Science.gov

Sample records for point-defect migration energy

  1. Point defects and ion migration in PbFCl

    SciTech Connect

    Islam, M.S. )

    1990-04-01

    Atomistic simulation techniques have been applied to PbFCl in order to calculate the energetics of defect formation and ion transport mechanisms in the undoped material. Schottky-like disorder is computed to be the dominant ionic defect. The activation energies for a variety of anion vacancy migration mechanisms are calculated and found to be in good agreement with experiment.

  2. Point defects in semiconductors: Microscopic identification, metastable properties, defect migration, and diffusion

    NASA Astrophysics Data System (ADS)

    Vanvechten, James A.; Wager, John F.

    1988-04-01

    Fundamental progress is made in the identification of point defect complexes in semiconductors (particularly EL2 and ELO in GaAs), the elucidation of the mechanisms by which they migrate (particularly re vacancy nearest neighbor hopping in compound semiconductors and recombination enhanced migration of vacancies in Si), and the development of an efficient means to simulate their detailed, and very complicated, diffusion and inter-reaction on a microcomputer using an innovative (and evidently unique) Monte Carlo method. Some effort has also recently gone into the elucidation of the temperature dependence of band off sets at heterojunctions, particularly GaAs-AlAs and HgTe-CdTe.

  3. Energy barriers for point-defect reactions in 3C-SiC

    NASA Astrophysics Data System (ADS)

    Zheng, Ming-Jie; Swaminathan, Narasimhan; Morgan, Dane; Szlufarska, Izabela

    2013-08-01

    Energy barriers of the key annealing reactions of neutral and charged point defects in SiC are calculated with ab initio density functional theory methods. In order to effectively search for the lowest energy migration paths the preliminary path is first established based on ab initio molecular dynamics (AIMD) simulations. The energy barrier of each hop is then calculated via climbing image nudged elastic band methods for paths guided by the AIMD simulations. The final paths and barriers are determined by comparing different pathways. The annealing reactions have important implications in understanding the amorphization, recovery, and other aspects of the radiation response of SiC. The results are compared with the literature data and experimental results on SiC recovery and amorphization. We propose that the C interstitial and Si antisite annealing reaction may provide a critical barrier that governs both the recovery stage III and amorphization processes.

  4. Long range lateral migration of intrinsic point defects in n-type 4H-SiC

    SciTech Connect

    Loevlie, L. S.; Vines, L.; Svensson, B. G.

    2012-05-15

    The lateral distributions of intrinsic point defects in n-type (0001) 4H-SiC have been investigated following room temperature irradiation with a focused beam of 10 keV protons. Laterally resolved deep level transient spectroscopy measurements reveal that the well-known and prominent Z{sub 1/2} and S{sub 1/2} centers display lateral diffusion lenghts on the order of 1 mm with negligible (if any) motion parallel to the direction of the c-axis. The migration occurs only in the presence of excess charge carriers generated during the proton irradiation, and no further motion takes place even under subsequent optical excitation of high intensity. Assuming one-dimensional geometry, an effective defect diffusivity in excess of 10{sup -6} cm{sup 2}/s is deduced by numerical modelling of the experimental data, corresponding to an energy barrier for migration of {approx}0.2 eV. Possible mechanisms for the rapid migration, invoking charge carrier recombination as a necessary condition, are discussed, and especially, an association with the glide of partial dislocations along the (0001) basal plane is scrutinized in some detail.

  5. Migration of point defects and a defect pair in zinc oxide using the dimer method

    SciTech Connect

    Chen, Dong; Gao, Fei; Dong, Mingdong; Liu, Bo

    2012-09-24

    The migration mechanism and the minimum energy path of vacancies, interstitials and an interstitial-vacancy pair in zinc oxide have been studied by the dimer method. The in-plane and out-of-plane migrations of zinc and oxygen vacancies are found to be anisotropic. The kick-out mechanism is energetically preferred to zinc and oxygen interstitials that can easily migrate through the ZnO crystal lattice. In addition, the migration process of an interstitial-vacancy pair as a complex of an octahedral oxygen interstitial and a zinc vacancy is dominated by an oxygen interstitial/zinc vacancy successive migration. The energy barriers indicate that the existence of oxygen interstitial in the defect pair can promote the mobility of zinc vacancy, whereas the migration of oxygen interstitial is slowed down due to the presence of zinc vacancy. In the end, we show a possible migration path of the interstitial-vacancy pair that can be dissociated through a set of displacement movements.

  6. Migration mechanisms and diffusion barriers of carbon and native point defects in GaN

    NASA Astrophysics Data System (ADS)

    Kyrtsos, Alexandros; Matsubara, Masahiko; Bellotti, Enrico

    2016-06-01

    Carbon related defects are readily incorporated in GaN due to its abundance during growth both with MBE and MOCVD techniques. Employing first-principles calculations, we compute the migration barriers of carbon interstitials and we discuss possible relevant mechanisms of diffusion in the wurtzite GaN crystal. In addition, we calculate the migration barriers for the diffusion of the native defects of the crystal, i.e., gallium and nitrogen interstitials and vacancies. The minimum energy path and the migration barriers of these defects are obtained using the nudged elastic band method with the climbing image modification. In addition, the dimer method is used to independently determine the results. The results yield a quantitative description of carbon diffusion in GaN allowing for the determination of the most preferable migration paths.

  7. Formation, migration, and clustering of point defects in CuInSe2 from first principles

    NASA Astrophysics Data System (ADS)

    Oikkonen, L. E.; Ganchenkova, M. G.; Seitsonen, A. P.; Nieminen, R. M.

    2014-08-01

    The electronic properties of high-efficiency CuInSe2 (CIS)-based solar cells are affected by the microstructural features of the absorber layer, such as point defect types and their distribution. Recently, there has been controversy over whether some of the typical point defects in CIS—VCu, VSe, InCu, CuIn—can form stable complexes in the material. In this work, we demonstrate that the presence of defect complexes during device operational time can be justified by taking into account the thermodynamic and kinetic driving forces acting behind defect microstructure formation. Our conclusions are backed up by thorough state-of-the-art calculations of defect interaction potentials as well as the activation barriers surrounding the complexes. Defect complexes such as InCu-2VCu, InCu-CuIn, and VSe-VCu are shown to be stable against thermal dissociation at device operating temperatures, but can anneal out within tens of minutes at temperatures higher than 150-200 °C (VCu-related complexes) or 400 °C (antisite pair). Our results suggest that the presence of these complexes can be controlled via growth temperatures, which provides a mechanism for tuning the electronic activity of defects and the device altogether.

  8. Vibration energy harvesting using a phononic crystal with point defect states

    NASA Astrophysics Data System (ADS)

    Lv, Hangyuan; Tian, Xiaoyong; Wang, Michael Yu; Li, Dichen

    2013-01-01

    A vibration energy harvesting generator was studied in the present research using point-defect phononic crystal with piezoelectric material. By removing a rod from a perfect phononic crystal, a resonant cavity was formed. The elastic waves in the range of gap frequencies were all forbidden in any direction, while the waves with resonant frequency were localized and enhanced in the resonant cavity. The collected vibration energy was converted into electric energy by putting a polyvinylidene fluoride film in the middle of the defect. This structure can be used to simultaneously realize both vibration damping and broad-distributed vibration energy harvesting.

  9. Structure and energy of point defects in TiC: An ab initio study

    NASA Astrophysics Data System (ADS)

    Sun, Weiwei; Ehteshami, Hossein; Korzhavyi, Pavel A.

    2015-04-01

    We employ first-principles calculations to study the atomic and electronic structure of various point defects such as vacancies, interstitials, and antisites in the stoichiometric as well as slightly off-stoichiometric Ti1 -cCc (including both C-poor and C-rich compositions, 0.49 ≤c ≤0.51 ). The atomic structure analysis has revealed that both interstitial and antisite defects can exist in split conformations involving dumbbells. To characterize the electronic structure changes caused by a defect, we introduce differential density of states (dDOS) defined as a local perturbation of the density of states (DOS) on the defect site and its surrounding relative to the perfect TiC. This definition allows us to identify the DOS peaks characteristic of the studied defects in several conformations. So far, characteristic defect states have been discussed only in connection with carbon vacancies. Here, in particular, we have identified dDOS peaks of carbon interstitials and dumbbells, which can be used for experimental detection of such defects in TiC. The formation energies of point defects in TiC are derived in the framework of a grand-canonical formalism. Among the considered defects, carbon vacancies and interstitials are shown to have, respectively, the lowest and the second-lowest formation energies. Their formation energetics are consistent with the thermodynamic data on the phase stability of nonstoichiometric TiC. A cluster type of point defect is found to be next in energy, a titanium [100] dumbbell terminated by two carbon vacancies.

  10. A study on density functional theory of the effect of pressure on the formation and migration enthalpies of intrinsic point defects in growing single crystal Si

    NASA Astrophysics Data System (ADS)

    Sueoka, Koji; Kamiyama, Eiji; Kariyazaki, Hiroaki

    2012-05-01

    In 1982, Voronkov presented a model describing point defect behavior during the growth of single crystal Si from a melt and derived an expression to predict if the crystal was vacancy- or self-interstitial-rich. Recently, Vanhellemont claimed that one should take into account the impact of compressive stress introduced by the thermal gradient at the melt/solid interface by considering the hydrostatic pressure dependence of the formation enthalpy of the intrinsic point defects. To evaluate the impact of thermal stress more correctly, the pressure dependence of both the formation enthalpy (Hf) and the migration enthalpy (Hm) of the intrinsic point defects should be taken into account. Furthermore, growing single crystal Si is not under hydrostatic pressure but almost free of external pressure (generally in Ar gas under reduced pressure). In the present paper, the dependence of Hf and Hm on the pressure P, or in other words, the pressure dependence of the formation energy (Ef) and the relaxation volume (vf), is quantified by density functional theory calculations. Although a large number of ab initio calculations of the properties of intrinsic point defects have been published during the last years, calculations for Si crystals under pressure are rather scarce. For vacancies V, the reported pressure dependences of HfV are inconsistent. In the present study, by using 216-atom supercells with a sufficient cut-off energy and mesh of k-points, the neutral I and V are found to have nearly constant formation energies EfI and EfV for pressures up to 1 GPa. For the relaxation volume, vfI is almost constant while vfV decreases linearly with increasing pressure P. In case of the hydrostatic pressure Ph, the calculated formation enthalpy HfI and migration enthalpy HmI at the [110] dumbbell site are given by HfI = 3.425 - 0.057 × Ph (eV) and HmI = 0.981 - 0.039 × Ph (eV), respectively, with Ph given in GPa. The calculated HfV and HmV dependencies on Ph given by HfV = 3.543 - 0

  11. Charged Point Defects in the Flatland: Accurate Formation Energy Calculations in Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Komsa, Hannu-Pekka; Berseneva, Natalia; Krasheninnikov, Arkady V.; Nieminen, Risto M.

    2014-07-01

    Impurities and defects frequently govern materials properties, with the most prominent example being the doping of bulk semiconductors where a minute amount of foreign atoms can be responsible for the operation of the electronic devices. Several computational schemes based on a supercell approach have been developed to get insights into types and equilibrium concentrations of point defects, which successfully work in bulk materials. Here, we show that many of these schemes cannot directly be applied to two-dimensional (2D) systems, as formation energies of charged point defects are dominated by large spurious electrostatic interactions between defects in inhomogeneous environments. We suggest two approaches that solve this problem and give accurate formation energies of charged defects in 2D systems in the dilute limit. Our methods, which are applicable to all kinds of charged defects in any 2D system, are benchmarked for impurities in technologically important h-BN and MoS2 2D materials, and they are found to perform equally well for substitutional and adatom impurities.

  12. Role of defect coordination environment on point defects formation energies in Ni-Al intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Tennessen, Emrys; Rondinelli, James

    We present a relationship among the point defect formation energies and the bond strengths, lengths, and local coordination environment for Ni-Al intermetallic alloys based on density functional calculations, including Ni3Al, Ni5Al3, NiAl,Ni3Al4, Ni2Al3 and NiAl3. We find the energetic stability of vacancy and anti-site defects for the entire family can be attributed primarily to changes in interactions among first nearest neighbors, owing to spatially localized charge density reconstructions in the vicinity of the defect site. We also compare our interpretation of the local coordination environment with a DFT-based cluster expansion and discuss the performance of each approach in predicting defect stability in the Ni-Al system.

  13. Evolution of point defect clusters in pure iron under low-energy He+ irradiation

    NASA Astrophysics Data System (ADS)

    Arakawa, K.; Imamura, R.; Ohota, K.; Ono, K.

    2001-05-01

    The formation process of point defect clusters in high-purity (99.999%) iron as a typical bcc metal under the irradiation with low-energy (5 keV)He+ is studied by in situ transmission electron microscopy (TEM). Using conventional TEM techniques, clusters induced by the irradiation are determined to be interstitial-type dislocation loops (I loops) at temperatures ranging from 85 to 770 K and cavities from 300 to 770 K. Most of the I loops are determined to lie on {100} planes, and their Burgers vector are determined to be a[100]. The temporal variation in the volume density of I loops is measured by stereomicroscopy at several temperatures. The volume density of I loops is about two orders of magnitude higher in comparison with the case of high-energy electron irradiation at the same dpa rate; hence, it is deduced that helium atoms have an effect enhancing the nucleation of I loops. The depth distribution of the loop densities becomes broad above around 235 K at which vacancies become thermally mobile, and the dependence of loop formation on He+ beam flux is weak. From these results, it is suggested that helium-vacancy complexes act as trapping sites of self-interstitial atoms and I-loop nucleation is enhanced.

  14. Molecular dynamics simulations of point defect production in cementite and Cr23C6 inclusions in α-iron: Effects of recoil energy and temperature

    NASA Astrophysics Data System (ADS)

    Henriksson, K. O. E.

    2016-06-01

    The number of point defects formed in spherical cementite and Cr23C6 inclusions embedded into ferrite (α-iron) has been studied and compared against cascades in pure versions of these materials (only ferrite, Fe3C, or Cr23C6 in a cell). Recoil energies between 100 eV and 3 keV and temperatures between 400 K and 1000 K were used. The overall tendency is that the number of point defects — such as antisites, vacancy and interstitials — increases with recoil energy and temperature. The radial distributions of defects indicate that the interface between inclusions and the host tend to amplify and restrict the defect formation to the inclusions themselves, when compared to cascades in pure ferrite and pure carbide cells.

  15. Point defects and the binding energies of boron near defect sites in Ni{sub 3}Al: A first-principles investigation

    SciTech Connect

    Fu, C.L.; Painter, G.S.

    1997-02-01

    First-principles local-density-functional calculations have been used to investigate the equilibrium point defect structure and boron-defect interactions in Ni{sub 3}Al. The dominant point defect types in off-stoichiometric Ni{sub 3}Al are substitutional antisite defects on both sublattices. The boron binding energy is dependent on lattice coordination; it is strongest near vacancy sites with a nearest-neighbor nickel coordination number of about four (instead of six as in the defect-free interstitial site) and with no aluminum atom nearest-neighbors. This suggests that boron tends to segregate to open defect sites and to enhance cohesion through the formation of localized Ni-B covalent bonds. Comparison of the binding energies of boron and carbon in Ni{sub 3}Al shows that boron has a stronger tendency to segregate to open sites than carbon.

  16. Increment of the collective pinning energy in Na1 - xCa x Fe2As2 single crystals with random point defects introduced by proton irradiation

    NASA Astrophysics Data System (ADS)

    Haberkorn, N.; Kim, Jeehoon; Maiorov, B.; Usov, I.; Chen, G. F.; Yu, W.; Civale, L.

    2014-09-01

    We study the influence of random point defects introduced by 3 MeV proton irradiation (doses 1 × 1016 and 2 × 1016 cm2) on the vortex dynamics of Na x Ca1 - xFe2As2 (x = 0.5 and x = 0.75) single crystals. Our results indicate that the irradiation produces an enhancement of the critical current density and a reduction of the creep rate in vortex relaxation. The plateau in the temperature dependence of vortex creep rate initially present in as-grown single crystals disappears after irradiation. This fact can be associated with a large increment of the collective pinning energy (from <100 to 350-400 K). On the other hand, Maley analysis indicates that after irradiation both samples present a glassy exponent μ close to the one expected in the so-called large bundle regime (μ ≈ 7/9) for random point defects.

  17. Unraveling energy conversion modeling in the intrinsic persistent upconverted luminescence of solids: a study of native point defects in antiferromagnetic Er2O3.

    PubMed

    Huang, Bolong

    2016-05-11

    We investigated the mechanism of the intrinsic persistent luminescence of Er2O3 in the A-type lattice based on first-principles calculations. We found that the native point defects were engaged in mutual subtle interactions in the form of chemical reactions between different charge states. The release of energy related to lattice distortion facilitates the conversion of energy for electrons to be transported between the valence band and the trap levels or even between the deep trap levels so as to generate persistent luminescence. The defect transitions that take place along the zero-phonon line release energy to enable optical transitions, with the exact amount of negative effective correlation energy determined by the lattice distortions. Our calculations on the thermodynamic transition levels confirm that both the visible and NIR experimentally observed intrinsic persistent luminescence (phosphor or afterglow) are related to the thermodynamic transition levels of oxygen-related defects, and the thermodynamic transition levels within different charge states for these defects are independent of the chemical potentials of the given species. Lattice distortion defects such as anion Frenkel (a-Fr) pair defects play an important role in transporting O-related defects between different lattice sites. To obtain red persistent luminescence that matches the biological therapeutic window, it is suggested to increase the electron transition levels between high-coordinated O vacancies and related metastable a-Fr defects; a close-packed core-shell structure is required to quench low-coordinated O-related defects so as to reduce the green band luminescence. We further established a conversed chain reaction (CCR) model to interpret the energy conversion process of persistent luminescence in terms of the inter-reactions of native point defects between different charge states. It is advantageous to use the study of defect levels combined with formation energies to suggest limits

  18. Displacement Threshold Energy and Recovery in an Al-Ti Nanolayered System with Intrinsic Point Defect Partitioning

    SciTech Connect

    Gerboth, Matthew D.; Setyawan, Wahyu; Henager, Charles H.

    2014-01-07

    A method is established and validated using molecular dynamics (MD) to determine the displacement threshold energies as Ed in nanolayered, multilayered systems of dissimilar metals. The method is applied to specifically oriented nanolayered films of Al-Ti where the crystal structure and interface orientations are varied in atomic models and Ed is calculated. Methods for defect detection are developed and discussed based on prior research in the literature and based on specific crystallographic directions available in the nanolayered systems. These are compared and contrasted to similar calculations in corresponding bulk materials, including fcc Al, fcc Ti, hcp Al, and hcp Ti. In all cases, the calculated Ed in the multilayers are intermediate to the corresponding bulk values but exhibit some important directionality. In the nanolayer, defect detection demonstrated systematic differences in the behavior of Ed in each layer. Importantly, collision cascade damage exhibits significant defect partitioning within the Al and Ti layers that is hypothesized to be an intrinsic property of dissimilar nanolayered systems. This type of partitioning could be partly responsible for observed asymmetric radiation damage responses in many multilayered systems. In addition, a pseudo-random direction was introduced to approximate the average Ed without performing numerous simulations with random directions.

  19. Point defects in yttria-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Hellberg, C. Stephen; Bernstein, Noam; Erwin, Steven C.

    The densification that occurs during sintering of certain ceramics has been observed to occur more rapidly and at lower temperatures when a weak external electric field is applied.1 We compute the formation energies of point defects in yttria-stabilized zirconia using first principles density functional theory. We examine interstitials, vacancies, and vacancy complexes including Schottky defects in a Y2Zr14O31 computational cell, which corresponds to approximately 7 mol% yttria stabilized zirconia. We relate our results to recent experimental work on electric-field-assisted sintering in yttria-stabilized zirconia, showing how how the expansion of lattice constants observed in diffraction measurements results from increasing defect densities.

  20. Influence of point defects on grain boundary motion.

    SciTech Connect

    Foiles, Stephen Martin

    2010-09-01

    This work addresses the influence of point defects, in particular vacancies, on the motion of grain boundaries. If there is a non-equilibrium concentration of point defects in the vicinity of an interface, such as due to displacement cascades in a radiation environment, motion of the interface to sweep up the defects will lower the energy and provide a driving force for interface motion. Molecular dynamics simulations are employed to examine the process for the case of excess vacancy concentrations in the vicinity of two grain boundaries. It is observed that the efficacy of the presence of the point defects in inducing boundary motion depends on the balance of the mobility of the defects with the mobility of the interfaces. In addition, the extent to which grain boundaries are ideal sinks for vacancies is evaluated by considering the energy of boundaries before and after vacancy absorption.

  1. Correlated recombination and annealing of point defects in dilute and concentrated Fe-Cr alloys

    NASA Astrophysics Data System (ADS)

    Terentyev, D.; Castin, N.; Ortiz, C. J.

    2012-11-01

    In this work, we present a comprehensive combined modelling approach to study the annealing of lattice defects in dilute and concentrated metallic alloys. The developed approach consists in the combination of molecular dynamics, atomistic kinetic Monte Carlo (AKMC) and mean field rate theory methods, linked at appropriate time and space scales. For the first time, the AKMC tool has been designed to model the evolution of point defects (both vacancies and self-interstitial atoms) in random concentrated alloys, taking into account the influence of lattice distortion on the local migration energy barrier due to the mutual interaction of point defects and solutes. Good accuracy and outstanding speed of calculations has been achieved by introducing the artificial neural network regression as an engine of the AKMC applied to calculate migration barriers for mobile defects. The developed method was applied to study correlated recombination in bcc Fe and random Fe-Cr alloys, aiming at the reproduction of a set of experimental studies after electron irradiation. The obtained results agree well with the available experimental data, implying that the developed modelling procedure correctly captures the undergoing physical process.

  2. Point Defect Concentrations in Metastable Fe-C Alloys

    NASA Astrophysics Data System (ADS)

    Först, Clemens J.; Slycke, Jan; van Vliet, Krystyn J.; Yip, Sidney

    2006-05-01

    Point defect species and concentrations in metastable Fe-C alloys are determined using density functional theory and a constrained free-energy functional. Carbon interstitials dominate unless iron vacancies are in significant excess, whereas excess carbon causes greatly enhanced vacancy concentration. Our predictions are amenable to experimental verification; they provide a baseline for rationalizing complex microstructures known in hardened and tempered steels, and by extension other technological materials created by or subjected to extreme environments.

  3. Quantum Monte Carlo calculations for point defects in semiconductors

    NASA Astrophysics Data System (ADS)

    Hennig, Richard

    2010-03-01

    Point defects in silicon have been studied extensively for many years. Nevertheless the mechanism for self diffusion in Si is still debated. Direct experimental measurements of the selfdiffusion in silicon are complicated by the lack of suitable isotopes. Formation energies are either obtained from theory or indirectly through the analysis of dopant and metal diffusion experiments. Density functional calculations predict formation energies ranging from 3 to 5 eV depending on the approximations used for the exchange-correlation functional [1]. Analysis of dopant and metal diffusion experiments result in similar broad range of diffusion activation energies of 4.95 [2], 4.68 [3], 2.4 eV [4]. Assuming a migration energy barrier of 0.1-0.3 eV [5], the resulting experimental interstitial formation energies range from 2.1 - 4.9 eV. To answer the question of the formation energy of Si interstitials we resort to a many-body description of the wave functions using quantum Monte Carlo (QMC) techniques. Previous QMC calculations resulted in formation energies for the interstitials of around 5 eV [1,6]. We present a careful analysis of all the controlled and uncontrolled approximations that affect the defect formation energies in variational and diffusion Monte Carlo calculations. We find that more accurate trial wave functions for QMC using improved Jastrow expansions and most importantly a backflow transformation for the electron coordinates significantly improve the wave functions. Using zero-variance extrapolation, we predict interstitial formation energies in good agreement with hybrid DFT functionals [1] and recent GW calculations [7]. [4pt] [1] E. R. Batista, J. Heyd, R. G. Hennig, B. P. Uberuaga, R. L. Martin, G. E. Scuseria, C. J. Umrigar, and J. W. Wilkins. Phys. Rev. B 74, 121102(R) (2006).[0pt] [2] H. Bracht, E. E. Haller, and R. Clark-Phelps, Phys. Rev. Lett. 81, 393 (1998). [0pt] [3] A. Ural, P. B. Griffin, and J. D. Plummer, Phys. Rev. Lett. 83, 3454 (1999). [0pt

  4. Impact of point defects on III-nitride tunnel devices

    NASA Astrophysics Data System (ADS)

    Wickramaratne, Darshana; Lyons, John; van de Walle, Chris G.

    Heterostructures using GaN and InGaN are being pursued in designs of tunnel field-effect-transistors (TFETs) to enable low-power switching devices. Point defects and impurities in these heterostructures can adversely affect the performance of these devices through Shockley-Read-Hall (SRH) and Trap-Assisted-Tunneling (TAT) processes. Using first-principles calculations based on a hybrid functional, we calculate the thermodynamic and charge-state switching levels as well as nonradiative recombination rates of point defects and impurities in GaN and InGaN. Gallium vacancies and their complexes, in particular, are found to be potentially detrimental centers. We then investigate how these defects can contribute to SRH and TAT processes in a nitride TFET device. This work was supported by the Center for Low Energy Systems Technology (LEAST), one of the six SRC STARnet Centers, sponsored by MARCO and DARPA.

  5. Point Defect Characterization in CdZnTe

    SciTech Connect

    Gul,R.; Li, Z.; Bolotnikov, A.; Keeter, K.; Rodriguez, R.; James, R.

    2009-03-24

    Measurements of the defect levels and performance testing of CdZnTe detectors were performed by means of Current Deep Level Transient Spectroscopy (I-DLTS), Transient Charge Technique (TCT), Current versus Voltage measurements (I-V), and gamma-ray spectroscopy. CdZnTe crystals were acquired from different commercial vendors and characterized for their point defects. I-DLTS studies included measurements of defect parameters such as energy levels in the band gap, carrier capture cross sections, and defect densities. The induced current due to laser-generated carriers was measured using TCT. The data were used to determine the transport properties of the detectors under study. A good correlation was found between the point defects in the detectors and their performance.

  6. Energetics and electronic structure of UAl4 with point defects

    NASA Astrophysics Data System (ADS)

    Kniznik, L.; Alonso, P. R.; Gargano, P. H.; Rubiolo, G. H.

    2015-11-01

    UAl4 ideal and defect structures were studied within the framework of the Density Functional Theory. The structural and magnetic ordering of UAl4 in paramagnetic, ferromagnetic, and antiferromagnetic states have been investigated, within the collinear and non-collinear spin approximation, using the GGA model, as embedded in the program package VASP. An antiferromagnetic (0 1 bar 1) layer structure with spins aligned to the [010] direction was found to be energetically preferred. The analysis of density of states and bonding charge density point out that the bonding mechanism consists primarily of band mixing between the U 5f and Al 3p states. Supercells were built from UAl4 unit cells with the established magnetic structure. For those supercells we calculated the energy of formation of vacancies and antisite defects taking into account the existence of three distinct aluminum sites. Point defect formation energies, local lattice relaxations, as well as the defect induced magnetic ordering and electronic density redistribution, are discussed. It is shown that antiferromagnetism is locally broken. Al antisites and U antisites in Al 4e Wyckoff positions are the constitutional point defects in Al-rich and U-rich oI20 UAl4, respectively. In this way we have presented here the first set of data which makes it possible to discuss and quantify the point defects concentrations in the experimental composition range for existence of this uranium aluminide.

  7. Point defects in epitaxial silicene on Ag(111) surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Hongsheng; Feng, Haifeng; Du, Yi; Chen, Jian; Wu, Kehui; Zhao, Jijun

    2016-06-01

    Silicene, a counterpart of graphene, has achieved rapid development due to its exotic electronic properties and excellent compatibility with the mature silicon-based semiconductor technology. Its low room-temperature mobility of ∼100 cm2 V‑1 s‑1, however, inhibits device applications such as in field-effect transistors. Generally, defects and grain boundaries would act as scattering centers and thus reduce the carrier mobility. In this paper, the morphologies of various point defects in epitaxial silicene on Ag(111) surfaces have been systematically investigated using first-principles calculations combined with experimental scanning tunneling microscope (STM) observations. The STM signatures for various defects in epitaxial silicene on Ag(111) surface are identified. In particular, the formation energies of point defects in Ag(111)-supported silicene sheets show an interesting dependence on the superstructures, which, in turn, may have implications for controlling the defect density during the synthesis of silicene. Through estimating the concentrations of various point defects in different silicene superstructures, the mystery of the defective appearance of \\sqrt{13}× \\sqrt{13} and 2\\sqrt{3}× 2\\sqrt{3} silicene in experiments is revealed, and 4 × 4 silicene sheet is thought to be the most suitable structure for future device applications.

  8. Native point defects in GaSb

    SciTech Connect

    Kujala, J.; Segercrantz, N.; Tuomisto, F.; Slotte, J.

    2014-10-14

    We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude. We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.

  9. Photosensitive Point Defects in Optical Glasses: Science and Applications

    SciTech Connect

    Potter, B.G. Jr.; Simmons-Potter, K.

    1999-07-28

    The understanding and manipulation of the point defect structure in oxide glasses have been critical to the enhanced performance and reliability of optical-fiber-based, photosensitive photonic devices that currently found widespread application in telecommunications and remote sensing technologies. We provide a brief review of past research investigating photosensitive mechanisms in germanosilicate glasses, the primary material system used in telecommunications fibers. This discussion motivates an overview of ongoing work within our laboratories to migrate photosensitive glass technologies to a planar format for integrated photonic applications. Using reactive-atmosphere, RF-magnetron sputtering, we have demonstrated control of glass defect structure during synthesis, thereby controlling both the material photosensitivity (i. e. dispersion and magnitude of the refractive index change) and its environmental stability.

  10. Point Defects Creation by Swift Heavy Ion Irradiation Induced Low Energy Electrons in YBa{sub 2}Cu{sub 3}O{sub 7-y} through Dissociative Recombination

    SciTech Connect

    Biswal, R.; Mishra, N. C.; John, J.; Behera, D.; Kanjilal, D.; Avasthi, D. K.

    2008-10-23

    Our in-situ temperature dependent resistance studies in a set of YBa{sub 2}Cu{sub 3}O{sub 7-y}(YBCO) thin films irradiated with 200 MeV Ag ions at 79 K show that in addition to amorphized latent tracks, a large concentration of point defects are created by the secondary electrons emitted radially from the ion path. Detailed calculation of the energetics indicates that in the YBCO matrix, these secondary electrons cannot create defect by direct elastic knock-on process. We propose an inelastic interaction of the secondary electrons with the YBCO matrix, which results into defect creation by a process similar to dissociative recombination. Our study shows that accumulation of point defects during irradiation is accompanied by self-organization of point defect into clustering and phase segregation.

  11. Elastic interaction of point defects in cubic and hexagonal crystals

    NASA Astrophysics Data System (ADS)

    Kukushkin, S. A.; Osipov, A. V.; Telyatnik, R. S.

    2016-05-01

    The elastic interaction of two point defects in cubic and hexagonal structures has been considered. On the basis of the exact expression for the tensor Green's function of the elastic field obtained by the Lifschitz-Rozentsveig for a hexagonal medium, an exact formula for the interaction energy of two point defects has been obtained. The solution is represented as a function of the angle of their relative position on the example of semiconductors such as III-nitrides and α-SiC. For the cubic medium, the solution is found on the basis of the Lifschitz-Rozentsveig Green's tensors corrected by Ostapchuk, in the weak-anisotropy approximation. It is proven that the calculation of the interaction energy by the original Lifschitz-Rozentsveig Green's tensor leads to the opposite sign of the energy. On the example of the silicon crystal, the approximate solution is compared with the numerical solution, which is represented as an approximation by a series of spherical harmonics. The range of applicability of the continual approach is estimated by the quantum mechanical calculation of the lattice Green's function.

  12. Density functional calculations of point defects in InAs

    NASA Astrophysics Data System (ADS)

    Moussa, Jonathan; Schultz, Peter

    2013-03-01

    Standard semilocal density functionals do not generate a gap in the Kohn-Sham eigenvalues for InAs, a semiconductor with an experimental gap of 0.4 eV. Without a theoretical band gap, it becomes difficult to identify, specify, and characterize pure localized states of point defects with energy levels within the experimental band gap. The bulk band gap problem can be alleviated with screened hybrid density functionals, such as the Heyd-Scuseria-Ernzerhof (HSE) functional, that open the generalized Kohn-Sham eigenvalue gap of InAs to near the experimental value. However, even without a Kohn-Sham gap, the local moment countercharge (LMCC) method [Phys. Rev. Lett. 96, 246401 (2006)] is able to predict charge transition energy levels of localized defect states, using standard semi-local functionals. We present an LMCC-based study of standard point defects in InAs using semilocal density functionals and compare the results to HSE-based calculations to assess the validity of LMCC calculations in this situation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Field-Induced Point Defect Redistribution in Metal Oxides: Mesoscopic Length Scale Phenomena

    NASA Astrophysics Data System (ADS)

    Moballegh, Ali

    The spatial redistribution of charged point defects under direct-current (DC) biasing can have significant implications for electroceramic device performance and lifetime. The transport behavior of point defects is regulated by the boundary conditions of the electrodes, which can block electronic charge and/or ion transfer across the interface to varying degrees. When the electrodes are impermeable to mass transport, there will be an accumulation of point defects in the near-electrode region that can lead to significant modifications in the local electronic carrier concentrations. Such defect redistribution is responsible for the long-term increases in leakage current in many capacitor devices via modification of the interface Schottky barrier at the reverse-biased cathode. While this leakage current enhancement is detrimental in capacitor devices, the phenomenon of lattice defect migration can be utilized to form novel functional behaviors, such as resistive switching in metal-oxides via modulation of the Schottky barrier or formation of nonstoichiometric filaments oriented along the applied field direction. The present work aims to understand the phenomenon of defect redistribution as a function of the initial defect chemistry state and electrode boundary conditions under the degradation process, using single-crystal rutile TiO 2 as a model material. Experiments are performed as a function of degradation voltage and crystallographic orientation since the self-diffusion coefficients of oxygen vacancies and titanium interstitials are known to be highly anisotropic in rutile. Rutile single crystals are equilibrated at specific oxygen partial pressures and temperatures to define the initial defect chemistry state. Platinum electrodes, which form Schottky contacts and are largely impermeable to oxygen transfer, are deposited on opposite faces of the crystal. The samples are then subjected to up to 200 V/cm electric field at 200¢ªC while the leakage current is

  14. Autonomous basin climbing method with sampling of multiple transition pathways: application to anisotropic diffusion of point defects in hcp Zr

    NASA Astrophysics Data System (ADS)

    Fan, Yue; Yip, Sidney; Yildiz, Bilge

    2014-09-01

    This paper presents an extension of the autonomous basin climbing (ABC) method, an atomistic activation-relaxation technique for sampling transition-state pathways. The extended algorithm (ABC-E) allows the sampling of multiple transition pathways from a given minimum, with the additional feature of identifying the pathways in the order of increasing activation barriers, thereby prioritizing them according to their importance in the kinetics. Combined with on-the-fly kinetic Monte Carlo calculations, the method is applied to simulate the anisotropic diffusion of point defects in hcp Zr. Multiple migration mechanisms are identified for both the interstitials and vacancies, and benchmarked against results from other methods in the literature. The self-interstitial atom (SIA) diffusion kinetics shows a maximum anisotropy at intermediate temperatures (400~700 K), a non-monotonic behavior that we explain to originate from the stabilities and migration mechanisms associated with different SIA sites. The accuracy of the ABC-E calculations is validated, in part, by the existing results in the literature for point defect diffusion in hcp Zr, and by benchmarking against analytical results on a hypothetical rough-energy landscape. Lastly, sampling prioritization and computational efficiency are demonstrated through a direct comparison between the ABC-E and the activation relaxation technique.

  15. Theoretical investigation of thermodynamic stability and mobility of the intrinsic point defects in Ti3AC2 (A = Si, Al).

    PubMed

    Wang, Jiemin; Liu, Bin; Wang, Jingyang; Zhou, Yanchun

    2015-04-14

    Nano-laminated Ti3AC2 (A = Si, Al) are highlighted as nuclear materials for a generation IV (GIV) reactor because they show high tolerance to radiation damage and remain crystalline under irradiation of high fluence heavy ions. In this paper, the energetics of formation and migration of intrinsic point defects are predicted by density functional theory calculations. We find that the space near the A atomic plane acts as a point defect sink and can accommodate lattice disorder. The migration energy barriers of Si/Al vacancy and TiSi anti-site defects along the atomic plane A are in the range of 0.3 to 0.9 eV, indicating their high mobility and the fast recovery of Si/Al Frenkel defects and Ti-A antisite pairs after irradiation. This layered structure induced large disorder accommodation and fast defect recovery must play an important role in the micro-structural response of Ti3AC2 to irradiation. PMID:25749398

  16. Thermal stability of irradiation-induced point defects in cubic silicon carbide

    SciTech Connect

    Lefevre, Jeremie; Esnouf, Stephane; Petite, Guillaume; Costantini, Jean-Marc

    2009-10-15

    This work aims specifically at studying the evolution of point defects induced by electron irradiation in the cubic polytype of SiC (3C-SiC) at temperatures ranging from 10 to 1450 K by means of photoluminescence (PL) spectroscopy. We identified a first annealing stage between 200 and 245 K, which probably results from migration of interstitials in the carbon sublattice. Moreover, we confirmed the high thermal stability of defect-related PL signals up to about 1100 K and calculated the activation energies associated with their annihilation. Finally, we studied the effect of a high temperature treatment at 1400 K on the D{sub I} center PL intensity in a single-crystal sample irradiated by electrons below the threshold displacement energy of the silicon sublattice. This allows checking the relevance of recent defect models based upon the migration of atoms in the carbon sublattice during the irradiation process. We conclude that the D{sub I} center does not involve the silicon vacancy and could be assigned to an isolated silicon antisite Si{sub C}.

  17. First-principles study of point defects in thorium carbide

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Jaroszewicz, S.; Llois, A. M.; Mosca, H. O.

    2014-11-01

    Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. One of the most important issues to be studied is their behavior under irradiation. A first approach to this goal is the study of point defects. By means of first-principles calculations within the framework of density functional theory, we study the stability and formation energies of vacancies, interstitials and Frenkel pairs in thorium carbide. We find that C isolated vacancies are the most likely defects, while C interstitials are energetically favored as compared to Th ones. These kind of results for ThC, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically. For this reason, we compare with results on other compounds with the same NaCl-type structure.

  18. A first principles investigation of point defects in monolayer, few-layer, and bulk WS2

    NASA Astrophysics Data System (ADS)

    Li, Wun-Fan; Fang, Changming; Dijkstra, Marjolein; van Huis, Marijn A.; Soft Condensed Matter Team

    We present the results of a systematic study of physics of point defects in 2D WS2 materials conducted by means of density functional theory. First, we investigate the physics of point defects in monolayer (ML) WS2. Second, we examine the impact of point defects on the physical properties of multi-layer defective WS2 as a function of slab thickness. The studied point defects are: monovacancies, interstitials and anti-sites, and the considered physical properties include local geometry, defect formation energy, electronic structure and magnetism. Van der Waals interaction, spin-polarization and spin-orbit coupling effects are also incorporated in the calculations to ensure accurate results. In a ML WS2, we predict that IS is the most favorable defect inside WS2 having a low formation energy of 1.21 eV. WS and WS2 anti-sites result in a total magnetic moment of 2 μB. By studying ML, few-layer (up to 4 layers), and bulk WS2 slabs we find that, all point defects cause only localized perturbation, thus have little influence on the thickness-dependent evolution of the physical properties. The depth-dependence of the defect formation energy is also found: VS prefers to stay on the surface, while VW prefers the slab center. This work is supported by the Dutch Science Foundation NWO, VIDI Grant (Grant Nr. 723.012.006).

  19. Hydrogen interactions with intrinsic point defects in hydrogen permeation barrier of α-Al₂O₃: a first-principles study.

    PubMed

    Zhang, Guikai; Lu, Yongjie; Wang, Xiaolin

    2014-09-01

    It is crucial to understand hydrogen interactions with intrinsic point defects in the hydrogen permeation barrier (HPB) of α-Al2O3, finding underlying reasons for the not-so-low H-permeability of the barrier, and thereby produce samples with tailored defects for optimal performance. Using density functional theory (DFT), the formation energies of intrinsic point defects in an α-Al2O3 lattice, including extrinsic H-related defects (H(i), V(Al)-H complex, HO(i) and H(O)), in all possible charged states, are first calculated under HPB working conditions, to determine the dominant basic defect species for hydrogen. We find that the stable forms of H-related defects in α-Al2O3 are charged H interstitials (H(i)(q), where q is the charge state of the defect) and hydrogenation of the bulk V(Al)(3-) ([V(Al)(3-)-H(+)](q)), under hydrogen-rich conditions. As the system reaches equilibrium, H in α-Al2O3 is mainly present in the H(i)(+) state, and preferentially exists in the form of [V(Al)(3-)-H(+)] and H(O)(+). Migration processes of the dominant defects are further investigated, predicting that H(i)(+) is the predominant diffusion species in α-Al2O3. [V(Al)(3-)-H(+)](2-) and H(O)(+) can release trapped hydrogen during high temperature annealing, contributing to the H-transport in α-Al2O3. The formation energy is much higher than the migration energy for H(i)(+), suggesting that the migration of H(i)(+) is the bottleneck for creating low enough H-permeation in α-Al2O3, and corresponding strategies for optimum H-suppressing performance for an α-Al2O3 HPB are proposed. PMID:25026027

  20. Half-Integer Point Defects in the Q-Tensor Theory of Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Di Fratta, G.; Robbins, J. M.; Slastikov, V.; Zarnescu, A.

    2016-02-01

    We investigate prototypical profiles of point defects in two-dimensional liquid crystals within the framework of Landau-de Gennes theory. Using boundary conditions characteristic of defects of index k/2, we find a critical point of the Landau-de Gennes energy that is characterised by a system of ordinary differential equations. In the deep nematic regime, b^2 small, we prove that this critical point is the unique global minimiser of the Landau-de Gennes energy. For the case b^2=0, we investigate in greater detail the regime of vanishing elastic constant L → 0, where we obtain three explicit point defect profiles, including the global minimiser.

  1. Interaction of intrinsic point defects with dislocation stress fields in hcp zirconium crystal

    SciTech Connect

    Chernov, V. M. Chulkin, D. A.; Sivak, A. B.

    2010-01-15

    The crystallographic, energetic, and kinetic characteristics of intrinsic point defects (vacancy-self-interstitial atom) in stable, metastable, and saddle configurations in hcp zirconium crystal have been calculated by the molecular-statics method. The spatial dependences of the interaction energies of intrinsic point defects and stress fields of rectilinear dislocations with Burgers vectors of 1/3[112 bar 0], 1/3 [112 bar 3], and [0001] have been found within the anisotropic linear theory of elasticity. The most likely trajectories of intrinsic point defects in dislocation stress fields (trajectories with minimum energy barriers for motion) have been constructed. Such trajectories result in dislocation only for the interaction of self-interstitial atoms with an edge dislocation that has a Burgers vector of 1/3 [112 bar 3].

  2. Influence of point defects on grain boundary diffusion in oxides

    SciTech Connect

    Stubican, V.S.

    1991-03-15

    The influence of point defects on grain boundary diffusion of Co ions in NiO was studied using polycrystalline films and bicrystals. Grain boundary diffusion was studied at 750 C at oxygen partial pressure. Two diffusion regions were found. At low oxygen pressures, extrinsic diffusion was observed. Above oxygen pressure of 10{sup {minus}7}, influence of intrinsic point defects was detected. It was determined that grain boundary diffusion was > 3 orders of magnitude faster than volume diffusion. However, it seems that grain boundary diffusion is influenced by the point defects in a similar way as the volume diffusion. 4 figs.

  3. A point defect model for nickel electrode structures

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia L.; Karjala, Philip J.; Cornilsen, Bahne C.

    1986-01-01

    The Raman spectra for nickel electrode active mass indicate a single formula-unit crystallographic unit cell of the layered NiOOH-type. Empirical stoichiometric formulas require that extensive point defects, cation dopants and nickel vacancies, be incorporated on nickel sites. Structural differences between the alpha/gamma and beta/beta cycles, and the influence of cobalt addition on the structure will be discussed in terms of the point defect model. Other empirical data supporting the point defect model will be considered.

  4. First-principles study of point defects in an fcc Fe-10Ni-20Cr model alloy

    NASA Astrophysics Data System (ADS)

    Piochaud, J. B.; Klaver, T. P. C.; Adjanor, G.; Olsson, P.; Domain, C.; Becquart, C. S.

    2014-01-01

    The influence of the local environment on vacancy and self-interstitial formation energies has been investigated in a face-centered-cubic (fcc) Fe-10Ni-20Cr model alloy by analyzing an extensive set of first-principle calculations based on density functional theory. Chemical disorder has been considered by designing special quasirandom structures and four different collinear magnetic structures have been investigated in order to determine a relevant reference state to perform point defect calculations at 0 K. Two different convergence methods have also been used to characterize the importance of the method on the results. Although our fcc Fe-10Ni-20Cr would be better represented in terms of applications by the paramagnetic state, we found that the antiferromagnetic single-layer magnetic structure was the most stable at 0 K and we chose it as a reference state to determine the point defect properties. Point defects have been introduced in this reference state, i.e., vacancies and Fe-Fe, Fe-Ni, Fe-Cr, Cr-Cr, Ni-Ni, and Ni-Cr dumbbell interstitials oriented either parallel or perpendicular to the single layer antiferromagnetic planes. Each point defect studied was introduced at different lattice sites to consider a sufficient variety of local environments and analyze its influence on the formation energy values. We have estimated the point defect formation energies with linear regressions using variables which describe the local environment surrounding the point defects. The number and the position of Ni and Cr first nearest neighbors to the point defects were found to drive the evolution of the formation energies. In particular, Ni is found to decrease and Cr to increase the vacancy formation energy of the model alloy, while the opposite trends are found for the dumbbell interstitials. This study suggested that, to a first approximation, the first nearest atoms to point defects can provide reliable estimates of point defect formation energies.

  5. Phase-operation for conduction electron by atomic-scale scattering via single point-defect

    SciTech Connect

    Nagaoka, Katsumi Yaginuma, Shin; Nakayama, Tomonobu

    2014-03-17

    In order to propose a phase-operation technique for conduction electrons in solid, we have investigated, using scanning tunneling microscopy, an atomic-scale electron-scattering phenomenon on a 2D subband state formed in Si. Particularly, we have noticed a single surface point-defect around which a standing-wave pattern created, and a dispersion of scattering phase-shifts by the defect-potential against electron-energy has been measured. The behavior is well-explained with appropriate scattering parameters: the potential height and radius. This result experimentally proves that the atomic-scale potential scattering via the point defect enables phase-operation for conduction electrons.

  6. Effect of point defects and disorder on structural phase transitions

    SciTech Connect

    Toulouse, J.

    1997-06-01

    Since the beginning in 1986, the object of this project has been Structural Phase Transitions (SPT) in real as opposed to ideal materials. The first stage of the study has been centered around the role of Point Defects in SPT`s. Our intent was to use the previous knowledge we had acquired in the study of point defects in non-transforming insulators and apply it to the study of point defects in insulators undergoing phase transitions. In non-transforming insulators, point defects, in low concentrations, marginally affect the bulk properties of the host. It is nevertheless possible by resonance or relaxation methods to study the point defects themselves via their local motion. In transforming solids, however, close to a phase transition, atomic motions become correlated over very large distances; there, even point defects far removed from one another can undergo correlated motions which may strongly affect the transition behavior of the host. Near a structural transition, the elastic properties win be most strongly affected so as to either raise or decrease the transition temperature, prevent the transition from taking place altogether, or simply modify its nature and the microstructure or domain structure of the resulting phase. One of the well known practical examples is calcium-stabilized zirconia in which the high temperature cubic phase is stabilized at room temperature with greatly improved mechanical properties.

  7. Point defects in the NiAl(100) surface.

    PubMed

    Lerch, D; Dössel, K; Hammer, L; Müller, S

    2009-04-01

    The stability of various point defects in NiAl(100) has been investigated by first-principles calculations. For Al-rich surfaces, Ni vacancies within the first Al layer are energetically most favourable. For Ni-rich surfaces, so-called double defects, consisting of both Ni-antisite atom in the first Al layer and a Ni vacancy within the second Ni layer, form the configuration of lowest energy, superior to singular Ni antisites. An additional and significant energy gain is found in both cases by mutual lateral interaction of the defects, when they are arranged in the diagonal direction. Respective [Formula: see text] ordered configurations were found as the most stable structures. A 50:50 mixture of both defect types turns out to be even lower in energy than the ideal Al-terminated NiAl(100) surface, proving the latter to be metastable only. This is in line with the often reported inability in experiments to prepare ideal NiAl(100) surfaces. PMID:21817482

  8. Diffusion of point defects in crystalline silicon using the kinetic activation-relaxation technique method

    NASA Astrophysics Data System (ADS)

    Trochet, Mickaël; Béland, Laurent Karim; Joly, Jean-François; Brommer, Peter; Mousseau, Normand

    2015-06-01

    We study point-defect diffusion in crystalline silicon using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities based on the activation-relaxation technique (ART nouveau), coupled to the standard Stillinger-Weber potential. We focus more particularly on the evolution of crystalline cells with one to four vacancies and one to four interstitials in order to provide a detailed picture of both the atomistic diffusion mechanisms and overall kinetics. We show formation energies, activation barriers for the ground state of all eight systems, and migration barriers for those systems that diffuse. Additionally, we characterize diffusion paths and special configurations such as dumbbell complex, di-interstitial (IV-pair+2I) superdiffuser, tetrahedral vacancy complex, and more. This study points to an unsuspected dynamical richness even for this apparently simple system that can only be uncovered by exhaustive and systematic approaches such as the kinetic activation-relaxation technique.

  9. Vibrational contributions to the stability of point defects in bcc iron: A first-principles study

    NASA Astrophysics Data System (ADS)

    Lucas, G.; Schäublin, R.

    2009-09-01

    The purpose of this study is to investigate the modes of vibration of the self-interstitial atoms and the vacancy in bcc iron and to estimate how the vibrational properties can affect the stability of these defects. The phonon density of states of the vacancy and the self-interstitials have been calculated within the quasi harmonic approximation using density functional theory calculations. It was observed that self-interstitial atoms have several localized high frequency modes of vibration related to the stretching of the dumbbell bond, but also soft modes favoring their migration. From the phonon density of states, the vibrational contributions to the free energy have been estimated for finite temperatures. Results are compared to previous work performed by others using empirical potentials. We found a rather large formation entropy for the vacancy, SVf = 4.08 kB. Our results show that the vibrational entropy can have a significant influence on the formation of the point defects even at moderate temperature. Possible consequences on the mobility of these defects are also discussed.

  10. Role of silicon surface in the removal of point defects in ultra-shallow junctions

    SciTech Connect

    Sultan, A.; Banerjee, S.; List, S.; Rodder, M.

    1996-12-31

    The role of the Si surface in the annihilation of point defects has been studied for ultra-shallow p{sup +}/n junctions. The dopant and defect distributions for low energy implants lie within a few hundred Angstroms of the surface. The proximity of the Si surface has been shown to help in the efficient removal of point defects for the shallower junctions. A 5 keV, 1{times}10{sup 15} cm{sup -2} BF{sub 2} implant and a 30 keV, 3.3{times}10{sup 14} cm{sup -2} BF{sub 2} implant were estimated to create comparable damage at different depths. After identical anneals, the higher energy implant sample showed end-of-range dislocation loops in cross-sectional transmission electron microscopy analysis, while the low energy sample, for which the point defect distribution was closer to the surface, was defect-free. This is attributed to the role of the Si surface as an efficient sink for the removal of point defects.

  11. Point Defects in Nematic Gels: The Case for Hedgehogs

    NASA Astrophysics Data System (ADS)

    Dolbow, John; Fried, Eliot; Shen, Amy Q.

    2005-07-01

    We address the question of whether a nematic gel is capable of sustaining a radially-symmetric point defect (or, hedgehog). We consider the special case of a gel cross-linked in a state where the mesogens are randomly aligned, and study the behavior of a spherical specimen with boundary subjected to a uniform radial displacement. For simplicity, we allow only for distortions in which the chain conformation is uniaxial with constant chain anisotropy and, thus, is determined by a unit director field. Further, we use the particular free-energy density function arising from the neo-classical molecular-statistical description of nematic gels. We find that the potential energy of the specimen is a nonconvex function of the boundary displacement and chain anisotropy. In particular, whenever the displacement of the specimen boundary involves a relative radial expansion in excess of 0.35, which is reasonably mild for gel-like substances, the theory predicts an energetic preference for states involving a hedgehog at the center of the specimen. Under such conditions, states in which the chain anisotropy is either oblate or prolate have total free-energy less than that of an isotropic comparison state. However, the oblate alternative always provides the global minimum of the total free-energy. The Cauchy stress associated with an energetically-preferred hedgehog is found to vanish in a relatively large region surrounding the hedgehog. The radial component of Cauchy stress is tensile and exhibits a non-monotonic character with a peak value an order of magnitude less than what would be observed in a specimen consisting of a comparable isotropic gel. The hoop component of Cauchy stress is also non-monotonic, but, as opposed to being purely tensile, goes between a tensile maximum to a compressive minimum at the specimen boundary.

  12. Point defect weakened thermal contraction in monolayer graphene

    SciTech Connect

    Zha, Xian-Hu; Zhang, Rui-Qin; Lin, Zijing

    2014-08-14

    We investigate the thermal expansion behaviors of monolayer graphene and three configurations of graphene with point defects, namely the replacement of one carbon atom with a boron or nitrogen atom, or of two neighboring carbon atoms by boron-nitrogen atoms, based on calculations using first-principles density functional theory. It is found that the thermal contraction of monolayer graphene is significantly decreased by point defects. Moreover, the corresponding temperature for negative linear thermal expansion coefficient with the maximum absolute value is reduced. The cause is determined to be point defects that enhance the mechanical strength of graphene and then reduce the amplitude and phonon frequency of the out-of-plane acoustic vibration mode. Such defect weakening of graphene thermal contraction will be useful in nanotechnology to diminish the mismatching or strain between the graphene and its substrate.

  13. Study of Near-Neighbor Structure of Point Defects in α-FE by Displacement Cascade

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Lu; Liu, Wei; Wu, Xuebang; Fang, Q. F.; Liu, C. S.; Huang, Qun-Ying; Wu, Y. C.

    2012-07-01

    Molecular dynamics simulations have been performed to study the primary damage formation in α-Fe by collision cascades in the recoil energy range 0.5-20 keV. Two near-neighbor analysis methods including the near-neighbor defect density (NPDD) analysis and cluster analysis were introduced to characterize the spatial aggregation of point defects and the morphologies of clusters, respectively. It is found that the NPDD of self-interstitial atom (SIA) and the number of Frenkel pairs show a similar variation trend, while the NPDD of vacancy exhibits a peak at shorter time than that of SIA. Furthermore, we find that the clusters of point defects exist mostly in the form of chainlike structure in the course and the end of cascades, but the proportion of chainlike clusters decreases with increasing the number of point defects included in one cluster. Therefore, the present methods are found to be effective to characterize the aggregation and the near-neighbor structure of point defects by displacement cascades at any time.

  14. Point defects in Cd(Zn)Te and TlBr: Theory

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo

    2013-09-01

    The effects of various crystal defects on the performances of CdTe, CdZnxTe (CZT), and TlBr for room-temperature high-energy radiation detection are examined using first-principles theoretical methods. The predictive, parameter-free, atomistic approaches used provide fundamental understanding of defect properties that are difficult to measure and also allow rapid screening of possibilities for material engineering, such as optimal doping and annealing conditions. Several recent examples from the author's work are reviewed, including: (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties in CZT; (iii) point defect diffusion and binding leading to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects—principally vacancies—on the intrinsic material properties of TlBr, particularly its electronic and ionic conductivity; and (v) a study on doping TlBr to independently control the electronic and ionic conductivity.

  15. Identifying radiation induced point defect in SiC nanowires: computational modeling

    NASA Astrophysics Data System (ADS)

    Uu, Ming

    SiC nanowires (NWs) are expected to possess higher radiation tolerance compared to their crystalline counterpart due to their efficiency in eliminating point defects generated by the radiations. In this study, we will develop a computational modeling scheme to identify the radiation induced point defects in SiC NWs. A preliminary study on the hexagonal 2H-SiC NWs has demonstrated that the point defects on the surface of the SiC NWs only create local distortions and will not cause the destruction of the entire structure of the SiC NWs. It is also found that the local strain created by the antisite, the C-vacancy, and the Si-interstitial defects induces a few impurity states inside the energy gap, while defects such as the Si-vacancy and C-interstitial defects tend to produce a small tail at the top of the valence band. These observations suggest that the electronic properties of the SiC NWs will not be affected to any great extent by these types of points defects on the surface of the SiC NWs, and therefore the SiC NWs are expected to be tolerant or resistant responding to these types of radiation effect.

  16. Energetics of point defects in {gamma}-TiAl

    SciTech Connect

    Raju, S.; Mohandas, E.; Raghunathan, V.S.

    1996-02-15

    {gamma}TiAl has been receiving a great deal of attention in recent times owing to its industrial importance. This structural intermetallic is a candidate material for high temperature aerospace applications. Therefore, a study of point defect properties is useful in elucidating its physical metallurgy. In this brief communication, the authors discuss the vacancy and antisite defect properties of {gamma}-TiAl.

  17. Point Defects in CdZnTe Crystals Grown by Different Techniques

    SciTech Connect

    Gul, R.; Bolotnikov, A.; Kim, H.K.; Rodriguez, R.; Keeter, K.; Li, Z.; Gu, G.; and James, R.B.

    2011-02-02

    We studied, by current deep-level transient spectroscopy (I-DLTS), point defects in CdZnTe detectors grown by different techniques. We identified 12 different traps with energy levels from 7 meV to 1.1 eV. Although the levels of most of the identified defects were independent of the crystal growth techniques, nevertheless there were some associated differences in the traps energies and densities.

  18. Point Defects in CdZnTe Crystals Grown by Different Techniques

    SciTech Connect

    R Gul; A Bolotnikov; H Kim; R Rodriguez; K Keeter; Z Li; G Gu; R James

    2011-12-31

    We studied, by current deep-level transient spectroscopy (I-DLTS), point defects in CdZnTe detectors grown by different techniques. We identified 12 different traps with energy levels from 7 meV to 1.1 eV. Although the levels of most of the identified defects were independent of the crystal growth techniques, nevertheless there were some associated differences in the traps energies and densities.

  19. Time scale for point-defect equilibration in nanostructures

    SciTech Connect

    Millett, Paul C.; Wolf, Dieter; Desai, Tapan; Yamakov, Vesselin

    2008-10-20

    Molecular dynamics simulations of high-temperature annealing are performed on nanostructured materials enabling direct observation of vacancy emission from planar defects (i.e., grain boundaries and free surfaces) to populate the initially vacancy-free grain interiors on a subnanosecond time scale. We demonstrate a universal time-length scale correlation that governs these re-equilibration processes, suggesting that nanostructures are particularly stable against perturbations in their point-defect concentrations, caused for example by particle irradiation or temperature fluctuations.

  20. Role of point defects in optical damage of nonlinear crystals

    NASA Astrophysics Data System (ADS)

    Scripsick, Michael P.; Edwards, Gary J.

    1993-07-01

    We have initiated a program at West Virginia University to establish the properties of point defects that are relevant to the optical damage phenomena in KTP, BBO, and LBO crystals. Defects have been characterized using optical absorption, electron paramagnetic resonance (EPR), electron-nuclear double resonance (ENDOR), and luminescence techniques. Among the defects which have been observed are impurity ions (iron, platinum, hydrogen, etc.), trapped hole centers, and trapped electron centers.

  1. Energetics of intrinsic point defects in ZrSiO{sub 4}

    SciTech Connect

    Pruneda, J.M.; Artacho, Emilio

    2005-03-01

    Using first principles calculations we have studied the formation energies, electron and hole affinities, and electronic levels of intrinsic point defects in zircon. The atomic structures of charged interstitials, vacancies, Frenkel pairs, and antisite defects are obtained. The limit of high concentration of point defects, relevant for the use of this material in nuclear waste immobilization, was studied with a variable lattice relaxation that can simulate the swelling induced by radiation damage. The limit of low concentration of defects is simulated with larger cells and fixed lattice parameters. Using known band offset values at the interface of zircon with silicon, we analyze the foreseeable effect of the defects on the electronic properties of zircon used as gate in metal-oxide-semiconductor devices.

  2. A theoretical study of intrinsic point defects and defect clusters in magnesium aluminate spinel.

    PubMed

    Gilbert, C A; Smith, R; Kenny, S D; Murphy, S T; Grimes, R W; Ball, J A

    2009-07-01

    Point and small cluster defects in magnesium aluminate spinel have been studied from a first principles viewpoint. Typical point defects that occur during collision cascade simulations are cation anti-site defects, which have a small formation energy and are very stable, O and Mg split interstitials and vacancies. Isolated Al interstitials were found to be energetically unfavourable but could occur as part of a split Mg-Al pair or as a three atom-three vacancy Al 'ring' defect, previously observed in collision cascades using empirical potentials. The structure and energetics of the defects were investigated using density functional theory (DFT) and the results compared to simulations using empirical fixed charge potentials. Each point defect was studied in a variety of supercell sizes in order to ensure convergence. It was found that empirical potential simulations significantly overestimate formation energies, but that the type and relative stability of the defects are well predicted by the empirical potentials both for point defects and small defect clusters. PMID:21828490

  3. A theoretical study of intrinsic point defects and defect clusters in magnesium aluminate spinel

    NASA Astrophysics Data System (ADS)

    Gilbert, C. A.; Smith, R.; Kenny, S. D.; Murphy, S. T.; Grimes, R. W.; Ball, J. A.

    2009-07-01

    Point and small cluster defects in magnesium aluminate spinel have been studied from a first principles viewpoint. Typical point defects that occur during collision cascade simulations are cation anti-site defects, which have a small formation energy and are very stable, O and Mg split interstitials and vacancies. Isolated Al interstitials were found to be energetically unfavourable but could occur as part of a split Mg-Al pair or as a three atom-three vacancy Al 'ring' defect, previously observed in collision cascades using empirical potentials. The structure and energetics of the defects were investigated using density functional theory (DFT) and the results compared to simulations using empirical fixed charge potentials. Each point defect was studied in a variety of supercell sizes in order to ensure convergence. It was found that empirical potential simulations significantly overestimate formation energies, but that the type and relative stability of the defects are well predicted by the empirical potentials both for point defects and small defect clusters.

  4. Impact of point defects on electronic structure in Y2Ti2O7

    SciTech Connect

    Xiao, Haiyan; Zhang, Yanwen; Weber, William J

    2012-01-01

    With many technologies and applications downscaling to nanometer dimensions, the influence of single point defects on electronic structure has shown increasingly profound impact on optical and electrical properties, and advancing fundamental understanding is critical to defect engineering and control of materials properties. In the present study, first-principles calculations based on density functional theory (DFT) are carried out to study the effects of Ti point defects on the electronic structure of Y2Ti2O7. In the literature, it has been demonstrated that conventional DFT tends to produce delocalized holes and electrons in defective oxide materials due to insufficient cancellation of the self-interaction energy and underestimation of the band gap, which results in an incorrect description of the electronic structure of the system. In an effort to better understand the accuracy of DFT in describing the behavior of Y2Ti2O7 with point defects, the calculated results obtained from using DFT and DFT+U methods are compared, including the geometrical distortion, the localization of the defect states and the position of the defect levels in the band gap. Using DFT, distorted geometries around the Ti vacancy and interstitial are found, along with localized oxygen holes and Ti electrons, both of which compare well with the DFT+U results, suggesting that the conventional DFT can be used to describe the localization of the Ti defects in Y2Ti2O7. One major difference in the DFT and DFT+U calculations is the energy position of the defect levels, for which DFT+U results in the states positioned deep in the band gap. Since the DFT+U method suffers from the dependence of the results on the empirical parameter U and no experimental results on the energy position of the defect states are available to tune this U value, care must be taken in applying DFT+U to electronic structure calculations of Y2Ti2O7 with point defects. Based on the DFT method, the most preferred charge state

  5. Impact of Point Defects on Electronic Structure in Y₂Ti₂O₇

    SciTech Connect

    Xiao, Haiyan Y.; Zhang, Yanwen; Weber, William J.

    2012-06-13

    With many technologies and applications downscaling to nanometer dimensions, the influence of single point defects on electronic structure has shown an increasingly profound impact on optical and electrical properties, and advancing fundamental understanding is critical to defect engineering and control of materials properties. In the present study, first-principles calculations based on density functional theory (DFT) are carried out to study the effects of Ti point defects on the electronic structure of Y₂Ti₂O₇. In the literature, it has been demonstrated that conventional DFT tends to produce delocalized holes and electrons in defective oxide materials due to insufficient cancellation of the self-interaction energy and underestimation of the band gap, which results in an incorrect description of the electronic structure of the system. In an effort to better understand the accuracy of DFT in describing the behavior of Y₂Ti₂O₇ with point defects, the calculated results obtained from DFT and DFT+U methods are compared, including the geometrical distortion, the localization of the defect states and the position of the defect levels in the band gap. Using DFT, distorted geometries around the Ti vacancy and interstitial are found, along with localized oxygen holes and Ti electrons, both of which compare well with the DFT+U results, suggesting that the conventional DFT can be used to describe the localization of the Ti defects in Y₂Ti₂O₇. One major difference in the DFT and DFT+U calculations is the energy position of the defect levels, for which DFT+U results in the states positioned deep in the band gap. Since the DFT+U method suffers from the dependence of the results on the empirical parameter U and no experimental results on the energy position of the defect states are available to tune this U value, care must be taken in applying DFT+U to electronic structure calculations of Y₂Ti₂O₇ with point defects. Based on the DFT method, the most

  6. Multiscale modeling of point defects in Si-Ge(001) quantum wells

    SciTech Connect

    Yang, B.; Tewary, V. K.

    2007-04-01

    A computationally efficient hybrid Green's function (GF) technique is developed for multiscale modeling of point defects in a trilayer lattice system that links seamlessly the length scales from lattice (subnanometers) to continuum (bulk). The model accounts for the discrete structure of the lattice including nonlinear effects at the atomistic level and full elastic anisotropy at the continuum level. The model is applied to calculate the discrete core structure of point defects (vacancies and substitutional impurities) in Si-Ge(001) quantum wells (QWs) that are of contemporary technological interest. Numerical results are presented for the short range and long range lattice distortions and strains in the lattice caused by the defects and their formation energy and Kanzaki forces that are basic characteristics of the defects. The continuum and the lattice GFs of the material system are used to link the different length scales, which enables us to model the point defects and extended defects such as the quantum well in a unified formalism. Nonlinear effects in the core of the point defects are taken into account by using an iterative scheme. The Tersoff potential is used to set up the lattice structure, compute the unrelaxed forces and force constants in the lattice, and derive the elastic constants required for the continuum GF. It is found that the overall elastic properties of the material and the properties of defects vary considerably when the material is strained from the bulk to the QW state. This change in the defect properties is very significant and can provide a characteristic signature of the defect. For example, in the case of a single vacancy in Ge, the strain reverses the sign of the relaxation volume. It is also found that the defect properties, such as the defect core structures, change abruptly across a Ge/Si interface. The transition occurs over a region extending from two to four lattice constants, depending upon the defect species.

  7. Reversal of helicoidal twist handedness near point defects of confined chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Ackerman, Paul J.; Smalyukh, Ivan I.

    2016-05-01

    Handedness of the director twist in cholesteric liquid crystals is commonly assumed to be the same throughout the medium, determined solely by the chirality of constituent molecules or chiral additives, albeit distortions of the ground-state helicoidal configuration often arise due to the effects of confinement and external fields. We directly probe the twist directionality of liquid crystal director structures through experimental three-dimensional imaging and numerical minimization of the elastic free energy and show that spatially localized regions of handedness opposite to that of the chiral liquid crystal ground state can arise in the proximity of twisted-soliton-bound topological point defects. In chiral nematic liquid crystal confined to a film that has a thickness less than the cholesteric pitch and perpendicular surface boundary conditions, twisted solitonic structures embedded in a uniform unwound far-field background with chirality-matched handedness locally relieve confinement-imposed frustration and tend to be accompanied by point defects and smaller geometry-required, energetically costly regions of opposite twist handedness. We also describe a spatially localized structure, dubbed a "twistion," in which a twisted solitonic three-dimensional director configuration is accompanied by four point defects. We discuss how our findings may impinge on the stability of localized particlelike director field configurations in chiral and nonchiral liquid crystals.

  8. Theoretical and positron annihilation study of point defects in intermetallic compound Ni{sub 3}Al

    SciTech Connect

    Jian Sun; Dongliang Lin

    1994-01-01

    The equilibrium equation of point defects in Ll{sub 2} types of intermetallic compounds was established in a new simple method, which is independent of the chemical potentials. The formation energies of the relevant point defects in Ni{sub 3}Al were calculated by EAM potentials and statical relaxations. The concentration of point defects at 1,000 K as a function of bulk composition and the effect of temperature on them were studied for Ni{sub 3}Al alloy. The results show that the Al-antisites are the constitutional defects in hypostoichiometric Ni{sub 3}Al, and the Ni-antisite defects in hyperstoichiometric Ni{sub 3}Al. The two types of vacancies belong to thermal defects. The positron annihilation technique was also conducted to measure the concentration of vacancies in Ni{sub 3}Al alloys with and without boron. Although vacancies interact with the boron dopant, the changes of vacancy concentration Ni{sub 3}Al alloys can not be considered as the main reason in explaining the effect of stoichiometry on the segregation of boron. The effect of stoichiometry on diffusion in Ni{sub 3}Al alloys was discussed additionally.

  9. Point defect balance in epitaxial GaSb

    SciTech Connect

    Segercrantz, N. Slotte, J.; Makkonen, I.; Kujala, J.; Tuomisto, F.; Song, Y.; Wang, S.

    2014-08-25

    Positron annihilation spectroscopy in both conventional and coincidence Doppler broadening mode is used for studying the effect of growth conditions on the point defect balance in GaSb:Bi epitaxial layers grown by molecular beam epitaxy. Positron annihilation characteristics in GaSb are also calculated using density functional theory and compared to experimental results. We conclude that while the main positron trapping defect in bulk samples is the Ga antisite, the Ga vacancy is the most prominent trap in the samples grown by molecular beam epitaxy. The results suggest that the p–type conductivity is caused by different defects in GaSb grown with different methods.

  10. Collective overcoming of point defects by dislocations in the dynamic region

    NASA Astrophysics Data System (ADS)

    Malashenko, V. V.

    2014-08-01

    A mechanism of collective overcoming of point defects by dislocations during the over-barrier slip has been proposed. It has been shown that the interaction between dislocations promotes the overcoming of point defects at a high dislocation density.

  11. Influence of point defects on grain boundary mobility in bcc tungsten.

    PubMed

    Borovikov, Valery; Tang, Xian-Zhu; Perez, Danny; Bai, Xian-Ming; Uberuaga, Blas P; Voter, Arthur F

    2013-01-23

    Atomistic computer simulations were performed to study the influence of radiation-induced damage on grain boundary (GB) sliding processes in bcc tungsten (W), the divertor material in the ITER tokamak and the leading candidate for the first wall material in future fusion reactors. In particular, we calculated the average sliding-friction force as a function of the number of point defects introduced into the GB for a number of symmetric tilt GBs. In all cases the average sliding-friction force at fixed shear strain rate depends on the number of point defects introduced into the GB, and in many cases introduction of these defects reduces the average sliding-friction force by roughly an order of magnitude. We have also observed that as the number of interstitials in the GB is varied, the direction of the coupled GB motion sometimes reverses, causing the GB to migrate in the opposite direction under the same applied shear stress. This could be important in the microstructural evolution of polycrystalline W under the harsh radiation environment in a fusion reactor, in which high internal stresses are present and frequent collision cascades generate interstitials and vacancies. PMID:23238084

  12. Stacking faults and lamellar twins with intrinsic point defects in poly-crystalline CdTe analyzed by density functional theory

    NASA Astrophysics Data System (ADS)

    Buurma, Christopher; Chan, Maria; Pauluaskas, Tadas; Klie, Robert; Sivananthan, Sivalingam; DOE Bridge Project Collaboration

    2014-03-01

    Polycrystalline CdTe is a prominent photovoltaic material with proven industry success. To develop the next generation of thin film CdTe solar cells, higher open-circuit voltages and longer minority carrier lifetimes must be achieved. Playing a major role in doping, defect migration, recombination, and current transport are grain boundaries and other extended defects within grains of poly-crystalline CdTe. Commonly observed with STEM in CdTe are twins and stacking faults that extend throughout the entire grain. These twins can appear as lamellar repeating twins, or as single column stacking faults occurring in repetition near that of a Wurtzite structure. In this talk, we will use first principles density functional theory to investigate the thermodynamics and electronic structures such structures observed in STEM. The interaction energetics between adjacent twins and sets of twins are investigated. We will also investigate the likelihood of formation of neutral and charged native point defects in and near these extended defect structures. Binding energies of multiple point defects near such structures are also revealed. Implications towards PV efficiencies are discussed.

  13. Point-defect properties and sputtering events in the {100} surface of Ni3Al I. Surface and point defect properties.

    SciTech Connect

    Lai, Wengsheng; Bacon, David J; Osetskiy, Yury N

    2004-01-01

    Constant-area and fully relaxed molecular dynamics methods are employed to study the properties of the surface and point defects at and near {l_brace}001{r_brace} surfaces of bulk and thin-film Ni, Al and Ni{sub 3}Al respectively. The surface tension is larger than the surface energy for all {l_brace}001{r_brace} surfaces considered in the sequence: Al (1005 mJ m{sup -2}) < Ni{sub 3}Al (mixed Ni-Al plane outermost, 1725 mJ m{sup -2}) < Ni{sub 3}Al (all-Ni-atoms plane outermost, 1969 mJ m{sup -2}) < Ni (1993 mJ m{sup -2}). For a surface of bulk Ni{sub 3}Al crystal with a Ni-Al mixed plane outermost, Al atoms stand out by 0.0679 {angstrom} compared with the surface Ni atoms and, for the all-Ni-atoms surface, Al atoms in the second layer stand out by 0.0205 {angstrom} compared with Ni atoms in the same layer. Vacancy formation energies are about half the bulk values in the first layer and reach a maximum in the second layer where the atomic energy is close to the bulk value but the change in embedding energy of neighbouring atoms before and after vacancy formation is greater than that in the bulk. Both the vacancy formation energy and the surface tension suggest that the fourth layer is in a bulk state for all the surfaces. The formation energy of adatoms, antisite defects and point-defect pairs at and near {l_brace}001{r_brace} surfaces of Ni{sub 3}Al are also given.

  14. Application of ab-initio Methods to Grain Boundaries and Point Defects for Poly-CdTe Solar Cells

    NASA Astrophysics Data System (ADS)

    Buurma, Christopher

    CdTe is a material well-suited to solar cell applications due to its 1.5 eV direct bandgap and high optical absorption. To meet energy demands, CdTe solar cells must be produced at a low-cost and with high throughput which often demands the use of non-ideal polycrystalline CdTe. As a result of careful process control, current thin-film poly-CdTe cells have been shown to be somewhat defect tolerant with proven industry success. Yet despite this success poly-CdTe cells are still far from their predicted Shockley-Queisser theoretical limits. The next generation cells must demonstrate higher open-circuit voltages, fill factors, and longer minority carrier lifetimes. Playing a major role in doping, defect migration, carrier recombination, and current transport are 2D extended defects both within grains and between grains as grain boundaries (GBs). A further understanding of these defects is needed which exhibit either high symmetry such as the CSL structures or those mixed or random GBs with low symmetry. Their corresponding formation and electronic behavior will be needed to develop methods to mitigate their effects and instead promote higher doping with less minority carrier recombination. Predictions and guidance on electronic and thermodynamic properties can be obtained from model atomic structures within the framework of ab-initio density-functional theory. Bulk point defect formation energies were determined for comparison to calculations of point defects along GB structures. Model atomic structures of GBs can also be created rapidly and over a wide parameter space using the Grain Boundary Genie code developed for this project. Commonly observed low-angle and special coincident grain boundaries structures were created and a subset relaxed to determine their local strain environment and interfacial energy with for comparison to STEM observations. Additionally, a series of random angle or 'mixed' grain boundaries were created and investigated corresponding to

  15. Photoluminescence as a tool for characterizing point defects in semiconductors

    NASA Astrophysics Data System (ADS)

    Reshchikov, Michael

    2012-02-01

    Photoluminescence is one of the most powerful tools used to study optically-active point defects in semiconductors, especially in wide-bandgap materials. Gallium nitride (GaN) and zinc oxide (ZnO) have attracted considerable attention in the last two decades due to their prospects in optoelectronics applications, including blue and ultraviolet light-emitting devices. However, in spite of many years of extensive studies and a great number of publications on photoluminescence from GaN and ZnO, only a few defect-related luminescence bands are reliably identified. Among them are the Zn-related blue band in GaN, Cu-related green band and Li-related orange band in ZnO. Numerous suggestions for the identification of other luminescence bands, such as the yellow band in GaN, or green and yellow bands in ZnO, do not stand up under scrutiny. In these conditions, it is important to classify the defect-related luminescence bands and find their unique characteristics. In this presentation, we will review the origin of the major luminescence bands in GaN and ZnO. Through simulations of the temperature and excitation intensity dependences of photoluminescence and by employing phenomenological models we are able to obtain important characteristics of point defects such as carrier capture cross-sections for defects, concentrations of defects, and their charge states. These models are also used to find the absolute internal quantum efficiency of photoluminescence and obtain information about nonradiative defects. Results from photoluminescence measurements will be compared with results of the first-principle calculations, as well as with the experimental data obtained by other techniques such as positron annihilation spectroscopy, deep-level transient spectroscopy, and secondary ion mass spectrometry.

  16. Impact of point defects on the electronic and transport properties of silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Iordanidou, K.; Houssa, M.; van den Broek, B.; Pourtois, G.; Afanas'ev, V. V.; Stesmans, A.

    2016-01-01

    We study the impact of various point defects on the structural, electronic and ballistic transport properties of armchair silicene nanoribbons, using the density functional theory and the non equilibrium Green’s function method. The effect of a Stone-Wales defect, an interior/edge vacancy and an edge dangling bond is examined. Our results show that structural imperfections can alter the electronic structure (energy band structure and density of states) of the nanoribbons and can either increase or decrease the ballistic current. The dependence of the transport properties on the position of the defects (sublattice A or B) and on their distance from the contact is also investigated.

  17. Analysis of an optimization-based atomistic-to-continuum coupling method for point defects

    DOE PAGESBeta

    Olson, Derek; Shapeev, Alexander V.; Bochev, Pavel B.; Luskin, Mitchell

    2015-11-16

    Here, we formulate and analyze an optimization-based Atomistic-to-Continuum (AtC) coupling method for problems with point defects. Application of a potential-based atomistic model near the defect core enables accurate simulation of the defect. Away from the core, where site energies become nearly independent of the lattice position, the method switches to a more efficient continuum model. The two models are merged by minimizing the mismatch of their states on an overlap region, subject to the atomistic and continuum force balance equations acting independently in their domains. We prove that the optimization problem is well-posed and establish error estimates.

  18. Surface-assisted defect engineering of point defects in ZnO

    NASA Astrophysics Data System (ADS)

    Gorai, Prashun; Ertekin, Elif; Seebauer, Edmund G.

    2016-06-01

    Semiconductor surfaces facilitate the injection of highly mobile point defects into the underlying bulk, thereby offering a special means to manipulate bulk defect concentrations. The present work combines diffusion experiments and first-principles calculations for polar ZnO (0001) surface to demonstrate such manipulation. The rate behavior of oxygen interstitial injection varies dramatically between the Zn- and O-terminated ZnO surfaces. A specific injection pathway for the Zn-terminated surface is identified, and activation barrier determined from the first-principles calculations agrees closely with the experimental activation energy of 1.7 eV.

  19. Native point defects in CaCu3Ti4O12

    NASA Astrophysics Data System (ADS)

    Delugas, P.; Alippi, P.; Raineri, V.

    2010-02-01

    We report first principles computations on native point defects in CCTO. Vacancies present a general high formation energy, their concentration never exceed 1016 cm-3. Oxygen vacancies present stable positive charge states and are thus able to act as donor. Copper vacancies present instead stable negative charge states and are thus potential native acceptors for the material. As to anti-sites, the CuCa defect results to be the energetically favorite in most of the possible conditions, and may reach concentrations as high as 1019 cm-3.

  20. Point Defects in Two-Dimensional Layered Semiconductors: Physics and Its Applications

    NASA Astrophysics Data System (ADS)

    Suh, Joonki

    Recent advances in material science and semiconductor processing have been achieved largely based on in-depth understanding, efficient management and advanced application of point defects in host semiconductors, thus finding the relevant techniques such as doping and defect engineering as a traditional scientific and technological solution. Meanwhile, two- dimensional (2D) layered semiconductors currently draw tremendous attentions due to industrial needs and their rich physics at the nanoscale; as we approach the end of critical device dimensions in silicon-based technology, ultra-thin semiconductors have the potential as next- generation channel materials, and new physics also emerges at such reduced dimensions where confinement of electrons, phonons, and other quasi-particles is significant. It is therefore rewarding and interesting to understand and redefine the impact of lattice defects by investigating their interactions with energy/charge carriers of the host matter. Potentially, the established understanding will provide unprecedented opportunities for realizing new functionalities and enhancing the performance of energy harvesting and optoelectronic devices. In this thesis, multiple novel 2D layered semiconductors, such as bismuth and transition- metal chalcogenides, are explored. Following an introduction of conventional effects induced by point defects in semiconductors, the related physics of electronically active amphoteric defects is revisited in greater details. This can elucidate the complication of a two-dimensional electron gas coexisting with the topological states on the surface of bismuth chalcogenides, recently suggested as topological insulators. Therefore, native point defects are still one of the keys to understand and exploit topological insulators. In addition to from a fundamental science point of view, the effects of point defects on the integrated thermal-electrical transport, as well as the entropy-transporting process in

  1. Point Defects in Two-Dimensional Layered Semiconductors: Physics and Its Applications

    NASA Astrophysics Data System (ADS)

    Suh, Joonki

    Recent advances in material science and semiconductor processing have been achieved largely based on in-depth understanding, efficient management and advanced application of point defects in host semiconductors, thus finding the relevant techniques such as doping and defect engineering as a traditional scientific and technological solution. Meanwhile, two- dimensional (2D) layered semiconductors currently draw tremendous attentions due to industrial needs and their rich physics at the nanoscale; as we approach the end of critical device dimensions in silicon-based technology, ultra-thin semiconductors have the potential as next- generation channel materials, and new physics also emerges at such reduced dimensions where confinement of electrons, phonons, and other quasi-particles is significant. It is therefore rewarding and interesting to understand and redefine the impact of lattice defects by investigating their interactions with energy/charge carriers of the host matter. Potentially, the established understanding will provide unprecedented opportunities for realizing new functionalities and enhancing the performance of energy harvesting and optoelectronic devices. In this thesis, multiple novel 2D layered semiconductors, such as bismuth and transition- metal chalcogenides, are explored. Following an introduction of conventional effects induced by point defects in semiconductors, the related physics of electronically active amphoteric defects is revisited in greater details. This can elucidate the complication of a two-dimensional electron gas coexisting with the topological states on the surface of bismuth chalcogenides, recently suggested as topological insulators. Therefore, native point defects are still one of the keys to understand and exploit topological insulators. In addition to from a fundamental science point of view, the effects of point defects on the integrated thermal-electrical transport, as well as the entropy-transporting process in

  2. Experimental Determination of Metal Fuel Point Defect Parameters

    SciTech Connect

    Fluss, M J; McCall, S

    2008-06-03

    Nuclear metallic fuels are one of many options for advanced nuclear fuel cycles because they provide dimensional stability, mechanical integrity, thermal efficiency, and irradiation resistance while the associated pyro-processing is technically relevant to concerns about proliferation and diversion of special nuclear materials. In this presentation we will discuss recent success that we have had in studying isochronal annealing of damage cascades in Pu and Pu(Ga) arising from the self-decay of Pu as well as the annealing characteristics of noninteracting point defect populations produced by ion accelerator irradiation. Comparisons of the annealing properties of these two populations of defects arising from very different source terms are enlightening and point to complex defect and mass transport properties in the plutonium specimens which we are only now starting to understand as a result of many follow-on studies. More importantly however, the success of these measurements points the way to obtaining important mass transport parameters for comparison with theoretical predictions or to use directly in existing and future materials modeling of radiation effects in nuclear metallic fuels. The way forward on such measurements and the requisite theory and modeling will be discussed.

  3. Point Defects in Binary Laves-Phase Alloys

    SciTech Connect

    Liaw, P.K.; Liu, C.T.; Pike, L.M.; Zhu, J.H.

    1998-11-30

    Point defect mechanisms in the binary C15 NbCr{sub 2} and NbCo{sub 2}, and C14 NbFe{sub 2} systems on both sides of stoichiometry was studied and clarified by both bulk density and X-ray lattice parameter measurements. It was found that the vacancy concentrations in these systems after quenching from 1000 C are essentially zero. The constitutional defects on both sides of stoichiometry for these systems were found to be of the anti-site type in comparison with the model predictions. However, thermal vacancies exhibiting a maximum at the stoichiometric composition were obtained in NbCr{sub 2} laves phase alloys after quenching from 1400 C. These could be completely eliminated by annealing at 1000 C. Anti-site hardening was found on both sides of stoichiometry for all three Laves phase systems studied. Furthermore, the thermal vacancies in NbCr{sub 2} alloys after quenching from 1400 C were found to soften the Laves phase. The anti-site hardening of the Laves phases is similar to that of the B2 compounds, while the thermal vacancy softening is unique to the Laves phase. Both the anti-site defects and thermal vacancies do not significantly affect the fracture toughness of the Laves phases.

  4. Point Defects in Binary Laves-Phase Alloys

    SciTech Connect

    Liaw, P.K.; Liu, C.T.; Pike, L.M.; Zhu, J.H.

    1999-01-11

    Point defects in the binary C15 NbCrQ and NbCoz, and C 14 NbFe2 systems on both sides of stoichiometry were studied by both bulk density and X-ray Iattiee parameter measurements. It was found that the vacancy concentrations in these systems after quenching from 1000"C are essentially zero. The constitutional defects on both sides of stoichiometry for these systems were found to be of the anti-site type in comparison with the model predictions. Thermal vacancies exhibiting a maximum at the stoichiometric composition were obtained in NbCr2 Laves phase alloys after quenching from 1400"C. However, there are essentially no thermal vacancies in NbFe2 alloys after quenching from 1300oC. Anti-site hardening was found on both sides of stoichiometry for all the tie Laves phase systems studied, while the thermal vacancies in NbCr2 alloys quenched from 1400'C were found to soften the Laves phase. The anti-site hardening of the Laves phases is similar to that of the B2 compounds and the thermal vacancy softening is unique to the Laves phase. Neither the anti-site defects nor the thermal vacancies affect the fracture toughness of the Laves phases significantly.

  5. Small polarons and point defects in LaFeO3

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen; Peelaers, Hartwin; van de Walle, Chris G.

    The proton-conductive perovskite-type LaFeO3 is a promising negative-electrode material for Ni/metal-hydride (Ni-MH) batteries. It has a discharge capacity up to 530 mAhg-1 at 333 K, which is significantly higher than commercialized AB5-type alloys. To elucidate the underlying mechanism of this performance, we have investigated the structural and electronic properties of bulk LaFeO3, as well as the effect of point defects, using hybrid density functional methods. LaFeO3 is antiferromagnetic in the ground state with a band gap of 3.54 eV. Small hole and electron polarons can form through self- or point-defect-assisted trapping. We find that La vacancies and Sr substitutional on La sites are shallow acceptors with the induced holes trapped as small polarons, while O and Fe vacancies are deep defect centers. Hydrogen interstitials behave like shallow donors, with the donor electrons localized on nearby iron sites as electron polarons. With a large trapping energy, these polarons can act as electron or hole traps and affect the electrical performance of LaFeO3 as the negative electrode for Ni-MH batteries. We acknowledge DOE for financial support.

  6. Positron spectroscopy of point defects in the skyrmion-lattice compound MnSi

    PubMed Central

    Reiner, Markus; Bauer, Andreas; Leitner, Michael; Gigl, Thomas; Anwand, Wolfgang; Butterling, Maik; Wagner, Andreas; Kudejova, Petra; Pfleiderer, Christian; Hugenschmidt, Christoph

    2016-01-01

    Outstanding crystalline perfection is a key requirement for the formation of new forms of electronic order in a vast number of widely different materials. Whereas excellent sample quality represents a standard claim in the literature, there are, quite generally, no reliable microscopic probes to establish the nature and concentration of lattice defects such as voids, dislocations and different species of point defects on the level relevant to the length and energy scales inherent to these new forms of order. Here we report an experimental study of the archetypical skyrmion-lattice compound MnSi, where we relate the characteristic types of point defects and their concentration to the magnetic properties by combining different types of positron spectroscopy with ab-initio calculations and bulk measurements. We find that Mn antisite disorder broadens the magnetic phase transitions and lowers their critical temperatures, whereas the skyrmion lattice phase forms for all samples studied underlining the robustness of this topologically non-trivial state. Taken together, this demonstrates the unprecedented sensitivity of positron spectroscopy in studies of new forms of electronic order. PMID:27388948

  7. Estimation of the temperature dependent interaction between uncharged point defects in Si

    SciTech Connect

    Kamiyama, Eiji; Vanhellemont, Jan; Sueoka, Koji

    2015-01-15

    A method is described to estimate the temperature dependent interaction between two uncharged point defects in Si based on DFT calculations. As an illustration, the formation of the uncharged di-vacancy V{sub 2} is discussed, based on the temperature dependent attractive field between both vacancies. For that purpose, all irreducible configurations of two uncharged vacancies are determined, each with their weight given by the number of equivalent configurations. Using a standard 216-atoms supercell, nineteen irreducible configurations of two vacancies are obtained. The binding energies of all these configurations are calculated. Each vacancy is surrounded by several attractive sites for another vacancy. The obtained temperature dependent of total volume of these attractive sites has a radius that is closely related with the capture radius for the formation of a di-vacancy that is used in continuum theory. The presented methodology can in principle also be applied to estimate the capture radius for pair formation of any type of point defects.

  8. Positron spectroscopy of point defects in the skyrmion-lattice compound MnSi

    NASA Astrophysics Data System (ADS)

    Reiner, Markus; Bauer, Andreas; Leitner, Michael; Gigl, Thomas; Anwand, Wolfgang; Butterling, Maik; Wagner, Andreas; Kudejova, Petra; Pfleiderer, Christian; Hugenschmidt, Christoph

    2016-07-01

    Outstanding crystalline perfection is a key requirement for the formation of new forms of electronic order in a vast number of widely different materials. Whereas excellent sample quality represents a standard claim in the literature, there are, quite generally, no reliable microscopic probes to establish the nature and concentration of lattice defects such as voids, dislocations and different species of point defects on the level relevant to the length and energy scales inherent to these new forms of order. Here we report an experimental study of the archetypical skyrmion-lattice compound MnSi, where we relate the characteristic types of point defects and their concentration to the magnetic properties by combining different types of positron spectroscopy with ab-initio calculations and bulk measurements. We find that Mn antisite disorder broadens the magnetic phase transitions and lowers their critical temperatures, whereas the skyrmion lattice phase forms for all samples studied underlining the robustness of this topologically non-trivial state. Taken together, this demonstrates the unprecedented sensitivity of positron spectroscopy in studies of new forms of electronic order.

  9. Effect of point defects on the properties of silicene-like BSi3 sheets from first-principles

    NASA Astrophysics Data System (ADS)

    Jalili, Seifollah; Akhavan, Mojdeh; Schofield, Jeremy

    2016-08-01

    Density functional theory calculations are used to investigate the impact of point defects on BSi3 nanosheets. It is shown that the defects have low formation energies and are likely to form in BSi3 sheets. The divacancies with missing Si an B atoms are more probable than those which have two missing Si atoms and the diantisite (BSi)anti is also more probable than (BB)anti. It is found that the structural reconstructions caused by bond rotation in divacancies continuously lower the formation energies. Interestingly, unlike graphene or many other sheets, the presence of point defects does not change the planar structure and metallic behavior of BSi3 and all systems are nonmagnetic. The planar and metallic BSi3 sheets can therefore be used in devices, without any concern about the presence of defects.

  10. Second workshop role of point defects/defect complexes in silicon device fabrication

    SciTech Connect

    Not Available

    1992-01-01

    Abstracts are presented of 24 papers, arranged under the following session/panel headings: defects and impurities in commercial photovoltaic Si substrates, point defects and point defect processes, impurity gettering for Si solar cells, gettering in Si solar cells, and passivation of impurities and defects.

  11. Intrinsic point defects and their interaction with impurities in mono-crystalline zinc oxide

    NASA Astrophysics Data System (ADS)

    Svensson, Bengt G.

    2015-03-01

    Zinc oxide (ZnO) is a direct and wide band-gap semiconductor with several attractive features, like an exciton binding energy of ~ 60 meV, for light emitting devices, photovoltaics and spintronics. In the past decade, ZnO has received tremendous attention by the semiconductor physics community and many challenging issues have been addressed, especially the ``native'' n-type conductivity, the role of intrinsic point defects, and the realization of reproducible p-type doping. The latter is, indeed, decisive for a true breakthrough of ZnO-based optoelectronics. In this contribution, recent progress in our understanding of the interaction between intrinsic point defects and impurities in ZnO will be discussed. Aluminum (Al) is often introduced intentionally to accomplish high n-type conductivity since Al on Zn-site (AlZn) acts as a shallow donor. However, AlZn was recently found to react strongly with Zn vacancies (VZn) and the resulting complex (AlZn-VZn) is energetically favorable. The AlZn-VZn complex is a deep acceptor limiting the n-type doping efficiency and this finding is expected to hold in general for complexes between VZn and group-III elements. Further, implantation of self-ions (Zn and O) has been demonstrated to affect radically the balance of intrinsic point defects where an excess of Zn interstitials gives rise to a dramatic depletion of residual Li impurities on Zn-site (LiZn) whilst the opposite holds for an excess of O interstitials. In fact, this behavior appears to be of general validity and Li depletion occurs for a wide variety of implanted elements incorporated into the Zn sub-lattice while Li pile-up occurs for elements residing on O-site. Finally, the most prominent deep-level defect in ZnO, labelled E3, will be shown to involve hydrogen. E3 exists in most ZnO materials, irrespective of the growth method used, and evidence for a center formed by reaction between interstitial hydrogen and primary defects on the Zn sub-lattice will be given.

  12. Tungsten Cluster Migration on Nanoparticles: Minimum Energy Pathway and Migration Mechanism

    SciTech Connect

    Chen, Dong; Hu, Wangyu; Gao, Fei; Deng, Huiqiu; Sun, Lixian

    2011-03-02

    Transition state searches have been employed to investigate the migration mechanisms of W clusters on W nanoparticles, and to determine the corresponding migration energies for the possible migration paths of these clusters. The tungsten clusters containing up to four adatoms are found to prefer 2D-compact structures with relatively low binding energies. The effect of interface and vertex regions on the migration behavior of the clusters is significantly strong, as compared to that of nanoparticle size. The migration mechanisms are quite different when the clusters are located at the center of the nanoparticle and near the interface or vertex areas. Near the interfaces and vertex areas, the substrate atoms tend to participate in the migration processes of the clusters, and can join the adatoms to form a larger cluster or lead to the dissociation of a cluster via the exchange mechanism, which results in the adatom crossing the facets. The lowest energy paths are used to be determined the energy barriers for W cluster migrations (from 1- to 4-atoms) on the facets, edges and vertex regions. The calculated energy barriers for the trimers suggest that the concerted migration is more probable than the successive jumping of a single adatom in the clusters. In addition, it of interest to note that the dimer shearing is a dominant migration mechanism for the tetramer, but needs to overcome a relatively higher migration energy than other clusters.

  13. Atomistic simulation of point defects and diffusion in B2 NiAl

    SciTech Connect

    Mishin, Y.; Farkas, D.

    1998-08-04

    NiAl is a strongly ordered compound with a large atomic size difference between the components. Due to these features it demonstrates the so-called triple-defect mechanism of compositional disorder with Ni anti-structural atoms in Ni-rich compositions and Ni vacancies in Al-rich compositions. Diffusion mechanisms in triple-defect compounds are more involved than in antisite disorder compounds. Because every Ni atom in the B2 structure is surrounded by Al atoms and vise versa, every nearest-neighbor (NN) jump of a vacancy induces local disorder, which is very unfavorable. The authors therefore have to consider diffusion of Ni and Al along their own sublattices by next-nearest-neighbor (NNN) vacancy jumps. Alternatively, one can think of cycled mechanisms in which the crystal order is destroyed only locally and temporarily, but is totally restored when the diffusion cycle is complete. In this study the authors apply molecular statics simulations to evaluate the energetics of the point defect formation and migration in NiAl by different mechanisms. The goal of their simulations is to predict the mechanisms that are the easiest, thus dominating, at different alloy compositions.

  14. The role of substrate point defects in adhesion of metal films

    SciTech Connect

    Stolyarova, S.

    1996-12-31

    As known, nucleation and epitaxial growth of metal films are affected by point defects of substrate surface, F-centers in particular, but their effect on adhesion of thin films has not yet been thoroughly studied. Despite the fact that the point defects are usually taken into account when the adhesion activation by various irradiation treatments is discussed, their role has not been properly revealed. This is due to the difficulties of the accurate control of the type and the density of the point defects in subsurface region as well as to the fact that the radiation treatment of surfaces can produce some changes in the chemical composition and stoichiometry of the surface, in addition to the creation of the point defects. For the purpose of the study of the effect of point defects on the adhesion of thin films, the author approached the problem in a principally different way: the author created point defects in the bulk of the crystals, controlled the type and the bulk density of the defects and then cleaved the crystals in vacuum - in a stream of metal vapors. The fresh, free from contaminants contact of metal film with the crystal surface enriched with point defects was created in this way.

  15. Point defects in CdTexSe1-x crystals grown from a Te-rich solution for applications in detecting radiation

    DOE PAGESBeta

    Gul, R.; Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Lee, W.; Yang, G.; Burger, A.; James, R. B.; et al

    2015-04-15

    We investigated cadmium telluride selenide (CdTeSe) crystals, newly grown by the Traveling Heater Method (THM), for the presence and abundance of point defects. Deep Level Transient spectroscopy (I-DLTS) was used to determine the energies of the traps, their capture cross sections, and densities. The bias across the detectors was varied from (1–30) V. Four types of point defects were identified, ranging from 10 meV to 0.35 eV. Two dominant traps at energies of 0.18 eV and 0.14 eV were studied in depth. Cd vacancies are found at lower concentrations than other point defects present in the material.

  16. Point defects in CdTexSe1-x crystals grown from a Te-rich solution for applications in detecting radiation

    SciTech Connect

    Gul, R.; Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Lee, W.; Yang, G.; Burger, A.; James, R. B.; Cui, Y.

    2015-04-15

    We investigated cadmium telluride selenide (CdTeSe) crystals, newly grown by the Traveling Heater Method (THM), for the presence and abundance of point defects. Deep Level Transient spectroscopy (I-DLTS) was used to determine the energies of the traps, their capture cross sections, and densities. The bias across the detectors was varied from (1–30) V. Four types of point defects were identified, ranging from 10 meV to 0.35 eV. Two dominant traps at energies of 0.18 eV and 0.14 eV were studied in depth. Cd vacancies are found at lower concentrations than other point defects present in the material.

  17. Research Update: Point defects in CdTexSe1-x crystals grown from a Te-rich solution for applications in detecting radiation

    NASA Astrophysics Data System (ADS)

    Gul, R.; Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Lee, W.; Yang, G.; Cui, Y.; Burger, A.; James, R. B.

    2015-04-01

    We investigated cadmium telluride selenide (CdTeSe) crystals, newly grown by the Traveling Heater Method (THM), for the presence and abundance of point defects. Current Deep Level Transient spectroscopy (I-DLTS) was used to determine the energies of the traps, their capture cross sections, and densities. The bias across the detectors was varied from 1 to 30 V. Four types of point defects were identified, ranging from 10 meV to 0.35 eV. Two dominant traps at energies of 0.18 eV and 0.14 eV were studied in depth. Cd vacancies are found at lower concentrations than other point defects present in the material.

  18. PyDII: A python framework for computing equilibrium intrinsic point defect concentrations and extrinsic solute site preferences in intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Ding, Hong; Medasani, Bharat; Chen, Wei; Persson, Kristin A.; Haranczyk, Maciej; Asta, Mark

    2015-08-01

    Point defects play an important role in determining the structural stability and mechanical behavior of intermetallic compounds. To help quantitatively understand the point defect properties in these compounds, we developed PyDII, a Python program that performs thermodynamic calculations of equilibrium intrinsic point defect concentrations and extrinsic solute site preferences in intermetallics. The algorithm implemented in PyDII is built upon a dilute-solution thermodynamic formalism with a set of defect excitation energies calculated from first-principles density-functional theory methods. The analysis module in PyDII enables automated calculations of equilibrium intrinsic antisite and vacancy concentrations as a function of composition and temperature (over ranges where the dilute solution formalism is accurate) and the point defect concentration changes arising from addition of an extrinsic substitutional solute species. To demonstrate the applications of PyDII, we provide examples for intrinsic point defect concentrations in NiAl and Al3 V and site preferences for Ti, Mo and Fe solutes in NiAl.

  19. Theoretical studies of point defects and diffusion in Nb/sub 3/Sn

    SciTech Connect

    Welch, D.; Diennes, G.; Hatcher, R.; Lazareth, O.

    1983-05-01

    The structure and energetics of several simple point defects in A15 Nb/sub 3/Sn were investigated by means of computer simulations based on a pair-potential model of cohesion. The properties of vacancies on both the Nb and Sn sublattices, as well as those of simple antisite defects, were examined, and estimates were made of the energetics of several types of atom vacancy exchange (''jump'') processes. The results show an unusual structure for the vacancy on the Nb sublattice: the vacancy is ''split'' between two adjacent sites along the Nb chain with an atom midway between them. We find the Sn vacancy (on the Sn sublattice) to be metastable; this vacancy will ''decompose'' by an activated process into a more stable configuration consisting of a Nb atom on a Sn site adjacent to a split Nb-sublattice vacancy. The authors find that the lowest energy grouping of defects compatible with maintaining sublattice sites in the proper three-toone ratio is the antisite defect pair; the lowest energy grouping which contains vacancies is found to consist of Nb-sublattice vacancies and Nb-on-Sn sublattice antisite defects in the ratio of four of the former to one of the latter (quintuple defects). The results also suggest that bulk Sn diffusion is slower than Nb diffusion; this is consistent with the belief that rapid Sn diffusion during Nb/sub 3/Sn layer growth does not occur by bulk but by grain-boundary diffusion.

  20. Theoretical studies of point defects and diffusion in Nb/sub 3/Sn

    SciTech Connect

    Welch, D.O.; Dienes, G.J.; Lazareth, O.W. Jr.; Hatcher, R.D.

    1982-01-01

    The structure and energetics of several simple point defects in A15 Nb/sub 3/Sn were investigated by means of computer simulations based on a pair-potential model of cohesion. The properties of vacancies on both the Nb and Sn sublattices, as well as those of simple antisite defects, were examined, and estimates were made of the energetics of several types of atom-vacancy exchange (jump) processes. The results show an unusual structure for the vacancy on the Nb sublattice: the vacancy is split between two adjacent sites along the Nb chain with an atom midway between them. We find the Sn vacancy (on the Sn sublattice) to be metastable; this vacancy will decompose by an activated process into a more stable configuration consisting of a Nb atom on a Sn site adjacent to a split Nb-sublattice vacancy. We find that the lowest energy grouping of defects compatible with maintaining sublattice sites in the proper three-to-one ratio is the antisite defect pair; the lowest energy grouping which contains vacancies is found to consist of Nb-sublattice vacancies and Nb-on-Sn-sublattice antisite defects in the ratio of four of the former to one of the latter (quintuple defects). Results also suggest that bulk Sn diffusion is slower than Nb diffusion; this is consistent with the belief that rapid Sn diffusion during Nb/sub 3/Sn layer growth does not occur by bulk but by grain-boundary diffusion.

  1. The effect of native point defect thermodynamics on off-stoichiometry in beta-Mg17Al12

    SciTech Connect

    Wolverton, Christopher

    2012-01-01

    The mechanical strength of Mg-Al-Zn alloys can be affected by a fine spatial dispersion of {beta}-Mg{sub 17}Al{sub 12} precipitates in the Mg matrix. In an effort to understand the phase stability and the unusual asymmetric off-stoichiometry observed in {beta}-Mg{sub 17}Al{sub 12}, we have performed a series of first-principles density functional theory (DFT) calculations of bulk and defect properties of Mg{sub 17}Al{sub 12}. Specifically, we consider native point defects (i.e. vacancies and anti-sites) in all four sublattices of Mg{sub 17}Al{sub 12}, i.e. 2a, 8c, 24g (Mg) and 24g (Al). The T = 0 K static energies of defect Mg{sub 17}Al{sub 12} supercells indicate that anti-site defects are energetically favored over vacancies, and the lowest anti-site defect formation energies are in 24g sites for both Al{sub Mg} and Mg{sub Al}. These Al-rich and Mg-rich anti-site defect formation energies are similar in magnitude, and thus do not explain the asymmetric off-stoichiometry of Mg{sub 17}Al{sub 12}. We also investigate the effect of atomic vibrations via DFT phonon calculations on native point defect free energies of Mg{sub 17}Al{sub 12} and combine these entropic contributions with the point defect formation energies to evaluate the thermodynamics of off-stoichiometry in this phase. We find that the formation of the Al{sub Mg} anti-site is not strongly stabilized by vibrational entropy. Thus, we conclude that the observed asymmetry in the off-stoichiometry of the {beta}-Mg{sub 17}Al{sub 12} phase in the Mg-Al phase diagram is not explained by simple native point defect thermodynamics, and must involve a more complicated defect formation mechanism, such as multi-defect clustering.

  2. Deuterium-Hydrogen Interdiffusion in Olivine: Implications for Point Defects and Electrical Conductivity

    NASA Astrophysics Data System (ADS)

    Tyburczy, J. A.; Du Frane, W. L.

    2011-12-01

    Knowledge about hydrogen diffusivity in mantle minerals is critical for determining mantle hydrogen distribution, and additionally for understanding point defects. Chemical diffusion of hydrogen in olivine depends on self diffusion and concentration of hydrogen and other point defects, such as small polarons and metal vacancies. In this study we measured hydrogen self diffusion in olivine, and we compare these values to those previously reported for chemical 1-H redox exchange DExch. Deuterium 2-H was interdiffused into hydrogen 1-H saturated single crystals of San Carlos olivine between 750-900 °C at 2 GPa. We measured and fit the resulting 2-H and 1-H profiles to obtain the interdiffusion coefficient DH,[100] = 10^(-5.04+/-1.43)*e(-137+/-31kJ/mol)/(RT) m^2/s. This is ~1 log unit lower than DExch,[100], with similar activation energy Ea,[100]. DH is anisotropic with DH,[001] = 10^(-12.0+/-0.2) m^2/s at 900 °C and 2 GPa; only upper bound estimates for DH,[010] could be determined from our experiments. We use DH,[100] and DExch,[100] to calculate the small polaron diffusion coefficient associated with redox exchange Dh,[100] = 10^-3.90*e(-142kJ/mol)/(RT) m^2/s. Dh,[100] is combined with reported values for DExch,[010] and DExch,[010] to calculate values for DH,[010] and DH,[001] that are consistent with our upper bound estimates. These DH values, both measured and derived, are used with the Nernst-Einstein relation to calculate the electrical conductivity σ by hydrogen in olivine σH. We calculate σH = 10^1.63*e(-126kJ/mol)/(RT) S/m, which is similar in magnitude to the lower range of reported σ measurements. This similarly suggests that hydrogen alone cannot account for high σ anomalies observed at asthenospheric depths (~10^-2 to ~10^-1 S/m). The Ea for hydrogen mobility/diffusion we calculate are higher (~40% for 100 ppmw H2O) than those derived from previous σ measurements. This work supported by NSF EAR 0739050 to J. A. Tyburczy and R. Hervig. The SIMS

  3. Magnetic properties of point defects in proton irradiated diamond

    NASA Astrophysics Data System (ADS)

    Makgato, T. N.; Sideras-Haddad, E.; Ramos, M. A.; García-Hernández, M.; Climent-Font, A.; Zucchiatti, A.; Muñoz-Martin, A.; Shrivastava, S.; Erasmus, R.

    2016-09-01

    We investigate the magnetic properties of ultra-pure type-IIa diamond following irradiation with proton beams of ≈1-2 MeV energy. SQUID magnetometry indicate the formation of Curie type paramagnetism according to the Curie law. Raman and Photoluminescence spectroscopy measurements show that the primary structural features created by proton irradiation are the centers: GR1, ND1, TR12 and 3H. The Stopping and Range of Ions in Matter (SRIM) Monte Carlo simulations together with SQUID observations show a strong correlation between vacancy production, proton fluence and the paramagnetic factor. At an average surface vacancy spacing of ≈1-1.6 nm and bulk (peak) vacancy spacing of ≈0.3-0.5 nm Curie paramagnetism is induced by formation of ND1 centres with an effective magnetic moment μeff~(0.1-0.2)μB. No evidence of long range magnetic ordering is observed in the temperature range 4.2-300 K.

  4. Thermally Activated Point Defect Diffusion in Methylammonium Lead Trihalide: Anisotropic and Ultrahigh Mobility of Iodine.

    PubMed

    Delugas, P; Caddeo, C; Filippetti, A; Mattoni, A

    2016-07-01

    We study the diffusion of point defects in crystalline methylammonium lead halide (MAPI) at finite temperatures by using all-atoms molecular dynamics. We find that, for what concerns intrinsic defects, iodine diffusion is by far the dominant mechanism of ionic transport in MAPI, with diffusivities as high as 7.4 × 10(-7) and 4.3 × 10(-6) cm(2) s(-1) at 300 K and single activation energies of 0.24 and 0.10 eV, for interstitials and vacancies, respectively. The comparison with common covalent and oxide crystals reveals the ultrahigh mobility of defects in MAPI. Though at room temperature the vacancies are about 1 order of magnitude more diffusive, the anisotropic interstitial dynamics increases more rapidly with temperature, and it can be dominant at high temperatures. Present results are fully consistent with the involvement of iodide ions in hysteresis and have implications for improvement of the material quality by better control of defect diffusion. PMID:27237630

  5. Ab initio study of point defects near stacking faults in 3C-SiC

    DOE PAGESBeta

    Xi, Jianqi; Liu, Bin; Zhang, Yanwen; Weber, William J.

    2016-07-02

    Interactions between point defects and stacking faults in 3C-SiC are studied using an ab initio method based on density functional theory. The results show that the discontinuity of the stacking sequence considerably affects the configurations and behavior of intrinsic defects, especially in the case of silicon interstitials. The existence of an intrinsic stacking fault (missing a C-Si bilayer) shortens the distance between the tetrahedral-center site and its second-nearest-neighboring silicon layer, making the tetrahedral silicon interstitial unstable. Instead of a tetrahedral configuration with four C neighbors, a pyramid-like interstitial structure with a defect state within the band gap becomes a stablemore » configuration. In addition, orientation rotation occurs in the split interstitials that has diverse effects on the energy landscape of silicon and carbon split interstitials in the stacking fault region. Moreover, our analyses of ionic relaxation and electronic structure of vacancies show that the built-in strain field, owing to the existence of the stacking fault, makes the local environment around vacancies more complex than that in the bulk.« less

  6. Impact of Mg Content on (Mg,Zn)O Native Point Defects

    NASA Astrophysics Data System (ADS)

    Ball, Molly; Restrepo, Oscar; Brillson, Leonard; Windl, Wolfgang; Department of Material Science; Engineering Collaboration; Department of Physics Collaboration

    2015-03-01

    The two most thermodynamically stable defects in ZnO are oxygen vacancies (VO) and zinc vacancies (VZn) . These native point defects are electrically charged and can contribute to free carrier densities. Experiment shows that Mg addition to ZnO significantly changes native defect densities. To better understand this dramatic decrease in VZn and VO-related defects with increasing Mg content up to x =0.44 and the subsequent increase, we performed density functional theory (DFT) calculations using PAW potentials within PBE using VASP. The results showed to be very sensitive to DFT method used and chemical-potential calculation. For the latter, the literature shows that one can assume that the oxygen chemical potential equals that of the atoms in the oxygen molecules at a given surrounding partial oxygen pressure. However, one can also postulate that the total defect concentrations conserve the stoichiometry, or limiting potentials from elemental equilibrium phases can be used. The experimentally observed dependence helped identify the correct way to reproduce the experimental dependence of formation energy on Mg concentration, which will be discussed in detail in this presentation.

  7. First-principles study of native point defects in Bi2Se3

    NASA Astrophysics Data System (ADS)

    Xue, L.; Zhou, P.; Zhang, C. X.; He, C. Y.; Hao, G. L.; Sun, L. Z.; Zhong, J. X.

    2013-05-01

    Using first-principles method within the framework of the density functional theory, we study the influence of native point defect on the structural and electronic properties of Bi2Se3. Se vacancy in Bi2Se3 is a double donor, and Bi vacancy is a triple acceptor. Se antisite (SeBi) is always an active donor in the system because its donor level (ɛ(+1/0)) enters into the conduction band. Interestingly, Bi antisite (BiSe1) in Bi2Se3 is an amphoteric dopant, acting as a donor when μe < 0.119 eV (the material is typical p-type) and as an acceptor when μe > 0.251 eV (the material is typical n-type). The formation energies under different growth environments (such as Bi-rich or Se-rich) indicate that under Se-rich condition, SeBi is the most stable native defect independent of electron chemical potential μe. Under Bi-rich condition, Se vacancy is the most stable native defect except for under the growth window as μe > 0.262 eV (the material is typical n-type) and ΔμSe < -0.459 eV (Bi-rich), under such growth window BiSe1 carrying one negative charge is the most stable one.

  8. Investigation of oxygen point defects in cubic ZrO2 by density functional theory

    SciTech Connect

    Liu, Bin; Xiao, Haiyan; Zhang, Yanwen; Aidhy, Dilpuneet S; Weber, William J

    2014-01-01

    The energetics of formation and migration of the oxygen vacancy and interstitial in cubic ZrO2 are investigated by density functional theory calculations. In an O-rich environment, the negatively charged oxygen interstitial is the most dominant defect whereas, the positively charged oxygen vacancy is the most dominant defect under O-poor conditions. Oxygen interstitial migration occurs by the interstitialcy and the direct interstitial mechanisms, with calculated migration energy barriers of 2.94 eV and 2.15 eV, respectively. For the oxygen vacancy, diffusion is preferred along the <100> direction, and the calculated energy barriers are 0.26 eV for , 0.27 eV for and 0.54 eV for . These results indicate that oxygen diffusivity is higher through the vacancy-migration mechanism.

  9. Point Defect Based Two Dimensional Modeling of Dislocation Loops and Stress Effects on Dopant Diffusion in Silicon.

    NASA Astrophysics Data System (ADS)

    Park, Heemyong

    Dopant diffusion in silicon is studied and modeled on the basis of point defect kinetics associated with ion implantation damage. Point defect parameters are extracted from the modeling of transient enhanced dopant diffusion due to oxidation and low dose implant damage without extended defects. The theory of dopant-defect pairing is found to be crucial in modeling the implantation damage effects, and the effective binding energies for boron-defect and phosphorus-defect pairs are experimentally determined. The extracted parameters provide an important reference for further modeling of diffusion under high dose implantation conditions involving extended defects. Evolution of dislocation loops through their interaction with point defects is modeled in two dimensions by accounting for the pressure around the ensemble of loops as well as loop coalescence and dissolution as observed in transmission electron microscopy (TEM) measurements. Assuming an asymmetric triangular density distribution of periodically oriented circular dislocation loops leads to estimation of the effective pressure and an efficient model for the statistical loop -to-loop interaction. Simulation with the model correctly predicts variation of the number of captured silicon atoms and the radii and densities of the dislocation loops during oxidation in agreement with the TEM data. It also shows significant reduction in oxidation enhanced diffusion of boron in a buried layer in agreement with measured profiles, confirming the role of dislocation loops as an efficient sink for interstitials. A point-defect-based atomistic model for the stress effects on dopant diffusion is developed by accounting for variation in formation enthalpy of dopant-defect pairs due to the hydrostatic pressure. Binding energies and diffusivities of dopant-defect pairs under the pressure are modeled and incorporated into diffusion equations. Boron segregation around dislocation loops in silicon is explained by the pressure

  10. First principles calculation of point defects and mobility degradation in bulk AlSb for radiation detection application

    SciTech Connect

    Lordi, V; Aberg, D; Erhart, P; Wu, K J

    2007-07-30

    The development of high resolution, room temperature semiconductor radiation detectors requires the introduction of materials with increased carrier mobility-lifetime ({mu}{tau}) product, while having a band gap in the 1.4-2.2 eV range. AlSb is a promising material for this application. However, systematic improvements in the material quality are necessary to achieve an adequate {mu}{tau} product. We are using a combination of simulation and experiment to develop a fundamental understanding of the factors which affect detector material quality. First principles calculations are used to study the microscopic mechanisms of mobility degradation from point defects and to calculate the intrinsic limit of mobility from phonon scattering. We use density functional theory (DFT) to calculate the formation energies of native and impurity point defects, to determine their equilibrium concentrations as a function of temperature and charge state. Perturbation theory via the Born approximation is coupled with Boltzmann transport theory to calculate the contribution toward mobility degradation of each type of point defect, using DFT-computed carrier scattering rates. A comparison is made to measured carrier concentrations and mobilities from AlSb crystals grown in our lab. We find our predictions in good quantitative agreement with experiment, allowing optimized annealing conditions to be deduced. A major result is the determination of oxygen impurity as a severe mobility killer, despite the ability of oxygen to compensation dope AlSb and reduce the net carrier concentration. In this case, increased resistivity is not a good indicator of improved material performance, due to the concomitant sharp reduction in {mu}{tau}.

  11. Effect of Intrinsic Point Defect on the Magnetic Properties of ZnO Nanowire

    PubMed Central

    Yun, Jiangni; Zhang, Zhiyong; Yin, Tieen

    2013-01-01

    The effect of intrinsic point defect on the magnetic properties of ZnO nanowire is investigated by the first-principles calculation based on the density functional theory (DFT). The calculated results reveal that the pure ZnO nanowire without intrinsic point defect is nonmagnetic and ZnO nanowire with VO, Zni, Oi, OZn, or ZnO point defect also is nonmagnetic. However, a strong spin splitting phenomenon is observed in ZnO nanowire with VZn defect sitting on the surface site. The Mulliken population analysis reveals that the oxygen atoms which are close to the VZn defect do major contribution to the magnetic moment. Partial density states calculation further suggests that the appearance of the half-metallic ferromagnetism in ZnO nanorod with VZn originates from the hybridization of the O2p states with Zn 3d states. PMID:24396300

  12. Point defect modeling in materials: Coupling ab initio and elasticity approaches

    NASA Astrophysics Data System (ADS)

    Varvenne, Céline; Bruneval, Fabien; Marinica, Mihai-Cosmin; Clouet, Emmanuel

    2013-10-01

    Modeling point defects at an atomic scale requires careful treatment of the long-range atomic relaxations. This elastic field can strongly affect point defect properties calculated in atomistic simulations because of the finite size of the system under study. This is an important restriction for ab initio methods which are limited to a few hundred atoms. We propose an original approach coupling ab initio calculations and linear elasticity theory to obtain the properties of an isolated point defect for reduced supercell sizes. The reliability and benefit of our approach are demonstrated for three problematic cases: the self-interstitial in zirconium, clusters of self-interstitials in iron, and the neutral vacancy in silicon.

  13. Lithium-ion drifting: Application to the study of point defects in floating-zone silicon

    NASA Technical Reports Server (NTRS)

    Walton, J. T.; Wong, Y. K.; Zulehner, W.

    1997-01-01

    The use of lithium-ion (Li(+)) drifting to study the properties of point defects in p-type Floating-Zone (FZ) silicon crystals is reported. The Li(+) drift technique is used to detect the presence of vacancy-related defects (D defects) in certain p-type FZ silicon crystals. SUPREM-IV modeling suggests that the silicon point defect diffusivities are considerably higher than those commonly accepted, but are in reasonable agreement with values recently proposed. These results demonstrate the utility of Li(+) drifting in the study of silicon point defect properties in p-type FZ crystals. Finally, a straightforward measurement of the Li(+) compensation depth is shown to yield estimates of the vacancy-related defect concentration in p-type FZ crystals.

  14. Self-compensation due to point defects in Mg-doped GaN

    NASA Astrophysics Data System (ADS)

    Miceli, Giacomo; Pasquarello, Alfredo

    2016-04-01

    Using hybrid density functional theory, we address point defects susceptible to cause charge compensation upon Mg doping of GaN. We determine the free energy of formation of the nitrogen vacancy and of several Mg-related defects. The entropic contribution as a function of temperature is determined within the quasiharmonic approximation. We find that the Mg interstitial shows a noticeably lower free energy of formation than the Mg substitutional to Ga in p -type conditions. Therefore, the Mg impurity is amphoteric behaving like an acceptor when substitutional to Ga and like a double donor when accommodated in an interstitial position. The hybrid-functional results are then linked to experimental observations by solving the charge neutrality equations for semiconductor dominated by impurities. We show that a thermodynamic equilibrium model is unable to account for the experimental hole concentration as a function of Mg doping density, due to nitrogen vacancies and Mg interstitials acting as compensating donors. To explain the experimental result, which includes a dropoff of the hole concentration at high Mg densities, we thus resort to nonequilibrium models. We show that either nitrogen vacancies or Mg interstitials could be at the origin of the self-compensation mechanism. However, only the model based on interstitial Mg donors provides a natural mechanism to account for the sudden appearance of self-compensation. Indeed, the amphoteric nature of the Mg impurity leads to Fermi-level pinning and accounts for the observed dropoff of the hole concentration of GaN samples at high Mg doping. Our work suggests that current limitations in p -type doping of GaN could be overcome by extrinsically controlling the Fermi energy during growth.

  15. The role of point defects and defect complexes in silicon device processing. Summary report and papers

    SciTech Connect

    Sopori, B.; Tan, T.Y.

    1994-08-01

    This report is the summary of the third workshop on the role of point defects and defect complexes in silicon device processing. The workshop was organized: (1) to discuss recent progress in the material quality produced by photovoltaic Si manufacturers, (2) to foster the understanding of point defect issues in Si device processing, (3) to review the effects of inhomogeneities on large- area solar cell performance, (4) to discuss how to improve Si solar cell processing, and (5) to develop a new understanding of gettering, defect passivation, and defect annihilation. Separate abstract were prepared for the individual papers, for the database.

  16. Role of point defects in the photosensitivity of hydrogen-loaded phosphosilicate glass

    SciTech Connect

    Larionov, Yu V

    2010-08-03

    It is shown that point defect modifications in hydrogen-loaded phosphosilicate glass (PSG) do not play a central role in determining its photosensitivity. Photochemical reactions that involve a two-step point defect modification and pre-exposure effect are incapable of accounting for photoinduced refractive index changes. It seems likely that a key role in UV-induced refractive index modifications is played by structural changes in the PSG network. Experimental data are presented that demonstrate intricate network rearrangement dynamics during UV exposure of PSG. (fiber optics)

  17. Equilibrium Configurations and Energetics of Point Defects in Two-Dimensional Colloidal Crystals

    SciTech Connect

    Pertsinidis, Alexandros; Ling, X. S.

    2001-08-27

    We demonstrate a novel method of introducing point defects (mono- and divacancies) in a confined monolayer colloidal crystal by manipulating individual particles with optical tweezers. Digital video microscopy is used to study defect dynamics in real space and time. We verify the numerical predictions that the stable configurations of the defects have reduced symmetry compared to the triangular lattice and discover that in addition they are characterized by distinct topological arrangements of the particles in the defect core. Surprisingly, point defects are thermally excited into separated dislocations, from which we extract the dislocation pair potential.

  18. Density functional theory calculations of point defects and hydrogen isotopes in Li4SiO4

    NASA Astrophysics Data System (ADS)

    Xiang, Xiaogang; Zhu, Wenjun; Lu, Tiecheng; Gao, Tao; Shi, Yanli; Yang, Mao; Gong, Yichao; Yu, Xiaohe; Feng, Lan; Wei, Yongkai; Lu, Zhipeng

    2015-10-01

    The Li4SiO4 is a promising breeder material for future fusion reactors. Radiation induced vacancies and hydrogen isotope related impurities are the major types of point defects in this breeder material. In present study, various kinds of vacancies and hydrogen isotopes related point defects in Li4SiO4 are investigated through density functional theory (DFT) calculations. The band gap of Li4SiO4 is determined by UV-Vis diffuse reflectance spectroscopy experiments. Formation energies of all possible charge states of Li, Si and O vacancies are calculated using DFT methods. Formation energies of possible charge states of hydrogen isotopes substitution for Li and O are also calculated. We found that Li-vacancies will dominate among all vacancies in neutral charge state under radiation conditions and the O, Li, and Si vacancies (VO,VLi,VSi) are stable in charge states +2, -1, -4 for most of the range of Fermi level, respectively. The interstitial hydrogen isotopes (Hi) and substitutional HLi are stable in the charge states +1, 0 for most of the range of Fermi level, respectively. Moreover, substitutional HO are stable in +1 charge states. We also investigated the process of tritium recovery by discussing the interaction between interstitial H and Li-vacancy, O-vacancy, and found that HO + and HLi 0 are the most common H related defects during radiation process.

  19. Structural, thermodynamic, electronic, and magnetic characterization of point defects in amorphous silica

    NASA Astrophysics Data System (ADS)

    Anderson, Nathan L.

    A completely first-principles procedure for the creation of experimentally validated amorphous silicon dioxide structures via a combination of molecular dynamics and density functional theory is presented. Point defects are analyzed within a statistical ensemble of these structures and overcoordinated silicon and oxygen defects are found to have similar formation energies to undercoordinated silicon atoms and oxygen vacancies. The formation of E' centers is found to occur in the absence of oxygen vacancies, and a single oxygen vacancy is found to lead to two isolated E' center precursors. Density functional techniques that properly account for the electrostatics in the presence of periodic boundary conditions are then used to add and remove electrons from each defect and the trapping level distributions are identified. These distributions are the result of the inherent local atomic variability in the amorphous network. The distribution energies are in good agreement with trap spectroscopy experiments where defect contributions are experimentally indistinguishable. This ability to distinguish defect contributions is used to provide a physical explanation of the atomic relaxations which occur upon electron or hole capture. The paramagnetic E'γ and E'β defects are shown to exist in the neutral charge state and are capable of trapping both electrons and holes. Statistical support for the oxygen vacancy originated dimerized model of the positively charged E'δ defect is demonstrated. An overlap of distributions for different defects is also found suggesting the existence of less known trapping mechanisms involving positively charged overcoordinated oxygen defects and overcoordinated silicon floating bond defects. Further, the uncertainty from the model form that results from exchange-correlation functional choice in density functional theory is quantified and found to be much less than the inherent atomic variability in the amorphous network. Extending these amorphous

  20. [Forensic medical evaluation of stab-incised wounds caused by knives with point defects].

    PubMed

    Krupin, K N; Leonov, S V

    2011-01-01

    The present experimental study allowed to characterize specific signs of stab-incised wounds caused by knives with operational point defects. Diagnostic coefficients calculated for these macro- and microscopic features facilitate differential diagnostics of the injuries and make it possible to identify a concrete stabbing/cutting weapon with which the wound was inflicted.. PMID:21866847

  1. Effect of extended strain fields on point defect phonon scattering in thermoelectric materials.

    PubMed

    Ortiz, Brenden R; Peng, Haowei; Lopez, Armando; Parilla, Philip A; Lany, Stephan; Toberer, Eric S

    2015-07-15

    The design of thermoelectric materials often involves the integration of point defects (alloying) as a route to reduce the lattice thermal conductivity. Classically, the point defect scattering strength follows from simple considerations such as mass contrast and the presence of induced strain fields (e.g. radius contrast, coordination changes). While the mass contrast can be easily calculated, the associated strain fields induced by defect chemistry are not readily predicted and are poorly understood. In this work, we use classical and first principles calculations to provide insight into the strain field component of phonon scattering from isoelectronic point defects. Our results also integrate experimental measurements on bulk samples of SnSe and associated alloys with S, Te, Ge, Sr and Ba. These efforts highlight that the strength and extent of the resulting strain field depends strongly on defect chemistry. Strain fields can have a profound impact on the local structure. For example, in alloys containing Ba, the strain fields have significant spatial extent (1 nm in diameter) and produce large shifts in the atomic equilibrium positions (up to 0.5 Å). Such chemical complexity suggests that computational assessment of point defects for thermal conductivity depression should be hindered. However, in this work, we present and verify several computational descriptors that correlate well with the experimentally measured strain fields. Furthermore, these descriptors are conceptually transparent and computationally inexpensive, allowing computation to provide a pivotal role in the screening of effective alloys. The further development of point defect engineering could complement or replace nanostructuring when optimizing the thermal conductivity, offering the benefits of thermodynamic stability, and providing more clearly defined defect chemistry. PMID:26145414

  2. Point defect study of CuTi and CuTi sub 2

    SciTech Connect

    Shoemaker, J.R.; Lutton, R.T.; Wesley, D.; Wharton, W.R.; Oehrli, M.L.; Herte, M.S.; Sabochick, M.J. ); Lam, N.Q. )

    1991-03-01

    The energies and configurations of interstitials and vacancies in the ordered compounds CuTi and CuTi{sub 2} were determined using atomistic simulation with realistic embedded-atom potentials. The formation energy of an antisite pair was found to be 0.385 and 0.460 eV in CuTi and CuTi{sub 2}, respectively. In both compounds, the creation of a vacancy by the removal of either a Cu or Ti atom resulted in a vacant Cu site, with an adjacent antisite defect in the case of the Ti vacancy. The vacant Cu site in CuTi was found to be very mobile within two adjacent (001) Cu planes, with a migration energy of 0.19 eV, giving rise to two-dimensional migration. The vacancy migration energy across (001) Ti planes, however, was 1.32 eV, which could be lowered to 0.75 or 0.60 eV if one or two Cu antisite defects were initially present in these planes. In CuTi{sub 2}, the vacancy migration energy of 0.92 eV along the (001) Cu plane was significantly higher than in CuTi. The effective vacancy formation energies were calculated to be 1.09 eV and 0.90 eV in CuTi and CuTi{sub 2}, respectively. Interstitials created by inserting either a Cu or Ti atom had complicated configurations in which a Cu {l angle}111{r angle} split interstitial was surrounded by two or three Ti antisite defects. The interstitial formation energy was estimated to be 1.7 eV in CuTi and 1.9 eV in CuTi{sub 2}.

  3. Optical and magnetic resonance characterization of point defects in lithium niobate and lithium tantalate

    SciTech Connect

    Sweeney, K.L.

    1984-01-01

    The objective of this study is to investigate the point defects in single crystals of undoped LiNbO3, undoped LiTaO3, and Mg-doped LiNbO3. Optical absorption, electron spin resonance (ESR), and thermal luminescence techniques were used to study the point defects produced by x-irradiation and reduction in these materials. Radiation-induced defects in undoped LiNbO3 and LiTaO3 include a trapped hole center and an electron trapped on either a NbV ion or on a TaV ion. The TaU ion in LiTaO3 was identified by ESR as a self-trapped electron. A different electron trap, assigned to a Mg complex, was observed after x-irradiation in certain Mg-doped LiNbO3 crystals, depending on the Mg-doping level and the stoichiometry.

  4. Intrinsic point defects and volume swelling in ZrSiO{sub 4} under irradiation

    SciTech Connect

    Pruneda, J.M.; Archer, T.D.; Artacho, Emilio

    2004-09-01

    The effects of high concentration of point defects in crystalline ZrSiO{sub 4} as originated by exposure to radiation, have been simulated using first principles density functional calculations. Structural relaxation and vibrational studies were performed for a catalog of intrinsic point defects, with different charge states and concentrations. The experimental evidence of a large anisotropic volume swelling in natural and artificially irradiated samples is used to select the subset of defects that give similar lattice swelling for the concentrations studied, namely interstitials of O and Si, and the antisite Zr{sub Si}. Calculated vibrational spectra for the interstitials show additional evidence for the presence of high concentrations of some of these defects in irradiated zircon.

  5. Numerical simulation of point defect transport in floating-zone silicon single crystal growth

    NASA Astrophysics Data System (ADS)

    Larsen, T. L.; Jensen, L.; Lüdge, A.; Riemann, H.; Lemke, H.

    2001-08-01

    This work compares simulations of intrinsic point defect transport for a 0.8″ crystal for two different values of the point defect recombination factor, thereafter utilizing the model for two more commercially relevant 4″ crystals, grown with the needle-eye technique. Using this approach to study defect transport in floating-zone configurations is the novelty of this work. The simulation of the thin 0.8″ crystal is compared to the qualitative Voronkov model and DLTS experiments, to give some insights on the applied recombination factors. The work concludes that for large crystals, grown in the vacancy region, the influence of an uncertain recombination factor is not as significant as for smaller crystals grown with a near critical growth parameter.

  6. Role of diffusion in excitation energy transfer and migration

    NASA Astrophysics Data System (ADS)

    Misra, V.; Mishra, H.

    2007-09-01

    Effect of diffusion on excitation energy transfer and migration in a dye pair sodium fluorescein (donor) and Rhodamine-6G (acceptor) has been studied for different viscosities by both steady state and time domain fluorescence spectroscopic measurements. The donor-donor interaction appears to be weaker as compared to donor-acceptor interaction and thus favors direct Förster-type energy transfer. Interestingly, at low viscosity (water in this case) transfer appears to be controlled by material diffusion/energy migration. Further, acceptor dynamics reveals the fact that direct Förster transfer dominates in viscous media.

  7. Influence of high hydrostatic pressure on the vibrational spectrum of an edge dislocation and its dynamic interaction with point defects

    NASA Astrophysics Data System (ADS)

    Malashenko, V. V.; Belykh, N. V.

    2013-03-01

    The slip of a single edge dislocation in an elastic field of point defects chaotically distributed over a crystal with allowance for a high hydrostatic pressure has been studied theoretically. The numerical estimations have demonstrated that hydrostatic compression of some metals and alloys increases the dislocation drag force by point defects in them by several tens of percent.

  8. First-principles study of native point defects in LiNi(1/3)Co(1/3)Mn(1/3)O2 and Li2MnO3.

    PubMed

    Park, Min Sik

    2014-08-21

    We have studied native point defects in the layered oxides of LiNi1/3Co1/3Mn1/3O2 and Li2MnO3, the promising cathode materials for rechargeable Li-ion batteries for the application of high lithium capacity, by performing first-principles calculations. Through the calculations of formation energies for native point defects in LiNi1/3Co1/3Mn1/3O2, it was found that the Ni vacancy and the LiNi antisite are the most dominant defects, which shows a good agreement with previous experiments. Contrary to the previous experimental analysis, however, the NiLi antisite defect is not dominant, even though both Ni and Li ions have a similar ionic radius. In Li2MnO3, the LiMn antisite defect is dominant under the O-rich and Mn-poor condition. In contrast, the MnLi antisite, the Li vacancy in the Li layer, and the oxygen vacancy are dominant at the chemical potential of the boundary in equilibrium with Li2O. To enhance the migration of Li ions for achieving high power, the experimental syntheses of LiNi1/3Co1/3Mn1/3O2 under the Ni-rich condition and Li2MnO3 under O-rich and Mn-poor condition were suggested. For Li2MnO3 suffering from poor electronic conductivity, it was found that the electronic conductivity can be increased by p- and n-type extrinsic doping under the O-rich and Mn-poor condition and the chemical potential of the boundary coexisting with Li2O, respectively, without losing the Li ion conductivity. PMID:25001849

  9. Theoretical calculations of the electronic and vibrational structure of point defects in ionic crystals

    SciTech Connect

    Wood, R.F.; Wilson, T.M.

    1981-01-01

    The structure of the Hartree-Fock one-electron equations for simple point defects in ionic crystals are discussed. The importance of polarization effects due to the diffuse nature of the wavefunctions in the relaxed excited states are emphasized, and the usefulness of an effective mass approximation indicated. Several approaches to the calculation of the electronic structure are discussed and evaluated. The connection between electronic structure calculations and phonon perturbations are pointed out through a brief discussion of localized perturbation theory.

  10. Electronic structure and spectral properties of paramagnetic point defects in Si3N4

    NASA Astrophysics Data System (ADS)

    Pacchioni, Gianfranco; Erbetta, Davide

    1999-11-01

    The geometric and electronic structure and the optical, vibrational, and magnetic properties of paramagnetic point defects in Si3N4 have been studied by means of ab initio quantum-chemical methods. Using cluster models and gradient-corrected density functional theory or configuration interaction (CI) wave functions, we have studied the N3≡Si• and Si2=N• paramagnetic point defects, also known as K0 and N0 centers, respectively. The computed ground-state properties, in particular the hyperfine coupling constants of N3≡Si• and Si2=N•, the vibrational spectra of the corresponding hydrogenated centers, N3≡Si-H and Si2=N-H, and the valence density of states are correctly described, showing the adequacy of the cluster models used for the study of point defects in silicon nitride. The optical transitions associated with N and K centers have been computed by means of CI calculations. The results are compared with those of the analogous defects in SiO2, the nonbridging oxygen and the E' center, respectively.

  11. First principles calculations of point defect diffusion in CdS buffer layers: Implications for Cu(In,Ga)(Se,S)2 and Cu2ZnSn(Se,S)4-based thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Varley, J. B.; Lordi, V.; He, X.; Rockett, A.

    2016-01-01

    We investigate point defects in CdS buffer layers that may arise from intermixing with Cu(In,Ga)Se2 (CIGSe) or Cu2ZnSn(S,Se)4 (CZTSSe) absorber layers in thin-film photovoltaics (PV). Using hybrid functional calculations, we characterize the migration barriers of Cu, In, Ga, Se, Sn, Zn, Na, and K impurities and assess the activation energies necessary for their diffusion into the bulk of the buffer. We find that Cu, In, and Ga are the most mobile defects in CIGS-derived impurities, with diffusion expected to proceed into the buffer via interstitial-hopping and cadmium vacancy-assisted mechanisms at temperatures ˜400 °C. Cu is predicted to strongly favor migration paths within the basal plane of the wurtzite CdS lattice, which may facilitate defect clustering and ultimately the formation of Cu-rich interfacial phases as observed by energy dispersive x-ray spectroscopic elemental maps in real PV devices. Se, Zn, and Sn defects are found to exhibit much larger activation energies and are not expected to diffuse within the CdS bulk at temperatures compatible with typical PV processing temperatures. Lastly, we find that Na interstitials are expected to exhibit slightly lower activation energies than K interstitials despite having a larger migration barrier. Still, we find both alkali species are expected to diffuse via an interstitially mediated mechanism at slightly higher temperatures than enable In, Ga, and Cu diffusion in the bulk. Our results indicate that processing temperatures in excess of ˜400 °C will lead to more interfacial intermixing with CdS buffer layers in CIGSe devices, and less so for CZTSSe absorbers where only Cu is expected to significantly diffuse into the buffer.

  12. Size dependence of vacancy migration energy in ionic nano particles: A potential energy landscape perspective

    NASA Astrophysics Data System (ADS)

    Niiyama, Tomoaki; Okushima, Teruaki; Ikeda, Kensuke S.; Shimizu, Yasushi

    2016-06-01

    Size dependence of vacancy migration energy in ionic nano particles is investigated by analysis of potential energy surfaces in potassium chloride clusters. Numerical methods are used to find almost all local minima and transition states for vacancy migration in clusters of different sizes, and reveal characteristic features of energy surface structure. It is shown that migration energy is significantly lower near a cluster surface than near a cluster core, and the mean first-passage time for migration of a vacancy decreases with cluster size. These results are consistent with observations of high diffusion rates in small clusters.

  13. Research Update: Point defects in CdTe{sub x}Se{sub 1−x} crystals grown from a Te-rich solution for applications in detecting radiation

    SciTech Connect

    Gul, R.; Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Hossain, A.; Yang, G.; James, R. B.; Lee, W.; Cui, Y.; Burger, A.

    2015-04-01

    We investigated cadmium telluride selenide (CdTeSe) crystals, newly grown by the Traveling Heater Method (THM), for the presence and abundance of point defects. Current Deep Level Transient spectroscopy (I-DLTS) was used to determine the energies of the traps, their capture cross sections, and densities. The bias across the detectors was varied from 1 to 30 V. Four types of point defects were identified, ranging from 10 meV to 0.35 eV. Two dominant traps at energies of 0.18 eV and 0.14 eV were studied in depth. Cd vacancies are found at lower concentrations than other point defects present in the material.

  14. Influence of point defects on grain boundary diffusion in oxides. [Annual report, July 1, 1990--March 1, 1992

    SciTech Connect

    Stubican, V.S.

    1991-03-15

    The influence of point defects on grain boundary diffusion of Co ions in NiO was studied using polycrystalline films and bicrystals. Grain boundary diffusion was studied at 750 C at oxygen partial pressure. Two diffusion regions were found. At low oxygen pressures, extrinsic diffusion was observed. Above oxygen pressure of 10{sup {minus}7}, influence of intrinsic point defects was detected. It was determined that grain boundary diffusion was > 3 orders of magnitude faster than volume diffusion. However, it seems that grain boundary diffusion is influenced by the point defects in a similar way as the volume diffusion. 4 figs.

  15. Intrinsic "Vacancy Point Defect" Induced Electrochemiluminescence from Coreless Supertetrahedral Chalcogenide Nanocluster.

    PubMed

    Wang, Feng; Lin, Jian; Zhao, Tingbi; Hu, Dandan; Wu, Tao; Liu, Yang

    2016-06-22

    A deep understanding of distinct functional differences of various defects in semiconductor materials is conducive to effectively control and rationally tune defect-induced functionalities. However, such research goals remain a substantial challenge due to great difficulties in identifying the defect types and distinguishing their own roles, especially when various defects coexist in bulk or nanoscale material. Hereby, we subtly selected a molecular-type semiconductor material as structural mode composed of supertetrahedral chalcogenide Cd-In-S nanoclusters (NCs) with intrinsic vacancy point defect at the core site and antisite point defects at the surface of supertetrahedron and successfully established the correlation of those point defects with their own electrochemiluminescence (ECL) behaviors. The multichannel ECL properties were recorded, and the corresponding reaction mechanisms were also proposed. The predominant radiation recombination path of ECL emission peak at 585 nm was significantly distinguished from asymmetrically broad PL emission with a peak at 490 nm. In addition, the ECL performance of the coreless supertetrahedral chalcogenide nanocluster can be modulated by atomically precise doping of monomanganese ion at the core vacant site. A relatively high ECL efficiency of 2.1% was also gained. Actually, this is the first investigation of ECL behavior of semiconductor materials based on supertetrahedral chalcogenide nanocluster in aqueous solution. Current research may open up a new avenue to probe the roles of various different defects with defined composition and position in the NC. The versatile and bright ECL properties of Cd-In-S NC combined with tunable ECL potential and ECL peak suggest that the new kind of NC-based ECL material may hold great promising for its potential applications in electrochemical analysis, sensing, and imaging. PMID:27228563

  16. Mode confinement in photonic quasicrystal point-defect cavities for particle accelerators

    NASA Astrophysics Data System (ADS)

    Di Gennaro, E.; Savo, S.; Andreone, A.; Galdi, V.; Castaldi, G.; Pierro, V.; Masullo, M. Rosaria

    2008-10-01

    In this letter, we present a study of the confinement properties of point-defect resonators in finite-size photonic-bandgap structures composed of aperiodic arrangements of dielectric rods, with special emphasis on their use for the design of cavities for particle accelerators. Specifically, for representative geometries, we study the properties of the fundamental mode (as a function of the filling fraction, structure size, and losses) via two-dimensional and three-dimensional full-wave numerical simulations, as well as microwave measurements at room temperature. Results indicate that for reduced-size structures, aperiodic geometries exhibit superior confinement properties by comparison with periodic ones.

  17. First-principles study of point defects at a semicoherent interface

    DOE PAGESBeta

    Metsanurk, E.; Tamm, A.; Caro, A.; Aabloo, A.; Klintenberg, M.

    2014-12-19

    Most of the atomistic modeling of semicoherent metal-metal interfaces has so far been based on the use of semiempirical interatomic potentials. Here, we show that key conclusions drawn from previous studies are in contradiction with more precise ab-initio calculations. In particular we find that single point defects do not delocalize, but remain compact near the interfacial plane in Cu-Nb multilayers. Lastly, we give a simple qualitative explanation for this difference on the basis of the well known limited transferability of empirical potentials.

  18. First-principles study of point defects at a semicoherent interface

    PubMed Central

    Metsanurk, E.; Tamm, A.; Caro, A.; Aabloo, A.; Klintenberg, M.

    2014-01-01

    Most of the atomistic modeling of semicoherent metal-metal interfaces has so far been based on the use of semiempirical interatomic potentials. We show that key conclusions drawn from previous studies are in contradiction with more precise ab-initio calculations. In particular we find that single point defects do not delocalize, but remain compact near the interfacial plane in Cu-Nb multilayers. We give a simple qualitative explanation for this difference on the basis of the well known limited transferability of empirical potentials. PMID:25524061

  19. The effect of point defects on diffusion pathway within α-Fe

    NASA Astrophysics Data System (ADS)

    Sakuraya, Seiji; Takahashi, Keisuke; Hashimoto, Naoyuki; Ohnuki, Somei

    2015-05-01

    The diffusion mechanism of point defects within α-Fe with a single vacancy is investigated using the density functional theory. Calculation reveals that H has a slight effect towards Fe diffusion to a vacancy. He has a strong binding with a vacancy; therefore, Fe diffusion is unlikely to happen. The diffusion of C and N from a vacancy has a high barrier. However, Fe diffusion to a vacancy decreases if the C and N diffuse from a vacancy. Thus, the effect of interstitial atoms within α-Fe with a single vacancy towards diffusion and a possible diffusion pathway is discussed.

  20. Structural transformations of stacking fault tetrahedra upon the absorption of point defects

    NASA Astrophysics Data System (ADS)

    Poletaev, G. M.; Starostenkov, M. D.

    2009-01-01

    Mechanisms of the structural modification of stacking fault tetrahedra (SFTs) upon the absorption of point defects have been studied by the method of molecular dynamics. The sequential absorption of vacancies by a perfect SFT is accompanied by the following transformations: (i) the formation of a step on one of the SFT faces, (ii) a change in the step sign upon reaching the middle of the face, (iii) the formation of an SFT with truncated vertex, and (iv) the formation of the perfect SFT. Upon the absorption of interstitial atoms, the stages of SFT transformation follow the reverse order.

  1. Self-regulation mechanism for charged point defects in hybrid halide perovskites

    DOE PAGESBeta

    Walsh, Aron; Scanlon, David O.; Chen, Shiyou; Gong, X. G.; Wei, Su -Huai

    2014-12-11

    Hybrid halide perovskites such as methylammonium lead iodide (CH3NH3PbI3) exhibit unusually low free-carrier concentrations despite being processed at low-temperatures from solution. We demonstrate, through quantum mechanical calculations, that an origin of this phenomenon is a prevalence of ionic over electronic disorder in stoichiometric materials. Schottky defect formation provides a mechanism to self-regulate the concentration of charge carriers through ionic compensation of charged point defects. The equilibrium charged vacancy concentration is predicted to exceed 0.4 % at room temperature. Furthermore, this behavior, which goes against established defect conventions for inorganic semiconductors, has implications for photovoltaic performance.

  2. Periodic surface structure bifurcation induced by ultrafast laser generated point defect diffusion in GaAs

    NASA Astrophysics Data System (ADS)

    Abere, Michael J.; Torralva, Ben; Yalisove, Steven M.

    2016-04-01

    The formation of high spatial frequency laser induced periodic surface structures (HSFL) with period <0.3 λ in GaAs after irradiation with femtosecond laser pulses in air is studied. We have identified a point defect generation mechanism that operates in a specific range of fluences in semiconductors between the band-gap closure and ultrafast-melt thresholds that produces vacancy/interstitial pairs. Stress relaxation, via diffusing defects, forms the 350-400 nm tall and ˜90 nm wide structures through a bifurcation process of lower spatial frequency surface structures. The resulting HSFL are predominately epitaxial single crystals and retain the original GaAs stoichiometry.

  3. Kinetic model for electric-field induced point defect redistribution near semiconductor surfaces

    SciTech Connect

    Gorai, Prashun; Seebauer, Edmund G.

    2014-07-14

    The spatial distribution of point defects near semiconductor surfaces affects the efficiency of devices. Near-surface band bending generates electric fields that influence the spatial redistribution of charged mobile defects that exchange infrequently with the lattice, as recently demonstrated for pile-up of isotopic oxygen near rutile TiO{sub 2} (110). The present work derives a mathematical model to describe such redistribution and establishes its temporal dependence on defect injection rate and band bending. The model shows that band bending of only a few meV induces significant redistribution, and that the direction of the electric field governs formation of either a valley or a pile-up.

  4. Energy transfer and excitation migration in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Lane, Paul A.; Wolak, Mason A.; Cunningham, Paul D.; Melinger, Joseph S.

    2012-09-01

    Energy transfer plays a key role in various applications of organic semiconductors such as electroluminescence, photovoltaics, and sensors. We have carried out a study combining transient and continuous wave (CW) optical spectroscopy with modeling. The fluorescence spectra and dynamics of a functionalized pentacene doped into a fluorescent host (Alq3) were measured and simulated by a Monte Carlo model incorporating distributed dopants and exciton migration. For nonluminescent materials, transient absorption spectroscopy provides insight into excitation migration. Singlet diffusion rates in C60 were determined by probing delayed charge transfer to ZnPc in films with a layered nanostructure.

  5. [Migration].

    PubMed

    Maccotta, W; Perotti, A; Thebaut, F; Cristofanelli, L; Pittau, F; Sergi, N; Pittau, L; Morelli, A; Morsella, M; Grinover, A P

    1990-01-01

    This is a collection of 11 individual articles on aspects of current migration problems affecting developed countries. The geographical focus is on immigration in Europe, with particular reference to Italy, although one paper is concerned with Quebec. The topical focus is on the social problems associated with immigration. The articles are in Italian, with one exception, which is in French. PMID:12343393

  6. Review of Calculations on Point Defect Properties in Delta-Pu

    SciTech Connect

    Allen, P. G.; Wolfer, W. G.

    2015-09-08

    The results of theoretical predictions of properties for vacancies and self-interstitial atoms (SIA) in δ-Pu are presented and reviewed. Three methods have been used for these predictions, namely the modified embedded atom method (MEAM), density functional theory (DFT) with and without spin polarization, and continuum mechanics (CM) models adapted to plutonium. The properties considered are formation and migration energies, and relaxation volumes of vacancies and SIA. Predicted values vary considerably. Nevertheless, all three methods predict that the activation energy for self-diffusion by vacancies is of similar magnitude as the SIA formation energy. Furthermore, the absolute magnitudes of relaxation volumes for vacancies and SIA are also similar, indicating that there exist no large bias for radiation-induced void swelling.

  7. Calculation of the High-Temperature Point Defects Structure in Te-Rich CdTe

    NASA Astrophysics Data System (ADS)

    Dai, Shujun; Wang, Tao; Liu, Huimin; He, Yihui; Jie, Wanqi

    2016-06-01

    A thermodynamic equilibrium model for CdTe annealed under Te vapor is established, in which possible point defects and a defect reaction existing in undoped and In-doped Te-rich CdTe crystals are taken into consideration. Independent point defects, such as VCd, Cdi, and Tei, as well as defect complexes, namely TeCd-VCd (B complex), {{Te}}_{{Cd}}^{2 + } - {{V}}_{{Cd}}^{2 - } (D complex), {{In}}_{{Cd}}^{ + } - {{V}}_{{Cd}}^{ - } (A-center) and Tei-VCd (TeCd), are discussed based on the defect chemistry theory. More specially, the mass action law and quasi-chemical equations are used to calculate defects concentration and Fermi level in undoped and doped CdTe crystals with different indium concentrations. It is found that the Fermi level is controlled by a {{V}}_{{Cd}}^{2 - } , TeCd, and B/D-complex in undoped crystal. The concentration of VCd drops down in an obvious manner and that of TeCd rises for doped crystal with increasing [In].

  8. Point defects in YBa2Cu3O7-x studied using positron annihilation

    NASA Astrophysics Data System (ADS)

    Chudy, Michal; Eisterer, M.; Weber, H. W.; Veterníková, J.; Sojak, S.; Slugeň, V.

    2012-07-01

    Fast neutron irradiation is a powerful technique for introducing additional pinning centers into high temperature superconductors. The spherical defects with sizes of a few nanometers are considered to be effective pinning centers, enhancing Jc. Their morphology is well-known and has already been investigated by several authors in great detail. However, only very little is known about the nature and density of smaller and point defects, which are invisible in transmission electron microscopy. Positron annihilation lifetime spectroscopy was applied to investigate the nature and the concentration of small point-like defects. In this work, the influence of small point defects, such as vacancies and vacancy clusters, on the superconducting properties of YBa2Cu3O7-x bulks was studied; these were introduced by irradiation in the TRIGA Mark II reactor in Vienna. Jc and Tc measurements were performed prior to and after each irradiation step. The samples were irradiated up to a fast neutron ( > 0.1 MeV) fluence of 6 × 1021 m-2. The two kinds of defects—the large collision cascades and the small point-like defects—contribute to the decrease of Tc as well as to the Jc enhancement in astonishingly similar ways.

  9. Dynamic instability of dislocation motion at high-strain-rate deformation of crystals with high concentration of point defects

    NASA Astrophysics Data System (ADS)

    Malashenko, V. V.

    2015-12-01

    The motion of an ensemble of edge dislocations has been studied under conditions of high-strainrate deformation of a crystal with a high concentration of point defects. The conditions of existence of the region of dynamic instability of dislocation motion have been found. It has been shown that the existence of the region and its boundaries is determined by the proportion of the point defect concentration and the dislocation density.

  10. Point defect properties in hcp and bcc Zr with trace solute Nb revealed by ab initio calculations

    NASA Astrophysics Data System (ADS)

    Xin, X. K.; Lai, W. S.; Liu, B. X.

    2009-08-01

    The properties of simple point defect (i.e. vacancy, self and foreign interstitial atoms) in the hcp (alpha) and bcc (beta) Zr with trace solute Nb have been studied by ab initio calculations with VASP codes. The calculations indicate that the formation energies of vacancy and substitutional Nb atom are 1.94 eV and 0.68 eV in alpha Zr and 0.36 eV and 0.07 eV in beta Zr, respectively, while the binding energies of the nearest neighbor vacancy-substitutional Nb pair and the nearest neighbor substitutional Nb-Nb pair are 0.09 eV and 0.03 eV in alpha Zr and 2.78 eV and 0.72 eV in beta Zr, respectively. These results suggest that the Nb atoms are more likely to agglomerate and form precipitates in the beta Zr than in the alpha Zr. Thus, the α-Zr-β-Zr-β-Nb transition mechanism through in situ α to β transformation of Zr and the vacancy-assisted Nb diffusion for Nb conglomeration in beta Zr under irradiation is proposed to explain the existence of beta Nb and Zr precipitate mixtures observed in the experiments for the Zr-Nb alloy. In addition, the defect formation energies in bcc Nb are also presented.

  11. Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing

    NASA Astrophysics Data System (ADS)

    Chen, Xian; Jin, Limin; Kong, Wei; Sun, Tianying; Zhang, Wenfei; Liu, Xinhong; Fan, Jun; Yu, Siu Fung; Wang, Feng

    2016-01-01

    Manipulating particle size is a powerful means of creating unprecedented optical properties in metals and semiconductors. Here we report an insulator system composed of NaYbF4:Tm in which size effect can be harnessed to enhance multiphoton upconversion. Our mechanistic investigations suggest that the phenomenon stems from spatial confinement of energy migration in nanosized structures. We show that confining energy migration constitutes a general and versatile strategy to manipulating multiphoton upconversion, demonstrating an efficient five-photon upconversion emission of Tm3+ in a stoichiometric Yb lattice without suffering from concentration quenching. The high emission intensity is unambiguously substantiated by realizing room-temperature lasing emission at around 311 nm after 980-nm pumping, recording an optical gain two orders of magnitude larger than that of a conventional Yb/Tm-based system operating at 650 nm. Our findings thus highlight the viability of realizing diode-pumped lasing in deep ultraviolet regime for various practical applications.

  12. Hybrid Hamiltonian and Green's Function Approach for Studying Native Point Defect Levels in Semiconductor Compounds and Superlattices

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Srini; Van Orden, Derek; Yu, Zhi-Gang

    2016-04-01

    We have developed a hybrid method that can be applied to study isolated defects in semiconductor compounds and superlattices. The method is a combination of (1) a long-range tight-binding (TB) Hamiltonian, (2) a first-principles Hamiltonian, and (3) a Green's function (GF) formalism. The calculation of the GF requires accurate energy band structure, wave functions, and defect potentials. The TB Hamiltonian with sp 3 orbitals basis ensures accurate band gaps and band masses while providing the functional form for the wave functions. We calculated the band gaps of InAs/GaSb and InAs/InAsSb strained-layer superlattices and found them to agree well with measurements. The change in potentials caused by native point defects (NPDs) was obtained from a first-principles method using Spanish Initiative for Electronic Simulations with Thousands of Atoms, which also uses sp 3 basis. We describe the method of calculating NPD energy levels in compounds and superlattices, obtain some defect levels in GaAs, InAs, InSb, and GaSb compounds, and provide details of the NPD-level calculations.

  13. Hybrid Hamiltonian and Green's Function Approach for Studying Native Point Defect Levels in Semiconductor Compounds and Superlattices

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Srini; Van Orden, Derek; Yu, Zhi-Gang

    2016-09-01

    We have developed a hybrid method that can be applied to study isolated defects in semiconductor compounds and superlattices. The method is a combination of (1) a long-range tight-binding (TB) Hamiltonian, (2) a first-principles Hamiltonian, and (3) a Green's function (GF) formalism. The calculation of the GF requires accurate energy band structure, wave functions, and defect potentials. The TB Hamiltonian with sp 3 orbitals basis ensures accurate band gaps and band masses while providing the functional form for the wave functions. We calculated the band gaps of InAs/GaSb and InAs/InAsSb strained-layer superlattices and found them to agree well with measurements. The change in potentials caused by native point defects (NPDs) was obtained from a first-principles method using Spanish Initiative for Electronic Simulations with Thousands of Atoms, which also uses sp 3 basis. We describe the method of calculating NPD energy levels in compounds and superlattices, obtain some defect levels in GaAs, InAs, InSb, and GaSb compounds, and provide details of the NPD-level calculations.

  14. Atomically resolved structural determination of graphene and its point defects via extrapolation assisted phase retrieval

    SciTech Connect

    Latychevskaia, Tatiana; Fink, Hans-Werner

    2015-01-12

    Previously reported crystalline structures obtained by an iterative phase retrieval reconstruction of their diffraction patterns seem to be free from displaying any irregularities or defects in the lattice, which appears to be unrealistic. We demonstrate here that the structure of a nanocrystal including its atomic defects can unambiguously be recovered from its diffraction pattern alone by applying a direct phase retrieval procedure not relying on prior information of the object shape. Individual point defects in the atomic lattice are clearly apparent. Conventional phase retrieval routines assume isotropic scattering. We show that when dealing with electrons, the quantitatively correct transmission function of the sample cannot be retrieved due to anisotropic, strong forward scattering specific to electrons. We summarize the conditions for this phase retrieval method and show that the diffraction pattern can be extrapolated beyond the original record to even reveal formerly not visible Bragg peaks. Such extrapolated wave field pattern leads to enhanced spatial resolution in the reconstruction.

  15. Diffusion of self-point defects in body-centered cubic iron crystal containing dislocations

    SciTech Connect

    Sivak, A. B.; Romanov, V. A.; Chernov, V. M.

    2010-01-15

    The energetic, crystallographic, and diffusion characteristics of self-point defects (SPDs) (vacancies and self-interstitial atoms (SIAs)) in body-centered cubic (bcc) iron crystal in the absence of stress fields have been obtained by the molecular statics and molecular dynamics methods. The effect of elastic stress fields of dislocations on the characteristics of SPDs (elastic dipoles) has been calculated by the methods of the anisotropic linear theory of elasticity. The SPD diffusion in the elastic fields of edge and screw dislocations (with Burgers vectors 1/2 <111> and <100>) at 293 K has been studied by the kinetic Monte Carlo method. The values of the SPD sink strength of dislocations of different types are obtained. Dislocations are more effective sinks for SIAs than for vacancies. The difference in the sink strengths for SIAs and vacancies in the case of edge dislocations is larger than the screw dislocations.

  16. Lead monoxide α-PbO: electronic properties and point defect formation.

    PubMed

    Berashevich, J; Semeniuk, O; Rubel, O; Rowlands, J A; Reznik, A

    2013-02-20

    The electronic properties of polycrystalline lead oxide consisting of a network of single-crystalline α-PbO platelets and the formation of native point defects in the α-PbO crystal lattice are studied using first-principles calculations. The results suggest that the polycrystalline nature of α-PbO causes the formation of lattice defects (i.e., oxygen and lead vacancies) in such a high concentration that defect related conductivity becomes the dominant mechanism of charge transport. The neutral O vacancy forms a defect state at 1.03 eV above the valence band which can act as a deep trap for electrons, while the Pb vacancy forms a shallow trap for holes located just 0.1 eV above the valence band. The ionization of O vacancies can account for the experimentally found dark current decay in ITO/PbO/Au structures. PMID:23341469

  17. Synergetic effects of Mn and Si in the interaction with point defects in bcc Fe

    NASA Astrophysics Data System (ADS)

    Bakaev, A.; Terentyev, D.; He, X.; Van Neck, D.

    2014-12-01

    The interaction of Mn, Si and Cr with a vacancy and self-interstitial defects in BCC Fe has been analyzed using ab initio calculations. While the interaction of the considered solute clusters with a single vacancy is linearly additive, there is a considerable synergetic effect in the case of self-interstitial atoms, found to bind strongly with Mn-Si pairs. The latter therefore act as deep trapping configurations for self-interstitials. At the same time, the presence of the point defects nearby weakly attractive Mn-Si pairs significantly enhances the solute-solute binding. The revealed effects are rationalized on the basis of charge density and local magnetic moment distributions.

  18. WTe 2 surfaces in UHV-STM image formation and analysis of point defect structures

    NASA Astrophysics Data System (ADS)

    Crossley, J. A. A.; Sofield, C. J.; Myhra, S.

    1997-05-01

    The layered semi-metallic T d phase of WTe 2 has been examined by STM in UHV. The effects of transient transfer of tip apex atom from/to the surface (W ↔ Te exchange) on the imaging conditions have been observed; the effects demonstrate the inadequacy of the Tersoff-Hamann approximation to the description of the tunnelling process. Two distinctly different point-defect configurations have been observed, assigned tentatively to vacancies in either "top" or "bottom" Te sites. Anomalous image conditions were observed frequently; these have been ascribed to delamination of the structure, and consequential transfer of the tunnelling to a delocalised internal gap, with the image representing the averaged tunnel current during relative displacements of two neighbouring Te planes.

  19. Point defect concentrations and solid solution hardening in NiAl with Fe additions

    SciTech Connect

    Pike, L.M.; Chang, Y.A.; Liu, C.T.

    1997-08-01

    The solid solution hardening behavior exhibited when Fe is added to NiAl is investigated. This is an interesting problem to consider since the ternary Fe additions may choose to occupy either the Ni or the Al sublattice, affecting the hardness at differing rates. Moreover, the addition of Fe may affect the concentrations of other point defects such as vacancies and Ni anti-sites. As a result, unusual effects ranging from rapid hardening to solid solution softening are observed. Alloys with varying amounts of Fe were prepared in Ni-rich (40 at. % Al) and stoichiometric (50 at. % Al) compositions. Vacancy concentrations were measured using lattice parameter and density measurements. The site occupancy of Fe was determined using ALCHEMI. Using these two techniques the site occupancies of all species could be uniquely determined. Significant differences in the defect concentrations as well as the hardening behavior were encountered between the Ni-rich and stoichiometric regimes.

  20. Self-regulation mechanism for charged point defects in hybrid halide perovskites

    SciTech Connect

    Walsh, Aron; Scanlon, David O.; Chen, Shiyou; Gong, X. G.; Wei, Su -Huai

    2014-12-11

    Hybrid halide perovskites such as methylammonium lead iodide (CH3NH3PbI3) exhibit unusually low free-carrier concentrations despite being processed at low-temperatures from solution. We demonstrate, through quantum mechanical calculations, that an origin of this phenomenon is a prevalence of ionic over electronic disorder in stoichiometric materials. Schottky defect formation provides a mechanism to self-regulate the concentration of charge carriers through ionic compensation of charged point defects. The equilibrium charged vacancy concentration is predicted to exceed 0.4 % at room temperature. Furthermore, this behavior, which goes against established defect conventions for inorganic semiconductors, has implications for photovoltaic performance.

  1. Point defect stability in gamma irradiated aluminoborosilicate glasses: Influence of Yb3+ doping ions

    NASA Astrophysics Data System (ADS)

    Ollier, N.; Pukhkaya, V.

    2012-04-01

    Yb-doped aluminoborosilicate were irradiated with gamma rays at 104, 105, 106 and 107 Gy. The thermal stability as well as the recovery at room temperature of paramagnetic point defects such as Boron Oxygen Hole Center (BOHC), peroxy radicals and E‧ center were studied. At first, doping with Yb induced a saturation of the E‧ defect production and more importantly, the E‧ center recovering temperature was decreased by 50 °C. E‧ and BOHC defects both showed a limited stability at room temperature. By doping with Yb the glasses, the fading time of defects and in particular the BOHC defect recovery was modified. The BOHC defect showed moreover a larger sensitivity to photobleaching compared to the E‧ centers.

  2. The role of point defects and defect complexes in silicon device processing. Summary report and papers

    SciTech Connect

    Sopori, B.; Tan, T.Y.

    1994-08-01

    This report is a summary of a workshop hold on August 24--26, 1992. Session 1 of the conference discussed characteristics of various commercial photovoltaic silicon substrates, the nature of impurities and defects in them, and how they are related to the material growth. Session 2 on point defects reviewed the capabilities of theoretical approaches to determine equilibrium structure of defects in the silicon lattice arising from transitional metal impurities and hydrogen. Session 3 was devoted to a discussion of the surface photovoltaic method for characterizing bulk wafer lifetimes, and to detailed studies on the effectiveness of various gettering operations on reducing the deleterious effects of transition metals. Papers presented at the conference are also included in this summary report.

  3. First-principles calculations for point defects in MAX phases Ti2AlN

    NASA Astrophysics Data System (ADS)

    Zhang, Yaowen; Yang, Shutong; Wang, Canglong

    2016-04-01

    This paper outlines general physical issues associated with performing computational numerical simulations of primary point defects in MAX phases Ti2AlN. First-principles solutions are possible due to the development of computational resources of software and hardware. The calculation accuracy is a good agreement with the experimental results. As an important application of our simulations, the results could provide a theoretical guidance for future experiments and application of Ti2AlN. For example, the N mono-vacancy is the most difficult to form. On the contrary, the mono-vacancy formation in Ti2AlN is energetically most favorable for the Al atom. The essence of the phenomena is explained by the calculated density of state (DOS).

  4. Use of the point defect model to interpret the iron oxidation kinetics under proton irradiation

    SciTech Connect

    Lapuerta, S.; Moncoffre, N.; Jaffrezic, H.; Millard-Pinard, N.; Bererd, N.; Esnouf, C.; Crusset, D.

    2007-03-15

    This article concerns the study of iron corrosion in wet air under mega-electron-volt proton irradiation for different fluxes at room temperature and with a relative humidity fixed to 45%. Oxidized iron sample surfaces are characterized by ion beam analysis (Rutherford backscattering spectrometry and elastic recoil detection analysis), for the elemental analysis. The structural and physicochemical characterization is performed using the x-ray photoelectron spectroscopy and transmission electron microscopy techniques. We have also measured the iron oxidation kinetics. Radiation enhanced diffusion and transport processes have been evidenced. The modeling of the experimental data shows that the apparent oxygen diffusion coefficient increases whereas the oxygen transport velocity decreases as function of flux. Finally, the point defect model has been used to determine the electric field value in the samples. Results have shown that the transport process can be attributed to the presence of an electrical potential gradient.

  5. Point defect behavior in B2-type intermetallic compound FeAl

    SciTech Connect

    Haraguchi, T.; Kogachi, M.

    1999-07-01

    Point defect behavior in B2-type FeAl alloys is investigated from a thermodynamic point of view, based on the Bragg-Williams method. The model is developed by taking new defect formation mechanisms, random vacancy distribution (RVD), and antisite atom recovering (ASAR), into consideration, which were proposed based on the current findings in in situ neutron and X-ray diffraction studies for the B2 FeAl. The condition for appearance of the RVD and ASAR states is given. Application of this model to B2 FeAl alloys shows that the RVD-like behavior is reproduced in the Fe-rich composition region and also a rapid increase in vacancy concentration observed in the Al-rich region can be interpreted by the ASAR process by antisite Al atoms.

  6. Computational Characterization of Defects in Metal-Organic Frameworks: Spontaneous and Water-Induced Point Defects in ZIF-8.

    PubMed

    Zhang, Chenyang; Han, Chu; Sholl, David S; Schmidt, J R

    2016-02-01

    Zeolitic imidazolate frameworks (ZIFs) are an important class of porous crystalline metal-organic framework (MOF) materials that have attracted widespread attention for applications ranging from gas adsorption and separation to catalysis. Although the bulk crystal structures of MOFs are typically well-characterized, comparatively little is known regarding MOF defect structures. Drawing on analogies with conventional silicon-based zeolites, we utilize computational methods to examine the structure and stability of putative point-defect structures (including vacancies, substitutions, and "dangling" linkers) within the prototypical ZIF-8 structure. Considering both postsynthetic (gas-phase) and synthetic (solution-phase) conditions, we find that several of the defect structures lie low in energy relative to the defect-free parent crystal, with barriers to defect formation that are large but surmountable under relevant temperatures. These results are consistent with prior experimental observations of ZIF stability and reactivity and suggest that defects may play an important role in influencing the long-term stability of MOFs under conditions that include exposure to water vapor and trace contaminants such as acid gases. PMID:26771275

  7. Ab initio study of point defects in PbSe and PbTe: Bulk and nanowire

    SciTech Connect

    Wrasse, E. O.; Venezuela, P.; Baierle, R. J.

    2014-11-14

    First principles investigations, within the spin-polarized density functional theory, are performed to study energetic stability and electronic properties of point defects (vacancies and antisites) in PbSe and PbTe: bulk and nanowire (NW). Our results show that the energetic stability of these defects is ruled by relaxation process. These defects have lower formation energies in the nanowire structures as compared to the bulk, being more stable in the surface of the NWs. We also show that in the bulk system only one charge state is stable, otherwise, due to the larger band gaps, more than one charge state may be stable in the NWs. In addition, we have investigated how the presence of intrinsic defects affects the electronic properties of bulk and NW systems. Vacancies give rise to new electronic states near to the edges of the valence and conduction bands while the energetic position of the electronic states from antisites depends on the charge state, being localized inside the band gap or near the edges of the valence or conduction bands. We discuss how these changes in the electronic properties due to intrinsic defects may affect the thermoelectric properties of PbSe and PbTe NWs.

  8. Point Defect Properties of Cd(Zn)Te and TlBr for Room-Temperature Gamma Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Lordi, Vincenzo

    2013-03-01

    The effects of various crystal defects in CdTe, Cd1-xZnxTe (CZT), and TlBr are critical for their performance as room-temperature gamma radiation detectors. We use predictive first principles theoretical methods to provide fundamental, atomic scale understanding of the defect properties of these materials to enable design of optimal growth and processing conditions, such as doping, annealing, and stoichiometry. Several recent cases will be reviewed, including (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties of CZT; (iii) point defect diffusion and binding related to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects--principally vacancies--on the intrinsic material properties of TlBr, particularly electronic and ionic conductivity; (v) tailored doping of TlBr to independently control the electronic and ionic conductivity; and (vi) the effects of metal impurities on the electronic properties and device performance of TlBr detectors. Prepared by LLNL under Contract DE-AC52-07NA27344 with support from the National Nuclear Security Administration Office of Nonproliferation and Verification Research and Development NA-22.

  9. Studies of point-defect interactions in solids using perturbed angular correlations

    SciTech Connect

    Schuhmann, R.B.

    1988-01-01

    Vacancy defect production and migration in {sup 111}In doped Au, Pt and Ni following plastic deformation are studied via {sup 111}Cd perturbed {gamma}-{gamma} angular correlations (TDPAC). In all three metals, deformation produces the same defect species as are seen following irradiation. In Au, a particular In-vacancy complex which is probably a trapped divacancy exists in two distinct configurations. Thermal conversion from one configuration to the other occurs near 200K. In Pt, an In-vacancy complex exhibits a strongly temperature dependent electric field gradient, indicating the presence of local resonant modes. In Ni, a relaxed In-trivacancy complex forms via simple, single-step trapping of a migrating trivacancy. Once formed, the In-trivacancy complex in Ni can trap up to four guest H or D atoms. These are bound to the complex with an energy of {approximately}0.5 eV, irrespective of isotopic mass. By monitoring the damping of the TDPAC precession not associated with a bound defect, the author observed release of untrapped interstitial H from the lattice. These experiments give a consistent, microscopic picture of H diffusion and release from Ni. The use of BaF{sub 2} scintillators allows for an eightfold improvement in TDPAC time resolution. This makes possible experiments in systems previously inaccessible due to large precessional frequencies. The author demonstrates the utility of BaF{sub 2} in several examples, including {sup 100}RhNi, {sup 99}TcFe, {sup 101}RuFe, {sup 100}RhCo and {sup 100}RhFe, systems which had not been studied previously due to time resolution limitation. The Larmor frequency for {sup 100}RhFe, 5565 Mrad/s, is the highest frequency ever measured via TDPAC.

  10. Point defects and defect-related transport of matter in transition metal-containing orthosilicates

    NASA Astrophysics Data System (ADS)

    Tang, Qi

    Point defects and defect-related transport properties of transition metal-containing orthosilicates with the olivine structure are interesting topics but are not yet well understood. At high temperatures, the transport properties of sufficiently pure olivines are governed by point defects. To improve the currently limited understanding of the defect structure and defect-related transport properties of olivine group compounds, the transport of matter in orthosilicates of the type Me2SiO4, with Me = Co and Mn, was experimentally investigated. The cation tracer diffusion of cobalt and manganese in cobalt and manganese orthosilicates, respectively, was studied as a function of crystal orientation, oxygen activity and temperature using high purity, synthetic cobalt and manganese orthosilicate single crystals grown by the floating zone method. Modeling of the observed oxygen activity dependancies of the cation tracer diffusion coefficients and of point defect concentrations was performed based on data obtained from this study in conjunction with other defect-related data reported in literature. The oxygen activity dependence of the diffusion of cobalt in Co 2SiO4 along the three principle orientations at 1300 °C at high oxygen activities is compatible with cobalt vacancies and holes as majority defects. At lower oxygen activities, the oxygen activity dependence of the cobalt tracer diffusion coefficients becomes smaller than at higher oxygen activities, which is most likely related to an increase in concentrations of cobalt interstitials. When using the space group Pbnm for assigning crystal orientations, the ratio found for the cobalt tracer diffusion coefficients at aO2 = 1 is approximately D*Co001 :D*Co010 :D*Co100 = 30:3:1. The oxygen activity dependence of the diffusion of manganese in Mn 2SiO4 along the three principle orientations at 1200 °C is, at high oxygen activities, compatible with manganese vacancies and holes as majority defects. The observed oxygen

  11. Water soluble quantum dot nanoclusters: energy migration in artifical materials.

    PubMed

    Oh, Megan H J; Gentleman, Darcy J; Scholes, Gregory D

    2006-11-21

    Energy migration in self-assembled, water soluble, quantum dot (QD) nanoclusters is reported. These spherical nanoclusters are composed of CdSe QDs bound together by pepsin, a digestive enzyme found in mammals. A structural model for the clusters is suggested, based on scanning transmission electron microscopy, as well as dynamic light scattering and small angle X-ray scattering. Cluster sizes range from 100 to 400 nm in diameter and show a close-packed interior structure. Optical characterization of the absorption and emission spectra of the clusters is reported, finding photoluminescence quantum yields of up to approximately 60% in water for clusters made from core-shell CdSe-ZnS QDs. Clusters prepared from two different size populations of CdSe QD samples (3 and 4 nm in diameter) demonstrate energy migration and trapping. Resonance energy transfer (RET), from small to large dots within the QD-pepsin cluster, is observed by monitoring the quenching of the small donor dot fluorescence along with enhancement of the large acceptor dot fluorescence. PMID:17091158

  12. First principles studies on the impact of point defects on the phase stability of (AlxCr1-x)2O3 solid solutions

    NASA Astrophysics Data System (ADS)

    Koller, C. M.; Koutná, N.; Ramm, J.; Kolozsvári, S.; Paulitsch, J.; Holec, D.; Mayrhofer, P. H.

    2016-02-01

    Density Functional Theory applying the generalised gradient approximation is used to study the phase stability of (AlxCr1-x)2O3 solid solutions in the context of physical vapour deposition (PVD). Our results show that the energy of formation for the hexagonal α phase is lower than for the metastable cubic γ and B1-like phases-independent of the Al content x. Even though this suggests higher stability of the α phase, its synthesis by physical vapour deposition is difficult for temperatures below 800 °C. Aluminium oxide and Al-rich oxides typically exhibit a multi-phased, cubic-dominated structure. Using a model system of (Al0.69Cr0.31)2O3 which experimentally yields larger fractions of the desired hexagonal α phase, we show that point defects strongly influence the energetic relationships. Since defects and in particular point defects, are unavoidably present in PVD coatings, they are important factors and can strongly influence the stability regions. We explicitly show that defects with low formation energies (e.g. metal Frenkel pairs) are strongly preferred in the cubic phases, hence a reasonable factor contributing to the observed thermodynamically anomalous phase composition.

  13. Oxygen Point Defect Chemistry in Ruddlesden-Popper Oxides (La1-xSrx)2MO4±δ (M = Co, Ni, Cu).

    PubMed

    Xie, Wei; Lee, Yueh-Lin; Shao-Horn, Yang; Morgan, Dane

    2016-05-19

    Stability of oxygen point defects in Ruddlesden-Popper oxides (La1-xSrx)2MO4±δ (M = Co, Ni, Cu) is studied with density functional theory calculations to determine their stable sites, charge states, and energetics as functions of Sr content (x), transition metal (M), and defect concentration (δ). We demonstrate that the dominant O point defects can change between oxide interstitials, peroxide interstitials, and vacancies. In general, increasing x and atomic number of M stabilizes peroxide over oxide interstitials as well as vacancies over both peroxide and oxide interstitials; increasing δ destabilizes both oxide interstitials and vacancies but barely affects peroxide interstitials. We also demonstrate that the O 2p-band center is a powerful descriptor for these materials and correlates linearly with the formation energy of all defects. The trends of formation energy versus x, M, and δ and the correlation with O 2p-band center are explained in terms of oxidation chemistry and electronic structure. PMID:27157124

  14. Theoretical characterisation of point defects on a MoS2 monolayer by scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    González, C.; Biel, B.; Dappe, Y. J.

    2016-03-01

    Different S and Mo vacancies as well as their corresponding antisite defects in a free-standing MoS2 monolayer are analysed by means of scanning tunnelling microscopy (STM) simulations. Our theoretical methodology, based on the Keldysh nonequilibrium Green function formalism within the density functional theory (DFT) approach, is applied to simulate STM images for different voltages and tip heights. Combining the geometrical and electronic effects, all features of the different STM images can be explained, providing a valuable guide for future experiments. Our results confirm previous reports on S atom imaging, but also reveal a strong dependence on the applied bias for vacancies and antisite defects that include extra S atoms. By contrast, when additional Mo atoms cover the S vacancies, the MoS2 gap vanishes and a bias-independent bright protrusion is obtained in the STM image. Finally, we show that the inclusion of these point defects promotes the emergence of reactive dangling bonds that may act as efficient adsorption sites for external adsorbates.

  15. Role of Point Defects on the Reactivity of Reconstructed Anatase Titanium Dioxide (001) Surface

    SciTech Connect

    Wang, Yang; Sun, Huijuan; Tan, Shijing; Feng, Hao; Cheng, Zhengwang; Zhao, Jin; Zhao, Aidi; Wang, Bing; Luo, Yi; Yang, Jinlong; Hou, J. G.

    2013-07-30

    The chemical reactivity of different surfaces of titanium dioxide (TiO2) has been the subject of extensive studies in recent decades. The anatase TiO2(001) and its (1x4) reconstructed surfaces were theoretically considered to be the most reactive and have been heavily pursued by synthetic chemists. However, the lack of direct experimental verification or determination of the active sites on these surfaces has caused controversy and debate. Here we report a systematic study on an anatase TiO2(001)-(1x4) surface by means of microscopic and spectroscopic techniques in combination with first-principles calculations. Two types of intrinsic point defects are identified, among which only the Ti3+ defect site on the reduced surface demonstrates considerable chemical activity. The perfect surface itself can be fully oxidized, but shows no obvious activity. Our findings suggest that the reactivity of the anatase TiO2(001) surface should depend on its reduction status, similar to that of rutile TiO2 surfaces.

  16. Stress dependence of optically active diamagnetic point defects in silicon oxynitride.

    PubMed

    Pezzotti, Giuseppe; Hosokawa, Koichiro; Munisso, Maria Chiara; Leto, Andrea; Zhu, Wenliang

    2007-08-30

    The cathodoluminescence (CL) spectrum arising from diamagnetic point defects of silicon oxynitride lattice was analyzed to extract quantitative information on local stress fields stored on the surface of a silicon nitride polycrystal. A calibration procedure was preliminarily made to obtain a relationship between CL spectral shift and applied stress, according to the piezo-spectroscopic effect. In this calibration procedure, we used the uniaxial stress field developed in a rectangular bar loaded in a four-point flexural jig. Stress dependence was clearly detected for the most intense spectral band of a doublet arising from diamagnetic ([triple bond]Si-Si[triple bond]) defects, which was located at around 340 nm. The shallow nature of the electron probe enabled the characterization of surface stress fields with sub-micrometer-order spatial resolution. As applications of the PS technique, the CL emission from [triple bond]Si-Si[triple bond] defects was used as a stress probe for visualizing the residual stress fields stored at grain-boundary regions and at the tip of a surface crack propagated in polycrystalline silicon nitride. PMID:17685596

  17. Point defects in lithium triborate (LiB3O5) crystals

    NASA Astrophysics Data System (ADS)

    Scripsick, M. P.; Fang, X. H.; Edwards, G. J.; Halliburton, L. E.; Tyminski, J. K.

    1993-02-01

    Electron paramagnetic resonance (EPR), electron-nuclear double resonance, optical absorption, and thermoluminescence have been used to investigate radiation-induced point defects in a single crystal of lithium triborate (LiB3O5). Two prominent defects are observed after irradiation near liquid-nitrogen temperature with 60 kV x rays. A four-line EPR spectrum, with 12.2 G splittings, is assigned to a trapped-hole center, and another four-line EPR spectrum, with 120 G splittings, is assigned to a trapped-electron center. In each case, the nucleus responsible for the observed hyperfine is 11B. The trapped hole is localized on an oxygen ion and has a weak hyperfine interaction with one neighboring boron nucleus, whereas the trapped electron is localized primarily on a boron ion with a correspondingly larger hyperfine interaction. Both defects become thermally unstable near 125 K, and their decay (i.e., recombination) correlates with an intense thermoluminescence peak at this same temperature. An optical absorption peak at 300 nm is produced by the x rays and thermally decays at the same temperatures as the EPR spectra.

  18. A study of void size growth in nonequilibrium stochastic systems of point defects

    NASA Astrophysics Data System (ADS)

    Kharchenko, Dmitrii O.; Kharchenko, Vasyl O.; Bashtova, Anna I.

    2016-05-01

    We study properties of voids growth dynamics in a stochastic system of point defects in solids under nonequilibrium conditions (sustained irradiation). It is shown that fluctuations of defect production rate (external noise) increase the critical void radius comparing to a deterministic system. An automodel regime of void size growth in a stochastic system is studied in detail. Considering a homogeneous system, it is found that external noise does not change the universality of the void size distribution function; the mean void size evolves according to classical nucleation theory. The noise increases the mean void size and spreads the void size distribution. Studying dynamics of spatially extended systems it was shown that vacancies remaining in a matrix phase are able to organize into vacancy enriched domains due to an instability caused by an elastic lattice deformation. It is shown that dynamics of voids growth is defined by void sinks strength with void size growth exponent varying from 1/3 up to 1/2.

  19. EPR and ENDOR studies of point defects in lithium tetraborate crystals

    NASA Astrophysics Data System (ADS)

    Buchanan, Douglas A.

    Lithium tetraborate (Li2B4O7 or LTB) is a promising material for both radiation dosimetry and neutron detection applications. LTB crystals can be grown pure or doped with different impurities including transition-metal and rare-earth ions. Research in this dissertation focuses on undoped LTB crystals and LTB crystals doped with copper and silver. Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) are used to characterize point defects in the lithium tetraborate crystals. Thermoluminescence (TL), photoluminescence (PL), photoluminescence excitation (PLE), and optical absorption (OA) are also used. An intrinsic hole trap associated with lithium vacancies is characterized with EPR and ENDOR and its thermal stability is determined using thermoluminescence. A "perturbed" hole trap due to Ag2+ ions is characterized in doped crystals using EPR data alone. This method is tested on a previously studied hole center where both EPR and ENDOR were used. New x-ray induced centers are identified in copper-doped crystals. These include two Cu 2+ hole centers and two Cu0 electron centers. These centers are characterized with EPR and their thermal stability explains TL peaks in glow curves. Finally, a comprehensive study utilizing EPR, OA, PL, and PLE data provide convincing explanations for the absorption and emission features of silver-doped crystals.

  20. Theoretical characterisation of point defects on a MoS2 monolayer by scanning tunnelling microscopy.

    PubMed

    González, C; Biel, B; Dappe, Y J

    2016-03-11

    Different S and Mo vacancies as well as their corresponding antisite defects in a free-standing MoS2 monolayer are analysed by means of scanning tunnelling microscopy (STM) simulations. Our theoretical methodology, based on the Keldysh nonequilibrium Green function formalism within the density functional theory (DFT) approach, is applied to simulate STM images for different voltages and tip heights. Combining the geometrical and electronic effects, all features of the different STM images can be explained, providing a valuable guide for future experiments. Our results confirm previous reports on S atom imaging, but also reveal a strong dependence on the applied bias for vacancies and antisite defects that include extra S atoms. By contrast, when additional Mo atoms cover the S vacancies, the MoS2 gap vanishes and a bias-independent bright protrusion is obtained in the STM image. Finally, we show that the inclusion of these point defects promotes the emergence of reactive dangling bonds that may act as efficient adsorption sites for external adsorbates. PMID:26862020

  1. Intrinsic Point-Defect Balance in Self-Ion-Implanted ZnO

    NASA Astrophysics Data System (ADS)

    Neuvonen, Pekka T.; Vines, Lasse; Svensson, Bengt G.; Kuznetsov, Andrej Yu.

    2013-01-01

    The role of excess intrinsic atoms for residual point defect balance has been discriminated by implanting Zn or O ions into Li-containing ZnO and monitoring Li redistribution and electrical resistivity after postimplant anneals. Strongly Li-depleted regions were detected in the Zn-implanted samples at depths beyond the projected range (Rp) upon annealing ≥600°C, correlating with a resistivity decrease. In contrast, similar anneals of the O-implanted samples resulted in Li accumulation at Rp and an increased resistivity. Control samples implanted with Ar or Ne ions, yielding similar defect production as for the Zn or O implants but with no surplus of intrinsic atoms, revealed no Li depletion. Thus, the depletion of Li shows evidence of excess Zn interstitials (ZnI) being released during annealing of the Zn-implanted samples. These ZnI’s convert substitutional Li atoms (LiZn) into highly mobile interstitial ones leading to the strongly Li-depleted regions. In the O-implanted samples, the high resistivity provides evidence of stable OI-related acceptors.

  2. Bright UV Single Photon Emission at Point Defects in h-BN.

    PubMed

    Bourrellier, Romain; Meuret, Sophie; Tararan, Anna; Stéphan, Odile; Kociak, Mathieu; Tizei, Luiz H G; Zobelli, Alberto

    2016-07-13

    To date, quantum sources in the ultraviolet (UV) spectral region have been obtained only in semiconductor quantum dots. Color centers in wide bandgap materials may represent a more effective alternative. However, the quest for UV quantum emitters in bulk crystals faces the difficulty of combining an efficient UV excitation/detection optical setup with the capability of addressing individual color centers in potentially highly defective materials. In this work we overcome this limit by employing an original experimental setup coupling cathodoluminescence within a scanning transmission electron microscope to a Hanbury-Brown-Twiss intensity interferometer. We identify a new extremely bright UV single photon emitter (4.1 eV) in hexagonal boron nitride. Hyperspectral cathodoluminescence maps show a high spatial localization of the emission (∼80 nm) and a typical zero-phonon line plus phonon replica spectroscopic signature, indicating a point defect origin, most likely carbon substitutional at nitrogen sites. An additional nonsingle-photon broad emission may appear in the same spectral region, which can be attributed to intrinsic defects related to electron irradiation. PMID:27299915

  3. Point defect formation in optical materials expos ed to the space environment

    NASA Technical Reports Server (NTRS)

    Allen, J. L.; Seifert, N.; Yao, Y.; Albridge, R. G.; Barnes, A. V.; Tolk, N. H.; Strauss, A. M.; Linton, Roger C.; Kamenetzky, R. R.; Vaughn, Jason A.

    1995-01-01

    Point defect formation associated with early stages of optical damage was observed unexpectedly in two, and possibly three, different optical materials subjected to short-duration space exposure. Three calcium fluoride, two lithium fluoride, and three magnesium fluoride samples were flown on Space Shuttle flight STS-46 as part of the Evaluation of Oxygen Interactions with Materials - Third Phase experiment. One each of the calcium and magnesium fluoride samples was held at a fixed temperature of 60 C during the space exposure, while the temperatures of the other samples were allowed to vary with the ambient temperature of the shuttle cargo bay. Pre-flight and post-flight optical absorption measurements were performed on all of the samples. With the possible exception of the magnesium fluoride samples, every sample clearly showed the formation of F-centers in that section of the sample that was exposed to the low earth orbit environment. Solar vacuum ultraviolet radiation is the most probable primary cause of the defect formation; however, the resulting surface metallization may be synergistically altered by the atomic oxygen environment.

  4. Effect of point defects on the thermal conductivity of UO2: molecular dynamics simulations

    SciTech Connect

    Liu, Xiang-Yang; Stanek, Christopher Richard; Andersson, Anders David Ragnar

    2015-07-21

    The thermal conductivity of uranium dioxide (UO2) fuel is an important materials property that affects fuel performance since it is a key parameter determining the temperature distribution in the fuel, thus governing, e.g., dimensional changes due to thermal expansion, fission gas release rates, etc. [1] The thermal conductivity of UO2 nuclear fuel is also affected by fission gas, fission products, defects, and microstructural features such as grain boundaries. Here, molecular dynamics (MD) simulations are carried out to determine quantitatively, the effect of irradiation induced point defects on the thermal conductivity of UO2, as a function of defect concentrations, for a range of temperatures, 300 – 1500 K. The results will be used to develop enhanced continuum thermal conductivity models for MARMOT and BISON by INL. These models express the thermal conductivity as a function of microstructure state-variables, thus enabling thermal conductivity models with closer connection to the physical state of the fuel [2].

  5. Control of point defects and space charge in electroluminescent ZnS:Mn thin films

    NASA Astrophysics Data System (ADS)

    Lewis, J. S.; Davidson, M. R.; Holloway, P. H.

    2002-12-01

    The mechanisms leading to improved brightness, efficiency, and stability of alternating-current thin-film electroluminescent (ACTFEL) ZnS:Mn phosphors have been studied. Previously we have shown that ex situ codoping of the sputter deposited ZnS:Mn active layer with K and Cl results in a 53% improvement in brightness, a 62% improvement in efficiency, and better 100 h accelerated aging stability. In this work, we demonstrate that these improvements result from a 75% increase in excitation efficiency for conduction electrons, combined with a small decrease in both light outcoupling and nonradiative recombination. Electrical properties data were used to determine that there is a reduced amount of static space charge in the codoped films, resulting in a larger average field, increased excitation efficiency, and increased charge multiplication. The reduced space charge is attributed to the addition of charge compensating zinc vacancy-chlorine complexes and isolated chlorine point defects, which are acceptor and donor defects, respectively, and a reduction of zinc vacancy deep hole traps. It is postulated that higher average fields results in sufficient electron multiplication or donor ionization such that current for EL excitation is limited by the phosphor resistance rather than capacitance or density of interface states. The possibility of using these mechanisms to increase the efficiency of other ACTFEL phosphors is discussed.

  6. Effect of hole doping on the magnetism of point defects in graphene: A theoretical study

    NASA Astrophysics Data System (ADS)

    Yndurain, Felix

    2014-12-01

    Using ab initio methods based on the density functional theory, we study the magnetic properties of different point defects in graphene. We consider separately, atomic hydrogen, atomic fluorine, and single vacancies. The three defects have completely different magnetic properties. A local spin one-half magnetic moment is well defined at a hydrogen impurity, while single fluorine adatoms do not induce a well-defined magnetic moment unless there is a fluorine concentration of at least of a 0.5%. In this case, the induced magnetic moment is of the order of 0.45 μB per defect. This behavior is interpreted as being due to the charge transfer between fluorine and graphene. The case of magnetic moments localized at π electrons near vacancies is different from both previous cases; the size of the induced magnetic moment decreases with the dilution of defects and it is compatible with zero in the isolated vacancy. The effect of hole doping on these magnetic behaviors is studied and compared with the available experimental data. In the three cases, hole doping inhibits the formation of π states magnetic moments.

  7. Electron spin resonance study of point defects in thermal GaAs/GaAs-oxide structures

    NASA Astrophysics Data System (ADS)

    Nguyen, S.; Afanas'ev, V. V.; Stesmans, A.

    2012-12-01

    In an attempt to atomically assess interface and oxide-related point defects, a first basic multifrequency low-temperature electron spin resonance study has been carried out on semi-insulating (Fe compensated) GaAs/oxide structures, implying both powders and (100)GaAs/oxide slices, thermally grown in the range Tox=350-615 °C. Various spectra are observed: As for powders, this includes the 4-line EL2 defect spectrum centered at g~2.043 and characterized by the isotropic hyperfine constant Aiso~ 910 G, ascribed to the 75AsGa+ antisite defect. Observed in freshly crushed powder, it substantially increases in density with oxidation, in line with theoretical expectation; A maximum appears reached for at Tox~440 °C. It is not observed in the parent c-GaAs wafer. A second isotropic signal is observed at g~1.937 in powders for Tox in the range 510-615 °C, but only after additional VUV irradiation; it may correspond to As clusters. In bulk (100)GaAs, we observe the 5-branch spectrum of substitutional Fe impurities (spin S=5/2) in GaAs, with inferred crystal field constant a ≈ 360 G, well in line with previous observations. The results are discussed within the framework of advanced theoretical interface and defect models and previous experimental assessment.

  8. Point defects in 4H-SiC epilayers introduced by neutron irradiation

    NASA Astrophysics Data System (ADS)

    Hazdra, Pavel; Záhlava, Vít; Vobecký, Jan

    2014-05-01

    Electronic properties of radiation damage produced in 4H-SiC by neutron irradiation and its effect on electrical parameters of Junction Barrier Schottky (JBS) diodes were investigated. 4H-SiC N-epilayers, which formed the low-doped N-base of JBS power diodes, were irradiated with 1 MeV neutrons with fluences ranging from 1.3 × 1013 to 4.0 × 1014 cm-2. Radiation defects were then characterized by capacitance deep-level transient spectroscopy, I-V and C-V measurement. Results show that neutron irradiation introduces different point defects giving rise to acceptor levels lying 0.61/0.69, 0.88, 1.03, 1.08 and 1.55 eV below the SiC conduction band edge. Introduction rates of these centers are ranging from 0.64 to 4.0 cm-1. These defects have a negligible effect on blocking and dynamic characteristics of irradiated diodes. However, the acceptor character of introduced deep levels and their fast introduction deteriorate diode's ON-state resistance already at fluences exceeding 1 × 1014 cm-2.

  9. Remarkable suppression of thermal conductivity by point defects in MoS2 nanoribbons

    NASA Astrophysics Data System (ADS)

    Wang, Yongchun; Zhang, Kaiwang; Xie, Guofeng

    2016-01-01

    By applying non-equilibrium molecular dynamics simulation, we investigate the effect of point defects on thermal conductivity of MoS2 nanoribbons, such as sulfur vacancies (VS) and oxygen substitutions to sulfur (SO). It is found that both VS and SO can significantly reduce thermal conductivity of monolayer MoS2 nanoribbons, but the suppression of thermal conductivity by vacancies is stronger than that by substitutions. For armchair MoS2 nanoribbon of 41.1 nm length and 4.4 nm width, when defect density is only 1.5%, the reduction of thermal conductivity at room temperature by VS defects and SO defects is 42.3% and 35.1%, respectively. We perform the vibrational eigenmodes analysis and find that the strong localization of phonons of all modes by defects results in the severe reduction of thermal conductivity of MoS2 nanoribbons. Further spectra analysis reveals that the localized modes are located in the sites of defects and the sites around defects, due to the change of force constant at these sites. Our findings are helpful for understanding and tuning the thermal conductivity of MoS2 nanoribbons by defect engineering.

  10. Effects of extrinsic point defects in phosphorene: B, C, N, O, and F adatoms

    SciTech Connect

    Wang, Gaoxue E-mail: pandey@mtu.edu Pandey, Ravindra E-mail: pandey@mtu.edu; Karna, Shashi P. E-mail: pandey@mtu.edu

    2015-04-27

    Phosphorene is emerging as a promising 2D semiconducting material with a direct band gap and high carrier mobility. In this paper, we examine the role of the extrinsic point defects including surface adatoms in modifying the electronic properties of phosphorene using density functional theory. The surface adatoms considered are B, C, N, O, and F with a [He] core electronic configuration. Our calculations show that B and C, with electronegativity close to P, prefer to break the sp{sup 3} bonds of phosphorene and reside at the interstitial sites in the 2D lattice by forming sp{sup 2} like bonds with the native atoms. On the other hand, N, O, and F, which are more electronegative than P, prefer the surface sites by attracting the lone pairs of phosphorene. B, N, and F adsorption will also introduce local magnetic moment to the lattice. Moreover, B, C, N, and F adatoms will modify the band gap of phosphorene, yielding metallic transverse tunneling characters. Oxygen does not modify the band gap of phosphorene, and a diode like tunneling behavior is observed. Our results therefore offer a possible route to tailor the electronic and magnetic properties of phosphorene by the adatom functionalization and provide the physical insights of the environmental sensitivity of phosphorene, which will be helpful to experimentalists in evaluating the performance and aging effects of phosphorene-based electronic devices.

  11. Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing

    PubMed Central

    Chen, Xian; Jin, Limin; Kong, Wei; Sun, Tianying; Zhang, Wenfei; Liu, Xinhong; Fan, Jun; Yu, Siu Fung; Wang, Feng

    2016-01-01

    Manipulating particle size is a powerful means of creating unprecedented optical properties in metals and semiconductors. Here we report an insulator system composed of NaYbF4:Tm in which size effect can be harnessed to enhance multiphoton upconversion. Our mechanistic investigations suggest that the phenomenon stems from spatial confinement of energy migration in nanosized structures. We show that confining energy migration constitutes a general and versatile strategy to manipulating multiphoton upconversion, demonstrating an efficient five-photon upconversion emission of Tm3+ in a stoichiometric Yb lattice without suffering from concentration quenching. The high emission intensity is unambiguously substantiated by realizing room-temperature lasing emission at around 311 nm after 980-nm pumping, recording an optical gain two orders of magnitude larger than that of a conventional Yb/Tm-based system operating at 650 nm. Our findings thus highlight the viability of realizing diode-pumped lasing in deep ultraviolet regime for various practical applications. PMID:26739352

  12. Anticorrelation between Surface and Subsurface Point Defects and the Impact on the Redox Chemistry of TiO2(110)

    SciTech Connect

    Yoon, Yeohoon; Du, Yingge; Garcia, Juan C.; Zhu, Zihua; Wang, Zhitao; Petrik, Nikolay G.; Kimmel, Gregory A.; Dohnalek, Zdenek; Henderson, Michael A.; Rousseau, Roger J.; Deskins, N. Aaron; Lyubinetsky, Igor

    2015-02-02

    Using combination of STM, DFT and SIMS, we explored the interplay and relative impact of surface vs. subsurface defects on the surface chemistry of rutile TiO2. STM results show that surface O vacancies (VO’s) are virtually absent in the vicinity of positively-charged subsurface point-defects. This observation is consistent with DFT calculations of impact of subsurface defect proximity on VO formation energy. To monitor the influence of such lateral anticorrelation on surface redox chemistry, a test reaction of the dissociative adsorption of O2 is employed, which is observed to be suppressed around them. DFT results attribute this to a perceived absence of the intrinsic (Ti) (and likely extrinsic) interstitials in the nearest subsurface layer beneath “inhibited” areas. We also postulate that the entire nearest subsurface region could be voided of any charged point-defects, whereas prevalent VO’s are largely responsible for mediation of the redox chemistry at reduced TiO2(110) surface.

  13. Research on the tunability of point defect modes in a two-dimensional magneto-elastic phononic crystal

    NASA Astrophysics Data System (ADS)

    Gu, Chunlong; Jin, Feng

    2016-05-01

    Point defect modes in a 2D phononic crystal with giant magnetostrictive material tuned by a magnetic field and compressive stress are investigated theoretically in this study. The 3D magnetostrictive constitutive model proposed by Liu and Zheng (2005 Acta Mech. Sin. 21 278-85) is adopted to develop effective elastic, piezomagnetic, and magnetic permeability constants. The finite element method, in combination with a supercell technique, is then applied to obtain the band structures and transmission spectra of the point defect modes in a 2D phononic crystal composed of Terfenol-D rods of circular cross section embedded in a polymethyl methacrylate matrix with a square lattice. The magnetic field not only enlarges the first band gap (FBG) but also opens up a new band gap of XY modes. New point defect modes are simultaneously trapped in the band gaps. The width of the FBG and the frequencies of the point defects of the Z mode decrease as the magnetic field increases.

  14. Long term simulation of point defect cluster size distributions from atomic displacement cascades in Fe70Cr20Ni10

    NASA Astrophysics Data System (ADS)

    Souidi, A.; Hou, M.; Becquart, C. S.; Domain, C.; De Backer, A.

    2015-06-01

    We have used an Object Kinetic Monte Carlo (OKMC) model to simulate the long term evolution of the primary damage in Fe70Cr20Ni10 alloys. The mean number of Frenkel pairs created by different Primary Knocked on Atoms (PKA) was estimated by Molecular Dynamics using a ternary EAM potential developed in the framework of the PERFORM-60 European project. This number was then used to obtain the vacancy-interstitial recombination distance required in the calculation of displacement cascades in the Binary Collision Approximation (BCA) with code MARLOWE (Robinson, 1989). The BCA cascades have been generated in the 10-100 keV range with the MARLOWE code and two different screened Coulomb potentials, namely, the Molière approximation to the Thomas-Fermi potential and the so-called "Universal" potential by Ziegler, Biersack and Littmark (ZBL). These cascades have been used as input to the OKMC code LAKIMOCA (Domain et al., 2004), with a set of parameters for describing the mobility of point defect clusters based on ab initio calculations and experimental data. The cluster size distributions have been estimated for irradiation doses of 0.1 and 1 dpa, and a dose rate of 10-7 dpa/s at 600 K. We demonstrate that, like in the case of BCC iron, cluster size distributions in the long term are independent of the cascade energy and that the recursive cascade model suggested for BCC iron in Souidi et al. (2011) also applies to FCC Fe70Cr20Ni10. The results also show that the influence of the BCA potential is sizeable but the qualitative correspondence in the predicted long term evolution is excellent.

  15. Complex behaviour of vacancy point-defects in SrRuO3 thin films.

    PubMed

    Schraknepper, Henning; Bäumer, Christoph; Dittmann, Regina; De Souza, Roger A

    2015-01-14

    The behaviour of point defects in thin, epitaxial films of the oxide electrode SrRuO3 was probed by means of diffusion measurements. Thin-film SrRuO3 was deposited by means of pulsed laser deposition (PLD) on (100) oriented, undoped single crystal SrTiO3 substrates. (16)O/(18)O exchange anneals were employed to probe the behavior of oxygen vacancies. Anneals were performed in the temperature range 850 ≤T/K≤ 1100 at an oxygen partial pressure of pO2 = 500 mbar. Samples were subsequently analyzed by means of Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). The measured oxygen isotope penetration profiles comprised, surprisingly, two features. Oxygen tracer diffusion coefficients determined for thin-film SrRuO3 are amongst the lowest measured for nominally undoped perovskite-type oxides. The activation enthalpy of oxygen tracer diffusion was found to be ≈ 2 eV. Diffusion of Ti from the SrTiO3 substrates into the SrRuO3 thin films, probing the cation defects, was also observed in ToF-SIMS profiles; here, too, the diffusion profiles showed two features. The activation enthalpy of titanium diffusion was found to be ΔHDTi≈ 4 eV. We propose a model-cation sublattice equilibration-that accounts for the appearance of two features in both anion and cation diffusion profiles. We suggest that the observed complex behavior arises from the metastable defect structure of PLD thin films and the unusual defect structure of SrRuO3. PMID:25413988

  16. Transition metal solute interactions with point defects in fcc iron from first principles

    NASA Astrophysics Data System (ADS)

    Hepburn, D. J.; MacLeod, E.; Ackland, G. J.

    2015-07-01

    We present a comprehensive set of first-principles electronic structure calculations of the properties of substitutional transition metal solutes and point defects in austenite (face-centered cubic, paramagnetic Fe). Clear trends were observed in these quantities across the transition metal series, with solute-defect interactions strongly related to atomic size, and only weakly related to more subtle details of magnetic or electronic structure. Oversized solutes act as strong traps for both vacancy and self-interstitial defects and as nucleation sites for the development of protovoids and small self-interstitial loops. The consequent reduction in defect mobility and net defect concentrations in the matrix explains the observation of reduced swelling and radiation-induced segregation. Our analysis of vacancy-mediated solute diffusion demonstrates that below about 400 K Ni and Co will be dragged by vacancies and their concentrations should be enhanced at defect sinks. Cr and Cu show opposite behavior and are depleted at defect sinks. The stable configuration of some oversized solutes is neither interstitial nor substitutional; rather they occupy two adjacent lattice sites. The diffusion of these solutes proceeds by a novel mechanism, which has important implications for the nucleation and growth of complex oxide nanoparticles contained in oxide dispersion strengthened steels. Interstitial-mediated solute diffusion is negligible for all except the magnetic solutes (Cr, Mn, Co, and Ni). Our results are consistent across several antiferromagnetic states and surprising qualitative similarities with ferromagnetic (body-centered cubic) Fe were observed; this implies that our conclusions will be valid for paramagnetic iron.

  17. Physicochemical characterization of point defects in fluorine doped tin oxide films

    SciTech Connect

    El Akkad, Fikry; Joseph, Sudeep

    2012-07-15

    The physical and chemical properties of spray deposited FTO films are studied using FESEM, x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), electrical and optical measurements. The results of XRD measurements showed that the films are polycrystalline (grain size 20-50 nm) with Rutile structure and mixed preferred orientation along the (200) and (110) planes. An angular shift of the XRD peaks after F-doping is observed and interpreted as being due to the formation of substitutional fluorine defects (F{sub O}) in presence of high concentration of oxygen vacancies (V{sub O}) that are electrically neutral. The electrical neutrality of oxygen vacancies is supported by the observation that the electron concentration n is two orders of magnitude lower than the V{sub O} concentration calculated from chemical analyses using XPS measurements. It is shown that an agreement between XPS, XRD, and Hall effect results is possible provided that the degree of deviation from stoichiometry is calculated with the assumption that the major part of the bulk carbon content is involved in O-C bonds. High temperature thermal annealing is found to cause an increase in the F{sub O} concentration and a decrease in both n and V{sub O} concentrations with the increase of the annealing temperature. These results could be interpreted in terms of a high temperature chemical exchange reaction between the SnO{sub 2} matrix and a precipitated fluoride phase. In this reaction, fluorine is released to the matrix and Sn is trapped by the fluoride phase, thus creating substitutional fluorine F{sub O} and tin vacancy V{sub Sn} defects. The enthalpy of this reaction is determined to be approximately 2.4 eV while the energy of formation of a V{sub Sn} through the migration of Sn{sub Sn} host atom to the fluoride phase is approximately 0.45 eV.

  18. Dynamics and Structure of Point Defects in Forsterite: ab initio calculations

    NASA Astrophysics Data System (ADS)

    Churakov, S.; Khisina, N.; Urusov, V.; Wirth, R.

    2001-12-01

    -polyhedron vacancies have lower energies then any other associated with M2 and interstitial polyhedrons. For protons associated with vacancies several configurations with small energy difference have been found. These configurations suggest a possible binding of the protons to O1, O2 and O3 sites including the formation of water-like HOH complexes. The MD simulations shows that protons can move easily within the vacant polyhedron to form covalent OH bonds at various oxygen sites. The protons initially located in interstitial positions of fosterite lattice were found to migrate in vacant polyhedra. References [1] Khisina, N.R. & Wirth, R. (2001): Hydrous olivine (Mg,Fe)2-xvxSiO4H2x - a new DHMS phase of variable composition observed as nanometer-size precipitation in mantle olivine. PCM, submitted [2] Hutter J. et al.: CPMD v. 4.0, MPI fuer Festkoerperforschung and IBM Zuerich Research Laboratory 1995-2000 [3] Goedecker S., Teter M. and Hutter J. (1996) Separable dual-space Gaussian pseudopotentials. Phys.Rev. B, 54(3) 1703-1710 [4] Monkhorst H.J. and Pack D. 1975 Special points for Brellouin-zone intagration. Phys. Rev B,13,5188-5192

  19. Modeling H, Na, and K diffusion in plagioclase feldspar by relating point defect parameters to bulk properties

    NASA Astrophysics Data System (ADS)

    Zhang, Baohua; Shan, Shuangming; Wu, Xiaoping

    2016-02-01

    Hydrogen and alkali ion diffusion in plagioclase feldspars is important to study the evolution of the crust and the kinetics of exsolution and ion-exchange reactions in feldspars. Using the available PVT equation of state of feldspars, we show that the diffusivities of H and alkali in plagioclase feldspars as a function of temperature can be successfully reproduced in terms of the bulk elastic and expansivity data through a thermodynamic model that interconnects point defect parameters with bulk properties. Our calculated diffusion coefficients of H, Na, and K well agree with experimental ones when uncertainties are considered. Additional point defect parameters such as activation enthalpy, activation entropy, and activation volume are also predicted. Furthermore, the electrical conductivity of feldspars inferred from our predicted diffusivities of H, Na, and K through the Nernst-Einstein equation is compared with previous experimental data.

  20. Interplay of point defects, biaxial strain, and thermal conductivity in homoepitaxial SrTiO{sub 3} thin films

    SciTech Connect

    Wiedigen, S.; Kramer, T.; Knorr, I.; Nee, N.; Hoffmann, J.; Volkert, C. A.; Jooss, Ch.; Feuchter, M.; Kamlah, M.

    2012-02-06

    Separating out effects of point defects and lattice strain on thermal conductivity is essential for improvement of thermoelectric properties of SrTiO{sub 3}. We study relations between defects generated during deposition, induced lattice strain, and their impact on thermal conductivity {kappa} in homoepitaxial SrTiO{sub 3} films prepared by ion-beam sputtering. Lowering the deposition temperature gives rise to lattice expansion by enhancement of point defect density which increases the hardness of the films. Due to a fully coherent substrate-film interface, the lattice misfit induces a large biaxial strain. However, we can show that the temperature dependence of {kappa} is mainly sensitive on the defect concentration.

  1. Ultrathin Alumina Film Al-Sublattice Structure, Metal Island Nucleation at Terrace Point Defects, and How Hydroxylation Affects Wetting

    SciTech Connect

    Bogicevic, A.; Jennison, D.R.

    1999-08-09

    In this paper, we include for discussion three topics of current interest in metal oxide surface science. Using first principles density functional theory (DFT) [1] calculations, we have investigated: (1) the atomic-scale structure of experimentally-relevant ultrathin alumina films, (2) the role of common point defects in metal island nucleation on oxide terraces, and (3) the growth and morphology of metals on oxide surfaces which have high concentrations of a common impurity.

  2. Ab initio simulations of the structure, energetics and mobility of radiation-induced point defects in bcc Nb

    NASA Astrophysics Data System (ADS)

    Cerdeira, M. A.; Palacios, S. L.; González, C.; Fernández-Pello, D.; Iglesias, R.

    2016-09-01

    The formation, binding and migration energetics of helium clusters inside a niobium crystal have been analysed via ab initio simulations. The effect of placing several He atoms within an n-vacancy previously formed or as interstitials inside the initial perfect bulk matrix has been studied. DFT-based results show that He atoms prefer to aggregate forming small clusters at n-vacancy sites rather than at interstitial positions in the perfect crystal. The minimum formation energy is found when NHe is equal to the number of vacancies, n. It follows that vacancies act as almost perfect traps for He atoms, as is well known for other metals. The migration barriers of He atoms inside vacancies increase considerably when compared to what happens for vacancies alone. A secondary consequence is that the full set of energies obtained will be highly relevant as an input for new approaches to KMC simulations of defects in Nb.

  3. First-principles point defect models in Zr7Ni10 and Zr2Ni7 binary intermetallic compounds and their implications in nickel-metal hydride batteries

    NASA Astrophysics Data System (ADS)

    Wong, Diana F.

    Zr-Ni-based alloys as nickel-metal hydride battery anode materials offer low-cost, flexible and tunable battery performance. Zr7Ni 10 is an important secondary phase found in multi-phased AB2 Laves-phase-based metal hydride alloys, and the synergetic effect between the Zr-Ni and the Laves phases allows access to the high hydrogen storage of the Zr-Ni phases despite the lower absorption/desorption kinetics. Zr7Ni10 displays a small solubility window for Zr-rich compositions, while Zr2Ni7, with no solubility window, shows poor capacity with good kinetics. Stability of point defects within the crystal structure allows Zr7Ni10 to maintain the same structure at off-stoichiometric compositions, thus it is theorized that defects may play a role in the difference between the electrochemical behaviors in Zr7Ni10 and Zr2Ni7. Defect models in Zr7Ni10 and Zr2Ni7 compounds computed using a combination of density functional theory and statistical mechanics offer a starting point for understanding the possible roles that point defects have on the performance of Zr-Ni based active negative electrode materials in Ni/MH batteries. Theoretical vacancy and anti-site defect formation energies are calculated and reported for Zr-rich, Ni-rich, and stoichiometric compounds of Zr7Ni 10 and Zr2Ni7, and the implications of the defect models on nickel-metal hydride negative electrode active material design and performance are discussed.

  4. A thermodynamic analysis of native point defect and dopant solubilities in zinc-blende III-V semiconductors

    SciTech Connect

    Hurle, D. T. J.

    2010-06-15

    A thermodynamic model is used to analyze available experimental data relevant to point defects in the binary zinc-blende III-V compounds (Ga,In)-(P,As,Sb). The important point defects and their complexes in each of the materials are identified and included in the model. Essentially all of the available experimental data on dopant solubility, crystal density, and lattice parameter of melt and solution grown crystals and epilayers are reproduced by the model. It extends an earlier study [Hurle, J. Appl. Phys. 85, 6957 (1999)] devoted solely to GaAs. Values for the enthalpy and entropy of formation of both native and dopant related point defects are obtained by fitting to experimental data. In undoped material, vacancies, and interstitials on the Group V sublattice dominate in the vicinity of the melting point (MP) in both the phosphides and arsenides, whereas, in the antimonides, vacancies on both sublattices dominate. The calculated concentrations of the native point defects are used to construct the solidus curves of all the compounds. The charged native point defect concentrations at the MP in four of the six materials are significantly higher than their intrinsic carrier concentrations. Thus the usually assumed high temperature 'intrinsic' electroneutrality condition for undoped material (n=p) is not valid for these materials. In GaSb, the Ga{sub Sb} antisite defect appears to be grown-in from the melt. This contrasts with the As{sub Ga} defect in GaAs for which the concentration grown-in at the MP is negligibly small. Compensation of donor-doped material by donor-Group III vacancy complexes is shown to exist in all the compounds except InP where Group VI doped crystals are uncompensated and in InSb where there is a lack of experimental data. The annealing effects in n{sup +} GaAs, including lattice superdilation, which were shown in the earlier paper to be due to Group III vacancy undersaturation during cooling, are found to be present also in GaSb and In

  5. Point defects in (Mg,Fe)O at high pressures: where does hydrogen dominate over ferric iron?

    NASA Astrophysics Data System (ADS)

    Otsuka, K.; Karato, S.

    2007-12-01

    The point defects play an important role in transport processes of minerals including diffusion, electrical conduction and plastic deformation. Point defects caused by ferric iron and/or hydrogen (proton) are dominant defects in most of the iron-bearing minerals including olivine and (Mg,Fe)O. In many upper-mantle minerals such as olivine, the concentration of ferric iron is much smaller than that of hydrogen, and therefore the small amount of hydrogen changes their transport properties dramatically. However, the situation is very different for lower- mantle minerals such as (Mg,Fe)O. In this presentation, we will review the available experimental data on point defects in (Mg,Fe)O and discuss the relative importance of ferric iron and hydrogen at high pressures based on atomic models. The existing low-pressure data indicate that the maximum solubility of ferric iron in (Mg,Fe)O is on the order of 0.1 (atomic fraction in the total iron), which is much higher than that of hydrogen. However, experimental studies by Bolfan-Casanova et al (2002, 2006) indicate that the solubility of ferric iron decreases while that of hydrogen increases with pressure. This suggests that the dominant impurity to generate point defects in (Mg,Fe)O may change from ferric iron to hydrogen at high pressure. Therefore it is important to quantify the pressure dependence of the solubility of ferric iron and hydrogen. We have explored two models of ferric iron- related defects and found that the existing experimental data suggest that ferric iron may occur at two lattice sites: the tetrahedral site as interstitial atoms as well as the octahedral site. The pressure dependence of the solubility of hydrogen in (Mg,Fe)O are also estimated based on the experimental data and defect models. The cross-over of defect solubility likely occurs in the lower mantle, but the exact depth is poorly constrained because of large uncertainties in the hydrogen solubility and the mechanisms of hydrogen dissolution

  6. Influence of growth temperature on AlGaN multiquantum well point defect incorporation and photoluminescence efficiency

    NASA Astrophysics Data System (ADS)

    Armstrong, A.; Allerman, A. A.; Henry, T. A.; Crawford, M. H.

    2011-04-01

    The dependence of (Al)GaN/AlGaN multiquantum well (MQWs) optical efficiency and defect incorporation on the growth temperature (Tg) of the optically active region was investigated. Marked increase in MQW photoluminescence (PL) intensity was observed for increasing Tg. Correspondingly, increasing Tg also significantly reduced point defect incorporation under QW growth conditions, as determined by deep level optical spectroscopy. It is suggested that enhanced MQW PL with increasing Tg resulted from improved nonradiative lifetime through reduced nonradiative defect density in the MQW region.

  7. Equilibrium point defects in intermetallics with the [ital B]2 structure: NiAl and FeAl

    SciTech Connect

    Fu, C.L.; Ye, Y.; Yoo, M.H. ); Ho, K.M. )

    1993-09-01

    Equilibrium point defects and their relation to the contrasting mechanical behavior of NiAl and FeAl are investigated. For NiAl, the defect structure is dominated by two types of defects---monovacancies on the Ni sites and substitutional antisite defects on the Al sites. The defect structure of FeAl differs from that of NiAl in the occurrence of antisite defects at the transition-metal sites for Al-rich alloys and the tendency for vacancy clustering. The strong ordering (and brittleness) of NiAl is attributed mainly to the difference in atomic size between constituent atoms.

  8. Preorganized Chromophores Facilitate Triplet Energy Migration, Annihilation and Upconverted Singlet Energy Collection.

    PubMed

    Mahato, Prasenjit; Yanai, Nobuhiro; Sindoro, Melinda; Granick, Steve; Kimizuka, Nobuo

    2016-05-25

    Photon upconversion (UC) based on triplet-triplet annihilation (TTA) has the potential to enhance significantly photovoltaic and photocatalytic efficiencies by harnessing sub-bandgap photons, but the progress of this field is held back by the chemistry problem of how to preorganize multiple chromophores for efficient UC under weak solar irradiance. Recently, the first maximization of UC quantum yield at solar irradiance was achieved using fast triplet energy migration (TEM) in metal-organic frameworks (MOFs) with ordered acceptor arrays, but at the same time, a trade-off between fast TEM and high fluorescence efficiency was also found. Here, we provide a solution for this trade-off issue by developing a new strategy, triplet energy migration, annihilation and upconverted singlet energy collection (TEM-UPCON). The porous structure of acceptor-based MOF crystals allows triplet donor molecules to be accommodated without aggregation. The surface of donor-doped MOF nanocrystals is modified with highly fluorescent energy collectors through coordination bond formation. Thanks to the higher fluorescence quantum yield of surface-bound collectors than parent MOFs, the implementation of the energy collector greatly improves the total UC quantum yield. The UC quantum yield maximization behavior at ultralow excitation intensity was retained because the TTA events take place only in the MOF acceptors. The TEM-UPCON concept may be generalized to collectors with various functions and would lead to quantitative harvesting of upconverted energy, which is difficult to achieve in common molecular diffusion-based systems. PMID:27163784

  9. First-principles study of self-interstitial point defects in BCC metals

    NASA Astrophysics Data System (ADS)

    Seungwu, Han; Luis, Zepeda-Ruiza; Roberto, Car; David, Srolovitz; Graeme, Ackland

    2002-03-01

    We report a study of the energetics of self-interstitial defects in V and Mo based on plane-wave supercell density functional calculations. We use a 128 atom cubic supercell and 2x2x2 k-point grid for BZ sampling, which we found to be sufficient to obtain accurate results on the basis of a careful convergence study. In our calculations, all the atoms of the supercell are allowed to fully relax in presence of the self-interstitial defect. We find that, both in V and in Mo, the most stable orientation of the self-interstitial is [111]. This is different from predictions based on commonly available empirical potentials. We also find that the [111] self-interstitial can easily migrate along the [111] direction passing through an intermediate crowdion configuration. This [111] pathway is essentially barrierless within density functional theory, consistent with experimental data. Finally, we construct a Finnis-Sinclair type potential that reproduces well the first-principles results. This potential will be useful to model self-interstitial diffusion processes, which play a key role in radiation damage cascade evolution.

  10. Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide

    NASA Astrophysics Data System (ADS)

    Ivády, Viktor; Szász, Krisztián; Falk, Abram L.; Klimov, Paul V.; Christle, David J.; Janzén, Erik; Abrikosov, Igor A.; Awschalom, David D.; Gali, Adam

    2015-09-01

    Dynamic nuclear spin polarization (DNP) mediated by paramagnetic point defects in semiconductors is a key resource for both initializing nuclear quantum memories and producing nuclear hyperpolarization. DNP is therefore an important process in the field of quantum-information processing, sensitivity-enhanced nuclear magnetic resonance, and nuclear-spin-based spintronics. DNP based on optical pumping of point defects has been demonstrated by using the electron spin of nitrogen-vacancy (NV) center in diamond, and more recently, by using divacancy and related defect spins in hexagonal silicon carbide (SiC). Here, we describe a general model for these optical DNP processes that allows the effects of many microscopic processes to be integrated. Applying this theory, we gain a deeper insight into dynamic nuclear spin polarization and the physics of diamond and SiC defects. Our results are in good agreement with experimental observations and provide a detailed and unified understanding. In particular, our findings show that the defect electron spin coherence times and excited state lifetimes are crucial factors in the entire DNP process.

  11. Native point defects and doping in ZnGeN2

    NASA Astrophysics Data System (ADS)

    Skachkov, Dmitry; Lambrecht, Walter

    A computational study within the framework of density functional theory is presented for native defects and doping in ZnGeN2. We study the three types of vacancies VZn, VGe, VN, cation antisite defects ZnGe, GeZn, and potential n-type (ON, GaZn) and p-type GaGe dopants. The cation antisite defects are found to have significantly lower formation energy than the cation vacancies. The charge neutrality condition pins the Fermi level close to the the crossing of the ZnGe- 1 acceptor with the GeZn2 + donor, and intrinsic p-type doping would result. The VN is found to be a rather deep donor. GeZn is found to behave as a shallow donor. Oxygen impurities are found to strongly prefer the ON subsitutional site and are found to be shallow donors with a very low energy of formation. Energies of formation of GaZn and GaGe are lower than those of the cation antisites. Thus good solubility is expected and these impurities can hence pin the Fermi level at the crossing of the donor GaZn+ 1 with the acceptor GaGe- 1 , and efficient p-type doping should result. Dmitry Skachkov was supported by the U.S. Department of Energy Basic Energy Sciences (DOE-BES) under Grant No. ER-46874-SC0008933.

  12. Point defects, impurities, and small hole polarons in GdTiO3

    NASA Astrophysics Data System (ADS)

    Bjaalie, L.; Janotti, A.; Krishnaswamy, K.; Van de Walle, C. G.

    2016-03-01

    The electronic structure of native defects and impurities in GdTiO3, a rare-earth titanate Mott insulator, is studied using density functional theory with a hybrid functional. Among native defects, the cation vacancies have the lowest formation energies in oxygen-rich conditions and oxygen vacancies have the lowest formation energy in oxygen-poor conditions. Among the impurities, SrGd,Hi, and CO have low formation energies. A common feature of the native defects and impurities is that they lead to the formation of small hole polarons, which explains the frequent observation of p -type hopping conductivity in the rare-earth titanates. These small hole polarons also lead to optical absorption and act as electron traps in devices.

  13. Computer Simulation of Point Defects in CoO and NiO

    NASA Astrophysics Data System (ADS)

    Prasad, S. D. V.; Rao, B. Srinivasa; Babu, S. Jagadeesh; Radhika, N.; Sanyal, S. P.

    2011-07-01

    We present a computer simulation study of effects of three-body interactions (TBI) on Schottky defect properties of some transition metal oxides (TMO). The calculations have been done in the framework of polarizable point ion (PPI) model and using the three-body interaction potential (TBP). The computed cohesive and schottky formation energy are in good agreement with the experimental data.

  14. Atomistic simulation study of the effects of point defects on the inception of plastic deformation in metals

    NASA Astrophysics Data System (ADS)

    Salehinia, Iman

    Atomistic simulations have been used to study the effect of various types of point defects on the mechanical response of FCC single crystals in nanoindentation and uniaxial tests. To study the effect of spatial distribution of defects in nanoindentation testing, various point defects were located in different relative positions to the indenter. When the defect position was close to the regions of high shear stresses the nucleation of dislocations was related to the location of the defect; however homogeneous nucleation of dislocations was also observed for defect-containing crystals. The effect of the point defects was independent of the indenter size, and the applied pressure needed to initiate plasticity, when compared to defect-free crystals, was a reduction of approximately 10%, 20%, 20% and 50% for a single vacancy, di-vacancy, self-interstitial atom and stacking fault tetrahedron (SFT), respectively. The stochastic nature of the pop-in loads was further explored for different orientations using molecular dynamics and complementary nanoindentation experiments on (100), (101) and (111) single crystals of copper and Ni200. The sensitivity of the crystal to the presence of internal structural defects depends strongly on its crystallographic orientation. The simulations suggest that the first event observed experimentally may not correspond to the first plastic deformation event. Anisotropy effects were also studied for various orientations in uniaxial tests in the presence of a centered SFT. Both the normal stresses to the slip plane and the relative values of Schmid factor in compression and tension affect the observed compression/tension yield asymmetry. The reduction in yield stress was found to be larger in compression than in tension for almost all orientations. The simulations suggest that compression is a more reliable experimental tool for studying the effect of structural defects on the mechanical behavior of the FCC crystals, while tension may be more

  15. Computer simulation of point defects in MnO and FeO

    NASA Astrophysics Data System (ADS)

    Rao, B. Srinivasa; Rani, M. Rekha; Prasad, S. D. V.

    2013-06-01

    In this research work, we present a computer simulation study of effects of three-body interactions (TBI) on Schottky defect properties of some transition metal oxides (TMO). The calculations have been done in the framework of polarizable point ion (PPI) model and using the three-body interaction potential (TBP). The computed cohesive and schottky formation energy are in good agreement with the experimental data and emphasize the significance of TBI.

  16. First-principles study of He point-defects in HCP rare-earth metals

    SciTech Connect

    Li, Yang; Chen, Ru; Peng, SM; Long, XG; Wu, Z.; Gao, Fei; Zu, Xiaotao

    2011-05-01

    He defect properties in Sc, Y, Gd, Tb, Dy, Ho, Er and Lu were studied using first-principles calculations based on density functional theory. The results indicate that the formation energy of an interstitial He atom is smaller than that of a substitutional He atom in all hcp rare-earth metals considered. Furthermore, the tetrahedral interstitial position is more favorable than an octahedral position for He defects. The results are compared with those from bcc and fcc metals.

  17. Point defects, impurities, and small hole polarons in GdTiO3

    NASA Astrophysics Data System (ADS)

    Bjaalie, Lars; Janotti, Anderson; Krishnaswamy, Karthik; van de Walle, Chris G.

    GdTiO3(GTO) has become the focus of great interest because of its use in complex-oxide heterostructures that display two-dimensional electron gases with unprecedented high densities. GTO is a Mott insulator, with a band gap arising within the partially filled Ti 3 d band due to strong electron-electron interactions. GTO often displays hole conductivity, likely attributed to defects or impurities, yet the cause of this unintentional conductivity has not yet been explored. We therefore used density functional theory with a hybrid functional to study their electronic structure. Among native defects, the cation vacancies have the lowest formation energies in oxygen-rich conditions, and oxygen vacancies have the lowest formation energy in oxygen-poor conditions. Among the impurities, rGd, Hi and CO have the lowest formation energies. The defects and impurities are intrinsically stable only in a single ``natural'' charge state, to which various numbers of hole polarons can be bound, which explains the frequent observation of p-type hopping conductivity in the rare-earth titanates. These small hole polarons also lead to optical absorption and act as electron traps in devices. Work supported by NSF and by the LEAST Center.

  18. Characterization of point defects in CdTe by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Elsharkawy, M. R. M.; Kanda, G. S.; Abdel-Hady, E. E.; Keeble, D. J.

    2016-06-01

    Positron lifetime measurements on CdTe 0.15% Zn-doped by weight are presented, trapping to monovacancy defects is observed. At low temperatures, localization at shallow binding energy positron traps dominates. To aid defect identification density functional theory, calculated positron lifetimes and momentum distributions are obtained using relaxed geometry configurations of the monovacancy defects and the Te antisite. These calculations provide evidence that combined positron lifetime and coincidence Doppler spectroscopy measurements have the capability to identify neutral or negative charge states of the monovacancies, the Te antisite, A-centers, and divacancy defects in CdTe.

  19. Native point defects and doping in ZnGeN2

    NASA Astrophysics Data System (ADS)

    Skachkov, Dmitry; Punya Jaroenjittichai, Atchara; Huang, Ling-yi; Lambrecht, Walter R. L.

    2016-04-01

    A computational study within the framework of density functional theory in the local density approximation (LDA) is presented for native defects and doping in ZnGeN2. Gap corrections are taken into account using an LDA+U approach and finite size corrections for charged defects are evaluated in terms of an effective charge model, introduced in this paper. The donor or acceptor characteristics of each of the cation and N vacancies and the two cation antisite defects are determined as well as their energies of formation under different chemical potential conditions. These are then used to determine defect concentrations and Fermi level pinning self-consistently. The cation antisite defects are found to have significantly lower formation energy than the cation vacancies. At a typical growth temperature of 1200 K, the charge neutrality condition pins the Fermi level close to the crossing of the formation energies of the ZnGe-1 acceptor with the GeZn2 + shallow donor. Since this point lies closer to the valence-band maximum (VBM), intrinsic p -type doping would result at the growth temperature and will persist at room temperature if the defect concentrations are frozen in. It is the highest and of order 1016cm-3 for the most Ge-poor condition. On the other hand, for the most Ge-poor condition, it drops to 1013cm-3 at 1200 K and to almost zero at 300 K because then the Fermi level is too close to the middle of the gap. Oxygen impurities are found to strongly prefer the ON substitutional site and are found to be shallow donors with a very low energy of formation. It can only be suppressed by strongly reducing the oxygen partial pressure relative to that of nitrogen. At high temperatures, however, introduction of oxygen will be accompanied by compensating ZnGe-2 acceptors and would lead to negligible net doping. The prospects for Ga base p -type doping are evaluated. While good solubility is expected, site competition between Zn and Ge sites is found to lead to a

  20. Kinetically evolving irradiation-induced point defect clusters in UO{sub 2} by molecular dynamics simulation

    SciTech Connect

    Aidhy, Dilpuneet S.; Millett, Paul C.; Desai, Tapan; Wolf, Dieter; Phillpot, Simon R.

    2009-09-01

    The evolution of irradiation-induced point defects in UO{sub 2} is captured in molecular dynamics simulations. The approach used circumvents their creation during the ballistic phase of a traditional collision-cascade molecular dynamics simulation but rather focuses on their kinetic evolution. The simulations reveal that in the absence of defects on the cation sublattice, the defects initially present on the anion sublattice recombine and annihilate completely during equilibration. However, in the simultaneous presence of defects on both sublattices, Schottky defects are formed, thereby sequestering the oxygen vacancies. The resulting excess oxygen interstitials form cuboctahedral clusters, whose existence has previously been identified experimentally but whose generation mechanism has not been determined. It is concluded that the cation sublattice is primarily responsible for the radiation tolerance or intolerance of the material.

  1. Quasi-reversible point defect relaxation in amorphous In-Ga-Zn-O thin films by in situ electrical measurements

    NASA Astrophysics Data System (ADS)

    Adler, Alexander U.; Yeh, Ted C.; Bruce Buchholz, D.; Chang, Robert P. H.; Mason, Thomas O.

    2013-03-01

    Quasi-reversible oxygen exchange/point defect relaxation in an amorphous In-Ga-Zn-O thin film was monitored by in situ electrical property measurements (conductivity, Seebeck coefficient) at 200 °C subjected to abrupt changes in oxygen partial pressure (pO2). By subtracting the long-term background decay from the conductivity curves, time-independent conductivity values were obtained at each pO2. From these values, a log-log "Brouwer" plot of conductivity vs. pO2 of approximately -1/2 was obtained, which may indicate co-elimination (filling) of neutral and charged oxygen vacancies. This work demonstrates that Brouwer analysis can be applied to the study of defect structure in amorphous oxide thin films.

  2. Point Defect Distributions in ZnSe Crystals: Effects of Gravity Vector Orientation During Physical Vapor Transport Growth

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, S.; Hirschfeld, D.; Smith, T. M.; Wang, Ling Jun; Volz, M. P.; Lehoczky, S. L.

    1999-01-01

    ZnSe crystals were grown by the physical vapor transport technique under horizontal and vertical (stabilized and destabilized) configurations. Secondary ion mass spectroscopy and photoluminescence measurements were performed on the grown ZnSe samples to map the distributions of [Si], [Fe], [Cu], [Al] and [Li or Na] impurities as well as Zn vacancy, [V (sub Zn)]. Annealings of ZnSe under controlled Zn pressures were studied to correlate the measured photoluminescence emission intensity to the equilibrium Zn partial pressure. In the horizontal grown crystals the segregations of [Si], [Fe], [Al] and [V (sub Zn)] were observed along the gravity vector direction whereas in the vertically stabilized grown crystal the segregation of these point defects was radially symmetrical. No apparent pattern was observed on the measured distributions in the vertically destabilized grown crystal. The observed segregations in the three growth configurations were interpreted based on the possible buoyancy-driven convection in the vapor phase.

  3. Fourth workshop on the role of point defects/defect complexes in silicon device processing. Summary report

    SciTech Connect

    Tan, T.; Jastrzebski, L.; Sopori, B.

    1994-07-01

    The 4th Point Defect Workshop was aimed at reviewing recent new understanding of the defect engineering techniques that can improve the performance of solar cells fabricated on low-cost silicon substrates. The theme of the workshop was to identify approaches that can lead to 18% commercial silicon solar cells in the near future. These approaches also define the research tasks for the forthcoming new DOE/NREL silicon materials research program. It was a consensus of the workshop attendees that the goal of 18%-efficient multicrystalline silicon solar cells is right on target, and the payoff for the investment by DOE will manifest itself in the next few years as reduced costs for high-efficiency cell fabrication.

  4. Three-dimensional interaction force and tunneling current spectroscopy of point defects on rutile TiO2(110)

    NASA Astrophysics Data System (ADS)

    Baykara, Mehmet Z.; Mönig, Harry; Schwendemann, Todd C.; Ünverdi, Ã.-zhan; Altman, Eric I.; Schwarz, Udo D.

    2016-02-01

    The extent to which point defects affect the local chemical reactivity and electronic properties of an oxide surface was evaluated with picometer resolution in all three spatial dimensions using simultaneous atomic force/scanning tunneling microscopy measurements performed on the (110) face of rutile TiO2. Oxygen atoms were imaged as protrusions in both data channels, corresponding to a rarely observed imaging mode for this prototypical metal oxide surface. Three-dimensional spectroscopy of interaction forces and tunneling currents was performed on individual surface and subsurface defects as a function of tip-sample distance. An interstitial defect assigned to a subsurface hydrogen atom is found to have a distinct effect on the local density of electronic states on the surface, but no detectable influence on the tip-sample interaction force. Meanwhile, spectroscopic data acquired on an oxygen vacancy highlight the role of the probe tip in chemical reactivity measurements.

  5. Two distinctive energy migration pathways of monolayer molecules on metal nanoparticle surfaces

    PubMed Central

    Li, Jiebo; Qian, Huifeng; Chen, Hailong; Zhao, Zhun; Yuan, Kaijun; Chen, Guangxu; Miranda, Andrea; Guo, Xunmin; Chen, Yajing; Zheng, Nanfeng; Wong, Michael S.; Zheng, Junrong

    2016-01-01

    Energy migrations at metal nanomaterial surfaces are fundamentally important to heterogeneous reactions. Here we report two distinctive energy migration pathways of monolayer adsorbate molecules on differently sized metal nanoparticle surfaces investigated with ultrafast vibrational spectroscopy. On a 5 nm platinum particle, within a few picoseconds the vibrational energy of a carbon monoxide adsorbate rapidly dissipates into the particle through electron/hole pair excitations, generating heat that quickly migrates on surface. In contrast, the lack of vibration-electron coupling on approximately 1 nm particles results in vibrational energy migration among adsorbates that occurs on a twenty times slower timescale. Further investigations reveal that the rapid carbon monoxide energy relaxation is also affected by the adsorption sites and the nature of the metal but to a lesser extent. These findings reflect the dependence of electron/vibration coupling on the metallic nature, size and surface site of nanoparticles and its significance in mediating energy relaxations and migrations on nanoparticle surfaces. PMID:26883665

  6. Ab initio study of intrinsic, H and He point defects in hcp-Er

    SciTech Connect

    Yang, Li; Peng, SM; Long, XG; Gao, Fei; Heinisch, Howard L.; Kurtz, Richard J.; Zu, Xiaotao T.

    2010-03-01

    Ab initio calculations based on density functional theory have been performed to determine the properties of self-interstitial atoms (SIAs), vacancies, and single H and He atoms in hcp-Er. The results show that the most stable configuration for an SIA is a basal octahedral (BO) configuration, while the octahedral (O), basal split (BS) and crowdion (C) interstitial configurations are less stable, followed by the split <0001> dumbbell and tetrahedral configurations. For both H and He defects, the formation energy of an interstitial atom is less than that of a substitutional atom in hcp-Er. Furthermore, the tetrahedral interstitial position is more stable than an octahedral position for both He and H interstitials. The hybridization of the He and H defects with Er atoms has been used to explain the relative stabilities of these defects in hcp-Er.

  7. Paramagnetic point defects in amorphous thin films of SiO{sub 2} and Si{sub 3}N{sub 4}: An update

    SciTech Connect

    Poindexter, E.H.; Warren, W.L.

    1994-06-01

    Recent research on point defects in thin films of SiO{sub 2} and Si{sub 3}SN{sub 4} on Si is presented and reviewed. In SiO{sub 2} it is now clear that no one type of E{prime} center is the sole source of radiation-induced positive charge; hydrogenous moieties or other types of E{prime} are proposed. Molecular orbital theory and easy passivation of E{prime} by H{sub 2} suggest that released H might depassivate P{sub b} sites. A charged E{prime}{sub {delta}} center has been seen in Cl-free SIMOX and thermal oxide film, and it is reassigned to an electron delocalized over four O{sub 3}{equivalent_to}Si units around a fifth Si. In Si{sub 3}N{sub 4} a new model for the amphoteric charging of Si{equivalent_to}N{sub 3} moieties is based on local shifts in defect energy with respect to the Fermi level, arising from nonuniform composition; it does not assume negative-U electron correlation. A new defect NN{sub 2}{sup 0} has been identified, with dangling orbital on a 2-coordinated N atom bonded to another N.

  8. Paramagnetic point defects in amorphous thin films of SiO{sub 2} and Si{sub 3}N{sub 4}: Updates and additions

    SciTech Connect

    Poindexter, E.H.; Warren, W.L.

    1995-07-01

    Recent research on point defects in thin films of silicon dioxide, silicon nitride, and silicon oxynitride on Si is presented and reviewed. In SiO{sub 2}, it now clear that no one type of E{prime} are proposed. Molecular orbital theory and easy passivation of E{prime} by H{sub 2} suggest that released H might depassivate interface P{sub b} sites. A charged E{prime}{sub {delta}} center has been seen in Cl-free SIMOX (separation by implantation of oxygen) and thermal oxide films, and it is reassigned to an electron delocalized over four O{sub 3}{triple_bond}Si units around a fifth Si. In Si{sub 3}N{sub 4}, a new model for the amphoteric charging of {sm_bullet}Si{triple_bond}N{sub 3} moieties is based on local shifts in defect energy with respect to the Fermi level, arising from nonuniform composition; it does not assume negative U electron correlation. A new defect NN{sub 2}{sup 0} has been identified, with dangling orbital on a two-coordinated N atom bonded to another N. Silicon oxynitride defects are briefly presented.

  9. Demonstrating Energy Migration in Coupled Oscillators: A Central Concept in the Theory of Unimolecular Reactions

    ERIC Educational Resources Information Center

    Marcotte, Ronald E.

    2005-01-01

    This physical chemistry lecture demonstration is designed to aid the understanding of intramolecular energy transfer processes as part of the presentation of the theory of unimolecular reaction rates. Coupled pendulums are used to show the rate of migration of energy between oscillators under resonant and nonresonant conditions with varying…

  10. Excitation energy migration in uniaxially oriented polymer films: A comparison between strongly and weakly organized systems

    NASA Astrophysics Data System (ADS)

    Bojarski, P.; Synak, A.; Kułak, L.; Baszanowska, E.; Kubicki, A.; Grajek, H.; Szabelski, M.

    2006-04-01

    The mechanism of multistep excitation energy migration in uniaxially oriented polymer films is discussed for strongly and weakly orientating dyes in poly(vinyl alcohol) matrix. The comparison between both types of systems is based on concentration depolarization of fluorescence, Monte-Carlo simulations and linear dichroism data. It is found that the alignment of transition dipole moments of fluorophores in the ordered matrix relative to the direction of polymer stretching exhibits strong effect on the concentration depolarization of fluorescence. In ordered matrices of flavomononucleotide and rhodamine 6G concentration depolarization of fluorescence remains quite strong, whereas for linear carbocyanines it is very weak despite effective energy migration.

  11. All-optical XOR and OR logic gates based on line and point defects in 2-D photonic crystal

    NASA Astrophysics Data System (ADS)

    Goudarzi, Kiyanoosh; Mir, Ali; Chaharmahali, Iman; Goudarzi, Dariush

    2016-04-01

    In this paper, we have proposed an all-optical logic gate structure based on line and point defects created in the two dimensional square lattice of silicon rods in air photonic crystals (PhCs). Line defects are embedded in the ГX and ГZ directions of the momentum space. The device has two input and two output ports. It has been shown analytically whether the initial phase difference between the two input beams is π/2, they interfere together constructively or destructively to realize the logical functions. The simulation results show that the device can acts as a XOR and an OR logic gate. It is applicable in the frequency range of 0-0.45 (a/λ), however we set it at (a/λ=) 0.419 for low dispersion condition, correspondingly the lambda is equal to 1.55 μm. The maximum delay time to response to the input signals is about 0.4 ps, hence the speed of the device is about 2.5 THz. Also 6.767 dB is the maximum contrast ratio of the device.

  12. Carbon, oxygen and their interaction with intrinsic point defects in solar silicon ribbon material. Annual report, September 1982-September 1983

    SciTech Connect

    Goesele, U.; Ast, D.G.

    1983-10-01

    This report first provides some background information on intrinsic point defects, and on carbon and oxygen in silicon in so far as it may be relevant for the efficiency of solar cells fabricated from EFG ribbon material. We discuss the co-precipitation of carbon and oxygen and especially of carbon and silicon self interstitials. A simple model for the electrical activity of carbon-self-interstitial agglomerates is presented. We assume that the self-interstitial content of these agglomerates determines their electrical activity and that both compressive stresses (high self-interstitial content) and tensile stresses (low self-interstitial content) give rise to electrical activity of the agglomerates. The self-interstitial content of these carbon-related agglomerates may be reduced by an appropriate high-temperature treatment and enhanced by a supersaturation of self-interstitials generated during formation of the p-n junction of solar cells. It is suggested that oxygen present in supersaturation in carbon-rich silicon may be induced to form SiO/sub 2/ precipitates by self-interstitials generated during phosphorus diffusion. It is proposed that the SiO/sub 2/-Si interface of the precipates gives rise to a continuum of donor states and that these interface states are responsible for at least part of the light-enhancement effects observed in oxygen containing EFG silicon after phosphorus diffusion.

  13. Carbon, oxygen and their interaction with intrinsic point defects in solar silicon ribbon material: A speculative approach

    NASA Technical Reports Server (NTRS)

    Goesele, U.; Ast, D. G.

    1983-01-01

    Some background information on intrinsic point defects is provided and on carbon and oxygen in silicon in so far as it may be relevant for the efficiency of solar cells fabricated from EFG ribbon material. The co-precipitation of carbon and oxygen and especially of carbon and silicon self interstitials are discussed. A simple model for the electrical activity of carbon-self-interstitial agglomerates is presented. The self-interstitial content of these agglomerates is assumed to determine their electrical activity and that both compressive stresses (high self-interstitial content) and tensile stresses (low self-interstitial content) give rise to electrical activity of the agglomerates. The self-interstitial content of these carbon-related agglomerates may be reduced by an appropriate high temperature treatment and enhanced by a supersaturation of self-interstitials generated during formation of the p-n junction of solar cells. Oxygen present in supersaturation in carbon-rich silicon may be induced to form SiO, precipitates by self-interstitials generated during phosphorus diffusion. It is proposed that the SiO2-Si interface of the precipates gives rise to a continuum of donor stables and that these interface states are responsible for at least part of the light inhancement effects observed in oxygen containing EFG silicon after phosphorus diffusion.

  14. Identification of point defects responsible for laser-induced ultraviolet absorption in LiB3O5 (LBO) crystals

    NASA Astrophysics Data System (ADS)

    Hong, W.; Garces, Nelson Y.; Chirila, M. M.; Halliburton, Larry E.

    2003-05-01

    Electron paramagnetic resonance (EPR) has been used to identify and characterize point defects in lithium triborate (LiB3O5) crystals grown for nonlinear optical applications. As-grown crystals contain oxygen vacancies and lithium vacancies (as well as trace amounts of transition-metal ions in a few samples). Exposing a crystal to ionizing radiation at 77 K produces "free" electrons and holes. These electrons are trapped at the pre-existing oxygen vacancies and give rise to an EPR signal with a large hyperfine from one 11B nucleus. The corresponding holes become self-trapped on oxygen ions as a result of the significant lattice relaxation of a nearest-neighbor fourfold-bonded boron ion. This gives rise to an EPR signal with a smaller 11B hyperfine pattern due to the oxygen"s threefold bonded boron neighbor. Warming the crystal to approximately 130 K destroys the self-trapped hole centers that were initially formed, and allows a second holelike signal to be observed (which in turn decays between 150 and 200 K). The structure of the second hole center is very similar to the self-trapped hole center and a neighboring lithium vacancy makes this latter center more thermally stable. The EPR spectra from Ni+ and Cu2+ ions are also reported.

  15. Line and Point Defects in MoSe2 Bilayer Studied by Scanning Tunneling Microscopy and Spectroscopy.

    PubMed

    Liu, Hongjun; Zheng, Hao; Yang, Fang; Jiao, Lu; Chen, Jinglei; Ho, Wingkin; Gao, Chunlei; Jia, Jinfeng; Xie, Maohai

    2015-06-23

    Bilayer (BL) MoSe2 films grown by molecular-beam epitaxy (MBE) are studied by scanning tunneling microscopy and spectroscopy (STM/S). Similar to monolayer (ML) films, networks of inversion domain boundary (DB) defects are observed both in the top and bottom layers of BL MoSe2, and often they are seen spatially correlated such that one is on top of the other. There are also isolated ones in the bottom layer without companion in the top-layer and are detected by STM/S through quantum tunneling of the defect states through the barrier of the MoSe2 ML. Comparing the DB states in BL MoSe2 with that of ML film reveals some common features as well as differences. Quantum confinement of the defect states is indicated. Point defects in BL MoSe2 are also observed by STM/S, where ionization of the donor defect by the tip-induced electric field is evidenced. These results are of great fundamental interests as well as practical relevance of devices made of MoSe2 ultrathin layers. PMID:26051223

  16. The interaction of point defects with line dislocations in HVEM (high voltage electron microscope) irradiated Fe-Ni-Cr alloys

    SciTech Connect

    King, S.L.; Jenkins, M.L. . Dept. of Materials); Kirk, M.A. ); English, C.A. . Materials Development Div.)

    1990-05-01

    This paper presents results of a study of the interaction of point defects produced by high voltage electron microscope (HVEM) irradiation with pre-existing dislocations in austenitic Fe-15% 25%Ni-17%Cr alloys, aimed at the determination of the mechanisms of climb of dissociated dislocations. Dislocations were initially characterized at sub-threshold voltages (here 200kV) using the weak-beam technique. These dislocations were then irradiated with 1MeV electrons in the Argonne HVEM before being returned to a lower voltage microscope for post-irradiation characterization. Interstitial climb was seen only at particularly favorable sites, such as pre-existing jogs, whilst vacancies clustered near dislocations, forming stacking fault tetrahedra (SFT). Partial separations were also observed to have decreased after irradiation. The post-irradiation configuration was found to depend strongly on both dislocation character and pre-irradiation dislocation configuration. These results, and their relevance to the void swelling problem, are discussed. 52 refs., 8 figs.

  17. Detection of one-dimensional migration of single self-interstitial atoms in tungsten using high-voltage electron microscopy

    PubMed Central

    Amino, T.; Arakawa, K.; Mori, H.

    2016-01-01

    The dynamic behaviour of atomic-size disarrangements of atoms—point defects (self-interstitial atoms (SIAs) and vacancies)—often governs the macroscopic properties of crystalline materials. However, the dynamics of SIAs have not been fully uncovered because of their rapid migration. Using a combination of high-voltage transmission electron microscopy and exhaustive kinetic Monte Carlo simulations, we determine the dynamics of the rapidly migrating SIAs from the formation process of the nanoscale SIA clusters in tungsten as a typical body-centred cubic (BCC) structure metal under the constant-rate production of both types of point defects with high-energy electron irradiation, which must reflect the dynamics of individual SIAs. We reveal that the migration dimension of SIAs is not three-dimensional (3D) but one-dimensional (1D). This result overturns the long-standing and well-accepted view of SIAs in BCC metals and supports recent results obtained by ab-initio simulations. The SIA dynamics clarified here will be one of the key factors to accurately predict the lifetimes of nuclear fission and fusion materials. PMID:27185352

  18. Detection of one-dimensional migration of single self-interstitial atoms in tungsten using high-voltage electron microscopy.

    PubMed

    Amino, T; Arakawa, K; Mori, H

    2016-01-01

    The dynamic behaviour of atomic-size disarrangements of atoms-point defects (self-interstitial atoms (SIAs) and vacancies)-often governs the macroscopic properties of crystalline materials. However, the dynamics of SIAs have not been fully uncovered because of their rapid migration. Using a combination of high-voltage transmission electron microscopy and exhaustive kinetic Monte Carlo simulations, we determine the dynamics of the rapidly migrating SIAs from the formation process of the nanoscale SIA clusters in tungsten as a typical body-centred cubic (BCC) structure metal under the constant-rate production of both types of point defects with high-energy electron irradiation, which must reflect the dynamics of individual SIAs. We reveal that the migration dimension of SIAs is not three-dimensional (3D) but one-dimensional (1D). This result overturns the long-standing and well-accepted view of SIAs in BCC metals and supports recent results obtained by ab-initio simulations. The SIA dynamics clarified here will be one of the key factors to accurately predict the lifetimes of nuclear fission and fusion materials. PMID:27185352

  19. Detection of one-dimensional migration of single self-interstitial atoms in tungsten using high-voltage electron microscopy

    NASA Astrophysics Data System (ADS)

    Amino, T.; Arakawa, K.; Mori, H.

    2016-05-01

    The dynamic behaviour of atomic-size disarrangements of atoms—point defects (self-interstitial atoms (SIAs) and vacancies)—often governs the macroscopic properties of crystalline materials. However, the dynamics of SIAs have not been fully uncovered because of their rapid migration. Using a combination of high-voltage transmission electron microscopy and exhaustive kinetic Monte Carlo simulations, we determine the dynamics of the rapidly migrating SIAs from the formation process of the nanoscale SIA clusters in tungsten as a typical body-centred cubic (BCC) structure metal under the constant-rate production of both types of point defects with high-energy electron irradiation, which must reflect the dynamics of individual SIAs. We reveal that the migration dimension of SIAs is not three-dimensional (3D) but one-dimensional (1D). This result overturns the long-standing and well-accepted view of SIAs in BCC metals and supports recent results obtained by ab-initio simulations. The SIA dynamics clarified here will be one of the key factors to accurately predict the lifetimes of nuclear fission and fusion materials.

  20. A Heuristic Placement Selection of Live Virtual Machine Migration for Energy-Saving in Cloud Computing Environment

    PubMed Central

    Zhao, Jia; Hu, Liang; Ding, Yan; Xu, Gaochao; Hu, Ming

    2014-01-01

    The field of live VM (virtual machine) migration has been a hotspot problem in green cloud computing. Live VM migration problem is divided into two research aspects: live VM migration mechanism and live VM migration policy. In the meanwhile, with the development of energy-aware computing, we have focused on the VM placement selection of live migration, namely live VM migration policy for energy saving. In this paper, a novel heuristic approach PS-ES is presented. Its main idea includes two parts. One is that it combines the PSO (particle swarm optimization) idea with the SA (simulated annealing) idea to achieve an improved PSO-based approach with the better global search's ability. The other one is that it uses the Probability Theory and Mathematical Statistics and once again utilizes the SA idea to deal with the data obtained from the improved PSO-based process to get the final solution. And thus the whole approach achieves a long-term optimization for energy saving as it has considered not only the optimization of the current problem scenario but also that of the future problem. The experimental results demonstrate that PS-ES evidently reduces the total incremental energy consumption and better protects the performance of VM running and migrating compared with randomly migrating and optimally migrating. As a result, the proposed PS-ES approach has capabilities to make the result of live VM migration events more high-effective and valuable. PMID:25251339

  1. A heuristic placement selection of live virtual machine migration for energy-saving in cloud computing environment.

    PubMed

    Zhao, Jia; Hu, Liang; Ding, Yan; Xu, Gaochao; Hu, Ming

    2014-01-01

    The field of live VM (virtual machine) migration has been a hotspot problem in green cloud computing. Live VM migration problem is divided into two research aspects: live VM migration mechanism and live VM migration policy. In the meanwhile, with the development of energy-aware computing, we have focused on the VM placement selection of live migration, namely live VM migration policy for energy saving. In this paper, a novel heuristic approach PS-ES is presented. Its main idea includes two parts. One is that it combines the PSO (particle swarm optimization) idea with the SA (simulated annealing) idea to achieve an improved PSO-based approach with the better global search's ability. The other one is that it uses the Probability Theory and Mathematical Statistics and once again utilizes the SA idea to deal with the data obtained from the improved PSO-based process to get the final solution. And thus the whole approach achieves a long-term optimization for energy saving as it has considered not only the optimization of the current problem scenario but also that of the future problem. The experimental results demonstrate that PS-ES evidently reduces the total incremental energy consumption and better protects the performance of VM running and migrating compared with randomly migrating and optimally migrating. As a result, the proposed PS-ES approach has capabilities to make the result of live VM migration events more high-effective and valuable. PMID:25251339

  2. EFFECT OF LASER LIGHT ON LASER PLASMAS: Explosive breeding of point defects as a mechanism for multipulse damage to absorbing media

    NASA Astrophysics Data System (ADS)

    Volodin, B. L.; Emel'yanov, Vladimir I.; Shlykov, Yu G.

    1993-01-01

    A mechanism based on the concept of an explosive breeding of point defects is outlined for the multipulse damage to semiconductors by short laser pulses. Analytic expressions are derived for the critical temperature, the critical intensity, and the intensity dependence of the critical number of pulses. The theoretical results agree well with experimental data.

  3. Comment on ``Elastic wave propagation in a solid layer with laser-induced point defects'' [J. Appl. Phys. 110, 064906 (2011)

    NASA Astrophysics Data System (ADS)

    Martin, P. A.

    2012-09-01

    Mirzade [J. Appl. Phys. 110, 064906 (2011)] developed a linear theory for the propagation of waves in an elastic solid with atomic point defects, and then sought time-harmonic solutions. It is shown that Mirzade's analysis is incomplete: substantial corrections are required.

  4. Current-induced changes of migration energy barriers in graphene and carbon nanotubes.

    PubMed

    Obodo, J T; Rungger, I; Sanvito, S; Schwingenschlögl, U

    2016-05-21

    An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative. PMID:27127889

  5. Inherent point defects at the thermal higher-Miller index (211)Si/SiO{sub 2} interface

    SciTech Connect

    Iacovo, S.; Stesmans, A.

    2014-12-29

    Electron spin resonance (ESR) studies were carried out on the higher-Miller index (211)Si/SiO{sub 2} interface thermally grown in the temperature range T{sub ox} = 400–1066 °C to assess interface quality in terms of inherently incorporated point defects. This reveals the presence predominantly of two species of a P{sub b}-type interface defect (interfacial Si dangling bond), which, based on pertinent ESR parameters, is typified as P{sub b0}{sup (211)} variant, close to the P{sub b0} center observed in standard (100)Si/SiO{sub 2}—known as utmost detrimental interface trap. T{sub ox} ≳ 750 °C is required to minimize the P{sub b0}{sup (211)} defect density (∼4.2 × 10{sup 12 }cm{sup −2}; optimized interface). The data clearly reflect the non-elemental nature of the (211)Si face as an average of (100) and (111) surfaces. It is found that in oxidizing (211)Si at T{sub ox} ≳ 750 °C, the optimum Si/SiO{sub 2} interface quality is retained for the two constituent low-index (100) and (111) faces separately, indicating firm anticipating power for higher-index Si/SiO{sub 2} interfaces in general. It implies that, as a whole, the quality of a thermal higher-index Si/SiO{sub 2} interface can never surmount that of the low-index (100)Si/SiO{sub 2} structure.

  6. Current-induced changes of migration energy barriers in graphene and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Obodo, J. T.; Rungger, I.; Sanvito, S.; Schwingenschlögl, U.

    2016-05-01

    An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative.An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR00534A

  7. Energy Migration Upconversion in Manganese(II)-Doped Nanoparticles.

    PubMed

    Li, Xiyan; Liu, Xiaowang; Chevrier, Daniel M; Qin, Xian; Xie, Xiaoji; Song, Shuyan; Zhang, Hongjie; Zhang, Peng; Liu, Xiaogang

    2015-11-01

    We report the synthesis and characterization of cubic NaGdF4:Yb/Tm@NaGdF4:Mn core-shell structures. By taking advantage of energy transfer through Yb→Tm→Gd→Mn in these core-shell nanoparticles, we have realized upconversion emission of Mn(2+) at room temperature in lanthanide tetrafluoride based host lattices. The upconverted Mn(2+) emission, enabled by trapping the excitation energy through a Gd(3+) lattice, was validated by the observation of a decreased lifetime from 941 to 532 μs in the emission of Gd(3+) at 310 nm ((6)P(7/2)→(8)S(7/2)). This multiphoton upconversion process can be further enhanced under pulsed laser excitation at high power densities. Both experimental and theoretical studies provide evidence for Mn(2+) doping in the lanthanide-based host lattice arising from the formation of F(-) vacancies around Mn(2+) ions to maintain charge neutrality in the shell layer. PMID:26358961

  8. Thermocapillary Bubble Migration - An Oseen-Like Analysis of the Energy Equation

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Dill, L. H.

    1992-01-01

    The thermocapillary migration of a bubble in a liquid possessing a temperature gradient is analyzed in the limit of large Reynolds and Marangoni numbers. Crespo and Manuel (1983) performed an analysis in this limit wherein energy conduction is completely neglected and obtained the bubble migration velocity using energy dissipation arguments. In the present analysis, performed in a coordinate system moving with the bubble, the velocity field in the convection term in the energy equation is approximated in an Oseen-like manner by replacing it with the velocity field far away from the bubble (i.e., the migration velocity of the bubble). Conduction is retained to satisfy the zero conductive heat flux boundary condition on the bubble surface. An approximate solution has been obtained for the Oseen-like energy equation. The bubble velocity obtained using energy dissipation considerations is in agreement with the result of Crespo and Manuel. The solution shows the thermal boundary layer and wake structure in the vicinity of the bubble. The Oseen-like analysis, however, has inherent limitations, as the flow penetrates the bubble surface. These issues are discussed and the result are compared to those in the literature.

  9. Nonstoichiometry, point defects and magnetic properties in Sr{sub 2}FeMoO{sub 6-{delta}} double perovskites

    SciTech Connect

    Kircheisen, R.; Toepfer, J.

    2012-01-15

    The phase stability, nonstoichiometry and point defect chemistry of polycrystalline Sr{sub 2}FeMoO{sub 6-{delta}} (SFMO) was studied by thermogravimety at 1000, 1100, and 1200 Degree-Sign C. Single-phase SFMO exists between -10.2{<=}log pO{sub 2}{<=}-13.7 at 1200 Degree-Sign C. At lower oxygen partial pressure a mass loss signals reductive decomposition. At higher pO{sub 2} a mass gain indicates oxidative decomposition into SrMoO{sub 4} and SrFeO{sub 3-x}. The nonstoichiometry {delta} at 1000, 1100, and 1200 Degree-Sign C was determined as function of pO{sub 2}. SFMO is almost stoichiometric at the upper phase boundary (e.g. {delta}=0.006 at 1200 Degree-Sign C and log pO{sub 2}=-10.2) and becomes more defective with decreasing oxygen partial pressure (e.g. {delta}=0.085 at 1200 Degree-Sign C and log pO{sub 2}=-13.5). Oxygen vacancies are shown to represent majority defects. From the temperature dependence of the oxygen vacancy concentration the defect formation enthalpy was estimated ({Delta}H{sub OV}=253{+-}8 kJ/mol). Samples of different nonstoichiometry {delta} were prepared by quenching from 1200 Degree-Sign C at various pO{sub 2}. An increase of the unit cell volume with increasing defect concentration {delta} was found. The saturation magnetization is reduced with increasing nonstoichiometry {delta}. This demonstrates that in addition to Fe/Mo site disorder, oxygen nonstoichiometry is another source of reduced magnetization values. - Graphical abstract: Nonstoichiometry {delta} of Sr{sub 2}FeMoO{sub 6-{delta}} as function of oxygen partial pressure at 1000, 1100, and 1200 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Sr{sub 2}FeMoO{sub 6-{delta}} is stable at T=1200 Degree-Sign C at low pO{sub 2} only. Black-Right-Pointing-Pointer Nonstoichiometry {delta} measured at 1200, 1100, and 1000 Degree-Sign C. Black-Right-Pointing-Pointer Increase of oxygen vacancy concentration with lower pO{sub 2}. Black-Right-Pointing-Pointer Reduction of magnetization

  10. Light Harvesting in Microscale Metal-Organic Frameworks by Energy Migration and Interfacial Electron Transfer Quenching

    SciTech Connect

    Kent, Caleb A.; Liu, Demin; Ma, Liqing; Papanikolas, John M.; Meyer, Thomas J.; Lin, Wenbin

    2011-08-24

    Microscale metal–organic frameworks (MOFs) were synthesized from photoactive Ru(II)-bpy building blocks with strong visible light absorption and long-lived triplet metal-to-ligand charge transfer (³MLCT) excited states. These MOFs underwent efficient luminescence quenching in the presence of either oxidative or reductive quenchers. Up to 98% emission quenching was achieved with either an oxidative quencher (1,4-benzoquinone) or a reductive quencher (N,N,N',N'-tetramethylbenzidine), as a result of rapid energy migration over several hundred nanometers followed by efficient electron transfer quenching at the MOF/solution interface. The photoactive MOFs act as an excellent light-harvesting system by combining intraframework energy migration and interfacial electron transfer quenching.