Science.gov

Sample records for plutonium-uranium fuel mixtures

  1. Nuclear Criticality Control and Safety of Plutonium-Uranium Fuel Mixtures Outside Reactors

    SciTech Connect

    Biswas, D; Mennerdahl, D

    2008-06-23

    The ANSI/ANS 8.12 standard was first approved in July 1978. At that time, this edition was applicable to operations with plutonium-uranium oxide (MOX) fuel mixtures outside reactors and was limited to subcritical limits for homogeneous systems. The next major revision, ANSI/ANS-8.12-1987, included the addition of subcritical limits for heterogeneous systems. The standard was subsequently reaffirmed in February 1993. During late 1990s, substantial work was done by the ANS 8.12 Standard Working Group to re-examine the technical data presented in the standard using the latest codes and cross section sets. Calculations performed showed good agreement with the values published in the standard. This effort resulted in the reaffirmation of the standard in March 2002. The standard is currently in a maintenance mode. After 2002, activities included discussions to determine the future direction of the standard and to follow the MOX standard development by the International Standard Organization (ISO). In 2007, the Working Group decided to revise the standard to extend the areas of applicability by providing a wider range of subcritical data. The intent is to cover a wider domain of MOX fuel fabrication and operations. It was also decided to follow the ISO MOX standard specifications (related to MOX density and isotopics) and develop a new set of subcritical limits for homogeneous systems. This has resulted in the submittal (and subsequent approval) of the project initiation notification system form (PINS) in 2007.

  2. Criticality experiments with mixed oxide fuel pin arrays in plutonium-uranium nitrate solution

    SciTech Connect

    Lloyd, R.C. ); Smolen, G.R. )

    1988-08-01

    A series of critical experiments was completed with mixed plutonium-uranium solutions having a Pu/(Pu + U) ratio of approximately 0.22 in a boiler tube-type lattice assembly. These experiments were conducted as part of the Criticality Data Development Program between the United States Department of Energy (USDOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of the experiments and data are included in this report. The experiments were performed with an array of mixed oxide fuel pins in aqueous plutonium-uranium solutions. The fuel pins were contained in a boiler tube-type tank and arranged in a 1.4 cm square pitch array which resembled cylindrical geometry. One experiment was perfomed with the fuel pins removed from the vessel. The experiments were performed with a water reflector. The concentration of the solutions in the boiler tube-type tank was varied from 4 to 468 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was approximately 0.22 for all experiments.

  3. CHARACTERIZATION OF EMISSIONS FROM PLUTONIUM-URANIUM OXIDE FUEL FABRICATION

    EPA Science Inventory

    To develop accurate monitoring techniques for the radioactive emissions from new types of nuclear facilities, it is necessary to characterize those emissions as completely as possible. The first facility selected was a mixed-oxide fuel fabrication plant. In-stack, standard hi-vol...

  4. PLUTONIUM-URANIUM-TITANIUM ALLOYS

    DOEpatents

    Coffinberry, A.S.

    1959-07-28

    A plutonium-uranium alloy suitable for use as the fuel element in a fast breeder reactor is described. The alloy contains from 15 to 60 at.% titanium with the remainder uranium and plutonium in a specific ratio, thereby limiting the undesirable zeta phase and rendering the alloy relatively resistant to corrosion and giving it the essential characteristic of good mechanical workability.

  5. Conversion of mixed plutonium-uranium oxides. [COPRECAL

    SciTech Connect

    Thomas, L.L.

    1980-04-01

    Coprocessing is among the several reprocessing schemes being considered to improve the proliferation resistance of the back end of the nuclear fuel cycle. Coconversion of mixed oxides has been developed but not demonstrated on a production scale. AGNS developed a preliminary conceptual design for a production scale facility to convert mixed plutonium-uranium nitrate to the mixed oxide.

  6. PLUTONIUM-URANIUM ALLOY

    DOEpatents

    Coffinberry, A.S.; Schonfeld, F.W.

    1959-09-01

    Pu-U-Fe and Pu-U-Co alloys suitable for use as fuel elements tn fast breeder reactors are described. The advantages of these alloys are ease of fabrication without microcracks, good corrosion restatance, and good resistance to radiation damage. These advantages are secured by limitation of the zeta phase of plutonium in favor of a tetragonal crystal structure of the U/sub 6/Mn type.

  7. Stabilizer for fuel mixtures

    SciTech Connect

    Abe, M.; Moriyama, N.; Yamamura, M.

    1981-02-24

    A stabilizer for fuel mixtures of finely divided coal and fuel oil is composed of an active ingredient, a non-ionic surface active agent consisting of a block copolymer represented by the following general formula (I): R/sub 1/O-(C/sub 2/H/sup 4/O)l-(C/sub 3/H/sup 6/O)m-(C/sub 2/H/sup 4/O)n-R/sub 2/ (I) wherein r/sub 1/ and r/sub 2/ stand for a hydrogen atom or an alklyl group having 1 to 6 carbon atoms, the mole number (L+n) of added ethylene oxide is in the range of from 30 to 300, the mole number (M) of added propylene oxide is in the range of from 15 to 80, and the content of ethylene oxide in the whole molecule is 40 to 85% by weight.

  8. Computation Results from a Parametric Study to Determine Bounding Critical Systems of Homogeneously Water-Moderated Mixed Plutonium--Uranium Oxides

    SciTech Connect

    Shimizu, Y.

    2001-01-11

    This report provides computational results of an extensive study to examine the following: (1) infinite media neutron-multiplication factors; (2) material bucklings; (3) bounding infinite media critical concentrations; (4) bounding finite critical dimensions of water-reflected and homogeneously water-moderated one-dimensional systems (i.e., spheres, cylinders of infinite length, and slabs that are infinite in two dimensions) that were comprised of various proportions and densities of plutonium oxides and uranium oxides, each having various isotopic compositions; and (5) sensitivity coefficients of delta k-eff with respect to critical geometry delta dimensions were determined for each of the three geometries that were studied. The study was undertaken to support the development of a standard that is sponsored by the International Standards Organization (ISO) under Technical Committee 85, Nuclear Energy (TC 85)--Subcommittee 5, Nuclear Fuel Technology (SC 5)--Working Group 8, Standardization of Calculations, Procedures and Practices Related to Criticality Safety (WG 8). The designation and title of the ISO TC 85/SC 5/WG 8 standard working draft is WD 14941, ''Nuclear energy--Fissile materials--Nuclear criticality control and safety of plutonium-uranium oxide fuel mixtures outside of reactors.'' Various ISO member participants performed similar computational studies using their indigenous computational codes to provide comparative results for analysis in the development of the standard.

  9. Plutonium-uranium mixed oxide characterization by coupling micro-X-ray diffraction and absorption investigations

    NASA Astrophysics Data System (ADS)

    Degueldre, C.; Martin, M.; Kuri, G.; Grolimund, D.; Borca, C.

    2011-09-01

    Plutonium-uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The potential differences of metal redox state and microstructural developments of the matrix before and after irradiation are commonly analysed by electron probe microanalysis. In this work the structure and next-neighbor atomic environments of Pu and U oxide features within unirradiated homogeneous MOX and irradiated (60 MW d kg -1) MOX samples was analysed by micro-X-ray fluorescence (μ-XRF), micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption fine structure (μ-XAFS) spectroscopy. The grain properties, chemical bonding, valences and stoichiometry of Pu and U are determined from the experimental data gained for the unirradiated as well as for irradiated fuel material examined in the center of the fuel as well as in its peripheral zone (rim). The formation of sub-grains is observed as well as their development from the center to the rim (polygonization). In the irradiated sample Pu remains tetravalent (>95%) and no (<5%) Pu(V) or Pu(VI) can be detected while the fuel could undergo slight oxidation in the rim zone. Any slight potential plutonium oxidation is buffered by the uranium dioxide matrix while locally fuel cladding interaction could also affect the redox of the fuel.

  10. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian

    2013-06-01

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O2 lattice in an irradiated (60 MW d kg-1) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (˜0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am3+ species within an [AmO8]13- coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix.

  11. Study of the IDGS technique for mixed plutonium-uranium (MOX) samples

    SciTech Connect

    Li, T. K.; Vo, Duc T.; Sumi, M.; Suzuki, T.

    2004-01-01

    The isotope dilution gamma-ray spectrometry (IDGS) technique has been demonstrated for simultaneously measuring concentrations and isotopic compositions of plutonium in spent-fuel input dissolver solutions. For timely analyzing nuclear materials on the purpose of material accountancy and quality control/assurance, we have performed a feasibility study to implement the IDGS for measuring mixed plutonium-uranium oxide (MOX) samples at the Plutonium Fuel Center (PFC) of Japan Nuclear Cycle Development Institute (JNC). Proof-of-principle experiments and analysis have been conducted for developing simultaneous plutonium and uranium measurements in MOX samples with wide variation of Pu/U ratios including powder, pellets and process scraps from the MOX fuel fabrication plant at PFC. We have shown that FRAM can be used with the IDGS technique to simultaneously determine plutonium and uranium isotopic compositions and concentrations in MOX samples at PFC, JNC. The uncertainties of the results are somewhat large due to weak statistics. If better statistics are obtained by either using more plutonium in the measurements, acquire the data for longer time, or using higher efficiency detector then the results can be better. The accuracy of the results can also be improved by a factor of 2-3 by using the generalized IDGS technique instead of this traditional IDGS.

  12. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    SciTech Connect

    Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J.; Duncan, D.R.

    1993-04-01

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site`s defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site`s N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX`s physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail.

  13. Coal-water mixture fuel burner

    DOEpatents

    Brown, T.D.; Reehl, D.P.; Walbert, G.F.

    1985-04-29

    The present invention represents an improvement over the prior art by providing a rotating cup burner arrangement for use with a coal-water mixture fuel which applies a thin, uniform sheet of fuel onto the inner surface of the rotating cup, inhibits the collection of unburned fuel on the inner surface of the cup, reduces the slurry to a collection of fine particles upon discharge from the rotating cup, and further atomizes the fuel as it enters the combustion chamber by subjecting it to the high shear force of a high velocity air flow. Accordingly, it is an object of the present invention to provide for improved combustion of a coal-water mixture fuel. It is another object of the present invention to provide an arrangement for introducing a coal-water mixture fuel into a combustion chamber in a manner which provides improved flame control and stability, more efficient combustion of the hydrocarbon fuel, and continuous, reliable burner operation. Yet another object of the present invention is to provide for the continuous, sustained combustion of a coal-water mixture fuel without the need for a secondary combustion source such as natural gas or a liquid hydrocarbon fuel. Still another object of the present invention is to provide a burner arrangement capable of accommodating a coal-water mixture fuel having a wide range of rheological and combustion characteristics in providing for its efficient combustion. 7 figs.

  14. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    SciTech Connect

    Degueldre, Claude Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian

    2013-06-01

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O₂ lattice in an irradiated (60 MW d kg⁻¹) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (~0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am³⁺ species within an [AmO₈]¹³⁻ coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix. - Graphical abstract: Americium LIII XAFS spectra recorded for the irradiated MOX sub-sample in the rim zone for a 300 μm×300 μm beam size area investigated over six scans of 4 h. The records remain constant during multi-scan. The analysis of the XAFS signal shows that Am is found as trivalent in the UO₂ matrix. This analytical work shall open the door of very challenging analysis (speciation of fission product and actinides) in irradiated nuclear fuels. - Highlights: • Americium was characterized by microX-ray absorption spectroscopy in irradiated MOX fuel. • The americium redox state as determined from XAS data of irradiated fuel material was Am(III). • In the sample, the Am³⁺ face an AmO₈¹³⁻coordination environment in the (Pu,U)O₂ matrix. • The americium dioxide is reduced by the uranium dioxide matrix.

  15. Curium analysis in plutonium uranium mixed oxide by x-ray fluorescence and absorption fine structure spectroscopy.

    PubMed

    Degueldre, C; Borca, C; Cozzo, C

    2013-10-15

    Plutonium uranium mixed oxide (MOX) fuels are being used in commercial nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regards to their environment and the coolant. In this work the study of the local occurrence, speciation and next-neighbour environment of curium (Cm) in the (Pu,U)O2 lattice within an irradiated (60 MW d kg(-1) average burn-up) MOX sample was performed employing micro-x-ray fluorescence (µ-XRF) and micro-x-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Cm (≈ 0.7 wt% in the rim and ≈ 0.03 wt% in the centre) are determined from the experimental data gained for the irradiated fuel material examined in its centre and peripheral (rim) zones of the fuel. Curium occurrence is also reduced from the centre (hot) to the periphery (colder) because of the condensation of these volatile oxides. In the irradiated sample Cm builds up as Cm(3+) species (>90%) within a [CmO8](13-) or [CmO7](11-) coordination environment and no (<10%) Cm(IV) can be detected in the rim zone. Curium dioxide is reduced because of the redox buffering activity of the uranium dioxide matrix and of its thermodynamic instability. PMID:24054692

  16. Dual-water mixture fuel burner

    DOEpatents

    Brown, Thomas D.; Reehl, Douglas P.; Walbert, Gary F.

    1986-08-05

    A coal-water mixture (CWM) burner includes a conically shaped rotating cup into which fuel comprised of coal particles suspended in a slurry is introduced via a first, elongated inner tube coupled to a narrow first end portion of the cup. A second, elongated outer tube is coaxially positioned about the first tube and delivers steam to the narrow first end of the cup. The fuel delivery end of the inner first tube is provided with a helical slot on its lateral surface for directing the CWM onto the inner surface of the rotating cup in the form of a uniform, thin sheet which, under the influence of the cup's centrifugal force, flows toward a second, open, expanded end portion of the rotating cup positioned immediately adjacent to a combustion chamber. The steam delivered to the rotating cup wets its inner surface and inhibits the coal within the CWM from adhering to the rotating cup. A primary air source directs a high velocity air flow coaxially about the expanded discharge end of the rotating cup for applying a shear force to the CWM in atomizing the fuel mixture for improved combustion. A secondary air source directs secondary air into the combustion chamber adjacent to the outlet of the rotating cup at a desired pitch angle relative to the fuel mixture/steam flow to promote recirculation of hot combustion gases within the ignition zone for increased flame stability.

  17. Fuel compositions comprising coal-liquid fuel mixture

    SciTech Connect

    Kobayashi, T.; Niimi, H.; Nobe, T.; Wada, T.

    1981-01-20

    The invention provides: a fuel composition comprising 100 parts by weight of a coal-liquid fuel mixture and 0.02 to 1.0 part by weight of at least one additive selected from the group consisting of dibenzylidene sorbitol, ditoluylidene sorbitol, tribenzylidene sorbitol, tritoluylidene sorbitol and hydrogenated castor oil; and a fuel composition comprising 100 parts by weight of a coal-liquid fuel mixture, 0.02 to 1.0 part by weight of at least one additive selected from the group consisting of dibenzylidene sorbitol, ditoluylidene sorbitol, tribenzylidene sorbitol, tritoluylidene sorbitol and hydrogenated castor oil, and 1 to 10 parts by weight of water. The composition shows high stability over a prolonged period of time, preventing the separation into layers of the components.

  18. Gastrointestinal absorption of plutonium, uranium and neptunium in fed and fasted adult baboons: Application to humans

    SciTech Connect

    Bhattacharyya, M.H.; Larsen, R.P.; Oldham, R.D.; Moretti, E.S. ); Cohen, N.; Ralston, L.G.; Ayres, L. )

    1992-03-01

    Gastrointestinal (GI) absorption values of plutonium, uranium, and neptunium were determined in fed and fasted adult baboons. A dual isotope method of determining GI absorption, which does not require animal sacrifice, was validated and shown to compare well with the sacrifice method (summation of oral isotope in urine with that in tissues at sacrifice). For all three elements, mean GI absorption values were significantly high (5- to 50-fold) in 24-hour (h)-fasted animals than in fed animals, and GI absorption values for baboons agreed well with those for humans.

  19. Nuclear fuel alloys or mixtures and method of making thereof

    DOEpatents

    Mariani, Robert Dominick; Porter, Douglas Lloyd

    2016-04-05

    Nuclear fuel alloys or mixtures and methods of making nuclear fuel mixtures are provided. Pseudo-binary actinide-M fuel mixtures form alloys and exhibit: body-centered cubic solid phases at low temperatures; high solidus temperatures; and/or minimal or no reaction or inter-diffusion with steel and other cladding materials. Methods described herein through metallurgical and thermodynamics advancements guide the selection of amounts of fuel mixture components by use of phase diagrams. Weight percentages for components of a metallic additive to an actinide fuel are selected in a solid phase region of an isothermal phase diagram taken at a temperature below an upper temperature limit for the resulting fuel mixture in reactor use. Fuel mixtures include uranium-molybdenum-tungsten, uranium-molybdenum-tantalum, molybdenum-titanium-zirconium, and uranium-molybdenum-titanium systems.

  20. Inorganic salt mixtures as electrolyte media in fuel cells

    NASA Technical Reports Server (NTRS)

    Angell, Charles Austen (Inventor); Belieres, Jean-Philippe (Inventor); Francis-Gervasio, Dominic (Inventor)

    2012-01-01

    Fuel cell designs and techniques for converting chemical energy into electrical energy uses a fuel cell are disclosed. The designs and techniques include an anode to receive fuel, a cathode to receive oxygen, and an electrolyte chamber in the fuel cell, including an electrolyte medium, where the electrolyte medium includes an inorganic salt mixture in the fuel cell. The salt mixture includes pre-determined quantities of at least two salts chosen from a group consisting of ammonium trifluoromethanesulfonate, ammonium trifluoroacetate, and ammonium nitrate, to conduct charge from the anode to the cathode. The fuel cell includes an electrical circuit operatively coupled to the fuel cell to transport electrons from the cathode.

  1. Functional design criteria for the 242-A evaporator and PUREX (Plutonium-Uranium Extraction) Plant condensate interim retention basin

    SciTech Connect

    Cejka, C.C.

    1990-01-01

    This document contains the functional design criteria for a 26- million-gallon retention basin and 10 million gallons of temporary storage tanks. The basin and tanks will be used to store 242-A Evaporator process condensate, the Plutonium-Uranium Extraction (PUREX) Plant process distillate discharge stream, and the PUREX Plant ammonia scrubber distillate stream. Completion of the project will allow both the 242-A Evaporator and the PUREX Plant to restart. 4 refs.

  2. Additive for otto cycle engines and fuel mixture so obtained

    SciTech Connect

    Scifoni, M.

    1985-02-12

    The additive for Otto cycle engines according to the present invention consists of a mixture of water, ethanol, methanol and butanol to which is added a determined quantity of a liquid obtained by pressing prickly pear leaves. Added in a small percentage to the fuel, gasoline, LP or methane, this additive prevents the oxidation associated with the use of water and/or alcohols in Otto cycle engines, lowers fuel consumption and allows the use of low octane fuel.

  3. Catalytic ignition of fuel/oxygen/nitrogen mixtures over platinum

    SciTech Connect

    Cho, P.; Law, C.K.

    1986-11-01

    Ignition of fuel/oxygen/nitrogen mixtures over platinum wire is experimentally studied by using microcalorimetry and by restricting the flow to the low Reynolds number range so that axisymmetry prevails. The fuels studied are propane, butane, propylene, ethylene, carbon monoxide, and hydrogen. Parameters investigated include flow velocity, fuel type and concentration, and oxygen concentration. The catalytic ignition temperatures of the various fuels are accurately determined over extensive ranges of fuel/oxygen/nitrogen concentrations. Results show two distinctly opposite ignition trends depending on the nature of the fuel. That is, the ignition temperature of lean propane/air and butane/air mixtures decreases as their fuel concentration is increased, while the reverse trend is observed for lean mixtures of propylene, ethylene, carbon monoxide, and hydrogen with air. Furthermore, the ignition of propane depends primarily on fuel concentration, while the ignition of carbon monoxide depends on fuel and oxygen concentrations to a comparable extent. These results are explained on the basis of hierarchical surface adsorption strengths of the different reactants in effecting catalytic ignition. Additional phenomena of interest are observed and discussed.

  4. Catalytic oxidation of very fuel rich mixtures

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.

    1983-01-01

    The objective of this research is to demonstrate the feasibility of using a catalytic reactor as a tool to study soot formation from the fuel rich side of the soot limit (null set = 3 - 6). The experimental approach to be taken in the first phase of the research is to document that a hydrocarbon fuel can be burnt at very rich equivalence ratios without forming soot. A simple mono-component fuel, iso-octane, will be used as the test fuel. To insure that combustion is uniform across the catalyst bed, measurements will be made of the fuel-air equivalence ratio profile across the inlet and the temperature and product distribution across the outlet. Phase Two will be to use this environment as a testing ground for determining the effect the structure of a hydrocarbon fuel has on its tendency to form soot. Various amounts of organic compounds such as benzene will be added to the iso-octane and the reaction products studied. Other compounds to be tested will xylene, toluene, and naphthalene.

  5. Spontaneous ignition delay characteristics of hydrocarbon fuel-air mixtures

    NASA Technical Reports Server (NTRS)

    Lefebvre, A. H.; Freeman, W. G.; Cowell, L. H.

    1986-01-01

    The influence of pressure on the autoignition characteristics of homogeneous mixtures of hydrocarbon fuels in air is examined. Autoignition delay times are measured for propane, ethylene, methane, and acetylene in a continuous flow apparatus featuring a multi-point fuel injector. Results are presented for mixture temperatures from 670K to 1020K, pressures from 1 to 10 atmospheres, equivalence ratios from 0.2 to 0.7, and velocities from 5 to 30 m/s. Delay time is related to pressure, temperature, and fuel concentration by global reaction theory. The results show variations in global activation energy from 25 to 38 kcal/kg-mol, pressure exponents from 0.66 to 1.21, and fuel concentration exponents from 0.19 to 0.75 for the fuels studied. These results are generally in good agreement with previous studies carried out under similar conditions.

  6. Fuel properties of bituminous coal and pyrolytic oil mixture

    NASA Astrophysics Data System (ADS)

    Hamdan, Hazlin; Sharuddin, Munawar Zaman; Daud, Ahmad Rafizan Mohamad; Syed-Hassan, Syed Shatir A.

    2014-10-01

    Investigation on the thermal decomposition kinetics of coal-biooil slurry (CBS) fuel prepared at different ratios (100:0,70:30,60:40,0:100) was conducted using a Thermogravimetric Analyzer (TGA). The materials consisted of Clermont bituminous coal (Australia) and bio-oil (also known as pyrolytic oil) from the source of Empty Fruit Bunch (EFB) that was thermally converted by means of pyrolysis. Thermal decomposition of CBS fuel was performed in an inert atmosphere (50mL/min nitrogen) under non-isothermal conditions from room temperature to 1000°C at heating rate of 10°C/min. The apparent activation energy (Ea.) and pre-exponential factor (A) were calculated from the experimental results by using an Arrhenius-type kinetic model which first-order decomposition reaction was assumed. All kinetic parameters were tabulated based on the TG data obtained from the experiment. It was found that, the CBS fuel has higher reactivity than Clermont coal fuel during pyrolysis process, as the addition of pyrolytic oil will reduce the Ea values of the fuel. The thermal profiles of the mixtures showed potential trends that followed the characteristics of an ideal slurry fuel where high degradation rate is desirable. Among the mixture, the optimum fuel was found at the ratio of 60:40 of pyrolytic oil/coal mixtures with highest degradation rate. These findings may contribute to the development of a slurry fuel to be used in the vast existing conventional power plants.

  7. Minimally refined biomass fuel. [carbohydrate-water-alcohol mixture

    SciTech Connect

    Pearson, R.K.; Hirschfeld, T.B.

    1981-03-26

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water-solubilizes the carbohydrate; and the alcohol aids in the combustion of the carbohydrate and reduces the viscosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  8. Wavelength and energy dependent absorption of unconventional fuel mixtures

    NASA Astrophysics Data System (ADS)

    Khan, N.; Saleem, Z.; Mirza, A. A.

    2005-11-01

    Economic considerations of laser induced ignition over the normal electrical ignition of direct injected Compressed Natural Gas (CNG) engines has motivated automobile industry to go for extensive research on basic characteristics of leaner unconventional fuel mixtures to evaluate practical possibility of switching over to the emerging technologies. This paper briefly reviews the ongoing research activities on minimum ignition energy and power requirements of natural gas fuels and reports results of present laser air/CNG mixture absorption coefficient study. This study was arranged to determine the thermo-optical characteristics of high air/fuel ratio mixtures using laser techniques. We measured the absorption coefficient using four lasers of multiple wavelengths over a wide range of temperatures and pressures. The absorption coefficient of mixture was found to vary significantly over change of mixture temperature and probe laser wavelengths. The absorption coefficients of air/CNG mixtures were measured using 20 watts CW/pulsed CO2 laser at 10.6μm, Pulsed Nd:Yag laser at 1.06μm, 532 nm (2nd harmonic) and 4 mW CW HeNe laser at 645 nm and 580 nm for temperatures varying from 290 to 1000K using optical transmission loss technique.

  9. Flame propagation in heterogeneous mixtures of fuel drops and air

    NASA Technical Reports Server (NTRS)

    Myers, G. D.; Lefebvre, A. H.

    1984-01-01

    Photographic methods are used to measure flame speeds in flowing mixtures of fuel props and air at atmospheric pressure. The fuels employed include a conventional fuel oil plus various blends JP 7 with stocks containing single-ring and mullti-ring aromatics. The results for stoichiometric mixtures show that flame propagation cannot occur in mixtures containing mean drop sizes larger than 300 to 400 microns, depending on the fuel type. For smaller drop sizes, down to around 60 microns, flame speed is inversely proportional to drop size, indicating that evaporation rates are limiting to flame speed. Below around 60 microns, the curves of flame speed versus mean drop size flatten out, thereby demonstrating that for finely atomized sprays flame speeds are much less dependent on evaporation rates, and are governed primarily by mixing and/or chemical reaction rates. The fuels exhibiting the highest flame speeds are those containing multi-ring aromatics. This is attributed to the higher radiative heat flux emanating from their soot-bearing flames which enhances the rate of evaporation of the fuel drops approaching the flame front.

  10. PLUTONIUM-URANIUM EXTRACTION (PUREX) FACILITY ALARACT DEMONSTRATION FOR FILTER HOUSING

    SciTech Connect

    LEBARON GJ

    2008-11-25

    This document presents an As Low As Reasonably Achievable Control Technology (ALARACT) demonstration for evaluating corrosion on the I-beam supporting filter housing No.9 for the 291-A-l emission unit of the Plutonium-Uranium Extraction (PUREX) Facility, located in the 200 East Area of the Hanford Site. The PUREX facility is currently in surveillance and maintenance mode. During a State of Washington, Department of Health (WDOH) 291-A-l emission unit inspection, a small amount of corrosion was observed at the base of a high-efficiency particulate air (HEPA) filter housing. A series of internal and external inspections identified the source of the corrosion material as oxidation of a small section of one of the carbon steel I-beams that provides support to the stainless steel filter housing. The inspections confirmed the corrosion is isolated to one I-beam support location and does not represent any compromise of the structural support or filter housing integrity. Further testing and inspections of the support beam corrosion and its cause were conducted but did not determine the cause. No definitive evidence was found to support any degradation of the housing. Although no degradation of the housing was found, a conservative approach will be implemented. The following actions will be taken: (1) The current operating filter housing No.9 will be removed from service. (2) The only remaining available filter housings (No.1, No.2, and No.3) will be placed in service. These filter housings have new HEPA filters fitted with stainless steel frames and faceguards which were installed in the spring of 2007. (3) Filter housings No.5 and No.10 will be put on standby as backups. To document the assessment of the unit, a draft ALARACT filter housing demonstration for the PUREX filter housing was prepared, and informally provided to WDOH on August 7, 2008. A follow up WDOH response to the draft ALARACT filter housing demonstration for the PUREX filter housing questioned whether

  11. Examination of physical properties of fuels and mixtures with alternative fuels

    NASA Astrophysics Data System (ADS)

    Lown, Anne Lauren

    ABSTRACT. EXAMINATION OF PHYSICAL PROPERTIES OF FUELS AND MIXTURES WITH ALTERNATIVE FUELS. By. Anne Lauren Lown. The diversity of alternative fuels is increasing due to new second generation biofuels. By modeling alternative fuels and fuel mixtures, types of fuels can be selected based on their properties, without producing and testing large batches. A number of potential alternative fuels have been tested and modeled to determine their impact when blended with traditional diesel and jet fuels. The properties evaluated include cloud point and pour point temperature, cetane number, distillation curve, and speed of sound. This work represents a novel approach to evaluating the properties of alternative fuels and their mixtures with petroleum fuels. Low temperature properties were evaluated for twelve potential biofuel compounds in mixtures with three diesel fuels and one jet fuel. Functional groups tested included diesters, esters, ketones, and ethers, and alkanes were used for comparison. Alkanes, ethers, esters, and ketones with a low melting point temperature were found to decrease the fuel cloud point temperature. Diesters added to fuels display an upper critical solution temperature, and multiple methods were used to confirm the presence of liquid-liquid immiscibility. These behaviors are independent of chain length and branching, as long as the melting point temperature of the additive is not significantly higher than the cloud point temperature of the fuel. Physical properties were estimated for several potential fuel additive molecules using group contribution methods. Quantum chemical calculations were used for ideal gas heat capacities. Fuel surrogates for three petroleum based fuels and six alternative fuels were developed. The cloud point temperature, distillation curve, cetane number, and average molecular weight for different fuel surrogates were simultaneously represented. The proposed surrogates use the experimental mass fractions of paraffins, and

  12. Isentropic Compression of Multicomponent Mixtures of Fuels and Inert Gases

    NASA Technical Reports Server (NTRS)

    Barragan, Michelle; Julien, Howard L.; Woods, Stephen S.; Wilson, D. Bruce; Saulsberry, Regor L.

    2000-01-01

    In selected aerospace applications of the fuels hydrazine and monomethythydrazine, there occur conditions which can result in the isentropic compression of a multicomponent mixture of fuel and inert gas. One such example is when a driver gas such as helium comes out of solution and mixes with the fuel vapor, which is being compressed. A second example is when product gas from an energetic device mixes with the fuel vapor which is being compressed. Thermodynamic analysis has shown that under isentropic compression, the fuels hydrazine and monomethylhydrazine must be treated as real fluids using appropriate equations of state. The appropriate equations of state are the Peng-Robinson equation of state for hydrazine and the Redlich-Kwong-Soave equation of state for monomethylhydrazine. The addition of an inert gas of variable quantity and input temperature and pressure to the fuel compounds the problem for safety design or analysis. This work provides the appropriate thermodynamic analysis of isentropic compression of the two examples cited. In addition to an entropy balance describing the change of state, an enthalpy balance is required. The presence of multicomponents in the system requires that appropriate mixing rules are identified and applied to the analysis. This analysis is not currently available.

  13. Mach 2 combustion characteristics of hydrogen/hydrocarbon fuel mixtures

    SciTech Connect

    Diskin, G.S.; Jachimowski, C.J.; Northam, G.B.; Bell, R.A.

    1987-01-01

    The combustion of H/sub 2//CH/sub 4/ and H/sub 2//C/sub 2/H/sub 4/ mixtures containing 10 to 70 vol pct hydrocarbon at combustor inlet Mach number 2 and temperatures 2000 to 4000 R is investigated experimentally, applying direct-connect test hardware and techniques similar to those described by Diskin and Northam (1987) in the facilities of the NASA Langley Hypersonic Propulsion Branch. The experimental setup, procedures, and data-reduction methods are described; and the results are presented in extensive tables and graphs and characterized in detail. Fuel type and mixture are found to have little effect on the wall heating rate measured near the combustor exit, but H/sub 2//C/sub 2/H/sub 4/ is shown to burn much more efficiently than H/sub 2//CH/sub 4/, with no pilot-off blowout equivalence ratios greater than 0.5. It is suggested that H/sub 2//hydrocarbon mixtures are feasible fuels (at least in terms of combustion efficiency) for scramjet SSTO vehicles operating at freestream Mach numbers above 4.

  14. Apparatus and method for burning a lean, premixed fuel/air mixture with low NOx emission

    DOEpatents

    Kostiuk, Larry W.; Cheng, Robert K.

    1996-01-01

    An apparatus for enabling a burner to stably burn a lean fuel/air mixture. The burner directs the lean fuel/air mixture in a stream. The apparatus comprises an annular flame stabilizer; and a device for mounting the flame stabilizer in the fuel/air mixture stream. The burner may include a body having an internal bore, in which case, the annular flame stabilizer is shaped to conform to the cross-sectional shape of the bore, is spaced from the bore by a distance greater than about 0.5 mm, and the mounting device mounts the flame stabilizer in the bore. An apparatus for burning a gaseous fuel with low NOx emissions comprises a device for premixing air with the fuel to provide a lean fuel/air mixture; a nozzle having an internal bore through which the lean fuel/air mixture passes in a stream; and a flame stabilizer mounted in the stream of the lean fuel/air mixture. The flame stabilizer may be mounted in the internal bore, in which case, it is shaped and is spaced from the bore as just described. In a method of burning a lean fuel/air mixture, a lean fuel/air mixture is provided, and is directed in a stream; an annular eddy is created in the stream of the lean fuel/air mixture; and the lean fuel/air mixture is ignited at the eddy.

  15. Ignition strategies for fuel mixtures in catalytic microburners

    NASA Astrophysics Data System (ADS)

    Seshadri, Vikram; Kaisare, Niket S.

    2010-03-01

    Ignition of methane-air and propane-air mixtures over platinum catalyst in a parallel-plate microburner is studied numerically and a comparison of their ignition characteristics is presented. The ignition behaviour of the two fuels is compared for the case of heated feed and the strategy of using propane-methane mixed fuel is analysed. We show that adding small quantities of propane reduces the ignition temperature of lean methane-air mixture. Transient response of the mixed methane-propane fuel reveals sequential ignition of propane followed by methane. Sensitivity analysis on physical properties of methane and propane shows that the higher apparent activation energy of methane combustion accounts for most of the observed differences in their ignition behaviour. Ignition by resistive preheating, specifically the effect of locally preheating initial section of the burner is investigated. The amount of electric power required for ignition decreases with decrease in the electrical preheating length. This reduction in ignition power is especially significant for low conductivity walls, compared to highly conducting walls. Finally, the gap size of the channel has a relatively small effect on ignition in catalytic microburners.

  16. Determining size of drops in fuel mixture of internal combustion engines

    NASA Technical Reports Server (NTRS)

    Sauter, J

    1926-01-01

    In compressorless Diesel engines and in explosion engines using fuels with high boiling points it is difficult to effect a good combustion of the fuel mixture. This report presents different methods for calculating the size and uniformity of fuel droplets and mixtures.

  17. Electrochemical cell apparatus having axially distributed entry of a fuel-spent fuel mixture transverse to the cell lengths

    DOEpatents

    Reichner, P.; Dollard, W.J.

    1991-01-08

    An electrochemical apparatus is made having a generator section containing axially elongated electrochemical cells, a fresh gaseous feed fuel inlet, a gaseous feed oxidant inlet, and at least one gaseous spent fuel exit channel, where the spent fuel exit channel passes from the generator chamber to combine with the fresh feed fuel inlet at a mixing apparatus, reformable fuel mixture channel passes through the length of the generator chamber and connects with the mixing apparatus, that channel containing entry ports within the generator chamber, where the axis of the ports is transverse to the fuel electrode surfaces, where a catalytic reforming material is distributed near the reformable fuel mixture entry ports. 2 figures.

  18. Laser-induced breakdown emission in hydrocarbon fuel mixtures

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazunobu; Bak, Moon Soo; Tanaka, Hiroki; Carter, Campbell; Do, Hyungrok

    2016-04-01

    Time-resolved emission measurements of laser-induced breakdown plasmas have been carried out to investigate the effect that gas species might have on the kinetics, particularly in excited states, and the resulting plasma properties. For this purpose, fuel-oxygen (O2)-carbon dioxide (CO2) mixtures with either helium (He) or nitrogen (N2) balance are prepared while maintaining their atomic compositions. The fuels tested in this study are methane (CH4), ethylene (C2H4), propane (C3H8), and butane (C4H10). The breakdown is produced in the mixtures (CH4/CO2/O2/He, C2H4/O2/He, C3H8/CO2/O2/He and C4H10/CO2/O2/He or CH4/CO2/O2/N2, C2H4/O2/N2, C3H8/CO2/O2/N2 and C4H10/CO2/O2/N2) at room conditions using the second harmonic of a Q-switched Nd:YAG laser (with pulse duration of 10 ns). The temporal evolution of plasma temperature is deduced from the ratio of two oxygen lines (777 nm and 823 nm) through Boltzmann analysis, while the evolution of electron number density is estimated based on Stark broadening of the Balmer-alpha (H α ) line at 656 nm and the measured plasma temperature. From the results, the temporal evolution of emission spectra and decay rates of atomic line-intensities are found to be almost identical between the breakdown plasma in the different mixtures given balancing gases. Furthermore, the temporal evolution of plasma temperature and electron number density are also found to be independent of the species compositions. Therefore, this behavior—of the breakdown emissions and plasma properties in the different mixtures with identical atomic composition—may be because the breakdown gases reach similar thermodynamic and physiochemical states immediately after the breakdown.

  19. Critical experiments with mixed plutonium-uranium nitrate solutions having Pu:(Pu + U) ratios greater than 0.5

    SciTech Connect

    Primm, R.T. III; Lloyd, R.C.; Clayton, E.D.

    1986-04-01

    A series of critical experiments was conducted with mixed plutonium-uranium nitrate solutions having Pu:(Pu+U) ratios >0.5. Three geometries and four conditions of reflection were examined. The plutonium concentrations ranged from 170 to 350 g/L. The value of k-effective for each experiment was calculated using the KENO-IV code and 27-group cross sections derived from the Evaluated Nuclear Data File B--version IV (ENDF/B-IV). The mean value for the set of 26 experiments was 1.003, with a minimum value of 0.987 and a maximum of 1.022. The spread in the distribution of calculated k-effectives is believed to be the result of uncertainties in analytical chemistry measurements. No correlation between condition of reflection and calculated k-effective was found. An allowable multiplication factor to be used in the evaluation of reprocessing equipment at conditions that have been investigated was calculated to be 0.945.

  20. Method and apparatus for varying the fuel ratio of an air-fuel mixture

    SciTech Connect

    Leonardi, S.

    1981-03-24

    A method and apparatus is described for varying the fuel ratio of an air-fuel mixture supplied to the carburetor of an internal combustion engine. In a first embodiment, a valve opens and closes a port in an aluminum block between a passage coupled to the pcv and carburetor and a second passage open to the atmosphere. A spring in the second passage modulates the air flow as a function of vacuum pressure and thermally responsive means maintains the valve closed until the engine reaches its operating temperature. In a second embodiment the valve is opened as a function of the wind pressure produced during vehicle movement.

  1. The quantification of mixture stoichiometry when fuel molecules contain oxidizer elements or oxidizer molecules contain fuel elements.

    SciTech Connect

    Mueller, Charles J.

    2005-05-01

    The accurate quantification and control of mixture stoichiometry is critical in many applications using new combustion strategies and fuels (e.g., homogeneous charge compression ignition, gasoline direct injection, and oxygenated fuels). The parameter typically used to quantify mixture stoichiometry (i.e., the proximity of a reactant mixture to its stoichiometric condition) is the equivalence ratio, /gf. The traditional definition of /gf is based on the relative amounts of fuel and oxidizer molecules in a mixture. This definition provides an accurate measure of mixture stoichiometry when the fuel molecule does not contain oxidizer elements and when the oxidizer molecule does not contain fuel elements. However, the traditional definition of /gf leads to problems when the fuel molecule contains an oxidizer element, as is the case when an oxygenated fuel is used, or once reactions have started and the fuel has begun to oxidize. The problems arise because an oxidizer element in a fuel molecule is counted as part of the fuel, even though it acts as an oxidizer. Similarly, if an oxidizer molecule contains fuel elements, the fuel elements in the oxidizer molecule are misleadingly lumped in with the oxidizer in the traditional definition of /gf. In either case, use of the traditional definition of /gf to quantify the mixture stoichiometry can lead to significant errors. This paper introduces the oxygen equivalence ratio, /gf/gV, a parameter that properly characterizes the instantaneous mixture stoichiometry for a broader class of reactant mixtures than does /gf. Because it is an instantaneous measure of mixture stoichiometry,/gf/gV can be used to track the time-evolution of stoichiometry as a reaction progresses. The relationship between /gf/gV and /gf is shown. Errors are involved when the traditional definition of /gf is used as a measure of mixture stoichiometry with fuels that contain oxidizer elements or oxidizers that contain fuel elements; /gf/gV is used to quantify

  2. Electrochemical cell apparatus having axially distributed entry of a fuel-spent fuel mixture transverse to the cell lengths

    DOEpatents

    Reichner, Philip; Dollard, Walter J.

    1991-01-01

    An electrochemical apparatus (10) is made having a generator section (22) containing axially elongated electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one gaseous spent fuel exit channel (46), where the spent fuel exit channel (46) passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) at a mixing apparatus (50), reformable fuel mixture channel (52) passes through the length of the generator chamber (22) and connects with the mixing apparatus (50), that channel containing entry ports (54) within the generator chamber (22), where the axis of the ports is transverse to the fuel electrode surfaces (18), where a catalytic reforming material is distributed near the reformable fuel mixture entry ports (54).

  3. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    DOEpatents

    Heffel, James W.; Scott, Paul B.

    2003-09-02

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  4. Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels

    SciTech Connect

    Heffel, James W.; Scott, Paul B.; Park, Chan Seung

    2011-11-01

    An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

  5. Multiple recycle of REMIX fuel based on reprocessed uranium and plutonium mixture in thermal reactors

    SciTech Connect

    Fedorov, Y.S.; Bibichev, B.A.; Zilberman, B.Y.; Baryshnikov, M.V.; Kryukov, O.V.; Khaperskaya, A.V.

    2013-07-01

    REMIX fuel consumption in WWER-1000 is considered. REMIX fuel is fabricated from non-separated mixture of uranium and plutonium obtained during NPP spent fuel reprocessing with further makeup by enriched natural uranium. It makes possible to recycle several times the total amount of uranium and plutonium obtained from spent fuel with 100% loading of the WWER-1000 core. The stored SNF could be also involved in REMIX fuel cycle by enrichment of regenerated uranium. The same approach could be applied to closing the fuel cycle of CANDU reactors. (authors)

  6. Spontaneous Ignition Characteristics of Hydrocarbon Fuel-air Mixtures

    NASA Technical Reports Server (NTRS)

    Lefebvre, A. H.; Freeman, G. W.

    1983-01-01

    Although the subject of spontaneous ignition of liquid fuels has received considerable attention in the past, the role of fuel evaporation in the overall spontaneous ignition process is still unclear. A main purpose of this research is to carry out measurements of ignition delay times, using fuels of current and anticipated future aeronautical interest, at test conditions that are representative of those encountered in modern gas turbine engines. Attention is focused on the fuel injection process, in particlar the measurement and control of man fuel drop size and fuel-air spatial distribution. The experiments are designed to provide accurate information on the role of fuel evaporation processes in determining the overall ignition delay time. The second objective is to examine in detail the theoretical aspects of spontaneous ignition in order to improve upon current knowledge and understanding of the basic processes involved, so that the results of the investigation can find general and widespead application.

  7. Sensor for measuring alcohol content of alcohol/gasoline fuel mixtures

    SciTech Connect

    Harris, S.J.; Swarin, S.J.; Sultan, M.F.; Lambert, D.K.; Jack, M.D.

    1993-08-31

    A sensing device is described for determining the alcohol content of an alcohol/gasoline mixture comprising: a light source emitting a light beam containing at least a first and a second wavelengths within the near-infrared spectrum, said light beam being transmitted through the alcohol/gasoline fuel mixture; means for switching the current through said light source between at least two fixed values, so as to correspondingly switch the light intensity at said first and second wavelengths which is emitted by said light source; first and second detectors which are disposed so as to receive said emitted light beam after its transmission through the alcohol/gasoline fuel mixture, said first detector determines a first amount of absorption by the alcohol/gasoline fuel mixture at said first wavelength for each of said fixed values of current, and said second detector determines a second amount of absorption by the alcohol/gasoline fuel mixture at said second wavelength for each of said fixed values of current; means for separately measuring the output voltage from said first and second detectors for each of said power settings; and computational means for determining, from said output voltages, the ratio of said first and second absorbances by the alcohol/gasoline fuel mixture at said first and said second wavelengths for each of said fixed values of current such that said ratio of absorbances provide an output indicative of the alcohol content within the alcohol/gasoline mixture.

  8. Preparation and Fuel Properties of Mixtures of Soybean Oil Methyl and Ethyl Esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil was transesterified using various mixtures of methanol and ethanol at a constant molar ratio of alcohol to oil of 12:1 in the presence of 1 wt% potassium hydroxide catalyst at 30 degrees C for 60 min. The effect of mixtures of methanol and ethanol on percentage yields and fuel propertie...

  9. Air blast and heat radiation from fuel-rich mixture detonations

    NASA Astrophysics Data System (ADS)

    Dorofeev, S. B.; Sidorov, V. P.; Kuznetsov, M. S.; Dvoinishnikov, A. E.; Alekseev, V. I.; Efimenko, A. A.

    1996-06-01

    Large scale experiments were carried out to study the effect fuel concentration on air blast parameters and heart radiation from gaseous detonations. Hemispheric plastic envelope (4 meters in radius) was used with propane-air mixtures containing from 4 to 7 vol. % of fuel. The expressions for overpressures and impulses were determined in Sachs variables. The effect of fuel concentration on blast parameters is shown to be insignificant for the same amount of oxygen in the mixture volume. Thus the blast wave parameters can be described as for stoichiometric mixtures using additional scaling for the explosion energy according to oxygen content (cloud volume). The results of large scale experiments with fuel spray clouds containing 0.16-100 tons of fuel with mean concentration from stoichiometric ( C 0) up to 3 C 0 are reconsidered. These results confirm the proposed scaling of air blast parameters for a wide range of fuel types, cloud volumes and fuel concentrations. Detonations of fuel rich gaseous mixtures result in a strong heat radiation. Heat radiation energy, time and size of the fireball formed are studied as a function of fuel concentration.

  10. Fuel moisture content enhances nonadditive effects of plant mixtures on flammability and fire behavior

    PubMed Central

    Blauw, Luke G; Wensink, Niki; Bakker, Lisette; van Logtestijn, Richard S P; Aerts, Rien; Soudzilovskaia, Nadejda A; Cornelissen, J Hans C

    2015-01-01

    Fire behavior of plant mixtures includes a complex set of processes for which the interactive contributions of its drivers, such as plant identity and moisture, have not yet been unraveled fully. Plant flammability parameters of species mixtures can show substantial deviations of fire properties from those expected based on the component species when burnt alone; that is, there are nonadditive mixture effects. Here, we investigated how fuel moisture content affects nonadditive effects in fire behavior. We hypothesized that both the magnitude and variance of nonadditivity in flammability parameters are greater in moist than in dry fuel beds. We conducted a series of experimental burns in monocultures and 2-species mixtures with two ericaceous dwarf shrubs and two bryophyte species from temperate fire-prone heathlands. For a set of fire behavior parameters, we found that magnitude and variability of nonadditive effects are, on average, respectively 5.8 and 1.8 times larger in moist (30% MC) species mixtures compared to dry (10% MC) mixed fuel beds. In general, the moist mixtures caused negative nonadditive effects, but due to the larger variability these mixtures occasionally caused large positive nonadditive effects, while this did not occur in dry mixtures. Thus, at moister conditions, mixtures occasionally pass the moisture threshold for ignition and fire spread, which the monospecific fuel beds are unable to pass. We also show that the magnitude of nonadditivity is highly species dependent. Thus, contrary to common belief, the strong nonadditive effects in mixtures can cause higher fire occurrence at moister conditions. This new integration of surface fuel moisture and species interactions will help us to better understand fire behavior in the complexity of natural ecosystems. PMID:26380709

  11. Compression-ignition engine performance with undoped and doped fuel oils and alcohol mixtures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Foster, Hampton H

    1939-01-01

    Several fuel oils, doped fuel oils, and mixtures of alcohol and fuel oil were tested in a high-speed, single-cylinder, compression-ignition engine to determine power output, fuel consumption, and ignition and combustion characteristics. Fuel oils or doped fuel oils of high octane number had shorter ignition lags, lower rates of pressure rise, and gave smoother engine operation than fuel oils or doped fuel oils of low octane number. Higher engine rotative speeds and boost pressures resulted in smoother engine operation and permitted the use of fuel oils of relatively low octane number. Although the addition of a dope to a fuel oil decreased the ignition lag and the rate of pressure rise, the ensuing rate of combustion was somewhat slower than for the undoped fuel oil so that the effectiveness of combustion was practically unchanged. Alcohol used as an auxiliary fuel, either as a mixture or by separate injection, increased the rates of pressure rise and induced roughness. In general, the power output decreased as the proportion of alcohol increased and, below maximum power, varied with the heating value of the total fuel charge.

  12. Testing to determine chemical stability, handling characteristics, and reactivity of energetic-fuel mixtures: Final report

    SciTech Connect

    Lackey, M.E.

    1988-04-01

    The US Army generates approximately 2.5 million pounds of waste explosives each year as a result of explosives production and the loading of ordnance. In addition, the US Army currently stores >200,000 tons of obsolete munitions. The current alternative to storage is open-air burning, open-air detonation, or incineration. The US Army Toxic and Hazardous Materials Agency is currently developing methods and procedures for the utilization of energetic materials blended with fuel oil as supplemental fuel in Army industrial combustors. A series of tests were conducted to evaluate the chemical compatibility, reactivity, and handling characteristics of energetic-fuel mixtures. The energetics studied were TNT, RDX, and Composition B. Results indicated that under specific conditions of energetic content, energetic/fuel oil preparation, and system design, energetic/fuel oil mixtures can successfully be used as supplemental fuel in Army industrial combustors. 9 refs., 2 figs., 8 tabs.

  13. Performance of Pentaborane, Pentaborane - JP-4 Fuel Mixtures, and Trimethylborate Azeotrope Fuel in a Full-scale Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Breitwiesser, Roland; Useller, James W.

    1956-01-01

    This report summarizes the full-scale engine tests of pentaborane, pentaborane - JP-4 fuel mixtures, and trimethylborate azeotrope fuel. The tests were conducted in a full-scale turbojet engine at a simulated altitude of 50,000 feet and Mach number of 0.08. Engine speeds were 90 to 100 percent of rated speed. Pentaborane reduced the the specific fuel consumption to two-thirds that of JP-4 fuel. However, because boron oxide collected in the engine, the performance deteriorated with continued operation of pentaborane in each of the short-duration tests reported.

  14. Characterization of a nose-only inhalation exposure system for hydrocarbon mixtures and jet fuels.

    PubMed

    Martin, Sheppard A; Tremblay, Raphael T; Brunson, Kristyn F; Kendrick, Christine; Fisher, Jeffrey W

    2010-04-01

    A directed-flow nose-only inhalation exposure system was constructed to support development of physiologically based pharmacokinetic (PBPK) models for complex hydrocarbon mixtures, such as jet fuels. Due to the complex nature of the aerosol and vapor-phase hydrocarbon exposures, care was taken to investigate the chamber hydrocarbon stability, vapor and aerosol droplet compositions, and droplet size distribution. Two-generation systems for aerosolizing fuel and hydrocarbons were compared and characterized for use with either jet fuels or a simple mixture of eight hydrocarbons. Total hydrocarbon concentration was monitored via online gas chromatography (GC). Aerosol/vapor (A/V) ratios, and total and individual hydrocarbon concentrations, were determined using adsorbent tubes analyzed by thermal desorption-gas chromatography-mass spectrometry (TDS-GC-MS). Droplet size distribution was assessed via seven-stage cascade impactor. Droplet mass median aerodynamic diameter (MMAD) was between 1 and 3 mum, depending on the generator and mixture utilized. A/V hydrocarbon concentrations ranged from approximately 200 to 1300 mg/m(3), with between 20% and 80% aerosol content, depending on the mixture. The aerosolized hydrocarbon mixtures remained stable during the 4-h exposure periods, with coefficients of variation (CV) of less than 10% for the total hydrocarbon concentrations. There was greater variability in the measurement of individual hydrocarbons in the A-V phase. In conclusion, modern analytical chemistry instruments allow for improved descriptions of inhalation exposures of rodents to aerosolized fuel. PMID:20109056

  15. The Oxygen Ratio: A Fuel-Independent Measure of Mixture Stoichiometry

    SciTech Connect

    Mueller, C J; Musculus, M P; Pickett, L M; Pitz, W J; Westbrook, C K

    2003-12-19

    The pollutant-formation characteristics and other properties of a combustion reaction typically depend strongly on the proximity of the mixture to its stoichiometric condition, i.e., the ''mixture stoichiometry.'' A quantitative, widely applicable measure of this mixture property is therefore a critical independent variable in the study of combustion systems. Such a parameter enables the clear separation of mixture stoichiometry effects from other effects (e.g., fuel molecular structure, product temperature, diluent concentration, pressure). The parameter most often used to quantify mixture stoichiometry is the equivalence ratio. Unfortunately, the equivalence ratio fails to properly account for oxygen in oxygenates, i.e., compounds that have oxygen chemically bound within the fuel molecule. This manuscript introduces the oxygen ratio, a parameter that properly characterizes mixture stoichiometry for a broader class of reactants than does the equivalence ratio, including oxygenates. A detailed definition of the oxygen ratio is provided and used to show its relationship to the equivalence ratio. The definition is also used to quantify errors involved when the equivalence ratio is used as a measure of mixture stoichiometry with oxygenates. Proper usage of the oxygen ratio is discussed and the oxygen ratio is used to interpret results in a practical example.

  16. Ways of solving environmental problems while transferring the boilers for burning water-bitumen mixture instead of fuel oil

    NASA Astrophysics Data System (ADS)

    Kotler, V. R.; Sosin, D. V.

    2009-03-01

    Information concerning a new kind (for Russia) of liquid fuel, i.e., water-bitumen mixture (orimulsion), is presented. The application of the new fuel instead of the fuel oil at a boiler of a power unit of 350-MW capacity makes it possible to decrease sufficiently the expenditures for fuel while keeping the main environmental indices.

  17. Fuel and lubricant additives from acid treated mixtures of vegetable oil derived amides and esters

    SciTech Connect

    Bonazza, B.R.; Devault, A.N.

    1981-05-26

    Vegetable oils such as corn oil, peanut oil, and soy oil are reacted with polyamines to form a mixture containing amides, imides, half esters, and glycerol with subsequent treatment with a strong acid such as sulfonic acid to produce a product mix that has good detergent properties in fuels and lubricants.

  18. An Experimental Investigation of Hypergolic Ignition Delay of Hydrogen Peroxide with Fuel Mixtures

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Gostowski, Rudy; Chianese, Silvio

    2003-01-01

    An experimental evaluation of decomposition and ignition delay of hydrogen peroxide at concentrations of 80% to 98% with combinations of hydrocarbon fuels, tertiary amines and transition metal chelates will be presented in the proposed paper. The results will be compared to hydrazine ignition delays with hydrogen peroxide and nitric acid mixtures using the same test apparatus.

  19. Chemically authentic surrogate mixture model for the thermophysical properties of a coal-derived liquid fuel

    SciTech Connect

    M.L. Huber; E.W. Lemmon; V. Diky; B.L. Smith; T.J. Bruno

    2008-09-15

    We developed a surrogate mixture model to represent the physical properties of a coal-derived liquid fuel using only information obtained from a gas chromatography-mass spectrometry analysis of the fuel and a recently developed 'advanced distillation curve'. We then predicted the density, speed of sound, and viscosity of the fuel and compared them to limited experimental data. The surrogate contains five components (n-propylcyclohexane, trans-decalin, {alpha}-methyldecalin, bicyclohexane, and n-hexadecane), yet comparisons to limited experimental data demonstrate that the model is able to represent the density, sound speed, and viscosity to within 1, 4, and 5%, respectively. 102 refs., 2 figs., 5 tabs.

  20. Method and apparatus for controlling fuel/air mixture in a lean burn engine

    DOEpatents

    Kubesh, John Thomas; Dodge, Lee Gene; Podnar, Daniel James

    1998-04-07

    The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

  1. Combustion of hydrogen-based mixtures in gas-fueled reciprocating engines

    NASA Astrophysics Data System (ADS)

    Smygalina, A. E.; Zaitchenko, V. M.; Ivanov, M. F.; Kiverin, A. D.

    2015-12-01

    The research is devoted to the possibility for application of hydrogen accumulated from renewable energy sources as a fuel for a reciprocating engine, which serves as an electrical generator drive. Hydrogen combustion in the chamber of a reciprocating engine, as a rule, occurs in a detonation mode. In order to obtain less hard modes, the present research proposes the usage of steam additions to hydrogen-air mixture or lean hydrogen-air mixtures. Mathematical simulation is used for investigation of combustion of mentioned mixtures in the combustion chamber of a reciprocating engine with a spark-plug ignition. The comparison of the usage of hydrogen-steam-air mixtures and lean hydrogen-air mixtures as fuels is given. The dependence of arising combustion modes and its quantitative characteristics on hydrogen content in combustible composition is investigated. The analysis of optimal combustion is presented, which is based on the consideration of two parameters: peak pressure in one cycle and the crankshaft angle corresponding to the achievement of the peak pressure.

  2. PEM fuel cell stack performance using dilute hydrogen mixture. Implications on electrochemical engine system performance and design

    SciTech Connect

    Inbody, M.A.; Vanderborgh, N.E.; Hedstrom, J.C.; Tafoya, J.I.

    1996-12-31

    Onboard fuel processing to generate a hydrogen-rich fuel for PEM fuel cells is being considered as an alternative to stored hydrogen fuel for transportation applications. If successful, this approach, contrasted to operating with onboard hydrogen, utilizes the existing fuels infrastructure and provides required vehicle range. One attractive, commercial liquid fuels option is steam reforming of methanol. However, expanding the liquid methanol infrastructure will take both time and capital. Consequently technology is also being developed to utilize existing transportation fuels, such as gasoline or diesel, to power PEM fuel cell systems. Steam reforming of methanol generates a mixture with a dry gas composition of 75% hydrogen and 25% carbon dioxide. Steam reforming, autothermal reforming, and partial oxidation reforming of C{sub 2} and larger hydrocarbons produces a mixture with a more dilute hydrogen concentration (65%-40%) along with carbon dioxide ({approx}20%) and nitrogen ({approx}10%-40%). Performance of PEM fuel cell stacks on these dilute hydrogen mixtures will affect the overall electrochemical engine system design as well as the overall efficiency. The Los Alamos Fuel Cell Stack Test facility was used to access the performance of a PEM Fuel cell stack over the range of gas compositions chosen to replicate anode feeds from various fuel processing options for hydrocarbon and alcohol fuels. The focus of the experiments was on the anode performance with dilute hydrogen mixtures with carbon dioxide and nitrogen diluents. Performance with other anode feed contaminants, such as carbon monoxide, are not reported here.

  3. Synthesis and extraction studies with a rationally designed diamide ligand selective to actinide(iv) pertinent to the plutonium uranium redox extraction process.

    PubMed

    Sharma, Shikha; Panja, Surajit; Bhattacharyya, Arunasis; Dhami, Prem S; Gandhi, Preetam M; Ghosh, Sunil K

    2016-05-01

    A new class of conformationally constrained oxa-bridged tricyclo-dicarboxamide (OTDA) ligand was rationally designed for the selective extraction of tetravalent actinides pertinent to the Plutonium Uranium Redox EXtraction (PUREX) process. Two of the designed diamide ligands were synthesized and extraction studies were performed for Pu(iv) from HNO3 medium. The mechanism of extraction was investigated by studying various parameters such as feed HNO3, NaNO3 and OTDA concentrations. The nature of the extracted species was found to be [Pu(NO3)4(OTDA)]. One of the OTDA ligands was elaborately tested and showed the selective extraction of Pu(iv) and Np(iv) over other actinide species, viz., U(vi), Np(v), Am(iii), lanthanides and fission products contained in a nuclear waste from the PUREX process. DFT calculations predicted the charge density on each of the coordinating 'O' atoms of OTDA supporting its high Pu(iv) selectivity over other ions studied and also provided the energy optimized structure of OTDA and its Pu(iv) complex. PMID:27054892

  4. An Experimental Investigation of Hypergolic Ignition Delay of Hydrogen Peroxide with Fuel Mixtures

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Gostowski, Rudy; Chianese, Silvio

    2003-01-01

    An experimental investigation of hypergolicity and ignition delay of fuel mixtures with hydrogen peroxide is presented. Example results of high speed photography and schleiren from drop tests are shown. Also, a discussion of the sensitivity to experimental parameters such as drop size and subsequent uncertainty considerations of ignition delay results is presented. It is shown that using the described setup on the mixtures presented, the precision uncertainty is on the order of 6% of average ignition delay and 5% of average decomposition delay. This represents sufficient repeatability for first order discrimination of ignition delay for propellant development and screening. Two mixtures, each using commonly available amines and transition metal compounds, are presented as examples that result in ignition delays on the order of 10 milliseconds.

  5. Detonation propagation through methane-air mixtures with fuel concentration gradients

    NASA Astrophysics Data System (ADS)

    Kessler, David; Gamezo, Vadim; Oran, Elaine

    2010-11-01

    The complex structure of a multidimensional detonation front consists of constantly changing, multiply intersecting incident shocks and Mach stems followed by growing and shrinking regions of reacted and unreacted gases. Because these flow structures change in time, the energy release in the shocked and compressed gases varies in space and time. Trajectories of triple points formed at shock intersections create cellular patterns whose size and structure are characteristic of the particular material and the background condition. In high-activation-energy fuel-air mixtures, such as methane in air, cellular patterns are relatively large, very irregular, and have complex and changing substructures. Here we use numerical simulations to study the behavior of detonations propagating through methane-air mixtures with a spatial gradient of fuel concentration. When the mixture stoichiometry varies from stoichiometric, the detonation propagation speed slows and sizes of cellular structures grow. In partially premixed systems with a nonuniform concentration of fuel -- a condition that can occur, for example, naturally in sealed underground coal mine tunnels -- both the propagation speed and the characteristic detonation cell size vary spatially.

  6. Heat transfer correlations for kerosene fuels and mixtures and physical properties for Jet A fuel

    NASA Technical Reports Server (NTRS)

    Ackerman, G. H.; Faith, L. E.

    1972-01-01

    Heat transfer correlations are reported for conventional Jet A fuel for both laminar and turbulent flow in circular tubes. Correlations were developed for cooling in turbine engines, but have broader applications in petroleum and chemical processing, and other industrial applications.

  7. The Effects of Engine Speed and Mixture Temperature on the Knocking Characteristics of Several Fuels

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1940-01-01

    Six 100-octane and two 87-octane aviation engine fuels were tested in a modified C.F.R. variable-compression engine at 1,500, 2,000 and 2,500 rpm. The mixture temperature was raised from 50 to 300 F in approximately 50 degree steps and, at each temperature, the compression ratio was adjusted to give incipient knock as shown by a cathode ray indicator. The results are presented in tabular form. The results are analyzed on the assumption that the conditions which determine whether a given fuel will knock are the maximum values of density and temperature reached by the burning gases. A maximum permissible density factor, proportional to the maximum density of the burning gases just prior to incipient knock, and the temperature of the burning gases at that time were computed for each of the test conditions. Values of the density factors were plotted against the corresponding end-gas temperatures for the three engine speeds and also against engine speed for several and end-gas temperatures. The maximum permissible density factor varied only slightly with engine speed but decreased rapidly with an increase in the end-gas temperature. The effect of changing the mixture temperature was different for fuels of different types. The results emphasize the desirability of determining the anti knock values of fuels over a wide range of engine and intake-air conditions rather that at a single set of conditions.

  8. Effects of two diesel fuel mixtures on fecal coliform bacteria densities

    SciTech Connect

    Marcus, J.M.; Scott, G.I.

    1989-03-01

    One of the major potential environmental impacts from synthetic fuel production plants and conventional petroleum refinement operations is the spillage of the refined product into natural waters. Impacts upon aquatic ecosystems resulting from spills of synthetic fuel would likely be different from those associated with conventional petroleum since products extracted from coal or shale are generally richer in phenolics, aromatic amines and other soluble organic compounds. Also, synfuels have higher water solubilities than equivalent petroleum products giving the potential for higher water concentrations of hydrocarbons. This study tested the effects of the water soluble fractions (WSFs) of a shale diesel fuel mixture (SDFM) and a petroleum diesel fuel mixture (PDFM) on the growth of fecal coliform bacteria, the group used almost universally as an indicator of bacteriological water quality. The WSF was tested instead of whole oil because acute toxicity results primarily from this fraction. A wild group of fecal coliform bacteria was used since the objective was to observe effects upon this indicator group encountered in the environment instead of pure laboratory cultures by the routine ambient monitoring and measurement technique of membrane filter colony counts as employed by most water quality management agencies.

  9. Performance of an internal reforming molten carbonate fuel cell supplied with ethanol/water mixture

    SciTech Connect

    Freni, S.; Maggio, G.; Barone, F.

    1996-12-31

    The state of an on the field of molten carbonate fuel cell (MCFC) systems covers many technological aspects related to the use of these systems for the production of electricity. In this respect, extensive research efforts have been made to develop a technology using the methane based on the steam reforming process, and different configurations have been analyzed and their performance determined for several operative cell conditions. However, the operative temperature (T-923 K) of the MCFC. that allows the direct conversion of hydrocarbons or alcohols into H{sub 2} and CO, promotes researches in the field of alternative fuels, more easily transported and reformed compared to methane. In this paper are described the most indicative results obtained by a study that considers the use of water/ethanol mixture as an attractive alternative to the methane for a molten carbonate fuel cell.

  10. Evaluation of lower flammability limits of fuel-air-diluent mixtures using calculated adiabatic flame temperatures.

    PubMed

    Vidal, M; Wong, W; Rogers, W J; Mannan, M S

    2006-03-17

    The lower flammability limit (LFL) of a fuel is the minimum composition in air over which a flame can propagate. Calculated adiabatic flame temperatures (CAFT) are a powerful tool to estimate the LFL of gas mixtures. Different CAFT values are used for the estimation of LFL. SuperChems is used by industry to perform flammability calculations under different initial conditions which depends on the selection of a threshold temperature. In this work, the CAFT at the LFL is suggested for mixtures of fuel-air and fuel-air-diluents. These CAFT can be used as the threshold values in SuperChems to calculate the LFL. This paper discusses an approach to evaluate the LFL in the presence of diluents such as N2 and CO2 by an algebraic method and by the application of SuperChems using CAFT as the basis of the calculations. The CAFT for different paraffinic and unsaturated hydrocarbons are presented as well as an average value per family of chemicals. PMID:16309829

  11. Catalytic and electrochemical behaviour of solid oxide fuel cell operated with simulated-biogas mixtures

    NASA Astrophysics Data System (ADS)

    Dang-Long, T.; Quang-Tuyen, T.; Shiratori, Y.

    2016-06-01

    Being produced from organic matters of wastes (bio-wastes) through a fermentation process, biogas mainly composed of CH4 and CO2 and can be considered as a secondary energy carrier derived from solar energy. To generate electricity from biogas through the electrochemical process in fuel cells is a state-of-the-art technology possessing higher energy conversion efficiency without harmful emissions compared to combustion process in heat engines. Getting benefits from high operating temperature such as direct internal reforming ability and activation of electrochemical reactions to increase overall system efficiency, solid oxide fuel cell (SOFC) system operated with biogas becomes a promising candidate for distributed power generator for rural applications leading to reductions of environmental issues caused by greenhouse effects and bio-wastes. CO2 reforming of CH4 and electrochemical oxidation of the produced syngas (H2-CO mixture) are two main reaction processes within porous anode material of SOFC. Here catalytic and electrochemical behavior of Ni-ScSZ (scandia stabilized-zirconia) anode in the feed of CH4-CO2 mixtures as simulated-biogas at 800 °C were evaluated. The results showed that CO2 had strong influences on both reaction processes. The increase in CO2 partial pressure resulted in the decrease in anode overvoltage, although open-circuit voltage was dropped. Besides that, the simulation result based on a power-law model for equimolar CH4-CO2 mixture revealed that coking hazard could be suppressed along the fuel flow channel in both open-circuit and closed-circuit conditions.

  12. Analysis of an energy recovery system for reformate-based PEM fuel cells involving a binary two-phase mixture

    NASA Astrophysics Data System (ADS)

    Cao, Yiding

    A comprehensive analysis on a novel energy recovery system for reformate-based proton exchange membrane (PEM) fuel cell systems is presented. The energy recovery system includes a throttling valve, a heat exchanger, a compressor, and is coupled with a coolant loop for the fuel cell stack. The feed stock of the fuel reformer, which is primarily a mixture of water and fuel, is vaporized in the heat exchanger and is then compressed to a sufficiently high pressure before it is ducted into the fuel reformer. The analysis includes the throttling of two-phase fuel/water mixture and vaporization in the heat exchanger to obtain the temperature and pressure of the mixture at the inlet of the compressor. The results indicate that the power plant efficiency with the energy recovery system can be increased by more than 20% compared to that of a fuel cell power plant without the energy recovery system. Additionally, more than 25% of the waste heat generated by the fuel cell stack can be removed due to the energy recovery system, and the fuel burned for the fuel reforming purpose is reduced by more than 70%.

  13. Theoretical rocket performance of JP-4 fuel with mixtures of liquid ozone and fluorine

    NASA Technical Reports Server (NTRS)

    Huff, Vearl N; Gordon, Sanford

    1957-01-01

    Data were estimated by means of a heat correction equation using data for JP-4 fuel with mixtures of oxygen and flourine. The estimated data were checked for several cases by direct calculations. The difference in specific impulse between the estimated and directly calculated values was from 0.2 to 0.8 pound-second per pound. The maximum value of specific impulse was 334.9 pound-seconds per pound for a combustion-chamber pressure of 600 pounds per square inch absolute and an exit pressure of 1 atmosphere.

  14. Performance of winter rape (Brassica napus) based fuel mixtures in diesel engines

    SciTech Connect

    Wagner, G.L.; Peterson, C.L.

    1982-01-01

    Winter rape is well adapted to the Palouse region of Northern Idaho and Eastern Washington. Nearly all of the current US production is grown in this region. Yields of 2200 to 2700 kg/ha with 45 percent oil content are common. Even though present production only 2000 to 2500 ha per year, the long history of production and good yields of oil make winter rape the best potential fuel vegetable oil crop for the region. Winter rape oil is more viscous than sunflower oil (50 cSt at 40/sup 0/C for winter rape and 35 cSt at 40/sup 0/C for sunflower oil) and about 17 times more viscous than diesel. The viscosity of the pure oil has been found too high for operation in typical diesel injector systems. Mixtures and/or additives are essential if the oil is to be a satisfactory fuel. Conversely, the fatty acid composition of witer rape oils is such that it is potentially a more favorable fuel because of reduced rates of oxidation and thermal polymerization. This paper will report on results of short and long term engine tests using winter rape, diesel, and commercial additives as the components. Selection of mixtures for long term screening tests was based on laboratory studies which included high temperature oxidation studies and temperature-viscosity data. Fuel temperature has been monitored at the outlet of the injector nozzle on operating engines so that viscosity comparisons at the actual injector temperature can be made. 1 figure, 3 tables.

  15. A Method for Microscale Combustion of Near Stoichiometric Energy Dense Liquid Fuel Mixtures

    NASA Astrophysics Data System (ADS)

    Tolmachoff, E. D.; Allmon, W. R.; Waits, C. M.

    2013-12-01

    This paper reports on the potential of a heterogeneous/homogeneous (HH) reactor for use as a fuel-flexible heat source, meeting the needs of the next generation of high temperature thermal-to-electric (TEC) portable power converters. In this class of reactor, low activation energy catalytic reactions provide a means to stabilize high activation energy homogeneous reactions. Diffusion limited surface reactions play a critical role in HH reactor operation. Surface conversion must be sufficiently fast to generate the high temperatures (~1000 K) necessary to initiate gas phase reactions. Therefore, fuel diffusivity and the reactor dimension are important parameters in governing HH reactor operation. We examine the performance of an HH reactor fuelled by propane and n-dodecane, representing two extremes of liquid hydrocarbon diffusivity, as a function of confining reactor dimension. Unburned fuel/air mixtures are close to stoichiometric, which is an important factor in minimizing the amount of excess air and, therefore, balance of plant energy costs. At moderate levels of confinement, the reactor is capable producing high, uniform temperatures for both fuels.

  16. CO2 capture from simulated fuel gas mixtures using semiclathrate hydrates formed by quaternary ammonium salts.

    PubMed

    Park, Sungwon; Lee, Seungmin; Lee, Youngjun; Seo, Yongwon

    2013-07-01

    In order to investigate the feasibility of semiclathrate hydrate-based precombustion CO2 capture, thermodynamic, kinetic, and spectroscopic studies were undertaken on the semiclathrate hydrates formed from a fuel gas mixture of H2 (60%) + CO2 (40%) in the presence of quaternary ammonium salts (QASs) such as tetra-n-butylammonium bromide (TBAB) and fluoride (TBAF). The inclusion of QASs demonstrated significantly stabilized hydrate dissociation conditions. This effect was greater for TBAF than TBAB. However, due to the presence of dodecahedral cages that are partially filled with water molecules, TBAF showed a relatively lower gas uptake than TBAB. From the stability condition measurements and compositional analyses, it was found that with only one step of semiclathrate hydrate formation with the fuel gas mixture from the IGCC plants, 95% CO2 can be enriched in the semiclathrate hydrate phase at room temperature. The enclathration of both CO2 and H2 in the cages of the QAS semiclathrate hydrates and the structural transition that results from the inclusion of QASs were confirmed through Raman and (1)H NMR measurements. The experimental results obtained in this study provide the physicochemical background required for understanding selective partitioning and distributions of guest gases in the QAS semiclathrate hydrates and for investigating the feasibility of a semiclathrate hydrate-based precombustion CO2 capture process. PMID:23718261

  17. The influence of oxygen concentration on the combustion of a fuel/oxidizer mixture

    SciTech Connect

    Biteau, H.; Fuentes, A.; Marlair, G.; Torero, J.L.

    2010-04-15

    The aim of the present study is to investigate the influence of the O{sub 2} concentration on the combustion behaviour of a fuel/oxidizer mixture. The material tested is a ternary mixture of lactose, starch, and potassium nitrate, which has already been used in an attempt to estimate heat release rate using the FM-Global Fire Propagation Apparatus. It provides a well-controlled combustion chamber to study the evolution of the combustion products when varying the O{sub 2} concentration, between air and low oxidizer conditions. Different chemical behaviours have been exhibited. When the O{sub 2} concentration was reduced beyond 18%, large variations were observed in the CO{sub 2} and CO concentrations. This critical O{sub 2} concentration seems to be the limit before which the material only uses its own oxidizer to react. On the other hand, mass loss did not highlight this change in chemical reactions and remained similar whatever the test conditions. This presumes that the oxidation of CO into CO{sub 2} are due to reactions occurring in the gas phase especially for large O{sub 2} concentrations. This actual behaviour can be verified using a simplified flammability limit model adapted for the current work. Finally, a sensitivity analysis has been carried out to underline the influence of CO concentration in the evaluation of heat release rate using typical calorimetric methods. The results of this study provide a critical basis for the investigation of the combustion of a fuel/oxidizer mixture and for the validation of future numerical models. (author)

  18. Dip-in Indicators for Visual Differentiation of Fuel Mixtures Based on Wettability of Fluoroalkylchlorosilane-Coated Inverse Opal Films.

    PubMed

    Sedighi, Abootaleb; Qiu, Shuang; Wong, Michael C K; Li, Paul C H

    2015-12-30

    We have developed the dip-in indicator based on the inverse opal film (IOF) for visual differentiation of organic liquid mixtures, such as oil/gasoline or ethanol/gasoline fuel mixtures. The IOF consists of a three-dimensional porous structure with a highly ordered periodic arrangement of nanopores. The specularly reflected light at the interface of the nanopores and silica walls contributes to the structural color of the IOF film. This color disappears when the nanopores are infiltrated by a liquid with a similar refractive index to silica. The disappearance of the structural color provides a means to differentiate various liquid fuel mixtures based on their wettability of the nanopores in the IOF-based indicators. For differentiation of various liquid mixtures, we tune the wettability threshold of the indicator in such a way that it is wetted (color disappears) by one liquid but is not wetted by the other (color remains). Although colorimetric differentiation of liquids based on IOF wettability has been reported, differentiation of highly similar liquid mixtures require complicated readout approaches. It is known that the IOF wettability is controlled by multiple surface properties (e.g., oleophobicity) and structural properties (e.g., neck angle and film thickness) of the nanostructure. Therefore, we aim to exploit the combined tuning of these properties for differentiation of fuel mixtures with close compositions. In this study, we have demonstrated that, for the first time, the IOF-based dip-in indicator is able to detect a slight difference in the fuel mixture composition (i.e., 0.4% of oil content). Moreover, the color/no-color differentiation platform is simple, powerful, and easy-to-read. This platform makes the dip-in indicator a promising tool for authentication and determination of fuel composition at the point-of-purchase or point-of-use. PMID:26634404

  19. Analysis of effect of flameholder characteristics on lean, premixed, partially vaporized fuel-air mixtures quality and nitrogen oxides emissions

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1981-01-01

    An analysis was conducted of the effect of flameholding devices on the precombustion fuel-air characteristics and on oxides of nitrogen (NOx) emissions for combustion of premixed partially vaporized mixtures. The analysis includes the interrelationships of flameholder droplet collection efficiency, reatomization efficiency and blockage, and the initial droplet size distribution and accounts for the contribution of droplet combustion in partially vaporized mixtures to NOx emissions. Application of the analytical procedures is illustrated and parametric predictions of NOx emissions are presented.

  20. THE ATTRACTIVENESS OF MATERIALS IN ADVANCED NUCLEAR FUEL CYCLES FOR VARIOUS PROLIFERATION AND THEFT SCENARIOS

    SciTech Connect

    Bathke, C. G.; Ebbinghaus, Bartley B.; Collins, Brian A.; Sleaford, Brad W.; Hase, Kevin R.; Robel, Martin; Wallace, R. K.; Bradley, Keith S.; Ireland, J. R.; Jarvinen, G. D.; Johnson, M. W.; Prichard, Andrew W.; Smith, Brian W.

    2012-08-29

    We must anticipate that the day is approaching when details of nuclear weapons design and fabrication will become common knowledge. On that day we must be particularly certain that all special nuclear materials (SNM) are adequately accounted for and protected and that we have a clear understanding of the utility of nuclear materials to potential adversaries. To this end, this paper examines the attractiveness of materials mixtures containing SNM and alternate nuclear materials associated with the plutonium-uranium reduction extraction (Purex), uranium extraction (UREX), coextraction (COEX), thorium extraction (THOREX), and PYROX (an electrochemical refining method) reprocessing schemes. This paper provides a set of figures of merit for evaluating material attractiveness that covers a broad range of proliferant state and subnational group capabilities. The primary conclusion of this paper is that all fissile material must be rigorously safeguarded to detect diversion by a state and must be provided the highest levels of physical protection to prevent theft by subnational groups; no 'silver bullet' fuel cycle has been found that will permit the relaxation of current international safeguards or national physical security protection levels. The work reported herein has been performed at the request of the U.S. Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for, the nuclear materials in DOE nuclear facilities. The methodology and findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security is discussed.

  1. Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures

    NASA Astrophysics Data System (ADS)

    Kindracki, J.; Wolański, P.; Gut, Z.

    2011-04-01

    An experimental study on rotating detonation is presented in this paper. The study was focused on the possibility of using rotating detonation in a rocket engine. The research was divided into two parts: the first part was devoted to obtaining the initiation of rotating detonation in fuel-oxygen mixture; the second was aimed at determination of the range of propagation stability as a function of chamber pressure, composition, and geometry. Additionally, thrust and specific impulse were determined in the latter stage. In the paper, only rich mixture is described, because using such a composition in rocket combustion chambers maximizes the specific impulse and thrust. In the experiments, two kinds of geometry were examined: cylindrical and cylindrical-conic, the latter can be simulated by a simple aerospike nozzle. Methane, ethane, and propane were used as fuel. The pressure-time courses in the manifolds and in the chamber are presented. The thrust-time profile and detonation velocity calculated from measured pressure peaks are shown. To confirm the performance of a rocket engine with rotating detonation as a high energy gas generator, a model of a simple engine was designed, built, and tested. In the tests, the model of the engine was connected to the dump tank. This solution enables different environmental conditions from a range of flight from 16 km altitude to sea level to be simulated. The obtained specific impulse for pressure in the chamber of max. 1.2 bar and a small nozzle expansion ratio of about 3.5 was close to 1,500 m/s.

  2. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOEpatents

    Ackerman, John P.; Miller, William E.

    1989-01-01

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuel using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuel, and two cathodes, the first cathode composed of either a solid alloy or molten cadmium and the second cathode composed of molten cadmium. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then substantially pure uranium is electrolytically transported and deposited on the first alloy or molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on the second molten cadmium cathode.

  3. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOEpatents

    Ackerman, J.P.; Miller, W.E.

    1987-11-05

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuels is disclosed using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuels, two cathodes and electrical power means connected to the anode basket, cathodes and lower molten cadmium pool for providing electrical power to the cell. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then purified uranium is electrolytically transported and deposited on a first molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on a second cathode. 3 figs.

  4. Vibrational and rotational CARS measurements of nitrogen in afterglow of streamer discharge in atmospheric pressure fuel/air mixtures

    NASA Astrophysics Data System (ADS)

    Pendleton, S. J.; Montello, A.; Carter, C.; Lempert, W.; Gundersen, M. A.

    2012-12-01

    The use of nonequilibrium plasma generated by nanosecond discharges to ignite fuel/air mixtures, known as transient plasma ignition (TPI), has been shown to effectively reduce ignition delay and improve engine performance relative to spark ignition for combustion engines. While this method is potentially useful for many engine applications, at present the underlying physics are poorly understood. This work uses coherent anti-Stokes Raman spectroscopy (CARS) to measure the rotational and vibrational excitation of nitrogen molecules in the discharge afterglow in a variety of fuel/air mixtures outside the limits of combustion in order to elucidate the thermal behaviour of TPI. The time evolution of relative populations of vibrationally excited states of nitrogen in the electronic ground state are reported for each gas mixture; it is shown that generation of these vibrationally excited states is inefficient during the discharge in air but that generation occurs at a high rate roughly 5 µs following the discharge; with the addition of fuels vibrationally excited states are observed during the discharge but an increase in population is still seen at 5 µs. Possible mechanisms for this behaviour are discussed. In addition, rotational temperature increases of at least 500 K are reported for all gas mixtures. The effect of this temperature increase on ignition, reaction rates, and thermal energy pathways are discussed.

  5. Preliminary evaluation of instruments for on-line characterization of coal-oil mixture fuel

    NASA Astrophysics Data System (ADS)

    Mathur, M. P.; Ekmann, J. M.

    1982-01-01

    Results of recent tests on coal-oil mixtures (COM) indicate that on-line continuous monitoring of key parameters - mass flow, coal content, and viscosity - is possible. Availability of this instrumentation can enhance the operation of control systems for COM preparation and combustion. Accurate measurement of density or coal content in COM is needed to monitor the reproducibility of preparation processes. Accurate mass flow measurements, coupled with data on the coal content, can be used to determine the instantaneous Btu input to a burner. Atomization characteristics, partly dependent on the fluid viscosity, can be adjusted using on-line viscometers linked to the fuel preheater. A number on-line instruments to measure mass flow, coal content or density, and viscosity in a flow system are examined. Instruments under study include a Micro Motion mass flow meter, which uses the Coriolis force exerted by a fluid flowing through a U-tube; n instrument manufactured by Aurburn International, Inc., which relies on the dielectric properties of COM to determine coal content: and a Brookfield on-line concentric cylinder viscometer.

  6. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... alternate power supply exists, as required under § 503.8 of these regulations. (b) Evidence required in... these regulations. (c) Solar mixtures. OFE will grant a permanent mixtures exemption for the use of a mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or...

  7. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... alternate power supply exists, as required under § 503.8 of these regulations. (b) Evidence required in... these regulations. (c) Solar mixtures. OFE will grant a permanent mixtures exemption for the use of a mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or...

  8. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... alternate power supply exists, as required under § 503.8 of these regulations. (b) Evidence required in... these regulations. (c) Solar mixtures. OFE will grant a permanent mixtures exemption for the use of a mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or...

  9. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... alternate power supply exists, as required under § 503.8 of these regulations. (b) Evidence required in... these regulations. (c) Solar mixtures. OFE will grant a permanent mixtures exemption for the use of a mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or...

  10. 10 CFR 503.38 - Permanent exemption for certain fuel mixtures containing natural gas or petroleum.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... alternate power supply exists, as required under § 503.8 of these regulations. (b) Evidence required in... these regulations. (c) Solar mixtures. OFE will grant a permanent mixtures exemption for the use of a mixture of solar energy (including wind, tide, and other intermittent sources) and petroleum or...

  11. Method and apparatus for determining the proportions of the constituents of the air-fuel mixture supplied to an internal combustion engine

    SciTech Connect

    Peter, C.

    1980-11-04

    A method and apparatus are described for determining the proportions of the air-fuel mixture constituents supplied to an internal combustion engine from a mixture preparing device such as a carburator, a fuel injection device or other suitable mixture preparing device. The method according to the invention serves to simplify the processing of output signals that are supplied to a mixture preparing device having at least two lambda sensors. The invention is especially suitable for use with large engines with several exhaust conduit systems, such as so-called v-engines, in which generally there is an unequal mixture distribution between the two rows of cylinders. By employing at least two lambda sensors in the exhaust gas conduit system for monitoring the exhaust gas composition, one succeeds in determining the mixture composition of the air-fuel mixture applied to all cylinders, and in influencing the air-fuel mixture in a suitable supplementary manner by a feed back of the actual value signals generated by the lambda sensors to the fuel preparation device, so that a desirable overall exhaust gas average value can be achieved. The apparatus employs two integrators and suitable logic circuitry for applying the lambda sensor signals to the integrators in such a manner that one integrator regulates the entire mixture in the desired direction, according to the sensor signals supplied to it, while the other integrator sets the amplitude of the oscillation fluctuations at a value that corresponds to the lambda differential.

  12. Unsteady Extinction of Opposed Jet Ethylene/Methane HIFiRE Surrogate Fuel Mixtures vs Air

    NASA Technical Reports Server (NTRS)

    Vaden, Sarah N.; Debes, Rachel L.; Lash, E. Lara; Burk, Rachel S.; Boyd, C. Merritt; Wilson, Lloyd G.; Pellett, Gerald L.

    2009-01-01

    A unique idealized study of the subject fuel vs. air systems was conducted using an Oscillatory-input Opposed Jet Burner (OOJB) system and a newly refined analysis. Extensive dynamic-extinction measurements were obtained on unanchored (free-floating) laminar Counter Flow Diffusion Flames (CFDFs) at 1-atm, stabilized by steady input velocities (e.g., U(sub air)) and perturbed by superimposed in-phase sinusoidal velocity inputs at fuel and air nozzle exits. Ethylene (C2H4) and methane (CH4), and intermediate 64/36 and 15/85 molar percent mixtures were studied. The latter gaseous surrogates were chosen earlier to mimic ignition and respective steady Flame Strengths (FS = U(sub air)) of vaporized and cracked, and un-cracked, JP-7 "like" kerosene for a Hypersonic International Flight Research Experimentation (HIFiRE) scramjet. For steady idealized flameholding, the 100% C2H4 flame is respectively approx. 1.3 and approx.2.7 times stronger than a 64/36 mix and CH4; but is still 12.0 times weaker than a 100% H2-air flame. Limited Hot-Wire (HW) measurements of velocity oscillations at convergent-nozzle exits, and more extensive Probe Microphone (PM) measurements of acoustic pressures, were used to normalize Dynamic FSs, which decayed linearly with pk/pk U(sub air) (velocity magnitude, HW), and also pk/pk P (pressure magnitude, PM). Thus Dynamic Flame Weakening (DFW) is defined as % decrease in FS per Pascal of pk/pk P oscillation, namely, DFW = -100 d(U(sub air)/U(sub air),0Hz)/d(pkpk P). Key findings are: (1) Ethylene flames are uniquely strong and resilient to extinction by oscillating inflows below 150 Hz; (2) Methane flames are uniquely weak; (3) Ethylene / methane surrogate flames are disproportionately strong with respect to ethylene content; and (4) Flame weakening is consistent with limited published results on forced unsteady CFDFs. Thus from 0 to approx. 10 Hz and slightly higher, lagging diffusive responses of key species led to progressive phase lags (relative

  13. Experimental investigation of homogeneous charge compression ignition combustion of biodiesel fuel with external mixture formation in a CI engine.

    PubMed

    Ganesh, D; Nagarajan, G; Ganesan, S

    2014-01-01

    In parallel to the interest in renewable fuels, there has also been increased interest in homogeneous charge compression ignition (HCCI) combustion. HCCI engines are being actively developed because they have the potential to be highly efficient and to produce low emissions. Even though HCCI has been researched extensively, few challenges still exist. These include controlling the combustion at higher loads and the formation of a homogeneous mixture. To obtain better homogeneity, in the present investigation external mixture formation method was adopted, in which the fuel vaporiser was used to achieve excellent HCCI combustion in a single cylinder air-cooled direct injection diesel engine. In continuation of our previous works, in the current study a vaporised jatropha methyl ester (JME) was mixed with air to form a homogeneous mixture and inducted into the cylinder during the intake stroke to analyze the combustion, emission and performance characteristics. To control the early ignition of JME vapor-air mixture, cooled (30 °C) Exhaust gas recirculation (EGR) technique was adopted. The experimental result shows 81% reduction in NOx and 72% reduction in smoke emission. PMID:24383396

  14. Fuel mixture stratification as a method for improving homogeneous charge compression ignition engine operation

    DOEpatents

    Dec, John E.; Sjoberg, Carl-Magnus G.

    2006-10-31

    A method for slowing the heat-release rate in homogeneous charge compression ignition ("HCCI") engines that allows operation without excessive knock at higher engine loads than are possible with conventional HCCI. This method comprises injecting a fuel charge in a manner that creates a stratified fuel charge in the engine cylinder to provide a range of fuel concentrations in the in-cylinder gases (typically with enough oxygen for complete combustion) using a fuel with two-stage ignition fuel having appropriate cool-flame chemistry so that regions of different fuel concentrations autoignite sequentially.

  15. Preparation and Fuel Properties of Mixtures of Soybean Oil Methyl and Ethyl Esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil was transesterified using methanol, ethanol, and various mixtures of methanol and ethanol at a constant mole ratio of alcohol to oil of 12:1 in the presence of 1 wt % potassium hydroxide (KOH) catalyst at 30 deg C for 60 minutes. The effect of mixtures of methanol and ethanol on percent...

  16. Chemical Composition of Aerosol Particles Emitted by a Passenger Car Engine Fueled by Ethanol/Gasoline Mixtures

    NASA Astrophysics Data System (ADS)

    Medrano, J. M.; Gross, D. S.; Dutcher, D. D.; Drayton, M.; Kittelson, D.; McMurry, P.

    2007-12-01

    With concerns of national security, climate change, and human health, many people have called for oil independence for the United States and for the creation of alternative fuels. Ethanol has been widely praised as a viable alternative to petroleum-based fuels, due to the fact that it can be produced locally. A great deal of work has been done to characterize the energy balance of ethanol production versus consumption, but there have been fewer studies of the environmental and health impacts of emissions from combustion of ethanol/gasoline mixtures such as those burned in the modern vehicle fleet. To study the particulate emissions from such fuels, different ethanol/gasoline fuel mixtures with 0, 20, 40, and 85% ethanol were burned in a dynamometer-mounted automobile engine. The engine exhaust was diluted and sampled with two aerosol Time-of-Flight Mass Spectrometers (TSI 3800 ATOFMS), sampling different particle size ranges (50-500 nm and 150-3000 nm, respectively), to measure size and composition of the emitted aerosol particles. A variety of other aerosol characterization techniques were also employed to determine the size distribution of the aerosol particles, the mass emission rate from the engine, and the concentration of polycyclic aromatic hydrocarbons (PAHs) and elemental carbon (EC) in the particle emissions. Here we will focus on results from the ATOFMS, which provides us with a particle size and mass spectra - for both negative and positive ions - for each particle that is sampled. Particles being emitted were found to contain primarily PAHs, elemental carbon (EC), nitrates, and sulfates. Particles were analyzed to investigate trends in particle composition as a function of fuel ethanol content, particle size, and for the types of particles emitted. A trend in particle type as a function of fuel ethanol content was evident in smaller particles, and trends in composition as a function of particle size were visible across the entire size range sampled.

  17. Thermodynamic substantiation of the existence of a phase transition point with a change in the structure of the solid-fuel mixture glycidyl azide Polymer/RDX

    NASA Astrophysics Data System (ADS)

    Futko, S. I.

    2012-09-01

    With the help of thermodynamic calculations for a wide range of solid-fuel mixtures glycidyl azide polymer (GAP)/RDX with a component ratio from 100% GAP/0% RDX to 0% GAP/100% RDX we have found a structural transition point corresponding to a mixture of 60.8 mass % of RDX in GAP at which a sharp change in the trend of thermodynamic combustion characteristics of these mixtures occurs. The given point is determined from the condition of equality of molar fractions of C and O atoms in the above mixtures. It is pressure-independent, corresponds to the minimum point on the curve of the rate of combustion of the mixture as a function of its composition and to the structural change in the solid-fuel mixture GAP/RDX from amorphous to polycrystalline, and is a phase transition point.

  18. Method for cleaning solution used in nuclear fuel reprocessing

    DOEpatents

    Tallent, Othar K.; Dodson, Karen E.; Mailen, James C.

    1983-01-01

    A nuclear fuel processing solution containing (1) hydrocarbon diluent, (2) tri-n-butyl phosphate or tri-2-ethylhexyl phosphate, and (3) monobutyl phosphate, dibutyl phosphate, mono-2-ethylhexyl phosphate, di-2-ethylhexyl phosphate, or a complex formed by plutonium, uranium, or a fission product thereof with monobutyl phosphate, dibutyl phosphate, mono-2-ethylhexyl phosphate, or di-2-ethylhexyl phosphate is contacted with silica gel having alkali ions absorbed thereon to remove any one of the degradation products named in section (3) above from said solution.

  19. An experimental study of the autoignition characteristics of conventional jet fuel/oxidizer mixtures: Jet-A and JP-8

    SciTech Connect

    Kumar, Kamal; Sung, Chih-Jen

    2010-04-15

    Ignition delay times of Jet-A/oxidizer and JP-8/oxidizer mixtures are measured using a heated rapid compression machine at compressed charge pressures corresponding to 7, 15, and 30 bar, compressed temperatures ranging from 650 to 1100 K, and equivalence ratios varying from 0.42 to 2.26. When using air as the oxidant, two oxidizer-to-fuel mass ratios of 13 and 19 are investigated. To achieve higher compressed temperatures for fuel lean mixtures (equivalence ratio of {proportional_to}0.42), argon dilution is also used and the corresponding oxidizer-to-fuel mass ratio is 84.9. For the conditions studied, experimental results show two-stage ignition characteristics for both Jet-A and JP-8. Variations of both the first-stage and overall ignition delays with compressed temperature, compressed pressure, and equivalence ratio are reported and correlated. It is noted that the negative temperature coefficient phenomenon becomes more prominent at relatively lower pressures. Furthermore, the first-stage-ignition delay is found to be less sensitive to changes in equivalence ratio and primarily dependent on temperature. (author)

  20. Ignition of lean fuel-air mixtures in a premixing-prevaporizing duct at temperatures up to 1000 K

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1980-01-01

    Conditions were determined in a premixing prevaporizing fuel preparation duct at which ignition occurred. An air blast type fuel injector with nineteen fuel injection points was used to provide a uniform spatial fuel air mixture. The range of inlet conditions where ignition occurred were: inlet air temperatures of 600 to 1000 K air pressures of 180 to 660 kPa, equivalence ratios (fuel air ratio divided by stoichiometric fuel air ratio) from 0.12 to 1.05, and velocities from 3.5 to 30 m/s. The duct was insulated and the diameter was 12 cm. Mixing lengths were varied from 16.5 to 47.6 and residence times ranged from 4.6 to 107 ms. The fuel was no. 2 diesel. Results show a strong effect of equivalence ratio, pressure and temperature on the conditions where ignition occurred. The data did not fit the most commonly used model of auto-ignition. A correlation of the conditions where ignition would occur which apply to this test apparatus over the conditions tested is (p/V) phi to the 1.3 power = 0.62 e to the 2804/T power where p is the pressure in kPa, V is the velocity in m/e, phi is the equivalence ratio, and T is the temperature in K. The data scatter was considerable, varying by a maximum value of 5 at a given temperature and equivalence ratio. There was wide spread in the autoignition data contained in the references.

  1. Bioaccumulation of fossil fuel components during single-compound and complex-mixture exposures of Daphnia magna

    SciTech Connect

    Dauble, D.D.; Carlile, D.W.; Hanf, R.W. Jr.

    1986-07-01

    The authors conducted tests with the water flea (Daphnia magna) to compare the bioaccumulation of compounds presented alone with the bioaccumulation of these same compounds when they were presented within a complex coal liquid, water-soluble fraction. Phenol and aniline were used as representative compounds because they are highly soluble, moderately toxic, and common to many fossil fuel liquid products and corresponding wastes. The tests were primarily designed to aid in development of predictive models relating to the transport and fate of components from complex mixtures in aquatic biota.

  2. Plasma barodiffusion in inertial-confinement-fusion implosions: application to observed yield anomalies in thermonuclear fuel mixtures.

    PubMed

    Amendt, Peter; Landen, O L; Robey, H F; Li, C K; Petrasso, R D

    2010-09-10

    The observation of large, self-generated electric fields (≥10(9)  V/m) in imploding capsules using proton radiography has been reported [C. K. Li, Phys. Rev. Lett. 100, 225001 (2008)]. A model of pressure gradient-driven diffusion in a plasma with self-generated electric fields is developed and applied to reported neutron yield deficits for equimolar D3He [J. R. Rygg, Phys. Plasmas 13, 052702 (2006)] and (DT)3He [H. W. Herrmann, Phys. Plasmas 16, 056312 (2009)] fuel mixtures and Ar-doped deuterium fuels [J. D. Lindl, Phys. Plasmas 11, 339 (2004)]. The observed anomalies are explained as a mild loss of deuterium nuclei near capsule center arising from shock-driven diffusion in the high-field limit. PMID:20867580

  3. Notes from the Field: Intoxication and Deaths Associated with Ingestion of a Racing Fuel and Carbonated Soft Drink Mixture - Tennessee, January 2016.

    PubMed

    Fill, Mary-Margaret A; Seger, Donna L; Dunn, John R; Schaffner, William; Jones, Timothy F

    2016-01-01

    In January 2016, the Tennessee Poison Center and Tennessee Department of Health learned of the deaths of two adolescents, and the nonfatal intoxication of two other adolescents, after ingestion of a mixture of racing fuel (approximately 100% methanol) and a carbonated soft drink. The Tennessee Department of Health reviewed medical records and police reports to learn more about the racing fuel source, assess ongoing risk, and guide prevention efforts. These are the first reported deaths in the United States associated with ingestion of this racing fuel mixture. PMID:27281631

  4. Fuel flexible fuel injector

    SciTech Connect

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  5. Calculated flame temperature (CFT) modeling of fuel mixture lower flammability limits.

    PubMed

    Zhao, Fuman; Rogers, William J; Mannan, M Sam

    2010-02-15

    Heat loss can affect experimental flammability limits, and it becomes indispensable to quantify flammability limits when apparatus quenching effect becomes significant. In this research, the lower flammability limits of binary hydrocarbon mixtures are predicted using calculated flame temperature (CFT) modeling, which is based on the principle of energy conservation. Specifically, the hydrocarbon mixture lower flammability limit is quantitatively correlated to its final flame temperature at non-adiabatic conditions. The modeling predictions are compared with experimental observations to verify the validity of CFT modeling, and the minor deviations between them indicated that CFT modeling can represent experimental measurements very well. Moreover, the CFT modeling results and Le Chatelier's Law predictions are also compared, and the agreement between them indicates that CFT modeling provides a theoretical justification for the Le Chatelier's Law. PMID:19819067

  6. Lean mixture engine testing and evaluation program. [for automobile engine pollution and fuel performances

    NASA Technical Reports Server (NTRS)

    Dowdy, M. W.; Hoehn, F. W.; Griffin, D. C.

    1975-01-01

    Experimental results for fuel consumption and emissions are presented for a 350 CID (5.7 liter) Chevrolet V-8 engine modified for lean operation with gasoline. The lean burn engine achieved peak thermal efficiency at an equivalence ratio of 0.75 and a spark advance of 60 deg BTDC. At this condition the lean burn engine demonstrated a 10% reduction in brake specific fuel consumption compared with the stock engine; however, NOx and hydrocarbon emissions were higher. With the use of spark retard and/or slightly lower equivalence ratios, the NOx emissions performance of the stock engine was matched while showing a 6% reduction in brake specific fuel consumption. Hydrocarbon emissions exceeded the stock values in all cases. Diagnostic data indicate that lean performance in the engine configuration tested is limited by ignition delay, cycle-to-cycle pressure variations, and cylinder-to-cylinder distribution.

  7. Experimental analysis of performance degradation of micro-tubular solid oxide fuel cells fed by different fuel mixtures

    NASA Astrophysics Data System (ADS)

    Calise, F.; Restucccia, G.; Sammes, N.

    This paper analyzes the thermodynamic and electrochemical dynamic performance of an anode supported micro-tubular solid oxide fuel cell (SOFC) fed by different types of fuel. The micro-tubular SOFC used is anode supported, consisting of a NiO and Gd 0.2Ce 0.8O 2- x (GDC) cermet anode, thin GDC electrolyte, and a La 0.6Sr 0.4Co 0.2Fe 0.8O 3- y (LSCF) and GDC cermet cathode. The fabrication of the cells under investigation is briefly summarized, with emphasis on the innovations with respect to traditional techniques. Such micro-tubular cells were tested using a Test Stand consisting of: a vertical tubular furnace, an electrical load, a galvanostast, a bubbler, gas pipelines, temperature, pressure and flow meters. The tests on the micro-SOFC were performed using H 2, CO, CH 4 and H 2O in different combinations at 550 °C, to determine the cell polarization curves under several load cycles. Long-term experimental tests were also performed in order to assess degradation of the electrochemical performance of the cell. Results of the tests were analyzed aiming at determining the sources of the cell performance degradation. Authors concluded that the cell under investigation is particularly sensitive to the carbon deposition which significantly reduces cell performance, after few cycles, when fed by light hydrocarbons. A significant performance degradation is also detected when hydrogen is used as fuel. In this case, the authors ascribe the degradation to the micro-cracks, the change in materials crystalline structure and problems with electrical connections.

  8. Dermal, eye, and oral toxicologic evaluations of brass powder, fog oil, diesel fuel, and their mixtures. Report for 1 May-30 September 1985 on Phase 3

    SciTech Connect

    Mayhew, D.A.; Smith, S.H.; Doyle, G.L.; Kreuger, J.C.; Mellon, K.A.

    1985-12-01

    Five test articles were evaluated to establish their eye and skin irritation potential and their oral and dermal toxicity. The test articles evaluated were as followed: 1) Brass Powder, 2) Fog Oil, 3) Diesel Fuel, 4) 0.75 parts Fog Oil:1 part Brass Powder (w/w mixture), and 5) 0.7 parts Diesel Fuel: 1 part Brass Powder (w/w mixture). Oral studies were conducted utilizing the Fischer-344 albino rat as the test system; all other studies utilized the New Zealand White Albino Rabbit as the test system. Results obtained in these studies are summarized.

  9. Separation of gaseous hydrogen from a water-hydrogen mixture in a fuel cell power system operating in a weightless environment

    NASA Technical Reports Server (NTRS)

    Romanowski, William E. (Inventor); Suljak, George T. (Inventor)

    1989-01-01

    A fuel cell power system for use in a weightless environment, such as in space, includes a device for removing water from a water-hydrogen mixture condensed from the exhaust from the fuel cell power section of the system. Water is removed from the mixture in a centrifugal separator, and is fed into a holding, pressure operated water discharge valve via a Pitot tube. Entrained nondissolved hydrogen is removed from the Pitot tube by a bleed orifice in the Pitot tube before the water reaches the water discharge valve. Water discharged from the valve thus has a substantially reduced hydrogen content.

  10. Numerical modeling of flame-balls in fuel-air mixtures

    NASA Technical Reports Server (NTRS)

    Smooke, Mitchell D.; Ern, Alexandre

    1995-01-01

    At low gravity, when buoyancy effects are small, flame-balls can be generated. These are stationary spherical structures whose existence appears to require a near-limit mixture, a small Lewis number and heat losses from radiation. It is our goal to combine computational modeling with existing experimental and theoretical studies (NASA) of these structures so that an improved understanding of flammability limits and near-limit phenomena will occur. The question of flammability limits is of fundamental importance and has long been examined. It is of great practical importance to predict, from first principles, a limit mixture strength that agrees with experimental values for the configuration at hand. Flame-balls provide an excellent configuration in which convective losses can be eliminated and the resulting stable solutions are produced from a diffusive, reactive and radiative balance. Although analytical modeling provides convincing evidence that the key physical ingredients of flame-balls have been identified, quantitative confirmation can only come from detailed numerical simulations. Our goal is to predict theoretically the mass fractions of the species and the temperature as functions of the independent coordinate r.

  11. Response of selected plant and insect species to simulated SRM exhaust mixtures and to exhaust components from SRM fuels

    NASA Technical Reports Server (NTRS)

    Heck, W. W.

    1980-01-01

    The possible biologic effects of exhaust products from solid rocket motor (SRM) burns associated with the space shuttle are examined. The major components of the exhaust that might have an adverse effect on vegetation, HCl and Al2O3 are studied. Dose response curves for native and cultivated plants and selected insects exposed to simulated exhaust and component chemicals from SRM exhaust are presented. A system for dispensing and monitoring component chemicals of SRM exhaust (HCl and Al2O3) and a system for exposing test plants to simulated SRM exhaust (controlled fuel burns) are described. The effects of HCl, Al2O3, and mixtures of the two on the honeybee, the corn earworm, and the common lacewing and the effects of simulated exhaust on the honeybee are discussed.

  12. Solution combustion synthesis of CeO{sub 2}-CeAlO{sub 3} nano-composites by mixture-of-fuels approach

    SciTech Connect

    Aruna, S.T.; Kini, N.S. Rajam, K.S.

    2009-04-02

    Nano-composites of CeO{sub 2}-CeAlO{sub 3} are synthesised by solution combustion method employing (a) urea and (b) a mixture of urea and glycine as fuels with corresponding metal nitrates. The as-prepared powders are all nano-sized (5-30 nm) and the same is confirmed by broadening of the X-ray diffraction peaks and transmission electron microscopy. A starting composition of Ce:Al in the atomic ratio 4:6 gives rise to different phases depending on the fuel being used for combustion. When urea alone is used as fuel, nano-crystalline CeO{sub 2} phase is formed with Al{sub 2}O{sub 3} being in the amorphous state. When the mixture of fuels is used, a mixture of nano-sized CeO{sub 2} and CeAlO{sub 3} phases is obtained. However, upon sintering at 1400 deg. C in air, the stable phases CeO{sub 2} and {alpha}-Al{sub 2}O{sub 3} are formed in both the cases. Combustion synthesis using mixture-of-fuels is proposed to be a route to stabilise low oxidation compounds such as CeAlO{sub 3}.

  13. Novel process and catalytic materials for converting CO2 and H2 containing mixtures to liquid fuels and chemicals.

    PubMed

    Meiri, Nora; Dinburg, Yakov; Amoyal, Meital; Koukouliev, Viatcheslav; Nehemya, Roxana Vidruk; Landau, Miron V; Herskowitz, Moti

    2015-01-01

    Carbon dioxide and water are renewable and the most abundant feedstocks for the production of chemicals and fungible fuels. However, the current technologies for production of hydrogen from water are not competitive. Therefore, reacting carbon dioxide with hydrogen is not economically viable in the near future. Other alternatives include natural gas, biogas or biomass for the production of carbon dioxide, hydrogen and carbon monoxide mixtures that react to yield chemicals and fungible fuels. The latter process requires a high performance catalyst that enhances the reverse water-gas-shift (RWGS) reaction and Fischer-Tropsch synthesis (FTS) to higher hydrocarbons combined with an optimal reactor system. Important aspects of a novel catalyst, based on a Fe spinel and three-reactor system developed for this purpose published in our recent paper and patent, were investigated in this study. Potassium was found to be a key promoter that improves the reaction rates of the RWGS and FTS and increases the selectivity of higher hydrocarbons while producing mostly olefins. It changed the texture of the catalyst, stabilized the Fe-Al-O spinel, thus preventing decomposition into Fe3O4 and Al2O3. Potassium also increased the content of Fe5C2 while shifting Fe in the oxide and carbide phases to a more reduced state. In addition, it increased the relative exposure of carbide iron on the catalysts surface, the CO2 adsorption and the adsorption strength. A detailed kinetic model of the RWGS, FTS and methanation reactions was developed for the Fe spinel catalyst based on extensive experimental data measured over a range of operating conditions. Significant oligomerization activity of the catalyst was found. Testing the pelletized catalyst with CO2, CO and H2 mixtures over a range of operating conditions demonstrated its high productivity to higher hydrocarbons. The composition of the liquid (C5+) was found to be a function of the potassium content and the composition of the feedstock

  14. 33 CFR 155.370 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000 gross tons and above and oceangoing ships of 400 gross tons and above that carry ballast water in their fuel oil tanks. 155.370 Section 155.370 Navigation and Navigable Waters COAST...

  15. 33 CFR 155.370 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000 gross tons and above and oceangoing ships of 400 gross tons and above that carry ballast water in their fuel oil tanks. 155.370 Section 155.370 Navigation and Navigable Waters COAST...

  16. Fuel mixture approach for solution combustion synthesis of Ca{sub 3}Al{sub 2}O{sub 6} powders

    SciTech Connect

    Ianos, Robert Lazau, Ioan; Pacurariu, Cornelia; Barvinschi, Paul

    2009-07-15

    Single-phase 3CaO.Al{sub 2}O{sub 3} powders were prepared via solution combustion synthesis using a fuel mixture of urea and {beta}-alanine. The concept of using this fuel mixture comes from the individual reactivity of calcium nitrate and aluminum nitrate with respect to urea and {beta}-alanine. It was proved that urea is the optimum fuel for Al(NO{sub 3}){sub 3} whereas {beta}-alanine is the most suitable fuel for Ca(NO{sub 3}){sub 2}. X-ray diffraction and thermal analysis investigations revealed that heating at 300 deg. C the precursor mixture containing the desired metal nitrates, urea and {beta}-alanine triggers a vigorous combustion reaction, which yields single-phase nanocrystalline 3CaO.Al{sub 2}O{sub 3} powder (33.3 nm). In this case additional annealing was no longer required. The use of a single fuel failed to ensure the formation of 3CaO.Al{sub 2}O{sub 3} directly from the combustion reaction. After annealing at 900 deg. C for 1 h, the powders obtained by using a single fuel (urea or {beta}-alanine) developed a phase composition comprising of 3CaO.Al{sub 2}O{sub 3}, 12CaO.7Al{sub 2}O{sub 3} and CaO.

  17. Ignition delay of a gas mixture above a liquid fuel pool

    NASA Technical Reports Server (NTRS)

    Schiller, D. N.; Sirignano, W. A.

    1991-01-01

    A computational study has been made of transient heat transfer and fluid flow of an axisymmetric two-layer gas-and-liquid system heated from above by a small hot spot (e.g., a hot wire or pilot flame) located close to the liquid surface. The gas phase is unconfined above the liquid pool. The effects of varying gravity level (0.0001 to 1 gn), liquid pool height, and heater height are investigated. Thermocapillary convection induced by the nonuniform heating of the liquid surface combines with buoyancy forces to affect the heat transfer and the transport of fuel vapor toward the heat source. At reduced gravity, gas-phase conduction is comparable to the incident radiation at the liquid surface, whereas at 1 gn, buoyant convection carries the heat upward from the heat source and, therefore, the liquid is heated primarily by radiation.

  18. Fuel additives from SO/sub 2/ treated mixtures of amides and esters derived from vegetable oil, tall oil acid, or aralkyl acid

    SciTech Connect

    Efner, H. F.; Schiff, S.

    1985-03-12

    Vegetable oils, particularly soybean oil, tall oil acid, or aralkyl acids, particularly phenylstearic acid, are reacted with multiamines, particularly tetraethylenepentamine, to form a product mixture for subsequent reaction with SO/sub 2/ to produce a product mix that has good detergent properties in fuels.

  19. 33 CFR 155.330 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on U.S. non-oceangoing ships.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Oily mixture (bilge slops)/fuel oil tank ballast water discharges on U.S. non-oceangoing ships. 155.330 Section 155.330 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS...

  20. 33 CFR 155.330 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on U.S. non-oceangoing ships.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Oily mixture (bilge slops)/fuel oil tank ballast water discharges on U.S. non-oceangoing ships. 155.330 Section 155.330 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS MATERIAL POLLUTION PREVENTION REGULATIONS...

  1. Simulation of detonation of ammonium nitrate fuel oil mixture confined by aluminum: edge angles for DSD

    SciTech Connect

    Short, Mark; Quirk, James J; Kiyanda, Charles B; Jackson, Scott I; Briggs, Matthew E; Shinas, Micheal A

    2010-01-01

    Non-ideal high explosives are typically porous, low-density materials with a low detonation velocity (3--5 km/s) and long detonation reaction zone ({approx} cms). As a result, the interaction of a non-ideal high explosive with an inert confiner can be markedly different than for a conventional high explosive. Issues arise, for example, with light stiff confiners where the confiner can drive the high explosive (HE) through a Prandtl-Meyer fan at the HE/confiner interface rather than the HE driving the confiner. For a non-ideal high explosive confined by a high sound speed inert such that the detonation velocity is lower than the inert sound speed, the flow is subsonic and thus shockless in the confiner. In such cases, the standard detonation shock dynamics methodology, which requires a positive edge-angle be specified at the HE/confiner interface in order that the detonation shape be divergent, cannot be directly utilized. In order to study how detonation shock dynamics can be utilized in such cases, numerical simulations of the detonation of ammonium nitrate-fuel oil (ANFO) confined by aluminum 6061 are conducted.

  2. Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint U.S./Russian Progress Report for Fiscal Year 1997 Volume 2-Calculations Performed in the United States

    SciTech Connect

    Primm III, RT

    2002-05-29

    This volume of the progress report provides documentation of reactor physics and criticality safety studies conducted in the US during fiscal year 1997 and sponsored by the Fissile Materials Disposition Program of the US Department of Energy. Descriptions of computational and experimental benchmarks for the verification and validation of computer programs for neutron physics analyses are included. All benchmarks include either plutonium, uranium, or mixed uranium and plutonium fuels. Calculated physics parameters are reported for all of the computational benchmarks and for those experimental benchmarks that the US and Russia mutually agreed in November 1996 were applicable to mixed-oxide fuel cycles for light-water reactors.

  3. Reducing the deactivation of Ni-metal during the catalytic partial oxidation of a surrogate diesel fuel mixture

    SciTech Connect

    Haynes, Daniel J.; Campos, Andrew; Smith, Mark W.; Berry, David A.; Shekhawat, Dushyant; Spivey, James J.

    2010-09-01

    Ni catalysts are active and selective for the conversion of hydrocarbon into synthesis gas. However, conventional supported Ni catalysts rapidly deactivate at the high temperatures required for partial oxidation of diesel fuel by sintering and metal vaporization, as well as by carbon deposition and sulfur poisoning. Thus, to reduce deactivation Ni (3 wt%) was substituted into the structures of Ba-hexaaluminate (BNHA) and La–Sr–Zr pyrochlore (LSZN), and their activity was compared to a supported Ni/Al2O3 for the catalytic partial oxidation (CPOX) of a surrogate diesel fuel. Characterization by XRD showed a single phase β-alumina for the hexaaluminate, while LSZN had a pyrochlore structure with a defect SrZrO3 perovskite phase. Temperature programmed reduction experiments confirmed Ni was reducible in all catalysts. XANES results confirmed that Ni atoms were substituted into the hexaaluminate and pyrochlore structures, as spectra for each catalyst showed different coordination environments for Ni compared to a NiO standard. During CPOX activity tests (T = 900 °C and WHSV = 50,000 scc/gcat/h), the LSZN pyrochlore produced stable H2 and CO yields in the presence of 5 wt% 1-methylnaphthalene and 50 ppmw dibenzothiophene/n-tetradecane for 2 h, while both Ni/Al2O3 and BNHA catalysts were irreversibly deactivated by this mixture over the same time. Finally, activity loss was strongly linked to carbon formation.

  4. Design Concepts for Co-Production of Power, Fuels & Chemicals Via Coal/Biomass Mixtures

    SciTech Connect

    Rao, A. D.; Chen, Q.; Samuelsen, G. S.

    2012-09-30

    The overall goal of the program is to develop design concepts, incorporating advanced technologies in areas such as oxygen production, feed systems, gas cleanup, component separations and gas turbines, for integrated and economically viable coal and biomass fed gasification facilities equipped with carbon capture and storage for the following scenarios: (i) coproduction of power along with hydrogen, (ii) coproduction of power along with fuels, (iii) coproduction of power along with petrochemicals, and (iv) coproduction of power along with agricultural chemicals. To achieve this goal, specifically the following objectives are met in this proposed project: (i) identify advanced technology options and innovative preliminary design concepts that synergistically integrate plant subsections, (ii) develop steady state system simulations to predict plant efficiency and environmental signature, (iii) develop plant cost estimates by capacity factoring major subsystems or by major equipment items where required, and then capital, operating and maintenance cost estimates, and (iv) perform techno- economic analyses for the above described coproduction facilities. Thermal efficiencies for the electricity only cases with 90% carbon capture are 38.26% and 36.76% (HHV basis) with the bituminous and the lignite feedstocks respectively. For the coproduction cases (where 50% of the energy exported is in the form of electricity), the electrical efficiency, as expected, is highest for the hydrogen coproduction cases while lowest for the higher alcohols (ethanol) coproduction cases. The electrical efficiencies for Fischer-Tropsch coproduction cases are slightly higher than those for the methanol coproduction cases but it should be noted that the methanol (as well as the higher alcohol) coproduction cases produce the finished coproduct while the Fischer-Tropsch coproduction cases produce a coproduct that requires further processing in a refinery. The cross comparison of the thermal

  5. Structural and magnetic properties of manganese zinc ferrite nanoparticles prepared by solution combustion method using mixture of fuels

    NASA Astrophysics Data System (ADS)

    Angadi, V. Jagadeesha; Rudraswamy, B.; Sadhana, K.; Praveena, K.

    2016-07-01

    The structural analysis and magnetic investigation Mn1-xZnxFe2O4 with stoichiometry (x=0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) were synthesized by solution combustion method using mixture of fuel this is first of its kind. As synthesized Mn-Zn nanoferrites were characterized by X-ray Diffractometer (XRD), Transmission electron microscopy (TEM) at room temperature. The magnetic domain relaxation was investigated by inductance spectroscopy (IS) and the observed magnetic domain relaxation frequency (fr) was increased with the increase in grain size. The Room temperature magnetic properties were studied using vibrating sample magnetometer (VSM). It was observed that the real and imaginary part of permeability (μ‧ and μ″), saturation magnetization (Ms), remanance magnetization (Mr) and magneton number (Mr/Ms) were decreases gradually with increasing Zn2+ concentration. The decrease in the saturation magnetization may be explained as, the Zn2+ concentration increases the relative number of ferric ions on the A sites diminishes and this reduces the A-B interaction. Hence synthesized materials are good for high frequency applications.

  6. Effect of fuel mixture fraction and velocity perturbations on the flame transfer function of swirl stabilized flames

    NASA Astrophysics Data System (ADS)

    Wysocki, Stefan; Di-Chiaro, Giacomo; Biagioli, Fernando

    2015-11-01

    A novel methodology is developed to decompose the classic Flame Transfer Function (FTF) used in the thermo-acoustic stability analysis of lean premix combustors into contributions of different types. The approach is applied, in the context of Large Eddy Simulation (LES), to partially-premixed and fully-premixed flames, which are stabilized via a central recirculation zone as a result of the vortex breakdown phenomenon. The first type of decomposition is into contributions driven by fuel mixture fraction and dynamic velocity fluctuations. Each of these two contributions is further split into the components of turbulent flame speed and flame surface area. The flame surface area component, driven by the pure dynamic velocity fluctuation, which is shown to be a dominant contribution to the overall FTF, is also additionally decomposed over the coherent flow structures using proper orthogonal decomposition. Using a simplified model for the dynamic response of premixed flames, it is shown that the distribution of the FTF, as obtained from LES, is closely related to the characteristics of the velocity field frequency response to the inlet perturbation. Initially, the proposed method is tested and validated with a well characterized laboratory burner geometry. Subsequently, the method is applied to an industrial gas turbine burner.

  7. Characterization plan for Hanford spent nuclear fuel

    SciTech Connect

    Abrefah, J.; Thornton, T.A.; Thomas, L.E.; Berting, F.M.; Marschman, S.C.

    1994-12-01

    Reprocessing of spent nuclear fuel (SNF) at the Hanford Site Plutonium-Uranium Extraction Plant (PUREX) was terminated in 1972. Since that time a significant quantity of N Reactor and Single-Pass Reactor SNF has been stored in the 100 Area K-East (KE) and K-West (KW) reactor basins. Approximately 80% of all US Department of Energy (DOE)-owned SNF resides at Hanford, the largest portion of which is in the water-filled KE and KW reactor basins. The basins were not designed for long-term storage of the SNF and it has become a priority to move the SNF to a more suitable location. As part of the project plan, SNF inventories will be chemically and physically characterized to provide information that will be used to resolve safety and technical issues for development of an environmentally benign and efficient extended interim storage and final disposition strategy for this defense production-reactor SNF.

  8. High-speed mixture fraction and temperature imaging of pulsed, turbulent fuel jets auto-igniting in high-temperature, vitiated co-flows

    NASA Astrophysics Data System (ADS)

    Papageorge, Michael J.; Arndt, Christoph; Fuest, Frederik; Meier, Wolfgang; Sutton, Jeffrey A.

    2014-07-01

    In this manuscript, we describe an experimental approach to simultaneously measure high-speed image sequences of the mixture fraction and temperature fields during pulsed, turbulent fuel injection into a high-temperature, co-flowing, and vitiated oxidizer stream. The quantitative mixture fraction and temperature measurements are determined from 10-kHz-rate planar Rayleigh scattering and a robust data processing methodology which is accurate from fuel injection to the onset of auto-ignition. In addition, the data processing is shown to yield accurate temperature measurements following ignition to observe the initial evolution of the "burning" temperature field. High-speed OH* chemiluminescence (CL) was used to determine the spatial location of the initial auto-ignition kernel. In order to ensure that the ignition kernel formed inside of the Rayleigh scattering laser light sheet, OH* CL was observed in two viewing planes, one near-parallel to the laser sheet and one perpendicular to the laser sheet. The high-speed laser measurements are enabled through the use of the unique high-energy pulse burst laser system which generates long-duration bursts of ultra-high pulse energies at 532 nm (>1 J) suitable for planar Rayleigh scattering imaging. A particular focus of this study was to characterize the fidelity of the measurements both in the context of the precision and accuracy, which includes facility operating and boundary conditions and measurement of signal-to-noise ratio (SNR). The mixture fraction and temperature fields deduced from the high-speed planar Rayleigh scattering measurements exhibited SNR values greater than 100 at temperatures exceeding 1,300 K. The accuracy of the measurements was determined by comparing the current mixture fraction results to that of "cold", isothermal, non-reacting jets. All profiles, when properly normalized, exhibited self-similarity and collapsed upon one another. Finally, example mixture fraction, temperature, and OH* emission

  9. Results of turbojet engine operation tests using a 50-50 mixture of JP-4 and tributyl borate as the fuel

    NASA Technical Reports Server (NTRS)

    Schafer, Louis J , Jr; Stepka, Francis S

    1957-01-01

    An experimental investigation was conducted on a centrifugal-type turbojet engine using a 50-50 mixture of tributyl borate and JP-4 as the fuel to determine the magnitude and the location of the boric oxide deposits in the engine as well as the effect of these deposits on the engine performance. Large deposits of boric acid formed in the combustor walls and on the turbine rotor and stator blades. The deposits had no effect on the engine thrust.

  10. Criticality safety evaluation for long term storage of FFTF fuel in interim storage casks

    SciTech Connect

    Richard, R.F.

    1995-05-11

    It has been postulated that a degradation phenomenon, referred to as ``hot cell rot``, may affect irradiated FFTF mixed plutonium-uranium oxide (MOX) fuel during dry interim storage. ``Hot cell rot`` refers to a variety of phenomena that degrade fuel pin cladding during exposure to air and inert gas environments. It is thought to be a form of caustic stress corrosion cracking or environmentally assisted cracking. Here, a criticality safety analysis was performed to address the effect of the ``hot cell rot`` phenomenon on the long term storage of irradiated FFTF fuel in core component containers. The results show that seven FFTF fuel assemblies or six Ident-69 pin containers stored in core component containers within interim storage casks will remain safely subcritical.

  11. System for transport of mixtures of solid particulate fuel and air, and rotary distributor suitable for use therein

    SciTech Connect

    Boldt, D.M.; Mcclellan, E.

    1982-02-02

    Fine particulate solid fuel particles are delivered from a venturi ejector to a rotating double-armed distributor which distributes fuel and air sequentially to conduits leading to the burner ejector of a kiln. The distributor is sealed and pressurized with air so as to provide the conduits with additional pulses of air following the times at which they receive fuel and air from the distributing operation.

  12. Theoretical performance of JP-4 fuel with a 70-30 mixture of fluorine and oxygen as a rocket propellant : equilibrium composition

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1956-01-01

    Data were calculated for equivalence ratios of 1 to 4, chamber pressures of 300 and 600 pounds per square inch absolute, and pressure ratios of 1 to 1500. Parameters included are specific impulse, combustion and exit temperatures, molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, isentropic exponent, viscosity, and thermal conductivity. A correlation is given which permits determination of performance for a wide range of chamber pressures. A method for obtaining specific impulse of JP-4 fuel with OF2 and O3-F2 mixtures is given.

  13. Hazards Induced by Breach of Liquid Rocket Fuel Tanks: Conditions and Risks of Cryogenic Liquid Hydrogen-Oxygen Mixture Explosions

    NASA Technical Reports Server (NTRS)

    Osipov, Viatcheslav; Muratov, Cyrill; Hafiychuk, Halyna; Ponizovskya-Devine, Ekaterina; Smelyanskiy, Vadim; Mathias, Donovan; Lawrence, Scott; Werkheiser, Mary

    2011-01-01

    We analyze the data of purposeful rupture experiments with LOx and LH2 tanks, the Hydrogen-Oxygen Vertical Impact (HOVI) tests that were performed to clarify the ignition mechanisms, the explosive power of cryogenic H2/Ox mixtures under different conditions, and to elucidate the puzzling source of the initial formation of flames near the intertank section during the Challenger disaster. We carry out a physics-based analysis of general explosions scenarios for cryogenic gaseous H2/Ox mixtures and determine their realizability conditions, using the well-established simplified models from the detonation and deflagration theory. We study the features of aerosol H2/Ox mixture combustion and show, in particular, that aerosols intensify the deflagration flames and can induce detonation for any ignition mechanism. We propose a cavitation-induced mechanism of self-ignition of cryogenic H2/Ox mixtures that may be realized when gaseous H2 and Ox flows are mixed with a liquid Ox turbulent stream, as occurred in all HOVI tests. We present an overview of the HOVI tests to make conclusion on the risk of strong explosions in possible liquid rocket incidents and provide a semi-quantitative interpretation of the HOVI data based on aerosol combustion. We uncover the most dangerous situations and discuss the foreseeable risks which can arise in space missions and lead to tragic outcomes. Our analysis relates to only unconfined mixtures that are likely to arise as a result of liquid propellant space vehicle incidents.

  14. Response of selected plant and insect species to simulated solid rocket exhaust mixtures and to exhaust components from solid rocket fuels

    NASA Technical Reports Server (NTRS)

    Heck, W. W.; Knott, W. M.; Stahel, E. P.; Ambrose, J. T.; Mccrimmon, J. N.; Engle, M.; Romanow, L. A.; Sawyer, A. G.; Tyson, J. D.

    1980-01-01

    The effects of solid rocket fuel (SRF) exhaust on selected plant and and insect species in the Merritt Island, Florida area was investigated in order to determine if the exhaust clouds generated by shuttle launches would adversely affect the native, plants of the Merritt Island Wildlife Refuge, the citrus production, or the beekeeping industry of the island. Conditions were simulated in greenhouse exposure chambers and field chambers constructed to model the ideal continuous stirred tank reactor. A plant exposure system was developed for dispensing and monitoring the two major chemicals in SRF exhaust, HCl and Al203, and for dispensing and monitoring SRF exhaust (controlled fuel burns). Plants native to Merritt Island, Florida were grown and used as test species. Dose-response relationships were determined for short term exposure of selected plant species to HCl, Al203, and mixtures of the two to SRF exhaust.

  15. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature.

    PubMed

    Saqib, Naeem; Bäckström, Mattias

    2014-12-01

    Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine content have significant effects on partitioning characteristics by increasing the formation and vaporization of highly volatile metal chlorides. Zinc and cadmium concentrations in fly ash increase with the incineration temperature. PMID:25263218

  16. Measurements of some parameters of thermal sparks with respect to their ability to ignite aviation fuel/air mixtures

    NASA Technical Reports Server (NTRS)

    Haigh, S. J.; Hardwick, C. J.; Baldwin, R. E.

    1991-01-01

    A method used to generate thermal sparks for experimental purposes and methods by which parameters of the sparks, such as speed, size, and temperature, were measured are described. Values are given of the range of such parameters within these spark showers. Titanium sparks were used almost exclusively, since it is particles of this metal which are found to be ejected during simulation tests to carbon fiber composite (CFC) joints. Tests were then carried out in which titanium sparks and spark showers were injected into JP4/(AVTAG F40) mixtures with air. Single large sparks and dense showers of small sparks were found to be capable of causing ignition. Tests were then repeated using ethylene/air mixtures, which were found to be more easily ignited by thermal sparks than the JP4/ air mixtures.

  17. Novel anisole mixture and gasoline containing the same

    DOEpatents

    Singerman, Gary M.

    1982-01-26

    A novel anisole mixture containing anisole and a mixture of alkyl anisoles and liquid hydrocarbon fuels containing said novel anisole mixture in an amount sufficient to increase the octane number of said liquid fuel composition.

  18. Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks

    SciTech Connect

    Karmis, Michael; Luttrell, Gerald; Ripepi, Nino; Bratton, Robert; Dohm, Erich

    2014-06-30

    The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderless coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NO{sub x}, CO{sub 2}, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.

  19. Operational comparison of TLD albedo dosemeters and solid state nuclear tracks detectors in fuel fabrication facilities.

    PubMed

    Tsujimura, N; Takada, C; Yoshida, T; Momose, T

    2007-01-01

    The authors carried out an operational study that compared the use of TLD albedo dosemeters and solid state nuclear tracks detector in plutonium environments of Japan Nuclear Cycle Development Institute, Tokai Works. A selected group of workers engaged in the fabrication process of MOX (Plutonium-Uranium mixed oxide) fuel wore both TLD albedo dosemeters and solid state nuclear tracks detectors. The TL readings were generally proportional to the counted etch-pits, and thus the dose equivalent results obtained from TLD albedo dosemeter agreed with those from solid state nuclear tracks detector within a factor of 1.5. This result indicates that, in the workplaces of the MOX fuel plants, the neutron spectrum remained almost constant in terms of time and space, and the appropriate range of field-specific correction with spectrum variations was small in albedo dosimetry. PMID:17337735

  20. FUEL 84: CO2/SO2 sequestration via brine/bauxite residue mixture

    SciTech Connect

    Soong, Yee; Dilmore, R, M.; Hedges, Sheila W.; Griffith, Craig A.; Romanov, V.; Allen, D. E.; Zhu, Chen; Fu, J. K.

    2008-08-17

    A novel concept that can achieve neutralization of bauxite residue through reaction with acidic oil and gas field wastewater brines with subsequent carbonation with flue gas has been explored. Experiments were conducted to determine the ability of bauxite residue brine reactant mixtures to absorb and sequester CO2 and SO2 both from a concentrated stream and as components of a mixed flue gas. The use of bauxite residue/brine mixtures to capture and store CO2 can serve to not only help mitigate the impact of anthropogenic CO2 on global warming but also serve to achieve neutralization of the caustic industrial waste for safe storage.

  1. Thermodynamic analysis of a new combined cooling, heat and power system driven by solid oxide fuel cell based on ammonia-water mixture

    NASA Astrophysics Data System (ADS)

    Ma, Shaolin; Wang, Jiangfeng; Yan, Zhequan; Dai, Yiping; Lu, Bingheng

    2011-10-01

    Although a solid oxide fuel cell combined with a gas turbine (SOFC-GT) has good performance, the temperature of exhaust from gas turbine is still relatively high. In order to recover the waste heat of exhaust from the SOFC-GT to enhance energy conversion efficiency as well as to reduce the emissions of greenhouse gases and pollutants, in this study a new combined cooling, heat and power (CCHP) system driven by the SOFC is proposed to perform the trigeneration by using ammonia-water mixture to recover the waste heat of exhaust from the SOFC-GT. The CCHP system, whose main fuel is methane, can generate electricity, cooling effect and heat effect simultaneously. The overall system performance has been evaluated by mathematical models and thermodynamic laws. A parametric analysis is also conducted to examine the effects of some key thermodynamic parameters on the system performance. Results indicate that the overall energy conversion efficiency exceeds 80% under the given conditions, and it is also found that the increasing the fuel flow rate can improve overall energy conversion efficiency, even though both the SOFC efficiency and electricity efficiency decrease. Moreover, with an increased compressor pressure ratio, the SOFC efficiency, electricity efficiency and overall energy conversion efficiency all increase. Ammonia concentration and pressure entering ammonia-water turbine can also affect the CCHP system performance.

  2. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature

    SciTech Connect

    Saqib, Naeem Bäckström, Mattias

    2014-12-15

    Highlights: • Different solids waste incineration is discussed in grate fired and fluidized bed boilers. • We explained waste composition, temperature and chlorine effects on metal partitioning. • Excessive chlorine content can change oxide to chloride equilibrium partitioning the trace elements in fly ash. • Volatility increases with temperature due to increase in vapor pressure of metals and compounds. • In Fluidized bed boiler, most metals find themselves in fly ash, especially for wood incineration. - Abstract: Trace element partitioning in solid waste (household waste, industrial waste, waste wood chips and waste mixtures) incineration residues was investigated. Samples of fly ash and bottom ash were collected from six incineration facilities across Sweden including two grate fired and four fluidized bed incinerators, to have a variation in the input fuel composition (from pure biofuel to mixture of waste) and different temperature boiler conditions. As trace element concentrations in the input waste at the same facilities have already been analyzed, the present study focuses on the concentration of trace elements in the waste fuel, their distribution in the incineration residues with respect to chlorine content of waste and combustion temperature. Results indicate that Zn, Cu and Pb are dominating trace elements in the waste fuel. Highly volatile elements mercury and cadmium are mainly found in fly ash in all cases; 2/3 of lead also end up in fly ash while Zn, As and Sb show a large variation in distribution with most of them residing in the fly ash. Lithophilic elements such as copper and chromium are mainly found in bottom ash from grate fired facilities while partition mostly into fly ash from fluidized bed incinerators, especially for plants fuelled by waste wood or ordinary wood chips. There is no specific correlation between input concentration of an element in the waste fuel and fraction partitioned to fly ash. Temperature and chlorine

  3. Flame acceleration and the development of detonation in fuel-oxygen mixtures at elevated temperatures and pressures.

    PubMed

    Thomas, G O

    2009-04-30

    Experimental measurements of the conditions required for the development of detonation in a 7 mm tube following ignition by a low energy spark are reported. There are then compared to previous experimental propagation limit criterion using theoretical predictions of detonation cell sizes based on a one-dimensional detonation length scale computed using a detailed chemical kinetic scheme. Technical difficulties precluded direct cell size measurements. Ethylene-oxygen and hydrogen-methane-oxygen mixtures were investigated as well as methane-ammonia-oxygen, at initial pressures and temperatures in the ranges 1-7 bar and 293-540 K, respectively. The likelihood of detonation in ethylene-air mixtures in 150 mm and 50mm pipes at ambient initial conditions is also discussed in relation to published cell width data.The results indicate that whilst detonation cell width predictions do not provide a quantitative measure of the conditions for which detonation may develop in a pipe of given diameter, for prescribed initial conditions, predicted detonation cell size data does provide useful qualitative guidance as to possible hazardous compositions, particularly if preliminary experimental safety testing is thought to be necessary. PMID:18782653

  4. Upgrading of consumer characteristics of granulated solid fuel from mixture of low-grade coal and biomass

    NASA Astrophysics Data System (ADS)

    Kuzmina, J. S.; Milovanov, O. Yu; Sinelshchikov, V. A.; Sytchev, G. A.; Zaichenko, V. M.

    2015-11-01

    Effect of torrefaction on consumer characteristics of fuel pellets made of low-grade and agricultural waste is shown. Data on the volatile content, ash content, calorific value and hygroscopicity for initial pellets and pellets, heat-treated at various temperatures are presented. The experimental study of the combustion process of initial and heat-treated pellets showed that torrefaction of pellets leads to a decreasing of the ignition temperature and an increasing of the efficiency of boiler plant.

  5. A Kinetic Modeling study on the Oxidation of Primary Reference Fuel?Toluene Mixtures Including Cross Reactions between Aromatics and Aliphatics

    SciTech Connect

    Sakai, Y; Miyoshi, A; Koshi, M; Pitz, W J

    2008-01-09

    A detailed chemical kinetic model for the mixtures of Primary Reference Fuel (PRF: n-heptane and iso-octane) and toluene has been proposed. This model is divided into three parts; a PRF mechanism [T. Ogura et al., Energy & Fuels 21 (2007) 3233-3239], toluene sub-mechanism and cross reactions between PRF and toluene. Toluene sub-mechanism includes the low temperature kinetics relevant to engine conditions. A chemical kinetic mechanism proposed by Pitz et al. [Proc. the 2nd Joint Meeting of the U.S. Combust. Institute (2001)] was used as a starting model and modified by updating rate coefficients. Theoretical estimations of rate coefficients were performed for toluene and benzyl radical reactions important at low temperatures. Cross-reactions between alkane, alkene, and aromatics were also included in order to account for the acceleration by the addition of toluene into iso-octane recently found in the shock tube study of the ignition delay [Y. Sakai et al, SAE 2007-01-4014 (2007)]. Validations of the model were performed with existing shock tube and flow tube data. The model well predicts the ignition characteristics of toluene and PRF/Toluene mixtures under the wide range of temperatures (500-1700 K) and pressures (2-50 atm). It is found that reactions of benzyl radical with oxygen molecule determine the reactivity of toluene at low temperature. Although the effect of toluene addition to iso-octane is not fully resolved, the reactions of alkene with benzyl radical have the possibility to account for the kinetic interactions between PRF and toluene.

  6. MnO2 nanotube-Pt/graphene mixture as an ORR catalyst for proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Divya, P.; Ramaprabhu, S.

    2013-02-01

    In the present study, MnO2 nanotubes are synthesized by hydrothermal method and Pt/graphene by co reduction of hexachloroplatinic acid and graphite oxide. The formation of MnO2 nanotubes and Pt/graphene are confirmed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy. MnO2 nanotubes are mixed with Pt/graphene is applied as the ORR catalyst in proton exchange membrane fuel cell. The single cell measurement is carried out after fabricating the membrane electrode assembly and polarization curves are recorded at different temperatures and the results are discussed.

  7. Influence of the composition of isopropyl alcohol/water mixture solvents in catalyst ink solutions on proton exchange membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Ngo, Trung Truc; Yu, T. Leon; Lin, Hsiu-Li

    2013-03-01

    We study the morphology of Nafion in the dilute IPA (isopropyl alcohol)/water mixture solutions containing 20-100 wt.% of IPA and in the Pt-C/Nafion gas diffusion electrodes (GDEs; where Pt-C is the carbon powder deposited on its surface with Pt particles), which are prepared by spraying on the carbon paper surfaces with a layer of Pt-C, Nafion and IPA/water ink solution. The fuel cell performance of the GDEs strongly depends on the Nafion morphology in the ink solutions. A lower IPA content in the Pt-C/Nafion ink solutions results in the formation of larger and higher negatively charged Nafion aggregated particles, which leads to higher steric hindrance of the deposition of Nafion ionomer on the surface of Pt-C particles and thus a thinner Nafion film in contact on the Pt-C particle surfaces. The thinner Nafion film in contact with the Pt particles in the CL increases the chances of the Pt particles in contact with the H2/O2 gas, leading to a higher fuel cell performance.

  8. Modelling of radiation field around spent fuel container.

    PubMed

    Kryuchkov, E F; Opalovsky, V A; Tikhomirov, G V

    2005-01-01

    Operation of nuclear reactors leads to the production of spent nuclear fuel (SNF). There are two basic strategies of SNF management: ultimate disposal of SNF in geological formations and recycle or repeated utilisation of reprocessed SNF. In both options, there is an urgent necessity to study radiation properties of SNF. Information about SNF radiation properties is required at all stages of SNF management. In order to reach more effective utilisation of nuclear materials, new fuel cycles are under development based on uranium-plutonium, uranium-thorium and some other types of nuclear fuel. These promising types of nuclear fuel are characterised by quite different radiation properties at all the stages of nuclear fuel cycle (NFC) listed above. So, comparative analysis is required for radiation properties of different nuclear fuel types at different NFC stages. The results presented here were obtained from the numerical analysis of the radiation field around transport containers of different SNF types and in SNF storage. The calculations are carried out with the application of the computer code packages SCALE-4.3 and MCNP-4C. Comparison of the dose parameters obtained for different models of the transport container with experimental data allowed us to make certain conclusions about the errors of numerical results caused by the approximate geometrical description of the transport container. PMID:16604702

  9. Nuclear Fuel Reprocessing

    SciTech Connect

    Harold F. McFarlane; Terry Todd

    2013-11-01

    Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore. Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor

  10. Comparison of quartz tuning forks and AlN-based extensional microresonators for viscosity measurements in oil/fuel mixtures

    NASA Astrophysics Data System (ADS)

    Toledo, J.; Manzaneque, T.; Hernando-García, J.; Vazquez, J.; Ababneh, A.; Seidel, H.; Lapuerta, M.; Sánchez-Rojas, J. L.

    2013-05-01

    In-situ monitoring of the physical properties of liquids is of great interest in the automotive industry. For example, lubricants are subject to dilution with diesel fuel as a consequence of late-injection processes, which are necessary for regenerating diesel particulate filters. This dilution can be determined by tracking the viscosity and the density of the lubricant. Here we report the test of two in-plane movement based resonators to explore their capability to monitor oil dilution with diesel and biodiesel. One of the resonators is the commercially available millimeter-sized quartz tuning fork, working at 32.7 kHz. The second resonator is a state-of-the-art micron-sized AlN-based rectangular plate, actuated in the first extensional mode in the MHz range. Electrical impedance measurements were carried out to characterize the performance of the structures in various liquid media in a wide range of viscosities. These measurements were completed with the development of low-cost electronic circuits to track the resonance frequency and the quality factor automatically, these two parameters allow to obtain the viscosity of various fluids under investigation, as in the case of dilution of lubricant SAE 15W40 and biodiesel.

  11. Improvement of performance in low temperature solid oxide fuel cells operated on ethanol and air mixtures using Cu-ZnO-Al2O3 catalyst layer

    NASA Astrophysics Data System (ADS)

    Morales, M.; Espiell, F.; Segarra, M.

    2015-10-01

    Anode-supported single-chamber solid oxide fuel cells with and without Cu-ZnO-Al2O3 catalyst layers deposited on the anode support have been operated on ethanol and air mixtures. The cells consist of gadolinia-doped ceria electrolyte, Ni-doped ceria anode, and La0.6Sr0.4CoO3-δ-doped ceria cathode. Catalyst layers with different Cu-ZnO-Al2O3 ratios are deposited and sintered at several temperatures. Since the performance of single-chamber fuel cells strongly depends on catalytic properties of electrodes for partial oxidation of ethanol, the cells are electrochemically characterized as a function of the temperature, ethanol-air molar ratio and gas flow rate. In addition, catalytic activities of supported anode, catalytic layer-supported anode and cathode for partial oxidation of ethanol are analysed. Afterwards, the effect of composition and sintering temperature of catalyst layer on the cell performance are determined. The results indicate that the cell performance can be significantly enhanced using catalyst layers of 30:35:35 and 40:30:30 wt.% Cu-ZnO-Al2O3 sintered at 1100 °C, achieving power densities above 50 mW cm-2 under 0.45 ethanol-air ratio at temperatures as low as 450 °C. After testing for 15 h, all cells present a gradual loss of power density, without carbon deposition, which is mainly attributed to the partial re-oxidation of Ni at the anode.

  12. Analysis of the electrochemical performance of MoNi-CeO2 cermet as anode material for solid oxide fuel cell. Part I. H2, CH4 and H2/CH4 mixtures as fuels

    NASA Astrophysics Data System (ADS)

    Escudero, M. J.; Gómez de Parada, I.; Fuerte, A.; Serrano, J. L.

    2014-05-01

    This paper investigates the catalytic activity and the electrochemical performance of bimetallic formulation combining Mo and Ni with CeO2 (MoNi-Ce) in relation its potential use as anode material for SOFC. The catalytic properties were evaluated for methane partial oxidation as function of temperature and the carbon deposition on the anode surface was analysed by TG-MS. A conversion of 12.8% was reached for partial methane oxidation at 850 °C as well as a high coke resistance. The electrochemical performance was studied in a single cell with La0.58Sr0.4Fe0.8Co0.2O3-δ (LSCF) as cathode, La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) as electrolyte and MoNi-Ce as anode. A thin buffer layer of La0.4Ce0.6O4-δ (LCD) between anode and electrolyte was used to avoid possible interfacial reactions. The cell was tested in different humidified fuels (H2, CH4 and H2/CH4 mixtures) and static air at 750, 800 and 850 °C. The electrochemical behaviour was evaluated by current-voltage curves, impedance spectroscopy and load demand. Stability tests were also performed in pure CH4 at each studied temperature in order to assess degradation of the electrochemical cell performance. No significant performance degradation was detected in all studied fuels even pure methane, which suggests that MoNi-Ce is a suitable anode material for direct methane SOFC.

  13. Fuel composition

    SciTech Connect

    Johnson, T.H.

    1990-06-26

    This patent describes a motor fuel composition. It comprises: a mixture of hydrocarbons in the gasoline boiling range containing a deposit preventing or reducing effective amount of poly(olefin)-N-substituted- carbamate.

  14. 33 CFR 155.370 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... approved under paragraph (a) of this section, it must meet current standards in 46 CFR part 162, subpart... oily mixtures on ships certificated under 46 CFR Chapter I shall meet the requirements of 46 CFR...

  15. Synthesis of the U.S. specified ceramics using MOX fuel production expertise

    NASA Astrophysics Data System (ADS)

    Astafiev, V. A.; Glushenkov, A. E.; Sideinikov, M.; Borisov, G. B.; Mansourov, O. A.; Jardine, L. J.

    2000-07-01

    At present, under the auspices of the USA/Russia agreements, joint work is under way to dispose of excess plutonium being withdrawn from nuclear defense programs. A major approach is to produce mixed plutonium-uranium fuel (MOX fuel) for its further burnup in different nuclear reactors. Plutonium-containing materials, which upon their composition or from an economic standpoint cannot be used for MOX fuel production, are to be immobilized into solid ceramic and glass-type matrices with their safe storage and eventual geologic disposal. For an immobilization form in the U.S., it is proposed to use ceramics based on pyrochlore developed at LLNL that is capable of incorporating up to 10 wt.% PuO2 and 23 wt.% UO2. At VNIINM, work was done to assess the possibility of using equipment and expertise of MOX-fuel production to fabricate the ceramics. A few of the ceramic samples were synthesized, and basic physicochemical properties, including the homogeneity of the plutonium and uranium distributions in the matrix, density, and pellet porosity, were also measured.

  16. Program of basic research on the utilization of coal-water mixture fuels. Quarterly report for the period ending September 30, 1981

    SciTech Connect

    Casassa, E.Z.; Padmanaban, J.; Parfitt, G.D.; Rao, S.A.; Rubin, E.S.; Sommer, H.T.; Toor, E.W.

    1981-01-01

    The objective of this research involves improving basic understanding of two areas of special importance to the successful use of coal-water slurries: mixture stability and atomization. The present report covers progress for the calendar quarter ending September 30, 1981; hence, reivews the start-up activities for the first three weeks of the project. Section 2 of this report reviews activities in the study of mixture stability. Section 3 discusses studies on the atomization of coal-water slurries. Sections 2 and 3 each are organized according to specific tasks listed in the proposal Statement of Work.

  17. Utilization of the heat of catalytic combustion of low-calorie gaseous fuel mixtures by reversing the direction of their input

    SciTech Connect

    Boreskov, G.K.; Ivanov, A.G.; Matros, Y.S.

    1986-05-01

    In the recovery and processing of various industrial raw materials, gas-air mixtures are formed which contain small quantities of carbon monoxide, methane, and other combustible substances. This paper proposes and discusses a method of obtaining high-level heat from these low concentration gases. A nonsteady-state method is proposed in which the reaction mixture is fed at low temperature into a reactor and onto an initially warmed-up stationary catalyst bed; the direction of the feed is periodically reversed. This process forms a slowly migrating front of an exothermic chemical reaction in the bed.

  18. Facility effluent monitoring plan for the plutonium uranium extraction facility

    SciTech Connect

    Wiegand, D.L.

    1994-09-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  19. Fuel compositions

    SciTech Connect

    Zaweski, E.F.; Niebylski, L.M.

    1986-09-23

    This patent describes a distillate fuel for indirect injection compression ignition engines containing at least the combination of (i) organic nitrate ignition accelerator, and (ii) an additive selected from the group consisting of alkenyl substituted succinimide, alkenyl substituted succinamide and mixtures thereof. The alkenyl substituent contains about 12-36 carbon atoms, the additive being made by the process comprising (a) isomerizing the double bond of an ..cap alpha..-olefin containing about 12-36 carbon atoms to obtain a mixture of internal olefins, (b) reacting the mixture of internal olefins with maleic acid, anhydride or ester to obtain an intermediate alkenyl substituted succinic acid, anhydride or ester, and (c) reacting the intermediate with ammonia to form a succinimide, succinamide or mixture thereof. The combination is present in an amount sufficient to minimize the coking characteristics of such fuel, especially throttling nozzle coking in the prechambers or swirl chambers of indirect injection compression ignition engines operated on such fuel.

  20. Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint U.S./ Russian Progress Report for Fiscal Year 1997, Volume 4, Part 8 - Neutron Poison Plates in Assemblies Containing Homogeneous Mixtures of Polystyrene-Moderated Plutonium and Uranium Oxides

    SciTech Connect

    Yavuz, M.

    1999-05-01

    In the 1970s at the Battelle Pacific Northwest Laboratory (PNL), a series of critical experiments using a remotely operated Split-Table Machine was performed with homogeneous mixtures of (Pu-U)O{sub 2}-polystyrene fuels in the form of square compacts having different heights. The experiments determined the critical geometric configurations of MOX fuel assemblies with and without neutron poison plates. With respect to PuO{sub 2} content and moderation [H/(Pu+U)atomic] ratio (MR), two different homogeneous (Pu-U) O{sub 2}-polystyrene mixtures were considered: Mixture (1) 14.62 wt% PuO{sub 2} with 30.6 MR, and Mixture (2) 30.3 wt% PuO{sub 2} with 2.8 MR. In all mixtures, the uranium was depleted to about O.151 wt% U{sup 235}. Assemblies contained copper, copper-cadmium or aluminum neutron poison plates having thicknesses up to {approximately}2.5 cm. This evaluation contains 22 experiments for Mixture 1, and 10 for Mixture 2 compacts. For Mixture 1, there are 10 configurations with copper plates, 6 with aluminum, and 5 with copper-cadmium. One experiment contained no poison plate. For Mixture 2 compacts, there are 3 configurations with copper, 3 with aluminum, and 3 with copper-cadmium poison plates. One experiment contained no poison plate.

  1. 33 CFR 155.370 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... approved under paragraph (a) of this section, it must meet current standards in 46 CFR part 162, subpart... oily mixtures on ships certificated under 46 CFR Chapter I shall meet the requirements of 46 CFR 56.50... oil tank ballast water discharges on oceangoing ships of 10,000 gross tons and above and...

  2. 33 CFR 155.370 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... approved under paragraph (a) of this section, it must meet current standards in 46 CFR part 162, subpart... oily mixtures on ships certificated under 46 CFR Chapter I shall meet the requirements of 46 CFR 56.50... oil tank ballast water discharges on oceangoing ships of 10,000 gross tons and above and...

  3. Combustion of Gaseous Mixtures

    NASA Technical Reports Server (NTRS)

    Duchene, R

    1932-01-01

    This report not only presents matters of practical importance in the classification of engine fuels, for which other means have proved inadequate, but also makes a few suggestions. It confirms the results of Withrow and Boyd which localize the explosive wave in the last portions of the mixture burned. This being the case, it may be assumed that the greater the normal combustion, the less the energy developed in the explosive form. In order to combat the detonation, it is therefore necessary to try to render the normal combustion swift and complete, as produced in carbureted mixtures containing benzene (benzol), in which the flame propagation, beginning at the spark, yields a progressive and pronounced darkening on the photographic film.

  4. Metallography of pitted aluminum-clad, depleted uranium fuel

    SciTech Connect

    Nelson, D.Z.; Howell, J.P.

    1994-12-01

    The storage of aluminum-clad fuel and target materials in the L-Disassembly Basin at the Savannah River Site for more than 5 years has resulted in extensive pitting corrosion of these materials. In many cases the pitting corrosion of the aluminum clad has penetrated in the uranium metal core, resulting in the release of plutonium, uranium, cesium-137, and other fission product activity to the basin water. In an effort to characterize the extent of corrosion of the Mark 31A target slugs, two unirradiated slug assemblies were removed from basin storage and sent to the Savannah River Technology Center for evaluation. This paper presents the results of the metallography and photographic documentation of this evaluation. The metallography confirmed that pitting depths varied, with the deepest pit found to be about 0.12 inches (3.05 nun). Less than 2% of the aluminum cladding was found to be breached resulting in less than 5% of the uranium surface area being affected by corrosion. The overall integrity of the target slug remained intact.

  5. Variable mixture ratio performance through nitrogen augmentation

    NASA Technical Reports Server (NTRS)

    Beichel, R.; Obrien, C. J.; Bair, E. K.

    1988-01-01

    High/variable mixture ratio O2/H2 candidate engine cycles are examined for earth-to-orbit vehicle application. Engine performance and power balance information are presented for the candidate cycles relative to chamber pressure, bulk density, and mixture ratio. Included in the cycle screening are concepts where a third fluid (liquid nitrogen) is used to achieve a variable mixture ratio over the trajectory from liftoff to earth orbit. The third fluid cycles offer a very low risk, fully reusable, low operation cost alternative to high/variable mixture ratio bipropellant cycles. Variable mixture ratio engines with extendible nozzle are slightly lower performing than a single mixture ratio engine (MR = 7:1) with extendible nozzle. Dual expander engines (MR = 7:1) have slightly better performance than the single mixture ratio engine. Dual fuel dual expander engines offer a 16 percent improvement over the single mixture ratio engine.

  6. 33 CFR 155.330 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on U.S. non-oceangoing ships.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... oil tank ballast water discharges on U.S. non-oceangoing ships. 155.330 Section 155.330 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS...)/fuel oil tank ballast water discharges on U.S. non-oceangoing ships. (a) No person may operate a...

  7. 33 CFR 155.330 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on U.S. non-oceangoing ships.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... oil tank ballast water discharges on U.S. non-oceangoing ships. 155.330 Section 155.330 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS...)/fuel oil tank ballast water discharges on U.S. non-oceangoing ships. (a) No person may operate a...

  8. 33 CFR 155.330 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on U.S. non-oceangoing ships.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... oil tank ballast water discharges on U.S. non-oceangoing ships. 155.330 Section 155.330 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION OIL OR HAZARDOUS...)/fuel oil tank ballast water discharges on U.S. non-oceangoing ships. (a) No person may operate a...

  9. Investigation of structural and chemical transitions in copper oxide microstructures produced by combustion waves in a mixture of CuO-Cu2O-Cu and fuel

    NASA Astrophysics Data System (ADS)

    Hwang, Hayoung; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2015-12-01

    The application of micro/nanostructured materials to combustion enables distinctive chemical reactions that can be used to modulate the reaction rates. Simultaneously, combustion is capable of changing the intrinsic properties of micro/nanostructured materials based on chemical interactions in high-temperature conditions. In this work, we investigate the structural-chemical transition of copper oxide microstructures exposed to interfacially driven combustion waves. The high thermal energy and exchange of chemical compounds resulting from the instant combustion waves cause direct transition without any further processes. The precise characterization of the structural and chemical transitions in the copper oxide microstructures and chemical fuels confirm that the self-propagating combustion waves in the layered composites of Cu/Cu2O/CuO microparticle-based films and the chemical fuel layers yield the direct synthesis of Cu(OH)2 flower-like structures and nanowires. The propagation of combustion waves at the interface induces an increase of the surface temperatures over 650 °C and the direct interaction between the copper oxide and chemical compounds of the fuel layers. Further application of these interfacially driven combustion waves will contribute to the development of one-step, fast, low-cost methods for the synthesis of micro/nanostructured materials.

  10. Method for producing hydrocarbon and alcohol mixtures. [Patent application

    DOEpatents

    Compere, A.L.; Googin, J.M.; Griffith, W.L.

    1980-12-01

    It is an object of this invention to provide an efficient process for extracting alcohols and ketones from an aqueous solution containing the same into hydrocarbon fuel mixtures, such as gasoline, diesel fuel and fuel oil. Another object of the invention is to provide a mixture consisting of hydrocarbon, alcohols or ketones, polyoxyalkylene polymer and water which can be directly added to fuels or further purified. The above stated objects are achieved in accordance with a preferred embodiment of the invention by contacting an aqueous fermentation liquor with a hydrocarbon or hydrocarbon mixture containing carbon compounds having 5 to 18 carbon atoms, which may include gasoline, diesel fuel or fuel oil. The hydrocarbon-aqueous alcohol solution is mixed in the presence or one or more of a group of polyoxyalkylene polymers described in detail hereinafter; the fermentation alcohol being extracted into the hydrocarbon fuel-polyoxyalkylene polymer mixture.

  11. Effects of hydrogen preconversion on the homogeneous ignition of fuel-lean H{sub 2}/O{sub 2}/N{sub 2}/CO{sub 2} mixtures over platinum at moderate pressures

    SciTech Connect

    Ghermay, Yohannes; Mantzaras, John; Bombach, Rolf

    2010-10-15

    The impact of fractional hydrogen preconversion on the subsequent homogeneous ignition characteristics of fuel-lean (equivalence ratio {phi} = 0.30) H{sub 2}/O{sub 2}/N{sub 2}/CO{sub 2} mixtures over platinum was investigated experimentally and numerically at pressures of 1, 5 and 8 bar. Experiments were performed in an optically accessible channel-flow reactor and involved Raman measurements of major species over the catalyst boundary layer and planar laser induced fluorescence (LIF) of the OH radical. Simulations were carried out with a 2-D elliptic code that included detailed hetero-/homogeneous chemistry. The predictions reproduced the LIF-measured onset of homogeneous ignition and the Raman-measured transport-limited catalytic hydrogen consumption. For 0% preconversion and wall temperatures in the range 900 K {<=} T{sub w} {<=} 1100 K, homogeneous ignition was largely suppressed for p {>=} 5 bar due to the combined effects of intrinsic gas-phase hydrogen kinetics and the competition between the catalytic and gas-phase pathways for fuel consumption. A moderate increase of preconversion to 30% restored homogeneous combustion for p {>=} 5 bar, despite the fact that the water formed due to the upstream preconversion inhibited homogeneous ignition. The catalytically-produced water inhibited gas-phase combustion, particularly at higher pressures, and this kinetic inhibition was exacerbated by the diffusional imbalance of hydrogen that led to over-stoichiometric amounts of water in the near-wall hot ignitable regions. Radical adsorption/desorption reactions hindered the onset of homogeneous ignition and this effect was more pronounced at 1 bar. On the other hand, over the post-ignition reactor length, radical adsorption/desorption reactions significantly suppressed gas-phase combustion at 5 and 8 bar while their impact at 1 bar was weaker. By increasing hydrogen preconversion, the attained superadiabatic surface temperatures could be effectively suppressed. An

  12. Chemical characterization and toxicologic evaluation of airborne mixtures: inhalation toxicology of diesel fuel obscurant aerosol in Spargue-Dawley rats. Final report, phase 2, repeated exposures

    SciTech Connect

    Dalbey, W.; Lock, S., Schmoyer, R.

    1982-07-01

    A series of repeated exposures of rats to aerosolized diesel fuel was performed to help establish indices of potential toxicity resulting from aerosol exposure and the relative importance of duration of exposures, the frequence of exposures, and aerosol concentration in the induction of observed lesions. Body weight and food consumption were recorded on a weekly basis. Assays were performed on selected animals within 1-2 days after the last exposure or after 2 weeks without exposure. Endpoints included number and phagocytic activity of pulmonary free cells, pulmonary function tests, neurotoxicity assays, clinical chemistry, organ weights, and histopathology. Data were analyzed by analysis of variance. After exposure, the primary target organ was the lungs. Focal accumulations of pulmonary free cells were observed in the lung parenchyma, associated with thickening and hypercellularity of alveolar walls. The number of lavaged pulmonary free cells correlated well with histologic observations, remaining elevated after two weeks without exposure. Lung volumes were altered by exposure, including increased FRC, decreased TLC, and decreased VC. Carbon monoxide diffusing capacity was decreased in several exposed groups also. None of the more systemic changes observed were considered to be of biologic significance, even though the exposure conditions were considered to result in a maximum tolerated dose. Frequency of exposure was the dominant variable over the range of parameters used in this study, 3 exposures/wk being more deleterious than 1/week. Variation in duration of exposure appeared to have very little effect and a dose-response was often not apparent with differences in concentration. 12 references, 13 figures, 18 tables.

  13. Gas-phase detonation propagation in mixture composition gradients.

    PubMed

    Kessler, D A; Gamezo, V N; Oran, E S

    2012-02-13

    The propagation of detonations through several fuel-air mixtures with spatially varying fuel concentrations is examined numerically. The detonations propagate through two-dimensional channels, inside of which the gradient of mixture composition is oriented normal to the direction of propagation. The simulations are performed using a two-component, single-step reaction model calibrated so that one-dimensional detonation properties of model low- and high-activation-energy mixtures are similar to those observed in a typical hydrocarbon-air mixture. In the low-activation-energy mixture, the reaction zone structure is complex, consisting of curved fuel-lean and fuel-rich detonations near the line of stoichiometry that transition to decoupled shocks and turbulent deflagrations near the channel walls where the mixture is extremely fuel-lean or fuel-rich. Reactants that are not consumed by the leading detonation combine downstream and burn in a diffusion flame. Detonation cells produced by the unstable reaction front vary in size across the channel, growing larger away from the line of stoichiometry. As the size of the channel decreases relative to the size of a detonation cell, the effect of the mixture composition gradient is lessened and cells of similar sizes form. In the high-activation-energy mixture, detonations propagate more slowly as the magnitude of the mixture composition gradient is increased and can be quenched in a large enough gradient. PMID:22213660

  14. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    SciTech Connect

    SCHWINKENDORF, K.N.

    2006-05-12

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can supply useful

  15. Systematic approach on the fabrication of Co doped ZnO semiconducting nanoparticles by mixture of fuel approach for Antibacterial applications

    NASA Astrophysics Data System (ADS)

    Rajendar, V.; Dayakar, T.; Shobhan, K.; Srikanth, I.; Venkateswara Rao, K.

    2014-11-01

    Zinc oxide (ZnO) is a wide band gap semiconductor (3.2 eV) with a high exciton binding energy (60 meV), where it has wide applications in advanced spintronic devices. The theoretical prediction of room temperature ferromagnetism and also antibacterial activity will be possible through the investigation of diluted magnetic semiconductors (DMS), such as transition metal doped ZnO, especially Cobalt doped ZnO. The aim of the work is the synthesis of Cobalt (Co) doped ZnO nanopowders were prepared Zn1-xCoxO (0 ⩽ x ⩾ 0.09) nanopowders from Sol-Gel auto combustion method have been synthesized with precursors such as Zinc and Cobalt nitrates with the assistance Ammonium acetate & Urea as fuel by increasing the cobalt concentration in zinc oxide and their structural, morphological, optical, Thermal, magnetic and antibacterial properties were studied by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Transmission Electron microscope (TEM), UV-visible spectroscopy, thermo gravimetric/differential thermal analysis (TG/DTA) and vibrating sample magneto meter (VSM). From the antibacterial studies, against gram positive Bacillus subtilis bacteria is most abundant bacteria in soil and indoor atmosphere, which affects the stored spintronic devices so that the devices should be made with antibacterial activity of DMS like Co doped ZnO. In this article is found that ZnO:Co nanopowders with higher Co doping level (0.07 and 0.09 wt%) exhibit good antibacterial efficiency. The magnetization curves obtained using vibrating sample magnetometer (VSM) show a sign of strong room temperature ferromagnetic behavior when the Co doping level is 0.05 wt% and a weak room temperature ferromagnetic behavior Co doping level is below 0.07 wt%, and also they found to exhibit antiferromagnetic and paramagnetic properties, when the Co doping levels are 0.07 and 0.09 wt%, respectively, to enhance and increase the special magnetic and antibacterial property for

  16. Detailed Kinetic Modeling of Gasoline Surrogate Mixtures

    SciTech Connect

    Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

    2009-03-09

    Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

  17. Carburetor fuel discharge assembly

    SciTech Connect

    Yost, R.M.

    1993-06-29

    An improved carburetor for use on an internal combustion engine is described, the carburetor having an airflow passage and fuel discharge means for admitting fuel into the airflow passage for mixing the fuel with air flowing in the airflow passage to form a fuel/air mixture to be supplied to the combustion chamber(s) of the engine, the fuel discharge means including a fuel discharge assembly which comprises a hollow discharge tube and fuel supplying means connected to the discharge tube for admitting fuel into the interior of the discharge tube, wherein the discharge tube has a longitudinal internal bore in fluid communication with the fuel supplying means, wherein the internal bore extends between an inlet that is closest to the fuel supplying means and an outlet that is furthest from the fuel supplying means with the outlet of the bore being located within the airflow passage of the carburetor to supply fuel into this passage after the fuel passes from the fuel supplying means through the internal bore of the discharge tube, wherein the improvement relates to the fuel discharge assembly and comprises: a hollow fuel flow guide tube telescopically received inside the internal bore of the discharge tube, wherein the fuel flow guide tube extends from approximately the location of the inlet of the bore up at least a portion of the length of the bore towards the outlet of the bore to conduct fuel from the fuel supplying means into the bore of the discharge tube.

  18. 10 CFR 503.9 - Use of mixtures-general requirement for certain permanent exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and petroleum and an alternate fuel for which an exemption under 10 CFR 503.38 (Fuel mixtures) would... 10 Energy 4 2013-01-01 2013-01-01 false Use of mixtures-general requirement for certain permanent exemptions. 503.9 Section 503.9 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW...

  19. 10 CFR 503.9 - Use of mixtures-general requirement for certain permanent exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... and petroleum and an alternate fuel for which an exemption under 10 CFR 503.38 (Fuel mixtures) would... 10 Energy 4 2014-01-01 2014-01-01 false Use of mixtures-general requirement for certain permanent exemptions. 503.9 Section 503.9 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW...

  20. 10 CFR 503.9 - Use of mixtures-general requirement for certain permanent exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and petroleum and an alternate fuel for which an exemption under 10 CFR 503.38 (Fuel mixtures) would... 10 Energy 4 2012-01-01 2012-01-01 false Use of mixtures-general requirement for certain permanent exemptions. 503.9 Section 503.9 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW...

  1. 10 CFR 503.9 - Use of mixtures-general requirement for certain permanent exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and petroleum and an alternate fuel for which an exemption under 10 CFR 503.38 (Fuel mixtures) would... 10 Energy 4 2010-01-01 2010-01-01 false Use of mixtures-general requirement for certain permanent exemptions. 503.9 Section 503.9 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW...

  2. 10 CFR 503.9 - Use of mixtures-general requirement for certain permanent exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and petroleum and an alternate fuel for which an exemption under 10 CFR 503.38 (Fuel mixtures) would... 10 Energy 4 2011-01-01 2011-01-01 false Use of mixtures-general requirement for certain permanent exemptions. 503.9 Section 503.9 Energy DEPARTMENT OF ENERGY (CONTINUED) ALTERNATE FUELS NEW...

  3. Supercritical fuel injection system

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Cooper, L. P. (Inventor)

    1980-01-01

    a fuel injection system for gas turbines is described including a pair of high pressure pumps. The pumps provide fuel and a carrier fluid such as air at pressures above the critical pressure of the fuel. A supercritical mixing chamber mixes the fuel and carrier fluid and the mixture is sprayed into a combustion chamber. The use of fuel and a carrier fluid at supercritical pressures promotes rapid mixing of the fuel in the combustion chamber so as to reduce the formation of pollutants and promote cleaner burning.

  4. A National Tracking Center for Monitoring Shipments of HEU, MOX, and Spent Nuclear Fuel: How do we implement?

    SciTech Connect

    Mark Schanfein

    2009-07-01

    Nuclear material safeguards specialists and instrument developers at US Department of Energy (USDOE) National Laboratories in the United States, sponsored by the National Nuclear Security Administration (NNSA) Office of NA-24, have been developing devices to monitor shipments of UF6 cylinders and other radioactive materials , . Tracking devices are being developed that are capable of monitoring shipments of valuable radioactive materials in real time, using the Global Positioning System (GPS). We envision that such devices will be extremely useful, if not essential, for monitoring the shipment of these important cargoes of nuclear material, including highly-enriched uranium (HEU), mixed plutonium/uranium oxide (MOX), spent nuclear fuel, and, potentially, other large radioactive sources. To ensure nuclear material security and safeguards, it is extremely important to track these materials because they contain so-called “direct-use material” which is material that if diverted and processed could potentially be used to develop clandestine nuclear weapons . Large sources could be used for a dirty bomb also known as a radioactive dispersal device (RDD). For that matter, any interdiction by an adversary regardless of intent demands a rapid response. To make the fullest use of such tracking devices, we propose a National Tracking Center. This paper describes what the attributes of such a center would be and how it could ultimately be the prototype for an International Tracking Center, possibly to be based in Vienna, at the International Atomic Energy Agency (IAEA).

  5. Fuel cell integrated with steam reformer

    DOEpatents

    Beshty, Bahjat S.; Whelan, James A.

    1987-01-01

    A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

  6. Alcohol based fuels for automotive engines

    SciTech Connect

    Menrad, H.K.

    1980-02-01

    The effects of methanol and/or ethanol additions on various properties of gasolines are discussed. Both advantages and disadvantages of such mixtures are set forth. The necessary changes in engine design to accommodate such fuel mixtures are described. Successful use of blended fuels in diesel engines is described. The current status of alcohol fuels in actual use is also reported. (BLM)

  7. Strategies for toxicological evaluation of mixtures.

    PubMed

    Eide, I

    1996-01-01

    Different strategies for the toxicological evaluation of mixtures are presented. The purpose is to determine the effects of each component (variable) in the mixture, and possible interactions between variables. The examples presented have 3-5 predictor variables and 1-3 responses, and are based on statistical experimental design, multivariate data analysis and modelling. The following examples are presented: (1) inhalation experiments with synthetic vapour mixtures of hydrocarbons formulated by means of mixture design at different vapour concentrations (the experimental) region covers both partial and complete evaporation of the liquid mixtures); (2) combination of refinery streams for fuel blending by means of mixture design with constraints, followed by engine tests and determination of exhaust particles; (3) fractionation of organic extracts of diesel exhaust particles, and recombination of the extracts by means of mixture design, followed by mutagenicity testing of the recombined extracts in the Ames Salmonella assay; (4) spiking complex mixtures with individual compounds using factorial design, and subsequent mutagenicity testing. The data obtained from these four examples were analysed by means of Projections to Latent Structures (PLS). The effects of each variable and possible interactions, were quantified by means of PLS regression coefficients. Furthermore, the empirical models obtained were evaluated by means of correlation coefficients, cross validation and predictions. PMID:9119328

  8. Improved 02/H2 Gas Mixture Sensor

    NASA Technical Reports Server (NTRS)

    Moulthrop, L. C.

    1983-01-01

    Monitor of mixture concentrations uses catalyzed and uncatalyzed temperature probe. Sensor includes Pt-catalyzed temperature probe mounted in line with similar uncatalyzed temperature probe. Use of common temperature probes and standard, flareless, high-pressure tubefittings resulted in design conductive to installation in almost any system. Suitable for use in regenerative fuel cells, life-support systems, and other closed systems.

  9. Hydrocarbon fuel detergent

    SciTech Connect

    Meyer, G.R.; Lyons, W.R.

    1990-01-23

    This patent describes a hydrocarbon fuel composition comprising: a hydrocarbon fuel; and a detergent amount of a detergent comprising an alkenylsuccinimide prepared by reacting an alkenylsuccinic acid or anhydride with a mixture of amines, wherein at least 90 weight percent of the alkenyl substituent is derived from an olefin having a carbon chain of from 10 to 30 carbons or mixtures thereof, and wherein the alkenylsuccinic acid or anhydride is reacted with the mixture of amines at a mole ratio of 0.8 to 1.5 moles of the amines per mole of the alkenylsuccinic acid or anhydride.

  10. Mixture including hydrogen and hydrocarbon having pressure-temperature stability

    NASA Technical Reports Server (NTRS)

    Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)

    2009-01-01

    The invention relates to a method of storing hydrogen that employs a mixture of hydrogen and a hydrocarbon that can both be used as fuel. In one embodiment, the method involves maintaining a mixture including hydrogen and a hydrocarbon in the solid state at ambient pressure and a temperature in excess of about 10 K.

  11. Safety Testing of Ammonium Nitrate Based Mixtures

    NASA Astrophysics Data System (ADS)

    Phillips, Jason; Lappo, Karmen; Phelan, James; Peterson, Nathan; Gilbert, Don

    2013-06-01

    Ammonium nitrate (AN)/ammonium nitrate based explosives have a lengthy documented history of use by adversaries in acts of terror. While historical research has been conducted on AN-based explosive mixtures, it has primarily focused on detonation performance while varying the oxygen balance between the oxidizer and fuel components. Similarly, historical safety data on these materials is often lacking in pertinent details such as specific fuel type, particle size parameters, oxidizer form, etc. A variety of AN-based fuel-oxidizer mixtures were tested for small-scale sensitivity in preparation for large-scale testing. Current efforts focus on maintaining a zero oxygen-balance (a stoichiometric ratio for active chemical participants) while varying factors such as charge geometry, oxidizer form, particle size, and inert diluent ratios. Small-scale safety testing was conducted on various mixtures and fuels. It was found that ESD sensitivity is significantly affected by particle size, while this is less so for impact and friction. Thermal testing is in progress to evaluate hazards that may be experienced during large-scale testing.

  12. Fully ceramic nuclear fuel and related methods

    DOEpatents

    Venneri, Francesco; Katoh, Yutai; Snead, Lance Lewis

    2016-03-29

    Various embodiments of a nuclear fuel for use in various types of nuclear reactors and/or waste disposal systems are disclosed. One exemplary embodiment of a nuclear fuel may include a fuel element having a plurality of tristructural-isotropic fuel particles embedded in a silicon carbide matrix. An exemplary method of manufacturing a nuclear fuel is also disclosed. The method may include providing a plurality of tristructural-isotropic fuel particles, mixing the plurality of tristructural-isotropic fuel particles with silicon carbide powder to form a precursor mixture, and compacting the precursor mixture at a predetermined pressure and temperature.

  13. Air/fuel ratio controller

    SciTech Connect

    Schechter, M.M.; Simko, A.O.

    1980-12-23

    An internal combustion engine has a fuel injection pump and an air/fuel ratio controller. The controller has a lever that is connected to the pump lever. An aneroid moves the controller lever as a function of changes in intake manifold vacuum to maintain a constant air/fuel ratio to the mixture charge. A fuel enrichment linkage is provided that modifies the movement of the fuel flow control lever by the aneroid in response to changes in manifold gas temperature levels and exhaust gas recirculation to maintain the constant air/fuel ratio. A manual override is provided to obtain a richer air/fuel ratio for maximum acceleration.

  14. Near azeotropic mixture substitute

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1996-01-01

    The present invention comprises a refrigerant mixture consisting of a first mole fraction of 1,1,1,2-tetrafluoroethane (R134a) and a second mole fraction of a component selected from the group consisting of a mixture of CHClFCF.sub.3 (R124) and CH.sub.3 CClF.sub.2 (R142b); a mixture of CHF.sub.2 CH.sub.3 (R152a) and CHClFCF.sub.3 (R124); a mixture of CHF.sub.2 CH.sub.3 (R152a) and CH.sub.3 CClF.sub.2 (R142b); and a mixture of CHClFCF.sub.3 (R124), CH.sub.3 CClF.sub.2 (R142b) and CHF.sub.2 CH.sub.3 (R152a).

  15. NUCLEAR FUEL MATERIAL

    DOEpatents

    Goeddel, W.V.

    1962-06-26

    An improved method is given for making the carbides of nuclear fuel material. The metal of the fuel material, which may be a fissile and/or fertile material, is transformed into a silicide, after which the silicide is comminuted to the desired particle size. This silicide is then carburized at an elevated temperature, either above or below the melting point of the silicide, to produce an intimate mixture of the carbide of the fuel material and the carbide of silicon. This mixture of the fuel material carbide and the silicon carbide is relatively stable in the presence of moisture and does not exhibit the highly reactive surface condition which is observed with fuel material carbides made by most other known methods. (AEC)

  16. Fuel Vapor Pressures and the Relation of Vapor Pressure to the Preparation of Fuel for Combustion in Fuel Injection Engines

    NASA Technical Reports Server (NTRS)

    Joachim, William F; Rothrock, A M

    1930-01-01

    This investigation on the vapor pressure of fuels was conducted in connection with the general research on combustion in fuel injection engines. The purpose of the investigation was to study the effects of high temperatures such as exist during the first stages of injection on the vapor pressures of several fuels and certain fuel mixtures, and the relation of these vapor pressures to the preparation of the fuel for combustion in high-speed fuel injection engines.

  17. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  18. Premixed flame propagation in combustible particle cloud mixtures

    NASA Technical Reports Server (NTRS)

    Seshadri, K.; Yang, B.

    1993-01-01

    The structures of premixed flames propagating in combustible systems, containing uniformly distributed volatile fuel particles, in an oxidizing gas mixtures is analyzed. The experimental results show that steady flame propagation occurs even if the initial equivalence ratio of the combustible mixture based on the gaseous fuel available in the particles, phi(u) is substantially larger than unity. A model is developed to explain these experimental observations. In the model it is presumed that the fuel particles vaporize first to yield a gaseous fuel of known chemical composition which then reacts with oxygen in a one-step overall process. It is shown that the interplay of vaporization kinetics and oxidation process, can result in steady flame propagation in combustible mixtures where the value of phi(u) is substantially larger than unity. This prediction is in agreement with experimental observations.

  19. Chemical kinetic modeling of component mixtures relevant to gasoline

    SciTech Connect

    Mehl, M; Curran, H J; Pitz, W J; Dooley, S; Westbrook, C K

    2008-05-29

    Detailed kinetic models of pyrolysis and combustion of hydrocarbon fuels are nowadays widely used in the design of internal combustion engines and these models are effectively applied to help meet the increasingly stringent environmental and energetic standards. In previous studies by the combustion community, such models not only contributed to the understanding of pure component combustion, but also provided a deeper insight into the combustion behavior of complex mixtures. One of the major challenges in this field is now the definition and the development of appropriate surrogate models able to mimic the actual features of real fuels. Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. Their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. Aside the most commonly used surrogates containing iso-octane and n-heptane only, the so called Primary Reference Fuels (PRF), new mixtures have recently been suggested to extend the reference components in surrogate mixtures to also include alkenes and aromatics. It is generally agreed that, including representative species for all the main classes of hydrocarbons which can be found in real fuels, it is possible to reproduce very effectively in a wide range of operating conditions not just the auto-ignition propensity of gasoline or Diesel fuels, but also their physical properties and their combustion residuals [1]. In this work, the combustion behavior of several components relevant to gasoline surrogate formulation is computationally examined. The attention is focused on the autoignition of iso-octane, hexene and their mixtures. Some important issues relevant to the experimental and modeling investigation of such fuels are discussed with the help of rapid compression machine data and calculations. Following the model validation, the behavior of mixtures is discussed on the

  20. Experience with coal-water mixtures

    SciTech Connect

    Uhrig, R.E.

    1983-06-01

    A demonstration of coal-water mixture at Florida Power and Light's Sanford plant was a technological success, but not without some difficulty. Extensive accumulation of melted ash, and atomizer wear, made the demonstration only marginal economically. Falling oil prices in 1981-82 made the conversion to COM even less attractive. Combustion tests on the suitability of several candidate coal mixtures concluded that the quantity and characteristics of the ash in the coal is the most important variable in predicting fuel performance. An examination of the characteristics of CWM with various coal-water ratios shows that the ''water penalty'' is not as severe as believed. Yet it is NOT a foregone conclusion that CWM fuels will be economical in the future.

  1. SEPARATION OF FLUID MIXTURES

    DOEpatents

    Lipscomb, R.; Craig, A.; Labrow, S.; Dunn, J.F.

    1958-10-28

    An apparatus is presented for separating gaseous mixtures by selectively freezing a constituent of the mixture and subsequently separating the frozen gas. The gas mixture is passed through a cylinder fltted with a cooling jacket, causing one gas to freeze on the walls of the cylinder. A set of scraper blades are provided in the interior of the cyllnder, and as the blades oscillate, the frozen gas is scraped to the bottom of the cylinder. Means are provided for the frozen material to pass into a heating chamber where it is vaporized and the product gas collected.

  2. A numerical study of laminar flames propagating in stratified mixtures

    NASA Astrophysics Data System (ADS)

    Zhang, Jiacheng

    Numerical simulations are carried out to study the structure and speed of laminar flames propagating in compositionally and thermally stratified fuel-air mixtures. The study is motivated by the need to understand the physics of flame propagation in stratified-charge engines and model it. The specific question of interest in this work is: how does the structure and speed of the flame in the stratified mixture differ from that of the flame in a corresponding homogeneous mixture at the same equivalence ratio, temperature, and pressure? The studies are carried out in hydrogen-air, methane-air, and n-heptane-air mixtures. A 30-species 184-step skeletal mechanism is employed for methane oxidation, a 9-species 21-step mechanism for hydrogen oxidation, and a 37-species 56-step skeletal mechanism for n-heptane oxidation. Flame speed and structure are compared with corresponding values for homogeneous mixtures. For compositionally stratified mixtures, as shown in prior experimental work, the numerical results suggest that when the flame propagates from a richer mixture to a leaner mixture, the flame speed is faster than the corresponding speed in the homogeneous mixture. This is caused by enhanced diffusion of heat and species from the richer mixture to the leaner mixture. In fact, the effects become more pronounced in leaner mixtures. Not surprisingly, the stratification gradient influences the results with shallower gradients showing less effect. The controlling role that diffusion plays is further assessed and confirmed by studying the effect of a unity Lewis number assumption in the hydrogen/air mixtures. Furthermore, the effect of stratification becomes less important when using methane or n-heptane as fuel. The laminar flame speed in a thermally stratified mixture is similar to the laminar flame speed in homogeneous mixture at corresponding unburned temperature. Theoretical analysis is performed and the ratio of extra thermal diffusion rate to flame heat release rate

  3. Minimally refined biomass fuel

    DOEpatents

    Pearson, Richard K.; Hirschfeld, Tomas B.

    1984-01-01

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  4. Fuel processing device

    DOEpatents

    Ahluwalia, Rajesh K.; Ahmed, Shabbir; Lee, Sheldon H. D.

    2011-08-02

    An improved fuel processor for fuel cells is provided whereby the startup time of the processor is less than sixty seconds and can be as low as 30 seconds, if not less. A rapid startup time is achieved by either igniting or allowing a small mixture of air and fuel to react over and warm up the catalyst of an autothermal reformer (ATR). The ATR then produces combustible gases to be subsequently oxidized on and simultaneously warm up water-gas shift zone catalysts. After normal operating temperature has been achieved, the proportion of air included with the fuel is greatly diminished.

  5. Pulverized coal fuel injector

    DOEpatents

    Rini, Michael J.; Towle, David P.

    1992-01-01

    A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

  6. Kinematic separation of mixtures

    SciTech Connect

    Goldshtik, M.; Husain, H.S.; Hussain, F. )

    1992-06-15

    A phenomenon of spontaneous separation of components in an initially uniform fluid mixture is found experimentally. A qualitative explanation of the effect is proposed in terms of nonparallel streamlines in the medium.

  7. Possibility of using alternate fuels in Hungary

    SciTech Connect

    Zombori, J.

    1982-12-01

    In Hungary investigations are aimed at the use of fuel mixtures having a moderate ration of alternate fuels in them. For the last two years engine tests have been carried out with the mixture of diesel oil and sunflower oil, and that of diesel oil and ethanol and they show positive results.

  8. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOEpatents

    Young, John E.; Jalan, Vinod M.

    1984-01-01

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  9. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOEpatents

    Young, J.E.; Jalan, V.M.

    1984-06-19

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  10. High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures

    DOEpatents

    Young, J.E.; Jalan, V.M.

    1982-07-07

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  11. Condensate Mixtures and Tunneling

    SciTech Connect

    Timmermans, E.

    1998-09-14

    The experimental study of condensate mixtures is a particularly exciting application of the recently developed atomic-trap Bose-Einstein condensate (BEC) technology: such multiple condensates represent the first laboratory systems of distinguishable boson superfluid mixtures. In addition, as the authors point out in this paper, the possibility of inter-condensate tunneling greatly enhances the richness of the condensate mixture physics. Not only does tunneling give rise to the oscillating particle currents between condensates of different chemical potentials, such as those studied extensively in the condensed matter Josephson junction experiments, it also affects the near-equilibrium dynamics and stability of the condensate mixtures. In particular, the stabilizing influence of tunneling with respect to spatial separation (phase separation) could be of considerable practical importance to the atomic trap systems. Furthermore, the creation of mixtures of atomic and molecular condensates could introduce a novel type of tunneling process, involving the conversion of a pair of atomic condensate bosons into a single molecular condensate boson. The static description of condensate mixtures with such type of pair tunneling suggests the possibility of observing dilute condensates with the liquid-like property of a self-determined density.

  12. MOLTEN FLUORIDE NUCLEAR REACTOR FUEL

    DOEpatents

    Barton, C.J.; Grimes, W.R.

    1960-01-01

    Molten-salt reactor fuel compositions consisting of mixtures of fluoride salts are reported. In its broadest form, the composition contains an alkali fluoride such as sodium fluoride, zirconium tetrafluoride, and a uranium fluoride, the latter being the tetrafluoride or trifluoride or a mixture of the two. An outstanding property of these fuel compositions is a high coeffieient of thermal expansion which provides a negative temperature coefficient of reactivity in reactors in which they are used.

  13. Combustor with fuel preparation chambers

    NASA Technical Reports Server (NTRS)

    Zelina, Joseph (Inventor); Myers, Geoffrey D. (Inventor); Srinivasan, Ram (Inventor); Reynolds, Robert S. (Inventor)

    2001-01-01

    An annular combustor having fuel preparation chambers mounted in the dome of the combustor. The fuel preparation chamber comprises an annular wall extending axially from an inlet to an exit that defines a mixing chamber. Mounted to the inlet are an air swirler and a fuel atomizer. The air swirler provides swirled air to the mixing chamber while the atomizer provides a fuel spray. On the downstream side of the exit, the fuel preparation chamber has an inwardly extending conical wall that compresses the swirling mixture of fuel and air exiting the mixing chamber.

  14. Carburetor and fuel preconditioner

    SciTech Connect

    Brown, P.M.

    1991-12-24

    This patent describes an improved carburetor and fuel preconditioner device for internal combustion engines. It comprises a first atmospheric air intake conduit; a bubble chamber operable to hold liquid fuel at a selected level therein, the bubble chamber provided with one or more air ports located below the fuel level for receiving atmospheric air from the first air intake conduit for bubbling air through the fuel and the bubble chamber defining an air-fuel vapor chamber above the fuel level; a multiplicity of catalytic beads located within the bubble chamber in contact with the fuel and with air drawn through the ports; a second atmospheric air intake conduit for receiving an air supply separate from the first conduit, the second conduit provided with at least one venturi, the venturi in fluid communication with the vapor chamber of the bubble chamber for receiving a fuel-air vapor mixture therefrom and for mixing and conducting the same to an intake manifold of the internal combustion engine; and, control means consisting of at least one pill can, located between the vapor chamber of the bubble chamber and the second conduit for controlling the amount of fuel-air mixture entering the second conduit.

  15. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    SciTech Connect

    TOFFER, H.

    2006-07-18

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Fuel that had experienced a neutron environment in a reactor is known as spent, exposed, or irradiated fuel. In contrast fuel that has not yet been placed in a reactor is known as green, unexposed, or unirradiated fuel. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled (References 1 and 2) and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements (Reference 3). The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprised of two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with unirradiated fuel and one with irradiated fuel. Both the unirradiated and irradiated fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, three (3) green fuel

  16. Autoignition of adiabatically compressed combustible gas mixtures

    SciTech Connect

    Hu, H.; Keck, J.

    1987-01-01

    Measurements of explosion limits for fuel/air/diluent mixtures compressed by an expanding laminar flame have been made in a constant volume spherical bomb. The fuels studied to date range from butane to octane at fuel/air equivalence ratios from 0.8 to 1.3. The explosion pressures and temperatures range from 10 to 100 atm and 650 to 850 K. The pressure versus time curves show the behavior typical of the two-stage ignition process observed in rapid compression machines. A branched chain kinetic model has been developed to correlate the data. The model has been used to predict both the explosion limits measured in the current bomb experiments and ignition delays measured in prior rapid compression machine experiments. Good agreement between experiment and theory can be achieved with minor adjustment in published rate constants.

  17. Chemical kinetic modeling of component mixtures relevant to gasoline

    SciTech Connect

    Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

    2009-02-13

    Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

  18. Binder enhanced refuse derived fuel

    DOEpatents

    Daugherty, Kenneth E.; Venables, Barney J.; Ohlsson, Oscar O.

    1996-01-01

    A refuse derived fuel (RDF) pellet having about 11% or more particulate calcium hydroxide which is utilized in a combustionable mixture. The pellets are used in a particulate fuel bring a mixture of 10% or more, on a heat equivalent basis, of the RDF pellet which contains calcium hydroxide as a binder, with 50% or more, on a heat equivalent basis, of a sulphur containing coal. Combustion of the mixture is effective to produce an effluent gas from the combustion zone having a reduced SO.sub.2 and polycyclic aromatic hydrocarbon content of effluent gas from similar combustion materials not containing the calcium hydroxide.

  19. MIXTURES FEASIBILITY STUDY

    EPA Science Inventory

    A number of studies have been conducted to address questions concerning the toxicity of "real world" mixtures of DBPs. These studies, which used either concentrates of drinking water or humic acid preparations treated with various disinfectants, were largely negative and had a nu...

  20. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2012-10-09

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  1. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2012-01-24

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  2. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2008-10-21

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  3. Carbon fuel particles used in direct carbon conversion fuel cells

    DOEpatents

    Cooper, John F.; Cherepy, Nerine

    2011-08-16

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  4. Fuel for diesel engine

    SciTech Connect

    Mori, M.

    1983-09-20

    A fuel is disclosed for a diesel engine which comprises a mixture of (A) an alcohol, (B) gas oil and (C) castor oil, wherein the contents of the respective components satisfy requirements represented by the following formulae: 0% by volume < A 80% by volume, 10% by volume B < 50% by volume, and 10% by volume C < 50% by volume.

  5. Transcriptional responses to complex mixtures: a review.

    PubMed

    Sen, Banalata; Mahadevan, Brinda; DeMarini, David M

    2007-01-01

    Exposure of people to hazardous compounds is primarily through complex environmental mixtures, those that occur through media such as air, soil, water, food, cigarette smoke, and combustion emissions. Microarray technology offers the ability to query the entire genome after exposure to such an array of compounds, permitting a characterization of the biological effects of such exposures. This review summarizes the published literature on the transcriptional profiles resulting from exposure of cells or organisms to complex environmental mixtures such as cigarette smoke, diesel emissions, urban air, motorcycle exhaust, carbon black, jet fuel, and metal ore and fumes. The majority of the mixtures generally up-regulate gene expression, with heme oxygenase 1 and CYP1A1 being up-regulated by all of the mixtures. Most of the mixtures altered the expression of genes involved in oxidative stress response (OH-1, metallothioneins), immune/inflammation response (IL-1b, protein kinase), xenobiotic metabolism (CYP1A1, CYP1B1), coagulation and fibrinolysis (plasminogen activator/inhibitor), proto-oncogenes (FUS1, JUN), heat-shock response (HSP60, HSP70), DNA repair (PCNA, GADD45), structural unit of condensed DNA (Crf15Orf16, DUSP 15), and extracellular matrix degradation (MMP1, 8, 9, 11, 12). Genes involved in aldehyde metabolism, such as ALDH3, appeared to be uniquely modulated by cigarette smoke. Cigarette smoke-exposed populations have been successfully distinguished from control nonexposed populations based on the expression pattern of a subset of genes, thereby demonstrating the utility of this approach in identifying biomarkers of exposure and susceptibility. The analysis of gene-expression data at the pathway and functional level, along with a systems biology approach, will provide a more comprehensive insight into the biological effects of complex mixtures and will improve risk assessment of the same. We suggest critical components of study design and reporting that will

  6. Apparatus for supplementary control of a combustible mixture

    SciTech Connect

    Eheim, F.

    1980-06-03

    A fuel control device for an internal combustion engine employing a fuel mixture preparation system in which the amount of fuel is set at will and the amount of combustion air is adjusted automatically. In order to provide sufficient air during abrupt and rapid actuations of the fuel control lever, there is provided a hydraulic differentiating mechanism which senses rapid displacements of the fuel control lever and which temporarily opens a channel leading from a source of high hydraulic pressure directly to the servo motor that pivots the air throttle, thereby causing additional opening of the air throttle and an increased rate of air flow. The high pressure channel is closed gradually after the occurrence of the abrupt fuel change.

  7. Hydrodynamic gas mixture separation

    SciTech Connect

    Stolyarov, A.A.

    1982-02-10

    The separation of gas mixtures is the basis of many chemical, petrochemical, and gas processes. Classical separation methods (absorption, adsorption, condensation, and freezing) require cumbersome and complex equipment. No adequate solution is provided by the cheapening and simplification of gas-processing apparatus and separation methods by hydration and diffusion. For example, an apparatus for extracting helium from natural gas by diffusion has a throughput of gas containing 0.45% helium of 117,000 m/sup 3//h and in the first stage has teflon membranes working at a pressure difference of 63.3x10/sup 5/ Pa of area 79,000 m/sup 2/, and the specific cost of the apparatus was 8500 dollars per m/sup 3//h of helium. Therefore, vigorous studies are being conducted on new ways of efficient separation of gas mixtures that are cheaper and simpler. Here we consider a novel method of physically essentially reversible separation of gas mixtures, which involves some features of single-phase supersonic flows.

  8. Plutonium, uranium and rare earths in the phosphates of ordinary chondrites - The quest for a chronometer

    NASA Astrophysics Data System (ADS)

    Crozaz, G.; Pellas, P.; Bourot-Denise, M.; de Chazal, S. M.; Fieni, C.; Lundberg, L. L.; Zinner, E.

    1989-06-01

    The distributions of Pu, U, and the REEs in single crystals of the calcium phosphates, merrillite, and apatite of ordinary chondrites were investigated, inferring limites on Pu concentrations from fossil track measurements. The study takes spallation-induced tracks into account. Despite the higher affinity of both Pu and the REEs for merrilite than apatite, no quantitative correlation is found between the abundances of these elements in merrillite grains from a given ordinary chondrite, indicating that Pu-244 cannot be used to determine the relative formation times of chondrites.

  9. Plutonium uranium extraction (PUREX) end state basis for interim operation (BIO) for surveillance and maintenance

    SciTech Connect

    DODD, E.N.

    1999-05-12

    This Basis for Interim Operation (BIO) was developed for the PUREX end state condition following completion of the deactivation project. The deactivation project has removed or stabilized the hazardous materials within the facility structure and equipment to reduce the hazards posed by the facility during the surveillance and maintenance (S and M) period, and to reduce the costs associated with the S and M. This document serves as the authorization basis for the PUREX facility, excluding the storage tunnels, railroad cut, and associated tracks, for the deactivated end state condition during the S and M period. The storage tunnels, and associated systems and areas, are addressed in WHC-SD-HS-SAR-001, Rev. 1, PUREX Final Safety Analysis Report. During S and M, the mission of the facility is to maintain the conditions and equipment in a manner that ensures the safety of the workers, environment, and the public. The S and M phase will continue until the final decontamination and decommissioning (D and D) project and activities are begun. Based on the methodology of DOE-STD-1027-92, Hazards Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports, the final facility hazards category is identified as hazards category This considers the remaining material inventories, form and distribution of the material, and the energies present to initiate events of concern. Given the current facility configuration, conditions, and authorized S and M activities, there are no operational events identified resulting in significant hazard to any of the target receptor groups (e.g., workers, public, environment). The only accident scenarios identified with consequences to the onsite co-located workers were based on external natural phenomena, specifically an earthquake. The dose consequences of these events are within the current risk evaluation guidelines and are consistent with the expectations for a hazards category 2 facility.

  10. Facility effluent monitoring plan for the plutonium-uranium extraction facility

    SciTech Connect

    Lohrasbi, J.; Johnson, D.L.; De Lorenzo, D.S.

    1993-12-01

    A facility effluent monitoring plan is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-01. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimum of every three years.

  11. Apparatus for the premixed gas phase combustion of liquid fuels

    SciTech Connect

    Roffe, G.A.; Trucco, H.A.

    1981-04-21

    This invention relates to improvements in the art of liquid fuel combustion and, more particularly, concerns a method and apparatus for the controlled gasification of liquid fuels, the thorough premixing of the then gasified fuel with air and the subsequent gas-phase combustion of the mixture to produce a flame substantially free of soot, carbon monoxide, nitric oxide and unburned fuel.

  12. Kinetic Modeling of Gasoline Surrogate Components and Mixtures under Engine Conditions

    SciTech Connect

    Mehl, M; Pitz, W J; Westbrook, C K; Curran, H J

    2010-01-11

    Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, an improved version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multicomponent gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines (3-50 atm, 650-1200K, stoichiometric fuel/air mixtures). Simulation results are discussed focusing attention on the mixing effects of the fuel components.

  13. 78 FR 23832 - Labeling Requirements for Alternative Fuels and Alternative Fueled Vehicles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ...-gasoline mixtures, natural gas, liquefied petroleum gas, hydrogen, coal-derived liquid fuels, fuels derived... component (expressed as a percentage). \\3\\ 60 FR 26926 (May 19, 1995). \\4\\ The Rule requires manufacturers... comments in response.\\8\\ \\6\\ 76 FR 31513 (June 1, 2011) (ANPR on Alternative Fuels Rule). In 2011,...

  14. Evaluating Whole Chemical Mixtures and Sufficient Similarity

    EPA Science Inventory

    This powerpoint presentation supports apresentation describing dose-response assessment for complex chemical mixtures including deriving reference doses for mixtures evaluating sufficient similarity among chemical mixtures.

  15. Soot formation during combustion of unsupported methanol/toluene mixture droplets in microgravity

    NASA Technical Reports Server (NTRS)

    Jackson, G. S.; Avedisian, C. T.; Yang, J. C.

    1991-01-01

    Results are reported of an experimental study tracing the influence of liquid composition on soot formation and the burning rate of a droplet composed of a binary miscible mixture of liquids. The mixture components represented a highly sooting fuel, toluene, and a nonsooting fuel, methanol. The toluene concentration in methanol was shown to dramatically influence flame luminosity and soot production. Neither burning rates nor a propensity for flame extinction appeared to be significantly affected by toluene mixture fractions. Five-percent toluene mixture droplets behaved like pure methanol droplets in terms of burning rate, lack of flame luminosity, and extinction. Increasing the toluene concentration in the droplets to 25 percent increased flame luminosity, yet no visible soot agglomerates were observed. The 50-percent-mixture droplets burned with highly luminous flames and large amounts of soot agglomerates collecting inside the flame. All the mixture droplets showed burning rates similar to those of pure methanol and likewise exhibited flame extinction before complete droplet vaporization.

  16. Laser ablation based fuel ignition

    DOEpatents

    Early, J.W.; Lester, C.S.

    1998-06-23

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  17. Laser ablation based fuel ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    1998-01-01

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  18. COMPARATIVE TUMOR-INITIATING ACTIVITY OF COMPLEX MIXTURES FROM ENVIRONMENTAL PARTICULATE EMISSIONS ON SENCAR MOUSE SKIN

    EPA Science Inventory

    The value of the SENCAR mouse for testing tumorigenic properties of complex mixtures on mouse skin was studied. Seven complex mixtures were obtained as dichloromethane extracts of collected particulate emissions from three diesel-fueled automobiles, a heavy-duty diesel engine, a ...

  19. Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels

    DOEpatents

    Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

    2014-12-02

    A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

  20. Cold start characteristics of ethanol as an automobile fuel

    DOEpatents

    Greiner, Leonard

    1982-01-01

    An alcohol fuel burner and decomposer in which one stream of fuel is preheated by passing it through an electrically heated conduit to vaporize the fuel, the fuel vapor is mixed with air, the air-fuel mixture is ignited and combusted, and the combustion gases are passed in heat exchange relationship with a conduit carrying a stream of fuel to decompose the fuel forming a fuel stream containing hydrogen gas for starting internal combustion engines, the mass flow of the combustion gas being increased as it flows in heat exchange relationship with the fuel carrying conduit, is disclosed.

  1. Toxicological evaluation of chemical mixtures.

    PubMed

    Feron, V J; Groten, J P

    2002-06-01

    This paper addresses major developments in the safety evaluation of chemical mixtures during the past 15 years, reviews today's state of the art of mixture toxicology, and discusses challenges ahead. Well-thought-out tailor-made mechanistic and empirical designs for studying the toxicity of mixtures have gradually substituted trial-and-error approaches, improving the insight into the testability of joint action and interaction of constituents of mixtures. The acquired knowledge has successfully been used to evaluate the safety of combined exposures and complex mixtures such as, for example, the atmosphere at hazardous waste sites, drinking water disinfection by-products, natural flavouring complexes, and the combined intake of food additives. To consolidate the scientific foundation of mixture toxicology, studies are in progress to revisit the biological concepts and mathematics underlying formulas for low-dose extrapolation and risk assessment of chemical mixtures. Conspicuous developments include the production of new computer programs applicable to mixture research (CombiTool, BioMol, Reaction Network Modelling), the application of functional genomics and proteomics to mixture studies, the use of nano-optochemical sensors for in vivo imaging of physiological processes in cells, and the application of optical sensor micro- and nano-arrays for complex sample analysis. Clearly, the input of theoretical biologists, biomathematicians and bioengineers in mixture toxicology is essential for the development of this challenging branch of toxicology into a scientific subdiscipline of full value. PMID:11983277

  2. Toxicological approaches to complex mixtures.

    PubMed Central

    Mauderly, J L

    1993-01-01

    This paper reviews the role of toxicological studies in understanding the health effects of environmental exposures to mixtures. The approach taken is to review mixtures that have received the greatest emphasis from toxicology; major mixtures research programs; the toxicologist's view of mixtures and approaches to their study; and the complementary roles of toxicological, clinical, and epidemiological studies. Studies of tobacco smoke, engine exhaust, combustion products, and air pollutants comprise most of the past research on mixtures. Because of their great experimental control over subjects, exposures, and endpoints, toxicologists tend to consider a wider range of toxic interactions among mixture components and sequential exposures than is practical for human studies. The three fundamental experimental approaches used by toxicologists are integrative (studying the mixture as a whole), dissective (dissecting a mixture to determine causative constituents), and synthetic (studying interactions between agents in simple combinations). Toxicology provides information on potential hazards, mechanisms by which mixture constituents interact to cause effects, and exposure dose-effect relationships; but extrapolation from laboratory data to quantitative human health risks is problematic. Toxicological, clinical, and epidemiological approaches are complementary but are seldom coordinated. Fostering synergistic interactions among the disciplines in studying the risks from mixtures could be advantageous. PMID:7515806

  3. Secondary fuel delivery system

    DOEpatents

    Parker, David M.; Cai, Weidong; Garan, Daniel W.; Harris, Arthur J.

    2010-02-23

    A secondary fuel delivery system for delivering a secondary stream of fuel and/or diluent to a secondary combustion zone located in the transition piece of a combustion engine, downstream of the engine primary combustion region is disclosed. The system includes a manifold formed integral to, and surrounding a portion of, the transition piece, a manifold inlet port, and a collection of injection nozzles. A flowsleeve augments fuel/diluent flow velocity and improves the system cooling effectiveness. Passive cooling elements, including effusion cooling holes located within the transition boundary and thermal-stress-dissipating gaps that resist thermal stress accumulation, provide supplemental heat dissipation in key areas. The system delivers a secondary fuel/diluent mixture to a secondary combustion zone located along the length of the transition piece, while reducing the impact of elevated vibration levels found within the transition piece and avoiding the heat dissipation difficulties often associated with traditional vibration reduction methods.

  4. Fossil fuels -- future fuels

    SciTech Connect

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  5. Process for preparing a liquid fuel composition

    DOEpatents

    Singerman, Gary M.

    1982-03-16

    A process for preparing a liquid fuel composition which comprises liquefying coal, separating a mixture of phenols from said liquefied coal, converting said phenols to the corresponding mixture of anisoles, subjecting at least a portion of the remainder of said liquefied coal to hydrotreatment, subjecting at least a portion of said hydrotreated liquefied coal to reforming to obtain reformate and then combining at least a portion of said anisoles and at least a portion of said reformate to obtain said liquid fuel composition.

  6. In-cylinder measurement of mixture maldistribution in a L-head engine

    SciTech Connect

    Chou, T.; Patterson, D.J.

    1995-04-01

    The distribution of fuel-air mixtures in many L-head engines is not homogeneous. If the local mixture is too rich or too lean, then incomplete combustion occurs. This can play a major role in unburned hydrocarbon and carbon monoxide emissions. Fuel-air mixture distribution depends on in-cylinder swirl and turbulence, and is directly related to intake-manifold configuration, fuel-delivery-system design and combustion-chamber shape. Understanding the spatial mixture distribution may help improve the design of these aforementioned components. Consequently, a more complete combustion process may result, and emissions reduced. An optical fiber bundle was used to measure the emissions of CH and C{sub 2} radicals in this research to map the mixture uniformity in the combustion chamber. The experimental results showed that there exists a relationship between the intensity ratio (I{sub C2}/I{sub CH}) and the fuel equivalence ratio. The local fuel equivalence ratios can be obtained after the relationship between the light intensity ratio and fuel equivalence ratio is established. In addition, fuel-rich combustion zones were identified in the vicinity of spark plug and valves. Two fuels, propane (C{sub 3}H{sub 8}) and Indolene (CH{sub 1.86}){sub 7} were used for investigating the effects of different types of fuel on the intensity ratio. A L-head spark-ignition engine was selected for this study since this type of engine uses a conventional carburetor in which the fuel-air mixture is relatively nonhomogeneous which produces high hydrocarbon emissions. Furthermore, the flat cylinder head supplies sufficient space for the installation of the optical fiber bundles.

  7. Fuel saving device

    SciTech Connect

    Imbert, J. C.

    1984-01-10

    The present invention relates to a fuel saving device adaptable to all types of carburetors, petrol engines and domestic or industrial burners, constituted by a solenoid generating a magnetic field which has an influence on the air-fuel mixture. Said solenoid has a red copper coil, has its axis oriented in parallel to the axis of the engine, and, periodically, in a first pre-determined direction, during the moon phase which goes from the full moon to the new moon, and in a second, opposite, direction, during the moon phase going from the new moon to the full moon. The invention finds an application in motor engine of low consumption.

  8. Opportunity fuels

    SciTech Connect

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  9. Effects of Fuel Distribution on Detonation Tube Performance

    NASA Technical Reports Server (NTRS)

    Perkins, H. Douglas; Sung, Chih-Jen

    2003-01-01

    A pulse detonation engine uses a series of high frequency intermittent detonation tubes to generate thrust. The process of filling the detonation tube with fuel and air for each cycle may yield non-uniform mixtures. Uniform mixing is commonly assumed when calculating detonation tube thrust performance. In this study, detonation cycles featuring idealized non-uniform Hz/air mixtures were analyzed using a two-dimensional Navier-Stokes computational fluid dynamics code with detailed chemistry. Mixture non-uniformities examined included axial equivalence ratio gradients, transverse equivalence ratio gradients, and partially fueled tubes. Three different average test section equivalence ratios were studied; one stoichiometric, one fuel lean, and one fuel rich. All mixtures were detonable throughout the detonation tube. Various mixtures representing the same average test section equivalence ratio were shown to have specific impulses within 1% of each other, indicating that good fuel/air mixing is not a prerequisite for optimal detonation tube performance under conditions investigated.

  10. State of Washington Department of Ecology criteria pollutants and toxic air pollutants phase 1 notice of construction for the Hanford site spent nuclear fuel project - hot conditioning system annex, project W-484

    SciTech Connect

    Turnbaugh, J.E.

    1996-08-15

    This notice of construction (NOC) provides information regarding the source and the air toxic and criteria pollutants resulting from operation of the Hot: Conditioning System Annex (HCSA). Additional details on emissions generated by the operation of the HCSA will be, discussed again in the Phase 11 NOC. This Phase I NOC is defined as, constructing the substructure, including but not limited to pouring the concrete for the floor; construction of the process pits and `exterior walls; making necessary interface connections to the Canister Storage Building (CSB) ventilation and utility systems for personnel comfort; and extending the multi-canister overpack (MCO) handling machine rails into the HCSA. A Phase 11 NOC, will be submitted for approval prior to installing and is defined as the completion of the HCSA, which will consist of installation of the Hot Conditioning System Equipment (HCSE), air emissions control equipment and emissions monitoring equipment. About 80 percent of the !U.S. Department of Energy`s spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins; spent nuclear fuel in the K West Basin is contained in closed canisters, while the SNF in the K East Basin is contained in open canisters, which allow free release of corrosion products to the K Basin water. Storage in the K Basins was `originally intended to be on an as-needed basis to sustain operation of the N Reactor while the Plutonium-Uranium Extraction (PUREX) Plant was refurbished and restarted. The decision in December 1992 to deactivate the PUREX Plant left approximately 2,300 MT (2,530 tons) of N Reactor SNF in the K Basins with no means for near-term removal and processing.