relative precision and accuracy values an order of magnitude worse, but the method is faster, safer, and generates less waste than the aqueous process. The specimen preparation details and analysis results using each method will be presented here.

Worley, C. G. (Christopher G.)

2002-01-01

40

Modeling of Diffusion of Plutonium in Other Metals and of Gaseous Species in Plutonium-Based Systems  

SciTech Connect

Establish standards for temperature conditions under which plutonium, uranium, or neptunium from nuclear wastes permeates steel, with which it is in contact, by diffusion processes. The primary focus is on plutonium because of the greater difficulties created by the peculiarities of face-centered-cubic-stabilized (delta) plutonium (the form used in the technology generating the waste).

Bernard R. Cooper; Gayanath W. Fernando; S. Beiden; A. Setty; E.H. Sevilla

2004-07-02

41

Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium metal  

E-print Network

1.1 These test methods cover procedures for the chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium metal to determine compliance with specifications.

American Society for Testing and Materials. Philadelphia

2004-01-01

42

PRACTICAL APPLICATION OF THE SINGLE-PARAMETER SUBCRITICAL MASS LIMIT FOR PLUTONIUM METAL  

SciTech Connect

According to ANS-8.1, operations with fissile materials can be performed safely by complying with any of the listed single-parameter subcritical limits. For metallic units, when interspersed moderators are present, the mass limits apply to a single piece having no concave surfaces. On a practical level, when has any operation with fissile metal involved a single piece and absolutely no moderating material, e.g., water, oil, plastic, etc.? This would be rare. This paper explores the application of the single-parameter plutonium metal mass limit for realistic operational environments.

MITCHELL, MARK VON [Los Alamos National Laboratory

2007-01-10

43

Technical documentation to support the evaluation of handling of plutonium metal  

SciTech Connect

In 1997, a can containing a plutonium metal ingot was opened. The sides of the inner storage can had collapsed. As the inner can was opened, an apparent flame appeared to issue from the opening. Based on the reaction and possible pressurization of the glovebox, a positive Unreviewed Safety Question (USQ) screening was issued. This document contains some of the technical documents to resolve the screening.

COOPER, T.D.

1999-08-31

44

Process support conditions for dissolving metallic plutonium in a mixture of nitric and hydrofluoric acids  

Microsoft Academic Search

The process of dissolving metallic plutonium is based on a method that uses a mixture of nitric and hydrofluoric acids. The choice of this method is cited in comparison primarily with the method of dissolving Pu in hydrochloric acid solutions [1]. Dissolution is done in mixtures of 412 moles\\/liter of nitric acid and 0.20.4 mole\\/liter of hydrofluoric acid with boiling

B. S. Zakharkin; V. P. Varykhanov; V. S. Kucherenko; L. N. Solovyeva

2000-01-01

45

Process support conditions for dissolving metallic plutonium in a mixture of nitric and hydrofluoric acids  

Microsoft Academic Search

The process of dissolving metallic plutonium is based on a method that uses a mixture of nitric and hydrofluoric acids. The choice of this method is cited in comparison primarily with the method of dissolving Pu in hydrochloric acid solutions [1]. Dissolution is done in mixtures of 4-12 moles\\/liter of nitric acid and 0.2-0.4 mole\\/liter of hydrofluoric acid with boiling

B. S. Zakharkin; V. P. Varykhanov; V. S. Kucherenko; L. N. Solov'yeva

2000-01-01

46

Plutonium Immobilization Task 5.6 Metal Conversion: Milestone Report - Perform Feasibility Demonstrations on Pu-Al Alloys  

SciTech Connect

The Plutonium Conversion Task within the Plutonium Immobilization Program (PIP) transforms incoming plutonium (Pu) feed materials into an oxide acceptable for blending with ceramic precursors. One of the feed materials originally planned for PIP was unirradiated fuel, which consisted mainly of the Zero Power Plutonium Reactor (ZPPR) fuel. Approximately 3.5 metric tons of Pu is in ZPPR fuel. The ZPPR fuel is currently stored at the Argonne National Laboratory-West as stainless steel clad metal plates and oxide pellets, with the vast majority of the Pu in the metal plates. The metal plates consist of a Pu-U-Mo alloy (containing 90% of the ZPPR plutonium metal) and a Pu-Al alloy (containing 10% of the ZPPR plutonium metal). The Department of Energy (DOE) decided that ZPPR fuel is a national asset and, therefore, not subject to disposition. This report documents work done prior to that decision. The Hydnde-Oxidation (HYDOX) Process was selected as the method for Metal Conversion in PIP because it provides a universal means for preparing oxide from all feed materials. HYDOX incorporates both the hydride process, originally developed to separate Pu from other pit materials, as well as the oxide formation step. Plutonium hydride is very reactive and is readily converted to either the nitride or the oxide. A previous feasibility study demonstrated that the Pu-U-Mo alloy could be successfully converted to oxide via the HYDOX Process. Another Metal Conversion milestone was to demonstrate the feasibility of the HYDOX Process for converting plutonium-aluminum (Pu-Al) alloy in ZPPR fuel plates to an acceptable oxide. This report documents the results of the latter feasibility study which was performed before the DOE decision to retain ZPPR fuel rather than immobilize it.

Zundelevich, Y; Kerns, J; Bannochie, C

2001-04-12

47

CSER 98-003: Criticality safety evaluation report for PFP glovebox HC-21A with button can opening  

SciTech Connect

Glovebox HC-21A is an enclosure where cans containing plutonium metal buttons or other plutonium bearing materials are prepared for thermal stabilization in the muffle furnaces. The Inert Atmosphere Confinement (IAC), a new feature added to Glovebox HC-21A, allows the opening of containers suspected of containing hydrided plutonium metal. The argon atmosphere in the IAC prevents an adverse reaction between oxygen and the hydride. The hydride is then stabilized in a controlled manner to prevent glovebox over pressurization. After removal from the containers, the plutonium metal buttons or plutonium bearing materials will be placed into muffle furnace boats and then be sent to one of the muffle furnace gloveboxes for stabilization. The materials allowed to be brought into GloveboxHC-21 A are limited to those with a hydrogen to fissile atom ratio (H/X) {le} 20. Glovebox HC-21A is classified as a DRY glovebox, meaning it has no internal liquid lines, and no free liquids or solutions are allowed to be introduced. The double contingency principle states that designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible. This criticality safety evaluation report (CSER) shows that the operations to be performed in this glovebox are safe from a criticality standpoint. No single identified event that causes criticality controls to be lost exceeded the criticality safety limit of k{sub eff} = 0.95. Therefore, this CSER meets the requirements for a criticality analysis contained in the Hanford Site Nuclear Criticality Safety Manual, HNF-PRO-334, and meets the double contingency principle.

ERICKSON, D.G.

1999-02-23

48

CSER 98-003: criticality safety evaluation report for PFP glovebox HC-21A with button can opening  

SciTech Connect

Glovebox HC-21A is an enclosure where cans containing plutonium metal buttons or other plutonium bearing materials are prepared for thermal stabilization in the muffle furnaces. The Inert Atmosphere Confinement (IAC), a new feature added to Glovebox HC-21 A, allows the opening of containers suspected of containing hydrided plutonium metal. The argon atmosphere in the IAC prevents an adverse reaction between oxygen and the hydride. The hydride is then stabilized in a controlled manner to prevent glovebox over pressurization. After removal from the containers, the plutonium metal buttons or plutonium bearing materials will be placed into muffle furnace boats and then be sent to one of the muffle furnace gloveboxes for stabilization. The materials allowed to be brought into Glovebox HC-21A are limited to those with a hydrogen to fissile atom ratio (H/X) {le} 20. Glovebox HC-21A is classified as a DRY glovebox, meaning it has no internal liquid lines, and no free liquids or solutions are allowed to be introduced. The double contingency principle states that designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible. This criticality safety evaluation report (CSER) shows that the operations to be performed in this glovebox are safe from a criticality standpoint. No single identified event that causes criticality controls to be lost exceeded the criticality safety limit of k{sub eff} = 0.95 (including uncertainties). Therefore, this CSER meets the requirements for a criticality analysis contained in the Hanford Site Nuclear Criticality Safety Manual, HNF-PRO-334, and meets the double contingency principle.

ERICKSON, D.G.

1999-02-25

49

Plutonium pyrophoricity  

SciTech Connect

A review of the published literature on ignition and burning of plutonium metal was conducted in order to better define the characteristic of pyrophoric plutonium. The major parameter affecting ignition is the surface area/mass ratio of the sample. Based on this parameter, plutonium metal can be classified into four categories: (1) bulk metal, (2) film and foils, (3) chips and turnings, and (4) powder. Other parameters that can alter the ignition of the metal include experimental, chemical, physical, and environmental effects. These effects are reviewed in this report. It was concluded from this review that pyrophoric plutonium can be conservatively defined as: Plutonium metal that will ignite spontaneously in air at a temperature of 150{degrees}C or below in the absence of external heat, shock, or friction. The 150{degrees}C temperature was used to compensate for the self-heating of plutonium metal. For a practical definition of whether any given metal is pyrophoric, all of the factors affecting ignition must be considered.

Stakebake, J.L.

1992-06-02

50

Rapid Separation Methods to Characterize Actinides and Metallic Impurities in Plutonium Scrap Materials at SRS  

SciTech Connect

The Nuclear Materials Stabilization and Storage Division at SRS plans to stabilize selected plutonium scrap residue materials for long term storage by dissolution processing and plans to stabilize other plutonium vault materials via high-temperature furnace processing. To support these nuclear material stabilization activities, the SRS Analytical Laboratories Department (ALD) will provide characterization of materials required prior to the dissolution or the high-firing of these materials. Lab renovations to install new analytical instrumentation are underway to support these activities that include glove boxes with simulated-process dissolution and high- pressure microwave dissolution capability. Inductively-coupled plasma atomic emission spectrometry (ICP-AES), inductively- coupled mass spectrometry (ICP-MS) and thermal-ionization mass spectrometry (TIMS) will be used to measure actinide isotopics and metallic impurities. New high-speed actinide separation methods have been developed that will be applied to isotopic characterization of nuclear materials by TIMS and ICP-MS to eliminate isobaric interferences between Pu-238 /U- 238 and Pu-241/Am-241. TEVA Resin, UTEVA Resin, and TRU Resin columns will be used with vacuum-assisted flow rates to minimize TIMS and ICP-MS sample turnaround times. For metallic impurity analysis, rapid column removal methods using UTEVA Resin, AGMP-1 anion resin and AG MP-50 cation resin have also been developed to remove plutonium and uranium matrix interferences prior to ICP-AES and ICP- MS measurements.

Maxwell, S.L. III [Westinghouse Savannah River Company, AIKEN, SC (United States); Jones, V.D.

1998-07-01

51

The Button Project  

ERIC Educational Resources Information Center

In this article, the author describes The Button Project. It started as a dream, a need to educate future generations about the Holocaust, to teach tolerance, and to remember the past. Under the auspices of the Jewish Federation of Peoria, a small band of people joined together with the goal of teaching people about the Holocaust so that it will

Armstrong, Charley

2005-01-01

52

Illuminated push-button switch  

NASA Technical Reports Server (NTRS)

An illuminated push-button switch is described. It is characterized by the fact that is consists of a switch group, an operator button opening and closing the switch group, and a light-emitting element which illuminates the face of the operator button.

Iwagiri, T.

1983-01-01

53

Begin With Buttons  

NSDL National Science Digital Library

In this 8-lesson unit students use buttons to explore logical and numerical relationships that form the conceptual basis for understanding addition and subtraction operations. Topics include counting, ordinal numbers (and relative position), classification (attributes), relationships between numbers, addition of sets, commutativity of addition, sums to 10, fact families (including subtraction), three models of subtraction ("take away", comparative, missing addend), and bar graphs. Includes student activity sheets and a link to an online graphing applet.

Burton, Grace M.

2000-01-01

54

THE RADIOLOGICAL PHYSICS OF PLUTONIUM  

Microsoft Academic Search

Plutonium metal processing operations were developed with the ; utilization of equipment and methods to provide containment for contamination ; control, shields for radiation exposure control, and limitations on plutonium ; mass, concentration, and solution volume for criticality control. Containment of ; plutonium materials in glove boxes and hoods prevents the internal body ; deposition of plutonium radionuclides. The long

Unruh

1962-01-01

55

Dynamic and quasi-static simulation and analysis of the plutonium oxide/metal containers subject to 30-foot dropping  

SciTech Connect

This analysis of the plutonium oxide/metal storage containers is in support of the design and testing project The results from the dynamic analysis show some important facts that have not been considered before. The internal bagless transfer can will have higher stress than the primary container. The quasi-static analysis provides a conservative solution. In both vertical upright drop (dynamic) and inclined upside down drop (quasi-static) the containers are structurally sound.

Gong, C.; Miller, R.F.

1995-01-01

56

Corrosion of plutonium metal when stored in containers having plastic components  

Microsoft Academic Search

The conclusions are: (1) The formation of powder or ``oxide`` in the storage container is caused almost entirely by packaging of plutonium in plastic materials. (2) The corrosion of the plutonium follows degradation of the plastic due to the intense radiation. (3) The powder, formed by this corrosion is not PuO but a mixture of oxides, hydrides, and chlorides in

Bond

1964-01-01

57

PLUTONIUM-HYDROGEN REACTION PRODUCT, METHOD OF PREPARING SAME AND PLUTONIUM POWDER THEREFROM  

Microsoft Academic Search

A process is described for forming plutonlum hydride powder by reacting ; hydrogen with massive plutonium metal at room temperature and the product ; obtained. The plutonium hydride powder can be converted to plutonium powder by ; heating to above 200 deg C.

S. Fried; H. L. Baumbach

1959-01-01

58

The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal  

SciTech Connect

Pressure-Composition-Temperature (PCT) data are presented for the plutonium-hydrogen (Pu-H) and plutonium-deuterium (Pu-D) systems in the solubility region up to terminal solubility (precipitation of PuH{sub 2}). The heats of solution for PuH{sub s} and PuD{sub s} are determined from PCT data in the ranges 350-625 C for gallium alloyed Pu and 400-575 C for unalloyed Pu. The solubility of high purity plutonium alloyed with 2 at.% gallium is compared to high purity unalloyed plutonium. Significant differences are found in hydrogen solubility for unalloyed Pu versus gallium alloyed Pu. Differences in hydrogen solubility due to an apparent phase change are observable in the alloyed and unalloyed solubilities. The effect of iron impurities on Pu-Ga alloyed Pu is shown via hydrogen solubility data as preventing complete homogenization.

Richmond, Scott [Los Alamos National Laboratory; Bridgewater, Jon S [Los Alamos National Laboratory; Ward, John W [Los Alamos National Laboratory; Allen, Thomas A [Los Alamos National Laboratory

2009-01-01

59

Hydride\\/oxidation (HYDOX) process for conversion of plutonium metal to oxide  

Microsoft Academic Search

Options for plutonium disposition require PuO2<\\/sub> that can be used as feed material for mixed oxide (MOX) reactor fuel pellets, or glass and ceramic immobilization forms (cf. Federal Register Doc. 97-1355, Vol. 62, No. 13, January 2 1,1997). As part of a DOE-sponsored demonstration known as the Advanced Recovery and Integrated Extraction System (ARIES), conversion of plutonium to oxide by

M C Bronson; Y Zundelevich

1998-01-01

60

Arthroscopically Confirmed Femoral Button Deployment  

PubMed Central

The anterior cruciate ligament TightRope RT (Arthrex, Naples, FL) is a graft suspension device for cruciate ligament reconstruction. It is an adjustable-length graft loop cortical fixation device designed to eliminate the requirement for loop length calculation and to facilitate complete graft fill of short femoral sockets that are common with anatomic anterior cruciate ligament placement. The adjustable loop length means one size fits all, thus removing the need for multiple implant sizes and allowing graft tensioning even after fixation. However, the device has been associated with the same complications that have been described with EndoButton (Smith & Nephew Endoscopy, Andover, MA) fixation. The button of the TightRope RT may remain in the femoral tunnel rather than flipping outside of the tunnel to rest on the lateral femoral cortex, or it may become jammed inside the femoral canal. Conversely, the button may be pulled too far off the femoral cortex into the overlying soft tissue and flip in the substance of the vastus lateralis. We describe a new and simple arthroscopic technique to directly visualize the deployment and seating of the TightRope button on the lateral cortex of the femur to avoid all the aforementioned complications. PMID:25126492

Sonnery-Cottet, Bertrand; Rezende, Fernando C.; Martins Neto, Ayrton; Fayard, Jean M.; Thaunat, Mathieu; Kader, Deiary F.

2014-01-01

61

Recovery of plutonium by pyroredox processing  

SciTech Connect

Using pyrochemical oxidation and reduction, we have developed a process to recover the plutonium in impure scrap with less than 95% plutonium. This plutonium metal was further purified by pyrochemical electrorefining. During development of the procedures, depleted electrorefining anodes were processed, and over 80% of the plutonium was recovered as high-purity metal in one electrorefining cycle. Over 40 kg of plutonium has been recovered from 55 kg of impure anodes with our procedures. 6 refs., 2 figs., 5 tabs.

McNeese, J.A.; Bowersox, D.F.; Christensen, D.C.

1985-01-01

62

Recovery of plutonium by pyroredox processing  

SciTech Connect

Using pyrochemical oxidation and reduction, we have developed a process to recover the plutonium in impure scrap with less than 95% plutonium. This plutonium metal was further purified by pyrochemical electrorefining. During development of the procedures, depleted electrorefining anodes were processed, and over 80% of the plutonium was recovered as high-purity metal in one electrorefining cycle. Over 40 kg of plutonium has been recovered from 55 kg of impure anodes with our procedures. 6 refs., 7 figs., 4 tabs.

McNeese, J.A.; Bowersox, D.F.; Christensen, D.C.

1985-09-01

63

Plutonium Immobilization Task 5.6 Metal Conversion: Milestone Report - Perform Feasibility Demonstrations on Pu-Al Alloys  

Microsoft Academic Search

The Plutonium Conversion Task within the Plutonium Immobilization Program (PIP) transforms incoming plutonium (Pu) feed materials into an oxide acceptable for blending with ceramic precursors. One of the feed materials originally planned for PIP was unirradiated fuel, which consisted mainly of the Zero Power Plutonium Reactor (ZPPR) fuel. Approximately 3.5 metric tons of Pu is in ZPPR fuel. The ZPPR

Y Zundelevich; J Kerns; C Bannochie

2001-01-01

64

Plutonium air transportable package development using metallic filaments and composite materials  

Microsoft Academic Search

A new design concept for plutonium air transport packagings has been developed by the Transportation Systems Department and modeled by the Engineering Mechanics and Material Modeling Department at Sandia National laboratories. The new concept resulted from an in-depth review of existing package design philosophies and limitations. This new design concept uses a very robust primary containment vessel with elastomeric seals

J. D. Pierce; M. K. Neilsen

1991-01-01

65

Effect of the electron decay of metallic fission products on the chemical and phase compositions of an uranium-plutonium fuel irradiated by fast neutrons  

NASA Astrophysics Data System (ADS)

After fast-neutron irradiation, uranium-plutonium nitride U0.8Pu0.2N is shown to acquire a complex structure consisting of a solid solution that is based on the nitrides of uranium, plutonium, americium, neptunium, zirconium, yttrium, and lanthanides and contains condensed phases U2N3, CeRu2, BaTe, Ba3N2, CsI, Sr3N2, LaSe, metallic molybdenum, technetium, and U(Ru, Rh, Pd)3 intermetallics. The contents and compositions of these phases are calculated at a temperature of 900 K and a burn-up fraction up to 14% (U + Pu). The change in the composition of the irradiated uranium-plutonium nitride is studied during the electron decay of metallic radionuclides. The kinetics of transformation of U103Ru3, 137CsI, 140Ba3N2, and 241PuN is calculated.

Bondarenko, G. G.; Bulatov, G. S.; Gedgovd, K. N.; Lyubimov, D. Yu.; Yakushkin, M. M.

2011-11-01

66

BPM button characterization for offset calibration  

SciTech Connect

In this note, a basic theory of wave propagation in dielectric media is discussed in conjunction with S parameters to derive the button gain coefficient g{sub e} and an analytic expression for the signal from time domain reflectometry (TDR) measurement on a cable and a button. The results can be used to measure the button capacitance and the characteristic impedances of the cable and the button feedthrough. Since g{sub e} is a function of S parameters and the button capacitance C{sub p}, a suggestion is made to make the gain coefficients the same for all four buttons in a BPM by carefully matching the buttons and the cables.

Chung, Y.

1992-03-01

67

Preconcentration of low levels of americium and plutonium from waste waters by synthetic water-soluble metal-binding polymers with ultrafiltration  

SciTech Connect

A preconcentration approach to assist in the measurement of low levels of americium and plutonium in waste waters has been developed based on the concept of using water-soluble metal-binding polymers in combination with ultrafiltration. The method has been optimized to give over 90% recovery and accountability from actual waste water.

Smith, B.F.; Gibson, R.R.; Jarvinen, G.D.; Robison, T.W.; Schroeder, N.C.; Stalnaker, N.D.

1997-12-31

68

Plutonium dissolution process  

DOEpatents

A two-step process for dissolving plutonium metal, which two steps can be carried out sequentially or simultaneously. Plutonium metal is exposed to a first mixture containing approximately 1.0M-1.67M sulfamic acid and 0.0025M-0.1M fluoride, the mixture having been heated to a temperature between 45.degree. C. and 70.degree. C. The mixture will dissolve a first portion of the plutonium metal but leave a portion of the plutonium in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alteratively, nitric acid in a concentration between approximately 0.05M and 0.067M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution process is diluted with nitrogen.

Vest, Michael A. (Oak Park, IL); Fink, Samuel D. (Aiken, SC); Karraker, David G. (Aiken, SC); Moore, Edwin N. (Aiken, SC); Holcomb, H. Perry (North Augusta, SC)

1996-01-01

69

Pyrochemical process for extracting plutonium from an electrolyte salt  

DOEpatents

A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

Mullins, Lawrence J. (Los Alamos, NM); Christensen, Dana C. (Los Alamos, NM)

1984-01-01

70

Pyrochemical process for extracting plutonium from an electrolyte salt  

DOEpatents

A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

Mullins, L.J.; Christensen, D.C.

1982-09-20

71

Physicochemical characterization of discrete weapons grade plutonium metal particles originating from the 1960 BOMARC incident  

NASA Astrophysics Data System (ADS)

The goal of this research was to investigate the physicochemical properties of weapons grade plutonium particles originating from the 1960 BOMARC incident for the purpose of predicting their fate in the environment and to address radiation protection and nuclear security concerns. Methods were developed to locate and isolate the particles in order to characterize them. Physical, chemical, and radiological characterization was performed using a variety of techniques. And finally, the particles were subjected to a sequential extraction procedure, a series of increasingly aggressive reagents, to simulate an accelerated environmental exposure. A link between the morphology of the particles and their partitioning amongst environmental mechanisms was established.

Bowen, James M.

72

Plutonium(IV) Reduction by the Metal-Reducing Bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1?  

PubMed Central

The bacterial reduction of actinides has been suggested as a possible remedial strategy for actinide-contaminated environments, and the bacterial reduction of Pu(VI/V) has the potential to produce highly insoluble Pu(IV) solid phases. However, the behavior of plutonium with regard to bacterial reduction is more complex than for other actinides because it is possible for Pu(IV) to be further reduced to Pu(III), which is relatively more soluble than Pu(IV). This work investigates the ability of the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1 to enzymatically reduce freshly precipitated amorphous Pu(IV) (OH)4 [Pu(IV)(OH)4(am)] and soluble Pu(IV)(EDTA). In cell suspensions without added complexing ligands, minor Pu(III) production was observed in cultures containing S. oneidensis, but little or no Pu(III) production was observed in cultures containing G. metallireducens. In the presence of EDTA, most of the Pu(IV)(OH)4(am) present was reduced to Pu(III) and remained soluble in cell suspensions of both S. oneidensis and G. metallireducens. When soluble Pu(IV)(EDTA) was provided as the terminal electron acceptor, cell suspensions of both S. oneidensis and G. metallireducens rapidly reduced Pu(IV)(EDTA) to Pu(III)(EDTA) with nearly complete reduction within 20 to 40 min, depending on the initial concentration. Neither bacterium was able to use Pu(IV) (in any of the forms used) as a terminal electron acceptor to support growth. These results have significant implications for the potential remediation of plutonium and suggest that strongly reducing environments where complexing ligands are present may produce soluble forms of reduced Pu species. PMID:17644643

Boukhalfa, Hakim; Icopini, Gary A.; Reilly, Sean D.; Neu, Mary P.

2007-01-01

73

The Button Sew Machine. Module 12.  

ERIC Educational Resources Information Center

This module on the button sew machine, one in a series dealing with industrial sewing machines, their attachments, and operation, covers one topic: performing special operations on the button sew machine. These components are provided: an introduction, direction, an objective, learning activities, student information, a student self-check, and a

South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

74

Your T7406 cordless telephone Release button  

E-print Network

Card E Installation: First-time battery charging Telephone setup WARNING: The rechargeable battery pack For connecting a headset. Battery pack F G H I J K L M N O T7406 Cordless Telephone User Card © 2001 Nortel Memory and line buttons Antenna Hold Microphone Dialpad Battery Pack Options button/Mute Feature Display

75

Evaluation of synthetic water-soluble metal-binding polymers with ultrafiltration for selective concentration of americium and plutonium  

SciTech Connect

Routine counting methods and ICP-MS are unable to directly measure the new US Department of Energy (DOE) regulatory level for discharge waters containing alpha-emitting radionuclides of 30 pCi/L total alpha or the 0.05 pCi/L regulatory level for Pu or Am activity required for surface waters at the Rocky Flats site by the State of Colorado. This inability indicates the need to develop rapid, reliable, and robust analytical techniques for measuring actinide metal ions, particularly americium and plutonium. Selective separation or preconcentration techniques would aid in this effort. Water-soluble metal-binding polymers in combination with ultrafiltration are shown to be an effective method for selectively removing dilute actinide ions from acidic solutions of high ionic strength. The actinide-binding properties of commercially available water-soluble polymers and several polymers which have been reported in the literature were evaluated. The functional groups incorporated in the polymers were pyrrolidone, amine, oxime, and carboxylic, phosphonic, or sulfonic acid. The polymer containing phosphonic acid groups gave the best results with high distribution coefficients and concentration factors for {sup 241}Am(III) and {sup 238}Pu(III)/(IV) at pH 4 to 6 and ionic strengths of 0.1 to 4.

Smith, B.F.; Gibson, R.R.; Jarvinen, G.D.; Jones, M.M.; Lu, M.T.; Robison, T.W.; Schroeder, N.C.; Stalnaker, N.

1997-12-31

76

Plutonium controversy  

SciTech Connect

The toxicity of plutonium is discussed, particularly in relation to controversies surrounding the setting of radiation protection standards. The sources, amounts of, and exposure pathways of plutonium are given and the public risk estimated. (ACR)

Richmond, C.R.

1980-01-01

77

Pyrochemical reduction of uranium dioxide and plutonium dioxide by lithium metal  

Microsoft Academic Search

The lithium reduction process has been developed to apply a pyrochemical recycle process for oxide fuels. This process uses lithium metal as a reductant to convert oxides of actinide elements to metal. Lithium oxide generated in the reduction would be dissolved in a molten lithium chloride bath to enhance reduction. In this work, the solubility of Li2O in LiCl was

T. Usami; M. Kurata; T. Inoue; H. E Sims; S. A Beetham; J. A Jenkins

2002-01-01

78

The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal  

SciTech Connect

Hydrogen is exothermically absorbed in many transition metals, all rare earths and the actinides. The hydrogen gas adsorbs, dissociates and diffuses into these metals as atomic hydrogen. Absorbed hydrogen is generally detrimental to Pu, altering its properties and greatly enhancing corrosion. Measuring the heat of solution of hydrogen in Pu and its alloys provides significant insight into the thermodynamics driving these changes. Hydrogen is present in all Pu metal unless great care is taken to avoid it. Heats of solution and formation are provided along with evidence for spinodal decomposition.

Richmond, Scott [Los Alamos National Laboratory; Bridgewater, Jon S [Los Alamos National Laboratory; Ward, John W [Los Alamos National Laboratory; Allen, Thomas H [Los Alamos National Laboratory

2010-01-01

79

Benchmark Analysis of Subcritical Noise Measurements on a Nickel-Reflected Plutonium Metal Sphere  

SciTech Connect

Subcritical experiments using californium source-driven noise analysis (CSDNA) and Feynman variance-to-mean methods were performed with an alpha-phase plutonium sphere reflected by nickel shells, up to a maximum thickness of 7.62 cm. Both methods provide means of determining the subcritical multiplication of a system containing nuclear material. A benchmark analysis of the experiments was performed for inclusion in the 2010 edition of the International Handbook of Evaluated Criticality Safety Benchmark Experiments. Benchmark models have been developed that represent these subcritical experiments. An analysis of the computed eigenvalues and the uncertainty in the experiment and methods was performed. The eigenvalues computed using the CSDNA method were very close to those calculated using MCNP5; however, computed eigenvalues are used in the analysis of the CSDNA method. Independent calculations using KENO-VI provided similar eigenvalues to those determined using the CSDNA method and MCNP5. A slight trend with increasing nickel-reflector thickness was seen when comparing MCNP5 and KENO-VI results. For the 1.27-cm-thick configuration the MCNP eigenvalue was approximately 300 pcm greater. The calculated KENO eigenvalue was about 300 pcm greater for the 7.62-cm-thick configuration. The calculated results were approximately the same for a 5-cm-thick shell. The eigenvalues determined using the Feynman method are up to approximately 2.5% lower than those determined using either the CSDNA method or the Monte Carlo codes. The uncertainty in the results from either method was not large enough to account for the bias between the two experimental methods. An ongoing investigation is being performed to assess what potential uncertainties and/or biases exist that have yet to be properly accounted for. The dominant uncertainty in the CSDNA analysis was the uncertainty in selecting a neutron cross-section library for performing the analysis of the data. The uncertainty in the Feynman method was equally shared between the uncertainties in fitting the data to the Feynman equations and the neutron multiplicity of 239Pu. Material and geometry uncertainties in the benchmark experiment were generally much smaller than uncertainties in the analysis methods.

John D. Bess; Jesson Hutchinson

2009-09-01

80

Effect of the electron decay of metallic fission products on the chemical and phase compositions of an irradiated uranium-plutonium fuel  

NASA Astrophysics Data System (ADS)

A complex structure is shown to form in the uranium-plutonium nitride U0.8Pu0.2N irradiated by fast neutrons. It consists of a uranium-based solid solution; plutonium, zirconium, yttrium, and lanthanide nitrides; and individual condensed phases such as U2N3, BaTe, CeRu2, LaSe, Rh3Te2, USe, Ba3N2, CsI, Sr3N2, metallic molybdenum, and U(Ru, Rh, Pd)3 intermetallic compounds. The amount and composition of these phases are calculated at temperatures of 900 and 1900 K in the process of depletion to 18% heavy atoms (U + Pu). The variation of the composition of the irradiated uranium-plutonium nitride is studied upon the electron decay of metallic radionuclides. The kinetics of the transformations of 89Sr3N2 and 90Sr3N2 to 89YN + 89Y and 90ZrN + 90Zr, respectively, is calculated.

Bondarenko, G. G.; Bulatov, G. S.; Gedgovd, K. N.; Lyubimov, D. Yu.; Yakushkin, M. M.

2009-10-01

81

VOLATILE FLUORIDE PROCESS FOR SEPARATING PLUTONIUM FROM OTHER MATERIALS  

Microsoft Academic Search

The separation of plutonium from uranium and\\/or tission products by ; formation of the higher fluorides of uranium and\\/or plutonium is discussed. ; Neutronirradiated uranium metal is first convcrted to the hydride. This hydrided ; product is then treatced with fluorine at about 315 deg C to form and volatilize ; UF⁶ leaving plutonium behind. The plutonium may then be

F. H. Spedding; A. S. Newton

1959-01-01

82

VOLATILE FLUORIDE PROCESS FOR SEPARATING PLUTONIUM FROM OTHER MATERIALS  

Microsoft Academic Search

The separation of plutonium from uranium and\\/or fission products by ; formation of the higher fluorides off uranium and\\/or plutonium is described. ; Neutronirradiated uranium metal is first converted to the hydride. This hydrided ; product is then treated with fluorine at about 315 deg C to form and volatilize ; UF leaving plutonium behind. Thc plutonium may then be

F. H. Spedding; A. S. Newton

1959-01-01

83

Metal-Insulator Transition of Plutonium Hydrides: DFT + U Calculations in the FPLAPW Basis  

Microsoft Academic Search

We report on the first-principles calculations of the electronic structure of face-centered cubic PuH2 and hexagonal PuH3 combining the full potential linearized augmented plane-wave basis with the density functional theory plus a Hubbard parameter U for considering the strong Coulomb correlation between localized Pu 5f electrons. Most importantly, the findings provide evidence for the first time that a spectacular metal-insulator

Ao Bing-Yun; Ai Juan-Juan; Gao Tao; Wang Xiao-Lin; Shi Peng; Chen Pi-Heng; Ye Xiao-Qiu

2012-01-01

84

Metal-Insulator Transition of Plutonium Hydrides: DFT + U Calculations in the FPLAPW Basis  

NASA Astrophysics Data System (ADS)

We report on the first-principles calculations of the electronic structure of face-centered cubic PuH2 and hexagonal PuH3 combining the full potential linearized augmented plane-wave basis with the density functional theory plus a Hubbard parameter U for considering the strong Coulomb correlation between localized Pu 5f electrons. Most importantly, the findings provide evidence for the first time that a spectacular metal-insulator transition occurs on the phase transformation from PuH2 to PuH3.

Ao, Bing-Yun; Ai, Juan-Juan; Gao, Tao; Wang, Xiao-Lin; Shi, Peng; Chen, Pi-Heng; Ye, Xiao-Qiu

2012-01-01

85

Plutonium(V/VI) Reduction by the Metal-Reducing Bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1?  

PubMed Central

We examined the ability of the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1 to reduce Pu(VI) and Pu(V). Cell suspensions of both bacteria reduced oxidized Pu [a mixture of Pu(VI) and Pu(V)] to Pu(IV). The rate of plutonium reduction was similar to the rate of U(VI) reduction obtained under similar conditions for each bacteria. The rates of Pu(VI) and U(VI) reduction by cell suspensions of S. oneidensis were slightly higher than the rates observed with G. metallireducens. The reduced form of Pu was characterized as aggregates of nanoparticulates of Pu(IV). Transmission electron microscopy images of the solids obtained from the cultures after the reduction of Pu(VI) and Pu(V) by S. oneidensis show that the Pu precipitates have a crystalline structure. The nanoparticulates of Pu(IV) were precipitated on the surface of or within the cell walls of the bacteria. The production of Pu(III) was not observed, which indicates that Pu(IV) was the stable form of reduced Pu under these experimental conditions. Experiments examining the ability of these bacteria to use Pu(VI) as a terminal electron acceptor for growth were inconclusive. A slight increase in cell density was observed for both G. metallireducens and S. oneidensis when Pu(VI) was provided as the sole electron acceptor; however, Pu(VI) concentrations decreased similarly in both the experimental and control cultures. PMID:19363069

Icopini, Gary A.; Lack, Joe G.; Hersman, Larry E.; Neu, Mary P.; Boukhalfa, Hakim

2009-01-01

86

THE PREPARATION AND PROPERTIES OF SOME PLUTONIUM COMPOUNDS. PART VII. PLUTONIUM CARBIDES  

Microsoft Academic Search

Plutonium monocarbide, PuC, has been prepared by the reaction of ; graphite with plutonium metal or hydride at about 900 deg C. A sesquicarbide, Pu\\/; sub 2\\/C, was formed, in addition to the monocarbide, by the reduction of ; plutonium dioxide with graphite at 1800 to 1900 deg C. Both carbides are reactive ; and easily hydrolyzed by dilute acid

J. L. Drummond; B. J. McDonald; Heather M. Ockenden; G. A. Welch

1957-01-01

87

Authorization for use of an alternate method of processing turnings: 234-5 Building, briquetting of plutonium turnings  

Microsoft Academic Search

Plutonium turnings formed in the machining operation are processed by recycling them to the reduction operation. The turnings are here combined in the radiation charge to form a button with the plutonium from the reduction of the fluoride. Occasionally an inventory of turning will accumulate, especially when a number of machined pieces are recycled to be recast. Since the amount

P. E. Collins; B. A. Chandler

1952-01-01

88

Low temperature oxidation of plutonium  

SciTech Connect

The initial oxidation of gallium stabilized {delta}-plutonium metal at 193 K has been followed using x-ray photoelectron spectroscopy. On exposure to Langmuir quantities of oxygen, plutonium rapidly forms a trivalent oxide followed by a tetravalent plutonium oxide. The growth modes of both oxides have been determined. Warming the sample in vacuum, the tetravalent oxide reduces to the trivalent oxide. The kinetics of this reduction reaction have followed and the activation energy has been determined to be 38.8 kJ mol{sup -1}.

Nelson, Art J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Roussel, Paul [AWE, Aldermaston, Reading, Berkshire, RG7 4PR (United Kingdom)

2013-05-15

89

Standard test method for the determination of impurities in plutonium metal: acid digestion and inductively coupled plasma-mass spectroscopy (ICP-MS) analysis  

E-print Network

1.1 This Test Method covers the determination of 58 trace elements in plutonium (Pu) metal. The Pu sample is dissolved in acid, and the concentration of the trace impurities are determined by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS). 1.2 This Test Method is specific for the determination of trace impurities in Pu metal. It may be applied to other types of Pu materials, such as Pu oxides, if the samples are dissolved and oxidized to the Pu(IV) state. However, it is the responsibility of the user to evaluate the performance of other matrices. 1.3 This standard does not purport to address all of the safety concerns associated with its use. It is the responsibility of the user of this method to establish appropriate safety and health practices and to determine the applicability of regulatory limitations prior to use of this standard.

American Society for Testing and Materials. Philadelphia

2006-01-01

90

Activities to Grow On: Buttons, Beads, and Beans.  

ERIC Educational Resources Information Center

Presents new ideas for using buttons, beans, and beads as teaching manipulatives for elementary school children. The ideas include a button scavenger hunt, a button count, a cup puppet bean game, a numbers guessing game with beans in jars, and a bead stringing activity. (SM)

Gonzolis, Amy; And Others

1992-01-01

91

Button Battery Ingestion-Case Report and Review  

PubMed Central

Over the last few years there is a rise in use of button batteries in various toys and other electronic gadgets. Easy availability and small size of these batteries pose a significant risk of ingestion in small children. Button battery ingestion can lead to serious health hazards very rapidly. A case of button battery ingestion is presented in this paper. PMID:25386497

Patil, SV; Upadhye, Gaurav

2014-01-01

92

The plutonium-oxygen phase diagram  

Microsoft Academic Search

Identification of products formed by the reaction of plutonium metal with liquid water at 23°C indicates that the plutonium-oxygen phase diagram is similar to the cerium-oxygen and praseodymium-oxygen diagrams. Quantitative measurements of H formation and analytical data suggest that a sequence of hydrolysis reactions produces oxide hydrides of trivalent plutonium, PuO, mixed-valent oxides and PuO. The intermediate oxides are the

Haschke

1990-01-01

93

When button batteries become breakfast: the hidden dangers of button battery ingestion.  

PubMed

Injuries due to button battery ingestion continue to evolve with worsening clinical outcomes reported in recent years. These batteries pose a unique hazard to children due to the severity of complications that may arise within a short period of time as well as their availability in almost every home environment in the United States. It is crucial that health care providers maintain a high level of clinical suspicion for foreign body ingestion and facilitate rapid triage and treatment in these cases. Nurses should educate all children and families about button battery safety to prevent injury and decrease the morbidity and mortality related to ingestion. PMID:23376088

McConnell, Mollie K

2013-01-01

94

Hydride-catalyzed corrosion of plutonium by air: Initiation by plutonium monoxide monohydride  

Microsoft Academic Search

Chemistry and kinetics of air reactions with plutonium monoxide monohydride (PuOH) and with mixtures of the oxide hydride and plutonium metal are defined by results of pressure-volume-temperature (PVT) measurements. Test with specimens prepared by total and partial corrosion of plutonium in 0.05 M sodium chloride solution show that reaction of residual water continues to generate H after liquid water is

T. H. Allen; J. M. Haschke

1998-01-01

95

Plutonium story  

SciTech Connect

The first nuclear synthesis and identification (i.e., the discovery) of the synthetic transuranium element plutonium (isotope /sup 238/Pu) and the demonstration of its fissionability with slow neutrons (isotope /sup 239/Pu) took place at the University of California, Berkeley, through the use of the 60-inch and 37-inch cyclotrons, in late 1940 and early 1941. This led to the development of industrial scale methods in secret work centered at the University of Chicago's Metallurgical Laboratory and the application of these methods to industrial scale production, at manufacturing plants in Tennessee and Washington, during the World War II years 1942 to 1945. The chemical properties of plutonium, needed to devise the procedures for its industrial scale production, were studied by tracer and ultramicrochemical methods during this period on an extraordinarily urgent basis. This work, and subsequent investigations on a worldwide basis, have made the properties of plutonium very well known. Its well studied electronic structure and chemical properties give it a very interesting position in the actinide series of inner transition elements.

Seaborg, G T

1981-09-01

96

Ir/PuO/sub 2/ compatibility: transfer of impurities from plutonium dioxide to iridium metal during high temperature aging  

SciTech Connect

Plutonium oxide fuel pellets for powering radioisotopic thermoelectric generators for NASA space vehicles are encapsulated in iridium which has been grain-boundary-stabilized with thorium and aluminum. After aging for 6 months at 1310/sup 0/C under vacuum, enhanced grain growth is observed in the near-surface grains of the iridium next to the PuO/sub 2/. Examination of the grain boundaries by AES and SIMS shows a depletion of thorium and aluminum. Iron, chromium, and nickel from the fuel were found to diffuse into the iridium along the grain boundaries. Enhanced grain growth appears to result from thorium depletion in the grain boundaries of the near-surface grains next to the fuel. However, in one instance grain growth was slowed by the formation of thorium oxide by oxygen diffusing up the grain boundaries.

Taylor, D.H.; Christie, W.H.; Pavone, D.

1984-01-01

97

Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0  

SciTech Connect

The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

Wijesinghe, A.M.; Shaffer, R.J.

1996-01-15

98

Spectrophotometric determination of plutonium-239 based on the spectrum of plutonium(III) chloride  

SciTech Connect

This report describes a spectrophotometric method for determining plutonium-239 (Pu-239) based on the spectrum of Pu(III) chloride. The authors used the sealed-reflux technique for the dissolution of plutonium oxide with hydrochloric acid (HCl) and small amounts of nitric and hydrofluoric acids. To complex the fluoride, they added zirconium, and to reduce plutonium to Pu(III), they added ascorbic acid. They then adjusted the solution to a concentration of 2 M HCl and measured the absorbances at five wavelengths of the Pu(III) chloride spectrum. This spectrophotometric determination can also be applied to samples of plutonium metal dissolved in HCl.

Temer, D.J.; Walker, L.F.

1994-07-01

99

Seaborg's Plutonium ?  

E-print Network

Passive x-ray and gamma-ray analysis was performed on UC Berkeley's EH&S Sample S338. The object was found to contain Pu-239 and no other radioactive isotopes. The mass of Pu-239 contained in this object was determined to be 2.0 +- 0.3 micrograms. These observations are consistent with the identification of this object being the 2.77-microgram plutonium oxide sample described by Glenn Seaborg and his collaborators as the first sample of Pu-239 that was large enough to be weighed.

Norman, Eric B; Telhami, Kristina E

2014-01-01

100

Seaborg's Plutonium ?  

E-print Network

Passive x-ray and gamma-ray analysis was performed on UC Berkeley's EH&S Sample S338. The object was found to contain Pu-239 and no other radioactive isotopes. The mass of Pu-239 contained in this object was determined to be 2.0 +- 0.3 micrograms. These observations are consistent with the identification of this object being the 2.77-microgram plutonium oxide sample described by Glenn Seaborg and his collaborators as the first sample of Pu-239 that was large enough to be weighed.

Eric B. Norman; Keenan J. Thomas; Kristina E. Telhami

2014-12-24

101

Alternative technical summary report for direct disposition in deep boreholes: Direct disposal of plutonium metal/plutonium dioxide in compound canisters, Version 4.0. Fissile Materials Disposition Program  

SciTech Connect

This report summarizes and compares the Immobilized and Direct Beep Borehole Disposition Alternatives. The important design concepts, facility features and operational procedures are briefly described, and a discussion of the issues that affect the evaluation of each alternative against the programmatic assessment criteria that have been established for selecting the preferred alternatives for plutonium disposition.

Wijesinghe, A.M.

1996-08-23

102

Coordination chemistry of two heavy metals: I, Ligand preferences in lead(II) complexation, toward the development of therapeutic agents for lead poisoning: II, Plutonium solubility and speciation relevant to the environment  

SciTech Connect

The coordination chemistry and solution behavior of the toxic ions lead(II) and plutonium(IV, V, VI) have been investigated. The ligand pK{sub a}s and ligand-lead(II) stability constants of one hydroxamic acid and four thiohydroaxamic acids were determined. Solution thermodynamic results indicate that thiohydroxamic acids are more acidic and slightly better lead chelators than hydroxamates, e.g., N-methylthioaceto-hydroxamic acid, pK{sub a} = 5.94, log{beta}{sub 120} = 10.92; acetohydroxamic acid, pK{sub a} = 9.34, log{beta}{sub l20} = 9.52. The syntheses of lead complexes of two bulky hydroxamate ligands are presented. The X-ray crystal structures show the lead hydroxamates are di-bridged dimers with irregular five-coordinate geometry about the metal atom and a stereochemically active lone pair of electrons. Molecular orbital calculations of a lead hydroxamate and a highly symmetric pseudo octahedral lead complex were performed. The thermodynamic stability of plutonium(IV) complexes of the siderophore, desferrioxamine B (DFO), and two octadentate derivatives of DFO were investigated using competition spectrophotometric titrations. The stability constant measured for the plutonium(IV) complex of DFO-methylterephthalamide is log{beta}{sub 110} = 41.7. The solubility limited speciation of {sup 242}Pu as a function of time in near neutral carbonate solution was measured. Individual solutions of plutonium in a single oxidation state were added to individual solutions at pH = 6.0, T = 30.0, 1.93 mM dissolved carbonate, and sampled over intervals up to 150 days. Plutonium solubility was measured, and speciation was investigated using laser photoacoustic spectroscopy and chemical methods.

Neu, M.P. [Lawrence Berkeley Lab., CA (United States)

1993-11-01

103

A Note on the Reaction of Hydrogen and Plutonium  

SciTech Connect

Plutonium hydride has many practical and experimental purposes. The reaction of plutonium and hydrogen has interesting characteristics, which will be explored in the following analysis. Plutonium is a radioactive actinide metal that emits alpha particles. When plutonium metal is exposed to air, the plutonium oxides and hydrides, and the volume increases. PuH{sub 2} and Pu{sub 2}O{sub 3} are the products. Hydrogen is a catalyst for plutonium's corrosion in air. The reaction can take place at room temperature because it is fairly insensitive to temperature. Plutonium hydride, or PuH{sub 2}, is black and metallic. After PuH{sub 2} is formed, it quickly flakes off and burns. The reaction of hydrogen and plutonium is described as pyrophoric because the product will spontaneously ignite when oxygen is present. This tendency must be considered in the storage of metal plutonium. The reaction is characterized as reversible and nonstoichiometric. The reaction goes as such: Pu + H{sub 2} {yields} PuH{sub 2}. When PuH{sub 2} is formed, the hydrogen/plutonium ratio is between 2 and 2.75 (approximately). As more hydrogen is added to the system, the ratio increases. When the ratio exceeds 2.75, PuH{sub 3} begins to form along with PuH{sub 2}. Once the ratio surpasses 2.9, only PuH{sub 3} remains. The volume of the plutonium sample increases because of the added hydrogen and the change in crystal structure which the sample undergoes. As more hydrogen is added to a system of metal plutonium, the crystal structure evolves. Plutonium has a crystal structure classified as monoclinic. A monoclinic crystal structure appears to be a rectangular prism. When plutonium reacts with hydrogen, the product PuH{sub 2}, becomes a fluorite structure. It can also be described as a face centered cubic structure. PuH{sub 3} forms a hexagonal crystal structure. As plutonium evolves from metal plutonium to plutonium hydride to plutonium trihydride, the crystal structure evolves from monoclinic to fluorite to hexagonal. This change in crystal structure as a result of adding hydrogen is a shared characteristic with other actinide elements. Americium is isostructural with plutonium because they both form cubic dihyrides and hexagonal trihydrides. Reacting hydrogen with plutonium has the practical application of separating plutonium from other materials that don't react as well with hydrogen. When plutonium is placed in a chamber where there is very little oxygen, it can react with hydrogen without igniting. The hydrogen plutonium reaction can then be reversed, thus regaining the separated plutonium. Another application of this reaction is that it can be used to predict how plutonium reacts with other substances. Deuterium and tritium are two isotopes of hydrogen that are of interest. They are known to react likewise to hydrogen because they have similar properties. The reaction of plutonium and isotopes of hydrogen can prove to be very informative.

Noone, Bailey C [Los Alamos National Laboratory

2012-08-15

104

Dehydration of plutonium or neptunium trichloride hydrate  

DOEpatents

A process of preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride is provided.

Foropoulos, Jr., Jerry (Los Alamos, NM); Avens, Larry R. (Los Alamos, NM); Trujillo, Eddie A. (Espanola, NM)

1992-01-01

105

Dehydration of plutonium or neptunium trichloride hydrate  

DOEpatents

A process is described for preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride.

Foropoulos, J. Jr.; Avens, L.R.; Trujillo, E.A.

1992-03-24

106

15. MAGAZINE P INTERIOR, ELEVATOR OPERATIONS BUTTON DETAIL. NIKE ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

15. MAGAZINE P INTERIOR, ELEVATOR OPERATIONS BUTTON DETAIL. - NIKE Missile Base C-84, Underground Storage Magazines & Launcher-Loader Assemblies, Easternmost portion of launch area, Barrington, Cook County, IL

107

Plutonium oxide dissolution  

SciTech Connect

Several processing options for dissolving plutonium oxide (PuO{sub 2}) from high-fired materials have been studied. The scoping studies performed on these options were focused on PuO{sub 2} typically generated by burning plutonium metal and PuO{sub 2} produced during incineration of alpha contaminated waste. At least two processing options remain applicable for dissolving high-fired PuO{sub 2} in canyon dissolvers. The options involve solid solution formation of PuO{sub 2} With uranium oxide (UO{sub 2}) and alloying incinerator ash with aluminum. An oxidative dissolution process involving nitric acid solutions containing a strong oxidizing agent, such as cerium (IV), was neither proven nor rejected. This uncertainty was due to difficulty in regenerating cerium (IV) ions during dissolution. However, recent work on silver-catalyzed dissolution of PuO{sub 2} with persulfate has demonstrated that persulfate ions regenerate silver (II). Use of persulfate to regenerate cerium (IV) or bismuth (V) ions during dissolution of PuO{sub 2} materials may warrant further study.

Gray, J.H.

1992-09-30

108

Plutonium oxide dissolution  

SciTech Connect

Several processing options for dissolving plutonium oxide (PuO[sub 2]) from high-fired materials have been studied. The scoping studies performed on these options were focused on PuO[sub 2] typically generated by burning plutonium metal and PuO[sub 2] produced during incineration of alpha contaminated waste. At least two processing options remain applicable for dissolving high-fired PuO[sub 2] in canyon dissolvers. The options involve solid solution formation of PuO[sub 2] With uranium oxide (UO[sub 2]) and alloying incinerator ash with aluminum. An oxidative dissolution process involving nitric acid solutions containing a strong oxidizing agent, such as cerium (IV), was neither proven nor rejected. This uncertainty was due to difficulty in regenerating cerium (IV) ions during dissolution. However, recent work on silver-catalyzed dissolution of PuO[sub 2] with persulfate has demonstrated that persulfate ions regenerate silver (II). Use of persulfate to regenerate cerium (IV) or bismuth (V) ions during dissolution of PuO[sub 2] materials may warrant further study.

Gray, J.H.

1992-09-30

109

Redox separations of plutonium  

SciTech Connect

An understanding of the oxidation state speciation of plutonium in solution is vital to predicting its behavior in ecological systems. The redox chemistry of plutonium involves the III, IV, V, and VI states with two or three states of ten present in equilibrium. Acidic solutions favor the lower oxidation states as Pu(III), and Pu(IV), while in basic media the higher oxidation states as Pu(V)O{sub 2}{sup +} and Pu(VI)O{sub 2}{sup 2+} are stabilized. Hydrolysis, complexation, and sorption can perturb the oxidation state equilibrium of plutonium. Such a diverse redox chemistry allows for the easy purification of plutonium on laboratory and industrial (i.e. PUREX) scales, but complicates separation studies of plutonium speciation in natural waters. Some fundamental aspects of plutonium chemistry are discussed with particular focus on their influence on plutonium oxidation state speciation. The value of using plutonium to teach redox equilibria is also reviewed.

Choppin, G.R.; Bond, A.H. [Florida State Univ., Tallahassee, FL (United States)

1996-10-01

110

Moving up in the global value chain in button manufacturing in China  

Microsoft Academic Search

This study traces the transformation of Qiaotou city from a button distribution centre to a composite and advanced button manufacturing cluster accounting for 65% of world button production in 2006. It argues that button sales originated in entrepreneurial initiative that expanded through market-based armslength transactions as hundreds of stalls mushroomed in Qiaotou. The transformation of Qiaotou from the late 1990s

Rajah Rasiah; Xin-Xin Kong; Jebamalai Vinanchiarachi

2011-01-01

111

Pyrochemical processing of plutonium. Technology review report  

SciTech Connect

Non-aqueous processes are now in routine use for direct conversion of plutonium oxide to metal, molten salt extraction of americium, and purification of impure metals by electrorefining. These processes are carried out at elevated temperatures in either refractory metal crucibles or magnesium-oxide ceramics in batch-mode operation. Direct oxide reduction is performed in units up to 700 gram PuO/sub 2/ batch size with molten calcium metal as the reductant and calcium chloride as the reaction flux. Americium metal is removed from plutonium metal by salt extraction with molten magnesium chloride. Electrorefining is used to isolate impurities from molten plutonium by molten salt ion transport in a controlled potential oxidation-reduction cell. Such cells can purify five or more kilograms of impure metal per 5-day electrorefining cycle. The product metal obtained is typically > 99.9% pure, starting from impure feeds. Metal scrap and crucible skulls are recovered by hydriding of the metallic residues and recovered either as impure metal or oxide feeds.

Coops, M.S.; Knighton, J.B.; Mullins, L.J.

1982-09-08

112

Impact of Fission Products Impurity on the Plutonium Content of Metal- and Oxide- Fuels in Sodium Cooled Fast Reactors  

SciTech Connect

This short report presents the neutronic analysis to evaluate the impact of fission product impurity on the Pu content of Sodium-cooled Fast Reactor (SFR) metal- and oxide- fuel fabrication. The similar work has been previously done for PWR MOX fuel [1]. The analysis will be performed based on the assumption that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate SFR fuels. Only non-gaseous FPs have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1 of Reference 1). Throughout of this report, we define the mixture of Pu and FPs as PuFP. The main objective of this analysis is to quantify the increase of the Pu content of SFR fuels necessary to maintain the same average burnup at discharge independently of the amount of FP in the Pu stream, i.e. independently of the PuFP composition. The FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

Hikaru Hiruta; Gilles Youinou

2013-09-01

113

A DGT technique for plutonium bioavailability measurements.  

PubMed

The toxicity of heavy metals in natural waters is strongly dependent on the local chemical environment. Assessing the bioavailability of radionuclides predicts the toxic effects to aquatic biota. The technique of diffusive gradients in thin films (DGT) is largely exploited for bioavailability measurements of trace metals in waters. However, it has not been applied for plutonium speciation measurements yet. This study investigates the use of DGT technique for plutonium bioavailability measurements in chemically different environments. We used a diffusion cell to determine the diffusion coefficients (D) of plutonium in polyacrylamide (PAM) gel and found D in the range of 2.06-2.29 10(-6) cm(2) s(-1). It ranged between 1.10 and 2.03 10(-6) cm(2) s(-1) in the presence of fulvic acid and in natural waters with low DOM. In the presence of 20 ppm of humic acid of an organic-rich soil, plutonium diffusion was hindered by a factor of 5, with a diffusion coefficient of 0.50 10(-6) cm(2) s(-1). We also tested commercially available DGT devices with Chelex resin for plutonium bioavailability measurements in laboratory conditions and the diffusion coefficients agreed with those from the diffusion cell experiments. These findings show that the DGT methodology can be used to investigate the bioaccumulation of the labile plutonium fraction in aquatic biota. PMID:25141175

Cusnir, Ruslan; Steinmann, Philipp; Bochud, Franois; Froidevaux, Pascal

2014-09-16

114

Pyrochemical processing of plutonium. Technology review report  

Microsoft Academic Search

Non-aqueous processes are now in routine use for direct conversion of plutonium oxide to metal, molten salt extraction of americium, and purification of impure metals by electrorefining. These processes are carried out at elevated temperatures in either refractory metal crucibles or magnesium-oxide ceramics in batch-mode operation. Direct oxide reduction is performed in units up to 700 gram PuO batch size

M. S. Coops; J. B. Knighton; L. J. Mullins

1982-01-01

115

Method for dissolving delta-phase plutonium  

DOEpatents

A process for dissolving plutonium, and in particular, delta-phase plutonium. The process includes heating a mixture of nitric acid, hydroxylammonium nitrate (HAN) and potassium fluoride to a temperature between 40.degree. and 70.degree. C., then immersing the metal in the mixture. Preferably, the nitric acid has a concentration of not more than 2M, the HAN approximately 0.66M, and the potassium fluoride 0.1M. Additionally, a small amount of sulfamic acid, such as 0.1M can be added to assure stability of the HAN in the presence of nitric acid. The oxide layer that forms on plutonium metal may be removed with a non-oxidizing acid as a pre-treatment step.

Karraker, David G. (1600 Sherwood Pl., SE., Aiken, SC 29801)

1992-01-01

116

Method for dissolving delta-phase plutonium  

SciTech Connect

A process for dissolving plutonium, and in particular, delta-phase plutonium. The process includes heating a mixture of nitric acid, hydroxylammonium nitrate and potassium fluoride (HAN) to a temperature between 40 and 70 C, then immersing the metal in the mixture. Preferably, the nitric acid has a concentration of not ore than 2M, the HAN approximately 0.66M, and the potassium fluoride 1M. Additionally, a small amount of sulfamic acid, such as 0.1M can be added to assure stability of the HAN in the presence of nitric acid. The oxide layer that forms on plutonium metal may be removed with a non-oxidizing acid as a pre-treatment step.

Karraker, D.G.

1992-12-31

117

Plutonium Finishing Plant safety evaluation report  

SciTech Connect

The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE`s independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91.

Not Available

1995-01-01

118

Standard test method for plutonium assay by plutonium (III) diode array spectrophotometry  

E-print Network

1.1 This test method describes the determination of total plutonium as plutonium(III) in nitrate and chloride solutions. The technique is applicable to solutions of plutonium dioxide powders and pellets (Test Methods C 697), nuclear grade mixed oxides (Test Methods C 698), plutonium metal (Test Methods C 758), and plutonium nitrate solutions (Test Methods C 759). Solid samples are dissolved using the appropriate dissolution techniques described in Practice C 1168. The use of this technique for other plutonium-bearing materials has been reported (1-5), but final determination of applicability must be made by the user. The applicable concentration range for plutonium sample solutions is 10200 g Pu/L. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropria...

American Society for Testing and Materials. Philadelphia

2002-01-01

119

Probing phonons in plutonium  

SciTech Connect

Plutonium (Pu) is well known to have complex and unique physico-chemical properties. Notably, the pure metal exhibits six solid-state phase transformations with large volume expansions and contractions along the way to the liquid state: {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} {yields} {delta}{prime} {yields} {var_epsilon} {yields} liquid. Unalloyed Pu melts at a relatively low temperature {approx}640 C to yield a higher density liquid than that of the solid from which it melts, (Figure 1). Detailed understanding of the properties of plutonium and plutonium-based alloys is critical for the safe handling, utilization, and long-term storage of these important, but highly toxic materials. However, both technical and and safety issues have made experimental observations extremely difficult. Phonon dispersion curves (PDCs) are key experimenta l data to the understanding of the basic properties of Pu materials such as: force constants, sound velocities, elastic constants, thermodynamics, phase stability, electron-phonon coupling, structural relaxation, etc. However, phonon dispersion curves (PDCs) in plutonium (Pu) and its alloys have defied measurement for the past few decades since the discovery of this element in 1941. This is due to a combination of the high thermal-neutron absorption cross section of plutonium and the inability to grow the large single crystals (with dimensions of a few millimeters) necessary for inelastic neutron scattering. Theoretical simulations of the Pu PDC continue to be hampered by the lack of suitable inter -atomic potentials. Thus, until recently the PDCs for Pu and its alloys have remained unknown experimentally and theoretically. The experimental limitations have recently been overcome by using a tightly focused undulator x-ray micro-beam scattered from single -grain domains in polycrystalline specimens. This experimental approach has been applied successfully to map the complete PDCs of an fcc d-Pu-Ga alloy using the high resolution inelastic x-ray scattering (HRIXS) capability on ID28. The complete PDCs for an fcc Pu-0.6 wt% Ga alloy are plotted in Figure 2, and represent the first full set of phonon dispersions ever determined for any Pu-bearing materials. The solid curves (red) are calculated using a standard Born-von Karman (B-vK) force constant model. An adequate fit to the experimental data is obtained if interactions up to the fourth-nearest neighbours are included. The dashed curves (blue) are recent dynamical mean field theory (DMFT) results by Dai et al. The elastic moduli calculated from the slopes of the experimental phonon dispersion curves near the {Lambda} point are: C{sub 11} = 35.3 {+-} 1.4 GPa, C{sub 12} = 25.5 {+-} 1.5 GPa and C{sub 44} = 30.53 {+-} 1.1 GPa. These values are in excellent agreement with those of the only other measurement on a similar alloy (1 wt % Ga) using ultrasonic techniques as well as with those recently calculated from a combined DMFT and linear response theory for pure {delta}-Pu. Several unusual features, including a large elastic anisotropy, a small shear elastic modulus C{prime}, a Kohn-like anomaly in the T{sub 1}[011] branch, and a pronounced softening of the [111] transverse modes are found. These features can be related to the phase transitions of plutonium and to strong coupling between the lattice structure and the 5f valence instabilities. The HRIXS results also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for {delta}-plutonium. The experimental-theoretical agreements shown in Figure 2 in terms of a low shear elastic modulus C{prime}, a Kohn-like anomaly in the T{sub 1}[011] branch, and a large softening of the T[111] modes give credence to the DMFT approach for the theoretical treatment of 5f electron systems of which {delta}-Pu is a classic example. However, quantitative differences remain. These are the position of the Kohn anomaly along the T{sub 1}[011] branch, the energy maximum of the T[111] mode s

Wong, Joe; Krisch, M.; Farber, D.; Occelli, F.; Schwartz, A.; Chiang, T.C.; Wall, M.; Boro, C.; Xu, Ruqing (UIUC); (LLNL); (ESRF); (LANL)

2010-11-16

120

Redox speciation of plutonium  

Microsoft Academic Search

Knowledge of the oxidation state distribution of plutonium in natural waters is necessary in modeling its behavior in environmental systems. The redox speciation of plutonium is complicated by such effects as hydrolysis, complexation, disproportionation, solubility, and redox interchange reactions. The insolubility of Pu(OH)4 is often the limiting factor of the net solubility of plutonium in oxic natural waters where Pu(V)O

G. R. Choppin; A. H. Bond; P. M. Hromadka

1997-01-01

121

Oxidation kinetics of plutonium in air: Consequences for environmental dispersal  

Microsoft Academic Search

Kinetic studies show that plutonium corrosion in air is catalyzed by plutonium hydride on the metal surface and suggest that the process has caused storage containers to fail. The catalyzed reaction initiates at 25°C, indiscriminately consumes both O and N, and transforms metal into a dispersible product at a 10⁷-10¹° faster rate (0.6 {+-} 0.1 g Pu\\/cm² min) than normal

J. M. Haschke; T. H. Allen; J. C. Martz

1997-01-01

122

THE CORROSION BEHAVIORS OF PLUTONIUM AND URANIUM  

Microsoft Academic Search

The many similarities in the chemical reactivity of plutonium and ; uranium were used to gain a deeper understanding of the mechanisms involved in ; the corrosion behavior of these metals and their alloys. It may be concluded ; that the reaction in aqueous environment is controlled by the rate of one or more ; reactions occurring at local anodes.

Waber

1958-01-01

123

Napoleon's Buttons: Teaching the Role of Chemistry in History  

ERIC Educational Resources Information Center

A course designed on the theme of Napoleon's Buttons, which states that there is a connection between the chemical structure of a compound and its pivotal moments in history affecting the development of society is explained. Students liked the book choice for the course because the focus was not on straight chemistry, but the intersection of

Samet, Cindy; Higgins, Pamela J.

2005-01-01

124

Button Blender: Remixing Input to Improve Video Game Accessibility  

E-print Network

Button Blender: Remixing Input to Improve Video Game Accessibility Abstract Over time, advances in video game system hardware have facilitated the evolution of video game mechanics from simple to complex Interfaces and Presentation: User Interfaces - Input Devices and Strategies Introduction Video games

Kane, Shaun K.

125

button in front Running Maple From MyApps  

E-print Network

. 3- Once selected, you can save your document on your ASU MyFiles space. Saving Documents To Local to save your document to a local drive: 1- Click on the Files button and select Save. 2- Click on the Look$ corresponds to drive D of the local computer. 4- Once selected, enter a name for your document and click

Kierstead, Hal

126

Weapons-grade plutonium dispositioning. Volume 2: Comparison of plutonium disposition options  

SciTech Connect

The Secretary of Energy requested the National Academy of Sciences (NAS) Committee on International Security and Arms Control to evaluate disposition options for weapons-grade plutonium. The Idaho National Engineering Laboratory (INEL) offered to assist the NAS in this evaluation by investigating the technical aspects of the disposition options and their capability for achieving plutonium annihilation levels greater than 90%. This report was prepared for the NAS to document the gathered information and results from the requested option evaluations. Evaluations were performed for 12 plutonium disposition options involving five reactor and one accelerator-based systems. Each option was evaluated in four technical areas: (1) fuel status, (2) reactor or accelerator-based system status, (3) waste-processing status, and (4) waste disposal status. Based on these evaluations, each concept was rated on its operational capability and time to deployment. A third rating category of option costs could not be performed because of the unavailability of adequate information from the concept sponsors. The four options achieving the highest rating, in alphabetical order, are the Advanced Light Water Reactor with plutonium-based ternary fuel, the Advanced Liquid Metal Reactor with plutonium-based fuel, the Advanced Liquid Metal Reactor with uranium-plutonium-based fuel, and the Modular High Temperature Gas-Cooled Reactor with plutonium-based fuel. Of these four options, the Advanced Light Water Reactor and the Modular High Temperature Gas-Cooled Reactor do not propose reprocessing of their irradiated fuel. Time constraints and lack of detailed information did not allow for any further ratings among these four options. The INEL recommends these four options be investigated further to determine the optimum reactor design for plutonium disposition.

Brownson, D.A.; Hanson, D.J.; Blackman, H.S. [and others

1993-06-01

127

Standard practice for preparation and dissolution of plutonium materials for analysis  

E-print Network

1.1 This practice is a compilation of dissolution techniques for plutonium materials that are applicable to the test methods used for characterizing these materials. Dissolution treatments for the major plutonium materials assayed for plutonium or analyzed for other components are listed. Aliquants of the dissolved samples are dispensed on a weight basis when one of the analyses must be highly reliable, such as plutonium assay; otherwise they are dispensed on a volume basis. 1.2 The treatments, in order of presentation, are as follows: Procedure Title Section Dissolution of Plutonium Metal with Hydrochloric Acid 9.1 Dissolution of Plutonium Metal with Sulfuric Acid 9.2 Dissolution of Plutonium Oxide and Uranium-Plutonium Mixed Oxide by the Sealed-Reflux Technique 9.3 Dissolution of Plutonium Oxide and Uranium-Plutonium Mixed Oxides by Sodium Bisulfate Fusion 9.4 Dissolution of Uranium-Plutonium Mixed Oxides and Low-Fired Plutonium Oxide in Beakers 9.5 1.3 The values stated in SI units are to be re...

American Society for Testing and Materials. Philadelphia

2008-01-01

128

77 FR 33737 - Announcement of Requirements and Registration for Blue Button Mash Up Challenge  

Federal Register 2010, 2011, 2012, 2013, 2014

...of Requirements and Registration for ``Blue Button Mash Up Challenge'' AGENCY: Office...Competition This challenge builds on a prior Blue Button challenge to make personal health...submit an app that makes the best use of Blue Button downloaded personal health...

2012-06-07

129

Chemical species of plutonium in Hanford radioactive tank waste  

SciTech Connect

Large quantities of radioactive wastes have been generated at the Hanford Site over its operating life. The wastes with the highest activities are stored underground in 177 large (mostly one million gallon volume) concrete tanks with steel liners. The wastes contain processing chemicals, cladding chemicals, fission products, and actinides that were neutralized to a basic pH before addition to the tanks to prevent corrosion of the steel liners. Because the mission of the Hanford Site was to provide plutonium for defense purposes, the amount of plutonium lost to the wastes was relatively small. The best estimate of the amount of plutonium lost to all the waste tanks is about 500 kg. Given uncertainties in the measurements, some estimates are as high as 1,000 kg (Roetman et al. 1994). The wastes generally consist of (1) a sludge layer generated by precipitation of dissolved metals from aqueous wastes solutions during neutralization with sodium hydroxide, (2) a salt cake layer formed by crystallization of salts after evaporation of the supernate solution, and (3) an aqueous supernate solution that exists as a separate layer or as liquid contained in cavities between sludge or salt cake particles. The identity of chemical species of plutonium in these wastes will allow a better understanding of the behavior of the plutonium during storage in tanks, retrieval of the wastes, and processing of the wastes. Plutonium chemistry in the wastes is important to criticality and environmental concerns, and in processing the wastes for final disposal. Plutonium has been found to exist mainly in the sludge layers of the tanks along with other precipitated metal hydrous oxides. This is expected due to its low solubility in basic aqueous solutions. Tank supernate solutions do not contain high concentrations of plutonium even though some tanks contain high concentrations of complexing agents. The solutions also contain significant concentrations of hydroxide which competes with other potential complexants. The sodium nitrate and sodium phosphate salts that form most of the salt cake layers have little interaction with plutonium in the wastes and contain relatively small plutonium concentrations. For these reasons the authors consider plutonium species in the sludges and supernate solutions only. The low concentrations of plutonium in waste tank supernate solutions and in the solid sludges prevent identification of chemical species of plutonium by ordinary analytical techniques. Spectrophotometric measurements are not sensitive enough to identify plutons oxidation states or complexes in these waste solutions. Identification of solid phases containing plutonium in sludge solids by x-ray diffraction or by microscopic techniques would be extremely difficult. Because of these technical problems, plutonium speciation was extrapolated from known behavior observed in laboratory studies of synthetic waste or of more chemically simple systems.

Barney, G.S.

1997-10-22

130

Plutonium(VI) sorption to manganese dioxide.  

SciTech Connect

Redox-active metal oxides may strongly affect the environmental behavior and mobility of actinides . Manganese oxides are relatively common redox-active soil components, which have a high surface area and which some studies show sorb plutonium selectively over other mineral phases .' For plutonium, oxidation states that could exist in the environment include +111 to +VI, with Pu(IV) being predominant in the insoluble phase. Plutonium(V), and to a lesser extent Pu(VI), are the stable Pu oxidation states in solution under environmental conditions .Z We are using synthetic 6-Mn02 because it is most similar to the common natural manganese oxide mineral birnessite . Previously, we have shown that Pu(V) is oxidized to Pu(VI) in solution by 8-Mn02, then very effectively sorbed to the mineral . We are now studying Pu(VI) sorption to synthetic 8-Mn02 in detail to determine its sorption mechanisms and sorption capacity .

Reilly, S. D. (Sean D.); Myers, W. K. (William K.); Stout, S. A. (Stephen A.); Smith, D. M. (Donna M.); Ginder-Vogel, M. A. (Matthew A.); Neu, M. P. (Mary P.)

2003-01-01

131

PLUTONIUM IN THE MARINE ENVIRONMENT  

Microsoft Academic Search

The shipping of plutonium from Europe to Japan around the Cape is a contentious issue which has raised public concern that South Africans may be at risk to plutonium exposure should an accident occur: The paper describes the containers in which the plutonium (in the form of plutonium oxide, PuO2) is housed and consequences of the unlikely event of these

Neil V. Jarvis; Peter W. Linder; Peter W. Wade

1994-01-01

132

Process for separating ceramics of uranium and plutonium from zirconium by hydriding and mixtures thereof  

Microsoft Academic Search

A process is provided involving the use of hydrogen for the separation of uranium and plutonium and mixtures thereof, from composite substances and assemblies or mixtures containing metallic and ceramic components where the metallic component is zirconium or a zirconium alloy and the ceramic component contains uranium and\\/or plutonium.

B. Cech; E. Kaderabek; T. Hanslik

1977-01-01

133

The plutonium-oxygen phase diagram  

SciTech Connect

Identification of products formed by the reaction of plutonium metal with liquid water at 23{degree}C indicates that the plutonium-oxygen phase diagram is similar to the cerium-oxygen and praseodymium-oxygen diagrams. Quantitative measurements of H{sub 2} formation and analytical data suggest that a sequence of hydrolysis reactions produces oxide hydrides of trivalent plutonium, Pu{sub 2}O{sub 3}, mixed-valent oxides and PuO{sub 2}. The intermediate oxides are the n {equals} 7, 9, 10 and 12 members of the Pu{sub n}O{sub 2n{minus}2} homologous series. Properties of the residue formed by thermal decomposition of the initial hydrolysis product, plutonium monoxide monhydride (PuOH), are consistent with the formation of metastable plutonium monoxide. Crystal-chemical, thermodynamic, and kinetic factors are evaluated, but definitive assignment of the equilibrium Pu-O diagram is not possible. 22 refs., 6 figs., 1 tab.

Haschke, J.M.

1990-01-01

134

Gastrostomy buttons for nutritional support on chronic dialysis  

Microsoft Academic Search

Rationale. Nutritional support for children on chronic dialysis often involves the use of nasogastric tubes or gastrostomy feeding. We report our experience using gastrostomy buttons (GB) over a 6.6-year period to document their success\\/failure, the feeding regimens Introduction employed and the impact on growth. Design. In 339 patient months of prospective observa- Nutritional support combined with early dialysis are tion,

Janet E. Coleman; Alan R. Watson; Christopher H. Rance; Elizabeth Moore

135

Pediatric button battery injuries: 2013 task force update.  

PubMed

Over the last 10 years, there has been a dramatic rise in the incidence of severe injuries involving children who ingest button batteries. Injury can occur rapidly and children can be asymptomatic or demonstrate non-specific symptoms until catastrophic injuries develop over a period of hours or days. Smaller size ingested button batteries will often pass without clinical sequellae; however, batteries 20mm and larger can more easily lodge in the esophagus causing significant damage. In some cases, the battery can erode into the aorta resulting in massive hemorrhage and death. To mitigate against the continued rise in life-threatening injuries, a national Button Battery Task Force was assembled to pursue a multi-faceted approach to injury prevention. This task force includes representatives from medicine, public health, industry, poison control, and government. A recent expert panel discussion at the 2013 American Broncho-Esophagological Association (ABEA) Meeting provided an update on the activities of the task force and is highlighted in this paper. PMID:23896385

Jatana, Kris R; Litovitz, Toby; Reilly, James S; Koltai, Peter J; Rider, Gene; Jacobs, Ian N

2013-09-01

136

Plutonium Vulnerability Management Plan  

SciTech Connect

This Plutonium Vulnerability Management Plan describes the Department of Energy`s response to the vulnerabilities identified in the Plutonium Working Group Report which are a result of the cessation of nuclear weapons production. The responses contained in this document are only part of an overall, coordinated approach designed to enable the Department to accelerate conversion of all nuclear materials, including plutonium, to forms suitable for safe, interim storage. The overall actions being taken are discussed in detail in the Department`s Implementation Plan in response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. This is included as Attachment B.

NONE

1995-03-01

137

Plasticity of button-like junctions in the endothelium of airway lymphatics in development and inflammation.  

PubMed

Endothelial cells of initial lymphatics have discontinuous button-like junctions (buttons), unlike continuous zipper-like junctions (zippers) of collecting lymphatics and blood vessels. Buttons are thought to act as primary valves for fluid and cell entry into lymphatics. To learn when and how buttons form during development and whether they change in disease, we examined the appearance of buttons in mouse embryos and their plasticity in sustained inflammation. We found that endothelial cells of lymph sacs at embryonic day (E)12.5 and tracheal lymphatics at E16.5 were joined by zippers, not buttons. However, zippers in initial lymphatics decreased rapidly just before birth, as buttons appeared. The proportion of buttons increased from only 6% at E17.5 and 12% at E18.5 to 35% at birth, 50% at postnatal day (P)7, 90% at P28, and 100% at P70. In inflammation, zippers replaced buttons in airway lymphatics at 14 and 28 days after Mycoplasma pulmonis infection of the respiratory tract. The change in lymphatic junctions was reversed by dexamethasone but not by inhibition of vascular endothelial growth factor receptor-3 signaling by antibody mF4-31C1. Dexamethasone also promoted button formation during early postnatal development through a direct effect involving glucocorticoid receptor phosphorylation in lymphatic endothelial cells. These findings demonstrate the plasticity of intercellular junctions in lymphatics during development and inflammation and show that button formation can be promoted by glucocorticoid receptor signaling in lymphatic endothelial cells. PMID:22538088

Yao, Li-Chin; Baluk, Peter; Srinivasan, R Sathish; Oliver, Guillermo; McDonald, Donald M

2012-06-01

138

Recommended plutonium release fractions from postulated fires. Final report  

SciTech Connect

This report was written at the request of EG&G Rocky Flats, Inc. in support of joint emergency planning for the Rocky Flats Plant (RFP) by EG&G and the State of Colorado. The intent of the report is to provide the State of Colorado with an independent assessment of any respirable plutonium releases that might occur in the event of a severe fire at the plant. Fire releases of plutonium are of interest because they have been used by EG&G to determine the RFP emergency planning zones. These zones are based on the maximum credible accident (MCA) described in the RFP Final Environmental Impact Statement (FEIS) of 1980, that MCA is assumed to be a large airplane crashing into a RFP plutonium building.The objective of this report was first, to perform a worldwide literature review of relevant release experiments from 1960 to the present and to summarize those findings, and second, to provide recommendations for application of the experimental data to fire release analyses at Rocky Flats. The latter step requires translation between experimental and expected RFP accident parameters, or ``scaling.`` The parameters of particular concern are: quantities of material, environmental parameters such as the intensity of a fire, and the physico-chemical forms of the plutonium. The latter include plutonium metal, bulk plutonium oxide powder, combustible and noncombustible wastes contaminated with plutonium oxide powder, and residues from plutonium extraction processes.

Kogan, V.; Schumacher, P.M.

1993-12-01

139

Optimization of four-button BPM configuration for small-gap beam chambers.  

SciTech Connect

Configuration of four-button beam position monitors (BPMs) employed in small-gap beam chambers is optimized from 2-D electrostatic calculation of induced charges on the button electrodes. The calculation shows that for a narrow chamber of width/height (2w/2h) >> 1, over 90% of the induced charges are distributed within a distance of 2h from the charged beam position in the direction of the chamber width. The most efficient configuration for a four-button BPM is to have a button diameter of (2-2.5) h with no button offset from the beam. The button sensitivities in this case are maximized and have good linearity with respect to the beam positions in the horizontal and vertical directions. The button sensitivities and beam coefficients are also calculated for the 8-mm and 5-mm chambers used in the insertion device straight sections of the 7-GeV Advanced Photon Source.

Kim, S. H.

1998-05-27

140

Process modeling of plutonium conversion and MOX fabrication for plutonium disposition  

SciTech Connect

Two processes are currently under consideration for the disposition of 35 MT of surplus plutonium through its conversion into fuel for power production. These processes are the ARIES process, by which plutonium metal is converted into a powdered oxide form, and MOX fuel fabrication, where the oxide powder is combined with uranium oxide powder to form ceramic fuel. This study was undertaken to determine the optimal size for both facilities, whereby the 35 MT of plutonium metal will be converted into fuel and burned for power. The bounding conditions used were a plutonium concentration of 3--7%, a burnup of 20,000--40,000 MWd/MTHM, a core fraction of 0.1 to 0.4, and the number of reactors ranging from 2--6. Using these boundary conditions, the optimal cost was found with a plutonium concentration of 7%. This resulted in an optimal throughput ranging from 2,000 to 5,000 kg Pu/year. The data showed minimal costs, resulting from throughputs in this range, at 3,840, 2,779, and 3,497 kg Pu/year, which results in a facility lifetime of 9.1, 12.6, and 10.0 years, respectively.

Schwartz, K.L. [Univ. of Texas, Austin, TX (United States). Dept. of Nuclear Engineering

1998-10-01

141

Plutonium recovery from spent reactor fuel by uranium displacement  

DOEpatents

A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

Ackerman, J.P.

1992-03-17

142

Plutonium recovery from spent reactor fuel by uranium displacement  

DOEpatents

A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.

Ackerman, John P. (Downers Grove, IL)

1992-01-01

143

Disposition of separated plutonium  

Microsoft Academic Search

In the immediate term, plutonium, recovered from dismantled nuclear warheads and from civil reprocessing plants, will have to be stored securely, and under international safeguards if possible. In the intermediate term, the principal alternatives for disposition of this plutonium are: irradiation in mixed?oxide (MOX) fuel assemblies in commercial unmodified light?water reactors or in specially adapted light?water reactors capable of operating

Frans Berkhout; Anatoli Diakov; Harold Feiveson; Helen Hunt; Edwin Lyman; Marvin Miller; Frank von Hippel

1993-01-01

144

Oxidation kinetics of plutonium in air: consequences for environmental dispersal  

Microsoft Academic Search

Kinetic studies show that plutonium corrosion in air is catalyzed by plutonium hydride on the metal surface and causes storage containers to fail. The reaction initiates at 25C, indiscriminately consumes both O2 and N2, and transforms Pu into a dispersible product at a 1071010 faster rate (0.60.1 g Pu\\/cm2 min) than normal air oxidation. The catalyzed reaction of O2 advances

John M Haschke; Thomas H Allen; Joseph C Martz

1998-01-01

145

Standard test method for plutonium by Iron (II)/Chromium (VI) amperometric titration  

E-print Network

1.1 This test method covers the determination of plutonium in unirradiated nuclear-grade plutonium dioxide, uranium-plutonium mixed oxides with uranium (U)/plutonium (Pu) ratios up to 21, plutonium metal, and plutonium nitrate solutions. Optimum quantities of plutonium to measure are 7 to 15 mg. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2002-01-01

146

Oxidation kinetics of plutonium in air: Consequences for environmental dispersal  

SciTech Connect

Kinetic studies show that plutonium corrosion in air is catalyzed by plutonium hydride on the metal surface and suggest that the process has caused storage containers to fail. The catalyzed reaction initiates at 25{degrees}C, indiscriminately consumes both O{sub 2} and N{sub 2}, and transforms metal into a dispersible product at a 10{sup 7}-10{sup 10} faster rate (0.6 {+-} 0.1 g Pu/cm{sup 2} min) than normal air oxidation. The catalyzed Pu+O{sub 2} reaction advances into the metal at a linear rate of 2.9 m/h. Rate equations and particle size data, which are presented for catalyzed and atmospheric corrosion at temperatures up to 3500{degrees}C, provide a technical basis for more accurately assessing the dispersal hazard posed by plutonium metal.

Haschke, J.M.; Allen, T.H.; Martz, J.C.

1997-09-01

147

Electrorefining of uranium and plutonium A literature review  

NASA Astrophysics Data System (ADS)

This report is a comprehensive review of the literature on uranium and plutonium electrorefining in molten salts. It covers work published from 1943 to November 1991. Electrodeposition and electrodissolution at solid and liquid metal electrodes are discussed as well as mass transfer in liquid metal and molten salt phases.

Willit, J. L.; Miller, W. E.; Battles, J. E.

1992-11-01

148

Pyrochemical processes for the recovery of weapons grade plutonium either as a metal or as PuO for use in mixed oxide reactor fuel pellets  

Microsoft Academic Search

The authors have developed two processes for the recovery of weapons grade Pu, as either Pu metal or PuO, that are strictly pyrochemical and do not produce any liquid waste. Large amounts of Pu metal (up to 4 kg.), in various geometric shapes, have been recovered by a hydride\\/dehydride\\/casting process (HYDEC) to produce metal ingots of any desired shape. The

C. A. Colmenares; B. B. Ebbinghaus; M. C. Bronson

1995-01-01

149

Review of major plutonium pyrochemical technology  

Microsoft Academic Search

The past twenty years have seen significant growth in the development and application of pyrochemical technology for processing of plutonium. For particular feedstocks and specific applications, non-aqueous high-temperature processes offer key advantages over conventional hydrometallurgical systems. Major processes in use today include: (1) direct oxide reduction for conversion of PuO to metal, (2) molten salt extraction for americium removal from

W. S. Moser; J. D. Navratil

1983-01-01

150

INTERCOMPARISON OF PLUTONIUM-239 MEASUREMENTS  

EPA Science Inventory

In 1977 the U.S. Environmental Protection Agency distributed calibrated solutions of plutonium-239 to laboratories interested in participating in an intercomparison study of plutonium analysis. Participants were asked to perform a quantitative radioactivity analysis of the soluti...

151

CLOSEOUT REPORT FOR HYBRID SULFUR PRESSURIZED BUTTON CELL TEST FACILITY  

SciTech Connect

This document is the Close-Out Report for design and partial fabrication of the Pressurized Button Cell Test Facility at Savannah River National Laboratory (SRNL). This facility was planned to help develop the sulfur dioxide depolarized electrolyzer (SDE) that is a key component of the Hybrid Sulfur Cycle for generating hydrogen. The purpose of this report is to provide as much information as possible in case the decision is made to resume research. This report satisfies DOE Milestone M3GSR10VH030107.0. The HyS Cycle is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by watersplitting. The HyS Cycle utilizes the high temperature (>800 C) thermal decomposition of sulfuric acid to produce oxygen and regenerate sulfur dioxide. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Low cell voltage is essential for both high thermodynamic efficiency and low hydrogen cost. Sulfur dioxide is oxidized at the anode, producing sulfuric acid that is sent to the high temperature acid decomposition portion of the cycle. Sulfur dioxide from the decomposer is cycled back to electrolyzers. The electrolyzer cell uses the membrane electrode assembly (MEA) concept. Anode and cathode are formed by spraying a catalyst, typically platinized carbon, on both sides of a Proton Exchange Membrane (PEM). SRNL has been testing SDEs for several years including an atmospheric pressure Button Cell electrolyzer (2 cm{sup 2} active area) and an elevated temperature/pressure Single Cell electrolyzer (54.8 cm{sup 2} active area). SRNL tested 37 MEAs in the Single Cell electrolyzer facility from June 2005 until June 2009, when funding was discontinued. An important result of the final months of testing was the development of a method that prevents the formation of a sulfur layer previously observed in MEAs used in the Hybrid Sulfur Cycle electrolyzer. This result is very important because the sulfur layer increased cell voltage and eventually destroyed the MEA that is the heart of the cell. Steimke and Steeper [2005, 2006, 2007, 2008] reported on testing in the Single Cell Electrolyzer test facility in several periodic reports. Steimke et. al [2010] issued a final facility close-out report summarizing all the testing in the Single Cell Electrolyzer test facility. During early tests, significant deterioration of the membrane occurred in 10 hours or less; the latest tests ran for at least 200 hours with no sign of deterioration. Ironically, the success with the Single Cell electrolyzer meant that it became dedicated to long runs and not available for quick membrane evaluations. Early in this research period, the ambient pressure Button Cell Electrolyzer test facility was constructed to quickly evaluate membrane materials. Its small size allowed testing of newly developed membranes that typically were not available in sizes large enough to test in the Single Cell electrolyzer. The most promising membranes were tested in the Single Cell Electrolyzer as soon as sufficient large membranes could be obtained. However, since the concentration of SO{sub 2} gas in sulfuric acid decreases rapidly with increasing temperature, the ambient pressure Button Cell was no longer able to achieve the operating conditions needed to evaluate the newer improved high temperature membranes. Significantly higher pressure operation was required to force SO{sub 2} into the sulfuric acid to obtain meaningful concentrations at increased temperatures. A high pressure (200 psig), high temperature (120 C) Button Cell was designed and partially fabricated just before funding was discontinued in June 2009. SRNL completed the majority of the design of the test facility, including preparation of a process and instrument drawing (P&ID) and preliminary designs for the major components. SRNL intended to complete the designs and procu

Steeper, T.

2010-09-15

152

Plutonium 239 Equivalency Calculations  

SciTech Connect

This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

Wen, J

2011-05-31

153

Pyrochemical processes for the recovery of weapons grade plutonium either as a metal or as PuO{sub 2} for use in mixed oxide reactor fuel pellets  

SciTech Connect

The authors have developed two processes for the recovery of weapons grade Pu, as either Pu metal or PuO{sub 2}, that are strictly pyrochemical and do not produce any liquid waste. Large amounts of Pu metal (up to 4 kg.), in various geometric shapes, have been recovered by a hydride/dehydride/casting process (HYDEC) to produce metal ingots of any desired shape. The three processing steps are carried out in a single compact apparatus. The experimental technique and results obtained will be described. The authors have prepared PuO{sub 2} powders from weapons grade Pu by a process that hydrides the Pu metal followed by the oxidation of the hydride (HYDOX process). Experimental details of the best way to carry out this process will be presented, as well as the characterization of both hydride and oxide powders produced.

Colmenares, C.A.; Ebbinghaus, B.B.; Bronson, M.C.

1995-11-03

154

Hydride-catalyzed corrosion of plutonium by air: Initiation by plutonium monoxide monohydride  

SciTech Connect

Chemistry and kinetics of air reactions with plutonium monoxide monohydride (PuOH) and with mixtures of the oxide hydride and plutonium metal are defined by results of pressure-volume-temperature (PVT) measurements. Test with specimens prepared by total and partial corrosion of plutonium in 0.05 M sodium chloride solution show that reaction of residual water continues to generate H{sub 2} after liquid water is removed by evacuation. Rapid exposure of PuOH to air at room temperature does not produce a detectable reaction, but similar exposure of a partially corroded metal sample containing Pu and PuOH results in hydride (PuH{sub x})-catalyzed corrosion of the residual Pu. Kinetics of he first-order reaction resulting in formation of the PuH{sub x} catalyst and of the indiscriminate reaction of N{sub 2} and O{sub 2} with plutonium metal are defined. The rate of the catalyzed Pu+air reaction is independent of temperature (E{sub a} = 0), varies as the square of air pressure, and equals 0.78 {+-} 0.03 g Pu/cm{sup 2} min in air at one atmosphere. The absence of pyrophoric behavior for PuOH and differences in the reactivities of PuOH and PuOH + Pu mixtures are attributed to kinetic control by gaseous reaction products. Thermodynamic properties of the oxide hydride are estimated, particle size distributions of corrosion products are presented, and potential hazards associated with products formed by aqueous corrosion of plutonium are discussed.

Allen, T.H.; Haschke, J.M.

1998-06-01

155

Thermal response of a can handling unit (CHU) to a postulated plutonium hydride burn  

Microsoft Academic Search

A series of analyses were performed to support the design of the Can Handling Unit (CHU). The subject analyses focused on determining the time to repressurize a subatmospheric storage can containing plutonium metal versus the initial hole size and the transient thermal response to a postulated chemical reaction of 150 grams of plutonium hydride. Limiting the amount of gaseous reactants

1998-01-01

156

77 FR 60435 - Announcement of Requirements and Registration for Blue Button Video Challenge  

Federal Register 2010, 2011, 2012, 2013, 2014

...entertaining video that creates awareness of the ``Blue Button...commercial business whose name, brand name, product or other trademark...marketing a commercial business, brand name, product or other trademark...Potential Impact on Increasing Awareness of Blue Button (Includes...

2012-10-03

157

Design of a Communications Interface for E-Textile Buttons Dave I. Lehn  

E-print Network

. Introduction Electronic textiles, often called e-textiles, are textiles with integrated electronics devicesDesign of a Communications Interface for E-Textile Buttons Dave I. Lehn dlehn@vt.edu Craig W. Neely Professor T. Martin 2:00 TH ­ CRN 16445 #12;2DL / CN / KS, 2003 ECE 5984: E-Textile Buttons Table

158

Plutonium Finishing Plant. Interim plutonium stabilization engineering study  

SciTech Connect

This report provides the results of an engineering study that evaluated the available technologies for stabilizing the plutonium stored at the Plutonium Finishing Plant located at the hanford Site in southeastern Washington. Further processing of the plutonium may be required to prepare the plutonium for interim (<50 years) storage. Specifically this document provides the current plutonium inventory and characterization, the initial screening process, and the process descriptions and flowsheets of the technologies that passed the initial screening. The conclusions and recommendations also are provided. The information contained in this report will be used to assist in the preparation of the environmental impact statement and to help decision makers determine which is the preferred technology to process the plutonium for interim storage.

Sevigny, G.J.; Gallucci, R.H.; Garrett, S.M.K.; Geeting, J.G.H.; Goheen, R.S.; Molton, P.M.; Templeton, K.J.; Villegas, A.J. [Pacific Northwest Lab., Richland, WA (United States); Nass, R. [Nuclear Fuel Services, Inc. (United States)

1995-08-01

159

Plutonium age dating reloaded  

NASA Astrophysics Data System (ADS)

Although the age determination of plutonium is and has been a pillar of nuclear forensic investigations for many years, additional research in the field of plutonium age dating is still needed and leads to new insights as the present work shows: Plutonium is commonly dated with the help of the 241Pu/241Am chronometer using gamma spectrometry; in fewer cases the 240Pu/236U chronometer has been used. The age dating results of the 239Pu/235U chronometer and the 238Pu/234U chronometer are scarcely applied in addition to the 240Pu/236U chronometer, although their results can be obtained simultaneously from the same mass spectrometric experiments as the age dating result of latter. The reliability of the result can be tested when the results of different chronometers are compared. The 242Pu/238U chronometer is normally not evaluated at all due to its sensitivity to contamination with natural uranium. This apparent 'weakness' that renders the age dating results of the 242Pu/238U chronometer almost useless for nuclear forensic investigations, however turns out to be an advantage looked at from another perspective: the 242Pu/238U chronometer can be utilized as an indicator for uranium contamination of plutonium samples and even help to identify the nature of this contamination. To illustrate this the age dating results of all four Pu/U clocks mentioned above are discussed for one plutonium sample (NBS 946) that shows no signs of uranium contamination and for three additional plutonium samples. In case the 242Pu/238U chronometer results in an older 'age' than the other Pu/U chronometers, contamination with either a small amount of enriched or with natural or depleted uranium is for example possible. If the age dating result of the 239Pu/235U chronometer is also influenced the nature of the contamination can be identified; enriched uranium is in this latter case a likely cause for the missmatch of the age dating results of the Pu/U chronometers.

Sturm, Monika; Richter, Stephan; Aregbe, Yetunde; Wellum, Roger; Mayer, Klaus; Prohaska, Thomas

2014-05-01

160

Plutonium hydride, sesquioxide and monoxide monohydride: pyrophoricity and catalysis of plutonium corrosion  

Microsoft Academic Search

Reaction rates of air and oxygen with cubic plutonium hydride (PuHx, 1.9metal coated with these compounds are described, along with kinetic results for the Pu+H2 reaction. Pyrophoric tendencies are not observed for PuOH, but exposure of PuHx and PuHx- (or PuOH-) coated Pu to air or O2 at room temperature result in spontaneous reactions

John M Haschke; Thomas H Allen

2001-01-01

161

4. VIEW OF PLUTONIUM CANISTER ON CHAINVEYOR. SCRAP PLUTONIUM WAS ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

4. VIEW OF PLUTONIUM CANISTER ON CHAINVEYOR. SCRAP PLUTONIUM WAS COLLECTED INTO CANS AT INDIVIDUAL WORKSTATIONS. THE CANS WERE TRANSFERRED VIA THE CHAIN CONVEYOR TO A WORKSTATION IN MODULE C WHERE THE MATERIAL WAS COMPRESSED INTO BRIQUETTES FOR LATER USE. (6/20/93) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

162

Magnesium-zinc reduction is effective in preparation of metals  

NASA Technical Reports Server (NTRS)

Uranium, thorium, and plutonium are effectively prepared by magnesium-zinc reduction, using uranium oxides, thorium dioxide, and plutonium dioxide as starting materials. This technique is also useful in performing reduction of metals such as zirconium and titanium.

Knighton, J. B.; Steuneberg, R. K.

1967-01-01

163

Gamma radiation characteristics of plutonium dioxide fuel  

NASA Technical Reports Server (NTRS)

Investigation of plutonium dioxide as an isotopic fuel for Radioisotope Thermoelectric Generators yielded the isotopic composition of production-grade plutonium dioxide fuel, sources of gamma radiation produced by plutonium isotopes, and the gamma flux at the surface.

Gingo, P. J.

1969-01-01

164

Proliferation aspects of plutonium recycling  

Microsoft Academic Search

Plutonium recycling offers benefits in an energy perspective of sustainable development, and, moreover it contributes to non-proliferation. Prior to recycling, reactor-grade plutonium from light-water reactors does not lend itself easily to the assembly of explosive nuclear devices; thereafter, practically not at all. Control systems for material security and non-proliferation should identify and adopt several categories of plutonium covering various isotopic

Bruno Pellaud

2002-01-01

165

Manufacturing of Plutonium Tensile Specimens  

SciTech Connect

Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

Knapp, Cameron M [Los Alamos National Laboratory

2012-08-01

166

Criticality Experiments with Mixed Plutonium and Uranium Nitrate Solution at a Plutonium Fraction of 0.5 in Annular Cylindrical Geometry  

SciTech Connect

A series of critical experiments was completed with mixed plutonium-uranium solutions having Pu/(Pu + U) ratios of approximately 0.5. These experiments were a part of the Criticality Data Development Program between the United States Department of Energy (USDOE), and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of, and data from, the experiments are included in this report. The experiments were performed with mixed plutonium-uranium solutions in annular cylindrical geometry. The measurements were made with a water reflector. The central region included a concrete annular cylinder containing B{sub 4}C. Interior to the concrete insert was a stainless steel bottle containing plutonium-uranium solution. The concentration of the solution in the annular region was varied from 116 to 433 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was 52% for all experiments.

Lloyd, RC

1988-04-01

167

Spectrophotometric determination of plutonium with chlorophosphonazo III in n-pentanol  

SciTech Connect

Microgram amounts of plutonium are measured spectrophotometrically as the plutonium-chlorophosphonazo III complex after extraction into n-pentanol from 1.5 M HCl. The relative standard deviation is 1.5% for the range of 2.5 to 17.5 ..mu..g. The tolerance is excellent for many metals and nonmetals present in nuclear fuel-cycle materials. A preceding anion-exchange-column separation increases tolerance for certain metals and nonmetals.

Saponara, N.M.; Marsh, S.F.

1982-03-01

168

Review of operating experience at the Los Alamos Plutonium Electrorefining Facility, 1963-1977  

SciTech Connect

This report reviews the operation of the Los Alamos Plutonium Electrorefining Plant at Technical Area 21 for the period 1964 through 1977. During that period, approximately 1568 kg of plutonium metal, > 99.95% pure, was produced in 653 runs from 1930 kg of metal fabrication scrap, 99% pure. General considerations of the electrorefining process and facility operation and recommendations for further improvement of the process are discussed.

Mullins, L.J.; Morgan, A.N.

1981-12-01

169

THE PREPARATION OF PLUTONIUM POWDER BY A HYDRIDING PROCESS-INITIAL STUDIES  

Microsoft Academic Search

Micron-sized plutonium powder was produced by hydriding massive metal, ;\\u000a then grinding and decomposing the hydride. An apparatus containing clean ;\\u000a plutonium metal was evacuated to a pressure of 10 mu . Dry oxygen-free hydrogen ;\\u000a was introduced and the apparatus placed in a furnace. After the reaction ;\\u000a started, the apparatus was removed from the furnace and hydrogen added

G. L. Stiffler; M. H. Curtis

1960-01-01

170

EVALUATION OF FIRE HAZARDS WHILE REPACKAGING PLUTONIUM-CONTAMINATED SCRAP IN HB-LINE  

Microsoft Academic Search

The potential for a fire while repackaging plutonium-contaminated scrap was evaluated. The surface-to-mass ratio indicates the metal alone will not spontaneously ignite. Uranium hydride can form when uranium metal is exposed to water vapor or hydrogen; uranium hydride reacts rapidly and energetically with atmospheric oxygen. The plutonium-contaminated scrap has been inside containers qualified for shipping, and these containers are leak-tight.

Hallman

2003-01-01

171

Review of plutonium process chemistry at Rocky Flats  

Microsoft Academic Search

Plutonium metal scrap, oxide, and other residues are processed at Rocky Flats using both pyrochemical and aqueous methods. The pyrochemical processes currently in production include electrorefining, fluorination, hydriding, molten salt extraction (MSE), calcination, and reduction operations. Aqueous processing and waste-treatment methods involve nitric acid dissolution, ion exchange, solvent extraction, and precipitation techniques. An overview of the chemistry involved in these

C. E. Baldwin; J. D. Navratil

2008-01-01

172

REVIEW OF PLUTONIUM OXIDATION LITERATURE  

SciTech Connect

A brief review of plutonium oxidation literature was conducted. The purpose of the review was to ascertain the effect of oxidation conditions on oxide morphology to support the design and operation of the PDCF direct metal oxidation (DMO) furnace. The interest in the review was due to a new furnace design that resulted in oxide characteristics that are different than those of the original furnace. Very little of the published literature is directly relevant to the DMO furnace operation, which makes assimilation of the literature data with operating conditions and data a convoluted task. The oxidation behavior can be distilled into three regimes, a low temperature regime (RT to 350 C) with a relatively slow oxidation rate that is influenced by moisture, a moderate temperature regime (350-450 C) that is temperature dependent and relies on more or less conventional oxidation growth of a partially protective oxide scale, and high temperature oxidation (> 500 C) where the metal autocatalytically combusts and oxidizes. The particle sizes obtained from these three regimes vary with the finest being from the lowest temperature. It is surmised that the slow growth rate permits significant stress levels to be achieved that help break up the oxides. The intermediate temperatures result in a fairly compact scale that is partially protective and that grows to critical thickness prior to fracturing. The growth rate in this regime may be parabolic or paralinear, depending on the oxidation time and consequently the oxide thickness. The high temperature oxidation is invariant in quiescent or nearly quiescent conditions due to gas blanketing while it accelerates with temperature under flowing conditions. The oxide morphology will generally consist of fine particles (<15 {micro}m), moderately sized particles (15 < x < 250 {micro}m) and large particles (> 250 {micro}m). The particle size ratio is expected to be < 5%, 25%, and 70% for fine, medium and large particles, respectively, for metal temperatures in the 500-600 C range.

Korinko, P.

2009-11-12

173

Critical experiments on single-unit spherical plutonium geometries reflected and moderated by oil  

SciTech Connect

Experimental critical configurations are reported for several dozen spherical and hemispherical single-unit assemblies of plutonium metal. Most were solid but many were hollow-centered, thick, shell-like geometries. All were constructed of nested plutonium (mostly {sup 2139}Pu) metal hemispherical shells. Three kinds of critical configurations are reported. Two required interpolation and/or extrapolation of data to obtain the critical mass because reflector conditions were essentially infinite. The first finds the plutonium essentially fully reflected by a hydrogen-rich oil; the second is essentially unreflected. The third kind reports the critical oil reflector height above a large plutonium metal assembly of accurately known mass (no interpolation required) when that mass was too great to permit full oil reflection. Some configurations had thicknesses of mild steel just outside the plutonium metal, separating it from the oil. These experiments were performed at the Rocky Flats Critical Mass Laboratory in the late 1960s. They have not been published in a form suitable for benchmark-quality comparisons against state-of-the-art computational techniques until this paper. The age of the data and other factors lead to some difficulty in reconstructing aspects of the program and may, in turn, decrease confidence in certain details. Whenever this is true, the point is acknowledged. The plutonium metal was alpha-phase {sup 239}Pu containing 5.9 wt-% {sup 240}Pu. All assemblies were formed by nesting 1.667-mm-thick (nominal) bare plutonium metal hemispherical shells, also called hemishells, until the desired configuration was achieved. Very small tolerance gaps machined into radial dimensions reduced the effective density a small amount in all cases. Steel components were also nested hemispherical shells; but these were nominally 3.333-mm thick. Oil was used as the reflector because of its chemical compatibility with plutonium metal.

Rothe, R.E.

1997-05-01

174

Solubilization of plutonium hydrous oxide by iron-reducing bacteria  

Microsoft Academic Search

The removal of plutonium from soils id challenging because of its strong sorption to soils and limited solubility, Microbial reduction of metals is known to affect the speciation and solubility of sparingly soluble metals in the environment, notably iron and manganese. The similarity in reduction potential for [alpha]-FeOOH(s) and hydrous PuO[sub 2](s) suggests that iron-reducing bacteria may also reduce and

Patricia A. Rusin; Leticia Quintana; James R. Brainard; B. A. Strietelmeler; C. Drew Tait; Scott A. Ekberg; Phillip D. Palmer; Thomas W. Newton; David L. Clark

1994-01-01

175

Photochemical preparation of plutonium pentafluoride  

DOEpatents

The novel compound plutonium pentafluoride may be prepared by the photodissociation of gaseous plutonium hexafluoride. It is a white solid of low vapor pressure, which consists predominantly of a face-centered cubic structure with a.sub.o =4.2709.+-.0.0005 .ANG..

Rabideau, Sherman W. (Los Alamos, NM); Campbell, George M. (Los Alamos, NM)

1987-01-01

176

Preventing pollution from plutonium processing  

Microsoft Academic Search

The plutonium processing facility at Los Alamos has adopted the strategic goal of becoming a facility that processes plutonium in a way that produces only environmentally benign waste streams. Pollution prevention through source reduction and environmentally sound recycling are being pursued. General approaches to waste reductions are administrative controls, modification of process technologies, and additional waste polishing. Recycling of waste

K. K. S. Pillay

1995-01-01

177

Preventing pollution from plutonium processing  

Microsoft Academic Search

The plutonium processing facility at Los Alamos has adopted the strategic goal of becoming a facility that processes plutonium in a way that produces only environmentally benign waste streams. Pollution prevention through source reduction and environmentally sound recycling are being pursued. General approaches to waste reductions are administrative controls, modification of process technologies, and additional waste polishing. Recycling of waste

Pillay; K. K. S

1993-01-01

178

THERMAL EXPANSION OF PLUTONIUM CARBIDES  

Microsoft Academic Search

The reaction of plutonium hydride with carbon produced a mixture of ; plutonium monocarbide and plutcnium sesquicarbide. A wrapped container enabled ; the thin-walled quartz capillary containing the specimen to be handled in a ; gloved box and to be removed without stray alpha-contamination. Welding of the ; specimen rotating msgnet in the powder camera and limitation of the temperature

Pallmer

1962-01-01

179

A glass-encapsulated calcium phosphate wasteform for the immobilization of actinide-, fluoride-, and chloride-containing radioactive wastes from the pyrochemical reprocessing of plutonium metal  

NASA Astrophysics Data System (ADS)

Chloride-containing radioactive wastes are generated during the pyrochemical reprocessing of Pu metal. Immobilization of these wastes in borosilicate glass or Synroc-type ceramics is not feasible due to the very low solubility of chlorides in these hosts. Alternative candidates have therefore been sought including phosphate-based glasses, crystalline ceramics and hybrid glass/ceramic systems. These studies have shown that high losses of chloride or evolution of chlorine gas from the melt make vitrification an unacceptable solution unless suitable off-gas treatment facilities capable of dealing with these corrosive by-products are available. On the other hand, both sodium aluminosilicate and calcium phosphate ceramics are capable of retaining chloride in stable mineral phases, which include sodalite, Na 8(AlSiO 4) 6Cl 2, chlorapatite, Ca 5(PO 4) 3Cl, and spodiosite, Ca 2(PO 4)Cl. The immobilization process developed in this study involves a solid state process in which waste and precursor powders are mixed and reacted in air at temperatures in the range 700-800 C. The ceramic products are non-hygroscopic free-flowing powders that only require encapsulation in a relatively low melting temperature phosphate-based glass to produce a monolithic wasteform suitable for storage and ultimate disposal.

Donald, I. W.; Metcalfe, B. L.; Fong, S. K.; Gerrard, L. A.; Strachan, D. M.; Scheele, R. D.

2007-03-01

180

Delayed system response times affect immediate physiology and the dynamics of subsequent button press behavior.  

PubMed

System response time research is an important issue in human-computer interactions. Experience with technical devices and general rules of human-human interactions determine the user's expectation, and any delay in system response time may lead to immediate physiological, emotional, and behavioral consequences. We investigated such effects on a trial-by-trial basis during a human-computer interaction by measuring changes in skin conductance (SC), heart rate (HR), and the dynamics of button press responses. We found an increase in SC and a deceleration of HR for all three delayed system response times (0.5, 1, 2?s). Moreover, the data on button press dynamics was highly informative since subjects repeated a button press with more force in response to delayed system response times. Furthermore, the button press dynamics could distinguish between correct and incorrect decisions and may thus even be used to infer the uncertainty of a user's decision. PMID:24980983

Kohrs, Christin; Hrabal, David; Angenstein, Nicole; Brechmann, Andr

2014-11-01

181

BPM Button Optimization to Minimize Distortion Due to Trapped Mode Heating  

SciTech Connect

The outer circumference of a BPM button and the inner circumference of the button housing comprise a transmission line. This transmission line typically presents an impedance of a few tens of ohms to the beam, and couples very weakly to the 50 ohm coaxial transmission line that comprises the signal path out of the button. The modes which are consequently excited and trapped often have quality factors of several hundred, permitting resonant excitation by the beam. The thermal distortion resulting from trapped mode heating is potentially problematic for achieving the high precision beam position measurements needed to provide the sub-micron beam position stability required by light source users. We present a button design that has been optimized via material selection and component geometry to minimize both the trapped mode heating and the resulting thermal distortion.

Cameron,P.; Blednyk, A.; Kosciuk, B.; Pinayev, I.; Ravindranath, I.; Singh, O

2009-05-04

182

Behind the Scenes: Leinbach Is Shuttle's 'Button Pusher' - Duration: 5:25.  

NASA Video Gallery

He's the guy who, figuratively, pushes "the big red button" to send the shuttle into space. Astronaut Mike Massimino takes you inside the firing room at the Kennedy Space Center to meet Shuttle Lau...

183

Evaluation of source-term data for plutonium aerosolization  

SciTech Connect

Relevant data are reviewed and evaluated in an effort to define the time dependence and maximum value of the source term for plutonium aerosolization during a fuel fire. The rate of plutonium oxidation at high temperatures is a major determinant of the time dependence. Analysis of temperature-time data for oxidation of plutonium shows that the rate is constant (0.2 g PUO{sub 2}/cm{sup 2} of metal surface per min) and independent of temperature above 500{degrees}C. Total mass and particle distributions are derived for oxide products formed by reactions of plutonium metal and hydride. The mass distributions for products of all metal-gas reactions are remarkably similar with approximately 0.07 mass% of the oxide particles having geometric diameters {le} 10 {mu}m. In comparison, 25 mass% of the oxide formed by the PuH{sub 2}+O{sub 2} reaction is in this range. Experimental values of mass fractions released during oxidation are evaluated and factors that alter the release fraction are discussed.

Haschke, J.M.

1992-07-01

184

Reactions of plutonium dioxide with water and oxygen-hydrogen mixtures: Mechanisms for corrosion of uranium and plutonium  

SciTech Connect

Investigation of the interactions of plutonium dioxide with water vapor and with an oxygen-hydrogen mixture show that the oxide is both chemically reactive and catalytically active. Correspondence of the chemical behavior with that for oxidation of uranium in moist air suggests that similar catalytic processes participate in the mechanism of moisture-enhanced corrosion of uranium and plutonium. Evaluation of chemical and kinetic data for corrosion of the metals leads to a comprehensive mechanism for corrosion in dry air, water vapor, and moist air. Results are applied in confirming that the corrosion rate of Pu in water vapor decreases sharply between 100 and 200 degrees C.

Haschke, John M.; Allen, Thomas H.; Morales, Luis A.

1999-06-18

185

ESR Dosimetry for Atomic Bomb Survivors Using Shell Buttons and Tooth Enamel  

Microsoft Academic Search

Atomic bomb radiation doses to humans at Nagasaki and Hiroshima are investigated by electron spin resonance (ESR) from shell buttons and tooth enamel voluntarily supplied by survivors. A shell button gives a dose of 2.1 0.2 Gy with ESR signals at g=2.001 and g=1.997 while the signal at g=1.997 for the tooth enamel of the same person is 1.9 0.5

Motoji Ikeya; Junko Miyajima; Shunzo Okajima

1984-01-01

186

Preliminary safety evaluation for the plutonium stabilization and packaging system  

SciTech Connect

This Preliminary Safety Evaluation (PSE) describes and analyzes the installation and operation of the Plutonium Stabilization and Packaging System (SPS) at the Plutonium Finishing Plant (PFP). The SPS is a combination of components required to expedite the safe and timely storage of Plutonium (Pu) oxide. The SPS program will receive site Pu packages, process the Pu for storage, package the Pu into metallic containers, and safely store the containers in a specially modified storage vault. The location of the SPS will be in the 2736- ZB building and the storage vaults will be in the 2736-Z building of the PFP, as shown in Figure 1-1. The SPS will produce storage canisters that are larger than those currently used for Pu storage at the PFP. Therefore, the existing storage areas within the PFP secure vaults will require modification. Other modifications will be performed on the 2736-ZB building complex to facilitate the installation and operation of the SPS.

Shapley, J.E., Fluor Daniel Hanford

1997-03-14

187

Modification of Shirt Buttons for Retrospective Radiation Dosimetry after a Radiological Event  

PubMed Central

Preliminary results are presented for a personal radiation dosimeter in the form of a clothing button to provide gamma-ray dose estimation for clinically significant external radiation exposures to the general public due to a radiological incident, such as a Radiological Dispersal Device. Rods of thermoluminescent material (LiF:Mg,Ti and LiF:Mg,Cu,P) were encapsulated in plastic buttons, attached to shirts, and subjected to three cycles of home or commercial laundering or dry cleaning, including ironing or pressing. The buttons were subsequently exposed to doses of 137Cs gamma rays ranging from 0.75 to 8.2 Gy. The rods were removed from the buttons and their light output compared to their responses when bare or to the responses of a set of calibration rods of the same type and from the same manufacturer. In all three of the comparisons for LiF:Mg,Ti rods the relative responses of the rods in buttons changed by 2-6% relative to the same rods before cleaning. In both comparisons for LiF:Mg,Cu,P rods, the response of laundered rods was 1-3% lower than for the same rods before cleaning. Both these materials are potential candidates for button dosimeters. PMID:21451325

Marino, Stephen A.; Johnson, Gary W.; Schiff, Peter B.; Brenner, David J.

2010-01-01

188

APPENDIX G Partition Coefficients For Plutonium  

E-print Network

APPENDIX G Partition Coefficients For Plutonium #12;Appendix G Partition Coefficients For Plutonium G.1.0 Background A number of studies have focussed on the adsorption behavior of plutonium that Kd values for plutonium typically range over 4 orders of magnitude (Thibault et al., 1990). Also

189

Comparison of plutonium and cerium volatilities in Plasma Arc Centrifugal Treatment (PACT) systems  

SciTech Connect

Several configurations of plasma arc centrifugal treatment (PACT) systems are being considered as means for treating low level radioactive and mixed wastes. A series of tests using a full-scale (six foot inside diameter) PACT system have been conducted at the DOE-Office of Technology Development facility in Butte, MT. The plasma torch heat source in PACT systems produces very high localized temperatures (estimated >10,000 K), therefore volatilization of metals, particularly plutonium, is a concern. The full-scale tests used ceric oxide as a plutonium surrogate. In addition, a series of small-scale (one foot inside diameter) PACT tests were conducted, using feeds spiked with both cerium and plutonium. The purpose of this paper is to present a comparison of plutonium and cerium volatilities from the full-scale and small-scale tests, and to evaluate the probable volatility of plutonium during routine waste processing in the full-scale furnace.

Whitworth, C.G.; Rivers, T.; Kujawa, S.K. [MSE, Inc., Butte, MT (United States)] [and others

1995-12-31

190

Surplus weapons plutonium: Technologies for pit disassembly/conversion and MOX fuel fabrication  

SciTech Connect

This paper will provide a description of the technologies involved in the disposition of plutonium from surplus nuclear weapon components (pits), based on pit disassembly and conversion and on fabrication of mixed oxide (MOX) fuel for disposition through irradiation in nuclear reactors. The MOX/Reactor option is the baseline disposition plan for both the US and russian for plutonium from pits and other clean plutonium metal and oxide. In the US, impure plutonium in various forms will be converted to oxide and immobilized in glass or ceramic, surrounded by vitrified high level waste to provide a radiation barrier. A similar fate is expected for impure material in Russia as well. The immobilization technologies will not be discussed. Following technical descriptions, a discussion of options for monitoring the plutonium during these processes will be provided.

Toevs, J.W.

1997-12-31

191

Reaction kinetics relevant to the recycle hydride-dehydride process for plutonium recovery  

SciTech Connect

Objectives of this one-year, Laboratory Directed Research and Development (LDRD) project were the expansion of fundamental knowledge of plutonium chemistry and the development of information for enhancing plutonium recovery methods and weapons safety. Results of kinetic studies demonstrate that the monoxide monohydride, PuO(H), formed during corrosion of plutonium by water in pyrophoric when dry and acts as an initiator for hydride-catalyzed reaction of the metal with air. The catalyzed corrosion rate of Pu is 10{sup 8} times faster than that in dry air and transforms plutonium into a readily aerosolized material. A potential application for the catalytic reaction is in the direct recovery of plutonium as oxide. Wet PuO(H) is non-pyrophoric and the safety hazard posed by its formation is reduced if the material is not allowed to dry.

Haschke, J.M.; Allen, T.H.

1997-10-01

192

Chloride-catalyzed corrosion of plutonium in glovebox atmospheres  

SciTech Connect

Characterization of glovebox atmospheres and the black reaction product formed on plutonium surfaces shows that the abnormally rapid corrosion of components in the fabrication line is consistent with a complex salt-catalyzed reaction involving gaseous hydrogen chloride (HCl) and water. Analytical data verify that chlorocarbon and HCl vapors are presented in stagnant glovebox atmospheres. Hydrogen chloride concentrations approach 7 ppm at some locations in the glovebox line. The black corrosion product is identified as plutonium monoxide monohydride (PuOH), a product formed by hydrolysis of plutonium in liquid water and salt solutions at room temperature. Plutonium trichloride (PuCl{sub 3}) produced by reaction of HCl at the metal surface is deliquescent and apparently forms a highly concentrated salt solution by absorbing moisture from the glovebox atmosphere. Rapid corrosion is attributed to the ensuing salt-catalyzed reaction between plutonium and water. Experimental results are discussed, possible involvement of hydrogen fluoride (HF) is examined, and methods of corrective action are presented in this report.

Burgess, M. [ed.; Haschke, J.M.; Allen, T.H.; Morales, L.A.; Jarboe, D.M.; Puglisi, C.V.

1998-04-01

193

PRESSURE DEVELOPMENT IN SEALED CONTAINERS WITH PLUTONIUM BEARING MATERIALS  

SciTech Connect

Gas generation by plutonium-bearing materials in sealed containers has been studied. The gas composition and pressure are determined over periods from months to years. The Pu-bearing materials studied represent those produced by all of the major processes used by DOE in the processing of plutonium and include the maximum amount of water (0.5% by weight) allowed by DOE's 3013 Standard. Hydrogen generation is of high interest and the Pu-bearing materials can be classed according to how much hydrogen is generated. Hydrogen generation by high-purity plutonium oxides packaged under conditions typical for actual 3013 materials is minimal, with very low generation rates and low equilibrium pressures. Materials with chloride salt impurities have much higher hydrogen gas generation rates and result in the highest observed equilibrium hydrogen pressures. Other materials such as those with high metal oxide impurities generate hydrogen at rates in between these extremes. The fraction of water that is converted to hydrogen gas as equilibrium is approached ranges from 0% to 25% under conditions typical of materials packaged to the 3013 Standard. Generation of both hydrogen and oxygen occurs when liquid water is present. The material and moisture conditions that result in hydrogen and oxygen generation for high-purity plutonium oxide and chloride salt-bearing plutonium oxide materials have been characterized. Other gases that are observed include nitrous oxide, carbon dioxide, carbon monoxide, and methane.

Duffey, J.; Livingston, R.

2010-02-01

194

Carbide inclusions in delta-phase plutonium  

Microsoft Academic Search

Inclusions in plutonium alloys are common and depend on the processing parameters and age of the material. Plutonium-bearing compounds frequently observed as inclusions include: hydrides, nitrides, oxides, and carbides. Optical metallography and electron probe microanalysis (EPMA) were used to characterize plutonium carbide (PuC) inclusions in delta-phase plutonium. The structural complexities of plutonium combined with its radioactivity, pyrophoric nature, and toxicity

Thomas Baros; Charles C Davis; Heather T Hawkins; M. J. Ruggiero; S. J. Valentine; B. G. Storey; L. Roybal

2004-01-01

195

The structure of plutonium(IV) oxide as hydrolysed clusters in aqueous suspensions.  

PubMed

The behavior of plutonium still puzzles scientists 70 years after its discovery. There are several factors making the chemistry of plutonium interesting including its ability to keep several oxidation states. Another unique property is that the oxidation states +III, +IV, +V and +VI may exist simultaneously in solution. Another property plutonium shares with some other tetravalent metal ions is the ability to form stable polynuclear complexes or colloids. The structures of freshly prepared and five-year old plutonium(IV) colloids are compared with crystalline plutonium(IV) oxide using Pu L(3)-edge EXAFS. It was shown that as the plutonium colloids age they do in fact shrink in size, contrary to previous expectations. The aged colloidal particles are indeed very small with only 3-4 plutonium atoms, and with a structure very similar to solid plutonium(IV) oxide, but with somewhat shorter mean Pu-O bond and PuPu distances indicating a partial oxidation. The very small size of the colloidal particles is further supported by the fact that they do not sediment on heavy ultra-centrifugation. PMID:23175453

Ekberg, Christian; Larsson, Kristian; Skarnemark, Gunnar; degaard-Jensen, Arvid; Persson, Ingmar

2013-02-14

196

Energetic optimization of a piezo-based touch-operated button for man-machine interfaces  

NASA Astrophysics Data System (ADS)

This paper discusses the optimization of a touch-operated button for man-machine interfaces based on piezoelectric energy harvesting techniques. In the mechanical button, a common piezoelectric diaphragm, is assembled to harvest the ambient energy from the source, i.e. the operators touch. Under touch force load, the integrated diaphragm will have a bending deformation. Then, its mechanical strain is converted into the required electrical energy by means of the piezoelectric effect presented to the diaphragm. Structural design (i) makes the piezoceramic work under static compressive stress instead of static or dynamic tensile stress, (ii) achieves a satisfactory stress level and (iii) provides the diaphragm and the button with a fatigue lifetime in excess of millions of touch operations. To improve the buttons function, the effect of some key properties consisting of dimension, boundary condition and load condition on electrical behavior of the piezoelectric diaphragm are evaluated by electromechanical coupling analysis in ANSYS. The finite element analysis (FEA) results indicate that the modification of these properties could enhance the diaphragm significantly. Based on the key properties different contributions to the improvement of the diaphragms electrical energy output, they are incorporated into the piezoelectric diaphragms redesign or the structural design of the piezo-based button. The comparison of the original structure and the optimal result shows that electrical energy stored in the diaphragm and the voltage output are increased by 1576% and 120%, respectively, and the volume of the piezoceramic is reduced to 33.6%. These results will be adopted to update the design of the self-powered button, thus enabling a large decrease of energy consumption and lifetime cost of the MMI.

Sun, Hao; de Vries, Theo J. A.; de Vries, Rene; van Dalen, Harry

2012-03-01

197

Reaction between plutonium and deuterium. Part II. Rate measurements by weight changes  

Microsoft Academic Search

The effects of pressure and temperature upon the rate and mechanism of the reaction between plutonium and deuterium have been studied for temperatures to 400°C at pressures from 1 to 15 kPa. The rate was determined by measuring the weight changes of plutonium disks as the reaction proceeded. Below 200°C the reaction product spalled to expose fresh metal. The equation

David F. Bowersox

1977-01-01

198

Occlusion of large atrial septal defects with a centering buttoned device: early clinical experience.  

PubMed

A feasibility clinical study was conducted for the transcatheter occlusion of large ostium secundum atrial septal defects with the centering buttoned device. The centering buttoned device is a modification of the regular buttoned device in which a centering counter-occluder is sutured at the central 40% portion of the occluder. During centering it is stretched, forming a parachute-shaped structure and pulling the occluder over the center of the defect. During buttoning, the counter-occluder forms a double figure eight, opposing the right atrial side of the atrial septum. Occlusion was performed in 12 patients aged 6 to 56 years. All had been rejected for transcatheter occlusion by the regular buttoned device, because of either their defect size or the lack of adequate septal rim. The defect size varied between 23 and 31 mm, and the device size varied between 45 and 60 mm. Nine had immediate effective occlusions of their defects and three residual shunts. One patient with unbuttoning had hemolysis at 2 weeks and underwent surgery. Early results of the transcatheter occlusion of large atrial septal defects are promising, and larger clinical trials are justified. PMID:8579033

Sideris, E B; Leung, M; Yoon, J H; Chen, C R; Lochan, R; Worms, A M; Rey, C; Meier, B

1996-02-01

199

Results from a Test Fixture for button BPM Trapped Mode Measurements  

SciTech Connect

A variety of measures have been suggested to mitigate the problem of button BPM trapped mode heating. A test fixture, using a combination of commercial-off-the-shelf and custom machined components, was assembled to validate the simulations. We present details of the fixture design, measurement results, and a comparison of the results with the simulations. A brief history of the trapped mode button heating problem and a set of design rules for BPM button optimization are presented elsewhere in these proceedings. Here we present measurements on a test fixture that was assembled to confirm, if possible, a subset of those rules: (1) Minimize the trapped mode impedance and the resulting power deposited in this mode by the beam. (2) Maximize the power re-radiated back into the beampipe. (3) Maximize electrical conductivity of the outer circumference of the button and minimize conductivity of the inner circumference of the shell, to shift power deposition from the button to the shell. The problem is then how to extract useful and relevant information from S-parameter measurements of the test fixture.

Cameron,P.; Bacha, B.; Blednykh, A.; Pinayev, I.; Singh, O.

2009-05-04

200

Evaluation of Cognitive Function of Children with Developmental Disabilities by means of Button-Press Task  

NASA Astrophysics Data System (ADS)

The button-press task means that the subject observes a moving target and presses a button to stop it when the target enters a specified area on a computer display. Subjects perform normal task, suppressed task and delayed task. In the suppressed task, the moving target disappears at some point during the trial. In the delayed task, there is some lag time between the time of pressing button and of stopping target. In these tasks, subjects estimate the movement of the target, and press the button considering his/her own reaction time. In our previous study, we showed that cognitive and motor function was able to be evaluated by these tasks. In this study, we examined error data of children with developmental disabilities to evaluate the cognitive function, and investigated the learning processes. Moreover, we discussed the developmental stages by comparing the children with disabilities to normal control children, and we clarified the behavior characteristics of children with developmental disabilities. Asa result, it was shown that our evaluation method and system for the button-press task were effective to evaluate cognitive ability of children with developmental disabilities.

Nakazono, Shogo; Kobori, Satoshi

201

COMPARISON OF THE EFFECTS OF TWO PUSH-TO-TALK BUTTON IMPLEMENTATIONS ON DRIVER HAND POSITION AND VISUAL ATTENTION  

Microsoft Academic Search

Summary: Buttons built into the steering wheel are used in many vehicles as push-to-talk (PTT) buttons for in-car speech user interfaces. We explore the influence of such a fixed PTT button on driver hand position on the steering wheel and on visual attention while driving. We also explore these variables for a wireless PTT glove, which allows drivers to use

Oskar Palinko; Andrew L. Kun

202

Criticality Experiments with Mixed Plutonium and Uranium Nitrate Solution at a Plutonium Fraction of 0.4 in Slab and Cylindrical Geometry  

SciTech Connect

A series of critical experiments was completed with mixed plutonium-uranium solutions having Pu/(Pu + U) ratios of approximately 0.4. These experiments were a part of the Criticality Data Development Program between the United States Department of Energy (USDOE), and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of, and data from, the experiments are included in this report. The experiments were performed with mixed plutonium-uranium solutions in cylinqrical and slab geometries and included measurements with a water reflector, a concrete reflector, and without an added reflector. The concentration was varied from 105 to 436 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was 0.4 for all experiments.

Lloyd, RC

1988-04-01

203

Browning inhibition and quality preservation of button mushroom (Agaricus bisporus) by essential oils fumigation treatment.  

PubMed

The effect of essential oil fumigation treatment on browning and postharvest quality of button mushrooms (Agaricus bisporus) was evaluated upon 16 days cold storage. Button mushrooms were fumigated with essential oils, including clove, cinnamaldehyde, and thyme. Changes in the browning index (BI), weight loss, firmness, percentage of open caps, total phenolics, ascorbic acid, microbial activity and activities of polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL), and peroxidase (POD) were measured. The results indicated that all essential oils could inhibit the senescence of mushrooms, and the most effective compound was cinnamaldehyde. Fumigation treatment with 5 ?l l? cinnamaldehyde decreased BI, delayed cap opening, reduced microorganism counts, promoted the accumulation of phenolics and ascorbic acid. In addition, 5 ?l l? cinnamaldehyde fumigation treatment inhibited the activities of PPO and POD, and increased PAL activity during the storage period. Thus, postharvest essential oil fumigation treatment has positive effects on improving the quality of button mushrooms. PMID:24295683

Gao, Mengsha; Feng, Lifang; Jiang, Tianjia

2014-04-15

204

Co-Design: Fabrication of Unalloyed Plutonium  

SciTech Connect

The successful induction casting of plutonium is a challenge which requires technical expertise in areas including physical metallurgy, surface and corrosion chemistry, materials science, electromagnetic engineering and a host of other technologies all which must be applied in concert. Here at LANL, we are employing a combined experimental and computational approach to design molds and develop process parameters needed to produce desired temperature profiles and improved castings. Computer simulations are performed using the commercial code FLOW-3D and the LANL ASC computer code TRUCHAS to reproduce the entire casting process starting with electromagnetic or radiative heating of the mold and metal and continuing through pouring with coupled fluid flow, heat transfer and non-isothermal solidification. This approach greatly reduces the time required to develop a new casting designs and also increases our understanding of the casting process, leading to a more homogeneous, consistent product and better process control. We will discuss recent casting development results in support of unalloyed plutonium rods for mechanical testing.

Korzekwa, Deniece R. [Los Alamos National Laboratory; Knapp, Cameron M. [Los Alamos National Laboratory; Korzekwa, David A. [Los Alamos National Laboratory; Gibbs, John W [Northwestern University

2012-07-25

205

LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY  

SciTech Connect

A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.

Nash, C.

2012-02-03

206

Plutonium shipments - a supplement  

SciTech Connect

By means of a supplement to the stimulating analysis found in the comprehensive article by Professor Jon Van Dyke on `Sea Shipment of Japanese Plutonium under International Law`, published in Volume 24 of this journal, we feel that the following clarifications and additions are appropriate. Radioactive wastes are not covered by the 1989 Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and Their Disposal. Fir this reason, the Basel Conference adopted on March 22, 1989, along with the convention, Resolution 5 on Harmonization of Procedures of the Basel Convention and the Code of Practice for International Transactions Involving Nuclear Wastes. In accordance with Resolution 5, the provisions of the Basel Convention were taken into full account during the elaboration of the IAEA code, which ultimately was adopted by Resolution GC(XXXIV)/530 of the General Conference on Code of Practice on the International Transboundary Movement of Radioactive Waste (TMRW) of September 21, 1990. The IAEA code of practice and the respective regional instruments affirm, with respect to TMRW, the general principles of the Basel Convention, including the critical regime of prior notification and prior informed consent (PIC) that extend the scope of duties of notification, environmental impact assessment, and consultation with respect to transboundary interference as the duties have evolved under existing customary law.

Kwiatkowska, B.; Soons, A. [Netherlands Institute for the Law of the Sea, Utrecht (Netherlands)

1994-10-01

207

Four-button BPM coefficients in cylindrical and elliptic beam chambers.  

SciTech Connect

Beam position monitor (BPM) coefficients are calculated from induced charges on four-button BPMs in circular and elliptic beam chambers for {gamma} >>1. Since the beam chamber cross-section for the APS storage ring is different from an exact elliptic geometry, numerical values of the BPM coefficients and their inversions are computed from two-dimensional electrostatic field distributions inside an exact geometry of the beam chamber. Utilizing Green's reciprocation theorem, a potential value is applied to the buttons rather than changing the beam position, and potential distributions corresponding to the beam positions are then computed.

Kim, S.H.

1999-04-08

208

System design document for the plutonium stabilization and packaging system  

SciTech Connect

The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements for DOE standards for safe storage of these materials for 50 years. This document describes the highest level design information and user characteristics from an operational perspective. It provides guidance for developing procurement and installation specifications, interface requirements, and test plans.

NONE

1996-05-08

209

SYNTHESIS AND PROPERTIES OF PLUTONIUM MONONITRIDE  

Microsoft Academic Search

BS>Preparation of plutonium nitride, PuN, was accomplished by arc-; melting alpha plutonium under one atmosphere of nitrogen, by reacting plutonium ; hydride with anhydrous ammonia at 600 deg C, and by a two-step process reacting ; plutonium with hydrogen to form the hydride and converting this to PuN in a ; nitrogen atmosphere. The arcmelted product consisted of PuN dendrites

1962-01-01

210

Summary of near-term options for Russian plutonium production reactors  

SciTech Connect

The Russian Federation desires to phase out the production of weapons-grade plutonium. To this end, ten graphite-moderated, water-cooled reactors have been shut down during the last several years. However, complete cessation of plutonium production is impeded because the three operating Russian reactors supply district heat and electricity to the Tomsk and Krasnoyarsk regions in addition to producing weapon-grade plutonium. In August 1992 the Russian Federation Ministry of Atomic Energy (MINATOM) and the Russian Nuclear Regulatory Agency (GAN) requested U.S. assistance for achieving a cessation of weapons-grade plutonium production, placing the plutonium production reactors under safeguards, and conducting a program to evaluate and assist in the upgrade of plant safety. As a result of that and subsequent communications, Secretary O`Leary and Minister Mikhailov have signed a protocol that expressed their desire to shut down the three remaining plutonium production reactors as soon as possible by replacing them with alternate energy sources. In the meantime, both MINATOM and the Department of Energy (DOE) are concerned about the safety of the plants as well as the difficulty in ceasing the production of plutonium as long as the plants continue to operate. A military subsidy has been provided for operation of the production reactor complex. Revenues received for providing district heat and electricity are insufficient to cover costs for the current natural uranium metal fuel cycle. A more economical fuel cycle is needed for civilian operations.

Newman, D.F.; Gesh, C.J.; Love, E.F.; Harms, S.L.

1994-07-01

211

Plutonium-the element of surprise  

E-print Network

Plutonium-the element of surprise G.R.ChoppinandB.E.Stout This year marked the soth annivrsary ol the original isolation o{ plutonium, making ita relativenewcomerto the PeriodicTable.Ovrthe past 50 years plutonium has become more familiar to tho generslpublic than manyothor,olderelem6nts

Short, Daniel

212

Plutonium accident resistant container project. [Air transport  

Microsoft Academic Search

The PARC (plutonium accident resistant container) project resulted in the design, development, and certification testing of a crashworthy air-transportable plutonium package (shipping container) for certification by the USNRC (Nuclear Regulatory Commission). This PAT-1 (plutonium air transportable) package survives a very severe sequential test program of impact, crush, puncture, slash, burn, and water immersion. There is also an individual hydrostatic pressure

1978-01-01

213

Ignition characteristics of plutonium sputtered films  

Microsoft Academic Search

Plutonium sputtering produces thin plutonium films on shields and other parts in the apparatus. Occasionally, the thin film peels from the backing. Loose plutonium films have a high surface area to mass ratio and, therefore a low ignition temperature. The films are generated in a box with a low oxygen concentration (less than 5 volume percent oxygen in nitrogen). Subsequently,

Musgrave

1972-01-01

214

China's HEU and Plutonium Production and Stocks  

Microsoft Academic Search

This article discusses the history of China's production of highly enriched uranium and plutonium for nuclear weapons and uses new public information to estimate the amount of highly enriched uranium and plutonium China produced at its two gaseous diffusion plants and two plutonium production complexes. The new estimates in this article are that China produced 20 4 tons of

HUI ZHANG

2011-01-01

215

Preventing pollution from plutonium processing  

SciTech Connect

The plutonium processing facility at Los Alamos has adopted the strategic goal of becoming a facility that processes plutonium in a way that produces only environmentally benign waste streams. Pollution prevention through source reduction and environmentally sound recycling are being pursued. General approaches to waste reductions are administrative controls, modification of process technologies, and additional waste polishing. Recycling of waste materials, such as spent acids and salts, are technical possibilities and are being pursued to accomplish additional waste reduction. Liquid waste stream polishing to remove final traces of plutonium and hazardous chemical constituents is accomplished through (a) process modifications, (b) use of alternative chemicals and sorbents for residue removal, (c) acid recycling, and (d) judicious use of a variety of waste polishing technologies. Technologies that show promise in waste minimization and pollution prevention are identified. Working toward this goal of pollution prevention is a worthwhile endeavor, not only for Los Alamos, but for the Nuclear Complex of the future.

Pillay, K.K.S.

1993-11-01

216

Pediatric Anterior Cruciate Ligament Femoral Fixation: The Trans-Iliotibial Band Endoscopic Portal for Direct Visualization of Ideal Button Placement  

PubMed Central

Pediatric and adolescent anterior cruciate ligament reconstruction is a commonly performed procedure that has been increasing in incidence. Multiple techniques for graft fixation have been described. Button-based femoral cortical suspension fixation of the anterior cruciate ligament graft allows for fast, secure fixation with strong load-to-failure biomechanical properties. The biomechanical properties of button-based femoral cortical suspension fixation are especially beneficial with soft-tissue grafts such as hamstring autografts. Confirmation of a successfully flipped button can be achieved with intraoperative fluoroscopy or indirect viewing; however, these techniques do not provide direct visualization of the flipped button. Our trans-iliotibial band endoscopic portal allows the surgeon to safely and directly visualize the flipped button on the lateral femoral cortex and ensure that there is no malpositioning in the form of an incompletely flipped button or from soft-tissue interposition between the button and the lateral femoral cortex. This portal therefore allows for direct visual confirmation that the button is fully flipped and resting flush against the femoral cortex, deep to the iliotibial band and vastus lateralis. PMID:25126498

Mistovich, R. Justin; O'Toole, Patrick O.J.; Ganley, Theodore J.

2014-01-01

217

BIOLOGICALLY-MEDIATED REMOVAL AND RECOVERY OF PLUTONIUM FROM CONTAMINATED SOIL  

SciTech Connect

An innovative biological treatment technology successfully reduced plutonium concentration in soil from the Nevada Test Site (NTS) by over 80%. The final volume of plutonium-contaminated material that required disposal was reduced by over 90%. These results, achieved by an independent testing laboratory, confirm the results reported previously using NTS soil. In the previous test a 2530-gram sample of soil (350 to 400 pCi/g Pu) resulted in production of 131 grams of sludge (6,320 pCi/ g Pu) and a treated soil containing 72 pCi/g of Pu. The technology is based on the biological acidification of the soil and subsequent removal of the plutonium and other dissolved metals by a low volume, low energy water leaching process. The leachate is treated in a sulfate-reducing bioreactor to precipitate the metals as metal sulfides. Water may be recycled as process water or disposed since the treatment process removes over 99% of the dissolved metals including plutonium from the water. The plutonium is contained as a stable sludge that can be containerized for final disposal. Full-scale process costs have been developed which employ widely used treatment technologies such as aerated soil piles (biopiles) and bioreactors. The process costs were less than $10 per cubic foot, which were 40 to 50% lower than the baseline costs for the treatment of the NTS soil. The equipment and materials for water and sludge treatment and soil handling are commercially available.

Jerger, Douglas E., Ph.D.,; Alperin, Edward S., QEP,; Holmes, Robert G., Ph.D.

2003-02-27

218

Plutonium removal limit for the disposition of plutonium-bearing materials  

SciTech Connect

Recent changes in world politics have resulted in the United States reducing its nuclear weapons and stopping plutonium production. Prior plutonium production, dismantling warheads, and decontamination and decommissioning some facilities have produced plutonium-bearing materials which must continue to be managed. As each lot of material is processed, the processor must decide whether to remove the plutonium before discarding the material or to discard it without plutonium removal. DOE has developed a new method of making this decision, called the Plutonium Removal Limit System (PRLS). The system is based on defining a plutonium concentration above which the cost of disposing of plutonium-bearing materials will be less if plutonium is recovered and below which the cost will be less if plutonium is discarded (following suitable waste treatment). This method minimizes the overall cost to DOE for disposing of the existing inventory of plutonium-bearing materials. The method was used to analyze the plutonium-discard limit for all categories of plutonium-bearing materials currently at each site. This analysis indicated the need to standardize the way sites make the remove-versus-discard decision. For this purpose, a set of departmental plutonium removal limits was developed. DOE expects to approve implementing this new method at all facilities handling plutonium-bearing material in FY 93.

White, W.C. (USDOE, Washington, DC (United States)); Mowery, B. (Los Alamos National Lab., NM (United States)); Felt, R. (Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States)); King, F.; Hurley, J.D. (Westinghouse Savannah River Co., Aiken, SC (United States))

1992-01-01

219

Plutonium removal limit for the disposition of plutonium-bearing materials  

SciTech Connect

Recent changes in world politics have resulted in the United States reducing its nuclear weapons and stopping plutonium production. Prior plutonium production, dismantling warheads, and decontamination and decommissioning some facilities have produced plutonium-bearing materials which must continue to be managed. As each lot of material is processed, the processor must decide whether to remove the plutonium before discarding the material or to discard it without plutonium removal. DOE has developed a new method of making this decision, called the Plutonium Removal Limit System (PRLS). The system is based on defining a plutonium concentration above which the cost of disposing of plutonium-bearing materials will be less if plutonium is recovered and below which the cost will be less if plutonium is discarded (following suitable waste treatment). This method minimizes the overall cost to DOE for disposing of the existing inventory of plutonium-bearing materials. The method was used to analyze the plutonium-discard limit for all categories of plutonium-bearing materials currently at each site. This analysis indicated the need to standardize the way sites make the remove-versus-discard decision. For this purpose, a set of departmental plutonium removal limits was developed. DOE expects to approve implementing this new method at all facilities handling plutonium-bearing material in FY 93.

White, W.C. [USDOE, Washington, DC (United States); Mowery, B. [Los Alamos National Lab., NM (United States); Felt, R. [Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (United States); King, F.; Hurley, J.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

1992-12-31

220

A Proteomic Approach to Identification of Plutonium Binding Proteins in Mammalian Cells  

PubMed Central

Plutonium can enter the body through different routes and remains there for decades; however its specific biochemical interactions are poorly defined. We, for the first time, have studied plutonium-binding proteins using a metalloproteomic approach with rat PC12 cells. A combination of immobilized metal ion chromatography, 2D gel electrophoresis, and mass spectrometry were employed to analyze potential plutonium-binding proteins. Our results show that several proteins from PC12 cells show affinity towards Pu4+-NTA (plutonium bound to nitrilotriacetic acid). Proteins from seven different spots in the 2D gel were identified. In contrast to the previously known plutonium-binding proteins transferrin and ferritin, which bind ferric ions, most identified proteins in our experiment are known to bind calcium, magnesium, or divalent transition metal ions. The identified plutonium interacting proteins also have functional roles in downregulation of apoptosis and other pro-proliferative processes. MetaCore analysis based on this group of proteins produced a pathway with a statistically significant association with development of neoplastic diseases. PMID:22146473

Aryal, Baikuntha P.; Paunesku, Tatjana; Woloschak, Gayle E.; He, Chuan; Jensen, Mark P.

2013-01-01

221

Dietary supplementation with white button mushroom augments the protective immune response to Salmonella vaccine in mice  

Technology Transfer Automated Retrieval System (TEKTRAN)

We previously showed that dietary white button mushrooms (WBM) enhanced natural killer cell activity and that in vitro WBM supplementation promotes maturation and function of dendritic cells (DC). The current study investigated whether WBM consumption would enhance pathogen-specific immune response ...

222

Friction between a cemented carbide rock drill button and different rock types  

Microsoft Academic Search

WC\\/Co cemented carbide is the most common material for rock drilling due to its superior combination of toughness and hardness. To elucidate the relationship between the known wear behaviour against different rock types and the corresponding sliding friction performance, a friction test series has been performed. A cemented carbide rock drill button with 94-wt.% WC and 6-wt.% Co was sliding

U. Beste; S. Jacobson

2002-01-01

223

Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation  

E-print Network

Genome sequence of the button mushroom Agaricus bisporus reveals mechanisms governing adaptation. Aside from its ecological role, A. bisporus has been an important component of the human diet for over present two A. bisporus genomes, their gene repertoires and transcript profiles

Hibbett, David S.

224

Using Buttons to Better Manage Online Presence: How One Academic Institution Harnessed the Power of Flair  

ERIC Educational Resources Information Center

This article provides a case study of how the University of Nebraska College of Law and Schmid Law Library use "buttons" to manage Law College faculty members' and librarians' online presence. Since Google is the primary search engine used to find information, it is important that librarians and libraries assist Web site

Dority Baker, Marcia L.

2013-01-01

225

"Ask Me About Our Research" Campaign Button | accrualnet.cancer.gov  

Cancer.gov

UCSF has created buttons that physicians and nurses wear to encourage patients to ask about the departments research projects. While these products do not specifically promote clinical trials, they may help set a tone that prioritizes clinical research and shows that trials are normal, everyday work.

226

Severe esophageal injuries caused by accidental button battery ingestion in children  

PubMed Central

Introduction: Button batteries represent a low percentage of all foreign bodies swallowed by children and esophageal location is even less frequent. However, these cases are more likely to develop severe injuries. The aim of this essay is to report three cases treated in our institution and review previous reports. Material and Methods: Chart review and literature search. Case Reports: We treated three children between 2-7- years old with button batteries lodged at esophagus. They all presented esophageal burns (EB), which evolved in esophageal stenosis in two out of the three cases. Results: We found 29 more cases in literature and the injuries included EB, esophageal perforation (EP) and tracheoesophageal fistula (TEF). Discussion: Swallowed button batteries rarely remain in esophagus, but these cases present a higher risk of tisular damage. Injuries can take place even after few hours; and therefore, endoscopy must be performed as soon as possible. Further study on button batteries safety and the establishment of a maximum size for them would be good preventive measures. PMID:25400396

Fuentes, Sara; Cano, Indalecio; Benavent, Mara Isabel; Gmez, Andrs

2014-01-01

227

The plutonium-hydrogen reaction: SEM characterization of product morphology  

NASA Astrophysics Data System (ADS)

The product morphology of the hydrogen reaction with plutonium near the visibly observable reaction front, which separates the hydrided zone from the unreacted metal zone, has been investigated by scanning electron microscopy (SEM). Results indicate the existence of a mixed phase of metal and metal hydride, located some 20-30 ?m ahead of the visibly hydrided-zone. The mixed phase regions are often located next to a grain boundary network and exhibit rays of hydride advancing toward the unreacted metal regions. Analysis indicates that hydrogen transport and therefore the hydriding reaction are preferable along the grain boundary network and defects in the metal structure rather than through a homogeneous intragrain reaction. Product fracture and formation of small hydride particles during hydriding are likely results of such inhomogeneous growth.

Dinh, L. N.; McCall, S. K.; Saw, C. K.; Haschke, J. M.; Allen, P. G.; McLean, W.

2014-08-01

228

Insertion of Balloon Retained Gastrostomy Buttons: A 5-Year Retrospective Review of 260 Patients  

SciTech Connect

Radiologically inserted gastrostomy (RIG) is an established way of maintaining enteral nutrition in patients who cannot maintain nutrition orally. The purpose of this study was to evaluate the safety and efficacy of primary placement of a wide bore button gastrostomy in a large, varied patient population through retrospective review. All patients who underwent gastrostomy placement from January 1, 2004 to January 1, 2009 were identified. 18-Fr gastrostomy buttons (MIC-Key G) were inserted in the majority. Follow-up ranged from 6 months to 4.5 years. A total of 260 patients (M:F 140:120, average age 59.2 years) underwent gastrostomy during the study period. Overall success rate for RIG placement was 99.6 %, with success rate of 95.3 % for primary button insertion. Indications included neurological disorders (70 %), esophageal/head and neck malignancy (21 %), and other indications (9 %). Major and minor complication rates were 1.2 and 12.8 %, respectively. Thirty-day mortality rate was 6.8 %. One third of patients underwent gastrostomy reinsertion during the study period, the main indication for which was inadvertent catheter removal. Patency rate was high at 99.5 %. The maximum number of procedures in any patient was 8 (n = 2), and the average tube dwell time was 125 days. Primary radiological insertion of a wide bore button gastrostomy is a safe technique, with high success rate, high patency rate, and low major complication rate. We believe that it is feasible to attempt button gastrostomy placement in all patients, once tract length is within limits of tube length. If difficulty is encountered, then a standard tube may simply be placed instead.

Power, Sarah, E-mail: sarahpower28@yahoo.co.uk; Kavanagh, Liam N.; Shields, Mary C.; Given, Mark F.; Keeling, Aoife N.; McGrath, Frank P.; Lee, Michael J., E-mail: mlee@rcsi.ie [Beaumont Hospital, Department of Radiology (Ireland)

2013-04-15

229

Plutonium recovery from carbonate wash solutions  

SciTech Connect

Periodically higher than expected levels of plutonium are found in carbonate solutions used to wash second plutonium cycle solvent. The recent accumulation of plutonium in carbonate wash solutions has led to studies to determine the cause of that plutonium accumulation, to evaluate the quality of all canyon solvents, and to develop additional criteria needed to establish when solvent quality is acceptable. Solvent from three canyon solvent extraction cycles was used to evaluate technology required to measure tributyl phosphate (TBP) degradation products and was used to evaluate solvent quality criteria during the development of plutonium recovery processes. 1 fig.

Gray, J.H.; Reif, D.J.; Chostner, D.F.; Holcomb, H.P.

1991-12-31

230

Hanford-derived plutonium in Columbia River sediments  

Microsoft Academic Search

Mass spectrometry data on plutonium isolated from Columbia River sediments exhibit mean ratios of plutonium-240 to plutonium-242 consistent with those observed for integrated global fallout. Ratios of plutonium-240 to plutonium-239 show marked deviations from accepted fallout values, suggesting a second source of plutonium-239. This additional plutonium-239 arises from the decay of neptunium-239 produced in reactor effluent water from the old

T. M. Beasley; L. A. Ball; J. E. Andrews; J. E. Halverson

1981-01-01

231

Formation of Plutonium Hydride PuH2: Description of the Reaction Rate Surface as a Function of Pressure and Temperature  

Microsoft Academic Search

T he hydriding reaction of plutonium metal is used increasingly in the recovery and processing of plutonium. There is thus an increased need for an understanding not only of the thermodynamic parameters governing the reaction, but also of the kinetic behavior to be expected with variations in process parameters such as pressure and temperature . A mathematical description of the

Roberta N. Mulford; Damian C. Swift

2003-01-01

232

Historical review of plutonium storage container failures at Lawrence Livermore National Laboratory  

SciTech Connect

As part of the DOE Plutonium Vulnerability Assessment, an investigation was made to characterize the can failures at LLNL. Since the LLNL Plutonium Facility was opened for plutonium operations in 1961, there have only been three can failures that could be remembered by plutonium handlers, vault workers, chemical analysts, and material managers. Only one of these can failures was discovered during the processing of more than 606 packages containing plutonium as part of the LLNL Plutonium Inventory Reduction Program. A very low failure rate, especially since some of the 606 cans had been in storage for two to three decades. Two of the three containers that failed were made of aluminum and were packaged with 1.25 inch diameter plutonium metal spheres. The cans were split down their entire length and the plutonium metal was heavily oxidized. The secondary gallon container of the third package failure was found to be imploded in the storage vault. Upon closer examination, the plastic bags around the inner pint can were badly melted and the lid on the can was loose. Like the other two failures, the metal was heavily oxidized. In all three of the can failures, it is theorized that air entered the inner can through incomplete sealing and the oxygen in the air then reacted with the plutonium metal to produce plutonium oxide. Air was supplied to the inner can by permeation through the surrounding plastic bag. The air could have either diffused through the bag or could have been pumped through the twisted and taped ends of the inner most bag. The inner bags and cans were packaged into second bags and cans in an air atmosphere; therefore, trapping air inside the packaging configuration that could have passed through the bags. A failure of the inner can integrity would be necessary for the air to pass into it. In all three LLNL can failure cases, it is believed that the seal of the inner can was not sufficient to prevent a breach of the can environment.

Dodson, K.E.

1994-05-01

233

Plutonium immobilization form evaluation  

SciTech Connect

The 1994 National Academy of Sciences study and the 1997 assessment by DOE`s Office of Nonproliferation and National Security have emphasized the importance of the overall objectives of the Plutonium Disposition Program of beginning disposition rapidly. President Clinton and other leaders of the G-7 plus one (`Political Eight`) group of states, at the Moscow Nuclear Safety And Security Summit in April 1996, agreed on the objectives of accomplishing disposition of excess fissile material as soon as practicable. To meet these objectives, DOE has laid out an aggressive schedule in which large-scale immobilization operations would begin in 2005. Lawrence Livermore National Laboratory (LLNL), the lead laboratory for the development of Pu immobilization technologies for the Department of Energy`s Office of Fissile Materials Disposition (MD), was requested by MD to recommend the preferred immobilization form and technology for the disposition of excess weapons-usable Pu. In a series of three separate evaluations, the technologies for the candidate glass and ceramic forms were compared against criteria and metrics that reflect programmatic and technical objectives: (1) Evaluation of the R&D and engineering data for the two forms against the decision criteria/metrics by a technical evaluation panel comprising experts from within the immobilization program. (2) Integrated assessment by LLNL immobilization management of the candidate technologies with respect to the weighted criteria and other programmatic objectives, leading to a recommendation to DOE/MD on the preferred technology based on technical factors. (3) Assessment of the decision process, evaluation, and recommendation by a peer review panel of independent experts. Criteria used to assess the relative merits of the immobilization technologies were a subset of the criteria previously used by MD to choose among disposition options leading to the Programmatic Environmental Impact Statement and Record of Decision for the Storage and Disposition of Weapons-Usable Fissile Materials, January 1997. Criteria were: (1) resistance to Pu theft, diversion, and recovery by a terrorist organization or rogue nation; (2) resistance to recovery and reuse by host nation; (3) technical viability, including technical maturity, development risk, and acceptability for repository disposal; (4) environmental, safety, and health factors; (5) cost effectiveness; and (6) timeliness. On the basis of the technical evaluation and assessments, in September, 1997, LLNL recommended to DOE/MD that ceramic technologies be developed for deployment in the planned Pu immobilization plant.

Gray, L. W., LLNL

1998-02-13

234

The effect of the composition of plutonium loaded on the reactivity change and the isotopic composition of fuel produced in a fast reactor  

NASA Astrophysics Data System (ADS)

This paper presents the results of a numerical investigation into burnup and breeding of nuclides in metallic fuel consisting of a mixture of plutonium and depleted uranium in a fast reactor with sodium coolant. The feasibility of using plutonium contained in spent nuclear fuel from domestic thermal reactors and weapons-grade plutonium is discussed. It is shown that the largest production of secondary fuel and the least change in the reactivity over the reactor lifetime can be achieved when employing plutonium contained in spent nuclear fuel from a reactor of the RBMK-1000 type.

Blandinskiy, V. Yu.

2014-12-01

235

Plutonium Recycle: The Fateful Step  

ERIC Educational Resources Information Center

Calls attention to the fact that if the Atomic Energy Commission proceeds with its plans to authorize the nuclear power industry to use plutonium as a fuel in commercial nuclear reactors around the country, this will result in a dramatic escalation in the risks posed by nuclear power. (PEB)

Speth, J. Gustave; And Others

1974-01-01

236

Plutonium from Chernobyl in Poland  

Microsoft Academic Search

Samples of coniferous forest litter collected in POland, of known ?-emitters activity, have been analysed for ? emitting plutonium isotopes. Specific as well as surface activities of the samples have been determined. Chernobyl and global fallout components have been distinguished for each sample. The observed maximum surface activity for Chernobyl fallout is above 25 Bq m?2 (for all ?-emitting Pu

Jerzy W. Mietelski

1995-01-01

237

PLUTONIUM METALLOGRAPHY AT LOS ALAMOS  

Microsoft Academic Search

From early days of the Manhattan program to today, scientists and engineers have continued to investigate the metallurgical properties of plutonium (Pu). Although issues like aging was not a concern to the early pioneers, today the reliability of our aging stockpile is of major focus. And as the country moves toward a new generation of weapons similar problems that the

RAMIRO A. PEREYRA; DARRYL LOVATO

2007-01-01

238

Plutonium waste incineration using pyrohydrolysis  

SciTech Connect

Waste generated by Savannah River Site (SRS) plutonium operations includes a contaminated organic waste stream. A conventional method for disposing of the organic waste stream and recovering the nuclear material is by incineration. When the organic material is burned, the plutonium remains in the incinerator ash. Plutonium recovery from incinerator ash is highly dependent on the maximum temperature to which the oxide is exposed. Recovery via acid leaching is reduced for a high fired ash (>800{degree}C), while plutonium oxides fired at lower decomposition temperatures (400--800{degrees}C) are more soluble at any given acid concentration. To determine the feasibility of using a lower temperature process, tests were conducted using an electrically heated, controlled-air incinerator. Nine nonradioactive, solid, waste materials were batch-fed and processed in a top-heated cylindrical furnace. Waste material processing was completed using a 19-liter batch over a nominal 8-hour cycle. A processing cycle consisted of 1 hour for heating, 4 hours for reacting, and 3 hours for chamber cooling. The water gas shift reaction was used to hydrolyze waste materials in an atmosphere of 336% steam and 4.4% oxygen. Throughput ranged from 0.14 to 0.27 kg/hr depending on the variability in the waste material composition and density.

Meyer, M.L.

1991-12-31

239

Properties of Liquid Plutonium  

SciTech Connect

Unalloyed polycrystalline Pu displays extreme thermal expansion behavior, i.e., {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} increases by 25% in volume and {delta} {yields} {var_epsilon} {yields} liquid decreases by 4.5% in volume. Thus, making it difficult to measure density into the liquid state. Dilatometer outfitted with CaF molten metal cell offers a proven capability to measure thermal expansion in molten metals, but has yet to be proven for Pu. Historic data from the liquid nuclear fuels program will prove extremely useful as a guide to future measurements. 3.3at% Ga changes Pu molten metal properties: 50% increase in viscosity and {approx}3% decrease in density. Fe may decrease the density by a small amount assuming an averaging of densities for Pu-Ga and Pu-Fe liquids. More recent Boivineau (2009) work needs some interpretation, but technique is being employed in (U,Pu)O{sub 2} nuclear fuels program (Pu Futures, 2012).

Freibert, Franz J. [Los Alamos National Laboratory; Mitchell, Jeremy N. [Los Alamos National Laboratory; Schwartz, Daniel S. [Los Alamos National Laboratory; Saleh, Tarik A. [Los Alamos National Laboratory; Migliori, Albert [Los Alamos National Laboratory

2012-08-02

240

Standard test method for determining plutonium by controlled-potential coulometry in H2SO4 at a platinum working electrode  

E-print Network

1.1 This test method covers the determination of milligram quantities of plutonium in unirradiated uranium-plutonium mixed oxide having a U/Pu ratio range of 0.1 to 10. This test method is also applicable to plutonium metal, plutonium oxide, uranium-plutonium mixed carbide, various plutonium compounds including fluoride and chloride salts, and plutonium solutions. 1.2 The recommended amount of plutonium for each aliquant in the coulometric analysis is 5 to 10 mg. Precision worsens for lower amounts of plutonium, and elapsed time of electrolysis becomes impractical for higher amounts of plutonium. 1.3 The values stated in SI units are to be regarded as standard. No other units are to be regarded as standard. 1.4 This standard does not purport to address all of the safety concens, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precaution...

American Society for Testing and Materials. Philadelphia

1990-01-01

241

Button-less on the information superhighway: Issues of ideological horizons in environmental communication amongst communities at fish-landing sites along Lake Victoria in Uganda  

Microsoft Academic Search

The article addresses issues of ideological horizons in relation to the information superhighway, as they affect environmental communication, with a special focus on grassroots communities at fish-landing sites along Lake Victoria, in Uganda. While in the button society a great deal of information is accessible at the push of a button, the most that button-less grassroots societies have to contend

Goretti Linda Nassanga

2010-01-01

242

Electronic properties and structure of the plutonium-hydrogen system  

NASA Astrophysics Data System (ADS)

The resistivity and magnetic susceptibility from 1-300 K have been measured on five compositions of plutonium hydride, PuH x. The resistance vs. temperature data show metallic to semiconductive behavior as x is varied from 1.93 to 2.65 in the cubic dihydride phase field. The samples order ferromagnetically between 44 and 67 K as an increasing function of x. The effective paramagnetic moments are 0.83 to 0.70 ? B, and the ordered moments about half these values. X-ray photoemission measurements place the hybridized 5f-6d band 1.8 eV below the Fermi energy. The core level 4f spectra and the magnetic data are consistent with a trivalent plutonium configuration.

Willis, J. O.; Ward, J. W.; Smith, J. L.; Kosiewicz, S. T.; Haschke, J. M.; Hodges, A. E.

1985-05-01

243

[A study on button-type alkali-manganese battery in Ringer's solution--limited injury factor on the electric discharge in body].  

PubMed

Many cases of tissue injury caused by a button battery appearing as a foreign body have been reported in the otolaryngology field. However, there have been very few studies on the mechanism of tissue injury by batteries. In this study, we inserted a button-type battery into 4cm3 of Ringer's solution, which is similar to serous fluid, at both room temperature (20 degrees C) and body temperature (37 degrees C), and observed the electro-chemical reactions between the negative and positive terminals over 6 hours. We identified the products of these reactions, measured the remaining electromotive force (EMF), and observed the changes in pH and metallic ion concentrations over time. In conclusion, the following three major groups of factors causing tissue injury were suggested: 1) At the positive terminal the HCl acid and HClO produced broke down, and chlorine gas was dissolved into the solution. 2) At the negative terminal, the OH- radical was produced by reduction of water. 3) Potassium hydroxide (KOH), nickel (Ni2+), manganese (Mnn+), chrome (Crn+), and lead (Pb2+) leaked from the battery at the poles, due to oxidation, and were partially dissolved in the serous fluid. These factors may result in serious tissue injury. In addition, each electro-chemical reaction occurred in a very short time at these relatively high temperatures, and as a result, may be the cause of these tissue injuries. PMID:8568583

Ohhashi, S; Hattori, Y; Ueno, N; Shimizu, K

1995-11-01

244

Reactions of plutonium and uranium with water: Kinetics and potential hazards  

SciTech Connect

The chemistry and kinetics of reactions between water and the metals and hydrides of plutonium and uranium are described in an effort to consolidate information for assessing potential hazards associated with handling and storage. New experimental results and data from literature sources are presented. Kinetic dependencies on pH, salt concentration, temperature and other parameters are reviewed. Corrosion reactions of the metals in near-neutral solutions produce a fine hydridic powder plus hydrogen. The corrosion rate for plutonium in sea water is a thousand-fold faster than for the metal in distilled water and more than a thousand-fold faster than for uranium in sea water. Reaction rates for immersed hydrides of plutonium and uranium are comparable and slower than the corrosion rates for the respective metals. However, uranium trihydride is reported to react violently if a quantity greater than twenty-five grams is rapidly immersed in water. The possibility of a similar autothermic reaction for large quantities of plutonium hydride cannot be excluded. In addition to producing hydrogen, corrosion reactions convert the massive metals into material forms that are readily suspended in water and that are aerosolizable and potentially pyrophoric when dry. Potential hazards associated with criticality, environmental dispersal, spontaneous ignition and explosive gas mixtures are outlined.

Haschke, J.M.

1995-12-01

245

EVALUATION OF FIRE HAZARDS WHILE REPACKAGING PLUTONIUM-CONTAMINATED SCRAP IN HB-LINE  

SciTech Connect

The potential for a fire while repackaging plutonium-contaminated scrap was evaluated. The surface-to-mass ratio indicates the metal alone will not spontaneously ignite. Uranium hydride can form when uranium metal is exposed to water vapor or hydrogen; uranium hydride reacts rapidly and energetically with atmospheric oxygen. The plutonium-contaminated scrap has been inside containers qualified for shipping, and these containers are leak-tight. The rate of diffusion of water vapor through the seals is small, and the radiolytic hydrogen generation rate is low. Radiography of samples of the storage containers indicates no loose oxide/hydride powder has collected in the storage container to date. The frequently of a fire while repackaging the plutonium-contaminated scrap is extremely unlikely.

Hallman, D

2003-12-18

246

Symmetry reduction of (delta)-plutonium: an electronic-structure effect  

SciTech Connect

Using first-principles density-functional theory calculations, we show that the anomalously large anisotropy of {sigma}-plutonium is a consequence of greatly varying bond-strengths between the 12 nearest neighbors. Employing the calculated bond strengths, we expand the tenants of classical crystallography by incorporating anisotropy of chemical bonds, which yields a structure with the monoclinic space group Cm for {delta}-plutonium rather than face-centered cubic Fm{bar 3}m. The reduced space group for {delta}-plutonium enlightens why the ground state of the metal is monoclinic, why distortions of the metal are viable, and has considerable implications for the behavior of the material as it ages. These results illustrate how an expansion of classical crystallography that accounts for anisotropic electronic structure can explain complicated materials in a novel way.

Moore, K; Soderlind, P; Schwartz, A; Laughlin, D

2005-11-16

247

eButton: A Wearable Computer for Health Monitoring and Personal Assistance  

PubMed Central

Recent advances in mobile devices have made profound changes in people's daily lives. In particular, the impact of easy access of information by the smartphone has been tremendous. However, the impact of mobile devices on healthcare has been limited. Diagnosis and treatment of diseases are still initiated by occurrences of symptoms, and technologies and devices that emphasize on disease prevention and early detection outside hospitals are under-developed. Besides healthcare, mobile devices have not yet been designed to fully benefit people with special needs, such as the elderly and those suffering from certain disabilities, such blindness. In this paper, an overview of our research on a new wearable computer called eButton is presented. The concepts of its design and electronic implementation are described. Several applications of the eButton are described, including evaluating diet and physical activity, studying sedentary behavior, assisting the blind and visually impaired people, and monitoring older adults suffering from dementia. PMID:25340176

Sun, Mingui; Burke, Lora E.; Mao, Zhi-Hong; Chen, Yiran; Chen, Hsin-Chen; Bai, Yicheng; Li, Yuecheng; Li, Chengliu; Jia, Wenyan

2014-01-01

248

Development of weld closure stations for plutonium long-term storage containers  

SciTech Connect

Weld closure stations for plutonium long-term storage containers have been designed, fabricated, and tested for the Advanced Recovery and Integrated Extraction System (ARIES) at the TA-55 Plutonium Facility of the Los Alamos National Laboratory. ARIES is a processing system used for the dismantlement of the plutonium pits from nuclear weapons. ARIES prepares the extracted-plutonium in a form which is compatible with long-term storage and disposition options and meets international inspection requirements. The processed plutonium is delivered to the canning module of the ARIES line, where it is packaged in a stainless steel container. This container is then packaged in a secondary container for long-term storage. Each of the containers is hermetically sealed with a full penetration weld closure that meets the requirements of the ASME Section IX Boiler and Pressure Vessel Code. Welding is performed with a gas tungsten arc process in an inert atmosphere of helium. The encapsulated helium in the nested containers allows for leak testing the weld closure and container. The storage package was designed to meet packaging requirements of DOE Standard 3013-96 for long-term storage of plutonium metal and oxides. Development of the process parameters, weld fixture, weld qualification, and the welding chambers is discussed in this paper.

Fernandez, R.; Martinez, D.A.; Martinez, H.E.; Nelson, T.O.; Ortega, R.E.; Rofer, C.K.; Romero, W.; Stewart, J.; Trujillo, V.L.

1998-12-31

249

Options for converting excess plutonium to feed for the MOX fuel fabrication facility  

SciTech Connect

The storage and safekeeping of excess plutonium in the United States represents a multibillion-dollar lifecycle cost to the taxpayers and poses challenges to National Security and Nuclear Non-Proliferation. Los Alamos National Laboratory is considering options for converting some portion of the 13 metric tons of excess plutonium that was previously destined for long-term waste disposition into feed for the MOX Fuel Fabrication Facility (MFFF). This approach could reduce storage costs and security ri sks, and produce fuel for nuclear energy at the same time. Over the course of 30 years of weapons related plutonium production, Los Alamos has developed a number of flow sheets aimed at separation and purification of plutonium. Flow sheets for converting metal to oxide and for removing chloride and fluoride from plutonium residues have been developed and withstood the test oftime. This presentation will address some potential options for utilizing processes and infrastructure developed by Defense Programs to transform a large variety of highly impure plutonium into feedstock for the MFFF.

Watts, Joe A [Los Alamos National Laboratory; Smith, Paul H [Los Alamos National Laboratory; Psaras, John D [Los Alamos National Laboratory; Jarvinen, Gordon D [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory; Joyce, Jr., Edward L [Los Alamos National Laboratory

2009-01-01

250

Technology-Assisted Patient Access to Clinical Information: An Evaluation Framework for Blue Button  

PubMed Central

Background Patient access to clinical information represents a means to improve the transparency and delivery of health care as well as interactions between patients and health care providers. We examine the movement toward augmenting patient access to clinical information using technology. Our analysis focuses on Blue Button, a tool that many health care organizations are implementing as part of their Web-based patient portals. Objective We present a framework for evaluating the effects that technology-assisted access to clinical information may have on stakeholder experiences, processes of care, and health outcomes. Methods A case study of the United States Department of Veterans Affairs' (VA) efforts to make increasing amounts of clinical information available to patients through Blue Button. Drawing on established collaborative relationships with researchers, clinicians, and operational partners who are engaged in the VAs ongoing implementation and evaluation efforts related to Blue Button, we assessed existing evidence and organizational practices through key informant interviews, review of documents and other available materials, and an environmental scan of published literature and the websites of other health care organizations. Results Technology-assisted access to clinical information represents a significant advance for VA patients and marks a significant change for the VA as an organization. Evaluations of Blue Button should (1) consider both processes of care and outcomes, (2) clearly define constructs of focus, (3) examine influencing factors related to the patient population and clinical context, and (4) identify potential unintended consequences. Conclusions The proposed framework can serve as a roadmap to guide subsequent research and evaluation of technology-assisted patient access to clinical information. To that end, we offer a series of related recommendations. PMID:24675395

Nazi, Kim M; Luger, Tana M; Amante, Daniel J; Smith, Bridget M; Barker, Anna; Shimada, Stephanie L; Volkman, Julie E; Garvin, Lynn; Simon, Steven R; Houston, Thomas K

2014-01-01

251

Prediction of white button mushroom ( Agaricus bisporus ) moisture content using hyperspectral imaging  

Microsoft Academic Search

Hyperspectral imaging is a non-contact, non-destructive technique that combines spectroscopy and imaging to extract information\\u000a from a sample. This technology has recently emerged as a powerful technique for food analysis. In this study, the potential\\u000a of hyperspectral imaging (HSI) to predict white button mushroom moisture content (MC) was investigated. Mushrooms were subjected\\u000a to dehydration at 451C for different time periods

Masoud Taghizadeh; Aoife Gowen; Colm P. ODonnell

2009-01-01

252

Multi-generational stewardship of plutonium  

SciTech Connect

The post-cold war era has greatly enhanced the interest in the long-term stewardship of plutonium. The management of excess plutonium from proposed nuclear weapons dismantlement has been the subject of numerous intellectual discussions during the past several years. In this context, issues relevant to long-term management of all plutonium as a valuable energy resource are also being examined. While there are differing views about the future role of plutonium in the economy, there is a recognition of the environmental and health related problems and proliferation potentials of weapons-grade plutonium. The long-term management of plutonium as an energy resource will require a new strategy to maintain stewardship for many generations to come.

Pillay, K.K.S. [Los Alamos National Lab., NM (United States). Nuclear Materials Technology Div.

1997-10-01

253

Enhancing stability of essential oils by microencapsulation for preservation of button mushroom during postharvest.  

PubMed

Fresh button mushrooms (Agaricus bisporus L.) are sensitive to browning, water loss, and microbial attack. The short shelf-life of mushrooms is an impediment to the distribution and marketing of the fresh product. Essential oils outstand as an alternative to chemical preservatives and their use in foods meets the demands of consumers for natural products. To resolve controlled release of oil and increase in antioxidant and antimicrobial activities, the oil was incorporated into microcapsules. Effects of microcapsulated thyme (Thymus vulgaris L.) and rosemary (Rosmarinus officinalis L.) on quality of fresh button mushroom were compared. Physicochemical qualities were evaluated during 15 days of storage at 4 0.5C. All treatments prevented product weight loss and decrease in polyphenoloxidase and peroxidase activities during storage. Color and firmness, microbiological analysis, and total phenolic content caused the least change. With use of microencapsulated oils, mushrooms were within acceptable limits during 10 days of storage. Microencapsulated rosemary oil produced the highest beneficial effects and has potential to improve quality of button mushrooms and extend shelf-life. PMID:25473510

Alikhani-Koupaei, Majid; Mazlumzadeh, Meisam; Sharifani, Mohamadmehdi; Adibian, Mohamad

2014-09-01

254

10 CFR 71.63 - Special requirement for plutonium shipments.  

Code of Federal Regulations, 2012 CFR

...2012-01-01 false Special requirement for plutonium shipments. 71.63 Section 71.63...Standards 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in...

2012-01-01

255

10 CFR 71.63 - Special requirement for plutonium shipments.  

Code of Federal Regulations, 2011 CFR

...2011-01-01 false Special requirement for plutonium shipments. 71.63 Section 71.63...Standards 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in...

2011-01-01

256

10 CFR 71.63 - Special requirement for plutonium shipments.  

Code of Federal Regulations, 2013 CFR

...2013-01-01 false Special requirement for plutonium shipments. 71.63 Section 71.63...Standards 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in...

2013-01-01

257

10 CFR 71.63 - Special requirement for plutonium shipments.  

Code of Federal Regulations, 2014 CFR

...2014-01-01 false Special requirement for plutonium shipments. 71.63 Section 71.63...Standards 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in...

2014-01-01

258

10 CFR 71.63 - Special requirement for plutonium shipments.  

Code of Federal Regulations, 2010 CFR

...2010-01-01 false Special requirement for plutonium shipments. 71.63 Section 71.63...Standards 71.63 Special requirement for plutonium shipments. Shipments containing plutonium must be made with the contents in...

2010-01-01

259

Decomposition kinetics of plutonium hydride  

Microsoft Academic Search

Kinetic data for decomposition of PuH provides insight into a possible mechanism for the hydriding and dehydriding reactions of plutonium. The fact that the rate of the hydriding reaction, K\\/sub H\\/, is proportional to P¹² and the rate of the dehydriding process, K\\/sub D\\/, is inversely proportional to P¹² suggests that the forward and reverse reactions proceed by opposite

J. M. Haschke; J. L. Stakebake

1979-01-01

260

The plutonium/hydrogen reaction: The pressure dependence of reaction initiation time and nucleation rate controlled by a plutonium dioxide over-layer  

NASA Astrophysics Data System (ADS)

As part of an ongoing programme to quantify those parameters which influence the early stages of the plutonium hydriding reaction, the hydrogen pressure dependence of both plutonium hydriding initiation time ( I t) and hydriding nucleation rate ( N r) have been determined for plutonium covered in a reproducible dioxide over-layer. The data show that initiation time is inversely proportional to hydrogen pressure, while nucleation rate is proportional to hydrogen pressure. Both observations are consistent with a model of hydriding attack in which the dioxide over-layer acts as a diffusion barrier, controlling the flow of hydrogen from the gas phase to the oxide/metal interface. The low scatter and reproducibility of the experimental data set demonstrate the importance of synthesising well controlled and characterised oxide layers prior to determining these experimental parameters.

McGillivray, Gordon W.; Knowles, John P.; Findlay, Ian M.; Dawes, Marina J.

2011-05-01

261

PROPRITS MAGNTIQUES ET STRUCTURE LECTRONIQUE DU PLUTONIUM  

E-print Network

699 PROPRI?T?S MAGN?TIQUES ET STRUCTURE ?LECTRONIQUE DU PLUTONIUM J.-M. FOURNIER Centre d obtenus sur la susceptibilité magnétique du plutonium-03B1. Nous proposons ensuite un schéma de structure de bande que nous utilisons pour expliquer les anomalies d'autres propriétés physiques du plutonium

Paris-Sud XI, Université de

262

Fabrication of Fuel Pellets from Plutonium Dioxide  

Microsoft Academic Search

Fuel based on plutonium dioxide, which is sintered at high temperature and is produced at the Industrial Association Mayak, is supposed to be investigated in an upgraded IBR-2M reactor (Joint Institute of Nuclear Research). Oxalate precipitation of plutonium dioxide powder is done from a nitric-acid solution of plutonium with concentration from 7 to 24 g\\/liter. The oxalate hexahydrate Pu(C 2

A. I. Bobylev; S. N. Elsukov; S. I. Rovnyi; I. V. Manakov; A. V. Kobyakov; M. V. Pechenkina

2004-01-01

263

Assay of low-level plutonium effluents  

SciTech Connect

In the plutonium recovery section at the Los Alamos National Laboratory, an effluent solution is generated that contains low plutonium concentration and relatively high americium concentration. Nondestructive assay of this solution is demonstrated by measuring the passive L x-rays following alpha decay. Preliminary results indicate that an average deviation of 30% between L x-ray and alpha counting can be achieved for plutonium concentrations above 10 mg/L and Am/Pu ratios of up to 3; for plutonium concentrations less than 10 mg/L, the average deviation is 40%. The sensitivity of the L x-ray assay is approx. 1 mg Pu/L.

Hsue, S.T.; Hsue, F.; Bowersox, D.F.

1981-01-01

264

FORM AND AGING OF PLUTONIUM IN SAVANNAH RIVER SITE WASTE TANK 18  

SciTech Connect

This report provides a summary of the effects of aging on and the expected forms of plutonium in Tank 18 waste residues. The findings are based on available information on the operational history of Tank 18, reported analytical results for samples taken from Tank 18, and the available scientific literature for plutonium under alkaline conditions. These findings should apply in general to residues in other waste tanks. However, the operational history of other waste tanks should be evaluated for specific conditions and unique operations (e.g., acid cleaning with oxalic acid) that could alter the form of plutonium in heel residues. Based on the operational history of other tanks, characterization of samples from the heel residues in those tanks would be appropriate to confirm the form of plutonium. During the operational period and continuing with the residual heel removal periods, Pu(IV) is the dominant oxidation state of the plutonium. Small fractions of Pu(V) and Pu(VI) could be present as the result of the presence of water and the result of reactions with oxygen in air and products from the radiolysis of water. However, the presence of Pu(V) would be transitory as it is not stable at the dilute alkaline conditions that currently exists in Tank 18. Most of the plutonium that enters Savannah River Site (SRS) high-level waste (HLW) tanks is freshly precipitated as amorphous plutonium hydroxide, Pu(OH){sub 4(am)} or hydrous plutonium oxide, PuO{sub 2(am,hyd)} and coprecipitated within a mixture of hydrous metal oxide phases containing metals such as iron, aluminum, manganese and uranium. The coprecipitated plutonium would include Pu{sup 4+} that has been substituted for other metal ions in crystal lattice sites, Pu{sup 4+} occluded within hydrous metal oxide particles and Pu{sup 4+} adsorbed onto the surface of hydrous metal oxide particles. The adsorbed plutonium could include both inner sphere coordination and outer sphere coordination of the plutonium. PuO{sub 2(am,hyd)} is also likely to be present in deposits and scales that have formed on the steel surfaces of the tank. Over the operational period and after closure of Tank 18, Ostwald ripening has and will continue to transform PuO{sub 2(am,hyd)} to a more crystalline form of plutonium dioxide, PuO{sub 2(c)}. After bulk waste removal and heel retrieval operations, the free hydroxide concentration decreased and the carbonate concentration in the free liquid and solids increased. Consequently, a portion of the PuO{sub 2(am,hyd)} has likely been converted to a hydroxy-carbonate complex such as Pu(OH){sub 2}(CO{sub 3}){sub (s)}. or PuO(CO{sub 3}) {center_dot} xH{sub 2}O{sub (am)}. Like PuO{sub 2(am,hyd)}, Ostwald ripening of Pu(OH){sub 2}(CO{sub 3}){sub (s)} or PuO(CO{sub 3}) {center_dot} xH{sub 2}O{sub (am)} would be expected to occur to produce a more crystalline form of the plutonium carbonate complex. Due to the high alkalinity and low carbonate concentration in the grout formulation, it is expected that upon interaction with the grout, the plutonium carbonate complexes will transform back into plutonium hydroxide. Although crystalline plutonium dioxide is the more stable thermodynamic state of Pu(IV), the low temperature and high water content of the waste during the operating and heel removal periods in Tank 18 have limited the transformation of the plutonium into crystalline plutonium dioxide. During the tank closure period of thousands of years, transformation of the plutonium into a more crystalline plutonium dioxide form would be expected. However, the continuing presence of water, reaction with water radiolysis products, and low temperatures will limit the transformation, and will likely maintain an amorphous Pu(OH){sub 4} or PuO{sub 2(am,hyd)} form on the surface of any crystalline plutonium dioxide produced after tank closure. X-ray Absorption Spectroscopic (XAS) measurements of Tank 18 residues are recommended to confirm coordination environments of the plutonium. If the presence of PuO(CO{sub 3}){sub (am,hyd)} is confirmed by XAS, it is recommended that e

Hobbs, D.

2012-02-24

265

Reactions of plutonium and uranium with water: Kinetics and potential hazards  

Microsoft Academic Search

The chemistry and kinetics of reactions between water and the metals and hydrides of plutonium and uranium are described in an effort to consolidate information for assessing potential hazards associated with handling and storage. New experimental results and data from literature sources are presented. Kinetic dependencies on pH, salt concentration, temperature and other parameters are reviewed. Corrosion reactions of the

Haschke

1995-01-01

266

INFLUENCE OF NATURAL ORGANIC MATTER ON PLUTONIUM SORPTION TO GIBBSITE.  

E-print Network

??Understanding plutonium geochemical behavior is imperative to the development of schemes for remediation of plutonium environmental contamination and accurate assessment of risks posed by the (more)

Simpkins, Laura

2011-01-01

267

Button batteries  

MedlinePLUS

... 1222) can be called from anywhere in the United States. This national hotline number will let you talk ... service. All local poison control centers in the United States use this national number. You should call if ...

268

Plutonium: The density-functional-theory point of view  

SciTech Connect

Density-functional theory (DFT) is a remarkably successful tool for describing many metals throughout the Periodic Table. Here we present the results of this theory when applied to plutonium metal, the perhaps most complex and difficult-to-model metal of all. The fundamental product of DFT is the ground-state total energy. In the case of Pu, we show that DFT produces total energies that can predict the complex phase diagram accurately. Focusing on the {delta} phase, we show that DFT electronic structure is consistent with measured photoemission spectra. The observed non-magnetic state of {delta}-Pu could possibly be explained in DFT by spin moments, likely disordered, that are magnetically neutralized by anti-parallel aligned orbital moments. As an alternative to this non-magnetic model an extension of DFT with enhanced orbital polarization is presented in which magnetism can be suppressed.

Soderlind, P; Landa, A

2008-10-30

269

Expected behavior of plutonium in the IFR fuel cycle  

NASA Astrophysics Data System (ADS)

The Integral Fast Reactor (IFR) is a metal-fueled, sodium-cooled reactor that will consist initially of a U-Zr alloy core in which the enriched uranium will be replaced gradually by plutonium bred in a uranium blanket. The plutonium is concentrated to the required level by extraction from the molten blanket material with a CaCl2-BaCl2 salt containing MgCl2 as an oxidant (halide slagging). The CaCl2-BaCl2 salt containing dissolved PuCl3 and UCl3 is added to the core process where fission products are removed by electrorefining, using a liquid cadmium anode, a metal cathode, and a LiCl-NaCl-CaCl2-BaCl2 molten salt electrolyte. The product is recovered as a metallic deposit on the cathode. The Halide slagging step is operated at about 1250 deg and the electrorefining step at about 450 C. These processes are expected to give low fission-product decontamination factors of the order of 100.

Steunenberg, R. K.; Johnson, I.

270

Determination of natural actinides and plutonium in marine particulate material  

Microsoft Academic Search

The natural actinides ²²⁷Ac, ²²⁸Th, ²³°Th, ²³²Th, ²³⁴Th, ²³¹Pa, ²³⁸U, and ²³⁴U and the ..cap alpha..-emitting plutonium isotopes are determined in samples of suspended marine particulate material and sediments. Analysis involves total dissolution of the samples to allow equilibration of the natural isotopes with added isotope yield monitors followed by coprecipitation of hydrolyzable metals at pH 7 with natural Fe

Robert F. Anderson; Alan P. Fleer

1982-01-01

271

Delta to alpha prime transformation of plutonium during microhardness testing  

SciTech Connect

Metallic plutonium is a complex material that can exist in six allotropic phases at ambient pressures; and under stress, it can transform martensitically from the ductile face centered cubic delta phase to the brittle monoclinic alpha prime phase. This investigation found that the pressures generated during microhardness indentation are sufficient for the transformation to occur. Micrographs showing the transformation as well as pressure calculations are presented in support for this finding. Also, based upon the amount of material displaced by the indenter, it was determined that there is at least a 16% error in published hardness values of the delta phase that can be attributed to the delta to alpha prime transformation.

Pereyra, Ramiro A. [Los Alamos National Laboratory, MST-16, PO Box 1663, Los Alamos, NM 87545 (United States)], E-mail: rpereyra@lanl.gov

2008-11-15

272

Accelerator mass spectrometry of plutonium isotopes  

Microsoft Academic Search

The feasibility of measuring plutonium isotope ratios by accelerator mass spectrometry has been demonstrated. Measurements on a test sample of known composition and on a blank showed that isotope ratios could be determined quantitatively, and that the present limit of detection by AMS is ? 106 atoms of plutonium. For 239Pu, this limit is at least two orders of magnitude

L. K. Fifield; R. G. Cresswell; M. L. di Tada; T. R. Ophel; J. P. Day; A. P. Clacher; S. J. King; N. D. Priest

1996-01-01

273

Plutonium Immobilization Project -- Robotic canister loading  

SciTech Connect

The Plutonium Immobilization Program (PIP) is a joint venture between the Savannah River Site, Lawrence Livermore National Laboratory, Argonne National Laboratory, and Pacific Northwest National Laboratory. When operational in 2008, the PIP will fulfill the nation's nonproliferation commitment by placing surplus weapons-grade plutonium in a permanently stable ceramic form.

Hamilton, L.

2000-04-28

274

Development of the plutonium oxide vitrification system  

Microsoft Academic Search

Repository disposal of plutonium in a suitable, immobilized form is being considered as one option for the disposition of surplus weapons-usable plutonium. Accelerated development efforts were completed in 1997 on two potential immobilization forms to facilitate downselection to one form for continued development. The two forms studied were a crystalline ceramic based on Synroc technology and a lanthanide borosilicate (LaBS)

K. M. Marshall; J. C. Marra; J. T. Coughlin; T. B. Calloway; R. F. Schumacher; J. R. Zamecnik; J. M. Pareizs

1998-01-01

275

Interim Storage of Plutonium in Existing Facilities  

Microsoft Academic Search

'In this era of nuclear weapons disarmament and nonproliferation treaties, among many problems being faced by the Department of Energy is the safe disposal of plutonium. There is a large stockpile of plutonium at the Rocky Flats Environmental Technology Center and it remains politically and environmentally strategic to relocate the inventory closer to a processing facility. Savannah River Site has

Woodsmall

1999-01-01

276

Assessment of plutonium storage safety issues at Department of Energy facilities  

SciTech Connect

The Department of Energy (DOE) mission for utilization and storage of nuclear materials has recently changed as a result of the end of the ``Cold War`` era. Past and current plutonium storage practices largely reflect a temporary, in-process, or in-use storage condition which must now be changed to accommodate longer-term storage. This report summarizes information concerning current plutonium metal and oxide storage practices which was presented at the Office of Defense programs (DP) workshop in Albuquerque, New Mexico on May 26-27, 1993 and contained in responses to questions by DP-62 from the field organizations.

Not Available

1994-01-01

277

Thermal response of a can handling unit (CHU) to a postulated plutonium hydride burn  

SciTech Connect

A series of analyses were performed to support the design of the Can Handling Unit (CHU). The subject analyses focused on determining the time to repressurize a subatmospheric storage can containing plutonium metal versus the initial hole size and the transient thermal response to a postulated chemical reaction of 150 grams of plutonium hydride. Limiting the amount of gaseous reactants either by inerting the CHU or using a very small hole size for the initial opening appears to be a viable method of controlling the rate of the exothermic chemical reactions and system temperatures.

Crea, B.A.

1998-05-21

278

The plutonium/hydrogen reaction: The pressure dependence of reaction initiation time  

NASA Astrophysics Data System (ADS)

The hydrogen pressure dependence of the initiation time ( It) of the plutonium hydriding reaction has been determined over a hydrogen pressure range of 10-1000 mbar for plutonium covered in a dioxide over-layer. The data show that hydriding initiation time is inversely proportional to hydrogen pressure. This observation is consistent with a model of hydriding attack in which the dioxide over-layer acts as a diffusion barrier, controlling the flow of hydrogen to the oxide/metal interface. The low scatter and reproducibility of the experimental data set illustrate the importance of synthesising a reproducible oxide layer prior to determining this experimental parameter.

McGillivray, Gordon W.; Knowles, John P.; Findlay, Ian M.; Dawes, Marina J.

2009-03-01

279

Magnetic structure of actinide metals  

Microsoft Academic Search

In comparison to 3d or 4f metals, magnetism in actinides remains poorly understood due to experimental complications and the exotic behavior of the 5f states. In particular, plutonium metal is most especially vexing. Over the last five decades theories proposed the presence of either ordered or disordered local moments at low temperatures. However, experiments such as magnetic susceptibility, electrical resistivity,

G. van der Laan; K. T. Moore

2008-01-01

280

Direct vitrification of plutonium-containing materials (PCM`s) with the glass material oxidation and dissolution system (GMODS)  

SciTech Connect

The end of the cold war has resulted in excess PCMs from nuclear weapons and associated production facilities. Consequently, the US government has undertaken studies to determine how best to manage and dispose of this excess material. The issues include (a) ensurance of domestic health, environment, and safety in handling, storage, and disposition, (b) international arms control agreements with Russia and other countries, and (c) economics. One major set of options is to convert the PCMs into glass for storage or disposal. The chemically inert characteristics of glasses make them a desirable chemical form for storage or disposal of radioactive materials. A glass may contain only plutonium, or it may contain plutonium along with other radioactive materials and nonradioactive materials. GMODS is a new process for the direct conversion of PCMs (i.e., plutonium metal, scrap, and residues) to glass. The plutonium content of these materials varies from a fraction of a percent to pure plutonium. GMODS has the capability to also convert other metals, ceramics, and amorphous solids to glass, destroy organics, and convert chloride-containing materials into a low-chloride glass and a secondary clean chloride salt strewn. This report is the initial study of GMODS for vitrification of PCMs as input to ongoing studies of plutonium management options. Several tasks were completed: initial analysis of process thermodynamics, initial flowsheet analysis, identification of equipment options, proof-of-principle experiments, and identification of uncertainties.

Forsberg, C.W. Beahm, E.C.; Parker, G.W.; Rudolph, J.C.; Haas, P.A.; Malling, G.F.; Elam, K.; Ott, L.

1995-10-30

281

REMOVAL OF LEGACY PLUTONIUM MATERIALS FROM SWEDEN  

SciTech Connect

U.S. Department of Energys National Nuclear Security Administration (NNSA) Office of Global Threat Reduction (GTRI) recently removed legacy plutonium materials from Sweden in collaboration with AB SVAFO, Sweden. This paper details the activities undertaken through the U.S. receiving site (Savannah River Site (SRS)) to support the characterization, stabilization, packaging and removal of legacy plutonium materials from Sweden in 2012. This effort was undertaken as part of GTRIs Gap Materials Program and culminated with the successful removal of plutonium from Sweden as announced at the 2012 Nuclear Security Summit. The removal and shipment of plutonium materials to the United States was the first of its kind under NNSAs Global Threat Reduction Initiative. The Environmental Assessment for the U.S. receipt of gap plutonium material was approved in May 2010. Since then, the multi-year process yielded many first time accomplishments associated with plutonium packaging and transport activities including the application of the of DOE-STD-3013 stabilization requirements to treat plutonium materials outside the U.S., the development of an acceptance criteria for receipt of plutonium from a foreign country, the development and application of a versatile process flow sheet for the packaging of legacy plutonium materials, the identification of a plutonium container configuration, the first international certificate validation of the 9975 shipping package and the first intercontinental shipment using the 9975 shipping package. This paper will detail the technical considerations in developing the packaging process flow sheet, defining the key elements of the flow sheet and its implementation, determining the criteria used in the selection of the transport package, developing the technical basis for the package certificate amendment and the reviews with multiple licensing authorities and most importantly integrating the technical activities with the Swedish partners.

Dunn, Kerry A. [Savannah River National Laboratory; Bellamy, J. Steve [Savannah River National Laboratory; Chandler, Greg T. [Savannah River National Laboratory; Iyer, Natraj C. [U.S. Department of Energy, National Nuclear Security Administration, Office of; Koenig, Rich E.; Leduc, D. [Savannah River National Laboratory; Hackney, B. [Savannah River National Laboratory; Leduc, Dan R. [Savannah River National Laboratory

2013-08-18

282

The growth and evolution of thin oxide films on delta-plutonium surfaces  

SciTech Connect

The common oxides of plutonium are the dioxide (PuO{sub 2}) and the sesquioxide (Pu{sub 2}O{sub 3}). The structure of an oxide on plutonium metal under air at room temperature is typically described as a thick PuO{sub 2} film at the gas-oxide interface with a thinner PuO{sub 2} film near the oxide-metal substrate interface. In a reducing environment, such as ultra high vacuum, the dioxide (Pu{sup 4+}; O/Pu = 2.0) readily converts to the sesquioxide (Pu{sup 3+}; O/Pu = 1.5) with time. In this work, the growth and evolution of thin plutonium oxide films is studied with x-ray photoelectron spectroscopy (XPS) under varying conditions. The results indicate that, like the dioxide, the sesquioxide is not stable on a very clean metal substrate under reducing conditions, resulting in substoichiometric films (Pu{sub 2}O{sub 3-y}). The Pu{sub 2}O{sub 3-y} films prepared exhibit a variety of stoichiometries (y = 0.2-1) as a function of preparation conditions, highlighting the fact that caution must be exercised when studying plutonium oxide surfaces under these conditions and interpreting resulting data.

Garcia Flores, Harry G [Los Alamos National Laboratory; Pugmire, David L [Los Alamos National Laboratory

2009-01-01

283

Adaptation of the IBM ECR (electric cantilever robot) robot to plutonium processing applications  

SciTech Connect

The changing regulatory climate in the US is adding increasing incentive to reduce operator dose and TRU waste for DOE plutonium processing operations. To help achieve that goal the authors have begun adapting a small commercial overhead gantry robot, the IBM electric cantilever robot (ECR), to plutonium processing applications. Steps are being taken to harden this robot to withstand the dry, often abrasive, environment within a plutonium glove box and to protect the electronic components against alpha radiation. A mock-up processing system for the reduction of the oxide to a metal was prepared and successfully demonstrated. Design of a working prototype is now underway using the results of this mock-up study. 7 figs., 4 tabs.

Armantrout, G.A.; Pedrotti, L.R. (Lawrence Livermore National Lab., CA (USA)); Halter, E.A.; Crossfield, M. (International Business Machines Corp., Armonk, NY (USA))

1990-12-01

284

Standard practice for The separation of americium from plutonium by ion exchange  

E-print Network

1.1 This practice describes the use of an ion exchange technique to separate plutonium from solutions containing low concentrations of americium prior to measurement of the 241Am by gamma counting. 1.2 This practice covers the removal of plutonium, but not all the other radioactive isotopes that may interfere in the determination of 241Am. 1.3 This practice can be used when 241Am is to be determined in samples in which the plutonium is in the form of metal, oxide, or other solid provided that the solid is appropriately sampled and dissolved (See Test Methods C758, C759, and C1168). 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2001-01-01

285

Plutonium Uptake and Distribution in Mammalian Cells: Molecular vs Polymeric Plutonium  

PubMed Central

Purpose To study the cellular responses to molecular and polymeric forms of plutonium using PC12 cells derived from rat adrenal glands. Materials and methods Serum starved PC12 cells were exposed to polymeric and molecular forms of plutonium for three hours. Cells were washed with 10 mM EGTA, 100 mM NaCl at pH 7.4 to remove surface sorbed plutonium. Localization of plutonium in individual cell was quantitatively analyzed by synchrotron X-ray fluorescence (XRF) microscopy. Results Molecular plutonium complexes introduced to cell growth media in the form of NTA, citrate, or transferrin complexes were taken up by PC12 cells, and mostly co-localized with iron within the cells. Polymeric plutonium prepared separately was not internalized by PC12 cells but it was always found on the cell surface as big agglomerates; however polymeric plutonium formed in situ was mostly found within the cells as agglomerates. Conclusions PC12 cells can differentiate molecular and polymeric forms of plutonium. Molecular plutonium is taken up by PC12 cells and mostly co-localized with iron but aged polymeric plutonium is not internalized by the cells. PMID:21770702

ARYAL, BAIKUNTHA P.; GORMAN-LEWIS, DREW; PAUNESKU, TATJANA; WILSON, RICHARD E.; LAI, BARRY; VOGT, STEFAN; WOLOSCHAK, GAYLE E.; JENSEN, MARK P.

2013-01-01

286

New developments in the air transport of plutonium  

Microsoft Academic Search

A new package for the air transport of plutonium has been developed in response to a United States Public Law which restricts the US air transport of plutonium except for small medical devices. This new package, called PAT-1 for plutonium air transportable package model 1, is the result of the NRC-sponsored PARC (plutonium accident resistant container) project at Sandia Laboratories,

1978-01-01

287

Plutonium focus area. Technology summary  

SciTech Connect

The Assistant Secretary for the Office of Environmental Management (EM) at the U.S. Department of Energy (DOE) chartered the Plutonium Focus Area (PFA) in October 1995. The PFA {open_quotes}...provides for peer and technical reviews of research and development in plutonium stabilization activities...{close_quotes} In addition, the PFA identifies and develops relevant research and technology. The purpose of this document is to focus attention on the requirements used to develop research and technology for stabilization, storage, and preparation for disposition of nuclear materials. The PFA Technology Summary presents the approach the PFA uses to identify, recommend, and review research. It lists research requirements, research being conducted, and gaps where research is needed. It also summarizes research performed by the PFA in the traditional research summary format. This document encourages researchers and commercial enterprises to do business with PFA by submitting research proposals or {open_quotes}white papers.{close_quotes} In addition, it suggests ways to increase the likelihood that PFA will recommend proposed research to the Nuclear Materials Stabilization Task Group (NMSTG) of DOE.

NONE

1997-09-01

288

Klui ligand thin films for rapid plutonium analysis by alpha spectrometry.  

PubMed

As part of a nuclear forensics capability, rapid and effective methods to analyze for plutonium and other actinide metals are needed. A key requirement of these methods is that they afford a high chemical yield while still providing isotopic information necessary for forensic evaluation. Toward this objective, a new method for binding plutonium for analysis by alpha spectrometry has been developed. Thin films of Klui-type tripodal oxygen donor ligands were prepared by spin-casting solutions onto glass substrates. Three different ligands were evaluated for plutonium binding, and the best results were obtained using the ethyl-substituted complex Na[Cp*Co(P(O)(OEt)2)3], which bound 80-88% of the dissolved Pu under equilibrium conditions. The thin films are simple and inexpensive to prepare and exhibit excellent alpha spectral resolution, having line widths of ~33 keV. The method has been successfully applied to analyze for plutonium in both an archived nuclear debris sample and a certified environmental soil sample. The results obtained from the soil analysis are in good agreement with the certified values, demonstrating the effectiveness of the method for rapid plutonium analysis. PMID:24397315

Hanson, Susan K; Mueller, Alexander H; Oldham, Warren J

2014-01-21

289

An iron-dependent and transferrin-mediated cellular uptake pathway for plutonium.  

SciTech Connect

Plutonium is a toxic synthetic element with no natural biological function, but it is strongly retained by humans when ingested. Using small-angle X-ray scattering, receptor binding assays and synchrotron X-ray fluorescence microscopy, we find that rat adrenal gland (PC12) cells can acquire plutonium in vitro through the major iron acquisition pathway -- receptor-mediated endocytosis of the iron transport protein serum transferrin; however, only one form of the plutonium-transferrin complex is active. Low-resolution solution models of plutonium-loaded transferrins derived from small-angle scattering show that only transferrin with plutonium bound in the protein's C-terminal lobe (C-lobe) and iron bound in the N-terminal lobe (N-lobe) (Pu{sub c}Fe{sub N}Tf) adopts the proper conformation for recognition by the transferrin receptor protein. Although the metal-binding site in each lobe contains the same donors in the same configuration and both lobes are similar, the differences between transferrin's two lobes act to restrict, but not eliminate, cellular Pu uptake.

Jensen, M. P.; Gorman-Lewis, D.; Aryal, B. P.; Paunesku, T.; Vogt, S.; Rickert, P. G.; Seifert, S.; Lai, B.; Woloschak, G. E.; Soderholm, L. (Chemical Sciences and Engineering Division); ( XSD); (Univ. of Chicago); (Northwestern Univ.)

2011-08-01

290

Haptic Stylus and Empirical Studies on Braille, Button, and Texture Display  

PubMed Central

This paper presents a haptic stylus interface with a built-in compact tactile display module and an impact module as well as empirical studies on Braille, button, and texture display. We describe preliminary evaluations verifying the tactile display's performance indicating that it can satisfactorily represent Braille numbers for both the normal and the blind. In order to prove haptic feedback capability of the stylus, an experiment providing impact feedback mimicking the click of a button has been conducted. Since the developed device is small enough to be attached to a force feedback device, its applicability to combined force and tactile feedback display in a pen-held haptic device is also investigated. The handle of pen-held haptic interface was replaced by the pen-like interface to add tactile feedback capability to the device. Since the system provides combination of force, tactile and impact feedback, three haptic representation methods for texture display have been compared on surface with 3 texture groups which differ in direction, groove width, and shape. In addition, we evaluate its capacity to support touch screen operations by providing tactile sensations when a user rubs against an image displayed on a monitor. PMID:18317520

Kyung, Ki-Uk; Lee, Jun-Young; Park, Junseok

2008-01-01

291

Direct oxide reduction (DOR) solvent salt recycle in pyrochemical plutonium recovery operations  

SciTech Connect

One method used at Los Alamos for producing plutonium metal is to reduce the oxide with calcium metal in molten CaCl/sub 2/ at 850/sup 0/C. The solvent CaCl/sub 2/ from this reduction step is currently discarded as low-level radioactive waste because it is saturated with the reaction by-product, CaO. We have developed and demonstrated a molten salt technique for rechlorinating the CaO, thereby regenerating the CaCl/sub 2/ and incorporating solvent recycle into the batch PuO/sub 2/ reduction process. We discuss results from the process development experiments and present our plans for incorporating the technique into an advanced design for semicontinuous plutonium metal production.

Fife, K.W.; Bowersox, D.F.; Davis, C.C.; McCormick, E.D.

1987-02-01

292

The solubility of hydrogen in plutonium in the temperature range 475 to 825 degrees centigrade  

SciTech Connect

The solubility of hydrogen (H) in plutonium metal (Pu) was measured in the temperature range of 475 to 825{degree}C for unalloyed Pu (UA) and in the temperature range of 475 to 625{degree}C for Pu containing two-weight-percent gallium (TWP). For TWP metal, in the temperature range 475 to 600{degree}C, the saturated solution has a maximum hydrogen to plutonium ration (H/Pu) of 0.00998 and the standard enthalpy of formation ({Delta}H{degree}{sub f(s)}) is (-0.128 {plus minus} 0.0123) kcal/mol. The phase boundary of the solid solution in equilibrium with plutonium dihydride (PuH{sub 2}) is temperature independent. In the temperature range 475 to 625{degree}C, UA metal has a maximum solubility at H/Pu = 0.011. The phase boundary between the solid solution region and the metal+PuH{sub 2} two-phase region is temperature dependent. The solubility of hydrogen in UA metal was also measured in the temperature range 650 to 825{degree}C with {Delta}H{degree}{sub f(s)} = (-0.104 {plus minus} 0.0143) kcal/mol and {Delta}S{degree}{sub f(s)} = 0. The phase boundary is temperature dependent and the maximum hydrogen solubility has H/Pu = 0.0674 at 825{degree}C. 52 refs., 28 figs., 9 tabs.

Allen, T.H.

1991-01-01

293

Properties of plutonium and its alloys for use as fast reactor fuels  

NASA Astrophysics Data System (ADS)

Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher melting U-Pu-Zr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

Hecker, Siegfried S.; Stan, Marius

2008-12-01

294

Response-Related Potentials during Semantic Priming: The Effect of a Speeded Button Response Task on ERPs  

PubMed Central

This study examines the influence of a button response task on the event-related potential (ERP) in a semantic priming experiment. Of particular interest is the N400 component. In many semantic priming studies, subjects are asked to respond to a stimulus as fast and accurately as possible by pressing a button. Response time (RT) is recorded in parallel with an electroencephalogram (EEG) for ERP analysis. In this case, the response occurs in the time window used for ERP analysis and response-related components may overlap with stimulus-locked ones such as the N400. This has led to a recommendation against such a design, although the issue has not been explored in depth. Since studies keep being published that disregard this issue, a more detailed examination of influence of response-related potentials on the ERP is needed. Two experiments were performed in which subjects pressed one of two buttons with their dominant hand in response to word-pairs with varying association strength (AS), indicating a personal judgement of association between the two words. In the first experiment, subjects were instructed to respond as fast and accurately as possible. In the second experiment, subjects delayed their button response to enforce a one second interval between the onset of the target word and the button response. Results show that in the first experiment a P3 component and motor-related potentials (MRPs) overlap with the N400 component, which can cause a misinterpretation of the latter. In order to study the N400 component, the button response should be delayed to avoid contamination of the ERP with response-related components. PMID:24516556

van Vliet, Marijn; Manyakov, Nikolay V.; Storms, Gert; Fias, Wim; Wiersema, Jan R.; Van Hulle, Marc M.

2014-01-01

295

PLUTONIUM METALLOGRAPHY AT LOS ALAMOS  

SciTech Connect

From early days of the Manhattan program to today, scientists and engineers have continued to investigate the metallurgical properties of plutonium (Pu). Although issues like aging was not a concern to the early pioneers, today the reliability of our aging stockpile is of major focus. And as the country moves toward a new generation of weapons similar problems that the early pioneers faced such as compatibility, homogeneity and malleability have come to the forefront. And metallography will continue to be a principle tool for the resolution of old and new issues. Standard metallographic techniques are used for the preparation of plutonium samples. The samples are first cut with a slow speed idamond saw. After mounting in Epon 815 epoxy resin, the samples are ground through 600 grit silicon carbide paper. PF 5070 (a Freon substitute) is used as a coolant, lubricant, and solvent for most operations. Rough mechanical polished is done with 9-{mu} diamond using a nap less cloth, for example nylon or cotton. Final polish is done with 1-{mu} diamond on a nappy cloth such as sylvet. Ethyl alcohol is then used ultrasonically to clean the samples before electro polishing. The sample is then electro-polished and etched in an electrolyte containing 10% nitric acid, and 90% dimethyleneformalmide. Ethyl alcohol is used as a final cleaning agent. Although standard metallographic preparation techniques are used, there are several reasons why metallography of Pu is difficult and challenging. Firstly, because of the health hazards associated with its radioactive properties, sample preparation is conducted in glove boxes. Figure 1 shows the metallography line, in an R and D facility. Since they are designed to be negative in pressure to the laboratory, cross-contamination of abrasives is a major problem. In addition, because of safety concerns and waste issues, there is a limit to the amount of solvent that can be used. Secondly, Pu will readily hydride or oxidize when in contact with metallographic polishing lubricants, solvents, or chemicals. And water being one of the most reactive solutions, is not used in the preparation. Figure 2 shows an example of a plutonium sample in which an oxide film has formed on the surface due to overexposure to solutions. it has been noted that nucleation of the hydride/oxide begins around inclusions and samples with a higher concentration of impurities seem to be more susceptible to this reaction. Figure 3 shows examples of small oxide rings, forming around inclusions. Lastly, during the cutting, grinding, or polishing process there is enough stress induced in the sample that the surface can transform from the soft face-centered-cubic delta phase (30 HV) to the strain-induced monoclinic alpha{prime} phase (300 HV). Figure 4 and 5 shows cross-sectional views of samples in which one was cut using a diamond saw and the other was processed through 600 grit. The white layers on the edges is the strain induced alpha{prime} phase. The 'V' shape indentation in Figure 5 was caused by a coarser abrasive which resulted in transformations to a depth of approximately 20 {micro}m. Another example of the transformation sensitivity of plutonium can be seen in Figure 6, in which the delta phase has partly transformed to alpha{prime} during micro hardness indentation.

PEREYRA, RAMIRO A. [Los Alamos National Laboratory; LOVATO, DARRYL [Los Alamos National Laboratory

2007-01-08

296

Treatment studies of plutonium-bearing INEEL waste surrogates in a bench-scale arc furnace  

SciTech Connect

Since 1989, the Subsurface Disposal Area (SDA) at the Idaho National Environmental and Engineering Laboratory (INEEL) has been included on the National Priority List for remediation. Arc- and plasma-heated furnaces are being considered for converting the radioactive mixed waste buried in the SDA to a stabilized-vitreous form. Nonradioactive, surrogate SDA wastes have been melted during tests in these types of furnaces, but data are needed on the behavior of transuranic (TRU) constituents, primarily plutonium, during thermal treatment. To begin collecting this data, plutonium-spiked SDA surrogates were processed in a bench-scale arc furnace to quantify the fate of the plutonium and other hazardous and nonhazardous metals. Test conditions included elevating the organic, lead, chloride, and sodium contents of the surrogates. Blends having higher organic contents caused furnace power levels to fluctuate. An organic content corresponding to 50% INEEL soil in a soil-waste blend was the highest achievable before power fluctuations made operating conditions unacceptable. The glass, metal, and off-gas solids produced from each surrogate blend tested were analyzed for elemental (including plutonium) content and the partitioning of each element to the corresponding phase was calculated.

Freeman, C.J.

1997-05-01

297

Criticality Experiments with Mixed Plutonium and Uranium Nitrate Solution at a Plutonium Fraction of 0.2 and 1.0 in Annular Cylindrical Geometry  

SciTech Connect

A series of critical experiments was completed with mixed plutoniumuranium solutions having Pu/(Pu + U) ratios of approximately 0.2 and 1.0. These experiments were a part of the Criticality Data Development Program between the United States Department of Energy (USDOE), and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of, and data from, the experiments are included in this report. The experiments were performed with mixed plutonium-uranium solutions in annular cylindrical geometry. The measurements were made with a water reflector. The central region included a concrete, polyethylene or void annular cylindrical insert. Interior to the insert was a stainless steel bottle containing plutonium-uranium solution or a void region. In one experiment the central region was filled with a solid cadmium-covered polyethylene insert. The concentration of the solution in the annular region was varied from 61 to 489 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was 0.22 or 0.97 for all experiments.

Lloyd, RC

1988-04-01

298

The thermal expansion behavior of unalloyed plutonium  

SciTech Connect

Information and data concerning the thermal expansion characteristics of the solid and liquid phases of unalloyed plutonium have been collected from published and unpublished sources and evaluated, and are presented to provide increased availability in compact form.

Schonfeld, F.W.; Tate, R.E.

1996-09-01

299

Plutonium finishing plant dangerous waste training plan  

SciTech Connect

This training plan describes general requirements, worker categories, and provides course descriptions for operation of the Plutonium Finish Plant (PFP) waste generation facilities, permitted treatment, storage and disposal (TSD) units, and the 90-Day Accumulation Areas.

ENTROP, G.E.

1999-05-24

300

Explosive properties of reactor?grade plutonium  

Microsoft Academic Search

The following discussion focuses on the question of whether a terrorist organization or a threshold state could make use of plutonium recovered from light?water?reactor fuel to construct a nuclear explosive device having a significantly damaging yield. Questions persist in some nonproliferation policy circles as to whether a bomb could be made from reactor?grade plutonium of high burn?up, and if so,

J. Carson Marka

1993-01-01

301

PLUTONIUM RELEASE INCIDENT OF NOVEMBER 20, 1959  

Microsoft Academic Search

A nonnuclear explosion involving an evaporator occurred in a shielded ;\\u000a cell in the Radiochemical Processing Pilot Plant at Oak Ridge National Laboratory ;\\u000a on Nov. 20, 1959. Plutonium was released from the processing cell, probably as ;\\u000a an aerosol of fine particles of plutonium oxide. It is probable that this ;\\u000a evaporator system had accumulated -1100 g of nitric

L. J. King; W. T. McCarley

1961-01-01

302

Magnetic Properties of Plutonium Hydride and Deuteride  

Microsoft Academic Search

Magnetic investigations on plutonium hydride (PuH2.74) and deuteride (PuD2.74) have shown these compounds to be either ferromagnetic, like the corresponding uranium compounds, or ferrimagnetic. The Curie temperatures of plutonium hydride and deuteride are the same, within experimental error, and are 107K. The magnetic moment for the hydride and deuteride are greater than 0.24 and 0.13 Bohr magnetons per mole of

C. E. Olsen; T. A. Sandenaw; B. T. MATTHIAst

1963-01-01

303

Plutonium recycling in hydride fueled PWR cores  

Microsoft Academic Search

The classic approach to the recycling of Pu in PWR is to use mixed U-oxide Pu-oxide (MOX) fuel. The mono-recycling of plutonium in PWR transmutes less than 30% of the loaded plutonium, providing only a limited reduction in the long-term radiotoxicity and in the inventory of TRU to be stored in the repository. The primary objective of this study is

Francesco Ganda; Ehud Greenspan

2009-01-01

304

Plutonium: The first 50 years. United States plutonium production, acquisition, and utilization from 1944 through 1994  

SciTech Connect

The report contains important newly declassified information regarding the US production, acquisition, and removals of plutonium. This new information, when combined with previously declassified data, has allowed the DOE to issue, for the first time, a truly comprehensive report on the total DOE plutonium inventory. At the December 7, 1993, Openness Press Conference, the DOE declassified the plutonium inventories at eight locations totaling 33.5 metric tons (MT). This report declassifies the remainder of the DOE plutonium inventory. Newly declassified in this report is the quantity of plutonium at the Pantex Site, near Amarillo, Texas, and in the US nuclear weapons stockpile of 66.1 MT, which, when added to the previously released inventory of 33.5 MT, yields a total plutonium inventory of 99.5 MT. This report will document the sources which built up the plutonium inventory as well as the transactions which have removed plutonium from that inventory. This report identifies four sources that add plutonium to the DOE/DoD inventory, and seven types of transactions which remove plutonium from the DOE/DoD inventory. This report also discusses the nuclear material control and accountability system which records all nuclear material transactions, compares records with inventory and calculates material balances, and analyzes differences to verify that nuclear materials are in quantities as reported. The DOE believes that this report will aid in discussions in plutonium storage, safety, and security with stakeholders as well as encourage other nations to declassify and release similar data. These data will also be available for formulating policies with respect to disposition of excess nuclear materials. The information in this report is based on the evaluation of available records. The information contained in this report may be updated or revised in the future should additional or more detailed data become available.

None

1996-02-01

305

Mitochondrial recombination in natural populations of the button mushroom Agaricus bisporus.  

PubMed

In the majority of sexual eukaryotes, the mitochondrial genomes are inherited uniparentally and have predominantly clonal population structures. In clonally evolving genomes, alleles at different loci will be in significant linkage disequilibrium. In this study, the associations among alleles at nine mitochondrial loci were analyzed for 379 isolates in four natural populations of the button mushroom Agaricus bisporus. The results indicated that the mitochondrial genome in the Desert California population was not significantly different from random recombination. In contrast, the three other populations all showed predominantly clonal mitochondrial population structure. While no evidence of recombination was found in the Alberta, Canada A. bisporus population, signatures of recombination were evident in the Coastal Californian and the French populations. We discuss the potential mechanisms that could have contributed to the observed mitochondrial recombination and to the differences in allelic associations among the geographic populations in this economically important mushroom. PMID:23000308

Xu, Jianping; Zhang, Ying; Pun, Nicholas

2013-06-01

306

Analysis of the beam position measurement with button-type pickups in APS  

SciTech Connect

The response of electrostatic button-type pickups for the measurement of the transverse position of charged particle beams was investigated and analytic formulae were obtained for the signal as a function of time t. The study was done for beam pipes of circular and elliptic cross sections, for rectangular and nonrectangular electrodes, and for several cases of longitudinal beam profiles. In particular, the error in the measurement of the beam position using circular electrodes as compared to rectangular ones was found to be less than 100 {mu}m per 1 cm of beam excursion from the center of the beam pipe for the case of APS. 3 refs., 4 figs., 1 tab.

Chung, Y.

1990-01-01

307

Study and analysis of the stress state in a ceramic, button-head, tensile specimen  

SciTech Connect

The final results are reported for a study to identify and correct the causes of nongage-section failures (notably button-head failures) in ceramic tensile specimens observed in several laboratories. Numerical modeling of several candidate specimen gripping systems has shown inherent stress concentrations near the specimen button head at which the maximum stress may approach 75 to 100% of the gage-section stress for certain grip conditions. Empirical comparisons of both tapered- and straight-collet gripping systems revealed compromises in both systems. The straight-collet system, with deformable collets, is simpler to use but produces statistically significant greater average percent bending for all tests than those produced for the tapered-collet system, which is slightly more difficult to use. Empirical tensile tests of {approximately}50 aluminium oxide and {approximately}50 silicon nitride specimens were conducted to evaluate the loading capability of both gripping systems, the percent bending in each system, and the potential of consistently producing successful test results. These tests revealed that, due to variations in individuals specimens or the individual specimen/grip interfaces, neither of the gripping systems can consistently produce bending of less than 3 to 4% at failure although occasional values of {approximately}0.5% bending were attained. Refinements of grinding procedures and dimensional measurement techniques have shown critical details in both the practices and consistency of machining necessary for achieving the dimensional tolerances while minimizing subsurface damage. Numerical integration techniques indicate that up to a consistent 5.0% bending during fast- fracture tests can be tolerated before large influences are detected in the determination of the Weibull modulus and the Weibull characteristic strength.

Jenkins, M.G.; Ferber, M.K.; Martin, R.L.; Jenkins, V.T.; Tennery, V.J.

1991-09-01

308

Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility  

SciTech Connect

Eighteen plutonium oxide samples originating from the Plutonium Finishing Plant (PFP) on the Hanford Site were analyzed to provide additional data on the suitability of PFP thermally stabilized plutonium oxides and Rocky Flats oxides as alternate feedstock to the Mixed Oxide Fuel Fabrication Facility (MFFF). Radiochemical and chemical analyses were performed on fusions, acid leaches, and water leaches of these 18 samples. The results from these destructive analyses were compared with nondestructive analyses (NDA) performed at PFP and the acceptance criteria for the alternate feedstock. The plutonium oxide materials considered as alternate feedstock at Hanford originated from several different sources including Rocky Flats oxide, scrap from the Remote Mechanical C-Line (RMC) and the Plutonium Reclamation Facility (PRF), and materials from other plutonium conversion processes at Hanford. These materials were received at PFP as metals, oxides, and solutions. All of the material considered as alternate feedstock was converted to PuO2 and thermally stabilized by heating the PuO2 powder at 950 C in an oxidizing environment. The two samples from solutions were converted to PuO2 by precipitation with Mg(OH)2. The 18 plutonium oxide samples were grouped into four categories based on their origin. The Rocky Flats oxide was divided into two categories, low- and high-chloride Rocky Flats oxides. The other two categories were PRF/RMC scrap oxides, which included scrap from both process lines and oxides produced from solutions. The two solution samples came from samples that were being tested at Pacific Northwest National Laboratory because all of the plutonium oxide from solutions at PFP had already been processed and placed in 3013 containers. These samples originated at the PFP and are from plutonium nitrate product and double-pass filtrate solutions after they had been thermally stabilized. The other 16 samples originated from thermal stabilization batches before canning at PFP. Samples varied in appearance depending on the original source of material. Rocky Flats items were mostly dark olive green with clumps that crushed easily with a mortar and pestle. PRF/RMC items showed more variability. These items were mostly rust colored. One sample contained white particles that were difficult to crush, and another sample was a dark grey with a mixture of fines and large, hard fragments. The appearance and feel of the fragments indicated they might be an alloy. The color of the solution samples was indicative of the impurities in the sample. The double-pass filtrate solution was a brown color indicative of the iron impurities in the sample. The other solution sample was light gray in color. Radiochemical analyses, including thermal ionization mass spectrometry (TIMS), alpha and gamma energy analysis (AEA and GEA), and kinetic phosphorescence analysis (KPA), indicate that these materials are all weapons-grade plutonium with consistent plutonium isotopics. A small amount of uranium (<0.14 wt%) is also present in these samples. The isotopic composition of the uranium varied widely but was consistent among each category of material. The primary water-soluble anions in these samples were Cl-, NO3-, SO42-, and PO43-. The only major anion observed in the Rocky Flats materials was Cl-, but the PRF/RMC samples had significant quantities of all of the primary anions observed. Prompt gamma measurements provide a representative analysis of the Cl- concentration in the bulk material. The primary anions observed in the solution samples were NO3-, and PO43-. The concentration of these anions did not exceed the mixed oxide (MOX) specification limits. Cations that exceeded the MOX specification limits included Cr, Fe, Ni, Al, Cu, and Si. All of the samples exceeded at least the 75% specification limit in one element.

Tingey, Joel M.; Jones, Susan A.

2005-07-01

309

In vitro supplementation with white button mushroom promotes maturation of bone marrow-derived dendritic cells in mice  

Technology Transfer Automated Retrieval System (TEKTRAN)

Mushrooms have been shown to enhance immune response, which contributes to their anti-tumor property. White button mushrooms (Agaricus bisporus) constitute 90 percent of the total mushroom market in the US; however, the health benefit of this strain in general is not well-studied. Furthermore, littl...

310

White button mushroom enhances maturation of bone marrow derived dendritic cells and their antigen presenting function in mice  

Technology Transfer Automated Retrieval System (TEKTRAN)

Mushrooms have been shown to enhance immune response, which contributes to their anti-tumor property. White button mushrooms (Agaricus bisporus) (WBM) constitute 90 percent of the total mushrooms consumed in the United States; however, the health benefit of this strain in general is not well studied...

311

Spicing Things up by Adding Color and Relieving Pain: The Use of "Napoleon's Buttons" in Organic Chemistry  

ERIC Educational Resources Information Center

For some students, organic chemistry can be a distant subject and unrelated to any courses they have seen in their college careers. To develop a more contextual learning experience in organic chemistry, an additional text, "Napoleon's Buttons: 17 Molecules That Changed History," by Penny Le Couteur and Jay Burreson, was incorporated as a

Bucholtz, Kevin M.

2011-01-01

312

Effect of dietary supplementation with white button mushrooms on host resistance to influenza infection and immune function in mice  

Technology Transfer Automated Retrieval System (TEKTRAN)

Previously we showed that mice fed white button mushrooms (WBM) had enhanced immune functions known to help the bodys antiviral defense. In this study, we tested if WBM could afford protection against viral infection. Young (4-mo) and old (22-mo) C57BL/6 mice were fed a diet containing 0, 2 per cen...

313

Hot-Button Issues for Teachers: What Every Educator Needs to Know About Leadership, Testing, Textbooks, Vouchers, and More  

ERIC Educational Resources Information Center

One of the tragedies of American education is that so many teachers do not understand or are unaware of educational issues and how they impact on their profession. There is a gap between teacher perceptions and reality and this book is a first step in closing that gap. Hot-Button Issues for Teachers is a timely, comprehensive book that addresses

Vairo, Philip D.; Marcus, Sheldon; Weiner, Max

2007-01-01

314

Soft tissue fixation with a cortical button and interference screw: a novel technique in foot and ankle surgery.  

PubMed

Tendon transfers are commonly performed procedures in the foot and ankle. They have been described for multiple tendons and a myriad of pathologies. One issue with these procedures has always been inadequate fixation with several methods available to the surgeon. In this report, we describe a novel technique in foot and ankle surgery using a cortical button and an interference screw. PMID:25534315

Shinabarger, Andrew B; Manway, Jeffrey M; Nowak, Jessica; Burns, Patrick R

2015-02-01

315

Loading Capacities for Uranium, Plutonium and Neptunium in High Caustic Nuclear Waste Storage Tanks Containing Selected Sorbents  

Microsoft Academic Search

In this study the loading capacities of selected actinides onto some of the most common sorbent materials which are present in caustic nuclear waste storage tanks have been determined. Some of these transition metal oxides and activated carbons easily absorb or precipitate plutonium, neptunium and even uranium, which if care is not taken may lead to unwanted accumulation of some

2004-01-01

316

75 FR 41850 - Amended Notice of Intent to Modify the Scope of the Surplus Plutonium Disposition Supplemental...  

Federal Register 2010, 2011, 2012, 2013, 2014

...other plutonium metal to an oxide form suitable for feed to the...capability in K-Area at SRS necessary to perform the functions of...ongoing K-Area operations necessary to accommodate construction...facility modifications \\10\\ necessary to accommodate MOX fuel...

2010-07-19

317

MOISTURE AND SURFACE AREA MEASUREMENTS OF PLUTONIUM-BEARING OXIDES  

SciTech Connect

To ensure safe storage, plutonium-bearing oxides are stabilized at 950 C for at least two hours in an oxidizing atmosphere. Stabilization conditions are expected to decompose organic impurities, convert metals to oxides, and result in moisture content below 0.5 wt%. During stabilization, the specific surface area is reduced, which minimizes readsorption of water onto the oxide surface. Plutonium oxides stabilized according to these criteria were sampled and analyzed to determine moisture content and surface area. In addition, samples were leached in water to identify water-soluble chloride impurity content. Results of these analyses for seven samples showed that the stabilization process produced low moisture materials (< 0.2 wt %) with low surface area ({le} 1 m{sup 2}/g). For relatively pure materials, the amount of water per unit surface area corresponded to 1.5 to 3.5 molecular layers of water. For materials with chloride content > 360 ppm, the calculated amount of water per unit surface area increased with chloride content, indicating hydration of hygroscopic salts present in the impure PuO{sub 2}-containing materials. The low moisture, low surface area materials in this study did not generate detectable hydrogen during storage of four or more years.

Crowder, M.; Duffey, J.; Livingston, R.; Scogin, J.; Kessinger, G.; Almond, P.

2009-09-28

318

DEVELOPMENT OF PROCESS TEMPLATES AS A PROJECT MANAGEMENT TOOL FOR THE PLUTONIUM FINISHING PLANT (PFP)  

SciTech Connect

The mission of the Nuclear Materials Stabilization Project is to provide for safe stabilization; interim storage; repackaging; and shipment of the Plutonium Finishing Plant inventory of plutonium-bearing materials, spent nuclear fuel, and other nuclear material for reuse, long-term storage, and/or final disposition. In May 1994 (updated in 2000), the DNFSB issued recommendation 94-1 identifying a number of concerns regarding the storage of fissile materials and other radioactive substances. The DOE decided to implement a group of stabilization alternatives, including thermal stabilization, pyrolysis, calcination, and cementation. Pyrolysis and calcination are not currently planned for implementation at the Plutonium Finishing Plant. Integration of the remaining stabilization alternatives across a wide variety of material types and forms and a significant inventory of plutonium, presents numerous technical and management challenges. Integration of these alternatives and various materials are evaluated with the use process templates as means to analyze resource needs and improve project planning. The analysis of resource needs discussed in this paper identified an existing disconnect between the approved baseline plan and the current DNFSB milestones (94-1/2000-1 implementation plan). The existing plan shows the milestones tied to completion of stabilization instead of at full compliance (stabilization and packaging) with DOE-STD-3013, where as the milestone description specifically requires full compliance for metals with the standard. An output of this analysis identified two significant management challenges that must be directly confronted in order for the Plutonium Finishing Plant to continue to succeed. First is completion of metal stabilization by the milestone of 3/31/2001. The second challenge is radiological dose management.

JASEN; HALVERSON; GODFREY

2001-01-22

319

Effects of contamination by either blood or a hemostatic agent on the shear bond strength of orthodontic buttons  

PubMed Central

Objective To evaluate the effects of contamination by either blood or a hemostatic agent on the shear bond strength (SBS) of orthodontic buttons. Methods We used 45 freshly extracted, non-carious, impacted third molars that were divided into 3 groups of 15. Each tooth was etched with 37% phosphoric acid gel for 30 s. Human blood or the blood stopper agent was applied to the tooth surface in groups I and II, respectively. Group III teeth were untreated (controls). Orthodontic buttons were bonded to the teeth using light-curing composite resin. After bonding, the SBS of the button was determined using a Universal testing machine. Any adhesive remaining after debonding was assessed and scored according to the modified adhesive remnant index (ARI). ANOVA with post-hoc Tukey's test was used to determine significant differences in SBS and Fisher's exact test, to determine significant differences in ARI scores among groups. Results ANOVA indicated a significant difference between groups (p < 0.001). The highest SBS values were measured in group III (10.73 0.96 MPa). The SBS values for teeth in groups I and II were significantly lower than that of group III (p < 0.001). The lowest SBS values were observed in group I teeth (4.17 1.11 MPa) (p < 0.001). Conclusions Contamination of tooth surfaces with either blood or hemostatic agent significantly decreased the SBS of orthodontic buttons. When the contamination risk is high, it is recommended to use the blood stopper agent when bonding orthodontic buttons on impacted teeth. PMID:23671834

Alkis, Huseyin; Turkkahraman, Hakan

2013-01-01

320

PROMPT NEUTRON DECAY FOR DELAYED CRITICAL METAL SPHERES OF PU, AND DEPLETED-URANIUM REFLECTED PU AND HEU  

Microsoft Academic Search

Prompt neutron decay constants at delayed critical have been measured by Oak Ridge National Laboratory for unmoderated natural-uranium-reflected uranium and plutonium metal spheres (FLATTOP) and an unreflected and unmoderated plutonium metal sphere (JEZEBEL) at the Los Alamos National Laboratory (LANL) critical experiments facility. The average prompt neutron decay constants obtained from hundreds of Rossi-? and randomly pulsed neutron measurements with

J. T. Mihalczo

321

Redox Bias in Loss on Ignition Moisture Measurement for Relatively Pure Plutonium-Bearing Oxide Materials  

Microsoft Academic Search

This paper evaluates potential analytical bias in application of the Loss on Ignition (LOI) technique for moisture measurement to relatively pure (plutonium assay of 80 wt.% or higher) oxides containing uranium that have been stabilized according to stabilization and storage standard DOE-STD-3013-2000 (STD- 3013). An immediate application is to Rocky Flats (RF) materials derived from high-grade metal hydriding separations subsequently

P. G. Eller; J. L. Stakebake; T. D. Cooper

2002-01-01

322

Redox bias in loss of ignition moisture measurement for relatively pure plutonium-bearing oxide materials  

Microsoft Academic Search

This paper evaluates potential analytical bias in application of the Loss on Ignition (LOI) technique for moisture measurement to relatively pure (plutonium assay of 80 wt.% or higher) oxides containing uranium that have been stabilized according to stabilization and storage standard DOE-STD-3013-2000 (STD-3013). An immediate application is to Rocky Flats (RF) materials derived from highgrade metal hydriding separations subsequently treated

P. G. Eller; J. L. Stakebake; T. D. Cooper

2001-01-01

323

Preserving Plutonium-244 as a National Asset  

SciTech Connect

Plutonium-244 (244 Pu) is an extremely rare and long-lived isotope of plutonium with a half-life of 80 million years. Measureable amounts of 244 Pu are found in neither reactor-grade nor weapons-grade plutonium. Production of this isotope requires a very high thermal flux to permit the two successive neutron captures that convert 242 Pu to 243 Pu to 244 Pu, particularly given the short (about 5 hour) half-life of 243 Pu. Such conditions simply do not exist in plutonium production processes. Therefore, 244 Pu is ideal for precise radiochemical analyses measuring plutonium material properties and isotopic concentrations in items containing plutonium. Isotope dilution mass spectrometry is about ten times more sensitive when using 244 Pu rather than 242 Pu for determining plutonium isotopic content. The isotope can also be irradiated in small quantities to produce superheavy elements. The majority of the existing global inventory of 244 Pu is contained in the outer housing of Mark-18A targets at the Savannah River Site (SRS). The total inventory is about 20 grams of 244 Pu in about 400 grams of plutonium distributed among the 65 targets. Currently, there are no specific plans to preserve these targets. Although the cost of separating and preserving this material would be considerable, it is trivial in comparison to new production costs. For all practical purposes, the material is irreplaceable, because new production would cost billions of dollars and require a series of irradiation and chemical separation cycles spanning up to 50 years. This paper will discuss a set of options for overcoming the significant challenges to preserve the 244 Pu as a National Asset: (1) the need to relocate the material from SRS in a timely manner, (2) the need to reduce the volume of material to the extent possible for storage, and (3) the need to establish an operational capability to enrich the 244 Pu in significant quantities. This paper suggests that if all the Mark-18A plutonium is separated, it would occupy a small volume and would be inexpensive to store while an enrichment capability is developed. Very small quantities could be enriched in existing mass separators to support critical needs.

Patton, Bradley D [ORNL; Alexander, Charles W [ORNL; Benker, Dennis [ORNL; Collins, Emory D [ORNL; Romano, Catherine E [ORNL; Wham, Robert M [ORNL

2011-01-01

324

71. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING NORTHEAST INTO ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

71. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING NORTHEAST INTO PLUTONIUM STORAGE ROOM SHOWING CUBICLES FOR STORAGE. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

325

69. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING SOUTHWEST THROUGH ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

69. INTERIOR, BUILDING 272 (PLUTONIUM STORAGE BUILDING) LOOKING SOUTHWEST THROUGH DOOR-WAY INTO PLUTONIUM STORAGE AREA. - Loring Air Force Base, Weapons Storage Area, Northeastern corner of base at northern end of Maine Road, Limestone, Aroostook County, ME

326

The design and evaluation of an international plutonium storage system  

E-print Network

To address the proliferation risk of separated plutonium, a technical and institutional design of an international plutonium storage system (IPSS) is presented. The IPSS is evaluated from two perspectives: its ability to ...

Bae, Eugene

2001-01-01

327

Dispersion of plutonium from contaminated pond sediments  

USGS Publications Warehouse

Sediment-water distributions of plutonium as a function of pH and contact time are investigated in a holding pond at the Rocky Flats plant of the Department of Energy. Although plutonium has been shown to sorb from natural waters onto sediments, the results of this study indicate that under the proper conditions it can be redispersed at pH 9 and above. Concentrations greater than 900 pCi Pu/L result after 34 h contact at pH 11 or 12 and the distribution coefficient, defined as the ratio of concentration in the sediment to that in the liquid, decreases from 1.1 ?? 105 at pH 7 to 1.2 ?? 103 at pH 11. The plutonium is probably dispersed as discrete colloids or as hydrolytic species adsorbed onto colloidal sediment particles whose average size decreases with increasing pH above pH 9. About 5% of the total plutonium is dispersed at pH 12, and the dispersion seems to readsorb on the sediment with time. Consequently, migration of plutonium from the pond should be slow, and it would be difficult to remove this element completely from pond sediment by leaching with high pH solutions. ?? 1978 American Chemical Society.

Rees, T.F.; Cleveland, J.M.; Carl, Gottschall W.

1978-01-01

328

Plutonium and uranium adsorption on monosodium titanate  

SciTech Connect

Adsorption of Pu and U onto monosodium titanate (MST) in alkaline salt solution was measured. Changes in MST particle size distribution do not significantly affect the loadings of actinides. Max loading of plutonium-239 is 0.68 wt% at 0.79 mg/L Pu, below the infinitely safe value of 0.80 wt%. Max loading of uranium-235 onto MST is 1.4 wt% at a concentration of 20.3 [plus minus] 2.0 mg/L U, slightly higher than the calculated infinitely safe limit of 1.2 wt%. Experimental data indicated there is competition between plutonium and uranium for sites on the MST, and that the loading will favor the higher concentration species. Since the solubility of uranium is 10--100 times higher than of plutonium, uranium will be loaded to its maximum limit, but plutonium will be below its maximum limit. To ensure that the concentration of fissile materials cannot exceed nuclear safety limits, it is recommended that plutonium and uranium solubility tests be conducted with solutions which bound the compositions of waste which will be treated in ITP process.

Hobbs, D.T.; Walker, D.D.

1992-08-13

329

Plutonium and uranium adsorption on monosodium titanate  

SciTech Connect

Adsorption of Pu and U onto monosodium titanate (MST) in alkaline salt solution was measured. Changes in MST particle size distribution do not significantly affect the loadings of actinides. Max loading of plutonium-239 is 0.68 wt% at 0.79 mg/L Pu, below the infinitely safe value of 0.80 wt%. Max loading of uranium-235 onto MST is 1.4 wt% at a concentration of 20.3 {plus_minus} 2.0 mg/L U, slightly higher than the calculated infinitely safe limit of 1.2 wt%. Experimental data indicated there is competition between plutonium and uranium for sites on the MST, and that the loading will favor the higher concentration species. Since the solubility of uranium is 10--100 times higher than of plutonium, uranium will be loaded to its maximum limit, but plutonium will be below its maximum limit. To ensure that the concentration of fissile materials cannot exceed nuclear safety limits, it is recommended that plutonium and uranium solubility tests be conducted with solutions which bound the compositions of waste which will be treated in ITP process.

Hobbs, D.T.; Walker, D.D.

1992-08-13

330

Plutonium Chemistry in the UREX+ Separation Processes  

SciTech Connect

The project "Plutonium Chemistry in the UREX+ Separation Processes is led by Dr. Alena Paulenova of Oregon State University under collaboration with Dr. George Vandegrift of ANL and Dr. Ken Czerwinski of the University of Nevada at Las Vegas. The objective of the project is to examine the chemical speciation of plutonium in UREX+ (uranium/tributylphosphate) extraction processes for advanced fuel technology. Researchers will analyze the change in speciation using existing thermodynamics and kinetic computer codes to examine the speciation of plutonium in aqueous and organic phases. They will examine the different oxidation states of plutonium to find the relative distribution between the aqueous and organic phases under various conditions such as different concentrations of nitric acid, total nitrates, or actinide ions. They will also utilize techniques such as X-ray absorbance spectroscopy and small-angle neutron scattering for determining plutonium and uranium speciation in all separation stages. The project started in April 2005 and is scheduled for completion in March 2008.

ALena Paulenova; George F. Vandegrift, III; Kenneth R. Czerwinski

2009-10-01

331

Actinide metal processing  

DOEpatents

A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

Sauer, N.N.; Watkin, J.G.

1992-03-24

332

Actinide metal processing  

SciTech Connect

This invention is comprised of a process of converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

Sauer, N.N.; Watkin, J.G.

1991-04-05

333

Criticality experiments with mixed oxide fuel pin arrays in plutonium-uranium nitrate solution  

SciTech Connect

A series of critical experiments was completed with mixed plutonium-uranium solutions having a Pu/(Pu + U) ratio of approximately 0.22 in a boiler tube-type lattice assembly. These experiments were conducted as part of the Criticality Data Development Program between the United States Department of Energy (USDOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of the experiments and data are included in this report. The experiments were performed with an array of mixed oxide fuel pins in aqueous plutonium-uranium solutions. The fuel pins were contained in a boiler tube-type tank and arranged in a 1.4 cm square pitch array which resembled cylindrical geometry. One experiment was perfomed with the fuel pins removed from the vessel. The experiments were performed with a water reflector. The concentration of the solutions in the boiler tube-type tank was varied from 4 to 468 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was approximately 0.22 for all experiments.

Lloyd, R.C. (Pacific Northwest Lab., Richland, WA (United States)); Smolen, G.R. (Oak Ridge National Lab., TN (United States))

1988-08-01

334

10 CFR 140.107 - Appendix G-Form of indemnity agreement with licensees processing plutonium for use in plutonium...  

Code of Federal Regulations, 2010 CFR

Appendix G-Form of indemnity agreement with licensees processing plutonium for use in plutonium processing and fuel fabrication plants and furnishing insurance policies as proof of financial protection. 140.107 Section 140.107 Energy NUCLEAR REGULATORY COMMISSION...

2010-01-01

335

Surveillance of sealed containers with plutonium oxide materials (ms163)  

NASA Astrophysics Data System (ADS)

DOE is embarking upon a program to store large quantities of plutonium-bearing materials for up to fifty years. Materials destined for long-term storage include metals and oxides that are stabilized and packaged according to the DOE storage standard, where the packaging consists of two nested, welded, stainless steel containers. We have designed instrumented storage containers that mimic the inner storage can specified in the 3013 standard at both full- and small-scale capacities (2.4 liter and 0.005 liter, respectively), Figures 1 and 2. The containers are designed to maintain the volume to material mass ratio while allowing the gas composition and pressure to be monitored over time.

Worl, Laura; Berg, John; Ford, Doris; Martinez, Max; McFarlan, Jim; Morris, John; Padilla, Dennis; Rau, Karen; Smith, Coleman; Veirs, Kirk; Hill, Dallas; Prenger, Coyne

2000-07-01

336

10 CFR 71.88 - Air transport of plutonium.  

Code of Federal Regulations, 2013 CFR

...distributed; or (3) The plutonium is shipped in a single package containing no more than an A2 quantity of plutonium in any isotope or form, and is shipped in accordance with 71.5; or (4) The plutonium is shipped in a package specifically...

2013-01-01

337

10 CFR 71.88 - Air transport of plutonium.  

Code of Federal Regulations, 2012 CFR

...distributed; or (3) The plutonium is shipped in a single package containing no more than an A2 quantity of plutonium in any isotope or form, and is shipped in accordance with 71.5; or (4) The plutonium is shipped in a package specifically...

2012-01-01

338

10 CFR 71.88 - Air transport of plutonium.  

Code of Federal Regulations, 2011 CFR

...distributed; or (3) The plutonium is shipped in a single package containing no more than an A2 quantity of plutonium in any isotope or form, and is shipped in accordance with 71.5; or (4) The plutonium is shipped in a package specifically...

2011-01-01

339

Calculated Phonon Spectra of Plutonium at High Temperatures  

E-print Network

Calculated Phonon Spectra of Plutonium at High Temperatures X. Dai,1 S. Y. Savrasov,2 * G. Kotliar dynamical proper- ties of plutonium using an electronic structure method, which incorporates correlation anharmonic and can be stabilized at high temperatures by its phonon entropy. Plutonium (Pu) is a material

Savrasov, Sergej Y.

340

PARC (Plutonium Accident Resistant Container) Program: research, design, and development  

Microsoft Academic Search

The PARC (plutonium accident resistant container) project resulted in the design, development, and certification testing of a crashworthy air-transportable plutonium package (shipping container) for certification by the USNRC (Nuclear Regulatory Commission). This PAT-1 (plutonium air transportable) package survives a very severe sequential test program of impact, crush, puncture, slash, burn, and water immersion. There is also an individual hydrostatic pressure

J. A. Andersen; T. A. Duffey; S. A. Dupree; R. H. Nilson

1978-01-01

341

Evaluation of source-term data for plutonium aerosolization  

Microsoft Academic Search

Relevant data are reviewed and evaluated in an effort to define the time dependence and maximum value of the source term for plutonium aerosolization during a fuel fire. The rate of plutonium oxidation at high temperatures is a major determinant of the time dependence. Analysis of temperature-time data for oxidation of plutonium shows that the rate is constant (0.2 g

Haschke

1992-01-01

342

POLYMERIZATION AND PRECIPITATION OF PLUTONIUM(IV) IN NITRIC ACID  

Microsoft Academic Search

The formation of colloidal plutonium(IV) hydroxide from plutonium(IV) ; nitrate solutions was determined as a function of acid and plutonium ; concentration at several temperatures. Hydrolysis, polymerization, and ; precipitation take place in unstable solutions with a resulting increase in ; acidity to a concentration sufficient for a stable true solution. Except for ; colloidal sols formed from solutions of

Arthur Brunstad

1959-01-01

343

Improvement of plutonium proliferation resistance by doping minor actinides  

Microsoft Academic Search

This paper focuses on improving the proliferation resistance of plutonium resulting from uranium-based fuel irradiation. Intrinsic properties of plutonium isotopes with even mass numbers (238Pu, 240Pu and 242Pu) in terms of their intense decay heat and high spontaneous fission neutron rates were used as a measure to improve the proliferation resistance of plutonium itself. The present study explores

Yoga Peryoga; Masaki Saito; Hiroshi Sagara

2005-01-01

344

Excess plutonium disposition: The deep borehole option  

SciTech Connect

This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues related to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.

Ferguson, K.L.

1994-08-09

345

The United States Plutonium Balance, 1944 - 2009  

SciTech Connect

This report updates the report -Plutonium: The first 50 years- which was released by the U.S.Department of Energy (DOE) in 1996. The topic of both reports is plutonium, sometimes referred to as Pu-239, which is capable of sustaining a nuclear chain reaction and is used in nuclear weapons and for nuclear power production. This report updates 1994 data through 2009. The four most significant changes since 1994 include: (a) the completion of cleanup activities at the Rocky Flats Plant in 2005; (b) material consolidation and disposition activities, especially shipments from Hanford to the Savannah River Site; (c) the 2007 declaration of an additional 9.0 MT of weapons grade plutonium to be surplus to defense needs in the coming decades; and (d) the opening of the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in 1999.

none,

2012-06-01

346

ESTIMATING IMPURITIES IN SURPLUS PLUTONIUM FOR DISPOSITION  

SciTech Connect

The United States holds at least 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition of the National Nuclear Security Administration and the DOE Office of Environmental Management. Many of the items that require disposition are only partially characterized, and SRNL uses a variety of techniques to predict the isotopic and chemical properties that are important for processing through the Mixed Oxide Fuel Fabrication Facility and alternative disposition paths. Recent advances in laboratory tools, including Prompt Gamma Analysis and Peroxide Fusion treatment, provide data on the existing inventories that will enable disposition without additional, costly sampling and destructive analysis.

Allender, J.; Moore, E.

2013-07-17

347

Plutonium transport in the environment.  

PubMed

The recent estimated global stockpile of separated plutonium (Pu) worldwide is about 500 t, with equal contributions from nuclear weapons and civilian nuclear energy. Independent of the United States' future nuclear energy policy, the current large and increasing stockpile of Pu needs to be safely isolated from the biosphere and stored for thousands of years. Recent laboratory and field studies have demonstrated the ability of colloids (1-1000 nm particles) to facilitate the migration of strongly sorbing contaminants such as Pu. In understanding the dominant processes that may facilitate the transport of Pu, the initial source chemistry and groundwater chemistry are important factors, as no one process can explain all the different field observations of Pu transport. Very little is known about the molecular-scale geochemical and biochemical mechanisms controlling Pu transport, leaving our conceptual model incomplete. Equally uncertain are the conditions that inhibit the cycling and mobility of Pu in the subsurface. Without a better mechanistic understanding for Pu at the molecular level, we cannot advance our ability to model its transport behavior and achieve confidence in predicting long-term transport. Without a conceptual model that can successfully predict long-term Pu behavior and ultimately isolation from the biosphere, the public will remain skeptical that nuclear energy is a viable and an attractive alternative to counter global warming effects of carbon-based energy alternatives. This review summarizes our current understanding of the relevant conditions and processes controlling the behavior of Pu in the environment, gaps in our scientific knowledge, and future research needs. PMID:23458827

Kersting, Annie B

2013-04-01

348

Alternating layers of plutonium and lead or indium as surrogate for plutonium  

SciTech Connect

Elemental plutonium (Pu) assumes more crystal structures than other elements, plausibly due to bonding f electrons becoming non-bonding. Complex geometries hamper understanding of the transition in Pu, but calculations predict this transition in a system with simpler geometry: alternating layers either of plutonium and lead or of plutonium and indium. Here the transition occurs via a pairing-up of atoms within Pu layers. Calculations stepping through this pairing-up reveal valuable details of the transition, for example that the transition from bonding to non-bonding proceeds smoothly.

Rudin, Sven Peter [Los Alamos National Laboratory

2009-01-01

349

Fabrication of zircon for disposition of weapons plutonium  

SciTech Connect

This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). In an effort to address the problems of long term storage and nuclear waste minimization, zircon has been proposed as a host medium for plutonium and other actinides recovered from dismantled nuclear weapons. The objective of this work is to investigate the feasibility of large scale fabrication of Pu-bearing zircon. Since PuO{sub 2} is thermodynamically less stable than ZrO{sub 2}, it is expected that the process parameters determined for synthesizing ZrSiO{sub 4} (zircon) would be applicable to those for PuSiO{sub 4} (Pu-zircon). Furthermore, since the foremost concern in plutonium processing is the potential for contamination release, this work emphasizes the development of process parameters, using zircon first, to anticipate potential material problems in the containment system for reaction mixtures during processing. Stoichiometric mixtures of ZrO{sub 2} and SiO{sub 2}, in hundred-gram batches, have been subjected to hot isostatic pressing (HIP) at temperatures near 1,500 C and pressures approximately 10,000 psi. The product materials have been analyzed by x-ray powder diffraction, and are found to consist of zircon after approximately two hours of reaction time. From this work, it is clear that the fabrication of large quantities of Pu-zircon is feasible. The most notable result of this work is evidence for the existence of container problems. This result, in turn, suggests potential solutions to these problems. Experiments with the quartz inner container, the glass sealant, a sacrificial metal barrier, and a metal outer container are being investigated to mitigate these potential hazards.

Kim, K.C.; Huang, J.Y.; Serrano, P.L. [and others

1997-07-01

350

CHARACTERIZATION OF SURPLUS PLUTONIUM FOR DISPOSITION OPTIONS  

SciTech Connect

The United States (U.S.) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Except for materials that remain in use for programs outside of national defense, including programs for nuclear-energy development, the surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. Some items will be disposed as transuranic waste, low-level waste, or spent fuel. The remaining surplus plutonium will be managed through: (1) the Mixed Oxide (MOX) Fuel Fabrication Facility (FFF), to be constructed at the Savannah River Site (SRS), where the plutonium will be converted to fuel that will be irradiated in civilian power reactors and later disposed to a high-level waste (HLW) repository as spent fuel; (2) the SRS H-Area facilities, by dissolving and transfer to HLW systems, also for disposal to the repository; or (3) alternative immobilization techniques that would provide durable and secure disposal. From the beginning of the U.S. program for surplus plutonium disposition, DOE has sponsored research to characterize the surplus materials and to judge their suitability for planned disposition options. Because many of the items are stored without extensive analyses of their current chemical content, the characterization involves three interacting components: laboratory sample analysis, if available; non-destructive assay data; and rigorous evaluation of records for the processing history for items and inventory groups. This information is collected from subject-matter experts at inventory sites and from materials stabilization and surveillance programs, in cooperation with the design agencies for the disposition facilities. This report describes the operation and status of the characterization program.

Allender, J; Edwin Moore, E; Scott Davies, S

2008-07-15

351

A Plutonium Ceramic Target for MASHA  

SciTech Connect

We are currently developing a plutonium ceramic target for the MASHA mass separator. The MASHA separator will use a thick plutonium ceramic target capable of tolerating temperatures up to 2000 C. Promising candidates for the target include oxides and carbides, although more research into their thermodynamic properties will be required. Reaction products will diffuse out of the target into an ion source, where they will then be transported through the separator to a position-sensitive focal-plane detector array. Experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide for future experiments where the chemical properties of the heaviest elements are studied.

Wilk, P A; Shaughnessy, D A; Moody, K J; Kenneally, J M; Wild, J F; Stoyer, M A; Patin, J B; Lougheed, R W; Ebbinghaus, B B; Landingham, R L; Oganessian, Y T; Yeremin, A V; Dmitriev, S N

2004-07-06

352

a Plutonium Ceramic Target for Masha  

NASA Astrophysics Data System (ADS)

We are currently developing a plutonium ceramic target for the MASHA mass separator. The MASHA separator will use a thick plutonium ceramic target capable of tolerating temperatures up to 2000 C. Promising candidates for the target include oxides and carbides, although more research into their thermodynamic properties will be required. Reaction products will diffuse out of the target into an ion source, where they will then be transported through the separator to a position-sensitive focal-plane detector array. Experiments on MASHA will allow us to make measurements that will cement our identification of element 114 and provide for future experiments where the chemical properties of the heaviest elements are studied.

Wilk, P. A.; Shaughnessy, D. A.; Moody, K. J.; Kenneally, J. M.; Wild, J. F.; Stoyer, M. A.; Patin, J. B.; Lougheed, R. W.; Ebbinghaus, B. B.; Landingham, R. L.; Oganessian, Yu. Ts.; Yeremin, A. V.; Dmitriev, S. N.

2005-09-01

353

Genome-wide survey of repetitive DNA elements in the button mushroom Agaricus bisporus.  

PubMed

Repetitive DNA elements are ubiquitous constituents of eukaryotic genomes. The biological roles of these repetitive elements, supposed to impact genome organization and evolution, are not completely elucidated yet. The availability of whole genome sequence offers the opportunity to draw a picture of the genome-wide distribution of these elements and provide insights into potential mechanisms of genome plasticity. The present study uses in silico approaches to describe tandem repeats and transposable elements distribution in the genome of the button mushroom, Agaricus bisporus. Transposable elements comprised 12.43% of the assembled genome, and 66% of them were found clustered in the centromeric or telomeric regions. Methylation of retrotransposon has been demonstrated. A total of 1996 mini-, 4062 micro-, and 37 satellites motifs were identified. The microsatellites appeared widely and evenly spread over the whole genome sequence, whereas the minisatellites were not randomly distributed. Indeed, minisatellites were found to be associated with transposable elements clusters. Telomeres exhibited a specific sequence with a T(n)AG(n) signature. A comparison between the two available genome sequences of A. bisporus was also performed and sheds light on the genetic divergence between the two varieties. Beyond their role in genome structure, repeats provide a virtually endless source of molecular markers useful for genetic studies in this cultivated species. PMID:23608317

Foulongne-Oriol, Marie; Murat, Claude; Castanera, Ral; Ramrez, Luca; Sonnenberg, Anton S M

2013-06-01

354

Characteristics of a hydrated, alginate-based delivery system for cultivation of the button mushroom.  

PubMed

The production of the button mushroom Agaricus bisporus with mycelium-colonized alginate pellets as an inoculant of the growing medium was investigated. Pellets having an irregular surface and porous internal structure were prepared by complexing a mixture of 1% sodium alginate, 2 to 6% vermiculite, 2% hygramer, and various concentrations of Nutrisoy (soy protein) with calcium chloride. The porous structure allowed the pellets to be formed septically and then inoculated and colonized with the fungus following sterilization. By using an enzyme-linked immunosorbent assay (ELISA) to estimate fungal biomass, the matrix components of the pellet were found to be of no nutritive value to A. bisporus. Pellets amended with Nutrisoy at a concentration of 0.5 to 8% supported extensive mycelial growth, as determined by significantly increased ELISA values, with a concentration of 4% being optimal and higher concentrations proving inhibitory. The addition of hydrated, mycelium-invaded pellets to the compost or casing layer supported the thorough colonization of the growing substrate and culminated in the formation of mushrooms that showed normal development and typical morphology. Yields and sizes of mushrooms were comparable from composts seeded with either colonized pellets or cereal grain spawn. Similarly, amending the casing layer with pelletized-mycelium-colonized compost resulted in a 2- to 3-day-earlier and more-synchronous emergence of mushrooms than with untreated casing. This technology shows the greatest potential as a pathogen-free inoculant of the casing layer in the commercial cultivation of mushrooms. PMID:16348774

Romaine, C P; Schlagnhaufer, B

1992-09-01

355

Theoretical studies on the beam position measurement with button-type pickups in APS  

SciTech Connect

The response of electrostatic button-type pickups for the measurement of the transverse position of charged particle beams was investigated and analytical formulae were obtained for the signal as a function of time t and the coordinates of the beam and the electrodes. The study was done for beam pipes of circular and elliptic cross sections, for rectangular and nonrectangular electrodes, and for several cases of longitudinal beam profiles. The numerical results show good agreement with the analytical results, except that the presence of the photon beam channel and the antechamber causes finite offset ({approximately}20 {mu}m) of the electrical center in the horizontal direction. Time domain analysis indicates that the error in the measurement of the beam position using circular electrodes as compared to rectangular ones was found to be less than 100 {mu}m per 1 cm of beam excursion from the center of the beam pipe for the case of APS storage ring vacuum chamber. 5 refs., 4 figs.

Chung, Y.

1991-01-01

356

Parallel Single Cancer Cell Whole Genome Amplification Using Button-Valve Assisted Mixing in Nanoliter Chambers  

PubMed Central

The heterogeneity of tumor cells and their alteration during the course of the disease urges the need for real time characterization of individual tumor cells to improve the assessment of treatment options. New generations of therapies are frequently associated with specific genetic alterations driving the need to determine the genetic makeup of tumor cells. Here, we present a microfluidic device for parallel single cell whole genome amplification (pscWGA) to obtain enough copies of a single cell genome to probe for the presence of treatment targets and the frequency of its occurrence among the tumor cells. Individual cells were first captured and loaded into eight parallel amplification units. Next, cells were lysed on a chip and their DNA amplified through successive introduction of dedicated reagents while mixing actively with the help of integrated button-valves. The reaction chamber volume for scWGA 23.85 nl, and starting from 67 pg DNA contained in a single cell, around 8 ng of DNA was obtained after WGA, representing over 1000-fold amplification. The amplified products from individual breast cancer cells were collected from the device to either directly investigate the amplification of specific genes by qPCR or for re-amplification of the DNA to obtain sufficient material for whole genome sequencing. Our pscWGA device provides sufficient DNA from individual cells for their genetic characterization, and will undoubtedly allow for automated sample preparation for single cancer cell genomic characterization. PMID:25233459

Yang, Yoonsun; Swennenhuis, Joost F.; Rho, Hoon Suk; Le Gac, Sverine; Terstappen, Leon W. M. M.

2014-01-01

357

Documentation of Short Stack and Button Cell Experiments Performed at INL and Ceramatec during FY07  

SciTech Connect

This report provides documentation of experimental research activities performed at the Idaho National Laboratory and at Ceramatec, Inc. during FY07 under the DOE Nuclear Hydrogen Initiative, High Temperature Electrolysis Program. The activities discussed in this report include tests on single (button) cells, short planar stacks and tubular cells. The objectives of these small-scale tests are to evaluate advanced electrode, electrolyte, and interconnect materials, alternate modes of operation (e.g., coelectrolysis), and alternate cell geometries over a broad range of operating conditions, with the aim of identifying the most promising material et, cell and stack geometry, and operating conditions for the high-temperature electrolysis application. Cell performance is characterized in erms of initial area-specific resistance and long-term stability in the electrolysis mode. Some of the tests were run in the coelectrolysis mode. Research into coelectrolysis was funded by Laboratory Directed Research and Development (LDRD). Coelectrolysis simultaneously converts steam to hydrogen and carbon dioxide to carbon monoxide. This process is complicated by the reverse shift reaction. An equilibrium model was developed to predict outlet compositions of steam, hydrogen, carbon dioxide, and carbon monoxide resulting from coelectrolysis. Predicted ompositions were compared to measurements obtained with a precision micro-channel gas chromatograph.

J. E. O'Brien; C. M. Stoots; J. J. Hartvigsen; J. S. Herring

2007-09-01

358

A 'green button' for using aggregate patient data at the point of care.  

PubMed

Randomized controlled trials have traditionally been the gold standard against which all other sources of clinical evidence are measured. However, the cost of conducting these trials can be prohibitive. In addition, evidence from the trials frequently rests on narrow patient-inclusion criteria and thus may not generalize well to real clinical situations. Given the increasing availability of comprehensive clinical data in electronic health records (EHRs), some health system leaders are now advocating for a shift away from traditional trials and toward large-scale retrospective studies, which can use practice-based evidence that is generated as a by-product of clinical processes. Other thought leaders in clinical research suggest that EHRs should be used to lower the cost of trials by integrating point-of-care randomization and data capture into clinical processes. We believe that a successful learning health care system will require both approaches, and we suggest a model that resolves this escalating tension: a "green button" function within EHRs to help clinicians leverage aggregate patient data for decision making at the point of care. Giving clinicians such a tool would support patient care decisions in the absence of gold-standard evidence and would help prioritize clinical questions for which EHR-enabled randomization should be carried out. The privacy rule in the Health Insurance Portability and Accountability Act (HIPAA) of 1996 may require revision to support this novel use of patient data. PMID:25006150

Longhurst, Christopher A; Harrington, Robert A; Shah, Nigam H

2014-07-01

359

Fifty years of plutonium exposure to the Mahattan Project plutonium workers: An update  

Microsoft Academic Search

Twenty-six white male workers who did the original plutonium research and development work at Los Alamos have been examined periodically over the past 50 y to identify possible health effects from internal plutonium depositions. Their effective doses range from 0.1 to 7.2 Sv with a median value of 1.25 Sv. As of the end of 1994, 7 individuals have died

George L. Voelz; James N. P. Lawrence; Emily R. Johnson

1997-01-01

360

Plutonium characterization by X-ray fluorescence and absorption in plutonium uranium mixed oxide fuel  

Microsoft Academic Search

Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear light water reactors. The chemical composition of the matrix before and after irradiation is commonly analyzed by electron probe micro analysis for example. In this work the structure and next-neighbor atomic environment of Pu in the plutonium uranium mixed oxide matrix within irradiated (60MWdkg?1) MOX samples were studied employing

C. Cozzo; C. Degueldre; C. Borca

361

Antimicrobial activity of essential oils and their components against the three major pathogens of the cultivated button mushroom, Agaricus bisporus  

Microsoft Academic Search

Essential oils of Matricaria chamommilla, Mentha piperita, M. spicata, Lavandula angusti folia, Ocimum basilicum, Thymus vulgaris, Origanum vulgare, Salvia officinalis, Citrus limon and C. aurantium and their components; linalyl acetate, linalool, limonene, ?-pinene, ?-pinene, 1,8-cineole, camphor, carvacrol, thymol and menthol were assayed for inhibitory activity against the three major pathogens of the button mushroom, Agaricus bisporus, i.e. the fungi Verticillium

Marina Sokovi?

2006-01-01

362

Magnetic Structure of Actinide Metals  

Microsoft Academic Search

\\u000a In comparison to 3d or 4f metals, magnetism in actinides remains poorly understood due to experimental complications and the exotic behavior of the\\u000a 5f states. In particular, plutonium metal is most especially vexing. Over the last five decades, theories proposed the presence\\u000a of either ordered or disordered local moments at low temperatures. However, experiments such as magnetic susceptibility, electrical\\u000a resistivity,

G. van der Laan; K. T. Moore

363

Fluctuating valence in a correlated solid and the anomalous properties of delta-plutonium.  

PubMed

Although the nuclear properties of the late actinides (plutonium, americium and curium) are fully understood and widely applied to energy generation, their solid-state properties do not fit within standard models and are the subject of active research. Plutonium displays phases with enormous volume differences, and both its Pauli-like magnetic susceptibility and resistivity are an order of magnitude larger than those of simple metals. Curium is also highly resistive, but its susceptibility is Curie-like at high temperatures and orders antiferromagnetically at low temperatures. The anomalous properties of the late actinides stem from the competition between itinerancy and localization of their f-shell electrons, which makes these elements strongly correlated materials. A central problem in this field is to understand the mechanism by which these conflicting tendencies are resolved in such materials. Here we identify the electronic mechanisms responsible for the anomalous behaviour of late actinides, revisiting the concept of valence using a theoretical approach that treats magnetism, Kondo screening, atomic multiplet effects and crystal field splitting on the same footing. We find that the ground state in plutonium is a quantum superposition of two distinct atomic valences, whereas curium settles into a magnetically ordered single valence state at low temperatures. The f(7) configuration of curium is contrasted with the multiple valences of the plutonium ground state, which we characterize by a valence histogram. The balance between the Kondo screening and magnetism is controlled by the competition between spin-orbit coupling, the strength of atomic multiplets and the degree of itinerancy. Our approach highlights the electronic origin of the bonding anomalies in plutonium, and can be applied to predict generalized valences and the presence or absence of magnetism in other compounds starting from first principles. PMID:17392780

Shim, J H; Haule, K; Kotliar, G

2007-03-29

364

Plutonium isotope ratio variations in North America  

SciTech Connect

Historically, approximately 12,000 TBq of plutonium was distributed throughout the global biosphere by thermo nuclear weapons testing. The resultant global plutonium fallout is a complex mixture whose {sup 240}Pu/{sup 239}Pu atom ratio is a function of the design and yield of the devices tested. The average {sup 240}Pu/{sup 239}Pu atom ratio in global fallout is 0.176 + 014. However, the {sup 240}Pu/{sup 239}Pu atom ratio at any location may differ significantly from 0.176. Plutonium has also been released by discharges and accidents associated with the commercial and weapons related nuclear industries. At many locations contributions from this plutonium significantly alters the {sup 240}Pu/{sup 239}Pu atom ratios from those observed in global fallout. We have measured the {sup 240}Pu/{sup 239}Pu atom ratios in environmental samples collected from many locations in North America. This presentation will summarize the analytical results from these measurements. Special emphasis will be placed on interpretation of the significance of the {sup 240}Pu/{sup 239}Pu atom ratios measured in environmental samples collected in the Arctic and in the western portions of the United States.

Steiner, Robert E [Los Alamos National Laboratory; La Mont, Stephen P [Los Alamos National Laboratory; Eisele, William F [Los Alamos National Laboratory; Fresquez, Philip R [Los Alamos National Laboratory; Mc Naughton, Michael [Los Alamos National Laboratory; Whicker, Jeffrey J [Los Alamos National Laboratory

2010-12-14

365

PLUTONIUM SPECIATION, SOLUBILIZATION, AND MIGRATION IN SOILS  

EPA Science Inventory

The DOE is currently conducting cleanup activities at its nuclear weapons development sites, many of which have accumulated plutonium (Pu) in soils for 50 years. There is scientific uncertainty about the levels of risk to human health posed by this accumulation and whether Pu is ...

366

Plutonium Immobilization Can Loading Equipment Review  

SciTech Connect

This report lists the operations required to complete the Can Loading steps on the Pu Immobilization Plant Flow Sheets and evaluates the equipment options to complete each operation. This report recommends the most appropriate equipment to support Plutonium Immobilization Can Loading operations.

Kriikku, E. [Westinghouse Savannah River Company, AIKEN, SC (United States); Ward, C.; Stokes, M.; Randall, B.; Steed, J.; Jones, R.; Hamilton, L.

1998-05-01

367

NNSS Soils Monitoring: Plutonium Valley (CAU366)  

SciTech Connect

The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

Miller Julianne J.,Mizell Steve A.,Nikolich George, Campbell Scott

2012-02-01

368

Smart unattended systems for plutonium safeguards  

Microsoft Academic Search

Large automated facilities for fabricating plutonium fuel present both difficulties and challenges for improved accounting of nuclear materials. The traditional methods of sample measurements, requiring the transfer of the sample from the production line to the assay measurement station, are not possible in automated facilities. The robotics used for automation require special containers for nuclear material that cannot be easily

H. O. Menlove; M. Abhold; G. Eccleston; J. M. Puckett; T. Ohtani; H. Ohshima; H. Kobayashi; S. Takahashi

1996-01-01

369

Electrochemically Modulated Separation for Plutonium Safeguards  

SciTech Connect

Accurate and timely analysis of plutonium in spent nuclear fuel is critical in nuclear safeguards for detection of both protracted and rapid plutonium diversions. Gamma spectroscopy is a viable method for accurate and timely measurements of plutonium provided that the plutonium is well separated from the interfering fission and activation products present in spent nuclear fuel. Electrochemically modulated separation (EMS) is a method that has been used successfully to isolate picogram amounts of Pu from nitric acid matrices. With EMS, Pu adsorption may be turned "on" and "off" depending on the applied voltage, allowing for collection and stripping of Pu without the addition of chemical reagents. In this work, we have scaled up the EMS process to isolate microgram quantities of Pu from matrices encountered in spent nuclear fuel during reprocessing. Several challenges have been addressed including surface area limitations, radiolysis effects, electrochemical cell performance stability, and chemical interferences. After these challenges were resolved, 6 g Pu was deposited in the electrochemical cell with approximately an 800-fold reduction of fission and activation product levels from a spent nuclear fuel sample. Modeling showed that these levels of Pu collection and interference reduction may not be sufficient for Pu detection by gamma spectroscopy. The main remaining challenges are to achieve a more complete Pu isolation and to deposit larger quantities of Pu for successful gamma analysis of Pu. If gamma analyses of Pu are successful, EMS will allow for accurate and timely on-site analysis for enhanced Pu safeguards.

Pratt, Sandra H.; Breshears, Andrew T.; Arrigo, Leah M.; Schwantes, Jon M.; Duckworth, Douglas C.

2013-12-31

370

Plutonium Immobilization Can Loading Preliminary Specifications  

SciTech Connect

This report discusses the Plutonium Immobilization can loading preliminary equipment specifications and includes a process block diagram, process description, equipment list, preliminary equipment specifications, plan and elevation sketches, and some commercial catalogs. This report identifies loading pucks into cans and backfilling cans with helium as the top priority can loading development areas.

Kriikku, E.

1998-11-25

371

Benchmark Evaluation of Plutonium Nitrate Solution Arrays  

Microsoft Academic Search

In October and November of 1981 thirteen approach-to-critical experiments were performed on a remote split table machine (RSTM) in the Critical Mass Laboratory of Pacific Northwest Laboratory (PNL) in Richland, Washington, using planar arrays of polyethylene bottles filled with plutonium (Pu) nitrate solution. Arrays of up to sixteen bottles were used to measure the critical number of bottles and critical

M. A. Marshall; J. D. Bess

2011-01-01

372

Analysis of femtogram-sized plutonium samples  

SciTech Connect

This report describes a study to determine how well isotopic ratios can be measured for very small samples of plutonium. Resin beads were used to simulate particles; for samples ranging from 5--16 fg, collection efficiencies (ions collected per atom loaded) of 4--9% were obtained. Isotopic ratios with 4% precision and accuracy (240/239) were obtained.

Smith, D.H.; McKown, H.S.; Bostick, D.T.; Coleman, R.M.; Duckworth, D.C.; McPherson, R.L.

1994-01-01

373

In search of plutonium: A nonproliferation journey  

NASA Astrophysics Data System (ADS)

In February 1992, I landed in the formerly secret city of Sarov, the Russian Los Alamos, followed a few days later by a visit to Snezhinsk, their Livermore. The briefings we received of the Russian nuclear weapons program and tours of their plutonium, reactor, explosives, and laser facilities were mind boggling considering the Soviet Union was dissolved only two months earlier. This visit began a 17-year, 41 journey relationship with the Russian nuclear complex dedicated to working with them in partnership to protect and safeguard their weapons and fissile materials, while addressing the plight of their scientists and engineers. In the process, we solved a forty-year disagreement about the plutonium-gallium phase diagram and began a series of fundamental plutonium science workshops that are now in their tenth year. At the Yonbyon reprocessing facility in January 2004, my North Korean hosts had hoped to convince me that they have a nuclear deterrent. When I expressed skepticism, they asked if I wanted to see their ``product.'' I asked if they meant the plutonium; they replied, ``Well, yes.'' Thus, I wound up holding 200 grams of North Korean plutonium (in a sealed glass jar) to make sure it was heavy and warm. So began the first of my six journeys to North Korea to provide technical input to the continuing North Korean nuclear puzzle. In Trombay and Kalpakkam a few years later I visited the Indian nuclear research centers to try to understand how India's ambitious plans for nuclear power expansion can be accomplished safely and securely. I will describe these and other attempts to deal with the nonproliferation legacy of the cold war and the new challenges ahead. )

Hecker, Siegfried

2010-02-01

374

Standard test method for quantitative determination of americium 241 in plutonium by Gamma-Ray spectrometry  

E-print Network

1.1 This test method covers the quantitative determination of americium 241 by gamma-ray spectrometry in plutonium nitrate solution samples that do not contain significant amounts of radioactive fission products or other high specific activity gamma-ray emitters. 1.2 This test method can be used to determine the americium 241 in samples of plutonium metal, oxide and other solid forms, when the solid is appropriately sampled and dissolved. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

1994-01-01

375

Automatic motor task selection via a bandit algorithm for a brain-controlled button  

NASA Astrophysics Data System (ADS)

Objective. Brain-computer interfaces (BCIs) based on sensorimotor rhythms use a variety of motor tasks, such as imagining moving the right or left hand, the feet or the tongue. Finding the tasks that yield best performance, specifically to each user, is a time-consuming preliminary phase to a BCI experiment. This study presents a new adaptive procedure to automatically select (online) the most promising motor task for an asynchronous brain-controlled button. Approach. We develop for this purpose an adaptive algorithm UCB-classif based on the stochastic bandit theory and design an EEG experiment to test our method. We compare (offline) the adaptive algorithm to a nave selection strategy which uses uniformly distributed samples from each task. We also run the adaptive algorithm online to fully validate the approach. Main results. By not wasting time on inefficient tasks, and focusing on the most promising ones, this algorithm results in a faster task selection and a more efficient use of the BCI training session. More precisely, the offline analysis reveals that the use of this algorithm can reduce the time needed to select the most appropriate task by almost half without loss in precision, or alternatively, allow us to investigate twice the number of tasks within a similar time span. Online tests confirm that the method leads to an optimal task selection. Significance. This study is the first one to optimize the task selection phase by an adaptive procedure. By increasing the number of tasks that can be tested in a given time span, the proposed method could contribute to reducing BCI illiteracy.

Fruitet, Joan; Carpentier, Alexandra; Munos, Rmi; Clerc, Maureen

2013-02-01

376

Residue behaviour of six pesticides in button crimini during home canning.  

PubMed

The effect of home canning (including washing, boiling, cooling, adding solution and sterilisation) on residue levels of imidacloprid, diflubenzuron, abamectin, pyriproxyfen and ?-cypermethrin and chlorothalonilin on button crimini was assessed. Residues of imidacloprid, diflubenzuron, abamectin and pyriproxyfen were measured by UPLC-MS/MS; the residues of ?-cypermethrin and chlorothalonil were measured by GC. Results showed that washing resulted in a 3.8% reduction of the initial residue level of imidacloprid (p ? 0.05). From washing to sterilisation the processing effect was significant compared with raw crimini (p ? 0.05), but processing through cooling and adding solution had no effect. For diflubenzuron, from raw crimini to sterilisation the processing effect was significant by comparison with the initial level (p ? 0.05); the processing effect was not obvious between two sequential steps, and the sequential steps have list: washing and boiling, boiling and cooling, boiling and adding of solution, cooling and adding solution. The changes in abamectin levels were also significant from raw crimini to sterilisation compared with raw crimini (p ? 0.05), but the changes were not obvious from boiling to adding solution and amongst them. For pyriproxyfen, washing resulted in a 39% reduction, but changes were not obvious from washing to sterilisation, p ? 0.05 between two consecutive steps. The whole procedure could significantly decrease residues of ?-cypermethrin (p ? 0.05); washing could significantly reduce residues of ?-cypermethrin; the effects of last procedures were complicated, and p ? 0.05 between two consecutive steps. Washing resulted in an 80% reduction of chlorothalonil; after washing there were no detectable residues. After the whole process, the processing factors for imidacloprid, diflubenzuron, abamectin, pyriproxyfen, ?-cypermethrin and chlorothalonil were 0.40, 0.22, 0.04, 0.85, 0.28 and 0, respectively. PMID:24761834

Du, Pengqiang; Liu, Xingang; Gu, Xiaojun; Dong, Fengshou; Xu, Jun; Kong, Zhiqiang; Li, Yuanbo; Zheng, Yongquan

2014-01-01

377

Biomechanical evaluation of a medial knee reconstruction with comparison of bioabsorbable interference screw constructs and optimization with a cortical button.  

PubMed

Current fixation techniques in medial knee reconstructions predominantly utilize interference screws alone for soft tissue graft fixation. The use of concurrent fixation techniques as part of a hybrid fixation technique has also been suggested to strengthen soft tissue fixation, although these hybrid fixation techniques have not been biomechanically validated. The purpose was to biomechanically evaluate two distal tibial superficial MCL graft fixation techniques that consisted of an interference screw alone and in combination with a cortical button. Furthermore, the aim was to compare interference screws of different constructs. Twenty-four porcine tibias (average bone mineral density of 1.3 0.2 g/cm(2); range, 1.0-1.6 g/cm(2), measured by DEXA scan) were divided into 4 groups of six specimens each. Group Ia consisted of a 7 23-mm poly-L-lactide (PLLA) interference screw. Group Ib utilized a PLLA interference screw in combination with a cortical button. Group IIa consisted of a 7 23-mm composite 70% poly(L-lactide-co-D, L-lactide) and 30% biphasic calcium phosphate (BCP) interference screw. Group IIb also utilized a composite interference screw in combination with a cortical button. The specimens were biomechanically tested with cyclic (500 cycles, 50-250 N, 1 Hz) and load-to-failure (20 mm/min) parameters. During cyclic loading, a significant increase in stiffness was seen for the PLLA hybrid 29.6 (6.9) N/mm fixation compared to the PLLA screw-only 21.2 (3.8) N/mm group (P < 0.05). Failure loads were 407.8 (77.9) N for the composite screw, 445 (72.2) N for the PLLA screw-only, 473.9 (69.6) N for the composite hybrid fixation, and 511.0 (78.5) N for the PLLA hybrid fixation. The PLLA screw alone was found to provide adequate fixation for a superficial MCL reconstruction, and the use of a cortical suture button combined with the PLLA screw resulted in a stiffer fixation during cyclic loading. The current reconstruction superficial MCL graft fixation technique utilizing a PLLA interference screw alone serves as an adequate recreation of the native tibial superficial MCL strength. In addition, a hybrid fixation with a cortical button which lends additional cyclic stiffness to its fixation would be advisable for use in suboptimal fixation cases. PMID:20563561

Wijdicks, Coen A; Brand, Emily J; Nuckley, David J; Johansen, Steinar; LaPrade, Robert F; Engebretsen, Lars

2010-11-01

378

Plutonium, Mineralogy and Radiation Effects  

NASA Astrophysics Data System (ADS)

During the past fifty years, more than 1,800 metric tonnes of Pu and substantial quantities of other "minor" actinides, such as Np, Am and Cm, have been generated in nuclear reactors. Some of these transuranic elements can be a source of energy in fission reactions (e.g., 239Pu), a source of fissile material for nuclear weapons (e.g., 239Pu and 237Np), or are of environmental concern because of their long half- lives and radiotoxicity (e.g., 239Pu, t1/2 = 24,100 years, and 237Np, t1/2 = 2.1 million years). There are two basic strategies for the disposition of these elements: 1.) to "burn" or transmute the actinides using nuclear reactors or accelerators; 2.) to "sequester" the actinides in chemically durable, radiation-resistant materials that are suitable for geologic disposal. There has been substantial interest in the use of actinide-bearing minerals, such as zircon or isometric pyrochlore, A2B2O7 (A = rare earths; B = Ti, Zr, Sn, Hf; Fd3m; Z=8), for the immobilization of actinides, particularly plutonium. One of the principal concerns has been the accumulation of structural damage caused by alpha-decay events, particularly from the recoil nucleus. Systematic ion beam irradiation studies of rare-earth pyrochlores have led to the discovery that certain compositions (B = Zr, Hf) are stable to very high fluences of alpha-decay event damage. Some compositions, Gd2Ti2O7, are amorphized at relatively low doses (0.2 displacements per atom, dpa, at room temperature), while other compositions, Gd2Zr2O7, do not amorphize (even at doses of > 40 dpa at 25K), but instead disorder to a defect fluorite structure. By changing the composition of the A-site (e.g., substitution of different rare earth elements), the temperature above which the pyrochlore composition can no longer be amorphized, Tc, varies by >600 K (e.g., Lu2Ti2O7: Tc = 480 K; Gd2Ti2O7: Tc = 1120 K). The variation in response to irradiation as a function of composition can be used to model the long-term accumulation of radiation damage as a function of the thermal period of a geologic repository. As an example, with a 10 wt.% loading of 239Pu, Gd2Ti2O7 will become amorphous in less than 1,000 years, while Gd2Zr2O7 will persist as a disordered defect fluorite structure. Thus, the radiation stability of different pyrochlores is closely related to the structural distortions that occur for specific pyrochlore compositions and the electronic structure of the B-site cation. This understanding provides the basis for designing materials for the safe, long-term immobilization and sequestration of actinides.

Ewing, R. C.

2006-05-01

379

REACTIONS OF SODIUM PEROXIDE WITH COMPONENTS OF LEGACY PLUTONIUM MATERIALS  

SciTech Connect

Plutonium oxide (PuO{sub 2}) calcined at >900 C resists dissolution in nitric acid (HNO{sub 3})-potassium fluoride (KF) solutions, a common method for their dissolution. The Savannah River National Laboratory (SRNL) has developed an alternate method for large samples of PuO{sub 2}-bearing materials using sodium peroxide (Na{sub 2}O{sub 2}) fusion as a pretreatment. The products of the reaction between Na{sub 2}O{sub 2} and PuO{sub 2} have been reported in the literature. As part of the SRNL development effort, additional data about the reaction between Na{sub 2}O{sub 2} and PuO{sub 2} were required. Also needed were data concerning the reaction of Na{sub 2}O{sub 2} with other components that may be present in the feed materials. Sodium peroxide was reacted with aluminum metal (Al), beryllium metal (Be), graphite, potassium chloride (KCl), magnesium chloride (MgCl{sub 2}), and calcium chloride (CaCl{sub 2}). The paper reports and discusses the reaction products of these and related compounds with Na{sub 2}O{sub 2}.

Pierce, R.; Missimer, D.; Crowder, M.

2011-10-04

380

Recovery of americium-241 from aged plutonium metal  

SciTech Connect

After separation and purification, both actinides were precipitated as oxalates and calcined. A large-scale process was developed using dissolution, separation, purification, precipitation, and calcination. Efforts were made to control corrosion, to avoid product contamination, to keep the volume of process and waste solutions manageable, and to denitrate solutions with formic acid. The Multipurpose Processing Facility (MPPF), designed for recovery of transplutonium isotopes, was used for the first time for the precipitation and calcination of americium. Also, for the first time,, large-scale formic acid denitration was performed in a canyon vessel at SRP.

Gray, L W; Burney, G A; Reilly, T A; Wilson, T W; McKibben, J M

1980-01-01

381

10 CFR 140.13a - Amount of financial protection required for plutonium processing and fuel fabrication plants.  

Code of Federal Regulations, 2010 CFR

...Amount of financial protection required for plutonium processing and fuel fabrication plants...Amount of financial protection required for plutonium processing and fuel fabrication plants...70 of this chapter to possess and use plutonium at a plutonium processing and...

2010-01-01

382

10 CFR 140.13a - Amount of financial protection required for plutonium processing and fuel fabrication plants.  

Code of Federal Regulations, 2013 CFR

...Amount of financial protection required for plutonium processing and fuel fabrication plants...Amount of financial protection required for plutonium processing and fuel fabrication plants...70 of this chapter to possess and use plutonium at a plutonium processing and...

2013-01-01

383

10 CFR 140.13a - Amount of financial protection required for plutonium processing and fuel fabrication plants.  

Code of Federal Regulations, 2011 CFR

...Amount of financial protection required for plutonium processing and fuel fabrication plants...Amount of financial protection required for plutonium processing and fuel fabrication plants...70 of this chapter to possess and use plutonium at a plutonium processing and...

2011-01-01

384

10 CFR 140.13a - Amount of financial protection required for plutonium processing and fuel fabrication plants.  

Code of Federal Regulations, 2012 CFR

...Amount of financial protection required for plutonium processing and fuel fabrication plants...Amount of financial protection required for plutonium processing and fuel fabrication plants...70 of this chapter to possess and use plutonium at a plutonium processing and...

2012-01-01

385

10 CFR 140.13a - Amount of financial protection required for plutonium processing and fuel fabrication plants.  

Code of Federal Regulations, 2014 CFR

...Amount of financial protection required for plutonium processing and fuel fabrication plants...Amount of financial protection required for plutonium processing and fuel fabrication plants...70 of this chapter to possess and use plutonium at a plutonium processing and...

2014-01-01

386

A Versatile two-step process for immobilizing excess plutonium.  

SciTech Connect

As a consequence of weapon stockpile reduction and the associated shutdown of weapons production facilities, approximately 50 metric tons of plutonium (both weapons-grade and non-weapons-grade) has been declared excess by the US. Recent experiments demonstrated the feasibility of using high-level waste stored at the Idaho Chemical Processing Plant to immobilize plutonium. The most effective plutonium host phase identified in these experiments was a plutonium zirconate solid solution. Results of recent experiments are reported that show the feasibility of using the highly durable plutonium zirconate host phase as a feed material for high and low temperature encapsulation processes, thereby increasing the potential applications of this material for plutonium dispositioning.

O'Holleran, T. P.

1998-05-18

387

Plutonium disposition via immobilization in ceramic or glass  

SciTech Connect

The management of surplus weapons plutonium is an important and urgent task with profound environmental, national, and international security implications. In the aftermath of the Cold War, Presidential Policy Directive 13, and various analyses by renown scientific, technical, and international policy organizations have brought about a focused effort within the Department of Energy to identify and implement paths for the long term disposition of surplus weapons- usable plutonium. The central goal of this effort is to render surplus weapons plutonium as inaccessible and unattractive for reuse in nuclear weapons as the much larger and growing stock of plutonium contained in spent fuel from civilian reactors. One disposition option being considered for surplus plutonium is immobilization, in which the plutonium would be incorporated into a glass or ceramic material that would ultimately be entombed permanently in a geologic repository for high-level waste.

Gray, L.W.; Kan, T.; Shaw, H.F.; Armantrout, A.

1997-03-05

388

Plutonium stabilization and handling (PuSH)  

SciTech Connect

This Functional Design Criteria (FDC) addresses construction of a Stabilization and Packaging System (SPS) to oxidize and package for long term storage remaining plutonium-bearing special nuclear materials currently in inventory at the Plutonium Finishing Plant (PFP), and modification of vault equipment to allow storage of resulting packages of stabilized SNM for up to fifty years. The major sections of the project are: site preparation; SPS Procurement, Installation, and Testing; storage vault modification; and characterization equipment additions. The SPS will be procured as part of a Department of Energy nationwide common procurement. Specific design crit1460eria for the SPS have been extracted from that contract and are contained in an appendix to this document.

Weiss, E.V.

1997-01-23

389

10 CFR 71.64 - Special requirements for plutonium air shipments.  

Code of Federal Regulations, 2010 CFR

...2010-01-01 false Special requirements for plutonium air shipments. 71.64 Section 71... 71.64 Special requirements for plutonium air shipments. (a) A package for the shipment of plutonium by air subject to ...

2010-01-01

390

10 CFR 71.64 - Special requirements for plutonium air shipments.  

Code of Federal Regulations, 2014 CFR

...2014-01-01 false Special requirements for plutonium air shipments. 71.64 Section 71... 71.64 Special requirements for plutonium air shipments. (a) A package for the shipment of plutonium by air subject to ...

2014-01-01

391

10 CFR 71.64 - Special requirements for plutonium air shipments.  

Code of Federal Regulations, 2012 CFR

...2012-01-01 false Special requirements for plutonium air shipments. 71.64 Section 71... 71.64 Special requirements for plutonium air shipments. (a) A package for the shipment of plutonium by air subject to ...

2012-01-01

392

10 CFR 71.64 - Special requirements for plutonium air shipments.  

Code of Federal Regulations, 2013 CFR

...2013-01-01 false Special requirements for plutonium air shipments. 71.64 Section 71... 71.64 Special requirements for plutonium air shipments. (a) A package for the shipment of plutonium by air subject to ...

2013-01-01

393

10 CFR 71.64 - Special requirements for plutonium air shipments.  

Code of Federal Regulations, 2011 CFR

...2011-01-01 false Special requirements for plutonium air shipments. 71.64 Section 71... 71.64 Special requirements for plutonium air shipments. (a) A package for the shipment of plutonium by air subject to ...

2011-01-01

394

10 CFR 71.23 - General license: Plutonium-beryllium special form material.  

Code of Federal Regulations, 2011 CFR

...false General license: Plutonium-beryllium special form material. 71.23 Section...23 General license: Plutonium-beryllium special form material. (a) A...fissile material in the form of plutonium-beryllium (Pu-Be) special form...

2011-01-01

395

10 CFR 71.23 - General license: Plutonium-beryllium special form material.  

Code of Federal Regulations, 2010 CFR

...false General license: Plutonium-beryllium special form material. 71.23 Section...23 General license: Plutonium-beryllium special form material. (a) A...fissile material in the form of plutonium-beryllium (Pu-Be) special form...

2010-01-01

396

10 CFR 71.23 - General license: Plutonium-beryllium special form material.  

Code of Federal Regulations, 2012 CFR

...false General license: Plutonium-beryllium special form material. 71.23 Section...23 General license: Plutonium-beryllium special form material. (a) A...fissile material in the form of plutonium-beryllium (Pu-Be) special form...

2012-01-01

397

10 CFR 71.23 - General license: Plutonium-beryllium special form material.  

Code of Federal Regulations, 2014 CFR

...false General license: Plutonium-beryllium special form material. 71.23 Section...23 General license: Plutonium-beryllium special form material. (a) A...fissile material in the form of plutonium-beryllium (Pu-Be) special form...

2014-01-01

398

10 CFR 71.23 - General license: Plutonium-beryllium special form material.  

Code of Federal Regulations, 2013 CFR

...false General license: Plutonium-beryllium special form material. 71.23 Section...23 General license: Plutonium-beryllium special form material. (a) A...fissile material in the form of plutonium-beryllium (Pu-Be) special form...

2013-01-01

399

Plutonium238 processing at Savannah River Plant  

Microsoft Academic Search

Plutonium-238 is produced by irradiating NpO-Al cermet slugs or tubes with neutrons. The neptunium-237 is produced as a by-product when natural or enriched uranium is irradiated with neutrons. The neptunium is separated by solvent extraction and ion exchange and precipitated as neptunium oxalate. Neptunium oxalate is calcined to neptunium oxide and fabricated into targets for irradiation. The irradiation conditions are

1983-01-01

400

Redox speciation of plutonium in natural waters  

Microsoft Academic Search

Data on the stability of Pu(V) as the dominant oxidation state of tracer concentrations of plutonium in natural waters is reviewed. Laboratory experiments for solutions of 0.1 and 1.0M (NaCl) ionic strength and pH 310 confirm the dominance of Pu(V) as the state in solution. Humics in the waters can cause reduction to Pu(IV).

G. R. Choppin

1991-01-01

401

Dose estimates of alternative plutonium pyrochemical processes.  

SciTech Connect

We have coupled our dose calculation tool Pandemonium with a discrete-event, object-oriented, process-modeling system ProMosO to analyze a set of alternatives for plutonium purification operations. The results follow expected trends and indicate, from a dose perspective, that an experimental flowsheet may warrant further research to see if it can be scaled to industrial levels. Flowsheets that include fluoride processes resulted in the largest doses.

Kornreich, D. E. (Drew E.); Jackson, J. W. (Joseph W.); Boerigter, S. T. (Stephen T.); Averill, W. A. (William A.); Fasel, J. H. (Joseph H.)

2002-01-01

402

NMR study of the plutonium hydride system  

Microsoft Academic Search

An NMR study was conducted on protons in the nonstoichiometric plutonium hydride system, PuHx. The following compositions were studied: x=1.78, 2.35, 2.65, and 2.78. The line shapes, Knight shifts (K), spin-spin relaxation times (T2), and spin-lattice relaxation times (T1) were measured in the temperature range of 77-300 K. The results indicate the existence of paramagnetic phases at high temperatures, with

G. Cinader; D. Zamir; Z. Hadari

1976-01-01

403

How much plutonium does North Korea have?  

Microsoft Academic Search

U.S. intelligence discovered in the 1980s that North Korea was building a small nuclear reactor. The reactor was described as a gas-cooled, graphite-moderated model similar to those Britian and France used to produce electric power as well as plutonium for nuclear weapons. When Western nations expressed concern about the reactor Russia pressed North Korea to sign the Non-Proliferation Treaty (NPT)

Albright

1994-01-01

404

Plutonium speciation in water from Mono Lake, California  

USGS Publications Warehouse

The solubility of plutonium in Mono Lake water is enhanced by the presence of large concentrations of indigenous carbonate ions and moderate concentrations of fluoride ions. In spite of the complex chemical composition of this water, only a few ions govern the behavior of plutonium, as demonstrated by the fact that it was possible to duplicate plutonium speciation in a synthetic water containing only the principal components of Mono Lake water.

Cleveland, J.M.; Rees, T.F.; Nash, K.L.

1983-01-01

405

SUSCEPTIBILIT MAGNTIQUE DE QUELQUES SULFURES ET OXYDES DE PLUTONIUM  

E-print Network

261. SUSCEPTIBILIT? MAGN?TIQUE DE QUELQUES SULFURES ET OXYDES DE PLUTONIUM Par GEORGES RAPHAEL et CHARLES DE NOVION, S.E.C.P.E.R., Section d'?tudes des Céramiques à base de Plutonium, Centre d susceptibilite magnétique des sulfures de plutonium : PuS, Pu3S4, PU2S3CXI PuS2. Ces composes non conduc- teurs

Paris-Sud XI, Université de

406

New way to predict plutonium Finding could lead to  

E-print Network

New way to predict plutonium safety Finding could lead to improved storage of nuclear weapons of 2Science Front Page 2:14 PM ET Thursday, April 12, 2001 9/5/2003file://E:\\Homepages\\SavrasovHome\\Projects\\Research\\Plutonium, and Privacy Page 2 of 2Science Front Page 2:14 PM ET Thursday, April 12, 2001 9/5/2003file://E:\\Homepages\\SavrasovHome\\Projects\\Research\\Plutonium

Savrasov, Sergej Y.

407

14. END VIEW OF THE PLUTONIUM STORAGE VAULT FROM THE ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

14. END VIEW OF THE PLUTONIUM STORAGE VAULT FROM THE REMOTE CONTROL STATION. THE STACKER-RETRIEVER, A REMOTELY-OPERATED, MECHANIZED TRANSPORT SYSTEM, RETRIEVES CONTAINERS OF PLUTONIUM FROM SAFE GEOMETRY PALLETS STORED ALONG THE LENGTH OF THE VAULT. THE STACKER-RETRIEVER RUNS ALONG THE AISLE BETWEEN THE PALLETS OF THE STORAGE CHAMBER. (3/2/86) - Rocky Flats Plant, Plutonium Recovery Facility, Northwest portion of Rocky Flats Plant, Golden, Jefferson County, CO

408

Investigations of plutonium immobilization into the vitreous compositions  

SciTech Connect

Development and characterizations of phosphate and borosilicate glasses for vitrifying high level waste (HLW) solutions in Russia has been extensive. The technical data generated were for low concentrations (less than 0.05% Pu) of plutonium. Limited studies have been performed with plutonium concentrations one to two orders of magnitude larger. The results of these studies are being used to plan and implement an expanded experimental program to establish the limitations and characteristics of plutonium in similar glass compositions.

Matyunin, Y.I., [State Research Center of Russian Federation, A. A. Bochvar All Russian Research Institute of Inorganic Materials (VNIINM)

1998-04-15

409

TRACKING SURPLUS PLUTONIUM FROM WEAPONS TO DISPOSITION  

SciTech Connect

Supporting nuclear nonproliferation and global security principles, beginning in 1994 the United States has withdrawn more than 50 metric tons (MT) of government-controlled plutonium from potential use in nuclear weapons. The Department of Energy (DOE), including the National Nuclear Security Administration, established protocols for the tracking of this "excess" and "surplus" plutonium, and for reconciling the current storage and utilization of the plutonium to show that its management is consistent with the withdrawal policies. Programs are underway to ensure the safe and secure disposition of the materials that formed a major part of the weapons stockpile during the Cold War, and growing quantities have been disposed as waste, after which they are not included in traditional nuclear material control and accountability (NMC&A) data systems. A combination of resources is used to perform the reconciliations that form the basis for annual reporting to DOE, to U.S. Department of State, and to international partners including the International Atomic Energy Agency.

Allender, J.; Beams, J.; Sanders, K.; Myers, L.

2013-07-16

410

Characterizing Surplus US Plutonium for Disposition - 13199  

SciTech Connect

The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems. (authors)

Allender, Jeffrey S. [Savannah River National Laboratory, Aiken SC 29808 (United States)] [Savannah River National Laboratory, Aiken SC 29808 (United States); Moore, Edwin N. [Moore Nuclear Energy, LLC, Savannah River Site, Aiken SC 29808 (United States)] [Moore Nuclear Energy, LLC, Savannah River Site, Aiken SC 29808 (United States)

2013-07-01

411

A Plutonium-Contaminated Wound, 1985, USA  

SciTech Connect

A hand injury occurred at a U.S. facility in 1985 involving a pointed shaft (similar to a meat thermometer) that a worker was using to remove scrap solid plutonium from a plastic bottle. The worker punctured his right index finger on the palm side at the metacarpal-phalangeal joint. The wound was not through-and- through, although it was deep. The puncture wound resulted in deposition of ~48 kBq of alpha activity from the weapons-grade plutonium mixture with a nominal 12 to 1 Pu-alpha to {sup 241}Am-alpha ratio. This case clearly showed that DTPA was very effective for decorporation of plutonium and americium. The case is a model for management of wounds contaminated with transuranics: (1) a team approach for dealing with all of the issues surrounding the incident, including the psychological, (2) early surgical intervention for foreign-body removal, (3) wound irrigation with DTPA solution, and (4) early and prolonged DTPA administration based upon bioassay and in vivo dosimetry.

Doran M. Christensen, DO, REAC /TS Associate Director and Staff Physician Eugene H. Carbaugh, CHP, Staff Scientist, Internal Dosimetry Manager, Pacific Northwest National Laboratory, Richland, Washington

2012-02-02

412

Plutonium Immobilization Project -- Robotic canister loading  

SciTech Connect

The Plutonium Immobilization Program (PIP) is a joint venture between the Savannah River Site (SRS), Lawrence Livermore National Laboratory (LLNL), Argonne National Laboratory (ANL), and Pacific Northwest National Laboratory (PNNL). When operational in 2008, the PIP will fulfill the nation's nonproliferation commitment by placing surplus weapons-grade plutonium in a permanently stable ceramic form and making it unattractive for reuse. Since there are significant radiation and security concerns, the program team is developing novel and unique technology to remotely perform plutonium immobilization tasks. The remote task covered in this paper employs a jointed arm robot to load seven 3.5 inch diameter, 135-pound cylinders (magazines) through the 4 inch diameter neck of a stainless steel canister. Working through the narrow canister neck, the robot secures the magazines into a specially designed rack pre-installed in the canister. To provide the deterrent effect, the canisters are filled with a mixture of high-level waste and glass at the Defense Waste Processing Facility (DWPF).

Hamilton, R.L.

2000-01-04

413

Association of plutonium with soil organic matter  

SciTech Connect

A significant association of environmental plutonium with the organic components of U.K. soils has recently been demonstrated by sequential leaching experiments on samples influenced by discharges from both the Dounreay and Sellafield nuclear fuel reprocessing plants. This relationship has been further studied by alkali extraction, fractional precipitation, and dialysis to isolate both the humic and fulvic acid fractions of a Cumbrian soil. The /sup 239,240/Pu activities of these extracts were 31 and 7.7 Bq g/sup -1/, respectively, greater than the activity of the bulk soil (5.9 Bq g/sup -1/). Gel filtration on Sephadex gels G-50 and G-150 further showed that the humic acid extract is composed of relatively large molecules, with approximately 65% of the plutonium in the largest of these; fulvic acid is of lower molecular weight, and its plutonium content is distributed more evenly throughout the molecular weight spectrum. In both humic and fulvic acids, iron is concentrated in the largest molecular weight (>150,000) fractions.

Livens, F.R.; Baxter, M.S. Allen, S.E.

1987-07-01

414

Characterizing surplus US plutonium for disposition  

SciTech Connect

The United States (US) has identified 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition (OFMD) of the National Nuclear Security Administration (NNSA) and the DOE Office of Environmental Management (DOE-EM). SRNL manages a broad program of item tracking through process history, laboratory analysis, and non-destructive assay. A combination of analytical techniques allows SRNL to predict the isotopic and chemical properties that qualify materials for disposition through the Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The research also defines properties that are important for other disposition paths, including disposal to the Waste Isolation Pilot Plant (WIPP) as transuranic waste (TRUW) or to high-level waste (HLW) systems.

Allender, Jeffrey S.; Moore, Edwin N.

2013-02-26

415

Plutonium release from pressed plutonium oxide fuel pellets in aquatic environments  

SciTech Connect

Plutonium oxide pellets (80% /sup 238/Pu, 40 g each) were exposed to fresh water and sea water at two temperatures for 3 y in enclosed glass chambers. The concentrations of plutonium observed in the waters increased linearly with time throughout the experiment. However, the observed release rates were inversely dependent on temperature and salinity, ranging from 160 ..mu..Ci/day for cold fresh water to 1.4 ..mu..Ci/day for warm sea water. The total releases, including the chamber residues, showed similar dependencies. A major portion (typically greater than 50%) of the released plutonium passed through a 0.1-..mu..m filter, with even larger fractions (greater than 80%) for the fresh water systems.

Patterson, J.H.; Steinkruger, F.J.; Matlack, G.M.; Heaton, R.C.; Coffelt, K.P.; Herrera, B.

1983-12-01

416

30. VIEW OF A GLOVEBOX LINE USED IN PLUTONIUM OPERATIONS. ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

30. VIEW OF A GLOVEBOX LINE USED IN PLUTONIUM OPERATIONS. SAFETY AND HEALTH CONCERNS WERE OF MAJOR IMPORTANCE AT THE PLANT, BECAUSE OF THE RADIOACTIVE NATURE OF THE MATERIALS USED. PLUTONIUM GIVES OFF ALPHA AND BETA PARTICLES, GAMMA PROTONS, NEUTRONS, AND IS ALSO PYROPHORIC. AS A RESULT, PLUTONIUM OPERATIONS ARE PERFORMED UNDER CONTROLLED CONDITIONS THAT INCLUDE CONTAINMENT, FILTERING, SHIELDING, AND CREATING AN INERT ATMOSPHERE. PLUTONIUM WAS HANDLED WITHIN GLOVEBOXES THAT WERE INTERCONNECTED AND RAN SEVERAL HUNDRED FEET IN LENGTH (5/5/70). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

417

Magnetic separation as a plutonium residue enrichment process  

SciTech Connect

We have subjected several plutonium contaminated residues to Open Gradient Magnetic Separation (OGMS) on an experimental scale. Separation of graphite, bomb reduction sand, and bomb reduction sand, and bomb reduction sand, slag, and crucible, resulted in a plutonium rich fraction and a plutonium lean fraction. The lean fraction varied between about 20% to 85% of the feed bulk. The plutonium content of the lean fraction can be reduced from about 2% in the feed to the 0.1% to 0.5% range dependent on the portion of the feed rejected to this lean fraction. These values are low enough in plutonium to meet economic discard limits and be considered for direct discard. Magnetic separation of direct oxide reduction and electrorefining pyrochemical salts gave less favorable results. While a fraction very rich in plutonium could be obtained, the plutonium content of the lean fraction was to high for direct discard. This may still have chemical processing applications. OGMS experiments at low magnetic field strength on incinerator ash did give two fractions but the plutonium content of each fraction was essentially identical. Thus, no chemical processing advantage was identified for magnetic separation of this residue. The detailed results of these experiments and the implications for OGMS use in recycle plutonium processing are discussed. 4 refs., 3 figs., 9 tabs.

Avens, L.R.; McFarlan, J.T.; Gallegos, U.F.

1989-01-01

418

Geomorphology of plutonium in the Northern Rio Grande  

SciTech Connect

Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi.

Graf, W.L. [Arizona Univ., Tempe, AZ (United States). Dept., of Geography

1993-03-01

419

The impact of next and back buttons on time to complete and measurement reliability in computer-based surveys  

Microsoft Academic Search

PurposeTo assess the impact of including next and back buttons on response burden and measurement reliability of computer-based surveys.\\u000a \\u000a \\u000a \\u000a MethodsA sample of 807 participants (mean age of 53; 64% women, 83% non-Hispanic white; 81% some college or college graduates) from\\u000a the YouGov Polimetrix panel was administered 56 items assessing performance of social\\/role activities and 56 items measuring\\u000a satisfaction with social\\/role

Ron D. HaysRita; Rita Bode; Nan Rothrock; William Riley; David Cella; Richard Gershon

2010-01-01

420

Laparoscopic cecostomy button placement for the management of fecal incontinence in children with Hirschsprungs disease and anorectal anomalies  

Microsoft Academic Search

BackgroundAntegrade colonic enemas offer a surgical solution for many children with chronic constipation and encopresis associated with\\u000a Hirschsprungs disease and anorectal malformations. This study demonstrated the feasibility of a new laparoscopic technique\\u000a for cecostomy button placement (LCBP) to allow antegrade enema treatment.\\u000a \\u000a \\u000a \\u000a MethodsCharts of children with encopresis who underwent LCBP between 1999 and 2001 were reviewed. The age, weight, primary

A. Yagmurlu; C. M. Harmon; K. E. Georgeson

2006-01-01

421

Gastrointestinal absorption of plutonium in mice, rats, and dogs: application to establishing values of f for soluble plutonium  

Microsoft Academic Search

The gastrointestinal (GI) absorption of plutonium was measured in mice, rats, and dogs under conditions relevant to setting drinking water standards. The fractional GI absorption of Pu(VI) in adult mice was 2 x 10⁻⁴ (0.02%) in fed mice and 2 x 10⁻³ (0.2%) in fasted mice. The GI absorption of plutonium was independent of plutonium oxidation state, administration medium, and

M. H. Bhattacharyya; R. P. Larsen; R. D. Oldham; E. S. Moretti; M. I. Spaletto

1985-01-01

422

Plutonium and Cesium Colloid Mediated Transport  

NASA Astrophysics Data System (ADS)

Plutonium and cesium have been released to the environment at many different locations worldwide and are present in spent fuel at significant levels. Accurate understanding of the mechanisms that control their fate and transport in the environment is important for the management of contaminated sites, for forensic applications, and for the development of robust repositories for the disposal of spent nuclear fuel and nuclear waste. Plutonium, which can be present in the environment in multiple oxidations states and various chemical forms including amorphous oxy(hydr)oxide phases, adsorbs/adheres very strongly to geological materials and is usually immobile in all its chemical forms. However, when associated with natural colloids, it has the potential to migrate significant distances from its point of release. Like plutonium, cesium is not very mobile and tends to remain adhered to geological materials near its release point, although its transport can be enhanced by natural colloids. However, the reactivity of plutonium and cesium are very different, so their colloid-mediated transport might be significantly different in subsurface environments. In this study, we performed controlled experiments in two identically-prepared columns; one dedicated to Pu and natural colloid transport experiments, and the other to Cs and colloid experiments. Multiple flow-through experiments were conducted in each column, with the effluent solutions being collected and re-injected into the same column two times to examine the persistence and scaling behavior of the natural colloids, Pu and Cs. The data show that that a significant fraction of colloids were retained in the first elution through each column, but the eluted colloids collected from the first run transported almost conservatively in subsequent runs. Plutonium transport tracked natural colloids in the first run but deviated from the transport of natural colloids in the second and third runs. Cesium transport tracked natural colloid transport in all re-injections. The data will be discussed in terms of natural colloid properties, including size distribution and electrokinetic properties, as well as the reactive transport behavior of Pu and Cs. We will also discuss the implications of the results for colloid-mediated contaminant transport, management of contaminated sites and forensic data interpretation.

Boukhalfa, H.; Dittrich, T.; Reimus, P. W.; Ware, D.; Erdmann, B.; Wasserman, N. L.; Abdel-Fattah, A. I.

2013-12-01

423

Melting point determination of uranium nitride and uranium plutonium nitride: A laser heating study  

NASA Astrophysics Data System (ADS)

Understanding of the behaviour of nuclear material in extreme conditions is essential for the analyses of the operation limits of nuclear fuels, and prediction of possible nuclear reaction accidents. In this context, the high temperature behaviour of uranium nitride and mixed uranium-plutonium nitrides has been studied in the present work by laser heating under controlled atmosphere coupled with fast multi-wavelength pyrometry. Such an approach has allowed performing a thermal arrest analysis and establishing the solid-liquid phase boundaries in the investigated compositions, whereby non-congruent vaporisation was avoided by setting a suitable nitrogen overpressure. In addition, the normal spectral emissivities of the current samples were determined by radiance spectroscopy. Besides revealing a slightly more metallic optical behaviour in plutonium-containing compositions, this latter characterisation led to the determination of the real melting/solidification temperatures of the investigated nitrides. It is confirmed that UN melts congruently at (3120 30) K in a nitrogen pressure of 0.25 MPa (2.5 bar). The melting/solidification temperatures decrease in plutonium containing samples, reaching (3045 25) K for x(PuN) = 0.2, a composition of interest for potential applications of this material as a nuclear fuel. Besides their fundamental importance, the current results are useful for a deeper understanding of the nitride fuel behaviour under accidental conditions, whereby uncontrolled thermal excursions might occur in the nuclear reactor core.

Carvajal Nunez, U.; Prieur, D.; Bohler, R.; Manara, D.

2014-06-01

424

Evaluation of Plutonium Hemisphere Critical Experiments Partially Reflected by Steel and Oil  

SciTech Connect

A series of 15 critical experiments performed at the Rocky Flats Critical Mass Laboratory in the late 1960s were evaluated and then determined to represent acceptable benchmark experiments for the validation of calculational methods. This series of experiments was part of a larger set of experiments performed to evaluate operational safety margins at the Rocky Flats Plant. The experiments consisted of bare plutonium metal hemishells reflected by steel hemishells of increasing thickness and motor oil. The hemishell assembly was suspended within dual aluminum tanks. Criticality was achieved by pumping oil into the tanks such that effectively infinite reflection was achieved in all directions except directly above the assembly; then the critical oil height was recorded. The results of these experiments had been initially ignored because early computational methods had been inadequate to analyze partially-reflected configurations. The dominant uncertainties include the uncertainty in the average plutonium density and the composition of materials in the gaps between the plutonium hemishells. Simple and detailed benchmark models were developed. Eigenvalue calculations using MCNP5 and ENDF/B-VII.0 were within 2s of the benchmark values. This benchmark evaluation has been added to the ICSBEP Handbook.

John D. Bess

2012-01-01

425

Standard test method for nondestructive assay of plutonium by passive neutron multiplicity counting  

E-print Network

1.1 This test method describes the nondestructive assay of plutonium in forms such as metal, oxide, scrap, residue, or waste using passive neutron multiplicity counting. This test method provides results that are usually more accurate than conventional neutron coincidence counting. The method can be applied to a large variety of plutonium items in various containers including cans, 208-L drums, or 1900-L Standard Waste Boxes. It has been used to assay items whose plutonium content ranges from 1 g to 1000s of g. 1.2 There are several electronics or mathematical approaches available for multiplicity analysis, including the multiplicity shift register, the Euratom Time Correlation Analyzer, and the List Mode Module, as described briefly in Ref. (1). 1.3 This test method is primarily intended to address the assay of 240Pu-effective by moments-based multiplicity analysis using shift register electronics (1, 2, 3) and high efficiency neutron counters specifically designed for multiplicity analysis. 1.4 This tes...

American Society for Testing and Materials. Philadelphia

2008-01-01

426

Interaction of Plutonium with Diverse Materials in Moist Air and Nitrogen-Argon Atmospheres at Room Temperature  

Microsoft Academic Search

Chemical and radiolytic interactions of weapons-grade plutonium with metallic, inorganic, and hydrogenous materials in atmospheres containing moist air-argon mixtures have been characterized at room temperature from pressure-volume-temperature and mass spectrometric measurements of the gas phase. A reaction sequence controlled by kinetics and gas-phase composition is defined by correlating observed and known reaction rates. In all cases, O is eliminated first

John M. Haschke; Raymond J. Martinez; Robert E. Pruner II; Barbara Martinez; Thomas H. Allen

2001-01-01

427

Magnetic Structure of Actinide Metals  

NASA Astrophysics Data System (ADS)

In comparison to 3d or 4f metals, magnetism in actinides remains poorly understood due to experimental complications and the exotic behavior of the 5f states. In particular, plutonium metal is most especially vexing. Over the last five decades, theories proposed the presence of either ordered or disordered local moments at low temperatures. However, experiments such as magnetic susceptibility, electrical resistivity, nuclear magnetic resonance, specific heat, and elastic and inelastic neutron scattering show no evidence for ordered or disordered magnetic moments in any of the six phases of plutonium. Beyond plutonium, the magnetic structure of other actinides is an active area of research, given that temperature, pressure, and chemistry can quickly alter the magnetic structure of the 5f states. For instance, curium metal has an exceedingly large spin polarization that results in a total moment of 8?B/atom, which influences the phase stability of the metal. Insight in the actinide ground state can be obtained from core-level X-ray absorption spectroscopy (XAS) and electron energy-loss spectroscopy (EELS). A sum rule relates the branching ratio of the core-level spectra measured by XAS or EELS to the expectation value of the angular part of the spin-orbit interaction.

van der Laan, G.; Moore, K. T.

428

Response of TLD-albedo and nuclear track dosimeters exposed to plutonium sources  

SciTech Connect

Neutron dosimetry has been extensively studied at Hanford since the mid-1940s. At the present time, Hanford contractors use thermoluminescent dosimeter (TLD)-albedo dosimeters to record the neutron dose equivalent received by workers. The energy dependence of the TLD-albedo dosimeter has been recognized and documented since introduced at Hanford in 1964 and numerous studies have helped assure the accuracy of dosimeters. With the recent change in Hanford's mission, there has been a significant decrease in the handling of plutonium tetrafluoride, and an increase in the handling of plutonium metal and plutonium oxide sources. This study was initiated to document the performance of the current Hanford TLD-albedo dosimeter under the low scatter conditions of the calibration laboratory and under the high scatter conditions in the work place under carefully controlled conditions at the Plutonium Finishing Plant (PFP). The neutron fields at the PFP facility were measured using a variety of instruments, including a multisphere spectrometer, tissue equivalent proportional counters, and specially calibrated rem meters. Various algorithms were used to evaluate the TLD-albedo dosimeters, and the results are given in this report. Using current algorithms, the dose equivalents evaluated for bare sources and sources with less than 2.5 cm (1 in.) of acrylic plastic shielding in high scatter conditions typical of glove box operations are reasonably accurate. Recently developed CR-39 track etch dosimeters (TEDs) were also exposed in the calibration laboratory and at the PFP. The results indicate that the TED dosimeters are quite accurate for both bare and moderated neutron sources. Until personnel dosimeter is available that incorporates a direct measure of the neutron dose to a person, technical uncertainties in the accuracy of the recorded data will continue.

Brackenbush, L.W.; Baumgartner, W.V.; Fix, J.J.

1991-12-01

429

Response of TLD-albedo and nuclear track dosimeters exposed to plutonium sources  

SciTech Connect

Neutron dosimetry has been extensively studied at Hanford since the mid-1940s. At the present time, Hanford contractors use thermoluminescent dosimeter (TLD)-albedo dosimeters to record the neutron dose equivalent received by workers. The energy dependence of the TLD-albedo dosimeter has been recognized and documented since introduced at Hanford in 1964 and numerous studies have helped assure the accuracy of dosimeters. With the recent change in Hanford`s mission, there has been a significant decrease in the handling of plutonium tetrafluoride, and an increase in the handling of plutonium metal and plutonium oxide sources. This study was initiated to document the performance of the current Hanford TLD-albedo dosimeter under the low scatter conditions of the calibration laboratory and under the high scatter conditions in the work place under carefully controlled conditions at the Plutonium Finishing Plant (PFP). The neutron fields at the PFP facility were measured using a variety of instruments, including a multisphere spectrometer, tissue equivalent proportional counters, and specially calibrated rem meters. Various algorithms were used to evaluate the TLD-albedo dosimeters, and the results are given in this report. Using current algorithms, the dose equivalents evaluated for bare sources and sources with less than 2.5 cm (1 in.) of acrylic plastic shielding in high scatter conditions typical of glove box operations are reasonably accurate. Recently developed CR-39 track etch dosimeters (TEDs) were also exposed in the calibration laboratory and at the PFP. The results indicate that the TED dosimeters are quite accurate for both bare and moderated neutron sources. Until personnel dosimeter is available that incorporates a direct measure of the neutron dose to a person, technical uncertainties in the accuracy of the recorded data will continue.

Brackenbush, L.W.; Baumgartner, W.V.; Fix, J.J.

1991-12-01

430

Hydrogen corrosion of plutonium: Evidence for fast grain-boundary reaction and slower intragrain reaction  

NASA Astrophysics Data System (ADS)

Infrared pyrometer measurements of reaction-site dimensions and temperature profiles during growth of single hydrogen corrosion sites after exposure of Pu to H2 are consistent with a multi-step reaction sequence for hydride formation. The observed temperature increases within the reaction sites are less than predicted by a thermal model which assumes complete hydriding within the corrosion area. Those results and observation of low average H/Pu ratios imply that initial products are mixtures of PuH2 and metal grains dislodged by grain-boundary hydriding. Such mixtures are formed by fast grain-boundary reaction and slower intragrain reaction as hydrogen corrosion advances into Pu metal. Emissivities of plutonium hydride and oxide-coated metal are reported. The differences in reaction rates induced by variation in Pu mounting orientations, where hydride products either fell free from the substrate or were retained on the surface, are also described.

Saw, C. K.; Haschke, J. M.; Allen, P. G.; Mclean, W.; Dinh, L. N.

2012-10-01

431

Destructive analysis capabilities for plutonium and uranium characterization at Los Alamos National Laboratory  

SciTech Connect

Los Alamos National Laboratory's (LANL) Actinide Analytical Chemistry (AAC) group has been in existence since the Manhattan Project. It maintains a complete set of analytical capabilities for performing complete characterization (elemental assay, isotopic, metallic and non metallic trace impurities) of uranium and plutonium samples in different forms. For a majority of the customers there are strong quality assurance (QA) and quality control (QC) objectives including highest accuracy and precision with well defined uncertainties associated with the analytical results. Los Alamos participates in various international and national programs such as the Plutonium Metal Exchange Program, New Brunswick Laboratory's (NBL' s) Safeguards Measurement Evaluation Program (SME) and several other inter-laboratory round robin exercises to monitor and evaluate the data quality generated by AAC. These programs also provide independent verification of analytical measurement capabilities, and allow any technical problems with analytical measurements to be identified and corrected. This presentation will focus on key analytical capabilities for destructive analysis in AAC and also comparative data between LANL and peer groups for Pu assay and isotopic analysis.

Tandon, Lav [Los Alamos National Laboratory; Kuhn, Kevin J [Los Alamos National Laboratory; Drake, Lawrence R [Los Alamos National Laboratory; Decker, Diana L [Los Alamos National Laboratory; Walker, Laurie F [Los Alamos National Laboratory; Colletti, Lisa M [Los Alamos National Laboratory; Spencer, Khalil J [Los Alamos National Laboratory; Peterson, Dominic S [Los Alamos National Laboratory; Herrera, Jaclyn A [Los Alamos National Laboratory; Wong, Amy S [Los Alamos National Laboratory

2010-01-01

432

Waste reduction and process improvements in the analysis of plutonium by x-ray fluorescence  

SciTech Connect

Significant modifications were made to a sample preparation process for quantifying gallium in plutonium metal by wavelength dispersive X-ray fluorescence. These changes were made to minimize waste and improve process safety and efficiency. Sample sizes were reduced, cheaper sample preparation acids were used, and safety improvements were implemented. Using this modified process, results from analyzing a batch oftest samples indicated that relative precision and accuracy were {approx}0.2% and {approx}0.1% respectively, which is comparable to that obtained using the older, established sample preparation method.

Worley, Christopher G [Los Alamos National Laboratory; Sodweberg, Constance B [Los Alamos National Laboratory; Townsend, Lisa E [Los Alamos National Laboratory

2009-01-01

433

Metal Forming Laboratory (Mechanical Eng'g Dept.) STANDARD OPERATING PROCEDURE (SOP)  

E-print Network

required Kawasaki Robot Arm controlled by either the control unit PDU, the teach pendent or a computer the robot arm's working space when the robot controller is turned off or an emergency stop (E-stop) button robot arm: Power On Procedure: #12;Metal Forming Laboratory (Mechanical Eng'g Dept.) STANDARD OPERATING

Thompson, Michael

434

Ultra-small plutonium oxide nanocrystals: an innovative material in plutonium science.  

PubMed

Apart from its technological importance, plutonium (Pu) is also one of the most intriguing elements because of its non-conventional physical properties and fascinating chemistry. Those fundamental aspects are particularly interesting when dealing with the challenging study of plutonium-based nanomaterials. Here we show that ultra-small (3.20.9?nm) and highly crystalline plutonium oxide (PuO2 ) nanocrystals (NCs) can be synthesized by the thermal decomposition of plutonyl nitrate ([PuO2 (NO3 )2 ]?3?H2 O) in a highly coordinating organic medium. This is the first example reporting on the preparation of significant quantities (several tens of milligrams) of PuO2 NCs, in a controllable and reproducible manner. The structure and magnetic properties of PuO2 NCs have been characterized by a wide variety of techniques (powder X-ray diffraction (PXRD), X-ray absorption fine structure (XAFS), X-ray absorption near edge structure (XANES), TEM, IR, Raman, UV/Vis spectroscopies, and superconducting quantum interference device (SQUID) magnetometry). The current PuO2 NCs constitute an innovative material for the study of challenging problems as diverse as the transport behavior of plutonium in the environment or size and shape effects on the physics of transuranium elements. PMID:25042621

Hudry, Damien; Apostolidis, Christos; Walter, Olaf; Janssen, Arne; Manara, Dario; Griveau, Jean-Christophe; Colineau, Eric; Vitova, Tonya; Prssmann, Tim; Wang, Di; Kbel, Christian; Meyer, Daniel

2014-08-11

435

Update on the Department of Energy's 1994 plutonium vulnerability assessment for the plutonium finishing plant  

SciTech Connect

A review of the environmental, safety, and health vulnerabilities associated with the continued storage of PFP's inventory of plutonium bearing materials and other SNM. This report re-evaluates the five vulnerabilities identified in 1994 at the PFP that are associated with SNM storage. This new evaluation took a more detailed look and applied a risk ranking process to help focus remediation efforts.

HERZOG, K.R.

1999-09-01

436

PLUTONIUM UPTAKE BY PLANTS FROM SOIL CONTAINING PLUTONIUM-238 DIOXIDE PARTICLES  

EPA Science Inventory

Three plant species--alfalfa, lettuce, and radishes were grown in soils contaminated with plutonium-238 dioxide (238)PuO2 at concentrations of 23, 69, 92, and 342 nanocuries per gram (nCi/g). The length of exposure varied from 60 days for the lettuce and radishes to 358 days for ...

437

Characterization of Representative Materials in Support of Safe, Long Term Storage of Surplus Plutonium in DOE-STD-3013 Containers  

SciTech Connect

The Surveillance and Monitoring Program is a joint Los Alamos National Laboratory/Savannah River Site effort funded by the Department of Energy-Environmental Management to provide the technical basis for the safe, long-term storage (up to 50 years) of over 6 metric tons of plutonium stored in over 5,000 DOE-STD-3013 containers at various facilities around the DOE complex. The majority of this material is plutonium that is surplus to the nuclear weapons program, and much of it is destined for conversion to mixed oxide fuel for use in US nuclear power plants. The form of the plutonium ranges from relatively pure metal and oxide to very impure oxide. The performance of the 3013 containers has been shown to depend on moisture content and on the levels, types and chemical forms of the impurities. The oxide materials that present the greatest challenge to the storage container are those that contain chloride salts. Other common impurities include oxides and other compounds of calcium, magnesium, iron, and nickel. Over the past 15 years the program has collected a large body of experimental data on 54 samples of plutonium, with 53 chosen to represent the broader population of materials in storage. This paper summarizes the characterization data, moisture analysis, particle size, surface area, density, wattage, actinide composition, trace element impurity analysis, and shelf life surveillance data and includes origin and process history information. Limited characterization data on fourteen nonrepresentative samples is also presented.

Narlesky, Joshua E. [Los Alamos National Laboratory; Stroud, Mary Ann [Los Alamos National Laboratory; Smith, Paul Herrick [Los Alamos National Laboratory; Wayne, David M. [Los Alamos National Laboratory; Mason, Richard E. [MET-1: ACTINIDE PROCESSING SUPPORT; Worl, Laura A. [Los Alamos National Laboratory

2013-02-15

438

Characterization of representative materials in support of safe, long term storage of surplus plutonium in DOE-STD-3013 containers  

SciTech Connect

The Surveillance and Monitoring Program (SMP) is a joint LANL/SRS effort funded by DOE/EM to provide the technical basis for the safe, long-term storage (up to 50 years) of over 6 metric tons of plutonium stored in over 5000 DOE-STD-3013 containers at various facilities around the DOE complex. The majority of this material is plutonium that is surplus to the nuclear weapons program, and much of it is destined for conversion to mixed oxide fuel for use in US nuclear power plants. The form of the plutonium ranges from relatively pure metal and oxide to very impure oxide. The performance of the 3013 containers has been shown to depend on moisture content and on the levels, types and chemical forms of the impurities. The oxide materials that present the greatest challenge to the storage container are those that contain chloride salts. The chlorides (NaCl, KCl, CaCl{sub 2}, and MgCl{sub 2}) range from less than half of the impurities present to nearly all the impurities. Other common impurities include oxides and other compounds of calcium, magnesium, iron, and nickel. Over the past 15 years the program has collected a large body of experimental data on over 60 samples of plutonium chosen to represent the broader population of materials in storage. This paper will summarize the characterization data, including the origin and process history, particle size, surface area, density, calorimetry, chemical analysis, moisture analysis, prompt gamma, gas generation and corrosion behavior.

Smith, Paul H [Los Alamos National Laboratory; Narlesky, Joshua E [Los Alamos National Laboratory; Worl, Laura A [Los Alamos National Laboratory; Gillispie, Obie W [Los Alamos National Laboratory

2010-01-01

439

10. VIEW OF THE INSTALLATION OF PLUTONIUM FABRICATION ROLLING MILL. ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

10. VIEW OF THE INSTALLATION OF PLUTONIUM FABRICATION ROLLING MILL. THE MILL ROLLED INGOTS INTO SHEETS THAT WERE THEN CUT INTO CIRCLE BLANKS TO BE PASSED THROUGH THE CENTER LINE FOR PRESSING. (2/19/63) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

440

A plutonium-based single-molecule magnet.  

PubMed

The magnetic properties of the 5f(5) [tris-(tri-1-pyrazolylborato)-plutonium(III)] complex have been investigated by ac susceptibility measurements, showing it to be the first plutonium single-molecule magnet; its magnetic relaxation slows down with decreasing temperature through a thermally activated mechanism followed by a quantum tunnelling regime below 5 K. PMID:24927255

Magnani, N; Colineau, E; Griveau, J-C; Apostolidis, C; Walter, O; Caciuffo, R

2014-08-01

441

10 CFR 71.88 - Air transport of plutonium.  

Code of Federal Regulations, 2014 CFR

...2014-01-01 2014-01-01 false Air transport of plutonium. 71.88 Section...Controls and Procedures 71.88 Air transport of plutonium. (a...or delivered to a carrier for air transport unless: (1) The...

2014-01-01

442

10 CFR 71.88 - Air transport of plutonium.  

Code of Federal Regulations, 2010 CFR

...2010-01-01 2010-01-01 false Air transport of plutonium. 71.88 Section...Controls and Procedures 71.88 Air transport of plutonium. (a...or delivered to a carrier for air transport unless: (1) The...

2010-01-01

443

26. Plutonium Recovery From Contaminated Materials, Architectural Elevations, Sections & ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

26. Plutonium Recovery From Contaminated Materials, Architectural Elevations, Sections & Dets., Building 232-Z, U.S. Atomic Energy Commission, Hanford Atomic Products Operation, General Electric Company, Dwg. No. H-2-23106, 1959. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

444

25. Plutonium Recovery From Contaminated Materials, Architectural Plans & Details, ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

25. Plutonium Recovery From Contaminated Materials, Architectural Plans & Details, Building 232-Z, U.S. Atomic Energy Commission, Hanford Atomic Products Operation, General Electric Company, Dwg. No. H-2-23105, 1959. - Plutonium Finishing Plant, Waste Incinerator Facility, 200 West Area, Richland, Benton County, WA

445

ANNUAL REPORT. PLUTONIUM SPECIATION, SOLUBILIZATION, AND MIGRATION IN SOILS  

EPA Science Inventory

This report summarizes work performed in the first year of a three-year project. In this year we are focusing on the following: 1) the interactions between plutonium compounds and redox active iron and manganese minerals, 2) the interactions between plutonium compounds and sedime...

446

Processing of Non-PFP Plutonium Oxide in Hanford Plants  

SciTech Connect

Processing of non-irradiated plutonium oxide, PuO2, scrap for recovery of plutonium values occurred routinely at Hanfords Plutonium Finishing Plant (PFP) in glovebox line operations. Plutonium oxide is difficult to dissolve, particularly if it has been high-fired; i.e., calcined to temperatures above about 400C and much of it was. Dissolution of the PuO2 in the scrap typically was performed in PFPs Miscellaneous Treatment line using nitric acid (HNO3) containing some source of fluoride ion, F-, such as hydrofluoric acid (HF), sodium fluoride (NaF), or calcium fluoride (CaF2). The HNO3 concentration generally was 6 M or higher whereas the fluoride concentration was ~0.5 M or lower. At higher fluoride concentrations, plutonium fluoride (PuF4) would precipitate, thus limiting the plutonium dissolution. Some plutonium-bearing scrap also contained PuF4 and thus required no added fluoride. Once the plutonium scrap was dissolved, the excess fluoride was complexed with aluminum ion, Al3+, added as aluminum nitrate, Al(NO3)39H2O, to limit collateral damage to the process equipment by the corrosive fluoride. Aluminum nitrate also was added in low quantities in processing PuF4.

Jones, Susan A.; Delegard, Calvin H.

2011-03-10

447

Dissolution Behavior of Plutonium Containing Zirconia-Magnesia Ceramics  

Microsoft Academic Search

This study explores the dissolution properties of zirconia-magnesia ceramics containing plutonium as the basis of an inert atrix nuclear fuel. The magnesium oxide phase remains pure MgO, while the zirconia incorporates a small amount of magnesium oxide along with all of the plutonium oxide and erbium oxide. The performance of the material under reactor and repository environments was examined. Reactor

Kiel Holliday; Thomas Hartmann; Gary Cerefice; Ken Czerwinski

2012-01-01

448

Plutonium finishing plant safety systems and equipment list  

SciTech Connect

The Safety Equipment List (SEL) supports Analysis Report (FSAR), WHC-SD-CP-SAR-021 and the Plutonium Finishing Plant Operational Safety Requirements (OSRs), WHC-SD-CP-OSR-010. The SEL is a breakdown and classification of all Safety Class 1, 2, and 3 equipment, components, or system at the Plutonium Finishing Plant complex.

Bergquist, G.G.

1995-01-06

449

Plutonium in the arctic marine environment--a short review.  

PubMed

Anthropogenic plutonium has been introduced into the environment over the past 50 years as the result of the detonation of nuclear weapons and operational releases from the nuclear industry. In the Arctic environment, the main source of plutonium is from atmospheric weapons testing, which has resulted in a relatively uniform, underlying global distribution of plutonium. Previous studies of plutonium in the Kara Sea have shown that, at certain sites, other releases have given rise to enhanced local concentrations. Since different plutonium sources are characterised by distinctive plutonium-isotope ratios, evidence of a localised influence can be supported by clear perturbations in the plutonium-isotope ratio fingerprints as compared to the known ratio in global fallout. In Kara Sea sites, such perturbations have been observed as a result of underwater weapons tests at Chernaya Bay, dumped radioactive waste in Novaya Zemlya, and terrestrial runoff from the Ob and Yenisey Rivers. Measurement of the plutonium-isotope ratios offers both a means of identifying the origin of radionuclide contamination and the influence of the various nuclear installations on inputs to the Arctic, as well as a potential method for following the movement of water and sediment loads in the rivers. PMID:15258672

Skipperud, Lindis

2004-06-18

450

Open air demolition of facilities highly contaminated with plutonium  

Microsoft Academic Search

The demolition of highly contaminated plutonium buildings usually is a long and expensive process that involves decontaminating the building to near free- release standards and then using conventional methods to remove the structure. It doesn't, however, have to be that way. Fluor has torn down buildings highly contaminated with plutonium without excessive decontamination. By removing the select source term and

E. R. Lloyd; M. B. Lackey; J. M. Stevens; L. C. Zinsli

2007-01-01

451

Solvent extraction method for determination of plutonium in soft tissue  

Microsoft Academic Search

A simple, quick, and accurate method has been developed for the determination of plutonium isotopes in soft tissues. First ²⁴²Pu tracer is added and then the tissues are digested using concentrated nitric acid followed by a mixture of nitric and sulfuric acids. Plutonium is then coprecipitated with iron carrier after the addition of ammonium hydroxide. The precipitate is dissolved in

Narayani P. Singh; Shawki Amin. Ibrahim; Norman. Cohen; McDonald E. Wrenn

1978-01-01

452

Fuel bundle design for enhanced usage of plutonium fuel  

DOEpatents

A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced.

Reese, Anthony P. (San Jose, CA); Stachowski, Russell E. (Fremont, CA)

1995-01-01

453

Development of characterization of plutonium storage containers  

SciTech Connect

As a result of the end of the Cold War, at least 11,000 (possibly 20,000 or more) plutonium pits are projected to be stored at Pantex for up to fifty years. The current pit container, the ALR8 was not designed for this length of storage duration. As a result, Pantex officials have searched for alternative container options. The objective of this research is to develop and validate a model to predict the temperature distribution within the stored components and the internal structure of the proposed ALR8(SI) container, and to consider and analyze the safety features of the ALR8(SI) container as seen from the thermal performance view. Due to the time scale involved with the current simulations, the radioactive decay of the plutonium may be assumed to provide a uniform rate of heat generation. This heat is conducted to the surroundings through the solid structures of the assembly. In addition to conduction, the inert gas that fills the volume within the steel container convects a fraction of the generated heat from the plutonium to the colder steel surfaces. Radiation must also be accounted for as natural convection and limited conduction paths are present within the container. The research efforts in this project have been directed into two paths, numerical and experimental. First, the temperature distribution within the stored components are being determined experimentally as a function of fill gases, energy generation rate, and boundary conditions. Second, a finite element model of the ALR8 container has been developed so that the temperature distribution can be predicted as a function of the same experimental parameters. This paper presents the experimental method and data that have been obtained thus far, as well as the finite element model created using SDRC I-DEAS.

James, D.; Stevkovski, S. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Mechanical Engineering

1999-02-01

454

Development of advanced mixed oxide fuels for plutonium management  

SciTech Connect

A number of advanced Mixed Oxide (MOX) fuel forms are currently being investigated at Los Alamos National Laboratory that have the potential to be effective plutonium management tools. Evolutionary Mixed Oxide (EMOX) fuel is a slight perturbation on standard MOX fuel, but achieves greater plutonium destruction rates by employing a fractional nonfertile component. A pure nonfertile fuel is also being studied. Initial calculations show that the fuel can be utilized in existing light water reactors and tailored to address different plutonium management goals (i.e., stabilization or reduction of plutonium inventories residing in spent nuclear fuel). In parallel, experiments are being performed to determine the feasibility of fabrication of such fuels. Initial EMOX pellets have successfully been fabricated using weapons-grade plutonium.

Eaton, S.; Beard, C.; Buksa, J.; Butt, D.; Chidester, K.; Havrilla, G.; Ramsey, K.

1997-06-01

455

23. AERIAL VIEW LOOKING SOUTHEAST AT THE PLUTONIUM OPERATION BUILDINGS ...  

Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

23. AERIAL VIEW LOOKING SOUTHEAST AT THE PLUTONIUM OPERATION BUILDINGS 771, 776/777, AND 707. BUILDING 771, IN THE FOREGROUND, WAS BUILT IN 1952 TO HOUSE ALL PLUTONIUM OPERATIONS. BY 1956, BUILDING 771 WAS NO LONGER ADEQUATE FOR PRODUCTION DEMANDS. BUILDING 776/777, TO THE SOUTH OF BUILDING 771, WAS CONSTRUCTED TO HOUSE PLUTONIUM FABRICATION AND FOUNDRY OPERATIONS. PLUTONIUM RECOVERY REMAINED IN BUILDING 771. BY 1967, CONSTRUCTION ON BUILDING 707, TO THE SOUTH OF BUILDING 776/777, BEGAN AS PRODUCTION LEVELS CONTINUED TO EXPAND NECESSITATING THE NEED FOR ADDITIONAL PLUTONIUM FABRICATION SPACE (7/1/69). - Rocky Flats Plant, Bounded by Indiana Street & Routes 93, 128 & 72, Golden, Jefferson County, CO

456

Changes in non-volatile taste components of button mushroom (Agaricus bisporus) during different stages of freeze drying and freeze drying combined with microwave vacuum drying.  

PubMed

Button mushroom slices were dehydrated using freeze drying (FD) or FD combined with microwave vacuum drying (FMVD), and the non-volatile component profiles were studied. The results showed that the level of non-volatile components in button mushroom firstly increased during sublimation of FD/FMVD process and then fell during desorption in FD process and MVD in FMVD process. Compared to FD products, the contents of soluble sugars and polyols in FMVD products were relatively low, whereas the contents of total free amino acids were significantly higher, close to the level of fresh mushroom. However, there was no significant difference in the contents of 5'-nucleotides and organic acids between FD and FMVD products. The equivalent umami concentration (EUC) values for FD and FMVD products did not differ from fresh, indicating that both drying methods could effectively preserve MSG (monosodium glutamate)-like components in button mushroom. PMID:25038710

Pei, Fei; Shi, Ying; Gao, Xingyang; Wu, Fangning; Mariga, Alfred Mugambi; Yang, Wenjian; Zhao, Liyan; An, Xinxin; Xin, Zhihong; Yang, Fangmei; Hu, Qiuhui

2014-12-15

457

Applications of molten salts in plutonium processing  

SciTech Connect

Plutonium is efficiently recovered from scrap at Los Alamos by a series of chemical reactions and separations conducted at temperatures ranging from 700 to 900/sup 0/C. These processes usually employ a molten salt or salt eutectic as a heat sink and/or reaction medium. Salts for these operations were selected early in the development cycle. The selection criteria are being reevaluated. In this article we describe the processes now in use at Los Alamos and our studies of alternate salts and eutectics.

Bowersox, D.F.; Christensen, D.C.; Williams, J.D.

1987-01-01

458

Laser isotope separation: the plutonium connection  

SciTech Connect

A new process that promises to enrich uranium more cheaply and easily than either of the technologies currently used is described. The new process, called laser isotope separation (LIS), uses lasers to selectively excite and ionize uranium-235 and then accumulates that isotope on collectors. The advantages of the LIS process are discussed. It is concluded that the government's growing support of the laser isotope separation process may reconnect civilian nuclear power to the military requirements for enough plutonium for 14,000 new warheads.

Palmer, G.; Bolef, D.I.

1984-03-01

459

Plutonium isotope measurements from across continental Australia  

NASA Astrophysics Data System (ADS)

The 240Pu/239Pu ratio of the global plutonium fallout from atmospheric nuclear weapons testing is typically in the range 0.17-0.19. However, the influence of regional nuclear installations or nearby weapons test sites can lead to local values outside this range. We report 240Pu/239Pu ratios at 14 representative sites across the Australian continent, and find that the weapons tests carried out in Australia appear to have made a significant contribution to the total fallout in the center of the continent, despite their relatively small explosive yield.

Tims, Stephen G.; Fifield, L. Keith; Hancock, Gary J.; Lal, Rajeev R.; Hoo, Wee T.

2013-01-01

460

Magnetic properties of neptunium and plutonium hydrides  

Microsoft Academic Search

The magnetic susceptibility and magnetization of NpHx and PuHx (2.0<=x<=3.0) compounds have been measured between 4 and 700 K. The susceptibility of the NpHx compounds is weakly temperature dependent and a crystal-field calculation based on the 5f4(Np3+) ground-state configuration was in reasonable agreement with the experimental results for the dihydride (cubic CaF2-type structure). The cubic plutonium dihydride has a susceptibility

A. T. Aldred; G. Cinader; D. J. Lam; L. W. Weber

1979-01-01

461

PLUTONIUM-238 PRODUCTION TARGET DESIGN STUDIES  

SciTech Connect

A new supply chain is planned for plutonium-238 using existing reactors at the Oak Ridge National Laboratory (ORNL) and Idaho National Laboratory (INL) and existing chemical recovery facilities at ORNL. Validation and testing activities for new irradiation target designs have been conducted in three phases over a 2 year period to provide data for scale-up to production. Target design, qualification, target fabrication, and irradiation of fully-loaded targets have been accomplished. Data from post-irradiation examination (PIE) supports safety analysis and irradiation of future target designs.

Hurt, Christopher J [ORNL; Wham, Robert M [ORNL; Hobbs, Randall W [ORNL; Owens, R Steven [ORNL; Chandler, David [ORNL; Freels, James D [ORNL; Maldonado, G Ivan [ORNL

2014-01-01

462

Multiple quantum phase transitions of plutonium compounds  

SciTech Connect

We show by quantum Monte Carlo simulations of realistic Kondo lattice models derived from electronicstructure calculations that multiple quantum critical points can be realized in plutonium-based materials. We place representative systems, including PuCoGa5, on a realistic Doniach phase diagram and identify the regions where the magnetically mediated superconductivity could occur. The solution of an inverse problem to restore the quasiparticle renormalization factor for f electrons is shown to be sufficiently good to predict the trends among Sommerfeld coefficients and magnetism. A suggestion on the possible experimental verification for this scenario is given for PuAs.

Matsumoto, Munehisa; Yin, Quan; Otsuki, Junya; Savrasov, Sergey Y.

2011-07-22

463

Simulation of polyethylene-moderated plutonium neutron multiplicity measurements  

NASA Astrophysics Data System (ADS)

Neutron multiplicity measurements are a useful technique for the characterization of special nuclear material. This technique relies on the detection of correlated neutrons from fission events. As correlated events are detected it is possible to determine the neutron multiplicity distribution for the sample. This distribution is useful for identifying the material and estimating the mass. This work focuses on the ability of the Monte Carlo code MCNP-PoliMi to simulate measured distributions. The experiment used as the basis of comparison consisted of a 4.5 kg plutonium metal sphere surrounded by up to 6 in. of polyethylene. A bank of 15 3He detectors was used to detect the correlated neutron events. MCNP-PoliMi was used to simulate the particle transport and a post-processing algorithm was developed to apply detector deadtime effects and to determine the neutron multiplicity distributions. These simulated distributions were then compared to the measured results. The simulation provided an adequate estimation of the measured data. However, we observed a systematic over-prediction in both the mean and the variance of the measured distribution.

Miller, E. C.; Dennis, B.; Clarke, S. D.; Pozzi, S. A.; Mattingly, J. K.

2011-10-01

464

Photoemission of surface oxides and hydrides of delta plutonium  

NASA Astrophysics Data System (ADS)

High resolution photoelectron spectroscopy (PES) studies were conducted on a gallium stabilized ?-phase plutonium sample cleaned by laser ablation and gas dosed with O 2 and H 2. The measurements were made with an instrument resolution of 60 meV with the sample at 300 K, 77 K and 10 K. The PES data under these experimental conditions strongly support an idealized model with Pu 2O 3 growth on the metal followed by PuO 2 growth on the Pu 2O 3 layer at low temperature. In vacuum, the PuO 2 reduces to Pu 2O 3 at room temperature at a pressure of 6 10 -11 Torr. In the case of H 2 dosing of the surface at low temperature, the hydrogen appears to penetrate the surface and disrupt the electronic structure of the valence band as evidenced by a drop in intensity of the peak at E F which is not accompanied by a drop in the main 5f manifold at 1 eV. Studies were also carried out on the dosing of hydrogen on surfaces already dosed with both 0.5 L (Pu 2O 3) and 10 L (PuO 2) oxygen films and show that hydrogen penetrates the 0.5 L Pu 2O 3 covered surface.

Butterfield, M. T.; Durakiewicz, T.; Guziewicz, E.; Joyce, J. J.; Arko, A. J.; Graham, K. S.; Moore, D. P.; Morales, L. A.

2004-11-01

465

Thermal Stability Studies of Candidate Decontamination Agents for Hanfords Plutonium Finishing Plant Plutonium-Contaminated Gloveboxes  

SciTech Connect

This report provides the results of PNNL's and Fluor's studies of the thermal stabilities of potential wastes arising from decontamination of Hanford's Plutonium Finishing Plant's plutonium contaminated gloveboxes. The candidate wastes arising from the decontamination technologies ceric nitrate/nitric acid, RadPro, Glygel, and Aspigel.

Scheele, Randall D.; Cooper, Thurman D.; Jones, Susan A.; Ewalt, John R.; Compton, James A.; Trent, Donald S.; Edwards, Matthew K.; Kozelisky, Anne E.; Scott, Paul A.; Minette, Michael J.

2005-09-29

466

Extraction and Purification of Plutonium by a Tertiary Amine; EXTRACTION ET PURIFICATION DU PLUTONIUM PAR UNE AMINE TERTIAIRE  

Microsoft Academic Search

Trilaurylamins diluted with a paraffinic solvent (dodecane) was studied ; as part of the research dealing with the separation and purification of plutonium. ; The physical properties (solubility of nitrates in the amine as a function of ; temperature) and the resistance to radiation of this substance were examined. ; The extraction characteristics of nitric solutions of plutonium, uranium, and

M. de Trentinian; A. Chesne

1960-01-01

467

Who pressed the pause button on global warming: is the answer in the past?  

NASA Astrophysics Data System (ADS)

Although there is coverage bias in the HadCRUT4 temperature series (Cotan and Way, 2013) or in other global surface temperature sequences, IPCC-AR5 still claimed that "much interest has focused on the period since 1998 and an apparent flattening ('hiatus') in trends". According to statistical principle, in fact, this flattening trend is unlikely to be changed by adding the missing 16% area-weighed regional data. In addition, if the "warming hiatus" could not be attributed to the solar output, volcanic eruptions and the green house gases when comparing them to the rhythm of the temperature, then the question arise: who pressed the pause button on global warming? However, it would be a golden opportunity to further understand the ocean as a fundamental role in controlling climate change. The current hypothesis attributed this "hiatus" to a La Nia-like decadal cooling occurring in the central and eastern equatorial Pacific (Kosaka and Die, 2013). Here we separate the global surface temperature into land surface air temperature (LSAT, adopt from HadCRUT4) and sea surface temperatures (SSTs, adopt from different original data). Obviously, the decadal cooling of the central and eastern equatorial Pacific occurred in 1987, a decade earlier than the beginning of the LSAT flattening (1998), whereas the SSTs of the west Pacific warm pool (WPWP), the Indian Ocean (IO, 20S-20N, 40-110E) and the North Atlantic (NA, here its variation is represented by the Atlantic multi-decadal oscillation or hereafter referred to as AMO) are exactly in phase with the LSAT. The combined data (SSTs, arithmetic mean) of the three ocean areas has the highest correlation with the LSAT (0.91), but the correlation coefficient is reduced (0.54) if adding the decadal variation in the central and eastern equatorial Pacific (here it is represented by the Pacific decadal oscillation or hereafter referred to as PDO). Therefore, the tree ocean areas (WPWP, IO and NA) could be regarded as the key ocean area for the atmospheric temperature change. The robust evidence comes from the reconstructed long-term time series. A fact that we all know is that the value of the LSAT is lowest in the Little Ice Age (LIA) over the last millennium. However, both reconstructed PDO (MacDonald et al, 2005) and sea surface temperature index of Nio3.4 (Emile-Gay et al, 2013) illustrate high values in the central and eastern equatorial Pacific during the LIA period. So, if we admit that the ocean could determine the land surface temperature, then the key ocean area could not be the central and eastern equatorial Pacific. And meanwhile, we also need reconstructed the SSTs of WPWP, IO or NA over the last millennium to see how the key ocean area changed. The millennial AMO has been reconstructed by Mann et al (2009) with autocorrelation coefficient of 0.99. It really shows a low value during the LIA period. Here we further present a new reconstructed AMO millennial series derived by combining a tree ring width chronology and a stalagmite-lamina thickness chronology with autocorrelation coefficient of 0.67 (Tan et al, 2009). This new sequence lags the observed winter half year (October of last year to February of current year) AMO by 3 years (with correlation coefficient of 0.59), which also shows a low value within the LIA. After removing the impact of millennial-scale solar radiation, the wavelet analysis on the residual composition shows that the decadal oscillation only occurred within the past 200 years. Therefore, it is still difficult to speculate the future trend of the SSTs according to this reconstructed series. Another related important issue is that the instantaneous growth rates for globally averaged atmospheric CO2 (see Figure 2.1b in IPCC AR5) is kept very precisely in phase with the SSTs of IO, WPWP and NA on annual to decadal time scale (but lags Nio3.4 by 1 year). If it is impossible to imagine that the atmospheric CO2 is a dexterous driver for the SSTs, then the reasonable explanation is that the oceanic carbon pool could finely modula

Tan, Ming

2014-05-01

468

The Transport of Plutonium, Americium and Curium in the Blood of Rats  

Microsoft Academic Search

The rates of disappearance from the blood of plutonium, americium and curium after intravenous injection in various chemical forms has been studied in rats. The rate of removal of plutonium is markedly influenced by the physicochemical form of the injected plutonium and especially by the presence of colloidal material. The plasma clearance rate of plutonium injected as a citrate solution

G. A. Turner; D. M. Taylor

1968-01-01

469

SYNTHESIS OF NEW WATER-SOLUBLE METAL-BINDING POLYMERS: COMBINATORIAL CHEMISTRY APPROACH  

EPA Science Inventory

A variety of metals that require removal and concentration exist in DOE waste, ground, or process waters. These can include, for example, RCRA metals such as mercury in mixed waste, valuable metals such as copper in acid mine drainage, actinides in plutonium processing facilities...

470

Literature review: Phytoaccumulation of chromium, uranium, and plutonium in plant systems  

SciTech Connect

Phytoremediation is an integrated multidisciplinary approach to the cleanup of contaminated soils, which combines the disciplines of plant physiology, soil chemistry, and soil microbiology. Metal hyperaccumulator plants are attracting increasing attention because of their potential application in decontamination of metal-polluted soils. Traditional engineering technologies may be too expensive for the remediation of most sites. Removal of metals from these soils using accumulator plants is the goal of phytoremediation. The emphasis of this review has been placed on chromium (Cr), plutonium (Pu), and uranium (U). With the exception of Cr, these metals and their decay products exhibit two problems, specifically, radiation dose hazards and their chemical toxicity. The radiation hazard introduces the need for special precautions in reclamation beyond that associated with non-radioactive metals. The uptake of beneficial metals by plants occurs predominantly by way of channels, pores, and transporters in the root plasma membrane. Plants characteristically exhibit a remarkable capacity to absorb what they need and exclude what they don`t need. But most vascular plants absorb toxic and heavy metals through their roots to some extent, though to varying degrees, from negligible to substantial. Sometimes absorption occurs because of the chemical similarity between beneficial and toxic metals. Some plants utilize exclusion mechanisms, where there is a reduced uptake by the roo