Sample records for pointer driven microheater

  1. A laser pointer driven microheater for precise local heating and conditional gene regulation in vivo. Microheater driven gene regulation in zebrafish.

    PubMed

    Placinta, Mike; Shen, Meng-Chieh; Achermann, Marc; Karlstrom, Rolf O

    2009-12-30

    Tissue heating has been employed to study a variety of biological processes, including the study of genes that control embryonic development. Conditional regulation of gene expression is a particularly powerful approach for understanding gene function. One popular method for mis-expressing a gene of interest employs heat-inducible heat shock protein (hsp) promoters. Global heat shock of hsp-promoter-containing transgenic animals induces gene expression throughout all tissues, but does not allow for spatial control. Local heating allows for spatial control of hsp-promoter-driven transgenes, but methods for local heating are cumbersome and variably effective. We describe a simple, highly controllable, and versatile apparatus for heating biological tissue and other materials on the micron-scale. This microheater employs micron-scale fiber optics and uses an inexpensive laser-pointer as a power source. Optical fibers can be pulled on a standard electrode puller to produce tips of varying sizes that can then be used to reliably heat 20-100 mum targets. We demonstrate precise spatiotemporal control of hsp70l:GFP transgene expression in a variety of tissue types in zebrafish embryos and larvae. We also show how this system can be employed as part of a new method for lineage tracing that would greatly facilitate the study of organogenesis and tissue regulation at any time in the life cycle. This versatile and simple local heater has broad utility for the study of gene function and for lineage tracing. This system could be used to control hsp-driven gene expression in any organism simply by bringing the fiber optic tip in contact with the tissue of interest. Beyond these uses for the study of gene function, this device has wide-ranging utility in materials science and could easily be adapted for therapeutic purposes in humans.

  2. Development of micro-heaters with optimized temperature compensation design for gas sensors.

    PubMed

    Hwang, Woo-Jin; Shin, Kyu-Sik; Roh, Ji-Hyoung; Lee, Dae-Sung; Choa, Sung-Hoon

    2011-01-01

    One of the key components of a chemical gas sensor is a MEMS micro-heater. Micro-heaters are used in both semiconductor gas sensors and NDIR gas sensors; however they each require different heat dissipation characteristics. For the semiconductor gas sensors, a uniform temperature is required over a wide area of the heater. On the other hand, for the NDIR gas sensor, the micro-heater needs high levels of infrared radiation in order to increase sensitivity. In this study, a novel design of a poly-Si micro-heater is proposed to improve the uniformity of heat dissipation on the heating plate. Temperature uniformity of the micro-heater is achieved by compensating for the variation in power consumption around the perimeter of the heater. With the power compensated design, the uniform heating area is increased by 2.5 times and the average temperature goes up by 40 °C. Therefore, this power compensated micro-heater design is suitable for a semiconductor gas sensor. Meanwhile, the poly-Si micro-heater without compensation shows a higher level of infrared radiation under equal power consumption conditions. This indicates that the micro-heater without compensation is more suitable for a NDIR gas sensor. Furthermore, the micro-heater shows a short response time of less than 20 ms, indicating a very high efficiency of pulse driving.

  3. Optimization of metallic microheaters for high-speed reconfigurable silicon photonics.

    PubMed

    Atabaki, A H; Shah Hosseini, E; Eftekhar, A A; Yegnanarayanan, S; Adibi, A

    2010-08-16

    The strong thermooptic effect in silicon enables low-power and low-loss reconfiguration of large-scale silicon photonics. Thermal reconfiguration through the integration of metallic microheaters has been one of the more widely used reconfiguration techniques in silicon photonics. In this paper, structural and material optimizations are carried out through heat transport modeling to improve the reconfiguration speed of such devices, and the results are experimentally verified. Around 4 micros reconfiguration time are shown for the optimized structures. Moreover, sub-microsecond reconfiguration time is experimentally demonstrated through the pulsed excitation of the microheaters. The limitation of this pulsed excitation scheme is also discussed through an accurate system-level model developed for the microheater response.

  4. Development of microheaters for gas sensor with an AT-Mega 8535 temperature controller using a PWM (pulse width modulation) method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Megayanti, Meti; Panatarani, Camellia; Joni, I. Made, E-mail: imadejoni@phys.unpad.ac.id

    Microheater is the main component in gas sensor characterized by their sensitivity, selectivity, and time response of gas sensor which is depend on the microheater temperature stability. A Cu microheater was developed and utilized AT-Mega 8535 controller using a PWM (pulse width modulation) method. This control system is interfaced to the PC to observe the real time temperature response of the microheater. Three initial resistance (R0) variations of microheater were developed in an open loop control system. The power characteristic of designed microheater depends on the specified microheater initial resistance. The smaller R0, the less power required to reach amore » temperature setting value. The developed microheater was designed to reach a temperature setting value of 250°C having resistance 0.531 Ω for 1.979 Watt and 0.265 Ω for 1.072 Watt respectively. The results of the investigation on the control performances shows microheater-control system achieved operating temperature up to 250°C. The response of the temperature control shows smallest R0 resulted in a high stability with short settling time, short delay time and small ripple for temperature setting values higher than 150°C. The obtained error of microheater temperature with R0 = 0.265 is 8.596 %. It is concluded that the developed microheater can be utilized as a component of a gas sensor.« less

  5. Development of microheaters for gas sensor with an AT-Mega 8535 temperature controller using a PWM (pulse width modulation) method

    NASA Astrophysics Data System (ADS)

    Megayanti, Meti; Panatarani, Camellia; Joni, I. Made

    2016-03-01

    Microheater is the main component in gas sensor characterized by their sensitivity, selectivity, and time response of gas sensor which is depend on the microheater temperature stability. A Cu microheater was developed and utilized AT-Mega 8535 controller using a PWM (pulse width modulation) method. This control system is interfaced to the PC to observe the real time temperature response of the microheater. Three initial resistance (R0) variations of microheater were developed in an open loop control system. The power characteristic of designed microheater depends on the specified microheater initial resistance. The smaller R0, the less power required to reach a temperature setting value. The developed microheater was designed to reach a temperature setting value of 250°C having resistance 0.531 Ω for 1.979 Watt and 0.265 Ω for 1.072 Watt respectively. The results of the investigation on the control performances shows microheater-control system achieved operating temperature up to 250°C. The response of the temperature control shows smallest R0 resulted in a high stability with short settling time, short delay time and small ripple for temperature setting values higher than 150°C. The obtained error of microheater temperature with R0 = 0.265 is 8.596 %. It is concluded that the developed microheater can be utilized as a component of a gas sensor.

  6. Photothermal lesions in soft tissue induced by optical fiber microheaters.

    PubMed

    Pimentel-Domínguez, Reinher; Moreno-Álvarez, Paola; Hautefeuille, Mathieu; Chavarría, Anahí; Hernández-Cordero, Juan

    2016-04-01

    Photothermal therapy has shown to be a promising technique for local treatment of tumors. However, the main challenge for this technique is the availability of localized heat sources to minimize thermal damage in the surrounding healthy tissue. In this work, we demonstrate the use of optical fiber microheaters for inducing thermal lesions in soft tissue. The proposed devices incorporate carbon nanotubes or gold nanolayers on the tips of optical fibers for enhanced photothermal effects and heating of ex vivo biological tissues. We report preliminary results of small size photothermal lesions induced on mice liver tissues. The morphology of the resulting lesions shows that optical fiber microheaters may render useful for delivering highly localized heat for photothermal therapy.

  7. Design and Fabrication of an Experimental Microheater Array Powder Sintering Printer

    NASA Astrophysics Data System (ADS)

    Holt, Nicholas; Zhou, Wenchao

    2018-03-01

    Microheater array powder sintering (MAPS) is a novel additive manufacturing process that uses an array of microheaters to selectively sinter powder particles. MAPS shows great promise as a new method of printing flexible electronics by enabling digital curing of conductive inks on a variety of substrates. For MAPS to work effectively, a microscale air gap needs to be maintained between the heater array and the conductive ink. In this article, we present an experimental MAPS printer with air gap control for printing conductive circuits. First, we discuss design aspects necessary to implement MAPS. An analysis is performed to validate that the design can maintain the desired air gap between the microheaters and the sintering layer, which consists of a silver nanoparticle ink. The printer is tested by printing conductive lines on a flexible plastic substrate with silver nanoparticle ink. Results show MAPS performs on par with or better than the existing fabrication methods for printed electronics in terms of both the print quality (conductivity of the printed line) and print speed, which shows MAPS' great promise as a competitive new method for digital production of printed electronics.

  8. Design, fabrication, and characteristics of microheaters with low consumption power using SDB SOI membrane and trench structures

    NASA Astrophysics Data System (ADS)

    Chung, Gwiy-Sang; Choi, Sung-Kyu; Nam, Hoy-Duck

    2001-10-01

    This paper presents the optimized design, fabrication and thermal characteristics of micro-heaters for thermal MEMS (micro electro mechanical system) applications using SDB and SOI membranes and trench structures. The micro-heater is based on a thermal measurement principle and contains for thermal isolation regions a 10 micrometers thick Si membrane with oxide-filled trenches in the SOI membrane rim. The micro- heater was fabricated with Pt-RTD on the same substrate by using MgO as medium layer. The thermal characteristics of the micro-heater with the SOI membrane is 280 degree(s)C at input power 0.9 W; for the SOI membrane with 10 trenches, it is 580 degree(s)C due to reduction of the external thermal loss. Consequently, the micro-heater with trenches in SOI membrane rim provides a powerful and versatile alternative technology for improving the performance of micro-thermal sensors and actuators.

  9. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides

    PubMed Central

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn; Xiao, Sanshui; Mortensen, N. Asger; Dong, Jianji; Ding, Yunhong

    2017-01-01

    Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions and increased phase shifts owing to its ability to promote light–matter interactions. By incorporating a graphene on a slow-light silicon photonic crystal waveguide, here we experimentally demonstrate an energy-efficient graphene microheater with a tuning efficiency of 1.07 nmmW−1 and power consumption per free spectral range of 3.99 mW. The rise and decay times (10–90%) are only 750 and 525 ns, which, to the best of our knowledge, are the fastest reported response times for microheaters in silicon photonics. The corresponding figure of merit of the device is 2.543 nW s, one order of magnitude better than results reported in previous studies. The influence of the length and shape of the graphene heater to the tuning efficiency is further investigated, providing valuable guidelines for enhancing the tuning efficiency of the graphene microheater. PMID:28181531

  10. The IBM HeadTracking Pointer: improvements in vision-based pointer control.

    PubMed

    Kjeldsen, Rick

    2008-07-01

    Vision-based head trackers have been around for some years and are even beginning to be commercialized, but problems remain with respect to usability. Users without the ability to use traditional pointing devices--the intended audience of such systems--have no alternative if the automatic bootstrapping process fails. There is room for improvement in face tracking, and the pointer movement dynamics do not support accurate and efficient pointing. This paper describes the IBM HeadTracking Pointer, a system which attempts to directly address some of these issues. Head gestures are used to provide the end user a greater level of autonomous control over the system. A novel face-tracking algorithm reduces drift under variable lighting conditions, allowing the use of absolute, rather than relative, pointer positioning. Most importantly, the pointer dynamics have been designed to take into account the constraints of head-based pointing, with a non-linear gain which allows stability in fine pointer movement, high speed on long transitions and adjustability to support users with different movement dynamics. User studies have identified some difficulties with training the system and some characteristics of the pointer motion that take time to get used to, but also good user feedback and very promising performance results.

  11. Thermal Conductivity Measurement of Liquids by Using a Suspended Microheater

    NASA Astrophysics Data System (ADS)

    Oh, Dong-Wook

    2017-10-01

    In this paper, the traditional 3ω method is modified in order to measure the thermal conductivity of a droplet of liquid. The 3ω sensor is microfabricated using bulk silicon etching on a silicon wafer to form a microheater on a suspended bridge structure. The Si substrate of over 400 μ m thickness beneath the microheater is etched away so that the sample liquid can fill the gap created between the heater and the bottom boundary of the sensor. The frequency of the sinusoidal heating pulses that are generated from the heater is controlled such that the thermal penetration depth is much smaller than the thickness of the liquid layer. The temperature oscillation of the sample fluid is measured at the thin-film heater to calculate the thermal conductivity of the surrounding fluid. The thermal conductivity and measured values of the de-ionized water and ethanol show a good agreement with the theoretical values at room temperature.

  12. Faithful Pointer for Qubit Measurement

    NASA Astrophysics Data System (ADS)

    Kumari, Asmita; Pan, A. K.

    2018-02-01

    In the context of von Neumann projective measurement scenario for a qubit system, it is widely believed that the mutual orthogonality between the post-interaction pointer states is the sufficient condition for achieving the ideal measurement situation. However, for experimentally verifying the observable probabilities, the real space distinction between the pointer distributions corresponding to post-interaction pointer states play crucial role. It is implicitly assumed that mutual orthogonality ensures the support between the post-interaction pointer distributions to be disjoint. We point out that mutual orthogonality (formal idealness) does not necessarily imply the real space distinguishability (operational idealness), but converse is true. In fact, for the commonly referred Gaussian wavefunction, it is possible to obtain a measurement situation which is formally ideal but fully nonideal operationally. In this paper, we derive a class of pointer states, that we call faithful pointers, for which the degree of formal (non)idealness is equal to the operational (non)idealness. In other words, for the faithful pointers, if a measurement situation is formally ideal then it is operationally ideal and vice versa.

  13. Self-gauged fiber-optic micro-heater with an operation temperature above 1000°C.

    PubMed

    Liu, Guigen; Sheng, Qiwen; Dam, Dustin; Hua, Jiong; Hou, Weilin; Han, Ming

    2017-04-01

    We report a fiber-optic micro-heater based on a miniature crystalline silicon Fabry-Perot interferometer (FPI) fusion spliced to the endface of a single-mode fiber. The silicon FPI, having a diameter of 100 μm and a length of 10 or 200 μm, is heated by a 980 nm laser diode guided through the lead-in fiber, leading to a localized hot spot with a temperature that can be conveniently tuned from the ambient temperature to >1000°C in air. In the meantime, using a white light system operating in the 1550 nm wavelength window where the silicon is transparent, the silicon FPI itself also serves as a thermometer with high resolution and high speed for convenient monitoring and precise control of the heater temperature. Due to its small size, high temperature capability, and easy operation, the micro-heater is attractive for applications in a variety of fields, such as biology, microfluidics system, mechanical engineering, and high-temperature optical sensing. As an example, the application of this micro-heater as a micro-boiler and micro-bubble generator has been demonstrated.

  14. Laser pointers and aviation safety.

    PubMed

    Nakagawara, V B; Montgomery, R W

    2000-10-01

    Laser pointers have been used by teachers and lecturers for years to highlight key areas on charts and screens during visual presentations. When used in a responsible manner, laser pointers are not considered to be hazardous. However, as the availability of such devices has increased, so have reports of their misuse. The Food and Drug Administration (FDA) issued a warning in December 1997 on the possibility of eye injury to children from handheld laser pointers. In October 1998, the American Academy of Ophthalmology upgraded an earlier caution to a warning, stating that laser pointers can be hazardous and should be kept away from children, after two reports of eye injuries involving young girls (age 11 and 13 yr). Of particular concern was the promotion of laser products as children's toys, such as those that can project cartoon figures and line drawings. Additionally, there have been reports involving the misuse of laser pointers (e.g., arrests made after police interpreted the red beam to be a laser-sighted weapon, spectators aiming laser lights at athletes during sporting events, cars illuminated on highways, and numerous incidents involving the illumination of aircraft). This technical note discusses physiological effects of exposure from a laser pointer, the regulation and classification of commercial laser products, and how the misuse of these pointers is a possible threat to aviation safety.

  15. Modeling and experimental investigation of an integrated optical microheater in silicon-on-insulator.

    PubMed

    Kaushal, Saket; Das, Bijoy Krishna

    2016-04-10

    A linear piecewise model has been formulated to analyze the performance of a metallic microheater integrated with single-mode waveguides (λ∼1550  nm) in silicon-on-insulator (SOI). The model has been used to evaluate integrated optical microheaters fabricated in a SOI substrate with 2 µm device layer thickness. The Fabry-Perot modulation technique has been used to extract the effective thermo-optic phase shift and response time. The effective thermal power budget of Peff,π∼500  µW (out of actually consumed power Pπ=1.1  mW) for a π phase shift and a switching time of τ∼9  µs, have been recorded for a typical Ti heater stripe of length LH=50  µm, width WH=2  µm, and thickness tH∼150  nm, integrated with a Fabry-Perot waveguide cavity of length ∼20  mm. It has been shown that the performance of a heater improves (in terms of power budget) as the length of a microheater decreases. However, smaller heater size requires higher joule heating to obtain a desired phase shift, which is again found to be dependent on polarization of the guided mode because of thermal stress.

  16. Microheater as an alternative to lasers for in-vitro fertilization applications

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel V.; Turovets, Igor; Glazer, Rima; Reubinoff, Benjamin E.; Hilman, Dalia; Lewis, Aaron

    1999-06-01

    During the last decade various lasers have been applied to drilling of the micrometer-sized holes in the zona pellucida of oocytes for in-vitro fertilization applications. In this paper we describe an alternative approach to laser instrumentation based on microfabricated device capable of precise drilling of uniform holes in the zona pellucida of oocytes. This device consists of a thin (1 micrometer) film microheater built on the tip of glass capillary with a diameter varying between a few to a few tens of micrometers. Duration of the pulse of heat produced by this microheater determines the spatial confinement of the heat wave in the surrounding liquid medium. We have demonstrated that gradual microdrilling of the zona pellucida can be accomplished using a series of pulses with duration of about 300 microseconds when the microheater was held in contact with the zona pellucida. Pulse energy applied to 20 micrometer tip was about 4 (mu) J. In vitro development and hatching of 127 micromanipulated embryos was compared to 103 non-drilled control embryos. The technique was found to be highly efficient in creating round, uniform, well defined holes with a smooth wall surface, matching the size of the heating source. The architecture of the surrounding zona pellucida was unaffected by the drilling, as demonstrated by scanning electron microscopy. Micromanipulated embryos presented no signs of thermal damage under light microscopy. The rate of blastocyst formation and hatching was similar in the micromanipulated and control groups. Following further testing in animal models, this methodology may be used as a cost- effective alternative to laser-based instrumentation in clinical applications such as assisted hatching and embryo biopsy.

  17. In Situ Localized Growth of Ordered Metal Oxide Hollow Sphere Array on Microheater Platform for Sensitive, Ultra-Fast Gas Sensing.

    PubMed

    Rao, Ameya; Long, Hu; Harley-Trochimczyk, Anna; Pham, Thang; Zettl, Alex; Carraro, Carlo; Maboudian, Roya

    2017-01-25

    A simple and versatile strategy is presented for the localized on-chip synthesis of an ordered metal oxide hollow sphere array directly on a low power microheater platform to form a closely integrated miniaturized gas sensor. Selective microheater surface modification through fluorinated monolayer self-assembly and its subsequent microheater-induced thermal decomposition enables the position-controlled deposition of an ordered two-dimensional colloidal sphere array, which serves as a sacrificial template for metal oxide growth via homogeneous chemical precipitation; this strategy ensures control in both the morphology and placement of the sensing material on only the active heated area of the microheater platform, providing a major advantage over other methods of presynthesized nanomaterial integration via suspension coating or printing. A fabricated tin oxide hollow sphere-based sensor shows high sensitivity (6.5 ppb detection limit) and selectivity toward formaldehyde, and extremely fast response (1.8 s) and recovery (5.4 s) times. This flexible and scalable method can be used to fabricate high performance miniaturized gas sensors with a variety of hollow nanostructured metal oxides for a range of applications, including combining multiple metal oxides for superior sensitivity and tunable selectivity.

  18. Thread Migration in the Presence of Pointers

    NASA Technical Reports Server (NTRS)

    Cronk, David; Haines, Matthew; Mehrotra, Piyush

    1996-01-01

    Dynamic migration of lightweight threads supports both data locality and load balancing. However, migrating threads that contain pointers referencing data in both the stack and heap remains an open problem. In this paper we describe a technique by which threads with pointers referencing both stack and non-shared heap data can be migrated such that the pointers remain valid after migration. As a result, threads containing pointers can now be migrated between processors in a homogeneous distributed memory environment.

  19. Laser pointers: toys, nuisances, or significant eye hazards?

    PubMed

    Yolton, R L; Citek, K; Schmeisser, E; Reichow, A W; Griffith, T

    1999-05-01

    Laser pointers have been used inappropriately to harass and "dazzle" victims. Reports of retinal damage caused by pointers have also been circulated in the popular press. Information on pointer abuse was collected from the literature and through discussions with specialists. Few, if any, documented cases of permanent retinal damage caused by laser pointers could be found. For actual damage to occur, viewing, times need to exceed approximately 10 seconds. Exposures of this duration would require the person being lased to cooperate by holding fixation on the laser beam. Although the risk of permanent retinal damage from a laser-pointer beam is minimal, other risks include dazzle, annoyance, and concern that a weapon-aiming device rather than a pointer is generating the laser beam.

  20. Development and characterization of a microheater array device for real-time DNA mutation detection

    NASA Astrophysics Data System (ADS)

    Williams, Layne; Okandan, Murat; Chagovetz, Alex; Blair, Steve

    2008-04-01

    DNA analysis, specifically single nucleotide polymorphism (SNP) detection, is becoming increasingly important in rapid diagnostics and disease detection. Temperature is often controlled to help speed reaction rates and perform melting of hybridized oligonucleotides. The difference in melting temperatures, Tm, between wild-type and SNP sequences, respectively, to a given probe oligonucleotide, is indicative of the specificity of the reaction. We have characterized Tm's in solution and on a solid substrate of three sequences from known mutations associated with Cystic Fibrosis. Taking advantage of Tm differences, a microheater array device was designed to enable individual temperature control of up to 18 specific hybridization events. The device was fabricated at Sandia National Laboratories using surface micromachining techniques. The microheaters have been characterized using an IR camera at Sandia and show individual temperature control with minimal thermal cross talk. Development of the device as a real-time DNA detection platform, including surface chemistry and associated microfluidics, is described.

  1. Development and characterization of a microheater array device for real-time DNA mutation detection

    NASA Astrophysics Data System (ADS)

    Williams, Layne; Okandan, Murat; Chagovetz, Alex; Blair, Steve

    2008-02-01

    DNA analysis, specifically single nucleotide polymorphism (SNP) detection, is becoming increasingly important in rapid diagnostics and disease detection. Temperature is often controlled to help speed reaction rates and perform melting of hybridized oligonucleotides. The difference in melting temperatures, Tm, between wild-type and SNP sequences, respectively, to a given probe oligonucleotide, is indicative of the specificity of the reaction. We have characterized Tm's in solution and on a solid substrate of three sequences from known mutations associated with Cystic Fibrosis. Taking advantage of Tm differences, a microheater array device was designed to enable individual temperature control of up to 18 specific hybridization events. The device was fabricated at Sandia National Laboratories using surface micromachining techniques. The microheaters have been characterized using an IR camera at Sandia and show individual temperature control with minimal thermal cross talk. Development of the device as a real-time DNA detection platform, including surface chemistry and associated microfluidics, is described.

  2. Optofluidic microvalve-on-a-chip with a surface plasmon-enhanced fiber optic microheater

    PubMed Central

    Zhang, Zhijian; Kusimo, Abisola; Yu, Miao

    2014-01-01

    We present an optofluidic microvalve utilizing an embedded, surface plasmon-enhanced fiber optic microheater. The fiber optic microheater is formed by depositing a titanium thin film on the roughened end-face of a silica optical fiber that serves as a waveguide to deliver laser light to the titanium film. The nanoscale roughness at the titanium-silica interface enables strong light absorption enhancement in the titanium film through excitation of localized surface plasmons as well as facilitates bubble nucleation. Our experimental results show that due to the unique design of the fiber optic heater, the threshold laser power required to generate a bubble is greatly reduced and the bubble growth rate is significantly increased. By using the microvalve, stable vapor bubble generation in the microchannel is demonstrated, which does not require complex optical focusing and alignment. The generated vapor bubble is shown to successfully block a liquid flow channel with a size of 125 μm × 125 μm and a flow rate of ∼10 μl/min at ∼120 mW laser power. PMID:25538813

  3. Proving Correctness for Pointer Programs in a Verifying Compiler

    NASA Technical Reports Server (NTRS)

    Kulczycki, Gregory; Singh, Amrinder

    2008-01-01

    This research describes a component-based approach to proving the correctness of programs involving pointer behavior. The approach supports modular reasoning and is designed to be used within the larger context of a verifying compiler. The approach consists of two parts. When a system component requires the direct manipulation of pointer operations in its implementation, we implement it using a built-in component specifically designed to capture the functional and performance behavior of pointers. When a system component requires pointer behavior via a linked data structure, we ensure that the complexities of the pointer operations are encapsulated within the data structure and are hidden to the client component. In this way, programs that rely on pointers can be verified modularly, without requiring special rules for pointers. The ultimate objective of a verifying compiler is to prove-with as little human intervention as possible-that proposed program code is correct with respect to a full behavioral specification. Full verification for software is especially important for an agency like NASA that is routinely involved in the development of mission critical systems.

  4. Pediatric Bilateral Blue Laser Pointer-Induced Maculopathy

    PubMed Central

    Raevis, Joseph; Shrier, Eric

    2017-01-01

    Background We report the first case of pediatric bilateral blue laser pointer maculopathy with complete resolution of visual symptoms. Case A 12-year-old boy presented with bilateral decreased visual acuity and central scotomata after blue laser pointer exposure. He was treated with a Medrol Dosepak and topical nonsteroidal anti-inflammatory drug (NSAID), with gradual visual acuity improved from 20/40 OU to 20/20 OU over 22 weeks, but with persistent evidence of outer retinal layer disruption from the external limiting membrane to the interdigitation zone. Conclusion Oral steroids and topical NSAIDs may be effective in improving visual outcomes in laser pointer maculopathy in the pediatric population. PMID:28611647

  5. Adaptive Optics Imaging in Laser Pointer Maculopathy.

    PubMed

    Sheyman, Alan T; Nesper, Peter L; Fawzi, Amani A; Jampol, Lee M

    2016-08-01

    The authors report multimodal imaging including adaptive optics scanning laser ophthalmoscopy (AOSLO) (Apaeros retinal image system AOSLO prototype; Boston Micromachines Corporation, Boston, MA) in a case of previously diagnosed unilateral acute idiopathic maculopathy (UAIM) that demonstrated features of laser pointer maculopathy. The authors also show the adaptive optics images of a laser pointer maculopathy case previously reported. A 15-year-old girl was referred for the evaluation of a maculopathy suspected to be UAIM. The authors reviewed the patient's history and obtained fluorescein angiography, autofluorescence, optical coherence tomography, infrared reflectance, and AOSLO. The time course of disease and clinical examination did not fit with UAIM, but the linear pattern of lesions was suspicious for self-inflicted laser pointer injury. This was confirmed on subsequent questioning of the patient. The presence of linear lesions in the macula that are best highlighted with multimodal imaging techniques should alert the physician to the possibility of laser pointer injury. AOSLO further characterizes photoreceptor damage in this condition. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:782-785.]. Copyright 2016, SLACK Incorporated.

  6. Virus based Full Colour Pixels using a Microheater

    NASA Astrophysics Data System (ADS)

    Kim, Won-Geun; Kim, Kyujung; Ha, Sung-Hun; Song, Hyerin; Yu, Hyun-Woo; Kim, Chuntae; Kim, Jong-Man; Oh, Jin-Woo

    2015-09-01

    Mimicking natural structures has been received considerable attentions, and there have been a few practical advances. Tremendous efforts based on a self-assembly technique have been contributed to the development of the novel photonic structures which are mimicking nature’s inventions. We emulate the photonic structures from an origin of colour generation of mammalian skins and avian skin/feathers using M13 phage. The structures can be generated a full range of RGB colours that can be sensitively switched by temperature and substrate materials. Consequently, we developed an M13 phage-based temperature-dependent actively controllable colour pixels platform on a microheater chip. Given the simplicity of the fabrication process, the low voltage requirements and cycling stability, the virus colour pixels enable us to substitute for conventional colour pixels for the development of various implantable, wearable and flexible devices in future.

  7. Retinal damage induced by mirror-reflected light from a laser pointer.

    PubMed

    Thanos, Solon; Böhm, Michael R R; Meyer zu Hörste, Melissa; Schmidt, Peter-Fritz

    2015-10-05

    The safety of laser pointers is a major public health issue since class I and II laser pointers are available worldwide and used as toys by children despite several reports cautioning such use. Here we present the first case of retinal injury caused by the laser beam of a toy laser pointer operated by a school boy and directed via the rear-view mirror of a bus into the eye of the driver. This case emphasises the great importance of cautious and appropriate use of low-energy laser pointers. Laser pointers of any class should not be made available to children because they are unlikely to understand the risks of such lasers when using them in play. 2015 BMJ Publishing Group Ltd.

  8. A robust pointer segmentation in biomedical images toward building a visual ontology for biomedical article retrieval

    NASA Astrophysics Data System (ADS)

    You, Daekeun; Simpson, Matthew; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-01-01

    Pointers (arrows and symbols) are frequently used in biomedical images to highlight specific image regions of interest (ROIs) that are mentioned in figure captions and/or text discussion. Detection of pointers is the first step toward extracting relevant visual features from ROIs and combining them with textual descriptions for a multimodal (text and image) biomedical article retrieval system. Recently we developed a pointer recognition algorithm based on an edge-based pointer segmentation method, and subsequently reported improvements made on our initial approach involving the use of Active Shape Models (ASM) for pointer recognition and region growing-based method for pointer segmentation. These methods contributed to improving the recall of pointer recognition but not much to the precision. The method discussed in this article is our recent effort to improve the precision rate. Evaluation performed on two datasets and compared with other pointer segmentation methods show significantly improved precision and the highest F1 score.

  9. Efficient detection of dangling pointer error for C/C++ programs

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzhe

    2017-08-01

    Dangling pointer error is pervasive in C/C++ programs and it is very hard to detect. This paper introduces an efficient detector to detect dangling pointer error in C/C++ programs. By selectively leave some memory accesses unmonitored, our method could reduce the memory monitoring overhead and thus achieves better performance over previous methods. Experiments show that our method could achieve an average speed up of 9% over previous compiler instrumentation based method and more than 50% over previous page protection based method.

  10. A virtual pointer to support the adoption of professional vision in laparoscopic training.

    PubMed

    Feng, Yuanyuan; McGowan, Hannah; Semsar, Azin; Zahiri, Hamid R; George, Ivan M; Turner, Timothy; Park, Adrian; Kleinsmith, Andrea; Mentis, Helena M

    2018-05-23

    To assess a virtual pointer in supporting surgical trainees' development of professional vision in laparoscopic surgery. We developed a virtual pointing and telestration system utilizing the Microsoft Kinect movement sensor as an overlay for any imagine system. Training with the application was compared to a standard condition, i.e., verbal instruction with un-mediated gestures, in a laparoscopic training environment. Seven trainees performed four simulated laparoscopic tasks guided by an experienced surgeon as the trainer. Trainee performance was subjectively assessed by the trainee and trainer, and objectively measured by number of errors, time to task completion, and economy of movement. No significant differences in errors and time to task completion were obtained between virtual pointer and standard conditions. Economy of movement in the non-dominant hand was significantly improved when using virtual pointer ([Formula: see text]). The trainers perceived a significant improvement in trainee performance in virtual pointer condition ([Formula: see text]), while the trainees perceived no difference. The trainers' perception of economy of movement was similar between the two conditions in the initial three runs and became significantly improved in virtual pointer condition in the fourth run ([Formula: see text]). Results show that the virtual pointer system improves the trainer's perception of trainee's performance and this is reflected in the objective performance measures in the third and fourth training runs. The benefit of a virtual pointing and telestration system may be perceived by the trainers early on in training, but this is not evident in objective trainee performance until further mastery has been attained. In addition, the performance improvement of economy of motion specifically shows that the virtual pointer improves the adoption of professional vision- improved ability to see and use laparoscopic video results in more direct instrument movement.

  11. Coupling-Induced Bipartite Pointer States in Arrays of Electron Billiards: Quantum Darwinism in Action?

    NASA Astrophysics Data System (ADS)

    Brunner, R.; Akis, R.; Ferry, D. K.; Kuchar, F.; Meisels, R.

    2008-07-01

    We discuss a quantum system coupled to the environment, composed of an open array of billiards (dots) in series. Beside pointer states occurring in individual dots, we observe sets of robust states which arise only in the array. We define these new states as bipartite pointer states, since they cannot be described in terms of simple linear combinations of robust single-dot states. The classical existence of bipartite pointer states is confirmed by comparing the quantum-mechanical and classical results. The ability of the robust states to create “offspring” indicates that quantum Darwinism is in action.

  12. Coupling-induced bipartite pointer states in arrays of electron billiards: quantum Darwinism in action?

    PubMed

    Brunner, R; Akis, R; Ferry, D K; Kuchar, F; Meisels, R

    2008-07-11

    We discuss a quantum system coupled to the environment, composed of an open array of billiards (dots) in series. Beside pointer states occurring in individual dots, we observe sets of robust states which arise only in the array. We define these new states as bipartite pointer states, since they cannot be described in terms of simple linear combinations of robust single-dot states. The classical existence of bipartite pointer states is confirmed by comparing the quantum-mechanical and classical results. The ability of the robust states to create "offspring" indicates that quantum Darwinism is in action.

  13. Using Local Perturbations To Manipulate and Control Pointer States in Quantum Dot Systems

    NASA Astrophysics Data System (ADS)

    Akis, Richard; Speyer, Gil; Ferry, David; Brunner, Roland

    2012-02-01

    Recently, scanning gate microscopy (SGM) was used to image scarred wave functions in an open InAs quantum dot[1]. The SGM tip provides a local potential perturbation and imaging is performed by measuring changes in conductance. Scarred wave functions, long associated with quantum chaos, have been shown in open dots to correspond to pointer states[2], eigenstates that survive the decoherence process that occurs via coupling to the environment. Pointer states modulate the conductance, yielding periodic fluctuations and the scars, normally thought unstable, are stabilized by quantum Darwinism [3]. We shall show that, beyond probing, pointer states can be manipulated by local perturbations. Particularly interesting effects occur in coupled quantum dot arrays, where a pointer state localized in one dot can be shifted over into another with a perturbation in a completely different part of the system. These nonlocal effects may perhaps be exploited to give such systems an exotic functionality. [1] A. M. Burke, R. Akis, T. E. Day, Gil Speyer, D. K. Ferry, and B. R. Bennett, Phys. Rev. Lett. 104, 176801 (2010). [2] D. K. Ferry, R. Akis, and J. P. Bird, Phys. Rev. Lett. 104, 176801 (2004). [3] R. Brunner, R. Akis,D. K. Ferry, F. Kuchar,and R. Meisels, Phys. Rev. Lett. 101, 024102 (2008).

  14. Maculopathy following exposure to visible and infrared radiation from a laser pointer: a clinical case study.

    PubMed

    Hanson, James V M; Sromicki, Julian; Mangold, Mario; Golling, Matthias; Gerth-Kahlert, Christina

    2016-04-01

    Laser pointer devices have become increasingly available in recent years, and their misuse has caused a number of ocular injuries. Online distribution channels permit trade in devices which may not conform to international standards in terms of their output power and spectral content. We present a case study of ocular injury caused by one such device. The patient was examined approximately 9 months following laser exposure using full-field and multifocal electroretinography (ERG and MF-ERG), electrooculography (EOG), and optical coherence tomography (OCT), in addition to a full ophthalmological examination. MF-ERG, OCT, and the ophthalmological examination were repeated 7 months after the first examination. The output of the laser pointer was measured. Despite severe focal damage to the central retina visible fundoscopically and with OCT, all electrophysiological examinations were quantitatively normal; however, qualitatively the central responses of the MF-ERG appeared slightly reduced. When the MF-ERG was repeated 7 months later, all findings were normal. The laser pointer was found to emit both visible and infrared radiation in dangerous amounts. Loss of retinal function following laser pointer injury may not always be detectable using standard electrophysiological tests. Exposure to non-visible radiation should be considered as a possible aggravating factor when assessing cases of alleged laser pointer injury.

  15. POINTER: Portable Intelligent Trainer for External Robotics

    NASA Technical Reports Server (NTRS)

    Kuiper, Hilbert; Rikken, Patrick J.

    1994-01-01

    Intelligent tutoring systems (ITS's) play an increasing role in training and education of people with different levels of skill and knowledge. As compared to conventional computer based training (CBT) an ITS provides more tailored instruction by trying to mimic the teaching behavior of a human instructor as much as possible and is therefore much more flexible. This paper starts with an introduction to ITS's, followed by the description of an ITS for training of an (astronaut) operator in monitoring and controlling robotic arm procedures. The robotic arm will be used for exchange of equipment between a space station and a space plane involving critical and accurate movements of the robotic arm. The ITS for this application, called Pointer, is developed by TNO Physics and Electronics Laboratory and is based upon an existing ITS that includes procedural training. Pointer has been developed on a workstation whereas the target platform was a portable computer. Therefore, a lot of attention had to be paid to scaling effects and keeping up with user friendliness of the much smaller user interface. Although the learning domain was the control of a robotic arm, it is clear that use of intelligent training technologies on a portable computer has many other applications (payload operations, operation control rooms, etc.). Training can occur at any time and place in an attractive and cost effective way.

  16. Experimental investigation on the thermal performance of Si micro-heat pipe with different cross-sections

    NASA Astrophysics Data System (ADS)

    Hamidnia, Mohammad; Luo, Yi; Wang, Xiaodong; Li, Congming

    2017-10-01

    Increasing component densities of the integrated circuit (IC) and packaging levels has led to thermal management problems. Si substrates with embedded micro-heat pipes (MHPs) couple good thermal characteristics and cost savings associated with IC batch processing. The thermal performance of MHP is intimately related to the cross-sectional geometry. Different cross-sections are designed in order to enhance the backflow of working fluid. In this experimental study, three different Si MHPs with same hydraulic diameter and various cross-sections are fabricated by micro-fabrication methods and tested under different conditions of fluid charge ratios. The results show that the trapezoidal MHP associated with rectangular artery which is charged with 40% of vapor chamber’s volume has the best thermal performance. This silicon-based MHP is a passive approach for thermal management, which could widen applications in the commercial electronics industry and LED lightings.

  17. Effects of trajectory exercise using a laser pointer on electromyographic activities of the gluteus maximus and erector spinae during bridging exercises.

    PubMed

    Kim, Yu-Ri; Yoo, Won-Gyu

    2016-01-01

    [Purpose] The purpose of this study was to investigate activities of the hip extensors and erector spinae during bridging exercise by using instruments with a laser pointer on the pelvic belt. [Subjects] Twelve subjects (age, 23 to 33 years) with non-specific low back pain volunteered for this study. [Methods] Subjects performed bridging exercises with and without trajectory exercises by using a laser pointer fixed to a pelvic strap. The erector spinae, gluteus maximus and hamstring activities with and without trajectory exercises using a laser pointer were recorded on using electromyography. [Results] Compared to the without laser pointer group, the group that underwent bridging with trajectory exercises using a laser pointer had significantly higher gluteus maximus activity and significantly lower erector spinae activity. Significantly higher gluteus maximus/erector spinae activity ratios were observed when performing trajectory exercises using a laser pointer during bridging exercises. [Conclusion] This result suggests that trajectory exercises using a laser pointer during a bridging exercise would be effective for improving gluteus maximus activity.

  18. Analogue mouse pointer control via an online steady state visual evoked potential (SSVEP) brain-computer interface

    NASA Astrophysics Data System (ADS)

    Wilson, John J.; Palaniappan, Ramaswamy

    2011-04-01

    The steady state visual evoked protocol has recently become a popular paradigm in brain-computer interface (BCI) applications. Typically (regardless of function) these applications offer the user a binary selection of targets that perform correspondingly discrete actions. Such discrete control systems are appropriate for applications that are inherently isolated in nature, such as selecting numbers from a keypad to be dialled or letters from an alphabet to be spelled. However motivation exists for users to employ proportional control methods in intrinsically analogue tasks such as the movement of a mouse pointer. This paper introduces an online BCI in which control of a mouse pointer is directly proportional to a user's intent. Performance is measured over a series of pointer movement tasks and compared to the traditional discrete output approach. Analogue control allowed subjects to move the pointer faster to the cued target location compared to discrete output but suffers more undesired movements overall. Best performance is achieved when combining the threshold to movement of traditional discrete techniques with the range of movement offered by proportional control.

  19. Laser Pointers: Low-Cost, Low-Tech Innovative, Interactive Instruction Tool

    ERIC Educational Resources Information Center

    Zdravkovska, Nevenka; Cech, Maureen; Beygo, Pinar; Kackley, Bob

    2010-01-01

    This paper discusses the use of laser pointers at the Engineering and Physical Sciences Library, University of Maryland, College Park, as a personal response system (PRS) tool to encourage student engagement in and interactivity with one-shot, lecture-based information literacy sessions. Unlike more sophisticated personal response systems like…

  20. Evaluation of an eye-pointer interaction device for human-computer interaction.

    PubMed

    Cáceres, Enrique; Carrasco, Miguel; Ríos, Sebastián

    2018-03-01

    Advances in eye-tracking technology have led to better human-computer interaction, and involve controlling a computer without any kind of physical contact. This research describes the transformation of a commercial eye-tracker for use as an alternative peripheral device in human-computer interactions, implementing a pointer that only needs the eye movements of a user facing a computer screen, thus replacing the need to control the software by hand movements. The experiment was performed with 30 test individuals who used the prototype with a set of educational videogames. The results show that, although most of the test subjects would prefer a mouse to control the pointer, the prototype tested has an empirical precision similar to that of the mouse, either when trying to control its movements or when attempting to click on a point of the screen.

  1. Activities Using Headsticks and Optical Pointers: A Description of Methods.

    ERIC Educational Resources Information Center

    Eriksson, Britt-Marie; And Others

    A variety of head-mounted aids have been developed in the past decade to fill in the functional gaps of children and adults unable to use their hands at standard capacity. For those with speech difficulties, the optical pointer, headstick and mouthstick also provide communication alternatives. This handbook discusses the characteristics of several…

  2. VIEWCACHE: An incremental pointer-based access method for autonomous interoperable databases

    NASA Technical Reports Server (NTRS)

    Roussopoulos, N.; Sellis, Timos

    1993-01-01

    One of the biggest problems facing NASA today is to provide scientists efficient access to a large number of distributed databases. Our pointer-based incremental data base access method, VIEWCACHE, provides such an interface for accessing distributed datasets and directories. VIEWCACHE allows database browsing and search performing inter-database cross-referencing with no actual data movement between database sites. This organization and processing is especially suitable for managing Astrophysics databases which are physically distributed all over the world. Once the search is complete, the set of collected pointers pointing to the desired data are cached. VIEWCACHE includes spatial access methods for accessing image datasets, which provide much easier query formulation by referring directly to the image and very efficient search for objects contained within a two-dimensional window. We will develop and optimize a VIEWCACHE External Gateway Access to database management systems to facilitate database search.

  3. VIEWCACHE: An incremental pointer-based access method for autonomous interoperable databases

    NASA Technical Reports Server (NTRS)

    Roussopoulos, N.; Sellis, Timos

    1992-01-01

    One of biggest problems facing NASA today is to provide scientists efficient access to a large number of distributed databases. Our pointer-based incremental database access method, VIEWCACHE, provides such an interface for accessing distributed data sets and directories. VIEWCACHE allows database browsing and search performing inter-database cross-referencing with no actual data movement between database sites. This organization and processing is especially suitable for managing Astrophysics databases which are physically distributed all over the world. Once the search is complete, the set of collected pointers pointing to the desired data are cached. VIEWCACHE includes spatial access methods for accessing image data sets, which provide much easier query formulation by referring directly to the image and very efficient search for objects contained within a two-dimensional window. We will develop and optimize a VIEWCACHE External Gateway Access to database management systems to facilitate distributed database search.

  4. Pointer Animation Implementation at Development of Multimedia Learning of Java Programming

    ERIC Educational Resources Information Center

    Rusli, Muhammad; Atmojo, Yohanes Priyo

    2015-01-01

    This research represents the development research using the references of previous research results related to the development of interactive multimedia learning (learner controlled), specially about the effectiveness and efficiency of multimedia learning of a content that developed by pointer animation implementation showing the content in…

  5. Sport Instruction for Individuals with Disabilities. The Best of Practical Pointers.

    ERIC Educational Resources Information Center

    American Alliance for Health, Physical Education, Recreation and Dance, Reston, VA.

    This book, written for teachers by teachers, includes articles by 14 contributing authors and is divided into three sections. Section 1 is entitled "Practical Pointers for Team Sports" and contains the following chapters: "Mainstreaming the Physically Handicapped for Team Sports" (S. J. Grosse); "Program Guide to Team…

  6. Infrared Risley beam pointer

    NASA Astrophysics Data System (ADS)

    Harford, Steven T.; Gutierrez, Homero; Newman, Michael; Pierce, Robert; Quakenbush, Tim; Wallace, John; Bornstein, Michael

    2014-03-01

    Ball Aerospace & Technologies Corp. (BATC) has developed a Risley Beam Pointer (RBP) mechanism capable of agile slewing, accurate pointing and high bandwidth. The RBP is comprised of two wedged prisms that offer a wide Field of Regard (FOR) and may be manufactured and operated with diffraction limited optical quality. The tightly packaged mechanism is capable of steering a 4 inch beam over a 60° half angle cone with better than 60 μrad precision. Absolute accuracy of the beam steering is better than 1 mrad. The conformal nature of the RBP makes it an ideal mechanism for use on low altitude aircraft and unmanned aerial vehicles. Unique aspects of the opto-mechanical design include i) thermal compliance to maintain bearing preload and optical figure over a wide temperature range; and ii) packaging of a remote infrared sensor that periodically reports the temperature of both prisms for accurate determination of the index of refraction. The pointing control system operates each prism independently and employs an inner rate loop nested within an outer position loop. Mathematics for the transformation between line-of-sight coordinates and prism rotation are hosted on a 200 MHz microcontroller with just 516 KB of RAM.

  7. Pointers, Lessons Learned, and Rules of Thumb for Successful Vibro-Acoustic Data Acquisition

    NASA Technical Reports Server (NTRS)

    Rossoni, Peter

    1998-01-01

    This presentation contains helpful pointers for successful vibroacoustic data acquisition in the following three areas: Instrumentation, Vibration Control and Pyro-shock data acquisition and analysis. A helpful bibliography is provided.

  8. Reading recognition of pointer meter based on pattern recognition and dynamic three-points on a line

    NASA Astrophysics Data System (ADS)

    Zhang, Yongqiang; Ding, Mingli; Fu, Wuyifang; Li, Yongqiang

    2017-03-01

    Pointer meters are frequently applied to industrial production for they are directly readable. They should be calibrated regularly to ensure the precision of the readings. Currently the method of manual calibration is most frequently adopted to accomplish the verification of the pointer meter, and professional skills and subjective judgment may lead to big measurement errors and poor reliability and low efficiency, etc. In the past decades, with the development of computer technology, the skills of machine vision and digital image processing have been applied to recognize the reading of the dial instrument. In terms of the existing recognition methods, all the parameters of dial instruments are supposed to be the same, which is not the case in practice. In this work, recognition of pointer meter reading is regarded as an issue of pattern recognition. We obtain the features of a small area around the detected point, make those features as a pattern, divide those certified images based on Gradient Pyramid Algorithm, train a classifier with the support vector machine (SVM) and complete the pattern matching of the divided mages. Then we get the reading of the pointer meter precisely under the theory of dynamic three points make a line (DTPML), which eliminates the error caused by tiny differences of the panels. Eventually, the result of the experiment proves that the proposed method in this work is superior to state-of-the-art works.

  9. A Laser-Pointer-Based Spectrometer for Endpoint Detection of EDTA Titrations

    ERIC Educational Resources Information Center

    Dahm, Christopher E.; Hall, James W.; Mattioni, Brian E.

    2004-01-01

    A laser spectrometer for the ethylenediaminetetra-acetic acid (EDTA) titration of magnesium or calcium ions that is designed around a handheld laser pointer as the source and a photoresistor as the detector is developed. Findings show that the use of the spectrometer reduces the degree of uncertainty and error in one part of the EDTA titrations,…

  10. Predictability sieve, pointer states, and the classicality of quantum trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalvit, D. A. R.; Zurek, W. H.; Dziarmaga, J.

    2005-12-15

    We study various measures of classicality of the states of open quantum systems subject to decoherence. Classical states are expected to be stable in spite of decoherence, and are thought to leave conspicuous imprints on the environment. Here these expected features of environment-induced superselection are quantified using four different criteria: predictability sieve (which selects states that produce least entropy), purification time (which looks for states that are the easiest to find out from the imprint they leave on the environment), efficiency threshold (which finds states that can be deduced from measurements on a smallest fraction of the environment), and puritymore » loss time (that looks for states for which it takes the longest to lose a set fraction of their initial purity). We show that when pointer states--the most predictable states of an open quantum system selected by the predictability sieve--are well defined, all four criteria agree that they are indeed the most classical states. We illustrate this with two examples: an underdamped harmonic oscillator, for which coherent states are unanimously chosen by all criteria, and a free particle undergoing quantum Brownian motion, for which most criteria select almost identical Gaussian states (although, in this case, the predictability sieve does not select well defined pointer states)« less

  11. SEQ-POINTER: Next generation, planetary spacecraft remote sensing science observation design tool

    NASA Technical Reports Server (NTRS)

    Boyer, Jeffrey S.

    1994-01-01

    Since Mariner, NASA-JPL planetary missions have been supported by ground software to plan and design remote sensing science observations. The software used by the science and sequence designers to plan and design observations has evolved with mission and technological advances. The original program, PEGASIS (Mariners 4, 6, and 7), was re-engineered as POGASIS (Mariner 9, Viking, and Mariner 10), and again later as POINTER (Voyager and Galileo). Each of these programs were developed under technological, political, and fiscal constraints which limited their adaptability to other missions and spacecraft designs. Implementation of a multi-mission tool, SEQ POINTER, under the auspices of the JPL Multimission Operations Systems Office (MOSO) is in progress. This version has been designed to address the limitations experienced on previous versions as they were being adapted to a new mission and spacecraft. The tool has been modularly designed with subroutine interface structures to support interchangeable celestial body and spacecraft definition models. The computational and graphics modules have also been designed to interface with data collected from previous spacecraft, or on-going observations, which describe the surface of each target body. These enhancements make SEQ POINTER a candidate for low-cost mission usage, when a remote sensing science observation design capability is required. The current and planned capabilities of the tool will be discussed. The presentation will also include a 5-10 minute video presentation demonstrating the capabilities of a proto-Cassini Project version that was adapted to test the tool. The work described in this abstract was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  12. SEQ-POINTER: Next generation, planetary spacecraft remote sensing science observation design tool

    NASA Astrophysics Data System (ADS)

    Boyer, Jeffrey S.

    1994-11-01

    Since Mariner, NASA-JPL planetary missions have been supported by ground software to plan and design remote sensing science observations. The software used by the science and sequence designers to plan and design observations has evolved with mission and technological advances. The original program, PEGASIS (Mariners 4, 6, and 7), was re-engineered as POGASIS (Mariner 9, Viking, and Mariner 10), and again later as POINTER (Voyager and Galileo). Each of these programs were developed under technological, political, and fiscal constraints which limited their adaptability to other missions and spacecraft designs. Implementation of a multi-mission tool, SEQ POINTER, under the auspices of the JPL Multimission Operations Systems Office (MOSO) is in progress. This version has been designed to address the limitations experienced on previous versions as they were being adapted to a new mission and spacecraft. The tool has been modularly designed with subroutine interface structures to support interchangeable celestial body and spacecraft definition models. The computational and graphics modules have also been designed to interface with data collected from previous spacecraft, or on-going observations, which describe the surface of each target body. These enhancements make SEQ POINTER a candidate for low-cost mission usage, when a remote sensing science observation design capability is required. The current and planned capabilities of the tool will be discussed. The presentation will also include a 5-10 minute video presentation demonstrating the capabilities of a proto-Cassini Project version that was adapted to test the tool. The work described in this abstract was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  13. Fast-Response, Sensitivitive and Low-Powered Chemosensors by Fusing Nanostructured Porous Thin Film and IDEs-Microheater Chip

    PubMed Central

    Dai, Zhengfei; Xu, Lei; Duan, Guotao; Li, Tie; Zhang, Hongwen; Li, Yue; Wang, Yi; Wang, Yuelin; Cai, Weiping

    2013-01-01

    The chemiresistive thin film gas sensors with fast response, high sensitivity, low power consumption and mass-produced potency, have been expected for practical application. It requires both sensitive materials, especially exquisite nanomaterials, and efficient substrate chip for heating and electrical addressing. However, it is challenging to achieve repeatable microstructures across the films and low power consumption of substrate chip. Here we presented a new sensor structure via the fusion of metal-oxide nanoporous films and micro-electro-mechanical systems (MEMS)-based sensing chip. An interdigital-electrodes (IDEs) and microheater integrated MEMS structure is designed and employed as substrate chip to in-situ fabricate colloidal monolayer template-induced metal-oxide (egg. SnO2) nanoporous sensing films. This fused sensor demonstrates mW-level low power, ultrafast response (~1 s), and parts-per-billion lever detection for ethanol gas. Due to the controllable template strategy and mass-production potential, such micro/nano fused high-performance gas sensors will be next-generation key miniaturized/integrated devices for advanced practical applications. PMID:23591580

  14. Field testing of a next generation pointer/tracker for IRCM

    NASA Astrophysics Data System (ADS)

    Chapman, Stuart; Wildgoose, Iain; McDonald, Eric; Duncan, Stuart

    2008-10-01

    SELEX Galileo has been involved in the development, manufacture and support of high performance electro-optic pointing and stabilisation systems for over forty years. The Company currently supplies the pointer/trackers for the AN/AAQ-24(V) NEMESIS DIRCM system, for which over 1,000 combat-proven units have been produced and deployed in the US, the UK and other nations. In 2007, SELEX Galileo embarked on an internally funded programme to develop ECLIPSE, a new advanced, lightweight, low-cost IRCM pointer/tracker, exploiting the extensive knowledge and experience gained from previous targeting and IRCM programmes. The ECLIPSE design is centred on a low inertia, two-axis servo mechanism with a strap-down inertial sensor and advanced sightline control algorithms, allowing effective tracking through the nadir and providing superior sightline performance. The programme involved the production of three demonstrator units in 2007, and two pre-production units in 2008. The demonstrator units were first trialled as part of a NEMESIS DIRCM system in late 2007, and in April 2008 100% success was achieved in jamming live-fire demonstrations. Helicopter installation and ground testing of a UK only trials system is complete, initial flight testing has just begun, and the airborne test and evaluation scheduled for late summer 2008 will bring the ECLIPSE System to technology readiness to level 7 (TRL7). This paper describes the Eclipse performance demonstrated to date.

  15. 'Einselection' of pointer observables: The new H-theorem?

    NASA Astrophysics Data System (ADS)

    Kastner, Ruth E.

    2014-11-01

    In attempting to derive irreversible macroscopic thermodynamics from reversible microscopic dynamics, Boltzmann inadvertently smuggled in a premise that assumed the very irreversibility he was trying to prove: 'molecular chaos'. The program of 'einselection' (environmentally induced superselection) within Everettian approaches faces a similar 'Loschmidt's Paradox': the universe, according to the Everettian picture, is a closed system obeying only unitary dynamics, and it therefore contains no distinguishable environmental subsystems with the necessary 'phase randomness' to effect einselection of a pointer observable. The theoretically unjustified assumption of distinguishable environmental subsystems is the hidden premise that makes the derivation of einselection circular. In effect, it presupposes the 'emergent' structures from the beginning. Thus the problem of basis ambiguity remains unsolved in Everettian interpretations.

  16. Cost-effective handoff scheme based on mobility-aware dual pointer forwarding in proxy mobile IPv6 networks.

    PubMed

    Son, Seungsik; Jeong, Jongpil

    2014-01-01

    In this paper, a mobility-aware Dual Pointer Forwarding scheme (mDPF) is applied in Proxy Mobile IPv6 (PMIPv6) networks. The movement of a Mobile Node (MN) is classified as intra-domain and inter-domain handoff. When the MN moves, this scheme can reduce the high signaling overhead for intra-handoff/inter-handoff, because the Local Mobility Anchor (LMA) and Mobile Access Gateway (MAG) are connected by pointer chains. In other words, a handoff is aware of low mobility between the previously attached MAG (pMAG) and newly attached MAG (nMAG), and another handoff between the previously attached LMA (pLMA) and newly attached LMA (nLMA) is aware of high mobility. Based on these mobility-aware binding updates, the overhead of the packet delivery can be reduced. Also, we analyse the binding update cost and packet delivery cost for route optimization, based on the mathematical analytic model. Analytical results show that our mDPF outperforms the PMIPv6 and the other pointer forwarding schemes, in terms of reducing the total cost of signaling.

  17. Atomization of High-Viscosity Fluids for Aromatherapy Using Micro-heaters for Heterogeneous Bubble Nucleation

    NASA Astrophysics Data System (ADS)

    Law, Junhui; Kong, Ka Wai; Chan, Ho-Yin; Sun, Winston; Li, Wen Jung; Chau, Eric Boa Fung; Chan, George Kak Man

    2017-01-01

    The development of a novel lead-free microelectromechanical-system (MEMS)-based atomizer using the principle of thermal bubble actuation is presented. It is a low-cost, lead-free design that is environmentally friendly and harmless to humans. It has been tested to be applicable over a wide range of fluid viscosities, ranging from 1 cP (e.g., water) to 200 cP (e.g., oil-like fluid) at room temperature, a range that is difficult to achieve using ordinary atomizers. The results demonstrate that the average power consumption of the atomizer is approximately 1 W with an atomization rate of 0.1 to 0.3 mg of deionized (DI) water per cycle. The relationships between the micro-heater track width and the track gap, the size of the micro-cavities and the nucleation energy were studied to obtain an optimal atomizer design. The particle image velocimetry (PIV) results indicate that the diameter of the ejected droplets ranges from 30 to 90 μm with a speed of 20 to 340 mm/s. In addition, different modes of spraying are reported for the first time. It is envisioned that the successful development of this MEMS-based atomizing technology will revolutionize the existing market for atomizers and could also benefit different industries, particularly in applications involving viscous fluids.

  18. Novel development of the micro-tensile test at elevated temperature using a test structure with integrated micro-heater

    NASA Astrophysics Data System (ADS)

    Ang, W. C.; Kropelnicki, P.; Soe, Oak; Ling, J. H. L.; Randles, A. B.; Hum, A. J. W.; Tsai, J. M. L.; Tay, A. A. O.; Leong, K. C.; Tan, C. S.

    2012-08-01

    This paper describes the novel development of a micro-tensile testing method that allows testing at elevated temperatures. Instead of using a furnace, a titanium/platinum thin film micro-heater was fabricated on a conventional dog-bone-shaped test structure to heat up its gauge section locally. An infrared (IR) camera with 5 µm resolution was employed to verify the temperature uniformity across the gauge section of the test structure. With this micro-heater-integrated test structure, micro-tensile tests can be performed at elevated temperatures using any conventional tensile testing system without any major modification to the system. In this study, the tensile test of the single crystal silicon (SCS) thin film with (1 0 0) surface orientation and <1 1 0> tensile direction was performed at room temperature and elevated temperatures, up to 300 °C. Experimental results for Young's modulus as a function of temperature are presented. A micro-sized SCS film showed a low dependence of mechanical properties on temperature up to 300 °C.

  19. The Trainee Teacher and His Practice Class. Fifty Pointers for the Student-Teacher.

    ERIC Educational Resources Information Center

    Rees, Alun L. W.

    1969-01-01

    This handbook, based on the author's experience of supervising the English practice-classes of trainee teachers, was originally compiled for the specific use of students at the National University of Trujillo, Peru, and consists of a list of pointers embracing the most prevalent of trainees' shortcomings observed over a period of years at all…

  20. A Scalable Nonuniform Pointer Analysis for Embedded Program

    NASA Technical Reports Server (NTRS)

    Venet, Arnaud

    2004-01-01

    In this paper we present a scalable pointer analysis for embedded applications that is able to distinguish between instances of recursively defined data structures and elements of arrays. The main contribution consists of an efficient yet precise algorithm that can handle multithreaded programs. We first perform an inexpensive flow-sensitive analysis of each function in the program that generates semantic equations describing the effect of the function on the memory graph. These equations bear numerical constraints that describe nonuniform points-to relationships. We then iteratively solve these equations in order to obtain an abstract storage graph that describes the shape of data structures at every point of the program for all possible thread interleavings. We bring experimental evidence that this approach is tractable and precise for real-size embedded applications.

  1. Has Corpus-Based Instruction Reached a Tipping Point? Practical Applications and Pointers for Teachers

    ERIC Educational Resources Information Center

    Huang, Li-Shih

    2017-01-01

    This article provides an easy introduction into corpus-based instruction by explaining what the approach entails. It also presents key terms and discusses key theoretical concepts drawn from the literature; from these, practical applications and pointers are offered for those practitioners wishing to use corpus data or implement corpus-based…

  2. Laser-Induced Fluorescence in Gaseous [I[subscript]2] Excited with a Green Laser Pointer

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    2007-01-01

    A green laser pointer could be used in a flashy demonstration of laser-induced fluorescence in the gas phase by directing the beam of the laser through a cell containing [I[subscript]2] at its room temperature vapor pressure. The experiment could be used to provide valuable insight into the requirements for laser-induced fluorescence (LIF) and the…

  3. Automated sub-5 nm image registration in integrated correlative fluorescence and electron microscopy using cathodoluminescence pointers

    NASA Astrophysics Data System (ADS)

    Haring, Martijn T.; Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Voortman, Lenard M.; Kruit, Pieter; Hoogenboom, Jacob P.

    2017-03-01

    In the biological sciences, data from fluorescence and electron microscopy is correlated to allow fluorescence biomolecule identification within the cellular ultrastructure and/or ultrastructural analysis following live-cell imaging. High-accuracy (sub-100 nm) image overlay requires the addition of fiducial markers, which makes overlay accuracy dependent on the number of fiducials present in the region of interest. Here, we report an automated method for light-electron image overlay at high accuracy, i.e. below 5 nm. Our method relies on direct visualization of the electron beam position in the fluorescence detection channel using cathodoluminescence pointers. We show that image overlay using cathodoluminescence pointers corrects for image distortions, is independent of user interpretation, and does not require fiducials, allowing image correlation with molecular precision anywhere on a sample.

  4. Automated sub-5 nm image registration in integrated correlative fluorescence and electron microscopy using cathodoluminescence pointers.

    PubMed

    Haring, Martijn T; Liv, Nalan; Zonnevylle, A Christiaan; Narvaez, Angela C; Voortman, Lenard M; Kruit, Pieter; Hoogenboom, Jacob P

    2017-03-02

    In the biological sciences, data from fluorescence and electron microscopy is correlated to allow fluorescence biomolecule identification within the cellular ultrastructure and/or ultrastructural analysis following live-cell imaging. High-accuracy (sub-100 nm) image overlay requires the addition of fiducial markers, which makes overlay accuracy dependent on the number of fiducials present in the region of interest. Here, we report an automated method for light-electron image overlay at high accuracy, i.e. below 5 nm. Our method relies on direct visualization of the electron beam position in the fluorescence detection channel using cathodoluminescence pointers. We show that image overlay using cathodoluminescence pointers corrects for image distortions, is independent of user interpretation, and does not require fiducials, allowing image correlation with molecular precision anywhere on a sample.

  5. Automated sub-5 nm image registration in integrated correlative fluorescence and electron microscopy using cathodoluminescence pointers

    PubMed Central

    Haring, Martijn T.; Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Voortman, Lenard M.; Kruit, Pieter; Hoogenboom, Jacob P.

    2017-01-01

    In the biological sciences, data from fluorescence and electron microscopy is correlated to allow fluorescence biomolecule identification within the cellular ultrastructure and/or ultrastructural analysis following live-cell imaging. High-accuracy (sub-100 nm) image overlay requires the addition of fiducial markers, which makes overlay accuracy dependent on the number of fiducials present in the region of interest. Here, we report an automated method for light-electron image overlay at high accuracy, i.e. below 5 nm. Our method relies on direct visualization of the electron beam position in the fluorescence detection channel using cathodoluminescence pointers. We show that image overlay using cathodoluminescence pointers corrects for image distortions, is independent of user interpretation, and does not require fiducials, allowing image correlation with molecular precision anywhere on a sample. PMID:28252673

  6. Comparative efficacy of new interfaces for intra-procedural imaging review: the Microsoft Kinect, Hillcrest Labs Loop Pointer, and the Apple iPad.

    PubMed

    Chao, Cherng; Tan, Justin; Castillo, Edward M; Zawaideh, Mazen; Roberts, Anne C; Kinney, Thomas B

    2014-08-01

    We adapted and evaluated the Microsoft Kinect (touchless interface), Hillcrest Labs Loop Pointer (gyroscopic mouse), and the Apple iPad (multi-touch tablet) for intra-procedural imaging review efficacy in a simulation using MIM Software DICOM viewers. Using each device, 29 radiologists executed five basic interactions to complete the overall task of measuring an 8.1-cm hepatic lesion: scroll, window, zoom, pan, and measure. For each interaction, participants assessed the devices on a 3-point subjective scale (3 = highest usability score). The five individual scores were summed to calculate a subjective composite usability score (max 15 points). Overall task time to completion was recorded. Each user also assessed each device for its potential to jeopardize a sterile field. The composite usability scores were as follows: Kinect 9.9 (out of 15.0; SD = 2.8), Loop Pointer 12.9 (SD = 13.5), and iPad 13.5 (SD = 1.8). Mean task completion times were as follows: Kinect 156.7 s (SD = 86.5), Loop Pointer 51.5 s (SD = 30.6), and iPad 41.1 s (SD = 25.3). The mean hepatic lesion measurements were as follows: Kinect was 7.3 cm (SD = 0.9), Loop Pointer 7.8 cm (SD = 1.1), and iPad 8.2 cm (SD = 1.2). The mean deviations from true hepatic lesion measurement were as follows: Kinect 1.0 cm and for both the Loop Pointer and iPad, 0.9 cm (SD = 0.7). The Kinect had the least and iPad had the most subjective concern for compromising the sterile field. A new intra-operative imaging review interface may be near. Most surveyed foresee these devices as useful in procedures, and most do not anticipate problems with a sterile field. An ideal device would combine iPad's usability and accuracy with the Kinect's touchless aspect.

  7. Nanowire-Assembled Hierarchical ZnCo2O4 Microstructure Integrated with a Low-Power Microheater for Highly Sensitive Formaldehyde Detection.

    PubMed

    Long, Hu; Harley-Trochimczyk, Anna; Cheng, Siyi; Hu, Hao; Chi, Won Seok; Rao, Ameya; Carraro, Carlo; Shi, Tielin; Tang, Zirong; Maboudian, Roya

    2016-11-23

    Nanowire-assembled 3D hierarchical ZnCo 2 O 4 microstructure is synthesized by a facile hydrothermal route and a subsequent annealing process. In comparison to simple nanowires, the resulting dandelion-like structure yields more open spaces between nanowires, which allow for better gas diffusion and provide more active sites for gas adsorption while maintaining good electrical conductivity. The hierarchical ZnCo 2 O 4 microstructure is integrated on a low-power microheater platform without using binders or conductive additives. The hierarchical structure of the ZnCo 2 O 4 sensing material provides reliable electrical connection across the sensing electrodes. The resulting sensor exhibits an ultralow detection limit of 3 ppb toward formaldehyde with fast response and recovery as well as good selectivity to CO, H 2 , and hydrocarbons such as n-pentane, propane, and CH 4 . The sensor only consumes ∼5.7 mW for continuous operation at 300 °C with good long-term stability. The excellent sensing performance of this hierarchical structure based sensor suggests the advantages of combining such structures with microfabricated heaters for practical low-power sensing applications.

  8. Tunable Fano resonance using weak-value amplification with asymmetric spectral response as a natural pointer

    NASA Astrophysics Data System (ADS)

    Singh, Ankit K.; Ray, Subir K.; Chandel, Shubham; Pal, Semanti; Gupta, Angad; Mitra, P.; Ghosh, N.

    2018-05-01

    Weak measurement enables faithful amplification and high-precision measurement of small physical parameters and is under intensive investigation as an effective tool in metrology and for addressing foundational questions in quantum mechanics. Here we demonstrate weak-value amplification using the asymmetric spectral response of Fano resonance as the pointer arising naturally in precisely designed metamaterials, namely, waveguided plasmonic crystals. The weak coupling between the polarization degree of freedom and the spectral response of Fano resonance arises due to a tiny shift in the asymmetric spectral response between two orthogonal linear polarizations. By choosing the preselected and postselected polarization states to be nearly mutually orthogonal, we observe both real and imaginary weak-value amplifications manifested as a spectacular shift of the Fano-resonance peak and narrowing (or broadening) of the resonance linewidth, respectively. The remarkable control and tunability of Fano resonance in a single device enabled by weak-value amplification may enhance active Fano-resonance-based applications in the nano-optical domain. In general, weak measurements using Fano-type spectral response broadens the domain of applicability of weak measurements using natural spectral line shapes as a pointer in a wide range of physical systems.

  9. Designing Light Beam Transmittance Measuring Tool Using a Laser Pointer

    NASA Astrophysics Data System (ADS)

    Nuroso, H.; Kurniawan, W.; Marwoto, P.

    2016-08-01

    A simple instrument used for measuring light beam transmittance percentage made of window film has been developed. The instrument uses a laser pointer of 405 nm and 650 nm ±10% as a light source. Its accuracy approaches 80%. Transmittance data was found by comparing the light beam before and after passing the window film. The light intensity measuring unit was deleted by splitting the light source into two beams through a beam splitter. The light beam was changed into resistance by a NORP12 LDR sensor designed at a circuit of voltage divider rule of Khirchoff's laws. This conversion system will produce light beam intensity received by the sensor to become an equal voltage. This voltage will, then, be presented on the computer screen in the form of a real time graph via a 2.0 USB data transfer.

  10. Green laser pointers for visual astronomy: how much power is enough?

    PubMed

    Bará, Salvador; Robles, Marisol; Tejelo, Isabel; Marzoa, Ramón I; González, Héctor

    2010-02-01

    Green laser pointers with output powers in the tens to hundreds of milliwatt (mW) range, clearly exceeding the limiting 5 mW of American National Standards Institute class 3a (International Electrotechnical Commission class 3R), are now easily available in the global market. They are increasingly being used in public sky observations and other nighttime outreach activities by educators and science communicators in countries where their use is not well regulated, despite the fact that such high power levels may represent a potential threat to visual health. The purpose of this study was to determine the output power reasonably required to perform satisfactorily this kind of activities. Twenty-three observers were asked to vary continuously the output power of a green laser source (wavelength 532 nm) until clearly seeing the laser beam propagating skyward through the atmosphere in a heavily light-polluted urban setting. Measurements were conducted with observers of a wide range of ages (9 to 56 years), refractions (spherical equivalents -8.50 to +1.50 diopters), and previous expertise in using lasers as pointing devices outdoors (from no experience to professional astronomers). Two measurement runs were made in different nights under different meteorological conditions. The output power chosen by observers in the first run (11 observers) averaged to 1.84 mW (+/-0.68 mW, 1 SD). The second run (17 observers) averaged to 2.91 mW (+/-1.54 mW). The global average was 2.38 mW (+/-1.30 mW). Only one observer scored 5.6 mW, just above the class 3a limit. The power chosen by the remaining 22 observers ranged from 1.37 to 3.53 mW. Green laser pointers with output powers below 5 mW (laser classes American National Standards Institute 3a or International Electrotechnical Commission 3R) appear to be sufficient for use in educational nighttime outdoors activities, providing enough bright beams at reasonable safety levels.

  11. Peace and Conflict Research in the Age of the Cholera: Ten Pointers to the Future of Peace Studies.

    ERIC Educational Resources Information Center

    Galtung, Johan

    1996-01-01

    Presents 10 pointers that can lead to constructive peace making. Covers issues such as a definition of peace; the training of peace workers; the role of the state system in creating conflict; legitimizing peace actions; and suggestions for future peace creation. Discusses the links between direct, structural, and cultural violence. (DSK)

  12. One-dimensional model of inertial pumping

    NASA Astrophysics Data System (ADS)

    Kornilovitch, Pavel E.; Govyadinov, Alexander N.; Markel, David P.; Torniainen, Erik D.

    2013-02-01

    A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location.

  13. One-dimensional model of inertial pumping.

    PubMed

    Kornilovitch, Pavel E; Govyadinov, Alexander N; Markel, David P; Torniainen, Erik D

    2013-02-01

    A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location.

  14. Extreme pointer years in tree-ring records of Central Spain as evidence of volcanic eruptions (Huaynaputina, Peru, 1600 AC) and other climatic events

    NASA Astrophysics Data System (ADS)

    Génova, M.

    2011-12-01

    The study of pointer years based on the numerous tree-ring chronologies of the central Iberian Peninsula (Sierra de Guadarrama) could provide complementary information about climate variability over the last 405 years. In total, 64 pointer years have been identified: 30 negative (representing minimum growths) and 34 positive (representing maximum growths), the most significant of these being 1601, 1963 and 1996 for the negative ones, and 1734 and 1737 for the positive ones. Given that summer precipitation has been the most incident factor in the general variability of growth of Pinus in the Sierra de Guadarrama in the second half of the 20th century, it is also an explanatory factor in almost 50% of the extreme growths. Furthermore, the data show that there has been variability over the centuries in the distribution of the frequencies of pointer years and intervals. The first half of the 17th century, together with the second half of the 20th century, constitute the two most notable periods for the frequency of negative pointer years in Central Spain. This variability was sufficiently notable to affirm that, both in the 17th and 20th centuries, the macroclimatic anomalies that affected growth were more frequent and more extreme than in the other two centuries analysed. The period 1600-1602 is of special significance, being one of the most unfavourable for tree growth in the centre of Spain, with 1601 representing the minimum index in the regional chronology. It is possible to infer that these phenomena are the effect of the eruption of Huaynaputina, which occurred in Peru at the beginning of 1600 AD. This is the first time that the effects of this eruption in the tree-ring records of central and southern Europe have been demonstrated.

  15. Extreme pointer years in tree-ring records of Central Spain as evidence of climatic events and the eruption of the Huaynaputina Volcano (Peru, 1600 AD)

    NASA Astrophysics Data System (ADS)

    Génova, M.

    2012-04-01

    The study of pointer years of numerous tree-ring chronologies of the central Iberian Peninsula (Sierra de Guadarrama) could provide complementary information about climate variability over the last 405 yr. In total, 64 pointer years have been identified: 30 negative (representing minimum growths) and 34 positive (representing maximum growths), the most significant of these being 1601, 1963 and 1996 for the negative ones, and 1734 and 1737 for the positive ones. Given that summer precipitation was found to be the most limiting factor for the growth of Pinus in the Sierra de Guadarrama in the second half of the 20th century, it is also an explanatory factor in almost 50% of the extreme growths. Furthermore, these pointer years and intervals are not evenly distributed throughout time. Both in the first half of the 17th and in the second half of 20th, they were more frequent and more extreme and these periods are the most notable for the frequency of negative pointer years in Central Spain. The interval 1600-1602 is of special significance, being one of the most unfavourable for tree growth in the centre of Spain, with 1601 representing the minimum index in the regional chronology. We infer that this special minimum annual increase was the effect of the eruption of Huaynaputina, which occurred in Peru at the beginning of 1600 AD. This is the first time that the effects of this eruption in the tree-ring records of Southern Europe have been demonstrated.

  16. NIR laser pointer for in vivo photothermal therapy of murine LM3 tumor using intratumoral China ink as a photothermal agent.

    PubMed

    Blázquez-Castro, Alfonso; Colombo, Lucas L; Vanzulli, Silvia I; Stockert, Juan C

    2018-03-16

    The photothermal effect is one of the most promising photonic procedures currently under development to successfully treat several clinical disorders, none the least some kinds of cancer. At present, this field is undergoing a renewed interest due to advances in both photothermal materials and better-suited light sources. However, scientific studies in this area are sometimes hampered by the relative unavailability of state-of-art materials or the complexity of setting up a dedicated optical facility. Here, we present a simple and affordable approach to do research in the photothermal field that relies on a commercial NIR laser pointer and a readily available everyday pigment: China ink. A proof-of-concept study is presented in which mice bearing intradermal LM3 mammary adenocarcinoma tumors were successfully treated in vivo employing China ink and the laser pointer. TUNEL and Ki-67 post-treatment tissue assessment clearly indicates the deleterious action of the photothermal treatment on the tumor. Therefore, the feasibility of this simple approach has been demonstrated, which may inspire other groups to implement simple procedures to further explore the photothermal effect.

  17. The application of laser pointers for demonstration experiments in nanotechnology lessons at secondary school level

    NASA Astrophysics Data System (ADS)

    Markin, Alexey V.; Markina, Natalia E.; Eilks, Ingo

    2017-03-01

    The article contains description of several demonstration experiments connected with application of light scattering (LS) for investigation of optical properties of nanoparticles solutions. The demonstrations are based on the usage of laser pointers with different wavelengths (405, 532, and 650 nm) for observing of light scattering and absorbance by various nanoparticles (silver, gold, sulfur, and cadmium selenide). These experiments were used during short course for secondary school students ("Introduction to Nanotechnology") and applied as hands-on activities in order to introduce students to methods of investigation of nanostructures. The demonstrations (included to the course) were tested during summer-camp school (in 2015 and 2016) and in club in chemistry (2016) for secondary school students (15-17 years old).

  18. Microfluid oscillator based on thermocapillarity

    NASA Astrophysics Data System (ADS)

    Huang, Teng-chao; Shen, Yi-bing; Liu, Xu; Bai, Jian; Hou, Xiyun; Ye, Hui; Lou, Di

    2004-12-01

    A novel micro fluid oscillator with a boron diffused resistor is proposed in this paper. The actuation principle is based on the combination of Marangoni effect. The contemporary microfabrication technique enables us to fabricate microheater tiny enough to control temperature so quickly and precisely in micro length scale. The devices exhibiting the Marangoni effect in square channels were designed and fabricated from one silicon substrate and two quartz substrates. And the three substrates were aligned, bonded and packaged for testing. In this actuator there is a pair of micro-heaters to produce a thermal gradient along the slit. The driving wattage is about 0.1W and the resistors can make a temperature difference about 100 degrees during 0.1s with a pulsewidth of 20us for 0.1A current pulses. Then the movement is driven towards the lower temperature direction by the interfacial tension of the air-liquid interface. This micro fluid actuator can play important role in many liquid micro-systems such as in micromotor and micro valve.

  19. Investigative Studies of Refractive Indices of Liquids and a Demonstration of Refraction by the Use of a Laser Pointer and a Lazy Susan

    ERIC Educational Resources Information Center

    Wong, Siu Ling; Mak, Se-yuen

    2008-01-01

    We describe the design of a simple homemade apparatus for the measurement of the refractive indices of liquids and demonstration of refraction. A circular transparent plastic tank and a lazy Susan are held concentrically. A laser pointer is mounted on the lazy Susan with its laser beam pointing radially through the centre of the plastic tank.…

  20. Porcupine quill migration in the thoracic cavity of a German shorthaired pointer.

    PubMed

    Guevara, Jose L; Holmes, Elaine S; Reetz, Jennifer; Holt, David E

    2015-01-01

    A 7 yr old German shorthaired pointer presented with progressive respiratory distress and lethargy. Two weeks prior to presentation, the dog had porcupine quills removed from the left forepaw, muzzle, and sternal area. At the time of presentation, the dog had bounding pulses and friction rubs in the right dorsal lung field. Harsh lung sounds and decreased lung sounds were ausculted in multiple lung fields. Radiographs revealed a pneumothorax and rounding of the cardiac silhouette suggestive of pericardial effusion. Computed tomographic imaging was performed and revealed multiple porcupine quills in the thoracic cavity. Surgery was performed and quills were found in multiple lung lobes and the heart. Following surgery the dog remained hypotensive. A post-operative echocardiogram revealed multiple curvilinear soft-tissue opacities in the heart. Given the grave prognosis the dog was subsequently euthanized and a postmortem examination was performed. A single porcupine quill was discovered in the left atrium above the mitral valve annulus. The quill extended across the aortic root, impinging on the coronary artery below the level of the aortic valve. To the authors' knowledge, this is the first known report of porcupine quill migration through the heart.

  1. Low power gas sensor array on flexible acetate substrate

    NASA Astrophysics Data System (ADS)

    Benedict, Samatha; Basu, Palash Kumar; Bhat, Navakanta

    2017-07-01

    In this paper, we present a novel approach of fabricating a low-cost and low power gas sensor array on flexible acetate sheets for sensing CO, SO2, H2 and NO2 gases. The array has four sensor elements with an integrated microheater which can be individually controlled enabling the monitoring of four gases. The thermal properties of the microheater characterized by IR imaging are presented. The microheater with an active area of 15 µm  ×  5 µm reaches a temperature of 300 °C, consuming 2 mW power, the lowest reported on flexible substrates. A sensing electrode is patterned on top of the microheater, and a nanogap (100 nm) is created by an electromigration process. This nanogap is bridged by four sensing materials doped with platinum, deposited using a solution dispensing technique. The sensing material characterization is completed using energy dispersive x-ray analysis. The sensing characteristics of ZnO for CO, V2O5 for SO2, SnO2 for H2 and WO3 for NO2 gases are studied at different microheater voltages. The sensing characteristics of ZnO at different bending angles is also studied, which shows that the microheater and the sensing material are intact without any breaking upto a bending angle of 20°. The ZnO CO sensor shows sensitivity of 146.2% at 1 ppm with good selectivity.

  2. Protein kinase CK2 modulates IL-6 expression in inflammatory breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drygin, Denis, E-mail: ddrygin@cylenepharma.com; Ho, Caroline B.; Omori, Mayuko

    Highlights: Black-Right-Pointing-Pointer We examine the potential cross-talk between CK2 and IL-6. Black-Right-Pointing-Pointer Inhibition of CK2 by siRNA or CX-4945 inhibits expression of IL-6 in models of IBC. Black-Right-Pointing-Pointer Treatment of IBC patient in the clinic with CX-4945 reduces her IL-6 plasma levels. Black-Right-Pointing-Pointer We demonstrate that CK2 is a potential therapeutic target for IL-6 driven diseases. -- Abstract: Inflammatory breast cancer is driven by pro-angiogenic and pro-inflammatory cytokines. One of them Interleukin-6 (IL-6) is implicated in cancer cell proliferation and survival, and promotes angiogenesis, inflammation and metastasis. While IL-6 has been shown to be upregulated by several oncogenes, the mechanismmore » behind this phenomenon is not well characterized. Here we demonstrate that the pleotropic Serine/Threonine kinase CK2 is implicated in the regulation of IL-6 expression in a model of inflammatory breast cancer. We used siRNAs targeted toward CK2 and a selective small molecule inhibitor of CK2, CX-4945, to inhibit the expression and thus suppress the secretion of IL-6 in in vitro as well as in vivo models. Moreover, we report that in a clinical trial, CX-4945 was able to dramatically reduce IL-6 levels in plasma of an inflammatory breast cancer patient. Our data shed a new light on the regulation of IL-6 expression and position CX-4945 and potentially other inhibitors of CK2, for the treatment of IL-6-driven cancers and possibly other diseases where IL-6 is instrumental, including rheumatoid arthritis.« less

  3. Demonstration of a Balloon Borne Arc-Second Pointer Design

    NASA Technical Reports Server (NTRS)

    DeWeese, Keith D.; Ward, Philip R.

    2006-01-01

    Many designs for utilizing stratospheric balloons as low-cost platforms on which to conduct space science experiments have been proposed throughout the years. A major hurdle in extending the range of experiments for which these vehicles are useful has been the imposition of the gondola dynamics on the accuracy with which an instrument can be kept pointed at a celestial target. A significant number of scientists have sought the ability to point their instruments with jitter in the arc-second range. This paper presents the design and analysis of a stratospheric balloon borne pointing system that is able to meet this requirement. The test results of a demonstration prototype of the design with similar ability are also presented. Discussion of a high fidelity controller simulation for design analysis is presented. The flexibility of the flight train is represented through generalized modal analysis. A multiple controller scheme is utilized for coarse and fine pointing. Coarse azimuth pointing is accomplished by an established pointing system, with extensive flight history, residing above the gondola structure. A pitch-yaw gimbal mount is used for fine pointing, providing orthogonal axes when nominally on target. Fine pointing actuation is from direct drive dc motors, eliminating backlash problems. An analysis of friction nonlinearities and a demonstration of the necessity in eliminating static friction are provided. A unique bearing hub design is introduced that eliminates static friction from the system dynamics. A control scheme involving linear accelerometers for enhanced disturbance rejection is also presented. Results from a linear analysis of the total system and the high fidelity simulation are given. Results from a generalized demonstration prototype are presented. Commercial off-the-shelf (COTS) hardware was used to demonstrate the efficacy and performance of the pointer design for a mock instrument. Sub-arcsecond pointing ability from a ground hang test setup

  4. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces

    PubMed Central

    Dalui, Malay; Wang, W.-M.; Trivikram, T. Madhu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J.; Ayyub, P.; Sheng, Z. M.; Krishnamurthy, M.

    2015-01-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈0.25 μm) layer of 25–30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2×1018  W/cm2. However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration. PMID:26153048

  5. Scalp marking for a craniotomy using a laser pointer during preoperative computed tomographic imaging: technical note.

    PubMed

    Kubo, S; Nakata, H; Sugauchi, Y; Yokota, N; Yoshimine, T

    2000-05-01

    The preoperative localization of superficial intracranial lesions is often necessary for accurate burr hole placement or craniotomy siting. It is not always easy, however, to localize the lesions over the scalp working only from computed tomographic images. We developed a simple method for such localization using a laser pointer during the preoperative computed tomographic examination. The angle of incidence, extending from a point on the scalp to the center of the computed tomographic image, is measured by the software included with the scanner. In the gantry, at the same angle as on the image, a laser is beamed from a handmade projector onto the patient's scalp toward the center of the gantry. The point illuminated on the patient's head corresponds to that on the image. The device and the method are described in detail herein. We applied this technique to mark the area for the craniotomy before surgery in five patients with superficial brain tumors. At the time of surgery, it was confirmed that the tumors were circumscribed precisely. The technique is easy to perform and useful in the preoperative planning for a craniotomy. In addition, the device is easily constructed and inexpensive.

  6. Wide-range and fast thermally-tunable silicon photonic microring resonators using the junction field effect.

    PubMed

    Wang, Xiaoxi; Lentine, Anthony; DeRose, Christopher; Starbuck, Andrew L; Trotter, Douglas; Pomerene, Andrew; Mookherjea, Shayan

    2016-10-03

    Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a "pinched" p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. Thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%-90% transition time, and with efficiency of 3.2 μW/GHz.

  7. Audiologist-driven versus patient-driven fine tuning of hearing instruments.

    PubMed

    Boymans, Monique; Dreschler, Wouter A

    2012-03-01

    Two methods of fine tuning the initial settings of hearing aids were compared: An audiologist-driven approach--using real ear measurements and a patient-driven fine-tuning approach--using feedback from real-life situations. The patient-driven fine tuning was conducted by employing the Amplifit(®) II system using audiovideo clips. The audiologist-driven fine tuning was based on the NAL-NL1 prescription rule. Both settings were compared using the same hearing aids in two 6-week trial periods following a randomized blinded cross-over design. After each trial period, the settings were evaluated by insertion-gain measurements. Performance was evaluated by speech tests in quiet, in noise, and in time-reversed speech, presented at 0° and with spatially separated sound sources. Subjective results were evaluated using extensive questionnaires and audiovisual video clips. A total of 73 participants were included. On average, higher gain values were found for the audiologist-driven settings than for the patient-driven settings, especially at 1000 and 2000 Hz. Better objective performance was obtained for the audiologist-driven settings for speech perception in quiet and in time-reversed speech. This was supported by better scores on a number of subjective judgments and in the subjective ratings of video clips. The perception of loud sounds scored higher than when patient-driven, but the overall preference was in favor of the audiologist-driven settings for 67% of the participants.

  8. Cytotoxic T lymphocyte-dependent tumor growth inhibition by a vascular endothelial growth factor-superantigen conjugate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Qingwen; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433; Jiang, Songmin

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer We construct and purify a fusion protein VEGF-SEA. Black-Right-Pointing-Pointer VEGF-SEA strongly repressed the growth of murine solid sarcoma 180 (S180) tumors. Black-Right-Pointing-Pointer T cells driven by VEGF-SEA were accumulated around tumor cells bearing VEGFR by mice image model. Black-Right-Pointing-Pointer VEGF-SEA can serve as a tumor targeting agent and sequester CTLs into the tumor site. Black-Right-Pointing-Pointer The induced CTLs could release the cytokines, perforins and granzyme B to kill the tumor cells. -- Abstract: T cells are major lymphocytes in the blood and passengers across the tumor vasculature. If these T cells are retained in the tumor site, amore » therapeutic potential will be gained by turning them into tumor-reactive cytotoxic T lymphocytes (CTLs). A fusion protein composed of human vascular endothelial growth factor (VEGF) and staphylococcal enterotoxin A (SEA) with a D227A mutation strongly repressed the growth of murine solid sarcoma 180 (S180) tumors (control versus VEGF-SEA treated with 15 {mu}g, mean tumor weight: 1.128 g versus 0.252 g, difference = 0.876 g). CD4{sup +} and CD8{sup +} T cells driven by VEGF-SEA were accumulated around VEGFR expressing tumor cells and the induced CTLs could release the tumoricidal cytokines, such as interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). Meanwhile, intratumoral CTLs secreted cytolytic pore-forming perforin and granzyme B proteins around tumor cells, leading to the death of tumor cells. The labeled fusion proteins were gradually targeted to the tumor site in an imaging mice model. These results show that VEGF-SEA can serve as a tumor targeting agent and sequester active infiltrating CTLs into the tumor site to kill tumor cells, and could therefore be a potential therapeutical drug for a variety of cancers.« less

  9. Inhibition of cell proliferation and migration by oxidative stress from ascorbate-driven juglone redox cycling in human bladder-derived T24 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kviecinski, M.R., E-mail: mrkviecinski@hotmail.com; Pedrosa, R.C., E-mail: rozangelapedrosa@gmail.com; Felipe, K.B., E-mail: kakabettega@yahoo.com.br

    2012-05-04

    Highlights: Black-Right-Pointing-Pointer The cytotoxicity of juglone is markedly increased by ascorbate. Black-Right-Pointing-Pointer T24 cell death by oxidative stress is necrosis-like. Black-Right-Pointing-Pointer Redox cycling by juglone/ascorbate inhibits cell proliferation. Black-Right-Pointing-Pointer Cellular migration is impaired by juglone/ascorbate. -- Abstract: The effects of juglone on T24 cells were assessed in the presence and absence of ascorbate. The EC{sub 50} value for juglone at 24 h decreased from 28.5 {mu}M to 6.3 {mu}M in the presence of ascorbate. In juglone-treated cells, ascorbate increased ROS formation (4-fold) and depleted GSH (65%). N-acetylcysteine or catalase restricted the juglone/ascorbate-mediated effects, highlighting the role of oxidative stress inmore » juglone cytotoxicity. Juglone alone or associated with ascorbate did not cause caspase-3 activation or PARP cleavage, suggesting necrosis-like cell death. DNA damage and the mild ER stress caused by juglone were both enhanced by ascorbate. In cells treated with juglone (1-5 {mu}M), a concentration-dependent decrease in cell proliferation was observed. Ascorbate did not impair cell proliferation but its association with juglone led to a clonogenic death state. The motility of ascorbate-treated cells was not affected. Juglone slightly restricted motility, but cells lost their ability to migrate most noticeably when treated with juglone plus ascorbate. We postulate that juglone kills cells by a necrosis-like mechanism inhibiting cell proliferation and the motility of T24 cells. These effects are enhanced in the presence of ascorbate.« less

  10. Interpreting the macroscopic pointer by analysing the elements of reality of a Schrödinger cat

    NASA Astrophysics Data System (ADS)

    Reid, M. D.

    2017-10-01

    We examine Einstein-Podolsky-Rosen’s (EPR) steering nonlocality for two realisable Schrödinger cat-type states where a meso/macroscopic system (called the ‘cat’-system) is entangled with a microscopic spin-1/2 system. We follow EPR’s argument and derive the predictions for ‘elements of reality’ that would exist to describe the cat-system, under the assumption of EPR’s local realism. By showing that those predictions cannot be replicated by any local quantum state description of the cat-system, we demonstrate the EPR-steering of the cat-system. For large cat-systems, we find that a local hidden state model is near-satisfied, meaning that a local quantum state description exists (for the cat) whose predictions differ from those of the elements of reality by a vanishingly small amount. For such a local hidden state model, the EPR-steering of the cat vanishes, and the cat-system can be regarded as being in a mixture of ‘dead’ and ‘alive’ states despite it being entangled with the spin system. We therefore propose that a rigorous signature of the Schrödinger cat-type paradox is the EPR-steering of the cat-system and provide two experimental signatures. This leads to a hybrid quantum/classical interpretation of the macroscopic pointer of a measurement device and suggests that many Schrödinger cat-type paradoxes may be explained by microscopic nonlocality.

  11. Wide-range and fast thermally-tunable silicon photonic microring resonators using the junction field effect

    DOE PAGES

    Wang, Xiaoxi; Lentine, Anthony; DeRose, Christopher; ...

    2016-09-26

    Tunable silicon microring resonators with small, integrated micro-heaters which exhibit a junction field effect were made using a conventional silicon-on-insulator (SOI) photonic foundry fabrication process. The design of the resistive tuning section in the microrings included a “pinched” p-n junction, which limited the current at higher voltages and inhibited damage even when driven by a pre-emphasized voltage waveform. Dual-ring filters were studied for both large (>4.9 THz) and small (850 GHz) free-spectral ranges. In conclusion, thermal red-shifting was demonstrated with microsecond-scale time constants, e.g., a dual-ring filter was tuned over 25 nm in 0.6 μs 10%–90% transition time, and withmore » efficiency of 3.2 μW/GHz.« less

  12. Clinical, histopathological and immunological characteristics of exfoliative cutaneous lupus erythematosus in 25 German short-haired pointers.

    PubMed

    Bryden, Sharon L; White, Stephen D; Dunston, Stanley M; Burrows, Amanda K; Olivry, Thierry

    2005-08-01

    Clinical, histopathological and immunological features of exfoliative cutaneous lupus erythematosus, an uncommon generalized exfoliative dermatitis occurring exclusively in German short-haired pointers, were characterized in 25 dogs. The disease affects young adult dogs and its familial incidence strongly suggests a hereditary origin. Lesions were characterized by scaling and alopecia affecting 100 (25/25) and 76% (19/25) of dogs, respectively. Follicular casts were present in 28% (7/25) of dogs. The muzzle, pinnae and dorsum were typically affected. Generalized skin lesions were described in 52% (13/25) of dogs. Systemic signs of pain and lameness affected several dogs. Anaemia and thrombocytopenia were detected in several dogs with a more severe clinical phenotype. The most common histopathological features were hyperkeratosis and a lymphocytic interface dermatitis. Direct immunostaining revealed IgG deposition in the epidermal and follicular basement membrane of 100 (19/19) and 41% (7/17) of dogs, respectively. Circulating antifollicular and antisebaceous gland IgG antibodies were demonstrated by indirect immunostaining in 57% (4/7) of dogs. This disease usually responds poorly to immunosuppressive therapy and it has a guarded prognosis. Where outcome was recorded, 85% (10/12) of dogs were euthanased due to either a failure to respond to, or complications associated with, immunomodulatory therapy. Two affected dogs are in remission and maintained on immunomodulatory dosages of prednisolone. This study demonstrates the existence of a cellular and humoral immune response directed against the epidermal basement membrane of dogs with exfoliative cutaneous lupus erythematosus. Additional studies are required to further characterize the immunological pathogenesis of this disease.

  13. Determination of significance in Ecological Impact Assessment: Past change, current practice and future improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briggs, Sam; Hudson, Malcolm D., E-mail: mdh@soton.ac.uk

    2013-01-15

    Ecological Impact Assessment (EcIA) is an important tool for conservation and achieving sustainable development. 'Significant' impacts are those which disturb or alter the environment to a measurable degree. Significance is a crucial part of EcIA, our understanding of the concept in practice is vital if it is to be effective as a tool. This study employed three methods to assess how the determination of significance has changed through time, what current practice is, and what would lead to future improvements. Three data streams were collected: interviews with expert stakeholders, a review of 30 Environmental Statements and a broad-scale survey ofmore » the United Kingdom Institute of Ecology and Environmental Management (IEEM) members. The approach taken in the determination of significance has become more standardised and subjectivity has become constrained through a transparent framework. This has largely been driven by a set of guidelines produced by IEEM in 2006. The significance of impacts is now more clearly justified and the accuracy with which it is determined has improved. However, there are limitations to accuracy and effectiveness of the determination of significance. These are the quality of baseline survey data, our scientific understanding of ecological processes and the lack of monitoring and feedback of results. These in turn are restricted by the limited resources available in consultancies. The most notable recommendations for future practice are the implementation of monitoring and the publication of feedback, the creation of a central database for baseline survey data and the streamlining of guidance. - Highlights: Black-Right-Pointing-Pointer The assessment of significance has changed markedly through time. Black-Right-Pointing-Pointer The IEEM guidelines have driven a standardisation of practice. Black-Right-Pointing-Pointer Currently limited by quality of baseline data and scientific understanding. Black-Right-Pointing-Pointer Monitoring

  14. MEMS-Based Gas Sensor Using PdO-Decorated TiO2 Thin Film for Highly Sensitive and Selective H2 Detection with Low Power Consumption

    NASA Astrophysics Data System (ADS)

    Kwak, Seungmin; Shim, Young-Seok; Yoo, Yong Kyoung; Lee, Jin-Hyung; Kim, Inho; Kim, Jinseok; Lee, Kyu Hyoung; Lee, Jeong Hoon

    2018-03-01

    We report a micromachined H2 sensor that is composed of a Pt micro-heater, low-stress insulating layer (SiO2/SiNx/SiO2), Pt-interdigitated electrodes, and gas sensing materials. Three types of Pt micro-heater are designed as function of electrode width, and their thermal properties are systematically analyzed by finite element modeling FEM with infrared camera. The power consumptions when the surface temperature reached 150, 200, 250, and 300 °C are calculated to approximately 33, 48, 67 and 85 mW, respectively. The response of the PdO nanoparticles-decorated TiO2 thin films to H2 is much higher than those of other gases such as CH4 and CO at 200 °C (48 mW). Further, the response time is reduced to approximately 3 s. The enhancement of gas sensing properties is related to well-designed micro-heater and catalytic effects of PdO nanoparticles such as electronic and chemical sensitization. These results suggest that the PdO nanoparticles-decorated TiO2 thin film, namely MEMS-based H2 sensors are very promising for use in IoT application to improve the quality of human's life.

  15. MEMS-Based Gas Sensor Using PdO-Decorated TiO2 Thin Film for Highly Sensitive and Selective H2 Detection with Low Power Consumption

    NASA Astrophysics Data System (ADS)

    Kwak, Seungmin; Shim, Young-Seok; Yoo, Yong Kyoung; Lee, Jin-Hyung; Kim, Inho; Kim, Jinseok; Lee, Kyu Hyoung; Lee, Jeong Hoon

    2018-05-01

    We report a micromachined H2 sensor that is composed of a Pt micro-heater, low-stress insulating layer (SiO2/SiNx/SiO2), Pt-interdigitated electrodes, and gas sensing materials. Three types of Pt micro-heater are designed as function of electrode width, and their thermal properties are systematically analyzed by finite element modeling FEM with infrared camera. The power consumptions when the surface temperature reached 150, 200, 250, and 300 °C are calculated to approximately 33, 48, 67 and 85 mW, respectively. The response of the PdO nanoparticles-decorated TiO2 thin films to H2 is much higher than those of other gases such as CH4 and CO at 200 °C (48 mW). Further, the response time is reduced to approximately 3 s. The enhancement of gas sensing properties is related to well-designed micro-heater and catalytic effects of PdO nanoparticles such as electronic and chemical sensitization. These results suggest that the PdO nanoparticles-decorated TiO2 thin film, namely MEMS-based H2 sensors are very promising for use in IoT application to improve the quality of human's life.

  16. 14 CFR 36.9 - Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... airplanes and propeller-driven commuter category airplanes. 36.9 Section 36.9 Aeronautics and Space FEDERAL... AIRWORTHINESS CERTIFICATION General § 36.9 Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category airplanes. For propeller-driven small airplanes in the primary, normal, utility...

  17. 14 CFR 36.9 - Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... airplanes and propeller-driven commuter category airplanes. 36.9 Section 36.9 Aeronautics and Space FEDERAL... AIRWORTHINESS CERTIFICATION General § 36.9 Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category airplanes. For propeller-driven small airplanes in the primary, normal, utility...

  18. 14 CFR 36.9 - Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... airplanes and propeller-driven commuter category airplanes. 36.9 Section 36.9 Aeronautics and Space FEDERAL... AIRWORTHINESS CERTIFICATION General § 36.9 Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category airplanes. For propeller-driven small airplanes in the primary, normal, utility...

  19. 14 CFR 36.9 - Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... airplanes and propeller-driven commuter category airplanes. 36.9 Section 36.9 Aeronautics and Space FEDERAL... AIRWORTHINESS CERTIFICATION General § 36.9 Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category airplanes. For propeller-driven small airplanes in the primary, normal, utility...

  20. 14 CFR 36.9 - Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... airplanes and propeller-driven commuter category airplanes. 36.9 Section 36.9 Aeronautics and Space FEDERAL... AIRWORTHINESS CERTIFICATION General § 36.9 Acoustical change: Propeller-driven small airplanes and propeller-driven commuter category airplanes. For propeller-driven small airplanes in the primary, normal, utility...

  1. Stimulus-driven and knowledge-driven processes in attention to warbles

    NASA Astrophysics Data System (ADS)

    Dowling, W. Jay; Tillmann, Barbara

    2003-10-01

    Listeners identified warbles differing in amplitude-modulation rate (3-10 Hz). And measured RT while listeners maintained above 90% correct responses. After a practice session listeners identified target warbles following stimulus-driven or knowledge-driven cues. The stimulus-driven cue was a 250-ms ``beep'' at the target pitch (valid) or another pitch (invalid); the knowledge-driven cue was a midrange ``melody'' pointing to the target pitch (always valid). A 500-ms target warble followed the cue after delays of 0-500 ms (250-750 ms SOA). The listener pressed a key to indicate ``slow'' or ``fast.'' RTs were shortest at the briefest delay. In contrast to results from a memory task, RTs here were much shorter, and we found no evidence for IOR or attentional blink. Listeners began generating responses while the target was still sounding. Invalid ``beeps'' slowed responses at the briefest (but not the longer) delays; adding a valid ``beep'' to the valid ``melody'' did not speed responses.

  2. Model Driven Engineering

    NASA Astrophysics Data System (ADS)

    Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan

    A relevant initiative from the software engineering community called Model Driven Engineering (MDE) is being developed in parallel with the Semantic Web (Mellor et al. 2003a). The MDE approach to software development suggests that one should first develop a model of the system under study, which is then transformed into the real thing (i.e., an executable software entity). The most important research initiative in this area is the Model Driven Architecture (MDA), which is Model Driven Architecture being developed under the umbrella of the Object Management Group (OMG). This chapter describes the basic concepts of this software engineering effort.

  3. The influence of data-driven versus conceptually-driven processing on the development of PTSD-like symptoms.

    PubMed

    Kindt, Merel; van den Hout, Marcel; Arntz, Arnoud; Drost, Jolijn

    2008-12-01

    Ehlers and Clark [(2000). A cognitive model of posttraumatic stress disorder. Behaviour Research and Therapy, 38, 319-345] propose that a predominance of data-driven processing during the trauma predicts subsequent PTSD. We wondered whether, apart from data-driven encoding, sustained data-driven processing after the trauma is also crucial for the development of PTSD. Both hypotheses were tested in two analogue experiments. Experiment 1 demonstrated that relative to conceptually-driven processing (n=20), data-driven processing after the film (n=14), resulted in more intrusions. Experiment 2 demonstrated that relative to the neutral condition (n=24) and the data-driven encoding condition (n=24), conceptual encoding (n=25) reduced suppression of intrusions and a trend emerged for memory fragmentation. The difference between the two encoding styles was due to the beneficial effect of induced conceptual encoding and not to the detrimental effect of data-driven encoding. The data support the viability of the distinction between data-driven/conceptually-driven processing for the understanding of the development of PTSD.

  4. Thermally Driven Josephson Effect

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin; Chui, Talso

    2008-01-01

    A concept is proposed of the thermally driven Josephson effect in superfluid helium. Heretofore, the Josephson effect in a superfluid has been recognized as an oscillatory flow that arises in response to a steady pressure difference between two superfluid reservoirs separated by an array of submicron-sized orifices, which act in unison as a single Josephson junction. Analogously, the thermally driven Josephson effect is an oscillatory flow that arises in response to a steady temperature difference. The thermally driven Josephson effect is partly a consequence of a quantum- mechanical effect known as the fountain effect, in which a temperature difference in a superfluid is accompanied by a pressure difference. The thermally driven Josephson effect may have significance for the development of a high-resolution gyroscope based on the Josephson effect in a superfluid: If the pressure-driven Josephson effect were used, then the fluid on the high-pressure side would become depleted, necessitating periodic interruption of operation to reverse the pressure difference. If the thermally driven Josephson effect were used, there would be no net flow and so the oscillatory flow could be maintained indefinitely by maintaining the required slightly different temperatures on both sides of the junction.

  5. Data-Driven and Expectation-Driven Discovery of Empirical Laws.

    DTIC Science & Technology

    1982-10-10

    occurred in small integer proportions to each other. In 1809, Joseph Gay- Lussac found evidence for his law of combining volumes, which stated that a...of Empirical Laws Patrick W. Langley Gary L. Bradshaw Herbert A. Simon T1he Robotics Institute Carnegie-Mellon University Pittsburgh, Pennsylvania...Subtitle) S. TYPE OF REPORT & PERIOD COVERED Data-Driven and Expectation-Driven Discovery Interim Report 2/82-10/82 of Empirical Laws S. PERFORMING ORG

  6. Nonlinear numerical analysis and experimental testing for an electrothermal SU-8 microgripper with reduced out-of-plane displacement

    NASA Astrophysics Data System (ADS)

    Voicu, Rodica-Cristina; Zandi, Muaiyd Al; Müller, Raluca; Wang, Changhai

    2017-11-01

    This paper reports the results of numerical nonlinear electro-thermo-mechanical analysis and experimental testing of a polymeric microgripper designed using electrothermal actuators. The simulation work was carried out using a finite element method (FEM) and a commercial software (Coventorware 2014). The biocompatible SU-8 polymer was used as structural material for the fabrication of the microgripper. The metallic micro-heater was encapsulated in the polymeric actuation structures of the microgripper to reduce the undesirable out-of-plane displacement of the microgripper tips, and to electrically isolate the micro-heater, and to reduce the mechanical stress as well as to improve the thermal efficiency. The electro- thermo-mechanical analysis of the actuator considers the nonlinear temperature-dependent properties of the SU-8 polymer and the gold thin film layers used for the micro-heater fabrication. An optical characterisation of the microgripper based on an image tracking approach shows the thermal response and the good repeatability. The average deflection is ~11 µm for an actuation current of ~17 mA. The experimentally obtained tip deflection and the heater temperature at different currents are both shown to be in good agreement with the nonlinear electro-thermo-mechanical simulation results. Finally, we demonstrate the capability of the microgripper by capture and manipulation of cotton fibres.

  7. Evaluation of respondent-driven sampling.

    PubMed

    McCreesh, Nicky; Frost, Simon D W; Seeley, Janet; Katongole, Joseph; Tarsh, Matilda N; Ndunguse, Richard; Jichi, Fatima; Lunel, Natasha L; Maher, Dermot; Johnston, Lisa G; Sonnenberg, Pam; Copas, Andrew J; Hayes, Richard J; White, Richard G

    2012-01-01

    Respondent-driven sampling is a novel variant of link-tracing sampling for estimating the characteristics of hard-to-reach groups, such as HIV prevalence in sex workers. Despite its use by leading health organizations, the performance of this method in realistic situations is still largely unknown. We evaluated respondent-driven sampling by comparing estimates from a respondent-driven sampling survey with total population data. Total population data on age, tribe, religion, socioeconomic status, sexual activity, and HIV status were available on a population of 2402 male household heads from an open cohort in rural Uganda. A respondent-driven sampling (RDS) survey was carried out in this population, using current methods of sampling (RDS sample) and statistical inference (RDS estimates). Analyses were carried out for the full RDS sample and then repeated for the first 250 recruits (small sample). We recruited 927 household heads. Full and small RDS samples were largely representative of the total population, but both samples underrepresented men who were younger, of higher socioeconomic status, and with unknown sexual activity and HIV status. Respondent-driven sampling statistical inference methods failed to reduce these biases. Only 31%-37% (depending on method and sample size) of RDS estimates were closer to the true population proportions than the RDS sample proportions. Only 50%-74% of respondent-driven sampling bootstrap 95% confidence intervals included the population proportion. Respondent-driven sampling produced a generally representative sample of this well-connected nonhidden population. However, current respondent-driven sampling inference methods failed to reduce bias when it occurred. Whether the data required to remove bias and measure precision can be collected in a respondent-driven sampling survey is unresolved. Respondent-driven sampling should be regarded as a (potentially superior) form of convenience sampling method, and caution is required

  8. Evaluation of Respondent-Driven Sampling

    PubMed Central

    McCreesh, Nicky; Frost, Simon; Seeley, Janet; Katongole, Joseph; Tarsh, Matilda Ndagire; Ndunguse, Richard; Jichi, Fatima; Lunel, Natasha L; Maher, Dermot; Johnston, Lisa G; Sonnenberg, Pam; Copas, Andrew J; Hayes, Richard J; White, Richard G

    2012-01-01

    Background Respondent-driven sampling is a novel variant of link-tracing sampling for estimating the characteristics of hard-to-reach groups, such as HIV prevalence in sex-workers. Despite its use by leading health organizations, the performance of this method in realistic situations is still largely unknown. We evaluated respondent-driven sampling by comparing estimates from a respondent-driven sampling survey with total-population data. Methods Total-population data on age, tribe, religion, socioeconomic status, sexual activity and HIV status were available on a population of 2402 male household-heads from an open cohort in rural Uganda. A respondent-driven sampling (RDS) survey was carried out in this population, employing current methods of sampling (RDS sample) and statistical inference (RDS estimates). Analyses were carried out for the full RDS sample and then repeated for the first 250 recruits (small sample). Results We recruited 927 household-heads. Full and small RDS samples were largely representative of the total population, but both samples under-represented men who were younger, of higher socioeconomic status, and with unknown sexual activity and HIV status. Respondent-driven-sampling statistical-inference methods failed to reduce these biases. Only 31%-37% (depending on method and sample size) of RDS estimates were closer to the true population proportions than the RDS sample proportions. Only 50%-74% of respondent-driven-sampling bootstrap 95% confidence intervals included the population proportion. Conclusions Respondent-driven sampling produced a generally representative sample of this well-connected non-hidden population. However, current respondent-driven-sampling inference methods failed to reduce bias when it occurred. Whether the data required to remove bias and measure precision can be collected in a respondent-driven sampling survey is unresolved. Respondent-driven sampling should be regarded as a (potentially superior) form of convenience

  9. From current-driven to neoclassically driven tearing modes.

    PubMed

    Reimerdes, H; Sauter, O; Goodman, T; Pochelon, A

    2002-03-11

    In the TCV tokamak, the m/n = 2/1 island is observed in low-density discharges with central electron-cyclotron current drive. The evolution of its width has two distinct growth phases, one of which can be linked to a "conventional" tearing mode driven unstable by the current profile and the other to a neoclassical tearing mode driven by a perturbation of the bootstrap current. The TCV results provide the first clear observation of such a destabilization mechanism and reconcile the theory of conventional and neoclassical tearing modes, which differ only in the dominant driving term.

  10. Is "Market-Driven" Good Enough?

    ERIC Educational Resources Information Center

    Kaufman, Roger

    1995-01-01

    Discusses marketing and management strategies and evaluates the path most traveled; going beyond market-driven; proactive and reactive organizational positioning; ways to manage human and physical resources to make both market-driven and market-making contributions; and values necessary for an organization to move from market-driven to…

  11. Monitoring of Bridges by a Laser Pointer: Dynamic Measurement of Support Rotations and Elastic Line Displacements: Methodology and First Test

    PubMed Central

    Artese, Serena; Achilli, Vladimiro; Zinno, Raffaele

    2018-01-01

    Deck inclination and vertical displacements are among the most important technical parameters to evaluate the health status of a bridge and to verify its bearing capacity. Several methods, both conventional and innovative, are used for structural rotations and displacement monitoring; however, none of these allow, at the same time, precision, automation, static and dynamic monitoring without using high cost instrumentation. The proposed system uses a common laser pointer and image processing. The elastic line inclination is measured by analyzing the single frames of an HD video of the laser beam imprint projected on a flat target. For the image processing, a code was developed in Matlab® that provides instantaneous rotation and displacement of a bridge, charged by a mobile load. An important feature is the synchronization of the load positioning, obtained by a GNSS receiver or by a video. After the calibration procedures, a test was carried out during the movements of a heavy truck maneuvering on a bridge. Data acquisition synchronization allowed us to relate the position of the truck on the deck to inclination and displacements. The inclination of the elastic line at the support was obtained with a precision of 0.01 mrad. The results demonstrate the suitability of the method for dynamic load tests, and the control and monitoring of bridges. PMID:29370082

  12. Catalytic hydrogen sensing using microheated platinum nanoparticle-loaded graphene aerogel

    DOE PAGES

    Harley-Trochimczyk, Anna; Chang, Jiyoung; Zhou, Qin; ...

    2014-10-02

    We present that low power catalytic hydrogen sensors are fabricated by functionalizing low power polysilicon microheaters with platinum nanoparticle catalyst loaded in a high surface area graphene aerogel support. Fabrication and characterization of the polysilicon microheaters are described. The platinum nanoparticle-loaded graphene aerogel is characterized by transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Finally, the catalytic hydrogen sensors consume as little as 2.2 mW of power, have sensitivity of 1.6%/10,000 ppm hydrogen, a t90 response and recovery time of 0.97 s and 0.72 s, respectively, a lower detection limit of approximately 65 ppm, and negligible crossmore » sensitivity to methane, n-pentane, and diethylether.« less

  13. Using Two Different Approaches to Assess Dietary Patterns: Hypothesis-Driven and Data-Driven Analysis.

    PubMed

    Previdelli, Ágatha Nogueira; de Andrade, Samantha Caesar; Fisberg, Regina Mara; Marchioni, Dirce Maria

    2016-09-23

    The use of dietary patterns to assess dietary intake has become increasingly common in nutritional epidemiology studies due to the complexity and multidimensionality of the diet. Currently, two main approaches have been widely used to assess dietary patterns: data-driven and hypothesis-driven analysis. Since the methods explore different angles of dietary intake, using both approaches simultaneously might yield complementary and useful information; thus, we aimed to use both approaches to gain knowledge of adolescents' dietary patterns. Food intake from a cross-sectional survey with 295 adolescents was assessed by 24 h dietary recall (24HR). In hypothesis-driven analysis, based on the American National Cancer Institute method, the usual intake of Brazilian Healthy Eating Index Revised components were estimated. In the data-driven approach, the usual intake of foods/food groups was estimated by the Multiple Source Method. In the results, hypothesis-driven analysis showed low scores for Whole grains, Total vegetables, Total fruit and Whole fruits), while, in data-driven analysis, fruits and whole grains were not presented in any pattern. High intakes of sodium, fats and sugars were observed in hypothesis-driven analysis with low total scores for Sodium, Saturated fat and SoFAA (calories from solid fat, alcohol and added sugar) components in agreement, while the data-driven approach showed the intake of several foods/food groups rich in these nutrients, such as butter/margarine, cookies, chocolate powder, whole milk, cheese, processed meat/cold cuts and candies. In this study, using both approaches at the same time provided consistent and complementary information with regard to assessing the overall dietary habits that will be important in order to drive public health programs, and improve their efficiency to monitor and evaluate the dietary patterns of populations.

  14. Input-driven versus turnover-driven controls of simulated changes in soil carbon due to land-use change

    NASA Astrophysics Data System (ADS)

    Nyawira, S. S.; Nabel, J. E. M. S.; Brovkin, V.; Pongratz, J.

    2017-08-01

    Historical changes in soil carbon associated with land-use change (LUC) result mainly from the changes in the quantity of litter inputs to the soil and the turnover of carbon in soils. We use a factor separation technique to assess how the input-driven and turnover-driven controls, as well as their synergies, have contributed to historical changes in soil carbon associated with LUC. We apply this approach to equilibrium simulations of present-day and pre-industrial land use performed using the dynamic global vegetation model JSBACH. Our results show that both the input-driven and turnover-driven changes generally contribute to a gain in soil carbon in afforested regions and a loss in deforested regions. However, in regions where grasslands have been converted to croplands, we find an input-driven loss that is partly offset by a turnover-driven gain, which stems from a decrease in the fire-related carbon losses. Omitting land management through crop and wood harvest substantially reduces the global losses through the input-driven changes. Our study thus suggests that the dominating control of soil carbon losses is via the input-driven changes, which are more directly accessible to human management than the turnover-driven ones.

  15. Input-driven versus turnover-driven controls of simulated changes in soil carbon due to land-use change

    NASA Astrophysics Data System (ADS)

    Nyawira, Sylvia; Nabel, Julia; Brovkin, Victor; Pongratz, Julia

    2017-04-01

    Modelling studies estimate a global loss in soil carbon caused by land-use changes (LUCs) over the last century. Although it is known that this loss stems from the changes in quantity of litter inputs from the vegetation to the soil (input-driven) and the changes in turnover of carbon in the soil (turnover-driven) associated with LUC, the individual contribution of these two controls to the total changes have not been assessed. Using the dynamic global vegetation model JSBACH, we apply a factor separation approach to isolate the contribution of the input-driven and turnover-driven changes, as well as their synergies, to the total changes in soil carbon from LUC. To assess how land management through crop and wood harvest influences the controls, we compare our results for simulations with and without land management. Our results reveal that for the afforested regions both the input-driven and turnover-driven changes generally result in soil carbon gain, whereas deforested regions exhibit a loss. However, for regions where croplands have increased at the expense of grasslands and pastures, the input-driven changes result in a loss that is partly offset by a gain via the turnover-driven changes. This gain stems from a decrease in the fire-related carbon losses when grasslands or pastures are replaced with croplands. Omitting land management reduces the carbon losses in regions where natural vegetation has been converted to croplands and enhances the gain in afforested regions. The global simulated losses are substantially reduced from 54.0 Pg C to 22.0 Pg C, with the input-driven losses reducing from 54.7 Pg C to 24.9 Pg C. Our study shows that the dominating control of soil carbon losses is through the input-driven changes, which are more directly influenced by human management than the turnover-driven ones.

  16. Conditional expression of constitutively active estrogen receptor {alpha} in chondrocytes impairs longitudinal bone growth in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, Kazuhiro; Tsukui, Tohru; Imazawa, Yukiko

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Conditional transgenic mice expressing constitutively active estrogen receptor {alpha} (caER{alpha}) in chondrocytes were developed. Black-Right-Pointing-Pointer Expression of caER{alpha} in chondrocytes impaired longitudinal bone growth in mice. Black-Right-Pointing-Pointer caER{alpha} affects chondrocyte proliferation and differentiation. Black-Right-Pointing-Pointer This mouse model is useful for understanding the physiological role of ER{alpha}in vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caER{alpha}{sup ColII}, expressing constitutively activemore » mutant estrogen receptor (ER) {alpha} in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caER{alpha}{sup ColII} mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caER{alpha}{sup ColII} mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caER{alpha}{sup ColII} mice. These results suggest that ER{alpha} is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.« less

  17. Electro-optofluidics: achieving dynamic control on-chip

    PubMed Central

    Soltani, Mohammad; Inman, James T.; Lipson, Michal; Wang, Michelle D.

    2012-01-01

    A vital element in integrated optofluidics is dynamic tuning and precise control of photonic devices, especially when employing electronic techniques which are challenging to utilize in an aqueous environment. We overcome this challenge by introducing a new platform in which the photonic device is controlled using electro-optical phase tuning. The phase tuning is generated by the thermo-optic effect using an on-chip electric microheater located outside the fluidic channel, and is transmitted to the optofluidic device through optical waveguides. The microheater is compact, high-speed (> 18 kHz), and consumes low power (~mW). We demonstrate dynamic optical trapping control of nanoparticles by an optofluidic resonator. This novel electro-optofluidic platform allows the realization of high throughput optofluidic devices with switching, tuning, and reconfiguration capability, and promises new directions in optofluidics. PMID:23037380

  18. Pointers for Parenting.

    ERIC Educational Resources Information Center

    Bessant, Helen P., Ed.

    Presented are 11 brief articles designed to help parents enhance their children's school performance and generally improve the home environment. Included is information on the following topics: the role of the social worker in parent education, home activities to improve a child's reading skills, developing listening skill through instructional…

  19. A value-driven mechanism of attentional selection

    PubMed Central

    Anderson, Brian A.

    2013-01-01

    Attention selects stimuli for cognitive processing, and the mechanisms that underlie the process of attentional selection have been a major topic of psychological research for over 30 years. From this research, it has been well documented that attentional selection can proceed both voluntarily, driven by visual search goals, and involuntarily, driven by the physical salience of stimuli. In this review, I provide a conceptual framework for attentional control that emphasizes the need for stimulus selection to promote the survival and wellbeing of an organism. I argue that although goal-driven and salience-driven mechanisms of attentional selection fit within this framework, a central component that is missing is a mechanism of attentional selection that is uniquely driven by learned associations between stimuli and rewards. I go on to review recent evidence for such a value-driven mechanism of attentional selection, and describe how this mechanism functions independently of the well-documented salience-driven and goal-driven mechanisms. I conclude by arguing that reward learning modifies the attentional priority of stimuli, allowing them to compete more effectively for selection even when nonsalient and task-irrelevant. PMID:23589803

  20. Water-driven micromotors.

    PubMed

    Gao, Wei; Pei, Allen; Wang, Joseph

    2012-09-25

    We demonstrate the first example of a water-driven bubble-propelled micromotor that eliminates the requirement for the common hydrogen peroxide fuel. The new water-driven Janus micromotor is composed of a partially coated Al-Ga binary alloy microsphere prepared via microcontact mixing of aluminum microparticles and liquid gallium. The ejection of hydrogen bubbles from the exposed Al-Ga alloy hemisphere side, upon its contact with water, provides a powerful directional propulsion thrust. Such spontaneous generation of hydrogen bubbles reflects the rapid reaction between the aluminum alloy and water. The resulting water-driven spherical motors can move at remarkable speeds of 3 mm s(-1) (i.e., 150 body length s(-1)), while exerting large forces exceeding 500 pN. Factors influencing the efficiency of the aluminum-water reaction and the resulting propulsion behavior and motor lifetime, including the ionic strength and environmental pH, are investigated. The resulting water-propelled Al-Ga/Ti motors move efficiently in different biological media (e.g., human serum) and hold considerable promise for diverse biomedical or industrial applications.

  1. Resonant optical device with a microheater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentine, Anthony L.; DeRose, Christopher

    2017-04-04

    A resonant photonic device is provided. The device comprises an optical waveguiding element, such as an optical resonator, that includes a diode junction region, two signal terminals configured to apply a bias voltage across the junction region, and a heater laterally separated from the optical waveguiding element. A semiconductor electrical barrier element is juxtaposed to the heater. A metallic strip is electrically and thermally connected at one end to a signal terminal of the optical waveguiding element and thermally connected at another end to the barrier element.

  2. Goal-driven modulation of stimulus-driven attentional capture in multiple-cue displays.

    PubMed

    Richard, Christian M; Wright, Richard D; Ward, Lawrence M

    2003-08-01

    Six location-cuing experiments were conducted to examine the goal-driven control of attentional capture in multiple-cue displays. In most of the experiments, the cue display consisted of the simultaneous presentation of a red direct cue that was highly predictive of the target location (the unique cue) and three gray direct cues (the standard cues) that were not predictive of the location. The results indicated that although target responses were faster at all cued locations relative to uncued locations, they were significantly faster at the unique-cue location than at the standard-cue locations. Other results suggest that the faster responses produced by direct cues may be associated with two different components: an attention-related component that can be modulated by goal-driven factors and a nonattentional component that occurs in parallel at multiple direct-cue locations and is minimally affected by the same goal-driven factors.

  3. Social comparison modulates reward-driven attentional capture.

    PubMed

    Jiao, Jun; Du, Feng; He, Xiaosong; Zhang, Kan

    2015-10-01

    It is well established that attention can be captured by task irrelevant and non-salient objects associated with value through reward learning. However, it is unknown whether social comparison influences reward-driven attentional capture. The present study created four social contexts to examine whether different social comparisons modulate the reward-driven capture of attention. The results showed that reward-driven attentional capture varied with different social comparison conditions. Most prominently, reward-driven attentional capture is dramatically reduced in the disadvantageous social comparison context, in which an individual is informed that the other participant is earning more monetary reward for performing the same task. These findings suggest that social comparison can affect the reward-driven capture of attention.

  4. Heat-driven spin torques in antiferromagnets

    NASA Astrophysics Data System (ADS)

    Białek, Marcin; Bréchet, Sylvain; Ansermet, Jean-Philippe

    2018-04-01

    Heat-driven magnetization damping, which is a linear function of a temperature gradient, is predicted in antiferromagnets by considering the sublattice dynamics subjected to a heat-driven spin torque. This points to the possibility of achieving spin torque oscillator behavior. The model is based on the magnetic Seebeck effect acting on sublattices which are exchange coupled. The heat-driven spin torque is estimated and the feasibility of detecting this effect is discussed.

  5. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to.... F Appendix F to Part 36—Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller...

  6. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to.... F Appendix F to Part 36—Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller...

  7. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to.... F Appendix F to Part 36—Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller...

  8. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to.... F Appendix F to Part 36—Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller...

  9. 14 CFR Appendix F to Part 36 - Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter Category Airplane Certification Tests Prior to.... F Appendix F to Part 36—Flyover Noise Requirements for Propeller-Driven Small Airplane and Propeller...

  10. Temporal Data-Driven Sleep Scheduling and Spatial Data-Driven Anomaly Detection for Clustered Wireless Sensor Networks

    PubMed Central

    Li, Gang; He, Bin; Huang, Hongwei; Tang, Limin

    2016-01-01

    The spatial–temporal correlation is an important feature of sensor data in wireless sensor networks (WSNs). Most of the existing works based on the spatial–temporal correlation can be divided into two parts: redundancy reduction and anomaly detection. These two parts are pursued separately in existing works. In this work, the combination of temporal data-driven sleep scheduling (TDSS) and spatial data-driven anomaly detection is proposed, where TDSS can reduce data redundancy. The TDSS model is inspired by transmission control protocol (TCP) congestion control. Based on long and linear cluster structure in the tunnel monitoring system, cooperative TDSS and spatial data-driven anomaly detection are then proposed. To realize synchronous acquisition in the same ring for analyzing the situation of every ring, TDSS is implemented in a cooperative way in the cluster. To keep the precision of sensor data, spatial data-driven anomaly detection based on the spatial correlation and Kriging method is realized to generate an anomaly indicator. The experiment results show that cooperative TDSS can realize non-uniform sensing effectively to reduce the energy consumption. In addition, spatial data-driven anomaly detection is quite significant for maintaining and improving the precision of sensor data. PMID:27690035

  11. The SimpleMix study with biphasic insulin aspart 30: a randomized controlled trial investigating patient-driven titration versus investigator-driven titration.

    PubMed

    Gao, Yan; Luquez, Cecilia; Lynggaard, Helle; Andersen, Henning; Saboo, Banshi

    2014-12-01

    The study aimed to confirm the efficacy, through non-inferiority, of patient-driven versus investigator-driven titration of biphasic insulin aspart 30 (BIAsp 30) in terms of glycemic control assessed by HbA1c change. SimpleMix was a 20 week, open-label, randomized, two-armed, parallel-group, multicenter study in five countries (Argentina, China, India, Poland, and the UK). Patients with type 2 diabetes were randomized into either patient-driven or investigator-driven BIAsp 30 titration groups. Non-inferiority of patient-driven vs. investigator-driven titration based on change in HbA1c from baseline to week 20 could not be demonstrated. Mean (SE) estimated change from baseline to week 20 was -0.72 (0.08)% in the patient-driven group and -0.97 (0.08)% in the investigator-driven group; estimated difference 0.25% (95% CI: 0.04; 0.46). Estimated mean change (SE) in fasting plasma glucose from baseline to week 20 was similar between groups: -0.94 (0.21) mmol/L for patient-driven and -1.07 (0.22) mmol/L for investigator-driven (difference non-significant). Both treatment arms were well tolerated, and hypoglycemic episode rates were similar between groups, with a rate ratio of 0.77 (95% CI: 0.54; 1.09; p = 0.143) for all hypoglycemic episodes and 0.78 (95% CI: 0.42; 1.43; p = 0.417) for nocturnal hypoglycemic episodes. Non-inferiority of patient-driven versus investigator-driven titration with regard to change from baseline to end-of-treatment HbA1c could not be confirmed. It is possible that a clinic visit 12 weeks after intensification of treatment with BIAsp 30 in patients with type 2 diabetes inadequately treated with basal insulin may benefit patient-driven titration of BIAsp 30. A limitation of the study was the relatively small number of patients recruited in each country, which does not allow country-specific analyses to be performed. Overall, treatment with BIAsp 30 was well tolerated in both treatment groups.

  12. Light-Driven Polymeric Bimorph Actuators

    NASA Technical Reports Server (NTRS)

    Adamovsky, Gregory; Sarkisov, Sergey S.; Curley, Michael J.

    2009-01-01

    Light-driven polymeric bimorph actuators are being developed as alternatives to prior electrically and optically driven actuators in advanced, highly miniaturized devices and systems exemplified by microelectromechanical systems (MEMS), micro-electro-optical-mechanical systems (MEOMS), and sensor and actuator arrays in smart structures. These light-driven polymeric bimorph actuators are intended to satisfy a need for actuators that (1) in comparison with the prior actuators, are simpler and less power-hungry; (2) can be driven by low-power visible or mid-infrared light delivered through conventional optic fibers; and (3) are suitable for integration with optical sensors and multiple actuators of the same or different type. The immediate predecessors of the present light-driven polymeric bimorph actuators are bimorph actuators that exploit a photorestrictive effect in lead lanthanum zirconate titanate (PLZT) ceramics. The disadvantages of the PLZT-based actuators are that (1) it is difficult to shape the PLZT ceramics, which are hard and brittle; (2) for actuation, it is necessary to use ultraviolet light (wavelengths < 380 nm), which must be generated by use of high-power, high-pressure arc lamps or lasers; (3) it is difficult to deliver sufficient ultraviolet light through conventional optical fibers because of significant losses in the fibers; (4) the response times of the PLZT actuators are of the order of several seconds unacceptably long for typical applications; and (5) the maximum mechanical displacements of the PLZT-based actuators are limited to those characterized by low strains beyond which PLZT ceramics disintegrate because of their brittleness. The basic element of a light-driven bimorph actuator of the present developmental type is a cantilever beam comprising two layers, at least one of which is a polymer that exhibits a photomechanical effect (see figure). The dominant mechanism of the photomechanical effect is a photothermal one: absorption of

  13. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  14. Terahertz-driven linear electron acceleration

    DOE PAGES

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  15. Stability analysis of hybrid-driven underwater glider

    NASA Astrophysics Data System (ADS)

    Niu, Wen-dong; Wang, Shu-xin; Wang, Yan-hui; Song, Yang; Zhu, Ya-qiang

    2017-10-01

    Hybrid-driven underwater glider is a new type of unmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steadystate operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulation, and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.

  16. Gyroscope-driven mouse pointer with an EMOTIV® EEG headset and data analysis based on Empirical Mode Decomposition.

    PubMed

    Rosas-Cholula, Gerardo; Ramirez-Cortes, Juan Manuel; Alarcon-Aquino, Vicente; Gomez-Gil, Pilar; Rangel-Magdaleno, Jose de Jesus; Reyes-Garcia, Carlos

    2013-08-14

    This paper presents a project on the development of a cursor control emulating the typical operations of a computer-mouse, using gyroscope and eye-blinking electromyographic signals which are obtained through a commercial 16-electrode wireless headset, recently released by Emotiv. The cursor position is controlled using information from a gyroscope included in the headset. The clicks are generated through the user's blinking with an adequate detection procedure based on the spectral-like technique called Empirical Mode Decomposition (EMD). EMD is proposed as a simple and quick computational tool, yet effective, aimed to artifact reduction from head movements as well as a method to detect blinking signals for mouse control. Kalman filter is used as state estimator for mouse position control and jitter removal. The detection rate obtained in average was 94.9%. Experimental setup and some obtained results are presented.

  17. Gyroscope-Driven Mouse Pointer with an EMOTIV® EEG Headset and Data Analysis Based on Empirical Mode Decomposition

    PubMed Central

    Rosas-Cholula, Gerardo; Ramirez-Cortes, Juan Manuel; Alarcon-Aquino, Vicente; Gomez-Gil, Pilar; Rangel-Magdaleno, Jose de Jesus; Reyes-Garcia, Carlos

    2013-01-01

    This paper presents a project on the development of a cursor control emulating the typical operations of a computer-mouse, using gyroscope and eye-blinking electromyographic signals which are obtained through a commercial 16-electrode wireless headset, recently released by Emotiv. The cursor position is controlled using information from a gyroscope included in the headset. The clicks are generated through the user's blinking with an adequate detection procedure based on the spectral-like technique called Empirical Mode Decomposition (EMD). EMD is proposed as a simple and quick computational tool, yet effective, aimed to artifact reduction from head movements as well as a method to detect blinking signals for mouse control. Kalman filter is used as state estimator for mouse position control and jitter removal. The detection rate obtained in average was 94.9%. Experimental setup and some obtained results are presented. PMID:23948873

  18. Driving Ms. Data: Creating Data-Driven Possibilities

    ERIC Educational Resources Information Center

    Hoffman, Richard

    2005-01-01

    This article describes how driven Web sites help schools and districts maximize their IT resources by making online content more "self-service" for users. It shows how to set up the capacity to create data-driven sites. By definition, a data-driven Web site is one in which the content comes from some back-end data source, such as a…

  19. Current fluctuations in periodically driven systems

    NASA Astrophysics Data System (ADS)

    Barato, Andre C.; Chetrite, Raphael

    2018-05-01

    Small nonequelibrium systems driven by an external periodic protocol can be described by Markov processes with time-periodic transition rates. In general, current fluctuations in such small systems are large and may play a crucial role. We develop a theoretical formalism to evaluate the rate of such large deviations in periodically driven systems. We show that the scaled cumulant generating function that characterizes current fluctuations is given by a maximal Floquet exponent. Comparing deterministic protocols with stochastic protocols, we show that, with respect to large deviations, systems driven by a stochastic protocol with an infinitely large number of jumps are equivalent to systems driven by deterministic protocols. Our results are illustrated with three case studies: a two-state model for a heat engine, a three-state model for a molecular pump, and a biased random walk with a time-periodic affinity.

  20. Driven Metadynamics: Reconstructing Equilibrium Free Energies from Driven Adaptive-Bias Simulations

    PubMed Central

    2013-01-01

    We present a novel free-energy calculation method that constructively integrates two distinct classes of nonequilibrium sampling techniques, namely, driven (e.g., steered molecular dynamics) and adaptive-bias (e.g., metadynamics) methods. By employing nonequilibrium work relations, we design a biasing protocol with an explicitly time- and history-dependent bias that uses on-the-fly work measurements to gradually flatten the free-energy surface. The asymptotic convergence of the method is discussed, and several relations are derived for free-energy reconstruction and error estimation. Isomerization reaction of an atomistic polyproline peptide model is used to numerically illustrate the superior efficiency and faster convergence of the method compared with its adaptive-bias and driven components in isolation. PMID:23795244

  1. Energy supplies and future engines for land, sea, and air.

    PubMed

    Hidy, George M; Chow, Judith C; England, Glen C; Legge, Alan H; Lloyd, Alan C; Watson, John G

    2012-11-01

    The 2012 Critical Review Discussion complements Wilson, (2012), provides pointers to more detailed treatments of different topics and adds additional dimensions to the area of "energy". These include broader aspects of technologies driven by fuel resources and environmental issues, the concept of energy technology innovation, evolution in transportation resources, and complexities of energy policies addressing carbon taxes or carbon trading. National and global energy data bases are identified and evaluated and conversion factors are given to allow their comparability.

  2. Recent advances in laser-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  3. Test-driven programming

    NASA Astrophysics Data System (ADS)

    Georgiev, Bozhidar; Georgieva, Adriana

    2013-12-01

    In this paper, are presented some possibilities concerning the implementation of a test-driven development as a programming method. Here is offered a different point of view for creation of advanced programming techniques (build tests before programming source with all necessary software tools and modules respectively). Therefore, this nontraditional approach for easier programmer's work through building tests at first is preferable way of software development. This approach allows comparatively simple programming (applied with different object-oriented programming languages as for example JAVA, XML, PYTHON etc.). It is predictable way to develop software tools and to provide help about creating better software that is also easier to maintain. Test-driven programming is able to replace more complicated casual paradigms, used by many programmers.

  4. Consistent data-driven computational mechanics

    NASA Astrophysics Data System (ADS)

    González, D.; Chinesta, F.; Cueto, E.

    2018-05-01

    We present a novel method, within the realm of data-driven computational mechanics, to obtain reliable and thermodynamically sound simulation from experimental data. We thus avoid the need to fit any phenomenological model in the construction of the simulation model. This kind of techniques opens unprecedented possibilities in the framework of data-driven application systems and, particularly, in the paradigm of industry 4.0.

  5. Proposal of laser-driven automobile

    NASA Astrophysics Data System (ADS)

    Yabe, Takashi; Oozono, Hirokazu; Taniguchi, Kazumoto; Ohkubo, Tomomasa; Miyazaki, Sho; Uchida, Shigeaki; Baasandash, Choijil

    2004-09-01

    We propose an automobile driven by piston motion, which is driven by water-laser coupling. The automobile can load a solar-pumped fiber laser or can be driven by ground-based lasers. The vehicle is much useful for the use in other planet in which usual combustion engine cannot be used. The piston is in a closed system and then the water will not be exhausted into vacuum. In the preliminary experiment, we succeeded to drive the cylindrical piston of 0.2g (6mm in diameter) on top of water placed inside the acrylic pipe of 8 mm in inner diameter and the laser is incident from the bottom and focused onto the upper part of water by the lens (f=8mm) attached to the bottom edge.

  6. Laser-Driven Fusion.

    ERIC Educational Resources Information Center

    Gibson, A. F.

    1980-01-01

    Discusses the present status and future prospects of laser-driven fusion. Current research (which is classified under three main headings: laser-matter interaction processes, compression, and laser development) is also presented. (HM)

  7. Prioritizing material recovery for end-of-life printed circuit boards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xue, E-mail: xxw6590@rit.edu; Gaustad, Gabrielle, E-mail: gabrielle.gaustad@rit.edu

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Material recovery driven by composition, choice of ranking, and weighting. Black-Right-Pointing-Pointer Economic potential for new recycling technologies quantified for several metrics. Black-Right-Pointing-Pointer Indicators developed for materials incurring high eco-toxicity costs. Black-Right-Pointing-Pointer Methodology useful for a variety of stakeholders, particularly policy-makers. - Abstract: The increasing growth in generation of electronic waste (e-waste) motivates a variety of waste reduction research. Printed circuit boards (PCBs) are an important sub-set of the overall e-waste stream due to the high value of the materials contained within them and potential toxicity. This work explores several environmental and economic metrics for prioritizing the recovery ofmore » materials from end-of-life PCBs. A weighted sum model is used to investigate the trade-offs among economic value, energy saving potentials, and eco-toxicity. Results show that given equal weights for these three sustainability criteria gold has the highest recovery priority, followed by copper, palladium, aluminum, tin, lead, platinum, nickel, zinc, and silver. However, recovery priority will change significantly due to variation in the composition of PCBs, choice of ranking metrics, and weighting factors when scoring multiple metrics. These results can be used by waste management decision-makers to quantify the value and environmental savings potential for recycling technology development and infrastructure. They can also be extended by policy-makers to inform possible penalties for land-filling PCBs or exporting to the informal recycling sector. The importance of weighting factors when examining recovery trade-offs, particularly for policies regarding PCB collection and recycling are explored further.« less

  8. 46 CFR 169.623 - Power-driven steering systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Power-driven steering systems. 169.623 Section 169.623 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Steering Systems § 169.623 Power-driven steering systems. (a) Power-driven steering...

  9. 46 CFR 169.623 - Power-driven steering systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Power-driven steering systems. 169.623 Section 169.623 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Machinery and Electrical Steering Systems § 169.623 Power-driven steering systems. (a) Power-driven steering...

  10. Phonological Learning with Output-Driven Maps

    ERIC Educational Resources Information Center

    Tesar, Bruce

    2017-01-01

    The concept of an output-driven map formally characterizes an intuitive notion about phonology: that disparities between the input and the output are introduced only to the extent necessary to satisfy restrictions on outputs. When all of the grammars definable in a phonological system are output-driven, the implied structure provides significant…

  11. Science-Driven Computing: NERSC's Plan for 2006-2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Horst D.; Kramer, William T.C.; Bailey, David H.

    NERSC has developed a five-year strategic plan focusing on three components: Science-Driven Systems, Science-Driven Services, and Science-Driven Analytics. (1) Science-Driven Systems: Balanced introduction of the best new technologies for complete computational systems--computing, storage, networking, visualization and analysis--coupled with the activities necessary to engage vendors in addressing the DOE computational science requirements in their future roadmaps. (2) Science-Driven Services: The entire range of support activities, from high-quality operations and user services to direct scientific support, that enable a broad range of scientists to effectively use NERSC systems in their research. NERSC will concentrate on resources needed to realize the promise ofmore » the new highly scalable architectures for scientific discovery in multidisciplinary computational science projects. (3) Science-Driven Analytics: The architectural and systems enhancements and services required to integrate NERSC's powerful computational and storage resources to provide scientists with new tools to effectively manipulate, visualize, and analyze the huge data sets derived from simulations and experiments.« less

  12. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    NASA Astrophysics Data System (ADS)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  13. Platinum Nanoparticle Loading of Boron Nitride Aerogel and Its Use as a Novel Material for Low-Power Catalytic Gas Sensing

    DOE PAGES

    Harley-Trochimczyk, Anna; Pham, Thang; Chang, Jiyoung; ...

    2015-12-09

    We report that a high-surface-area, highly crystalline boron nitride aerogel synthesized with nonhazardous reactants has been loaded with crystalline platinum nanoparticles to form a novel nanomaterial that exhibits many advantages for use in a catalytic gas sensing application. The platinum nanoparticle-loaded boron nitride aerogel integrated onto a microheater platform allows for calorimetric propane detection. The boron nitride aerogel exhibits thermal stability up to 900 °C and supports disperse platinum nanoparticles, with no sintering observed after 24 h of high-temperature testing. The high thermal conductivity and low density of the boron nitride aerogel result in an order of magnitude faster responsemore » and recovery times (<2 s) than reported on alumina support and allow for 10% duty cycling of the microheater with no loss in sensitivity. Lastly, the resulting 1.5 mW sensor power consumption is two orders of magnitude less than commercially available catalytic gas sensors and unlocks the potential for wireless, battery-powered catalytic gas sensing.« less

  14. Just-in-time Database-Driven Web Applications

    PubMed Central

    2003-01-01

    "Just-in-time" database-driven Web applications are inexpensive, quickly-developed software that can be put to many uses within a health care organization. Database-driven Web applications garnered 73873 hits on our system-wide intranet in 2002. They enabled collaboration and communication via user-friendly Web browser-based interfaces for both mission-critical and patient-care-critical functions. Nineteen database-driven Web applications were developed. The application categories that comprised 80% of the hits were results reporting (27%), graduate medical education (26%), research (20%), and bed availability (8%). The mean number of hits per application was 3888 (SD = 5598; range, 14-19879). A model is described for just-in-time database-driven Web application development and an example given with a popular HTML editor and database program. PMID:14517109

  15. Edge-driven microplate kinematics

    USGS Publications Warehouse

    Schouten, Hans; Klitgord, Kim D.; Gallo, David G.

    1993-01-01

    It is known from plate tectonic reconstructions that oceanic microplates undergo rapid rotation about a vertical axis and that the instantaneous rotation axes describing the microplate's motion relative to the bounding major plates are frequently located close to its margins with those plates, close to the tips of propagating rifts. We propose a class of edge-driven block models to illustrate how slip across the microplate margins, block rotation, and propagation of rifting may be related to the relative motion of the plates on either side. An important feature of these edge-driven models is that the instantaneous rotation axes are always located on the margins between block and two bounding plates. According to those models the pseudofaults or traces of disrupted seafloor resulting from the propagation of rifting between microplate and major plates may be used independently to approximately trace the continuous kinematic evolution of the microplate back in time. Pseudofault geometries and matching rotations of the Easter microplate show that for most of its 5 m.y. history, block rotation could be driven by the drag of the Nazca and Pacific plates on the microplate's edges rather than by a shear flow of mantle underneath.

  16. Na+-driven bacterial flagellar motors.

    PubMed

    Imae, Y; Atsumi, T

    1989-12-01

    Bacterial flagellar motors are the reversible rotary engine which propels the cell by rotating a helical flagellar filament as a screw propeller. The motors are embedded in the cytoplasmic membrane, and the energy for rotation is supplied by the electrochemical potential of specific ions across the membrane. Thus, the analysis of motor rotation at the molecular level is linked to an understanding of how the living system converts chemical energy into mechanical work. Based on the coupling ions, the motors are divided into two types; one is the H+-driven type found in neutrophiles such as Bacillus subtilis and Escherichia coli and the other is the Na+-driven type found in alkalophilic Bacillus and marine Vibrio. In this review, we summarize the current status of research on the rotation mechanism of the Na+-driven flagellar motors, which introduces several new aspects in the analysis.

  17. An RCT Investigating Patient-Driven Versus Physician-Driven Titration of BIAsp 30 in Patients with Type 2 Diabetes Uncontrolled Using NPH Insulin.

    PubMed

    Chraibi, Abdelmjid; Al-Herz, Shoorook; Nguyen, Bich Dao; Soeatmadji, Djoko W; Shinde, Anil; Lakshmivenkataraman, Balasubramanian; Assaad-Khalil, Samir H

    2017-08-01

    The aim of this study was to confirm the efficacy of patient-driven titration of BIAsp 30 in terms of glycemic control, by comparing it to physician-driven titration of BIAsp 30, in patients with type 2 diabetes in North Africa, the Middle East, and Asia. A 20-week, open-label, randomized, two-armed, parallel-group, multicenter study in Egypt, Indonesia, Morocco, Saudi Arabia, and Vietnam. Patients (n = 155) with type 2 diabetes inadequately controlled using neutral protamine Hagedorn (NPH) insulin were randomized to either patient-driven or physician-driven BIAsp 30 titration. The noninferiority of patient-driven compared to physician-driven titration with respect to the reduction in HbA1c was confirmed. The estimated mean change in HbA1c from baseline to week 20 was -1.27% in the patient-driven arm and -1.04% in the physician-driven arm, with an estimated treatment difference of -0.23% (95% confidence interval: -0.54; 0.08). After 20 weeks of treatment, the proportions of patients achieving the target of HbA1c <7.5% were similar between titration arms; the proportions of patients achieving the target of ≤6.5% were also similar. Both titration algorithms were well tolerated, and hypoglycemic episode rates were similar in both arms. Patient-driven titration of BIAsp 30 can be as effective and safe as physician-driven titration in non-Western populations. Overall, the switch from NPH insulin to BIAsp 30 was well tolerated in both titration arms and led to improved glycemic control. A limitation of the study was the relatively small number of patients recruited in each country. ClinicalTrials.gov NCT01589653. Novo Nordisk A/S, Denmark.

  18. Bending of Euler-Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach

    NASA Astrophysics Data System (ADS)

    Oskouie, M. Faraji; Ansari, R.; Rouhi, H.

    2018-04-01

    Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.

  19. Customer-Driven Reliability Models for Multistate Coherent Systems

    DTIC Science & Technology

    1992-01-01

    AENCYUSEONLY(Leae bank)2. RPO- COVERED 1 11992DISSERTATION 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Customer -Driven Reliability Models For Multistate Coherent...UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE CUSTOMER -DRIVEN RELIABILITY MODELS FOR MULTISTATE COHERENT SYSTEMS A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY...BOEDIGHEIMER I Norman, Oklahoma Distribution/ Av~ilability Codes 1992 A vil andior Dist Special CUSTOMER -DRIVEN RELIABILITY MODELS FOR MULTISTATE

  20. Climate-driven vital rates do not always mean climate-driven population.

    PubMed

    Tavecchia, Giacomo; Tenan, Simone; Pradel, Roger; Igual, José-Manuel; Genovart, Meritxell; Oro, Daniel

    2016-12-01

    Current climatic changes have increased the need to forecast population responses to climate variability. A common approach to address this question is through models that project current population state using the functional relationship between demographic rates and climatic variables. We argue that this approach can lead to erroneous conclusions when interpopulation dispersal is not considered. We found that immigration can release the population from climate-driven trajectories even when local vital rates are climate dependent. We illustrated this using individual-based data on a trans-equatorial migratory seabird, the Scopoli's shearwater Calonectris diomedea, in which the variation of vital rates has been associated with large-scale climatic indices. We compared the population annual growth rate λ i , estimated using local climate-driven parameters with ρ i , a population growth rate directly estimated from individual information and that accounts for immigration. While λ i varied as a function of climatic variables, reflecting the climate-dependent parameters, ρ i did not, indicating that dispersal decouples the relationship between population growth and climate variables from that between climatic variables and vital rates. Our results suggest caution when assessing demographic effects of climatic variability especially in open populations for very mobile organisms such as fish, marine mammals, bats, or birds. When a population model cannot be validated or it is not detailed enough, ignoring immigration might lead to misleading climate-driven projections. © 2016 John Wiley & Sons Ltd.

  1. Computer Workstation: Pointer/Mouse

    MedlinePlus

    ... Website You are exiting the Department of Labor's Web server. The Department of Labor does not endorse, ... the use of copyrighted materials contained in linked Web sites. Users must request such authorization from the ...

  2. Pointers from the Americas.

    PubMed

    Aragon-choudhury, P

    1992-01-01

    During a sharing session which took place at a conference sponsored by the Philippine Institute for Social Studies and Action in 1991, Peruvian Victoria Villanueva and US citizen Margaret Ann Schuller discussed their work. Schuller reported on her upcoming book entitled "Freedom from Violence: Women's Strategies Around the World." In addition to proposing a definition of violence against women, the book will include 12 case studies from Malaysia, Bolivia, Mexico, India, Pakistan, Thailand, Sri Lanka, Brazil, Zimbabwe, Chile, Africa, and Alaska describing how national organizations of women are dealing with the problem. An important advance is the development of a framework to look at the connection which exists between violence and health issues. Villanueva described the work of the Movimiento Manuela Ramos, which was organized informally to deal with reproductive rights and abortion and has since expanded to parent groups of women who defend legal and medical cases as paid paralegals. Manuela Ramos uses popular media, traditional drama, and even state television to publicize its issues. Manuela Ramos has accomplished important work on rape, unsafe abortion, and maternal mortality, but most importantly, the women involved with the organization have had the opportunity to develop their self-esteem.

  3. Beyond Solar Fuels: Renewable Energy-Driven Chemistry.

    PubMed

    Lanzafame, Paola; Abate, Salvatare; Ampelli, Claudio; Genovese, Chiara; Passalacqua, Rosalba; Centi, Gabriele; Perathoner, Siglinda

    2017-11-23

    The future feasibility of decarbonized industrial chemical production based on the substitution of fossil feedstocks (FFs) with renewable energy (RE) sources is discussed. Indeed, the use of FFs as an energy source has the greatest impact on the greenhouse gas emissions of chemical production. This future scenario is indicated as "solar-driven" or "RE-driven" chemistry. Its possible implementation requires to go beyond the concept of solar fuels, in particular to address two key aspects: i) the use of RE-driven processes for the production of base raw materials, such as olefins, methanol, and ammonia, and ii) the development of novel RE-driven routes that simultaneously realize process and energy intensification, particularly in the direction of a significant reduction of the number of the process steps. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Optically Driven Q-Switches For Lasers

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    1994-01-01

    Optically driven Q-switches for pulsed lasers proposed, taking place of acousto-optical, magneto-optical, and electro-optical switches. Optical switching beams of proposed Q-switching most likely generated in pulsed diode lasers or light-emitting diodes, outputs of which are amplitude-modulated easily by direct modulation of relatively small input currents. Energy efficiencies exceed those of electrically driven Q-switches.

  5. Experience-driven plasticity in binocular vision

    PubMed Central

    Klink, P. Christiaan; Brascamp, Jan W.; Blake, Randolph; van Wezel, Richard J.A.

    2010-01-01

    Summary Experience-driven neuronal plasticity allows the brain to adapt its functional connectivity to recent sensory input. Here we use binocular rivalry [1], an experimental paradigm where conflicting images are presented to the individual eyes, to demonstrate plasticity in the neuronal mechanisms that convert visual information from two separated retinas into single perceptual experiences. Perception during binocular rivalry tended to initially consist of alternations between exclusive representations of monocularly defined images, but upon prolonged exposure, mixture percepts became more prevalent. The completeness of suppression, reflected in the incidence of mixture percepts, plausibly reflects the strength of inhibition that likely plays a role in binocular rivalry [2]. Recovery of exclusivity was possible, but required highly specific binocular stimulation. Documenting the prerequisites for these observed changes in perceptual exclusivity, our experiments suggest experience-driven plasticity at interocular inhibitory synapses, driven by the (lack of) correlated activity of neurons representing the conflicting stimuli. This form of plasticity is consistent with a previously proposed, but largely untested, anti-Hebbian learning mechanism for inhibitory synapses in vision [3, 4]. Our results implicate experience-driven plasticity as one governing principle in the neuronal organization of binocular vision. PMID:20674360

  6. Driven superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasunobu

    2014-03-01

    Driven nonlinear quantum systems show rich phenomena in various fields of physics. Among them, superconducting quantum circuits have very attractive features such as well-controlled quantum states with design flexibility, strong nonlinearity of Josephson junctions, strong coupling to electromagnetic driving fields, little internal dissipation, and tailored coupling to the electromagnetic environment. We have investigated properties and functionalities of driven superconducting quantum circuits. A transmon qubit coupled to a transmission line shows nearly perfect spatial mode matching between the incident and scattered microwave field in the 1D mode. Dressed states under a driving field are studied there and also in a semi-infinite 1D mode terminated by a resonator containing a flux qubit. An effective Λ-type three-level system is realized under an appropriate driving condition. It allows ``impedance-matched'' perfect absorption of incident probe photons and down conversion into another frequency mode. Finally, the weak signal from the qubit is read out using a Josephson parametric amplifier/oscillator which is another nonlinear circuit driven by a strong pump field. This work was partly supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Project for Developing Innovation Systems of MEXT, MEXT KAKENHI ``Quantum Cybernetics,'' and the NICT Commissioned Research.

  7. Instrumentation: Software-Driven Instrumentation: The New Wave.

    ERIC Educational Resources Information Center

    Salit, M. L.; Parsons, M. L.

    1985-01-01

    Software-driven instrumentation makes measurements that demand a computer as an integral part of either control, data acquisition, or data reduction. The structure of such instrumentation, hardware requirements, and software requirements are discussed. Examples of software-driven instrumentation (such as wavelength-modulated continuum source…

  8. Limits on the generalizability of context-driven control.

    PubMed

    Hutcheon, Thomas G; Spieler, Daniel H

    2017-07-01

    Context-driven control refers to the fast and flexible weighting of stimulus dimensions that may be applied at the onset of a stimulus. Evidence for context-driven control comes from interference tasks in which participants encounter a high proportion of incongruent trials at one location and a high proportion of congruent trials at another location. Since the size of the congruency effect varies as a function of location, this suggests that stimulus dimensions are weighted differently based on the context in which they appear. However, manipulations of condition proportion are often confounded by variations in the frequency with which particular stimuli are encountered. To date, there is limited evidence for the context-driven control in the absence of stimulus frequency confounds. In the current paper, we attempt to replicate and extend one such finding [Crump, M. J. C., & Milliken, B. (2009). The flexibility of context-specific control: Evidence for context-driven generalization of item-specific control settings. The Quarterly Journal of Experimental Psychology, 62, 1523-1532]. Across three experiments we fail to find evidence for context-driven control in the absence of stimulus frequency confounds. Based on these results, we argue that consistency in the informativeness of the irrelevant dimension may be required for context-driven control to emerge.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, Nidhi; Mehta, Ashish; Yadav, Abhishek

    Arsenicosis, due to contaminated drinking water, is a serious health hazard in terms of morbidity and mortality. Arsenic induced free radicals generated are known to cause cellular apoptosis through mitochondrial driven pathway. In the present study, we investigated the effect of arsenic interactions with various complexes of the electron transport chain and attempted to evaluate if there was any complex preference of arsenic that could trigger apoptosis. We also evaluated if chelation with monoisoamyl dimercaptosuccinic acid (MiADMSA) could reverse these detrimental effects. Our results indicate that arsenic exposure induced free radical generation in rat neuronal cells, which diminished mitochondrial potentialmore » and enzyme activities of all the complexes of the electron transport chain. Moreover, these complexes showed differential responses towards arsenic. These early events along with diminished ATP levels could be co-related with the later events of cytosolic migration of cytochrome c, altered bax/bcl{sub 2} ratio, and increased caspase 3 activity. Although MiADMSA could reverse most of these arsenic-induced altered variables to various extents, DNA damage remained unaffected. Our study for the first time demonstrates the differential effect of arsenic on the complexes leading to deficits in bioenergetics leading to apoptosis in rat brain. However, more in depth studies are warranted for better understanding of arsenic interactions with the mitochondria. -- Research highlights: Black-Right-Pointing-Pointer Arsenic impairs mitochondrial energy metabolism leading to neuronal apoptosis. Black-Right-Pointing-Pointer Arsenic differentially affects mitochondrial complexes, I - III and IV being more sensitive than complex II. Black-Right-Pointing-Pointer Arsenic-induced apoptosis initiates through ROS generation or impaired [Ca{sup 2+}]i homeostasis. Black-Right-Pointing-Pointer MiADMSA reverses arsenic toxicity via intracellular arsenic- chelation

  10. Nature and origins of virtual environments - A bibliographical essay

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.

    1991-01-01

    Virtual environments presented via head-mounted, computer-driven displays provide a new media for communication. They may be analyzed by considering: (1) what may be meant by an environment; (2) what is meant by the process of virtualization; and (3) some aspects of human performance that constrain environmental design. Their origins are traced from previous work in vehicle simulation and multimedia research. Pointers are provided to key technical references, in the dispersed, archival literature, that are relevant to the development and evaluation of virtual-environment interface systems.

  11. Process-Driven Culture Learning in American KFL Classroom Settings

    ERIC Educational Resources Information Center

    Byon, Andrew Sangpil

    2007-01-01

    Teaching second language (L2) culture can be either content- or process-driven. The content-driven approach refers to explicit instruction of L2 cultural information. On the other hand, the process-driven approach focuses on students' active participation in cultural learning processes. In this approach, teachers are not only information…

  12. Legal aspects of therapist-driven protocols. Do therapist-driven protocols place therapists in a legally compromising position?

    PubMed

    Meehan, M J

    1996-03-01

    The recent introduction of therapist-driven protocols has given the appearance of restricting the professional judgment of respiratory therapists with decision-tree robotics while contemporaneously catapulting them into the practice of medicine. This is happening in the midst of a spiraling litigation climate. This article examines the legal aspects--from malpractice to licensure--of this exciting new practice known as therapist-driven respiratory protocols.

  13. The association of graduated driver licensing with miles driven and fatal crash rates per miles driven among adolescents

    PubMed Central

    Zhu, Motao; Cummings, Peter; Zhao, Songzhu; Coben, Jeffrey H.; Smith, Gordon S.

    2014-01-01

    Background Graduated driver licensing (GDL) laws are associated with reduced crash rates per person-year among adolescents. It is unknown whether adolescents crash less per miles driven or drive less under GDL policies. Methods We used data from the US National Household Travel Survey and Fatality Analysis Reporting System for 1995–1996, 2001–2002, and 2008–2009. We compared adolescents subject to GDL laws with those not, by estimating adjusted incidence rate ratios for being a driver in a crash with a death per person-year (aIRRpy) and per miles driven (aIRRm), and adjusted miles driven ratios (aMR) controlling for changes in rates over time. Results Comparing persons subject to GDL policies with those not, 16-year-olds had fewer fatal crashes per person-year (aIRRpy 0.63, 95% confidence interval [CI] 0.47, 0.91), drove fewer miles (aMR 0.79, 95% CI 0.63, 0.98), and had lower crash rates per miles driven (aIRRm 0.83, 95% CI 0.65, 1.06). For age 17, the aIRRpy was 0.83 (95% CI 0.60, 1.17), the aMR 0.80 (95% CI 0.63, 1.03), and the aIRRm 1.03 (95% CI 0.80, 1.35). For age 18, the aIRRpy was 0.93 (95% CI 0.72, 1.19), the aMR 0.92 (95% CI 0.77, 1.09), and the aIRRm 1.01 (95% CI 0.84, 1.23). Conclusions If these associations are causal, GDL laws reduced crashes per person-year by about one-third among 16-year-olds; half the reduction was due to fewer crashes per miles driven and half to less driving. For ages 17 and 18, there was no evidence of reduced crash rates per miles driven. PMID:24525908

  14. Model-Driven Theme/UML

    NASA Astrophysics Data System (ADS)

    Carton, Andrew; Driver, Cormac; Jackson, Andrew; Clarke, Siobhán

    Theme/UML is an existing approach to aspect-oriented modelling that supports the modularisation and composition of concerns, including crosscutting ones, in design. To date, its lack of integration with model-driven engineering (MDE) techniques has limited its benefits across the development lifecycle. Here, we describe our work on facilitating the use of Theme/UML as part of an MDE process. We have developed a transformation tool that adopts model-driven architecture (MDA) standards. It defines a concern composition mechanism, implemented as a model transformation, to support the enhanced modularisation features of Theme/UML. We evaluate our approach by applying it to the development of mobile, context-aware applications-an application area characterised by many non-functional requirements that manifest themselves as crosscutting concerns.

  15. A Spiking Neural Simulator Integrating Event-Driven and Time-Driven Computation Schemes Using Parallel CPU-GPU Co-Processing: A Case Study.

    PubMed

    Naveros, Francisco; Luque, Niceto R; Garrido, Jesús A; Carrillo, Richard R; Anguita, Mancia; Ros, Eduardo

    2015-07-01

    Time-driven simulation methods in traditional CPU architectures perform well and precisely when simulating small-scale spiking neural networks. Nevertheless, they still have drawbacks when simulating large-scale systems. Conversely, event-driven simulation methods in CPUs and time-driven simulation methods in graphic processing units (GPUs) can outperform CPU time-driven methods under certain conditions. With this performance improvement in mind, we have developed an event-and-time-driven spiking neural network simulator suitable for a hybrid CPU-GPU platform. Our neural simulator is able to efficiently simulate bio-inspired spiking neural networks consisting of different neural models, which can be distributed heterogeneously in both small layers and large layers or subsystems. For the sake of efficiency, the low-activity parts of the neural network can be simulated in CPU using event-driven methods while the high-activity subsystems can be simulated in either CPU (a few neurons) or GPU (thousands or millions of neurons) using time-driven methods. In this brief, we have undertaken a comparative study of these different simulation methods. For benchmarking the different simulation methods and platforms, we have used a cerebellar-inspired neural-network model consisting of a very dense granular layer and a Purkinje layer with a smaller number of cells (according to biological ratios). Thus, this cerebellar-like network includes a dense diverging neural layer (increasing the dimensionality of its internal representation and sparse coding) and a converging neural layer (integration) similar to many other biologically inspired and also artificial neural networks.

  16. In situ insights into shock-driven reactive flow

    NASA Astrophysics Data System (ADS)

    Dattelbaum, Dana

    2017-06-01

    Shock-driven reactions are commonplace. Examples include the detonation of high explosives, shock-driven dissociation of polymers, and transformation of carbon from graphite to diamond phases. The study of shock-driven chemical reactions is important for understanding reaction thresholds, their mechanisms and rates, and associated state sensitivities under the extreme conditions generated by shock compression. Reactions are distinguished by their thermicity - e.g. the volume and enthalpy changes along the reaction coordinate. A survey of the hallmarks of shock-driven reactivity for a variety of simple molecules and polymers will be presented, including benzene, acetylenes and nitriles, and formic acid. Many of the examples will illustrate the nature of the reactive flow through particle velocity wave profiles measured by in situ electromagnetic gauging in gas gun-driven plate impact experiments. General trends will be presented linking molecular moieties, shock temperatures, and reaction state sensitivities. Progress in applying bond-specific diagnostics will also be presented, including time-resolved Raman spectroscopy, and recent results of in situ x-ray diffraction of carbon at the Linac Coherent Light Souce (LCLS) free electron laser.

  17. Optimal protocols for slowly driven quantum systems.

    PubMed

    Zulkowski, Patrick R; DeWeese, Michael R

    2015-09-01

    The design of efficient quantum information processing will rely on optimal nonequilibrium transitions of driven quantum systems. Building on a recently developed geometric framework for computing optimal protocols for classical systems driven in finite time, we construct a general framework for optimizing the average information entropy for driven quantum systems. Geodesics on the parameter manifold endowed with a positive semidefinite metric correspond to protocols that minimize the average information entropy production in finite time. We use this framework to explicitly compute the optimal entropy production for a simple two-state quantum system coupled to a heat bath of bosonic oscillators, which has applications to quantum annealing.

  18. Shock propagation in locally driven granular systems

    NASA Astrophysics Data System (ADS)

    Joy, Jilmy P.; Pathak, Sudhir N.; Das, Dibyendu; Rajesh, R.

    2017-09-01

    We study shock propagation in a system of initially stationary hard spheres that is driven by a continuous injection of particles at the origin. The disturbance created by the injection of energy spreads radially outward through collisions between particles. Using scaling arguments, we determine the exponent characterizing the power-law growth of this disturbance in all dimensions. The scaling functions describing the various physical quantities are determined using large-scale event-driven simulations in two and three dimensions for both elastic and inelastic systems. The results are shown to describe well the data from two different experiments on granular systems that are similarly driven.

  19. Shock propagation in locally driven granular systems.

    PubMed

    Joy, Jilmy P; Pathak, Sudhir N; Das, Dibyendu; Rajesh, R

    2017-09-01

    We study shock propagation in a system of initially stationary hard spheres that is driven by a continuous injection of particles at the origin. The disturbance created by the injection of energy spreads radially outward through collisions between particles. Using scaling arguments, we determine the exponent characterizing the power-law growth of this disturbance in all dimensions. The scaling functions describing the various physical quantities are determined using large-scale event-driven simulations in two and three dimensions for both elastic and inelastic systems. The results are shown to describe well the data from two different experiments on granular systems that are similarly driven.

  20. The Dilemma of the Tuition-Driven College

    ERIC Educational Resources Information Center

    Dehne, Gerald; Small, Christopher

    2006-01-01

    The term "tuition driven" no longer pertains only to private colleges. As state appropriations to public universities dwindle, more colleges are relying to a greater degree on keeping classes full in order to generate revenue. The fact is, virtually all institutions are essentially tuition driven. Although trustees generally understand what being…

  1. Current-driven plasma acceleration versus current-driven energy dissipation. I - Wave stability theory

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Jahn, R. G.; Choueiri, E. Y.

    1990-01-01

    The dominant unstable electrostatic wave modes of an electromagnetically accelerated plasma are investigated. The study is the first part of a three-phase program aimed at characterizing the current-driven turbulent dissipation degrading the efficiency of Lorentz force plasma accelerators such as the MPD thruster. The analysis uses a kinetic theory that includes magnetic and thermal effects as well as those of an electron current transverse to the magnetic field and collisions, thus combining all the features of previous models. Analytical and numerical solutions allow a detailed description of threshold criteria, finite growth behavior, destabilization mechanisms and maximized-growth characteristics of the dominant unstable modes. The lower hybrid current-driven instability is implicated as dominant and was found to preserve its character in the collisional plasma regime.

  2. Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators.

    PubMed

    Xu, Wenjun; Chen, Jie; Lau, Henry Y K; Ren, Hongliang

    2017-09-01

    Accurate motion control of flexible surgical manipulators is crucial in tissue manipulation tasks. The tendon-driven serpentine manipulator (TSM) is one of the most widely adopted flexible mechanisms in minimally invasive surgery because of its enhanced maneuverability in torturous environments. TSM, however, exhibits high nonlinearities and conventional analytical kinematics model is insufficient to achieve high accuracy. To account for the system nonlinearities, we applied a data driven approach to encode the system inverse kinematics. Three regression methods: extreme learning machine (ELM), Gaussian mixture regression (GMR) and K-nearest neighbors regression (KNNR) were implemented to learn a nonlinear mapping from the robot 3D position states to the control inputs. The performance of the three algorithms was evaluated both in simulation and physical trajectory tracking experiments. KNNR performed the best in the tracking experiments, with the lowest RMSE of 2.1275 mm. The proposed inverse kinematics learning methods provide an alternative and efficient way to accurately model the tendon driven flexible manipulator. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Data-Driven Districts.

    ERIC Educational Resources Information Center

    LaFee, Scott

    2002-01-01

    Describes the use of data-driven decision-making in four school districts: Plainfield Public Schools, Plainfield, New Jersey; Palo Alto Unified School District, Palo Alto, California; Francis Howell School District in eastern Missouri, northwest of St. Louis; and Rio Rancho Public Schools, near Albuquerque, New Mexico. Includes interviews with the…

  4. Schematic driven layout of Reed Solomon encoders

    NASA Technical Reports Server (NTRS)

    Arave, Kari; Canaris, John; Miles, Lowell; Whitaker, Sterling

    1992-01-01

    Two Reed Solomon error correcting encoders are presented. Schematic driven layout tools were used to create the encoder layouts. Special consideration had to be given to the architecture and logic to provide scalability of the encoder designs. Knowledge gained from these projects was used to create a more flexible schematic driven layout system.

  5. Revisiting the hypothesis-driven interview in a contemporary context.

    PubMed

    Holmes, Alex; Singh, Bruce; McColl, Geoff

    2011-12-01

    The "hypothesis-driven interview" was articulated by George Engel as a method of raising and testing hypotheses in the process of building a biopsychosocial formulation and determining the most likely diagnosis. This interview was a forerunner of the modern medical interview as well as the contemporary psychiatric assessment. The objective of this article is to describe the hypothesis-driven interview and to explore its relationship with the contemporary medical interview. The literature on the medical and hypothesis-driven interview was reviewed. Key features of each were identified. The hypothesis-driven interview shares much with the contemporary medical interview. In addition, it enhances the application of communication skills and allows the interviewer to develop a formulation during the course of the assessment. The hypothesis-driven interview is well suited to the aims of a contemporary psychiatric assessment.

  6. Influence of driven current on resistive tearing mode in Tokamaks

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Wang, Sheng; Zhang, Wei

    2016-10-01

    Influence of driven current on the m / n = 2 / 1 resistive tearing mode is studied systematically using a three-dimensional toroidal MHD code (CLT). A uniform driven current with Gaussian distribution in the radial direction is imposed around the unperturbed rational surface. It is found that the driven current can locally modify the profiles of the current and safety factor, such that the tearing mode becomes linearly stable. The stabilizing effect increases with increase of the driven current Icd or decrease of its width δcd, unless an excessively large driven current reverses the magnetic shear near the rational surface and drives other instabilities such as double or triple tearing modes. The stabilizing effect can be negligible or becomes reversed if the maximum driven current density is not at the unperturbed rational surface. ITER-CN Program.

  7. Argument-Driven Inquiry

    ERIC Educational Resources Information Center

    Sampson, Victor; Grooms, Jonathon; Walker, Joi

    2009-01-01

    Argument-Driven Inquiry (ADI) is an instructional model that enables science teachers to transform a traditional laboratory activity into a short integrated instructional unit. To illustrate how the ADI instructional model works, this article describes an ADI lesson developed for a 10th-grade chemistry class. This example lesson was designed to…

  8. Light-field-driven currents in graphene

    NASA Astrophysics Data System (ADS)

    Higuchi, Takuya; Heide, Christian; Ullmann, Konrad; Weber, Heiko B.; Hommelhoff, Peter

    2017-10-01

    The ability to steer electrons using the strong electromagnetic field of light has opened up the possibility of controlling electron dynamics on the sub-femtosecond (less than 10-15 seconds) timescale. In dielectrics and semiconductors, various light-field-driven effects have been explored, including high-harmonic generation, sub-optical-cycle interband population transfer and the non-perturbative change of the transient polarizability. In contrast, much less is known about light-field-driven electron dynamics in narrow-bandgap systems or in conductors, in which screening due to free carriers or light absorption hinders the application of strong optical fields. Graphene is a promising platform with which to achieve light-field-driven control of electrons in a conducting material, because of its broadband and ultrafast optical response, weak screening and high damage threshold. Here we show that a current induced in monolayer graphene by two-cycle laser pulses is sensitive to the electric-field waveform, that is, to the exact shape of the optical carrier field of the pulse, which is controlled by the carrier-envelope phase, with a precision on the attosecond (10-18 seconds) timescale. Such a current, dependent on the carrier-envelope phase, shows a striking reversal of the direction of the current as a function of the driving field amplitude at about two volts per nanometre. This reversal indicates a transition of light-matter interaction from the weak-field (photon-driven) regime to the strong-field (light-field-driven) regime, where the intraband dynamics influence interband transitions. We show that in this strong-field regime the electron dynamics are governed by sub-optical-cycle Landau-Zener-Stückelberg interference, composed of coherent repeated Landau-Zener transitions on the femtosecond timescale. Furthermore, the influence of this sub-optical-cycle interference can be controlled with the laser polarization state. These coherent electron dynamics in

  9. Light-field-driven currents in graphene.

    PubMed

    Higuchi, Takuya; Heide, Christian; Ullmann, Konrad; Weber, Heiko B; Hommelhoff, Peter

    2017-10-12

    The ability to steer electrons using the strong electromagnetic field of light has opened up the possibility of controlling electron dynamics on the sub-femtosecond (less than 10 -15 seconds) timescale. In dielectrics and semiconductors, various light-field-driven effects have been explored, including high-harmonic generation, sub-optical-cycle interband population transfer and the non-perturbative change of the transient polarizability. In contrast, much less is known about light-field-driven electron dynamics in narrow-bandgap systems or in conductors, in which screening due to free carriers or light absorption hinders the application of strong optical fields. Graphene is a promising platform with which to achieve light-field-driven control of electrons in a conducting material, because of its broadband and ultrafast optical response, weak screening and high damage threshold. Here we show that a current induced in monolayer graphene by two-cycle laser pulses is sensitive to the electric-field waveform, that is, to the exact shape of the optical carrier field of the pulse, which is controlled by the carrier-envelope phase, with a precision on the attosecond (10 -18 seconds) timescale. Such a current, dependent on the carrier-envelope phase, shows a striking reversal of the direction of the current as a function of the driving field amplitude at about two volts per nanometre. This reversal indicates a transition of light-matter interaction from the weak-field (photon-driven) regime to the strong-field (light-field-driven) regime, where the intraband dynamics influence interband transitions. We show that in this strong-field regime the electron dynamics are governed by sub-optical-cycle Landau-Zener-Stückelberg interference, composed of coherent repeated Landau-Zener transitions on the femtosecond timescale. Furthermore, the influence of this sub-optical-cycle interference can be controlled with the laser polarization state. These coherent electron dynamics in

  10. Anomalous metastability in a temperature-driven transition

    NASA Astrophysics Data System (ADS)

    Ibáñez Berganza, M.; Coletti, P.; Petri, A.

    2014-06-01

    The Langer theory of metastability provides a description of the lifetime and properties of the metastable phase of the Ising model field-driven transition, describing the magnetic-field-driven transition in ferromagnets and the chemical-potential-driven transition of fluids. An immediate further step is to apply it to the study of a transition driven by the temperature, as the one exhibited by the two-dimensional Potts model. For this model, a study based on the analytical continuation of the free energy (Meunier J. L. and Morel A., Eur. Phys. J. B, 13 (2000) 341) predicts the anomalous vanishing of the metastable temperature range in the large-system-size limit, an issue that has been controversial since the eighties. By a GPU algorithm we compare the Monte Carlo dynamics with the theory. For temperatures close to the transition we obtain agreement and characterize the dependence on the system size, which is essentially different with respect to the Ising case. For smaller temperatures, we observe the onset of stationary states with non-Boltzmann statistics, not predicted by the theory.

  11. Taylor dispersion in wind-driven current

    NASA Astrophysics Data System (ADS)

    Li, Gang; Wang, Ping; Jiang, Wei-Quan; Zeng, Li; Li, Zhi; Chen, G. Q.

    2017-12-01

    Taylor dispersion associated with wind-driven currents in channels, shallow lakes and estuaries is essential to hydrological environmental management. For solute dispersion in a wind-driven current, presented in this paper is an analytical study of the evolution of concentration distribution. The concentration moments are intensively derived for an accurate presentation of the mean concentration distribution, up to the effect of kurtosis. The vertical divergence of concentration is then deduced by Gill's method of series expansion up to the fourth order. Based on the temporal evolution of the vertical concentration distribution, the dispersion process in the wind-driven current is concretely characterized. The uniform shear leads to a special symmetrical distribution of mean concentration free of skewness. The non-uniformity of vertical concentration is caused by convection and smeared out gradually by the effect of diffusion, but fails to disappear even at large times.

  12. Object-Driven and Temporal Action Rules Mining

    ERIC Educational Resources Information Center

    Hajja, Ayman

    2013-01-01

    In this thesis, I present my complete research work in the field of action rules, more precisely object-driven and temporal action rules. The drive behind the introduction of object-driven and temporally based action rules is to bring forth an adapted approach to extract action rules from a subclass of systems that have a specific nature, in which…

  13. The association of graduated driver licensing with miles driven and fatal crash rates per miles driven among adolescents.

    PubMed

    Zhu, Motao; Cummings, Peter; Zhao, Songzhu; Coben, Jeffrey H; Smith, Gordon S

    2015-04-01

    Graduated driver licensing (GDL) laws are associated with reduced crash rates per person-year among adolescents. It is unknown whether adolescents crash less per miles driven or drive less under GDL policies. We used data from the US National Household Travel Survey and Fatality Analysis Reporting System for 1995-1996, 2001-2002 and 2008-2009. We compared adolescents subject to GDL laws with those not by estimating adjusted IRRs for being a driver in a crash with a death per person-year (aIRRpy) and per miles driven (aIRRm), and adjusted miles driven ratios (aMR) controlling for changes in rates over time. Comparing persons subject to GDL policies with those not, 16 year olds had fewer fatal crashes per person-year (aIRRpy 0.63, 95% CI 0.47 to 0.91), drove fewer miles (aMR 0.79, 95% CI 0.63 to 0.98) and had lower crash rates per miles driven (aIRRm 0.83, 95% CI 0.65 to 1.06). For age 17, the aIRRpy was 0.83 (95% CI 0.60 to 1.17), the aMR 0.80 (95% CI 0.63 to 1.03) and the aIRRm 1.03 (95% CI 0.80 to 1.35). For age 18, the aIRRpy was 0.93 (95% CI 0.72 to 1.19), the aMR 0.92 (95% CI 0.77 to 1.09) and the aIRRm 1.01 (95% CI 0.84 to 1.23). If these associations are causal, GDL laws reduced crashes per person-year by about one-third among 16 year olds; half the reduction was due to fewer crashes per miles driven and half to less driving. For ages 17 and 18, there was no evidence of reduced crash rates per miles driven. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Orientation of Steel Fibers in Magnetically Driven Concrete and Mortar.

    PubMed

    Xue, Wen; Chen, Ju; Xie, Fang; Feng, Bing

    2018-01-22

    The orientation of steel fibers in magnetically driven concrete and magnetically driven mortar was experimentally studied in this paper using a magnetic method. In the magnetically driven concrete, a steel slag was used to replace the coarse aggregate. In the magnetically driven mortar, steel slag and iron sand were used to replace the fine aggregate. A device was established to provide the magnetic force. The magnetic force was used to rotate the steel fibers. In addition, the magnetic force was also used to vibrate the concrete and mortar. The effect of magnetic force on the orientation of steel fibers was examined by comparing the direction of fibers before and after vibration. The effect of magnetically driven concrete and mortar on the orientation of steel fibers was also examined by comparing specimens to normal concrete and mortar. It is shown that the fibers could rotate about 90° in magnetically driven concrete. It is also shown that the number of fibers rotated in magnetically driven mortar was much more than in mortar vibrated using a shaking table. A splitting test was performed on concrete specimens to investigate the effect of fiber orientation. In addition, a flexural test was also performed on mortar test specimens. It is shown that the orientation of the steel fibers in magnetically driven concrete and mortar affects the strength of the concrete and mortar specimens.

  15. Orientation of Steel Fibers in Magnetically Driven Concrete and Mortar

    PubMed Central

    Xue, Wen; Chen, Ju; Xie, Fang; Feng, Bing

    2018-01-01

    The orientation of steel fibers in magnetically driven concrete and magnetically driven mortar was experimentally studied in this paper using a magnetic method. In the magnetically driven concrete, a steel slag was used to replace the coarse aggregate. In the magnetically driven mortar, steel slag and iron sand were used to replace the fine aggregate. A device was established to provide the magnetic force. The magnetic force was used to rotate the steel fibers. In addition, the magnetic force was also used to vibrate the concrete and mortar. The effect of magnetic force on the orientation of steel fibers was examined by comparing the direction of fibers before and after vibration. The effect of magnetically driven concrete and mortar on the orientation of steel fibers was also examined by comparing specimens to normal concrete and mortar. It is shown that the fibers could rotate about 90° in magnetically driven concrete. It is also shown that the number of fibers rotated in magnetically driven mortar was much more than in mortar vibrated using a shaking table. A splitting test was performed on concrete specimens to investigate the effect of fiber orientation. In addition, a flexural test was also performed on mortar test specimens. It is shown that the orientation of the steel fibers in magnetically driven concrete and mortar affects the strength of the concrete and mortar specimens. PMID:29361798

  16. Photo-driven nanoactuators based on carbon nanocoils and vanadium dioxide bimorphs.

    PubMed

    Ma, He; Zhang, Xinping; Cui, Ruixue; Liu, Feifei; Wang, Meng; Huang, Cuiying; Hou, Jiwei; Wang, Guang; Wei, Yang; Jiang, Kaili; Pan, Lujun; Liu, Kai

    2018-06-06

    Photo-driven actuators are highly desirable in various smart systems owing to the advantages of wireless control and possible actuation by solar energy. Miniaturization of photo-driven actuators is particularly essential in micro-robotics and micro-/nano-electro-mechanical systems. However, it remains a great challenge to build up nano-scale photo-driven actuators with competitive performance in amplitude, response speed, and lifetime. In this work, we developed photo-driven nanoactuators based on bimorph structures of vanadium dioxides (VO2) and carbon nanocoils (CNCs). Activated by the huge structural phase transition of VO2, the photo-driven VO2/CNC nanoactuators deliver a giant amplitude, a fast response up to 9400 Hz, and a long lifetime more than 10 000 000 actuation cycles. Both experimental and simulation results show that the helical structure of CNCs enables a low photo-driven threshold of VO2/CNC nanoactuators, which provides an effective method to construct photo-driven nanoactuators with low power consumption. Our photo-driven VO2/CNC nanoactuators would find potential applications in nano-scale electrical/optical switches and other smart devices.

  17. The Hypothesis-Driven Physical Examination.

    PubMed

    Garibaldi, Brian T; Olson, Andrew P J

    2018-05-01

    The physical examination remains a vital part of the clinical encounter. However, physical examination skills have declined in recent years, in part because of decreased time at the bedside. Many clinicians question the relevance of physical examinations in the age of technology. A hypothesis-driven approach to teaching and practicing the physical examination emphasizes the performance of maneuvers that can alter the likelihood of disease. Likelihood ratios are diagnostic weights that allow clinicians to estimate the post-probability of disease. This hypothesis-driven approach to the physical examination increases its value and efficiency, while preserving its cultural role in the patient-physician relationship. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Towards the minimization of thermodynamic irreversibility in an electrically actuated microflow of a viscoelastic fluid under electrical double layer phenomenon

    NASA Astrophysics Data System (ADS)

    Sarma, Rajkumar; Jain, Manish; Mondal, Pranab Kumar

    2017-10-01

    We discuss the entropy generation minimization for electro-osmotic flow of a viscoelastic fluid through a parallel plate microchannel under the combined influences of interfacial slip and conjugate transport of heat. We use in this study the simplified Phan-Thien-Tanner model to describe the rheological behavior of the viscoelastic fluid. Using Navier's slip law and thermal boundary conditions of the third kind, we solve the transport equations analytically and evaluate the global entropy generation rate of the system. We examine the influential role of the following parameters on the entropy generation rate of the system, viz., the viscoelastic parameter (ɛDe2), Debye-Hückel parameter ( κ ¯ ) , channel wall thickness (δ), thermal conductivity of the wall (γ), Biot number (Bi), Peclet number (Pe), and axial temperature gradient (B). This investigation finally establishes the optimum values of the abovementioned parameters, leading to the minimum entropy generation of the system. We believe that results of this analysis could be helpful in optimizing the second-law performance of microscale thermal management devices, including the micro-heat exchangers, micro-reactors, and micro-heat pipes.

  19. Designing a Microhydraulically driven Mini robotic Squid

    DTIC Science & Technology

    2016-05-20

    applications for microrobots include remote monitoring, surveillance, search and rescue, nanoassembly, medicine, and in-vivo surgery . Robotics platforms...Secretary of Defense for Research and Engineering. Designing a Microhydraulically-driven Mini- robotic Squid by Kevin Dehan Meng B.S., U.S. Air...Committee on Graduate Students 2 Designing a Microhydraulically-driven Mini- robotic Squid by Kevin Dehan Meng Submitted to the Department

  20. Plasmon-driven sequential chemical reactions in an aqueous environment.

    PubMed

    Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

    2014-06-24

    Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H(+) in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight.

  1. Automatic Registration of Scanned Satellite Imagery with a Digital Map Data Base.

    DTIC Science & Technology

    1980-11-01

    define the corresponding map window (mW)(procedure TRANSFORMWINDOW MAP A-- S4S Araofms Cpo iin et Serc Area deiatl compAr tal _______________ T...to a LIST-item). LIN: = ( ® code 2621431 ; ® pointer LA to the line list, © pointer PRI; pointer PR2), LIST: = ( Q pointer PL to a LIN-item; n pointer...items where PL -pointers are replaced by a code for the beginning (the number 262140 in our case) and end (the number 26241). Figure 3.2 illustra- tes a

  2. Stakeholder-Driven Quality Improvement: A Compelling Force for Clinical Practice Guidelines.

    PubMed

    Rosenfeld, Richard M; Wyer, Peter C

    2018-01-01

    Clinical practice guideline development should be driven by rigorous methodology, but what is less clear is where quality improvement enters the process: should it be a priority-guiding force, or should it enter only after recommendations are formulated? We argue for a stakeholder-driven approach to guideline development, with an overriding goal of quality improvement based on stakeholder perceptions of needs, uncertainties, and knowledge gaps. In contrast, the widely used topic-driven approach, which often makes recommendations based only on randomized controlled trials, is driven by epidemiologic purity and evidence rigor, with quality improvement a downstream consideration. The advantages of a stakeholder-driven versus a topic-driven approach are highlighted by comparisons of guidelines for otitis media with effusion, thyroid nodules, sepsis, and acute bacterial rhinosinusitis. These comparisons show that stakeholder-driven guidelines are more likely to address the quality improvement needs and pressing concerns of clinicians and patients, including understudied populations and patients with multiple chronic conditions. Conversely, a topic-driven approach often addresses "typical" patients, based on research that may not reflect the needs of high-risk groups excluded from studies because of ethical issues or a desire for purity of research design.

  3. Wind-Driven Global Evolution of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning

    It has been realized in the recent years that magnetized disk winds disk- likely play a decisive role in the global evolution of protoplanetary disks protoplanetary evolution (PPDs). Motivated by recent local simulations local , we first describe a global magnetized disk wind model, from which wind-driven accretion rate -rate wind-driven and wind mass loss rate can be reliably estimated. Both rates are shown to strongly depend on the amount of magnetic flux magnetic threading the disk. Wind kinematics is also affected by thermodynamics in the wind zone (particularly far UV heating/ionization), and the mass loss process loss- can be better termed as "magneto-photoevaporation." We then construct a framework of PPD global evolution global that incorporates wind-driven and viscously driven accretion viscously-driven as well as wind mass loss. For typical PPD accretion rates, the required field strength would lead to wind mass loss rate at least comparable to disk accretion rate, and mass loss is most significant in the outer disk (beyond ˜ 10 AU). Finally, we discuss the transport of magnetic flux in PPDs, which largely governs the long-term evolution long-term of PPDs.

  4. Schematic driven silicon photonics design

    NASA Astrophysics Data System (ADS)

    Chrostowski, Lukas; Lu, Zeqin; Flückiger, Jonas; Pond, James; Klein, Jackson; Wang, Xu; Li, Sarah; Tai, Wei; Hsu, En Yao; Kim, Chan; Ferguson, John; Cone, Chris

    2016-03-01

    Electronic circuit designers commonly start their design process with a schematic, namely an abstract representation of the physical circuit. In integrated photonics on the other hand, it is very common for the design to begin at the physical component level. In order to build large integrated photonic systems, it is crucial to design using a schematic-driven approach. This includes simulations based on schematics, schematic-driven layout, layout versus schematic verification, and post-layout simulations. This paper describes such a design framework implemented using Mentor Graphics and Lumerical Solutions design tools. In addition, we describe challenges in silicon photonics related to manufacturing, and how these can be taken into account in simulations and how these impact circuit performance.

  5. Plasmon-driven sequential chemical reactions in an aqueous environment

    PubMed Central

    Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

    2014-01-01

    Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H+ in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight. PMID:24958029

  6. Rigorous buoyancy driven bubble mixing for centrifugal microfluidics.

    PubMed

    Burger, S; Schulz, M; von Stetten, F; Zengerle, R; Paust, N

    2016-01-21

    We present batch-mode mixing for centrifugal microfluidics operated at fixed rotational frequency. Gas is generated by the disk integrated decomposition of hydrogen peroxide (H2O2) to liquid water (H2O) and gaseous oxygen (O2) and inserted into a mixing chamber. There, bubbles are formed that ascent through the liquid in the artificial gravity field and lead to drag flow. Additionaly, strong buoyancy causes deformation and rupture of the gas bubbles and induces strong mixing flows in the liquids. Buoyancy driven bubble mixing is quantitatively compared to shake mode mixing, mixing by reciprocation and vortex mixing. To determine mixing efficiencies in a meaningful way, the different mixers are employed for mixing of a lysis reagent and human whole blood. Subsequently, DNA is extracted from the lysate and the amount of DNA recovered is taken as a measure for mixing efficiency. Relative to standard vortex mixing, DNA extraction based on buoyancy driven bubble mixing resulted in yields of 92 ± 8% (100 s mixing time) and 100 ± 8% (600 s) at 130g centrifugal acceleration. Shake mode mixing yields 96 ± 11% and is thus equal to buoyancy driven bubble mixing. An advantage of buoyancy driven bubble mixing is that it can be operated at fixed rotational frequency, however. The additional costs of implementing buoyancy driven bubble mixing are low since both the activation liquid and the catalyst are very low cost and no external means are required in the processing device. Furthermore, buoyancy driven bubble mixing can easily be integrated in a monolithic manner and is compatible to scalable manufacturing technologies such as injection moulding or thermoforming. We consider buoyancy driven bubble mixing an excellent alternative to shake mode mixing, in particular if the processing device is not capable of providing fast changes of rotational frequency or if the low average rotational frequency is challenging for the other integrated fluidic operations.

  7. Data-Driven School Administrator Behaviors and State Report Card Results

    ERIC Educational Resources Information Center

    Spencer, James A., Jr.

    2014-01-01

    The purpose of this study was to identify the principal behaviors that would define an instructional leader as being a data-driven school administrator and to assess current school administrators' levels of being data-driven. This research attempted to examine the relationship between the degree to which a principal was data-driven and the…

  8. Advances in Electrically Driven Thermal Management

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2017-01-01

    Electrically Driven Thermal Management is a vibrant technology development initiative incorporating ISS based technology demonstrations, development of innovative fluid management techniques and fundamental research efforts. The program emphasizes high temperature high heat flux thermal management required for future generations of RF electronics and power electronic devices. This presentation reviews i.) preliminary results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched on STP-H5 payload in February 2017 ii.) advances in liquid phase flow distribution control iii.) development of the Electrically Driven Liquid Film Boiling Experiment under the NASA Microgravity Fluid Physics Program.

  9. A Consumer-Driven Approach To Increase Suggestive Selling.

    ERIC Educational Resources Information Center

    Rohn, Don; Austin, John; Sanford, Alison

    2003-01-01

    Discussion of the effectiveness of behavioral interventions in improving suggestive selling behavior of sales staff focuses on a study that examined the efficacy of a consumer-driven approach to improve suggestive selling behavior of three employees of a fast food franchise. Reports that consumer-driven intervention increased suggestive selling…

  10. Educational Accountability: A Qualitatively Driven Mixed-Methods Approach

    ERIC Educational Resources Information Center

    Hall, Jori N.; Ryan, Katherine E.

    2011-01-01

    This article discusses the importance of mixed-methods research, in particular the value of qualitatively driven mixed-methods research for quantitatively driven domains like educational accountability. The article demonstrates the merits of qualitative thinking by describing a mixed-methods study that focuses on a middle school's system of…

  11. The Structural Consequences of Big Data-Driven Education.

    PubMed

    Zeide, Elana

    2017-06-01

    Educators and commenters who evaluate big data-driven learning environments focus on specific questions: whether automated education platforms improve learning outcomes, invade student privacy, and promote equality. This article puts aside separate unresolved-and perhaps unresolvable-issues regarding the concrete effects of specific technologies. It instead examines how big data-driven tools alter the structure of schools' pedagogical decision-making, and, in doing so, change fundamental aspects of America's education enterprise. Technological mediation and data-driven decision-making have a particularly significant impact in learning environments because the education process primarily consists of dynamic information exchange. In this overview, I highlight three significant structural shifts that accompany school reliance on data-driven instructional platforms that perform core school functions: teaching, assessment, and credentialing. First, virtual learning environments create information technology infrastructures featuring constant data collection, continuous algorithmic assessment, and possibly infinite record retention. This undermines the traditional intellectual privacy and safety of classrooms. Second, these systems displace pedagogical decision-making from educators serving public interests to private, often for-profit, technology providers. They constrain teachers' academic autonomy, obscure student evaluation, and reduce parents' and students' ability to participate or challenge education decision-making. Third, big data-driven tools define what "counts" as education by mapping the concepts, creating the content, determining the metrics, and setting desired learning outcomes of instruction. These shifts cede important decision-making to private entities without public scrutiny or pedagogical examination. In contrast to the public and heated debates that accompany textbook choices, schools often adopt education technologies ad hoc. Given education

  12. Consumer-driven health care: tangible employer actions.

    PubMed

    Beauregard, Thomas R

    2004-01-01

    In response to double-digit health care cost increases, leading employers are aiming aggressive strategies at changing participant and provider behaviors--strategies that go well beyond the narrow idea of a new cost-sharing design. This article describes the elements of a comprehensive consumer-driven health care strategy and provides examples of tangible consumer-driven health care initiatives in the areas of design, pricing, contracting, support and public policy.

  13. Value-driven attentional capture in the auditory domain.

    PubMed

    Anderson, Brian A

    2016-01-01

    It is now well established that the visual attention system is shaped by reward learning. When visual features are associated with a reward outcome, they acquire high priority and can automatically capture visual attention. To date, evidence for value-driven attentional capture has been limited entirely to the visual system. In the present study, I demonstrate that previously reward-associated sounds also capture attention, interfering more strongly with the performance of a visual task. This finding suggests that value-driven attention reflects a broad principle of information processing that can be extended to other sensory modalities and that value-driven attention can bias cross-modal stimulus competition.

  14. Data Driven Math Intervention: What the Numbers Say

    ERIC Educational Resources Information Center

    Martin, Anthony W.

    2013-01-01

    This study was designed to determine whether or not data driven math skills groups would be effective in increasing student academic achievement. From this topic three key questions arose: "Would the implementation of data driven math skills groups improve student academic achievement more than standard instruction as measured by the…

  15. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Goodnight, Davis; Gao, Zhenghan; Cavusoglu, Ahmet H.; Sabharwal, Nina; Delay, Michael; Driks, Adam; Sahin, Ozgur

    2015-06-01

    Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth's climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air-water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on water while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.

  16. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators

    PubMed Central

    Chen, Xi; Goodnight, Davis; Gao, Zhenghan; Cavusoglu, Ahmet H.; Sabharwal, Nina; DeLay, Michael; Driks, Adam; Sahin, Ozgur

    2015-01-01

    Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth's climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. Here, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air–water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on water while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment. PMID:26079632

  17. Efficiency of wave-driven rigid body rotation toroidal confinement

    NASA Astrophysics Data System (ADS)

    Rax, J. M.; Gueroult, R.; Fisch, N. J.

    2017-03-01

    The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared with compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advantages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.

  18. The Data-Driven Approach to Spectroscopic Analyses

    NASA Astrophysics Data System (ADS)

    Ness, M.

    2018-01-01

    I review the data-driven approach to spectroscopy, The Cannon, which is a method for deriving fundamental diagnostics of galaxy formation of precise chemical compositions and stellar ages, across many stellar surveys that are mapping the Milky Way. With The Cannon, the abundances and stellar parameters from the multitude of stellar surveys can be placed directly on the same scale, using stars in common between the surveys. Furthermore, the information that resides in the data can be fully extracted, this has resulted in higher precision stellar parameters and abundances being delivered from spectroscopic data and has opened up new avenues in galactic archeology, for example, in the determination of ages for red giant stars across the Galactic disk. Coupled with Gaia distances, proper motions, and derived orbit families, the stellar age and individual abundance information delivered at the precision obtained with the data-driven approach provides very strong constraints on the evolution of and birthplace of stars in the Milky Way. I will review the role of data-driven spectroscopy as we enter the era where we have both the data and the tools to build the ultimate conglomerate of galactic information as well as highlight further applications of data-driven models in the coming decade.

  19. User-driven sampling strategies in image exploitation

    NASA Astrophysics Data System (ADS)

    Harvey, Neal; Porter, Reid

    2013-12-01

    Visual analytics and interactive machine learning both try to leverage the complementary strengths of humans and machines to solve complex data exploitation tasks. These fields overlap most significantly when training is involved: the visualization or machine learning tool improves over time by exploiting observations of the human-computer interaction. This paper focuses on one aspect of the human-computer interaction that we call user-driven sampling strategies. Unlike relevance feedback and active learning sampling strategies, where the computer selects which data to label at each iteration, we investigate situations where the user selects which data is to be labeled at each iteration. User-driven sampling strategies can emerge in many visual analytics applications but they have not been fully developed in machine learning. User-driven sampling strategies suggest new theoretical and practical research questions for both visualization science and machine learning. In this paper we identify and quantify the potential benefits of these strategies in a practical image analysis application. We find user-driven sampling strategies can sometimes provide significant performance gains by steering tools towards local minima that have lower error than tools trained with all of the data. In preliminary experiments we find these performance gains are particularly pronounced when the user is experienced with the tool and application domain.

  20. Optical switch based on thermocapillarity

    NASA Astrophysics Data System (ADS)

    Sakata, Tomomi; Makihara, Mitsuhiro; Togo, Hiroyoshi; Shimokawa, Fusao; Kaneko, Kazumasa

    2001-11-01

    Space-division optical switches are essential for the protection, optical cross-connects (OXCs), and optical add/drop multiplexers (OADMs) needed in future fiber-optic communication networks. For applications in these areas, we proposed a thermocapillarity switch called oil-latching interfacial-tension variation effect (OLIVE) switch. An OLIVE switch is a micro-mechanical optical switch fabricated on planar lightwave circuits (PLC) using micro-electro-mechanical systems (MEMS) technology. It consists of a crossing waveguide that has a groove at each crossing point and a pair of microheaters. The groove is partially filled with the refractive-index-matching liquid, and optical signals are switched according to the liquid's position in the groove, i.e., whether it is passing straight through the groove or reflecting at the sidewall of the groove. The liquid is driven by thermocapillarity and latched by capillarity. Using the total internal reflection to switch the optical path, the OLIVE switch exhibits excellent optical characteristics, such as high transparency (insertion loss: < 2 dB), high extinction ratio (> 50 dB), and low crosstalk (< -50 dB). Moreover, since this switch has a simple structure and bi-stability, it has wide variety of applications in wavelength division multiplexing (WDM) networks.

  1. Tuned, driven, and active soft matter

    NASA Astrophysics Data System (ADS)

    Menzel, Andreas M.

    2015-02-01

    One characteristic feature of soft matter systems is their strong response to external stimuli. As a consequence they are comparatively easily driven out of their ground state and out of equilibrium, which leads to many of their fascinating properties. Here, we review illustrative examples. This review is structured by an increasing distance from the equilibrium ground state. On each level, examples of increasing degree of complexity are considered. In detail, we first consider systems that are quasi-statically tuned or switched to a new state by applying external fields. These are common liquid crystals, liquid crystalline elastomers, or ferrogels and magnetic elastomers. Next, we concentrate on systems steadily driven from outside e.g. by an imposed flow field. In our case, we review the reaction of nematic liquid crystals, of bulk-filling periodically modulated structures such as block copolymers, and of localized vesicular objects to an imposed shear flow. Finally, we focus on systems that are "active" and "self-driven". Here our range spans from idealized self-propelled point particles, via sterically interacting particles like granular hoppers, via microswimmers such as self-phoretically driven artificial Janus particles or biological microorganisms, via deformable self-propelled particles like droplets, up to the collective behavior of insects, fish, and birds. As we emphasize, similarities emerge in the features and behavior of systems that at first glance may not necessarily appear related. We thus hope that our overview will further stimulate the search for basic unifying principles underlying the physics of these soft materials out of their equilibrium ground state.

  2. Feasibility and Efficacy of Nurse-Driven Acute Stroke Care.

    PubMed

    Mainali, Shraddha; Stutzman, Sonja; Sengupta, Samarpita; Dirickson, Amanda; Riise, Laura; Jones, Donald; Yang, Julian; Olson, DaiWai M

    2017-05-01

    Acute stroke care requires rapid assessment and intervention. Replacing traditional sequential algorithms in stroke care with parallel processing using telestroke consultation could be useful in the management of acute stroke patients. The purpose of this study was to assess the feasibility of a nurse-driven acute stroke protocol using a parallel processing model. This is a prospective, nonrandomized, feasibility study of a quality improvement initiative. Stroke team members had a 1-month training phase, and then the protocol was implemented for 6 months and data were collected on a "run-sheet." The primary outcome of this study was to determine if a nurse-driven acute stroke protocol is feasible and assists in decreasing door to needle (intravenous tissue plasminogen activator [IV-tPA]) times. Of the 153 stroke patients seen during the protocol implementation phase, 57 were designated as "level 1" (symptom onset <4.5 hours) strokes requiring acute stroke management. Among these strokes, 78% were nurse-driven, and 75% of the telestroke encounters were also nurse-driven. The average door to computerized tomography time was significantly reduced in nurse-driven codes (38.9 minutes versus 24.4 minutes; P < .04). The use of a nurse-driven protocol is feasible and effective. When used in conjunction with a telestroke specialist, it may be of value in improving patient outcomes by decreasing the time for door to decision for IV-tPA. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  3. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators

    DOE PAGES

    Chen, Xi; Goodnight, Davis; Gao, Zhenghan; ...

    2015-06-16

    Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth’s climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. In this work, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air–water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on watermore » while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.« less

  4. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Goodnight, Davis; Gao, Zhenghan

    Evaporation is a ubiquitous phenomenon in the natural environment and a dominant form of energy transfer in the Earth’s climate. Engineered systems rarely, if ever, use evaporation as a source of energy, despite myriad examples of such adaptations in the biological world. In this work, we report evaporation-driven engines that can power common tasks like locomotion and electricity generation. These engines start and run autonomously when placed at air–water interfaces. They generate rotary and piston-like linear motion using specially designed, biologically based artificial muscles responsive to moisture fluctuations. Using these engines, we demonstrate an electricity generator that rests on watermore » while harvesting its evaporation to power a light source, and a miniature car (weighing 0.1 kg) that moves forward as the water in the car evaporates. Evaporation-driven engines may find applications in powering robotic systems, sensors, devices and machinery that function in the natural environment.« less

  5. The wavelength of supercritical surface tension driven Benard convection

    NASA Technical Reports Server (NTRS)

    Koschmieder, E. L.

    1991-01-01

    The size or the wavelength of moderately supercritical surface tension driven Benard convection has been investigated experimentally in a thin fluid layer of large aspect ratio. It has been found that the number of the hexagonal convection cells increases with increased temperature differences, up to 1.3 times the critical temperature difference. That means that the wavelength of surface tension driven convection decreases after onset of the instability for moderately nonlinear conditions. This result is in striking contrast to the well-known increase of the wavelength of buoyancy driven Rayleigh-Benard convection.

  6. Fenton-Driven Regeneration of MTBE-spent Granular Activated Carbon

    EPA Science Inventory

    Fenton-driven regeneration of Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves the combined, synergistic use of two treatment technologies: adsorption of organic chemicals onto activated carbon and Fenton-driven oxidation regeneration of the spent-GAC...

  7. Data-Driven Hint Generation from Peer Debugging Solutions

    ERIC Educational Resources Information Center

    Liu, Zhongxiu

    2015-01-01

    Data-driven methods have been a successful approach to generating hints for programming problems. However, the majority of previous studies are focused on procedural hints that aim at moving students to the next closest state to the solution. In this paper, I propose a data-driven method to generate remedy hints for BOTS, a game that teaches…

  8. Stress-Driven Melt Segregation and Organization in Partially Molten Rocks III: Annealing Experiments and Surface Tension-Driven Redistribution of Melt

    NASA Astrophysics Data System (ADS)

    Parsons, R.; Hustoft, J. W.; Holtzman, B. K.; Kohlstedt, D. L.; Phipps Morgan, J.

    2004-12-01

    As discussed in the two previous abstracts in this series, simple shear experiments on synthetic upper mantle-type rock samples reveal the segregation of melt into melt-rich bands separated by melt-depleted lenses. Here, we present new results from experiments designed to understand the driving forces working for and against melt segregation. To better understand the kinetics of surface tension-driven melt redistribution, we first deform samples at similar conditions (starting material, sample size, stress and strain) to produce melt-rich band networks that are statistically similar. Then the load is removed and the samples are statically annealed to allow surface tension to redistribute the melt-rich networks. Three samples of olivine + 20 vol% chromite + 4 vol% MORB were deformed at a confining pressure of 300 MPa and a temperature of 1523 K in simple shear at shear stresses of 20 - 55 MPa to shear strains of 3.5 and then statically annealed for 0, 10, or 100 h at the same P-T conditions. Melt-rich bands are fewer in number and appear more diffuse when compared to the deformed but not annealed samples. Bands with less melt tend to disappear more rapidly than more melt-rich ones. The melt fraction in the melt-rich bands decreased from 0.2 in the quenched sample to 0.1 in the sample annealed for 100 h. After deformation, the melt fraction in the melt-depleted regions are ~0.006; after static annealing for 100 h, this value increases to 0.02. These experiments provide new quantitative constraints on the kinetics of melt migration driven by surface tension. By quantifying this driving force in the same samples in which stress-driven distribution occurred, we learn about the relative kinetics of stress-driven melt segregation. The kinetics of both of these processes must be scaled together to mantle conditions to understand the importance of stress-driven melt segregation in the Earth, and to understand the interaction of this process with melt-rock reaction-driven

  9. Data-Driven Instructional Leadership

    ERIC Educational Resources Information Center

    Blink, Rebecca

    2006-01-01

    With real-world examples from actual schools, this book illustrates how to nurture a culture of continuous improvement, meet the needs of individual students, foster an environment of high expectations, and meet the requirements of NCLB. Each component of the Data-Driven Instructional Leadership (DDIS) model represents several branches of…

  10. Work(er)-Driven Innovation

    ERIC Educational Resources Information Center

    Smith, Raymond

    2017-01-01

    Purpose: The focus on innovation as a foundational element of enhanced organisational performance has led to the promoting and valuing of greater levels of employee participation in innovation processes. An emergent concept of employee-driven innovation could be argued to have hindered understandings of the creative and transformative nature of…

  11. Summary of Research 1998, Department of Mechanical Engineering.

    DTIC Science & Technology

    1999-08-01

    thermoacoustic behavior in strong zero-mean oscillatory flows with potential application to the design of heat exchangers in thermoacoustic engines...important feature in the thermal characterization of microtubes , which are to be used in microheat exchangers . DoD KEY TECHNOLOGY AREA: Modeling and...Simulation KEYWORDS: Laminar Duct Flows, Convection and Conduction Heat Transfer, Axial Conduction, Micro- heat Exchang - ers DEVELOPMENT AND CALIBRATION

  12. Magnetically driven oscillator and resonance: a teaching tool

    NASA Astrophysics Data System (ADS)

    Erol, M.; Çolak, İ. Ö.

    2018-05-01

    This paper reports a simple magnetically driven oscillator, designed and resolved in order to achieve a better student understanding and to overcome certain instructional difficulties. The apparatus is mainly comprised of an ordinary spring pendulum with a neodymium magnet attached to the bottom, a coil placed in the same vertical direction, an ordinary function generator, an oscilloscope and a smartphone. Driven oscillation and resonance is basically managed by applying a sinusoidal voltage to the coil and tuning the driving frequency to the natural frequency of the pendulum. The resultant oscillation is recorded by a smartphone video application and analyzed via a video analysis programme. The designed apparatus can easily be employed in basic physics laboratories to achieve an enhanced and deeper understanding of driven oscillation and resonance.

  13. Intertwined electron-nuclear motion in frustrated double ionization in driven heteronuclear molecules

    NASA Astrophysics Data System (ADS)

    Vilà, A.; Zhu, J.; Scrinzi, A.; Emmanouilidou, A.

    2018-03-01

    We study frustrated double ionization (FDI) in a strongly-driven heteronuclear molecule HeH+ and compare with H2. We compute the probability distribution of the sum of the final kinetic energies of the nuclei for strongly-driven HeH+. We find that this distribution has more than one peak for strongly-driven HeH+, a feature we do not find to be present for strongly-driven H2. Moreover, we compute the probability distribution of the principal quantum number n of FDI. We find that this distribution has several peaks for strongly-driven HeH+, while the respective distribution has one main peak and a ‘shoulder’ at lower principal quantum numbers n for strongly-driven H2. Surprisingly, we find this feature to be a clear signature of the intertwined electron-nuclear motion.

  14. Education campaigns: pointers and pitfalls.

    PubMed

    Mariasy, J

    1988-01-01

    The best protection from AIDS is prevention, and this fact makes AIDS awareness campaigns a high priority. Since there are cases of well informed groups that still do not alter their sexual behavior (i.e. teenagers in the UK and San Francisco), fact forcing campaigns cannot be the method of AIDS education. Facts along with behavioral motivation are needed. AIDS awareness campaigns must recognize denial factors that must be overcome before the campaign is even taken seriously. On the other end of the spectrum, exaggerated fears leading to irrational behavior and stigmatization must be prevented by supplying counselling programs to dispel these fears. A campaign must build trust and not underestimate its target population so that their self respect remains high enough to motivate them towards assertive action. Cultural problems, such as women who cannot discuss sexual options for fear of being socially stigmatized, need to have programs that instruct as well as develop a environment that supports change. School women's groups, work places, clinics, community networks, and religious organizations know a local temperament and beliefs, and therefore should be consulted on designing messages that best fit their peers language, literacy, and economic circumstances. Their is no single answer for an AIDS awareness campaign, but a mixture of facts, explanation, persuasion, and reassurance for each targeted community must be well planned. Since each campaign is an experiment, it should be carefully regulated.

  15. The Best of Practical Pointers.

    ERIC Educational Resources Information Center

    Association for Research, Administration, Professional Councils & Societies, Reston, VA.

    This publication is a compilation of monographs offering practical suggestions for teachers of adapted physical education. It contains numerous suggestions on teaching techniques, activity adaptations, equipment modifications, programming information, coaching hints, skill development strategies, and curriculum data. The five sections offer…

  16. Electrochemically-driven large amplitude pH cycling for acid-base driven DNA denaturation and renaturation.

    PubMed

    Wang, Yong-Chun; Lin, Cong-Bin; Su, Jian-Jia; Ru, Ying-Ming; Wu, Qiao; Chen, Zhao-Bin; Mao, Bing-Wei; Tian, Zhao-Wu

    2011-06-15

    In this paper, we present an electrochemically driven large amplitude pH alteration method based on a serial electrolytic cell involving a hydrogen permeable bifacial working electrode such as Pd thin foil. The method allows solution pH to be changed periodically up to ±4~5 units without additional alteration of concentration and/or composition of the system. Application to the acid-base driven cyclic denaturation and renaturation of 290 bp DNA fragments is successfully demonstrated with in situ real-time UV spectroscopic characterization. Electrophoretic analysis confirms that the denaturation and renaturation processes are reversible without degradation of the DNA. The serial electrolytic cell based electrochemical pH alteration method presented in this work would promote investigations of a wide variety of potential-dependent processes and techniques.

  17. Flutter-driven triboelectrification for harvesting wind energy

    NASA Astrophysics Data System (ADS)

    Bae, Jihyun; Lee, Jeongsu; Kim, Seongmin; Ha, Jaewook; Lee, Byoung-Sun; Park, Youngjun; Choong, Chweelin; Kim, Jin-Baek; Wang, Zhong Lin; Kim, Ho-Young; Park, Jong-Jin; Chung, U.-In

    2014-09-01

    Technologies to harvest electrical energy from wind have vast potentials because wind is one of the cleanest and most sustainable energy sources that nature provides. Here we propose a flutter-driven triboelectric generator that uses contact electrification caused by the self-sustained oscillation of flags. We study the coupled interaction between a fluttering flexible flag and a rigid plate. In doing so, we find three distinct contact modes: single, double and chaotic. The flutter-driven triboelectric generator having small dimensions of 7.5 × 5 cm at wind speed of 15 ms-1 exhibits high-electrical performances: an instantaneous output voltage of 200 V and a current of 60 μA with a high frequency of 158 Hz, giving an average power density of approximately 0.86 mW. The flutter-driven triboelectric generation is a promising technology to drive electric devices in the outdoor environments in a sustainable manner.

  18. Light-driven solute transport in Halobacterium halobium

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1979-01-01

    The cell membrane of Halobacterium halobium exhibits differential regions which contain crystalline arrays of a single kind of protein, termed bacteriorhodopsin. This bacterial retinal-protein complex resembles the visual pigment and, after the absorption of protons, translocates H(+) across the cell membrane, leading to an electrochemical gradient for protons between the inside and the outside of the cell. Thus, light is an alternate source of energy in these bacteria, in addition to terminal oxidation. The paper deals with work on light-driven transport in H. halobium with cell envelope vesicles. The discussion covers light-driven movements of H(+), Na(+), and K(+); light-driven amino acid transport; and apparent allosteric control of amino acid transport. The scheme of energy coupling in H. halobium vesicles appears simple, its quantitative details are quite complex and reveal regulatory phenomena. More knowledge is required of the way the coupling components are regulated by the ion gradients present.

  19. Spatial correlations in driven-dissipative photonic lattices

    NASA Astrophysics Data System (ADS)

    Biondi, Matteo; Lienhard, Saskia; Blatter, Gianni; Türeci, Hakan E.; Schmidt, Sebastian

    2017-12-01

    We study the nonequilibrium steady-state of interacting photons in cavity arrays as described by the driven-dissipative Bose–Hubbard and spin-1/2 XY model. For this purpose, we develop a self-consistent expansion in the inverse coordination number of the array (∼ 1/z) to solve the Lindblad master equation of these systems beyond the mean-field approximation. Our formalism is compared and benchmarked with exact numerical methods for small systems based on an exact diagonalization of the Liouvillian and a recently developed corner-space renormalization technique. We then apply this method to obtain insights beyond mean-field in two particular settings: (i) we show that the gas–liquid transition in the driven-dissipative Bose–Hubbard model is characterized by large density fluctuations and bunched photon statistics. (ii) We study the antibunching–bunching transition of the nearest-neighbor correlator in the driven-dissipative spin-1/2 XY model and provide a simple explanation of this phenomenon.

  20. Family Ethnic Socialization and Ethnic Identity: A Family-Driven, Youth-Driven, or Reciprocal Process?

    PubMed Central

    Umaña-Taylor, Adriana J.; Zeiders, Katharine H.; Updegraff, Kimberly A.

    2013-01-01

    The current study examined the longitudinal associations between family ethnic socialization and youths’ ethnic identity among a sample of Mexican-origin youth (N = 178, Mage = 18.17, SD = .46). Findings from multiple-group cross lagged panel models over a two year period indicated that for U.S.-born youth with immigrant parents, the process appeared to be family-driven: Youths’ perceptions of family ethnic socialization in late adolescence were associated with significantly greater ethnic identity exploration and resolution in emerging adulthood, while youths’ ethnic identity during late adolescence did not significantly predict youths’ future perceptions of family ethnic socialization. Conversely, for U.S.-born youth with U.S. born parents, youths’ ethnic identity significantly predicted their future perceptions of family ethnic socialization but perceptions of family ethnic socialization did not predict future levels of youths’ ethnic identity, suggesting a youth-driven process. Findings were consistent for males and females. PMID:23421841

  1. Transient inhibition of cell proliferation does not compromise self-renewal of mouse embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruoxing; Guo, Yan-Lin, E-mail: yanlin.guo@usm.edu

    2012-10-01

    Embryonic stem cells (ESCs) have unlimited capacity for self-renewal and can differentiate into various cell types when induced. They also have an unusual cell cycle control mechanism driven by constitutively active cyclin dependent kinases (Cdks). In mouse ESCs (mESCs). It is proposed that the rapid cell proliferation could be a necessary part of mechanisms that maintain mESC self-renewal and pluripotency, but this hypothesis is not in line with the finding in human ESCs (hESCs) that the length of the cell cycle is similar to differentiated cells. Therefore, whether rapid cell proliferation is essential for the maintenance of mESC state remainsmore » unclear. We provide insight into this uncertainty through chemical intervention of mESC cell cycle. We report here that inhibition of Cdks with olomoucine II can dramatically slow down cell proliferation of mESCs with concurrent down-regulation of cyclin A, B and E, and the activation of the Rb pathway. However, mESCs display can recover upon the removal of olomoucine II and are able to resume normal cell proliferation without losing self-renewal and pluripotency, as demonstrated by the expression of ESC markers, colony formation, embryoid body formation, and induced differentiation. We provide a mechanistic explanation for these observations by demonstrating that Oct4 and Nanog, two major transcription factors that play critical roles in the maintenance of ESC properties, are up-regulated via de novo protein synthesis when the cells are exposed to olomoucine II. Together, our data suggest that short-term inhibition of cell proliferation does not compromise the basic properties of mESCs. -- Highlights: Black-Right-Pointing-Pointer Inhibition of Cdks slows down mESCs proliferation. Black-Right-Pointing-Pointer mESCs display remarkable recovery capacity from short-term cell cycle interruption. Black-Right-Pointing-Pointer Short-term cell cycle interruption does not compromise mESC self-renewal. Black-Right-Pointing-Pointer

  2. Systematic development of a text-driven and a video-driven web-based computer-tailored obesity prevention intervention

    PubMed Central

    2013-01-01

    Background This paper describes the systematic development of a text-driven and a video-driven web-based computer-tailored intervention aimed to prevent obesity among normal weight and overweight adults. We hypothesize that the video-driven intervention will be more effective and appealing for individuals with a low level of education. Methods and Design The Intervention Mapping protocol was used to develop the interventions, which have exactly the same educational content but differ in the format in which the information is delivered. One intervention is fully text-based, while in the other intervention in addition to text-based feedback, the core messages are provided by means of videos. The aim of the interventions is to prevent weight gain or achieve modest weight loss by making small changes in dietary intake or physical activity. The content of the interventions is based on the I-Change Model and self-regulation theories and includes behavior change methods such as consciousness raising, tailored feedback on behavior and cognitions, goal setting, action and coping planning, and evaluation of goal pursuit. The interventions consist of six sessions. In the first two sessions, participants will set weight and behavioral change goals and form plans for specific actions to achieve the desired goals. In the remaining four sessions, participants’ will evaluate their progress toward achievement of the behavioral and weight goals. They will also receive personalized feedback on how to deal with difficulties they may encounter, including the opportunity to make coping plans and the possibility to learn from experiences of others. The efficacy and appreciation of the interventions will be examined by means of a three-group randomized controlled trial using a waiting list control group. Measurements will take place at baseline and six and twelve months after baseline. Primary outcome measures are body mass index, physical activity, and dietary intake. Discussion The

  3. Radiobiological study by using laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Oishi, Y.; Sugiyama, H.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sugiyama, H.; Sasao, H.; Wakai, D.; Kawachi, T.; Nishimura, H.; Bolton, P. R.; Daido, H.

    2009-07-01

    Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.

  4. Investigating Reaction-Driven Cracking

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Hirth, G.; Savage, H. M.

    2013-12-01

    Many metamorphic reactions lead to large volume changes, and potentially to reaction-driven cracking [1,2]. Large-scale hydration of mantle peridotite to produce serpentine or talc is invoked to explain the rheology of plate boundaries, the nature of earthquakes, and the seismic properties of slow-spread ocean crust and the 'mantle wedge' above subduction zones. Carbonation of peridotite may be an important sink in the global carbon cycle. Zones of 100% magnesite + quartz replacing peridotite, up to 200 m thick, formed where oceanic mantle was thrust over carbonate-bearing metasediments in Oman. Talc + carbonate is an important component of the matrix in subduction mélanges at Santa Catalina Island , California, and the Sanbagawa metamorphic belt, Japan. Engineered systems to emulate natural mineral carbonation could provide relatively inexpensive CO2 capture and storage [3]. More generally, engineered reaction-driven cracking could supplement or replace hydraulic fracture in geothermal systems, solution mining, and extraction of tight oil and gas. The controls on reaction-driven cracking are poorly understood. Hydration and carbonation reactions can be self-limiting, since they potentially reduce permeability and armor reactive surfaces [4]. Also, in some cases, hydration or carbonation may take place at constant volume. Small changes in volume due to precipitation of solid products increases stress, destabilizing solid reactants, until precipitation and dissolution rates become equal at a steady state stress [5]. In a third case, volume change due to precipitation of solid products causes brittle failure. This has been invoked on qualitative grounds to explain, e.g., complete serpentinization of mantle peridotite [6]. Below ~ 300°C, the available potential energy for hydration and carbonation of olivine could produce stresses of 100's of MPa [2], sufficient to fracture rocks to 10 km depth or more, causing brittle failure below the steady state stress required

  5. Pavlovian reward learning underlies value driven attentional capture.

    PubMed

    Bucker, Berno; Theeuwes, Jan

    2017-02-01

    Recent evidence shows that distractors that signal high compared to low reward availability elicit stronger attentional capture, even when this is detrimental for task-performance. This suggests that simply correlating stimuli with reward administration, rather than their instrumental relationship with obtaining reward, produces value-driven attentional capture. However, in previous studies, reward delivery was never response independent, as only correct responses were rewarded, nor was it completely task-irrelevant, as the distractor signaled the magnitude of reward that could be earned on that trial. In two experiments, we ensured that associative reward learning was completely response independent by letting participants perform a task at fixation, while high and low rewards were automatically administered following the presentation of task-irrelevant colored stimuli in the periphery (Experiment 1) or at fixation (Experiment 2). In a following non-reward test phase, using the additional singleton paradigm, the previously reward signaling stimuli were presented as distractors to assess truly task-irrelevant value driven attentional capture. The results showed that high compared to low reward-value associated distractors impaired performance, and thus captured attention more strongly. This suggests that genuine Pavlovian conditioning of stimulus-reward contingencies is sufficient to obtain value-driven attentional capture. Furthermore, value-driven attentional capture can occur following associative reward learning of temporally and spatially task-irrelevant distractors that signal the magnitude of available reward (Experiment 1), and is independent of training spatial shifts of attention towards the reward signaling stimuli (Experiment 2). This confirms and strengthens the idea that Pavlovian reward learning underlies value driven attentional capture.

  6. Quantum dynamics of light-driven chiral molecular motors.

    PubMed

    Yamaki, Masahiro; Nakayama, Shin-ichiro; Hoki, Kunihito; Kono, Hirohiko; Fujimura, Yuichi

    2009-03-21

    The results of theoretical studies on quantum dynamics of light-driven molecular motors with internal rotation are presented. Characteristic features of chiral motors driven by a non-helical, linearly polarized electric field of light are explained on the basis of symmetry argument. The rotational potential of the chiral motor is characterized by a ratchet form. The asymmetric potential determines the directional motion: the rotational direction is toward the gentle slope of the asymmetric potential. This direction is called the intuitive direction. To confirm the unidirectional rotational motion, results of quantum dynamical calculations of randomly-oriented molecular motors are presented. A theoretical design of the smallest light-driven molecular machine is presented. The smallest chiral molecular machine has an optically driven engine and a running propeller on its body. The mechanisms of transmission of driving forces from the engine to the propeller are elucidated by using a quantum dynamical treatment. The results provide a principle for control of optically-driven molecular bevel gears. Temperature effects are discussed using the density operator formalism. An effective method for ultrafast control of rotational motions in any desired direction is presented with the help of a quantum control theory. In this method, visible or UV light pulses are applied to drive the motor via an electronic excited state. A method for driving a large molecular motor consisting of an aromatic hydrocarbon is presented. The molecular motor is operated by interactions between the induced dipole of the molecular motor and the electric field of light pulses.

  7. Heat driven pulse pump

    NASA Technical Reports Server (NTRS)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  8. Performance of a vane driven-gear pump

    NASA Technical Reports Server (NTRS)

    Heald, R H

    1921-01-01

    Given here are the results of a test conducted in a wind tunnel on the performance of a vane-driven gear pump used to pump gasoline upward into a small tank located within the upper wing from which it flows by gravity to the engine carburetor. Information is given on the efficiency of the pump, the head resistance of the vanes, the performance and characteristics of the unit with and without housing about the vanes, the pump performance when motor driven, and resistance and power characteristics.

  9. Comments on event driven animation

    NASA Technical Reports Server (NTRS)

    Gomez, Julian E.

    1987-01-01

    Event driven animation provides a general method of describing controlling values for various computer animation techniques. A definition and comments are provided on genralizing motion description with events. Additional comments are also provided about the implementation of twixt.

  10. Kähler-driven tribrid inflation

    NASA Astrophysics Data System (ADS)

    Antusch, Stefan; Nolde, David

    2012-11-01

    We discuss a new class of tribrid inflation models in supergravity, where the shape of the inflaton potential is dominated by effects from the Kähler potential. Tribrid inflation is a variant of hybrid inflation which is particularly suited for connecting inflation with particle physics, since the inflaton can be a D-flat combination of charged fields from the matter sector. In models of tribrid inflation studied so far, the inflaton potential was dominated by either loop corrections or by mixing effects with the waterfall field (as in "pseudosmooth" tribrid inflation). Here we investigate the third possibility, namely that tribrid inflation is dominantly driven by effects from higher-dimensional operators of the Kähler potential. We specify for which superpotential parameters the new regime is realized and show how it can be experimentally distinguished from the other two (loop-driven and "pseudosmooth") regimes.

  11. Torque Control of Underactuated Tendon-driven Robotic Fingers

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Wampler, Charles W. (Inventor); Abdallah, Muhammad E. (Inventor); Reiland, Matthew J. (Inventor); Diftler, Myron A. (Inventor); Bridgwater, Lyndon (Inventor); Platt, Robert (Inventor)

    2013-01-01

    A robotic system includes a robot having a total number of degrees of freedom (DOF) equal to at least n, an underactuated tendon-driven finger driven by n tendons and n DOF, the finger having at least two joints, being characterized by an asymmetrical joint radius in one embodiment. A controller is in communication with the robot, and controls actuation of the tendon-driven finger using force control. Operating the finger with force control on the tendons, rather than position control, eliminates the unconstrained slack-space that would have otherwise existed. The controller may utilize the asymmetrical joint radii to independently command joint torques. A method of controlling the finger includes commanding either independent or parameterized joint torques to the controller to actuate the fingers via force control on the tendons.

  12. Hydration of dimethyldodecylamine-N-oxide: enthalpy and entropy driven processes.

    PubMed

    Kocherbitov, Vitaly; Söderman, Olle

    2006-07-13

    Dimethyldodecylamine-N-oxide (DDAO) has only one polar atom that is able to interact with water. Still, this surfactant shows very hydrophilic properties: in mixtures with water, it forms normal liquid crystalline phases and micelles. Moreover, there is data in the literature indicating that the hydration of this surfactant is driven by enthalpy while other studies show that hydration of surfactants and lipids typically is driven by entropy. Sorption calorimetry allows resolving enthalpic and entropic contributions to the free energy of hydration at constant temperature and thus directly determines the driving forces of hydration. The results of the present sorption calorimetric study show that the hydration of liquid crystalline phases of DDAO is driven by entropy, except for the hydration of the liquid crystalline lamellar phase which is co-driven by enthalpy. The exothermic heat effect of the hydration of the lamellar phase arises from formation of strong hydrogen bonds between DDAO and water. Another issue is the driving forces of the phase transitions caused by the hydration. The sorption calorimetric results show that the transitions from the lamellar to cubic and from the cubic to the hexagonal phase are driven by enthalpy. Transitions from solid phases to the liquid crystalline lamellar phase are entropically driven, while the formation of the monohydrate from the dry surfactant is driven by enthalpy. The driving forces of the transition from the hexagonal phase to the isotropic solution are close to zero. These sorption calorimetric results are in good agreement with the analysis of the binary phase diagram based on the van der Waals differential equation. The phase diagram of the DDAO-water system determined using DSC and sorption calorimetry is presented.

  13. Effectiveness of User- and Expert-Driven Web-based Hypertension Programs: an RCT.

    PubMed

    Liu, Sam; Brooks, Dina; Thomas, Scott G; Eysenbach, Gunther; Nolan, Robert P

    2018-04-01

    The effectiveness of self-guided Internet-based lifestyle counseling (e-counseling) varies, depending on treatment protocol. Two dominant procedures in e-counseling are expert- and user-driven. The influence of these procedures on hypertension management remains unclear. The objective was to assess whether blood pressure improved with expert-driven or user-driven e-counseling over control intervention in patients with hypertension over a 4-month period. This study used a three-parallel group, double-blind randomized controlled design. In Toronto, Canada, 128 participants (aged 35-74 years) with hypertension were recruited. Participants were recruited using online and poster advertisements. Data collection took place between June 2012 and June 2014. Data were analyzed from October 2014 to December 2016. Controls received a weekly e-mail newsletter regarding hypertension management. The expert-driven group was prescribed a weekly exercise and diet plan (e.g., increase 1,000 steps/day this week). The user-driven group received weekly e-mail, which allowed participants to choose their intervention goals (e.g., [1] feel more confident to change my lifestyle, or [2] self-help tips for exercise or a heart healthy diet). Primary outcome was systolic blood pressure measured at baseline and 4-month follow-up. Secondary outcomes included cholesterol, 10-year Framingham cardiovascular risk, daily steps, and dietary habits. Expert-driven groups showed a greater systolic blood pressure decrease than controls at follow-up (expert-driven versus control: -7.5 mmHg, 95% CI= -12.5, -2.6, p=0.01). Systolic blood pressure reduction did not significantly differ between user- and expert-driven. Expert-driven compared with controls also showed a significant improvement in pulse pressure, cholesterol, and Framingham risk score. The expert-driven intervention was significantly more effective than both user-driven and control groups in increasing daily steps and fruit intake. It may be

  14. Microwave-driven ultraviolet light sources

    DOEpatents

    Manos, Dennis M.; Diggs, Jessie; Ametepe, Joseph D.

    2002-01-29

    A microwave-driven ultraviolet (UV) light source is provided. The light source comprises an over-moded microwave cavity having at least one discharge bulb disposed within the microwave cavity. At least one magnetron probe is coupled directly to the microwave cavity.

  15. A capillary-driven micromixer: idea and fabrication

    NASA Astrophysics Data System (ADS)

    Lee, Chun-Te; Lee, Chun-Che

    2012-10-01

    Microfluidic systems have been drawing attention upon the various branches of engineering science and the allied areas within biology and biomedicine. In this paper, a fabrication of a capillary-driven micromixer using photoresist JSR and glasses is proposed. We design three types of planar capillary-driven micormixers with different sizes of baffles in the channel. Flow tests have shown that the micromixer with a baffle gap of 100 μm and space of 100 μm reaches a best mixing performance of 93% in gray-level image analysis.

  16. Driven damped harmonic oscillator resonance with an Arduino

    NASA Astrophysics Data System (ADS)

    Goncalves, A. M. B.; Cena, C. R.; Bozano, D. F.

    2017-07-01

    In this paper we propose a simple experimental apparatus that can be used to show quantitative and qualitative results of resonance in a driven damped harmonic oscillator. The driven oscillation is made by a servo motor, and the oscillation amplitude is measured by an ultrasonic position sensor. Both are controlled by an Arduino board. The frequency of free oscillation measured was campatible with the resonance frequency that was measured.

  17. Electrically Driven Liquid Film Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2016-01-01

    This presentation presents the science background and ground based results that form the basis of the Electrically Driven Liquid Film Boiling Experiment. This is an ISS experiment that is manifested for 2021. Objective: Characterize the effects of gravity on the interaction of electric and flow fields in the presence of phase change specifically pertaining to: a) The effects of microgravity on the electrically generated two-phase flow. b) The effects of microgravity on electrically driven liquid film boiling (includes extreme heat fluxes). Electro-wetting of the boiling section will repel the bubbles away from the heated surface in microgravity environment. Relevance/Impact: Provides phenomenological foundation for the development of electric field based two-phase thermal management systems leveraging EHD, permitting optimization of heat transfer surface area to volume ratios as well as achievement of high heat transfer coefficients thus resulting in system mass and volume savings. EHD replaces buoyancy or flow driven bubble removal from heated surface. Development Approach: Conduct preliminary experiments in low gravity and ground-based facilities to refine technique and obtain preliminary data for model development. ISS environment required to characterize electro-wetting effect on nucleate boiling and CHF in the absence of gravity. Will operate in the FIR - designed for autonomous operation.

  18. Lattice crossover and phase transitions in NdAlO{sub 3}-GdAlO{sub 3} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasylechko, L., E-mail: crystal-lov@polynet.lviv.ua; Shmanko, H.; Ohon, N.

    2013-02-15

    Phase and structural behaviour in the (1-x)NdAlO{sub 3}-xGdAlO{sub 3} system in a whole concentration range has been studied by means of in situ high-resolution X-ray synchrotron powder diffraction technique and differential thermal analysis. Two kinds of solid solutions Nd{sub 1-x}Gd{sub x}AlO{sub 3} have been found at room temperature: one with rhombohedral (x<0.15) and one with orthorhombic (x{>=}0.20) symmetry. A morphotropic phase transition occurs at x Almost-Equal-To 0.15, where the co-existence of both phases was observed. Peculiarity of the orthorhombic solid solution is the lattice parameter crossover at the compositions with x=0.33, 0.49 and 0.62. First-order structural transition Pbnm{r_reversible}R3{sup Macron }cmore » has been detected both from in situ powder diffraction and thermal analysis data. Continuous phase transformation R3{sup Macron }c{r_reversible}Pm3{sup Macron }m above 2140 K has been predicted for Nd-rich sample Nd{sub 0.85}Gd{sub 0.15}AlO{sub 3} from the extrapolation of high-temperature behaviour of the lattice parameter ratio of the rhombohedral phase. Based on the experimental data, the phase diagram of the pseudo-binary system NdAlO{sub 3}-GdAlO{sub 3} has been constructed. - Graphical abstract: Concentration dependencies of normalized lattice parameters of Nd{sub 1-x}Gd{sub x}AlO{sub 3} perovskite solid solutions. Highlights: Black-Right-Pointing-Pointer Two kinds of solid solutions Nd{sub 1-x}Gd{sub x}AlO{sub 3} were found in the NdAlO{sub 3}-GdAlO{sub 3} system. Black-Right-Pointing-Pointer Morphotropic transition between both perovskite phases occurs at x Almost-Equal-To 0.15. Black-Right-Pointing-Pointer Lattice parameter crossover was found in orthorhombic solid solution. Black-Right-Pointing-Pointer Temperature driven first-order phase transition Pbnm{r_reversible}R3{sup Macron }c was found in Nd{sub 1-x}Gd{sub x}AlO{sub 3}. Black-Right-Pointing-Pointer Phase diagram of the pseudo-binary system NdAlO{sub 3}-GdAlO{sub 3

  19. Magnetically separable {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped TiO{sub 2} core-shell nanocomposites: Fabrication and visible-light-driven photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Minqiang, E-mail: jbmwgkc@126.com; Li, Di; Jiang, Deli

    2012-08-15

    Novel visible-light-induced {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core-shell nanocomposite photocatalysts capable of magnetic separation have been synthesized by a facile sol-gel and after-annealing process. The as-obtained core-shell nanocomposite is composed of a central {gamma}-Fe{sub 2}O{sub 3} core with a strong response to external fields, an interlayer of SiO{sub 2}, and an outer layer of Ce-doped TiO{sub 2} nanocrystals. UV-vis spectra analysis indicates that Ce doping in the compound results in a red-shift of the absorption edge, thus offering increased visible light absorption. We show that such a {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core-shell nanocomposite with appreciated Ce doping amount exhibitsmore » much higher visible-light photocatalytic activity than bare TiO{sub 2} and undoped {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-TiO{sub 2} core-shell nanocomposite toward the degradation of rhodamine B (RhB). Moreover, the {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core-shell nanocomposite photocatalysts could be easily separated and reused from the treated water under application of an external magnetic field. - Graphical abstract: Novel {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped-TiO{sub 2} core/shell nanocomposite photocatalysts with enhanced photocatalytic activity and fast magnetic separability were prepared. Highlights: Black-Right-Pointing-Pointer Novel {gamma}-Fe{sub 2}O{sub 3}-SiO{sub 2}-Ce-doped TiO{sub 2} core/shell composite photocatalysts were prepared. Black-Right-Pointing-Pointer The resulting core/shell composite show high visible light photocatalytic activity. Black-Right-Pointing-Pointer The nanocomposite photocatalysts can be easily recycled with excellent durability.« less

  20. Measuring Energy Scaling of Laser Driven Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Williams, Jackson; Goyon, Clement; Mariscal, Derek; Pollock, Brad; Patankar, Siddharth; Moody, John

    2016-10-01

    Laser-driven magnetic fields are of interest in particle confinement, fast ignition, and ICF platforms as an alternative to pulsed power systems to achieve many times higher fields. A comprehensive model describing the mechanism responsible for creating and maintaining magnetic fields from laser-driven coils has not yet been established. Understanding the scaling of key experimental parameters such as spatial and temporal uniformity and duration are necessary to implement coil targets in practical applications yet these measurements prove difficult due to the highly transient nature of the fields. We report on direct voltage measurements of laser-driven coil targets in which the laser energy spans more than four orders of magnitude. Results suggest that at low energies, laser-driven coils can be modeled as an electric circuit; however, at higher energies plasma effects dominate and a simple circuit treatment is insufficient to describe all observed phenomenon. The favorable scaling with laser power and pulse duration, observed in the present study and others at kilojoule energies, has positive implications for sustained, large magnetic fields for applications on the NIF. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Supported Employment Handbook: A Customer-Driven Approach for Persons with Significant Disabilities.

    ERIC Educational Resources Information Center

    Brooke, Valerie, Ed.; And Others

    This manual provides training information for implementing supported employment by using a customer-driven approach. Chapter 1, "Supported Employment: A Customer-Driven Approach" (Valerie Brooke and others), describes current best practices, a new customer-driven approach to supported employment, and the role of the employment specialist. Chapter…

  2. Laser-driven fusion etching process

    DOEpatents

    Ashby, C.I.H.; Brannon, P.J.; Gerardo, J.B.

    1987-08-25

    The surfaces of solids are etched by a radiation-driven chemical reaction. The process involves exposing a substrate coated with a layer of a reactant material on its surface to radiation, e.g., a laser, to induce localized melting of the substrate which results in the occurrence of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic substrates, e.g., LiNbO/sub 3/, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  3. Coalescence of Fluid-Driven Fractures

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Niall; Zheng, Zhong; Huppert, Herbert; Linden, Paul

    2017-11-01

    We present an experimental study on the coalescence of two in-plane fluid-driven penny-shaped fractures in a brittle elastic medium. Initially, two fluid-driven fractures propagate independently of each other in the same plane. Then when the radial extent of each fracture reaches a certain distance the fractures begin to interact and coalesce. This coalescence forms a bridge between the fractures and then, in an intermediate period following the contact of the two fractures, most growth is observed to focus along this bridge, perpendicular to the line connecting the injection sources. We analyse the growth and shape of this bridge at various stages after coalescence and the transitions between different stages of growth. We also investigate the influence of the injection rate, the distance between two injection points, the viscosity of the fluid and the Young's modulus of the elastic medium on the coalescence of the fractures.

  4. Note: A table-top blast driven shock tube

    NASA Astrophysics Data System (ADS)

    Courtney, Michael W.; Courtney, Amy C.

    2010-12-01

    The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.

  5. Note: A table-top blast driven shock tube.

    PubMed

    Courtney, Michael W; Courtney, Amy C

    2010-12-01

    The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.

  6. Simulation and animation of sensor-driven robots.

    PubMed

    Chen, C; Trivedi, M M; Bidlack, C R

    1994-10-01

    Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aid the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the users visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.

  7. Simulation and animation of sensor-driven robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C.; Trivedi, M.M.; Bidlack, C.R.

    1994-10-01

    Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aide the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the usersmore » visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.« less

  8. Resonances in a periodically driven bosonic system.

    PubMed

    Quelle, Anton; Smith, Cristiane Morais

    2017-11-01

    Periodically driven systems are a common topic in modern physics. In optical lattices specifically, driving is at the origin of many interesting phenomena. However, energy is not conserved in driven systems, and under periodic driving, heating of a system is a real concern. In an effort to better understand this phenomenon, the heating of single-band systems has been studied, with a focus on disorder- and interaction-induced effects, such as many-body localization. Nevertheless, driven systems occur in a much wider context than this, leaving room for further research. Here, we fill this gap by studying a noninteracting model, characterized by discrete, periodically spaced energy levels that are unbounded from above. We couple these energy levels resonantly through a periodic drive, and discuss the heating dynamics of this system as a function of the driving protocol. In this way, we show that a combination of stimulated emission and absorption causes the presence of resonant stable states. This will serve to elucidate the conditions under which resonant driving causes heating in quantum systems.

  9. A gasdynamic gun driven by gaseous detonation

    NASA Astrophysics Data System (ADS)

    Li, Jinping; Chen, Hong; Zhang, Shizhong; Zhang, Xiaoyuan; Yu, Hongru

    2016-01-01

    A gasdynamic gun driven by gaseous detonation was developed to address the disadvantages of the insufficient driving capability of high-pressure gas and the constraints of gunpowder. The performance of this gasdynamic gun was investigated through experiments and numerical simulations. Much more powerful launching capability was achieved by this gun relative to a conventional high-pressure gas gun, owing to the use of the chemical energy of the driver gas. To achieve the same launching condition, the initial pressure required for this gun was an order of magnitude lower than that for a gun driven by high-pressure H2. Because of the presence of the detonation, however, a more complex internal ballistic process of this gun was observed. Acceleration of projectiles for this gun was accompanied by a series of impulse loads, in contrast with the smooth acceleration for a conventional one, which indicates that this gun should be used conditionally. The practical feasibility of this gun was verified by experiments. The experiments demonstrated the convenience of taking advantage of the techniques developed for detonation-driven shock tubes and tunnels.

  10. Resonances in a periodically driven bosonic system

    NASA Astrophysics Data System (ADS)

    Quelle, Anton; Smith, Cristiane Morais

    2017-11-01

    Periodically driven systems are a common topic in modern physics. In optical lattices specifically, driving is at the origin of many interesting phenomena. However, energy is not conserved in driven systems, and under periodic driving, heating of a system is a real concern. In an effort to better understand this phenomenon, the heating of single-band systems has been studied, with a focus on disorder- and interaction-induced effects, such as many-body localization. Nevertheless, driven systems occur in a much wider context than this, leaving room for further research. Here, we fill this gap by studying a noninteracting model, characterized by discrete, periodically spaced energy levels that are unbounded from above. We couple these energy levels resonantly through a periodic drive, and discuss the heating dynamics of this system as a function of the driving protocol. In this way, we show that a combination of stimulated emission and absorption causes the presence of resonant stable states. This will serve to elucidate the conditions under which resonant driving causes heating in quantum systems.

  11. Combining environment-driven adaptation and task-driven optimisation in evolutionary robotics.

    PubMed

    Haasdijk, Evert; Bredeche, Nicolas; Eiben, A E

    2014-01-01

    Embodied evolutionary robotics is a sub-field of evolutionary robotics that employs evolutionary algorithms on the robotic hardware itself, during the operational period, i.e., in an on-line fashion. This enables robotic systems that continuously adapt, and are therefore capable of (re-)adjusting themselves to previously unknown or dynamically changing conditions autonomously, without human oversight. This paper addresses one of the major challenges that such systems face, viz. that the robots must satisfy two sets of requirements. Firstly, they must continue to operate reliably in their environment (viability), and secondly they must competently perform user-specified tasks (usefulness). The solution we propose exploits the fact that evolutionary methods have two basic selection mechanisms-survivor selection and parent selection. This allows evolution to tackle the two sets of requirements separately: survivor selection is driven by the environment and parent selection is based on task-performance. This idea is elaborated in the Multi-Objective aNd open-Ended Evolution (monee) framework, which we experimentally validate. Experiments with robotic swarms of 100 simulated e-pucks show that monee does indeed promote task-driven behaviour without compromising environmental adaptation. We also investigate an extension of the parent selection process with a 'market mechanism' that can ensure equitable distribution of effort over multiple tasks, a particularly pressing issue if the environment promotes specialisation in single tasks.

  12. Developmental Trajectories of Boys' Driven Exercise and Fasting During the Middle School Years.

    PubMed

    Davis, Heather A; Guller, Leila; Smith, Gregory T

    2016-10-01

    Boys appear to engage in eating disorder behavior, particularly nonpurging compensatory behaviors such as driven exercise and fasting, at higher rates than previously thought. Little is known about the development of these behaviors in adolescent boys. In a sample of 631 non-binge eating and non-purging boys studied once in 5th grade and 6 times over the 3 years of middle school (grades 6 through 8), we found that (a) for some youth, driven exercise and fasting were present from grade 6; (b) different boys progressed along different trajectories of engagement in driven exercise and fasting, with some boys engaging in no driven exercise or fasting (65.8 % and 83.5 %, respectively), some boys engaging in driven exercise and fasting throughout middle school (25.2 % and 16.5 %, respectively), and other boys discontinuing engagement in driven exercise (9 %); (c) 5th grade depression, eating expectancies, and thinness expectancies predicted subsequent trajectory group membership; and (d) boys engaging in driven exercise and fasting in 8th grade remained distressed. Boys' engagement in driven exercise and fasting behavior merits the attention of researchers and clinicians.

  13. Developmental Trajectories of Boys’ Driven Exercise and Fasting During the Middle School Years

    PubMed Central

    Davis, Heather A.; Guller, Leila; Smith, Gregory T.

    2016-01-01

    Boys appear to engage in eating disorder behavior, particularly nonpurging compensatory behaviors such as driven exercise and fasting, at higher rates than previously thought. Little is known about the development of these behaviors in adolescent boys. In a sample of 631 non-binge eating and non-purging boys studied once in 5th grade and 6 times over the 3 years of middle school (grades 6 through 8), we found that (a) for some youth, driven exercise and fasting were present from grade 6; (b) different boys progressed along different trajectories of engagement in driven exercise and fasting, with some boys engaging in no driven exercise or fasting (65.8% and 83.5%, respectively), some boys engaging in driven exercise and fasting throughout middle school (25.2% and 16.5%, respectively), and other boys discontinuing engagement in driven exercise (9%); (c) 5th grade depression, eating expectancies, and thinness expectancies predicted subsequent trajectory group membership; and (d) boys engaging in driven exercise and fasting in 8th grade remained distressed. Boys’ engagement in driven exercise and fasting behavior merits the attention of researchers and clinicians. PMID:26707543

  14. High-explosive driven crowbar switch

    DOEpatents

    Dike, Robert S.; Kewish, Jr., Ralph W.

    1976-01-13

    The disclosure relates to a compact explosive driven switch for use as a low resistance, low inductance crowbar switch. A high-explosive charge extrudes a deformable conductive metallic plate through a polyethylene insulating layer to achieve a hard current contact with a supportive annular conductor.

  15. Driven waves in a two-fluid plasma

    NASA Astrophysics Data System (ADS)

    Roberge, W. G.; Ciolek, Glenn E.

    2007-12-01

    We study the physics of wave propagation in a weakly ionized plasma, as it applies to the formation of multifluid, magnetohydrodynamics (MHD) shock waves. We model the plasma as separate charged and neutral fluids which are coupled by ion-neutral friction. At times much less than the ion-neutral drag time, the fluids are decoupled and so evolve independently. At later times, the evolution is determined by the large inertial mismatch between the charged and neutral particles. The neutral flow continues to evolve independently; the charged flow is driven by and slaved to the neutral flow by friction. We calculate this driven flow analytically by considering the special but realistic case where the charged fluid obeys linearized equations of motion. We carry out an extensive analysis of linear, driven, MHD waves. The physics of driven MHD waves is embodied in certain Green functions which describe wave propagation on short time-scales, ambipolar diffusion on long time-scales and transitional behaviour at intermediate times. By way of illustration, we give an approximate solution for the formation of a multifluid shock during the collision of two identical interstellar clouds. The collision produces forward and reverse J shocks in the neutral fluid and a transient in the charged fluid. The latter rapidly evolves into a pair of magnetic precursors on the J shocks, wherein the ions undergo force-free motion and the magnetic field grows monotonically with time. The flow appears to be self-similar at the time when linear analysis ceases to be valid.

  16. Efficacy of ACA strategies in biography-driven science teaching: an investigation

    NASA Astrophysics Data System (ADS)

    MacDonald, Grizelda L.; Miller, Stuart S.; Murry, Kevin; Herrera, Socorro; Spears, Jacqueline D.

    2013-12-01

    This study explored the biography-driven approach to teaching culturally and linguistically diverse students in science education. Biography-driven instruction (BDI) embraces student diversity by incorporating students' sociocultural, linguistic, cognitive, and academic dimensions of their biographies into the learning process (Herrera in Biography-driven culturally responsive teaching. Teachers College Press, New York, 2010). Strategies have been developed (Herrera, Kavimandan and Holmes in Crossing the vocabulary bridge: differentiated strategies for diverse secondary classrooms. Teachers College Press, New York, 2011) that provide teachers with instructional routines that facilitate BDI. Using systematic classroom observations we empirically demonstrate that these activate, connect, affirm, strategies are likely to be effective in increasing teachers' biography-driven practices. Implications for theory and practice are discussed.

  17. Nova-driven winds in globular clusters

    NASA Technical Reports Server (NTRS)

    Scott, E. H.; Durisen, R. H.

    1978-01-01

    Recent sensitive searches for H-alpha emission from ionized intracluster gas in globular clusters have set upper limits that conflict with theoretical predictions. It is suggested that nova outbursts heat the gas, producing winds that resolve this discrepancy. The incidence of novae in globular clusters, the conversion of kinetic energy of the nova shell to thermal energy of the intracluster gas, and the characteristics of the resultant winds are discussed. Calculated emission from the nova-driven models does not conflict with any observations to date. Some suggestions are made concerning the most promising approaches for future detection of intracluster gas on the basis of these models. The possible relationship of nova-driven winds to globular cluster X-ray sources is also considered.

  18. Market Driven Space Exploration

    NASA Astrophysics Data System (ADS)

    Gavert, Raymond B.

    2004-02-01

    Market driven space exploration will have the opportunity to develop to new levels with the coming of space nuclear power and propulsion. NASA's recently established Prometheus program is expected to receive several billion dollars over the next five years for developing nuclear power and propulsion systems for future spacecraft. Not only is nuclear power and propulsion essential for long distance Jupiter type missions, but it also important for providing greater access to planets and bodies nearer to the Earth. NASA has been working with industrial partners since 1987 through its Research Partnerships Centers (RPCs) to utilize the attributes of space in Low Earth Orbit (LEO). Plans are now being made to utilize the RPCs and industrial partners in extending the duration and boundaries of human space flight to create new opportunities for exploration and discovery. Private investors are considering setting up shops in LEO for commercial purposes. The trend is for more industrial involvement in space. Nuclear power and propulsion will hasten the progress. The objective of this paper is to show the progression of space market driven research and its potential for supporting space exploration given nuclear power and propulsion capabilities.

  19. Large Field Visualization with Demand-Driven Calculation

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.; Henze, Chris

    1999-01-01

    We present a system designed for the interactive definition and visualization of fields derived from large data sets: the Demand-Driven Visualizer (DDV). The system allows the user to write arbitrary expressions to define new fields, and then apply a variety of visualization techniques to the result. Expressions can include differential operators and numerous other built-in functions, ail of which are evaluated at specific field locations completely on demand. The payoff of following a demand-driven design philosophy throughout becomes particularly evident when working with large time-series data, where the costs of eager evaluation alternatives can be prohibitive.

  20. Model-driven Service Engineering with SoaML

    NASA Astrophysics Data System (ADS)

    Elvesæter, Brian; Carrez, Cyril; Mohagheghi, Parastoo; Berre, Arne-Jørgen; Johnsen, Svein G.; Solberg, Arnor

    This chapter presents a model-driven service engineering (MDSE) methodology that uses OMG MDA specifications such as BMM, BPMN and SoaML to identify and specify services within a service-oriented architecture. The methodology takes advantage of business modelling practices and provides a guide to service modelling with SoaML. The presentation is case-driven and illuminated using the telecommunication example. The chapter focuses in particular on the use of the SoaML modelling language as a means for expressing service specifications that are aligned with business models and can be realized in different platform technologies.

  1. System Driven Workarounds

    NASA Technical Reports Server (NTRS)

    Connell, Linda; Wichner, David; Jakey, Abegael Marie

    2013-01-01

    The Aviation Safety Reporting System (ASRS) in a partnership between the National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), participating carriers, and labor organizations. It is designed to improve the National Airspace System by collecting and studying reports detailing unsafe conditions and events in the aviation industry. Employees are able to report safety issues or concerns with confidentiality and without fear of discipline. Safety reports highlighting system driven workarounds for the aviation community highlight the human workaround for the complex aviation system.

  2. High Performance Visualization using Query-Driven Visualizationand Analytics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bethel, E. Wes; Campbell, Scott; Dart, Eli

    2006-06-15

    Query-driven visualization and analytics is a unique approach for high-performance visualization that offers new capabilities for knowledge discovery and hypothesis testing. The new capabilities akin to finding needles in haystacks are the result of combining technologies from the fields of scientific visualization and scientific data management. This approach is crucial for rapid data analysis and visualization in the petascale regime. This article describes how query-driven visualization is applied to a hero-sized network traffic analysis problem.

  3. The application of domain-driven design in NMS

    NASA Astrophysics Data System (ADS)

    Zhang, Jinsong; Chen, Yan; Qin, Shengjun

    2011-12-01

    In the traditional design approach of data-model-driven, system analysis and design phases are often separated which makes the demand information can not be expressed explicitly. The method is also easy to lead developer to the process-oriented programming, making codes between the modules or between hierarchies disordered. So it is hard to meet requirement of system scalability. The paper proposes a software hiberarchy based on rich domain model according to domain-driven design named FHRDM, then the Webwork + Spring + Hibernate (WSH) framework is determined. Domain-driven design aims to construct a domain model which not only meets the demand of the field where the software exists but also meets the need of software development. In this way, problems in Navigational Maritime System (NMS) development like big system business volumes, difficulty of requirement elicitation, high development costs and long development cycle can be resolved successfully.

  4. Laser-driven fusion etching process

    DOEpatents

    Ashby, Carol I. H.; Brannon, Paul J.; Gerardo, James B.

    1989-01-01

    The surfaces of solid ionic substrates are etched by a radiation-driven chemical reaction. The process involves exposing an ionic substrate coated with a layer of a reactant material on its surface to radiation, e.g. a laser, to induce localized melting of the substrate which results in the occurrance of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic salt substrates, e.g., a solid inorganic salt such as LiNbO.sub.3, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  5. Randomised controlled crossover trial of the effect on PtCO2 of oxygen-driven versus air-driven nebulisers in severe chronic obstructive pulmonary disease.

    PubMed

    Edwards, Llifon; Perrin, Kyle; Williams, Mathew; Weatherall, Mark; Beasley, Richard

    2012-11-01

    The comparative safety of oxygen versus air-driven nebulised bronchodilators in patients with acute exacerbations of chronic obstructive pulmonary disease (COPD) is uncertain. A randomised controlled trial was performed to assess the effect on the arterial partial pressure of carbon dioxide of nebulised bronchodilator driven with oxygen versus air in stable severe COPD. In an open label randomised study, 18 subjects with stable severe COPD attended on 2 days to receive nebulised bronchodilator therapy driven by air or oxygen. Subjects received 5 mg salbutamol and 0.5 mg ipratropium bromide by nebulisation over 15 min, then, after 5 min, 5 mg salbutamol nebulised over 15 min, followed by 15 min of observation. Transcutaneous carbon dioxide tension (PtCO(2)) and oxygen saturations were recorded at 5 min intervals during the study. The primary outcome was the PtCO(2) after the completion of the second bronchodilator treatment. PtCO(2) was higher with nebulised bronchodilator therapy delivered by oxygen, but decreased back to the level associated with air nebulisation 15 min after completion of the second nebulised dose. One subject experienced an increase in PtCO(2) of 11 mm Hg after the first bronchodilator nebulisation driven by oxygen. The mean PtCO(2) difference between the oxygen and air groups after the second nebulisation was 3.1 mm Hg (95% CI 1.6 to 4.5, p<0.001). Nebulisers driven with oxygen result in significantly higher levels of PtCO(2) than those driven with air in patients with severe COPD. The study was registered on the Australian New Zealand Clinical Trials Registry (ACTRN12610000080022).

  6. Epidemic cycles driven by host behaviour

    PubMed Central

    Althouse, Benjamin M.; Hébert-Dufresne, Laurent

    2014-01-01

    Host immunity and demographics (the recruitment of susceptibles via birthrate) have been demonstrated to be a key determinant of the periodicity of measles, pertussis and dengue epidemics. However, not all epidemic cycles are from pathogens inducing sterilizing immunity or are driven by demographics. Many sexually transmitted infections are driven by sexual behaviour. We present a mathematical model of disease transmission where individuals can disconnect and reconnect depending on the infectious status of their contacts. We fit the model to historic syphilis (Treponema pallidum) and gonorrhea (Neisseria gonorrhoeae) incidence in the USA and explore potential intervention strategies against syphilis. We find that cycles in syphilis incidence can be driven solely by changing sexual behaviour in structured populations. Our model also explains the lack of similar cycles in gonorrhea incidence even if the two infections share the same propagation pathways. Our model similarly illustrates how sudden epidemic outbreaks can occur on time scales smaller than the characteristic demographic time scale of the population and that weaker infections can lead to more violent outbreaks. Behaviour also appears to be critical for control strategies as we found a bigger sensitivity to behavioural interventions than antibiotic treatment. Thus, behavioural interventions may play a larger role than previously thought, especially in the face of antibiotic resistance and low intervention efficacies. PMID:25100316

  7. Light-Driven Chiral Molecular Motors for Passive Agile Filters

    DTIC Science & Technology

    2014-05-20

    liquid crystal , we fabricated the self-organized, phototubable 3D photonic superstructure, i.e. photoresponsive monodisperse cholesteric liquid...systems for applications. Here the new light-driven chiral molecular switch and upconversion nanoparticles, doped in a liquid crystal media, were...the bottom-up nanofabrication of intelligent molecular devices. Light-driven chiral molecular switches or motors in liquid crystal (LC) media that

  8. Building an Ontology-driven Database for Clinical Immune Research

    PubMed Central

    Ma, Jingming

    2006-01-01

    The clinical researches of immune response usually generate a huge amount of biomedical testing data over a certain period of time. The user-friendly data management systems based on the relational database will help immunologists/clinicians to fully manage the data. On the other hand, the same biological assays such as ELISPOT and flow cytometric assays are involved in immunological experiments no matter of different study purposes. The reuse of biological knowledge is one of driving forces behind this ontology-driven data management. Therefore, an ontology-driven database will help to handle different clinical immune researches and help immunologists/clinicians easily understand the immunological data from each other. We will discuss some outlines for building an ontology-driven data management for clinical immune researches (ODMim). PMID:17238637

  9. Evaluation of lightning accommodation systems for wind-driven turbine rotors

    NASA Technical Reports Server (NTRS)

    Bankaitis, H.

    1982-01-01

    Wind-driven turbine generators are being evaluated as an alternative source of electric energy. Areas of favorable location for the wind-driven turbines (high wind density) coincide with areas of high incidence of thunderstorm activity. These locations, coupled with the 30-m or larger diameter rotor blades, make the wind-driven turbine blades probable terminations for lightning strikes. Several candidate systems of lightning accommodation for composite-structural-material blades were designed and their effectiveness evaluated by submitting the systems to simulated lightning strikes. The test data were analyzed and system design were reviewed on the basis of the analysis.

  10. Embedding Agile Practices within a Plan-Driven Hierarchical Project Life Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millard, W. David; Johnson, Daniel M.; Henderson, John M.

    2014-07-28

    Organizations use structured, plan-driven approaches to provide continuity, direction, and control to large, multi-year programs. Projects within these programs vary greatly in size, complexity, level of maturity, technical risk, and clarity of the development objectives. Organizations that perform exploratory research, evolutionary development, and other R&D activities can obtain the benefits of Agile practices without losing the benefits of their program’s overarching plan-driven structure. This paper describes application of Agile development methods on a large plan-driven sensor integration program. While the client employed plan-driven, requirements flow-down methodologies, tight project schedules and complex interfaces called for frequent end-to-end demonstrations to provide feedbackmore » during system development. The development process maintained the many benefits of plan-driven project execution with the rapid prototyping, integration, demonstration, and client feedback possible through Agile development methods. This paper also describes some of the tools and implementing mechanisms used to transition between and take advantage of each methodology, and presents lessons learned from the project management, system engineering, and developer’s perspectives.« less

  11. Flow-aggregated traffic-driven label mapping in label-switching networks

    NASA Astrophysics Data System (ADS)

    Nagami, Kenichi; Katsube, Yasuhiro; Esaki, Hiroshi; Nakamura, Osamu

    1998-12-01

    Label switching technology enables high performance, flexible, layer-3 packet forwarding based on the fixed length label information mapped to the layer-3 packet stream. A Label Switching Router (LSR) forwards layer-3 packets based on their label information mapped to the layer-3 address information as well as their layer-3 address information. This paper evaluates the required number of labels under traffic-driven label mapping policy using the real backbone traffic traces. The evaluation shows that the label mapping policy requires a large number of labels. In order to reduce the required number of labels, we propose a label mapping policy which is a traffic-driven label mapping for the traffic toward the same destination network. The evaluation shows that the proposed label mapping policy requires only about one tenth as many labels compared with the traffic-driven label mapping for the host-pair packet stream,and the topology-driven label mapping for the destination network packet stream.

  12. Position Control of Tendon-Driven Fingers

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E.; Platt, Robert, Jr.; Hargrave, B.; Pementer, Frank

    2011-01-01

    Conventionally, tendon-driven manipulators implement some force control scheme based on tension feedback. This feedback allows the system to ensure that the tendons are maintained taut with proper levels of tensioning at all times. Occasionally, whether it is due to the lack of tension feedback or the inability to implement sufficiently high stiffnesses, a position control scheme is needed. This work compares three position controllers for tendon-driven manipulators. A new controller is introduced that achieves the best overall performance with regards to speed, accuracy, and transient behavior. To compensate for the lack of tension feedback, the controller nominally maintains the internal tension on the tendons by implementing a two-tier architecture with a range-space constraint. These control laws are validated experimentally on the Robonaut-2 humanoid hand. I

  13. The AGN-driven shock in NGC 4472

    NASA Astrophysics Data System (ADS)

    Gendron-Marsolais, Marie-Lou; Kraft, Ralph P.; Bogdan, Akos; Forman, William R.; Hlavacek-Larrondo, Julie; Jones, Christine; Nulsen, Paul; Randall, Scott W.; Roediger, Elke

    2016-04-01

    Chandra observations of most cool core clusters of galaxies have revealed large cavities where the inflation of the jet-driven radio bubbles displace the cluster gas. In a few cases, outburst shocks, likely driven by cavity inflation, are detected in the ambient gas. AGN-driven shocks may be key to balancing the radiative losses as shocks will increase the entropy of, and thereby heat, the diffuse gas. We will present initial results on deep Chandra observations of the nearby (D=17 Mpc) early-type massive elliptical galaxy NGC 4472, the most optically luminous galaxy in the local Universe, lying on the outskirts of the Virgo cluster. The X-ray observations show clear cavities in the X-ray emission at the position of the radio lobes, and rings of enhanced X-ray emission just beyond the lobes. We will present results from our analysis to determine whether the lobes are inflating supersonically or are rising buoyantly. We will compare the energy and power of this AGN outburst with previous powerful radio outbursts in clusters and groups to determine whether this outburst lies on the same scaling relations or whether it represents a new category of outburst.

  14. Magnetic Control of Solutal Buoyancy Driven Convection

    NASA Technical Reports Server (NTRS)

    Ramachandran, N.; Leslie, F. W.

    2003-01-01

    Volumetric forces resulting from local density variations and gravitational acceleration cause buoyancy induced convective motion in melts and solutions. Solutal buoyancy is a result of concentration differences in an otherwise isothermal fluid. If the fluid also exhibits variations in magnetic susceptibility with concentration then convection control by external magnetic fields can be hypothesized. Magnetic control of thermal buoyancy induced convection in ferrofluids (dispersions of ferromagnetic particles in a carrier fluid) and paramagnetic fluids have been demonstrated. Here we show the nature of magnetic control of solutal buoyancy driven convection of a paramagnetic fluid, an aqueous solution of Manganese Chloride hydrate. We predict the critical magnetic field required for balancing gravitational solutal buoyancy driven convection and validate it through a simple experiment. We demonstrate that gravity driven flow can be completely reversed by a magnetic field but the exact cancellation of the flow is not possible. This is because the phenomenon is unstable. The technique can be applied to crystal growth processes in order to reduce convection and to heat exchanger devices for enhancing convection. The method can also be applied to impose a desired g-level in reduced gravity applications.

  15. Authoring Data-Driven Videos with DataClips.

    PubMed

    Amini, Fereshteh; Riche, Nathalie Henry; Lee, Bongshin; Monroy-Hernandez, Andres; Irani, Pourang

    2017-01-01

    Data videos, or short data-driven motion graphics, are an increasingly popular medium for storytelling. However, creating data videos is difficult as it involves pulling together a unique combination of skills. We introduce DataClips, an authoring tool aimed at lowering the barriers to crafting data videos. DataClips allows non-experts to assemble data-driven "clips" together to form longer sequences. We constructed the library of data clips by analyzing the composition of over 70 data videos produced by reputable sources such as The New York Times and The Guardian. We demonstrate that DataClips can reproduce over 90% of our data videos corpus. We also report on a qualitative study comparing the authoring process and outcome achieved by (1) non-experts using DataClips, and (2) experts using Adobe Illustrator and After Effects to create data-driven clips. Results indicated that non-experts are able to learn and use DataClips with a short training period. In the span of one hour, they were able to produce more videos than experts using a professional editing tool, and their clips were rated similarly by an independent audience.

  16. Exfoliative cutaneous lupus erythematosus in German shorthaired pointer dogs: disease development, progression and evaluation of three immunomodulatory drugs (ciclosporin, hydroxychloroquine, and adalimumab) in a controlled environment

    PubMed Central

    Mauldin, Elizabeth A.; Morris, Daniel O.; Brown, Dorothy C.; Casal, Margret L.

    2011-01-01

    Six German shorthaired pointer dogs (two females, four males) with exfoliative cutaneous lupus erythematosus (ECLE) were studied in a controlled setting until disease progression necessitated euthanasia. During investigations into the heredity of disease, five dogs received immunomodulatory drugs to alleviate clinical signs (lameness, erythema, scaling, erosions/ulcers). One dog served as a control and received only baths and oral fatty acids. Four dogs received ciclosporin (5–10 mg/kg once daily) for 4.5 months to 2 years. Ciclosporin decreased erythema and arthralgia, but did not halt worsening of lesions. Three dogs received hydroxychloroquine (5–10 mg/kg once daily) for 8 weeks, 7 months, and 9 months, respectively, with no side effects. Hydroxychloroquine appeared to slow clinical progression in two dogs on extended treatment and normalized globulin levels in all three dogs while receiving the drug. Four dogs, including the control dog, were euthanized between 1 and 4.5 years of age. Two remaining male dogs received a tumour necrosis factor (TNF)-α antagonist, adalimumab, at 0.5 mg/kg every 2 weeks for 8 weeks then weekly for 8 weeks. Serum TNF-α levels were not significantly altered nor were quantifiable changes seen in skin lesions or lameness. Subsequently, the dogs were maintained on hydroxychloroquine for another year. This is the first study to evaluate the use of a TNF-α inhibitor for canine lupus and the first to address the safety of long-term administration of hydroxychloroquine, albeit in a small number of dogs. The study documents the progression of ECLE and generally poor response to therapy. PMID:20374572

  17. Floquet prethermalization in the resonantly driven Hubbard model

    NASA Astrophysics Data System (ADS)

    Herrmann, Andreas; Murakami, Yuta; Eckstein, Martin; Werner, Philipp

    2017-12-01

    We demonstrate the existence of long-lived prethermalized states in the Mott insulating Hubbard model driven by periodic electric fields. These states, which also exist in the resonantly driven case with a large density of photo-induced doublons and holons, are characterized by a nonzero current and an effective temperature of the doublons and holons which depends sensitively on the driving condition. Focusing on the specific case of resonantly driven models whose effective time-independent Hamiltonian in the high-frequency driving limit corresponds to noninteracting fermions, we show that the time evolution of the double occupation can be reproduced by the effective Hamiltonian, and that the prethermalization plateaus at finite driving frequency are controlled by the next-to-leading-order correction in the high-frequency expansion of the effective Hamiltonian. We propose a numerical procedure to determine an effective Hubbard interaction that mimics the correlation effects induced by these higher-order terms.

  18. RESPONDENT-DRIVEN SAMPLING AS MARKOV CHAIN MONTE CARLO

    PubMed Central

    GOEL, SHARAD; SALGANIK, MATTHEW J.

    2013-01-01

    Respondent-driven sampling (RDS) is a recently introduced, and now widely used, technique for estimating disease prevalence in hidden populations. RDS data are collected through a snowball mechanism, in which current sample members recruit future sample members. In this paper we present respondent-driven sampling as Markov chain Monte Carlo (MCMC) importance sampling, and we examine the effects of community structure and the recruitment procedure on the variance of RDS estimates. Past work has assumed that the variance of RDS estimates is primarily affected by segregation between healthy and infected individuals. We examine an illustrative model to show that this is not necessarily the case, and that bottlenecks anywhere in the networks can substantially affect estimates. We also show that variance is inflated by a common design feature in which sample members are encouraged to recruit multiple future sample members. The paper concludes with suggestions for implementing and evaluating respondent-driven sampling studies. PMID:19572381

  19. On the value-dependence of value-driven attentional capture.

    PubMed

    Anderson, Brian A; Halpern, Madeline

    2017-05-01

    Findings from an increasingly large number of studies have been used to argue that attentional capture can be dependent on the learned value of a stimulus, or value-driven. However, under certain circumstances attention can be biased to select stimuli that previously served as targets, independent of reward history. Value-driven attentional capture, as studied using the training phase-test phase design introduced by Anderson and colleagues, is widely presumed to reflect the combined influence of learned value and selection history. However, the degree to which attentional capture is at all dependent on value learning in this paradigm has recently been questioned. Support for value-dependence can be provided through one of two means: (1) greater attentional capture by prior targets following rewarded training than following unrewarded training, and (2) greater attentional capture by prior targets previously associated with high compared to low value. Using a variant of the original value-driven attentional capture paradigm, Sha and Jiang (Attention, Perception, and Psychophysics, 78, 403-414, 2016) failed to find evidence of either, and raised criticisms regarding the adequacy of evidence provided by prior studies using this particular paradigm. To address this disparity, here we provided a stringent test of the value-dependence hypothesis using the traditional value-driven attentional capture paradigm. With a sufficiently large sample size, value-dependence was observed based on both criteria, with no evidence of attentional capture without rewards during training. Our findings support the validity of the traditional value-driven attentional capture paradigm in measuring what its name purports to measure.

  20. On the Value-Dependence of Value-Driven Attentional Capture

    PubMed Central

    Anderson, Brian A.; Halpern, Madeline

    2017-01-01

    Findings from an increasingly large number of studies have been used to argue that attentional capture can be dependent on the learned value of a stimulus, or value-driven. However, under certain circumstances attention can be biased to select stimuli that previously served as targets, independent of reward history. Value-driven attentional capture, as studied using the training phase-test phase design introduced by Anderson and colleagues, is widely presumed to reflect the combined influence of learned value and selection history. However, the degree to which attentional capture is at all dependent on value learning in this paradigm has recently been questioned. Support for value-dependence can be provided through one of two means: (1) greater attentional capture by prior targets following rewarded training than following unrewarded training, and (2) greater attentional capture by prior targets previously associated with high compared to low value. Using a variant of the original value-driven attentional capture paradigm, Sha and Jiang (2016) failed to find evidence of either, and raised criticisms regarding the adequacy of evidence provided by prior studies using this particular paradigm. To address this disparity, here we provided a stringent test of the value-dependence hypothesis using the traditional value-driven attentional capture paradigm. With a sufficiently large sample size, value-dependence was observed based on both criteria, with no evidence of attentional capture without rewards during training. Our findings support the validity of the traditional value-driven attentional capture paradigm in measuring what its name purports to measure. PMID:28176215

  1. Statistical Transmutation in Floquet Driven Optical Lattices.

    PubMed

    Sedrakyan, Tigran A; Galitski, Victor M; Kamenev, Alex

    2015-11-06

    We show that interacting bosons in a periodically driven two dimensional (2D) optical lattice may effectively exhibit fermionic statistics. The phenomenon is similar to the celebrated Tonks-Girardeau regime in 1D. The Floquet band of a driven lattice develops the moat shape, i.e., a minimum along a closed contour in the Brillouin zone. Such degeneracy of the kinetic energy favors fermionic quasiparticles. The statistical transmutation is achieved by the Chern-Simons flux attachment similar to the fractional quantum Hall case. We show that the velocity distribution of the released bosons is a sensitive probe of the fermionic nature of their stationary Floquet state.

  2. Systematic characterization of degas-driven flow for poly(dimethylsiloxane) microfluidic devices

    DOE PAGES

    Liang, David Y.; Tentori, Augusto M.; Dimov, Ivan K.; ...

    2011-01-01

    Degas-driven flow is a novel phenomenon used to propel fluids in poly(dimethylsiloxane) (PDMS)-based microfluidic devices without requiring any external power. This method takes advantage of the inherently high porosity and air solubility of PDMS by removing air molecules from the bulk PDMS before initiating the flow. The dynamics of degas-driven flow are dependent on the channel and device geometries and are highly sensitive to temporal parameters. These dependencies have not been fully characterized, hindering broad use of degas-driven flow as a microfluidic pumping mechanism. Here, we characterize, for the first time, the effect of various parameters on the dynamics ofmore » degas-driven flow, including channel geometry, PDMS thickness, PDMS exposure area, vacuum degassing time, and idle time at atmospheric pressure before loading. We investigate the effect of these parameters on flow velocity as well as channel fill time for the degas-driven flow process. Using our devices, we achieved reproducible flow with a standard deviation of less than 8% for flow velocity, as well as maximum flow rates of up to 3 nL/s and mean flow rates of approximately 1-1.5 nL/s. Parameters such as channel surface area and PDMS chip exposure area were found to have negligible impact on degas-driven flow dynamics, whereas channel cross-sectional area, degas time, PDMS thickness, and idle time were found to have a larger impact. In addition, we develop a physical model that can predict mean flow velocities within 6% of experimental values and can be used as a tool for future design of PDMS-based microfluidic devices that utilize degas-driven flow.« less

  3. Establishing intensivist-driven ultrasound at the PICU bedside--it's about time*.

    PubMed

    Su, Erik; Pustavoitau, Aliaksei; Hirshberg, Elliotte L; Nishisaki, Akira; Conlon, Thomas; Kantor, David B; Weber, Mark D; Godshall, Aaron J; Burzynski, Jeffrey H; Thompson, Ann E

    2014-09-01

    To discuss pediatric intensivist-driven ultrasound and the exigent need for research and practice definitions pertaining to its implementation within pediatric critical care, specifically addressing issues in ultrasound-guided vascular access and intensivist-driven echocardiography. Intensivist-driven ultrasound improves procedure safety and reduces time to diagnosis in clinical ultrasound applications, as demonstrated primarily in adult patients. Translating these applications to the PICU requires thoughtful integration of the technology into practice and would best be informed by dedicated ultrasound research in critically ill children.

  4. Mixed signals: The effect of conflicting reward- and goal-driven biases on selective attention.

    PubMed

    Preciado, Daniel; Munneke, Jaap; Theeuwes, Jan

    2017-07-01

    Attentional selection depends on the interaction between exogenous (stimulus-driven), endogenous (goal-driven), and selection history (experience-driven) factors. While endogenous and exogenous biases have been widely investigated, less is known about their interplay with value-driven attention. The present study investigated the interaction between reward-history and goal-driven biases on perceptual sensitivity (d') and response time (RT) in a modified cueing paradigm presenting two coloured cues, followed by sinusoidal gratings. Participants responded to the orientation of one of these gratings. In Experiment 1, one cue signalled reward availability but was otherwise task irrelevant. In Experiment 2, the same cue signalled reward, and indicated the target's most likely location at the opposite side of the display. This design introduced a conflict between reward-driven biases attracting attention and goal-driven biases directing it away. Attentional effects were examined comparing trials in which cue and target appeared at the same versus opposite locations. Two interstimulus interval (ISI) levels were used to probe the time course of attentional effects. Experiment 1 showed performance benefits at the location of the reward-signalling cue and costs at the opposite for both ISIs, indicating value-driven capture. Experiment 2 showed performance benefits only for the long ISI when the target was at the opposite to the reward-associated cue. At the short ISI, only performance costs were observed. These results reveal the time course of these biases, indicating that reward-driven effects influence attention early but can be overcome later by goal-driven control. This suggests that reward-driven biases are integrated as attentional priorities, just as exogenous and endogenous factors.

  5. Buoyancy driven mixing of miscible fluids by volumetric energy deposition of microwaves.

    PubMed

    Wachtor, Adam J; Mocko, Veronika; Williams, Darrick J; Goertz, Matthew P; Jebrail, Farzaneh F

    2013-01-01

    An experiment that seeks to investigate buoyancy driven mixing of miscible fluids by microwave volumetric energy deposition is presented. The experiment involves the use of a light, non-polar fluid that initially rests on top of a heavier fluid which is more polar. Microwaves preferentially heat the polar fluid, and its density decreases due to thermal expansion. As the microwave heating continues, the density of the lower fluid eventually becomes less than that of the upper, and buoyancy driven Rayleigh-Taylor mixing ensues. The choice of fluids is crucial to the success of the experiment, and a description is given of numerous fluid combinations considered and characterized. After careful consideration, the miscible pair of toluene/tetrahydrofuran (THF) was determined as having the best potential for successful volumetric energy deposition buoyancy driven mixing. Various single fluid calibration experiments were performed to facilitate the development of a heating theory. Thereafter, results from two-fluid mixing experiments are presented that demonstrate the capability of this novel Rayleigh-Taylor driven experiment. Particular interest is paid to the onset of buoyancy driven mixing and unusual aspects of the experiment in the context of typical Rayleigh-Taylor driven mixing.

  6. C-arm technique using distance driven method for nephrolithiasis and kidney stones detection

    NASA Astrophysics Data System (ADS)

    Malalla, Nuhad; Sun, Pengfei; Chen, Ying; Lipkin, Michael E.; Preminger, Glenn M.; Qin, Jun

    2016-04-01

    Distance driven represents a state of art method that used for reconstruction for x-ray techniques. C-arm tomography is an x-ray imaging technique that provides three dimensional information of the object by moving the C-shaped gantry around the patient. With limited view angle, C-arm system was investigated to generate volumetric data of the object with low radiation dosage and examination time. This paper is a new simulation study with two reconstruction methods based on distance driven including: simultaneous algebraic reconstruction technique (SART) and Maximum Likelihood expectation maximization (MLEM). Distance driven is an efficient method that has low computation cost and free artifacts compared with other methods such as ray driven and pixel driven methods. Projection images of spherical objects were simulated with a virtual C-arm system with a total view angle of 40 degrees. Results show the ability of limited angle C-arm technique to generate three dimensional images with distance driven reconstruction.

  7. Elasticity-Driven Backflow of Fluid-Driven Cracks

    NASA Astrophysics Data System (ADS)

    Lai, Ching-Yao; Dressaire, Emilie; Ramon, Guy; Huppert, Herbert; Stone, Howard A.

    2016-11-01

    Fluid-driven cracks are generated by the injection of pressurized fluid into an elastic medium. Once the injection pressure is released, the crack closes up due to elasticity and the fluid in the crack drains out of the crack through an outlet, which we refer to as backflow. We experimentally study the effects of crack size, elasticity of the matrix, and fluid viscosity on the backflow dynamics. During backflow, the volume of liquid remaining in the crack as a function of time exhibits a transition from a fast decay at early times to a power law behavior at late times. Our results at late times can be explained by scaling arguments balancing elastic and viscous stresses in the crack. This work may relate to the environmental issue of flowback in hydraulic fracturing. This work is supported by National Science Foundation via Grant CBET-1509347 and partially supported by Andlinger Center for Energy and the Environment at Princeton University.

  8. Flow-driven waves and sink-driven oscillations during aggregation of Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    Gholami, Azam; Zykov, Vladimir; Steinbock, Oliver; Bodenschatz, Eberhard

    The slime mold Dictyostelium discoideum (D.d) is a well-known model system for the study of biological pattern formation. Under starvation, D.d. cells aggregate chemotactically towards cAMP signals emitted periodically from an aggregation center. In the natural environment, D.d cells may experience fluid flows that can profoundly change the underlying wave generation process. We investigate spatial-temporal dynamics of a uniformly distributed population of D.d. cells in a flow-through narrow microfluidic channel with a cell-free inlet area. We show that flow can significantly influence the dynamics of the system and lead to a flow- driven instability that initiate downstream traveling cAMP waves. We also show that cell-free boundary regions have a significant effect on the observed patterns and can lead to a new kind of instability. Since there are no cells in the inlet to produce cAMP, the points in the vicinity of the inlet lose cAMP due to advection or diffusion and gain only a little from the upstream of the channel (inlet). In other words, there is a large negative flux of cAMP in the neighborhood close to the inlet, which can be considered as a sink. This negative flux close to the inlet drives a new kind of instability called sink-driven oscillations. Financial support of the MaxSynBio Consortium is acknowledged.

  9. A General and Efficient Method for Incorporating Precise Spike Times in Globally Time-Driven Simulations

    PubMed Central

    Hanuschkin, Alexander; Kunkel, Susanne; Helias, Moritz; Morrison, Abigail; Diesmann, Markus

    2010-01-01

    Traditionally, event-driven simulations have been limited to the very restricted class of neuronal models for which the timing of future spikes can be expressed in closed form. Recently, the class of models that is amenable to event-driven simulation has been extended by the development of techniques to accurately calculate firing times for some integrate-and-fire neuron models that do not enable the prediction of future spikes in closed form. The motivation of this development is the general perception that time-driven simulations are imprecise. Here, we demonstrate that a globally time-driven scheme can calculate firing times that cannot be discriminated from those calculated by an event-driven implementation of the same model; moreover, the time-driven scheme incurs lower computational costs. The key insight is that time-driven methods are based on identifying a threshold crossing in the recent past, which can be implemented by a much simpler algorithm than the techniques for predicting future threshold crossings that are necessary for event-driven approaches. As run time is dominated by the cost of the operations performed at each incoming spike, which includes spike prediction in the case of event-driven simulation and retrospective detection in the case of time-driven simulation, the simple time-driven algorithm outperforms the event-driven approaches. Additionally, our method is generally applicable to all commonly used integrate-and-fire neuronal models; we show that a non-linear model employing a standard adaptive solver can reproduce a reference spike train with a high degree of precision. PMID:21031031

  10. Managing business compliance using model-driven security management

    NASA Astrophysics Data System (ADS)

    Lang, Ulrich; Schreiner, Rudolf

    Compliance with regulatory and governance standards is rapidly becoming one of the hot topics of information security today. This is because, especially with regulatory compliance, both business and government have to expect large financial and reputational losses if compliance cannot be ensured and demonstrated. One major difficulty of implementing such regulations is caused the fact that they are captured at a high level of abstraction that is business-centric and not IT centric. This means that the abstract intent needs to be translated in a trustworthy, traceable way into compliance and security policies that the IT security infrastructure can enforce. Carrying out this mapping process manually is time consuming, maintenance-intensive, costly, and error-prone. Compliance monitoring is also critical in order to be able to demonstrate compliance at any given point in time. The problem is further complicated because of the need for business-driven IT agility, where IT policies and enforcement can change frequently, e.g. Business Process Modelling (BPM) driven Service Oriented Architecture (SOA). Model Driven Security (MDS) is an innovative technology approach that can solve these problems as an extension of identity and access management (IAM) and authorization management (also called entitlement management). In this paper we will illustrate the theory behind Model Driven Security for compliance, provide an improved and extended architecture, as well as a case study in the healthcare industry using our OpenPMF 2.0 technology.

  11. Event-driven simulations of nonlinear integrate-and-fire neurons.

    PubMed

    Tonnelier, Arnaud; Belmabrouk, Hana; Martinez, Dominique

    2007-12-01

    Event-driven strategies have been used to simulate spiking neural networks exactly. Previous work is limited to linear integrate-and-fire neurons. In this note, we extend event-driven schemes to a class of nonlinear integrate-and-fire models. Results are presented for the quadratic integrate-and-fire model with instantaneous or exponential synaptic currents. Extensions to conductance-based currents and exponential integrate-and-fire neurons are discussed.

  12. Learning control of inverted pendulum system by neural network driven fuzzy reasoning: The learning function of NN-driven fuzzy reasoning under changes of reasoning environment

    NASA Technical Reports Server (NTRS)

    Hayashi, Isao; Nomura, Hiroyoshi; Wakami, Noboru

    1991-01-01

    Whereas conventional fuzzy reasonings are associated with tuning problems, which are lack of membership functions and inference rule designs, a neural network driven fuzzy reasoning (NDF) capable of determining membership functions by neural network is formulated. In the antecedent parts of the neural network driven fuzzy reasoning, the optimum membership function is determined by a neural network, while in the consequent parts, an amount of control for each rule is determined by other plural neural networks. By introducing an algorithm of neural network driven fuzzy reasoning, inference rules for making a pendulum stand up from its lowest suspended point are determined for verifying the usefulness of the algorithm.

  13. Continuing Education: Market Driven or Learner Centered? Myths and Realities.

    ERIC Educational Resources Information Center

    Kerka, Sandra

    At the heart of the controversy over market-driven continuing education programs is the issue of whether they are necessarily antithetical to the principles and philosophy of adult learning. Opponents identify the following problems of market-driven programs: they perpetuate inequality by neglecting needs of those less able to pay; they may meet…

  14. Developing a habitat-driven approach to CWWT design

    USGS Publications Warehouse

    Sartoris, James J.; Thullen, Joan S.

    1998-01-01

    A habitat-driven approach to CWWT design is defined as designing the constructed wetland to maximize habitat values for a given site within the constraints of meeting specified treatment criteria. This is in contrast to the more typical approach of designing the CWWT to maximize treatment efficiency, and then, perhaps, adding wildlife habitat features. The habitat-driven approach is advocated for two reasons: (1) because good wetland habitat is critically lacking, and (2) because it is hypothesized that well-designed habitat will result in good, sustainable wastewater treatment.

  15. Data-driven Modelling for decision making under uncertainty

    NASA Astrophysics Data System (ADS)

    Angria S, Layla; Dwi Sari, Yunita; Zarlis, Muhammad; Tulus

    2018-01-01

    The rise of the issues with the uncertainty of decision making has become a very warm conversation in operation research. Many models have been presented, one of which is with data-driven modelling (DDM). The purpose of this paper is to extract and recognize patterns in data, and find the best model in decision-making problem under uncertainty by using data-driven modeling approach with linear programming, linear and nonlinear differential equation, bayesian approach. Model criteria tested to determine the smallest error, and it will be the best model that can be used.

  16. Working memory-driven attention improves spatial resolution: Support for perceptual enhancement.

    PubMed

    Pan, Yi; Luo, Qianying; Cheng, Min

    2016-08-01

    Previous research has indicated that attention can be biased toward those stimuli matching the contents of working memory and thereby facilitates visual processing at the location of the memory-matching stimuli. However, whether this working memory-driven attentional modulation takes place on early perceptual processes remains unclear. Our present results showed that working memory-driven attention improved identification of a brief Landolt target presented alone in the visual field. Because the suprathreshold target appeared without any external noise added (i.e., no distractors or masks), the results suggest that working memory-driven attention enhances the target signal at early perceptual stages of visual processing. Furthermore, given that performance in the Landolt target identification task indexes spatial resolution, this attentional facilitation indicates that working memory-driven attention can boost early perceptual processing via enhancement of spatial resolution at the attended location.

  17. Quantum correlations and limit cycles in the driven-dissipative Heisenberg lattice

    NASA Astrophysics Data System (ADS)

    Owen, E. T.; Jin, J.; Rossini, D.; Fazio, R.; Hartmann, M. J.

    2018-04-01

    Driven-dissipative quantum many-body systems have attracted increasing interest in recent years as they lead to novel classes of quantum many-body phenomena. In particular, mean-field calculations predict limit cycle phases, slow oscillations instead of stationary states, in the long-time limit for a number of driven-dissipative quantum many-body systems. Using a cluster mean-field and a self-consistent Mori projector approach, we explore the persistence of such limit cycles as short range quantum correlations are taken into account in a driven-dissipative Heisenberg model.

  18. Double-driven shield capacitive type proximity sensor

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1993-01-01

    A capacity type proximity sensor comprised of a capacitance type sensor, a capacitance type reference, and two independent and mutually opposing driven shields respectively adjacent to the sensor and reference and which are coupled in an electrical bridge circuit configuration and driven by a single frequency crystal controlled oscillator is presented. The bridge circuit additionally includes a pair of fixed electrical impedance elements which form adjacent arms of the bridge and which comprise either a pair of precision resistances or capacitors. Detection of bridge unbalance provides an indication of the mutual proximity between an object and the sensor. Drift compensation is also utilized to improve performance and thus increase sensor range and sensitivity.

  19. Dynamics of a magnetic skyrmionium driven by spin waves

    NASA Astrophysics Data System (ADS)

    Li, Sai; Xia, Jing; Zhang, Xichao; Ezawa, Motohiko; Kang, Wang; Liu, Xiaoxi; Zhou, Yan; Zhao, Weisheng

    2018-04-01

    A magnetic skyrmionium is a skyrmion-like structure, but carries a zero net skyrmion number which can be used as a building block for non-volatile information processing devices. Here, we study the dynamics of a magnetic skyrmionium driven by propagating spin waves. It is found that the skyrmionium can be effectively driven into motion by spin waves showing a tiny skyrmion Hall effect, whose mobility is much better than that of the skyrmion at the same condition. We also show that the skyrmionium mobility depends on the nanotrack width and the damping coefficient and can be controlled by an external out-of-plane magnetic field. In addition, we demonstrate that the skyrmionium motion driven by spin waves is inertial. Our results indicate that the skyrmionium is a promising building block for building spin-wave spintronic devices.

  20. Interfacial waves generated by electrowetting-driven contact line motion

    NASA Astrophysics Data System (ADS)

    Ha, Jonghyun; Park, Jaebum; Kim, Yunhee; Shin, Bongsu; Bae, Jungmok; Kim, Ho-Young

    2016-10-01

    The contact angle of a liquid-fluid interface can be effectively modulated by the electrowetting-on-dielectric (EWOD) technology. Rapid movement of the contact line can be achieved by swift changes of voltage at the electrodes, which can give rise to interfacial waves under the strong influence of surface tension. Here we experimentally demonstrate EWOD-driven interfacial waves of overlapping liquids and compare their wavelength and decay length with the theoretical results obtained by a perturbation analysis. Our theory also allows us to predict the temporal evolution of the interfacial profiles in either rectangular or cylindrical containers, as driven by slipping contact lines. This work builds a theoretical framework to understand and predict the dynamics of capillary waves of a liquid-liquid interface driven by EWOD, which has practical implications on optofluidic devices used to guide light.

  1. Event-driven simulation in SELMON: An overview of EDSE

    NASA Technical Reports Server (NTRS)

    Rouquette, Nicolas F.; Chien, Steve A.; Charest, Leonard, Jr.

    1992-01-01

    EDSE (event-driven simulation engine), a model-based event-driven simulator implemented for SELMON, a tool for sensor selection and anomaly detection in real-time monitoring is described. The simulator is used in conjunction with a causal model to predict future behavior of the model from observed data. The behavior of the causal model is interpreted as equivalent to the behavior of the physical system being modeled. An overview of the functionality of the simulator and the model-based event-driven simulation paradigm on which it is based is provided. Included are high-level descriptions of the following key properties: event consumption and event creation, iterative simulation, synchronization and filtering of monitoring data from the physical system. Finally, how EDSE stands with respect to the relevant open issues of discrete-event and model-based simulation is discussed.

  2. Database Driven 6-DOF Trajectory Simulation for Debris Transport Analysis

    NASA Technical Reports Server (NTRS)

    West, Jeff

    2008-01-01

    Debris mitigation and risk assessment have been carried out by NASA and its contractors supporting Space Shuttle Return-To-Flight (RTF). As a part of this assessment, analysis of transport potential for debris that may be liberated from the vehicle or from pad facilities prior to tower clear (Lift-Off Debris) is being performed by MSFC. This class of debris includes plume driven and wind driven sources for which lift as well as drag are critical for the determination of the debris trajectory. As a result, NASA MSFC has a need for a debris transport or trajectory simulation that supports the computation of lift effect in addition to drag without the computational expense of fully coupled CFD with 6-DOF. A database driven 6-DOF simulation that uses aerodynamic force and moment coefficients for the debris shape that are interpolated from a database has been developed to meet this need. The design, implementation, and verification of the database driven six degree of freedom (6-DOF) simulation addition to the Lift-Off Debris Transport Analysis (LODTA) software are discussed in this paper.

  3. Recent Advances in Alternating Current-Driven Organic Light-Emitting Devices.

    PubMed

    Pan, Yufeng; Xia, Yingdong; Zhang, Haijuan; Qiu, Jian; Zheng, Yiting; Chen, Yonghua; Huang, Wei

    2017-11-01

    Organic light-emitting devices (OLEDs), typically operated with constant-voltage or direct-current (DC) power sources, are candidates for next-generation solid-state lighting and displays, as they are light, thin, inexpensive, and flexible. However, researchers have focused mainly on the device itself (e.g., development of novel materials, design of the device structure, and optical outcoupling engineering), and little attention has been paid to the driving mode. Recently, an alternative concept to DC-driven OLEDs by directly driving devices using time-dependent voltages or alternating current (AC) has been explored. Here, the effects of different device structures of AC-driven OLEDs, for example, double-insulation, single-insulation, double-injection, and tandem structure, on the device performance are systematically investigated. The formation of excitons and the dielectric layer, which are important to achieve high-performance AC-driven OLEDs, are carefully considered. The importance of gaining further understanding of the fundamental properties of AC-driven OLEDs is then discussed, especially as they relate to device physics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Target volume and artifact evaluation of a new data-driven 4D CT.

    PubMed

    Martin, Rachael; Pan, Tinsu

    Four-dimensional computed tomography (4D CT) is often used to define the internal gross target volume (IGTV) for radiation therapy of lung cancer. Traditionally, this technique requires the use of an external motion surrogate; however, a new image, data-driven 4D CT, has become available. This study aims to describe this data-driven 4D CT and compare target contours created with it to those created using standard 4D CT. Cine CT data of 35 patients undergoing stereotactic body radiation therapy were collected and sorted into phases using standard and data-driven 4D CT. IGTV contours were drawn using a semiautomated method on maximum intensity projection images of both 4D CT methods. Errors resulting from reproducibility of the method were characterized. A comparison of phase image artifacts was made using a normalized cross-correlation method that assigned a score from +1 (data-driven "better") to -1 (standard "better"). The volume difference between the data-driven and standard IGTVs was not significant (data driven was 2.1 ± 1.0% smaller, P = .08). The Dice similarity coefficient showed good similarity between the contours (0.949 ± 0.006). The mean surface separation was 0.4 ± 0.1 mm and the Hausdorff distance was 3.1 ± 0.4 mm. An average artifact score of +0.37 indicated that the data-driven method had significantly fewer and/or less severe artifacts than the standard method (P = 1.5 × 10 -5 for difference from 0). On average, the difference between IGTVs derived from data-driven and standard 4D CT was not clinically relevant or statistically significant, suggesting data-driven 4D CT can be used in place of standard 4D CT without adjustments to IGTVs. The relatively large differences in some patients were usually attributed to limitations in automatic contouring or differences in artifacts. Artifact reduction and setup simplicity suggest a clinical advantage to data-driven 4D CT. Published by Elsevier Inc.

  5. Viscous Driven-Cavity Solver: User's Manual

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    1997-01-01

    The viscous driven-cavity problem is solved using a stream-function and vorticity formulation for the incompressible Navier-Stokes equations. This report provides the user's manual and FORTRAN code for the set of governing equations presented in NASA TM-110262.

  6. Compiler-Driven Performance Optimization and Tuning for Multicore Architectures

    DTIC Science & Technology

    2015-04-10

    develop a powerful system for auto-tuning of library routines and compute-intensive kernels, driven by the Pluto system for multicores that we are...kernels, driven by the Pluto system for multicores that we are developing. The work here is motivated by recent advances in two major areas of...automatic C-to-CUDA code generator using a polyhedral compiler transformation framework. We have used and adapted PLUTO (our state-of-the-art tool

  7. Transition from Actin-Driven to Water-Driven Cell Migration Depends on External Hydraulic Resistance.

    PubMed

    Li, Yizeng; Sun, Sean X

    2018-06-19

    Cells in vivo can reside in diverse physical and biochemical environments. For example, epithelial cells typically live in a two-dimensional (2D) environment, whereas metastatic cancer cells can move through dense three-dimensional matrices. These distinct environments impose different kinds of mechanical forces on cells and thus potentially can influence the mechanism of cell migration. For example, cell movement on 2D flat surfaces is mostly driven by forces from focal adhesion and actin polymerization, whereas in confined geometries, it can be driven by water permeation. In this work, we utilize a two-phase model of the cellular cytoplasm in which the mechanics of the cytosol and the F-actin network are treated on an equal footing. Using conservation laws and simple force balance considerations, we are able to describe the contributions of water flux, actin polymerization and flow, and focal adhesions to cell migration both on 2D surfaces and in confined spaces. The theory shows how cell migration can seamlessly transition from a focal adhesion- and actin-based mechanism on 2D surfaces to a water-based mechanism in confined geometries. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Studies of Radiation-Driven and Buoyancy-Driven Fluid Flows and Transport

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.; Fortmeyer, Justin M.

    1994-01-01

    It is well known that radiative heat transport influences many types of buoyant flows due to its effect on the temperature and thus density field in the fluid medium. It is of interest to study gaseous flows driven solely by radiation in the absence of buoyancy, particularly because of its application to astrophysical flows that are well known from astronomical observations and numerical simulation. However, no laboratory-scale experiments of this phenomenon have ever been conducted. To study the possibility of obtaining such flows in the laboratory, an apparatus was built to produce large temperature differences (Delta T) up to 300 K in a gas confined between flat parallel plates. SF6 was used as the radiatively-active gas because its Planck absorption length is much shorter than that of any other common non-reactive gas. The NASA-Lewis 2.2 second drop tower was used to obtain reduced gravity in order to suppress buoyancy effects. To image the resulting flows, a laser shearing interferometer was employed. Initial results indicate the presence of flow that does not appear to be attributable to the residual flow resulting from buoyancy influences before the drop. For Delta T greater than 70 K, slight deformations in the interferometer fringes seen at lower Delta T became large unsteady swirls. Such behavior did not occur for radiatively-inactive gases, suggesting that a flow driven solely by radiation was obtained in SF6 and to a lesser extent in CO2 This was more pronounced at higher pressures and plate spacings, consistent with our scaling predictions.

  9. Studies of Radiation-Driven and Buoyancy-Driven Fluid Flows and Transport

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.; Fortmeyer, Justin M.

    1996-01-01

    It is well known that radiative heat transport influences many types of buoyant flows due to its effect on the temperature and thus density field in the fluid medium. It is of interest to study gaseous flows driven solely by radiation in the absence of buoyancy, particularly because of its application to astrophysical flows that are well known from astronomical observations and numerical simulation. However, no laboratory-scale experiments of this phenomenon have ever been conducted. To study the possibility of obtaining such flows in the laboratory, an apparatus was built to produce large temperature differences (Delta (T)) up to 300 K in a gas confined between flat parallel plates. SF6 was used as the radiatively-active gas because its Planck absorption length is much shorter than that of any other common non-reactive gas. The NASA-Lewis 2.2 second drop tower was used to obtain reduced gravity in order to suppress buoyancy effects. To image the resulting flows, a laser shearing interferometer was employed. Initial results indicate the presence of flow that does not appear to be attributable to the residual flow resulting from buoyancy influences before the drop. For Delta(T) greater than 70 K, slight deformations in the interferometer fringes seen at lower Delta(T) became large unsteady swirls. Such behavior did not occur for radiatively-inactive gases, suggesting that a flow driven solely by radiation was obtained in SF6 and to a lesser extent in CO2. This was more pronounced at higher pressures and plate spacings, consistent with our scaling predictions.

  10. Design, economic and system considerations of large wind-driven generators

    NASA Technical Reports Server (NTRS)

    Jorgensen, G. E.; Lotker, M.; Meier, R. C.; Brierley, D.

    1976-01-01

    The increased search for alternative energy sources has lead to renewed interest and studies of large wind-driven generators. This paper presents the results and considerations of such an investigation. The paper emphasizes the concept selection of wind-driven generators, system optimization, control system design, safety aspects, economic viability on electric utility systems and potential electric system interfacing problems.

  11. Characteristics of electron transport chain and affecting factors for thiosulfate-driven perchlorate reduction.

    PubMed

    Zhang, Chao; Guo, Jianbo; Lian, Jing; Lu, Caicai; Ngo, Huu Hao; Guo, Wenshan; Song, Yuanyuan; Guo, Yankai

    2017-10-01

    The mechanism for perchlorate reduction was investigated using thiosulfate-driven (T-driven) perchlorate reduction bacteria. The influences of various environmental conditions on perchlorate reduction, including pH, temperature and electron acceptors were examined. The maximum perchlorate removal rate was observed at pH 7.5 and 40 °C. Perchlorate reduction was delayed due to the coexistence of perchlorate-chlorate and perchlorate-nitrate. The mechanism of the T-driven perchlorate reduction electron transport chain (ETC) was also investigated by utilizing different inhibitors. The results were as follows: firstly, the NADH dehydrogenase was not involved in the ETC; secondly, the FAD dehydrogenase and quinone loop participated in the ETC; and thirdly, cytochrome oxidase was the main pathway in the ETC. Meanwhile, microbial consortium structure analysis indicated that Sulfurovum which can oxidize sulfur compounds coupled to the reduction of nitrate or perchlorate was the primary bacterium in the T-driven and sulfur-driven consortium. This study generates a better understanding of the mechanism of T-driven perchlorate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Efficacy of ACA Strategies in Biography-Driven Science Teaching: An Investigation

    ERIC Educational Resources Information Center

    MacDonald, Grizelda L.; Miller, Stuart S.; Murry, Kevin; Herrera, Socorro; Spears, Jacqueline D.

    2013-01-01

    This study explored the biography-driven approach to teaching culturally and linguistically diverse students in science education. Biography-driven instruction (BDI) embraces student diversity by incorporating students' sociocultural, linguistic, cognitive, and academic dimensions of their biographies into the learning process (Herrera in…

  13. Electrically driven cation exchange for in situ fabrication of individual nanostructures

    DOE PAGES

    Zhang, Qiubo; Yin, Kuibo; Dong, Hui; ...

    2017-04-12

    Cation exchange (CE) has been recognized as a particularly powerful tool for the synthesis of heterogeneous nanocrystals. Presently, CE can be divided into two categories, namely ion solvation-driven CE reaction and thermally activated CE reaction. Here we report an electrically driven CE reaction to prepare individual nanostructures inside a transmission electron microscope. During the process, Cd is eliminated due to Ohmic heating, whereas Cu + migrates into the crystal driven by the electrical field force. Contrast experiments reveal that the feasibility of electrically driven CE is determined by the structural similarity of the sulfur sublattices between the initial and finalmore » phases, and the standard electrode potentials of the active electrodes. These experimental results demonstrate a strategy for the selective growth of individual nanocrystals and provide crucial insights into understanding of the microscopic pathways leading to the formation of heterogeneous structures.« less

  14. Selective microrobot control using a thermally responsive microclamper for microparticle manipulation

    NASA Astrophysics Data System (ADS)

    Go, Gwangjun; Choi, Hyunchul; Jeong, Semi; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2016-03-01

    Microparticle manipulation using a microrobot in an enclosed environment, such as a lab-on-a-chip, has been actively studied because an electromagnetic actuated microrobot can have accurate motility and wireless controllability. In most studies on electromagnetic actuated microrobots, only a single microrobot has been used to manipulate cells or microparticles. However, the use of a single microrobot can pose several limitations when performing multiple roles in microparticle manipulation. To overcome the limitations associated with using a single microrobot, we propose a new method for the control of multiple microrobots. Multiple microrobots can be controlled independently by an electromagnetic actuation system and multiple microclampers combined with microheaters. To select a specific microrobot among multiple microrobots, we propose a microclamper composed of a clamper structure using thermally responsive hydrogel and a microheater for controlling the microclamper. A fundamental test of the proposed microparticle manipulation system is performed by selecting a specific microrobot among multiple microrobots. Through the independent locomotion of multiple microrobots with U- and V-shaped tips, heterogeneous microparticle manipulation is demonstrated in the creation of a two-dimensional structure. In the future, our proposed multiple-microrobot system can be applied to tasks that are difficult to perform using a single microrobot, such as cell manipulation, cargo delivery, tissue assembly, and cloning.

  15. Stellar winds driven by Alfven waves

    NASA Technical Reports Server (NTRS)

    Belcher, J. W.; Olbert, S.

    1973-01-01

    Models of stellar winds were considered in which the dynamic expansion of a corona is driven by Alfven waves propagating outward along radial magnetic field lines. In the presence of Alfven waves, a coronal expansion can exist for a broad range of reference conditions which would, in the absence of waves, lead to static configurations. Wind models in which the acceleration mechanism is due to Alfven waves alone and exhibit lower mass fluxes and higher energies per particle are compared to wind models in which the acceleration is due to thermal processes. For example, winds driven by Alfven waves exhibit streaming velocities at infinity which may vary between the escape velocity at the coronal base and the geometrical mean of the escape velocity and the speed of light. Upper and lower limits were derived for the allowed energy fluxes and mass fluxes associated with these winds.

  16. Vlasov dynamics of periodically driven systems

    NASA Astrophysics Data System (ADS)

    Banerjee, Soumyadip; Shah, Kushal

    2018-04-01

    Analytical solutions of the Vlasov equation for periodically driven systems are of importance in several areas of plasma physics and dynamical systems and are usually approximated using ponderomotive theory. In this paper, we derive the plasma distribution function predicted by ponderomotive theory using Hamiltonian averaging theory and compare it with solutions obtained by the method of characteristics. Our results show that though ponderomotive theory is relatively much easier to use, its predictions are very restrictive and are likely to be very different from the actual distribution function of the system. We also analyse all possible initial conditions which lead to periodic solutions of the Vlasov equation for periodically driven systems and conjecture that the irreducible polynomial corresponding to the initial condition must only have squares of the spatial and momentum coordinate. The resulting distribution function for other initial conditions is aperiodic and can lead to complex relaxation processes within the plasma.

  17. Laser pulse shape design for laser-indirect-driven quasi-isentropic compression experiments

    NASA Astrophysics Data System (ADS)

    Xue, Quanxi; Jiang, Shaoen; Wang, Zhebin; Wang, Feng; Zhao, Xueqing; Ding, Yongkun

    2018-02-01

    Laser pulse shape design is a key work in the design of indirect-laser-driven experiments, especially for long pulse laser driven quasi-isentropic compression experiments. A method for designing such a laser pulse shape is given here. What's more, application experiments were performed, and the results of a typical shot are presented. At last of this article, the details of the application of the method are discussed, such as the equation parameter choice, radiation ablation pressure expression, and approximations in the method. The application shows that the method can provide reliable descriptions of the energy distribution in a hohlraum target; thus, it can be used in the design of long-pulse laser driven quasi-isentropic compression experiments and even other indirect-laser-driven experiments.

  18. Real-time divergent evolution in plants driven by pollinators

    PubMed Central

    Gervasi, Daniel D. L.; Schiestl, Florian P

    2017-01-01

    Pollinator-driven diversification is thought to be a major source of floral variation in plants. Our knowledge of this process is, however, limited to indirect assessments of evolutionary changes. Here, we employ experimental evolution with fast cycling Brassica rapa plants to demonstrate adaptive evolution driven by different pollinators. Our study shows pollinator-driven divergent selection as well as divergent evolution in plant traits. Plants pollinated by bumblebees evolved taller size and more fragrant flowers with increased ultraviolet reflection. Bumblebees preferred bumblebee-pollinated plants over hoverfly-pollinated plants at the end of the experiment, showing that plants had adapted to the bumblebees' preferences. Plants with hoverfly pollination became shorter, had reduced emission of some floral volatiles, but increased fitness through augmented autonomous self-pollination. Our study demonstrates that changes in pollinator communities can have rapid consequences on the evolution of plant traits and mating system. PMID:28291771

  19. Stochastic driven systems far from equilibrium

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Hyuk

    We study the dynamics and steady states of two systems far from equilibrium: a 1-D driven lattice gas and a driven Brownian particle with inertia. (1) We investigate the dynamical scaling behavior of a 1-D driven lattice gas model with two species of particles hopping in opposite directions. We confirm numerically that the dynamic exponent is equal to z = 1.5. We show analytically that a quasi-particle representation relates all phase points to a special phase line directly related to the single-species asymmetric simple exclusion process. Quasi-particle two-point correlations decay exponentially, and in such a manner that quasi-particles of opposite charge dynamically screen each other with a special balance. The balance encompasses all over the phase space. These results indicate that the model belongs to the Kardar-Parisi-Zhang (KPZ) universality class. (2) We investigate the non-equilibrium thermodynamics of a Brownian particle with inertia under feedback control of its inertia. We find such open systems can act as a molecular refrigerator due to an entropy pumping mechanism. We extend the fluctuation theorems to the refrigerator. The entropy pumping modifies both the Jarzynski equality and the fluctuation theorems. We discover that the entropy pumping has a dual role of work and heat. We also investigate the thermodynamics of the particle under a hydrodynamic interaction described by a Langevin equation with a multiplicative noise. The Stratonovich stochastic integration prescription involved in the definition of heat is shown to be the unique physical choice.

  20. Assessing respondent-driven sampling.

    PubMed

    Goel, Sharad; Salganik, Matthew J

    2010-04-13

    Respondent-driven sampling (RDS) is a network-based technique for estimating traits in hard-to-reach populations, for example, the prevalence of HIV among drug injectors. In recent years RDS has been used in more than 120 studies in more than 20 countries and by leading public health organizations, including the Centers for Disease Control and Prevention in the United States. Despite the widespread use and growing popularity of RDS, there has been little empirical validation of the methodology. Here we investigate the performance of RDS by simulating sampling from 85 known, network populations. Across a variety of traits we find that RDS is substantially less accurate than generally acknowledged and that reported RDS confidence intervals are misleadingly narrow. Moreover, because we model a best-case scenario in which the theoretical RDS sampling assumptions hold exactly, it is unlikely that RDS performs any better in practice than in our simulations. Notably, the poor performance of RDS is driven not by the bias but by the high variance of estimates, a possibility that had been largely overlooked in the RDS literature. Given the consistency of our results across networks and our generous sampling conditions, we conclude that RDS as currently practiced may not be suitable for key aspects of public health surveillance where it is now extensively applied.

  1. Assessing respondent-driven sampling

    PubMed Central

    Goel, Sharad; Salganik, Matthew J.

    2010-01-01

    Respondent-driven sampling (RDS) is a network-based technique for estimating traits in hard-to-reach populations, for example, the prevalence of HIV among drug injectors. In recent years RDS has been used in more than 120 studies in more than 20 countries and by leading public health organizations, including the Centers for Disease Control and Prevention in the United States. Despite the widespread use and growing popularity of RDS, there has been little empirical validation of the methodology. Here we investigate the performance of RDS by simulating sampling from 85 known, network populations. Across a variety of traits we find that RDS is substantially less accurate than generally acknowledged and that reported RDS confidence intervals are misleadingly narrow. Moreover, because we model a best-case scenario in which the theoretical RDS sampling assumptions hold exactly, it is unlikely that RDS performs any better in practice than in our simulations. Notably, the poor performance of RDS is driven not by the bias but by the high variance of estimates, a possibility that had been largely overlooked in the RDS literature. Given the consistency of our results across networks and our generous sampling conditions, we conclude that RDS as currently practiced may not be suitable for key aspects of public health surveillance where it is now extensively applied. PMID:20351258

  2. Optimizing nursing care by integrating theory-driven evidence-based practice.

    PubMed

    Pipe, Teri Britt

    2007-01-01

    An emerging challenge for nursing leadership is how to convey the importance of both evidence-based practice (EBP) and theory-driven care in ensuring patient safety and optimizing outcomes. This article describes a specific example of a leadership strategy based on Rosswurm and Larrabee's model for change to EBP, which was effective in aligning the processes of EBP and theory-driven care.

  3. Conformity-driven agents support ordered phases in the spatial public goods game

    NASA Astrophysics Data System (ADS)

    Javarone, Marco Alberto; Antonioni, Alberto; Caravelli, Francesco

    2016-05-01

    We investigate the spatial Public Goods Game in the presence of fitness-driven and conformity-driven agents. This framework usually considers only the former type of agents, i.e., agents that tend to imitate the strategy of their fittest neighbors. However, whenever we study social systems, the evolution of a population might be affected also by social behaviors as conformism, stubbornness, altruism, and selfishness. Although the term evolution can assume different meanings depending on the considered domain, here it corresponds to the set of processes that lead a system towards an equilibrium or a steady state. We map fitness to the agents' payoff so that richer agents are those most imitated by fitness-driven agents, while conformity-driven agents tend to imitate the strategy assumed by the majority of their neighbors. Numerical simulations aim to identify the nature of the transition, on varying the amount of the relative density of conformity-driven agents in the population, and to study the nature of related equilibria. Remarkably, we find that conformism generally fosters ordered cooperative phases and may also lead to bistable behaviors.

  4. Flexural Behavior of GFRP Tubes Filled with Magnetically Driven Concrete.

    PubMed

    Xie, Fang; Chen, Ju; Dong, Xinlong; Feng, Bing

    2018-01-08

    Experimental investigation of GFRP (glass fiber reinforced polymer) tubes that were filled with magnetically driven concrete was carried out to study the flexural behavior of specimens under bending. Specimens having different cross section and lengths were tested. The test specimens were fabricated by filling magnetically driven concrete into the GFRP tubes and the concrete was vibrated using magnetic force. Specimens vibrated using vibrating tube were also tested for comparison. In addition, specimens having steel reinforcing bars and GFRP bars were both tested to study the effect of reinforcing bars on the magnetically driven concrete. The load-displacement curves, load-strain curves, failure mode, and ultimate strengths of test specimens were obtained. Design methods for the flexural stiffness of test specimens were also discussed in this study.

  5. Surface chemistry driven actuation in nanoporous gold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biener, J; Wittstock, A; Zepeda-Ruiz, L

    Although actuation in biological systems is exclusively powered by chemical energy, this concept has not been realized in man-made actuator technologies, as these rely on generating heat or electricity first. Here, we demonstrate that surface-chemistry driven actuation can be realized in high surface area materials such as nanoporous gold. For example, we achieve reversible strain amplitudes in the order of a few tenths of a percent by alternating exposure of nanoporous Au to ozone and carbon monoxide. The effect can be explained by adsorbate-induced changes of the surface stress, and can be used to convert chemical energy directly into amore » mechanical response thus opening the door to surface-chemistry driven actuator and sensor technologies.« less

  6. Plasma Radiation and Acceleration Effectiveness of CME-driven Shocks

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Schmidt, J. M.

    2008-05-01

    CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME- driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.

  7. Plasma radiation and acceleration effectiveness of CME-driven shocks

    NASA Astrophysics Data System (ADS)

    Schmidt, Joachim

    CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME-driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.

  8. A systematic review of fantasy driven vs. contact driven internet-initiated sexual offences: Discrete or overlapping typologies?

    PubMed

    Broome, Laura Jayne; Izura, Cristina; Lorenzo-Dus, Nuria

    2018-05-01

    Within the literature individuals who use the internet to facilitate the sexual abuse of a minor are generally classified as being fantasy or contact driven. Classification is based upon the intended location for sexual climax: fantasy driven individuals aim to reach sexual climax online, whereas contact driven individuals target minors to achieve physical sex offline. This review systematically investigates whether there is an empirical basis for the distinction between these two proposed discrete types. Comparison of tactics and behaviour are considered to examine whether the contact vs. fantasy distinction is useful. A two-stage literature selection process, considered against pre-determined inclusion criteria, identified a total of twenty-two studies. As methodological heterogeneity limited the ability to conduct pooled analysis, a narrative synthesis of data employing an interpretive approach was conducted. This showed that the contact and fantasy distinction is ambiguous, given that both groups engage in online behaviours that provide them with online sexual gratification that can also lead to offline contact. Furthermore, no clear pattern of behaviour was found to define contact and fantasy individuals idiosyncratically. The European Online Grooming Project typology is thus proposed as a better representation of this behaviour; intimacy seeking, adaptable and hypersexualized groups. The distinction between these groups focuses primarily on the intensity of the relationship, acknowledging that sexual abuse can occur with or without offline contact. This review also highlights the need for larger, methodologically robust studies that examine the behaviour of online child sexual offenders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Convergence of service, policy, and science toward consumer-driven mental health care.

    PubMed

    Carroll, Christopher D; Manderscheid, Ronald W; Daniels, Allen S; Compagni, Amelia

    2006-12-01

    A common theme is emerging in sentinel reports on the United States health care system. Consumer relevance and demands on service systems and practices are influencing how mental health care is delivered and how systems will be shaped in the future. The present report seeks to assemble a confluence of consumer-driven themes from noteworthy reports on the state of the mental health system in the U.S. It also explores innovative efforts, promising practices, collaborative efforts, as well as identification of barriers to consumer-directed care, with possible solutions. The report reviews the relevant public mental health policy and data used in published work. The findings indicate an increasing public and private interest in promoting consumer-driven care, even though historical systems of care predominate, and often create, barriers to wide-spread redesign of a consumer-centered mental health care system. Innovative consumer-driven practices are increasing as quality, choice, and self-determination become integral parts of a redesigned U.S. mental health care system. The use of consumer-driven approaches in mental health is limited at best. These programs challenge industry norms and traditional practices. Limitations include the need for additional and thorough evaluations of effectiveness (cost and clinical) and replicability of consumer-directed programs. Consumer-driven services indicate that mental health consumers are expecting to be more participative in their mental health care. This expectation will influence how traditional mental health services and providers become more consumer-centric and meet the demand. Public and private interest in consumer-driven health care range from creating cost-conscious consumers to individualized control of recovery. The health care sector should seek to invest more resources in the provision of consumer-driven health care programs. The results of this study have implications and are informative for other countries where

  10. Apparatus for generating quasi-free-space microwave-driven plasmas

    NASA Astrophysics Data System (ADS)

    Hoff, Brad W.; French, David M.; Reid, Remington R.; Lawrance, Julie E.; Lepell, P. David; Maestas, Sabrina S.

    2016-03-01

    An apparatus for generating quasi-free-space microwave-driven plasmas has been designed, constructed, and tested. The plasma is driven by a multi-kW, ˜5 GHz microwave beam focused at the center of a vacuum chamber using a Koch-type metal plate lens. Sustained plasma discharges have been generated in argon at pressures ranging from 150 to 200 mTorr, at beam power levels ranging from 5 to 10 kW, and at gas flow rates of approximately 200 SCCM.

  11. Apparatus for generating quasi-free-space microwave-driven plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoff, Brad W.; French, David M.; Reid, Remington R.

    An apparatus for generating quasi-free-space microwave-driven plasmas has been designed, constructed, and tested. The plasma is driven by a multi-kW, ∼5 GHz microwave beam focused at the center of a vacuum chamber using a Koch-type metal plate lens. Sustained plasma discharges have been generated in argon at pressures ranging from 150 to 200 mTorr, at beam power levels ranging from 5 to 10 kW, and at gas flow rates of approximately 200 SCCM.

  12. Apparatus for generating quasi-free-space microwave-driven plasmas.

    PubMed

    Hoff, Brad W; French, David M; Reid, Remington R; Lawrance, Julie E; Lepell, P David; Maestas, Sabrina S

    2016-03-01

    An apparatus for generating quasi-free-space microwave-driven plasmas has been designed, constructed, and tested. The plasma is driven by a multi-kW, ∼5 GHz microwave beam focused at the center of a vacuum chamber using a Koch-type metal plate lens. Sustained plasma discharges have been generated in argon at pressures ranging from 150 to 200 mTorr, at beam power levels ranging from 5 to 10 kW, and at gas flow rates of approximately 200 SCCM.

  13. Influence of helical external driven current on nonlinear resistive tearing mode evolution and saturation in tokamaks

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Wang, S.; Ma, Z. W.

    2017-06-01

    The influences of helical driven currents on nonlinear resistive tearing mode evolution and saturation are studied by using a three-dimensional toroidal resistive magnetohydrodynamic code (CLT). We carried out three types of helical driven currents: stationary, time-dependent amplitude, and thickness. It is found that the helical driven current is much more efficient than the Gaussian driven current used in our previous study [S. Wang et al., Phys. Plasmas 23(5), 052503 (2016)]. The stationary helical driven current cannot persistently control tearing mode instabilities. For the time-dependent helical driven current with f c d = 0.01 and δ c d < 0.04 , the island size can be reduced to its saturated level that is about one third of the initial island size. However, if the total driven current increases to about 7% of the total plasma current, tearing mode instabilities will rebound again due to the excitation of the triple tearing mode. For the helical driven current with time dependent strength and thickness, the reduction speed of the radial perturbation component of the magnetic field increases with an increase in the driven current and then saturates at a quite low level. The tearing mode is always controlled even for a large driven current.

  14. Mission Driven and Data Informed Leadership

    ERIC Educational Resources Information Center

    Holter, Anthony C.; Frabutt, James M.

    2012-01-01

    The contemporary challenges facing Catholic schools and Catholic school leaders are widely known. Effective and systemic solutions to these mounting challenges are less widely known or discussed. This article highlights the skills, knowledge, and dispositions associated with mission driven and data informed leadership--an orientation to school…

  15. Data-Driven Approaches to Empirical Discovery

    DTIC Science & Technology

    1988-10-31

    if nece ry and identify by block number) empirical discovery history of science data-driven heuristics numeric laws theoretical terms scope of laws...to the normative side. Machine Discovery and the History of Science The history of science studies the actual path followed by scientists over the

  16. Off-equatorial current-driven instabilities ahead of approaching dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Angelopoulos, V.; Pritchett, P. L.; Liu, Jiang

    2017-05-01

    Recent kinetic simulations have revealed that electromagnetic instabilities near the ion gyrofrequency and slightly away from the equatorial plane can be driven by a current parallel to the magnetic field prior to the arrival of dipolarization fronts. Such instabilities are important because of their potential contribution to global electromagnetic energy conversion near dipolarization fronts. Of the several instabilities that may be consistent with such waves, the most notable are the current-driven electromagnetic ion cyclotron instability and the current-driven kink-like instability. To confirm the existence and characteristics of these instabilities, we used observations by two Time History of Events and Macroscale Interactions during Substorms satellites, one near the neutral sheet observing dipolarization fronts and the other at the boundary layer observing precursor waves and currents. We found that such instabilities with monochromatic signatures are rare, but one of the few cases was selected for further study. Two different instabilities, one at about 0.3 Hz and the other at a much lower frequency, 0.02 Hz, were seen in the data from the off-equatorial spacecraft. A parallel current attributed to an electron beam coexisted with the waves. Our instability analysis attributes the higher-frequency instability to a current-driven ion cyclotron instability and the lower frequency instability to a kink-like instability. The current-driven kink-like instability we observed is consistent with the instabilities observed in the simulation. We suggest that the currents needed to excite these low-frequency instabilities are so intense that the associated electron beams are easily thermalized and hence difficult to observe.

  17. User-Driven Sampling Strategies in Image Exploitation

    DOE PAGES

    Harvey, Neal R.; Porter, Reid B.

    2013-12-23

    Visual analytics and interactive machine learning both try to leverage the complementary strengths of humans and machines to solve complex data exploitation tasks. These fields overlap most significantly when training is involved: the visualization or machine learning tool improves over time by exploiting observations of the human-computer interaction. This paper focuses on one aspect of the human-computer interaction that we call user-driven sampling strategies. Unlike relevance feedback and active learning sampling strategies, where the computer selects which data to label at each iteration, we investigate situations where the user selects which data is to be labeled at each iteration. User-drivenmore » sampling strategies can emerge in many visual analytics applications but they have not been fully developed in machine learning. We discovered that in user-driven sampling strategies suggest new theoretical and practical research questions for both visualization science and machine learning. In this paper we identify and quantify the potential benefits of these strategies in a practical image analysis application. We find user-driven sampling strategies can sometimes provide significant performance gains by steering tools towards local minima that have lower error than tools trained with all of the data. Furthermore, in preliminary experiments we find these performance gains are particularly pronounced when the user is experienced with the tool and application domain.« less

  18. Exploring Titan with Autonomous, Buoyancy Driven Gliders

    NASA Astrophysics Data System (ADS)

    Morrow, M. T.; Woolsey, C. A.; Hagerman, G. M.

    Buoyancy driven underwater gliders are highly efficient winged underwater vehicles which locomote by modifying their internal shape. The concept, which is already well-proven in Earth's oceans, is also an appealing technology for remote terrain exploration and environmental sampling on worlds with dense atmospheres. Because of their high efficiency and their gentle, vertical take-off and landing capability, buoyancy driven gliders might perform long duration, global mapping tasks as well as light-duty, local sampling tasks. Moreover, a sufficiently strong gradient in the planetary boundary layer may enable the vehicles to perform dynamic soaring, achieving even greater locomotive efficiency. Shape Change Actuated, Low Altitude Robotic Soarers (SCALARS) are an appealing alternative to more conventional vehicle technology for exploring planets with dense atmospheres. SCALARS are buoyancy driven atmospheric gliders with a twin-hulled, inboard wing configuration. The inboard wing generates lift, which propels the vehicle forward. Symmetric changes in mass distribution induce gravitational pitch moments that provide longitudinal control. Asymmetric changes in mass distribution induce twist in the inboard wing that provides directional control. The vehicle is actuated solely by internal shape change; there are no external seals and no exposed moving parts, save for the inflatable buoyancy ballonets. Preliminary sizing analysis and dynamic modeling indicate the viability of using SCALARS to map the surface of Titan and to investigate features of interest.

  19. Balancing Plan-Driven and Agile Methods in Software Engineering Project Courses

    NASA Astrophysics Data System (ADS)

    Boehm, Barry; Port, Dan; Winsor Brown, A.

    2002-09-01

    For the past 6 years, we have been teaching a two-semester software engineering project course. The students organize into 5-person teams and develop largely web-based electronic services projects for real USC campus clients. We have been using and evolving a method called Model- Based (System) Architecting and Software Engineering (MBASE) for use in both the course and in industrial applications. The MBASE Guidelines include a lot of documents. We teach risk-driven documentation: if it is risky to document something, and not risky to leave it out (e.g., GUI screen placements), leave it out. Even so, students tend to associate more documentation with higher grades, although our grading eventually discourages this. We are always on the lookout for ways to have students learn best practices without having to produce excessive documentation. Thus, we were very interested in analyzing the various emerging agile methods. We found that agile methods and milestone plan-driven methods are part of a “how much planning is enough?” spectrum. Both agile and plan-driven methods have home grounds of project characteristics where they clearly work best, and where the other will have difficulties. Hybrid agile/plan-driven approaches are feasible, and necessary for projects having a mix of agile and plan-driven home ground characteristics. Information technology trends are going more toward the agile methods' home ground characteristics of emergent requirements and rapid change, although there is a concurrent increase in concern with dependability. As a result, we are currently experimenting with risk-driven combinations of MBASE and agile methods, such as integrating requirements, test plans, peer reviews, and pair programming into “agile quality management.”

  20. An experimental platform for pulsed-power driven magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Hare, J. D.; Suttle, L. G.; Lebedev, S. V.; Loureiro, N. F.; Ciardi, A.; Chittenden, J. P.; Clayson, T.; Eardley, S. J.; Garcia, C.; Halliday, J. W. D.; Robinson, T.; Smith, R. A.; Stuart, N.; Suzuki-Vidal, F.; Tubman, E. R.

    2018-05-01

    We describe a versatile pulsed-power driven platform for magnetic reconnection experiments, based on the exploding wire arrays driven in parallel [Suttle et al., Phys. Rev. Lett. 116, 225001 (2016)]. This platform produces inherently magnetised plasma flows for the duration of the generator current pulse (250 ns), resulting in a long-lasting reconnection layer. The layer exists for long enough to allow the evolution of complex processes such as plasmoid formation and movement to be diagnosed by a suite of high spatial and temporal resolution laser-based diagnostics. We can access a wide range of magnetic reconnection regimes by changing the wire material or moving the electrodes inside the wire arrays. We present results with aluminium and carbon wires, in which the parameters of the inflows and the layer that forms are significantly different. By moving the electrodes inside the wire arrays, we change how strongly the inflows are driven. This enables us to study both symmetric reconnection in a range of different regimes and asymmetric reconnection.

  1. An Apical MRCK-driven Morphogenetic Pathway Controls Epithelial Polarity

    PubMed Central

    Zihni, Ceniz; Vlassaks, Evi; Terry, Stephen; Carlton, Jeremy; Leung, Thomas King Chor; Olson, Michael; Pichaud, Franck; Balda, Maria Susana; Matter, Karl

    2017-01-01

    Polarized epithelia develop distinct cell surface domains, with the apical membrane acquiring characteristic morphological features such as microvilli. Cell polarization is driven by polarity determinants including the evolutionarily conserved partitioning defective (PAR) proteins that are separated into distinct cortical domains. PAR protein segregation is thought to be a consequence of asymmetric actomyosin contractions. The mechanism of activation of apically polarized actomyosin contractility is unknown. Here we show that the Cdc42 effector MRCK activates Myosin-II at the apical pole to segregate aPKC-Par6 from junctional Par3, defining the apical domain. Apically polarized MRCK-activated actomyosin contractility is reinforced by cooperation with aPKC-Par6 downregulating antagonistic RhoA-driven junctional actomyosin contractility, and drives polarization of cytosolic brush border determinants and apical morphogenesis. MRCK-activated polarized actomyosin contractility is required for apical differentiation and morphogenesis in vertebrate epithelia and Drosophila photoreceptors. Our results identify an apical origin of actomyosin-driven morphogenesis that couples cytoskeletal reorganization to PAR polarity signalling. PMID:28825699

  2. A data driven control method for structure vibration suppression

    NASA Astrophysics Data System (ADS)

    Xie, Yangmin; Wang, Chao; Shi, Hang; Shi, Junwei

    2018-02-01

    High radio-frequency space applications have motivated continuous research on vibration suppression of large space structures both in academia and industry. This paper introduces a novel data driven control method to suppress vibrations of flexible structures and experimentally validates the suppression performance. Unlike model-based control approaches, the data driven control method designs a controller directly from the input-output test data of the structure, without requiring parametric dynamics and hence free of system modeling. It utilizes the discrete frequency response via spectral analysis technique and formulates a non-convex optimization problem to obtain optimized controller parameters with a predefined controller structure. Such approach is then experimentally applied on an end-driving flexible beam-mass structure. The experiment results show that the presented method can achieve competitive disturbance rejections compared to a model-based mixed sensitivity controller under the same design criterion but with much less orders and design efforts, demonstrating the proposed data driven control is an effective approach for vibration suppression of flexible structures.

  3. Exploring Techniques of Developing Writing Skill in IELTS Preparatory Courses: A Data-Driven Study

    ERIC Educational Resources Information Center

    Ostovar-Namaghi, Seyyed Ali; Safaee, Seyyed Esmail

    2017-01-01

    Being driven by the hypothetico-deductive mode of inquiry, previous studies have tested the effectiveness of theory-driven interventions under controlled experimental conditions to come up with universally applicable generalizations. To make a case in the opposite direction, this data-driven study aims at uncovering techniques and strategies…

  4. QA-driven Guidelines Generation for Bacteriotherapy

    PubMed Central

    Pasche, Emilie; Teodoro, Douglas; Gobeill, Julien; Ruch, Patrick; Lovis, Christian

    2009-01-01

    PURPOSE We propose a question-answering (QA) driven generation approach for automatic acquisition of structured rules that can be used in a knowledge authoring tool for antibiotic prescription guidelines management. METHODS: The rule generation is seen as a question-answering problem, where the parameters of the questions are known items of the rule (e.g. an infectious disease, caused by a given bacterium) and answers (e.g. some antibiotics) are obtained by a question-answering engine. RESULTS: When looking for a drug given a pathogen and a disease, top-precision of 0.55 is obtained by the combination of the Boolean engine (PubMed) and the relevance-driven engine (easyIR), which means that for more than half of our evaluation benchmark at least one of the recommended antibiotics was automatically acquired by the rule generation method. CONCLUSION: These results suggest that such an automatic text mining approach could provide a useful tool for guidelines management, by improving knowledge update and discovery. PMID:20351908

  5. Flux-driven simulations of turbulence collapse

    DOE PAGES

    Park, G. Y.; Kim, S. S.; Jhang, Hogun; ...

    2015-03-12

    In this study, using self-consistent three-dimensional nonlinear simulations of tokamak turbulence, we show that an edge transport barrier (ETB) forms naturally due to mean E x B shear feedback through evolving pressure gradient once input power exceeds a threshold value. The temporal evolution and development of the transition are elucidated. Profiles, turbulence-driven flows and neoclassical coefficients are evolved self-consistently. A slow power ramp-up simulation shows that ETB transition is triggered by the turbulence-driven flows via an intermediate phase which involves coherent oscillation of turbulence intensity and E x B flow shear. A novel observation of the evolution is that themore » turbulence collapses and the ETB transition begins when R T > 1 at t = t R (R T : normalized Reynolds power), while the conventional transition criterion (ω E x B > γlin) is satisfied only after t = t C (> t R), when the mean ow shear grows due to positive feedback.« less

  6. A charge-driven molecular water pump.

    PubMed

    Gong, Xiaojing; Li, Jingyuan; Lu, Hangjun; Wan, Rongzheng; Li, Jichen; Hu, Jun; Fang, Haiping

    2007-11-01

    Understanding and controlling the transport of water across nanochannels is of great importance for designing novel molecular devices, machines and sensors and has wide applications, including the desalination of seawater. Nanopumps driven by electric or magnetic fields can transport ions and magnetic quanta, but water is charge-neutral and has no magnetic moment. On the basis of molecular dynamics simulations, we propose a design for a molecular water pump. The design uses a combination of charges positioned adjacent to a nanopore and is inspired by the structure of channels in the cellular membrane that conduct water in and out of the cell (aquaporins). The remarkable pumping ability is attributed to the charge dipole-induced ordering of water confined in the nanochannels, where water can be easily driven by external fields in a concerted fashion. These findings may provide possibilities for developing water transport devices that function without osmotic pressure or a hydrostatic pressure gradient.

  7. Laser-driven ion acceleration at BELLA

    NASA Astrophysics Data System (ADS)

    Bin, Jianhui; Steinke, Sven; Ji, Qing; Nakamura, Kei; Treffert, Franziska; Bulanov, Stepan; Roth, Markus; Toth, Csaba; Schroeder, Carl; Esarey, Eric; Schenkel, Thomas; Leemans, Wim

    2017-10-01

    BELLA is a high repetiton rate PW laser and we used it for high intensity laser plasma acceleration experiments. The BELLA-i program is focused on relativistic laser plasma interaction such as laser driven ion acceleration, aiming at establishing an unique collaborative research facility providing beam time to selected external groups for fundamental physics and advanced applications. Here we present our first parameter study of ion acceleration driven by the BELLA-PW laser with truly high repetition rate. The laser repetition rate of 1Hz allows for scanning the laser pulse duration, relative focus location and target thickness for the first time at laser peak powers of above 1 PW. Furthermore, the long focal length geometry of the experiment (f ∖65) and hence, large focus size provided ion beams of reduced divergence and unprecedented charge density. This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  8. Calibration of resistance factors needed in the LRFD design of driven piles.

    DOT National Transportation Integrated Search

    2009-05-01

    This research project presents the calibration of resistance factors for the Load and Resistance Factor Design (LRFD) method of driven : piles driven into Louisiana soils based on reliability theory. Fifty-three square Precast-Prestressed-Concrete (P...

  9. Calibration of Resistance Factors Needed in the LRFD Design of Driven Piles

    DOT National Transportation Integrated Search

    2009-05-01

    This research project presents the calibration of resistance factors for the Load and Resistance Factor Design (LRFD) method of driven : piles driven into Louisiana soils based on reliability theory. Fifty-three square Precast-Prestressed-Concrete (P...

  10. A Data-Driven Approach to Interactive Visualization of Power Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jun

    Driven by emerging industry standards, electric utilities and grid coordination organizations are eager to seek advanced tools to assist grid operators to perform mission-critical tasks and enable them to make quick and accurate decisions. The emerging field of visual analytics holds tremendous promise for improving the business practices in today’s electric power industry. The conducted investigation, however, has revealed that the existing commercial power grid visualization tools heavily rely on human designers, hindering user’s ability to discover. Additionally, for a large grid, it is very labor-intensive and costly to build and maintain the pre-designed visual displays. This project proposes amore » data-driven approach to overcome the common challenges. The proposed approach relies on developing powerful data manipulation algorithms to create visualizations based on the characteristics of empirically or mathematically derived data. The resulting visual presentations emphasize what the data is rather than how the data should be presented, thus fostering comprehension and discovery. Furthermore, the data-driven approach formulates visualizations on-the-fly. It does not require a visualization design stage, completely eliminating or significantly reducing the cost for building and maintaining visual displays. The research and development (R&D) conducted in this project is mainly divided into two phases. The first phase (Phase I & II) focuses on developing data driven techniques for visualization of power grid and its operation. Various data-driven visualization techniques were investigated, including pattern recognition for auto-generation of one-line diagrams, fuzzy model based rich data visualization for situational awareness, etc. The R&D conducted during the second phase (Phase IIB) focuses on enhancing the prototyped data driven visualization tool based on the gathered requirements and use cases. The goal is to evolve the prototyped tool developed

  11. Data-driven discovery of new Dirac semimetal materials

    NASA Astrophysics Data System (ADS)

    Yan, Qimin; Chen, Ru; Neaton, Jeffrey

    In recent years, a significant amount of materials property data from high-throughput computations based on density functional theory (DFT) and the application of database technologies have enabled the rise of data-driven materials discovery. In this work, we initiate the extension of the data-driven materials discovery framework to the realm of topological semimetal materials and to accelerate the discovery of novel Dirac semimetals. We implement current available and develop new workflows to data-mine the Materials Project database for novel Dirac semimetals with desirable band structures and symmetry protected topological properties. This data-driven effort relies on the successful development of several automatic data generation and analysis tools, including a workflow for the automatic identification of topological invariants and pattern recognition techniques to find specific features in a massive number of computed band structures. Utilizing this approach, we successfully identified more than 15 novel Dirac point and Dirac nodal line systems that have not been theoretically predicted or experimentally identified. This work is supported by the Materials Project Predictive Modeling Center through the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231.

  12. Laser-driven ion acceleration: methods, challenges and prospects

    NASA Astrophysics Data System (ADS)

    Badziak, J.

    2018-01-01

    The recent development of laser technology has resulted in the construction of short-pulse lasers capable of generating fs light pulses with PW powers and intensities exceeding 1021 W/cm2, and has laid the basis for the multi-PW lasers, just being built in Europe, that will produce fs pulses of ultra-relativistic intensities ~ 1023 - 1024 W/cm2. The interaction of such an intense laser pulse with a dense target can result in the generation of collimated beams of ions of multi-MeV to GeV energies of sub-ps time durations and of extremely high beam intensities and ion fluencies, barely attainable with conventional RF-driven accelerators. Ion beams with such unique features have the potential for application in various fields of scientific research as well as in medical and technological developments. This paper provides a brief review of state-of-the art in laser-driven ion acceleration, with a focus on basic ion acceleration mechanisms and the production of ultra-intense ion beams. The challenges facing laser-driven ion acceleration studies, in particular those connected with potential applications of laser-accelerated ion beams, are also discussed.

  13. Space-based laser-driven MHD generator: Feasibility study

    NASA Technical Reports Server (NTRS)

    Choi, S. H.

    1986-01-01

    The feasibility of a laser-driven MHD generator, as a candidate receiver for a space-based laser power transmission system, was investigated. On the basis of reasonable parameters obtained in the literature, a model of the laser-driven MHD generator was developed with the assumptions of a steady, turbulent, two-dimensional flow. These assumptions were based on the continuous and steady generation of plasmas by the exposure of the continuous wave laser beam thus inducing a steady back pressure that enables the medium to flow steadily. The model considered here took the turbulent nature of plasmas into account in the two-dimensional geometry of the generator. For these conditions with the plasma parameters defining the thermal conductivity, viscosity, electrical conductivity for the plasma flow, a generator efficiency of 53.3% was calculated. If turbulent effects and nonequilibrium ionization are taken into account, the efficiency is 43.2%. The study shows that the laser-driven MHD system has potential as a laser power receiver for space applications because of its high energy conversion efficiency, high energy density and relatively simple mechanism as compared to other energy conversion cycles.

  14. Thinking about "culture": some programme pointers.

    PubMed

    Dawit, S; Busia, A

    1995-02-01

    This article exhorts development workers to develop an understanding of their own cultural heritage in order to understand how cultural subjectivity influences their work. While not endorsing "cultural relativism," the authors stress that women must work within their own cultures to develop empowerment and combat culturally legitimized practices which are harmful to women. Cultural constructs must be examined in order to understand such issues as the Northern tendency to encourage personal individualism and the Southern tendency to organize along communal lines. Gender identity is also a social construction which calls for a consideration of each situation (or harmful practice) as uniquely based in a given cultural context. General agreement exists, however, that in order to tackle gender oppression, women must be empowered and their status must be improved. Thus development initiatives should support longterm investment in research and programs, illiteracy rates must be decreased, and educational opportunities must be sought in every program. Women's groups must link up to share resources with each other and with traditional nongovernmental organizations. Governments should 1) integrate a gender component into every Ministry; 2) emphasize literacy for girls and women; 3) support local women's initiatives; 4) provide gender-sensitive training for professionals in critical fields; 5) increase attention to the needs of young women; and 6) offer more women visible official posts in public service.

  15. Developing a theory driven text messaging intervention for addiction care with user driven content.

    PubMed

    Muench, Frederick; Weiss, Rebecca A; Kuerbis, Alexis; Morgenstern, Jon

    2013-03-01

    The number of text messaging interventions designed to initiate and support behavioral health changes have been steadily increasing over the past 5 years. Messaging interventions can be tailored and adapted to an individual's needs in their natural environment-fostering just-in-time therapies and making them a logical intervention for addiction continuing care. This study assessed the acceptability of using text messaging for substance abuse continuing care and the intervention preferences of individuals in substance abuse treatment in order to develop an interactive mobile text messaging intervention. Fifty individuals enrolled in intensive outpatient substance abuse treatment completed an assessment battery relating to preferred logistics of mobile interventions, behavior change strategies, and types of messages they thought would be most helpful to them at different time points. Results indicated that 98% participants were potentially interested in using text messaging as a continuing care strategy. Participants wrote different types of messages that they perceived might be most helpful, based on various hypothetical situations often encountered during the recovery process. Although individuals tended to prefer benefit driven over consequence driven messages, differences in the perceived benefits of change among individuals predicted message preference. Implications for the development of mobile messaging interventions for the addictions are discussed. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  16. Flexural Behavior of GFRP Tubes Filled with Magnetically Driven Concrete

    PubMed Central

    Xie, Fang; Chen, Ju; Dong, Xinlong; Feng, Bing

    2018-01-01

    Experimental investigation of GFRP (glass fiber reinforced polymer) tubes that were filled with magnetically driven concrete was carried out to study the flexural behavior of specimens under bending. Specimens having different cross section and lengths were tested. The test specimens were fabricated by filling magnetically driven concrete into the GFRP tubes and the concrete was vibrated using magnetic force. Specimens vibrated using vibrating tube were also tested for comparison. In addition, specimens having steel reinforcing bars and GFRP bars were both tested to study the effect of reinforcing bars on the magnetically driven concrete. The load-displacement curves, load-strain curves, failure mode, and ultimate strengths of test specimens were obtained. Design methods for the flexural stiffness of test specimens were also discussed in this study. PMID:29316732

  17. Mission Driven Science at Argonne

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thackery, Michael; Wang, Michael; Young, Linda

    2012-07-05

    Mission driven science at Argonne means applying science and scientific knowledge to a physical and "real world" environment. Examples include testing a theoretical model through the use of formal science or solving a practical problem through the use of natural science. At the laboratory, our materials scientists are leading the way in producing energy solutions today that could help reduce and remove the energy crisis of tomorrow.

  18. A microscale turbine driven by diffusive mass flux.

    PubMed

    Yang, Mingcheng; Liu, Rui; Ripoll, Marisol; Chen, Ke

    2015-10-07

    An external diffusive mass flux is shown to be able to generate a mechanical torque on a microscale object based on anisotropic diffusiophoresis. In light of this finding, we propose a theoretical prototype micro-turbine driven purely by diffusive mass flux, which is in strong contrast to conventional turbines driven by convective mass flows. The rotational velocity of the proposed turbine is determined by the external concentration gradient, the geometry and the diffusiophoretic properties of the turbine. This scenario is validated by performing computer simulations. Our finding thus provides a new type of chemo-mechanical response which could be used to exploit existing chemical energies at small scales.

  19. Symmetry breaking in clogging for oppositely driven particles

    NASA Astrophysics Data System (ADS)

    Glanz, Tobias; Wittkowski, Raphael; Löwen, Hartmut

    2016-11-01

    The clogging behavior of a symmetric binary mixture of colloidal particles that are driven in opposite directions through constrictions is explored by Brownian dynamics simulations and theory. A dynamical state with a spontaneously broken symmetry occurs where one species is flowing and the other is blocked for a long time, which can be tailored by the size of the constrictions. Moreover, we find self-organized oscillations in clogging and unclogging of the two species. Apart from statistical physics, our results are of relevance for fields like biology, chemistry, and crowd management, where ions, microparticles, pedestrians, or other particles are driven in opposite directions through constrictions.

  20. Electrostatically Driven Nanoballoon Actuator.

    PubMed

    Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G; Cohen, Marvin L; Zettl, Alex

    2016-11-09

    We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.

  1. A perspective on the structural studies of inner membrane electrochemical potential-driven transporters.

    PubMed

    Lemieux, M Joanne

    2008-09-01

    Electrochemical potential-driven transporters represent a vast array of proteins with varied substrate specificities. While diverse in size and substrate specificity, they are all driven by electrochemical potentials. Over the past five years there have been increasing numbers of X-ray structures reported for this family of transporters. Structural information is available for five subfamilies of electrochemical potential-driven transporters. No structural information exists for the remaining 91 subfamilies. In this review, the various subfamilies of electrochemical potential-driven transporters are discussed. The seven reported structures for the electrochemical potential-driven transporters and the methods for their crystallization are also presented. With a few exceptions, overall crystallization trends have been very similar for the transporters despite their differences in substrate specificity and topology. Also discussed is why the structural studies on these transporters were successful while others are not as fruitful. With the plethora of transporters with unknown structures, this review provides incentive for crystallization of transporters in the remaining subfamilies for which no structural information exists.

  2. Shear-driven phase transformation in silicon nanowires

    NASA Astrophysics Data System (ADS)

    Vincent, L.; Djomani, D.; Fakfakh, M.; Renard, C.; Belier, B.; Bouchier, D.; Patriarche, G.

    2018-03-01

    We report on an unprecedented formation of allotrope heterostructured Si nanowires by plastic deformation based on applied radial compressive stresses inside a surrounding matrix. Si nanowires with a standard diamond structure (3C) undergo a phase transformation toward the hexagonal 2H-allotrope. The transformation is thermally activated above 500 °C and is clearly driven by a shear-stress relief occurring in parallel shear bands lying on {115} planes. We have studied the influence of temperature and axial orientation of nanowires. The observations are consistent with a martensitic phase transformation, but the finding leads to clear evidence of a different mechanism of deformation-induced phase transformation in Si nanowires with respect to their bulk counterpart. Our process provides a route to study shear-driven phase transformation at the nanoscale in Si.

  3. Shear-driven phase transformation in silicon nanowires.

    PubMed

    Vincent, L; Djomani, D; Fakfakh, M; Renard, C; Belier, B; Bouchier, D; Patriarche, G

    2018-03-23

    We report on an unprecedented formation of allotrope heterostructured Si nanowires by plastic deformation based on applied radial compressive stresses inside a surrounding matrix. Si nanowires with a standard diamond structure (3C) undergo a phase transformation toward the hexagonal 2H-allotrope. The transformation is thermally activated above 500 °C and is clearly driven by a shear-stress relief occurring in parallel shear bands lying on {115} planes. We have studied the influence of temperature and axial orientation of nanowires. The observations are consistent with a martensitic phase transformation, but the finding leads to clear evidence of a different mechanism of deformation-induced phase transformation in Si nanowires with respect to their bulk counterpart. Our process provides a route to study shear-driven phase transformation at the nanoscale in Si.

  4. Precessionally driven dynamos in ellipsoidal geometry

    NASA Astrophysics Data System (ADS)

    Ernst-Hullermann, J.; Harder, H.; Hansen, U.

    2013-12-01

    Precession was suggested as an alternative driving mechanism for Earth's and planetary magnetic fields by Bullard in 1949. Recent estimates of the thermal and electrical conductivity of Earth's core even show that the energy budget for buoyancy driven dynamos might be very tight. Therefore it seems worth to consider precession at least as an additional if not the only source of energy for the geodynamo. We are going to investigate precessionally driven dynamos by the use of a Finite Volume code. As precession drives a flow only due to the movement of the boundaries the shape of the container is essential for the character of the flow. In planets, it is much more effective to drive a precessional flow by the pressure differences induced by the topography of the precessing body rather than by viscous coupling to the walls. Numerical simulations are the only method offering the possibility to investigate the influence of the topography since laboratory experiments normally are constrained by the predetermined geometry of the vessel. We discuss how ellipticity of the planets can be included in our simulations by the use of a non-orthogonal grid. We will show that even laminar precession-driven flows are capable to generate a magnetic field. Most of the magnetic energy of this dynamos resides in the outer viscous boundary layer. While at lower Ekman number the kinematic dynamos also have magnetic fields located in the bulk, these diminish in the full magneto-hydrodynamic case. The laminar dynamos may not scale to Earth-like parameters. Nevertheless, with our new method we have the possibility to explore the parameter space much more systematically.

  5. Experimental evidence of space charge driven resonances in high intensity linear accelerators

    DOE PAGES

    Jeon, Dong -O

    2016-01-12

    In the construction of high intensity accelerators, it is the utmost goal to minimize the beam loss by avoiding or minimizing contributions of various halo formation mechanisms. As a halo formation mechanism, space charge driven resonances are well known for circular accelerators. However, the recent finding showed that even in linear accelerators the space charge potential can excite the 4σ = 360° fourth order resonance [D. Jeon et al., Phys. Rev. ST Accel. Beams 12, 054204 (2009)]. This study increased the interests in space charge driven resonances of linear accelerators. Experimental studies of the space charge driven resonances of highmore » intensity linear accelerators are rare as opposed to the multitude of simulation studies. This paper presents an experimental evidence of the space charge driven 4σ ¼ 360° resonance and the 2σ x(y) – 2σ z = 0 resonance of a high intensity linear accelerator through beam profile measurements from multiple wire-scanners. Moreover, measured beam profiles agree well with the characteristics of the space charge driven 4σ = 360° resonance and the 2σ x(y) – 2σ z = 0 resonance that are predicted by the simulation.« less

  6. On the Use of Client-Driven Projects in the Mathematics Classroom

    ERIC Educational Resources Information Center

    Maki, Dan; Winston, Wayne; Shafii-Mousavi, Morteza; Kochanowski, Paul; Lang, Chris; Ernstberger, Kathy; Hodgson, Ted

    2006-01-01

    In this article, we discuss the use of client-driven projects--projects that are posed by business, government, and non-profit organizations and based upon real problems facing the organization. Although client-driven projects have long been used in business and engineering education, their use in the mathematics classroom is rare. Client-driven…

  7. Aural detection of small propeller-driven aircraft

    DOT National Transportation Integrated Search

    1987-10-31

    The Federal Aviation Administration (FAA) has conducted numerous flight tests of small propeller-driven aircraft in support of developing aircraft noise regulations. Those test typically measured ground-level noise resulting from high power/high RPM ...

  8. The ``Missing Compounds'' affair in functionality-driven material discovery

    NASA Astrophysics Data System (ADS)

    Zunger, Alex

    2014-03-01

    In the paradigm of ``data-driven discovery,'' underlying one of the leading streams of the Material Genome Initiative (MGI), one attempts to compute high-throughput style as many of the properties of as many of the N (about 10**5- 10**6) compounds listed in databases of previously known compounds. One then inspects the ensuing Big Data, searching for useful trends. The alternative and complimentary paradigm of ``functionality-directed search and optimization'' used here, searches instead for the n much smaller than N configurations and compositions that have the desired value of the target functionality. Examples include the use of genetic and other search methods that optimize the structure or identity of atoms on lattice sites, using atomistic electronic structure (such as first-principles) approaches in search of a given electronic property. This addresses a few of the bottlenecks that have faced the alternative, data-driven/high throughput/Big Data philosophy: (i) When the configuration space is theoretically of infinite size, building a complete data base as in data-driven discovery is impossible, yet searching for the optimum functionality, is still a well-posed problem. (ii) The configuration space that we explore might include artificially grown, kinetically stabilized systems (such as 2D layer stacks; superlattices; colloidal nanostructures; Fullerenes) that are not listed in compound databases (used by data-driven approaches), (iii) a large fraction of chemically plausible compounds have not been experimentally synthesized, so in the data-driven approach these are often skipped. In our approach we search explicitly for such ``Missing Compounds''. It is likely that many interesting material properties will be found in cases (i)-(iii) that elude high throughput searches based on databases encapsulating existing knowledge. I will illustrate (a) Functionality-driven discovery of topological insulators and valley-split quantum-computer semiconductors, as well

  9. Neutrino-Driven Explosions

    NASA Astrophysics Data System (ADS)

    Janka, Hans-Thomas

    The question why and how core-collapse supernovae (SNe) explode is one of the central and most long-standing riddles of stellar astrophysics. Solving this problem is crucial for deciphering the supernova (SN) phenomenon; for predicting its observable signals such as light curves and spectra, nucleosynthesis yields, neutrinos, and gravitational waves; for defining the role of SNe in the dynamical and chemo-dynamical evolution of galaxies; and for explaining the birth conditions and properties of neutron stars (NSs) and stellar-mass black holes. Since the formation of such compact remnants releases over hundred times more energy in neutrinos than the kinetic energy of the SN explosion, neutrinos can be the decisive agents for powering the SN outburst. According to the standard paradigm of the neutrino-driven mechanism, the energy transfer by the intense neutrino flux to the medium behind the stagnating core bounce shock, assisted by violent hydrodynamic mass motions (sometimes subsumed by the term "turbulence"), revives the outward shock motion and thus initiates the SN explosion. Because of the weak coupling of neutrinos in the region of this energy deposition, detailed, multidimensional hydrodynamic models including neutrino transport and a wide variety of physics are needed to assess the viability of the mechanism. Owing to advanced numerical codes and increasing supercomputer power, considerable progress has been achieved in our understanding of the physical processes that have to act in concert for the success of neutrino-driven explosions. First studies begin to reveal observational implications and avenues to test the theoretical picture by data from individual SNe and SN remnants but also from population-integrated observables. While models will be further refined, a real breakthrough is expected through the next galactic core-collapse SN, when neutrinos and gravitational waves can be used to probe the conditions deep inside the dying star.

  10. The Potential of Knowing More: A Review of Data-Driven Urban Water Management.

    PubMed

    Eggimann, Sven; Mutzner, Lena; Wani, Omar; Schneider, Mariane Yvonne; Spuhler, Dorothee; Moy de Vitry, Matthew; Beutler, Philipp; Maurer, Max

    2017-03-07

    The promise of collecting and utilizing large amounts of data has never been greater in the history of urban water management (UWM). This paper reviews several data-driven approaches which play a key role in bringing forward a sea change. It critically investigates whether data-driven UWM offers a promising foundation for addressing current challenges and supporting fundamental changes in UWM. We discuss the examples of better rain-data management, urban pluvial flood-risk management and forecasting, drinking water and sewer network operation and management, integrated design and management, increasing water productivity, wastewater-based epidemiology and on-site water and wastewater treatment. The accumulated evidence from literature points toward a future UWM that offers significant potential benefits thanks to increased collection and utilization of data. The findings show that data-driven UWM allows us to develop and apply novel methods, to optimize the efficiency of the current network-based approach, and to extend functionality of today's systems. However, generic challenges related to data-driven approaches (e.g., data processing, data availability, data quality, data costs) and the specific challenges of data-driven UWM need to be addressed, namely data access and ownership, current engineering practices and the difficulty of assessing the cost benefits of data-driven UWM.

  11. Persistence of Value-Driven Attentional Capture

    ERIC Educational Resources Information Center

    Anderson, Brian A.; Yantis, Steven

    2013-01-01

    Stimuli that have previously been associated with the delivery of reward involuntarily capture attention when presented as unrewarded and task-irrelevant distractors in a subsequent visual search task. It is unknown how long such effects of reward learning on attention persist. One possibility is that value-driven attentional biases are plastic…

  12. Maximum Principle for General Controlled Systems Driven by Fractional Brownian Motions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han Yuecai; Hu Yaozhong; Song Jian, E-mail: jsong2@math.rutgers.edu

    2013-04-15

    We obtain a maximum principle for stochastic control problem of general controlled stochastic differential systems driven by fractional Brownian motions (of Hurst parameter H>1/2). This maximum principle specifies a system of equations that the optimal control must satisfy (necessary condition for the optimal control). This system of equations consists of a backward stochastic differential equation driven by both fractional Brownian motions and the corresponding underlying standard Brownian motions. In addition to this backward equation, the maximum principle also involves the Malliavin derivatives. Our approach is to use conditioning and Malliavin calculus. To arrive at our maximum principle we need tomore » develop some new results of stochastic analysis of the controlled systems driven by fractional Brownian motions via fractional calculus. Our approach of conditioning and Malliavin calculus is also applied to classical system driven by standard Brownian motions while the controller has only partial information. As a straightforward consequence, the classical maximum principle is also deduced in this more natural and simpler way.« less

  13. The role of protozoa-driven selection in shaping human genetic variability.

    PubMed

    Pozzoli, Uberto; Fumagalli, Matteo; Cagliani, Rachele; Comi, Giacomo P; Bresolin, Nereo; Clerici, Mario; Sironi, Manuela

    2010-03-01

    Protozoa exert a strong selective pressure in humans. The selection signatures left by these pathogens can be exploited to identify genetic modulators of infection susceptibility. We show that protozoa diversity in different geographic locations is a good measure of protozoa-driven selective pressure; protozoa diversity captured selection signatures at known malaria resistance loci and identified several selected single nucleotide polymorphisms in immune and hemolytic anemia genes. A genome-wide search enabled us to identify 5180 variants mapping to 1145 genes that are subjected to protozoa-driven selective pressure. We provide a genome-wide estimate of protozoa-driven selective pressure and identify candidate susceptibility genes for protozoa-borne diseases. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Design criteria for driven piles in permafrost

    DOT National Transportation Integrated Search

    1983-01-01

    Past placment of structural foundation support piles in frozen soils generally has been performed using drilled and slurry backfill techniques. The early success of specially modified H-pile structural shapes driven into permafrost, and the promise o...

  15. Ontology-Driven Information Integration

    NASA Technical Reports Server (NTRS)

    Tissot, Florence; Menzel, Chris

    2005-01-01

    Ontology-driven information integration (ODII) is a method of computerized, automated sharing of information among specialists who have expertise in different domains and who are members of subdivisions of a large, complex enterprise (e.g., an engineering project, a government agency, or a business). In ODII, one uses rigorous mathematical techniques to develop computational models of engineering and/or business information and processes. These models are then used to develop software tools that support the reliable processing and exchange of information among the subdivisions of this enterprise or between this enterprise and other enterprises.

  16. Catastrophe-driven vs what?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stever, H.G.

    1995-12-31

    The author notes that much has been accomplished by catastrophe-driven scientific effort. Examples include World War II and the social wars against crime, poverty and hunger and famine. A positive approach is suggested to be more appropriate as the drivers of science. Three tables are presented and outline a positive base for justifying scientific endeavor: (1) Examples of Major Societal Goals to Which Science and Technology Contribute. (2) Policy Areas That Would Benefit from the Articulation of Long-Term S&T Goals; and (3) Major Components of the Science and Technology Base.

  17. I See Your Point: Infants under 12 Months Understand that Pointing Is Communicative

    ERIC Educational Resources Information Center

    Krehm, Madelaine; Onishi, Kristine H.; Vouloumanos, Athena

    2014-01-01

    Do young infants understand that pointing gestures allow the pointer to change the information state of a recipient? We used a third-party experimental scenario to examine whether 9- and 11-month-olds understand that a pointer's pointing gesture can inform a recipient about a target object. When the pointer pointed to a target, infants…

  18. Targeting MYCN-Driven Transcription By BET-Bromodomain Inhibition.

    PubMed

    Henssen, Anton; Althoff, Kristina; Odersky, Andrea; Beckers, Anneleen; Koche, Richard; Speleman, Frank; Schäfers, Simon; Bell, Emma; Nortmeyer, Maike; Westermann, Frank; De Preter, Katleen; Florin, Alexandra; Heukamp, Lukas; Spruessel, Annika; Astrahanseff, Kathy; Lindner, Sven; Sadowski, Natalie; Schramm, Alexander; Astorgues-Xerri, Lucile; Riveiro, Maria E; Eggert, Angelika; Cvitkovic, Esteban; Schulte, Johannes H

    2016-05-15

    Targeting BET proteins was previously shown to have specific antitumoral efficacy against MYCN-amplified neuroblastoma. We here assess the therapeutic efficacy of the BET inhibitor, OTX015, in preclinical neuroblastoma models and extend the knowledge on the role of BRD4 in MYCN-driven neuroblastoma. The efficacy of OTX015 was assessed in in vitro and in vivo models of human and murine MYCN-driven neuroblastoma. To study the effects of BET inhibition in the context of high MYCN levels, MYCN was ectopically expressed in human and murine cells. The effect of OTX015 on BRD4-regulated transcriptional pause release was analyzed using BRD4 and H3K27Ac chromatin immunoprecipitation coupled with DNA sequencing (ChIP-Seq) and gene expression analysis in neuroblastoma cells treated with OTX015 compared with vehicle control. OTX015 showed therapeutic efficacy against preclinical MYCN-driven neuroblastoma models. Similar to previously described BET inhibitors, concurrent MYCN repression was observed in OTX015-treated samples. Ectopic MYCN expression, however, did not abrogate effects of OTX015, indicating that MYCN repression is not the only target of BET proteins in neuroblastoma. When MYCN was ectopically expressed, BET inhibition still disrupted MYCN target gene transcription without affecting MYCN expression. We found that BRD4 binds to super-enhancers and MYCN target genes, and that OTX015 specifically disrupts BRD4 binding and transcription of these genes. We show that OTX015 is effective against mouse and human MYCN-driven tumor models and that BRD4 not only targets MYCN, but specifically occupies MYCN target gene enhancers as well as other genes associated with super-enhancers. Clin Cancer Res; 22(10); 2470-81. ©2015 AACR. ©2015 American Association for Cancer Research.

  19. Task-driven imaging in cone-beam computed tomography.

    PubMed

    Gang, G J; Stayman, J W; Ouadah, S; Ehtiati, T; Siewerdsen, J H

    Conventional workflow in interventional imaging often ignores a wealth of prior information of the patient anatomy and the imaging task. This work introduces a task-driven imaging framework that utilizes such information to prospectively design acquisition and reconstruction techniques for cone-beam CT (CBCT) in a manner that maximizes task-based performance in subsequent imaging procedures. The framework is employed in jointly optimizing tube current modulation, orbital tilt, and reconstruction parameters in filtered backprojection reconstruction for interventional imaging. Theoretical predictors of noise and resolution relates acquisition and reconstruction parameters to task-based detectability. Given a patient-specific prior image and specification of the imaging task, an optimization algorithm prospectively identifies the combination of imaging parameters that maximizes task-based detectability. Initial investigations were performed for a variety of imaging tasks in an elliptical phantom and an anthropomorphic head phantom. Optimization of tube current modulation and view-dependent reconstruction kernel was shown to have greatest benefits for a directional task (e.g., identification of device or tissue orientation). The task-driven approach yielded techniques in which the dose and sharp kernels were concentrated in views contributing the most to the signal power associated with the imaging task. For example, detectability of a line pair detection task was improved by at least three fold compared to conventional approaches. For radially symmetric tasks, the task-driven strategy yielded results similar to a minimum variance strategy in the absence of kernel modulation. Optimization of the orbital tilt successfully avoided highly attenuating structures that can confound the imaging task by introducing noise correlations masquerading at spatial frequencies of interest. This work demonstrated the potential of a task-driven imaging framework to improve image quality

  20. A universal piezo-driven ultrasonic cell microinjection system.

    PubMed

    Huang, Haibo; Mills, James K; Lu, Cong; Sun, Dong

    2011-08-01

    Over the past decade, the rapid development of biotechnologies such as gene injection, in-vitro fertilization, intracytoplasmic sperm injection (ICSI) and drug development have led to great demand for highly automated, high precision equipment for microinjection. Recently a new cell injection technology using piezo-driven pipettes with a very small mercury column was proposed and successfully applied in ICSI to a variety of mammal species. Although this technique significantly improves the survival rates of the ICSI process, shortcomings due to the toxicity of mercury and damage to the cell membrane due to large lateral tip oscillations of the injector pipette may limit its application. In this paper, a new cell injection system for automatic batch injection of suspended cells is developed. A new design of the piezo-driven cell injector is proposed for automated suspended cell injection. This new piezo-driven cell injector design relocates the piezo oscillation actuator to the injector pipette which eliminates the vibration effect on other parts of the micromanipulator. A small piezo stack is sufficient to perform the cell injection process. Harmful lateral tip oscillations of the injector pipette are reduced substantially without the use of a mercury column. Furthermore, ultrasonic vibration micro-dissection (UVM) theory is utilized to analyze the piezo-driven cell injection process, and the source of the lateral oscillations of the injector pipette is investigated. From preliminary experiments of cell injection of a large number of zebrafish embryos (n = 200), the injector pipette can easily pierce through the cell membrane at a low injection speed and almost no deformation of the cell wall, and with a high success rate(96%) and survival rate(80.7%) This new injection approach shows good potential for precision injection with less damage to the injected cells.

  1. Application of Bounded Linear Stability Analysis Method for Metrics-Driven Adaptive Control

    NASA Technical Reports Server (NTRS)

    Bakhtiari-Nejad, Maryam; Nguyen, Nhan T.; Krishnakumar, Kalmanje

    2009-01-01

    This paper presents the application of Bounded Linear Stability Analysis (BLSA) method for metrics-driven adaptive control. The bounded linear stability analysis method is used for analyzing stability of adaptive control models, without linearizing the adaptive laws. Metrics-driven adaptive control introduces a notion that adaptation should be driven by some stability metrics to achieve robustness. By the application of bounded linear stability analysis method the adaptive gain is adjusted during the adaptation in order to meet certain phase margin requirements. Analysis of metrics-driven adaptive control is evaluated for a second order system that represents a pitch attitude control of a generic transport aircraft. The analysis shows that the system with the metrics-conforming variable adaptive gain becomes more robust to unmodeled dynamics or time delay. The effect of analysis time-window for BLSA is also evaluated in order to meet the stability margin criteria.

  2. Data-Driven Learning of Q-Matrix

    ERIC Educational Resources Information Center

    Liu, Jingchen; Xu, Gongjun; Ying, Zhiliang

    2012-01-01

    The recent surge of interests in cognitive assessment has led to developments of novel statistical models for diagnostic classification. Central to many such models is the well-known "Q"-matrix, which specifies the item-attribute relationships. This article proposes a data-driven approach to identification of the "Q"-matrix and estimation of…

  3. 30 CFR 77.407 - Power-driven pulleys.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment especially designed for hand feeding. (b) Pulleys of conveyors shall not be cleaned manually while the conveyor is in motion. ... for Mechanical Equipment § 77.407 Power-driven pulleys. (a) Belts, chains, and ropes shall not be...

  4. Speech-driven environmental control systems--a qualitative analysis of users' perceptions.

    PubMed

    Judge, Simon; Robertson, Zoë; Hawley, Mark; Enderby, Pam

    2009-05-01

    To explore users' experiences and perceptions of speech-driven environmental control systems (SPECS) as part of a larger project aiming to develop a new SPECS. The motivation for this part of the project was to add to the evidence base for the use of SPECS and to determine the key design specifications for a new speech-driven system from a user's perspective. Semi-structured interviews were conducted with 12 users of SPECS from around the United Kingdom. These interviews were transcribed and analysed using a qualitative method based on framework analysis. Reliability is the main influence on the use of SPECS. All the participants gave examples of occasions when their speech-driven system was unreliable; in some instances, this unreliability was reported as not being a problem (e.g., for changing television channels); however, it was perceived as a problem for more safety critical functions (e.g., opening a door). Reliability was cited by participants as the reason for using a switch-operated system as back up. Benefits of speech-driven systems focused on speech operation enabling access when other methods were not possible; quicker operation and better aesthetic considerations. Overall, there was a perception of increased independence from the use of speech-driven environmental control. In general, speech was considered a useful method of operating environmental controls by the participants interviewed; however, their perceptions regarding reliability often influenced their decision to have backup or alternative systems for certain functions.

  5. Recent Progress in Energy-Driven Water Splitting.

    PubMed

    Tee, Si Yin; Win, Khin Yin; Teo, Wee Siang; Koh, Leng-Duei; Liu, Shuhua; Teng, Choon Peng; Han, Ming-Yong

    2017-05-01

    Hydrogen is readily obtained from renewable and non-renewable resources via water splitting by using thermal, electrical, photonic and biochemical energy. The major hydrogen production is generated from thermal energy through steam reforming/gasification of fossil fuel. As the commonly used non-renewable resources will be depleted in the long run, there is great demand to utilize renewable energy resources for hydrogen production. Most of the renewable resources may be used to produce electricity for driving water splitting while challenges remain to improve cost-effectiveness. As the most abundant energy resource, the direct conversion of solar energy to hydrogen is considered the most sustainable energy production method without causing pollutions to the environment. In overall, this review briefly summarizes thermolytic, electrolytic, photolytic and biolytic water splitting. It highlights photonic and electrical driven water splitting together with photovoltaic-integrated solar-driven water electrolysis.

  6. A Model-Driven Development Method for Management Information Systems

    NASA Astrophysics Data System (ADS)

    Mizuno, Tomoki; Matsumoto, Keinosuke; Mori, Naoki

    Traditionally, a Management Information System (MIS) has been developed without using formal methods. By the informal methods, the MIS is developed on its lifecycle without having any models. It causes many problems such as lack of the reliability of system design specifications. In order to overcome these problems, a model theory approach was proposed. The approach is based on an idea that a system can be modeled by automata and set theory. However, it is very difficult to generate automata of the system to be developed right from the start. On the other hand, there is a model-driven development method that can flexibly correspond to changes of business logics or implementing technologies. In the model-driven development, a system is modeled using a modeling language such as UML. This paper proposes a new development method for management information systems applying the model-driven development method to a component of the model theory approach. The experiment has shown that a reduced amount of efforts is more than 30% of all the efforts.

  7. Subglacial discharge-driven renewal of tidewater glacier fjords

    NASA Astrophysics Data System (ADS)

    Carroll, Dustin; Sutherland, David A.; Shroyer, Emily L.; Nash, Jonathan D.; Catania, Ginny A.; Stearns, Leigh A.

    2017-08-01

    The classic model of fjord renewal is complicated by tidewater glacier fjords, where submarine melt and subglacial discharge provide substantial buoyancy forcing at depth. Here we use a suite of idealized, high-resolution numerical ocean simulations to investigate how fjord circulation driven by subglacial plumes, tides, and wind stress depends on fjord width, grounding line depth, and sill height. We find that the depth of the grounding line compared to the sill is a primary control on plume-driven renewal of basin waters. In wide fjords the plume exhibits strong lateral recirculation, increasing the dilution and residence time of glacially-modified waters. Rapid drawdown of basin waters by the subglacial plume in narrow fjords allows for shelf waters to cascade deep into the basin; wide fjords result in a thin, boundary current of shelf waters that flow toward the terminus slightly below sill depth. Wind forcing amplifies the plume-driven exchange flow; however, wind-induced vertical mixing is limited to near-surface waters. Tidal mixing over the sill increases in-fjord transport of deep shelf waters and erodes basin stratification above the sill depth. These results underscore the first-order importances of fjord-glacier geometry in controlling circulation in tidewater glacier fjords and, thus, ocean heat transport to the ice.

  8. Parametric instabilities in resonantly-driven Bose–Einstein condensates

    NASA Astrophysics Data System (ADS)

    Lellouch, S.; Goldman, N.

    2018-04-01

    Shaking optical lattices in a resonant manner offers an efficient and versatile method to devise artificial gauge fields and topological band structures for ultracold atomic gases. This was recently demonstrated through the experimental realization of the Harper–Hofstadter model, which combined optical superlattices and resonant time-modulations. Adding inter-particle interactions to these engineered band systems is expected to lead to strongly-correlated states with topological features, such as fractional Chern insulators. However, the interplay between interactions and external time-periodic drives typically triggers violent instabilities and uncontrollable heating, hence potentially ruling out the possibility of accessing such intriguing states of matter in experiments. In this work, we study the early-stage parametric instabilities that occur in systems of resonantly-driven Bose–Einstein condensates in optical lattices. We apply and extend an approach based on Bogoliubov theory (Lellouch et al 2017 Phys. Rev. X 7 021015) to a variety of resonantly-driven band models, from a simple shaken Wannier–Stark ladder to the more intriguing driven-induced Harper–Hofstadter model. In particular, we provide ab initio numerical and analytical predictions for the stability properties of these topical models. This work sheds light on general features that could guide current experiments to stable regimes of operation.

  9. Making Data-Driven Decisions: Silent Reading

    ERIC Educational Resources Information Center

    Trudel, Heidi

    2007-01-01

    Due in part to conflicting opinions and research results, the practice of sustained silent reading (SSR) in schools has been questioned. After a frustrating experience with SSR, the author of this article began a data-driven decision-making process to gain new insights on how to structure silent reading in a classroom, including a comparison…

  10. Controlling An Inverter-Driven Three-Phase Motor

    NASA Technical Reports Server (NTRS)

    Dolland, C.

    1984-01-01

    Control system for three-phase permanent-magnet motor driven by linecommutated inverter uses signals generated by integrating back emf of each phase of motor. High-pass filter network eliminates low-frequency components from control loop while maintaining desired power factor.

  11. Transport barriers in bootstrap-driven tokamaks

    NASA Astrophysics Data System (ADS)

    Staebler, G. M.; Garofalo, A. M.; Pan, C.; McClenaghan, J.; Van Zeeland, M. A.; Lao, L. L.

    2018-05-01

    Experiments have demonstrated improved energy confinement due to the spontaneous formation of an internal transport barrier in high bootstrap fraction discharges. Gyrokinetic analysis, and quasilinear predictive modeling, demonstrates that the observed transport barrier is caused by the suppression of turbulence primarily from the large Shafranov shift. It is shown that the Shafranov shift can produce a bifurcation to improved confinement in regions of positive magnetic shear or a continuous reduction in transport for weak or negative magnetic shear. Operation at high safety factor lowers the pressure gradient threshold for the Shafranov shift-driven barrier formation. Two self-organized states of the internal and edge transport barrier are observed. It is shown that these two states are controlled by the interaction of the bootstrap current with magnetic shear, and the kinetic ballooning mode instability boundary. Election scale energy transport is predicted to be dominant in the inner 60% of the profile. Evidence is presented that energetic particle-driven instabilities could be playing a role in the thermal energy transport in this region.

  12. Thermodynamics of a periodically driven qubit

    NASA Astrophysics Data System (ADS)

    Donvil, Brecht

    2018-04-01

    We present a new approach to the open system dynamics of a periodically driven qubit in contact with a temperature bath. We are specifically interested in the thermodynamics of the qubit. It is well known that by combining the Markovian approximation with Floquet theory it is possible to derive a stochastic Schrödinger equation in for the state of the qubit. We follow here a different approach. We use Floquet theory to embed the time-non autonomous qubit dynamics into time-autonomous yet infinite dimensional dynamics. We refer to the resulting infinite dimensional system as the dressed-qubit. Using the Markovian approximation we derive the stochastic Schrödinger equation for the dressed-qubit. The advantage of our approach is that the jump operators are ladder operators of the Hamiltonian. This simplifies the formulation of the thermodynamics. We use the thermodynamics of the infinite dimensional system to recover the thermodynamical description for the driven qubit. We compare our results with the existing literature and recover the known results.

  13. Considerations for Explosively Driven Conical Shock Tube Design: Computations and Experiments

    DTIC Science & Technology

    2017-02-16

    ARL-TR-7953 ● FEB 2017 US Army Research Laboratory Considerations for Explosively Driven Conical Shock Tube Design : Computations...The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized...Considerations for Explosively Driven Conical Shock Tube Designs : Computations and Experiments by Joel B Stewart Weapons and Materials Research Directorate

  14. Comprehension-Driven Program Analysis (CPA) for Malware Detection in Android Phones

    DTIC Science & Technology

    2015-07-01

    COMPREHENSION-DRIVEN PROGRAM ANALYSIS (CPA) FOR MALWARE DETECTION IN ANDROID PHONES IOWA STATE UNIVERSITY JULY 2015 FINAL...DRIVEN PROGRAM ANALYSIS (CPA) FOR MALWARE DETECTION IN ANDROID PHONES Sb. GRANT NUMBER N/A Sc. PROGRAM ELEMENT NUMBER 6 1101E 6. AUTHOR(S) Sd...machine analysis system to detect novel, sophisticated Android malware. (c) An innovative library summarization technique and its incorporation in

  15. Determination of the Parameter Sets for the Best Performance of IPS-driven ENLIL Model

    NASA Astrophysics Data System (ADS)

    Yun, Jongyeon; Choi, Kyu-Cheol; Yi, Jonghyuk; Kim, Jaehun; Odstrcil, Dusan

    2016-12-01

    Interplanetary scintillation-driven (IPS-driven) ENLIL model was jointly developed by University of California, San Diego (UCSD) and National Aeronaucics and Space Administration/Goddard Space Flight Center (NASA/GSFC). The model has been in operation by Korean Space Weather Cetner (KSWC) since 2014. IPS-driven ENLIL model has a variety of ambient solar wind parameters and the results of the model depend on the combination of these parameters. We have conducted researches to determine the best combination of parameters to improve the performance of the IPS-driven ENLIL model. The model results with input of 1,440 combinations of parameters are compared with the Advanced Composition Explorer (ACE) observation data. In this way, the top 10 parameter sets showing best performance were determined. Finally, the characteristics of the parameter sets were analyzed and application of the results to IPS-driven ENLIL model was discussed.

  16. Effect of heliox- and air-driven nebulized bronchodilator therapy on lung function in patients with asthma.

    PubMed

    El-Khatib, Mohamad F; Jamaleddine, Ghassan; Kanj, Nadim; Zeineddine, Salah; Chami, Hassan; Bou-Akl, Imad; Husari, Ahmad; Alawieh, Marwan; Bou-Khalil, Pierre

    2014-06-01

    This study compares the effect of heliox-driven to that of air-driven bronchodilator therapy on the pulmonary function test (PFT) in patients with different levels of asthma severity. One-hundred thirty-two participants were included in the study. Participants underwent spirometry twice with bronchodilator testing on two consecutive days. Air-driven nebulization was used one day and heliox-driven nebulization the other day in random order crossover design. After a baseline PFT, each participant received 2.5 mg of albuterol sulfate nebulized with the randomized driving gas. Post bronchodilator PFT was repeated after 30 min. The next day, the exact same protocol was repeated, except that the other driving gas was used to nebulize the drug. Participants were subgrouped and analyzed according to their baseline FEV(1) on day 1: Group I, FEV(1) ≥80 %; Group II, 80 % > FEV(1) > 50 %; Group III, FEV(1) ≤50 %. The proportion of participants with greater than 12 % and 200-mL increases from their baseline FEV(1) and the changes from baseline in PFT variables were compared between heliox-driven versus air-driven bronchodilation therapy. The proportion of participants with >12 % and 200-mL increases from their baseline FEV(1) with air- or heliox-driven bronchodilation was not different with respect to the proportion of participants with baseline FEV(1) ≥80 % (20 vs. 18 %, respectively) and 80 % > FEV(1) > 50 % (36 vs. 43 %, respectively), but it was significantly greater with heliox-driven bronchodilation in participants with FEV(1) ≤50 % (43 vs. 73 %, respectively; p = 0.01). Changes from baseline FVC, FEV(1), FEV(1)/FVC, FEF(25-75) %, FEF(max), FEF(25) %, FEF(50) %, and FEF(75) % were significantly larger with heliox-driven versus air-driven bronchodilation in participants with baseline FEV(1) ≤50 %. Improvements in PFT variables are more frequent and profound with heliox-driven compared to air-driven bronchodilator therapy only in asthmatic patients with baseline

  17. Principle and experimental investigation of current-driven negative-inductance superconducting quantum interference device

    NASA Astrophysics Data System (ADS)

    Li, Hao; Liu, Jianshe; Zhang, Yingshan; Cai, Han; Li, Gang; Liu, Qichun; Han, Siyuan; Chen, Wei

    2017-03-01

    A negative-inductance superconducting quantum interference device (nSQUID) is an adiabatic superconducting logic device with high energy efficiency, and therefore a promising building block for large-scale low-power superconducting computing. However, the principle of the nSQUID is not that straightforward and an nSQUID driven by voltage is vulnerable to common mode noise. We investigate a single nSQUID driven by current instead of voltage, and clarify the principle of the adiabatic transition of the current-driven nSQUID between different states. The basic logic operations of the current-driven nSQUID with proper parameters are simulated by WRspice. The corresponding circuit is fabricated with a 100 A cm-2 Nb-based lift-off process, and the experimental results at low temperature confirm the basic logic operations as a gated buffer.

  18. The wind of EG Andromedae is not dust driven

    NASA Technical Reports Server (NTRS)

    Van Buren, Dave; Dgani, Ruth; Noriega-Crespo, Alberto

    1994-01-01

    The symbiotic star EG Andromedae has recently been the subject of several studies investigating its wind properties. Late-type giants are usually considered to have winds driven by radiation pressure on dust. Indeed, the derived wind velocity for EG Andromedae is consistent with this model. We point out here that there is no appreciable dust opacity in the wind of EG Andromedae using constraints on extinction limits from International Ultraviolet Explorer (IUE) and far infrared fluxes from Infrared Astronomy Satellite (IRAS). An alternate mechanism must operate in this star. We suggest that the wind can be driven by radiation pressure on molecular lines.

  19. Robust rotation of rotor in a thermally driven nanomotor

    PubMed Central

    Cai, Kun; Yu, Jingzhou; Shi, Jiao; Qin, Qing-Hua

    2017-01-01

    In the fabrication of a thermally driven rotary nanomotor with the dimension of a few nanometers, fabrication and control precision may have great influence on rotor’s stability of rotational frequency (SRF). To investigate effects of uncertainty of some major factors including temperature, tube length, axial distance between tubes, diameter of tubes and the inward radial deviation (IRD) of atoms in stators on the frequency’s stability, theoretical analysis integrating with numerical experiments are carried out. From the results obtained via molecular dynamics simulation, some key points are illustrated for future fabrication of the thermal driven rotary nanomotor. PMID:28393898

  20. Muscle-driven nanogenerators

    DOEpatents

    Wang, Zhong L [Marietta, GA; Yang, Rusen [Atlanta, GA

    2011-03-01

    In a method of generating electricity, a plurality of living cells are grown on an array of piezoelectric nanowires so that the cells engage the piezoelectric nanowires. Induced static potentials are extracted from at least one of the piezoelectric nanowires when at least one of the cells deforms the at least one of the piezoelectric nanowires. A cell-driven electrical generator that includes a substrate and a plurality of spaced-apart piezoelectric nanowires disposed on the substrate. A plurality of spaced-apart conductive electrodes interact with the plurality of piezoelectric nanowires. A biological buffer layer that is configured to promote growth of cells is disposed on the substrate so that cells placed on the substrate will grow and engage the piezoelectric nanowires.

  1. Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water.

    PubMed

    Dong, Renfeng; Hu, Yan; Wu, Yefei; Gao, Wei; Ren, Biye; Wang, Qinglong; Cai, Yuepeng

    2017-02-08

    Light-driven synthetic micro-/nanomotors have attracted considerable attention due to their potential applications and unique performances such as remote motion control and adjustable velocity. Utilizing harmless and renewable visible light to supply energy for micro-/nanomotors in water represents a great challenge. In view of the outstanding photocatalytic performance of bismuth oxyiodide (BiOI), visible-light-driven BiOI-based Janus micromotors have been developed, which can be activated by a broad spectrum of light, including blue and green light. Such BiOI-based Janus micromotors can be propelled by photocatalytic reactions in pure water under environmentally friendly visible light without the addition of any other chemical fuels. The remote control of photocatalytic propulsion by modulating the power of visible light is characterized by velocity and mean-square displacement analysis of optical video recordings. In addition, the self-electrophoresis mechanism has been confirmed for such visible-light-driven BiOI-based Janus micromotors by demonstrating the effects of various coated layers (e.g., Al 2 O 3 , Pt, and Au) on the velocity of motors. The successful demonstration of visible-light-driven Janus micromotors holds a great promise for future biomedical and environmental applications.

  2. Stable transport in proton driven fast ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.

    2009-09-15

    Proton beam transport in the context of proton driven fast ignition is usually assumed to be stable due to proton high inertia, but an analytical analysis of the process is still lacking. The stability of a charge and current neutralized proton beam passing through a plasma is therefore conducted here, for typical proton driven fast ignition parameters. In the cold regime, two fast growing modes are found, with an inverse growth rate much smaller than the beam time of flight to the target core. The stability issue is thus not so obvious, and kinetic effects are investigated. One unstable modemore » is found stabilized by the background plasma proton and electron temperatures. The second mode is also damped, providing the proton beam thermal spread is larger than {approx}10 keV. In fusion conditions, the beam propagation should therefore be stable.« less

  3. Recent Progress in Energy‐Driven Water Splitting

    PubMed Central

    Tee, Si Yin; Win, Khin Yin; Teo, Wee Siang; Koh, Leng‐Duei; Liu, Shuhua; Teng, Choon Peng

    2017-01-01

    Hydrogen is readily obtained from renewable and non‐renewable resources via water splitting by using thermal, electrical, photonic and biochemical energy. The major hydrogen production is generated from thermal energy through steam reforming/gasification of fossil fuel. As the commonly used non‐renewable resources will be depleted in the long run, there is great demand to utilize renewable energy resources for hydrogen production. Most of the renewable resources may be used to produce electricity for driving water splitting while challenges remain to improve cost‐effectiveness. As the most abundant energy resource, the direct conversion of solar energy to hydrogen is considered the most sustainable energy production method without causing pollutions to the environment. In overall, this review briefly summarizes thermolytic, electrolytic, photolytic and biolytic water splitting. It highlights photonic and electrical driven water splitting together with photovoltaic‐integrated solar‐driven water electrolysis. PMID:28546906

  4. Gate-driven pure spin current in graphene

    NASA Astrophysics Data System (ADS)

    Lin, Xiaoyang; Su, Li; Zhang, Youguang; Bournel, Arnaud; Zhang, Yue; Klein, Jacques-Olivier; Zhao, Weisheng; Fert, Albert

    An important challenge of spin current based devices is to realize long-distance transport and efficient manipulation of pure spin current without frequent spin-charge conversions. Here, the mechanism of gate-driven pure spin current in graphene is presented. Such a mechanism relies on the electrical gating of conductivity and spin diffusion length in graphene. The gate-driven feature is adopted to realize the pure spin current demultiplexing operation, which enables gate-controllable distribution of the pure spin current into graphene branches. Compared with Elliot-Yafet spin relaxation mechanism, D'yakonov-Perel spin relaxation mechanism results in more appreciable demultiplexing performance, which also implies a feasible strategy to characterize the spin relaxation mechanisms. The unique feature of the pure spin current demultiplexing operation would pave a way for ultra-low power spin logic beyond CMOS. Supported by the NSFC (61627813, 51602013) and the 111 project (B16001).

  5. Implementing Genome-Driven Oncology

    PubMed Central

    Hyman, David M.; Taylor, Barry S.; Baselga, José

    2017-01-01

    Early successes in identifying and targeting individual oncogenic drivers, together with the increasing feasibility of sequencing tumor genomes, have brought forth the promise of genome-driven oncology care. As we expand the breadth and depth of genomic analyses, the biological and clinical complexity of its implementation will be unparalleled. Challenges include target credentialing and validation, implementing drug combinations, clinical trial designs, targeting tumor heterogeneity, and deploying technologies beyond DNA sequencing, among others. We review how contemporary approaches are tackling these challenges and will ultimately serve as an engine for biological discovery and increase our insight into cancer and its treatment. PMID:28187282

  6. Hybridized Kibble-Zurek scaling in the driven critical dynamics across an overlapping critical region

    NASA Astrophysics Data System (ADS)

    Zhai, Liang-Jun; Wang, Huai-Yu; Yin, Shuai

    2018-04-01

    The conventional Kibble-Zurek scaling describes the scaling behavior in the driven dynamics across a single critical region. In this paper, we study the driven dynamics across an overlapping critical region, in which a critical region (Region A) is overlaid by another critical region (Region B). We develop a hybridized Kibble-Zurek scaling (HKZS) to characterize the scaling behavior in the driven process. According to the HKZS, the driven dynamics in the overlapping region can be described by the critical theories for both Region A and Region B simultaneously. This results in a constraint on the scaling function in the overlapping critical region. We take the quantum Ising chain in an imaginary longitudinal field as an example. In this model, the critical region of the Yang-Lee edge singularity and the critical region of the ferromagnetic-paramagnetic phase transition overlap with each other. We numerically confirm the HKZS by simulating the driven dynamics in this overlapping critical region. The HKZSs in other models are also discussed.

  7. Using Program Theory-Driven Evaluation Science to Crack the Da Vinci Code

    ERIC Educational Resources Information Center

    Donaldson, Stewart I.

    2005-01-01

    Program theory-driven evaluation science uses substantive knowledge, as opposed to method proclivities, to guide program evaluations. It aspires to update, clarify, simplify, and make more accessible the evolving theory of evaluation practice commonly referred to as theory-driven or theory-based evaluation. The evaluator in this chapter provides a…

  8. Neutrino oscillations in magnetically driven supernova explosions

    NASA Astrophysics Data System (ADS)

    Kawagoe, Shio; Takiwaki, Tomoya; Kotake, Kei

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ13 (sin2 2θ13 gtrsim 10-3), we show that survival probabilities of bar nue and νe seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of bar nue observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the νe signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the bar nue and νe signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  9. A miniature cable-driven robot for crawling on the heart.

    PubMed

    Patronik, N A; Zenati, M A; Riviere, C N

    2005-01-01

    This document describes the design and preliminary testing of a cable-driven robot for the purpose of traveling on the surface of the beating heart to administer therapy. This methodology obviates mechanical stabilization and lung deflation, which are typically required during minimally invasive cardiac surgery. Previous versions of the robot have been remotely actuated through push-pull wires, while visual feedback was provided by fiber optic transmission. Although these early models were able to perform locomotion in vivo on porcine hearts, the stiffness of the wire-driven transmission and fiber optic camera limited the mobility of the robots. The new prototype described in this document is actuated by two antagonistic cable pairs, and contains a color CCD camera located in the front section of the device. These modifications have resulted in superior mobility and visual feedback. The cable-driven prototype has successfully demonstrated prehension, locomotion, and tissue dye injection during in vitro testing with a poultry model.

  10. Self-driven visible-blind photodetector based on ferroelectric perovskite oxides

    NASA Astrophysics Data System (ADS)

    Li, Jian-kun; Ge, Chen; Jin, Kui-juan; Du, Jian-yu; Yang, Jing-ting; Lu, Hui-bin; Yang, Guo-zhen

    2017-04-01

    Ultraviolet photodetectors have attracted considerable interest for a variety of applications in health, industry, and science areas. Self-driven visible-blind photodetectors represent an appealing type of sensor, due to the reduced size and high flexibility. In this work, we employed BaTiO3 (BTO) single crystals with a bandgap of 3.2 eV for the realization of a self-driven ultraviolet detector, by utilizing the ferroelectric properties of BTO. We found that the sign of the photocurrent can be reversed by flipping the ferroelectric polarization, which makes the photodetector suitable for electrical manipulation. The photoelectric performance of this photodetector was systematically investigated in terms of rectification character, stability of short-circuit photocurrent, spectral response, and transient photoelectric response. Particularly, the self-driven photodetectors based on BTO showed an ultrafast response time about 200 ps. It is expected that the present work can provide a route for the design of photodetectors based on ferroelectric oxides.

  11. Floating rGO-based black membranes for solar driven sterilization.

    PubMed

    Zhang, Yao; Zhao, Dengwu; Yu, Fan; Yang, Chao; Lou, Jinwei; Liu, Yanming; Chen, Yingying; Wang, Zhongyong; Tao, Peng; Shang, Wen; Wu, Jianbo; Song, Chengyi; Deng, Tao

    2017-12-14

    This paper presents a new steam sterilization approach that uses a solar-driven evaporation system at the water/air interface. Compared to the conventional solar autoclave, this new steam sterilization approach via interfacial evaporation requires no complex system design to bear high steam pressure. In such a system, a reduced graphene oxide/polytetrafluoroethylene composite membrane floating at the water/air interface serves as a light-to-heat conversion medium to harvest and convert incident solar light into localized heat. Such localized heat raises the temperature of the membrane substantially and helps generate steam with a temperature higher than 120 °C. A sterilization device that takes advantage of the interfacial solar-driven evaporation system was built and its successful sterilization capability was demonstrated through both chemical and biological sterilization tests. The interfacial evaporation-based solar driven sterilization approach offers a potential low cost solution to meet the need for sterilization in undeveloped areas that lack electrical power but have ample solar radiation.

  12. Development of a miniature motor-driven pulsatile LVAD driven by a fuzzy controller.

    PubMed

    Okamoto, Eiji; Makino, Tsutomu; Tanaka, Shuji; Yasuda, Takahiko; Akasaka, Yuta; Tani, Makiko; Inoue, Yusuke; Mitoh, Ayumu; Mitamura, Yoshinori

    2007-01-01

    We have been developing a small, lightweight motor-driven pulsatile left ventricular assist device (LVAD) with a ball screw. The motor-driven LVAD consists of a brushless DC motor and a ball screw. The attractive magnetic force between Nd-Fe-B magnets (with a diameter of 5 mm and a thickness of 1.5 mm) mounted in holes in a silicone rubber sheet (thickness 2 mm) and an iron plate adhered onto the a diaphragm of the blood pump can provide optimum active blood filling during the pump filling phase. The LVAD has a stroke volume of 55 ml and an overall volume of 285 ml; it weighs 360 g. The controller mainly consists of a fuzzy logic position and velocity controller to apply doctors' and engineers' knowledge to control the LVAD. Each unit of the controller consists of a functionally independent program module for easy improvement of the controller's performance. The LVAD was evaluated in in vitro experiments using a mock circulation. A maximum pump outflow of 5.1 l/min was obtained at a drive rate of 95 bpm against an afterload of 95 mmHg, and active filling using the attractive magnetic force provided a pump output of 3.6 l/min at a drive rate of 75 bpm under a preload of 0 mmHg. The operating efficiency of the LVAD was measured at between 8% and 10.5%. While the LVAD can provide adequate pump outflow for cardiac assistance, further upgrading of the software and improvement of the blood pump are required to improve pump performance and efficiency.

  13. Slavic in Head-Driven Phrase Structure Grammar.

    ERIC Educational Resources Information Center

    Borsley, Robert D., Ed.; Przepiorkowski, Adam, Ed.

    The collection of essays on the properties of Slavic languages in the context of the theory of head-driven phrase structure grammar (HPSG) includes: "Typological Similarities in HPSG" (Tania Avgustinova, Wojciech Skut, Hans Uszkoreit); "Auxiliaries, Verbs and Complementizers in Polish" (Robert D. Borsley); "An Architecture…

  14. On Mixed Data and Event Driven Design for Adaptive-Critic-Based Nonlinear $H_{\\infty}$ Control.

    PubMed

    Wang, Ding; Mu, Chaoxu; Liu, Derong; Ma, Hongwen

    2018-04-01

    In this paper, based on the adaptive critic learning technique, the control for a class of unknown nonlinear dynamic systems is investigated by adopting a mixed data and event driven design approach. The nonlinear control problem is formulated as a two-player zero-sum differential game and the adaptive critic method is employed to cope with the data-based optimization. The novelty lies in that the data driven learning identifier is combined with the event driven design formulation, in order to develop the adaptive critic controller, thereby accomplishing the nonlinear control. The event driven optimal control law and the time driven worst case disturbance law are approximated by constructing and tuning a critic neural network. Applying the event driven feedback control, the closed-loop system is built with stability analysis. Simulation studies are conducted to verify the theoretical results and illustrate the control performance. It is significant to observe that the present research provides a new avenue of integrating data-based control and event-triggering mechanism into establishing advanced adaptive critic systems.

  15. Fabrication of a micro-fluid gathering tool for the gastrointestinal juice sampling function of a versatile capsular endoscope.

    PubMed

    Koo, Kyo-In; Lee, Sangmin; Cho, Dong-il Dan

    2011-01-01

    This paper presents a micro-fluid gathering tool for a versatile capsular endoscope that employs a solid chemical propellant, azobisisobutyronitrile (AIBN). The proposed tool consists of a micro-heater, an AIBN matrix, a Venturi tube, a reservoir, an inlet, and an outlet. The micro-heater heats the AIBN matrix to be decomposed into by-products and nitrogen gas. This nitrogen gas generates negative pressure passing through the Venturi tube. The generated negative pressure inhales a target fluid from around the inlet into the reservoir. All the parts are designed to be embedded inside a cylindrical shape with a diameter of 17 mm and a height of 2.3 mm in order to integrate it into a versatile developmental capsular endoscope without any scaledown. Two sets of the proposed tools are fabricated and tested: one is made of polydimethylsiloxane (PDMS) and the other is made of polymethylmethacrylate (PMMA). In performance comparisons, the PDMS gathering tool can withstand a stronger pulling force, and the PMMA gathering tool requires a less negative pressure for inhaling the same target fluid. Due to the instant and full activation of the thin AIBN matrix, both types of gathering tool show analogous performance in the sample gathering evaluation. The gathered volume is approximately 1.57 μL using approximately 25.4 μL of AIBN compound.

  16. Fabrication of a Micro-Fluid Gathering Tool for the Gastrointestinal Juice Sampling Function of a Versatile Capsular Endoscope

    PubMed Central

    Koo, Kyo-in; Lee, Sangmin; Cho, Dong-il Dan

    2011-01-01

    This paper presents a micro-fluid gathering tool for a versatile capsular endoscope that employs a solid chemical propellant, azobisisobutyronitrile (AIBN). The proposed tool consists of a micro-heater, an AIBN matrix, a Venturi tube, a reservoir, an inlet, and an outlet. The micro-heater heats the AIBN matrix to be decomposed into by-products and nitrogen gas. This nitrogen gas generates negative pressure passing through the Venturi tube. The generated negative pressure inhales a target fluid from around the inlet into the reservoir. All the parts are designed to be embedded inside a cylindrical shape with a diameter of 17 mm and a height of 2.3 mm in order to integrate it into a versatile developmental capsular endoscope without any scaledown. Two sets of the proposed tools are fabricated and tested: one is made of polydimethylsiloxane (PDMS) and the other is made of polymethylmethacrylate (PMMA). In performance comparisons, the PDMS gathering tool can withstand a stronger pulling force, and the PMMA gathering tool requires a less negative pressure for inhaling the same target fluid. Due to the instant and full activation of the thin AIBN matrix, both types of gathering tool show analogous performance in the sample gathering evaluation. The gathered volume is approximately 1.57 μL using approximately 25.4 μL of AIBN compound. PMID:22163997

  17. Planet-driven Spiral Arms in Protoplanetary Disks. II. Implications

    NASA Astrophysics Data System (ADS)

    Bae, Jaehan; Zhu, Zhaohuan

    2018-06-01

    We examine whether various characteristics of planet-driven spiral arms can be used to constrain the masses of unseen planets and their positions within their disks. By carrying out two-dimensional hydrodynamic simulations varying planet mass and disk gas temperature, we find that a larger number of spiral arms form with a smaller planet mass and a lower disk temperature. A planet excites two or more spiral arms interior to its orbit for a range of disk temperatures characterized by the disk aspect ratio 0.04≤slant {(h/r)}p≤slant 0.15, whereas exterior to a planet’s orbit multiple spiral arms can form only in cold disks with {(h/r)}p≲ 0.06. Constraining the planet mass with the pitch angle of spiral arms requires accurate disk temperature measurements that might be challenging even with ALMA. However, the property that the pitch angle of planet-driven spiral arms decreases away from the planet can be a powerful diagnostic to determine whether the planet is located interior or exterior to the observed spirals. The arm-to-arm separations increase as a function of planet mass, consistent with previous studies; however, the exact slope depends on disk temperature as well as the radial location where the arm-to-arm separations are measured. We apply these diagnostics to the spiral arms seen in MWC 758 and Elias 2–27. As shown in Bae et al., planet-driven spiral arms can create concentric rings and gaps, which can produce a more dominant observable signature than spiral arms under certain circumstances. We discuss the observability of planet-driven spiral arms versus rings and gaps.

  18. Rod- versus cone-driven ERGs at different stimulus sizes in normal subjects and retinitis pigmentosa patients.

    PubMed

    Aher, Avinash J; McKeefry, Declan J; Parry, Neil R A; Maguire, John; Murray, I J; Tsai, Tina I; Huchzermeyer, Cord; Kremers, Jan

    2018-02-01

    To study how rod- and cone-driven responses depend on stimulus size in normal subjects and patients with retinitis pigmentosa (RP), and to show that comparisons between responses to full-field (FF) and smaller stimuli can be useful in diagnosing and monitoring disorders of the peripheral retina without the need for lengthy dark adaptation periods. The triple silent substitution technique was used to isolate L-cone-, M-cone- and rod-driven ERGs with 19, 18 and 33% photoreceptor contrasts, respectively, under identical mean luminance conditions. Experiments were conducted on five normal subjects and three RP patients. ERGs on control subjects were recorded at nine different temporal frequencies (between 2 and 60 Hz) for five different stimulus sizes: FF, 70°, 60°, 50° and 40° diameter circular stimuli. Experiments on RP patients involved rod- and L-cone-driven ERG measurements with FF and 40° stimuli at 8 and 48 Hz. Response amplitudes were defined as those of the first harmonic component after Fourier analysis. In normal subjects, rod-driven responses displayed a fundamentally different behavior than cone-driven responses, particularly at low temporal frequencies. At low and intermediate temporal frequencies (≤ 12 Hz), rod-driven signals increased by a factor of about four when measured with smaller stimuli. In contrast, L- and M-cone-driven responses in this frequency region did not change substantially with stimulus size. At high temporal frequencies (≥ 24 Hz), both rod- and cone-driven response amplitudes decreased with decreasing stimulus size. Signals obtained from rod-isolating stimuli under these conditions are likely artefactual. Interestingly, in RP patients, both rod-driven and L-cone-driven ERGs were similar using 40° and FF stimuli. The increased responses with smaller stimuli in normal subjects to rod-isolating stimuli indicate that a fundamentally different mechanism drives the ERGs in comparison with the cone-driven responses. We

  19. Ball driven type MEMS SAD for artillery fuse

    NASA Astrophysics Data System (ADS)

    Seok, Jin Oh; Jeong, Ji-hun; Eom, Junseong; Lee, Seung S.; Lee, Chun Jae; Ryu, Sung Moon; Oh, Jong Soo

    2017-01-01

    The SAD (safety and arming device) is an indispensable fuse component that ensures safe and reliable performance during the use of ammunition. Because the application of electronic devices for smart munitions is increasing, miniaturization of the SAD has become one of the key issues for next-generation artillery fuses. Based on MEMS technology, various types of miniaturized SADs have been proposed and fabricated. However, none of them have been reported to have been used in actual munitions due to their lack of high impact endurance and complicated explosive train arrangements. In this research, a new MEMS SAD using a ball driven mechanism, is successfully demonstrated based on a UV LIGA (lithography, electroplating and molding) process. Unlike other MEMS SADs, both high impact endurance and simple structure were achieved by using a ball driven mechanism. The simple structural design also simplified the fabrication process and increased the processing yield. The ball driven type MEMS SAD performed successfully under the desired safe and arming conditions of a spin test and showed fine agreement with the FEM simulation result, conducted prior to its fabrication. A field test was also performed with a grenade launcher to evaluate the SAD performance in the firing environment. All 30 of the grenade samples equipped with the proposed MEMS SAD operated successfully under the high-G setback condition.

  20. Effects-Driven Participatory Design: Learning from Sampling Interruptions.

    PubMed

    Brandrup, Morten; Østergaard, Kija Lin; Hertzum, Morten; Karasti, Helena; Simonsen, Jesper

    2017-01-01

    Participatory design (PD) can play an important role in obtaining benefits from healthcare information technologies, but we contend that to fulfil this role PD must incorporate feedback from real use of the technologies. In this paper we describe an effects-driven PD approach that revolves around a sustained focus on pursued effects and uses the experience sampling method (ESM) to collect real-use feedback. To illustrate the use of the method we analyze a case that involves the organizational implementation of electronic whiteboards at a Danish hospital to support the clinicians' intra- and interdepartmental coordination. The hospital aimed to reduce the number of phone calls involved in coordinating work because many phone calls were seen as unnecessary interruptions. To learn about the interruptions we introduced an app for capturing quantitative data and qualitative feedback about the phone calls. The investigation showed that the electronic whiteboards had little potential for reducing the number of phone calls at the operating ward. The combination of quantitative data and qualitative feedback worked both as a basis for aligning assumptions to data and showed ESM as an instrument for triggering in-situ reflection. The participant-driven design and redesign of the way data were captured by means of ESM is a central contribution to the understanding of how to conduct effects-driven PD.

  1. Cosmic ray driven outflows in an ultraluminous galaxy

    NASA Astrophysics Data System (ADS)

    Fujita, Akimi; Mac Low, Mordecai-Mark

    2018-06-01

    In models of galaxy formation, feedback driven both by supernova (SN) and active galactic nucleus is not efficient enough to quench star formation in massive galaxies. Models of smaller galaxies have suggested that cosmic rays (CRs) play a major role in expelling material from the star-forming regions by diffusing SN energy to the lower density outskirts. We therefore run gas dynamical simulations of galactic outflows from a galaxy contained in a halo with 5 × 1012 M⊙ that resembles a local ultraluminous galaxy, including both SN thermal energy and a treatment of CRs using the same diffusion approximation as Salem & Bryan. We find that CR pressure drives a low-density bubble beyond the edge of the shell swept up by thermal pressure, but the main bubble driven by SN thermal pressure overtakes it later, which creates a large-scale biconical outflow. CRs diffusing into the disc are unable to entrain its gas in the outflows, yielding a mass-loading rate of only ˜ 0.1 per cent with varied CR diffusion coefficients. We find no significant difference in mass-loading rates in SN-driven outflows with or without CR pressure. Our simulations strongly suggest that it is hard to drive a heavily mass-loaded outflow with CRs from a massive halo potential, although more distributed star formation could lead to a different result.

  2. Value Driven Information Processing and Fusion

    DTIC Science & Technology

    2016-03-01

    consensus approach allows a decentralized approach to achieve the optimal error exponent of the centralized counterpart, a conclusion that is signifi...SECURITY CLASSIFICATION OF: The objective of the project is to develop a general framework for value driven decentralized information processing...including: optimal data reduction in a network setting for decentralized inference with quantization constraint; interactive fusion that allows queries and

  3. What Data for Data-Driven Learning?

    ERIC Educational Resources Information Center

    Boulton, Alex

    2012-01-01

    Corpora have multiple affordances, not least for use by teachers and learners of a foreign language (L2) in what has come to be known as "data-driven learning" or DDL. The corpus and concordance interface were originally conceived by and for linguists, so other users need to adopt the role of "language researcher" to make the most of them. Despite…

  4. Optimally Distributed Kalman Filtering with Data-Driven Communication †

    PubMed Central

    Dormann, Katharina

    2018-01-01

    For multisensor data fusion, distributed state estimation techniques that enable a local processing of sensor data are the means of choice in order to minimize storage and communication costs. In particular, a distributed implementation of the optimal Kalman filter has recently been developed. A significant disadvantage of this algorithm is that the fusion center needs access to each node so as to compute a consistent state estimate, which requires full communication each time an estimate is requested. In this article, different extensions of the optimally distributed Kalman filter are proposed that employ data-driven transmission schemes in order to reduce communication expenses. As a first relaxation of the full-rate communication scheme, it can be shown that each node only has to transmit every second time step without endangering consistency of the fusion result. Also, two data-driven algorithms are introduced that even allow for lower transmission rates, and bounds are derived to guarantee consistent fusion results. Simulations demonstrate that the data-driven distributed filtering schemes can outperform a centralized Kalman filter that requires each measurement to be sent to the center node. PMID:29596392

  5. Spatiotemporal Patterns of Noise-Driven Confined Actin Waves in Living Cells.

    PubMed

    Bernitt, Erik; Döbereiner, Hans-Günther

    2017-01-27

    Cells utilize waves of polymerizing actin to reshape their morphologies, which is central to physiological and pathological processes alike. Here, we force dorsal actin waves to propagate on one-dimensional domains with periodic boundary conditions, which results in striking spatiotemporal patterns with a clear signature of noise-driven dynamics. We show that these patterns can be very closely reproduced with a noise-driven active medium at coherence resonance.

  6. Driven fragmentation of granular gases.

    PubMed

    Cruz Hidalgo, Raúl; Pagonabarraga, Ignacio

    2008-06-01

    The dynamics of homogeneously heated granular gases which fragment due to particle collisions is analyzed. We introduce a kinetic model which accounts for correlations induced at the grain collisions and analyze both the kinetics and relevant distribution functions these systems develop. The work combines analytical and numerical studies based on direct simulation Monte Carlo calculations. A broad family of fragmentation probabilities is considered, and its implications for the system kinetics are discussed. We show that generically these driven materials evolve asymptotically into a dynamical scaling regime. If the fragmentation probability tends to a constant, the grain number diverges at a finite time, leading to a shattering singularity. If the fragmentation probability vanishes, then the number of grains grows monotonously as a power law. We consider different homogeneous thermostats and show that the kinetics of these systems depends weakly on both the grain inelasticity and driving. We observe that fragmentation plays a relevant role in the shape of the velocity distribution of the particles. When the fragmentation is driven by local stochastic events, the long velocity tail is essentially exponential independently of the heating frequency and the breaking rule. However, for a Lowe-Andersen thermostat, numerical evidence strongly supports the conjecture that the scaled velocity distribution follows a generalized exponential behavior f(c) approximately exp(-cn) , with n approximately 1.2 , regarding less the fragmentation mechanisms.

  7. The impact of subliminal effect images in voluntary vs. stimulus-driven actions.

    PubMed

    Le Bars, Solène; Hsu, Yi-Fang; Waszak, Florian

    2016-11-01

    According to the ideomotor theory, actions are represented in terms of their sensory effects. In the current study we tested whether subliminal effect images influence action control (1) at early and/or late preparatory stages of (2) voluntary actions or stimulus-driven actions (3) with or without Stimulus-Response (S-R) compatibility. In Experiment 1, participants were presented at random with 50% of S-R compatible stimulus-driven action trials and 50% of voluntary action trials. The actions' effects (i.e. up- or down-pointing arrows) were presented subliminally before each action (i.e. a keypress). In voluntary actions, participants selected more often the action congruent with the prime when it was presented at long intervals before the action. Moreover they responded faster in prime-congruent than in prime-incongruent trials when primes were presented at short intervals before the action. In Experiment 2, participants were only presented with stimulus-driven action trials, with or without S-R compatibility. In stimulus-driven action trials with S-R compatibility (e.g., left-pointing arrow signaling a left keypress), subliminal action-effects did not generate any significant effect on RTs or error rates. On the other hand, in stimulus-driven action trials without S-R compatibility (e.g., letter "H" signaling a left keypress), participants were significantly faster in prime-congruent trials when primes were presented at the shortest time interval before the action. These results suggest that subliminal effect images facilitate voluntary action preparation on an early and a late level. Stimulus-driven action preparation is influenced on a late level only, and only if there is no compatibility between the stimulus and the motor response, that is when the response is not automatically triggered by the common properties existing between the stimulus and the required action. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Safety analysis of proposed data-driven physiologic alarm parameters for hospitalized children.

    PubMed

    Goel, Veena V; Poole, Sarah F; Longhurst, Christopher A; Platchek, Terry S; Pageler, Natalie M; Sharek, Paul J; Palma, Jonathan P

    2016-12-01

    Modification of alarm limits is one approach to mitigating alarm fatigue. We aimed to create and validate heart rate (HR) and respiratory rate (RR) percentiles for hospitalized children, and analyze the safety of replacing current vital sign reference ranges with proposed data-driven, age-stratified 5th and 95th percentile values. In this retrospective cross-sectional study, nurse-charted HR and RR data from a training set of 7202 hospitalized children were used to develop percentile tables. We compared 5th and 95th percentile values with currently accepted reference ranges in a validation set of 2287 patients. We analyzed 148 rapid response team (RRT) and cardiorespiratory arrest (CRA) events over a 12-month period, using HR and RR values in the 12 hours prior to the event, to determine the proportion of patients with out-of-range vitals based upon reference versus data-driven limits. There were 24,045 (55.6%) fewer out-of-range measurements using data-driven vital sign limits. Overall, 144/148 RRT and CRA patients had out-of-range HR or RR values preceding the event using current limits, and 138/148 were abnormal using data-driven limits. Chart review of RRT and CRA patients with abnormal HR and RR per current limits considered normal by data-driven limits revealed that clinical status change was identified by other vital sign abnormalities or clinical context. A large proportion of vital signs in hospitalized children are outside presently used norms. Safety evaluation of data-driven limits suggests they are as safe as those currently used. Implementation of these parameters in physiologic monitors may mitigate alarm fatigue. Journal of Hospital Medicine 2015;11:817-823. © 2015 Society of Hospital Medicine. © 2016 Society of Hospital Medicine.

  9. Suppression of energetic particle driven instabilities with HHFW heating

    DOE PAGES

    Fredrickson, E. D.; Taylor, G.; Bertelli, N.; ...

    2015-01-01

    In plasmas in the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40 (2000) 557] heated with neutral beams, the beam ions typically excite Energetic Particle Modes (EPMs or fishbones), and Toroidal, Global or Compressional Alfvén Eigenmodes (TAE, GAE, CAE). These modes can redistribute the energetic beam ions, altering the beam driven current profile and the plasma heating profile, or they may affect electron thermal transport or cause losses of the beam ions. In this paper we present experimental results where these instabilities, driven by the super-thermal beam ions, are suppressed with the application of High Harmonic Fastmore » Wave heating.« less

  10. Ion-driven deuterium permeation through tungsten at high temperatures

    NASA Astrophysics Data System (ADS)

    Gasparyan, Yu. M.; Golubeva, A. V.; Mayer, M.; Pisarev, A. A.; Roth, J.

    2009-06-01

    The ion-driven permeation (IDP) through 50 μm thick pure tungsten foils was measured in the temperature range of 823-923 K during irradiation by 200 eV/D + ion beam with a flux of 10 17-10 18 D/m 2s. Gas driven permeation (GDP) from the deuterium background gas was observed as well. Calculations using both the analytical formula for the diffusion limited regime (DLR) and the TMAP 7 code gave good agreement with the experimental data. Defects with a detrapping energy of (2.05 ± 0.15) eV were found to limit the permeation lag time in our experimental conditions.

  11. Climate-driven regime shift of a temperate marine ecosystem.

    PubMed

    Wernberg, Thomas; Bennett, Scott; Babcock, Russell C; de Bettignies, Thibaut; Cure, Katherine; Depczynski, Martial; Dufois, Francois; Fromont, Jane; Fulton, Christopher J; Hovey, Renae K; Harvey, Euan S; Holmes, Thomas H; Kendrick, Gary A; Radford, Ben; Santana-Garcon, Julia; Saunders, Benjamin J; Smale, Dan A; Thomsen, Mads S; Tuckett, Chenae A; Tuya, Fernando; Vanderklift, Mathew A; Wilson, Shaun

    2016-07-08

    Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests. Copyright © 2016, American Association for the Advancement of Science.

  12. Data-driven approaches in the investigation of social perception

    PubMed Central

    Adolphs, Ralph; Nummenmaa, Lauri; Todorov, Alexander; Haxby, James V.

    2016-01-01

    The complexity of social perception poses a challenge to traditional approaches to understand its psychological and neurobiological underpinnings. Data-driven methods are particularly well suited to tackling the often high-dimensional nature of stimulus spaces and of neural representations that characterize social perception. Such methods are more exploratory, capitalize on rich and large datasets, and attempt to discover patterns often without strict hypothesis testing. We present four case studies here: behavioural studies on face judgements, two neuroimaging studies of movies, and eyetracking studies in autism. We conclude with suggestions for particular topics that seem ripe for data-driven approaches, as well as caveats and limitations. PMID:27069045

  13. 30 CFR 75.1728 - Power-driven pulleys.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hands except on slow-moving equipment especially designed for hand feeding. (b) Pulleys of conveyors shall not be cleaned manually while the conveyor is in motion. (c) Coal spilled beneath belt conveyor... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1728 Power-driven pulleys. (a) Belts...

  14. Needs-driven versus market-driven pharmaceutical innovation: the consortium for the development of a new medicine against malaria in Brazil.

    PubMed

    Kameda, Koichi

    2014-08-01

    The prevailing model for encouraging innovation based on patents and market-oriented raises at least two economic and ethical issues: it imposes barriers on individuals and developing countries governments' access to medicines by defining prices that do not match their income, and the unavailability of new or appropriate products to address the health problems of these populations. In the last decade, this scenario has undergone some changes due to the emergence of new actors, the contribution of aid resources, the introduction to the market of new products against neglected diseases, the development of new governmental healthcare policies and research programs, etc. One example of such initiatives is the Fixed-Dose Artesunate Combination Therapy (FACT) project consortium, which brought together institutions with different natures from both the North and the South, for the development of two antimalarial fixed-dose combinations recommended by the WHO - artesunate-amodiaquine (ASAQ) and artesunate-mefloquine (ASMQ). This paper proposes to describe and analyze the ASMQ consortium, which is the result of a new pharmaceutical development approach, based on a different paradigm - needs-driven instead of market-driven -, collaborative, with strategic participation of institutions from the South, funded by alternative resources (public and philanthropic). Thus, it represents an interesting object of study for bioethical debates on intellectual property and innovation, and its analysis is justified in light of the current debate on ways of stimulating needs-driven pharmaceutical innovation. © 2014 John Wiley & Sons Ltd.

  15. Demand-driven care and hospital choice. Dutch health policy toward demand-driven care: results from a survey into hospital choice.

    PubMed

    Lako, Christiaan J; Rosenau, Pauline

    2009-03-01

    In the Netherlands, current policy opinion emphasizes demand-driven health care. Central to this model is the view, advocated by some Dutch health policy makers, that patients should be encouraged to be aware of and make use of health quality and health outcomes information in making personal health care provider choices. The success of the new health care system in the Netherlands is premised on this being the case. After a literature review and description of the new Dutch health care system, the adequacy of this demand-driven health policy is tested. The data from a July 2005, self-administered questionnaire survey of 409 patients (response rate of 94%) as to how they choose a hospital are presented. Results indicate that most patients did not choose by actively employing available quality and outcome information. They were, rather, referred by their general practitioner. Hospital choice is highly related to the importance a patient attaches to his or her physician's opinion about a hospital. Some patients indicated that their hospital choice was affected by the reputation of the hospital, by the distance they lived from the hospital, etc. but physician's advice was, by far, the most important factor. Policy consequences are important; the assumptions underlying the demand-driven model of patient health provider choice are inadequate to explain the pattern of observed responses. An alternative, more adequate model is required, one that takes into account the patient's confidence in physician referral and advice.

  16. Simulation of a Driven Dense Granular Gas

    NASA Astrophysics Data System (ADS)

    Bizon, Chris; Shattuck, M. D.; Swift, J. B.; Swinney, Harry L.

    1998-11-01

    Event driven particle simulations quantitatively reproduce the experimental results on vibrated granular layers, including the formation of standing wave patterns(C. Bizon, M.D. Shattuck, J.B. Swift, W.D. McCormick, and H.L. Swinney, Phys. Rev. Lett. 80), pp. 57-60 (1998). and secondary instabilities(J.R. deBruyn, C. Bizon, M.D. Shattuck, D. Goldman, J.B. Swift, and H.L. Swinney, Phys. Rev. Lett. 81) (1998), to appear. . In these simulations the velocity distributions are nearly Gaussian when scaled with the local fluctuational kinetic energy (granular temperature); this suggests that inelastic dense gas kinetic theory is applicable. We perform simulations of a two-dimensional granular gas that is homogeneously driven with fluctuating forces. We find that the equation of state differs from that of an elastic dense gas and that this difference is due to a change in the distribution of relative velocities at collisions. Granular thermal conductivity and viscosity are measured by allowing the fluctuating forces to have large scale spatial gradients.

  17. Microwave Driven Actuators Power Allocation and Distribution

    NASA Technical Reports Server (NTRS)

    Forbes, Timothy; Song, Kyo D.

    2000-01-01

    Design, fabrication and test of a power allocation and distribution (PAD) network for microwave driven actuators is presented in this paper. Development of a circuit that would collect power from a rectenna array amplify and distribute the power to actuators was designed and fabricated for space application in an actuator array driven by a microwave. A P-SPICE model was constructed initially for data reduction purposes, and was followed by a working real-world model. A voltage up - converter (VUC) is used to amplify the voltage from the individual rectenna. The testing yielded a 26:1 voltage amplification ratio with input voltage at 9 volts and a measured output voltage 230VDC. Future work includes the miniaturization of the circuitry, the use of microwave remote control, and voltage amplification technology for each voltage source. The objective of this work is to develop a model system that will collect DC voltage from an array of rectenna and propagate the voltage to an array of actuators.

  18. Lightning-driven electric and magnetic fields measured in the stratosphere: Implications for sprites

    NASA Astrophysics Data System (ADS)

    Thomas, Jeremy Norman

    A well accepted model for sprite production involves quasi-electrostatic fields (QSF) driven by large positive cloud-to-ground (+CG) strokes that can cause electrical breakdown in the middle atmosphere. A new high voltage, high impedance, double Langmuir probe instrument is designed specifically for measuring these large lightning-driven electric field changes at altitudes above 30 km. This High Voltage (HV) Electric Field Detector measured 200 nearby (<75 km) lightning-driven electric field changes, up to 140 V/m in magnitude, during the Brazil Sprite Balloon Campaign 2002--03. A numerical QSF model is developed and compared to the in situ measurements. It is found that the amplitudes and relaxation times of the electric fields driven by these nearby lightning events generally agree with the numerical QSF model, which suggests that the QSF approach is valid for modeling lightning-driven fields. Using the best fit parameters of this comparison, it is predicted that the electric fields at sprite altitudes (60--90 km) never surpass conventional breakdown in the mesosphere for each of these 200 nearby lightning events. Lightning-driven ELF to VLF (25 Hz--8 kHz) electric field changes were measured for each of the 2467 cloud-to-ground lightning (CGs) detected by the Brazilian Integrated Lightning Network (BIN) at distances of 75--600 km, and magnetic field changes (300 Hz--8 kHz) above the background noise were measured for about 35% (858) of these CGs. ELF pulses that occur 4--12 ms after the retarded time of the lightning sferic, which have been previously attributed to sprites, were found for 1.4% of 934 CGs examined with a strong bias towards +CGs (4.9% or 9/184) compared to -CGs (0.5% or 4/750). These results disagree with results from the Sprites99 Balloon Campaign [Bering et al., 2004b], in which the lightning-driven electric and magnetic field changes were rare, while the CG delayed ELF pulses were frequent. The Brazil Campaign results thus suggest that

  19. Inspired by design and driven by innovation. A conceptual model for radical design driven as a sustainable business model for Malaysian furniture design

    NASA Astrophysics Data System (ADS)

    Yusof, Wan Zaiyana Mohd; Fadzline Muhamad Tamyez, Puteri

    2018-04-01

    The definition of innovation does not help the entrepreneurs, business person or innovator to truly grasp what it means to innovate, hence we hear that government has spend millions of ringgit on “innovation” by doing R & D. However, the result has no avail in terms of commercial value. Innovation can be defined as the exploitation of commercialization of an idea or invention to create economic or social value. Most Entrepreneurs and business managers, regard innovation as creating economic value, while forgetting that innovation also create value for society or the environment. The ultimate goal as Entrepreneur, inventor or researcher is to exploit innovation to create value. As changes happen in society and economy, organizations and enterprises have to keep up and this requires innovation. This conceptual paper is to study the radical design driven innovation in the Malaysian furniture industry as a business model which the overall aim of the study is to examine the radical design driven innovation in Malaysia and how it compares with findings from Western studies. This paper will familiarize readers with the innovation and describe the radical design driven perspective that is adopted in its conceptual framework and design process.

  20. Software Design Document MCC CSCI (1). Volume 2, Sections 2.18.1 - 2.22

    DTIC Science & Technology

    1991-06-01

    tparam pointer to long mnt +Standard C type. _____________________ Internal Variables _____________ Variable Type Where Typedef Declared td ...ist points to the last transaction pointer on the TimeList. The function call is AssocAddToStart~ffimieList( td , startTimeList, endTimeList). Table 2.20...42 describes the parameters used by this function. Parameters Parameter Type______ Where Typedef Declared td pointer to /simnetllibsrc/libassoc/assoc

  1. Formalism Challenges of the Cougaar Model Driven Architecture

    NASA Technical Reports Server (NTRS)

    Bohner, Shawn A.; George, Boby; Gracanin, Denis; Hinchey, Michael G.

    2004-01-01

    The Cognitive Agent Architecture (Cougaar) is one of the most sophisticated distributed agent architectures developed today. As part of its research and evolution, Cougaar is being studied for application to large, logistics-based applications for the Department of Defense (DoD). Anticipiting future complex applications of Cougaar, we are investigating the Model Driven Architecture (MDA) approach to understand how effective it would be for increasing productivity in Cougar-based development efforts. Recognizing the sophistication of the Cougaar development environment and the limitations of transformation technologies for agents, we have systematically developed an approach that combines component assembly in the large and transformation in the small. This paper describes some of the key elements that went into the Cougaar Model Driven Architecture approach and the characteristics that drove the approach.

  2. Stable solutions of inflation driven by vector fields

    NASA Astrophysics Data System (ADS)

    Emami, Razieh; Mukohyama, Shinji; Namba, Ryo; Zhang, Ying-li

    2017-03-01

    Many models of inflation driven by vector fields alone have been known to be plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work, we seek a new class of vector-driven inflationary models that evade all of the mentioned instabilities. We build our analysis on the Generalized Proca Theory with an extension to three vector fields to realize isotropic expansion. We obtain the conditions required for quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and those for their stability at the level of linearized perturbations. Identifying the remedy to the existing unstable models, we provide a simple example and explicitly show its stability. This significantly broadens our knowledge on vector inflationary scenarios, reviving potential phenomenological interests for this class of models.

  3. Shock dynamics of two-lane driven lattice gases

    NASA Astrophysics Data System (ADS)

    Schiffmann, Christoph; Appert-Rolland, Cécile; Santen, Ludger

    2010-06-01

    Driven lattice gases such as those of the ASEP model are useful tools for the modelling of various stochastic transport processes carried out by self-driven particles, such as molecular motors or vehicles in road traffic. Often these processes take place in one-dimensional systems offering several tracks to the particles, and in many cases the particles are able to change track with a given rate. In this work we consider the case of strong coupling where the rate of hopping along the tracks and the exchange rates are of the same order, and show how a phenomenological approach based on a domain wall theory can be used to describe the dynamics of the system. In particular, the domain walls on the different tracks form pairs, whose dynamics dominate the behaviour of the system.

  4. Time-Driven Activity-Based Costing in Emergency Medicine.

    PubMed

    Yun, Brian J; Prabhakar, Anand M; Warsh, Jonathan; Kaplan, Robert; Brennan, John; Dempsey, Kyle E; Raja, Ali S

    2016-06-01

    Value in emergency medicine is determined by both patient-important outcomes and the costs associated with achieving them. However, measuring true costs is challenging. Without an understanding of costs, emergency department (ED) leaders will be unable to determine which interventions might improve value for their patients. Although ongoing research may determine which outcomes are meaningful, an accurate costing system is also needed. This article reviews current costing mechanisms in the ED and their pitfalls. It then describes how time-driven activity-based costing may be superior to these current costing systems. Time-driven activity-based costing, in addition to being a more accurate costing system, can be used for process improvements in the ED. Copyright © 2015 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  5. Floquet spin states in graphene under ac-driven spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    López, A.; Sun, Z. Z.; Schliemann, J.

    2012-05-01

    We study the role of periodically driven time-dependent Rashba spin-orbit coupling (RSOC) on a monolayer graphene sample. After recasting the originally 4×4 system of dynamical equations as two time-reversal related two-level problems, the quasienergy spectrum and the related dynamics are investigated via various techniques and approximations. In the static case, the system is gapped at the Dirac point. The rotating wave approximation (RWA) applied to the driven system unphysically preserves this feature, while the Magnus-Floquet approach as well as a numerically exact evaluation of the Floquet equation show that this gap is dynamically closed. In addition, a sizable oscillating pattern of the out-of-plane spin polarization is found in the driven case for states that are completely unpolarized in the static limit. Evaluation of the autocorrelation function shows that the original uniform interference pattern corresponding to time-independent RSOC gets distorted. The resulting structure can be qualitatively explained as a consequence of the transitions induced by the ac driving among the static eigenstates, i.e., these transitions modulate the relative phases that add up to give the quantum revivals of the autocorrelation function. Contrary to the static case, in the driven scenario, quantum revivals (suppressions) are correlated to spin-up (down) phases.

  6. Data-based virtual unmodeled dynamics driven multivariable nonlinear adaptive switching control.

    PubMed

    Chai, Tianyou; Zhang, Yajun; Wang, Hong; Su, Chun-Yi; Sun, Jing

    2011-12-01

    For a complex industrial system, its multivariable and nonlinear nature generally make it very difficult, if not impossible, to obtain an accurate model, especially when the model structure is unknown. The control of this class of complex systems is difficult to handle by the traditional controller designs around their operating points. This paper, however, explores the concepts of controller-driven model and virtual unmodeled dynamics to propose a new design framework. The design consists of two controllers with distinct functions. First, using input and output data, a self-tuning controller is constructed based on a linear controller-driven model. Then the output signals of the controller-driven model are compared with the true outputs of the system to produce so-called virtual unmodeled dynamics. Based on the compensator of the virtual unmodeled dynamics, the second controller based on a nonlinear controller-driven model is proposed. Those two controllers are integrated by an adaptive switching control algorithm to take advantage of their complementary features: one offers stabilization function and another provides improved performance. The conditions on the stability and convergence of the closed-loop system are analyzed. Both simulation and experimental tests on a heavily coupled nonlinear twin-tank system are carried out to confirm the effectiveness of the proposed method.

  7. Sensory mediation of stimulus-driven attentional capture in multiple-cue displays.

    PubMed

    Wright, Richard D; Richard, Christian M

    2003-08-01

    Three location-cuing experiments were conducted in order to examine the stimulus-driven control of attentional capture in multiple-cue displays. These displays consisted of one to four simultaneously presented direct location cues. The results indicated that direct location cuing can produce cue effects that are mediated, in part, by nonattentional processing that occurs simultaneously at multiple locations. When single cues were presented in isolation, however, the resulting cue effect appeared to be due to a combination of sensory processing and attentional capture by the cue. This suggests that the faster responses produced by direct cues may be associated with two different components: an attention-related component that can be modulated by goal-driven factors and a nonattentional component that occurs in parallel at multiple direct-cue locations and is minimally affected by goal-driven factors.

  8. Longitudinal aerodynamic characteristics of light, twin-engine, propeller-driven airplanes

    NASA Technical Reports Server (NTRS)

    Wolowicz, C. H.; Yancey, R. B.

    1972-01-01

    Representative state-of-the-art analytical procedures and design data for predicting the longitudinal static and dynamic stability and control characteristics of light, propeller-driven airplanes are presented. Procedures for predicting drag characteristics are also included. The procedures are applied to a twin-engine, propeller-driven airplane in the clean configuration from zero lift to stall conditions. The calculated characteristics are compared with wind-tunnel and flight data. Included in the comparisons are level-flight trim characteristics, period and damping of the short-period oscillatory mode, and windup-turn characteristics. All calculations are documented.

  9. Surface tension driven flow in glass melts and model fluids

    NASA Technical Reports Server (NTRS)

    Mcneil, T. J.; Cole, R.; Subramanian, R. S.

    1982-01-01

    Surface tension driven flow has been investigated analytically and experimentally using an apparatus where a free column of molten glass or model fluids was supported at its top and bottom faces by solid surfaces. The glass used in the experiments was sodium diborate, and the model fluids were silicone oils. In both the model fluid and glass melt experiments, conclusive evidence was obtained to prove that the observed flow was driven primarily by surface tension forces. The experimental observations are in qualitative agreement with predictions from the theoretical model.

  10. Inhibition of Galectin-1 Sensitizes HRAS-driven Tumor Growth to Rapamycin Treatment.

    PubMed

    Michael, James V; Wurtzel, Jeremy G T; Goldfinger, Lawrence E

    2016-10-01

    The goal of this study was to develop combinatorial application of two drugs currently either in active use as anticancer agents (rapamycin) or in clinical trials (OTX008) as a novel strategy to inhibit Harvey RAS (HRAS)-driven tumor progression. HRAS anchored to the plasma membrane shuttles from the lipid ordered (L o ) domain to the lipid ordered/lipid disordered border upon activation, and retention of HRAS at these sites requires galectin-1. We recently showed that genetically enforced L o sequestration of HRAS inhibited mitogen-activated protein kinase (MAPK) signaling, but not phoshatidylinositol 3-kinase (PI3K) activation. Here we show that inhibition of galectin-1 with OTX008 sequestered HRAS in the L o domain, blocked HRAS-mediated MAPK signaling, and attenuated HRAS-driven tumor progression in mice. HRAS-driven tumor growth was also attenuated by treatment with mammalian target of rapamycin (mTOR) inhibitor rapamycin, and this effect was further enhanced in tumors driven by L o -sequestered HRAS. These drugs also revealed bidirectional cross-talk in HRAS pathways. Moreover, dual pathway inhibition with OTX008 and rapamycin resulted in nearly complete ablation of HRAS-driven tumor growth. These findings indicate that membrane microdomain sequestration of HRAS with galectin-1 inhibition, coupled with mTOR inhibition, may support a novel therapeutic approach to treat HRAS-mutant cancer. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Comparison of defects in ProTaper hand-operated and engine-driven instruments after clinical use.

    PubMed

    Cheung, G S P; Bian, Z; Shen, Y; Peng, B; Darvell, B W

    2007-03-01

    To compare the type of defects and mode of material failure of engine-driven and hand-operated ProTaper instruments after clinical use. A total of 401 hand-operated and 325 engine-driven ProTaper instruments were discarded from an endodontic clinic over 17 months. Those that had fractured were examined for plastic deformation in lateral view and remounted for fractographical examination in scanning electron microscope. The mode of fracture was classified as 'fatigue' or 'shear' failure. The lengths of fractured segments in both instruments were recorded. Any distortion in hand instrument was noted. Data were analysed using chi-square, Fisher's exact or Student's t-test, where appropriate. Approximately 14% of all discarded hand-operated instruments and 14% of engine-driven instruments were fractured. About 62% of hand instruments failed because of shear fracture, compared with approximately 66% of engine-driven instruments as a result of fatigue (P < 0.05). Approximately 16% of hand instruments were affected by shear, and either remained intact or was fractured, compared with 5% of engine-driven instruments (P < 0.05). The length of the broken fragment was significantly shorter in hand versus engine-driven group (P < 0.05). Approximately 7% of hand instruments were discarded intact but distorted (rarely for engine-driven instruments); all were in the form of unscrewing of the flutes. The location of defects in hand Finishing instruments was significantly closer to the tip than that for Shaping instruments (P < 0.05). Under the conditions of this study (possibly high usage), the failure mode of ProTaper engine-driven and hand-operated instruments appeared to be different, with shear failure being more prevalent in the latter.

  12. HMM-based lexicon-driven and lexicon-free word recognition for online handwritten Indic scripts.

    PubMed

    Bharath, A; Madhvanath, Sriganesh

    2012-04-01

    Research for recognizing online handwritten words in Indic scripts is at its early stages when compared to Latin and Oriental scripts. In this paper, we address this problem specifically for two major Indic scripts--Devanagari and Tamil. In contrast to previous approaches, the techniques we propose are largely data driven and script independent. We propose two different techniques for word recognition based on Hidden Markov Models (HMM): lexicon driven and lexicon free. The lexicon-driven technique models each word in the lexicon as a sequence of symbol HMMs according to a standard symbol writing order derived from the phonetic representation. The lexicon-free technique uses a novel Bag-of-Symbols representation of the handwritten word that is independent of symbol order and allows rapid pruning of the lexicon. On handwritten Devanagari word samples featuring both standard and nonstandard symbol writing orders, a combination of lexicon-driven and lexicon-free recognizers significantly outperforms either of them used in isolation. In contrast, most Tamil word samples feature the standard symbol order, and the lexicon-driven recognizer outperforms the lexicon free one as well as their combination. The best recognition accuracies obtained for 20,000 word lexicons are 87.13 percent for Devanagari when the two recognizers are combined, and 91.8 percent for Tamil using the lexicon-driven technique.

  13. Transport Barriers in Bootstrap Driven Tokamaks

    NASA Astrophysics Data System (ADS)

    Staebler, Gary

    2017-10-01

    Maximizing the bootstrap current in a tokamak, so that it drives a high fraction of the total current, reduces the external power required to drive current by other means. Improved energy confinement, relative to empirical scaling laws, enables a reactor to more fully take advantage of the bootstrap driven tokamak. Experiments have demonstrated improved energy confinement due to the spontaneous formation of an internal transport barrier in high bootstrap fraction discharges. Gyrokinetic analysis, and quasilinear predictive modeling, demonstrates that the observed transport barrier is due to the suppression of turbulence primarily due to the large Shafranov shift. ExB velocity shear does not play a significant role in the transport barrier due to the high safety factor. It will be shown, that the Shafranov shift can produce a bifurcation to improved confinement in regions of positive magnetic shear or a continuous reduction in transport for weak or negative magnetic shear. Operation at high safety factor lowers the pressure gradient threshold for the Shafranov shift driven barrier formation. The ion energy transport is reduced to neoclassical and electron energy and particle transport is reduced, but still turbulent, within the barrier. Deeper into the plasma, very large levels of electron transport are observed. The observed electron temperature profile is shown to be close to the threshold for the electron temperature gradient (ETG) mode. A large ETG driven energy transport is qualitatively consistent with recent multi-scale gyrokinetic simulations showing that reducing the ion scale turbulence can lead to large increase in the electron scale transport. A new saturation model for the quasilinear TGLF transport code, that fits these multi-scale gyrokinetic simulations, can match the data if the impact of zonal flow mixing on the ETG modes is reduced at high safety factor. This work was supported by the U.S. Department of Energy under DE-FG02-95ER54309 and DE-FC02

  14. Diffusion Driven Combustion Waves in Porous Media

    NASA Technical Reports Server (NTRS)

    Aldushin, A. P.; Matkowsky, B. J.

    2000-01-01

    Filtration of gas containing oxidizer, to the reaction zone in a porous medium, due, e.g., to a buoyancy force or to an external pressure gradient, leads to the propagation of Filtration combustion (FC) waves. The exothermic reaction occurs between the fuel component of the solid matrix and the oxidizer. In this paper, we analyze the ability of a reaction wave to propagate in a porous medium without the aid of filtration. We find that one possible mechanism of propagation is that the wave is driven by diffusion of oxidizer from the environment. The solution of the combustion problem describing diffusion driven waves is similar to the solution of the Stefan problem describing the propagation of phase transition waves, in that the temperature on the interface between the burned and unburned regions is constant, the combustion wave is described by a similarity solution which is a function of the similarity variable x/square root of(t) and the wave velocity decays as 1/square root of(t). The difference between the two problems is that in the combustion problem the temperature is not prescribed, but rather, is determined as part of the solution. We will show that the length of samples in which such self-sustained combustion waves can occur, must exceed a critical value which strongly depends on the combustion temperature T(sub b). Smaller values of T(sub b) require longer sample lengths for diffusion driven combustion waves to exist. Because of their relatively small velocity, diffusion driven waves are considered to be relevant for the case of low heat losses, which occur for large diameter samples or in microgravity conditions, Another possible mechanism of porous medium combustion describes waves which propagate by consuming the oxidizer initially stored in the pores of the sample. This occurs for abnormally high pressure and gas density. In this case, uniformly propagating planar waves, which are kinetically controlled, can propagate, Diffusion of oxidizer decreases

  15. Watchable Wildlife and Demand-Driven General Education

    ERIC Educational Resources Information Center

    Alley, Richard B.

    2013-01-01

    The societal benefits of an educated citizenry may be lost if "customers" at tuition-driven universities demand less of what they pay for because they value a credential more than the education it represents. Insights from potential employers may help students see the value of education and demand their money's worth.

  16. Enhancing Extensive Reading with Data-Driven Learning

    ERIC Educational Resources Information Center

    Hadley, Gregory; Charles, Maggie

    2017-01-01

    This paper investigates using data-driven learning (DDL) as a means of stimulating greater lexicogrammatical knowledge and reading speed among lower proficiency learners in an extensive reading program. For 16 weekly 90-minute sessions, an experimental group (12 students) used DDL materials created from a corpus developed from the Oxford Bookworms…

  17. Mouse Driven Window Graphics for Network Teaching.

    ERIC Educational Resources Information Center

    Makinson, G. J.; And Others

    Computer enhanced teaching of computational mathematics on a network system driving graphics terminals is being redeveloped for a mouse-driven, high resolution, windowed environment of a UNIX work station. Preservation of the features of networked access by heterogeneous terminals is provided by the use of the X Window environment. A dmonstrator…

  18. The intriguing enhancement of chloroperoxidase mediated one-electron oxidations by azide, a known active-site ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew, Daniel; Hager, Lowell; Manoj, Kelath Murali, E-mail: muralimanoj@vit.ac.in

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Azide is a well known heme-enzyme active site ligand and inhibitor. Black-Right-Pointing-Pointer Herein, azide is reported to enhance a set of heme-enzyme mediated reactions. Black-Right-Pointing-Pointer This effect is disconnected from native enzyme-azide binding. Black-Right-Pointing-Pointer Azide could enhance heme-enzyme reactions via a newly proposed mechanism. Black-Right-Pointing-Pointer Azide contained in reagents could impact reaction outcomes in redox biochemistry. -- Abstract: Azide is a well-known inhibitor of heme-enzymes. Herein, we report the counter-intuitive observation that at some concentration regimes, incorporation of azide in the reaction medium enhances chloroperoxidase (CPO, a heme-enzyme) mediated one-electron abstractions from several substrates. A diffusible azidyl radicalmore » based mechanism is proposed for explaining the phenomenon. Further, it is projected that the finding could have significant impact on routine in situ or in vitro biochemistry studies involving heme-enzyme systems and azide.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Ming-Liang, E-mail: mingliang0301@163.com

    Dynamics of disentanglement as measured by the tripartite negativity and Bell nonlocality as measured by the extent of violation of the multipartite Bell-type inequalities are investigated in this work. It is shown definitively that for the initial three-qubit Greenberger-Horne-Zeilinger (GHZ) or W class state preparation, the Bell nonlocality suffers sudden death under the influence of thermal reservoirs. Moreover, all the Bell-nonlocal states are useful for nonclassical teleportation, while there are entangled states that do not violate any Bell-type inequalities, but still yield nonclassical teleportation fidelity. - Highlights: Black-Right-Pointing-Pointer Comparison of different aspects of quantum correlations. Black-Right-Pointing-Pointer Robustness of the initialmore » tripartite GHZ and W class states against decoherence. Black-Right-Pointing-Pointer Bell-nonlocality sudden death under the influence of thermal reservoir. Black-Right-Pointing-Pointer A nonzero minimum tripartite negativity is needed for nonclassical teleportation. Black-Right-Pointing-Pointer All the Bell-nonlocal states yield nonclassical teleportation fidelity.« less

  20. Arc-driven rail accelerator research

    NASA Technical Reports Server (NTRS)

    Ray, Pradosh K.

    1987-01-01

    Arc-driven rail accelerator research is analyzed by considering wall ablation and viscous drag in the plasma. Plasma characteristics are evaluated through a simple fluid-mechanical analysis considering only wall ablation. By equating the energy dissipated in the plasma with the radiation heat loss, the average properties of the plasma are determined as a function of time and rate of ablation. Locations of two simultaneously accelerating arcs were determined by optical and magnetic probes and fron streak camera photographs. All three measurements provide consistent results.

  1. Spin and topological order in a periodically driven spin chain

    NASA Astrophysics Data System (ADS)

    Russomanno, Angelo; Friedman, Bat-el; Dalla Torre, Emanuele G.

    2017-07-01

    The periodically driven quantum Ising chain has recently attracted a large attention in the context of Floquet engineering. In addition to the common paramagnet and ferromagnet, this driven model can give rise to new topological phases. In this work, we systematically explore its quantum phase diagram by examining the properties of its Floquet ground state. We specifically focus on driving protocols with time-reversal invariant points, and demonstrate the existence of an infinite number of distinct phases. These phases are separated by second-order quantum phase transitions, accompanied by continuous changes of local and string order parameters, as well as sudden changes of a topological winding number and of the number of protected edge states. When one of these phase transitions is adiabatically crossed, the correlator associated to the order parameter is nonvanishing over a length scale which shows a Kibble-Zurek scaling. In some phases, the Floquet ground state spontaneously breaks the discrete time-translation symmetry of the Hamiltonian. Our findings provide a better understanding of topological phases in periodically driven clean integrable models.

  2. Dynamics of antiferromagnetic skyrmion driven by the spin Hall effect

    NASA Astrophysics Data System (ADS)

    Jin, Chendong; Song, Chengkun; Wang, Jianbo; Liu, Qingfang

    2016-10-01

    Magnetic skyrmion moved by the spin-Hall effect is promising for the application of the generation racetrack memories. However, the Magnus force causes a deflected motion of skyrmion, which limits its application. Here, we create an antiferromagnetic skyrmion by injecting a spin-polarized pulse in the nanostripe and investigate the spin Hall effect-induced motion of antiferromagnetic skyrmion by micromagnetic simulations. In contrast to ferromagnetic skyrmion, we find that the antiferromagnetic skyrmion has three evident advantages: (i) the minimum driving current density of antiferromagnetic skyrmion is about two orders smaller than the ferromagnetic skyrmion; (ii) the velocity of the antiferromagnetic skyrmion is about 57 times larger than the ferromagnetic skyrmion driven by the same value of current density; (iii) antiferromagnetic skyrmion can be driven by the spin Hall effect without the influence of Magnus force. In addition, antiferromagnetic skyrmion can move around the pinning sites due to its property of topological protection. Our results present the understanding of antiferromagnetic skyrmion motion driven by the spin Hall effect and may also contribute to the development of antiferromagnetic skyrmion-based racetrack memories.

  3. Design of pressure-driven microfluidic networks using electric circuit analogy.

    PubMed

    Oh, Kwang W; Lee, Kangsun; Ahn, Byungwook; Furlani, Edward P

    2012-02-07

    This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.

  4. Electrically-driven GHz range ultrafast graphene light emitter (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Youngduck; Gao, Yuanda; Shiue, Ren-Jye; Wang, Lei; Aslan, Ozgur Burak; Kim, Hyungsik; Nemilentsau, Andrei M.; Low, Tony; Taniguchi, Takashi; Watanabe, Kenji; Bae, Myung-Ho; Heinz, Tony F.; Englund, Dirk R.; Hone, James

    2017-02-01

    Ultrafast electrically driven light emitter is a critical component in the development of the high bandwidth free-space and on-chip optical communications. Traditional semiconductor based light sources for integration to photonic platform have therefore been heavily studied over the past decades. However, there are still challenges such as absence of monolithic on-chip light sources with high bandwidth density, large-scale integration, low-cost, small foot print, and complementary metal-oxide-semiconductor (CMOS) technology compatibility. Here, we demonstrate the first electrically driven ultrafast graphene light emitter that operate up to 10 GHz bandwidth and broadband range (400 1600 nm), which are possible due to the strong coupling of charge carriers in graphene and surface optical phonons in hBN allow the ultrafast energy and heat transfer. In addition, incorporation of atomically thin hexagonal boron nitride (hBN) encapsulation layers enable the stable and practical high performance even under the ambient condition. Therefore, electrically driven ultrafast graphene light emitters paves the way towards the realization of ultrahigh bandwidth density photonic integrated circuits and efficient optical communications networks.

  5. Alternating Current Driven Organic Light Emitting Diodes Using Lithium Fluoride Insulating Layers

    PubMed Central

    Liu, Shang-Yi; Chang, Jung-Hung; -Wen Wu, I.; Wu, Chih-I

    2014-01-01

    We demonstrate an alternating current (AC)-driven organic light emitting diodes (OLED) with lithium fluoride (LiF) insulating layers fabricated using simple thermal evaporation. Thermal evaporated LiF provides high stability and excellent capacitance for insulating layers in AC devices. The device requires a relatively low turn-on voltage of 7.1 V with maximum luminance of 87 cd/m2 obtained at 10 kHz and 15 Vrms. Ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy are employed simultaneously to examine the electronic band structure of the materials in AC-driven OLED and to elucidate the operating mechanism, optical properties and electrical characteristics. The time-resolved luminance is also used to verify the device performance when driven by AC voltage. PMID:25523436

  6. Singing-driven gene expression in the developing songbird brain

    PubMed Central

    Johnson, Frank; Whitney, Osceola

    2014-01-01

    Neural and behavioral development arises from an integration of genetic and environmental influences, yet specifying the nature of this interaction remains a primary problem in neuroscience. Here, we review molecular and behavioral studies that focus on the role of singing-driven gene expression during neural and vocal development in the male zebra finch (Taeniopygia guttata), a songbird that learns a species-typical vocal pattern during juvenile development by imitating an adult male tutor. A primary aim of our lab has been to identify naturally-occurring environmental influences that shape the propensity to sing. This ethological approach underlies our theoretical perspective, which is to integrate the significance of singing-driven gene expression into a broader ecological context. PMID:16129463

  7. Stimulus-driven attentional capture by subliminal onset cues.

    PubMed

    Schoeberl, Tobias; Fuchs, Isabella; Theeuwes, Jan; Ansorge, Ulrich

    2015-04-01

    In two experiments, we tested whether subliminal abrupt onset cues capture attention in a stimulus-driven way. An onset cue was presented 16 ms prior to the stimulus display that consisted of clearly visible color targets. The onset cue was presented either at the same side as the target (the valid cue condition) or on the opposite side of the target (the invalid cue condition). Because the onset cue was presented 16 ms before other placeholders were presented, the cue was subliminal to the participant. To ensure that this subliminal cue captured attention in a stimulus-driven way, the cue's features did not match the top-down attentional control settings of the participants: (1) The color of the cue was always different than the color of the non-singleton targets ensuring that a top-down set for a specific color or for a singleton would not match the cue, and (2) colored targets and distractors had the same objective luminance (measured by the colorimeter) and subjective lightness (measured by flicker photometry), preventing a match between the top-down set for target and cue contrast. Even though a match between the cues and top-down settings was prevented, in both experiments, the cues captured attention, with faster response times in valid than invalid cue conditions (Experiments 1 and 2) and faster response times in valid than the neutral conditions (Experiment 2). The results support the conclusion that subliminal cues capture attention in a stimulus-driven way.

  8. Retrospective data-driven respiratory gating for PET/CT

    NASA Astrophysics Data System (ADS)

    Schleyer, Paul J.; O'Doherty, Michael J.; Barrington, Sally F.; Marsden, Paul K.

    2009-04-01

    Respiratory motion can adversely affect both PET and CT acquisitions. Respiratory gating allows an acquisition to be divided into a series of motion-reduced bins according to the respiratory signal, which is typically hardware acquired. In order that the effects of motion can potentially be corrected for, we have developed a novel, automatic, data-driven gating method which retrospectively derives the respiratory signal from the acquired PET and CT data. PET data are acquired in listmode and analysed in sinogram space, and CT data are acquired in cine mode and analysed in image space. Spectral analysis is used to identify regions within the CT and PET data which are subject to respiratory motion, and the variation of counts within these regions is used to estimate the respiratory signal. Amplitude binning is then used to create motion-reduced PET and CT frames. The method was demonstrated with four patient datasets acquired on a 4-slice PET/CT system. To assess the accuracy of the data-derived respiratory signal, a hardware-based signal was acquired for comparison. Data-driven gating was successfully performed on PET and CT datasets for all four patients. Gated images demonstrated respiratory motion throughout the bin sequences for all PET and CT series, and image analysis and direct comparison of the traces derived from the data-driven method with the hardware-acquired traces indicated accurate recovery of the respiratory signal.

  9. How much are Chevrolet Volts in The EV Project driven in EV Mode?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smart, John

    2013-08-01

    This report summarizes key conclusions from analysis of data collected from Chevrolet Volts participating in The EV Project. Topics include how many miles are driven in EV mode, how far vehicles are driven between charging events, and how much energy is charged from the electric grid per charging event.

  10. Broad phonetic class definition driven by phone confusions

    NASA Astrophysics Data System (ADS)

    Lopes, Carla; Perdigão, Fernando

    2012-12-01

    Intermediate representations between the speech signal and phones may be used to improve discrimination among phones that are often confused. These representations are usually found according to broad phonetic classes, which are defined by a phonetician. This article proposes an alternative data-driven method to generate these classes. Phone confusion information from the analysis of the output of a phone recognition system is used to find clusters at high risk of mutual confusion. A metric is defined to compute the distance between phones. The results, using TIMIT data, show that the proposed confusion-driven phone clustering method is an attractive alternative to the approaches based on human knowledge. A hierarchical classification structure to improve phone recognition is also proposed using a discriminative weight training method. Experiments show improvements in phone recognition on the TIMIT database compared to a baseline system.

  11. Data-Driven H∞ Control for Nonlinear Distributed Parameter Systems.

    PubMed

    Luo, Biao; Huang, Tingwen; Wu, Huai-Ning; Yang, Xiong

    2015-11-01

    The data-driven H∞ control problem of nonlinear distributed parameter systems is considered in this paper. An off-policy learning method is developed to learn the H∞ control policy from real system data rather than the mathematical model. First, Karhunen-Loève decomposition is used to compute the empirical eigenfunctions, which are then employed to derive a reduced-order model (ROM) of slow subsystem based on the singular perturbation theory. The H∞ control problem is reformulated based on the ROM, which can be transformed to solve the Hamilton-Jacobi-Isaacs (HJI) equation, theoretically. To learn the solution of the HJI equation from real system data, a data-driven off-policy learning approach is proposed based on the simultaneous policy update algorithm and its convergence is proved. For implementation purpose, a neural network (NN)- based action-critic structure is developed, where a critic NN and two action NNs are employed to approximate the value function, control, and disturbance policies, respectively. Subsequently, a least-square NN weight-tuning rule is derived with the method of weighted residuals. Finally, the developed data-driven off-policy learning approach is applied to a nonlinear diffusion-reaction process, and the obtained results demonstrate its effectiveness.

  12. Simulations of material mixing in laser-driven reshock experiments

    NASA Astrophysics Data System (ADS)

    Haines, Brian M.; Grinstein, Fernando F.; Welser-Sherrill, Leslie; Fincke, James R.

    2013-02-01

    We perform simulations of a laser-driven reshock experiment [Welser-Sherrill et al., High Energy Density Phys. (unpublished)] in the strong-shock high energy-density regime to better understand material mixing driven by the Richtmyer-Meshkov instability. Validation of the simulations is based on direct comparison of simulation and radiographic data. Simulations are also compared with published direct numerical simulation and the theory of homogeneous isotropic turbulence. Despite the fact that the flow is neither homogeneous, isotropic nor fully turbulent, there are local regions in which the flow demonstrates characteristics of homogeneous isotropic turbulence. We identify and isolate these regions by the presence of high levels of turbulent kinetic energy (TKE) and vorticity. After reshock, our analysis shows characteristics consistent with those of incompressible isotropic turbulence. Self-similarity and effective Reynolds number assessments suggest that the results are reasonably converged at the finest resolution. Our results show that in shock-driven transitional flows, turbulent features such as self-similarity and isotropy only fully develop once de-correlation, characteristic vorticity distributions, and integrated TKE, have decayed significantly. Finally, we use three-dimensional simulation results to test the performance of two-dimensional Reynolds-averaged Navier-Stokes simulations. In this context, we also test a presumed probability density function turbulent mixing model extensively used in combustion applications.

  13. A Study on a Microwave-Driven Smart Material Actuator

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Chu, Sang-Hyon; Kwak, M.; Cutler, A. D.

    2001-01-01

    NASA s Next Generation Space Telescope (NGST) has a large deployable, fragmented optical surface (greater than or = 2 8 m in diameter) that requires autonomous correction of deployment misalignments and thermal effects. Its high and stringent resolution requirement imposes a great deal of challenge for optical correction. The threshold value for optical correction is dictated by lambda/20 (30 nm for NGST optics). Control of an adaptive optics array consisting of a large number of optical elements and smart material actuators is so complex that power distribution for activation and control of actuators must be done by other than hard-wired circuitry. The concept of microwave-driven smart actuators is envisioned as the best option to alleviate the complexity associated with hard-wiring. A microwave-driven actuator was studied to realize such a concept for future applications. Piezoelectric material was used as an actuator that shows dimensional change with high electric field. The actuators were coupled with microwave rectenna and tested to correlate the coupling effect of electromagnetic wave. In experiments, a 3x3 rectenna patch array generated more than 50 volts which is a threshold voltage for 30-nm displacement of a single piezoelectric material. Overall, the test results indicate that the microwave-driven actuator concept can be adopted for NGST applications.

  14. Automated control of hierarchical systems using value-driven methods

    NASA Technical Reports Server (NTRS)

    Pugh, George E.; Burke, Thomas E.

    1990-01-01

    An introduction is given to the Value-driven methodology, which has been successfully applied to solve a variety of difficult decision, control, and optimization problems. Many real-world decision processes (e.g., those encountered in scheduling, allocation, and command and control) involve a hierarchy of complex planning considerations. For such problems it is virtually impossible to define a fixed set of rules that will operate satisfactorily over the full range of probable contingencies. Decision Science Applications' value-driven methodology offers a systematic way of automating the intuitive, common-sense approach used by human planners. The inherent responsiveness of value-driven systems to user-controlled priorities makes them particularly suitable for semi-automated applications in which the user must remain in command of the systems operation. Three examples of the practical application of the approach in the automation of hierarchical decision processes are discussed: the TAC Brawler air-to-air combat simulation is a four-level computerized hierarchy; the autonomous underwater vehicle mission planning system is a three-level control system; and the Space Station Freedom electrical power control and scheduling system is designed as a two-level hierarchy. The methodology is compared with rule-based systems and with other more widely-known optimization techniques.

  15. KNMI DataLab experiences in serving data-driven innovations

    NASA Astrophysics Data System (ADS)

    Noteboom, Jan Willem; Sluiter, Raymond

    2016-04-01

    Climate change research and innovations in weather forecasting rely more and more on (Big) data. Besides increasing data from traditional sources (such as observation networks, radars and satellites), the use of open data, crowd sourced data and the Internet of Things (IoT) is emerging. To deploy these sources of data optimally in our services and products, KNMI has established a DataLab to serve data-driven innovations in collaboration with public and private sector partners. Big data management, data integration, data analytics including machine learning and data visualization techniques are playing an important role in the DataLab. Cross-domain data-driven innovations that arise from public-private collaborative projects and research programmes can be explored, experimented and/or piloted by the KNMI DataLab. Furthermore, advice can be requested on (Big) data techniques and data sources. In support of collaborative (Big) data science activities, scalable environments are offered with facilities for data integration, data analysis and visualization. In addition, Data Science expertise is provided directly or from a pool of internal and external experts. At the EGU conference, gained experiences and best practices are presented in operating the KNMI DataLab to serve data-driven innovations for weather and climate applications optimally.

  16. Light-driven photosensitizer uptake increases Candida albicans photodynamic inactivation.

    PubMed

    Romano, Renan A; Pratavieira, Sebastião; Silva, Ana P da; Kurachi, Cristina; Guimarães, Francisco E G

    2017-11-01

    Photodynamic Inactivation (PDI) is based on the use of a photosensitizer (PS) and light that results mainly in the production of reactive oxygen species, aiming to produce microorganism cell death. PS incubation time and light dose are key protocol parameters that influence PDI response; the correct choice of them can increase the efficiency of inactivation. The results of this study show that a minor change in the PDI protocol, namely light-driven incubation leads to a higher photosensitizer and more uniform cell uptake inside the irradiated zone. Furthermore, as the uptake increases, the damage caused by PDI also increases. The proposed light-driven incubation prior to the inactivation illumination dose has advantages when compared to the traditional PDI treatments since it can be more selective and effective. Using a violet light as pre-illumination (light-driven incubation) source and a red-light system as PDI source, it was possible to demonstrate that when compared to the traditional protocol of dark incubation, the pre-illuminated cell culture showed an inactivation increase of 7 log units. These in vitro results performed in Candida albicans cells may result in the introduction of a new protocol for PDI. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dynamics of nonautonomous rogue waves in Bose-Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Li-Chen, E-mail: zhaolichen3@163.com

    2013-02-15

    We study rogue waves of Bose-Einstein condensate (BEC) analytically in a time-dependent harmonic trap with a complex potential. Properties of the nonautonomous rogue waves are investigated analytically. It is reported that there are possibilities to 'catch' rogue waves through manipulating nonlinear interaction properly. The results provide many possibilities to manipulate rogue waves experimentally in a BEC system. - Highlights: Black-Right-Pointing-Pointer One more generalized rogue wave solutions are presented. Black-Right-Pointing-Pointer Present one possible way to catch a rouge wave. Black-Right-Pointing-Pointer Properties of rogue waves are investigated analytically for the first time. Black-Right-Pointing-Pointer Provide many possibilities to manipulate rogue waves in BEC.

  18. Dynamic recrystallization in friction surfaced austenitic stainless steel coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puli, Ramesh, E-mail: rameshpuli2000@gmail.com; Janaki Ram, G.D.

    2012-12-15

    Friction surfacing involves complex thermo-mechanical phenomena. In this study, the nature of dynamic recrystallization in friction surfaced austenitic stainless steel AISI 316L coatings was investigated using electron backscattered diffraction and transmission electron microscopy. The results show that the alloy 316L undergoes discontinuous dynamic recrystallization under conditions of moderate Zener-Hollomon parameter during friction surfacing. - Highlights: Black-Right-Pointing-Pointer Dynamic recrystallization in alloy 316L friction surfaced coatings is examined. Black-Right-Pointing-Pointer Friction surfacing leads to discontinuous dynamic recrystallization in alloy 316L. Black-Right-Pointing-Pointer Strain rates in friction surfacing exceed 400 s{sup -1}. Black-Right-Pointing-Pointer Estimated grain size matches well with experimental observations in 316L coatings.

  19. Variance Estimation, Design Effects, and Sample Size Calculations for Respondent-Driven Sampling

    PubMed Central

    2006-01-01

    Hidden populations, such as injection drug users and sex workers, are central to a number of public health problems. However, because of the nature of these groups, it is difficult to collect accurate information about them, and this difficulty complicates disease prevention efforts. A recently developed statistical approach called respondent-driven sampling improves our ability to study hidden populations by allowing researchers to make unbiased estimates of the prevalence of certain traits in these populations. Yet, not enough is known about the sample-to-sample variability of these prevalence estimates. In this paper, we present a bootstrap method for constructing confidence intervals around respondent-driven sampling estimates and demonstrate in simulations that it outperforms the naive method currently in use. We also use simulations and real data to estimate the design effects for respondent-driven sampling in a number of situations. We conclude with practical advice about the power calculations that are needed to determine the appropriate sample size for a study using respondent-driven sampling. In general, we recommend a sample size twice as large as would be needed under simple random sampling. PMID:16937083

  20. Visualization-based decision support for value-driven system design

    NASA Astrophysics Data System (ADS)

    Tibor, Elliott

    In the past 50 years, the military, communication, and transportation systems that permeate our world, have grown exponentially in size and complexity. The development and production of these systems has seen ballooning costs and increased risk. This is particularly critical for the aerospace industry. The inability to deal with growing system complexity is a crippling force in the advancement of engineered systems. Value-Driven Design represents a paradigm shift in the field of design engineering that has potential to help counteract this trend. The philosophy of Value-Driven Design places the desires of the stakeholder at the forefront of the design process to capture true preferences and reveal system alternatives that were never previously thought possible. Modern aerospace engineering design problems are large, complex, and involve multiple levels of decision-making. To find the best design, the decision-maker is often required to analyze hundreds or thousands of combinations of design variables and attributes. Visualization can be used to support these decisions, by communicating large amounts of data in a meaningful way. Understanding the design space, the subsystem relationships, and the design uncertainties is vital to the advancement of Value-Driven Design as an accepted process for the development of more effective, efficient, robust, and elegant aerospace systems. This research investigates the use of multi-dimensional data visualization tools to support decision-making under uncertainty during the Value-Driven Design process. A satellite design system comprising a satellite, ground station, and launch vehicle is used to demonstrate effectiveness of new visualization methods to aid in decision support during complex aerospace system design. These methods are used to facilitate the exploration of the feasible design space by representing the value impact of system attribute changes and comparing the results of multi-objective optimization formulations