Science.gov

Sample records for poised lineage specification

  1. Matrix elasticity directs stem cell lineage specification

    NASA Astrophysics Data System (ADS)

    Discher, Dennis

    2010-03-01

    Adhesion of stem cells - like most cells - is not just a membrane phenomenon. Most tissue cells need to adhere to a ``solid'' for viability, and over the last decade it has become increasingly clear that the physical ``elasticity'' of that solid is literally ``felt'' by cells. Here we show that Mesenchymal Stem Cells (MSCs) specify lineage and commit to phenotypes with extreme sensitivity to the elasticity typical of tissues [1]. In serum only media, soft matrices that mimic brain appear neurogenic, stiffer matrices that mimic muscle are myogenic, and comparatively rigid matrices that mimic collagenous bone prove osteogenic. Inhibition of nonmuscle myosin II activity blocks all elasticity directed lineage specification, which indicates that the cytoskeleton pulls on matrix through adhesive attachments. Results have significant implications for `therapeutic' stem cells and have motivated development of a proteomic-scale method to identify mechano-responsive protein structures [2] as well as deeper physical studies of matrix physics [3] and growth factor pathways [4]. [4pt] [1] A. Engler, et al. Matrix elasticity directs stem cell lineage specification. Cell (2006).[0pt] [2] C.P. Johnson, et al. Forced unfolding of proteins within cells. Science (2007).[0pt] [3] A.E.X. Brown, et al. Multiscale mechanics of fibrin polymer: Gel stretching with protein unfolding and loss of water. Science (2009).[0pt] [4] D.E. Discher, et al. Growth factors, matrices, and forces combine and control stem cells. Science (2009).

  2. Digital development: a database of cell lineage differentiation in C. elegans with lineage phenotypes, cell-specific gene functions and a multiscale model

    PubMed Central

    Santella, Anthony; Kovacevic, Ismar; Herndon, Laura A.; Hall, David H.; Du, Zhuo; Bao, Zhirong

    2016-01-01

    Developmental systems biology is poised to exploit large-scale data from two approaches: genomics and live imaging. The combination of the two offers the opportunity to map gene functions and gene networks in vivo at single-cell resolution using cell tracking and quantification of cellular phenotypes. Here we present Digital Development (http://www.digital-development.org), a database of cell lineage differentiation with curated phenotypes, cell-specific gene functions and a multiscale model. The database stores data from recent systematic studies of cell lineage differentiation in the C. elegans embryo containing ∼200 conserved genes, 1400 perturbed cell lineages and 600 000 digitized single cells. Users can conveniently browse, search and download four categories of phenotypic and functional information from an intuitive web interface. This information includes lineage differentiation phenotypes, cell-specific gene functions, differentiation landscapes and fate choices, and a multiscale model of lineage differentiation. Digital Development provides a comprehensive, curated, multidimensional database for developmental biology. The scale, resolution and richness of biological information presented here facilitate exploration of gene-specific and systems-level mechanisms of lineage differentiation in Metazoans. PMID:26503254

  3. Phylogenetic plant community structure along elevation is lineage specific

    PubMed Central

    Ndiribe, Charlotte; Pellissier, Loïc; Antonelli, Silvia; Dubuis, Anne; Pottier, Julien; Vittoz, Pascal; Guisan, Antoine; Salamin, Nicolas

    2013-01-01

    The trend of closely related taxa to retain similar environmental preferences mediated by inherited traits suggests that several patterns observed at the community scale originate from longer evolutionary processes. While the effects of phylogenetic relatedness have been previously studied within a single genus or family, lineage-specific effects on the ecological processes governing community assembly have rarely been studied for entire communities or flora. Here, we measured how community phylogenetic structure varies across a wide elevation gradient for plant lineages represented by 35 families, using a co-occurrence index and net relatedness index (NRI). We propose a framework that analyses each lineage separately and reveals the trend of ecological assembly at tree nodes. We found prevailing phylogenetic clustering for more ancient nodes and overdispersion in more recent tree nodes. Closely related species may thus rapidly evolve new environmental tolerances to radiate into distinct communities, while older lineages likely retain inherent environmental tolerances to occupy communities in similar environments, either through efficient dispersal mechanisms or the exclusion of older lineages with more divergent environmental tolerances. Our study illustrates the importance of disentangling the patterns of community assembly among lineages to better interpret the ecological role of traits. It also sheds light on studies reporting absence of phylogenetic signal, and opens new perspectives on the analysis of niche and trait conservatism across lineages. PMID:24455126

  4. Inferring Gene Family Histories in Yeast Identifies Lineage Specific Expansions

    PubMed Central

    Ames, Ryan M.; Money, Daniel; Lovell, Simon C.

    2014-01-01

    The complement of genes found in the genome is a balance between gene gain and gene loss. Knowledge of the specific genes that are gained and lost over evolutionary time allows an understanding of the evolution of biological functions. Here we use new evolutionary models to infer gene family histories across complete yeast genomes; these models allow us to estimate the relative genome-wide rates of gene birth, death, innovation and extinction (loss of an entire family) for the first time. We show that the rates of gene family evolution vary both between gene families and between species. We are also able to identify those families that have experienced rapid lineage specific expansion/contraction and show that these families are enriched for specific functions. Moreover, we find that families with specific functions are repeatedly expanded in multiple species, suggesting the presence of common adaptations and that these family expansions/contractions are not random. Additionally, we identify potential specialisations, unique to specific species, in the functions of lineage specific expanded families. These results suggest that an important mechanism in the evolution of genome content is the presence of lineage-specific gene family changes. PMID:24921666

  5. Multilayered specification of the T-cell lineage fate

    PubMed Central

    Rothenberg, Ellen V.; Zhang, Jingli; Li, Long

    2010-01-01

    Summary T-cell development from stem cells has provided a highly accessible and detailed view of the regulatory processes that can go into the choice of a cell fate in a postembryonic, stem cell-based system. But, it has been a view from the outside. The problems in understanding the regulatory basis for this lineage choice begin with the fact that too many transcription factors are needed to provide crucial input: without any one of them, T-cell development fails. Furthermore, almost all the factors known to provide crucial functions during the climax of T-lineage commitment itself are also vital for earlier functions that establish the pool of multilineage precursors that would normally feed into the T-cell specification process. When the regulatory genes that encode them are mutated, the confounding effects on earlier stages make it difficult to dissect T-cell specification genetically. Yet both the positive and the negative regulatory events involved in the choice of a T-cell fate are actually a mosaic of distinct functions. New evidence has emerged recently that finally provides a way to separate the major components that fit together to drive this process. Here, we review insights into T-cell specification and commitment that emerge from a combination of molecular, cellular, and systems biology approaches. The results reveal the regulatory structure underlying this lineage decision. PMID:20969591

  6. Principles Governing DNA Methylation during Neuronal Lineage and Subtype Specification

    PubMed Central

    Sharma, Ali; Klein, Shifra S.; Barboza, Luendreo; Lohdi, Niraj

    2016-01-01

    Although comprehensively described during early neuronal development, the role of DNA methylation/demethylation in neuronal lineage and subtype specification is not well understood. By studying two distinct neuronal progenitors as they differentiate to principal neurons in mouse hippocampus and striatum, we uncovered several principles governing neuronal DNA methylation during brain development. (1) The program consists of three stages: an initial genome-wide methylation during progenitor proliferation is followed by loss of methylation during the transition of regional progenitors to “young” hippocampal/striatal neurons, which is then reversed by gain in methylation during maturation to subtype-specific neurons. (2) At the first two stages, gain and loss of methylation are limited to CpGs, whereas during the third maturation stage, methylation also occurs at non-CpG sites in both lineages. (3) Methylation/demethylation, similar to transcription, are initially highly similar in the two lineages, whereas diversification in methylation and transcription during maturation creates subtype-specific methylation differences. (4) Initially, methylation targets all genomic locations, whereas later, during early and late differentiation, the preferred targets are intronic/intergenic sequences with enhancer-like activity. (5) Differentially methylated genes are enriched in sequential neurodevelopmental functions (such as progenitor proliferation, migration, neuritogenesis, and synaptic transmission); upregulated genes represent current and consecutive stage-specific functions, and downregulated genes represent preceding functions that are no longer required. The main conclusion of our work is that the neuronal methylation/demethylation program is predominantly developmental with minimal lineage specificity, except in the final stage of development when neuron subtype-specific differences also emerge. SIGNIFICANCE STATEMENT Our work is the first to describe a set of

  7. Mapping the route from naive pluripotency to lineage specification.

    PubMed

    Kalkan, Tüzer; Smith, Austin

    2014-12-01

    In the mouse blastocyst, epiblast cells are newly formed shortly before implantation. They possess a unique developmental plasticity, termed naive pluripotency. For development to proceed, this naive state must be subsumed by multi-lineage differentiation within 72 h following implantation. In vitro differentiation of naive embryonic stem cells (ESCs) cultured in controlled conditions provides a tractable system to dissect and understand the process of exit from naive pluripotency and entry into lineage specification. Exploitation of this system in recent large-scale RNAi and mutagenesis screens has uncovered multiple new factors and modules that drive or facilitate progression out of the naive state. Notably, these studies show that the transcription factor network that governs the naive state is rapidly dismantled prior to upregulation of lineage specification markers, creating an intermediate state that we term formative pluripotency. Here, we summarize these findings and propose a road map for state transitions in ESC differentiation that reflects the orderly dynamics of epiblast progression in the embryo. PMID:25349449

  8. Multiple lineage specific expansions within the guanylyl cyclase gene family

    PubMed Central

    Fitzpatrick, David A; O'Halloran, Damien M; Burnell, Ann M

    2006-01-01

    Background Guanylyl cyclases (GCs) are responsible for the production of the secondary messenger cyclic guanosine monophosphate, which plays important roles in a variety of physiological responses such as vision, olfaction, muscle contraction, homeostatic regulation, cardiovascular and nervous function. There are two types of GCs in animals, soluble (sGCs) which are found ubiquitously in cell cytoplasm, and receptor (rGC) forms which span cell membranes. The complete genomes of several vertebrate and invertebrate species are now available. These data provide a platform to investigate the evolution of GCs across a diverse range of animal phyla. Results In this analysis we located GC genes from a broad spectrum of vertebrate and invertebrate animals and reconstructed molecular phylogenies for both sGC and rGC proteins. The most notable features of the resulting phylogenies are the number of lineage specific rGC and sGC expansions that have occurred during metazoan evolution. Among these expansions is a large nematode specific rGC clade comprising 21 genes in C. elegans alone; a vertebrate specific expansion in the natriuretic receptors GC-A and GC-B; a vertebrate specific expansion in the guanylyl GC-C receptors, an echinoderm specific expansion in the sperm rGC genes and a nematode specific sGC clade. Our phylogenetic reconstruction also shows the existence of a basal group of nitric oxide (NO) insensitive insect and nematode sGCs which are regulated by O2. This suggests that the primordial eukaryotes probably utilized sGC as an O2 sensor, with the ligand specificity of sGC later switching to NO which provides a very effective local cell-to-cell signalling system. Phylogenetic analysis of the sGC and bacterial heme nitric oxide/oxygen binding protein domain supports the hypothesis that this domain originated from a cyanobacterial source. Conclusion The most salient feature of our phylogenies is the number of lineage specific expansions, which have occurred within

  9. Nephric lineage specification by Pax2 and Pax8.

    PubMed

    Bouchard, Maxime; Souabni, Abdallah; Mandler, Markus; Neubüser, Annette; Busslinger, Meinrad

    2002-11-15

    The mammalian kidney develops in three successive steps from the initial pronephros via the mesonephros to the adult metanephros. Although the nephric lineage is specified during pronephros induction, no single regulator, including the transcription factor Pax2 or Pax8, has yet been identified to control this initial phase of kidney development. In this paper, we demonstrate that mouse embryos lacking both Pax2 and Pax8 are unable to form the pronephros or any later nephric structures. In these double-mutant embryos, the intermediate mesoderm does not undergo the mesenchymal-epithelial transitions required for nephric duct formation, fails to initiate the kidney-specific expression of Lim1 and c-Ret, and is lost by apoptosis 1 d after failed pronephric induction. Conversely, retroviral misexpression of Pax2 was sufficient to induce ectopic nephric structures in the intermediate mesoderm and genital ridge of chick embryos. Together, these data identify Pax2 and Pax8 as critical regulators that specify the nephric lineage. PMID:12435636

  10. DLGP: A database for lineage-conserved and lineage-specific gene pairs in animal and plant genomes.

    PubMed

    Wang, Dapeng

    2016-01-15

    The conservation of gene organization in the genome with lineage-specificity is an invaluable resource to decipher their potential functionality with diverse selective constraints, especially in higher animals and plants. Gene pairs appear to be the minimal structure for such kind of gene clusters that tend to reside in their preferred locations, representing the distinctive genomic characteristics in single species or a given lineage. Despite gene families having been investigated in a widespread manner, the definition of gene pair families in various taxa still lacks adequate attention. To address this issue, we report DLGP (http://lcgbase.big.ac.cn/DLGP/) that stores the pre-calculated lineage-based gene pairs in currently available 134 animal and plant genomes and inspect them under the same analytical framework, bringing out a set of innovational features. First, the taxonomy or lineage has been classified into four levels such as Kingdom, Phylum, Class and Order. It adopts all-to-all comparison strategy to identify the possible conserved gene pairs in all species for each gene pair in certain species and reckon those that are conserved in over a significant proportion of species in a given lineage (e.g. Primates, Diptera or Poales) as the lineage-conserved gene pairs. Furthermore, it predicts the lineage-specific gene pairs by retaining the above-mentioned lineage-conserved gene pairs that are not conserved in any other lineages. Second, it carries out pairwise comparison for the gene pairs between two compared species and creates the table including all the conserved gene pairs and the image elucidating the conservation degree of gene pairs in chromosomal level. Third, it supplies gene order browser to extend gene pairs to gene clusters, allowing users to view the evolution dynamics in the gene context in an intuitive manner. This database will be able to facilitate the particular comparison between animals and plants, between vertebrates and arthropods, and

  11. H3K4/H3K9me3 Bivalent Chromatin Domains Targeted by Lineage-Specific DNA Methylation Pauses Adipocyte Differentiation.

    PubMed

    Matsumura, Yoshihiro; Nakaki, Ryo; Inagaki, Takeshi; Yoshida, Ayano; Kano, Yuka; Kimura, Hiroshi; Tanaka, Toshiya; Tsutsumi, Shuichi; Nakao, Mitsuyoshi; Doi, Takefumi; Fukami, Kiyoko; Osborne, Timothy F; Kodama, Tatsuhiko; Aburatani, Hiroyuki; Sakai, Juro

    2015-11-19

    Bivalent H3K4me3 and H3K27me3 chromatin domains in embryonic stem cells keep active developmental regulatory genes expressed at very low levels and poised for activation. Here, we show an alternative and previously unknown bivalent modified histone signature in lineage-committed mesenchymal stem cells and preadipocytes that pairs H3K4me3 with H3K9me3 to maintain adipogenic master regulatory genes (Cebpa and Pparg) expressed at low levels yet poised for activation when differentiation is required. We show lineage-specific gene-body DNA methylation recruits H3K9 methyltransferase SETDB1, which methylates H3K9 immediately downstream of transcription start sites marked with H3K4me3 to establish the bivalent domain. At the Cebpa locus, this prevents transcription factor C/EBPβ binding, histone acetylation, and further H3K4me3 deposition and is associated with pausing of RNA polymerase II, which limits Cebpa gene expression and adipogenesis. PMID:26590716

  12. Neuroblast lineage identification and lineage-specific Hox gene action during postembryonic development of the subesophageal ganglion in the Drosophila central brain.

    PubMed

    Kuert, Philipp A; Hartenstein, Volker; Bello, Bruno C; Lovick, Jennifer K; Reichert, Heinrich

    2014-06-15

    The central brain of Drosophila consists of the supraesophageal ganglion (SPG) and the subesophageal ganglion (SEG), both of which are generated by neural stem cell-like neuroblasts during embryonic and postembryonic development. Considerable information has been obtained on postembryonic development of the neuroblasts and their lineages in the SPG. In contrast, very little is known about neuroblasts, neural lineages, or any other aspect of the postembryonic development in the SEG. Here we characterize the neuroanatomy of the larval SEG in terms of tracts, commissures, and other landmark features as compared to a thoracic ganglion. We then use clonal MARCM labeling to identify all adult-specific neuroblast lineages in the late larval SEG and find a surprisingly small number of neuroblast lineages, 13 paired and one unpaired. The Hox genes Dfd, Scr, and Antp are expressed in a lineage-specific manner in these lineages during postembryonic development. Hox gene loss-of-function causes lineage-specific defects in axonal targeting and reduction in neural cell numbers. Moreover, it results in the formation of novel ectopic neuroblast lineages. Apoptosis block also results in ectopic lineages suggesting that Hox genes are required for lineage-specific termination of proliferation through programmed cell death. Taken together, our findings show that postembryonic development in the SEG is mediated by a surprisingly small set of identified lineages and requires lineage-specific Hox gene action to ensure the correct formation of adult-specific neurons in the Drosophila brain. PMID:24713419

  13. Prospects for T. cruzi lineage-specific serological surveillance of wild mammals.

    PubMed

    Bhattacharyya, Tapan; Mills, Emily A; Jansen, Ana Maria; Miles, Michael A

    2015-11-01

    Sequence diversity in the Trypanosoma cruzi small surface molecule TSSA has yielded antigens for serology to investigate the T. cruzi lineage-specific infection history of patients with Chagas disease. Synthetic peptides can be used as the lineage-specific antigens. Here we consider the rationale, feasibility and potential of applying peptide-based lineage-specific serology to naturally infected wild mammals. The commercial availability of appropriate secondary antibodies encourages this further development, for discovery of new reservoir host species and to reveal the wider ecological distribution of T. cruzi lineages, currently hindered by the need to recover live isolates or to attempt genotyping of DNA extracted from blood samples. PMID:26116784

  14. Genetic and epigenetic variation in the lineage specification of regulatory T cells

    PubMed Central

    Arvey, Aaron; van der Veeken, Joris; Plitas, George; Rich, Stephen S; Concannon, Patrick; Rudensky, Alexander Y

    2015-01-01

    Regulatory T (Treg) cells, which suppress autoimmunity and other inflammatory states, are characterized by a distinct set of genetic elements controlling their gene expression. However, the extent of genetic and associated epigenetic variation in the Treg cell lineage and its possible relation to disease states in humans remain unknown. We explored evolutionary conservation of regulatory elements and natural human inter-individual epigenetic variation in Treg cells to identify the core transcriptional control program of lineage specification. Analysis of single nucleotide polymorphisms in core lineage-specific enhancers revealed disease associations, which were further corroborated by high-resolution genotyping to fine map causal polymorphisms in lineage-specific enhancers. Our findings suggest that a small set of regulatory elements specify the Treg lineage and that genetic variation in Treg cell-specific enhancers may alter Treg cell function contributing to polygenic disease. DOI: http://dx.doi.org/10.7554/eLife.07571.001 PMID:26510014

  15. Lineage-specific genomics: Frequent birth and death in the human genome: The human genome contains many lineage-specific elements created by both sequence and functional turnover.

    PubMed

    Young, Robert S

    2016-07-01

    Frequent evolutionary birth and death events have created a large quantity of biologically important, lineage-specific DNA within mammalian genomes. The birth and death of DNA sequences is so frequent that the total number of these insertions and deletions in the human population remains unknown, although there are differences between these groups, e.g. transposable elements contribute predominantly to sequence insertion. Functional turnover - where the activity of a locus is specific to one lineage, but the underlying DNA remains conserved - can also drive birth and death. However, this does not appear to be a major driver of divergent transcriptional regulation. Both sequence and functional turnover have contributed to the birth and death of thousands of functional promoters in the human and mouse genomes. These findings reveal the pervasive nature of evolutionary birth and death and suggest that lineage-specific regions may play an important but previously underappreciated role in human biology and disease. PMID:27231054

  16. Lineage-affiliated transcription factors bind the Gata3 Tce1 enhancer to mediate lineage-specific programs

    PubMed Central

    Ohmura, Sakie; Mizuno, Seiya; Oishi, Hisashi; Ku, Chia-Jui; Hermann, Mary; Hosoya, Tomonori; Takahashi, Satoru; Engel, James Douglas

    2016-01-01

    The transcription factor GATA3 is essential for the genesis and maturation of the T cell lineage, and GATA3 dysregulation has pathological consequences. Previous studies have shown that GATA3 function in T cell development is regulated by multiple signaling pathways and that the Notch nuclear effector, RBP-J, binds specifically to the Gata3 promoter. We previously identified a T cell–specific Gata3 enhancer (Tce1) lying 280 kb downstream from the structural gene and demonstrated in transgenic mice that Tce1 promoted T lymphocyte–specific transcription of reporter genes throughout T cell development; however, it was not clear if Tce1 is required for Gata3 transcription in vivo. Here, we determined that the canonical Gata3 promoter is insufficient for Gata3 transcriptional activation in T cells in vivo, precluding the possibility that promoter binding by a host of previously implicated transcription factors alone is responsible for Gata3 expression in T cells. Instead, we demonstrated that multiple lineage-affiliated transcription factors bind to Tce1 and that this enhancer confers T lymphocyte–specific Gata3 activation in vivo, as targeted deletion of Tce1 in a mouse model abrogated critical functions of this T cell–regulatory element. Together, our data show that Tce1 is both necessary and sufficient for critical aspects of Gata3 T cell–specific transcriptional activity. PMID:26808502

  17. Lineage-affiliated transcription factors bind the Gata3 Tce1 enhancer to mediate lineage-specific programs.

    PubMed

    Ohmura, Sakie; Mizuno, Seiya; Oishi, Hisashi; Ku, Chia-Jui; Hermann, Mary; Hosoya, Tomonori; Takahashi, Satoru; Engel, James Douglas

    2016-03-01

    The transcription factor GATA3 is essential for the genesis and maturation of the T cell lineage, and GATA3 dysregulation has pathological consequences. Previous studies have shown that GATA3 function in T cell development is regulated by multiple signaling pathways and that the Notch nuclear effector, RBP-J, binds specifically to the Gata3 promoter. We previously identified a T cell-specific Gata3 enhancer (Tce1) lying 280 kb downstream from the structural gene and demonstrated in transgenic mice that Tce1 promoted T lymphocyte-specific transcription of reporter genes throughout T cell development; however, it was not clear if Tce1 is required for Gata3 transcription in vivo. Here, we determined that the canonical Gata3 promoter is insufficient for Gata3 transcriptional activation in T cells in vivo, precluding the possibility that promoter binding by a host of previously implicated transcription factors alone is responsible for Gata3 expression in T cells. Instead, we demonstrated that multiple lineage-affiliated transcription factors bind to Tce1 and that this enhancer confers T lymphocyte-specific Gata3 activation in vivo, as targeted deletion of Tce1 in a mouse model abrogated critical functions of this T cell-regulatory element. Together, our data show that Tce1 is both necessary and sufficient for critical aspects of Gata3 T cell-specific transcriptional activity. PMID:26808502

  18. Understanding the molecular circuitry of cell lineage specification in the early mouse embryo.

    PubMed

    Bergsmedh, Anna; Donohoe, Mary E; Hughes, Rebecca-Ayme; Hadjantonakis, Anna-Katerina

    2011-01-01

    Pluripotent stem cells hold great promise for cell-based therapies in regenerative medicine. However, critical to understanding and exploiting mechanisms of cell lineage specification, epigenetic reprogramming, and the optimal environment for maintaining and differentiating pluripotent stem cells is a fundamental knowledge of how these events occur in normal embryogenesis. The early mouse embryo has provided an excellent model to interrogate events crucial in cell lineage commitment and plasticity, as well as for embryo-derived lineage-specific stem cells and induced pluripotent stem (iPS) cells. Here we provide an overview of cell lineage specification in the early (preimplantation) mouse embryo focusing on the transcriptional circuitry and epigenetic marks necessary for successive differentiation events leading to the formation of the blastocyst. PMID:24710206

  19. Philippines' downstream sector poised for growth

    SciTech Connect

    Not Available

    1992-05-11

    This paper reports that the Philippines' downstream sector is poised for sharp growth. Despite a slip in refined products demand in recent years, Philippines products demand will rebound sharply by 2000, East-West Center (EWC), Honolulu, predicts. Philippines planned refinery expansions are expected to meet that added demand, EWC Director Fereidun Fesharaki says. Like the rest of the Asia-Pacific region, product specifications are changing, but major refiners in the area expect to meet the changes without major case outlays. At the same time, Fesharaki says, push toward deregulation will further bolster the outlook for the Philippines downstream sector.

  20. Epigenetic priming of enhancers predicts developmental competence of hESC-derived endodermal lineage intermediates

    PubMed Central

    Wang, Allen; Yue, Feng; Li, Yan; Xie, Ruiyu; Harper, Thomas; Patel, Nisha A.; Muth, Kayla; Palmer, Jeffrey; Qiu, Yunjiang; Wang, Jinzhao; Lam, Dieter K.; Raum, Jeffrey C.; Stoffers, Doris A.; Ren, Bing; Sander, Maike

    2015-01-01

    Summary Embryonic development relies on the capacity of progenitor cells to appropriately respond to inductive cues; a cellular property known as developmental competence. Here we report that epigenetic priming of enhancers signifies developmental competence during endodermal lineage diversification. Chromatin mapping during pancreatic and hepatic differentiation of human embryonic stem cells revealed the en masse acquisition of a poised chromatin state at enhancers specific to endoderm-derived cell lineages in gut tube intermediates. Experimentally, the acquisition of this poised enhancer state predicts the ability of endodermal intermediates to respond to inductive signals. Furthermore, these enhancers are first recognized by the pioneer transcription factors FOXA1 and FOXA2 when competence is acquired, while subsequent recruitment of lineage-inductive transcription factors, such as PDX1, leads to enhancer and target gene activation. Together, our results identify the acquisition of a poised chromatin state at enhancers as a mechanism by which progenitor cells acquire developmental competence. PMID:25842977

  1. Lineage-Specific Conserved Noncoding Sequences of Plant Genomes: Their Possible Role in Nucleosome Positioning

    PubMed Central

    Hettiarachchi, Nilmini; Kryukov, Kirill; Sumiyama, Kenta; Saitou, Naruya

    2014-01-01

    Many studies on conserved noncoding sequences (CNSs) have found that CNSs are enriched significantly in regulatory sequence elements. We conducted whole-genome analysis on plant CNSs to identify lineage-specific CNSs in eudicots, monocots, angiosperms, and vascular plants based on the premise that lineage-specific CNSs define lineage-specific characters and functions in groups of organisms. We identified 27 eudicot, 204 monocot, 6,536 grass, 19 angiosperm, and 2 vascular plant lineage-specific CNSs (lengths range from 16 to 1,517 bp) that presumably originated in their respective common ancestors. A stronger constraint on the CNSs located in the untranslated regions was observed. The CNSs were often flanked by genes involved in transcription regulation. A drop of A+T content near the border of CNSs was observed and CNS regions showed a higher nucleosome occupancy probability. These CNSs are candidate regulatory elements, which are expected to define lineage-specific features of various plant groups. PMID:25364802

  2. A Role for RE-1-Silencing Transcription Factor in Embryonic Stem Cells Cardiac Lineage Specification.

    PubMed

    Aksoy, Irene; Marcy, Guillaume; Chen, Jiaxuan; Divakar, Ushashree; Kumar, Vibhor; John-Sanchez, Daniel; Rahmani, Mehran; Buckley, Noel J; Stanton, Lawrence W

    2016-04-01

    During development, lineage specification is controlled by several signaling pathways involving various transcription factors (TFs). Here, we studied the RE-1-silencing transcription factor (REST) and identified an important role of this TF in cardiac differentiation. Using mouse embryonic stem cells (ESC) to model development, we found that REST knockout cells lost the ability to differentiate into the cardiac lineage. Detailed analysis of specific lineage markers expression showed selective downregulation of endoderm markers in REST-null cells, thus contributing to a loss of cardiogenic signals. REST regulates cardiac differentiation of ESCs by negatively regulating the Wnt/β-catenin signaling pathway and positively regulating the cardiogenic TF Gata4. We propose here a new role for REST in cell fate specification besides its well-known repressive role of neuronal differentiation. PMID:26864965

  3. Lineage-Specific Expansion of the Chalcone Synthase Gene Family in Rosids

    PubMed Central

    Zavala, Kattina; Opazo, Juan C.

    2015-01-01

    Rosids are a monophyletic group that includes approximately 70,000 species in 140 families, and they are found in a variety of habitats and life forms. Many important crops such as fruit trees and legumes are rosids. The evolutionary success of this group may have been influenced by their ability to produce flavonoids, secondary metabolites that are synthetized through a branch of the phenylpropanoid pathway where chalcone synthase is a key enzyme. In this work, we studied the evolution of the chalcone synthase gene family in 12 species belonging to the rosid clade. Our results show that the last common ancestor of the rosid clade possessed six chalcone synthase gene lineages that were differentially retained during the evolutionary history of the group. In fact, of the six gene lineages that were present in the last common ancestor, 7 species retained 2 of them, whereas the other 5 only retained one gene lineage. We also show that one of the gene lineages was disproportionately expanded in species that belonged to the order Fabales (soybean, barrel medic and Lotus japonicas). Based on the available literature, we suggest that this gene lineage possesses stress-related biological functions (e.g., response to UV light, pathogen defense). We propose that the observed expansion of this clade was a result of a selective pressure to increase the amount of enzymes involved in the production of phenylpropanoid pathway-derived secondary metabolites, which is consistent with the hypothesis that suggested that lineage-specific expansions fuel plant adaptation. PMID:26181912

  4. Constraint of gene expression by the chromatin remodelling protein CHD4 facilitates lineage specification

    PubMed Central

    O'Shaughnessy-Kirwan, Aoife; Signolet, Jason; Costello, Ita; Gharbi, Sarah; Hendrich, Brian

    2015-01-01

    Chromatin remodelling proteins are essential for different aspects of metazoan biology, yet functional details of why these proteins are important are lacking. Although it is possible to describe the biochemistry of how they remodel chromatin, their chromatin-binding profiles in cell lines, and gene expression changes upon loss of a given protein, in very few cases can this easily translate into an understanding of how the function of that protein actually influences a developmental process. Here, we investigate how the chromatin remodelling protein CHD4 facilitates the first lineage decision in mammalian embryogenesis. Embryos lacking CHD4 can form a morphologically normal early blastocyst, but are unable to successfully complete the first lineage decision and form functional trophectoderm (TE). In the absence of a functional TE, Chd4 mutant blastocysts do not implant and are hence not viable. By measuring transcript levels in single cells from early embryos, we show that CHD4 influences the frequency at which unspecified cells in preimplantation stage embryos express lineage markers prior to the execution of this first lineage decision. In the absence of CHD4, this frequency is increased in 16-cell embryos, and by the blastocyst stage cells fail to properly adopt a TE gene expression programme. We propose that CHD4 allows cells to undertake lineage commitment in vivo by modulating the frequency with which lineage-specification genes are expressed. This provides novel insight into both how lineage decisions are made in mammalian cells, and how a chromatin remodelling protein functions to facilitate lineage commitment. PMID:26116663

  5. Rewiring mesenchymal stem cell lineage specification by switching the biophysical microenvironment

    NASA Astrophysics Data System (ADS)

    Lee, Junmin; Abdeen, Amr A.; Kilian, Kristopher A.

    2014-06-01

    The propensity of stem cells to specify and commit to a particular lineage program is guided by dynamic biophysical and biochemical signals that are temporally regulated. However, most in vitro studies rely on ``snapshots'' of cell state under static conditions. Here we asked whether changing the biophysical aspects of the substrate could modulate the degree of mesenchymal stem cell (MSC) lineage specification. We chose to explore two diverse differentiation outcomes: MSC osteogenesis and trans-differentiation to neuron-like cells. MSCs were cultured on soft (~0.5 kPa) or stiff (~40 kPa) hydrogels followed by transfer to gels of the opposite stiffness. MSCs on soft gels express elevated neurogenesis markers while MSCs on stiff substrates express elevated osteogenesis markers. Transfer of MSCs from soft to stiff or stiff to soft substrates led to a switch in lineage specification. However, MSCs transferred from stiff to soft substrates maintained elevated osteogenesis markers, suggesting a degree of irreversible activation. Transferring MSCs to micropatterned substrates reveal geometric cues that further modulate lineage reversal. Taken together, this study demonstrates that MSCs remain susceptible to the biophysical properties of the extracellular matrix--even after several weeks of culture--and can redirect lineage specification in response to changes in the microenvironment.

  6. Lineage-specific molecular probing reveals novel diversity and ecological partitioning of haplosporidians

    PubMed Central

    Hartikainen, Hanna; Ashford, Oliver S; Berney, Cédric; Okamura, Beth; Feist, Stephen W; Baker-Austin, Craig; Stentiford, Grant D; Bass, David

    2014-01-01

    Haplosporidians are rhizarian parasites of mostly marine invertebrates. They include the causative agents of diseases of commercially important molluscs, including MSX disease in oysters. Despite their importance for food security, their diversity and distributions are poorly known. We used a combination of group-specific PCR primers to probe environmental DNA samples from planktonic and benthic environments in Europe, South Africa and Panama. This revealed several highly distinct novel clades, novel lineages within known clades and seasonal (spring vs autumn) and habitat-related (brackish vs littoral) variation in assemblage composition. High frequencies of haplosporidian lineages in the water column provide the first evidence for life cycles involving planktonic hosts, host-free stages or both. The general absence of haplosporidian lineages from all large online sequence data sets emphasises the importance of lineage-specific approaches for studying these highly divergent and diverse lineages. Combined with host-based field surveys, environmental sampling for pathogens will enhance future detection of known and novel pathogens and the assessment of disease risk. PMID:23966100

  7. Prolonged Exposure to HIV Reinforces a Poised Epigenetic Program for PD-1 Expression in Virus-specific CD8 T Cells

    PubMed Central

    Youngblood, Ben; Noto, Alessandra; Porichis, Filippos; Akondy, Rama S.; Ndhlovu, Zaza M.; Austin, James W.; Bordi, Rebeka; Procopio, Francesco A.; Miura, Toshiyuki; Allen, Todd M.; Sidney, John; Sette, Alessandro; Walker, Bruce D.; Ahmed, Rafi; Boss, Jeremy M.; Sékaly, Rafick-Pierre; Kaufmann, Daniel E.

    2013-01-01

    Antigen-specific CD8 T cells play a critical role in controlling HIV infection but eventually lose antiviral functions in part because of expression and signaling through the inhibitory PD-1 receptor. To better understand the impact of prolonged TCR ligation on regulation of PD-1 expression in HIV-specific CD8 T cells we investigated the capacity of virus-specific CD8 T cells to modify the PD-1 epigenetic program following reduction in viral load. We observed that the transcriptional regulatory region was unmethylated in the PD-1hi HIV-specific CD8 T cells while it remained methylated in donor matched naïve cells at acute and chronic stages of infection. Surprisingly, the PD-1 promoter remained unmethylated in HIV-specific CD8 T cells from subjects with a viral load controlled by antiviral therapy for greater than 2 years or from elite controllers. Together these data demonstrate that the epigenetic program at the PD-1 locus becomes fixed following prolonged exposure to HIV virus. PMID:23772031

  8. Neuroblast lineage-specific origin of the neurons of the Drosophila larval olfactory system

    PubMed Central

    Das, Abhijit; Gupta, Tripti; Davla, Sejal; Godino, Laura Lucia Prieto; Diegelmann, Sören; Reddy, O. Venkateswara; VijayRaghavan, K.; Reichert, Heinrich; Lovick, Jennifer; Hartenstein, Volker

    2014-01-01

    The complete neuronal repertoire of the central brain of Drosophila originates from only approximately 100 pairs of neural stem cells, or neuroblasts. Each neuroblast produces a highly stereotyped lineage of neurons which innervate specific compartments of the brain. Neuroblasts undergo two rounds of mitotic activity: embryonic divisions produce lineages of primary neurons that build the larval nervous system; after a brief quiescence, the neuroblasts go through a second round of divisions in larval stage to produce secondary neurons which are integrated into the adult nervous system. Here we investigate the lineages that are associated with the larval antennal lobe, one of the most widely studied neuronal systems in fly. We find that the same five neuroblasts responsible for the adult antennal lobe also produce the antennal lobe of the larval brain. However, there are notable differences in the composition of larval (primary) lineages and their adult (secondary) counterparts. Significantly, in the adult, two lineages (lNB/BAlc and adNB/BAmv3) produce uniglomerular projection neurons connecting the antennal lobe with the mushroom body and lateral horn; another lineage, vNB/BAla1, generates multiglomerular neurons reaching the lateral horn directly. lNB/BAlc, as well as a fourth lineage, vlNB/BAla2, generate a diversity of local interneurons. We describe a fifth, previously unknown lineage, BAlp4, which connects the posterior part of the antennal lobe and the neighboring tritocerebrum (gustatory center) with a higher brain center located adjacent to the mushroom body. In the larva, only one of these lineages, adNB/BAmv3, generates all uniglomerular projection neurons. Also as in the adult, lNB/BAlc and vlNB/BAla2 produce local interneurons which, in terms of diversity in architecture and transmitter expression, resemble their adult counterparts. In addition, lineages lNB/BAlc and vNB/BAla1, as well as the newly described BAlp4, form numerous types of projection

  9. Neuroblast lineage-specific origin of the neurons of the Drosophila larval olfactory system.

    PubMed

    Das, Abhijit; Gupta, Tripti; Davla, Sejal; Prieto-Godino, Lucia L; Diegelmann, Sören; Reddy, O Venkateswara; Raghavan, K Vijay; Reichert, Heinrich; Lovick, Jennifer; Hartenstein, Volker

    2013-01-15

    The complete neuronal repertoire of the central brain of Drosophila originates from only approximately 100 pairs of neural stem cells, or neuroblasts. Each neuroblast produces a highly stereotyped lineage of neurons which innervate specific compartments of the brain. Neuroblasts undergo two rounds of mitotic activity: embryonic divisions produce lineages of primary neurons that build the larval nervous system; after a brief quiescence, the neuroblasts go through a second round of divisions in larval stage to produce secondary neurons which are integrated into the adult nervous system. Here we investigate the lineages that are associated with the larval antennal lobe, one of the most widely studied neuronal systems in fly. We find that the same five neuroblasts responsible for the adult antennal lobe also produce the antennal lobe of the larval brain. However, there are notable differences in the composition of larval (primary) lineages and their adult (secondary) counterparts. Significantly, in the adult, two lineages (lNB/BAlc and adNB/BAmv3) produce uniglomerular projection neurons connecting the antennal lobe with the mushroom body and lateral horn; another lineage, vNB/BAla1, generates multiglomerular neurons reaching the lateral horn directly. lNB/BAlc, as well as a fourth lineage, vlNB/BAla2, generate a diversity of local interneurons. We describe a fifth, previously unknown lineage, BAlp4, which connects the posterior part of the antennal lobe and the neighboring tritocerebrum (gustatory center) with a higher brain center located adjacent to the mushroom body. In the larva, only one of these lineages, adNB/BAmv3, generates all uniglomerular projection neurons. Also as in the adult, lNB/BAlc and vlNB/BAla2 produce local interneurons which, in terms of diversity in architecture and transmitter expression, resemble their adult counterparts. In addition, lineages lNB/BAlc and vNB/BAla1, as well as the newly described BAlp4, form numerous types of projection

  10. Impact of Tissue-Specific Stem Cells on Lineage-Specific Differentiation: A Focus on the Musculoskeletal System

    PubMed Central

    Pizzute, Tyler; Lynch, Kevin; Pei, Ming

    2014-01-01

    Tissue-specific stem cells are found throughout the body and, with proper intervention and environmental cues, these stem cells exercise their capabilities for differentiation into several lineages to form cartilage, bone, muscle, and adipose tissue in vitro and in vivo. Interestingly, it has been widely demonstrated that they do not differentiate with the same efficacy during lineage-specific differentiation studies, as the tissue-specific stem cells are generally more effective when differentiating toward the tissues from which they were derived. This review focuses on four mesodermal lineages for tissue-specific stem cell differentiation: adipogenesis, chondrogenesis, myogenesis, and osteogenesis. It is intended to give insight into current multilineage differentiation and comparative research, highlight and contrast known trends regarding differentiation, and introduce supporting evidence which demonstrates particular tissue-specific stem cells’ superiority in lineage-specific differentiation, along with their resident tissue origins and natural roles. In addition, some epigenetic and transcriptomic differences between stem cells which may explain the observed trends are discussed. PMID:25113801

  11. Effect of lineage-specific metabolic traits of Lactobacillus reuteri on sourdough microbial ecology.

    PubMed

    Lin, Xiaoxi B; Gänzle, Michael G

    2014-09-01

    This study determined the effects of specific metabolic traits of Lactobacillus reuteri on its competitiveness in sourdoughs. The competitiveness of lactobacilli in sourdough generally depends on their growth rate; acid resistance additionally contributes to competitiveness in sourdoughs with long fermentation times. Glycerol metabolism via glycerol dehydratase (gupCDE) accelerates growth by the regeneration of reduced cofactors; glutamate metabolism via glutamate decarboxylase (gadB) increases acid resistance by generating a proton motive force. Glycerol and glutamate metabolisms are lineage-specific traits in L. reuteri; therefore, this study employed glycerol dehydratase-positive sourdough isolates of human-adapted L. reuteri lineage I, glutamate decarboxylase-positive strains of rodent-adapted L. reuteri lineage II, as well as mutants with deletions in gadB or gupCDE. The competitivenesses of the strains were quantified by inoculation of wheat and sorghum sourdoughs with defined strains, followed by propagation of doughs with a 10% inoculum and 12-h or 72-h fermentation cycles. Lineage I L. reuteri strains dominated sourdoughs propagated with 12-h fermentation cycles; lineage II L. reuteri strains dominated sourdoughs propagated with 72-h fermentation cycles. L. reuteri 100-23ΔgadB was outcompeted by its wild-type strain in sourdoughs fermented with 72-h fermentation cycles; L. reuteri FUA3400ΔgupCDE was outcompeted by its wild-type strain in sourdoughs fermented with both 12-h and 72-h fermentation cycles. Competition experiments with isogenic pairs of strains resulted in a constant rate of strain displacement of the less competitive mutant strain. In conclusion, lineage-specific traits of L. reuteri determine the competitiveness of this species in sourdough fermentations. PMID:25015888

  12. Effect of Lineage-Specific Metabolic Traits of Lactobacillus reuteri on Sourdough Microbial Ecology

    PubMed Central

    Lin, Xiaoxi B.

    2014-01-01

    This study determined the effects of specific metabolic traits of Lactobacillus reuteri on its competitiveness in sourdoughs. The competitiveness of lactobacilli in sourdough generally depends on their growth rate; acid resistance additionally contributes to competitiveness in sourdoughs with long fermentation times. Glycerol metabolism via glycerol dehydratase (gupCDE) accelerates growth by the regeneration of reduced cofactors; glutamate metabolism via glutamate decarboxylase (gadB) increases acid resistance by generating a proton motive force. Glycerol and glutamate metabolisms are lineage-specific traits in L. reuteri; therefore, this study employed glycerol dehydratase-positive sourdough isolates of human-adapted L. reuteri lineage I, glutamate decarboxylase-positive strains of rodent-adapted L. reuteri lineage II, as well as mutants with deletions in gadB or gupCDE. The competitivenesses of the strains were quantified by inoculation of wheat and sorghum sourdoughs with defined strains, followed by propagation of doughs with a 10% inoculum and 12-h or 72-h fermentation cycles. Lineage I L. reuteri strains dominated sourdoughs propagated with 12-h fermentation cycles; lineage II L. reuteri strains dominated sourdoughs propagated with 72-h fermentation cycles. L. reuteri 100-23ΔgadB was outcompeted by its wild-type strain in sourdoughs fermented with 72-h fermentation cycles; L. reuteri FUA3400ΔgupCDE was outcompeted by its wild-type strain in sourdoughs fermented with both 12-h and 72-h fermentation cycles. Competition experiments with isogenic pairs of strains resulted in a constant rate of strain displacement of the less competitive mutant strain. In conclusion, lineage-specific traits of L. reuteri determine the competitiveness of this species in sourdough fermentations. PMID:25015888

  13. Early cell lineage specification in a marsupial: a case for diverse mechanisms among mammals.

    PubMed

    Frankenberg, Stephen; Shaw, Geoff; Freyer, Claudia; Pask, Andrew J; Renfree, Marilyn B

    2013-03-01

    Early cell lineage specification in eutherian mammals results in the formation of a pluripotent inner cell mass (ICM) and trophoblast. By contrast, marsupials have no ICM. Here, we present the first molecular analysis of mechanisms of early cell lineage specification in a marsupial, the tammar wallaby. There was no overt differential localisation of key lineage-specific transcription factors in cleavage and early unilaminar blastocyst stages. Pluriblast cells (equivalent to the ICM) became distinguishable from trophoblast cells by differential expression of POU5F1 and, to a greater extent, POU2, a paralogue of POU5F1. Unlike in the mouse, pluriblast-trophoblast differentiation coincided with a global nuclear-to-cytoplasmic transition of CDX2 localisation. Also unlike in the mouse, Hippo pathway factors YAP and WWTR1 showed mutually distinct localisation patterns that suggest non-redundant roles. NANOG and GATA6 were conserved as markers of epiblast and hypoblast, respectively, but some differences to the mouse were found in their mode of differentiation. Our results suggest that there is considerable evolutionary plasticity in the mechanisms regulating early lineage specification in mammals. PMID:23344710

  14. Evolution of the globin gene family in deuterostomes: lineage-specific patterns of diversification and attrition.

    PubMed

    Hoffmann, Federico G; Opazo, Juan C; Hoogewijs, David; Hankeln, Thomas; Ebner, Bettina; Vinogradov, Serge N; Bailly, Xavier; Storz, Jay F

    2012-07-01

    In the Metazoa, globin proteins display an underlying unity in tertiary structure that belies an extraordinary diversity in primary structures, biochemical properties, and physiological functions. Phylogenetic reconstructions can reveal which of these functions represent novel, lineage-specific innovations, and which represent ancestral functions that are shared with homologous globin proteins in other eukaryotes and even prokaryotes. To date, our understanding of globin diversity in deuterostomes has been hindered by a dearth of genomic sequence data from the Ambulacraria (echinoderms + hemichordates), the sister group of chordates, and the phylum Xenacoelomorpha, which includes xenoturbellids, acoelomorphs, and nemertodermatids. Here, we report the results of a phylogenetic and comparative genomic analysis of the globin gene repertoire of deuterostomes. We first characterized the globin genes of the acorn worm, Saccoglossus kowalevskii, a representative of the phylum Hemichordata. We then integrated genomic sequence data from the acorn worm into a comprehensive analysis of conserved synteny and phylogenetic relationships among globin genes from representatives of the eight lineages that comprise the superphylum Deuterostomia. The primary aims were 1) to unravel the evolutionary history of the globin gene superfamily in deuterostomes and 2) to use the estimated phylogeny to gain insights into the functional evolution of deuterostome globins. Results of our analyses indicate that the deuterostome common ancestor possessed a repertoire of at least four distinct globin paralogs and that different subsets of these ancestral genes have been retained in each of the descendant organismal lineages. In each major deuterostome group, a different subset of ancestral precursor genes underwent lineage-specific expansions of functional diversity through repeated rounds of gene duplication and divergence. By integrating results of the phylogenetic analysis with available

  15. In silico analysis of stomach lineage specific gene set expression pattern in gastric cancer

    SciTech Connect

    Pandi, Narayanan Sathiya Suganya, Sivagurunathan; Rajendran, Suriliyandi

    2013-10-04

    Highlights: •Identified stomach lineage specific gene set (SLSGS) was found to be under expressed in gastric tumors. •Elevated expression of SLSGS in gastric tumor is a molecular predictor of metabolic type gastric cancer. •In silico pathway scanning identified estrogen-α signaling is a putative regulator of SLSGS in gastric cancer. •Elevated expression of SLSGS in GC is associated with an overall increase in the survival of GC patients. -- Abstract: Stomach lineage specific gene products act as a protective barrier in the normal stomach and their expression maintains the normal physiological processes, cellular integrity and morphology of the gastric wall. However, the regulation of stomach lineage specific genes in gastric cancer (GC) is far less clear. In the present study, we sought to investigate the role and regulation of stomach lineage specific gene set (SLSGS) in GC. SLSGS was identified by comparing the mRNA expression profiles of normal stomach tissue with other organ tissue. The obtained SLSGS was found to be under expressed in gastric tumors. Functional annotation analysis revealed that the SLSGS was enriched for digestive function and gastric epithelial maintenance. Employing a single sample prediction method across GC mRNA expression profiles identified the under expression of SLSGS in proliferative type and invasive type gastric tumors compared to the metabolic type gastric tumors. Integrative pathway activation prediction analysis revealed a close association between estrogen-α signaling and SLSGS expression pattern in GC. Elevated expression of SLSGS in GC is associated with an overall increase in the survival of GC patients. In conclusion, our results highlight that estrogen mediated regulation of SLSGS in gastric tumor is a molecular predictor of metabolic type GC and prognostic factor in GC.

  16. Telomerase Protects Werner Syndrome Lineage-Specific Stem Cells from Premature Aging

    PubMed Central

    Cheung, Hoi-Hung; Liu, Xiaozhuo; Canterel-Thouennon, Lucile; Li, Lu; Edmonson, Catherine; Rennert, Owen M.

    2014-01-01

    Summary Werner syndrome (WS) patients exhibit premature aging predominantly in mesenchyme-derived tissues, but not in neural lineages, a consequence of telomere dysfunction and accelerated senescence. The cause of this lineage-specific aging remains unknown. Here, we document that reprogramming of WS fibroblasts to pluripotency elongated telomere length and prevented telomere dysfunction. To obtain mechanistic insight into the origin of tissue-specific aging, we differentiated iPSCs to mesenchymal stem cells (MSCs) and neural stem/progenitor cells (NPCs). We observed recurrence of premature senescence associated with accelerated telomere attrition and defective synthesis of the lagging strand telomeres in MSCs, but not in NPCs. We postulate this “aging” discrepancy is regulated by telomerase. Expression of hTERT or p53 knockdown ameliorated the accelerated aging phenotypein MSC, whereas inhibition of telomerase sensitized NPCs to DNA damage. Our findings unveil a role for telomerase in the protection of accelerated aging in a specific lineage of stem cells. PMID:24749076

  17. Evolutionary origins of the vertebrate heart: Specification of the cardiac lineage in Ciona intestinalis

    PubMed Central

    Davidson, Brad; Levine, Michael

    2003-01-01

    Here we exploit the extensive cell lineage information and streamlined genome of the ascidian, Ciona intestinalis, to investigate heart development in a basal chordate. Several cardiac genes were analyzed, including the sole Ciona ortholog of the Drosophila tinman gene, and tissue-specific enhancers were isolated for some of the genes. Conserved sequence motifs within these enhancers facilitated the isolation of a heart enhancer for the Ciona Hand-like gene. Altogether, these studies provide a regulatory framework for the differentiation of the cardiac mesoderm, beginning at the 110-cell stage, and extending through the fusion of cardiac progenitors during tail elongation. The cardiac lineage shares a common origin with the germ line, and zygotic transcription is first detected in the heart progenitors only after its separation from the germ line at the 64-cell stage. We propose that germ-line determinants influence the specification of the cardiac mesoderm, both by inhibiting inductive signals required for the development of noncardiac mesoderm lineages, and by providing a localized source of Wnt-5 and other signals required for heart development. We discuss the possibility that the germ line also influences the specification of the vertebrate heart. PMID:14500781

  18. Ups and Downs of Poised RNA Polymerase II in B-Cells

    PubMed Central

    Nelson, Steevenson; Levens, David; Przytycka, Teresa M.

    2016-01-01

    Recent genome-wide analyses have uncovered a high accumulation of RNA polymerase II (Pol II) at the 5′ end of genes. This elevated Pol II presence at promoters, referred to here as Poll II poising, is mainly (but not exclusively) attributed to temporal pausing of transcription during early elongation which, in turn, has been proposed to be a regulatory step for processes that need to be activated “on demand”. Yet, the full genome-wide regulatory role of Pol II poising is yet to be delineated. To elucidate the role of Pol II poising in B cell activation, we compared Pol II profiles in resting and activated B cells. We found that while Pol II poised genes generally overlap functionally among different B cell states and correspond to the functional groups previously identified for other cell types, non-poised genes are B cell state specific. Focusing on the changes in transcription activity upon B cell activation, we found that the majority of such changes were from poised to non-poised state. The genes showing this type of transition were functionally enriched in translation, RNA processing and mRNA metabolic process. Interestingly, we also observed a transition from non-poised to poised state. Within this set of genes we identified several Immediate Early Genes (IEG), which were highly expressed in resting B cell and shifted from non-poised to poised state after B cell activation. Thus Pol II poising does not only mark genes for rapid expression in the future, but it is also associated with genes that are silenced after a burst of their expression. Finally, we performed comparative analysis of the presence of G4 motifs in the context of poised versus non-poised but active genes. Interestingly we observed a differential enrichment of these motifs upstream versus downstream of TSS depending on poising status. The enrichment of G4 sequence motifs upstream of TSS of non-poised active genes suggests a potential role of quadruplexes in expression regulation. PMID

  19. Ups and Downs of Poised RNA Polymerase II in B-Cells.

    PubMed

    Dao, Phuong; Wojtowicz, Damian; Nelson, Steevenson; Levens, David; Przytycka, Teresa M

    2016-04-01

    Recent genome-wide analyses have uncovered a high accumulation of RNA polymerase II (Pol II) at the 5' end of genes. This elevated Pol II presence at promoters, referred to here as Poll II poising, is mainly (but not exclusively) attributed to temporal pausing of transcription during early elongation which, in turn, has been proposed to be a regulatory step for processes that need to be activated "on demand". Yet, the full genome-wide regulatory role of Pol II poising is yet to be delineated. To elucidate the role of Pol II poising in B cell activation, we compared Pol II profiles in resting and activated B cells. We found that while Pol II poised genes generally overlap functionally among different B cell states and correspond to the functional groups previously identified for other cell types, non-poised genes are B cell state specific. Focusing on the changes in transcription activity upon B cell activation, we found that the majority of such changes were from poised to non-poised state. The genes showing this type of transition were functionally enriched in translation, RNA processing and mRNA metabolic process. Interestingly, we also observed a transition from non-poised to poised state. Within this set of genes we identified several Immediate Early Genes (IEG), which were highly expressed in resting B cell and shifted from non-poised to poised state after B cell activation. Thus Pol II poising does not only mark genes for rapid expression in the future, but it is also associated with genes that are silenced after a burst of their expression. Finally, we performed comparative analysis of the presence of G4 motifs in the context of poised versus non-poised but active genes. Interestingly we observed a differential enrichment of these motifs upstream versus downstream of TSS depending on poising status. The enrichment of G4 sequence motifs upstream of TSS of non-poised active genes suggests a potential role of quadruplexes in expression regulation. PMID:27078128

  20. Curiosity Poised to Begin Ambitious Exploration

    NASA Video Gallery

    The Mars Science Laboratory Curiosity is poised to liftoff on an Atlas V rocket bound for the red planet on an exploration mission unprecedented in goals and machinery. The wheeled robot is carryin...

  1. Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales.

    PubMed

    Brockington, Samuel F; Yang, Ya; Gandia-Herrero, Fernando; Covshoff, Sarah; Hibberd, Julian M; Sage, Rowan F; Wong, Gane K S; Moore, Michael J; Smith, Stephen A

    2015-09-01

    Betalain pigments are unique to the Caryophyllales and structurally and biosynthetically distinct from anthocyanins. Two key enzymes within the betalain synthesis pathway have been identified: 4,5-dioxygenase (DODA) that catalyzes the formation of betalamic acid and CYP76AD1, a cytochrome P450 gene that catalyzes the formation of cyclo-DOPA. We performed phylogenetic analyses to reveal the evolutionary history of the DODA and CYP76AD1 lineages and in the context of an ancestral reconstruction of pigment states we explored the evolution of these genes in relation to the complex evolution of pigments in Caryophylalles. Duplications within the CYP76AD1 and DODA lineages arose just before the origin of betalain pigmentation in the core Caryophyllales. The duplications gave rise to DODA-α and CYP76AD1-α isoforms that appear specific to betalain synthesis. Both betalain-specific isoforms were then lost or downregulated in the anthocyanic Molluginaceae and Caryophyllaceae. Our findings suggest a single origin of the betalain synthesis pathway, with neofunctionalization following gene duplications in the CYP76AD1 and DODA lineages. Loss of DODA-α and CYP76AD1-α in anthocyanic taxa suggests that betalain pigmentation has been lost twice in Caryophyllales, and exclusion of betalain pigments from anthocyanic taxa is mediated through gene loss or downregulation. [Correction added after online publication 13 May 2015: in the last two paragraphs of the Summary the gene name CYP761A was changed to CYP76AD1.]. PMID:25966996

  2. Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales

    PubMed Central

    Brockington, Samuel F; Yang, Ya; Gandia-Herrero, Fernando; Covshoff, Sarah; Hibberd, Julian M; Sage, Rowan F; Wong, Gane K S; Moore, Michael J; Smith, Stephen A

    2015-01-01

    Betalain pigments are unique to the Caryophyllales and structurally and biosynthetically distinct from anthocyanins. Two key enzymes within the betalain synthesis pathway have been identified: 4,5-dioxygenase (DODA) that catalyzes the formation of betalamic acid and CYP76AD1, a cytochrome P450 gene that catalyzes the formation of cyclo-DOPA. We performed phylogenetic analyses to reveal the evolutionary history of the DODA and CYP76AD1 lineages and in the context of an ancestral reconstruction of pigment states we explored the evolution of these genes in relation to the complex evolution of pigments in Caryophylalles. Duplications within the CYP76AD1 and DODA lineages arose just before the origin of betalain pigmentation in the core Caryophyllales. The duplications gave rise to DODA-α and CYP76AD1-α isoforms that appear specific to betalain synthesis. Both betalain-specific isoforms were then lost or downregulated in the anthocyanic Molluginaceae and Caryophyllaceae. Our findings suggest a single origin of the betalain synthesis pathway, with neofunctionalization following gene duplications in the CYP76AD1 and DODA lineages. Loss of DODA-α and CYP76AD1-α in anthocyanic taxa suggests that betalain pigmentation has been lost twice in Caryophyllales, and exclusion of betalain pigments from anthocyanic taxa is mediated through gene loss or downregulation. [Correction added after online publication 13 May 2015: in the last two paragraphs of the Summary the gene name CYP761A was changed to CYP76AD1.] PMID:25966996

  3. Lineage-specific evolution of Methylthioalkylmalate synthases (MAMs) involved in glucosinolates biosynthesis.

    PubMed

    Zhang, Jifang; Wang, Xiaobo; Cheng, Feng; Wu, Jian; Liang, Jianli; Yang, Wencai; Wang, Xiaowu

    2015-01-01

    Methylthioalkylmalate synthases (MAMs) encoded by MAM genes are central to the diversification of the glucosinolates, which are important secondary metabolites in Brassicaceae species. However, the evolutionary pathway of MAM genes is poorly understood. We analyzed the phylogenetic and synteny relationships of MAM genes from 13 sequenced Brassicaceae species. Based on these analyses, we propose that the syntenic loci of MAM genes, which underwent frequent tandem duplications, divided into two independent lineage-specific evolution routes and were driven by positive selection after the divergence from Aethionema arabicum. In the lineage I species Capsella rubella, Camelina sativa, Arabidopsis lyrata, and A. thaliana, the MAM loci evolved three tandem genes encoding enzymes responsible for the biosynthesis of aliphatic glucosinolates with different carbon chain-lengths. In lineage II species, the MAM loci encode enzymes responsible for the biosynthesis of short-chain aliphatic glucosinolates. Our proposed model of the evolutionary pathway of MAM genes will be useful for understanding the specific function of these genes in Brassicaceae species. PMID:25691886

  4. Lineage-specific evolution of Methylthioalkylmalate synthases (MAMs) involved in glucosinolates biosynthesis

    PubMed Central

    Zhang, Jifang; Wang, Xiaobo; Cheng, Feng; Wu, Jian; Liang, Jianli; Yang, Wencai; Wang, Xiaowu

    2015-01-01

    Methylthioalkylmalate synthases (MAMs) encoded by MAM genes are central to the diversification of the glucosinolates, which are important secondary metabolites in Brassicaceae species. However, the evolutionary pathway of MAM genes is poorly understood. We analyzed the phylogenetic and synteny relationships of MAM genes from 13 sequenced Brassicaceae species. Based on these analyses, we propose that the syntenic loci of MAM genes, which underwent frequent tandem duplications, divided into two independent lineage-specific evolution routes and were driven by positive selection after the divergence from Aethionema arabicum. In the lineage I species Capsella rubella, Camelina sativa, Arabidopsis lyrata, and A. thaliana, the MAM loci evolved three tandem genes encoding enzymes responsible for the biosynthesis of aliphatic glucosinolates with different carbon chain-lengths. In lineage II species, the MAM loci encode enzymes responsible for the biosynthesis of short-chain aliphatic glucosinolates. Our proposed model of the evolutionary pathway of MAM genes will be useful for understanding the specific function of these genes in Brassicaceae species. PMID:25691886

  5. Dynamic Control of Enhancer Repertoires Drives Lineage and Stage-Specific Transcription during Hematopoiesis.

    PubMed

    Huang, Jialiang; Liu, Xin; Li, Dan; Shao, Zhen; Cao, Hui; Zhang, Yuannyu; Trompouki, Eirini; Bowman, Teresa V; Zon, Leonard I; Yuan, Guo-Cheng; Orkin, Stuart H; Xu, Jian

    2016-01-11

    Enhancers are the primary determinants of cell identity, but the regulatory components controlling enhancer turnover during lineage commitment remain largely unknown. Here we compare the enhancer landscape, transcriptional factor occupancy, and transcriptomic changes in human fetal and adult hematopoietic stem/progenitor cells and committed erythroid progenitors. We find that enhancers are modulated pervasively and direct lineage- and stage-specific transcription. GATA2-to-GATA1 switch is prevalent at dynamic enhancers and drives erythroid enhancer commissioning. Examination of lineage-specific enhancers identifies transcription factors and their combinatorial patterns in enhancer turnover. Importantly, by CRISPR/Cas9-mediated genomic editing, we uncover functional hierarchy of constituent enhancers within the SLC25A37 super-enhancer. Despite indistinguishable chromatin features, we reveal through genomic editing the functional diversity of several GATA switch enhancers in which enhancers with opposing functions cooperate to coordinate transcription. Thus, genome-wide enhancer profiling coupled with in situ enhancer editing provide critical insights into the functional complexity of enhancers during development. PMID:26766440

  6. ATTED-II in 2016: A Plant Coexpression Database Towards Lineage-Specific Coexpression

    PubMed Central

    Aoki, Yuichi; Okamura, Yasunobu; Tadaka, Shu; Kinoshita, Kengo; Obayashi, Takeshi

    2016-01-01

    ATTED-II (http://atted.jp) is a coexpression database for plant species with parallel views of multiple coexpression data sets and network analysis tools. The user can efficiently find functional gene relationships and design experiments to identify gene functions by reverse genetics and general molecular biology techniques. Here, we report updates to ATTED-II (version 8.0), including new and updated coexpression data and analysis tools. ATTED-II now includes eight microarray- and six RNA sequencing-based coexpression data sets for seven dicot species (Arabidopsis, field mustard, soybean, barrel medick, poplar, tomato and grape) and two monocot species (rice and maize). Stand-alone coexpression analyses tend to have low reliability. Therefore, examining evolutionarily conserved coexpression is a more effective approach from the viewpoints of reliability and evolutionary importance. In contrast, the reliability of species-specific coexpression data remains poor. Our assessment scores for individual coexpression data sets indicated that the quality of the new coexpression data sets in ATTED-II is higher than for any previous coexpression data set. In addition, five species (Arabidopsis, soybean, tomato, rice and maize) in ATTED-II are now supported by both microarray- and RNA sequencing-based coexpression data, which has increased the reliability. Consequently, ATTED-II can now provide lineage-specific coexpression information. As an example of the use of ATTED-II to explore lineage-specific coexpression, we demonstrate monocot- and dicot-specific coexpression of cell wall genes. With the expanded coexpression data for multilevel evaluation, ATTED-II provides new opportunities to investigate lineage-specific evolution in plants. PMID:26546318

  7. Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression

    PubMed Central

    Ferrarese, Roberto; Harsh, Griffith R.; Yadav, Ajay K.; Bug, Eva; Maticzka, Daniel; Reichardt, Wilfried; Dombrowski, Stephen M.; Miller, Tyler E.; Masilamani, Anie P.; Dai, Fangping; Kim, Hyunsoo; Hadler, Michael; Scholtens, Denise M.; Yu, Irene L.Y.; Beck, Jürgen; Srinivasasainagendra, Vinodh; Costa, Fabrizio; Baxan, Nicoleta; Pfeifer, Dietmar; von Elverfeldt, Dominik; Backofen, Rolf; Weyerbrock, Astrid; Duarte, Christine W.; He, Xiaolin; Prinz, Marco; Chandler, James P.; Vogel, Hannes; Chakravarti, Arnab; Rich, Jeremy N.; Carro, Maria S.; Bredel, Markus

    2014-01-01

    Tissue-specific alternative splicing is critical for the emergence of tissue identity during development, yet the role of this process in malignant transformation is undefined. Tissue-specific splicing involves evolutionarily conserved, alternative exons that represent only a minority of the total alternative exons identified. Many of these conserved exons have functional features that influence signaling pathways to profound biological effect. Here, we determined that lineage-specific splicing of a brain-enriched cassette exon in the membrane-binding tumor suppressor annexin A7 (ANXA7) diminishes endosomal targeting of the EGFR oncoprotein, consequently enhancing EGFR signaling during brain tumor progression. ANXA7 exon splicing was mediated by the ribonucleoprotein PTBP1, which is normally repressed during neuronal development. PTBP1 was highly expressed in glioblastomas due to loss of a brain-enriched microRNA (miR-124) and to PTBP1 amplification. The alternative ANXA7 splicing trait was present in precursor cells, suggesting that glioblastoma cells inherit the trait from a potential tumor-initiating ancestor and that these cells exploit this trait through accumulation of mutations that enhance EGFR signaling. Our data illustrate that lineage-specific splicing of a tissue-regulated alternative exon in a constituent of an oncogenic pathway eliminates tumor suppressor functions and promotes glioblastoma progression. This paradigm may offer a general model as to how tissue-specific regulatory mechanisms can reprogram normal developmental processes into oncogenic ones. PMID:24865424

  8. Lineage-specific splicing of a brain-enriched alternative exon promotes glioblastoma progression.

    PubMed

    Ferrarese, Roberto; Harsh, Griffith R; Yadav, Ajay K; Bug, Eva; Maticzka, Daniel; Reichardt, Wilfried; Dombrowski, Stephen M; Miller, Tyler E; Masilamani, Anie P; Dai, Fangping; Kim, Hyunsoo; Hadler, Michael; Scholtens, Denise M; Yu, Irene L Y; Beck, Jürgen; Srinivasasainagendra, Vinodh; Costa, Fabrizio; Baxan, Nicoleta; Pfeifer, Dietmar; von Elverfeldt, Dominik; Backofen, Rolf; Weyerbrock, Astrid; Duarte, Christine W; He, Xiaolin; Prinz, Marco; Chandler, James P; Vogel, Hannes; Chakravarti, Arnab; Rich, Jeremy N; Carro, Maria S; Bredel, Markus

    2014-07-01

    Tissue-specific alternative splicing is critical for the emergence of tissue identity during development, yet the role of this process in malignant transformation is undefined. Tissue-specific splicing involves evolutionarily conserved, alternative exons that represent only a minority of the total alternative exons identified. Many of these conserved exons have functional features that influence signaling pathways to profound biological effect. Here, we determined that lineage-specific splicing of a brain-enriched cassette exon in the membrane-binding tumor suppressor annexin A7 (ANXA7) diminishes endosomal targeting of the EGFR oncoprotein, consequently enhancing EGFR signaling during brain tumor progression. ANXA7 exon splicing was mediated by the ribonucleoprotein PTBP1, which is normally repressed during neuronal development. PTBP1 was highly expressed in glioblastomas due to loss of a brain-enriched microRNA (miR-124) and to PTBP1 amplification. The alternative ANXA7 splicing trait was present in precursor cells, suggesting that glioblastoma cells inherit the trait from a potential tumor-initiating ancestor and that these cells exploit this trait through accumulation of mutations that enhance EGFR signaling. Our data illustrate that lineage-specific splicing of a tissue-regulated alternative exon in a constituent of an oncogenic pathway eliminates tumor suppressor functions and promotes glioblastoma progression. This paradigm may offer a general model as to how tissue-specific regulatory mechanisms can reprogram normal developmental processes into oncogenic ones. PMID:24865424

  9. Characterisation of monotreme caseins reveals lineage-specific expansion of an ancestral casein locus in mammals.

    PubMed

    Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R

    2009-01-01

    Using a milk-cell cDNA sequencing approach we characterised milk-protein sequences from two monotreme species, platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus) and found a full set of caseins and casein variants. The genomic organisation of the platypus casein locus is compared with other mammalian genomes, including the marsupial opossum and several eutherians. Physical linkage of casein genes has been seen in the casein loci of all mammalian genomes examined and we confirm that this is also observed in platypus. However, we show that a recent duplication of beta-casein occurred in the monotreme lineage, as opposed to more ancient duplications of alpha-casein in the eutherian lineage, while marsupials possess only single copies of alpha- and beta-caseins. Despite this variability, the close proximity of the main alpha- and beta-casein genes in an inverted tail-tail orientation and the relative orientation of the more distant kappa-casein genes are similar in all mammalian genome sequences so far available. Overall, the conservation of the genomic organisation of the caseins indicates the early, pre-monotreme development of the fundamental role of caseins during lactation. In contrast, the lineage-specific gene duplications that have occurred within the casein locus of monotremes and eutherians but not marsupials, which may have lost part of the ancestral casein locus, emphasises the independent selection on milk provision strategies to the young, most likely linked to different developmental strategies. The monotremes therefore provide insight into the ancestral drivers for lactation and how these have adapted in different lineages. PMID:19874726

  10. Lineage-Specific Regulation of Epigenetic Modifier Genes in Human Liver and Brain

    PubMed Central

    Weng, Matthias K.; Natarajan, Karthick; Scholz, Diana; Ivanova, Violeta N.; Sachinidis, Agapios; Hengstler, Jan G.; Waldmann, Tanja; Leist, Marcel

    2014-01-01

    Despite an abundance of studies on chromatin states and dynamics, there is an astonishing dearth of information on the expression of genes responsible for regulating histone and DNA modifications. We used here a set of 156 defined epigenetic modifier genes (EMG) and profiled their expression pattern in cells of different lineages. As reference value, expression data from human embryonic stem cells (hESC) were used. Hepatocyte-like cells were generated from hESC, and their EMG expression was compared to primary human liver cells. In parallel, we generated postmitotic human neurons (Lu d6), and compared their relative EMG expression to human cortex (Ctx). Clustering analysis of all cell types showed that neuronal lineage samples grouped together (94 similarly regulated EMG), as did liver cells (61 similarly-regulated), while the two lineages were clearly distinct. The general classification was followed by detailed comparison of the major EMG groups; genes that were higher expressed in differentiated cells than in hESC included the acetyltransferase KAT2B and the methyltransferase SETD7. Neuro-specific EMGs were the histone deacetylases HDAC5 and HDAC7, and the arginine-methyltransferase PRMT8. Comparison of young (Lu d6) and more aged (Ctx) neuronal samples suggested a maturation-dependent switch in the expression of functionally homologous proteins. For instance, the ratio of the histone H3 K27 methyltransfereases, EZH1 to EZH2, was high in Ctx and low in Lu d6. The same was observed for the polycomb repressive complex 1 (PRC1) subunits CBX7 and CBX8. A large proportion of EMGs in differentiated cells was very differently expressed than in hESC, and absolute levels were significantly higher in neuronal samples than in hepatic cells. Thus, there seem to be distinct qualitative and quantitative differences in EMG expression between cell lineages. PMID:25054330

  11. Differential Deployment of REST and CoREST Promotes Glial Subtype Specification and Oligodendrocyte Lineage Maturation

    PubMed Central

    Gokhan, Solen; Zheng, Deyou; Bergman, Aviv; Mehler, Mark F.

    2009-01-01

    Background The repressor element-1 (RE1) silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is a master transcriptional regulator that binds to numerous genomic RE1 sites where it acts as a molecular scaffold for dynamic recruitment of modulatory and epigenetic cofactors, including corepressor for element-1-silencing transcription factor (CoREST). CoREST also acts as a hub for various cofactors that play important roles in epigenetic remodeling and transcriptional regulation. While REST can recruit CoREST to its macromolecular complex, CoREST complexes also function at genomic sites independently of REST. REST and CoREST perform a broad array of context-specific functions, which include repression of neuronal differentiation genes in neural stem cells (NSCs) and other non-neuronal cells as well as promotion of neurogenesis. Despite their involvement in multiple aspects of neuronal development, REST and CoREST are not believed to have any direct modulatory roles in glial cell maturation. Methodology/Principal Findings We challenged this view by performing the first study of REST and CoREST in NSC-mediated glial lineage specification and differentiation. Utilizing ChIP on chip (ChIP-chip) assays, we identified distinct but overlapping developmental stage-specific profiles for REST and CoREST target genes during astrocyte (AS) and oligodendrocyte (OL) lineage specification and OL lineage maturation and myelination, including many genes not previously implicated in glial cell biology or linked to REST and CoREST regulation. Amongst these factors are those implicated in macroglial (AS and OL) cell identity, maturation, and maintenance, such as members of key developmental signaling pathways and combinatorial transcription factor codes. Conclusions/Significance Our results imply that REST and CoREST modulate not only neuronal but also glial lineage elaboration. These factors may therefore mediate critical developmental processes including the

  12. The Lineage-Specific Transcription Factor PU.1 Prevents Polycomb-Mediated Heterochromatin Formation at Macrophage-Specific Genes.

    PubMed

    Tagore, Mohita; McAndrew, Michael J; Gjidoda, Alison; Floer, Monique

    2015-08-01

    Lineage-specific transcription factors (TFs) are important determinants of cellular identity, but their exact mode of action has remained unclear. Here we show using a macrophage differentiation system that the lineage-specific TF PU.1 keeps macrophage-specific genes accessible during differentiation by preventing Polycomb repressive complex 2 (PRC2) binding to transcriptional regulatory elements. We demonstrate that the distal enhancer of a gene becomes bound by PRC2 as cells differentiate in the absence of PU.1 binding and that the gene is wrapped into heterochromatin, which is characterized by increased nucleosome occupancy and H3K27 trimethylation. This renders the gene inaccessible to the transcriptional machinery and prevents induction of the gene in response to an external signal in mature cells. In contrast, if PU.1 is bound at the transcriptional regulatory region of a gene during differentiation, PRC2 is not recruited, nucleosome occupancy is kept low, and the gene can be induced in mature macrophages. Similar results were obtained at the enhancers of other macrophage-specific genes that fail to bind PU.1 as an estrogen receptor fusion (PUER) in this system. These results show that one role of PU.1 is to exclude PRC2 and to prevent heterochromatin formation at macrophage-specific genes. PMID:26012552

  13. Lineage-Specific Changes in Biomarkers in Great Apes and Humans.

    PubMed

    Ronke, Claudius; Dannemann, Michael; Halbwax, Michel; Fischer, Anne; Helmschrodt, Christin; Brügel, Mathias; André, Claudine; Atencia, Rebeca; Mugisha, Lawrence; Scholz, Markus; Ceglarek, Uta; Thiery, Joachim; Pääbo, Svante; Prüfer, Kay; Kelso, Janet

    2015-01-01

    Although human biomedical and physiological information is readily available, such information for great apes is limited. We analyzed clinical chemical biomarkers in serum samples from 277 wild- and captive-born great apes and from 312 healthy human volunteers as well as from 20 rhesus macaques. For each individual, we determined a maximum of 33 markers of heart, liver, kidney, thyroid and pancreas function, hemoglobin and lipid metabolism and one marker of inflammation. We identified biomarkers that show differences between humans and the great apes in their average level or activity. Using the rhesus macaques as an outgroup, we identified human-specific differences in the levels of bilirubin, cholinesterase and lactate dehydrogenase, and bonobo-specific differences in the level of apolipoprotein A-I. For the remaining twenty-nine biomarkers there was no evidence for lineage-specific differences. In fact, we find that many biomarkers show differences between individuals of the same species in different environments. Of the four lineage-specific biomarkers, only bilirubin showed no differences between wild- and captive-born great apes. We show that the major factor explaining the human-specific difference in bilirubin levels may be genetic. There are human-specific changes in the sequence of the promoter and the protein-coding sequence of uridine diphosphoglucuronosyltransferase 1 (UGT1A1), the enzyme that transforms bilirubin and toxic plant compounds into water-soluble, excretable metabolites. Experimental evidence that UGT1A1 is down-regulated in the human liver suggests that changes in the promoter may be responsible for the human-specific increase in bilirubin. We speculate that since cooking reduces toxic plant compounds, consumption of cooked foods, which is specific to humans, may have resulted in relaxed constraint on UGT1A1 which has in turn led to higher serum levels of bilirubin in humans. PMID:26247603

  14. Lineage-Specific Changes in Biomarkers in Great Apes and Humans

    PubMed Central

    Ronke, Claudius; Dannemann, Michael; Halbwax, Michel; Fischer, Anne; Helmschrodt, Christin; Brügel, Mathias; André, Claudine; Atencia, Rebeca; Mugisha, Lawrence; Scholz, Markus; Ceglarek, Uta; Thiery, Joachim; Pääbo, Svante; Prüfer, Kay; Kelso, Janet

    2015-01-01

    Although human biomedical and physiological information is readily available, such information for great apes is limited. We analyzed clinical chemical biomarkers in serum samples from 277 wild- and captive-born great apes and from 312 healthy human volunteers as well as from 20 rhesus macaques. For each individual, we determined a maximum of 33 markers of heart, liver, kidney, thyroid and pancreas function, hemoglobin and lipid metabolism and one marker of inflammation. We identified biomarkers that show differences between humans and the great apes in their average level or activity. Using the rhesus macaques as an outgroup, we identified human-specific differences in the levels of bilirubin, cholinesterase and lactate dehydrogenase, and bonobo-specific differences in the level of apolipoprotein A-I. For the remaining twenty-nine biomarkers there was no evidence for lineage-specific differences. In fact, we find that many biomarkers show differences between individuals of the same species in different environments. Of the four lineage-specific biomarkers, only bilirubin showed no differences between wild- and captive-born great apes. We show that the major factor explaining the human-specific difference in bilirubin levels may be genetic. There are human-specific changes in the sequence of the promoter and the protein-coding sequence of uridine diphosphoglucuronosyltransferase 1 (UGT1A1), the enzyme that transforms bilirubin and toxic plant compounds into water-soluble, excretable metabolites. Experimental evidence that UGT1A1 is down-regulated in the human liver suggests that changes in the promoter may be responsible for the human-specific increase in bilirubin. We speculate that since cooking reduces toxic plant compounds, consumption of cooked foods, which is specific to humans, may have resulted in relaxed constraint on UGT1A1 which has in turn led to higher serum levels of bilirubin in humans. PMID:26247603

  15. AMPK governs lineage specification through Tfeb-dependent regulation of lysosomes

    PubMed Central

    Young, Nathan P.; Kamireddy, Anwesh; Van Nostrand, Jeanine L.; Eichner, Lillian J.; Shokhirev, Maxim Nikolaievich; Dayn, Yelena; Shaw, Reuben J.

    2016-01-01

    Faithful execution of developmental programs relies on the acquisition of unique cell identities from pluripotent progenitors, a process governed by combinatorial inputs from numerous signaling cascades that ultimately dictate lineage-specific transcriptional outputs. Despite growing evidence that metabolism is integrated with many molecular networks, how pathways that control energy homeostasis may affect cell fate decisions is largely unknown. Here, we show that AMP-activated protein kinase (AMPK), a central metabolic regulator, plays critical roles in lineage specification. Although AMPK-deficient embryonic stem cells (ESCs) were normal in the pluripotent state, these cells displayed profound defects upon differentiation, failing to generate chimeric embryos and preferentially adopting an ectodermal fate at the expense of the endoderm during embryoid body (EB) formation. AMPK−/− EBs exhibited reduced levels of Tfeb, a master transcriptional regulator of lysosomes, leading to diminished endolysosomal function. Remarkably, genetic loss of Tfeb also yielded endodermal defects, while AMPK-null ESCs overexpressing this transcription factor normalized their differential potential, revealing an intimate connection between Tfeb/lysosomes and germ layer specification. The compromised endolysosomal system resulting from AMPK or Tfeb inactivation blunted Wnt signaling, while up-regulating this pathway restored expression of endodermal markers. Collectively, these results uncover the AMPK pathway as a novel regulator of cell fate determination during differentiation. PMID:26944679

  16. The BAF chromatin remodelling complex is an epigenetic regulator of lineage specification in the early mouse embryo

    PubMed Central

    Panamarova, Maryna; Cox, Andy; Wicher, Krzysztof B.; Butler, Richard; Bulgakova, Natalia; Jeon, Shin; Rosen, Barry; Seong, Rho H.; Skarnes, William; Crabtree, Gerald; Zernicka-Goetz, Magdalena

    2016-01-01

    Dynamic control of gene expression is essential for the development of a totipotent zygote into an embryo with defined cell lineages. The accessibility of genes responsible for cell specification to transcriptional machinery is dependent on chromatin remodelling complexes such as the SWI\\SNF (BAF) complex. However, the role of the BAF complex in early mouse development has remained unclear. Here, we demonstrate that BAF155, a major BAF complex subunit, regulates the assembly of the BAF complex in vivo and regulates lineage specification of the mouse blastocyst. We find that associations of BAF155 with other BAF complex subunits become enriched in extra-embryonic lineages just prior to implantation. This enrichment is attributed to decreased mobility of BAF155 in extra-embryonic compared with embryonic lineages. Downregulation of BAF155 leads to increased expression of the pluripotency marker Nanog and its ectopic expression in extra-embryonic lineages, whereas upregulation of BAF155 leads to the upregulation of differentiation markers. Finally, we show that the arginine methyltransferase CARM1 methylates BAF155, which differentially influences assembly of the BAF complex between the lineages and the expression of pluripotency markers. Together, our results indicate a novel role of BAF-dependent chromatin remodelling in mouse development via regulation of lineage specification. PMID:26952987

  17. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors

    PubMed Central

    Acharya, Asha; Baek, Seung Tae; Huang, Guo; Eskiocak, Banu; Goetsch, Sean; Sung, Caroline Y.; Banfi, Serena; Sauer, Marion F.; Olsen, Gregory S.; Duffield, Jeremy S.; Olson, Eric N.; Tallquist, Michelle D.

    2012-01-01

    The basic helix-loop-helix (bHLH) family of transcription factors orchestrates cell-fate specification, commitment and differentiation in multiple cell lineages during development. Here, we describe the role of a bHLH transcription factor, Tcf21 (epicardin/Pod1/capsulin), in specification of the cardiac fibroblast lineage. In the developing heart, the epicardium constitutes the primary source of progenitor cells that form two cell lineages: coronary vascular smooth muscle cells (cVSMCs) and cardiac fibroblasts. Currently, there is a debate regarding whether the specification of these lineages occurs early in the formation of the epicardium or later after the cells have entered the myocardium. Lineage tracing using a tamoxifen-inducible Cre expressed from the Tcf21 locus demonstrated that the majority of Tcf21-expressing epicardial cells are committed to the cardiac fibroblast lineage prior to initiation of epicardial epithelial-to-mesenchymal transition (EMT). Furthermore, Tcf21 null hearts fail to form cardiac fibroblasts, and lineage tracing of the null cells showed their inability to undergo EMT. This is the first report of a transcription factor essential for the development of cardiac fibroblasts. We demonstrate a unique role for Tcf21 in multipotent epicardial progenitors, prior to the process of EMT that is essential for cardiac fibroblast development. PMID:22573622

  18. The BAF chromatin remodelling complex is an epigenetic regulator of lineage specification in the early mouse embryo.

    PubMed

    Panamarova, Maryna; Cox, Andy; Wicher, Krzysztof B; Butler, Richard; Bulgakova, Natalia; Jeon, Shin; Rosen, Barry; Seong, Rho H; Skarnes, William; Crabtree, Gerald; Zernicka-Goetz, Magdalena

    2016-04-15

    Dynamic control of gene expression is essential for the development of a totipotent zygote into an embryo with defined cell lineages. The accessibility of genes responsible for cell specification to transcriptional machinery is dependent on chromatin remodelling complexes such as the SWI\\SNF (BAF) complex. However, the role of the BAF complex in early mouse development has remained unclear. Here, we demonstrate that BAF155, a major BAF complex subunit, regulates the assembly of the BAF complexin vivoand regulates lineage specification of the mouse blastocyst. We find that associations of BAF155 with other BAF complex subunits become enriched in extra-embryonic lineages just prior to implantation. This enrichment is attributed to decreased mobility of BAF155 in extra-embryonic compared with embryonic lineages. Downregulation of BAF155 leads to increased expression of the pluripotency markerNanogand its ectopic expression in extra-embryonic lineages, whereas upregulation of BAF155 leads to the upregulation of differentiation markers. Finally, we show that the arginine methyltransferase CARM1 methylates BAF155, which differentially influences assembly of the BAF complex between the lineages and the expression of pluripotency markers. Together, our results indicate a novel role of BAF-dependent chromatin remodelling in mouse development via regulation of lineage specification. PMID:26952987

  19. Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells

    PubMed Central

    Soucie, Erinn L.; Weng, Ziming; Geirsdóttir, Laufey; Molawi, Kaaweh; Maurizio, Julien; Fenouil, Romain; Mossadegh-Keller, Noushine; Gimenez, Gregory; VanHille, Laurent; Beniazza, Meryam; Favret, Jeremy; Berruyer, Carole; Perrin, Pierre; Hacohen, Nir; Andrau, J.-C.; Ferrier, Pierre; Dubreuil, Patrice; Sidow, Arend; Sieweke, Michael H.

    2016-01-01

    Differentiated macrophages can self-renew in tissues and expand long-term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network controlling self-renewal. Single cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors. The network also controls embryonic stem cell self-renewal but is associated with distinct embryonic stem cell-specific enhancers. This indicates that distinct lineage-specific enhancer platforms regulate a shared network of genes that control self-renewal potential in both stem and mature cells. PMID:26797145

  20. An LTR Retrotransposon-Derived Gene Displays Lineage-Specific Structural and Putative Species-Specific Functional Variations in Eutherians.

    PubMed

    Irie, Masahito; Koga, Akihiko; Kaneko-Ishino, Tomoko; Ishino, Fumitoshi

    2016-01-01

    Amongst the 11 eutherian-specific genes acquired from a sushi-ichi retrotransposon is the CCHC type zinc-finger protein-encoding gene SIRH11/ZCCHC16. Its contribution to eutherian brain evolution is implied because of its involvement in cognitive function in mice, possibly via the noradrenergic system. Although, the possibility that Sirh11/Zcchc16 functions as a non-coding RNA still remains, dN/dS ratios in pairwise comparisons between its orthologs have provided supportive evidence that it acts as a protein. It became a pseudogene in armadillos (Cingulata) and sloths (Pilosa), the only two extant orders of xenarthra, which prompted us to examine the lineage-specific variations of SIRH11/ZCCHC16 in eutherians. We examined the predicted SIRH11/ZCCHC16 open reading frame (ORF) in 95 eutherian species based on the genomic DNA information in GenBank. A large variation in the SIRH11/ZCCHC16 ORF was detected in several lineages. These include a lack of a CCHC RNA-binding domain in its C-terminus, observed in gibbons (Hylobatidae: Primates) and megabats (Megachiroptera: Chiroptera). A lack of the N-terminal half, on the other hand, was observed in New World monkeys (Platyrrhini: Primates) and species belonging to New World and African Hystricognaths (Caviomorpha and Bathyergidae: Rodents) along with Cetacea and Ruminantia (Cetartiodactyla). Among the hominoids, interestingly, three out of four genera of gibbons have lost normal SIRH11/ZCCHC16 function by deletion or the lack of the CCHC RNA-binding domain. Our extensive dN/dS analysis suggests that such truncated SIRH11/ZCCHC16 ORFs are functionally diversified even within lineages. Combined, our results show that SIRH11/ZCCHC16 may contribute to the diversification of eutherians by lineage-specific structural changes after its domestication in the common eutherian ancestor, followed by putative species-specific functional changes that enhanced fitness and occurred as a consequence of complex natural selection events

  1. An LTR Retrotransposon-Derived Gene Displays Lineage-Specific Structural and Putative Species-Specific Functional Variations in Eutherians

    PubMed Central

    Irie, Masahito; Koga, Akihiko; Kaneko-Ishino, Tomoko; Ishino, Fumitoshi

    2016-01-01

    Amongst the 11 eutherian-specific genes acquired from a sushi-ichi retrotransposon is the CCHC type zinc-finger protein-encoding gene SIRH11/ZCCHC16. Its contribution to eutherian brain evolution is implied because of its involvement in cognitive function in mice, possibly via the noradrenergic system. Although, the possibility that Sirh11/Zcchc16 functions as a non-coding RNA still remains, dN/dS ratios in pairwise comparisons between its orthologs have provided supportive evidence that it acts as a protein. It became a pseudogene in armadillos (Cingulata) and sloths (Pilosa), the only two extant orders of xenarthra, which prompted us to examine the lineage-specific variations of SIRH11/ZCCHC16 in eutherians. We examined the predicted SIRH11/ZCCHC16 open reading frame (ORF) in 95 eutherian species based on the genomic DNA information in GenBank. A large variation in the SIRH11/ZCCHC16 ORF was detected in several lineages. These include a lack of a CCHC RNA-binding domain in its C-terminus, observed in gibbons (Hylobatidae: Primates) and megabats (Megachiroptera: Chiroptera). A lack of the N-terminal half, on the other hand, was observed in New World monkeys (Platyrrhini: Primates) and species belonging to New World and African Hystricognaths (Caviomorpha and Bathyergidae: Rodents) along with Cetacea and Ruminantia (Cetartiodactyla). Among the hominoids, interestingly, three out of four genera of gibbons have lost normal SIRH11/ZCCHC16 function by deletion or the lack of the CCHC RNA-binding domain. Our extensive dN/dS analysis suggests that such truncated SIRH11/ZCCHC16 ORFs are functionally diversified even within lineages. Combined, our results show that SIRH11/ZCCHC16 may contribute to the diversification of eutherians by lineage-specific structural changes after its domestication in the common eutherian ancestor, followed by putative species-specific functional changes that enhanced fitness and occurred as a consequence of complex natural selection events

  2. Genome-wide identification of lineage-specific genes in Arabidopsis, Oryza and Populus

    SciTech Connect

    Yang, Xiaohan; Jawdy, Sara; Tschaplinski, Timothy J; Tuskan, Gerald A

    2009-01-01

    Protein sequences were compared among Arabidopsis, Oryza and Populus to identify differential gene (DG) sets that are in one but not the other two genomes. The DG sets were screened against a plant transcript database, the NR protein database and six newly-sequenced genomes (Carica, Glycine, Medicago, Sorghum, Vitis and Zea) to identify a set of species-specific genes (SS). Gene expression, protein motif and intron number were examined. 192, 641 and 109 SS genes were identified in Arabidopsis, Oryza and Populus, respectively. Some SS genes were preferentially expressed in flowers, roots, xylem and cambium or up-regulated by stress. Six conserved motifs in Arabidopsis and Oryza SS proteins were found in other distant lineages. The SS gene sets were enriched with intronless genes. The results reflect functional and/or anatomical differences between monocots and eudicots or between herbaceous and woody plants. The Populus-specific genes are candidates for carbon sequestration and biofuel research.

  3. Stage-specific differentiation of iPSCs toward retinal ganglion cell lineage

    PubMed Central

    Deng, Fei; Chen, Mengfei; Liu, Ying; Hu, Huiling; Xiong, Yunfan; Xu, Chaochao; Liu, Yuchun; Li, Kangjun; Zhuang, Jing

    2016-01-01

    Purpose As an alternative and desirable approach for regenerative medicine, human induced pluripotent stem cell (hiPSC) technology raises the possibility of developing patient-tailored cell therapies to treat intractable degenerative diseases in the future. This study was undertaken to guide human Tenon’s capsule fibroblasts-derived iPSCs (TiPSCs) to differentiate along the retinal ganglion cell (RGC) lineage, aiming at producing appropriate cellular material for RGC regeneration. Methods By mimicking RGC genesis, we deliberately administered the whole differentiation process and directed the stage-specific differentiation of human TiPSCs toward an RGC fate via manipulation of the retinal inducers (DKK1+Noggin+Lefty A) alongside master gene (Atoh7) sequentially. Throughout this stepwise differentiation process, changes in primitive neuroectodermal, eye field, and RGC marker expression were monitored with quantitative real-time PCR (qRT-PCR), immunocytochemistry, and/or flow cytometry. Results Upon retinal differentiation, a large fraction of the cells developed characteristics of retinal progenitor cells (RPCs) in response to simulated environment signaling (DKK1+Noggin+Lefty A), which was selectively recovered with manual isolation approaches and then maintained in the presence of mitogen for multiple passages. Thereafter, overexpression of ATOH7 further promoted RGC specification in TiPSC-derived RPCs. A subset of transfected cells displayed RGC-specific expression patterns, including Brn3b, iSlet1, calretinin, and Tuj, and approximately 23% of Brn3b-positive RGC-like cells were obtained finally. Conclusions Our DKK1+Noggin+Lefty A/Atoh7-based RGC-induction regime could efficiently direct TiPSCs to differentiate along RGC lineage in a stage-specific manner, which may provide a benefit to develop possible cell therapies to treat retinal degenerative diseases such as glaucoma. PMID:27293372

  4. Telomere replication: poised but puzzling

    PubMed Central

    Sampathi, Shilpa; Chai, Weihang

    2011-01-01

    Abstract Faithful replication of chromosomes is essential for maintaining genome stability. Telomeres, the chromosomal termini, pose quite a challenge to replication machinery due to the complexity in their structures and sequences. Efficient and complete replication of chromosomes is critical to prevent aberrant telomeres as well as to avoid unnecessary loss of telomere DNA. Compelling evidence supports the emerging picture of synergistic actions between DNA replication proteins and telomere protective components in telomere synthesis. This review discusses the actions of various replication and telomere-specific binding proteins that ensure accurate telomere replication and their roles in telomere maintenance and protection. PMID:21122064

  5. Quantitative lineage tracing strategies to resolve multipotency in tissue-specific stem cells

    PubMed Central

    Wuidart, Aline; Ousset, Marielle; Rulands, Steffen; Simons, Benjamin D.; Van Keymeulen, Alexandra; Blanpain, Cédric

    2016-01-01

    Lineage tracing has become the method of choice to study the fate and dynamics of stem cells (SCs) during development, homeostasis, and regeneration. However, transgenic and knock-in Cre drivers used to perform lineage tracing experiments are often dynamically, temporally, and heterogeneously expressed, leading to the initial labeling of different cell types and thereby complicating their interpretation. Here, we developed two methods: the first one based on statistical analysis of multicolor lineage tracing, allowing the definition of multipotency potential to be achieved with high confidence, and the second one based on lineage tracing at saturation to assess the fate of all SCs within a given lineage and the “flux” of cells between different lineages. Our analysis clearly shows that, whereas the prostate develops from multipotent SCs, only unipotent SCs mediate mammary gland (MG) development and adult tissue remodeling. These methods offer a rigorous framework to assess the lineage relationship and SC fate in different organs and tissues. PMID:27284162

  6. Quantitative lineage tracing strategies to resolve multipotency in tissue-specific stem cells.

    PubMed

    Wuidart, Aline; Ousset, Marielle; Rulands, Steffen; Simons, Benjamin D; Van Keymeulen, Alexandra; Blanpain, Cédric

    2016-06-01

    Lineage tracing has become the method of choice to study the fate and dynamics of stem cells (SCs) during development, homeostasis, and regeneration. However, transgenic and knock-in Cre drivers used to perform lineage tracing experiments are often dynamically, temporally, and heterogeneously expressed, leading to the initial labeling of different cell types and thereby complicating their interpretation. Here, we developed two methods: the first one based on statistical analysis of multicolor lineage tracing, allowing the definition of multipotency potential to be achieved with high confidence, and the second one based on lineage tracing at saturation to assess the fate of all SCs within a given lineage and the "flux" of cells between different lineages. Our analysis clearly shows that, whereas the prostate develops from multipotent SCs, only unipotent SCs mediate mammary gland (MG) development and adult tissue remodeling. These methods offer a rigorous framework to assess the lineage relationship and SC fate in different organs and tissues. PMID:27284162

  7. Lineage-specific effects of Notch/Numb signaling in post-embryonic development of the Drosophila brain.

    PubMed

    Lin, Suewei; Lai, Sen-Lin; Yu, Huang-Hsiang; Chihara, Takahiro; Luo, Liqun; Lee, Tzumin

    2010-01-01

    Numb can antagonize Notch signaling to diversify the fates of sister cells. We report here that paired sister cells acquire different fates in all three Drosophila neuronal lineages that make diverse types of antennal lobe projection neurons (PNs). Only one in each pair of postmitotic neurons survives into the adult stage in both anterodorsal (ad) and ventral (v) PN lineages. Notably, Notch signaling specifies the PN fate in the vPN lineage but promotes programmed cell death in the missing siblings in the adPN lineage. In addition, Notch/Numb-mediated binary sibling fates underlie the production of PNs and local interneurons from common precursors in the lAL lineage. Furthermore, Numb is needed in the lateral but not adPN or vPN lineages to prevent the appearance of ectopic neuroblasts and to ensure proper self-renewal of neural progenitors. These lineage-specific outputs of Notch/Numb signaling show that a universal mechanism of binary fate decision can be utilized to govern diverse neural sibling differentiations. PMID:20023159

  8. The Lineage-Specific Evolution of Aquaporin Gene Clusters Facilitated Tetrapod Terrestrial Adaptation

    PubMed Central

    Finn, Roderick Nigel; Chauvigné, François; Hlidberg, Jón Baldur; Cutler, Christopher P.; Cerdà, Joan

    2014-01-01

    A major physiological barrier for aquatic organisms adapting to terrestrial life is dessication in the aerial environment. This barrier was nevertheless overcome by the Devonian ancestors of extant Tetrapoda, but the origin of specific molecular mechanisms that solved this water problem remains largely unknown. Here we show that an ancient aquaporin gene cluster evolved specifically in the sarcopterygian lineage, and subsequently diverged into paralogous forms of AQP2, -5, or -6 to mediate water conservation in extant Tetrapoda. To determine the origin of these apomorphic genomic traits, we combined aquaporin sequencing from jawless and jawed vertebrates with broad taxon assembly of >2,000 transcripts amongst 131 deuterostome genomes and developed a model based upon Bayesian inference that traces their convergent roots to stem subfamilies in basal Metazoa and Prokaryota. This approach uncovered an unexpected diversity of aquaporins in every lineage investigated, and revealed that the vertebrate superfamily consists of 17 classes of aquaporins (Aqp0 - Aqp16). The oldest orthologs associated with water conservation in modern Tetrapoda are traced to a cluster of three aqp2-like genes in Actinistia that likely arose >500 Ma through duplication of an aqp0-like gene present in a jawless ancestor. In sea lamprey, we show that aqp0 first arose in a protocluster comprised of a novel aqp14 paralog and a fused aqp01 gene. To corroborate these findings, we conducted phylogenetic analyses of five syntenic nuclear receptor subfamilies, which, together with observations of extensive genome rearrangements, support the coincident loss of ancestral aqp2-like orthologs in Actinopterygii. We thus conclude that the divergence of sarcopterygian-specific aquaporin gene clusters was permissive for the evolution of water conservation mechanisms that facilitated tetrapod terrestrial adaptation. PMID:25426855

  9. Tracing the Evolution of Lineage-Specific Transcription Factor Binding Sites in a Birth-Death Framework

    PubMed Central

    Ma, Jian

    2014-01-01

    Changes in cis-regulatory element composition that result in novel patterns of gene expression are thought to be a major contributor to the evolution of lineage-specific traits. Although transcription factor binding events show substantial variation across species, most computational approaches to study regulatory elements focus primarily upon highly conserved sites, and rely heavily upon multiple sequence alignments. However, sequence conservation based approaches have limited ability to detect lineage-specific elements that could contribute to species-specific traits. In this paper, we describe a novel framework that utilizes a birth-death model to trace the evolution of lineage-specific binding sites without relying on detailed base-by-base cross-species alignments. Our model was applied to analyze the evolution of binding sites based on the ChIP-seq data for six transcription factors (GATA1, SOX2, CTCF, MYC, MAX, ETS1) along the lineage toward human after human-mouse common ancestor. We estimate that a substantial fraction of binding sites (∼58–79% for each factor) in humans have origins since the divergence with mouse. Over 15% of all binding sites are unique to hominids. Such elements are often enriched near genes associated with specific pathways, and harbor more common SNPs than older binding sites in the human genome. These results support the ability of our method to identify lineage-specific regulatory elements and help understand their roles in shaping variation in gene regulation across species. PMID:25144359

  10. Lineage-Specific Modulation of Interleukin 4 Signaling by Interferon Regulatory Factor 4

    PubMed Central

    Gupta, Sanjay; Jiang, Man; Anthony, Alissa; Pernis, Alessandra B.

    1999-01-01

    Interleukin (IL)-4 is an immunoregulatory cytokine that exerts distinct biological activities on different cell types. Our studies indicate that interferon regulatory factor (IRF)-4 is both a target and a modulator of the IL-4 signaling cascade. IRF-4 expression is strongly upregulated upon costimulation of B cells with CD40 and IL-4. Furthermore, we find that IRF-4 can interact with signal transducer and activator of transcription (Stat)6 and drive the expression of IL-4–inducible genes. The transactivating ability of IRF-4 is blocked by the repressor factor BCL-6. Since expression of IRF-4 is mostly confined to lymphoid cells, these data provide a potential mechanism by which IL-4–inducible genes can be regulated in a lineage-specific manner. PMID:10601358

  11. Lineage-specific and ubiquitous biological roles of the mammalian transcription factor LSF

    PubMed Central

    Veljkovic, Jelena; Hansen, Ulla

    2012-01-01

    Transcriptional regulation in mammalian cells is driven by a complex interplay of multiple transcription factors that respond to signals from either external or internal stimuli. A single transcription factor can control expression of distinct sets of target genes, dependent on its state of post-translational modifications, interacting partner proteins, and the chromatin environment of the cellular genome. Furthermore, many transcription factors can act as either transcriptional repressors or activators, depending on promoter and cellular contexts (Alvarez, et al., 2003). Even in this light, the versatility of LSF (Late SV40 Factor) is remarkable. A hallmark of LSF is its unusual DNA binding domain, as evidenced both by lack of homology to any other established DNA-binding domains and by its DNA recognition sequence. Although a dimer in solution, LSF requires additional multimerization with itself or partner proteins in order to interact with DNA. Transcriptionally, LSF can function as an activator or a repressor. It is a direct target of an increasing number of signal transduction pathways. Biologically, LSF plays roles in cell cycle progression and cell survival, as well as in cell lineage-specific functions, shown most strikingly to date in hematopoietic lineages. This review discusses how the unique aspects of LSF DNA-binding activity may make it particularly susceptible to regulation by signal transduction pathways and may relate to its distinct biological roles. We present current progress in elucidation of both tissue-specific and more universal cellular roles of LSF. Finally, we discuss suggestive data linking LSF to signaling by the amyloid precursor protein and to Alzheimer's disease, as well as to the regulation of latency of the human immunodeficiency virus (HIV). PMID:15563829

  12. The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm-specific lineage

    PubMed Central

    2012-01-01

    Background Phenylalanine ammonia lyase (PAL) is a key enzyme of the phenylpropanoid pathway that catalyzes the deamination of phenylalanine to trans-cinnamic acid, a precursor for the lignin and flavonoid biosynthetic pathways. To date, PAL genes have been less extensively studied in gymnosperms than in angiosperms. Our interest in PAL genes stems from their potential role in the defense responses of Pinus taeda, especially with respect to lignification and production of low molecular weight phenolic compounds under various biotic and abiotic stimuli. In contrast to all angiosperms for which reference genome sequences are available, P. taeda has previously been characterized as having only a single PAL gene. Our objective was to re-evaluate this finding, assess the evolutionary history of PAL genes across major angiosperm and gymnosperm lineages, and characterize PAL gene expression patterns in Pinus taeda. Methods We compiled a large set of PAL genes from the largest transcript dataset available for P. taeda and other conifers. The transcript assemblies for P. taeda were validated through sequencing of PCR products amplified using gene-specific primers based on the putative PAL gene assemblies. Verified PAL gene sequences were aligned and a gene tree was estimated. The resulting gene tree was reconciled with a known species tree and the time points for gene duplication events were inferred relative to the divergence of major plant lineages. Results In contrast to angiosperms, gymnosperms have retained a diverse set of PAL genes distributed among three major clades that arose from gene duplication events predating the divergence of these two seed plant lineages. Whereas multiple PAL genes have been identified in sequenced angiosperm genomes, all characterized angiosperm PAL genes form a single clade in the gene PAL tree, suggesting they are derived from a single gene in an ancestral angiosperm genome. The five distinct PAL genes detected and verified in P. taeda

  13. NeSL-1, an ancient lineage of site-specific non-LTR retrotransposons from Caenorhabditis elegans.

    PubMed Central

    Malik, H S; Eickbush, T H

    2000-01-01

    Phylogenetic analyses of non-LTR retrotransposons suggest that all elements can be divided into 11 lineages. The 3 oldest lineages show target site specificity for unique locations in the genome and encode an endonuclease with an active site similar to certain restriction enzymes. The more "modern" non-LTR lineages possess an apurinic endonuclease-like domain and generally lack site specificity. The genome sequence of Caenorhabditis elegans reveals the presence of a non-LTR retrotransposon that resembles the older elements, in that it contains a single open reading frame with a carboxyl-terminal restriction-like endonuclease domain. Located near the N-terminal end of the ORF is a cysteine protease domain not found in any other non-LTR element. The N2 strain of C. elegans appears to contain only one full-length and several 5' truncated copies of this element. The elements specifically insert in the Spliced leader-1 genes; hence the element has been named NeSL-1 (Nematode Spliced Leader-1). Phylogenetic analysis confirms that NeSL-1 branches very early in the non-LTR lineage and that it represents a 12th lineage of non-LTR elements. The target specificity of NeSL-1 for the spliced leader exons and the similarity of its structure to that of R2 elements leads to a simple model for its expression and retrotransposition. PMID:10628980

  14. Lineage-specific evolution of the vertebrate Otopetrin gene family revealed by comparative genomic analyses

    PubMed Central

    2011-01-01

    Background Mutations in the Otopetrin 1 gene (Otop1) in mice and fish produce an unusual bilateral vestibular pathology that involves the absence of otoconia without hearing impairment. The encoded protein, Otop1, is the only functionally characterized member of the Otopetrin Domain Protein (ODP) family; the extended sequence and structural preservation of ODP proteins in metazoans suggest a conserved functional role. Here, we use the tools of sequence- and cytogenetic-based comparative genomics to study the Otop1 and the Otop2-Otop3 genes and to establish their genomic context in 25 vertebrates. We extend our evolutionary study to include the gene mutated in Usher syndrome (USH) subtype 1G (Ush1g), both because of the head-to-tail clustering of Ush1g with Otop2 and because Otop1 and Ush1g mutations result in inner ear phenotypes. Results We established that OTOP1 is the boundary gene of an inversion polymorphism on human chromosome 4p16 that originated in the common human-chimpanzee lineage more than 6 million years ago. Other lineage-specific evolutionary events included a three-fold expansion of the Otop genes in Xenopus tropicalis and of Ush1g in teleostei fish. The tight physical linkage between Otop2 and Ush1g is conserved in all vertebrates. To further understand the functional organization of the Ushg1-Otop2 locus, we deduced a putative map of binding sites for CCCTC-binding factor (CTCF), a mammalian insulator transcription factor, from genome-wide chromatin immunoprecipitation-sequencing (ChIP-seq) data in mouse and human embryonic stem (ES) cells combined with detection of CTCF-binding motifs. Conclusions The results presented here clarify the evolutionary history of the vertebrate Otop and Ush1g families, and establish a framework for studying the possible interaction(s) of Ush1g and Otop in developmental pathways. PMID:21261979

  15. Genome-Wide Analysis Indicates Lineage-Specific Gene Loss during Papilionoideae Evolution

    PubMed Central

    Gu, Yongzhe; Xing, Shilai; He, Chaoying

    2016-01-01

    Gene loss is the driving force for changes in genome and morphology; however, this particular evolutionary event has been poorly investigated in leguminous plants. Legumes (Fabaceae) have some lineage-specific and diagnostic characteristics that are distinct from other angiosperms. To understand the potential role of gene loss in the evolution of legumes, we compared six genome-sequenced legume species of Papilionoideae, the largest representative clade of Fabaceae, such as Glycine max, with 34 nonlegume plant species, such as Arabidopsis thaliana. The results showed that the putative orthologs of the 34 Arabidopsis genes belonging to 29 gene families were absent in these legume species but these were conserved in the sequenced nonlegume angiosperm lineages. Further evolutionary analyses indicated that the orthologs of these genes were almost completely lost in the Papillionoideae ancestors, thus designated as the legume lost genes (LLGs), and these underwent purifying selection in nonlegume plants. Most LLGs were functionally unknown. In Arabidopsis, two LLGs were well-known genes that played a role in plant immunity such as HARMLESS TO OZONE LAYER 1 and HOPZ-ACTIVATED RESISTANCE 1, and 16 additional LLGs were predicted to participate in plant–pathogen interactions in in silico expression and protein–protein interaction network analyses. Most of these LLGs’ orthologs in various plants were also found to be associated with biotic stress response, indicating the conserved role of these genes in plant defense. The evolutionary implication of LLGs during the development of the ability of symbiotic nitrogen fixation involving plant and bacterial interactions, which is a well-known characteristic of most legumes, is also discussed. Our work sheds light on the evolutionary implication of gene loss events in Papilionoideae evolution, as well as provides new insights into crop design to improve nitrogen fixation capacity. PMID:26868598

  16. Genome-Wide Analysis Indicates Lineage-Specific Gene Loss during Papilionoideae Evolution.

    PubMed

    Gu, Yongzhe; Xing, Shilai; He, Chaoying

    2016-03-01

    Gene loss is the driving force for changes in genome and morphology; however, this particular evolutionary event has been poorly investigated in leguminous plants. Legumes (Fabaceae) have some lineage-specific and diagnostic characteristics that are distinct from other angiosperms. To understand the potential role of gene loss in the evolution of legumes, we compared six genome-sequenced legume species of Papilionoideae, the largest representative clade of Fabaceae, such as Glycine max, with 34 nonlegume plant species, such as Arabidopsis thaliana. The results showed that the putative orthologs of the 34 Arabidopsis genes belonging to 29 gene families were absent in these legume species but these were conserved in the sequenced nonlegume angiosperm lineages. Further evolutionary analyses indicated that the orthologs of these genes were almost completely lost in the Papillionoideae ancestors, thus designated as the legume lost genes (LLGs), and these underwent purifying selection in nonlegume plants. Most LLGs were functionally unknown. In Arabidopsis, two LLGs were well-known genes that played a role in plant immunity such as HARMLESS TO OZONE LAYER 1 and HOPZ-ACTIVATED RESISTANCE 1, and 16 additional LLGs were predicted to participate in plant-pathogen interactions in in silico expression and protein-protein interaction network analyses. Most of these LLGs' orthologs in various plants were also found to be associated with biotic stress response, indicating the conserved role of these genes in plant defense. The evolutionary implication of LLGs during the development of the ability of symbiotic nitrogen fixation involving plant and bacterial interactions, which is a well-known characteristic of most legumes, is also discussed. Our work sheds light on the evolutionary implication of gene loss events in Papilionoideae evolution, as well as provides new insights into crop design to improve nitrogen fixation capacity. PMID:26868598

  17. Fshb-iCre mice are efficient and specific Cre deleters for the gonadotrope lineage.

    PubMed

    Wang, Huizhen; Hastings, Richard; Miller, William L; Kumar, T Rajendra

    2016-01-01

    Genetic analysis of development and function of the gonadotrope cell lineage within mouse anterior pituitary has been greatly facilitated by at least three currently available Cre strains in which Cre was either knocked into the Gnrhr locus or expressed as a transgene from Cga and Lhb promoters. However, in each case there are some limitations including CRE expression in thyrotropes within pituitary or ectopic expression outside of pituitary, for example in some populations of neurons or gonads. Hence, these Cre strains often pose problems with regard to undesirable deletion of alleles in non-gonadotrope cells, fertility and germline transmission of mutant alleles. Here, we describe generation and characterization of a new Fshb-iCre deleter strain using 4.7 kb of ovine Fshb promoter regulatory sequences driving iCre expression exclusively in the gonadotrope lineage within anterior pituitary. Fshb-iCre mice develop normally, display no ectopic CRE expression in gonads and are fertile. When crossed onto a loxP recombination-mediated red to green color switch reporter mouse genetic background, in vivo CRE recombinase activity is detectable in gonadotropes at more than 95% efficiency and the GFP-tagged gonadotropes readily purified by fluorescence activated cell sorting. We demonstrate the applicability of this Fshb-iCre deleter strain in a mouse model in which Dicer is efficiently and selectively deleted in gonadotropes. We further show that loss of DICER-dependent miRNAs in gonadotropes leads to profound suppression of gonadotropins resulting in male and female infertility. Thus, Fshb-iCre mice serve as a new genetic tool to efficiently manipulate gonadotrope-specific gene expression in vivo. PMID:26472536

  18. Lineage-Specific Patterns of Genome Deterioration in Obligate Symbionts of Sharpshooter Leafhoppers

    PubMed Central

    Bennett, Gordon M.; McCutcheon, John P.; McDonald, Bradon R.; Moran, Nancy A.

    2016-01-01

    Plant sap-feeding insects (Hemiptera) rely on obligate bacterial symbionts that provision nutrients. Some of these symbionts are ancient and have evolved tiny genomes, whereas others are younger and retain larger, dynamic genomes. Baumannia cicadellinicola, an obligate symbiont of sharpshooter leafhoppers, is derived from a relatively recent symbiont replacement. To better understand evolutionary decay of genomes, we compared Baumannia from three host species. A newly sequenced genome for Baumannia from the green sharpshooter (B-GSS) was compared with genomes of Baumannia from the blue-green sharpshooter (B-BGSS, 759 kilobases [kb]) and from the glassy-winged sharpshooter (B-GWSS, 680 kb). B-GSS has the smallest Baumannia genome sequenced to date (633 kb), with only three unique genes, all involved in membrane function. It has lost nearly all pathways involved in vitamin and cofactor synthesis, as well as amino acid biosynthetic pathways that are redundant with pathways of the host or the symbiotic partner, Sulcia muelleri. The entire biosynthetic pathway for methionine is eliminated, suggesting that methionine has become a dietary requirement for hosts. B-GSS and B-BGSS share 33 genes involved in bacterial functions (e.g., cell division, membrane synthesis, metabolite transport, etc.) that are lost from the more distantly related B-GWSS and most other tiny genome symbionts. Finally, pairwise divergence estimates indicate that B-GSS has experienced a lineage-specific increase in substitution rates. This increase correlates with accelerated protein-level changes and widespread gene loss. Thus, the mode and tempo of genome reduction vary widely among symbiont lineages and result in wide variation in metabolic capabilities across hosts. PMID:26260652

  19. Lineage-Specific Patterns of Genome Deterioration in Obligate Symbionts of Sharpshooter Leafhoppers.

    PubMed

    Bennett, Gordon M; McCutcheon, John P; McDonald, Bradon R; Moran, Nancy A

    2016-01-01

    Plant sap-feeding insects (Hemiptera) rely on obligate bacterial symbionts that provision nutrients. Some of these symbionts are ancient and have evolved tiny genomes, whereas others are younger and retain larger, dynamic genomes. Baumannia cicadellinicola, an obligate symbiont of sharpshooter leafhoppers, is derived from a relatively recent symbiont replacement. To better understand evolutionary decay of genomes, we compared Baumannia from three host species. A newly sequenced genome for Baumannia from the green sharpshooter (B-GSS) was compared with genomes of Baumannia from the blue-green sharpshooter (B-BGSS, 759 kilobases [kb]) and from the glassy-winged sharpshooter (B-GWSS, 680 kb). B-GSS has the smallest Baumannia genome sequenced to date (633 kb), with only three unique genes, all involved in membrane function. It has lost nearly all pathways involved in vitamin and cofactor synthesis, as well as amino acid biosynthetic pathways that are redundant with pathways of the host or the symbiotic partner, Sulcia muelleri. The entire biosynthetic pathway for methionine is eliminated, suggesting that methionine has become a dietary requirement for hosts. B-GSS and B-BGSS share 33 genes involved in bacterial functions (e.g., cell division, membrane synthesis, metabolite transport, etc.) that are lost from the more distantly related B-GWSS and most other tiny genome symbionts. Finally, pairwise divergence estimates indicate that B-GSS has experienced a lineage-specific increase in substitution rates. This increase correlates with accelerated protein-level changes and widespread gene loss. Thus, the mode and tempo of genome reduction vary widely among symbiont lineages and result in wide variation in metabolic capabilities across hosts. PMID:26260652

  20. Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations

    PubMed Central

    Tian, Chang Fu; Zhou, Yuan Jie; Zhang, Yan Ming; Li, Qin Qin; Zhang, Yun Zeng; Li, Dong Fang; Wang, Shuang; Wang, Jun; Gilbert, Luz B.; Li, Ying Rui; Chen, Wen Xin

    2012-01-01

    The rhizobium–legume symbiosis has been widely studied as the model of mutualistic evolution and the essential component of sustainable agriculture. Extensive genetic and recent genomic studies have led to the hypothesis that many distinct strategies, regardless of rhizobial phylogeny, contributed to the varied rhizobium–legume symbiosis. We sequenced 26 genomes of Sinorhizobium and Bradyrhizobium nodulating soybean to test this hypothesis. The Bradyrhizobium core genome is disproportionally enriched in lipid and secondary metabolism, whereas several gene clusters known to be involved in osmoprotection and adaptation to alkaline pH are specific to the Sinorhizobium core genome. These features are consistent with biogeographic patterns of these bacteria. Surprisingly, no genes are specifically shared by these soybean microsymbionts compared with other legume microsymbionts. On the other hand, phyletic patterns of 561 known symbiosis genes of rhizobia reflected the species phylogeny of these soybean microsymbionts and other rhizobia. Similar analyses with 887 known functional genes or the whole pan genome of rhizobia revealed that only the phyletic distribution of functional genes was consistent with the species tree of rhizobia. Further evolutionary genetics revealed that recombination dominated the evolution of core genome. Taken together, our results suggested that faithfully vertical genes were rare compared with those with history of recombination including lateral gene transfer, although rhizobial adaptations to symbiotic interactions and other environmental conditions extensively recruited lineage-specific shell genes under direct or indirect control through the speciation process. PMID:22586130

  1. Lineage-Specific Loss of Function of Bitter Taste Receptor Genes in Humans and Nonhuman Primates

    PubMed Central

    Go, Yasuhiro; Satta, Yoko; Takenaka, Osamu; Takahata, Naoyuki

    2005-01-01

    Since the process of becoming dead genes or pseudogenes (pseudogenization) is irreversible and can occur rather rapidly under certain environmental circumstances, it is one plausible determinant for characterizing species specificity. To test this evolutionary hypothesis, we analyzed the tempo and mode of duplication and pseudogenization of bitter taste receptor (T2R) genes in humans as well as in 12 nonhuman primates. The results show that primates have accumulated more pseudogenes than mice after their separation from the common ancestor and that lineage-specific pseudogenization becomes more conspicuous in humans than in nonhuman primates. Although positive selection has operated on some amino acids in extracellular domains, functional constraints against T2R genes are more relaxed in primates than in mice and this trend has culminated in the rapid deterioration of the bitter-tasting capability in humans. Since T2R molecules play an important role in avoiding generally bitter toxic and harmful substances, substantial modification of the T2R gene repertoire is likely to reflect different responses to changes in the environment and to result from species-specific food preference during primate evolution. PMID:15744053

  2. Potential merger of ancient lineages in a passerine bird discovered based on evidence from host-specific ectoparasites

    PubMed Central

    Block, Nicholas L; Goodman, Steven M; Hackett, Shannon J; Bates, John M; Raherilalao, Marie J

    2015-01-01

    The merger of formerly isolated lineages is hypothesized to occur in vertebrates under certain conditions. However, despite many demonstrated instances of introgression between taxa in secondary contact, examples of lineage mergers are rare. Preliminary mtDNA sequencing of a Malagasy passerine, Xanthomixis zosterops (Passeriformes: Bernieridae), indicated a possible instance of merging lineages. We tested the hypothesis that X. zosterops lineages are merging by comparing mtDNA sequence and microsatellite data, as well as mtDNA sequence data from host-specific feather lice in the genus Myrsidea (Phthiraptera: Menoponidae). Xanthomixis zosterops comprises four deeply divergent, broadly sympatric, cryptic mtDNA clades that likely began diverging approximately 3.6 million years ago. Despite this level of divergence, the microsatellite data indicate that the X. zosterops mtDNA clades are virtually panmictic. Three major phylogroups of Myrsidea were found, supporting previous allopatry of the X. zosterops clades. In combination, the datasets from X. zosterops and its Myrsidea document a potential merger of previously allopatric lineages that likely date to the Pliocene. This represents the first report of sympatric apparent hybridization among more than two terrestrial vertebrate lineages. Further, the mtDNA phylogeographic pattern of X. zosterops, namely the syntopy of more than two deeply divergent cryptic clades, appears to be a novel scenario among vertebrates. We highlight the value of gathering multiple types of data in phylogeographic studies to contribute to the study of vertebrate speciation. PMID:26380702

  3. Modern Lineages of Mycobacterium tuberculosis Exhibit Lineage-Specific Patterns of Growth and Cytokine Induction in Human Monocyte-Derived Macrophages

    PubMed Central

    Sarkar, Rajesh; Lenders, Laura; Wilkinson, Katalin A.; Wilkinson, Robert J.; Nicol, Mark P.

    2012-01-01

    Background Strains of Mycobacterium tuberculosis vary in virulence. Strains that have caused outbreaks in the United States and United Kingdom have been shown to subvert the innate immune response as a potential immune evasion mechanism. There is, however, little information available as to whether these patterns of immune subversion are features of individual strains or characteristic of broad clonal lineages of M. tuberculosis. Methods Strains from two major modern lineages (lineage 2 [East-Asian] and lineage 4 [Euro-American]) circulating in the Western Cape in South Africa as well as a comparator modern lineage (lineage 3 [CAS/Delhi]) were identified. We assessed two virulence associated characteristics: mycobacterial growth (in liquid broth and monocyte derived macrophages) and early pro-inflammatory cytokine induction. Results In liquid culture, Lineage 4 strains grew more rapidly and reached higher plateau levels than other strains (lineage 4 vs. lineage 2 p = 0.0024; lineage 4 vs. lineage 3 p = 0.0005). Lineage 3 strains were characterized by low and early plateau levels, while lineage 2 strains showed an intermediate growth phenotype. In monocyte-derived macrophages, lineage 2 strains grew faster than lineage 3 strains (p<0.01) with lineage 4 strains having an intermediate phenotype. Lineage 2 strains induced the lowest levels of pro-inflammatory TNF and IL-12p40 as compared to other lineages (lineage 2: median TNF 362 pg/ml, IL-12p40 91 pg/ml; lineage 3: median TNF 1818 pg/ml, IL-12p40 123 pg/ml; lineage 4: median TNF 1207 pg/ml, IL-12p40 205 pg/ml;). In contrast, lineage 4 strains induced high levels of IL-12p40 and intermediate level of TNF. Lineage 3 strains induced high levels of TNF and intermediate levels of IL-12p40. Conclusions Strains of M. tuberculosis from the three major modern strain lineages possess distinct patterns of growth and cytokine induction. Rapid growth and immune subversion may be key characteristics to the success of

  4. Development of Peptide-Based Lineage-Specific Serology for Chronic Chagas Disease: Geographical and Clinical Distribution of Epitope Recognition

    PubMed Central

    Bhattacharyya, Tapan; Falconar, Andrew K.; Luquetti, Alejandro O.; Costales, Jaime A.; Grijalva, Mario J.; Lewis, Michael D.; Messenger, Louisa A.; Tran, Trang T.; Ramirez, Juan-David; Guhl, Felipe; Carrasco, Hernan J.; Diosque, Patricio; Garcia, Lineth; Litvinov, Sergey V.; Miles, Michael A.

    2014-01-01

    Background Chagas disease, caused by infection with the protozoan Trypanosoma cruzi, remains a serious public health issue in Latin America. Genetically diverse, the species is sub-divided into six lineages, known as TcI–TcVI, which have disparate geographical and ecological distributions. TcII, TcV, and TcVI are associated with severe human disease in the Southern Cone countries, whereas TcI is associated with cardiomyopathy north of the Amazon. T. cruzi persists as a chronic infection, with cardiac and/or gastrointestinal symptoms developing years or decades after initial infection. Identifying an individual's history of T. cruzi lineage infection directly by genotyping of the parasite is complicated by the low parasitaemia and sequestration in the host tissues. Methodology/Principal Findings We have applied here serology against lineage-specific epitopes of the T. cruzi surface antigen TSSA, as an indirect approach to allow identification of infecting lineage. Chagasic sera from chronic patients from a range of endemic countries were tested by ELISA against synthetic peptides representing lineage-specific TSSA epitopes bound to avidin-coated ELISA plates via a biotin labelled polyethylene glycol-glycine spacer to increase rotation and ensure each amino acid side chain could freely interact with their antibodies. 79/113 (70%) of samples from Brazil, Bolivia, and Argentina recognised the TSSA epitope common to lineages TcII/TcV/TcVI. Comparison with clinical information showed that a higher proportion of Brazilian TSSApep-II/V/VI responders had ECG abnormalities than non-responders (38% vs 17%; p<0.0001). Among northern chagasic sera 4/20 (20%) from Ecuador reacted with this peptide; 1/12 Venezuelan and 1/34 Colombian samples reacted with TSSApep-IV. In addition, a proposed TcI-specific epitope, described elsewhere, was demonstrated here to be highly conserved across lineages and therefore not applicable to lineage-specific serology. Conclusions

  5. Lineage-Specific Expansion of IFIT Gene Family: An Insight into Coevolution with IFN Gene Family

    PubMed Central

    Liu, Ying; Zhang, Yi-Bing; Liu, Ting-Kai; Gui, Jian-Fang

    2013-01-01

    In mammals, IFIT (Interferon [IFN]-induced proteins with Tetratricopeptide Repeat [TPR] motifs) family genes are involved in many cellular and viral processes, which are tightly related to mammalian IFN response. However, little is known about non-mammalian IFIT genes. In the present study, IFIT genes are identified in the genome databases from the jawed vertebrates including the cartilaginous elephant shark but not from non-vertebrates such as lancelet, sea squirt and acorn worm, suggesting that IFIT gene family originates from a vertebrate ancestor about 450 million years ago. IFIT family genes show conserved gene structure and gene arrangements. Phylogenetic analyses reveal that this gene family has expanded through lineage-specific and species-specific gene duplication. Interestingly, IFN gene family seem to share a common ancestor and a similar evolutionary mechanism; the function link of IFIT genes to IFN response is present early since the origin of both gene families, as evidenced by the finding that zebrafish IFIT genes are upregulated by fish IFNs, poly(I:C) and two transcription factors IRF3/IRF7, likely via the IFN-stimulated response elements (ISRE) within the promoters of vertebrate IFIT family genes. These coevolution features creates functional association of both family genes to fulfill a common biological process, which is likely selected by viral infection during evolution of vertebrates. Our results are helpful for understanding of evolution of vertebrate IFN system. PMID:23818968

  6. Comparative phylogeography of two sympatric beeches in subtropical China: Species-specific geographic mosaic of lineages.

    PubMed

    Zhang, Zhi-Yong; Wu, Rong; Wang, Qun; Zhang, Zhi-Rong; López-Pujol, Jordi; Fan, Deng-Mei; Li, De-Zhu

    2013-11-01

    In subtropical China, large-scale phylogeographic comparisons among multiple sympatric plants with similar ecological preferences are scarce, making generalizations about common response to historical events necessarily tentative. A phylogeographic comparison of two sympatric Chinese beeches (Fagus lucida and F. longipetiolata, 21 and 28 populations, respectively) was conducted to test whether they have responded to historical events in a concerted fashion and to determine whether their phylogeographic structure is exclusively due to Quaternary events or it is also associated with pre-Quaternary events. Twenty-three haplotypes were recovered for F. lucida and F. longipetiolata (14 each one and five shared). Both species exhibited a species-specific mosaic distribution of haplotypes, with many of them being range-restricted and even private to populations. The two beeches had comparable total haplotype diversity but F. lucida had much higher within-population diversity than F. longipetiolata. Molecular dating showed that the time to most recent common ancestor of all haplotypes was 6.36 Ma, with most haplotypes differentiating during the Quaternary. [Correction added on 14 October 2013, after first online publication: the timeunit has been corrected to '6.36'.] Our results support a late Miocene origin and southwards colonization of Chinese beeches when the aridity in Central Asia intensified and the monsoon climate began to dominate the East Asia. During the Quaternary, long-term isolation in subtropical mountains of China coupled with limited gene flow would have lead to the current species-specific mosaic distribution of lineages. PMID:24340187

  7. Lineage-specific expansion of IFIT gene family: an insight into coevolution with IFN gene family.

    PubMed

    Liu, Ying; Zhang, Yi-Bing; Liu, Ting-Kai; Gui, Jian-Fang

    2013-01-01

    In mammals, IFIT (Interferon [IFN]-induced proteins with Tetratricopeptide Repeat [TPR] motifs) family genes are involved in many cellular and viral processes, which are tightly related to mammalian IFN response. However, little is known about non-mammalian IFIT genes. In the present study, IFIT genes are identified in the genome databases from the jawed vertebrates including the cartilaginous elephant shark but not from non-vertebrates such as lancelet, sea squirt and acorn worm, suggesting that IFIT gene family originates from a vertebrate ancestor about 450 million years ago. IFIT family genes show conserved gene structure and gene arrangements. Phylogenetic analyses reveal that this gene family has expanded through lineage-specific and species-specific gene duplication. Interestingly, IFN gene family seem to share a common ancestor and a similar evolutionary mechanism; the function link of IFIT genes to IFN response is present early since the origin of both gene families, as evidenced by the finding that zebrafish IFIT genes are upregulated by fish IFNs, poly(I:C) and two transcription factors IRF3/IRF7, likely via the IFN-stimulated response elements (ISRE) within the promoters of vertebrate IFIT family genes. These coevolution features creates functional association of both family genes to fulfill a common biological process, which is likely selected by viral infection during evolution of vertebrates. Our results are helpful for understanding of evolution of vertebrate IFN system. PMID:23818968

  8. 5-Hydroxymethylcytosine Remodeling Precedes Lineage Specification during Differentiation of Human CD4(+) T Cells.

    PubMed

    Nestor, Colm E; Lentini, Antonio; Hägg Nilsson, Cathrine; Gawel, Danuta R; Gustafsson, Mika; Mattson, Lina; Wang, Hui; Rundquist, Olof; Meehan, Richard R; Klocke, Bernward; Seifert, Martin; Hauck, Stefanie M; Laumen, Helmut; Zhang, Huan; Benson, Mikael

    2016-07-12

    5-methylcytosine (5mC) is converted to 5-hydroxymethylcytosine (5hmC) by the TET family of enzymes as part of a recently discovered active DNA de-methylation pathway. 5hmC plays important roles in regulation of gene expression and differentiation and has been implicated in T cell malignancies and autoimmunity. Here, we report early and widespread 5mC/5hmC remodeling during human CD4(+) T cell differentiation ex vivo at genes and cell-specific enhancers with known T cell function. We observe similar DNA de-methylation in CD4(+) memory T cells in vivo, indicating that early remodeling events persist long term in differentiated cells. Underscoring their important function, 5hmC loci were highly enriched for genetic variants associated with T cell diseases and T-cell-specific chromosomal interactions. Extensive functional validation of 22 risk variants revealed potentially pathogenic mechanisms in diabetes and multiple sclerosis. Our results support 5hmC-mediated DNA de-methylation as a key component of CD4(+) T cell biology in humans, with important implications for gene regulation and lineage commitment. PMID:27346350

  9. The Lineage Specification of Mesenchymal Stem Cells Is Directed by the Rate of Fluid Shear Stress.

    PubMed

    Lu, Juan; Fan, Yijuan; Gong, Xiaoyuan; Zhou, Xin; Yi, Caixia; Zhang, Yinxing; Pan, Jun

    2016-08-01

    The effective regulation of fluid shear stress (FSS) on the lineage specification of mesenchymal stem cells (MSCs) remains to be addressed. We hypothesized that when MSCs are recruited to musculoskeletal system following stimulation, their differentiation into osteogenic or chondrogenic cells is directed by the rate of FSS (ΔSS) through modulation of the mechanosensitive, cation-selective channels (MSCCs), intracellular calcium levels, and F-actin. To this end, MSCs were exposed to laminar FSS linearly increased from 0 to 10 dyn/cm(2) in 0, 2, or 20 min and maintained at 10 dyn/cm(2) for a total of 20 min (termed as ΔSS 0-0', 0-2', and 0-20', respectively, representing more physiological (0-0') and non-physiological (0-2' and 0-20') ΔSS treatments). Our results showed 0-0' facilitated MSC differentiation towards chondrogenic and not osteogenic phenotype, by promoting moderate intracellular calcium concentration ([Ca(2+) ]i ) increase from the calcium channels with the exception of MSCCs or intracellular calcium stores, and F-actin organization. In contrast, 0-2' promoted MSCs towards osteogenic and not chondrogenic phenotype, by inducing significant [Ca(2+) ]i increase mainly from the MSCCs, and F-actin assembly. However, 0-20' elicited the modest osteogenic and chondrogenic phenotypes, as it induced the lowest [Ca(2+) ]i increase mainly from MSCCs, and F-actin assembly. Our results suggest that compared to the more physiological ΔSS, the non-physiological ΔSS favors [Ca(2+) ]i influx from MSCCs. An appropriate non-physiological ΔSS (0-2') even elicits a large [Ca(2+) ]i influx from the MSCCs that reverses the lineage specification of MSCs, providing validation for the high mechanosensitivity of MSCs and guidance for training osteoporosis and osteoarthritis patients. J. Cell. Physiol. 231: 1752-1760, 2016. © 2015 Wiley Periodicals, Inc. PMID:26636289

  10. Human Lineage-Specific Transcriptional Regulation through GA-Binding Protein Transcription Factor Alpha (GABPa).

    PubMed

    Perdomo-Sabogal, Alvaro; Nowick, Katja; Piccini, Ilaria; Sudbrak, Ralf; Lehrach, Hans; Yaspo, Marie-Laure; Warnatz, Hans-Jörg; Querfurth, Robert

    2016-05-01

    A substantial fraction of phenotypic differences between closely related species are likely caused by differences in gene regulation. While this has already been postulated over 30 years ago, only few examples of evolutionary changes in gene regulation have been verified. Here, we identified and investigated binding sites of the transcription factor GA-binding protein alpha (GABPa) aiming to discover cis-regulatory adaptations on the human lineage. By performing chromatin immunoprecipitation-sequencing experiments in a human cell line, we found 11,619 putative GABPa binding sites. Through sequence comparisons of the human GABPa binding regions with orthologous sequences from 34 mammals, we identified substitutions that have resulted in 224 putative human-specific GABPa binding sites. To experimentally assess the transcriptional impact of those substitutions, we selected four promoters for promoter-reporter gene assays using human and African green monkey cells. We compared the activities of wild-type promoters to mutated forms, where we have introduced one or more substitutions to mimic the ancestral state devoid of the GABPa consensus binding sequence. Similarly, we introduced the human-specific substitutions into chimpanzee and macaque promoter backgrounds. Our results demonstrate that the identified substitutions are functional, both in human and nonhuman promoters. In addition, we performed GABPa knock-down experiments and found 1,215 genes as strong candidates for primary targets. Further analyses of our data sets link GABPa to cognitive disorders, diabetes, KRAB zinc finger (KRAB-ZNF), and human-specific genes. Thus, we propose that differences in GABPa binding sites played important roles in the evolution of human-specific phenotypes. PMID:26814189

  11. Human Lineage-Specific Transcriptional Regulation through GA-Binding Protein Transcription Factor Alpha (GABPa)

    PubMed Central

    Perdomo-Sabogal, Alvaro; Nowick, Katja; Piccini, Ilaria; Sudbrak, Ralf; Lehrach, Hans; Yaspo, Marie-Laure; Warnatz, Hans-Jörg; Querfurth, Robert

    2016-01-01

    A substantial fraction of phenotypic differences between closely related species are likely caused by differences in gene regulation. While this has already been postulated over 30 years ago, only few examples of evolutionary changes in gene regulation have been verified. Here, we identified and investigated binding sites of the transcription factor GA-binding protein alpha (GABPa) aiming to discover cis-regulatory adaptations on the human lineage. By performing chromatin immunoprecipitation-sequencing experiments in a human cell line, we found 11,619 putative GABPa binding sites. Through sequence comparisons of the human GABPa binding regions with orthologous sequences from 34 mammals, we identified substitutions that have resulted in 224 putative human-specific GABPa binding sites. To experimentally assess the transcriptional impact of those substitutions, we selected four promoters for promoter-reporter gene assays using human and African green monkey cells. We compared the activities of wild-type promoters to mutated forms, where we have introduced one or more substitutions to mimic the ancestral state devoid of the GABPa consensus binding sequence. Similarly, we introduced the human-specific substitutions into chimpanzee and macaque promoter backgrounds. Our results demonstrate that the identified substitutions are functional, both in human and nonhuman promoters. In addition, we performed GABPa knock-down experiments and found 1,215 genes as strong candidates for primary targets. Further analyses of our data sets link GABPa to cognitive disorders, diabetes, KRAB zinc finger (KRAB-ZNF), and human-specific genes. Thus, we propose that differences in GABPa binding sites played important roles in the evolution of human-specific phenotypes. PMID:26814189

  12. Concise Review: Chemical Approaches for Modulating Lineage-Specific Stem Cells and Progenitors

    PubMed Central

    Xu, Tao; Zhang, Mingliang; Laurent, Timothy; Xie, Min

    2013-01-01

    Generation and manipulation of lineage-restricted stem and progenitor cells in vitro and/or in vivo are critical for the development of stem cell-based clinical therapeutics. Lineage-restricted stem and progenitor cells have many advantageous qualities, including being able to efficiently engraft and differentiate into desirable cell types in vivo after transplantation, and they are much less tumorigenic than pluripotent cells. Generation of lineage-restricted stem and progenitor cells can be achieved by directed differentiation from pluripotent stem cells or lineage conversion from easily obtained somatic cells. Small molecules can be very helpful in these processes since they offer several important benefits. For example, the risk of tumorigenesis is greatly reduced when small molecules are used to replace integrated transcription factors, which are widely used in cell fate conversion. Furthermore, small molecules are relatively easy to apply, optimize, and manufacture, and they can more readily be developed into conventional pharmaceuticals. Alternatively, small molecules can be used to expand or selectively control the differentiation of lineage-restricted stem and progenitor cells for desirable therapeutics purposes in vitro or in vivo. Here we summarize recent progress in the use of small molecules for the expansion and generation of desirable lineage-restricted stem and progenitor cells in vitro and for selectively controlling cell fate of lineage-restricted stem and progenitor cells in vivo, thereby facilitating stem cell-based clinical applications. PMID:23580542

  13. Environmental Physical Cues Determine the Lineage Specification of Mesenchymal Stem Cells

    PubMed Central

    Huang, Chao; Dai, Jingxing; Zhang, Xin A.

    2015-01-01

    Background Physical cues of cellular environment affect cell fate and differentiation. For example, an environment with high stiffness drives mesenchymal stem cells (MSCs) to undergo osteogenic differentiation, while low stiffness leads to lipogenic differentiation. Such effects could be independent of chemical/biochemical inducers. Scope of review Stiffness and/or topography of cellular environment can control MSC differentiation and fate determination. In addition, physical factors such as tension, resulted from profound cytoskeleton reorganization during MSC differentiation, affect the gene expression essential for the differentiation. Although physical cues control MSC lineage specification probably by reorganizing and tuning cytoskeleton, the full mechanism is largely unclear. It also remains elusive how physical signals are sensed by cells and transformed into biochemical and biological signals. More importantly, it becomes pivotal to define explicitly the physical cue(s) essential for cell differentiation and fate decision. With a focus on MSC, we present herein current understanding of the interplay between i) physical cue and factors and ii) MSC differentiation and fate determination. Major conclusions Biophysical cues can initiate or strengthen the biochemical signaling for MSC fate determination and differentiation. Physical properties of cellular environment direct the structural adaptation and functional coupling of the cells to their environment. General significance These observations not only open a simple avenue to engineer cell fate in vitro, but also start to reveal the physical elements that regulate and determine cell fate. PMID:25727396

  14. Atypical Regulation of a Green Lineage-Specific B-Type Cyclin-Dependent Kinase1

    PubMed Central

    Corellou, Florence; Camasses, Alain; Ligat, Laetitia; Peaucellier, Gérard; Bouget, François-Yves

    2005-01-01

    Cyclin-dependent kinases (CDKs) are the main regulators of cell cycle progression in eukaryotes. The role and regulation of canonical CDKs, such as the yeast (Saccharomyces cerevisiae) Cdc2 or plant CDKA, have been extensively characterized. However, the function of the plant-specific CDKB is not as well understood. Besides being involved in cell cycle control, Arabidopsis (Arabidopsis thaliana) CDKB would integrate developmental processes to cell cycle progression. We investigated the role of CDKB in Ostreococcus (Ostreococcus tauri), a unicellular green algae with a minimal set of cell cycle genes. In this primitive alga, at the basis of the green lineage, CDKB has integrated two levels of regulations: It is regulated by Tyr phosphorylation like cdc2/CDKA and at the level of synthesis-like B-type CDKs. Furthermore, Ostreococcus CDKB/cyclin B accounts for the main peak of mitotic activity, and CDKB is able to rescue a yeast cdc28ts mutant. By contrast, Ostreococcus CDKA is not regulated by Tyr phosphorylation, and it exhibits a low and steady-state activity from DNA replication to exit of mitosis. This suggests that from a major role in the control of mitosis in green algae, CDKB has evolved in higher plants to assume other functions outside the cell cycle. PMID:15965018

  15. Lineage-specific evolutionary rate in plants: Contributions of a screening for Cereus (Cactaceae)1

    PubMed Central

    Romeiro-Brito, Monique; Moraes, Evandro M.; Taylor, Nigel P.; Zappi, Daniela C.; Franco, Fernando F.

    2016-01-01

    Premise of the study: Predictable chloroplast DNA (cpDNA) sequences have been listed for the shallowest taxonomic studies in plants. We investigated whether plastid regions that vary between closely allied species could be applied for intraspecific studies and compared the variation of these plastid segments with two nuclear regions. Methods: We screened 16 plastid and two nuclear intronic regions for species of the genus Cereus (Cactaceae) at three hierarchical levels (species from different clades, species of the same clade, and allopatric populations). Results: Ten plastid regions presented interspecific variation, and six of them showed variation at the intraspecific level. The two nuclear regions showed both inter- and intraspecific variation, and in general they showed higher levels of variability in almost all hierarchical levels than the plastid segments. Discussion: Our data suggest no correspondence between variation of plastid regions at the interspecific and intraspecific level, probably due to lineage-specific variation in cpDNA, which appears to have less effect in nuclear data. Despite the heterogeneity in evolutionary rates of cpDNA, we highlight three plastid segments that may be considered in initial screenings in plant phylogeographic studies. PMID:26819857

  16. Lineage-specific transcriptional regulation of DICER by MITF in melanocytes.

    PubMed

    Levy, Carmit; Khaled, Mehdi; Robinson, Kathleen C; Veguilla, Rosa A; Chen, Po-Hao; Yokoyama, Satoru; Makino, Eiichi; Lu, Jun; Larue, Lionel; Beermann, Friedrich; Chin, Lynda; Bosenberg, Marcus; Song, Jun S; Fisher, David E

    2010-06-11

    DICER is a central regulator of microRNA maturation. However, little is known about mechanisms regulating its expression in development or disease. While profiling miRNA expression in differentiating melanocytes, two populations were observed: some upregulated at the pre-miRNA stage, and others upregulated as mature miRNAs (with stable pre-miRNA levels). Conversion of pre-miRNAs to fully processed miRNAs appeared to be dependent upon stimulation of DICER expression--an event found to occur via direct transcriptional targeting of DICER by the melanocyte master transcriptional regulator MITF. MITF binds and activates a conserved regulatory element upstream of DICER's transcriptional start site upon melanocyte differentiation. Targeted KO of DICER is lethal to melanocytes, at least partly via DICER-dependent processing of the pre-miRNA-17 approximately 92 cluster thus targeting BIM, a known proapoptotic regulator of melanocyte survival. These observations highlight a central mechanism underlying lineage-specific miRNA regulation which could exist for other cell types during development. PMID:20550935

  17. FoxA1 as a lineage-specific oncogene in luminal type breast cancer

    SciTech Connect

    Yamaguchi, Noritaka; Ito, Emi; Azuma, Sakura; Honma, Reiko; Yanagisawa, Yuka; Nishikawa, Akira; Kawamura, Mika; Imai, Jun-ichi

    2008-01-25

    The forkhead transcription factor FoxA1 is thought to be involved in mammary tumorigenesis. However, the precise role of FoxA1 in breast cancer development is controversial. We examined expression of FoxA1 in 35 human breast cancer cell lines and compared it with that of ErbB2, a marker of poor prognosis in breast cancer. We found that FoxA1 is expressed at high levels in all ErbB2-positive cell lines and a subset of ErbB2-negative cell lines. Down-regulation of FoxA1 by RNA interference significantly suppressed proliferation of ErbB2-negative and FoxA1-positive breast cancer cell lines. Down-regulation of FoxA1 also enhanced the toxic effect of Herceptin on ErbB2-positive cell lines through induction of apoptosis. Taken together with previous data that FoxA1 is a marker of luminal cells in mammary gland, our present results suggest that FoxA1 plays an important role as a lineage-specific oncogene in proliferation of cancer cells derived from mammary luminal cells.

  18. Evolution of lineage-specific functions in ancient cis-regulatory modules.

    PubMed

    Pauls, Stefan; Goode, Debbie K; Petrone, Libero; Oliveri, Paola; Elgar, Greg

    2015-11-01

    Morphological evolution is driven both by coding sequence variation and by changes in regulatory sequences. However, how cis-regulatory modules (CRMs) evolve to generate entirely novel expression domains is largely unknown. Here, we reconstruct the evolutionary history of a lens enhancer located within a CRM that not only predates the lens, a vertebrate innovation, but bilaterian animals in general. Alignments of orthologous sequences from different deuterostomes sub-divide the CRM into a deeply conserved core and a more divergent flanking region. We demonstrate that all deuterostome flanking regions, including invertebrate sequences, activate gene expression in the zebrafish lens through the same ancient cluster of activator sites. However, levels of gene expression vary between species due to the presence of repressor motifs in flanking region and core. These repressor motifs are responsible for the relatively weak enhancer activity of tetrapod flanking regions. Ray-finned fish, however, have gained two additional lineage-specific activator motifs which in combination with the ancient cluster of activators and the core constitute a potent lens enhancer. The exploitation and modification of existing regulatory potential in flanking regions but not in the highly conserved core might represent a more general model for the emergence of novel regulatory functions in complex CRMs. PMID:26538567

  19. Cyanobacterial symbionts diverged in the late Cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton

    PubMed Central

    Cornejo-Castillo, Francisco M.; Cabello, Ana M.; Salazar, Guillem; Sánchez-Baracaldo, Patricia; Lima-Mendez, Gipsi; Hingamp, Pascal; Alberti, Adriana; Sunagawa, Shinichi; Bork, Peer; de Vargas, Colomban; Raes, Jeroen; Bowler, Chris; Wincker, Patrick; Zehr, Jonathan P.; Gasol, Josep M.; Massana, Ramon; Acinas, Silvia G.

    2016-01-01

    The unicellular cyanobacterium UCYN-A, one of the major contributors to nitrogen fixation in the open ocean, lives in symbiosis with single-celled phytoplankton. UCYN-A includes several closely related lineages whose partner fidelity, genome-wide expression and time of evolutionary divergence remain to be resolved. Here we detect and distinguish UCYN-A1 and UCYN-A2 lineages in symbiosis with two distinct prymnesiophyte partners in the South Atlantic Ocean. Both symbiotic systems are lineage specific and differ in the number of UCYN-A cells involved. Our analyses infer a streamlined genome expression towards nitrogen fixation in both UCYN-A lineages. Comparative genomics reveal a strong purifying selection in UCYN-A1 and UCYN-A2 with a diversification process ∼91 Myr ago, in the late Cretaceous, after the low-nutrient regime period occurred during the Jurassic. These findings suggest that UCYN-A diversified in a co-evolutionary process, wherein their prymnesiophyte partners acted as a barrier driving an allopatric speciation of extant UCYN-A lineages. PMID:27002549

  20. Cyanobacterial symbionts diverged in the late Cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton.

    PubMed

    Cornejo-Castillo, Francisco M; Cabello, Ana M; Salazar, Guillem; Sánchez-Baracaldo, Patricia; Lima-Mendez, Gipsi; Hingamp, Pascal; Alberti, Adriana; Sunagawa, Shinichi; Bork, Peer; de Vargas, Colomban; Raes, Jeroen; Bowler, Chris; Wincker, Patrick; Zehr, Jonathan P; Gasol, Josep M; Massana, Ramon; Acinas, Silvia G

    2016-01-01

    The unicellular cyanobacterium UCYN-A, one of the major contributors to nitrogen fixation in the open ocean, lives in symbiosis with single-celled phytoplankton. UCYN-A includes several closely related lineages whose partner fidelity, genome-wide expression and time of evolutionary divergence remain to be resolved. Here we detect and distinguish UCYN-A1 and UCYN-A2 lineages in symbiosis with two distinct prymnesiophyte partners in the South Atlantic Ocean. Both symbiotic systems are lineage specific and differ in the number of UCYN-A cells involved. Our analyses infer a streamlined genome expression towards nitrogen fixation in both UCYN-A lineages. Comparative genomics reveal a strong purifying selection in UCYN-A1 and UCYN-A2 with a diversification process ∼91 Myr ago, in the late Cretaceous, after the low-nutrient regime period occurred during the Jurassic. These findings suggest that UCYN-A diversified in a co-evolutionary process, wherein their prymnesiophyte partners acted as a barrier driving an allopatric speciation of extant UCYN-A lineages. PMID:27002549

  1. Petroecuador poised for broader oil role

    SciTech Connect

    Not Available

    1991-01-14

    A little more than a year after its restructuring, state owned Petroleos del Ecuador is poised to play a broader role as oil operator in Ecuador. The new Petroecuador, consisting of several independent units and a central governing body, has expanded its involvement in all phases of the industry, from exploration and production to transportation, refining, and marketing. Petroecuador hiked its initial budget for 1990 by about 30% from 1989, with added investment primarily earmarked for exploration and production. However, owing to a need for a general cut in public spending, the state company's budget was trimmed about $80 in second half 1990. This reduction was not expected to affect exploration and production.

  2. A pursuit of lineage-specific and niche-specific proteome features in the world of archaea

    PubMed Central

    2012-01-01

    Background Archaea evoke interest among researchers for two enigmatic characteristics –a combination of bacterial and eukaryotic components in their molecular architectures and an enormous diversity in their life-style and metabolic capabilities. Despite considerable research efforts, lineage- specific/niche-specific molecular features of the whole archaeal world are yet to be fully unveiled. The study offers the first large-scale in silico proteome analysis of all archaeal species of known genome sequences with a special emphasis on methanogenic and sulphur-metabolising archaea. Results Overall amino acid usage in archaea is dominated by GC-bias. But the environmental factors like oxygen requirement or thermal adaptation seem to play important roles in selection of residues with no GC-bias at the codon level. All methanogens, irrespective of their thermal/salt adaptation, show higher usage of Cys and have relatively acidic proteomes, while the proteomes of sulphur-metabolisers have higher aromaticity and more positive charges. Despite of exhibiting thermophilic life-style, korarchaeota possesses an acidic proteome. Among the distinct trends prevailing in COGs (Cluster of Orthologous Groups of proteins) distribution profiles, crenarchaeal organisms display higher intra-order variations in COGs repertoire, especially in the metabolic ones, as compared to euryarchaea. All methanogens are characterised by a presence of 22 exclusive COGs. Conclusions Divergences in amino acid usage, aromaticity/charge profiles and COG repertoire among methanogens and sulphur-metabolisers, aerobic and anaerobic archaea or korarchaeota and nanoarchaeota, as elucidated in the present study, point towards the presence of distinct molecular strategies for niche specialization in the archaeal world. PMID:22691113

  3. Helicobacter pylori Evolution: Lineage- Specific Adaptations in Homologs of Eukaryotic Sel1-Like Genes

    PubMed Central

    Mittl, Peer R. E; Lee, Hae-Kyung; Dailide, Geidrius; Tan, Shumin; Ito, Yoshiyuki; Secka, Ousman; Dailidiene, Daiva; Putty, Kalyani; Berg, Douglas E; Kalia, Awdhesh

    2007-01-01

    Geographic partitioning is postulated to foster divergence of Helicobacter pylori populations as an adaptive response to local differences in predominant host physiology. H. pylori's ability to establish persistent infection despite host inflammatory responses likely involves active management of host defenses using bacterial proteins that may themselves be targets for adaptive evolution. Sequenced H. pylori genomes encode a family of eight or nine secreted proteins containing repeat motifs that are characteristic of the eukaryotic Sel1 regulatory protein, whereas the related Campylobacter and Wolinella genomes each contain only one or two such “Sel1-like repeat” (SLR) genes (“slr genes”). Signatures of positive selection (ratio of nonsynonymous to synonymous mutations, dN/dS = ω > 1) were evident in the evolutionary history of H. pylori slr gene family expansion. Sequence analysis of six of these slr genes (hp0160, hp0211, hp0235, hp0519, hp0628, and hp1117) from representative East Asian, European, and African H. pylori strains revealed that all but hp0628 had undergone positive selection, with different amino acids often selected in different regions. Most striking was a divergence of Japanese and Korean alleles of hp0519, with Japanese alleles having undergone particularly strong positive selection (ωJ > 25), whereas alleles of other genes from these populations were intermingled. Homology-based structural modeling localized most residues under positive selection to SLR protein surfaces. Rapid evolution of certain slr genes in specific H. pylori lineages suggests a model of adaptive change driven by selection for fine-tuning of host responses, and facilitated by geographic isolation. Characterization of such local adaptations should help elucidate how H. pylori manages persistent infection, and potentially lead to interventions tailored to diverse human populations. PMID:17696605

  4. Combined lineage mapping and fate specification profiling with NLOM-OCM using sub-10-fs pulses

    NASA Astrophysics Data System (ADS)

    Gibbs, H. C.; Dodson, C. R.; Bai, Y.; Lekven, A. C.; Yeh, A. T.

    2013-02-01

    We have developed a combined NLOM-OCM method using ultrashort sub-10-fs pulses to study cell lineages and their gene expression profiles in zebrafish. First, time-lapse NLOM is used to capture embryo morphology (broadly excited autofluorescence) and cell lineage dynamics (eGFP reporter). The embryo is then fixed and an in situ hybridization performed, depositing NBT/BCIP precipitate where a gene of interest is actively expressed. Combined NLOM-OCM is then used to capture the gene expression pattern with 3-D resolution and these two data sets acquired from the same embryo are merged using morphological landmarks. We have used this approach to study the dynamics of the wnt1 lineage at the midbrain-hindbrain boundary (MHB) in normal and in fgf8a(ace) morphant embryos. We show that with fgf8a knock-down, the MHB constriction begins to form but subsequent failure of the constriction causes the incorporation of a transient cerebellar structure into caudal tectum. Concomitantly, this morphological distortion in the dorsal MHB causes anterior displacement in a ventral subpopulation of the wnt1 lineage at the MHB. NLOM-OCM confirms the displaced wnt1 MHB lineage stops expressing the wnt1 reporter, and with further experiments we can investigate markers such as wnt4 or ascl1a, which have been shown to be expanded caudally in ace mutants, to understand the transformed molecular fate of this displaced tissue. We conclude this approach of co-registering dynamic lineage tracing and in situ hybridization data sets using morphological context will help shed light on developmental mechanisms by integrating established analysis techniques at the morphological, cellular, and molecular levels.

  5. Comparative Host Specificity of Human- and Pig- Associated Staphylococcus aureus Clonal Lineages

    PubMed Central

    Moodley, Arshnee; Espinosa-Gongora, Carmen; Nielsen, Søren S.; McCarthy, Alex J.; Lindsay, Jodi A.; Guardabassi, Luca

    2012-01-01

    Bacterial adhesion is a crucial step in colonization of the skin. In this study, we investigated the differential adherence to human and pig corneocytes of six Staphylococcus aureus strains belonging to three human-associated [ST8 (CC8), ST22 (CC22) and ST36(CC30)] and two pig-associated [ST398 (CC398) and ST433(CC30)] clonal lineages, and their colonization potential in the pig host was assessed by in vivo competition experiments. Corneocytes were collected from 11 humans and 21 pigs using D-squame® adhesive discs, and bacterial adherence to corneocytes was quantified by a standardized light microscopy assay. A previously described porcine colonization model was used to assess the potential of the six strains to colonize the pig host. Three pregnant, S. aureus-free sows were inoculated intravaginally shortly before farrowing with different strain mixes [mix 1) human and porcine ST398; mix 2) human ST36 and porcine ST433; and mix 3) human ST8, ST22, ST36 and porcine ST398] and the ability of individual strains to colonize the nasal cavity of newborn piglets was evaluated for 28 days after birth by strain-specific antibiotic selective culture. In the corneocyte assay, the pig-associated ST433 strain and the human-associated ST22 and ST36 strains showed significantly greater adhesion to porcine and human corneocytes, respectively (p<0.0001). In contrast, ST8 and ST398 did not display preferential host binding patterns. In the in vivo competition experiment, ST8 was a better colonizer compared to ST22, ST36, and ST433 prevailed over ST36 in colonizing the newborn piglets. These results are partly in agreement with previous genetic and epidemiological studies indicating the host specificity of ST22, ST36 and ST433 and the broad-host range of ST398. However, our in vitro and in vivo experiments revealed an unexpected ability of ST8 to adhere to porcine corneocytes and persist in the nasal cavity of pigs. PMID:23166643

  6. Topologically associated domains enriched for lineage-specific genes reveal expression-dependent nuclear topologies during myogenesis

    PubMed Central

    Neems, Daniel S.; Garza-Gongora, Arturo G.; Smith, Erica D.; Kosak, Steven T.

    2016-01-01

    The linear distribution of genes across chromosomes and the spatial localization of genes within the nucleus are related to their transcriptional regulation. The mechanistic consequences of linear gene order, and how it may relate to the functional output of genome organization, remain to be fully resolved, however. Here we tested the relationship between linear and 3D organization of gene regulation during myogenesis. Our analysis has identified a subset of topologically associated domains (TADs) that are significantly enriched for muscle-specific genes. These lineage-enriched TADs demonstrate an expression-dependent pattern of nuclear organization that influences the positioning of adjacent nonenriched TADs. Therefore, lineage-enriched TADs inform cell-specific genome organization during myogenesis. The reduction of allelic spatial distance of one of these domains, which contains Myogenin, correlates with reduced transcriptional variability, identifying a potential role for lineage-specific nuclear topology. Using a fusion-based strategy to decouple mitosis and myotube formation, we demonstrate that the cell-specific topology of syncytial nuclei is dependent on cell division. We propose that the effects of linear and spatial organization of gene loci on gene regulation are linked through TAD architecture, and that mitosis is critical for establishing nuclear topologies during cellular differentiation. PMID:26957603

  7. Are Biological Systems Poised at Criticality?

    NASA Astrophysics Data System (ADS)

    Mora, Thierry; Bialek, William

    2011-07-01

    Many of life's most fascinating phenomena emerge from interactions among many elements—many amino acids determine the structure of a single protein, many genes determine the fate of a cell, many neurons are involved in shaping our thoughts and memories. Physicists have long hoped that these collective behaviors could be described using the ideas and methods of statistical mechanics. In the past few years, new, larger scale experiments have made it possible to construct statistical mechanics models of biological systems directly from real data. We review the surprising successes of this "inverse" approach, using examples from families of proteins, networks of neurons, and flocks of birds. Remarkably, in all these cases the models that emerge from the data are poised near a very special point in their parameter space—a critical point. This suggests there may be some deeper theoretical principle behind the behavior of these diverse systems.

  8. Soil Sample Poised at TEGA Door

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image was taken by NASA's Phoenix Mars Lander's Surface Stereo Imager on Sol 11 (June 5, 2008), the eleventh day after landing. It shows the Robotic Arm scoop containing a soil sample poised over the partially open door of the Thermal and Evolved-Gas Analyzer's number four cell, or oven.

    Light-colored clods of material visible toward the scoop's lower edge may be part of the crusted surface material seen previously near the foot of the lander. The material inside the scoop has been slightly brightened in this image.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. Lineage-specific detection of influenza B virus using real-time polymerase chain reaction with melting curve analysis.

    PubMed

    Tewawong, Nipaporn; Chansaenroj, Jira; Klinfueng, Sirapa; Vichiwattana, Preeyaporn; Korkong, Sumeth; Thongmee, Thanunrat; Theamboonlers, Apiradee; Payungporn, Sunchai; Vongpunsawad, Sompong; Poovorawan, Yong

    2016-06-01

    Influenza B viruses comprise two lineages, Victoria (B/Vic) and Yamagata (B/Yam), which co-circulate globally. The surveillance data on influenza B virus lineages in many countries often underestimate the true prevalence due to the lack of a rapid, accurate, and cost-effective method for virus detection. We have developed a real-time PCR with melting curve analysis for lineage-specific differential detection of influenza B virus. By amplifying a region of the hemagglutinin gene using real-time PCR with SYBR Green I dye, B/Vic and B/Yam could be differentiated based on their melting temperature peaks. This method was efficient (B/Vic = 93.2 %; B/Yam 97.7 %), sensitive (B/Vic, 94.6 %; B/Yam, 96.3 %), and specific (B/Vic, 97.7 %; B/Yam, 97.1 %). The lower detection limit was 10(2) copies per microliter. The assay was evaluated using 756 respiratory specimens that were positive for influenza B virus, obtained between 2010 and 2015. The incidence of influenza B virus was approximately 18.9 % of all influenza cases, and the percentage was highest among children aged 6-17 years (7.57 %). The overall percentage of mismatched influenza B vaccine was 21.1 %. Our findings suggest that real-time PCR with melting curve analysis can provide a rapid, simple, and sensitive lineage-specific influenza B virus screening method to facilitate influenza surveillance. PMID:26923928

  10. Lineage-specific function of the noncoding Tsix RNA for Xist repression and Xi reactivation in mice

    PubMed Central

    Ohhata, Tatsuya; Senner, Claire E.; Hemberger, Myriam; Wutz, Anton

    2011-01-01

    The noncoding Tsix RNA is an antisense repressor of Xist and regulates X inactivation in mice. Tsix is essential for preventing the inactivation of the maternally inherited X chromosome in extraembryonic lineages where imprinted X-chromosome inactivation (XCI) occurs. Here we establish an inducible Tsix expression system for investigating Tsix function in development. We show that Tsix has a clear functional window in extraembryonic development. Within this window, Tsix can repress Xist, which is accompanied by DNA methylation of the Xist promoter. As a consequence of Xist repression, reactivation of the inactive X chromosome (Xi) is widely observed. In the parietal endoderm, Tsix represses Xist and causes reactivation of an Xi-linked GFP transgene throughout development, whereas Tsix progressively loses its Xist-repressing function from embryonic day 9.5 (E9.5) onward in trophoblast giant cells and spongiotrophoblast, suggesting that Tsix function depends on a lineage-specific environment. Our data also demonstrate that the maintenance of imprinted XCI requires Xist expression in specific extraembryonic tissues throughout development. This finding shows that reversible XCI is not exclusive to pluripotent cells, and that in some lineages cell differentiation is not accompanied by a stabilization of the Xi. PMID:21852535

  11. Parallel evolution of male germline epigenetic poising and somatic development in animals.

    PubMed

    Lesch, Bluma J; Silber, Sherman J; McCarrey, John R; Page, David C

    2016-08-01

    Changes in gene regulation frequently underlie changes in morphology during evolution, and differences in chromatin state have been linked with changes in anatomical structure and gene expression across evolutionary time. Here we assess the relationship between evolution of chromatin state in germ cells and evolution of gene regulatory programs governing somatic development. We examined the poised (H3K4me3/H3K27me3 bivalent) epigenetic state in male germ cells from five mammalian and one avian species. We find that core genes poised in germ cells from multiple amniote species are ancient regulators of morphogenesis that sit at the top of transcriptional hierarchies controlling somatic tissue development, whereas genes that gain poising in germ cells from individual species act downstream of core poised genes during development in a species-specific fashion. We propose that critical regulators of animal development gained an epigenetically privileged state in germ cells, manifested in amniotes by H3K4me3/H3K27me3 poising, early in metazoan evolution. PMID:27294618

  12. The ubiquitous transcription factor CTCF promotes lineage-specific epigenomic remodeling and establishment of transcriptional networks driving cell differentiation

    PubMed Central

    Dubois-Chevalier, Julie; Staels, Bart; Lefebvre, Philippe; Eeckhoute, Jérôme

    2015-01-01

    Cell differentiation relies on tissue-specific transcription factors (TFs) that cooperate to establish unique transcriptomes and phenotypes. However, the role of ubiquitous TFs in these processes remains poorly defined. Recently, we have shown that the CCCTC-binding factor (CTCF) is required for adipocyte differentiation through epigenomic remodelling of adipose tissue-specific enhancers and transcriptional activation of Peroxisome proliferator-activated receptor gamma (PPARG), the main driver of the adipogenic program (PPARG), and its target genes. Here, we discuss how these findings, together with the recent literature, illuminate a functional role for ubiquitous TFs in lineage-determining transcriptional networks. PMID:25565413

  13. Mapping the journey from totipotency to lineage specification in the mouse embryo.

    PubMed

    Leung, Chuen Yan; Zernicka-Goetz, Magdalena

    2015-10-01

    Understanding the past is to understand the present. Mammalian life, with all its complexity comes from a humble beginning of a single fertilized egg cell. Achieving this requires an enormous diversification of cellular function, the majority of which is generated through a series of cellular decisions during embryogenesis. The first decisions are made as the embryo prepares for implantation, a process that will require specialization of extra-embryonic lineages while preserving an embryonic one. In this mini-review, we will focus on the mouse as a mammalian model and discuss recent advances in the decision making process of the early embryo. PMID:26343010

  14. Lineage-specific function of Engrailed-2 in the progression of chronic myelogenous leukemia to T-cell blast crisis

    PubMed Central

    Abollo-Jiménez, Fernando; Campos-Sánchez, Elena; Toboso-Navasa, Amparo; Vicente-Dueñas, Carolina; González-Herrero, Inés; Alonso-Escudero, Esther; González, Marcos; Segura, Víctor; Blanco, Óscar; Martínez-Climent, José Ángel; Sánchez-García, Isidro; Cobaleda, César

    2014-01-01

    In hematopoietic malignancies, oncogenic alterations interfere with cellular differentiation and lead to tumoral development. Identification of the proteins regulating differentiation is essential to understand how they are altered in malignancies. Chronic myelogenous leukemia (CML) is a biphasic disease initiated by an alteration taking place in hematopoietic stem cells. CML progresses to a blast crisis (BC) due to a secondary differentiation block in any of the hematopoietic lineages. However, the molecular mechanisms of CML evolution to T-cell BC remain unclear. Here, we have profiled the changes in DNA methylation patterns in human samples from BC-CML, in order to identify genes whose expression is epigenetically silenced during progression to T-cell lineage-specific BC. We have found that the CpG-island of the ENGRAILED-2 (EN2) gene becomes methylated in this progression. Afterwards, we demonstrate that En2 is expressed during T-cell development in mice and humans. Finally, we further show that genetic deletion of En2 in a CML transgenic mouse model induces a T-cell lineage BC that recapitulates human disease. These results identify En2 as a new regulator of T-cell differentiation whose disruption induces a malignant T-cell fate in CML progression, and validate the strategy used to identify new developmental regulators of hematopoiesis. PMID:24675889

  15. Lineage-Specific Methyltransferases Define the Methylome of the Globally Disseminated Escherichia coli ST131 Clone

    PubMed Central

    Forde, Brian M.; Phan, Minh-Duy; Gawthorne, Jayde A.; Ashcroft, Melinda M.; Stanton-Cook, Mitchell; Sarkar, Sohinee; Peters, Kate M.; Chan, Kok-Gan; Chong, Teik Min; Yin, Wai-Fong; Upton, Mathew

    2015-01-01

    ABSTRACT Escherichia coli sequence type 131 (ST131) is a clone of uropathogenic E. coli that has emerged rapidly and disseminated globally in both clinical and community settings. Members of the ST131 lineage from across the globe have been comprehensively characterized in terms of antibiotic resistance, virulence potential, and pathogenicity, but to date nothing is known about the methylome of these important human pathogens. Here we used single-molecule real-time (SMRT) PacBio sequencing to determine the methylome of E. coli EC958, the most-well-characterized completely sequenced ST131 strain. Our analysis of 52,081 methylated adenines in the genome of EC958 discovered three m6A methylation motifs that have not been described previously. Subsequent SMRT sequencing of isogenic knockout mutants identified the two type I methyltransferases (MTases) and one type IIG MTase responsible for m6A methylation of novel recognition sites. Although both type I sites were rare, the type IIG sites accounted for more than 12% of all methylated adenines in EC958. Analysis of the distribution of MTase genes across 95 ST131 genomes revealed their prevalence is highly conserved within the ST131 lineage, with most variation due to the presence or absence of mobile genetic elements on which individual MTase genes are located. PMID:26578678

  16. Directing lineage specification of human mesenchymal stem cells by decoupling electrical stimulation and physical patterning on unmodified graphene

    NASA Astrophysics Data System (ADS)

    Balikov, Daniel A.; Fang, Brian; Chun, Young Wook; Crowder, Spencer W.; Prasai, Dhiraj; Lee, Jung Bok; Bolotin, Kiril I.; Sung, Hak-Joon

    2016-07-01

    The organization and composition of the extracellular matrix (ECM) have been shown to impact the propagation of electrical signals in multiple tissue types. To date, many studies with electroactive biomaterial substrates have relied upon passive electrical stimulation of the ionic media to affect cell behavior. However, development of cell culture systems in which stimulation can be directly applied to the material - thereby isolating the signal to the cell-material interface and cell-cell contracts - would provide a more physiologically-relevant paradigm for investigating how electrical cues modulate lineage-specific stem cell differentiation. In the present study, we have employed unmodified, directly-stimulated, (un)patterned graphene as a cell culture substrate to investigate how extrinsic electrical cycling influences the differentiation of naïve human mesenchymal stem cells (hMSCs) without the bias of exogenous biochemicals. We first demonstrated that cyclic stimulation does not deteriorate the cell culture media or result in cytotoxic pH, which are critical experiments for correct interpretation of changes in cell behavior. We then measured how the expression of osteogenic and neurogenic lineage-specific markers were altered simply by exposure to electrical stimulation and/or physical patterns. Expression of the early osteogenic transcription factor RUNX2 was increased by electrical stimulation on all graphene substrates, but the mature marker osteopontin was only modulated when stimulation was combined with physical patterns. In contrast, the expression of the neurogenic markers MAP2 and β3-tubulin were enhanced in all electrical stimulation conditions, and were less responsive to the presence of patterns. These data indicate that specific combinations of non-biological inputs - material type, electrical stimulation, physical patterns - can regulate hMSC lineage specification. This study represents a substantial step in understanding how the interplay of

  17. Directing lineage specification of human mesenchymal stem cells by decoupling electrical stimulation and physical patterning on unmodified graphene.

    PubMed

    Balikov, Daniel A; Fang, Brian; Chun, Young Wook; Crowder, Spencer W; Prasai, Dhiraj; Lee, Jung Bok; Bolotin, Kiril I; Sung, Hak-Joon

    2016-07-14

    The organization and composition of the extracellular matrix (ECM) have been shown to impact the propagation of electrical signals in multiple tissue types. To date, many studies with electroactive biomaterial substrates have relied upon passive electrical stimulation of the ionic media to affect cell behavior. However, development of cell culture systems in which stimulation can be directly applied to the material - thereby isolating the signal to the cell-material interface and cell-cell contracts - would provide a more physiologically-relevant paradigm for investigating how electrical cues modulate lineage-specific stem cell differentiation. In the present study, we have employed unmodified, directly-stimulated, (un)patterned graphene as a cell culture substrate to investigate how extrinsic electrical cycling influences the differentiation of naïve human mesenchymal stem cells (hMSCs) without the bias of exogenous biochemicals. We first demonstrated that cyclic stimulation does not deteriorate the cell culture media or result in cytotoxic pH, which are critical experiments for correct interpretation of changes in cell behavior. We then measured how the expression of osteogenic and neurogenic lineage-specific markers were altered simply by exposure to electrical stimulation and/or physical patterns. Expression of the early osteogenic transcription factor RUNX2 was increased by electrical stimulation on all graphene substrates, but the mature marker osteopontin was only modulated when stimulation was combined with physical patterns. In contrast, the expression of the neurogenic markers MAP2 and β3-tubulin were enhanced in all electrical stimulation conditions, and were less responsive to the presence of patterns. These data indicate that specific combinations of non-biological inputs - material type, electrical stimulation, physical patterns - can regulate hMSC lineage specification. This study represents a substantial step in understanding how the interplay of

  18. Comparative cell-specific transcriptomics reveals differentiation of C4 photosynthesis pathways in switchgrass and other C4 lineages

    PubMed Central

    Rao, Xiaolan; Lu, Nan; Li, Guifen; Nakashima, Jin; Tang, Yuhong; Dixon, Richard A.

    2016-01-01

    Almost all C4 plants require the co-ordination of the adjacent and fully differentiated cell types, mesophyll (M) and bundle sheath (BS). The C4 photosynthetic pathway operates through two distinct subtypes based on how malate is decarboxylated in BS cells; through NAD-malic enzyme (NAD-ME) or NADP-malic enzyme (NADP-ME). The diverse or unique cell-specific molecular features of M and BS cells from separate C4 subtypes of independent lineages remain to be determined. We here provide an M/BS cell type-specific transcriptome data set from the monocot NAD-ME subtype switchgrass (Panicum virgatum). A comparative transcriptomics approach was then applied to compare the M/BS mRNA profiles of switchgrass, monocot NADP-ME subtype C4 plants maize and Setaria viridis, and dicot NAD-ME subtype Cleome gynandra. We evaluated the convergence in the transcript abundance of core components in C4 photosynthesis and transcription factors to establish Kranz anatomy, as well as gene distribution of biological functions, in these four independent C4 lineages. We also estimated the divergence between NAD-ME and NADP-ME subtypes of C4 photosynthesis in the two cell types within C4 species, including differences in genes encoding decarboxylating enzymes, aminotransferases, and metabolite transporters, and differences in the cell-specific functional enrichment of RNA regulation and protein biogenesis/homeostasis. We suggest that C4 plants of independent lineages in both monocots and dicots underwent convergent evolution to establish C4 photosynthesis, while distinct C4 subtypes also underwent divergent processes for the optimization of M and BS cell co-ordination. The comprehensive data sets in our study provide a basis for further research on evolution of C4 species. PMID:26896851

  19. Pan-genome analyses identify lineage- and niche-specific markers of evolution and adaptation in Epsilonproteobacteria

    PubMed Central

    Zhang, Ying; Sievert, Stefan M.

    2014-01-01

    The rapidly increasing availability of complete bacterial genomes has created new opportunities for reconstructing bacterial evolution, but it has also highlighted the difficulty to fully understand the genomic and functional variations occurring among different lineages. Using the class Epsilonproteobacteria as a case study, we investigated the composition, flexibility, and function of its pan-genomes. Models were constructed to extrapolate the expansion of pan-genomes at three different taxonomic levels. The results show that, for Epsilonproteobacteria the seemingly large genome variations among strains of the same species are less noticeable when compared with groups at higher taxonomic ranks, indicating that genome stability is imposed by the potential existence of taxonomic boundaries. The analyses of pan-genomes has also defined a set of universally conserved core genes, based on which a phylogenetic tree was constructed to confirm that thermophilic species from deep-sea hydrothermal vents represent the most ancient lineages of Epsilonproteobacteria. Moreover, by comparing the flexible genome of a chemoautotrophic deep-sea vent species to (1) genomes of species belonging to the same genus, but inhabiting different environments, and (2) genomes of other vent species, but belonging to different genera, we were able to delineate the relative importance of lineage-specific versus niche-specific genes. This result not only emphasizes the overall importance of phylogenetic proximity in shaping the variable part of the genome, but also highlights the adaptive functions of niche-specific genes. Overall, by modeling the expansion of pan-genomes and analyzing core and flexible genes, this study provides snapshots on how the complex processes of gene acquisition, conservation, and removal affect the evolution of different species, and contribute to the metabolic diversity and versatility of Epsilonproteobacteria. PMID:24678308

  20. Comparative cell-specific transcriptomics reveals differentiation of C4 photosynthesis pathways in switchgrass and other C4 lineages.

    PubMed

    Rao, Xiaolan; Lu, Nan; Li, Guifen; Nakashima, Jin; Tang, Yuhong; Dixon, Richard A

    2016-04-01

    Almost all C4 plants require the co-ordination of the adjacent and fully differentiated cell types, mesophyll (M) and bundle sheath (BS). The C4 photosynthetic pathway operates through two distinct subtypes based on how malate is decarboxylated in BS cells; through NAD-malic enzyme (NAD-ME) or NADP-malic enzyme (NADP-ME). The diverse or unique cell-specific molecular features of M and BS cells from separate C4 subtypes of independent lineages remain to be determined. We here provide an M/BS cell type-specific transcriptome data set from the monocot NAD-ME subtype switchgrass (Panicum virgatum). A comparative transcriptomics approach was then applied to compare the M/BS mRNA profiles of switchgrass, monocot NADP-ME subtype C4 plants maize and Setaria viridis, and dicot NAD-ME subtype Cleome gynandra. We evaluated the convergence in the transcript abundance of core components in C4 photosynthesis and transcription factors to establish Kranz anatomy, as well as gene distribution of biological functions, in these four independent C4 lineages. We also estimated the divergence between NAD-ME and NADP-ME subtypes of C4 photosynthesis in the two cell types within C4 species, including differences in genes encoding decarboxylating enzymes, aminotransferases, and metabolite transporters, and differences in the cell-specific functional enrichment of RNA regulation and protein biogenesis/homeostasis. We suggest that C4 plants of independent lineages in both monocots and dicots underwent convergent evolution to establish C4 photosynthesis, while distinct C4 subtypes also underwent divergent processes for the optimization of M and BS cell co-ordination. The comprehensive data sets in our study provide a basis for further research on evolution of C4 species. PMID:26896851

  1. Human Chromosomal Translocations at CpG Sites and a Theoretical Basis for their Lineage and Stage Specificity

    PubMed Central

    Tsai, Albert G.; Lu, Haihui; Raghavan, Sathees C.; Muschen, Markus; Hsieh, Chih-Lin; Lieber, Michael R.

    2008-01-01

    SUMMARY We have assembled, annotated, and analyzed a database of over 1700 breakpoints from the most common chromosomal rearrangements in human leukemias and lymphomas. Using this database, we show that although the CpG dinucleotide constitutes only 1% of the human genome, it accounts for 40–70% of breakpoints at proB/pre-B stage translocation regions – specifically, those near the bcl-2, bcl-1, and E2A genes. We do not observe CpG hotspots in rearrangements involving lymphoid-myeloid progenitors, mature B cells, or T cells. The stage-specificity, lineage-specificity, CpG targeting, and unique breakpoint distributions at these cluster regions may be explained by a lesion-specific double-strand breakage mechanism involving the RAG complex acting at AID-deaminated methyl-CpGs. PMID:19070581

  2. Origin, evolution and classification of type-3 copper proteins: lineage-specific gene expansions and losses across the Metazoa

    PubMed Central

    2013-01-01

    Background Tyrosinases, tyrosinase-related proteins, catechol oxidases and hemocyanins comprise the type-3 copper protein family and are involved in a variety of biological processes, including pigment formation, innate immunity and oxygen transport. Although this family is present in the three domains of life, its origin and early evolution are not well understood. Previous analyses of type-3 copper proteins largely have focussed on specific animal and plant phyla. Results Here, we combine genomic, phylogenetic and structural analyses to show that the original type-3 copper protein possessed a signal peptide and may have been secreted (we designate proteins of this type the α subclass). This ancestral type-3 copper protein gene underwent two duplication events, the first prior to the divergence of the unikont eukaryotic lineages and the second before the diversification of animals. The former duplication gave rise to a cytosolic form (β) and the latter to a membrane-bound form (γ). Structural comparisons reveal that the active site of α and γ forms are covered by aliphatic amino acids, and the β form has a highly conserved aromatic residue in this position. The subsequent evolution of this gene family in modern lineages of multicellular eukaryotes is typified by the loss of one or more of these three subclasses and the lineage-specific expansion of one or both of the remaining subclasses. Conclusions The diversity of type-3 copper proteins in animals and other eukaryotes is consistent with two ancient gene duplication events leading to α, β and γ subclasses, followed by the differential loss and expansion of one or more of these subclasses in specific kingdoms and phyla. This has led to many lineage-specific type-3 copper protein repertoires and in some cases the independent evolution of functionally-classified tyrosinases and hemocyanins. For example, the oxygen-carrying hemocyanins in arthropods evolved from a β-subclass tyrosinase, whilst hemocyanins

  3. Parallel Evolution and Lineage-Specific Expansion of RNA Editing in Ctenophores.

    PubMed

    Kohn, Andrea B; Sanford, Rachel S; Yoshida, Masa-aki; Moroz, Leonid L

    2015-12-01

    RNA editing is a process of targeted alterations of nucleotides in all types of RNA molecules (e.g., rRNA, tRNA, mRNA, and miRNA). As a result, the transcriptional output differs from its genomic DNA template. RNA editing can be defined both by biochemical mechanisms and by enzymes that perform these reactions. There are high levels of RNA editing detected in the mammalian nervous system, suggesting that nervous systems use this mechanism to increase protein diversity, because the post-transcription modifications lead to new gene products with novel functions. By re-annotating the ctenophore genomes, we found that the number of predicted RNA-editing enzymes is comparable to the numbers in mammals, but much greater than in other non-bilaterian basal metazoans. However, the overall molecular diversity of RNA-editing enzymes in ctenophores is lower, suggesting a possible "compensation" by an expansion of the ADAT1-like subfamily in this lineage. In two genera of ctenophores, Pleurobrachia and Mnemiopsis, there are high levels of expression for RNA-editing enzymes in their aboral organs, the integrative center involved in control of locomotion and geotaxis. This finding supports the hypothesis that RNA editing is correlated with the complexity of tissues and behaviors. Smaller numbers of RNA-editing enzymes in Porifera and Placozoa also correlates with the primary absence of neural and muscular systems in these lineages. In ctenophores, the expansion of the RNA-editing machinery can also provide mechanisms that support the remarkable capacity for regeneration in these animals. In summary, despite their compact genomes, a wide variety of epigenomic mechanisms employed by ctenophores and other non-bilaterian basal metazoans can provide novel insights into the evolutionary origins of biological novelties. PMID:26089435

  4. Transient accumulation of 5-carboxylcytosine indicates involvement of active demethylation in lineage specification of neural stem cells.

    PubMed

    Wheldon, Lee M; Abakir, Abdulkadir; Ferjentsik, Zoltan; Dudnakova, Tatiana; Strohbuecker, Stephanie; Christie, Denise; Dai, Nan; Guan, Shengxi; Foster, Jeremy M; Corrêa, Ivan R; Loose, Matthew; Dixon, James E; Sottile, Virginie; Johnson, Andrew D; Ruzov, Alexey

    2014-06-12

    5-Methylcytosine (5mC) is an epigenetic modification involved in regulation of gene activity during differentiation. Tet dioxygenases oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Both 5fC and 5caC can be excised from DNA by thymine-DNA glycosylase (TDG) followed by regeneration of unmodified cytosine via the base excision repair pathway. Despite evidence that this mechanism is operative in embryonic stem cells, the role of TDG-dependent demethylation in differentiation and development is currently unclear. Here, we demonstrate that widespread oxidation of 5hmC to 5caC occurs in postimplantation mouse embryos. We show that 5fC and 5caC are transiently accumulated during lineage specification of neural stem cells (NSCs) in culture and in vivo. Moreover, 5caC is enriched at the cell-type-specific promoters during differentiation of NSCs, and TDG knockdown leads to increased 5fC/5caC levels in differentiating NSCs. Our data suggest that active demethylation contributes to epigenetic reprogramming determining lineage specification in embryonic brain. PMID:24882006

  5. HIV Skews the Lineage-Defining Transcriptional Profile of Mycobacterium tuberculosis-Specific CD4+ T Cells.

    PubMed

    Riou, Catherine; Strickland, Natalie; Soares, Andreia P; Corleis, Björn; Kwon, Douglas S; Wherry, E John; Wilkinson, Robert J; Burgers, Wendy A

    2016-04-01

    HIV-infected persons are at greater risk of developing tuberculosis (TB) even before profound CD4 loss occurs, suggesting that HIV alters CD4(+) T cell functions capable of containing bacterial replication. An effective immune response to Mycobacterium tuberculosis most likely relies on the development of a balanced CD4 response, in which distinct CD4(+) Th subsets act in synergy to control the infection. To define the diversity of M. tuberculosis-specific CD4(+) Th subsets and determine whether HIV infection impacts such responses, the expression of lineage-defining transcription factors T-bet, Gata3, RORγt, and Foxp3 was measured in M. tuberculosis-specific CD4(+) T cells in HIV-uninfected (n = 20) and HIV-infected individuals (n = 20) with latent TB infection. Our results show that, upon 5-d restimulation in vitro, M. tuberculosis-specific CD4(+) T cells from healthy individuals have the ability to exhibit a broad spectrum of Th subsets, defined by specific patterns of transcription factor coexpression. These transcription factor profiles were skewed in HIV-infected individuals where the proportion of T-bet(high)Foxp3(+) M. tuberculosis-specific CD4(+) T cells was significantly decreased (p = 0.002) compared with HIV-uninfected individuals, a change that correlated inversely with HIV viral load (p = 0.0007) and plasma TNF-α (p = 0.027). Our data demonstrate an important balance in Th subset diversity defined by lineage-defining transcription factor coexpression profiles that is disrupted by HIV infection and suggest a role for HIV in impairing TB immunity by altering the equilibrium of M. tuberculosis-specific CD4(+) Th subsets. PMID:26927799

  6. miRNA-embedded shRNAs for Lineage-specific BCL11A Knockdown and Hemoglobin F Induction

    PubMed Central

    Guda, Swaroopa; Brendel, Christian; Renella, Raffaele; Du, Peng; Bauer, Daniel E; Canver, Matthew C; Grenier, Jennifer K; Grimson, Andrew W; Kamran, Sophia C; Thornton, James; de Boer, Helen; Root, David E; Milsom, Michael D; Orkin, Stuart H; Gregory, Richard I; Williams, David A

    2015-01-01

    RNA interference (RNAi) technology using short hairpin RNAs (shRNAs) expressed via RNA polymerase (pol) III promoters has been widely exploited to modulate gene expression in a variety of mammalian cell types. For certain applications, such as lineage-specific knockdown, embedding targeting sequences into pol II-driven microRNA (miRNA) architecture is required. Here, using the potential therapeutic target BCL11A, we demonstrate that pol III-driven shRNAs lead to significantly increased knockdown but also increased cytotoxcity in comparison to pol II-driven miRNA adapted shRNAs (shRNAmiR) in multiple hematopoietic cell lines. We show that the two expression systems yield mature guide strand sequences that differ by a 4 bp shift. This results in alternate seed sequences and consequently influences the efficacy of target gene knockdown. Incorporating a corresponding 4 bp shift into the guide strand of shRNAmiRs resulted in improved knockdown efficiency of BCL11A. This was associated with a significant de-repression of the hemoglobin target of BCL11A, human γ-globin or the murine homolog Hbb-y. Our results suggest the requirement for optimization of shRNA sequences upon incorporation into a miRNA backbone. These findings have important implications in future design of shRNAmiRs for RNAi-based therapy in hemoglobinopathies and other diseases requiring lineage-specific expression of gene silencing sequences. PMID:26080908

  7. Reconstruction of cyclooxygenase evolution in animals suggests variable, lineage-specific duplications, and homologs with low sequence identity.

    PubMed

    Havird, Justin C; Kocot, Kevin M; Brannock, Pamela M; Cannon, Johanna T; Waits, Damien S; Weese, David A; Santos, Scott R; Halanych, Kenneth M

    2015-04-01

    Cyclooxygenase (COX) enzymatically converts arachidonic acid into prostaglandin G/H in animals and has importance during pregnancy, digestion, and other physiological functions in mammals. COX genes have mainly been described from vertebrates, where gene duplications are common, but few studies have examined COX in invertebrates. Given the increasing ease in generating genomic data, as well as recent, although incomplete descriptions of potential COX sequences in Mollusca, Crustacea, and Insecta, assessing COX evolution across Metazoa is now possible. Here, we recover 40 putative COX orthologs by searching publicly available genomic resources as well as ~250 novel invertebrate transcriptomic datasets. Results suggest the common ancestor of Cnidaria and Bilateria possessed a COX homolog similar to those of vertebrates, although such homologs were not found in poriferan and ctenophore genomes. COX was found in most crustaceans and the majority of molluscs examined, but only specific taxa/lineages within Cnidaria and Annelida. For example, all octocorallians appear to have COX, while no COX homologs were found in hexacorallian datasets. Most species examined had a single homolog, although species-specific COX duplications were found in members of Annelida, Mollusca, and Cnidaria. Additionally, COX genes were not found in Hemichordata, Echinodermata, or Platyhelminthes, and the few previously described COX genes in Insecta lacked appreciable sequence homology (although structural analyses suggest these may still be functional COX enzymes). This analysis provides a benchmark for identifying COX homologs in future genomic and transcriptomic datasets, and identifies lineages for future studies of COX. PMID:25758350

  8. Early preimplantation cells expressing Cdx2 exhibit plasticity of specification to TE and ICM lineages through positional changes.

    PubMed

    Toyooka, Yayoi; Oka, Sanae; Fujimori, Toshihiko

    2016-03-01

    The establishment of the trophectoderm (TE) and the inner cell mass (ICM) is the first cell lineage segregation to occur in mouse preimplantation development. These two cell lineages arise in a position-dependent manner at the blastocyst stage: the outer cells form TE, which will generate the future placenta, while the inner cells give rise to the ICM, from which the epiblast (EPI) and primitive endoderm (PrE) arise. Previous studies have shown that a portion of cells relocate from the outside position to the inside during this preimplantation stage, but few studies have investigated the correlation between cell relocation and the expression of key transcription factors critical for cell differentiation. To monitor cell movement and the status of the TE-specification pathway in living embryos, we established Cdx2-GFP reporter mice allowing us to visualize the expression of Caudal-type transcriptional factor (Cdx2), a key regulator of the initiation of TE differentiation. Observation of Cdx2-GFP preimplantation embryos by live cell imaging revealed that all cells localized in an initial outer position initiated the expression of Cdx2. Subsequently, cells that changed their position from an outer to an inner position downregulated Cdx2 expression and contributed to the ICM. Finally we showed that internalized cells likely contribute to both the EPI and PrE. Our datas indicate that cells expressing even high levels of Cdx2 can internalize, deactivate an activated TE-specification molecular pathway and integrate into the pluripotent cell population. PMID:26806703

  9. LATS-YAP/TAZ controls lineage specification by regulating TGFβ signaling and Hnf4α expression during liver development

    PubMed Central

    Lee, Da-Hye; Park, Jae Oh; Kim, Tae-Shin; Kim, Sang-Kyum; Kim, Tack-hoon; Kim, Min-chul; Park, Gun Soo; Kim, Jeong-Hwan; Kuninaka, Shinji; Olson, Eric N.; Saya, Hideyuki; Kim, Seon-Young; Lee, Ho; Lim, Dae-Sik

    2016-01-01

    The Hippo pathway regulates the self-renewal and differentiation of various adult stem cells, but its role in cell fate determination and differentiation during liver development remains unclear. Here we report that the Hippo pathway controls liver cell lineage specification and proliferation separately from Notch signalling, using mice and primary hepatoblasts with liver-specific knockout of Lats1 and Lats2 kinase, the direct upstream regulators of YAP and TAZ. During and after liver development, the activation of YAP/TAZ induced by loss of Lats1/2 forces hepatoblasts or hepatocytes to commit to the biliary epithelial cell (BEC) lineage. It increases BEC and fibroblast proliferation by up-regulating TGFβ signalling, but suppresses hepatoblast to hepatocyte differentiation by repressing Hnf4α expression. Notably, oncogenic YAP/TAZ activation in hepatocytes induces massive p53-dependent cell senescence/death. Together, our results reveal that YAP/TAZ activity levels govern liver cell differentiation and proliferation in a context-dependent manner. PMID:27358050

  10. LATS-YAP/TAZ controls lineage specification by regulating TGFβ signaling and Hnf4α expression during liver development.

    PubMed

    Lee, Da-Hye; Park, Jae Oh; Kim, Tae-Shin; Kim, Sang-Kyum; Kim, Tack-Hoon; Kim, Min-Chul; Park, Gun Soo; Kim, Jeong-Hwan; Kuninaka, Shinji; Olson, Eric N; Saya, Hideyuki; Kim, Seon-Young; Lee, Ho; Lim, Dae-Sik

    2016-01-01

    The Hippo pathway regulates the self-renewal and differentiation of various adult stem cells, but its role in cell fate determination and differentiation during liver development remains unclear. Here we report that the Hippo pathway controls liver cell lineage specification and proliferation separately from Notch signalling, using mice and primary hepatoblasts with liver-specific knockout of Lats1 and Lats2 kinase, the direct upstream regulators of YAP and TAZ. During and after liver development, the activation of YAP/TAZ induced by loss of Lats1/2 forces hepatoblasts or hepatocytes to commit to the biliary epithelial cell (BEC) lineage. It increases BEC and fibroblast proliferation by up-regulating TGFβ signalling, but suppresses hepatoblast to hepatocyte differentiation by repressing Hnf4α expression. Notably, oncogenic YAP/TAZ activation in hepatocytes induces massive p53-dependent cell senescence/death. Together, our results reveal that YAP/TAZ activity levels govern liver cell differentiation and proliferation in a context-dependent manner. PMID:27358050

  11. An autonomous CEBPA enhancer specific for myeloid-lineage priming and neutrophilic differentiation.

    PubMed

    Avellino, Roberto; Havermans, Marije; Erpelinck, Claudia; Sanders, Mathijs A; Hoogenboezem, Remco; van de Werken, Harmen J G; Rombouts, Elwin; van Lom, Kirsten; van Strien, Paulina M H; Gebhard, Claudia; Rehli, Michael; Pimanda, John; Beck, Dominik; Erkeland, Stefan; Kuiken, Thijs; de Looper, Hans; Gröschel, Stefan; Touw, Ivo; Bindels, Eric; Delwel, Ruud

    2016-06-16

    Neutrophilic differentiation is dependent on CCAAT enhancer-binding protein α (C/EBPα), a transcription factor expressed in multiple organs including the bone marrow. Using functional genomic technologies in combination with clustered regularly-interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 genome editing and in vivo mouse modeling, we show that CEBPA is located in a 170-kb topological-associated domain that contains 14 potential enhancers. Of these, 1 enhancer located +42 kb from CEBPA is active and engages with the CEBPA promoter in myeloid cells only. Germ line deletion of the homologous enhancer in mice in vivo reduces Cebpa levels exclusively in hematopoietic stem cells (HSCs) and myeloid-primed progenitor cells leading to severe defects in the granulocytic lineage, without affecting any other Cebpa-expressing organ studied. The enhancer-deleted progenitor cells lose their myeloid transcription program and are blocked in differentiation. Deletion of the enhancer also causes loss of HSC maintenance. We conclude that a single +42-kb enhancer is essential for CEBPA expression in myeloid cells only. PMID:26966090

  12. Dynamic changes in replication timing and gene expression during lineage specification of human pluripotent stem cells.

    PubMed

    Rivera-Mulia, Juan Carlos; Buckley, Quinton; Sasaki, Takayo; Zimmerman, Jared; Didier, Ruth A; Nazor, Kristopher; Loring, Jeanne F; Lian, Zheng; Weissman, Sherman; Robins, Allan J; Schulz, Thomas C; Menendez, Laura; Kulik, Michael J; Dalton, Stephen; Gabr, Haitham; Kahveci, Tamer; Gilbert, David M

    2015-08-01

    Duplication of the genome in mammalian cells occurs in a defined temporal order referred to as its replication-timing (RT) program. RT changes dynamically during development, regulated in units of 400-800 kb referred to as replication domains (RDs). Changes in RT are generally coordinated with transcriptional competence and changes in subnuclear position. We generated genome-wide RT profiles for 26 distinct human cell types, including embryonic stem cell (hESC)-derived, primary cells and established cell lines representing intermediate stages of endoderm, mesoderm, ectoderm, and neural crest (NC) development. We identified clusters of RDs that replicate at unique times in each stage (RT signatures) and confirmed global consolidation of the genome into larger synchronously replicating segments during differentiation. Surprisingly, transcriptome data revealed that the well-accepted correlation between early replication and transcriptional activity was restricted to RT-constitutive genes, whereas two-thirds of the genes that switched RT during differentiation were strongly expressed when late replicating in one or more cell types. Closer inspection revealed that transcription of this class of genes was frequently restricted to the lineage in which the RT switch occurred, but was induced prior to a late-to-early RT switch and/or down-regulated after an early-to-late RT switch. Analysis of transcriptional regulatory networks showed that this class of genes contains strong regulators of genes that were only expressed when early replicating. These results provide intriguing new insight into the complex relationship between transcription and RT regulation during human development. PMID:26055160

  13. Lineage-specific late pleistocene expansion of an endemic subtropical gossamer-wing damselfly, Euphaea formosa, in Taiwan

    PubMed Central

    2011-01-01

    subtropical damselfly's historical demography is lineage-specific, depending predominantly on its colonization history and geography. It is proposed that the Riss and Würm glaciations in the late Pleistocene period had a greater impact on the evolutionary diversification of subtropical insular species than the last glacial maximum (LGM). PMID:21486452

  14. Concise Review: Primary Cilia: Control Centers for Stem Cell Lineage Specification and Potential Targets for Cell-Based Therapies.

    PubMed

    Bodle, Josephine C; Loboa, Elizabeth G

    2016-06-01

    Directing stem cell lineage commitment prevails as the holy grail of translational stem cell research, particularly to those interested in the application of mesenchymal stem cells and adipose-derived stem cells in tissue engineering. However, elucidating the mechanisms underlying their phenotypic specification persists as an active area of research. In recent studies, the primary cilium structure has been intimately associated with defining cell phenotype, maintaining stemness, as well as functioning in a chemo, electro, and mechanosensory capacity in progenitor and committed cell types. Many hypothesize that the primary cilium may indeed be another important player in defining and controlling cell phenotype, concomitant with lineage-dictated cytoskeletal dynamics. Many of the studies on the primary cilium have emerged from disparate areas of biological research, and crosstalk amongst these areas of research is just beginning. To date, there has not been a thorough review of how primary cilia fit into the current paradigm of stem cell differentiation and this review aims to summarize the current cilia work in this context. The goal of this review is to highlight the cilium's function and integrate this knowledge into the working knowledge of stem cell biologists and tissue engineers developing regenerative medicine technologies. Stem Cells 2016;34:1445-1454. PMID:26866419

  15. Flagellated Algae Protein Evolution Suggests the Prevalence of Lineage-Specific Rules Governing Evolutionary Rates of Eukaryotic Proteins

    PubMed Central

    Chang, Ting-Yan; Liao, Ben-Yang

    2013-01-01

    Understanding the general rules governing the rate of protein evolution is fundamental to evolutionary biology. However, attempts to address this issue in yeasts and mammals have revealed considerable differences in the relative importance of determinants for protein evolutionary rates. This phenomenon was previously explained by the fact that yeasts and mammals are different in many cellular and genomic properties. Flagellated algae species have several cellular and genomic characteristics that are intermediate between yeasts and mammals. Using partial correlation analyses on the evolution of 6,921 orthologous proteins from Chlamydomonas reinhardtii and Volvox carteri, we examined factors influencing evolutionary rates of proteins in flagellated algae. Previous studies have shown that mRNA abundance and gene compactness are strong determinants for protein evolutionary rates in yeasts and mammals, respectively. We show that both factors also influence algae protein evolution with mRNA abundance having a larger impact than gene compactness on the rates of algae protein evolution. More importantly, among all the factors examined, coding sequence (CDS) length has the strongest (positive) correlation with protein evolutionary rates. This correlation between CDS length and the rates of protein evolution is not due to alignment-related issues or domain density. These results suggest no simple and universal rules governing protein evolutionary rates across different eukaryotic lineages. Instead, gene properties influence the rate of protein evolution in a lineage-specific manner. PMID:23563973

  16. The shell-forming proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties.

    PubMed

    Marie, Benjamin; Jackson, Daniel J; Ramos-Silva, Paula; Zanella-Cléon, Isabelle; Guichard, Nathalie; Marin, Frédéric

    2013-01-01

    Proteins that are occluded within the molluscan shell, the so-called shell matrix proteins (SMPs), are an assemblage of biomolecules attractive to study for several reasons. They increase the fracture resistance of the shell by several orders of magnitude, determine the polymorph of CaCO(3) deposited, and regulate crystal nucleation, growth initiation and termination. In addition, they are thought to control the shell microstructures. Understanding how these proteins have evolved is also likely to provide deep insight into events that supported the diversification and expansion of metazoan life during the Cambrian radiation 543 million years ago. Here, we present an analysis of SMPs isolated form the CaCO(3) shell of the limpet Lottia gigantea, a gastropod that constructs an aragonitic cross-lamellar shell. We identified 39 SMPs by combining proteomic analysis with genomic and transcriptomic database interrogations. Among these proteins are various low-complexity domain-containing proteins, enzymes such as peroxidases, carbonic anhydrases and chitinases, acidic calcium-binding proteins and protease inhibitors. This list is likely to contain the most abundant SMPs of the shell matrix. It reveals the presence of both highly conserved and lineage-specific biomineralizing proteins. This mosaic evolutionary pattern suggests that there may be an ancestral molluscan SMP set upon which different conchiferan lineages have elaborated to produce the diversity of shell microstructures we observe nowadays. PMID:23145877

  17. Flagellated algae protein evolution suggests the prevalence of lineage-specific rules governing evolutionary rates of eukaryotic proteins.

    PubMed

    Chang, Ting-Yan; Liao, Ben-Yang

    2013-01-01

    Understanding the general rules governing the rate of protein evolution is fundamental to evolutionary biology. However, attempts to address this issue in yeasts and mammals have revealed considerable differences in the relative importance of determinants for protein evolutionary rates. This phenomenon was previously explained by the fact that yeasts and mammals are different in many cellular and genomic properties. Flagellated algae species have several cellular and genomic characteristics that are intermediate between yeasts and mammals. Using partial correlation analyses on the evolution of 6,921 orthologous proteins from Chlamydomonas reinhardtii and Volvox carteri, we examined factors influencing evolutionary rates of proteins in flagellated algae. Previous studies have shown that mRNA abundance and gene compactness are strong determinants for protein evolutionary rates in yeasts and mammals, respectively. We show that both factors also influence algae protein evolution with mRNA abundance having a larger impact than gene compactness on the rates of algae protein evolution. More importantly, among all the factors examined, coding sequence (CDS) length has the strongest (positive) correlation with protein evolutionary rates. This correlation between CDS length and the rates of protein evolution is not due to alignment-related issues or domain density. These results suggest no simple and universal rules governing protein evolutionary rates across different eukaryotic lineages. Instead, gene properties influence the rate of protein evolution in a lineage-specific manner. PMID:23563973

  18. High-affinity FRβ-specific CAR T cells eradicate AML and normal myeloid lineage without HSC toxicity.

    PubMed

    Lynn, R C; Feng, Y; Schutsky, K; Poussin, M; Kalota, A; Dimitrov, D S; Powell, D J

    2016-06-01

    Acute myeloid leukemia (AML) is an aggressive malignancy, and development of new treatments to prolong remissions is warranted. Chimeric antigen receptor (CAR) T-cell therapies appear promising but on-target, off-tumor recognition of antigen in healthy tissues remains a concern. Here we isolated a high-affinity (HA) folate receptor beta (FRβ)-specific single-chain variable fragment (2.48 nm KD) for optimization of FRβ-redirected CAR T-cell therapy for AML. T cells stably expressing the HA-FRβ CAR exhibited greatly enhanced antitumor activity against FRβ(+) AML in vitro and in vivo compared with a low-affinity FRβ CAR (54.3 nm KD). Using the HA-FRβ immunoglobulin G, FRβ expression was detectable in myeloid-lineage hematopoietic cells; however, expression in CD34(+) hematopoietic stem cells (HSCs) was nearly undetectable. Accordingly, HA-FRβ CAR T cells lysed mature CD14(+) monocytes, while HSC colony formation was unaffected. Because of the potential for elimination of mature myeloid lineage, mRNA CAR electroporation for transient CAR expression was evaluated. mRNA-electroporated HA-FRβ CAR T cells retained effective antitumor activity in vitro and in vivo. Together, our results highlight the importance of antibody affinity in target protein detection and CAR development and suggest that transient delivery of potent HA-FRβ CAR T cells is highly effective against AML and reduces the risk for long-term myeloid toxicity. PMID:26898190

  19. The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion

    PubMed Central

    2012-01-01

    Background Plant polyphenol oxidases (PPOs) are enzymes that typically use molecular oxygen to oxidize ortho-diphenols to ortho-quinones. These commonly cause browning reactions following tissue damage, and may be important in plant defense. Some PPOs function as hydroxylases or in cross-linking reactions, but in most plants their physiological roles are not known. To better understand the importance of PPOs in the plant kingdom, we surveyed PPO gene families in 25 sequenced genomes from chlorophytes, bryophytes, lycophytes, and flowering plants. The PPO genes were then analyzed in silico for gene structure, phylogenetic relationships, and targeting signals. Results Many previously uncharacterized PPO genes were uncovered. The moss, Physcomitrella patens, contained 13 PPO genes and Selaginella moellendorffii (spike moss) and Glycine max (soybean) each had 11 genes. Populus trichocarpa (poplar) contained a highly diversified gene family with 11 PPO genes, but several flowering plants had only a single PPO gene. By contrast, no PPO-like sequences were identified in several chlorophyte (green algae) genomes or Arabidopsis (A. lyrata and A. thaliana). We found that many PPOs contained one or two introns often near the 3’ terminus. Furthermore, N-terminal amino acid sequence analysis using ChloroP and TargetP 1.1 predicted that several putative PPOs are synthesized via the secretory pathway, a unique finding as most PPOs are predicted to be chloroplast proteins. Phylogenetic reconstruction of these sequences revealed that large PPO gene repertoires in some species are mostly a consequence of independent bursts of gene duplication, while the lineage leading to Arabidopsis must have lost all PPO genes. Conclusion Our survey identified PPOs in gene families of varying sizes in all land plants except in the genus Arabidopsis. While we found variation in intron numbers and positions, overall PPO gene structure is congruent with the phylogenetic relationships based on

  20. An analysis of the gene complement of a marsupial, Monodelphis domestica: Evolution of lineage-specific genes and giant chromosomes

    PubMed Central

    Goodstadt, Leo; Heger, Andreas; Webber, Caleb; Ponting, Chris P.

    2007-01-01

    The newly sequenced genome of Monodelphis domestica not only provides the out-group necessary to better understand our own eutherian lineage, but it enables insights into the innovative biology of metatherians. Here, we compare Monodelphis with Homo sequences from alignments of single nucleotides, genes, and whole chromosomes. Using PhyOP, we have established orthologs in Homo for 82% (15,250) of Monodelphis gene predictions. Those with single orthologs in each species exhibited a high median synonymous substitution rate (dS = 1.02), thereby explaining the relative paucity of aligned regions outside of coding sequences. Orthology assignments were used to construct a synteny map that illustrates the considerable fragmentation of Monodelphis and Homo karyotypes since their therian last common ancestor. Fifteen percent of Monodelphis genes are predicted, from their low divergence at synonymous sites, to have been duplicated in the metatherian lineage. The majority of Monodelphis-specific genes possess predicted roles in chemosensation, reproduction, adaptation to specific diets, and immunity. Using alignments of Monodelphis genes to sequences from either Homo or Trichosurus vulpecula (an Australian marsupial), we show that metatherian X chromosomes have elevated silent substitution rates and high G+C contents in comparison with both metatherian autosomes and eutherian chromosomes. Each of these elevations is also a feature of subtelomeric chromosomal regions. We attribute these observations to high rates of female-specific recombination near the chromosomal ends and within the X chromosome, which act to sustain or increase G+C levels by biased gene conversion. In particular, we propose that the higher G+C content of the Monodelphis X chromosome is a direct consequence of its small size relative to the giant autosomes. PMID:17495010

  1. The evolution of lineage-specific clusters of single nucleotide substitutions in the human genome.

    PubMed

    Xu, Ke; Wang, Jianrong; Elango, Navin; Yi, Soojin V

    2013-10-01

    Genomic regions harboring large numbers of human-specific single nucleotide substitutions are of significant interest since they are potential genomic foci underlying the evolution of human-specific traits as well as human adaptive evolution. Previous studies aimed to identify such regions either used pre-defined genomic locations such as coding sequences and conserved genomic elements or employed sliding window methods. Such approaches may miss clusters of substitutions occurring in regions other than those pre-defined locations, or not be able to distinguish human-specific clusters of substitutions from regions of generally high substitution rates. Here, we conduct a 'maximal segment' analysis to scan the whole human genome to identify clusters of human-specific substitutions that occurred since the divergence of the human and the chimpanzee genomes. This method can identify species-specific clusters of substitutions while not relying on pre-defined regions. We thus identify thousands of clusters of human-specific single nucleotide substitutions. The evolution of such clusters is driven by a combination of several different evolutionary processes including increased regional mutation rate, recombination-associated processes, and positive selection. These newly identified regions of human-specific substitution clusters include large numbers of previously identified human accelerated regions, and exhibit significant enrichments of genes involved in several developmental processes. Our study provides a useful tool to study the evolution of the human genome. PMID:23770436

  2. Prey choice by carabid beetles feeding on an earthworm community analysed using species- and lineage-specific PCR primers.

    PubMed

    King, R Andrew; Vaughan, Ian P; Bell, James R; Bohan, David A; Symondson, William O C

    2010-04-01

    The carabid beetle Pterostichus melanarius is a major natural enemy of pests, such as aphids and slugs in agricultural systems. Earthworms are a dominant non-pest component of the diet of P. melanarius which help sustain the beetles during periods when the pest population is low or absent. In this study we wanted to test whether this predator exercises prey choice among different earthworm species or ecological groups. High levels of genetic diversity within morphological species of earthworm necessitated the development of primers that were specific not just to species but lineages and sub-lineages within species as well. Gut samples from beetles were analysed using multiplex-PCR and fluorescent-labelled primers. Calibratory feeding trials were undertaken to calculate median detection times for prey DNA following ingestion. Extensive testing demonstrated that the primers were species-specific, that detection periods were negatively related to amplicon size and that meal size had a highly significant effect on detection periods. Monte Carlo simulations showed that, in general, worms were being predated in proportion to their densities in the field with little evidence of prey choice, other than probable avoidance of the larger, deep-living species. There was no evidence that epigeic species were being taken preferentially in comparison with endogeic species. There was also no evidence that defensive secretions by Allolobophora chlorotica reduced predation pressure on this species by P. melanarius. We concluded that any management system that increases earthworm densities generally, regardless of component species, is likely to be optimal for increasing numbers of this beneficial beetle predator. PMID:20345680

  3. Lineage and stage specific requirement for Dicer1 in sympathetic ganglia and adrenal medulla formation and maintenance.

    PubMed

    Stubbusch, Jutta; Narasimhan, Priyanka; Hennchen, Melanie; Huber, Katrin; Unsicker, Klaus; Ernsberger, Uwe; Rohrer, Hermann

    2015-04-15

    The development of sympathetic neurons and chromaffin cells is differentially controlled at distinct stages by various extrinsic and intrinsic signals. Here we use conditional deletion of Dicer1 in neural crest cells and noradrenergic neuroblasts to identify stage specific functions in sympathoadrenal lineages. Conditional Dicer1 knockout in neural crest cells of Dicer1(Wnt1Cre) mice results in a rapid reduction in the size of developing sympathetic ganglia and adrenal medulla. In contrast, Dicer1 elimination in noradrenergic neuroblasts of Dicer1(DbhiCre) animals affects sympathetic neuron survival starting at late embryonic stages and chromaffin cells persist at least until postnatal week 1. A differential function of Dicer1 signaling for the development of embryonic noradrenergic and cholinergic sympathetic neurons is demonstrated by the selective increase in the expression of Tlx3 and the cholinergic marker genes VAChT and ChAT at E16.5. The number of Dbh, Th and TrkA expressing noradrenergic neurons is strongly decreased in Dicer1-deficient sympathetic ganglia at birth, whereas Tlx3(+)/ Ret(+) cholinergic neurons cells are spared from cell death. The postnatal death of chromaffin cells is preceded by the loss of Ascl1, mir-375 and Pnmt and an increase in the markers Ret and NF-M, which suggests that Dicer1 is required for the maintenance of chromaffin cell differentiation and survival. Taken together, these findings demonstrate distinct stage and lineage specific functions of Dicer1 signaling in differentiation and survival of sympathetic neurons and adrenal chromaffin cells. PMID:25661788

  4. The murine Otp homeobox gene plays an essential role in the specification of neuronal cell lineages in the developing hypothalamus.

    PubMed

    Wang, W; Lufkin, T

    2000-11-15

    Hypothalamic nuclei, including the anterior periventricular (aPV), paraventricular (PVN), and supraoptic (SON) nuclei strongly express the homeobox gene Orthopedia (Otp) during embryogenesis. Targeted inactivation of Otp in the mouse results in the loss of these nuclei in the homozygous null neonates. The Otp null hypothalamus fails to secrete neuropeptides somatostatin, arginine vasopressin, oxytocin, corticotropin-releasing hormone, and thyrotropin-releasing hormone in an appropriate spatial and temporal fashion, and leads to the death of Otp null pups shortly after birth. Failure to produce these neuropeptide hormones is evident prior to E15.5, indicating a failure in terminal differentiation of the aPV/PVN/SON neurons. Absence of elevated apoptotic activity, but reduced cell proliferation together with the ectopic activation of Six3 expression in the presumptive PVN, indicates a critical role for Otp in terminal differentiation and maturation of these neuroendocrine cell lineages. Otp employs distinct regulatory mechanisms to modulate the expression of specific molecular markers in the developing hypothalamus. At early embryonic stages, expression of Sim2 is immediately downregulated as a result of the absence of Otp, indicating a potential role for Otp as an upstream regulator of Sim2. In contrast, the regulation of Brn4 which is also expressed in the SON and PVN is independent of Otp function. Hence no strong evidence links Otp and Brn4 in the same regulatory pathway. The involvement of Otp and Sim1 in specifying specific hypothalamic neurosecretory cell lineages is shown to operate via distinct signaling pathways that partially overlap with Brn2. PMID:11071765

  5. Single cell lineage tracing reveals that oriented cell division contributes to trabecular morphogenesis and regional specification

    PubMed Central

    Li, Jingjing; Miao, Lianjie; Shieh, David; Spiotto, Ernest; Li, Jian; Zhou, Bin; Paul, Antoni; Schwartz, Robert J.; Firulli, Anthony B.; Singer, Harold A.; Huang, Guoying; Wu, Mingfu

    2016-01-01

    Summary The cardiac trabeculae are sheet-like structures extending from the myocardium that function to increase surface area. A lack of trabeculation causes embryonic lethality due to compromised cardiac function. To understand the cellular and molecular mechanisms of trabecular formation, we genetically labeled individual cardiomyocytes prior to trabeculation via the brainbow multicolor system, and traced and analyzed the labeled cells during trabeculation by whole-embryo clearing and imaging. The clones derived from labeled single cells displayed four different geometric patterns that are derived from different patterns of oriented cell division (OCD) and migration. Of the four types of clones, the inner, transmural, and mixed clones contributed to trabecular cardiomyocytes. Further studies showed that perpendicular OCD is an extrinsic asymmetric cell division that putatively contributes to trabecular regional specification. Furthermore, N-Cadherin deletion in labeled clones disrupted the clonal patterns. In summary, our data demonstrate that OCD contributes to trabecular morphogenesis and specification. PMID:27052172

  6. Direct lineage reprogramming reveals disease-specific phonotypes of motor neurons from human ALS patients

    PubMed Central

    Liu, Meng-Lu; Zang, Tong; Zhang, Chun-Li

    2015-01-01

    SUMMARY Subtype-specific neurons obtained from adult humans will be critical to modeling neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS). Here we show that adult human skin fibroblasts can be directly and efficiently converted into highly pure motor neurons without passing through an induced pluripotent stem cell stage. These adult human induced motor neurons (hiMNs) exhibit the cytological and electrophysiological features of spinal motor neurons and form functional neuromuscular junctions (NMJs) with skeletal muscles. Importantly, hiMNs converted from ALS-patient fibroblasts show disease-specific degeneration manifested through poor survival, soma shrinkage, hypoactivity, and an inability to form NMJs. A chemical screen revealed that the degenerative features of ALS-hiMNs can be remarkably rescued by the small molecule kenpaullone. Taken together, our results define a direct and efficient strategy to obtain disease-relevant neuronal subtypes from adult human patients and reveal their promising value in disease modeling and drug identification. PMID:26725112

  7. High affinity FRβ-specific CAR T cells eradicate AML and normal yeloid lineage without HSC toxicity

    PubMed Central

    Lynn, Rachel C; Feng, Yang; Schutsky, Keith; Poussin, Mathilde; Kalota, Anna; Dimitrov, Dimiter S; Powell, Daniel J

    2016-01-01

    Acute myeloid leukemia (AML) is an aggressive malignancy, and development of new treatments to prolong remissions is warranted. Chimeric antigen receptor (CAR) T-cell therapies appear promising but on-target, off-tumor recognition of antigen in healthy tissues remains a concern. Here, we isolated a high affinity (HA) folate receptor beta (FRβ)-specific scFv (2.48nM KD) for optimization of FRβ-redirected CAR T-cell therapy for AML. T-cells stably expressing the HA-FRβ CAR exhibited greatly enhanced antitumor activity against FRβ+ AML in vitro and in vivo compared to a low affinity (LA) FRβ CAR (54.3nM KD). Using the HA-FRβ IgG, FRβ expression was detectable in myeloid-lineage hematopoietic cells; however, expression in CD34+ hematopoietic stem cells (HSCs) was nearly undetectable. Accordingly, HA-FRβ CAR T-cells lysed mature CD14+ monocytes, while HSC colony formation was unaffected. Because of the potential for elimination of mature myeloid lineage, mRNA CAR electroporation for transient CAR expression was evaluated. mRNA-electroporated HA-FRβ CAR T-cells retained effective anti-tumor activity in vitro and in vivo. Together, our results highlight the importance of antibody affinity in target protein detection and CAR development and suggest that transient delivery of potent HA-FRβ CAR T-cells is highly effective against AML and reduces the risk for long-term myeloid toxicity. PMID:26898190

  8. Lineage and species-specific long noncoding RNAs during erythro-megakaryocytic development.

    PubMed

    Paralkar, Vikram R; Mishra, Tejaswini; Luan, Jing; Yao, Yu; Kossenkov, Andrew V; Anderson, Stacie M; Dunagin, Margaret; Pimkin, Maxim; Gore, Meghneel; Sun, Diana; Konuthula, Neeraja; Raj, Arjun; An, Xiuli; Mohandas, Narla; Bodine, David M; Hardison, Ross C; Weiss, Mitchell J

    2014-03-20

    Mammals express thousands of long noncoding (lnc) RNAs, a few of which are known to function in tissue development. However, the entire repertoire of lncRNAs in most tissues and species is not defined. Indeed, most lncRNAs are not conserved, raising questions about function. We used RNA sequencing to identify 1109 polyadenylated lncRNAs expressed in erythroblasts, megakaryocytes, and megakaryocyte-erythroid precursors of mice, and 594 in erythroblasts of humans. More than half of these lncRNAs were unannotated, emphasizing the opportunity for new discovery through studies of specialized cell types. Analysis of the mouse erythro-megakaryocytic polyadenylated lncRNA transcriptome indicates that ~75% arise from promoters and 25% from enhancers, many of which are regulated by key transcription factors including GATA1 and TAL1. Erythroid lncRNA expression is largely conserved among 8 different mouse strains, yet only 15% of mouse lncRNAs are expressed in humans and vice versa, reflecting dramatic species-specificity. RNA interference assays of 21 abundant erythroid-specific murine lncRNAs in primary mouse erythroid precursors identified 7 whose knockdown inhibited terminal erythroid maturation. At least 6 of these 7 functional lncRNAs have no detectable expression in human erythroblasts, suggesting that lack of conservation between mammalian species does not predict lack of function. PMID:24497530

  9. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells.

    PubMed

    Re, Angela; Workman, Christopher T; Waldron, Levi; Quattrone, Alessandro; Brunak, Søren

    2014-09-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two programs. Functional analysis gathered insights in fate-specific candidates of interface functionalities. The non-transcriptionally regulated interface proteins were found to be highly regulated by post-translational ubiquitylation modification, which may synchronize the transition between cell proliferation and differentiation in ESCs. PMID:25173649

  10. Specific erythroid-lineage defect in mice conditionally deficient for Mediator subunit Med1.

    PubMed

    Stumpf, Melanie; Yue, Xiaojing; Schmitz, Sandra; Luche, Hervé; Reddy, Janardan K; Borggrefe, Tilman

    2010-12-14

    The Mediator complex forms the bridge between transcriptional activators and the RNA polymerase II. Med1 (also known as PBP or TRAP220) is a key component of Mediator that interacts with nuclear hormone receptors and GATA transcription factors. Here, we show dynamic recruitment of GATA-1, TFIIB, Mediator, and RNA polymerase II to the β-globin locus in induced mouse erythroid leukemia cells and in an erythropoietin-inducible hematopoietic progenitor cell line. Using Med1 conditional knockout mice, we demonstrate a specific block in erythroid development but not in myeloid or lymphoid development, highlighted by the complete absence of β-globin gene expression. Thus, Mediator subunit Med1 plays a pivotal role in erythroid development and in β-globin gene activation. PMID:21098667

  11. Hematopoietic lineage cell specific protein 1 associates with and down-regulates protein kinase CK2.

    PubMed

    Ruzzene, M; Brunati, A M; Sarno, S; Donella-Deana, A; Pinna, L A

    1999-11-12

    The catalytic (alpha) subunit of protein kinase CK2 and the hematopoietic specific protein 1 (HS1) display opposite effects on Ha-ras induced fibroblast transformation, by enhancing and counteracting it, respectively. Here we show the occurrence of physical association between HS1 and CK2alpha as judged from both far Western blot and plasmon resonance (BIAcore) analysis. Association of HS1 with CK2alpha is drastically reduced by the deletion of the HS1 C-terminal region (403-486) containing an SH3 domain. HS1, but not its deletion mutant HS1 Delta324-393, lacking a sequence similar to an acidic stretch of the regulatory beta-subunit of CK2, inhibits calmodulin phosphorylation by CK2alpha. These data indicate that HS1 physically interacts with CK2alpha and down-regulates its activity by a mechanism similar to the beta-subunit. PMID:10561491

  12. SUMOylation of DRIL1 Directs Its Transcriptional Activity Towards Leukocyte Lineage-Specific Genes

    PubMed Central

    van Lohuizen, Maarten; Peeper, Daniel S.

    2009-01-01

    DRIL1 is an ARID family transcription factor that can immortalize primary mouse fibroblasts, bypass RASV12-induced cellular senescence and collaborate with RASV12 or MYC in mediating oncogenic transformation. It also activates immunoglobulin heavy chain transcription and engages in heterodimer formation with E2F to stimulate E2F-dependent transcription. Little, however, is known about the regulation of DRIL1 activity. Recently, DRIL1 was found to interact with the SUMO-conjugating enzyme Ubc9, but the functional relevance of this association has not been assessed. Here, we show that DRIL1 is sumoylated both in vitro and in vivo at lysine 398. Moreover, we provide evidence that PIASy functions as a specific SUMO E3-ligase for DRIL1 and promotes its sumoylation both in vitro and in vivo. Furthermore, consistent with the subnuclear localization of PIASy in the Matrix-Associated Region (MAR), SUMO-modified DRIL1 species are found exclusively in the MAR fraction. This post-translational modification interferes neither with the subcellular localization nor the DNA-binding activity of the protein. In contrast, DRIL1 sumoylation impairs its interaction with E2F1 in vitro and modifies its transcriptional activity in vivo, driving transcription of subset of genes regulating leukocyte fate. Taken together, these results identify sumoylation as a novel post-translational modification of DRIL1 that represents an important mechanism for targeting and modulating DRIL1 transcriptional activity. PMID:19436740

  13. Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers.

    PubMed

    Zhang, Xiaoyang; Choi, Peter S; Francis, Joshua M; Imielinski, Marcin; Watanabe, Hideo; Cherniack, Andrew D; Meyerson, Matthew

    2016-02-01

    Whole-genome analysis approaches are identifying recurrent cancer-associated somatic alterations in noncoding DNA regions. We combined somatic copy number analysis of 12 tumor types with tissue-specific epigenetic profiling to identify significant regions of focal amplification harboring super-enhancers. Copy number gains of noncoding regions harboring super-enhancers near KLF5, USP12, PARD6B and MYC are associated with overexpression of these cancer-related genes. We show that two distinct focal amplifications of super-enhancers 3' to MYC in lung adenocarcinoma (MYC-LASE) and endometrial carcinoma (MYC-ECSE) are physically associated with the MYC promoter and correlate with MYC overexpression. CRISPR/Cas9-mediated repression or deletion of a constituent enhancer within the MYC-LASE region led to significant reductions in the expression of MYC and its target genes and to the impairment of anchorage-independent and clonogenic growth, consistent with an oncogenic function. Our results suggest that genomic amplification of super-enhancers represents a common mechanism to activate cancer driver genes in multiple cancer types. PMID:26656844

  14. New Functional Signatures for Understanding Melanoma Biology from Tumor Cell Lineage-Specific Analysis.

    PubMed

    Rambow, Florian; Job, Bastien; Petit, Valérie; Gesbert, Franck; Delmas, Véronique; Seberg, Hannah; Meurice, Guillaume; Van Otterloo, Eric; Dessen, Philippe; Robert, Caroline; Gautheret, Daniel; Cornell, Robert A; Sarasin, Alain; Larue, Lionel

    2015-10-27

    Molecular signatures specific to particular tumor types are required to design treatments for resistant tumors. However, it remains unclear whether tumors and corresponding cell lines used for drug development share such signatures. We developed similarity core analysis (SCA), a universal and unsupervised computational framework for extracting core molecular features common to tumors and cell lines. We applied SCA to mRNA/miRNA expression data from various sources, comparing melanoma cell lines and metastases. The signature obtained was associated with phenotypic characteristics in vitro, and the core genes CAPN3 and TRIM63 were implicated in melanoma cell migration/invasion. About 90% of the melanoma signature genes belong to an intrinsic network of transcription factors governing neural development (TFAP2A, DLX2, ALX1, MITF, PAX3, SOX10, LEF1, and GAS7) and miRNAs (211-5p, 221-3p, and 10a-5p). The SCA signature effectively discriminated between two subpopulations of melanoma patients differing in overall survival, and classified MEKi/BRAFi-resistant and -sensitive melanoma cell lines. PMID:26489459

  15. Lineage-specific evolution of echinoderm mitochondrial ATP synthase subunit 8.

    PubMed

    De Giorgi, C; Martiradonna, A; Pesole, G; Saccone, C

    1997-06-01

    Peculiar evolutionary properties of the subunit 8 of mitochondrial ATP synthase (ATPase8) are revealed by comparative analyses carried out between both closely and distantly related species of echinoderms. The analysis of nucleotide substitution in the three echinoids demonstrated a relaxation of amino acid functional constraints. The deduced protein sequences display a well conserved domain at the N-terminus, while the central part is very variable. At the C-terminus, the broad distribution of positively charged amino acids, which is typical of other organisms, is not conserved in the two different echinoderm classes of the sea urchins and of the sea stars. Instead, a motif of three amino acids, so far not described elsewhere, is conserved in sea urchins and is found to be very similar to the motif present in the sea stars. Our results indicate that the N-terminal region seems to follow the same evolutionary pattern in different organisms, while the maintenance of the C-terminal part in a phylum-specific manner may reflect the co-evolution of mitochondrial and nuclear genes. PMID:9298708

  16. Functional microRNAs and target sites are created by lineage-specific transposition

    PubMed Central

    Spengler, Ryan M.; Oakley, Clayton K.; Davidson, Beverly L.

    2014-01-01

    Transposable elements (TEs) account for nearly one-half of the sequence content in the human genome, and de novo germline transposition into regulatory or coding sequences of protein-coding genes can cause heritable disorders. TEs are prevalent in and around protein-coding genes, providing an opportunity to impart regulation. Computational studies reveal that microRNA (miRNA) genes and miRNA target sites reside within TE sequences, but there is little experimental evidence supporting a role for TEs in the birth of miRNAs, or as platform for gene regulation by miRNAs. In this work, we validate miRNAs and target sites derived from TE families prevalent in the human genome, including the ancient long interspersed nuclear element 2 (LINE2/L2), mammalian-wide interspersed repeat (MIR) retrotransposons and the primate-specific Alu family. We show that genes with 3′ untranslated region (3′ UTR) MIR elements are enriched for let-7 targets and that these sites are conserved and responsive to let-7 expression. We also demonstrate that 3′ UTR-embedded Alus are a source of miR-24 and miR-122 target sites and that a subset of active genomic Alus provide for de novo target site creation. Finally, we report that although the creation of miRNA genes by Alu elements is relatively uncommon relative to their overall genomic abundance, Alu-derived miR-1285-1 is efficiently processed from its genomic locus and regulates genes with target sites contained within homologous elements. Taken together, our data provide additional evidence for TEs as a source for miRNAs and miRNA target sites, with instances of conservation through the course of mammalian evolution. PMID:24234653

  17. Increased sampling reveals novel lineages of Entamoeba: consequences of genetic diversity and host specificity for taxonomy and molecular detection.

    PubMed

    Stensvold, C Rune; Lebbad, Marianne; Victory, Emma L; Verweij, Jaco J; Tannich, Egbert; Alfellani, Mohammed; Legarraga, Paulette; Clark, C Graham

    2011-07-01

    To expand the representation for phylogenetic analysis, ten additional complete Entamoeba small-subunit rRNA gene sequences were obtained from humans, non-human primates, cattle and a tortoise. For some novel sequences no corresponding morphological data were available, and we suggest that these organisms should be referred to as ribosomal lineages (RL) rather than being assigned species names at present. To investigate genetic diversity and host specificity of selected Entamoeba species, a total of 91 new partial small subunit rRNA gene sequences were obtained, including 49 from Entamoeba coli, 18 from Entamoeba polecki, and 17 from Entamoeba hartmanni. We propose a new nomenclature for significant variants within established Entamoeba species. Based on current data we propose that the uninucleated-cyst-producing Entamoeba infecting humans is called Entamoeba polecki and divided into four subtypes (ST1-ST4) and that Entamoeba coli is divided into two subtypes (ST1-ST2). New hosts for several species were detected and, while host specificity and genetic diversity of several species remain to be clarified, it is clear that previous reliance on cultivated material has given us a misleading and incomplete picture of variation within the genus Entamoeba. PMID:21295520

  18. Deconstruction of DNA methylation patterns during myogenesis reveals specific epigenetic events in the establishment of the skeletal muscle lineage.

    PubMed

    Carrió, Elvira; Díez-Villanueva, Anna; Lois, Sergi; Mallona, Izaskun; Cases, Ildefonso; Forn, Marta; Peinado, Miguel A; Suelves, Mònica

    2015-06-01

    The progressive restriction of differentiation potential from pluripotent embryonic stem cells (ESCs) to tissue-specific stem cells involves widespread epigenetic reprogramming, including modulation of DNA methylation patterns. Skeletal muscle stem cells are required for the growth, maintenance, and regeneration of skeletal muscle. To investigate the contribution of DNA methylation to the establishment of the myogenic program, we analyzed ESCs, skeletal muscle stem cells in proliferating (myoblasts) and differentiating conditions (myotubes), and mature myofibers. About 1.000 differentially methylated regions were identified during muscle-lineage determination and terminal differentiation, mainly located in gene bodies and intergenic regions. As a whole, myogenic stem cells showed a gain of DNA methylation, while muscle differentiation was accompanied by loss of DNA methylation in CpG-poor regions. Notably, the hypomethylated regions in myogenic stem cells were neighbored by enhancer-type chromatin, suggesting the involvement of DNA methylation in the regulation of cell-type specific enhancers. Interestingly, we demonstrated the hypomethylation of the muscle cell-identity Myf5 super-enhancer only in muscle cells. Furthermore, we observed that upstream stimulatory factor 1 binding to Myf5 super-enhancer occurs upon DNA demethylation in myogenic stem cells. Taken altogether, we characterized the unique DNA methylation signature of skeletal muscle stem cells and highlighted the importance of DNA methylation-mediated regulation of cell identity Myf5 super-enhancer during cellular differentiation. PMID:25801824

  19. The Staphylococcus aureus lineage-specific markers collagen adhesin and toxic shock syndrome toxin 1 distinguish multilocus sequence typing clonal complexes within spa clonal complexes.

    PubMed

    Deurenberg, Ruud H; Rijnders, Michelle I A; Sebastian, Silvie; Welling, Maaike A; Beisser, Patrick S; Stobberingh, Ellen E

    2009-10-01

    Spa typing/based upon repeat pattern (BURP) sometimes cannot differentiate multilocus sequence typing (MLST) clonal complexes (CCs) within spa-CCs. It has been observed previously that virulence factors, such as collagen adhesin (CNA) and toxic shock syndrome toxin 1 (TSST-1), are associated with certain Staphylococcus aureus lineages. Analysis of methicillin-sensitive and methicillin-resistant S. aureus by spa typing/BURP and detection of CNA and TSST-1 observed an association between CNA and MLST CC1, 12, 22, 30, 45, 51, and 239 and between TSST-1 and MLST CC30. In spa-CC 012, associated with MLST CC7, CC15, and CC30, MLST CC30 could be distinguished from MLST CC7 and CC15 with CNA and TSST-1 as lineage-specific markers. Lineage-specific markers can overcome clustering of nonrelated MLST CCs into 1 spa-CC. PMID:19748421

  20. Integrative Genomic Analyses Identify BRF2 as a Novel Lineage-Specific Oncogene in Lung Squamous Cell Carcinoma

    PubMed Central

    Lockwood, William W.; Chari, Raj; Coe, Bradley P.; Thu, Kelsie L.; Garnis, Cathie; Malloff, Chad A.; Campbell, Jennifer; Williams, Ariane C.; Hwang, Dorothy; Zhu, Chang-Qi; Buys, Timon P. H.; Yee, John; English, John C.; MacAulay, Calum; Tsao, Ming-Sound; Gazdar, Adi F.; Minna, John D.; Lam, Stephen; Lam, Wan L.

    2010-01-01

    Background Traditionally, non-small cell lung cancer is treated as a single disease entity in terms of systemic therapy. Emerging evidence suggests the major subtypes—adenocarcinoma (AC) and squamous cell carcinoma (SqCC)—respond differently to therapy. Identification of the molecular differences between these tumor types will have a significant impact in designing novel therapies that can improve the treatment outcome. Methods and Findings We used an integrative genomics approach, combing high-resolution comparative genomic hybridization and gene expression microarray profiles, to compare AC and SqCC tumors in order to uncover alterations at the DNA level, with corresponding gene transcription changes, which are selected for during development of lung cancer subtypes. Through the analysis of multiple independent cohorts of clinical tumor samples (>330), normal lung tissues and bronchial epithelial cells obtained by bronchial brushing in smokers without lung cancer, we identified the overexpression of BRF2, a gene on Chromosome 8p12, which is specific for development of SqCC of lung. Genetic activation of BRF2, which encodes a RNA polymerase III (Pol III) transcription initiation factor, was found to be associated with increased expression of small nuclear RNAs (snRNAs) that are involved in processes essential for cell growth, such as RNA splicing. Ectopic expression of BRF2 in human bronchial epithelial cells induced a transformed phenotype and demonstrates downstream oncogenic effects, whereas RNA interference (RNAi)-mediated knockdown suppressed growth and colony formation of SqCC cells overexpressing BRF2, but not AC cells. Frequent activation of BRF2 in >35% preinvasive bronchial carcinoma in situ, as well as in dysplastic lesions, provides evidence that BRF2 expression is an early event in cancer development of this cell lineage. Conclusions This is the first study, to our knowledge, to show that the focal amplification of a gene in Chromosome 8p12, plays

  1. Evolutionary Genomics Reveals Lineage-Specific Gene Loss and Rapid Evolution of a Sperm-Specific Ion Channel Complex: CatSpers and CatSperβ

    PubMed Central

    Cai, Xinjiang; Clapham, David E.

    2008-01-01

    The mammalian CatSper ion channel family consists of four sperm-specific voltage-gated Ca2+ channels that are crucial for sperm hyperactivation and male fertility. All four CatSper subunits are believed to assemble into a heteromultimeric channel complex, together with an auxiliary subunit, CatSperβ. Here, we report a comprehensive comparative genomics study and evolutionary analysis of CatSpers and CatSperβ, with important correlation to physiological significance of molecular evolution of the CatSper channel complex. The development of the CatSper channel complex with four CatSpers and CatSperβ originated as early as primitive metazoans such as the Cnidarian Nematostella vectensis. Comparative genomics revealed extensive lineage-specific gene loss of all four CatSpers and CatSperβ through metazoan evolution, especially in vertebrates. The CatSper channel complex underwent rapid evolution and functional divergence, while distinct evolutionary constraints appear to have acted on different domains and specific sites of the four CatSper genes. These results reveal unique evolutionary characteristics of sperm-specific Ca2+ channels and their adaptation to sperm biology through metazoan evolution. PMID:18974790

  2. Lineage-Specific Reductions of Plastid Genomes in an Orchid Tribe with Partially and Fully Mycoheterotrophic Species.

    PubMed

    Feng, Yan-Lei; Wicke, Susann; Li, Jian-Wu; Han, Yu; Lin, Choun-Sea; Li, De-Zhu; Zhou, Ting-Ting; Huang, Wei-Chang; Huang, Lu-Qi; Jin, Xiao-Hua

    2016-01-01

    The plastid genome (plastome) of heterotrophic plants like mycoheterotrophs and parasites shows massive gene losses in consequence to the relaxation of functional constraints on photosynthesis. To understand the patterns of this convergent plastome reduction syndrome in heterotrophic plants, we studied 12 closely related orchids of three different lifeforms from the tribe Neottieae (Orchidaceae). We employ a comparative genomics approach to examine structural and selectional changes in plastomes within Neottieae. Both leafy and leafless heterotrophic species have functionally reduced plastid genome. Our analyses show that genes for the NAD(P)H dehydrogenase complex, the photosystems, and the RNA polymerase have been lost functionally multiple times independently. The physical reduction proceeds in a highly lineage-specific manner, accompanied by structural reconfigurations such as inversions or modifications of the large inverted repeats. Despite significant but minor selectional changes, all retained genes continue to evolve under purifying selection. All leafless Neottia species, including both visibly green and nongreen members, are fully mycoheterotrophic, likely evolved from leafy and partially mycoheterotrophic species. The plastomes of Neottieae span many stages of plastome degradation, including the longest plastome of a mycoheterotroph, providing invaluable insights into the mechanisms of plastome evolution along the transition from autotrophy to full mycoheterotrophy. PMID:27412609

  3. Highly Synchronized Expression of Lineage-Specific Genes during In Vitro Hepatic Differentiation of Human Pluripotent Stem Cell Lines.

    PubMed

    Ghosheh, Nidal; Olsson, Björn; Edsbagge, Josefina; Küppers-Munther, Barbara; Van Giezen, Mariska; Asplund, Annika; Andersson, Tommy B; Björquist, Petter; Carén, Helena; Simonsson, Stina; Sartipy, Peter; Synnergren, Jane

    2016-01-01

    Human pluripotent stem cells- (hPSCs-) derived hepatocytes have the potential to replace many hepatic models in drug discovery and provide a cell source for regenerative medicine applications. However, the generation of fully functional hPSC-derived hepatocytes is still a challenge. Towards gaining better understanding of the differentiation and maturation process, we employed a standardized protocol to differentiate six hPSC lines into hepatocytes and investigated the synchronicity of the hPSC lines by applying RT-qPCR to assess the expression of lineage-specific genes (OCT4, NANOG, T, SOX17, CXCR4, CER1, HHEX, TBX3, PROX1, HNF6, AFP, HNF4a, KRT18, ALB, AAT, and CYP3A4) which serve as markers for different stages during liver development. The data was evaluated using correlation and clustering analysis, demonstrating that the expression of these markers is highly synchronized and correlated well across all cell lines. The analysis also revealed a distribution of the markers in groups reflecting the developmental stages of hepatocytes. Functional analysis of the differentiated cells further confirmed their hepatic phenotype. Taken together, these results demonstrate, on the molecular level, the highly synchronized differentiation pattern across multiple hPSC lines. Moreover, this study provides additional understanding for future efforts to improve the functionality of hPSC-derived hepatocytes and thereby increase the value of related models. PMID:26949401

  4. Highly Synchronized Expression of Lineage-Specific Genes during In Vitro Hepatic Differentiation of Human Pluripotent Stem Cell Lines

    PubMed Central

    Ghosheh, Nidal; Olsson, Björn; Edsbagge, Josefina; Küppers-Munther, Barbara; Van Giezen, Mariska; Asplund, Annika; Andersson, Tommy B.; Björquist, Petter; Carén, Helena; Simonsson, Stina; Sartipy, Peter; Synnergren, Jane

    2016-01-01

    Human pluripotent stem cells- (hPSCs-) derived hepatocytes have the potential to replace many hepatic models in drug discovery and provide a cell source for regenerative medicine applications. However, the generation of fully functional hPSC-derived hepatocytes is still a challenge. Towards gaining better understanding of the differentiation and maturation process, we employed a standardized protocol to differentiate six hPSC lines into hepatocytes and investigated the synchronicity of the hPSC lines by applying RT-qPCR to assess the expression of lineage-specific genes (OCT4, NANOG, T, SOX17, CXCR4, CER1, HHEX, TBX3, PROX1, HNF6, AFP, HNF4a, KRT18, ALB, AAT, and CYP3A4) which serve as markers for different stages during liver development. The data was evaluated using correlation and clustering analysis, demonstrating that the expression of these markers is highly synchronized and correlated well across all cell lines. The analysis also revealed a distribution of the markers in groups reflecting the developmental stages of hepatocytes. Functional analysis of the differentiated cells further confirmed their hepatic phenotype. Taken together, these results demonstrate, on the molecular level, the highly synchronized differentiation pattern across multiple hPSC lines. Moreover, this study provides additional understanding for future efforts to improve the functionality of hPSC-derived hepatocytes and thereby increase the value of related models. PMID:26949401

  5. Lineage-Specific Reductions of Plastid Genomes in an Orchid Tribe with Partially and Fully Mycoheterotrophic Species

    PubMed Central

    Feng, Yan-Lei; Wicke, Susann; Li, Jian-Wu; Han, Yu; Lin, Choun-Sea; Li, De-Zhu; Zhou, Ting-Ting; Huang, Wei-Chang; Huang, Lu-Qi; Jin, Xiao-Hua

    2016-01-01

    The plastid genome (plastome) of heterotrophic plants like mycoheterotrophs and parasites shows massive gene losses in consequence to the relaxation of functional constraints on photosynthesis. To understand the patterns of this convergent plastome reduction syndrome in heterotrophic plants, we studied 12 closely related orchids of three different lifeforms from the tribe Neottieae (Orchidaceae). We employ a comparative genomics approach to examine structural and selectional changes in plastomes within Neottieae. Both leafy and leafless heterotrophic species have functionally reduced plastid genome. Our analyses show that genes for the NAD(P)H dehydrogenase complex, the photosystems, and the RNA polymerase have been lost functionally multiple times independently. The physical reduction proceeds in a highly lineage-specific manner, accompanied by structural reconfigurations such as inversions or modifications of the large inverted repeats. Despite significant but minor selectional changes, all retained genes continue to evolve under purifying selection. All leafless Neottia species, including both visibly green and nongreen members, are fully mycoheterotrophic, likely evolved from leafy and partially mycoheterotrophic species. The plastomes of Neottieae span many stages of plastome degradation, including the longest plastome of a mycoheterotroph, providing invaluable insights into the mechanisms of plastome evolution along the transition from autotrophy to full mycoheterotrophy. PMID:27412609

  6. Lineage-specific STAT5 target gene activation in hematopoietic progenitor cells predicts the FLT3(+)-mediated leukemic phenotype.

    PubMed

    Müller, T A; Grundler, R; Istvanffy, R; Rudelius, M; Hennighausen, L; Illert, A L; Duyster, J

    2016-08-01

    Mutations that activate FMS-like tyrosine kinase 3 (FLT3) are frequent occurrences in acute myeloid leukemia. Two distinct types of mutations have been described: internal duplication of the juxtamembranous domain (ITD) and point mutations of the tyrosine kinase domain (TKD). Although both mutations lead to constitutive FLT3 signaling, only FLT3-ITD strongly activates signal transducer and activator of transcription 5 (STAT5). In a murine transplantation model, FLT3-ITD induces a myeloproliferative neoplasm, whereas FLT3-TKD leads to a lymphoid malignancy with significantly longer latency. Here we report that the presence of STAT5 is critical for the development of a myeloproliferative disease by FLT3-ITD in mice. Deletion of Stat5 in FLT3-ITD-induced leukemogenesis leads not only to a significantly longer survival (82 vs 27 days) of the diseased mice, but also to an immunophenotype switch with expansion of the lymphoid cell compartment. Interestingly, we were able to show differential STAT5 activation in FLT3-ITD(+) myeloid and lymphoid murine progenitors. STAT5 target genes such as Oncostatin M were highly expressed in FLT3-ITD(+) myeloid but not in FLT3-ITD(+) lymphoid progenitor cells. Strikingly, FLT3-TKD expression in combination with Oncostatin M is sufficient to reverse the phenotype to a myeloproliferative disease in FLT3-TKD mice. Thus, lineage-specific STAT5 activation in hematopoietic progenitor cells predicts the FLT3(+)-mediated leukemic phenotype in mice. PMID:27046463

  7. Poised between Two Worlds: The University as Monastery and Marketplace.

    ERIC Educational Resources Information Center

    Cantor, Nancy; Schomberg, Steven

    2003-01-01

    Explores why technology has an optimal role to play in stimulating vibrant exchange and keeping universities poised between the traditional monastery world of careful reflection and the modern marketplace world of dynamic give-and-take. Offers examples of information technology functioning in this way. (EV)

  8. Gene Loss and Lineage-Specific Restriction-Modification Systems Associated with Niche Differentiation in the Campylobacter jejuni Sequence Type 403 Clonal Complex

    PubMed Central

    Morley, Laura; McNally, Alan; Paszkiewicz, Konrad; Corander, Jukka; Méric, Guillaume; Sheppard, Samuel K.; Blom, Jochen

    2015-01-01

    Campylobacter jejuni is a highly diverse species of bacteria commonly associated with infectious intestinal disease of humans and zoonotic carriage in poultry, cattle, pigs, and other animals. The species contains a large number of distinct clonal complexes that vary from host generalist lineages commonly found in poultry, livestock, and human disease cases to host-adapted specialized lineages primarily associated with livestock or poultry. Here, we present novel data on the ST403 clonal complex of C. jejuni, a lineage that has not been reported in avian hosts. Our data show that the lineage exhibits a distinctive pattern of intralineage recombination that is accompanied by the presence of lineage-specific restriction-modification systems. Furthermore, we show that the ST403 complex has undergone gene decay at a number of loci. Our data provide a putative link between the lack of association with avian hosts of C. jejuni ST403 and both gene gain and gene loss through nonsense mutations in coding sequences of genes, resulting in pseudogene formation. PMID:25795671

  9. AFLP markers resolve intra-specific relationships and infer genetic structure among lineages of the canyon treefrog, Hyla arenicolor.

    PubMed

    Klymus, Katy E; Carl Gerhardt, H

    2012-11-01

    The canyon treefrog, Hyla arenicolor, is a wide-ranging hylid found from southwestern US into southern Mexico. Recent studies have shown this species to have a complex evolutionary history, with several phylogeographically distinct lineages, a probable cryptic species, and multiple episodes of mitochondrial introgression with the sister group, the H. eximia complex. We aimed to use genome wide AFLP markers to better resolve relationships within this group. As in other studies, our inferred phylogeny not only provides evidence for repeated mitochondrial introgression between H. arenicolor lineages and H. eximia/H. wrightorum, but it also affords more resolution within the main H. arenicolor clade than was previously achieved with sequence data. However, as with a previous study, the placement of a lineage of H. arenicolor whose distribution is centered in the Balsas Basin of Mexico remains poorly resolved, perhaps due to past hybridization with the H. eximia complex. Furthermore, the AFLP data set shows no differentiation among lineages from the Grand Canyon and Colorado Plateau despite their large mitochondrial sequence divergence. Finally, our results infer a well-supported sister relationship between this combined Colorado Plateau/Grand Canyon lineage and the Sonoran Desert lineage, a relationship that strongly contradicts conclusions drawn from the mtDNA evidence. Our study provides a basis for further behavioral and ecological speciation studies of this system and highlights the importance of multi-taxon (species) sampling in phylogenetic and phylogeographic studies. PMID:22898531

  10. H3K27me3 Does Not Orchestrate the Expression of Lineage-Specific Markers in hESC-Derived Hepatocytes In Vitro.

    PubMed

    Vanhove, Jolien; Pistoni, Mariaelena; Welters, Marc; Eggermont, Kristel; Vanslembrouck, Veerle; Helsen, Nicky; Boon, Ruben; Najimi, Mustapha; Sokal, Etienne; Collas, Philippe; Voncken, J Willem; Verfaillie, Catherine M

    2016-08-01

    Although pluripotent stem cells can be differentiated into the hepatocyte lineages, such cells retain an immature phenotype. As the chromatin state of regulatory regions controls spatiotemporal gene expression during development, we evaluated changes in epigenetic histone marks in lineage-specific genes throughout in vitro hepatocyte differentiation from human embryonic stem cells (hESCs). Active acetylation and methylation marks at promoters and enhancers correlated with progressive changes in gene expression. However, repression-associated H3K27me3 marks at these control regions showed an inverse correlation with gene repression during transition from hepatic endoderm to a hepatocyte-like state. Inhibitor of Enhancer of Zeste Homolog 2 (EZH2) reduced H3K27me3 decoration but did not improve hepatocyte maturation. Thus, H3K27me3 at regulatory regions does not regulate transcription and appears dispensable for hepatocyte lineage differentiation of hESCs in vitro. PMID:27477635

  11. A Poised Chromatin Platform for TGF-[beta] Access to Master Regulators

    SciTech Connect

    Xi, Qiaoran; Wang, Zhanxin; Zaromytidou, Alexia-Ileana; Zhang, Xiang H.-F.; Chow-Tsang, Lai-Fong; Liu, Jing X.; Kim, Hyesoo; Barlas, Afsar; Manova-Todorova, Katia; Kaartinen, Vesa; Studer, Lorenz; Mark, Willie; Patel, Dinshaw J.; Massagué, Joan

    2012-02-07

    Specific chromatin marks keep master regulators of differentiation silent yet poised for activation by extracellular signals. We report that nodal TGF-{beta} signals use the poised histone mark H3K9me3 to trigger differentiation of mammalian embryonic stem cells. Nodal receptors induce the formation of companion Smad4-Smad2/3 and TRIM33-Smad2/3 complexes. The PHD-Bromo cassette of TRIM33 facilitates binding of TRIM33-Smad2/3 to H3K9me3 and H3K18ac on the promoters of mesendoderm regulators Gsc and Mixl1. The crystal structure of this cassette, bound to histone H3 peptides, illustrates that PHD recognizes K9me3, and Bromo binds an adjacent K18ac. The interaction between TRIM33-Smad2/3 and H3K9me3 displaces the chromatin-compacting factor HP1, making nodal response elements accessible to Smad4-Smad2/3 for Pol II recruitment. In turn, Smad4 increases K18 acetylation to augment TRIM33-Smad2/3 binding. Thus, nodal effectors use the H3K9me3 mark as a platform to switch master regulators of stem cell differentiation from the poised to the active state.

  12. Step-wise and lineage-specific diversification of plant RNA polymerase genes and origin of the largest plant-specific subunits.

    PubMed

    Wang, Yaqiong; Ma, Hong

    2015-09-01

    Proteins often function as complexes, yet little is known about the evolution of dissimilar subunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes, with distinct eukaryotic types for different classes of transcripts. In addition to Pol I-III, common in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits are specific to one type, whereas other subunits are shared by multiple types. We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP gene duplication events in land plant history, thereby reconstructing the subunit compositions of the novel RNAPs during land plant evolution. We found that Pol IV/V have experienced step-wise duplication and diversification of various subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplications have further increased RNAP complexity with distinct copies in different plant families and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol IV/V probably originated from a gene fusion in the ancestral land plants. We propose a framework of plant RNAP evolution, providing an excellent model for protein complex evolution. PMID:25921392

  13. Therapeutic transdifferentiation of human fibroblasts into endothelial cells using forced expression of lineage-specific transcription factors

    PubMed Central

    Wong, Wing Tak; Cooke, John P

    2016-01-01

    Transdifferentiation is the direct conversion from one somatic cell type into another desired somatic cell type. This reprogramming method offers an attractive approach for regenerative medicine. Here, we demonstrate that neonatal fibroblasts can be transdifferentiated into endothelial cells using only four endothelial transcription factors, namely, ETV2, FLI1, GATA2, and KLF4. We observed a significant up-regulation of endothelial genes including KDR, CD31, CD144, and vWF in human neonatal foreskin (BJ) fibroblasts infected with the lentiviral construct encoding the open reading frame of the four transcription factors. We observed morphological changes in BJ fibroblasts from the fibroblastic spindle shape into a more endothelial-like cobblestone structures. Fluorescence-activated cell sorting analysis revealed that ~16% of the infected cells with the lentiviral constructs encoding 4F expressed CD31. The sorted cells were allowed to expand for 2 weeks and these cells were immunostained and found to express endothelial markers CD31. The induced endothelial cells also incorporated fluorescence-labeled acetylated low-density lipoprotein and efficiently formed capillary-like networks when seeded on Matrigel. These results suggested that the induced endothelial cells were functional in vitro. Taken together, we successfully demonstrated the direct conversion of human neonatal fibroblasts into endothelial cells by transduction of lentiviral constructs encoding endothelial lineage-specific transcription factors ETV2, FLI1, GATA2, and KLF4. The directed differentiation of fibroblasts into endothelial cells may have significant utility in diseases characterized by fibrosis and loss of microvasculature. PMID:27081470

  14. Bisphosphonates in vitro specifically inhibit, among the hematopoietic series, the development of the mouse mononuclear phagocyte lineage

    SciTech Connect

    Cecchini, M.G.; Fleisch, H. )

    1990-10-01

    Bisphosphonates (BP) are powerful inhibitors of bone resorption. We have previously shown that 4-amino-1-hydroxybutylidene-1,1-bisphosphonate (AHBuBP), 3-amino-1-hydroxypropylidene-1,1-bisphosphonate (AHPrBP), and dichloromethylenebisphosphonate (Cl2MBP) inhibit the proliferation of macrophages in vitro at concentrations that do not affect the viability of nonproliferating cells. In this study we further investigated whether the antiproliferative effect of these three BP is, among the hematopoietic series, preferential to the mononuclear phagocyte lineage. BP were unable to inhibit more than 30-40% of the ({sup 3}H)thymidine ({sup 3}H-TdR) incorporation into bone marrow cells stimulated to proliferate by multilineage colony-stimulating activity containing conditioned medium (multi-CSA). From the analysis of the colonies induced in semisolid medium by multi-CSA and recombinant murine granulocyte-macrophage colony stimulating factor (rmGM-CSF), a dose-dependent disappearance specific to the macrophage-containing colonies emerged. In contrast, the number and composition of colonies other than macrophage and, in particular, the granulocyte colonies were not affected by these compounds, even at high concentrations (100 microM) previously also shown to be toxic for nonproliferating macrophages. Since the macrophages, differently from polymorphonuclear phagocytes, are known to be highly pinocytotic, it is possible that by this means they selectively concentrate BP intracellularly, leading to toxic concentrations. We postulate tht BP may also act in vivo in addition to their effect on osteoclast activity, by a similar mechanism on osteoclast precursors and on bone resident macrophages, a source of cytokines stimulating bone resorption and leading to impaired osteoclast recruitment and activity.

  15. The Evaluation of Nerve Growth Factor Over Expression on Neural Lineage Specific Genes in Human Mesenchymal Stem Cells

    PubMed Central

    Mortazavi, Yousef; Sheikhsaran, Fatemeh; Khamisipour, Gholamreza Khamisipour; Soleimani, Masoud; Teimuri, Ali; Shokri, Somayeh

    2016-01-01

    Objective Treatment and repair of neurodegenerative diseases such as brain tumors, spinal cord injuries, and functional disorders, including Alzheimer’s disease, are challenging problems. A common treatment approach for such disorders involves the use of mesenchymal stem cells (MSCs) as an alternative cell source to replace injured cells. However, use of these cells in hosts may potentially cause adverse outcomes such as tumorigenesis and uncontrolled differentiation. In attempt to generate mesenchymal derived neural cells, we have infected MSCs with recombinant lentiviruses that expressed nerve growth factor (NGF) and assessed their neural lineage genes. Materials and Methods In this experimental study, we cloned the NGF gene sequence into a helper dependent lentiviral vector that contained the green fluorescent protein (GFP) gene. The recombinant vector was amplified in DH5 bacterial cells. Recombinant viruses were generated in the human embryonic kidney 293 (HEK-293) packaging cell line with the helper vectors and analyzed under fluorescent microscopy. Bone marrow mesenchymal cells were infected by recombinant viruses for three days followed by assessment of neural differentiation. We evaluated expression of NGF through measurement of the NGF protein in culture medium by ELISA; neural specific genes were quantified by real-time polymerase chain reaction (PCR). Results We observed neural morphological changes after three days. Quantitative PCR showed that expressions of NESTIN, glial derived neurotrophic factor (GDNF), glial fibrillary acidic protein (GFAP) and Microtubule-associated protein 2 (MAP2) genes increased following induction of NGF overexpression, whereas expressions of endogenous NGF and brain derived neural growth factor (BDNF) genes reduced. Conclusion Ectopic expression of NGF can induce neurogenesis in MSCs. Direct injection of MSCs may cause tumorigenesis and an undesirable outcome. Therefore an alternative choice to overcome this obstacle may

  16. Lineage-Specific Effector Signatures of Invariant NKT Cells Are Shared amongst γδ T, Innate Lymphoid, and Th Cells.

    PubMed

    Lee, You Jeong; Starrett, Gabriel J; Lee, Seungeun Thera; Yang, Rendong; Henzler, Christine M; Jameson, Stephen C; Hogquist, Kristin A

    2016-08-15

    Invariant NKT cells differentiate into three predominant effector lineages in the steady state. To understand these lineages, we sorted undifferentiated invariant NK T progenitor cells and each effector population and analyzed their transcriptional profiles by RNAseq. Bioinformatic comparisons were made to effector subsets among other lymphocytes, specifically Th cells, innate lymphoid cells (ILC), and γδ T cells. Myc-associated signature genes were enriched in NKT progenitors, like in other hematopoietic progenitors. Only NKT1 cells, but not NKT2 and NKT17 cells, had transcriptome similarity to NK cells and were also similar to other IFN-γ-producing lineages such as Th1, ILC1, and intraepithelial γδ T cells. NKT2 and NKT17 cells were similar to their analogous subsets of γδ T cells and ILCs, but surprisingly, not to Th2 and Th17 cells. We identified a set of genes common to each effector lineage regardless of Ag receptor specificity, suggesting the use of conserved regulatory cores for effector function. PMID:27385777

  17. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential.

    PubMed

    Bolton, Helen; Graham, Sarah J L; Van der Aa, Niels; Kumar, Parveen; Theunis, Koen; Fernandez Gallardo, Elia; Voet, Thierry; Zernicka-Goetz, Magdalena

    2016-01-01

    Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four- to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo death during peri-implantation development. Live-embryo imaging and single-cell tracking in chimeric embryos, containing aneuploid and euploid cells, reveal that the fate of aneuploid cells depends on lineage: aneuploid cells in the fetal lineage are eliminated by apoptosis, whereas those in the placental lineage show severe proliferative defects. Overall, the proportion of aneuploid cells is progressively depleted from the blastocyst stage onwards. Finally, we show that mosaic embryos have full developmental potential, provided they contain sufficient euploid cells, a finding of significance for the assessment of embryo vitality in the clinic. PMID:27021558

  18. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential

    PubMed Central

    Bolton, Helen; Graham, Sarah J. L.; Van der Aa, Niels; Kumar, Parveen; Theunis, Koen; Fernandez Gallardo, Elia; Voet, Thierry; Zernicka-Goetz, Magdalena

    2016-01-01

    Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four- to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo death during peri-implantation development. Live-embryo imaging and single-cell tracking in chimeric embryos, containing aneuploid and euploid cells, reveal that the fate of aneuploid cells depends on lineage: aneuploid cells in the fetal lineage are eliminated by apoptosis, whereas those in the placental lineage show severe proliferative defects. Overall, the proportion of aneuploid cells is progressively depleted from the blastocyst stage onwards. Finally, we show that mosaic embryos have full developmental potential, provided they contain sufficient euploid cells, a finding of significance for the assessment of embryo vitality in the clinic. PMID:27021558

  19. Two Distinct Broadly Neutralizing Antibody Specificities of Different Clonal Lineages in a Single HIV-1-Infected Donor: Implications for Vaccine Design

    PubMed Central

    Montefiori, David C.; Wu, Xueling; Chen, Xi; Hwang, Kwan-Ki; Tsao, Chun-Yen; Kozink, Daniel M.; Parks, Robert J.; Tomaras, Georgia D.; Crump, John A.; Kapiga, Saidi H.; Sam, Noel E.; Kwong, Peter D.; Kepler, Thomas B.; Liao, Hua-Xin; Mascola, John R.

    2012-01-01

    Plasma from a small subset of subjects chronically infected with HIV-1 shows remarkable magnitude and breadth of neutralizing activity. From one of these individuals (CH0219), we isolated two broadly neutralizing antibodies (bnAbs), CH01 and VRC-CH31, from two clonal lineages of memory B cells with distinct specificities (variable loop 1 and 2 [V1V2] conformational specificity and CD4-binding site specificity, respectively) that recapitulate 95% of CH0219 serum neutralization breadth. These data provide proof of concept for an HIV-1 vaccine that aims to elicit bnAbs of multiple specificities. PMID:22301150

  20. Nitric Oxide-cGMP Signaling Stimulates Erythropoiesis through Multiple Lineage-Specific Transcription Factors: Clinical Implications and a Novel Target for Erythropoiesis

    PubMed Central

    Ikuta, Tohru; Sellak, Hassan; Odo, Nadine; Adekile, Adekunle D.; Gaensler, Karin M. L.

    2016-01-01

    Much attention has been directed to the physiological effects of nitric oxide (NO)-cGMP signaling, but virtually nothing is known about its hematologic effects. We reported for the first time that cGMP signaling induces human γ-globin gene expression. Aiming at developing novel therapeutics for anemia, we examined here the hematologic effects of NO-cGMP signaling in vivo and in vitro. We treated wild-type mice with NO to activate soluble guanylate cyclase (sGC), a key enzyme of cGMP signaling. Compared to untreated mice, NO-treated mice had higher red blood cell counts and total hemoglobin but reduced leukocyte counts, demonstrating that when activated, NO-cGMP signaling exerts hematopoietic effects on multiple types of blood cells in vivo. We next generated mice which overexpressed rat sGC in erythroid and myeloid cells. The forced expression of sGCs activated cGMP signaling in both lineage cells. Compared with non-transgenic littermates, sGC mice exhibited hematologic changes similar to those of NO-treated mice. Consistently, a membrane-permeable cGMP enhanced the differentiation of hematopoietic progenitors toward erythroid-lineage cells but inhibited them toward myeloid-lineage cells by controlling multiple lineage-specific transcription factors. Human γ-globin gene expression was induced at low but appreciable levels in sGC mice carrying the human β-globin locus. Together, these results demonstrate that NO-cGMP signaling is capable of stimulating erythropoiesis in both in vitro and vivo settings by controlling the expression of multiple lineage-specific transcription factors, suggesting that cGMP signaling upregulates erythropoiesis at the level of gene transcription. The NO-cGMP signaling axis may constitute a novel target to stimulate erythropoiesis in vivo. PMID:26727002

  1. [Origin of caucasoid-specific mitochondrial DNA lineages in the ethnic populations of the Altai-Sayan region].

    PubMed

    Derenko, M V; Maliarchuk, B A; Zakharov, I A

    2002-09-01

    The data on sequence variation in the first hypervariable segment (HVSI) of human mitochondrial DNA (mtDNA) representing Caucasoid mtDNA lineages in the gene pools of Altaians and Khakassians are presented. Identification of the subgroups of Caucasoid mtDNA lineages found in the gene pools of the ethnic populations of the Altai-Sayan region and the adjacent territories, Altaians, Khakassians, Tuvinians, Buryats, and Yakuts was carried out. All Caucasoid mtDNA lineages belonged to groups H, HV1, J*, J1, J1b1, T1, T4, U1a, U2, U3, U4, U5a1, I, X and N1a. Taking into consideration possible contribution of southern Caucasoid and eastern European components to the formation of the anthropological type of Altai-Sayan ethnic populations, distribution of the revealed Caucasoid mtDNA lineages among the ethnic populations of the Central Asia, Western Asia, Caucasus, and Eastern Europe was examined. The applied approach permitted identification of 60% of mtDNA types the majority of which had southern Caucasoid origin. Less than 10% of mtDNA types were of eastern European origin. The gene pools of Altaians and Khakassians displayed the presence of autochthonous components represented by mtDNA types from subgroups U2 and U4. PMID:12391892

  2. Cell-Specific Transduction of Prdm1-Expressing Lineages Mediated by a Receptor for Avian Leukosis Virus Subgroup B▿ †

    PubMed Central

    Asimakopoulos, Fotis; Varmus, Harold E.

    2009-01-01

    The transcription factor Blimp-1 has emerged as a regulator of cell fate in embryonic (germ cell) and adult (B- and T-cell immune effector and epithelial) lineages. It has also been proposed to act as a tumor suppressor in B-cell malignancy. Here, we present a novel in vivo system enabling the targeted genetic manipulation of cells expressing Prdm1, the gene encoding Blimp-1. We created bacterial artificial chromosome-transgenic mice expressing the avian leukosis virus (ALV) receptor TVB, fused to monomeric red fluorescent protein, under regulation by Prdm1 transcriptional elements, and we achieved transduction of TVB-expressing lymphocytes by ALV vectors bearing a subgroup B envelope. The system presented here incorporates a number of innovations. First, it is the first mammalian transgenic system that employs the ALV receptor TVB, thus expanding the flexibility and scope of ALV-mediated gene delivery. Second, it represents the first ALV-based system that allows gene transfer and expression into in vivo-activated mature lymphocytes, a cell type that has traditionally presented formidable challenges to efficient retroviral transduction. Third, Prdm1:TVB-mRFP transgenic animals could provide an invaluable tool for exploring the diverse roles of Blimp-1 in lineage commitment, immune regulation, and tumorigenesis. PMID:19279099

  3. De novo generation of white adipocytes from the myeloid lineage via mesenchymal intermediates is age, adipose depot, and gender specific

    PubMed Central

    Majka, Susan M.; Fox, Keith E.; Psilas, John C.; Helm, Karen M.; Childs, Christine R.; Acosta, Alistaire S.; Janssen, Rachel C.; Friedman, Jacob E.; Woessner, Brian T.; Shade, Theodore R.; Varella-Garcia, Marileila; Klemm, Dwight J.

    2010-01-01

    It is generally assumed that white adipocytes arise from resident adipose tissue mesenchymal progenitor cells. We challenge this paradigm by defining a hematopoietic origin for both the de novo development of a subset of white adipocytes in adults and a previously uncharacterized adipose tissue resident mesenchymal progenitor population. Lineage and cytogenetic analysis revealed that bone marrow progenitor (BMP)-derived adipocytes and adipocyte progenitors arise from hematopoietic cells via the myeloid lineage in the absence of cell fusion. Global gene expression analysis indicated that the BMP-derived fat cells are bona fide adipocytes but differ from conventional white or brown adipocytes in decreased expression of genes involved in mitochondrial biogenesis and lipid oxidation, and increased inflammatory gene expression. The BMP-derived adipocytes accumulate with age, occur in higher numbers in visceral than in subcutaneous fat, and in female versus male mice. BMP-derived adipocytes may, therefore, account in part for adipose depot heterogeneity and detrimental changes in adipose metabolism and inflammation with aging and adiposity. PMID:20679227

  4. Specific Preferences in Lineage Choice and Phenotypic Plasticity of Glioma Stem Cells Under BMP4 and Noggin Influence.

    PubMed

    Videla Richardson, Guillermo Agustín; Garcia, Carolina Paola; Roisman, Alejandro; Slavutsky, Irma; Fernandez Espinosa, Damián Darío; Romorini, Leonardo; Miriuka, Santiago Gabriel; Arakaki, Naomi; Martinetto, Horacio; Scassa, María Elida; Sevlever, Gustavo Emilio

    2016-01-01

    Although BMP4-induced differentiation of glioma stem cells (GSCs) is well recognized, details of the cellular responses triggered by this morphogen are still poorly defined. In this study, we established several GSC-enriched cell lines (GSC-ECLs) from high-grade gliomas. The expansion of these cells as adherent monolayers, and not as floating neurospheres, enabled a thorough study of the phenotypic changes that occurred during their differentiation. Herein, we evaluated GSC-ECLs' behavior toward differentiating conditions by depriving them of growth factors and/or by adding BMP4 at different concentrations. After analyzing cellular morphology, proliferation and lineage marker expression, we determined that GSC-ECLs have distinct preferences in lineage choice, where some of them showed an astrocyte fate commitment and others a neuronal one. We found that this election seems to be dictated by the expression pattern of BMP signaling components present in each GSC-ECL. Additionally, treatment of GSC-ECLs with the BMP antagonist, Noggin, also led to evident phenotypic changes. Interestingly, under certain conditions, some GSC-ECLs adopted an unexpected smooth muscle-like phenotype. As a whole, our findings illustrate the wide differentiation potential of GSCs, highlighting their molecular complexity and paving a way to facilitate personalized differentiating therapies. PMID:25808628

  5. A cleavage clock regulates features of lineage-specific differentiation in the development of a basal branching metazoan, the ctenophore Mnemiopsis leidyi

    PubMed Central

    2014-01-01

    Background An important question in experimental embryology is to understand how the developmental potential responsible for the generation of distinct cell types is spatially segregated over developmental time. Classical embryological work showed that ctenophores, a group of gelatinous marine invertebrates that arose early in animal evolution, display a highly stereotyped pattern of early development and a precocious specification of blastomere fates. Here we investigate the role of autonomous cell specification and the developmental timing of two distinct ctenophore cell types (motile compound comb-plate-like cilia and light-emitting photocytes) in embryos of the lobate ctenophore, Mnemiopsis leidyi. Results In Mnemiopsis, 9 h after fertilization, comb plate cilia differentiate into derivatives of the E lineage, while the bioluminescent capability begins in derivatives of the M lineage. Arresting cleavage with cytochalasin B at the 1-, 2- or 4-cell stage does not result in blastomere death; however, no visible differentiation of the comb-plate-like cilia or bioluminescence was observed. Cleavage arrest at the 8- or 16-cell stage, in contrast, results in the expression of both differentiation products. Fate-mapping experiments indicate that only the lineages of cells that normally express these markers in an autonomous fashion during normal development express these traits in cleavage-arrested 8- and 16-cell stage embryos. Lineages that form comb plates in a non-autonomous fashion (derivatives of the M lineage) do not. Timed actinomycin D and puromycin treatments show that transcription and translation are required for comb formation and suggest that the segregated material might be necessary for activation of the appropriate genes. Interestingly, even in the absence of cytokinesis, differentiation markers appear to be activated at the correct times. Treatments with a DNA synthesis inhibitor, aphidicolin, show that the number of nuclear divisions, and perhaps the

  6. Multi-species sequence comparison reveals dynamic evolution of the elastin gene that has involved purifying selection and lineage-specific insertions/deletions

    PubMed Central

    Piontkivska, Helen; Zhang, Yi; Green, Eric D; Elnitski, Laura

    2004-01-01

    Background The elastin gene (ELN) is implicated as a factor in both supravalvular aortic stenosis (SVAS) and Williams Beuren Syndrome (WBS), two diseases involving pronounced complications in mental or physical development. Although the complete spectrum of functional roles of the processed gene product remains to be established, these roles are inferred to be analogous in human and mouse. This view is supported by genomic sequence comparison, in which there are no large-scale differences in the ~1.8 Mb sequence block encompassing the common region deleted in WBS, with the exception of an overall reversed physical orientation between human and mouse. Results Conserved synteny around ELN does not translate to a high level of conservation in the gene itself. In fact, ELN orthologs in mammals show more sequence divergence than expected for a gene with a critical role in development. The pattern of divergence is non-conventional due to an unusually high ratio of gaps to substitutions. Specifically, multi-sequence alignments of eight mammalian sequences reveal numerous non-aligning regions caused by species-specific insertions and deletions, in spite of the fact that the vast majority of aligning sites appear to be conserved and undergoing purifying selection. Conclusions The pattern of lineage-specific, in-frame insertions/deletions in the coding exons of ELN orthologous genes is unusual and has led to unique features of the gene in each lineage. These differences may indicate that the gene has a slightly different functional mechanism in mammalian lineages, or that the corresponding regions are functionally inert. Identified regions that undergo purifying selection reflect a functional importance associated with evolutionary pressure to retain those features. PMID:15149554

  7. Caudal Ganglionic Eminence Precursor Transplants Disperse and Integrate as Lineage-Specific Interneurons but Do Not Induce Cortical Plasticity.

    PubMed

    Larimer, Phillip; Spatazza, Julien; Espinosa, Juan Sebastian; Tang, Yunshuo; Kaneko, Megumi; Hasenstaub, Andrea R; Stryker, Michael P; Alvarez-Buylla, Arturo

    2016-08-01

    The maturation of inhibitory GABAergic cortical circuits regulates experience-dependent plasticity. We recently showed that the heterochronic transplantation of parvalbumin (PV) or somatostatin (SST) interneurons from the medial ganglionic eminence (MGE) reactivates ocular dominance plasticity (ODP) in the postnatal mouse visual cortex. Might other types of interneurons similarly induce cortical plasticity? Here, we establish that caudal ganglionic eminence (CGE)-derived interneurons, when transplanted into the visual cortex of neonatal mice, migrate extensively in the host brain and acquire laminar distribution, marker expression, electrophysiological properties, and visual response properties like those of host CGE interneurons. Although transplants from the anatomical CGE do induce ODP, we found that this plasticity reactivation is mediated by a small fraction of MGE-derived cells contained in the transplant. These findings demonstrate that transplanted CGE cells can successfully engraft into the postnatal mouse brain and confirm the unique role of MGE lineage neurons in the induction of ODP. PMID:27425623

  8. Gain of a New Exon by a Lineage-Specific Alu Element-Integration Event in the BCS1L Gene during Primate Evolution

    PubMed Central

    Park, Sang-Je; Kim, Young-Hyun; Lee, Sang-Rae; Choe, Se-Hee; Kim, Myung-Jin; Kim, Sun-Uk; Kim, Ji-Su; Sim, Bo-Woong; Song, Bong-Seok; Jeong, Kang-Jin; Jin, Yeung-Bae; Lee, Youngjeon; Park, Young-Ho; Park, Young Il; Huh, Jae-Won; Chang, Kyu-Tae

    2015-01-01

    BCS1L gene encodes mitochondrial protein and is a member of conserved AAA protein family. This gene is involved in the incorporation of Rieske FeS and Qcr10p into complex III of respiratory chain. In our previous study, AluYRa2-derived alternative transcript in rhesus monkey genome was identified. However, this transcript has not been reported in human genome. In present study, we conducted evolutionary analysis of AluYRa2-exonized transcript with various primate genomic DNAs and cDNAs from humans, rhesus monkeys, and crab-eating monkeys. Remarkably, our results show that AluYRa2 element has only been integrated into genomes of Macaca species. This Macaca lineage-specific integration of AluYRa2 element led to exonization event in the first intron region of BCS1L gene by producing a conserved 3′ splice site. Intriguingly, in rhesus and crab-eating monkeys, more diverse transcript variants by alternative splicing (AS) events, including exon skipping and different 5′ splice sites from humans, were identified. Alignment of amino acid sequences revealed that AluYRa2-exonized transcript has short N-terminal peptides. Therefore, AS events play a major role in the generation of various transcripts and proteins during primate evolution. In particular, lineage-specific integration of Alu elements and species-specific Alu-derived exonization events could be important sources of gene diversification in primates. PMID:26537194

  9. H2A.Z.1 Monoubiquitylation Antagonizes BRD2 to Maintain Poised Chromatin in ESCs.

    PubMed

    Surface, Lauren E; Fields, Paul A; Subramanian, Vidya; Behmer, Russell; Udeshi, Namrata; Peach, Sally E; Carr, Steven A; Jaffe, Jacob D; Boyer, Laurie A

    2016-02-01

    Histone variant H2A.Z occupies the promoters of active and poised, bivalent genes in embryonic stem cells (ESCs) to regulate developmental programs, yet how it contributes to these contrasting states is poorly understood. Here, we investigate the function of H2A.Z.1 monoubiquitylation (H2A.Z.1ub) by mutation of the PRC1 target residues (H2A.Z.1(K3R3)). We show that H2A.Z.1(K3R3) is properly incorporated at target promoters in murine ESCs (mESCs), but loss of monoubiquitylation leads to de-repression of bivalent genes, loss of Polycomb binding, and faulty lineage commitment. Using quantitative proteomics, we find that tandem bromodomain proteins, including the BET family member BRD2, are enriched in H2A.Z.1 chromatin. We further show that BRD2 is gained at de-repressed promoters in H2A.Z.1(K3R3) mESCs, whereas BRD2 inhibition restores gene silencing at these sites. Together, our study reveals an antagonistic relationship between H2A.Z.1ub and BRD2 to regulate the transcriptional balance at bivalent genes to enable proper execution of developmental programs. PMID:26804911

  10. Lineage-Specific Responses of Tooth Shape in Murine Rodents (Murinae, Rodentia) to Late Miocene Dietary Change in the Siwaliks of Pakistan

    PubMed Central

    Kimura, Yuri; Jacobs, Louis L.; Flynn, Lawrence J.

    2013-01-01

    Past ecological responses of mammals to climate change are recognized in the fossil record by adaptive significance of morphological variations. To understand the role of dietary behavior on functional adaptations of dental morphology in rodent evolution, we examine evolutionary change of tooth shape in late Miocene Siwalik murine rodents, which experienced a dietary shift toward C4 diets during late Miocene ecological change indicated by carbon isotopic evidence. Geometric morphometric analysis in the outline of upper first molars captures dichotomous lineages of Siwalik murines, in agreement with phylogenetic hypotheses of previous studies (two distinct clades: the Karnimata and Progonomys clades), and indicates lineage-specific functional responses to mechanical properties of their diets. Tooth shapes of the two clades are similar at their sympatric origin but deviate from each other with decreasing overlap through time. Shape change in the Karnimata clade is associated with greater efficiency of propalinal chewing for tough diets than in the Progonomys clade. Larger body mass in Karnimata may be related to exploitation of lower-quality food items, such as grasses, than in smaller-bodied Progonomys. The functional and ecophysiological aspects of Karnimata exploiting C4 grasses are concordant with their isotopic dietary preference relative to Progonomys. Lineage-specific selection was differentially greater in Karnimata, and a faster rate of shape change toward derived Karnimata facilitated inclusion of C4 grasses in the diet. Sympatric speciation in these clades is most plausibly explained by interspecific competition on resource utilization between the two, based on comparisons of our results with the carbon isotope data. Interspecific competition with Karnimata may have suppressed morphological innovation of the Progonomys clade. Pairwise analyses of morphological and carbon isotope data can uncover ecological causes of sympatric speciation and define

  11. Phylogenetic Analysis, Lineage-Specific Expansion and Functional Divergence of seed dormancy 4-Like Genes in Plants

    PubMed Central

    Subburaj, Saminathan; Cao, Shuanghe; Xia, Xianchun; He, Zhonghu

    2016-01-01

    The rice gene seed dormancy 4 (OsSdr4) functions in seed dormancy and is a major factor associated with pre-harvest sprouting (PHS). Although previous studies of this protein family were reported for rice and other species, knowledge of the evolution of genes homologous to OsSdr4 in plants remains inadequate. Fifty four Sdr4-like (hereafter designated Sdr4L) genes were identified in nine plant lineages including 36 species. Phylogenetic analysis placed these genes in eight subfamilies (I-VIII). Genes from the same lineage clustered together, supported by analysis of conserved motifs and exon-intron patterns. Segmental duplications were present in both dicot and monocot clusters, while tandemly duplicated genes occurred only in monocot clusters indicating that both tandem and segmental duplications contributed to expansion of the grass I and II subfamilies. Estimation of the approximate ages of the duplication events indicated that ancestral Sdr4 genes evolved from a common angiosperm ancestor, about 160 million years ago (MYA). Moreover, diversification of Sdr4L genes in mono and dicot plants was mainly associated with genome-wide duplication and speciation events. Functional divergence was observed in all subfamily pairs, except IV/VIIIa. Further analysis indicated that functional constraints between subfamily pairs I/II, I/VIIIb, II/VI, II/VIIIb, II/IV, and VI/VIIIb were statistically significant. Site and branch-site model analyses of positive selection suggested that these genes were under strong adaptive selection pressure. Critical amino acids detected for both functional divergence and positive selection were mostly located in the loops, pointing to functional importance of these regions in this protein family. In addition, differential expression studies by transcriptome atlas of 11 Sdr4L genes showed that the duplicated genes may have undergone divergence in expression between plant species. Our findings showed that Sdr4L genes are functionally divergent

  12. Hematopoietic Lineage Diversification, Simplified.

    PubMed

    Drissen, Roy; Nerlov, Claus

    2016-08-01

    Hematopoiesis is a complex process that requires a high degree of transcriptional diversification during lineage commitment and differentiation. de Graaf et al. (2016) have now generated a comprehensive gene expression dataset that allows cell-type-specific genes as well as associated transcription factor expression patterns to be readily identified. PMID:27494670

  13. Gene Duplication, Lineage-Specific Expansion, and Subfunctionalization in the MADF-BESS Family Patterns the Drosophila Wing Hinge

    PubMed Central

    Shukla, Vallari; Habib, Farhat; Kulkarni, Apurv; Ratnaparkhi, Girish S.

    2014-01-01

    Gene duplication, expansion, and subsequent diversification are features of the evolutionary process. Duplicated genes can be lost, modified, or altered to generate novel functions over evolutionary timescales. These features make gene duplication a powerful engine of evolutionary change. In this study, we explore these features in the MADF-BESS family of transcriptional regulators. In Drosophila melanogaster, the family contains 16 similar members, each containing an N-terminal, DNA-binding MADF domain and a C-terminal, protein-interacting, BESS domain. Phylogenetic analysis shows that members of the MADF-BESS family are expanded in the Drosophila lineage. Three members, which we name hinge1, hinge2, and hinge3 are required for wing development, with a critical role in the wing hinge. hinge1 is a negative regulator of Winglesss expression and interacts with core wing-hinge patterning genes such as teashirt, homothorax, and jing. Double knockdowns along with heterologous rescue experiments are used to demonstrate that members of the MADF-BESS family retain function in the wing hinge, in spite of expansion and diversification for over 40 million years. The wing hinge connects the blade to the thorax and has critical roles in fluttering during flight. MADF-BESS family genes appear to retain redundant functions to shape and form elements of the wing hinge in a robust and fail-safe manner. PMID:24336749

  14. P01.08LINEAGE-SPECIFIC SPLICING OF AN ALTERNATIVE EXON OF ANXA7 PROMOTES EGFR SIGNALING ACTIVATION AND TUMOR PROGRESSION IN GLIOBLASTOMA

    PubMed Central

    Ferrarese, R.; Bug, E.; Maticzka, D.; Reichardt, W.; Masilamani, A.P.; Dai, F.; Weyerbrock, A.; Prinz, M.; Bredel, M.; Carro, M.S.

    2014-01-01

    Tissue-specific alternative splicing is critical to the emergence of tissue identity during development, yet its role in malignant transformation is undefined. Tissue-specific splicing involves evolutionarily-conserved, alternative exons, which represent only a minority of total alternative exons. Many, however, have functional features that influence signaling pathways to profound biological effect. In the brain, Annexin A7 isoform 1 (ANXA7-I1) is exclusively expressed in mature neurons, while isoform 2 (ANXA7-I2) in which exon 6 is skipped, is expressed in glial and progenitor cells. We show that lineage-specific splicing of the cassette exon 6 in the membrane-binding tumor suppressor ANXA7diminishes endosomal targeting and consequent signal termination of the EGFR oncoprotein during brain tumor progression. Splicing of this exon is mediated by Polypyrimidine Tract-Binding Protein 1 (PTBP1), a ribonucleoprotein normally repressed during neuronal development but which we found to be highly expressed also in glioblastomas through loss of a brain-enriched microRNA, miR-124, and gene amplification. Here, we show that the PTBP1-ANXA7 splicing-EGFR signal activation axis promotes in vitro cell migration and invasion, and tumor angiogenesis in vivo. In glioblastoma, ANXA7 splicing is likely inherited from a potential tumor-initiating ancestor but this trait is further exploited through accumulation of mutations that enhance EGFR signaling. Our data illustrate how lineage-specific splicing of a tissue-regulated alternative exon in a constituent of an oncogenic pathway eliminates its tumor suppressor function and promotes glioblastoma progression. This paradigm may offer a general model as to how tissue-specific regulatory mechanisms can contribute to reprogramming normal development to oncogenesis.

  15. Abnormalities of the TITF-1 lineage-specific oncogene in NSCLC: Implications in lung cancer pathogenesis and prognosis

    PubMed Central

    Tang, Ximing; Kadara, Humam; Behrens, Carmen; Liu, Diane D.; Xiao, Yun; Rice, David; Gazdar, Adi F.; Fujimoto, Junya; Moran, Cesar; Varella-Garcia, Marileila; Lee, J. Jack; Hong, Waun Ki; Wistuba, Ignacio I.

    2011-01-01

    PURPOSE Emerging evidence suggests that aberrant expression of oncogenes contributes to development of lung malignancy. The thyroid transcription factor 1 (TITF-1) gene functions as a lineage survival gene abnormally expressed in a significant fraction of NSCLCs, in particular lung adenocarcinomas. EXPERIMENTAL DESIGN To better characterize TITF-1 abnormality: patterns in NSCLC, we studied TITF-1’s gene copy number using fluorescent in situ hybridization (FISH) and quantitative PCR, as well as its protein expression by immunohistochemistry analysis in a tissue microarray comprised of surgically resected NSCLC (N=321) including 204 adenocarcinomas and 117 squamous cell carcinomas (SCCs). TITF-1 copy number and protein expression were correlated with patients’ clinicopathologic characteristics, and in a subset of adenocarcinomas with EGFR and KRAS mutation status. RESULTS We found that increased TITF-1 protein expression was prevalent in lung adenocarcinomas only and was significantly associated with female gender (p<0.001), never smokers (p=0.004), presence of EGFR mutations (p=0.05) and better overall survival (all stages, p=0.0478. stages I and II, p=0.002). TITF-1 copy number gain (CBG) was detected by FISH analysis in both adenocarcinomas (18.9%; high CNG, 8.3%) and SCCs (20.1%; high CNG, 3.0%), and correlated significantly with the protein product (p=0.004) and presence of KRAS mutations (p=0.008) in lung adenocarcinomas. Moreover, multivariate analysis revealed that TITF-1 copy number gain was an independent predictor of poor survival of NSCLC (p=0.039). CONCLUSIONS Our integrative study demonstrates that the protein versus genomic expression patterns of TITF-1 have opposing roles in lung cancer prognosis and may occur preferentially in different subsets of NSCLC patients with distinct oncogene mutations. PMID:21257719

  16. Variability among the Most Rapidly Evolving Plastid Genomic Regions is Lineage-Specific: Implications of Pairwise Genome Comparisons in Pyrus (Rosaceae) and Other Angiosperms for Marker Choice

    PubMed Central

    Ter-Voskanyan, Hasmik; Allgaier, Martin; Borsch, Thomas

    2014-01-01

    Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae)—a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC–trnV, trnR–atpA, ndhF–rpl32, psbM–trnD, and trnQ–rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters). Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid), Olea (asterids) and Cymbidium (monocots) showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF–rpl32 and trnK–rps16) were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations

  17. A genome survey sequencing of the Java mouse deer (Tragulus javanicus) adds new aspects to the evolution of lineage specific retrotransposons in Ruminantia (Cetartiodactyla).

    PubMed

    Gallus, S; Kumar, V; Bertelsen, M F; Janke, A; Nilsson, M A

    2015-10-25

    Ruminantia, the ruminating, hoofed mammals (cow, deer, giraffe and allies) are an unranked artiodactylan clade. Around 50-60 million years ago the BovB retrotransposon entered the ancestral ruminantian genome through horizontal gene transfer. A survey genome screen using 454-pyrosequencing of the Java mouse deer (Tragulus javanicus) and the lesser kudu (Tragelaphus imberbis) was done to investigate and to compare the landscape of transposable elements within Ruminantia. The family Tragulidae (mouse deer) is the only representative of Tragulina and phylogenetically important, because it represents the earliest divergence in Ruminantia. The data analyses show that, relative to other ruminantian species, the lesser kudu genome has seen an expansion of BovB Long INterspersed Elements (LINEs) and BovB related Short INterspersed Elements (SINEs) like BOVA2. In comparison the genome of Java mouse deer has fewer BovB elements than other ruminants, especially Bovinae, and has in addition a novel CHR-3 SINE most likely propagated by LINE-1. By contrast the other ruminants have low amounts of CHR SINEs but high numbers of actively propagating BovB-derived and BovB-propagated SINEs. The survey sequencing data suggest that the transposable element landscape in mouse deer (Tragulina) is unique among Ruminantia, suggesting a lineage specific evolutionary trajectory that does not involve BovB mediated retrotransposition. This shows that the genomic landscape of mobile genetic elements can rapidly change in any lineage. PMID:26123917

  18. Species-specific diversity of novel bacterial lineages and differential abundance of predicted pathways for toxic compound degradation in scorpion gut microbiota.

    PubMed

    Bolaños, Luis M; Rosenblueth, Mónica; Castillo-Ramírez, Santiago; Figuier-Huttin, Gilles; Martínez-Romero, Esperanza

    2016-05-01

    Scorpions are considered 'living fossils' that have conserved ancestral anatomical features and have adapted to numerous habitats. However, their gut microbiota diversity has not been studied. Here, we characterized the gut microbiota of two scorpion species, Vaejovis smithi and Centruroides limpidus. Our results indicate that scorpion gut microbiota is species-specific and that food deprivation reduces bacterial diversity. 16S rRNA gene phylogenetic analysis revealed novel bacterial lineages showing a low level of sequence identity to any known bacteria. Furthermore, these novel bacterial lineages were each restricted to a different scorpion species. Additionally, our results of the predicted metagenomic profiles revealed a core set of pathways that were highly abundant in both species, and mostly related to amino acid, carbohydrate, vitamin and cofactor metabolism. Notably, the food-deprived V. smithi shotgun metagenome matched almost completely the metabolic features of the prediction. Finally, comparisons among predicted metagenomic profiles showed that toxic compound degradation pathways were more abundant in recently captured C. limpidus scorpions. This study gives a first insight into the scorpion gut microbiota and provides a reference for future studies on the gut microbiota from other arachnid species. PMID:26058415

  19. A genome-scale in vivo loss-of-function screen identifies Phf6 as a lineage-specific regulator of leukemia cell growth

    PubMed Central

    Meacham, Corbin E.; Lawton, Lee N.; Soto-Feliciano, Yadira M.; Pritchard, Justin R.; Joughin, Brian A.; Ehrenberger, Tobias; Fenouille, Nina; Zuber, Johannes; Williams, Richard T.; Young, Richard A.

    2015-01-01

    We performed a genome-scale shRNA screen for modulators of B-cell leukemia progression in vivo. Results from this work revealed dramatic distinctions between the relative effects of shRNAs on the growth of tumor cells in culture versus in their native microenvironment. Specifically, we identified many “context-specific” regulators of leukemia development. These included the gene encoding the zinc finger protein Phf6. While inactivating mutations in PHF6 are commonly observed in human myeloid and T-cell malignancies, we found that Phf6 suppression in B-cell malignancies impairs tumor progression. Thus, Phf6 is a “lineage-specific” cancer gene that plays opposing roles in developmentally distinct hematopoietic malignancies. PMID:25737277

  20. MtDNA Haplogroup A10 Lineages in Bronze Age Samples Suggest That Ancient Autochthonous Human Groups Contributed to the Specificity of the Indigenous West Siberian Population

    PubMed Central

    Pilipenko, Aleksandr S.; Trapezov, Rostislav O.; Zhuravlev, Anton A.; Molodin, Vyacheslav I.; Romaschenko, Aida G.

    2015-01-01

    Background The craniometric specificity of the indigenous West Siberian human populations cannot be completely explained by the genetic interactions of the western and eastern Eurasian groups recorded in the archaeology of the area from the beginning of the 2nd millennium BC. Anthropologists have proposed another probable explanation: contribution to the genetic structure of West Siberian indigenous populations by ancient human groups, which separated from western and eastern Eurasian populations before the final formation of their phenotypic and genetic features and evolved independently in the region over a long period of time. This hypothesis remains untested. From the genetic point of view, it could be confirmed by the presence in the gene pool of indigenous populations of autochthonous components that evolved in the region over long time periods. The detection of such components, particularly in the mtDNA gene pool, is crucial for further clarification of early regional genetic history. Results and Conclusion We present the results of analysis of mtDNA samples (n = 10) belonging to the A10 haplogroup, from Bronze Age populations of West Siberian forest-steppe (V—I millennium BC), that were identified in a screening study of a large diachronic sample (n = 96). A10 lineages, which are very rare in modern Eurasian populations, were found in all the Bronze Age groups under study. Data on the A10 lineages’ phylogeny and phylogeography in ancient West Siberian and modern Eurasian populations suggest that A10 haplogroup underwent a long-term evolution in West Siberia or arose there autochthonously; thus, the presence of A10 lineages indicates the possible contribution of early autochthonous human groups to the genetic specificity of modern populations, in addition to contributions of later interactions of western and eastern Eurasian populations. PMID:25950581

  1. T-Cell Lineage Determination

    PubMed Central

    Yang, Qi; Bell, J. Jeremiah; Bhandoola, Avinash

    2010-01-01

    Summary T cells originate from hematopoietic stem cells (HSCs) in the bone marrow but complete their development in the thymus. HSCs give rise to a variety of non-renewing hematopoietic progenitors, among which a rare subset migrates to the thymus via the bloodstream. The earliest T-cell progenitors identified in the thymus are not T-lineage restricted but possess the ability to give rise to cells of many different lineages. Alternative lineage potentials are gradually lost as progenitors progress towards later developmental stages. Here, we review the early developmental events that might be involved in T-cell lineage fate determination, including the properties of possible thymus settling progenitors, their homing into the thymus, and their T-cell lineage specification and commitment. PMID:20969581

  2. Lineage-specific expansions of TET/JBP genes and a new class of DNA transposons shape fungal genomic and epigenetic landscapes

    PubMed Central

    Iyer, Lakshminarayan M.; Zhang, Dapeng; de Souza, Robson F.; Pukkila, Patricia J.; Rao, Anjana; Aravind, L.

    2014-01-01

    TET/JBP dioxygenases oxidize methylpyrimidines in nucleic acids and are implicated in generation of epigenetic marks and potential intermediates for DNA demethylation. We show that TET/JBP genes are lineage-specifically expanded in all major clades of basidiomycete fungi, with the majority of copies predicted to encode catalytically active proteins. This pattern differs starkly from the situation in most other organisms that possess just a single or a few copies of the TET/JBP family. In most basidiomycetes, TET/JBP genes are frequently linked to a unique class of transposons, KDZ (Kyakuja, Dileera, and Zisupton) and appear to have dispersed across chromosomes along with them. Several of these elements typically encode additional proteins, including a divergent version of the HMG domain. Analysis of their transposases shows that they contain a previously uncharacterized version of the RNase H fold with multiple distinctive Zn-chelating motifs and a unique insert, which are predicted to play roles in structural stabilization and target sequence recognition, respectively. We reconstruct the complex evolutionary history of TET/JBPs and associated transposons as involving multiple rounds of expansion with concomitant lineage sorting and loss, along with several capture events of TET/JBP genes by different transposon clades. On a few occasions, these TET/JBP genes were also laterally transferred to certain Ascomycota, Glomeromycota, Viridiplantae, and Amoebozoa. One such is an inactive version, calnexin-independence factor 1 (Cif1), from Schizosaccharomyces pombe, which has been implicated in inducing an epigenetically transmitted prion state. We argue that this unique transposon-TET/JBP association is likely to play important roles in speciation during evolution and epigenetic regulation. PMID:24398522

  3. Green tea epigallocatechin-3-gallate modulates differentiation of naïve CD4⁺ T cells into specific lineage effector cells.

    PubMed

    Wang, Junpeng; Pae, Munkyong; Meydani, Simin Nikbin; Wu, Dayong

    2013-04-01

    CD4(+) T helper (Th) subsets Th1, Th9, and Th17 cells are implicated in inducing autoimmunity whereas regulatory T cells (Treg) have a protective effect. We and others have previously shown that epigallocatechin-3-gallate (EGCG) attenuates experimental autoimmune encephalomyelitis (EAE) and alters CD4(+) T cell subpopulations. In this study, we investigated how EGCG impacts differentiation of naïve CD4(+) T cells into different effector lineages and report that EGCG impeded Th1, Th9, and Th17 differentiation and prevented IL-6-induced suppression of Treg development. We further showed that EGCG inhibited T-bet, PU.1, and RORγt, the specific transcription factors for Th1, Th9, and Th17 differentiation, respectively. These effects, in turn, may be mediated by EGCG-induced downregulation of transducers p-STAT1 and p-STAT4 for Th1, and p-STAT3 for Th17. EGCG-induced change in Th17/Treg balance may be mediated by its inhibition of IL-6 signaling because EGCG inhibited soluble IL-6R, membrane gp130, and IL-6-induced phosphorylation of STAT3. This notion was further supported by the in vivo results showing inhibited IL-6 and soluble IL-6R but increased soluble gp130 levels in plasma from EAE mice fed EGCG. Together, our results suggest that EGCG modulates development of CD4(+) T cell lineages through impacting their respective and interactive regulatory networks ultimately leading to an attenuated autoimmune response. PMID:23064699

  4. Risk assessment of relapse by lineage-specific monitoring of chimerism in children undergoing allogeneic stem cell transplantation for acute lymphoblastic leukemia

    PubMed Central

    Preuner, Sandra; Peters, Christina; Pötschger, Ulrike; Daxberger, Helga; Fritsch, Gerhard; Geyeregger, Rene; Schrauder, André; von Stackelberg, Arend; Schrappe, Martin; Bader, Peter; Ebell, Wolfram; Eckert, Cornelia; Lang, Peter; Sykora, Karl-Walter; Schrum, Johanna; Kremens, Bernhard; Ehlert, Karoline; Albert, Michael H.; Meisel, Roland; Lawitschka, Anita; Mann, Georg; Panzer-Grümayer, Renate; Güngör, Tayfun; Holter, Wolfgang; Strahm, Brigitte; Gruhn, Bernd; Schulz, Ansgar; Woessmann, Wilhelm; Lion, Thomas

    2016-01-01

    Allogeneic hematopoietic stem cell transplantation is required as rescue therapy in about 20% of pediatric patients with acute lymphoblastic leukemia. However, the relapse rates are considerable, and relapse confers a poor outcome. Early assessment of the risk of relapse is therefore of paramount importance for the development of appropriate measures. We used the EuroChimerism approach to investigate the potential impact of lineage-specific chimerism testing for relapse-risk analysis in 162 pediatric patients with acute lymphoblastic leukemia after allogeneic stem cell transplantation in a multicenter study based on standardized transplantation protocols. Within a median observation time of 4.5 years, relapses have occurred in 41/162 patients at a median of 0.6 years after transplantation (range, 0.13–5.7 years). Prospective screening at defined consecutive time points revealed that reappearance of recipient-derived cells within the CD34+ and CD8+ cell subsets display the most significant association with the occurrence of relapses with hazard ratios of 5.2 (P=0.003) and 2.8 (P=0.008), respectively. The appearance of recipient cells after a period of pure donor chimerism in the CD34+ and CD8+ leukocyte subsets revealed dynamics indicative of a significantly elevated risk of relapse or imminent disease recurrence. Assessment of chimerism within these lineages can therefore provide complementary information for further diagnostic and, potentially, therapeutic purposes aiming at the prevention of overt relapse. This study was registered at clinical.trials.gov with the number NC01423747. PMID:26869631

  5. Smad2 and Smad3 have differential sensitivity in relaying TGFβ signaling and inversely regulate early lineage specification

    PubMed Central

    Liu, Ling; Liu, Xu; Ren, Xudong; Tian, Yue; Chen, Zhenyu; Xu, Xiangjie; Du, Yanhua; Jiang, Cizhong; Fang, Yujiang; Liu, Zhongliang; Fan, Beibei; Zhang, Quanbin; Jin, Guohua; Yang, Xiao; Zhang, Xiaoqing

    2016-01-01

    The transforming growth factor beta (TGFβ) related signaling is one of the most important signaling pathways regulating early developmental events. Smad2 and Smad3 are structurally similar and it is mostly considered that they are equally important in mediating TGFβ signals. Here, we show that Smad3 is an insensitive TGFβ transducer as compared with Smad2. Smad3 preferentially localizes within the nucleus and is thus sequestered from membrane signaling. The ability of Smad3 in oligomerization with Smad4 upon agonist stimulation is also impaired given its unique linker region. Smad2 mediated TGFβ signaling plays a crucial role in epiblast development and patterning of three germ layers. However, signaling unrelated nuclear localized Smad3 is dispensable for TGFβ signaling-mediated epiblast specification, but important for early neural development, an event blocked by TGFβ/Smad2 signaling. Both Smad2 and Smad3 bind to the conserved Smads binding element (SBE), but they show nonoverlapped target gene binding specificity and differential transcriptional activity. We conclude that Smad2 and Smad3 possess differential sensitivities in relaying TGFβ signaling and have distinct roles in regulating early developmental events. PMID:26905010

  6. Smad2 and Smad3 have differential sensitivity in relaying TGFβ signaling and inversely regulate early lineage specification.

    PubMed

    Liu, Ling; Liu, Xu; Ren, Xudong; Tian, Yue; Chen, Zhenyu; Xu, Xiangjie; Du, Yanhua; Jiang, Cizhong; Fang, Yujiang; Liu, Zhongliang; Fan, Beibei; Zhang, Quanbin; Jin, Guohua; Yang, Xiao; Zhang, Xiaoqing

    2016-01-01

    The transforming growth factor beta (TGFβ) related signaling is one of the most important signaling pathways regulating early developmental events. Smad2 and Smad3 are structurally similar and it is mostly considered that they are equally important in mediating TGFβ signals. Here, we show that Smad3 is an insensitive TGFβ transducer as compared with Smad2. Smad3 preferentially localizes within the nucleus and is thus sequestered from membrane signaling. The ability of Smad3 in oligomerization with Smad4 upon agonist stimulation is also impaired given its unique linker region. Smad2 mediated TGFβ signaling plays a crucial role in epiblast development and patterning of three germ layers. However, signaling unrelated nuclear localized Smad3 is dispensable for TGFβ signaling-mediated epiblast specification, but important for early neural development, an event blocked by TGFβ/Smad2 signaling. Both Smad2 and Smad3 bind to the conserved Smads binding element (SBE), but they show nonoverlapped target gene binding specificity and differential transcriptional activity. We conclude that Smad2 and Smad3 possess differential sensitivities in relaying TGFβ signaling and have distinct roles in regulating early developmental events. PMID:26905010

  7. Novel flaviviruses from mosquitoes: Mosquito-specific evolutionary lineages within the phylogenetic group of mosquito-borne flaviviruses

    PubMed Central

    Huhtamo, Eili; Cook, Shelley; Moureau, Gregory; Uzcátegui, Nathalie Y.; Sironen, Tarja; Kuivanen, Suvi; Putkuri, Niina; Kurkela, Satu; Harbach, Ralph E.; Firth, Andrew E.; Vapalahti, Olli; Gould, Ernest A.; de Lamballerie, Xavier

    2014-01-01

    Novel flaviviruses that are genetically related to pathogenic mosquito-borne flaviviruses (MBFV) have been isolated from mosquitoes in various geographical locations, including Finland. We isolated and characterized another novel virus of this group from Finnish mosquitoes collected in 2007, designated as Ilomantsi virus (ILOV). Unlike the MBFV that infect both vertebrates and mosquitoes, the MBFV-related viruses appear to be specific to mosquitoes similar to the insect-specific flaviviruses (ISFs). In this overview of MBFV-related viruses we conclude that they differ from the ISFs genetically and antigenically. Phylogenetic analyses separated the MBFV-related viruses isolated in Africa, the Middle East and South America from those isolated in Europe and Asia. Serological cross-reactions of MBFV-related viruses with other flaviviruses and their potential for vector-borne transmission require further characterization. The divergent MBFV-related viruses are probably significantly under sampled to date and provide new information on the variety, properties and evolution of vector-borne flaviviruses. PMID:25108382

  8. Reprogramming CD19-specific T cells with IL-21 signaling can improve adoptive immunotherapy of B-lineage malignancies.

    PubMed

    Singh, Harjeet; Figliola, Matthew J; Dawson, Margaret J; Huls, Helen; Olivares, Simon; Switzer, Kirsten; Mi, Tiejuan; Maiti, Sourindra; Kebriaei, Partow; Lee, Dean A; Champlin, Richard E; Cooper, Laurence J N

    2011-05-15

    Improving the therapeutic efficacy of T cells expressing a chimeric antigen receptor (CAR) represents an important goal in efforts to control B-cell malignancies. Recently an intrinsic strategy has been developed to modify the CAR itself to improve T-cell signaling. Here we report a second extrinsic approach based on altering the culture milieu to numerically expand CAR(+) T cells with a desired phenotype, for the addition of interleukin (IL)-21 to tissue culture improves CAR-dependent T-cell effector functions. We used electrotransfer of Sleeping Beauty system to introduce a CAR transposon and selectively propagate CAR(+) T cells on CD19(+) artificial antigen-presenting cells (aAPC). When IL-21 was present, there was preferential numeric expansion of CD19-specific T cells which lysed and produced IFN-γ in response to CD19. Populations of these numerically expanded CAR(+) T cells displayed an early memory surface phenotype characterized as CD62L(+)CD28(+) and a transcriptional profile of naïve T cells. In contrast, T cells propagated with only exogenous IL-2 tended to result in an overgrowth of CD19-specific CD4(+) T cells. Furthermore, adoptive transfer of CAR(+) T cells cultured with IL-21 exhibited improved control of CD19(+) B-cell malignancy in mice. To provide coordinated signaling to propagate CAR(+) T cells, we developed a novel mutein of IL-21 bound to the cell surface of aAPC that replaced the need for soluble IL-21. Our findings show that IL-21 can provide an extrinsic reprogramming signal to generate desired CAR(+) T cells for effective immunotherapy. PMID:21558388

  9. Analysis of expression in the Anopheles gambiae developing testes reveals rapidly evolving lineage-specific genes in mosquitoes

    PubMed Central

    Krzywinska, Elzbieta; Krzywinski, Jaroslaw

    2009-01-01

    Background Male mosquitoes do not feed on blood and are not involved in delivery of pathogens to humans. Consequently, they are seldom the subjects of research, which results in a very poor understanding of their biology. To gain insights into male developmental processes we sought to identify genes transcribed exclusively in the reproductive tissues of male Anopheles gambiae pupae. Results Using a cDNA subtraction strategy, five male-specifically or highly male-biased expressed genes were isolated, four of which remain unannotated in the An. gambiae genome. Spatial and temporal expression patterns suggest that each of these genes is involved in the mid-late stages of spermatogenesis. Their sequences are rapidly evolving; however, two genes possess clear homologs in a wide range of taxa and one of these probably acts in a sperm motility control mechanism conserved in many organisms, including humans. The other three genes have no match to sequences from non-mosquito taxa, thus can be regarded as orphans. RNA in situ hybridization demonstrated that one of the orphans is transcribed in spermatids, which suggests its involvement in sperm maturation. Two other orphans have unknown functions. Expression analysis of orthologs of all five genes indicated that male-biased transcription was not conserved in the majority of cases in Aedes and Culex. Conclusion Discovery of testis-expressed orphan genes in mosquitoes opens new prospects for the development of innovative control methods. The orphan encoded proteins may represent unique targets of selective anti-mosquito sterilizing agents that will not affect non-target organisms. PMID:19580678

  10. Functional Genetic Diversity among Mycobacterium tuberculosis Complex Clinical Isolates: Delineation of Conserved Core and Lineage-Specific Transcriptomes during Intracellular Survival

    PubMed Central

    Homolka, Susanne; Niemann, Stefan; Russell, David G.; Rohde, Kyle H.

    2010-01-01

    Tuberculosis exerts a tremendous burden on global health, with ∼9 million new infections and ∼2 million deaths annually. The Mycobacterium tuberculosis complex (MTC) was initially regarded as a highly homogeneous population; however, recent data suggest the causative agents of tuberculosis are more genetically and functionally diverse than appreciated previously. The impact of this natural variation on the virulence and clinical manifestations of the pathogen remains largely unknown. This report examines the effect of genetic diversity among MTC clinical isolates on global gene expression and survival within macrophages. We discovered lineage-specific transcription patterns in vitro and distinct intracellular growth profiles associated with specific responses to host-derived environmental cues. Strain comparisons also facilitated delineation of a core intracellular transcriptome, including genes with highly conserved regulation across the global panel of clinical isolates. This study affords new insights into the genetic information that M. tuberculosis has conserved under selective pressure during its long-term interactions with its human host. PMID:20628579

  11. ZINC-INDUCED FACILITATOR-LIKE family in plants: lineage-specific expansion in monocotyledons and conserved genomic and expression features among rice (Oryza sativa) paralogs

    PubMed Central

    2011-01-01

    Background Duplications are very common in the evolution of plant genomes, explaining the high number of members in plant gene families. New genes born after duplication can undergo pseudogenization, neofunctionalization or subfunctionalization. Rice is a model for functional genomics research, an important crop for human nutrition and a target for biofortification. Increased zinc and iron content in the rice grain could be achieved by manipulation of metal transporters. Here, we describe the ZINC-INDUCED FACILITATOR-LIKE (ZIFL) gene family in plants, and characterize the genomic structure and expression of rice paralogs, which are highly affected by segmental duplication. Results Sequences of sixty-eight ZIFL genes, from nine plant species, were comparatively analyzed. Although related to MSF_1 proteins, ZIFL protein sequences consistently grouped separately. Specific ZIFL sequence signatures were identified. Monocots harbor a larger number of ZIFL genes in their genomes than dicots, probably a result of a lineage-specific expansion. The rice ZIFL paralogs were named OsZIFL1 to OsZIFL13 and characterized. The genomic organization of the rice ZIFL genes seems to be highly influenced by segmental and tandem duplications and concerted evolution, as rice genome contains five highly similar ZIFL gene pairs. Most rice ZIFL promoters are enriched for the core sequence of the Fe-deficiency-related box IDE1. Gene expression analyses of different plant organs, growth stages and treatments, both from our qPCR data and from microarray databases, revealed that the duplicated ZIFL gene pairs are mostly co-expressed. Transcripts of OsZIFL4, OsZIFL5, OsZIFL7, and OsZIFL12 accumulate in response to Zn-excess and Fe-deficiency in roots, two stresses with partially overlapping responses. Conclusions We suggest that ZIFL genes have different evolutionary histories in monocot and dicot lineages. In rice, concerted evolution affected ZIFL duplicated genes, possibly maintaining similar

  12. Whole genome sequencing of a banana wild relative Musa itinerans provides insights into lineage-specific diversification of the Musa genus

    PubMed Central

    Wu, Wei; Yang, Yu-Lan; He, Wei-Ming; Rouard, Mathieu; Li, Wei-Ming; Xu, Meng; Roux, Nicolas; Ge, Xue-Jun

    2016-01-01

    Crop wild relatives are valuable resources for future genetic improvement. Here, we report the de novo genome assembly of Musa itinerans, a disease-resistant wild banana relative in subtropical China. The assembled genome size was 462.1 Mb, covering 75.2% of the genome (615.2Mb) and containing 32, 456 predicted protein-coding genes. Since the approximate divergence around 5.8 million years ago, the genomes of Musa itinerans and Musa acuminata have shown conserved collinearity. Gene family expansions and contractions enrichment analysis revealed that some pathways were associated with phenotypic or physiological innovations. These include a transition from wood to herbaceous in the ancestral Musaceae, intensification of cold and drought tolerances, and reduced diseases resistance genes for subtropical marginally distributed Musa species. Prevalent purifying selection and transposed duplications were found to facilitate the diversification of NBS-encoding gene families for two Musa species. The population genome history analysis of M. itinerans revealed that the fluctuated population sizes were caused by the Pleistocene climate oscillations, and that the formation of Qiongzhou Strait might facilitate the population downsizing on the isolated Hainan Island about 10.3 Kya. The qualified assembly of the M. itinerans genome provides deep insights into the lineage-specific diversification and also valuable resources for future banana breeding. PMID:27531320

  13. Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications.

    PubMed

    Jourda, Cyril; Cardi, Céline; Mbéguié-A-Mbéguié, Didier; Bocs, Stéphanie; Garsmeur, Olivier; D'Hont, Angélique; Yahiaoui, Nabila

    2014-05-01

    Whole-genome duplications (WGDs) are widespread in plants, and three lineage-specific WGDs occurred in the banana (Musa acuminata) genome. Here, we analysed the impact of WGDs on the evolution of banana gene families involved in ethylene biosynthesis and signalling, a key pathway for banana fruit ripening. Banana ethylene pathway genes were identified using comparative genomics approaches and their duplication modes and expression profiles were analysed. Seven out of 10 banana ethylene gene families evolved through WGD and four of them (1-aminocyclopropane-1-carboxylate synthase (ACS), ethylene-insensitive 3-like (EIL), ethylene-insensitive 3-binding F-box (EBF) and ethylene response factor (ERF)) were preferentially retained. Banana orthologues of AtEIN3 and AtEIL1, two major genes for ethylene signalling in Arabidopsis, were particularly expanded. This expansion was paralleled by that of EBF genes which are responsible for control of EIL protein levels. Gene expression profiles in banana fruits suggested functional redundancy for several MaEBF and MaEIL genes derived from WGD and subfunctionalization for some of them. We propose that EIL and EBF genes were co-retained after WGD in banana to maintain balanced control of EIL protein levels and thus avoid detrimental effects of constitutive ethylene signalling. In the course of evolution, subfunctionalization was favoured to promote finer control of ethylene signalling. PMID:24716518

  14. Comparative Genomic Analysis Reveals Multiple Long Terminal Repeats, Lineage-Specific Amplification, and Frequent Interelement Recombination for Cassandra Retrotransposon in Pear (Pyrus bretschneideri Rehd.)

    PubMed Central

    Yin, Hao; Du, Jianchang; Li, Leiting; Jin, Cong; Fan, Lian; Li, Meng; Wu, Jun; Zhang, Shaoling

    2014-01-01

    Cassandra transposable elements belong to a specific group of terminal-repeat retrotransposons in miniature (TRIM). Although Cassandra TRIM elements have been found in almost all vascular plants, detailed investigations on the nature, abundance, amplification timeframe, and evolution have not been performed in an individual genome. We therefore conducted a comprehensive analysis of Cassandra retrotransposons using the newly sequenced pear genome along with four other Rosaceae species, including apple, peach, mei, and woodland strawberry. Our data reveal several interesting findings for this particular retrotransposon family: 1) A large number of the intact copies contain three, four, or five long terminal repeats (LTRs) (∼20% in pear); 2) intact copies and solo LTRs with or without target site duplications are both common (∼80% vs. 20%) in each genome; 3) the elements exhibit an overall unbiased distribution among the chromosomes; 4) the elements are most successfully amplified in pear (5,032 copies); and 5) the evolutionary relationships of these elements vary among different lineages, species, and evolutionary time. These results indicate that Cassandra retrotransposons contain more complex structures (elements with multiple LTRs) than what we have known previously, and that frequent interelement unequal recombination followed by transposition may play a critical role in shaping and reshaping host genomes. Thus this study provides insights into the property, propensity, and molecular mechanisms governing the formation and amplification of Cassandra retrotransposons, and enhances our understanding of the structural variation, evolutionary history, and transposition process of LTR retrotransposons in plants. PMID:24899073

  15. Histone Demethylase Jumonji AT-rich Interactive Domain 1B (JARID1B) Controls Mammary Gland Development by Regulating Key Developmental and Lineage Specification Genes*

    PubMed Central

    Zou, Mike Ran; Cao, Jian; Liu, Zongzhi; Huh, Sung Jin; Polyak, Kornelia; Yan, Qin

    2014-01-01

    The JmjC domain-containing H3K4 histone demethylase jumonji AT-rich interactive domain 1B (JARID1B) (also known as KDM5B and PLU1) is overexpressed in breast cancer and is a potential target for breast cancer treatment. To investigate the in vivo function of JARID1B, we developed Jarid1b−/− mice and characterized their phenotypes in detail. Unlike previously reported Jarid1b−/− strains, the majority of these Jarid1b−/− mice were viable beyond embryonic and neonatal stages. This allowed us to further examine phenotypes associated with the loss of JARID1B in pubertal development and pregnancy. These Jarid1b−/− mice exhibited decreased body weight, premature mortality, decreased female fertility, and delayed mammary gland development. Related to these phenotypes, JARID1B loss decreased serum estrogen level and reduced mammary epithelial cell proliferation in early puberty. In mammary epithelial cells, JARID1B loss diminished the expression of key regulators for mammary morphogenesis and luminal lineage specification, including FOXA1 and estrogen receptor α. Mechanistically, JARID1B was required for GATA3 recruitment to the Foxa1 promoter to activate Foxa1 expression. These results indicate that JARID1B positively regulates mammary ductal development through both extrinsic and cell-autonomous mechanisms. PMID:24802759

  16. Mixed Lineage Leukemia 5 (MLL5) Protein Stability Is Cooperatively Regulated by O-GlcNac Transferase (OGT) and Ubiquitin Specific Protease 7 (USP7)

    PubMed Central

    Ding, Xiaodan; Jiang, Wei; Zhou, Peipei; Liu, Lulu; Wan, Xiaoling; Yuan, Xiujie; Wang, Xizi; Chen, Miao; Chen, Jun; Yang, Jing; Kong, Chao; Li, Bin; Peng, Chao; Wong, Catherine C. L.; Hou, Fajian; Zhang, Yan

    2015-01-01

    Mixed lineage leukemia 5 (MLL5) protein is a trithorax family histone 3 lysine 4 (H3K4) methyltransferase that regulates diverse biological processes, including cell cycle progression, hematopoiesis and cancer. The mechanisms by which MLL5 protein stability is regulated have remained unclear to date. Here, we showed that MLL5 protein stability is cooperatively regulated by O-GlcNAc transferase (OGT) and ubiquitin-specific protease 7 (USP7). Depletion of OGT in cells led to a decrease in the MLL5 protein level through ubiquitin/proteasome-dependent proteolytic degradation, whereas ectopic expression of OGT protein suppressed MLL5 ubiquitylation. We further identified deubiquitinase USP7 as a novel MLL5-associated protein using mass spectrometry. USP7 stabilized the MLL5 protein through direct binding and deubiquitylation. Loss of USP7 induced degradation of MLL5 protein. Conversely, overexpression of USP7, but not a catalytically inactive USP7 mutant, led to decreased ubiquitylation and increased MLL5 stability. Co-immunoprecipitation and co-immunostaining assays revealed that MLL5, OGT and USP7 interact with each other to form a stable ternary complex that is predominantly located in the nucleus. In addition, upregulation of MLL5 expression was correlated with increased expression of OGT and USP7 in human primary cervical adenocarcinomas. Our results collectively reveal a novel molecular mechanism underlying regulation of MLL5 protein stability and provide new insights into the functional interplay among O-GlcNAc transferase, deubiquitinase and histone methyltransferase. PMID:26678539

  17. Postnatal stem cell survival: does the niche, a rare harbor where to resist the ebb tide of differentiation, also provide lineage-specific instructions?

    PubMed

    Kindler, Vincent

    2005-10-01

    Postnatal stem cells regulate the homeostasis of the majority of our tissues. They continuously generate new progenitors and mature, functional cells to replace old cells, which cannot assume the tissue function anymore and are eliminated. Blood, skin, gut mucosa, muscle, cartilage, nerves, cornea, retina, liver, and many other structures are regulated by stem cells. As a result of their ability to produce large numbers of functionally mature cells, postnatal stem cells represent a promising tool for regenerative therapy. Indeed, unmanipulated stem cells or their progeny amplified in vitro are already used in some clinical applications to restore the function of injured or genetically deficient tissues. However, despite our cumulating understanding concerning postnatal stem cells, many aspects of their functionality remain unclear. For instance, in most tissues, we cannot reliably define the phenotype of the postnatal stem cells sustaining its survival. We do not know to which extent the environment surrounding the stem cell-the niche-which is a key actor insuring stem cell self-maintenance, is also implicated in the maintenance of stem cell lineage specificity. Moreover, we have to clarify whether postnatal stem cells are capable of undertaking "transdifferentiation", that is, the conversion of one cell type into another under physiological conditions. Answering these questions should help us to draw a more accurate picture of postnatal stem cell biology and should lead to the design of safe, effective therapies. PMID:16199730

  18. Whole genome sequencing of a banana wild relative Musa itinerans provides insights into lineage-specific diversification of the Musa genus.

    PubMed

    Wu, Wei; Yang, Yu-Lan; He, Wei-Ming; Rouard, Mathieu; Li, Wei-Ming; Xu, Meng; Roux, Nicolas; Ge, Xue-Jun

    2016-01-01

    Crop wild relatives are valuable resources for future genetic improvement. Here, we report the de novo genome assembly of Musa itinerans, a disease-resistant wild banana relative in subtropical China. The assembled genome size was 462.1 Mb, covering 75.2% of the genome (615.2Mb) and containing 32, 456 predicted protein-coding genes. Since the approximate divergence around 5.8 million years ago, the genomes of Musa itinerans and Musa acuminata have shown conserved collinearity. Gene family expansions and contractions enrichment analysis revealed that some pathways were associated with phenotypic or physiological innovations. These include a transition from wood to herbaceous in the ancestral Musaceae, intensification of cold and drought tolerances, and reduced diseases resistance genes for subtropical marginally distributed Musa species. Prevalent purifying selection and transposed duplications were found to facilitate the diversification of NBS-encoding gene families for two Musa species. The population genome history analysis of M. itinerans revealed that the fluctuated population sizes were caused by the Pleistocene climate oscillations, and that the formation of Qiongzhou Strait might facilitate the population downsizing on the isolated Hainan Island about 10.3 Kya. The qualified assembly of the M. itinerans genome provides deep insights into the lineage-specific diversification and also valuable resources for future banana breeding. PMID:27531320

  19. Characterization of MAT gene functions in the life cycle of Sclerotinia sclerotiorum reveals a lineage-specific MAT gene functioning in apothecium morphogenesis.

    PubMed

    Doughan, Benjamin; Rollins, Jeffrey A

    2016-09-01

    Sclerotinia sclerotiorum (Lib.) de Bary is a phytopathogenic fungus that relies on the completion of the sexual cycle to initiate aerial infections. The sexual cycle produces apothecia required for inoculum dispersal. In this study, insight into the regulation of apothecial multicellular development was pursued through functional characterization of mating-type genes. These genes are hypothesized to encode master regulatory proteins required for aspects of sexual development ranging from fertilization through fertile fruiting body development. Experimentally, loss-of-function mutants were created for the conserved core mating-type genes (MAT1-1-1, and MAT1-2-1), and the lineage-specific genes found only in S. sclerotiorum and closely related fungi (MAT1-1-5, and MAT1-2-4). The MAT1-1-1, MAT1-1-5, and MAT1-2-1 mutants are able to form ascogonia but are blocked in all aspects of apothecium development. These mutants also exhibit defects in secondary sexual characters including lower numbers of spermatia. The MAT1-2-4 mutants are delayed in carpogenic germination accompanied with altered disc morphogenesis and ascospore production. They too produce lower numbers of spermatia. All four MAT gene mutants showed alterations in the expression of putative pheromone precursor (Ppg-1) and pheromone receptor (PreA, PreB) genes. Our findings support the involvement of MAT genes in sexual fertility, gene regulation, meiosis, and morphogenesis in S. sclerotiorum. PMID:27567717

  20. Synteny and comparative analysis of miRNA retention, conservation, and structure across Brassicaceae reveals lineage- and sub-genome-specific changes.

    PubMed

    Jain, Aditi; Das, Sandip

    2016-05-01

    The recent availability of genome sequences together with syntenic block information for Brassicaceae offers an opportunity to study microRNA (miRNA) evolution across this family. We employed a synteny-based comparative genomics strategy to unambiguously identify miRNA homologs from the genome sequence of members of Brassicaceae. Such an analysis of miRNA across Brassicaceae allowed us to classify miRNAs as conserved, lineage-, karyotype- and sub-genome-specific. The differential loss of miRNA from sub-genomes in polyploid genomes of Brassica rapa and Brassica oleracea shows that miRNA also follows the rules of gene fractionation as observed in the case of protein-coding genes. The study of mature and miR* region of precursors revealed instances of in-dels and SNPs which reflect the evolutionary history of the genomes. High level of conservation in miR* regions in some cases points to their functional relevance which needs to be further investigated. We further show that sequence and length variability in precursor sequences can affect the free energy and foldback structure of miRNA which may ultimately affect their biogenesis and expression in the biological system. PMID:26873704

  1. Direct somatic lineage conversion.

    PubMed

    Tanabe, Koji; Haag, Daniel; Wernig, Marius

    2015-10-19

    The predominant view of embryonic development and cell differentiation has been that rigid and even irreversible epigenetic marks are laid down along the path of cell specialization ensuring the proper silencing of unrelated lineage programmes. This model made the prediction that specialized cell types are stable and cannot be redirected into other lineages. Accordingly, early attempts to change the identity of somatic cells had little success and was limited to conversions between closely related cell types. Nuclear transplantation experiments demonstrated, however, that specialized cells even from adult mammals can be reprogrammed into a totipotent state. The discovery that a small combination of transcription factors can reprogramme cells to pluripotency without the need of oocytes further supported the view that these epigenetic barriers can be overcome much easier than assumed, but the extent of this flexibility was still unclear. When we showed that a differentiated mesodermal cell can be directly converted to a differentiated ectodermal cell without a pluripotent intermediate, it was suggested that in principle any cell type could be converted into any other cell type. Indeed, the work of several groups in recent years has provided many more examples of direct somatic lineage conversions. Today, the question is not anymore whether a specific cell type can be generated by direct reprogramming but how it can be induced. PMID:26416679

  2. Ancestral reconstruction of tick lineages.

    PubMed

    Mans, Ben J; de Castro, Minique H; Pienaar, Ronel; de Klerk, Daniel; Gaven, Philasande; Genu, Siyamcela; Latif, Abdalla A

    2016-06-01

    Ancestral reconstruction in its fullest sense aims to describe the complete evolutionary history of a lineage. This depends on accurate phylogenies and an understanding of the key characters of each parental lineage. An attempt is made to delineate our current knowledge with regard to the ancestral reconstruction of the tick (Ixodida) lineage. Tick characters may be assigned to Core of Life, Lineages of Life or Edges of Life phenomena depending on how far back these characters may be assigned in the evolutionary Tree of Life. These include housekeeping genes, sub-cellular systems, heme processing (Core of Life), development, moulting, appendages, nervous and organ systems, homeostasis, respiration (Lineages of Life), specific adaptations to a blood-feeding lifestyle, including the complexities of salivary gland secretions and tick-host interactions (Edges of Life). The phylogenetic relationships of lineages, their origins and importance in ancestral reconstruction are discussed. Uncertainties with respect to systematic relationships, ancestral reconstruction and the challenges faced in comparative transcriptomics (next-generation sequencing approaches) are highlighted. While almost 150 years of information regarding tick biology have been assembled, progress in recent years indicates that we are in the infancy of understanding tick evolution. Even so, broad reconstructions can be made with relation to biological features associated with various lineages. Conservation of characters shared with sister and parent lineages are evident, but appreciable differences are present in the tick lineage indicating modification with descent, as expected for Darwinian evolutionary theory. Many of these differences can be related to the hematophagous lifestyle of ticks. PMID:26868413

  3. Ebf1-mediated down-regulation of Id2 and Id3 is essential for specification of the B cell lineage

    PubMed Central

    Thal, Melissa A.; Carvalho, Thiago L.; He, Ti; Kim, Hyung-Gyoon; Gao, Hua; Hagman, James; Klug, Christopher A.

    2009-01-01

    Gene knockout experiments in mice have suggested a hierarchical model of early B cell commitment wherein E2A proteins (E47 and E12) activate early B cell factor (Ebf1), which in turn activates expression of the B cell commitment factor, Pax5. In IL-7 receptor alpha (IL-7Rα) knockout mice, B cell development is blocked before B-lineage commitment at the prepro-B cell stage in adult animals. In IL-7Rα−/− prepro-B cells, E47 is expressed and yet is insufficient to transcriptionally activate the putative downstream target gene, Ebf1. In this study, we show that further increases of E47 expression in IL-7Rα−/− prepro-B cells fails to activate Ebf1, but rather leads to a dramatic induction of the E2A inhibitory factors, Id2 and Id3. In contrast, enforced expression of Ebf1 in IL-7Rα−/− bone marrow potently down-regulates Id2 and Id3 mRNA expression and restores B cell differentiation in vivo. Down-regulation of both Id2 and Id3 during B cell specification is essential in that overexpression of either Id2 or Id3 in wild-type bone marrow blocks B cell specification at the prepro-B cell stage. Collectively, these studies suggest a model where Ebf1 induction specifies the B cell fate by dramatically increasing activity of E47 at the posttranslational level. PMID:19122139

  4. Integrative View of α2,3-Sialyltransferases (ST3Gal) Molecular and Functional Evolution in Deuterostomes: Significance of Lineage-Specific Losses

    PubMed Central

    Petit, Daniel; Teppa, Elin; Mir, Anne-Marie; Vicogne, Dorothée; Thisse, Christine; Thisse, Bernard; Filloux, Cyril; Harduin-Lepers, Anne

    2015-01-01

    Sialyltransferases are responsible for the synthesis of a diverse range of sialoglycoconjugates predicted to be pivotal to deuterostomes’ evolution. In this work, we reconstructed the evolutionary history of the metazoan α2,3-sialyltransferases family (ST3Gal), a subset of sialyltransferases encompassing six subfamilies (ST3Gal I–ST3Gal VI) functionally characterized in mammals. Exploration of genomic and expressed sequence tag databases and search of conserved sialylmotifs led to the identification of a large data set of st3gal-related gene sequences. Molecular phylogeny and large scale sequence similarity network analysis identified four new vertebrate subfamilies called ST3Gal III-r, ST3Gal VII, ST3Gal VIII, and ST3Gal IX. To address the issue of the origin and evolutionary relationships of the st3gal-related genes, we performed comparative syntenic mapping of st3gal gene loci combined to ancestral genome reconstruction. The ten vertebrate ST3Gal subfamilies originated from genome duplication events at the base of vertebrates and are organized in three distinct and ancient groups of genes predating the early deuterostomes. Inferring st3gal gene family history identified also several lineage-specific gene losses, the significance of which was explored in a functional context. Toward this aim, spatiotemporal distribution of st3gal genes was analyzed in zebrafish and bovine tissues. In addition, molecular evolutionary analyses using specificity determining position and coevolved amino acid predictions led to the identification of amino acid residues with potential implication in functional divergence of vertebrate ST3Gal. We propose a detailed scenario of the evolutionary relationships of st3gal genes coupled to a conceptual framework of the evolution of ST3Gal functions. PMID:25534026

  5. Adolescent Interstellar Cloud Poised to Make Star-forming Debut

    NASA Astrophysics Data System (ADS)

    2001-06-01

    Astronomers using the National Science Foundation's (NSF) 140-foot radio telescope at the National Radio Astronomy Observatory (NRAO) in Green Bank, W.Va., have discovered a highly unusual, massive interstellar cloud that appears poised to begin a burst of star formation. The cloud may be the first ever to be detected in the transition between atomic and molecular states. NRAO scientists Felix J. Lockman and Anthony H. Minter presented their findings at the American Astronomical Society meeting in Pasadena, Calif. Radio Image of G28.17+0.05 The scientists discovered the cloud, identified as G28.17+0.05, lying along the inner plane of the Milky Way Galaxy, approximately 16,300 light-years from Earth. Observations of the cloud indicate that it is near one of the Galaxy's sweeping spiral arms, which are outlined by young stars and the massive clouds that form them. Lockman and Minter speculate that as the interstellar cloud slams into the Galactic arm, the resulting shock wave may be precipitating the conversion of the neutral hydrogen atoms into heavier molecules, which could herald the onset of star formation. "These may be the first observations of a cloud that is in the transition between the neutral atomic hydrogen and molecular phases," said Lockman. "This provides astronomers a unique opportunity to study the chemistry of very young interstellar clouds, which could give us significant insights into the early stages of star formation and the structure of the Galaxy." Interstellar clouds that contain neutral atomic hydrogen, called HI (H-one) clouds, are thought of as giant, cold blobs of gas. Researchers study these objects because they offer intriguing glimpses of the composition of our Galaxy and the cosmos, and reveal much about how stars and planets are born. Hydrogen atoms in these clouds give off natural signals (at the 21-cm wavelength), which can be detected only by radio telescopes. The scientists discovered that this HI cloud was unusual in many

  6. Broad-range detection of arboviruses belonging to Simbu serogroup lineage 1 and specific detection of Akabane, Aino and Peaton viruses by newly developed multiple TaqMan assays.

    PubMed

    Shirafuji, Hiroaki; Yazaki, Ryu; Shuto, Yozo; Yanase, Tohru; Kato, Tomoko; Ishikura, Youji; Sakaguchi, Zenjiro; Suzuki, Moemi; Yamakawa, Makoto

    2015-12-01

    TaqMan assays were developed for the broad-range detection of arboviruses belonging to Simbu serogroup lineage 1 in the genus Orthobunyavirus and also for the specific detection of three viruses in the lineage, Akabane, Aino and Peaton viruses (AKAV, AINOV and PEAV, respectively). A primer and probe set was designed for the broad-range detection of Simbu serogroup lineage 1 (Pan-Simbu1 set) mainly targeting AKAV, AINOV, PEAV, Sathuperi and Shamonda viruses (SATV and SHAV), and the forward and reverse primers of the Pan-Simbu1 set were also used for the specific detection of AKAV with another probe (AKAV-specific set). In addition, two more primer and probe sets were designed for AINOV- and PEAV-specific detection, respectively (AINOV- and PEAV-specific sets). All of the four primer and probe sets successfully detected targeted viruses, and thus broad-range and specific detection of all the targeted viruses can be achieved by using two multiplex assays and a single assay in a dual (two-color) assay format when another primer and probe set for a bovine β-actin control is also used. The assays had an analytical sensitivity of 10 copies/tube for AKAV, at least 100 copies/tube for AINOV, 100 copies/tube for PEAV, one copy/tube for SATV and at least 10 copies/tube for SHAV, respectively. Diagnostic sensitivity of the assays was tested with field-collected bovine samples, and the results suggested that the sensitivity was higher than that of a conventional RT-PCR. These data indicate that the newly developed TaqMan assays will be useful tools for the diagnosis and screening of field-collected samples for infections of AKAV and several other arboviruses belonging to the Simbu serogroup lineage 1. PMID:26341063

  7. H2A.Z.1 mono-ubiquitylation antagonizes BRD2 to maintain poised chromatin in ESCs

    PubMed Central

    Surface, Lauren E.; Fields, Paul A.; Subramanian, Vidya; Behmer, Russell; Udeshi, Namrata; Peach, Sally E.; Jaffe, Jacob D.; Boyer, Laurie A.

    2016-01-01

    SUMMARY Histone variant H2A.Z occupies the promoters of active and poised, bivalent genes in ESCs to regulate developmental programs, yet how it contributes to these contrasting states is poorly understood. Here, we investigate the function of H2A.Z.1 mono-ubiquitylation (H2A.Z.1ub) by mutation of the PRC1 target residues (H2A.Z.1K3R3). We show that H2A.Z.1K3R3 is properly incorporated at target promoters in murine ESCs (mESCs), however, loss of mono-ubiquitylation leads to de-repression of bivalent genes, loss of Polycomb binding, and to faulty lineage commitment. Using quantitative proteomics, we find that tandem bromodomain proteins, including the BET family member Brd2, are enriched in H2A.Z.1 chromatin. We further show that Brd2 is gained at de-repressed promoters in H2A.Z.1K3R3 mESCs whereas Brd2 inhibition restores gene silencing at these sites. Together, our study reveals an antagonistic relationship between H2A.Z.1ub and Brd2 to regulate the transcriptional balance at bivalent genes to enable proper execution of developmental programs. PMID:26804911

  8. The Genome of Mycobacterium Africanum West African 2 Reveals a Lineage-Specific Locus and Genome Erosion Common to the M. tuberculosis Complex

    PubMed Central

    Bentley, Stephen D.; Comas, Iñaki; Bryant, Josephine M.; Walker, Danielle; Smith, Noel H.; Harris, Simon R.; Thurston, Scott; Gagneux, Sebastien; Wood, Jonathan; Antonio, Martin; Quail, Michael A.; Gehre, Florian; Adegbola, Richard A.; Parkhill, Julian; de Jong, Bouke C.

    2012-01-01

    Background M. africanum West African 2 constitutes an ancient lineage of the M. tuberculosis complex that commonly causes human tuberculosis in West Africa and has an attenuated phenotype relative to M. tuberculosis. Methodology/Principal Findings In search of candidate genes underlying these differences, the genome of M. africanum West African 2 was sequenced using classical capillary sequencing techniques. Our findings reveal a unique sequence, RD900, that was independently lost during the evolution of two important lineages within the complex: the “modern” M. tuberculosis group and the lineage leading to M. bovis. Closely related to M. bovis and other animal strains within the M. tuberculosis complex, M. africanum West African 2 shares an abundance of pseudogenes with M. bovis but also with M. africanum West African clade 1. Comparison with other strains of the M. tuberculosis complex revealed pseudogenes events in all the known lineages pointing toward ongoing genome erosion likely due to increased genetic drift and relaxed selection linked to serial transmission-bottlenecks and an intracellular lifestyle. Conclusions/Significance The genomic differences identified between M. africanum West African 2 and the other strains of the Mycobacterium tuberculosis complex may explain its attenuated phenotype, and pave the way for targeted experiments to elucidate the phenotypic characteristic of M. africanum. Moreover, availability of the whole genome data allows for verification of conservation of targets used for the next generation of diagnostics and vaccines, in order to ensure similar efficacy in West Africa. PMID:22389744

  9. The analysis of novel distal Cebpa enhancers and silencers using a transcriptional model reveals the complex regulatory logic of hematopoietic lineage specification.

    PubMed

    Bertolino, Eric; Reinitz, John; Manu

    2016-05-01

    C/EBPα plays an instructive role in the macrophage-neutrophil cell-fate decision and its expression is necessary for neutrophil development. How Cebpa itself is regulated in the myeloid lineage is not known. We decoded the cis-regulatory logic of Cebpa, and two other myeloid transcription factors, Egr1 and Egr2, using a combined experimental-computational approach. With a reporter design capable of detecting both distal enhancers and silencers, we analyzed 46 putative cis-regulatory modules (CRMs) in cells representing myeloid progenitors, and derived early macrophages or neutrophils. In addition to novel enhancers, this analysis revealed a surprisingly large number of silencers. We determined the regulatory roles of 15 potential transcriptional regulators by testing 32,768 alternative sequence-based transcriptional models against CRM activity data. This comprehensive analysis allowed us to infer the cis-regulatory logic for most of the CRMs. Silencer-mediated repression of Cebpa was found to be effected mainly by TFs expressed in non-myeloid lineages, highlighting a previously unappreciated contribution of long-distance silencing to hematopoietic lineage resolution. The repression of Cebpa by multiple factors expressed in alternative lineages suggests that hematopoietic genes are organized into densely interconnected repressive networks instead of hierarchies of mutually repressive pairs of pivotal TFs. More generally, our results demonstrate that de novo cis-regulatory dissection is feasible on a large scale with the aid of transcriptional modeling. Current address: Department of Biology, University of North Dakota, 10 Cornell Street, Stop 9019, Grand Forks, ND 58202-9019, USA. PMID:26945717

  10. DNA Poised for Release in Bacteriophage ø29

    PubMed Central

    Tang, Jinghua; Olson, Norman; Jardine, Paul J.; Grimes, Shelley; Anderson, Dwight L.; Baker, Timothy S.

    2008-01-01

    SUMMARY We present here the first asymmetric, three-dimensional reconstruction of a tailed dsDNA virus, the mature bacteriophage ϕ29, at sub-nanometer resolution. This structure reveals the rich detail of the asymmetric interactions and conformational dynamics of the ϕ29 protein and DNA components, and provides novel insight into the mechanics of virus assembly. For example, the dodecameric head-tail connector protein undergoes significant rearrangement upon assembly into the virion. Specific interactions occur between the tightly packed dsDNA and the proteins of the head and tail. Of particular interest and novelty, a ~60Å diameter toroid of dsDNA was observed in the connector-lower collar cavity. The extreme deformation that occurs over a small stretch of DNA is likely a consequence of the high pressure of the packaged genome. This toroid structure may help retain the DNA inside the capsid prior to its injection into the bacterial host. PMID:18547525

  11. Young Stars Poised for Production of Rocky Planets

    NASA Astrophysics Data System (ADS)

    2004-11-01

    "signatures" of crystalline pyroxene and olivine, i.e. peaks at wavelength 9.2 and 11.3 µm, respectively, are clearly visible in the spectrum of the inner stellar disc, demonstrating the presence of these species in that region of the disc. The Sun was born about 4,500 million years ago from a cold and massive cloud of interstellar gas and dust that collapsed under its own gravitational pull. A dusty disc was present around the young star, in which the Earth and other planets, as well as comets and asteroids were later formed. This epoch is long gone, but we may still witness that same process by observing the infrared emission from very young stars and the dusty protoplanetary discs around them. So far, however, the available instrumentation did not allow a study of the distribution of the different components of the dust in such discs; even the closest known are too far away for the best single telescopes to resolve them. But now, as Francesco Paresce, Project Scientist for the VLT Interferometer and a member of the team from ESO explains, "With the VLTI we can combine the light from two well-separated large telescopes to obtain unprecedented angular resolution. This has allowed us, for the first time, to peer directly into the innermost region of the discs around some nearby young stars, right in the place where we expect planets like our Earth are forming or will soon form". Specifically, new interferometric observations of three young stars by an international team [2], using the combined power of two 8.2-m VLT telescopes a hundred metres apart, has achieved sufficient image sharpness (about 0.02 arcsec) to measure the infrared emission from the inner region of the discs around three stars (corresponding approximately to the size of the Earth's orbit around the Sun) and the emission from the outer part of those discs. The corresponding infrared spectra have provided crucial information about the chemical composition of the dust in the discs and also about the average

  12. Postembryonic lineages of the Drosophila brain: I. Development of the lineage-associated fiber tracts

    PubMed Central

    Lovick, Jennifer K.; Ngo, Kathy T.; Omoto, Jaison J.; Wong, Darren C.; Nguyen, Joseph D.; Hartenstein, Volker

    2013-01-01

    Neurons of the Drosophila central brain fall into approximately 100 paired groups, termed lineages. Each lineage is derived from a single asymmetrically-dividing neuroblast. Embryonic neuroblasts produce 1,500 primary neurons (per hemisphere) that make up the larval CNS followed by a second mitotic period in the larva that generates approximately 10,000 secondary, adult-specific neurons. Clonal analyses based on previous works using lineage-specific Gal4 drivers have established that such lineages form highly invariant morphological units. All neurons of a lineage project as one or a few axon tracts (secondary axon tracts, SATs) with characteristic trajectories, thereby representing unique hallmarks. In the neuropil, SATs assemble into larger fiber bundles (fascicles) which interconnect different neuropil compartments. We have analyzed the SATs and fascicles formed by lineages during larval, pupal, and adult stages using antibodies against membrane molecules (Neurotactin/Neuroglian) and synaptic proteins (Bruchpilot/N-Cadherin). The use of these markers allows one to identify fiber bundles of the adult brain and associate them with SATs and fascicles of the larval brain. This work lays the foundation for assigning the lineage identity of GFP-labeled MARCM clones on the basis of their close association with specific SATs and neuropil fascicles, as described in the accompanying paper (Wong et al., 2013. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. Submitted.). PMID:23880429

  13. Postembryonic lineages of the Drosophila brain: I. Development of the lineage-associated fiber tracts.

    PubMed

    Lovick, Jennifer K; Ngo, Kathy T; Omoto, Jaison J; Wong, Darren C; Nguyen, Joseph D; Hartenstein, Volker

    2013-12-15

    Neurons of the Drosophila central brain fall into approximately 100 paired groups, termed lineages. Each lineage is derived from a single asymmetrically-dividing neuroblast. Embryonic neuroblasts produce 1,500 primary neurons (per hemisphere) that make up the larval CNS followed by a second mitotic period in the larva that generates approximately 10,000 secondary, adult-specific neurons. Clonal analyses based on previous works using lineage-specific Gal4 drivers have established that such lineages form highly invariant morphological units. All neurons of a lineage project as one or a few axon tracts (secondary axon tracts, SATs) with characteristic trajectories, thereby representing unique hallmarks. In the neuropil, SATs assemble into larger fiber bundles (fascicles) which interconnect different neuropil compartments. We have analyzed the SATs and fascicles formed by lineages during larval, pupal, and adult stages using antibodies against membrane molecules (Neurotactin/Neuroglian) and synaptic proteins (Bruchpilot/N-Cadherin). The use of these markers allows one to identify fiber bundles of the adult brain and associate them with SATs and fascicles of the larval brain. This work lays the foundation for assigning the lineage identity of GFP-labeled MARCM clones on the basis of their close association with specific SATs and neuropil fascicles, as described in the accompanying paper (Wong et al., 2013. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones. Submitted.). PMID:23880429

  14. Methicillin resistance in Staphylococcus isolates: the "mec alphabet" with specific consideration of mecC, a mec homolog associated with zoonotic S. aureus lineages.

    PubMed

    Becker, Karsten; Ballhausen, Britta; Köck, Robin; Kriegeskorte, André

    2014-10-01

    Livestock-associated (LA) methicillin-resistant Staphylococcus aureus (MRSA) have globally emerged during the past decade. In Europe, this was particularly due to the occurrence of LA-MRSA strains associated with the clonal complex (CC) 398 as defined by multilocus sequence typing. However, more recently animal-adapted clonal lineages of S. aureus showing phenotypic methicillin resistance have been identified such as CC130, CC599, CC59, CC1943 and CC425. These newly emerging LA-MRSA CCs/STs caused infections in animals and zoonoses in humans. In contrast to other S. aureus clonal lineages, the methicillin resistance of the latter CCs/STs is based on a mecA gene homolog, designated mecC, which is part of a distinct SCCmec type (SCCmec XI). Including mecB found in Macrococcus caseolyticus, henceforth, the "mec alphabet" comprises three major gene types with several allotypes. As known for mecA, the gene homolog mecC is also not restricted to S. aureus, but found in several staphylococcal species including S. sciuri, S. stepanovicii and S. xylosus (mecC1 allotype). First investigations showed a wide geographical distribution of mecC-MRSA in Europe and a broad diversity of host species including livestock, companion and wildlife animals. In particular, wild rodents and insectivores might serve as reservoir for staphylococci harboring mecC. Economic burden may be caused by mastitis of dairy cattle. Livestock animals may likely serve as source for human infections with mecC-MRSA; reported cases comprise skin and soft tissue infections, osteomyelitis and bacteremia. Due to the divergent molecular nature of mecC-MRSA, its diagnostics is hampered by difficulties to verify the methicillin resistance using phenotypic as well as DNA-based procedures, which could have negative consequences for therapy of mecC-MRSA-caused infections. PMID:25034857

  15. Phylogenetic lineages in Entomophthoromycota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomophthoromycota Humber is one of five major phylogenetic lineages among the former phylum Zygomycota. These early terrestrial fungi share evolutionarily ancestral characters such as coenocytic mycelium and gametangiogamy as a sexual process resulting in zygospore formation. Previous molecular st...

  16. Seagrass (Zostera marina) Colonization Promotes the Accumulation of Diazotrophic Bacteria and Alters the Relative Abundances of Specific Bacterial Lineages Involved in Benthic Carbon and Sulfur Cycling.

    PubMed

    Sun, Feifei; Zhang, Xiaoli; Zhang, Qianqian; Liu, Fanghua; Zhang, Jianping; Gong, Jun

    2015-10-01

    Seagrass colonization changes the chemistry and biogeochemical cycles mediated by microbes in coastal sediments. In this study, we molecularly characterized the diazotrophic assemblages and entire bacterial community in surface sediments of a Zostera marina-colonized coastal lagoon in northern China. Higher nitrogenase gene (nifH) copy numbers were detected in the sediments from the vegetated region than in the sediments from the unvegetated region nearby. The nifH phylotypes detected were mostly affiliated with the Geobacteraceae, Desulfobulbus, Desulfocapsa, and Pseudomonas. Redundancy analysis based on terminal restriction fragment length polymorphism analysis showed that the distribution of nifH genotypes was mostly shaped by the ratio of total organic carbon to total organic nitrogen, the concentration of cadmium in the sediments, and the pH of the overlying water. High-throughput sequencing and phylogenetic analyses of bacterial 16S rRNA genes also indicated the presence of Geobacteraceae and Desulfobulbaceae phylotypes in these samples. A comparison of these results with those of previous studies suggests the prevalence and predominance of iron(III)-reducing Geobacteraceae and sulfate-reducing Desulfobulbaceae diazotrophs in coastal sedimentary environments. Although the entire bacterial community structure was not significantly different between these two niches, Desulfococcus (Deltaproteobacteria) and Anaerolineae (Chloroflexi) presented with much higher proportions in the vegetated sediments, and Flavobacteriaceae (Bacteroidetes) occurred more frequently in the bare sediments. These data suggest that the high bioavailability of organic matter (indicated by relatively lower carbon-to-nitrogen ratios) and the less-reducing anaerobic condition in vegetated sediments may favor Desulfococcus and Anaerolineae lineages, which are potentially important populations in benthic carbon and sulfur cycling in the highly productive seagrass ecosystem. PMID:26209674

  17. Regional and Stage-Specific Effects of Prospectively Purified Vascular Cells on the Adult V-SVZ Neural Stem Cell Lineage

    PubMed Central

    Crouch, Elizabeth E.; Liu, Chang; Silva-Vargas, Violeta

    2015-01-01

    Adult neural stem cells reside in specialized niches. In the ventricular-subventricular zone (V-SVZ), quiescent neural stem cells (qNSCs) become activated (aNSCs), and generate transit amplifying cells (TACs), which give rise to neuroblasts that migrate to the olfactory bulb. The vasculature is an important component of the adult neural stem cell niche, but whether vascular cells in neurogenic areas are intrinsically different from those elsewhere in the brain is unknown. Moreover, the contribution of pericytes to the neural stem cell niche has not been defined. Here, we describe a rapid FACS purification strategy to simultaneously isolate primary endothelial cells and pericytes from brain microregions of nontransgenic mice using CD31 and CD13 as surface markers. We compared the effect of purified vascular cells from a neurogenic (V-SVZ) and non-neurogenic brain region (cortex) on the V-SVZ stem cell lineage in vitro. Endothelial and pericyte diffusible signals from both regions differentially promote the proliferation and neuronal differentiation of qNSCs, aNSCs, and TACs. Unexpectedly, diffusible cortical signals had the most potent effects on V-SVZ proliferation and neurogenesis, highlighting the intrinsic capacity of non-neurogenic vasculature to support stem cell behavior. Finally, we identify PlGF-2 as an endothelial-derived mitogen that promotes V-SVZ cell proliferation. This purification strategy provides a platform to define the functional and molecular contribution of vascular cells to stem cell niches and other brain regions under different physiological and pathological states. PMID:25788671

  18. Seagrass (Zostera marina) Colonization Promotes the Accumulation of Diazotrophic Bacteria and Alters the Relative Abundances of Specific Bacterial Lineages Involved in Benthic Carbon and Sulfur Cycling

    PubMed Central

    Sun, Feifei; Zhang, Xiaoli; Zhang, Qianqian; Liu, Fanghua

    2015-01-01

    Seagrass colonization changes the chemistry and biogeochemical cycles mediated by microbes in coastal sediments. In this study, we molecularly characterized the diazotrophic assemblages and entire bacterial community in surface sediments of a Zostera marina-colonized coastal lagoon in northern China. Higher nitrogenase gene (nifH) copy numbers were detected in the sediments from the vegetated region than in the sediments from the unvegetated region nearby. The nifH phylotypes detected were mostly affiliated with the Geobacteraceae, Desulfobulbus, Desulfocapsa, and Pseudomonas. Redundancy analysis based on terminal restriction fragment length polymorphism analysis showed that the distribution of nifH genotypes was mostly shaped by the ratio of total organic carbon to total organic nitrogen, the concentration of cadmium in the sediments, and the pH of the overlying water. High-throughput sequencing and phylogenetic analyses of bacterial 16S rRNA genes also indicated the presence of Geobacteraceae and Desulfobulbaceae phylotypes in these samples. A comparison of these results with those of previous studies suggests the prevalence and predominance of iron(III)-reducing Geobacteraceae and sulfate-reducing Desulfobulbaceae diazotrophs in coastal sedimentary environments. Although the entire bacterial community structure was not significantly different between these two niches, Desulfococcus (Deltaproteobacteria) and Anaerolineae (Chloroflexi) presented with much higher proportions in the vegetated sediments, and Flavobacteriaceae (Bacteroidetes) occurred more frequently in the bare sediments. These data suggest that the high bioavailability of organic matter (indicated by relatively lower carbon-to-nitrogen ratios) and the less-reducing anaerobic condition in vegetated sediments may favor Desulfococcus and Anaerolineae lineages, which are potentially important populations in benthic carbon and sulfur cycling in the highly productive seagrass ecosystem. PMID:26209674

  19. CopyRighter: a rapid tool for improving the accuracy of microbial community profiles through lineage-specific gene copy number correction

    PubMed Central

    2014-01-01

    Background Culture-independent molecular surveys targeting conserved marker genes, most notably 16S rRNA, to assess microbial diversity remain semi-quantitative due to variations in the number of gene copies between species. Results Based on 2,900 sequenced reference genomes, we show that 16S rRNA gene copy number (GCN) is strongly linked to microbial phylogenetic taxonomy, potentially under-representing Archaea in amplicon microbial profiles. Using this relationship, we inferred the GCN of all bacterial and archaeal lineages in the Greengenes database within a phylogenetic framework. We created CopyRighter, new software which uses these estimates to correct 16S rRNA amplicon microbial profiles and associated quantitative (q)PCR total abundance. CopyRighter parses microbial profiles and, because GCN estimates are pre-computed for all taxa in the reference taxonomy, rapidly corrects GCN bias. Software validation with in silico and in vitro mock communities indicated that GCN correction results in more accurate estimates of microbial relative abundance and improves the agreement between metagenomic and amplicon profiles. Analyses of human-associated and anaerobic digester microbiomes illustrate that correction makes tangible changes to estimates of qPCR total abundance, α and β diversity, and can significantly change biological interpretation. For example, human gut microbiomes from twins were reclassified into three rather than two enterotypes after GCN correction. Conclusions The CopyRighter bioinformatic tools permits rapid correction of GCN in microbial surveys, resulting in improved estimates of microbial abundance, α and β diversity. PMID:24708850

  20. Proceedings of the 2011 Space Cryogenics Workshop: "Poised for the Future, Reflecting on the Past"

    NASA Technical Reports Server (NTRS)

    Johnson, W. L. (Editor); Schnell, A. R. (Editor); Huget, L. (Editor)

    2013-01-01

    The 24th Space Cryogenics Workshop was held at the Best Western Coeur d Alene Inn and Conference Center, Coeur d Alene, Idaho, June 8-10, 2011. The workshop was organized and sponsored by NASA Kennedy Space Center and NASA Marshall Space Flight Center, with a theme of "Poised for the Future, Reflecting on the Past." Over 100 scientists and engineers from around the world came together to discuss space applications for cryogenics, renew old acquaintances, and meet new practitioners in the field of space cryogenics.

  1. Regional profiling for determination of genotype diversity of mastitis-specific Staphylococcus aureus lineage in Canada by use of clumping factor A, pulsed-field gel electrophoresis, and spa typing.

    PubMed

    Said, Kamaleldin B; Ismail, Johanne; Campbell, Jennifer; Mulvey, Michael R; Bourgault, Anne-Marie; Messier, Serge; Zhao, Xin

    2010-02-01

    One of the major concerns in global public health and the dairy industry is the emergence of host-specific virulent Staphylococcus aureus strains. The high degree of stability of the species genome renders detection of genetic microvariations difficult. Thus, approaches for the rapid tracking of specialized lineages are urgently needed. We used clumping factor A (clfA) to profile 87 bovine mastitis isolates from four regions in Canada and compared the results to those obtained by pulsed-field gel electrophoresis (PFGE) and spa typing. Twenty-five pulsotypes were obtained by PFGE with an index of discrimination of 0.91. These were assigned to six PFGE lineage groups A to F and seven spa types, including two novel ones. Group A had 48.3% of the isolates and group D had 43.7% of the isolates, while only 8% of the isolates were variable. The results of antimicrobial susceptibility testing indicated that all isolates were sensitive to methicillin and the non-beta-lactam antibiotics, while three isolates were resistant to penicillin and one isolate was resistant to tetracycline. All isolates had the clfA gene and belonged to 20 clfA repeat types with an index of discrimination of 0.90. The dominant clfA types, types X, Q, C, and Z, formed 82% and 43% of PFGE groups A and D, respectively, and had copy numbers that varied only within a narrow range of between 46 and 52 copies, implying clonal selection. The rest were variable and region specific. Furthermore, the dominant groups contained subpopulations in different regions across Canada. Sequence information confirmed the relatedness obtained by the use of clfA repeat copy numbers and other methods and further revealed the occurrence of full-repeat deletions and conserved host-specific codon-triplet position biases at 18-bp units. Thus, concordant with the results of PFGE and spa typing, clfA typing proved useful for revealing the clonal nature of the mastitis isolate lineage and for the rapid profiling of subpopulations

  2. A novel begomovirus isolated from sida contains putative cis- and trans-acting replication specificity determinants that have evolved independently in several geographical lineages.

    PubMed

    Mauricio-Castillo, J A; Torres-Herrera, S I; Cárdenas-Conejo, Y; Pastor-Palacios, G; Méndez-Lozano, J; Argüello-Astorga, G R

    2014-09-01

    A novel begomovirus isolated from a Sida rhombifolia plant collected in Sinaloa, Mexico, was characterized. The genomic components of sida mosaic Sinaloa virus (SiMSinV) shared highest sequence identity with DNA-A and DNA-B components of chino del tomate virus (CdTV), suggesting a vertical evolutionary relationship between these viruses. However, recombination analysis indicated that a short segment of SiMSinV DNA-A encompassing the plus-strand replication origin and the 5´-proximal 43 codons of the Rep gene was derived from tomato mottle Taino virus (ToMoTV). Accordingly, the putative cis- and trans-acting replication specificity determinants of SiMSinV were identical to those of ToMoTV but differed from those of CdTV. Modeling of the SiMSinV and CdTV Rep proteins revealed significant differences in the region comprising the small β1/β5 sheet element, where five putative DNA-binding specificity determinants (SPDs) of Rep (i.e., amino acid residues 5, 8, 10, 69 and 71) were previously identified. Computer-assisted searches of public databases led to identification of 33 begomoviruses from three continents encoding proteins with SPDs identical to those of the Rep encoded by SiMSinV. Sequence analysis of the replication origins demonstrated that all 33 begomoviruses harbor potential Rep-binding sites identical to those of SiMSinV. These data support the hypothesis that the Rep β1/β5 sheet region determines specificity of this protein for DNA replication origin sequences. PMID:24737005

  3. Viet Nam, once isolated, poised for significant role in oil and gas

    SciTech Connect

    Not Available

    1991-07-15

    This paper reports that Viet Nam is on its way up in the petroleum world. After years of international isolation, the country is poised for a flurry of exploration by international oil companies in the early 1990s. Viet Nam has joined the Soviet Union as the only members of the now dissolved, formerly Moscow dominated, 10 nation Council for Mutual Economic Assistance (CMEA) that are self-sufficient in oil production. Moreover, Viet Nam has far outstripped neighboring China, which was not a CMEA member, in offshore oil flow even though China has a much larger Outer Continental Shelf. Prospects are that Viet Nam will continue to lead China in offshore oil production until 1995 at least.

  4. Lysine-specific demethylase-1 (LSD1) is compartmentalized at nuclear chromocenters in early post-mitotic cells of the olfactory sensory neuronal lineage.

    PubMed

    Kilinc, Seda; Savarino, Alyssa; Coleman, Julie H; Schwob, James E; Lane, Robert P

    2016-07-01

    Mammalian olfaction depends on the development of specialized olfactory sensory neurons (OSNs) that each express one odorant receptor (OR) protein from a large family of OR genes encoded in the genome. The lysine-specific demethylase-1 (LSD1) protein removes activating H3K4 or silencing H3K9 methylation marks at gene promoters and is required for proper OR regulation. We show that LSD1 protein exhibits variable organization within nuclei of developing OSNs, and tends to consolidate into a single dominant compartment at the edges of chromocenters within nuclei of early post-mitotic cells of the mouse olfactory epithelium (MOE). Using an immortalized cell line derived from developing olfactory placode, we show that consolidation of LSD1 appears to be cell-cycle regulated, with a peak occurrence in early G1. LSD1 co-compartmentalizes with CoREST, a protein known to collaborate with LSD1 to carry out a variety of chromatin-modifying functions. We show that LSD1 compartments co-localize with 1-3 OR loci at the exclusion of most OR genes, and commonly associate with Lhx2, a transcription factor involved in OR regulation. Together, our data suggests that LSD1 is sequestered into a distinct nuclear space that might restrict a histone-modifying function to a narrow developmental time window and/or range of OR gene targets. PMID:26947098

  5. Defects in the synthetic pathway prevent DIF-1 mediated stalk lineage specification cascade in the non-differentiating social amoeba, Acytostelium subglobosum.

    PubMed

    Mohri, Kurato; Hata, Takashi; Kikuchi, Haruhisa; Oshima, Yoshiteru; Urushihara, Hideko

    2014-01-01

    Separation of somatic cells from germ-line cells is a crucial event for multicellular organisms, but how this step was achieved during evolution remains elusive. In Dictyostelium discoideum and many other dictyostelid species, solitary amoebae gather and form a multicellular fruiting body in which germ-line spores and somatic stalk cells differentiate, whereas in Acytostelium subglobosum, acellular stalks form and all aggregated amoebae become spores. In this study, because most D. discoideum genes known to be required for stalk cell differentiation have homologs in A. subglobosum, we inferred functional variations in these genes and examined conservation of the stalk cell specification cascade of D. discoideum mediated by the polyketide differentiation-inducing factor-1 (DIF-1) in A. subglobosum. Through heterologous expression of A. subglobosum orthologs of DIF-1 biosynthesis genes in D. discoideum, we confirmed that two of the three genes were functional equivalents, while DIF-methyltransferase (As-dmtA) involved at the final step of DIF-1 synthesis was not. In fact, DIF-1 activity was undetectable in A. subglobosum lysates and amoebae of this species were not responsive to DIF-1, suggesting a lack of DIF-1 production in this species. On the other hand, the molecular function of an A. subglobosum ortholog of DIF-1 responsive transcription factor was equivalent with that of D. discoideum and inhibition of polyketide synthesis caused developmental arrest in A. subglobosum, which could not be rescued by DIF-1 addition. These results suggest that non-DIF-1 polyketide cascades involving downstream transcription factors are required for fruiting body development of A. subglobosum. PMID:24876391

  6. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones

    PubMed Central

    Wong, Darren C.; Lovick, Jennifer K.; Ngo, Kathy T.; Borisuthirattana, Wichanee; Omoto, Jaison J.; Hartenstein, Volker

    2014-01-01

    The Drosophila central brain is largely composed of lineages, units of sibling neurons derived from a single progenitor cell or neuroblast. During the early embryonic period neuroblast generate the primary neurons that constitute the larval brain. Neuroblasts reactivate in the larva, adding to their lineages a large number of secondary neurons which, according to previous studies in which selected lineages were labeled by stably expressed markers, differentiate during metamorphosis, sending terminal axonal and dendritic branches into defined volumes of the brain neuropil. We call the overall projection pattern of neurons forming a given lineage the “projection envelope” of that lineage. By inducing MARCM clones at the early larval stage, we labeled the secondary progeny of each neuroblast. For the supraesophageal ganglion excluding mushroom body (the part of the brain investigated in the present work) we obtained 81 different types of clones, Based on the trajectory of their secondary axon tracts (described in the accompanying paper), we assigned these clones to specific lineages defined in the larva. Since a labeled clone reveals all aspects (cell bodies, axon tracts, terminal arborization) of a lineage, we were able to describe projection envelopes for all secondary lineages of the supraesophageal ganglion. This work provides a framework by which the secondary neurons (forming the vast majority of adult brain neurons) can be assigned to genetically and developmentally defined groups. It also represents a step towards the goal to establish, for each lineage, the link between its mature anatomical and functional phenotype, and the genetic make-up of the neuroblast it descends from. PMID:23872236

  7. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones.

    PubMed

    Wong, Darren C; Lovick, Jennifer K; Ngo, Kathy T; Borisuthirattana, Wichanee; Omoto, Jaison J; Hartenstein, Volker

    2013-12-15

    The Drosophila central brain is largely composed of lineages, units of sibling neurons derived from a single progenitor cell or neuroblast. During the early embryonic period, neuroblasts generate the primary neurons that constitute the larval brain. Neuroblasts reactivate in the larva, adding to their lineages a large number of secondary neurons which, according to previous studies in which selected lineages were labeled by stably expressed markers, differentiate during metamorphosis, sending terminal axonal and dendritic branches into defined volumes of the brain neuropil. We call the overall projection pattern of neurons forming a given lineage the "projection envelope" of that lineage. By inducing MARCM clones at the early larval stage, we labeled the secondary progeny of each neuroblast. For the supraesophageal ganglion excluding mushroom body (the part of the brain investigated in the present work) we obtained 81 different types of clones. Based on the trajectory of their secondary axon tracts (described in the accompanying paper, Lovick et al., 2013), we assigned these clones to specific lineages defined in the larva. Since a labeled clone reveals all aspects (cell bodies, axon tracts, terminal arborization) of a lineage, we were able to describe projection envelopes for all secondary lineages of the supraesophageal ganglion. This work provides a framework by which the secondary neurons (forming the vast majority of adult brain neurons) can be assigned to genetically and developmentally defined groups. It also represents a step towards the goal to establish, for each lineage, the link between its mature anatomical and functional phenotype, and the genetic make-up of the neuroblast it descends from. PMID:23872236

  8. Identification and characterization of mouse otic sensory lineage genes

    PubMed Central

    Hartman, Byron H.; Durruthy-Durruthy, Robert; Laske, Roman D.; Losorelli, Steven; Heller, Stefan

    2015-01-01

    Vertebrate embryogenesis gives rise to all cell types of an organism through the development of many unique lineages derived from the three primordial germ layers. The otic sensory lineage arises from the otic vesicle, a structure formed through invagination of placodal non-neural ectoderm. This developmental lineage possesses unique differentiation potential, giving rise to otic sensory cell populations including hair cells, supporting cells, and ganglion neurons of the auditory and vestibular organs. Here we present a systematic approach to identify transcriptional features that distinguish the otic sensory lineage (from early otic progenitors to otic sensory populations) from other major lineages of vertebrate development. We used a microarray approach to analyze otic sensory lineage populations including microdissected otic vesicles (embryonic day 10.5) as well as isolated neonatal cochlear hair cells and supporting cells at postnatal day 3. Non-otic tissue samples including periotic tissues and whole embryos with otic regions removed were used as reference populations to evaluate otic specificity. Otic populations shared transcriptome-wide correlations in expression profiles that distinguish members of this lineage from non-otic populations. We further analyzed the microarray data using comparative and dimension reduction methods to identify individual genes that are specifically expressed in the otic sensory lineage. This analysis identified and ranked top otic sensory lineage-specific transcripts including Fbxo2, Col9a2, and Oc90, and additional novel otic lineage markers. To validate these results we performed expression analysis on select genes using immunohistochemistry and in situ hybridization. Fbxo2 showed the most striking pattern of specificity to the otic sensory lineage, including robust expression in the early otic vesicle and sustained expression in prosensory progenitors and auditory and vestibular hair cells and supporting cells. PMID:25852475

  9. Long-term outcome and lineage-specific chimerism in 194 patients with Wiskott-Aldrich syndrome treated by hematopoietic cell transplantation in the period 1980-2009: an international collaborative study.

    PubMed

    Moratto, Daniele; Giliani, Silvia; Bonfim, Carmem; Mazzolari, Evelina; Fischer, Alain; Ochs, Hans D; Cant, Andrew J; Thrasher, Adrian J; Cowan, Morton J; Albert, Michael H; Small, Trudy; Pai, Sung-Yun; Haddad, Elie; Lisa, Antonella; Hambleton, Sophie; Slatter, Mary; Cavazzana-Calvo, Marina; Mahlaoui, Nizar; Picard, Capucine; Torgerson, Troy R; Burroughs, Lauri; Koliski, Adriana; Neto, Jose Zanis; Porta, Fulvio; Qasim, Waseem; Veys, Paul; Kavanau, Kristina; Hönig, Manfred; Schulz, Ansgar; Friedrich, Wilhelm; Notarangelo, Luigi D

    2011-08-11

    In this retrospective collaborative study, we have analyzed long-term outcome and donor cell engraftment in 194 patients with Wiskott-Aldrich syndrome (WAS) who have been treated by hematopoietic cell transplantation (HCT) in the period 1980- 2009. Overall survival was 84.0% and was even higher (89.1% 5-year survival) for those who received HCT since the year 2000, reflecting recent improvement of outcome after transplantation from mismatched family donors and for patients who received HCT from an unrelated donor at older than 5 years. Patients who went to transplantation in better clinical conditions had a lower rate of post-HCT complications. Retrospective analysis of lineage-specific donor cell engraftment showed that stable full donor chimerism was attained by 72.3% of the patients who survived for at least 1 year after HCT. Mixed chimerism was associated with an increased risk of incomplete reconstitution of lymphocyte count and post-HCT autoimmunity, and myeloid donor cell chimerism < 50% was associated with persistent thrombocytopenia. These observations indicate continuous improvement of outcome after HCT for WAS and may have important implications for the development of novel protocols aiming to obtain full correction of the disease and reduce post-HCT complications. PMID:21659547

  10. Analysis of a new strain of Euphorbia mosaic virus with distinct replication specificity unveils a lineage of begomoviruses with short Rep sequences in the DNA-B intergenic region

    PubMed Central

    2010-01-01

    Background Euphorbia mosaic virus (EuMV) is a member of the SLCV clade, a lineage of New World begomoviruses that display distinctive features in their replication-associated protein (Rep) and virion-strand replication origin. The first entirely characterized EuMV isolate is native from Yucatan Peninsula, Mexico; subsequently, EuMV was detected in weeds and pepper plants from another region of Mexico, and partial DNA-A sequences revealed significant differences in their putative replication specificity determinants with respect to EuMV-YP. This study was aimed to investigate the replication compatibility between two EuMV isolates from the same country. Results A new isolate of EuMV was obtained from pepper plants collected at Jalisco, Mexico. Full-length clones of both genomic components of EuMV-Jal were biolistically inoculated into plants of three different species, which developed symptoms indistinguishable from those induced by EuMV-YP. Pseudorecombination experiments with EuMV-Jal and EuMV-YP genomic components demonstrated that these viruses do not form infectious reassortants in Nicotiana benthamiana, presumably because of Rep-iteron incompatibility. Sequence analysis of the EuMV-Jal DNA-B intergenic region (IR) led to the unexpected discovery of a 35-nt-long sequence that is identical to a segment of the rep gene in the cognate viral DNA-A. Similar short rep sequences ranging from 35- to 51-nt in length were identified in all EuMV isolates and in three distinct viruses from South America related to EuMV. These short rep sequences in the DNA-B IR are positioned downstream to a ~160-nt non-coding domain highly similar to the CP promoter of begomoviruses belonging to the SLCV clade. Conclusions EuMV strains are not compatible in replication, indicating that this begomovirus species probably is not a replicating lineage in nature. The genomic analysis of EuMV-Jal led to the discovery of a subgroup of SLCV clade viruses that contain in the non-coding region of

  11. Two C or not two C: recurrent disruption of Zn-ribbons, gene duplication, lineage-specific gene loss, and horizontal gene transfer in evolution of bacterial ribosomal proteins

    PubMed Central

    Makarova, Kira S; Ponomarev, Vladimir A; Koonin, Eugene V

    2001-01-01

    + and C- forms in different lineages. Additionally, evidence was obtained for a role of horizontal gene transfer in the evolution of these ribosomal proteins, with multiple cases of gene displacement 'in situ', that is, without a change of the gene order in the recipient genome. Conclusions A more complex picture of evolution of bacterial ribosomal proteins than previously suspected is emerging from these results, with major contributions of lineage-specific gene loss and horizontal gene transfer. The recurrent theme of emergence and disruption of Zn-ribbons in bacterial ribosomal proteins awaits a functional interpretation. PMID:11574053

  12. Comparison of Shiga-like Toxin II expression between two diverse lineages of Escherichia coli O157:H7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The existence of two separate lineages of E. coli O157:H7 has previously been reported, and research points to one specific lineage, lineage I, possessing more pathogenicity towards human hosts. We postulate that the more pathogenic lineage expresses higher levels of shiga-like toxin 2 (Stx2) than t...

  13. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams

    PubMed Central

    Jaeger, Kristin L.; Olden, Julian D.; Pelland, Noel A.

    2014-01-01

    Protecting hydrologic connectivity of freshwater ecosystems is fundamental to ensuring species persistence, ecosystem integrity, and human well-being. More frequent and severe droughts associated with climate change are poised to significantly alter flow intermittence patterns and hydrologic connectivity in dryland streams of the American Southwest, with deleterious effects on highly endangered fishes. By integrating local-scale hydrologic modeling with emerging approaches in landscape ecology, we quantify fine-resolution, watershed-scale changes in habitat size, spacing, and connectance under forecasted climate change in the Verde River Basin, United States. Model simulations project annual zero-flow day frequency to increase by 27% by midcentury, with differential seasonal consequences on continuity (temporal continuity at discrete locations) and connectivity (spatial continuity within the network). A 17% increase in the frequency of stream drying events is expected throughout the network with associated increases in the duration of these events. Flowing portions of the river network will diminish between 8% and 20% in spring and early summer and become increasingly isolated by more frequent and longer stretches of dry channel fragments, thus limiting the opportunity for native fishes to access spawning habitats and seasonally available refuges. Model predictions suggest that midcentury and late century climate will reduce network-wide hydrologic connectivity for native fishes by 6–9% over the course of a year and up to 12–18% during spring spawning months. Our work quantifies climate-induced shifts in stream drying and connectivity across a large river network and demonstrates their implications for the persistence of a globally endemic fish fauna. PMID:25136090

  14. Differential protein network analysis of the immune cell lineage.

    PubMed

    Clancy, Trevor; Hovig, Eivind

    2014-01-01

    Recently, the Immunological Genome Project (ImmGen) completed the first phase of the goal to understand the molecular circuitry underlying the immune cell lineage in mice. That milestone resulted in the creation of the most comprehensive collection of gene expression profiles in the immune cell lineage in any model organism of human disease. There is now a requisite to examine this resource using bioinformatics integration with other molecular information, with the aim of gaining deeper insights into the underlying processes that characterize this immune cell lineage. We present here a bioinformatics approach to study differential protein interaction mechanisms across the entire immune cell lineage, achieved using affinity propagation applied to a protein interaction network similarity matrix. We demonstrate that the integration of protein interaction networks with the most comprehensive database of gene expression profiles of the immune cells can be used to generate hypotheses into the underlying mechanisms governing the differentiation and the differential functional activity across the immune cell lineage. This approach may not only serve as a hypothesis engine to derive understanding of differentiation and mechanisms across the immune cell lineage, but also help identify possible immune lineage specific and common lineage mechanism in the cells protein networks. PMID:25309909

  15. Launching the T-Lineage Developmental Programme

    PubMed Central

    Rothenberg, Ellen V.; Moore, Jonathan E.; Yui, Mary A.

    2011-01-01

    Preface Multipotent blood progenitor cells enter the thymus and begin a protracted differentiation process in which they gradually acquire T-cell characteristics while shedding their legacy of developmental plasticity. Notch signalling and basic helix-loop-helix E-protein transcription factors collaborate repeatedly to trigger and sustain this process throughout the period leading up to T-cell lineage commitment. Nevertheless, the process is discontinuous with separately regulated steps that demand roles for additional collaborating factors. This review discusses new evidence on the coordination of specification and commitment in the early T-cell pathway; effects of microenvironmental signals; the inheritance of stem-cell regulatory factors; and the ensemble of transcription factors that modulate the effects of Notch and E proteins, to distinguish individual stages and to polarize T-lineage fate determination. PMID:18097446

  16. Slit/Robo signaling regulates cell fate decisions in the intestinal stem cell lineage of Drosophila

    PubMed Central

    Biteau, Benoît; Jasper, Heinrich

    2014-01-01

    To maintain tissue homeostasis, cell fate decisions within stem cell lineages have to respond to the needs of the tissue. This coordination of lineage choices with regenerative demand remains poorly characterized. Here we identify a signal from enteroendocrine cells (EEs) that controls lineage specification in the Drosophila intestine. We find that EEs secrete Slit, a ligand for the Robo2 receptor in stem cells (ISCs) that limits ISC commitment to the endocrine lineage, establishing negative feedback control of EE regeneration. We further show that this lineage decision is made within ISCs and requires induction of the transcription factor Prospero in ISCs. Our work identifies a new function for the conserved Slit/Robo pathway in the regulation of adult stem cells, establishing negative feedback control of ISC lineage specification as a critical strategy to preserve tissue homeostasis. Our results further amend the current understanding of cell fate commitment within the Drosophila ISC lineage. PMID:24931602

  17. Slit/Robo signaling regulates cell fate decisions in the intestinal stem cell lineage of Drosophila.

    PubMed

    Biteau, Benoît; Jasper, Heinrich

    2014-06-26

    In order to maintain tissue homeostasis, cell fate decisions within stem cell lineages have to respond to the needs of the tissue. This coordination of lineage choices with regenerative demand remains poorly characterized. Here, we identify a signal from enteroendocrine cells (EEs) that controls lineage specification in the Drosophila intestine. We find that EEs secrete Slit, a ligand for the Robo2 receptor in intestinal stem cells (ISCs) that limits ISC commitment to the endocrine lineage, establishing negative feedback control of EE regeneration. Furthermore, we show that this lineage decision is made within ISCs and requires induction of the transcription factor Prospero in ISCs. Our work identifies a function for the conserved Slit/Robo pathway in the regulation of adult stem cells, establishing negative feedback control of ISC lineage specification as a critical strategy to preserve tissue homeostasis. Our results further amend the current understanding of cell fate commitment within the Drosophila ISC lineage. PMID:24931602

  18. Instruction of hematopoietic lineage choice by cytokine signaling

    SciTech Connect

    Endele, Max; Etzrodt, Martin; Schroeder, Timm

    2014-12-10

    Hematopoiesis is the cumulative consequence of finely tuned signaling pathways activated through extrinsic factors, such as local niche signals and systemic hematopoietic cytokines. Whether extrinsic factors actively instruct the lineage choice of hematopoietic stem and progenitor cells or are only selectively allowing survival and proliferation of already intrinsically lineage-committed cells has been debated over decades. Recent results demonstrated that cytokines can instruct lineage choice. However, the precise function of individual cytokine-triggered signaling molecules in inducing cellular events like proliferation, lineage choice, and differentiation remains largely elusive. Signal transduction pathways activated by different cytokine receptors are highly overlapping, but support the production of distinct hematopoietic lineages. Cellular context, signaling dynamics, and the crosstalk of different signaling pathways determine the cellular response of a given extrinsic signal. New tools to manipulate and continuously quantify signaling events at the single cell level are therefore required to thoroughly interrogate how dynamic signaling networks yield a specific cellular response. - Highlights: • Recent studies provided definite proof for lineage-instructive action of cytokines. • Signaling pathways involved in hematopoietic lineage instruction remain elusive. • New tools are emerging to quantitatively study dynamic signaling networks over time.

  19. Oxidative Protein Folding: from Thiol-disulfide Exchange Reactions to the Redox Poise of the Endoplasmic Reticulum

    PubMed Central

    Hudson, Devin A.; Gannon, Shawn A.; Thorpe, Colin

    2014-01-01

    This review examines oxidative protein folding within the mammalian endoplasmic reticulum (ER) from an enzymological perspective. In protein disulfide isomerase-first (PDI-first) pathways of oxidative protein folding, PDI is the immediate oxidant of reduced client proteins and then addresses disulfide mispairings in a second isomerization phase. In PDI-second pathways the initial oxidation is PDI-independent. Evidence for the rapid reduction of PDI by reduced glutathione is presented in the context of PDI-first pathways. Strategies and challenges are discussed for determination of the concentrations of reduced and oxidized glutathione and of the ratios of PDIred:PDIox. The preponderance of evidence suggests that the mammalian ER is more reducing than first envisaged. The average redox state of major PDI-family members is found to be largely to almost totally reduced. These observations are consistent with model studies showing that oxidative protein folding proceeds most efficiently at a reducing redox poise consistent with a stoichiometric insertion of disulfides into client proteins. Following a discussion of the use of natively-encoded fluorescent probes to report the glutathione redox poise of the ER, this review concludes with elaboration of a complementary strategy to discontinuously survey the redox state of as many redox-active disulfides that can be identified by ratiometric LC-MS-MS methods. Consortia of oxidoreductases which are in redox equilibrium can then be identified and compared to the glutathione redox poise of the ER to gain a more detailed understanding of the factors that influence oxidative protein folding within the secretory compartment. PMID:25091901

  20. Lymphatic endothelial lineage assemblage during corneal lymphangiogenesis.

    PubMed

    Connor, Alicia L; Kelley, Philip M; Tempero, Richard M

    2016-03-01

    Postnatal inflammatory lymphangiogenesis presumably requires precise regulatory processes to properly assemble proliferating lymphatic endothelial cells (LECs). The specific mechanisms that regulate the assembly of LECs during new lymphatic vessel synthesis are unclear. Dynamic endothelial shuffling and rearrangement has been proposed as a mechanism of blood vessel growth. We developed genetic lineage-tracing strategies using an inductive transgenic technology to track the fate of entire tandem dimer tomato-positive (tdT) lymphatic vessels or small, in some cases clonal, populations of LECs. We coupled this platform with a suture-induced mouse model of corneal lymphangiogenesis and used different analytic microscopy techniques including serial live imaging to study the spatial properties of proliferating tdT(+) LEC progenies. LEC precursors and their progeny expanded from the corneal limbal lymphatic vessel and were assembled contiguously to comprise a subunit within a new lymphatic vessel. VE-cadherin blockade induced morphologic abnormalities in newly synthesized lymphatic vessels, but did not disrupt the tdT(+) lymphatic endothelial lineage assembly. Analysis of this static and dynamic data based largely on direct in vivo observations supports a model of lymphatic endothelial lineage assemblage during corneal inflammatory lymphangiogenesis. PMID:26658452

  1. Lymphatic endothelial lineage assemblage during corneal lymphangiogenesis

    PubMed Central

    Connor, Alicia L.; Kelley, Philip M.; Tempero, Richard M.

    2015-01-01

    Post natal inflammatory lymphangiogenesis presumably requires precise regulatory processes to properly assemble proliferating lymphatic endothelial cells (LECs). The specific mechanisms that regulate the assembly of LECs during new lymphatic vessel synthesis are unclear. Dynamic endothelial shuffling and rearrangement has been proposed as a mechanism of blood vessel growth. We developed genetic lineage tracing strategies using an inductive transgenic technology to track the fate of entire tandem dimer tomato positive (tdT) lymphatic vessels or small, in some cases clonal, populations of LECs. We coupled this platform with a suture induced mouse model of corneal lymphangiogenesis and used different analytic microscopy techniques including serial live imaging to study the spatial properties of proliferating tdT+ LEC progenies. LEC precursors and their progeny expanded from the corneal limbal lymphatic vessel and were assembled contiguously to comprise a subunit within a new lymphatic vessel. VE-cadherin blockade induced morphologic abnormalities in newly synthesized lymphatic vessels, but did not disrupt the tdT+ lymphatic endothelial lineage assembly. Analysis of this static and dynamic data based largely on direct in vivo observations supports a model of lymphatic endothelial lineage assemblage during corneal inflammatory lymphangiogenesis. PMID:26658452

  2. Lineages of varicella-zoster virus.

    PubMed

    McGeoch, Duncan J

    2009-04-01

    Relationships among varicella-zoster virus (VZV; Human herpesvirus 3) genome sequences were examined to evaluate descent of strains, structures of lineages and incidence of recombination events. Eighteen complete, published genome sequences were aligned and 494 single nucleotide polymorphisms (SNPs) extracted, each as two alleles. At 281 SNPs, a single sequence differed from all the others. Distributions of the remaining 213 SNPs indicated that the sequences fell into five groups, which coincided with previously recognized phylogenetic groupings, termed E1, E2, J, M1 and M2. The 213-SNP set was divisible into 104 SNPs that were specific to a single group, and 109 cross-group SNPs that defined relationships among groups. This last set was evaluated by criteria of continuities in relationships between groups and breaks in such patterns, to identify crossover points and ascribe them to lineages. For the 99 cross-group SNPs in the genome's long unique region, it was seen that the E2 and M2 groups were almost completely distinct in their SNP alleles, and the E1 group was derived from a recombinant of E2 and M2. A valid phylogenetic tree could thus be constructed for the four E2 and two M2 strains. There was no substantive evidence for recombination within the E2 group or the E1 group (ten strains). The J and M1 groups each contained only one strain, and both were interpreted as having substantial distinct histories plus possible recombinant elements from the E2 and M2 lineages. The view of VZV recombination and phylogeny reached represents a major clarification of deep relationships among VZV lineages. PMID:19264671

  3. Data defining markers of human neural stem cell lineage potential

    PubMed Central

    Oikari, Lotta E.; Okolicsanyi, Rachel K.; Griffiths, Lyn R.; Haupt, Larisa M.

    2016-01-01

    Neural stem cells (NSCs) and neural progenitor cells (NPCs) are self-renewing and multipotent cells, however, NPCs are considered to be more lineage-restricted with a reduced self-renewing capacity. We present data comparing the expression of 21 markers encompassing pluripotency, self-renewal (NSC) as well as neuronal and glial (astrocyte and oligodendrocyte) lineage specification and 28 extracellular proteoglycan (PG) genes and their regulatory enzymes between embryonic stem cell (ESC)-derived human NSCs (hNSC H9 cells, Thermo Fisher) and human cortex-derived normal human NPCs (nhNPCs, Lonza). The data demonstrates expression differences of multiple lineage and proteoglycan-associated genes between hNSC H9 cells and nhNPCs. Data interpretation of markers and proteoglycans defining NSC and neural cell lineage characterisation can be found in “Cell surface heparan sulfate proteoglycans as novel markers of human neural stem cell fate determination” (Oikari et al. 2015) [1]. PMID:26958640

  4. Data defining markers of human neural stem cell lineage potential.

    PubMed

    Oikari, Lotta E; Okolicsanyi, Rachel K; Griffiths, Lyn R; Haupt, Larisa M

    2016-06-01

    Neural stem cells (NSCs) and neural progenitor cells (NPCs) are self-renewing and multipotent cells, however, NPCs are considered to be more lineage-restricted with a reduced self-renewing capacity. We present data comparing the expression of 21 markers encompassing pluripotency, self-renewal (NSC) as well as neuronal and glial (astrocyte and oligodendrocyte) lineage specification and 28 extracellular proteoglycan (PG) genes and their regulatory enzymes between embryonic stem cell (ESC)-derived human NSCs (hNSC H9 cells, Thermo Fisher) and human cortex-derived normal human NPCs (nhNPCs, Lonza). The data demonstrates expression differences of multiple lineage and proteoglycan-associated genes between hNSC H9 cells and nhNPCs. Data interpretation of markers and proteoglycans defining NSC and neural cell lineage characterisation can be found in "Cell surface heparan sulfate proteoglycans as novel markers of human neural stem cell fate determination" (Oikari et al. 2015) [1]. PMID:26958640

  5. Single-cell analysis defines the divergence between the innate lymphoid cell lineage and lymphoid tissue-inducer cell lineage.

    PubMed

    Ishizuka, Isabel E; Chea, Sylvestre; Gudjonson, Herman; Constantinides, Michael G; Dinner, Aaron R; Bendelac, Albert; Golub, Rachel

    2016-03-01

    The precise lineage relationship between innate lymphoid cells (ILCs) and lymphoid tissue-inducer (LTi) cells is poorly understood. Using single-cell multiplex transcriptional analysis of 100 lymphoid genes and single-cell cultures of fetal liver precursor cells, we identified the common proximal precursor to these lineages and found that its bifurcation was marked by differential induction of the transcription factors PLZF and TCF1. Acquisition of individual effector programs specific to the ILC subsets ILC1, ILC2 and ILC3 was initiated later, at the common ILC precursor stage, by transient expression of mixed ILC1, ILC2 and ILC3 transcriptional patterns, whereas, in contrast, the development of LTi cells did not go through multilineage priming. Our findings provide insight into the divergent mechanisms of the differentiation of the ILC lineage and LTi cell lineage and establish a high-resolution 'blueprint' of their development. PMID:26779601

  6. Archaic lineages in the history of modern humans.

    PubMed Central

    Labuda, D; Zietkiewicz, E; Yotova, V

    2000-01-01

    An important question in the ongoing debate on the origin of Homo sapiens is whether modern human populations issued from a single lineage or whether several, independently evolving lineages contributed to their genetic makeup. We analyzed haplotypes composed of 35 polymorphisms from a segment of the dystrophin gene. We find that the bulk of a worldwide sample of 868 chromosomes represents haplotypes shared by different continental groups. The remaining chromosomes carry haplotypes specific for the continents or for local populations. The haplotypes specific for non-Africans can be derived from the most frequent ones through simple recombination or a mutation. In contrast, chromosomes specific for sub-Saharan Africans represent a distinct group, as shown by principal component analysis, maximum likelihood tree, structural comparison, and summary statistics. We propose that African chromosomes descend from at least two lineages that have been evolving separately for a period of time. One of them underwent range expansion colonizing different continents, including Africa, where it mixed with another, local lineage represented today by a large fraction of African-specific haplotypes. Genetic admixture involving archaic lineages appears therefore to have occurred within Africa rather than outside this continent, explaining greater diversity of sub-Saharan populations observed in a variety of genetic systems. PMID:11014825

  7. Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain.

    PubMed

    Larsen, Camilla; Shy, Diana; Spindler, Shana R; Fung, Siaumin; Pereanu, Wayne; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2009-11-15

    The Drosophila central brain is composed of approximately 100 paired lineages, with most lineages comprising 100-150 neurons. Most lineages have a number of important characteristics in common. Typically, neurons of a lineage stay together as a coherent cluster and project their axons into a coherent bundle visible from late embryo to adult. Neurons born during the embryonic period form the primary axon tracts (PATs) that follow stereotyped pathways in the neuropile. Apoptotic cell death removes an average of 30-40% of primary neurons around the time of hatching. Secondary neurons generated during the larval period form secondary axon tracts (SATs) that typically fasciculate with their corresponding primary axon tract. SATs develop into the long fascicles that interconnect the different compartments of the adult brain. Structurally, we distinguish between three types of lineages: PD lineages, characterized by distinct, spatially separate proximal and distal arborizations; C lineages with arborizations distributed continuously along the entire length of their tract; D lineages that lack proximal arborizations. Arborizations of many lineages, in particular those of the PD type, are restricted to distinct neuropile compartments. We propose that compartments are "scaffolded" by individual lineages, or small groups thereof. Thereby, the relatively small number of primary neurons of each primary lineage set up the compartment map in the late embryo. Compartments grow during the larval period simply by an increase in arbor volume of primary neurons. Arbors of secondary neurons form within or adjacent to the larval compartments, resulting in smaller compartment subdivisions and additional, adult specific compartments. PMID:19538956

  8. Phylogenetic lineages in Pseudocercospora

    PubMed Central

    Crous, P.W.; Braun, U.; Hunter, G.C.; Wingfield, M.J.; Verkley, G.J.M.; Shin, H.-D.; Nakashima, C.; Groenewald, J.Z.

    2013-01-01

    Pseudocercospora is a large cosmopolitan genus of plant pathogenic fungi that are commonly associated with leaf and fruit spots as well as blights on a wide range of plant hosts. They occur in arid as well as wet environments and in a wide range of climates including cool temperate, sub-tropical and tropical regions. Pseudocercospora is now treated as a genus in its own right, although formerly recognised as either an anamorphic state of Mycosphaerella or having mycosphaerella-like teleomorphs. The aim of this study was to sequence the partial 28S nuclear ribosomal RNA gene of a selected set of isolates to resolve phylogenetic generic limits within the Pseudocercospora complex. From these data, 14 clades are recognised, six of which cluster in Mycosphaerellaceae. Pseudocercospora s. str. represents a distinct clade, sister to Passalora eucalypti, and a clade representing the genera Scolecostigmina, Trochophora and Pallidocercospora gen. nov., taxa formerly accommodated in the Mycosphaerella heimii complex and characterised by smooth, pale brown conidia, as well as the formation of red crystals in agar media. Other clades in Mycosphaerellaceae include Sonderhenia, Microcyclosporella, and Paracercospora. Pseudocercosporella resides in a large clade along with Phloeospora, Miuraea, Cercospora and Septoria. Additional clades represent Dissoconiaceae, Teratosphaeriaceae, Cladosporiaceae, and the genera Xenostigmina, Strelitziana, Cyphellophora and Thedgonia. The genus Phaeomycocentrospora is introduced to accommodate Mycocentrospora cantuariensis, primarily distinguished from Pseudocercospora based on its hyaline hyphae, broad conidiogenous loci and hila. Host specificity was considered for 146 species of Pseudocercospora occurring on 115 host genera from 33 countries. Partial nucleotide sequence data for three gene loci, ITS, EF-1α, and ACT suggest that the majority of these species are host specific. Species identified on the basis of host, symptomatology and general

  9. E protein transcription factors are required for the development of CD4(+) lineage T cells.

    PubMed

    Jones-Mason, Mary Elizabeth; Zhao, Xudong; Kappes, Dietmar; Lasorella, Anna; Iavarone, Antonio; Zhuang, Yuan

    2012-03-23

    The double-positive (DP) to single-positive (SP) transition during T cell development is initiated by downregulation of the E protein transcription factors HEB and E2A. Here, we have demonstrated that in addition to regulating the onset of this transition, HEB and E2A also play a separate role in CD4(+) lineage choice. Deletion of HEB and E2A in DP thymocytes specifically blocked the development of CD4(+) lineage T cells. Furthermore, deletion of the E protein inhibitors Id2 and Id3 allowed CD4(+) T cell development but blocked CD8(+) lineage development. Analysis of the CD4(+) lineage transcriptional regulators ThPOK and Gata3 placed HEB and E2A upstream of CD4(+) lineage specification. These studies identify an important role for E proteins in the activation of CD4(+) lineage differentiation as thymocytes undergo the DP to SP transition. PMID:22425249

  10. Genetic diversity and lineage dynamic of dengue virus serotype 1 (DENV-1) in Cambodia.

    PubMed

    Duong, Veasna; Simmons, Cameron; Gavotte, Laurent; Viari, Alain; Ong, Sivuth; Chantha, Ngan; Lennon, Niall J; Birren, Bruce W; Vong, Sirenda; Farrar, Jeremy J; Henn, Matthew R; Deubel, Vincent; Frutos, Roger; Buchy, Philippe

    2013-04-01

    In Cambodia, dengue virus (DENV) was first isolated in 1963 and has become endemic with peak epidemic during raining season. Since 2000, the Dengue National Control Program has reported from 10,000 to 40,000 cases per year with fatality rates ranging from 0.7 to 1.7. All four dengue serotypes are found circulating in Cambodia with alternative predominance of serotypes DENV-2 and DENV-3. The DENV-1 represents from 5% to 20% of all circulating viruses, depending upon the year. In this work, 79 clinical strains of DENV-1 were isolated between 2000 and 2009 and their genome fully sequenced. Four distinct lineages with different dynamics were identified. The main evolutionary drive was negative selective pressure but each lineage was characterized by the presence of specific mutations acquired through evolution. Coexistence, extinction and replacement of lineages occurred over the 10-year period. Lineages 1, 2 and 3 were all detected since 2000-2002 and disappeared in 2003, 2004-2005 and 2007, respectively. Lineages 1 and 2 displayed different dynamics. Lineage 1 was very diverse whereas lineage 2 was very homogeneous. Lineage 4 which derived from lineage 3 in 2003 remained the only one at the end of the sampling period in 2008-2009 owing to a selective sweep. The lineages dynamic of DENV-1 viruses and consequences for molecular epidemiology are discussed. PMID:21757030

  11. Two Cell Lineages, myf5 and myf5-Independent, Participate in Mouse Skeletal Myogenesis

    PubMed Central

    Haldar, Malay; Karan, Goutam; Tvrdik, Petr; Capecchi, Mario R.

    2010-01-01

    SUMMARY In skeletal muscle development, the myogenic regulatory factors myf5 and myoD play redundant roles in the specification and maintenance of myoblasts, whereas myf6 has a downstream role in differentiating myocytes and myofibers. It is not clear whether the redundancy between myf5 and myoD is within the same cell lineage or between distinct lineages. Using lineage tracing and conditional cell ablation in mice, we demonstrate the existence of two distinct lineages in myogenesis: a myf5 lineage and a myf5-independent lineage. Ablating the myf5 lineage is compatible with myogenesis sustained by myf5-independent, myoD-expressing myoblasts, whereas ablation of the myf6 lineage leads to an absence of all differentiated myofibers, although early myogenesis appears to be unaffected. We also demonstrate here the existence of a significant myf5 lineage within ribs that has an important role in rib development, suggested by severe rib defects upon ablating the myf5 lineage. PMID:18331721

  12. Sequencing of Sylvilagus VDJ genes reveals a new VHa allelic lineage and shows that ancient VH lineages were retained differently in leporids.

    PubMed

    Pinheiro, Ana; Melo-Ferreira, José; Abrantes, Joana; Martinelli, Nicola; Lavazza, Antonio; Alves, Paulo C; Gortázar, Christian; Esteves, Pedro J

    2014-12-01

    Antigen recognition by immunoglobulins depends upon initial rearrangements of heavy chain V, D, and J genes. In leporids, a unique system exists for the VH genes usage that exhibit highly divergent lineages: the VHa allotypes, the Lepus sL lineage and the VHn genes. For the European rabbit (Oryctolagus cuniculus), four VHa lineages have been described, the a1, a2, a3 and a4. For hares (Lepus sp.), one VHa lineage was described, the a2L, as well as a more ancient sL lineage. Both genera use the VHn genes in a low frequency of their VDJ rearrangements. To address the hypothesis that the VH specificities could be associated with different environments, we sequenced VDJ genes from a third leporid genus, Sylvilagus. We found a fifth and equally divergent VHa lineage, the a5, and an ancient lineage, the sS, related to the hares' sL, but failed to obtain VHn genes. These results show that the studied leporids employ different VH lineages in the generation of the antibody repertoire, suggesting that the leporid VH genes are subject to strong selective pressure likely imposed by specific pathogens. PMID:25267061

  13. Cytoskeleton-based forecasting of stem cell lineage fates

    PubMed Central

    Treiser, Matthew D.; Yang, Eric H.; Gordonov, Simon; Cohen, Daniel M.; Androulakis, Ioannis P.; Kohn, Joachim; Chen, Christopher S.; Moghe, Prabhas V.

    2010-01-01

    Stem cells that adopt distinct lineages cannot be distinguished based on traditional cell shape. This study reports that higher-order variations in cell shape and cytoskeletal organization that occur within hours of stimulation forecast the lineage commitment fates of human mesenchymal stem cells (hMSCs). The unique approach captures numerous early (24 h), quantitative features of actin fluororeporter shapes, intensities, textures, and spatial distributions (collectively termed morphometric descriptors). The large number of descriptors are reduced into “combinations” through which distinct subpopulations of cells featuring unique combinations are identified. We demonstrate that hMSCs cultured on fibronectin-treated glass substrates under environments permissive to bone lineage induction could be readily discerned within the first 24 h from those cultured in basal- or fat-inductive conditions by such cytoskeletal feature groupings. We extend the utility of this approach to forecast osteogenic stem cell lineage fates across a series of synthetic polymeric materials of diverse physicochemical properties. Within the first 24 h following stem cell seeding, we could successfully “profile” the substrate responsiveness prospectively in terms of the degree of bone versus nonbone predisposition. The morphometric methodology also provided insights into how substrates may modulate the pace of osteogenic lineage specification. Cells on glass substrates deficient in fibronectin showed a similar divergence of lineage fates, but delayed beyond 48 h. In summary, this high-content imaging and single cell modeling approach offers a framework to elucidate and manipulate determinants of stem cell behaviors, as well as to screen stem cell lineage modulating materials and environments. PMID:20080726

  14. Systems Genetic Analysis of Osteoblast-Lineage Cells

    PubMed Central

    Calabrese, Gina; Bennett, Brian J.; Orozco, Luz; Kang, Hyun M.; Eskin, Eleazar; Dombret, Carlos; De Backer, Olivier; Lusis, Aldons J.; Farber, Charles R.

    2012-01-01

    The osteoblast-lineage consists of cells at various stages of maturation that are essential for skeletal development, growth, and maintenance. Over the past decade, many of the signaling cascades that regulate this lineage have been elucidated; however, little is known of the networks that coordinate, modulate, and transmit these signals. Here, we identify a gene network specific to the osteoblast-lineage through the reconstruction of a bone co-expression network using microarray profiles collected on 96 Hybrid Mouse Diversity Panel (HMDP) inbred strains. Of the 21 modules that comprised the bone network, module 9 (M9) contained genes that were highly correlated with prototypical osteoblast maker genes and were more highly expressed in osteoblasts relative to other bone cells. In addition, the M9 contained many of the key genes that define the osteoblast-lineage, which together suggested that it was specific to this lineage. To use the M9 to identify novel osteoblast genes and highlight its biological relevance, we knocked-down the expression of its two most connected “hub” genes, Maged1 and Pard6g. Their perturbation altered both osteoblast proliferation and differentiation. Furthermore, we demonstrated the mice deficient in Maged1 had decreased bone mineral density (BMD). It was also discovered that a local expression quantitative trait locus (eQTL) regulating the Wnt signaling antagonist Sfrp1 was a key driver of the M9. We also show that the M9 is associated with BMD in the HMDP and is enriched for genes implicated in the regulation of human BMD through genome-wide association studies. In conclusion, we have identified a physiologically relevant gene network and used it to discover novel genes and regulatory mechanisms involved in the function of osteoblast-lineage cells. Our results highlight the power of harnessing natural genetic variation to generate co-expression networks that can be used to gain insight into the function of specific cell-types. PMID

  15. Lineage-associated tracts defining the anatomy of the Drosophila first instar larval brain.

    PubMed

    Hartenstein, Volker; Younossi-Hartenstein, Amelia; Lovick, Jennifer K; Kong, Angel; Omoto, Jaison J; Ngo, Kathy T; Viktorin, Gudrun

    2015-10-01

    Fixed lineages derived from unique, genetically specified neuroblasts form the anatomical building blocks of the Drosophila brain. Neurons belonging to the same lineage project their axons in a common tract, which is labeled by neuronal markers. In this paper, we present a detailed atlas of the lineage-associated tracts forming the brain of the early Drosophila larva, based on the use of global markers (anti-Neuroglian, anti-Neurotactin, inscuteable-Gal4>UAS-chRFP-Tub) and lineage-specific reporters. We describe 68 discrete fiber bundles that contain axons of one lineage or pairs/small sets of adjacent lineages. Bundles enter the neuropil at invariant locations, the lineage tract entry portals. Within the neuropil, these fiber bundles form larger fascicles that can be classified, by their main orientation, into longitudinal, transverse, and vertical (ascending/descending) fascicles. We present 3D digital models of lineage tract entry portals and neuropil fascicles, set into relationship to commonly used, easily recognizable reference structures such as the mushroom body, the antennal lobe, the optic lobe, and the Fasciclin II-positive fiber bundles that connect the brain and ventral nerve cord. Correspondences and differences between early larval tract anatomy and the previously described late larval and adult lineage patterns are highlighted. Our L1 neuro-anatomical atlas of lineages constitutes an essential step towards following morphologically defined lineages to the neuroblasts of the early embryo, which will ultimately make it possible to link the structure and connectivity of a lineage to the expression of genes in the particular neuroblast that gives rise to that lineage. Furthermore, the L1 atlas will be important for a host of ongoing work that attempts to reconstruct neuronal connectivity at the level of resolution of single neurons and their synapses. PMID:26141956

  16. Identification of six Trypanosoma cruzi lineages by sequence-characterised amplified region markers.

    PubMed

    Brisse, S; Dujardin, J C; Tibayrenc, M

    2000-11-01

    Six discrete phylogenetic lineages were recently identified in Trypanosoma cruzi, on the basis of multilocus enzyme electrophoresis and random amplified polymorphic DNA (RAPD) characterisation. The objective of the present study was to develop specific PCR-based markers for the identification of each of the six lineages. Eighty-seven T. cruzi stocks representative of all the lineages were characterised by RAPD with three primers, resulting in the identification of three fragments that were specifically amplified in the given sets of lineages. After cloning and sequencing these fragments, three pairs of sequence-characterised amplified region (SCAR) primers were designed. After PCR amplification using the SCAR primers, the initial polymorphism was retained either as the presence or absence of amplification, or as size variation between the PCR products. Although most PCR products, taken individually, were distributed across several lineages, the combination of the three SCAR markers resulted in characteristic patterns that were distinct in the six lineages. Furthermore, T. cruzi lineages were distinguished from Trypanosoma rangeli, T. cruzi marinkellei and T. cruzi-like organisms. The excellent correspondence of these new PCR markers with the phylogenetic lineages, allied with their sensitivity, makes them reliable tools for lineage identification and strain characterisation in T. cruzi. The approach described here could be generalised to any species of microorganism harbouring clear-cut phylogenetic subdivisions. PMID:11087920

  17. Atypical Response Regulator ChxR from Chlamydia trachomatis Is Structurally Poised for DNA Binding

    PubMed Central

    Barta, Michael L.; Hickey, John M.; Anbanandam, Asokan; Dyer, Kevin; Hammel, Michal; Hefty, P. Scott

    2014-01-01

    ChxR is an atypical two-component signal transduction response regulator (RR) of the OmpR/PhoB subfamily encoded by the obligate intracellular bacterial pathogen Chlamydia trachomatis. Despite structural homology within both receiver and effector domains to prototypical subfamily members, ChxR does not require phosphorylation for dimer formation, DNA binding or transcriptional activation. Thus, we hypothesized that ChxR is in a conformation optimal for DNA binding with limited interdomain interactions. To address this hypothesis, the NMR solution structure of the ChxR effector domain was determined and used in combination with the previously reported ChxR receiver domain structure to generate a full-length dimer model based upon SAXS analysis. Small-angle scattering of ChxR supported a dimer with minimal interdomain interactions and effector domains in a conformation that appears to require only subtle reorientation for optimal major/minor groove DNA interactions. SAXS modeling also supported that the effector domains were in a head-to-tail conformation, consistent with ChxR recognizing tandem DNA repeats. The effector domain structure was leveraged to identify key residues that were critical for maintaining protein - nucleic acid interactions. In combination with prior analysis of the essential location of specific nucleotides for ChxR recognition of DNA, a model of the full-length ChxR dimer bound to its cognate cis-acting element was generated. PMID:24646934

  18. University of Washington Twin Registry: Poised for the Next Generation of Twin Research

    PubMed Central

    Strachan, Eric; Hunt, Corinne; Afari, Niloofar; Duncan, Glen; Noonan, Carolyn; Schur, Ellen; Watson, Nathaniel; Goldberg, Jack; Buchwald, Dedra

    2015-01-01

    The University of Washington Twin Registry is a unique community-based registry of twin pairs who join specifically to participate in scientific research. It was founded in 2002 to serve as a resource for investigators throughout the scientific community. Current enrollment exceeds 7,200 pairs, and plans are in place to increase enrollment to 10,000 pairs by 2015. In addition to serving as a recruitment base for new research studies, the registry maintains extensive and continually expanding survey data on physical and mental health, as well as a biorepository that includes DNA from more than 8,800 individual twins. The registry is engaged in linking member data to birth records and to diagnostic and procedure variables for hospital-based care provided to members in Washington State. It also incorporates several innovative variables relevant to the built and social environments, which were created by geocoding twin addresses and linking the resulting coordinates to geospatial information systems databases. This combination of existing data and biospecimens, characterizing a group of twins who are willing to participate in research, is a valuable resource for the new wave of twin studies. These include ‘omics’, epigenetics, gene-by-environment interactions, and other novel methods to understand human health. PMID:23218177

  19. Cellular and molecular investigations of the adhesion and mechanics of Listeria monocytogenes lineages' I and II environmental and epidemic strains.

    PubMed

    Eskhan, Asma O; Abu-Lail, Nehal I

    2013-03-15

    Atomic force microscopy (AFM) was used to probe the mechanical and adherence properties of eight Listeria monocytogenes' strains representative of the species' two phylogenetic lineages I and II. From a functional perspective, lineage' I strains were characterized by lower overall adhesion forces and higher specific and nonspecific forces compared to lineage' II strains. From a structural perspective, lineage' II strains were characterized by higher Young's moduli and longer and stiffer biopolymers compared to lineage' I strains. Both lineages' I and II strains were similar in their grafting densities. Finally, our results indicated that epidemic and environmental strains of L. monocytogenes and irrespective of their lineage group were characterized by similar Young's moduli of elasticities and adhesion forces at the cellular level. However, at the molecular level, epidemic strains were characterized by higher specific and nonspecific forces, shorter, denser, and more flexible biopolymers compared to environmental strains. PMID:23261349

  20. Phylogenetic lineages in the Botryosphaeriaceae

    PubMed Central

    Crous, Pedro W.; Slippers, Bernard; Wingfield, Michael J.; Rheeder, John; Marasas, Walter F.O.; Philips, Alan J.L.; Alves, Artur; Burgess, Treena; Barber, Paul; Groenewald, Johannes Z.

    2006-01-01

    Botryosphaeria is a species-rich genus with a cosmopolitan distribution, commonly associated with dieback and cankers of woody plants. As many as 18 anamorph genera have been associated with Botryosphaeria, most of which have been reduced to synonymy under Diplodia (conidia mostly ovoid, pigmented, thick-walled), or Fusicoccum (conidia mostly fusoid, hyaline, thin-walled). However, there are numerous conidial anamorphs having morphological characteristics intermediate between Diplodia and Fusicoccum, and there are several records of species outside the Botryosphaeriaceae that have anamorphs apparently typical of Botryosphaeria s.str. Recent studies have also linked Botryosphaeria to species with pigmented, septate ascospores, and Dothiorella anamorphs, or Fusicoccum anamorphs with Dichomera synanamorphs. The aim of this study was to employ DNA sequence data of the 28S rDNA to resolve apparent lineages within the Botryosphaeriaceae. From these data, 12 clades are recognised. Two of these lineages clustered outside the Botryosphaeriaceae, namely Diplodia-like anamorphs occurring on maize, which are best accommodated in Stenocarpella (Diaporthales), as well as an unresolved clade including species of Camarosporium/Microdiplodia. We recognise 10 lineages within the Botryosphaeriaceae, including an unresolved clade (Diplodia/Lasiodiplodia/Tiarosporella), Botryosphaeria s.str. (Fusicoccum anamorphs), Macrophomina, Neoscytalidium gen. nov., Dothidotthia (Dothiorella anamorphs), Neofusicoccum gen. nov. (Botryosphaeria-like teleomorphs, Dichomera-like synanamorphs), Pseudofusicoccum gen. nov., Saccharata (Fusicoccum- and Diplodia-like synanamorphs), “Botryosphaeria” quercuum (Diplodia-like anamorph), and Guignardia (Phyllosticta anamorphs). Separate teleomorph and anamorph names are not provided for newly introduced genera, even where both morphs are known. The taxonomy of some clades and isolates (e.g. B. mamane) remains unresolved due to the absence of ex

  1. The melanocyte lineage in development and disease

    PubMed Central

    Mort, Richard L.; Jackson, Ian J.; Patton, E. Elizabeth

    2015-01-01

    Melanocyte development provides an excellent model for studying more complex developmental processes. Melanocytes have an apparently simple aetiology, differentiating from the neural crest and migrating through the developing embryo to specific locations within the skin and hair follicles, and to other sites in the body. The study of pigmentation mutations in the mouse provided the initial key to identifying the genes and proteins involved in melanocyte development. In addition, work on chicken has provided important embryological and molecular insights, whereas studies in zebrafish have allowed live imaging as well as genetic and transgenic approaches. This cross-species approach is powerful and, as we review here, has resulted in a detailed understanding of melanocyte development and differentiation, melanocyte stem cells and the role of the melanocyte lineage in diseases such as melanoma. PMID:25670789

  2. Histone modifications and p53 binding poise the p21 promoter for activation in human embryonic stem cells

    PubMed Central

    Itahana, Yoko; Zhang, Jinqiu; Göke, Jonathan; Vardy, Leah A.; Han, Rachel; Iwamoto, Kozue; Cukuroglu, Engin; Robson, Paul; Pouladi, Mahmoud A.; Colman, Alan; Itahana, Koji

    2016-01-01

    The high proliferation rate of embryonic stem cells (ESCs) is thought to arise partly from very low expression of p21. However, how p21 is suppressed in ESCs has been unclear. We found that p53 binds to the p21 promoter in human ESCs (hESCs) as efficiently as in differentiated human mesenchymal stem cells, however it does not promote p21 transcription in hESCs. We observed an enrichment for both the repressive histone H3K27me3 and activating histone H3K4me3 chromatin marks at the p21 locus in hESCs, suggesting it is a suppressed, bivalent domain which overrides activation by p53. Reducing H3K27me3 methylation in hESCs rescued p21 expression, and ectopic expression of p21 in hESCs triggered their differentiation. Further, we uncovered a subset of bivalent promoters bound by p53 in hESCs that are similarly induced upon differentiation in a p53-dependent manner, whereas p53 promotes the transcription of other target genes which do not show an enrichment of H3K27me3 in ESCs. Our studies reveal a unique epigenetic strategy used by ESCs to poise undesired p53 target genes, thus balancing the maintenance of pluripotency in the undifferentiated state with a robust response to differentiation signals, while utilizing p53 activity to maintain genomic stability and homeostasis in ESCs. PMID:27346849

  3. Histone modifications and p53 binding poise the p21 promoter for activation in human embryonic stem cells.

    PubMed

    Itahana, Yoko; Zhang, Jinqiu; Göke, Jonathan; Vardy, Leah A; Han, Rachel; Iwamoto, Kozue; Cukuroglu, Engin; Robson, Paul; Pouladi, Mahmoud A; Colman, Alan; Itahana, Koji

    2016-01-01

    The high proliferation rate of embryonic stem cells (ESCs) is thought to arise partly from very low expression of p21. However, how p21 is suppressed in ESCs has been unclear. We found that p53 binds to the p21 promoter in human ESCs (hESCs) as efficiently as in differentiated human mesenchymal stem cells, however it does not promote p21 transcription in hESCs. We observed an enrichment for both the repressive histone H3K27me3 and activating histone H3K4me3 chromatin marks at the p21 locus in hESCs, suggesting it is a suppressed, bivalent domain which overrides activation by p53. Reducing H3K27me3 methylation in hESCs rescued p21 expression, and ectopic expression of p21 in hESCs triggered their differentiation. Further, we uncovered a subset of bivalent promoters bound by p53 in hESCs that are similarly induced upon differentiation in a p53-dependent manner, whereas p53 promotes the transcription of other target genes which do not show an enrichment of H3K27me3 in ESCs. Our studies reveal a unique epigenetic strategy used by ESCs to poise undesired p53 target genes, thus balancing the maintenance of pluripotency in the undifferentiated state with a robust response to differentiation signals, while utilizing p53 activity to maintain genomic stability and homeostasis in ESCs. PMID:27346849

  4. Super resolution microscopy is poised to reveal new insights into the formation and maturation of dendritic spines

    PubMed Central

    Robinson, Cristina M.; Patel, Mikin R.; Webb, Donna J.

    2016-01-01

    Dendritic spines and synapses are critical for neuronal communication, and they are perturbed in many neurological disorders; however, the study of these structures in living cells has been hindered by their small size. Super resolution microscopy, unlike conventional light microscopy, is diffraction unlimited and thus is well suited for imaging small structures, such as dendritic spines and synapses. Super resolution microscopy has already revealed important new information about spine and synapse morphology, actin remodeling, and nanodomain composition in both healthy cells and diseased states. In this review, we highlight the advancements in probes that make super resolution more amenable to live-cell imaging of spines and synapses. We also discuss recent data obtained by super resolution microscopy that has advanced our knowledge of dendritic spine and synapse structure, organization, and dynamics in both healthy and diseased contexts. Finally, we propose a series of critical questions for understanding spine and synapse formation and maturation that super resolution microscopy is poised to answer. PMID:27408691

  5. Induction of Pluripotency in Mouse Somatic Cells with Lineage Specifiers

    PubMed Central

    Shu, Jian; Wu, Chen; Wu, Yetao; Li, Zhiyuan; Shao, Sida; Zhao, Wenhui; Tang, Xing; Yang, Huan; Shen, Lijun; Zuo, Xiaohan; Yang, Weifeng; Shi, Yan; Chi, Xiaochun; Zhang, Hongquan; Gao, Ge; Shu, Youmin; Yuan, Kehu; He, Weiwu; Tang, Chao; Zhao, Yang; Deng, Hongkui

    2014-01-01

    SUMMARY The reprogramming factors that induce pluripotency have been identified primarily from embryonic stem cell (ESC)-enriched, pluripotency-associated factors. Here we report that during mouse somatic cell reprogramming, pluripotency can be induced with lineage specifiers that are pluripotency rivals to suppress ESC identity, most of which are not enriched in ESCs. We found that OCT4 and SOX2, the core regulators of pluripotency, can be replaced by lineage specifiers that are involved in mesendodermal (ME) specification and in ectodermal (ECT) specification, respectively. OCT4 and its substitutes attenuated the elevated expression of a group of ECT genes whereas SOX2 and its substitutes curtailed a group of ME genes during reprogramming. Surprisingly, the two counteracting lineage specifiers can synergistically induce pluripotency in the absence of both OCT4 and SOX2. Our study suggests a “seesaw model,” in which a balance that is established using pluripotency factors and/or counteracting lineage specifiers can facilitate reprogramming. PMID:23706735

  6. Theory and Practice of Lineage Tracing.

    PubMed

    Hsu, Ya-Chieh

    2015-11-01

    Lineage tracing is a method that delineates all progeny produced by a single cell or a group of cells. The possibility of performing lineage tracing initiated the field of Developmental Biology and continues to revolutionize Stem Cell Biology. Here, I introduce the principles behind a successful lineage-tracing experiment. In addition, I summarize and compare different methods for conducting lineage tracing and provide examples of how these strategies can be implemented to answer fundamental questions in development and regeneration. The advantages and limitations of each method are also discussed. PMID:26284340

  7. Poised for the Millennium.

    ERIC Educational Resources Information Center

    Agron, Joe, Ed.

    1999-01-01

    Presents advice from five school administrators on how schools are meeting facility and business challenges in the new millennium. Issues discussed concern power needs, the Y2K computer problem, the explosion of new educational technology, school security, educational finance, and building deterioration. (GR)

  8. Comparative Genomic Analyses of the Moraxella catarrhalis Serosensitive and Seroresistant Lineages Demonstrate Their Independent Evolution.

    PubMed

    Earl, Joshua P; de Vries, Stefan P W; Ahmed, Azad; Powell, Evan; Schultz, Matthew P; Hermans, Peter W M; Hill, Darryl J; Zhou, Zhemin; Constantinidou, Crystala I; Hu, Fen Z; Bootsma, Hester J; Ehrlich, Garth D

    2016-01-01

    The bacterial speciesMoraxella catarrhalishas been hypothesized as being composed of two distinct lineages (referred to as the seroresistant [SR] and serosensitive [SS]) with separate evolutionary histories based on several molecular typing methods, whereas 16S ribotyping has suggested an additional split within the SS lineage. Previously, we characterized whole-genome sequences of 12 SR-lineage isolates, which revealed a relatively small supragenome when compared with other opportunistic nasopharyngeal pathogens, suggestive of a relatively short evolutionary history. Here, we performed whole-genome sequencing on 18 strains from both ribotypes of the SS lineage, an additional SR strain, as well as four previously identified highly divergent strains based on multilocus sequence typing analyses. All 35 strains were subjected to a battery of comparative genomic analyses which clearly show that there are three lineages-the SR, SS, and the divergent. The SR and SS lineages are closely related, but distinct from each other based on three different methods of comparison: Allelic differences observed among core genes; possession of lineage-specific sets of core and distributed genes; and by an alignment of concatenated core sequences irrespective of gene annotation. All these methods show that the SS lineage has much longer interstrain branches than the SR lineage indicating that this lineage has likely been evolving either longer or faster than the SR lineage. There is evidence of extensive horizontal gene transfer (HGT) within both of these lineages, and to a lesser degree between them. In particular, we identified very high rates of HGT between these two lineages for ß-lactamase genes. The four divergent strains aresui generis, being much more distantly related to both the SR and SS groups than these other two groups are to each other. Based on average nucleotide identities, gene content, GC content, and genome size, this group could be considered as a separate

  9. Lineage determinants in early endocrine development

    PubMed Central

    Rieck, Sebastian; Bankaitis, Eric D.; Wright, Christopher V.E.

    2013-01-01

    Pancreatic endocrine cells are produced from a dynamic epithelium in a process that, as in any developing organ, is driven by interacting programs of spatiotemporally regulated intercellular signals and autonomous gene regulatory networks. These algorithms work to push progenitors and their transitional intermediates through a series of railroad-station-like switching decisions to regulate flux along specific differentiation tracks. Extensive research on pancreas organogenesis over the last 20 years, greatly spurred by the potential to restore functional β-cell mass in diabetic patients by transplantation therapy, is advancing our knowledge of how endocrine lineage bias is established and allocation is promoted. The field is working towards the goal of generating a detailed blueprint of how heterogeneous cell populations interact and respond to each other, and other influences such as the extracellular matrix, to move into progressively refined and mature cell states. Here, we highlight how signaling codes and transcriptional networks might determine endocrine lineage within a complex and dynamic architecture, based largely on studies in the mouse. The process begins with the designation of multipotent progenitor cells (MPC) to pancreatic buds that subsequently move through a newly proposed period involving epithelial plexus formation-remodeling, and ends with formation of clustered endocrine islets connected to the vascular and peripheral nervous systems. Developing this knowledge base, and increasing the emphasis on direct comparisons between mouse and human, will yield a more complete and focused picture of pancreas development, and thereby inform β-cell-directed differentiation from human embryonic stem or induced pluripotent stem cells (hESC, iPSC). Additionally, a deeper understanding may provide surprising therapeutic angles by defining conditions that allow the controllable reprogramming of endodermal or pancreatic cell populations. PMID:22728667

  10. Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain

    PubMed Central

    Larsen, Camilla; Shy, Diana; Spindler, Shana R.; Fung, Siaumin; Pereanu, Wayne; Younossi -Hartenstein, Amelia; Hartenstein, Volker

    2009-01-01

    The Drosophila central brain is composed of approximately 100 paired lineages, with most lineages comprising 100–150 neurons. Most lineages have a number of important characteristics in common. Typically, neurons of a lineage stay together as a coherent cluster and project their axons into a coherent bundle visible from late embryo to adult. Neurons born during the embryonic period form the primary axon tracts (PATs) that follow stereotyped pathways in the neuropile. Apoptotic cell death removes an average of 30–40% of primary neurons around the time of hatching. Secondary neurons generated during the larval period form secondary axon tracts (SATs) that typically fasciculate with their corresponding primary axon tract. SATs develop into the long fascicles that interconnect the different compartments of the adult brain. Structurally, we distinguish between three types of lineages: PD lineages, characterized by distinct, spatially separate proximal and distal arborizations; C lineages with arborizations distributed continuously along the entire length of their tract; D lineages that lack proximal arborizations. Arborizations of many lineages, in particular those of the PD type, are restricted to distinct neuropile compartments. We propose that compartments are ‘scaffolded” by individual lineages, or small groups thereof. Thereby, the relatively small number of primary neurons of each primary lineage set up the compartment map in the late embryo. Compartments grow during the larval period simply by an increase in arbor volume of primary neurons. Arbors of secondary neurons form within or adjacent to the larval compartments, resulting in smaller compartment subdivisions and additional, adult specific compartments. PMID:19538956

  11. Mapping differentiation pathways from hematopoietic stem cells using Flk2/Flt3 lineage tracing

    PubMed Central

    Boyer, Scott W.; Beaudin, Anna E.; Forsberg, E. Camilla

    2012-01-01

    Genetic fate-mapping approaches provide a unique opportunity to assess differentiation pathways under physiological conditions. We have recently employed a lineage tracing approach to define hematopoietic differentiation pathways in relation to expression of the tyrosine kinase receptor Flk2.1 Based on our examination of reporter activity across all stem, progenitor and mature populations in our Flk2-Cre lineage model, we concluded that all mature blood lineages are derived through a Flk2+ intermediate, both at steady-state and under stress conditions. Here, we re-examine in depth our initial conclusions and perform additional experiments to test alternative options of lineage specification. Our data unequivocally support the conclusion that onset of Flk2 expression results in loss of self-renewal but preservation of multilineage differentiation potential. We discuss the implications of these data for defining stem cell identity and lineage potential among hematopoietic populations. PMID:22895180

  12. Comparative Genomic Analyses of the Moraxella catarrhalis Serosensitive and Seroresistant Lineages Demonstrate Their Independent Evolution

    PubMed Central

    Earl, Joshua P.; de Vries, Stefan P.W.; Ahmed, Azad; Powell, Evan; Schultz, Matthew P.; Hermans, Peter W.M.; Hill, Darryl J.; Zhou, Zhemin; Constantinidou, Crystala I.; Hu, Fen Z.; Bootsma, Hester J.; Ehrlich, Garth D.

    2016-01-01

    The bacterial species Moraxella catarrhalis has been hypothesized as being composed of two distinct lineages (referred to as the seroresistant [SR] and serosensitive [SS]) with separate evolutionary histories based on several molecular typing methods, whereas 16S ribotyping has suggested an additional split within the SS lineage. Previously, we characterized whole-genome sequences of 12 SR-lineage isolates, which revealed a relatively small supragenome when compared with other opportunistic nasopharyngeal pathogens, suggestive of a relatively short evolutionary history. Here, we performed whole-genome sequencing on 18 strains from both ribotypes of the SS lineage, an additional SR strain, as well as four previously identified highly divergent strains based on multilocus sequence typing analyses. All 35 strains were subjected to a battery of comparative genomic analyses which clearly show that there are three lineages—the SR, SS, and the divergent. The SR and SS lineages are closely related, but distinct from each other based on three different methods of comparison: Allelic differences observed among core genes; possession of lineage-specific sets of core and distributed genes; and by an alignment of concatenated core sequences irrespective of gene annotation. All these methods show that the SS lineage has much longer interstrain branches than the SR lineage indicating that this lineage has likely been evolving either longer or faster than the SR lineage. There is evidence of extensive horizontal gene transfer (HGT) within both of these lineages, and to a lesser degree between them. In particular, we identified very high rates of HGT between these two lineages for ß-lactamase genes. The four divergent strains are sui generis, being much more distantly related to both the SR and SS groups than these other two groups are to each other. Based on average nucleotide identities, gene content, GC content, and genome size, this group could be considered as a separate

  13. Multi-lineage MSC Differentiation via Engineered Morphogen Fields

    PubMed Central

    Arany, P.R.; Huang, G.X.; Gadish, O.; Feliz, J.; Weaver, J.C.; Kim, J.; Yuen, W.W.; Mooney, D.J.

    2014-01-01

    Tissue loss due to oral diseases requires the healing and regeneration of tissues of multiple lineages. While stem cells are native to oral tissues, a current major limitation to regeneration is the ability to direct their lineage-specific differentiation. This work utilizes polymeric scaffold systems with spatiotemporally controlled morphogen cues to develop precise morphogen fields to direct mesenchymal stem cell differentiation. First, a simple three-layer scaffold design was developed that presented two spatially segregated, lineage-specific cues (Dentinogenic TGF-β1 and Osteogenic BMP4). However, this system resulted in diffuse morphogen fields, as assessed by the in vitro imaging of cell-signaling pathways triggered by the morphogens. Mathematical modeling was then exploited, in combination with incorporation of specific inhibitors (neutralizing antibodies or a small molecule kinase inhibitor) into each morphogen in an opposing spatial pattern as the respective morphogen, to design a five-layer scaffold that was predicted to yield distinct, spatially segregated zones of morphogen signaling. To validate this system, undifferentiated MSCs were uniformly seeded in these scaffold systems, and distinct mineralized tissue differentiation were noted within these morphogen zones. Finally, to demonstrate temporal control over morphogen signaling, latent TGF-β1 was incorporated into one region of a concentric scaffold design, and laser treatment was used to activate the morphogen on-demand and to induce dentin differentiation solely within that specific spatial zone. This study demonstrates a significant advance in scaffold design to generate precise morphogen fields that can be used to develop in situ models to explore tissue differentiation and may ultimately be useful in engineering multi-lineage tissues in clinical dentistry. PMID:25143513

  14. Colponemids represent multiple ancient alveolate lineages.

    PubMed

    Janouškovec, Jan; Tikhonenkov, Denis V; Mikhailov, Kirill V; Simdyanov, Timur G; Aleoshin, Vladimir V; Mylnikov, Alexander P; Keeling, Patrick J

    2013-12-16

    The alveolates comprise three well-studied protist lineages of significant environmental, medical, and economical importance: apicomplexans (e.g., Plasmodium), dinoflagellates (e.g., Symbiodinium), and ciliates (e.g., Tetrahymena). These major lineages have evolved distinct and unusual characteristics, the origins of which have proved to be difficult evolutionary puzzles. Mitochondrial genomes are a prime example: all three groups depart from canonical form and content, but in different ways. Reconstructing such ancient transitions is difficult without deep-branching lineages that retain ancestral characteristics. Here we describe two such lineages and how they illuminate the ancestral state of alveolate mitochondrial genomes. We established five clonal cultures of colponemids, predatory alveolates without cultured representatives and molecular data. Colponemids represent at least two independent lineages at the phylum level in multilocus phylogenetic analysis; one sister to apicomplexans and dinoflagellates, and the other at a deeper position. A genome survey from one strain showed that ancestral state of the mitochondrial genomes in the three major alveolate lineages consisted of an unusual linear chromosome with telomeres and a substantially larger gene set than known alveolates. Colponemid sequences also identified several environmental lineages as colponemids, altogether suggesting an untapped potential for understanding the origin and evolution of apicomplexans, dinoflagellates, and ciliates. PMID:24316202

  15. Physiological ecology and functional traits of North American native and Eurasian introduced Phragmites australis lineages

    PubMed Central

    Mozdzer, Thomas J.; Brisson, Jacques; Hazelton, Eric L. G.

    2013-01-01

    Physiological ecology and plant functional traits are often used to explain plant invasion. To gain a better understanding of how traits influence invasion, studies usually compare the invasive plant to a native congener, but there are few conspecific examples in the literature. In North America, the presence of native and introduced genetic lineages of the common reed, Phragmites australis, presents a unique example to evaluate how traits influence plant invasion. We reviewed the literature on functional traits of P. australis lineages in North America, specifically contrasting lineages present on the Atlantic Coast. We focused on differences in physiology between the lineage introduced from Eurasia and the lineage native to North America, specifically seeking to identify the causes underlying the recent expansion of the introduced lineage. Our goals were to better understand which traits may confer invasiveness, provide predictions of how these lineages may respond to interspecific competition or imminent global change, and provide guidance for future research. We reviewed published studies and articles in press, and conducted personal communications with appropriate researchers and managers to develop a comparative dataset. We compared the native and introduced lineages and focused on plant physiological ecology and functional traits. Under both stressful and favourable conditions, our review showed that introduced P. australis consistently exhibited greater ramet density, height and biomass, higher and more plastic relative growth rate, nitrogen productivity and specific leaf area, higher mass specific nitrogen uptake rates, as well as greater phenotypic plasticity compared with the native lineage. We suggest that ecophysiological and other plant functional traits elucidate potential mechanisms for the introduced lineage's invasiveness under current and predicted global change conditions. However, our review identified a disconnect between field surveys

  16. Pluripotency Factors on Their Lineage Move

    PubMed Central

    Weidgang, Clair E.; Seufferlein, Thomas; Kleger, Alexander; Mueller, Martin

    2016-01-01

    Pluripotent stem cells are characterised by continuous self-renewal while maintaining the potential to differentiate into cells of all three germ layers. Regulatory networks of maintaining pluripotency have been described in great detail and, similarly, there is great knowledge on key players that regulate their differentiation. Interestingly, pluripotency has various shades with distinct developmental potential, an observation that coined the term of a ground state of pluripotency. A precise interplay of signalling axes regulates ground state conditions and acts in concert with a combination of key transcription factors. The balance between these transcription factors greatly influences the integrity of the pluripotency network and latest research suggests that minute changes in their expression can strengthen but also collapse the network. Moreover, recent studies reveal different facets of these core factors in balancing a controlled and directed exit from pluripotency. Thereby, subsets of pluripotency-maintaining factors have been shown to adopt new roles during lineage specification and have been globally defined towards neuroectodermal and mesendodermal sets of embryonic stem cell genes. However, detailed underlying insights into how these transcription factors orchestrate cell fate decisions remain largely elusive. Our group and others unravelled complex interactions in the regulation of this controlled exit. Herein, we summarise recent findings and discuss the potential mechanisms involved. PMID:26770212

  17. Whole genome sequencing identifies circulating Beijing-lineage Mycobacterium tuberculosis strains in Guatemala and an associated urban outbreak

    PubMed Central

    Saelens, Joseph W.; Lau-Bonilla, Dalia; Moller, Anneliese; Medina, Narda; Guzmán, Brenda; Calderón, Maylena; Herrera, Raúl; Sisk, Dana M.; Xet-Mull, Ana M.; Stout, Jason E.; Arathoon, Eduardo; Samayoa, Blanca; Tobin, David M.

    2015-01-01

    Summary Limited data are available regarding the molecular epidemiology of Mycobacterium tuberculosis (Mtb) strains circulating in Guatemala. Beijing-lineage Mtb strains have gained prevalence worldwide and are associated with increased virulence and drug resistance, but there have been only a few cases reported in Central America. Here we report the first whole genome sequencing of Central American Beijing-lineage strains of Mtb. We find that multiple Beijing-lineage strains, derived from independent founding events, are currently circulating in Guatemala, but overall still represent a relatively small proportion of disease burden. Finally, we identify a specific Beijing-lineage outbreak centered on a poor neighborhood in Guatemala City. PMID:26542222

  18. Whole genome sequencing identifies circulating Beijing-lineage Mycobacterium tuberculosis strains in Guatemala and an associated urban outbreak.

    PubMed

    Saelens, Joseph W; Lau-Bonilla, Dalia; Moller, Anneliese; Medina, Narda; Guzmán, Brenda; Calderón, Maylena; Herrera, Raúl; Sisk, Dana M; Xet-Mull, Ana M; Stout, Jason E; Arathoon, Eduardo; Samayoa, Blanca; Tobin, David M

    2015-12-01

    Limited data are available regarding the molecular epidemiology of Mycobacterium tuberculosis (Mtb) strains circulating in Guatemala. Beijing-lineage Mtb strains have gained prevalence worldwide and are associated with increased virulence and drug resistance, but there have been only a few cases reported in Central America. Here we report the first whole genome sequencing of Central American Beijing-lineage strains of Mtb. We find that multiple Beijing-lineage strains, derived from independent founding events, are currently circulating in Guatemala, but overall still represent a relatively small proportion of disease burden. Finally, we identify a specific Beijing-lineage outbreak centered on a poor neighborhood in Guatemala City. PMID:26542222

  19. Rapid detection of lineage IV peste des petits ruminants virus by real-time RT-PCR.

    PubMed

    Li, Lin; Wu, Xiaodong; Liu, Fuxiao; Wang, Zhiliang; Liu, Chunju; Wang, Qinghua; Bao, Jingyue

    2016-09-01

    Peste des petits ruminants virus (PPRV) is the cause agent of peste des petitis ruminants (PPR). A novel lineage IV PPRV has reemerged in China in 2013 and 2014. Mass vaccination was implemented in most provinces in China. In order to detect lineage IV PPRV in clinical samples and to distinguish rapidly it from the other lineages PPRVs, a real-time RT-PCR assay was developed. This assay showed high sensitivity, specificity and efficiency in differentiating the lineage IV PPRV from others. The performance of this assay was evaluated by positive clinical samples of lineage IV viruses. This new real-time RT-PCR assay will facilitate epidemiological investigations and rapid differentiatial diagnosis in areas where lineage IV viruses are circulating. PMID:27260657

  20. Runx3 specifies lineage commitment of innate lymphoid cells

    PubMed Central

    Ebihara, Takashi; Song, Christina; Ryu, Stacy H.; Plougastel-Douglas, Beatrice; Yang, Liping; Levanon, Ditsa; Groner, Yoram; Bern, Michael D.; Stappenbeck, Thaddeus S.; Colonna, Marco; Egawa, Takeshi; Yokoyama, Wayne M.

    2015-01-01

    Subsets of innate lymphoid cells (ILCs) reside in the mucosa and regulate immune responses against external pathogens. While ILCs can be phenotypically classified into ILC1, ILC2 and ILC3 cells, the transcriptional control of lineage commitment for each ILC subset is incompletely understood. Here we report that the transcription factor Runx3 was essential for normal development of ILC1 and ILC3, but not ILC2 cells. Runx3 controlled the survival of ILC1, but not ILC3 cells. Runx3 was required for the expression of RORγt and its downstream target, aryl hydrocarbon receptor, in ILC3 cells. The absence of Runx3 in ILCs exacerbated C. rodentium infections. Therefore, our data establish Runx3 as a key transcription factor for lineage-specific differentiation of ILC1 and ILC3 cells. PMID:26414766

  1. Multiplex cell and lineage tracking with combinatorial labels.

    PubMed

    Loulier, Karine; Barry, Raphaëlle; Mahou, Pierre; Le Franc, Yann; Supatto, Willy; Matho, Katherine S; Ieng, Siohoi; Fouquet, Stéphane; Dupin, Elisabeth; Benosman, Ryad; Chédotal, Alain; Beaurepaire, Emmanuel; Morin, Xavier; Livet, Jean

    2014-02-01

    We present a method to label and trace the lineage of multiple neural progenitors simultaneously in vertebrate animals via multiaddressable genome-integrative color (MAGIC) markers. We achieve permanent expression of combinatorial labels from new Brainbow transgenes introduced in embryonic neural progenitors with electroporation of transposon vectors. In the mouse forebrain and chicken spinal cord, this approach allows us to track neural progenitor's descent during pre- and postnatal neurogenesis or perinatal gliogenesis in long-term experiments. Color labels delineate cytoarchitecture, resolve spatially intermixed clones, and specify the lineage of astroglial subtypes and adult neural stem cells. Combining colors and subcellular locations provides an expanded marker palette to individualize clones. We show that this approach is also applicable to modulate specific signaling pathways in a mosaic manner while color-coding the status of individual cells regarding induced molecular perturbations. This method opens new avenues for clonal and functional analysis in varied experimental models and contexts. PMID:24507188

  2. Lineage associated expression of virulence traits in bovine-adapted Staphylococcus aureus.

    PubMed

    Budd, Kathleen E; Mitchell, Jennifer; Keane, Orla M

    2016-06-30

    Bovine mastitis is the most costly disease to the dairy industry worldwide with Staphylococcus aureus commonly associated with intramammary infections that are persistent and refractory to treatment. The strains of S. aureus that cause mastitis predominantly belong to a number of well-described bovine-adapted lineages. The objective of this study was to determine if a variety of potential virulence traits were associated with lineage. Bovine-adapted S. aureus isolates (n=120), belonging to lineages CC97, CC151 and ST136, were tested for their ability to adhere to and internalise within cultured bovine mammary epithelial cells (bMEC), to bind bovine fibronectin, to form a biofilm in TSB, TSB+1% glucose and TSB+4% NaCl, and to induce an immune response from bMEC. There were no significant differences between the lineages in ability to adhere to or internalise within bMEC although there were significant differences between individual isolates. For lineages CC97 and ST136, mammalian cell adherence was correlated with the ability to bind bovine fibronectin, however isolates from CC151 could not bind bovine fibronectin in vitro, but adhered to bMEC in a fibronectin-independent manner. There were significant differences between the lineages in ability to form a biofilm in all three growth media with ST136 forming the strongest biofilm while CC151 formed the weakest biofilm. Lineages also differed in their ability to elicit an immune response from bMEC with CC97 eliciting a stronger immune response than CC151 and ST136. These data indicate the potential for both lineage and strain-specific virulence and a strain-specific response to infection in vivo and caution against extrapolating an effect from a single strain of S. aureus to draw conclusions regarding virulence or the host response to infection in unrelated lineages. PMID:27259823

  3. Lineage Selection and the Maintenance of Sex

    PubMed Central

    de Vienne, Damien M.; Giraud, Tatiana; Gouyon, Pierre-Henri

    2013-01-01

    Sex predominates in eukaryotes, despite its short-term disadvantage when compared to asexuality. Myriad models have suggested that short-term advantages of sex may be sufficient to counterbalance its twofold costs. However, despite decades of experimental work seeking such evidence, no evolutionary mechanism has yet achieved broad recognition as explanation for the maintenance of sex. We explore here, through lineage-selection models, the conditions favouring the maintenance of sex. In the first model, we allowed the rate of transition to asexuality to evolve, to determine whether lineage selection favoured species with the strongest constraints preventing the loss of sex. In the second model, we simulated more explicitly the mechanisms underlying the higher extinction rates of asexual lineages than of their sexual counterparts. We linked extinction rates to the ecological and/or genetic features of lineages, thereby providing a formalisation of the only figure included in Darwin's “The origin of species”. Our results reinforce the view that the long-term advantages of sex and lineage selection may provide the most satisfactory explanations for the maintenance of sex in eukaryotes, which is still poorly recognized, and provide figures and a simulation website for training and educational purposes. Short-term benefits may play a role, but it is also essential to take into account the selection of lineages for a thorough understanding of the maintenance of sex. PMID:23825582

  4. Lineage factors and differentiation states in lung cancer progression.

    PubMed

    Cheung, W K C; Nguyen, D X

    2015-11-19

    Lung cancer encompasses a heterogeneous group of malignancies. Here we discuss how the remarkable diversity of major lung cancer subtypes is manifested in their transforming cell of origin, oncogenic dependencies, phenotypic plasticity, metastatic competence and response to therapy. More specifically, we review the increasing evidence that links this biological heterogeneity to the deregulation of cell lineage-specific pathways and the transcription factors that ultimately control them. As determinants of pulmonary epithelial differentiation, these poorly characterized transcriptional networks may underlie the etiology and biological progression of distinct lung cancers, while providing insight into innovative therapeutic strategies. PMID:25823023

  5. Lineage specific transcriptional regulation of DICER by MITF in melanocytes

    PubMed Central

    Levy, Carmit; Khaled, Mehdi; Robinson, Kathleen C.; Veguilla, Rosa A.; Chen, Po-Hao; Yokoyama, Satoru; Makino, Eiichi; Lu, Jun; Larue, Lionel; Beermann, Friedrich; Chin, Lynda; Bosenberg, Marcus; Song, Jun. S.; Fisher, David E.

    2010-01-01

    Summary DICER is a central regulator of microRNA maturation. However little is known about mechanisms regulating its expression in development or disease. While profiling miRNA expression in differentiating melanocytes, two populations were observed: some upregulated at the pre-miRNA stage, and others upregulated as “mature” miRNAs (with stable pre-miRNA levels). Conversion of pre-miRNAs to fully processed miRNAs appeared to be dependent upon stimulation of DICER expression—an event found to occur via direct transcriptional targeting of DICER by the melanocyte master transcriptional regulator MITF. MITF binds and activates a conserved regulatory element upstream of DICER’s transcriptional start site upon melanocyte differentiation. Targeted KO of DICER is lethal to melanocytes, at least partly via DICER-dependent processing of the pre-miRNA-17~92 cluster thus targeting BIM, a known pro-apoptotic regulator of melanocyte survival. These observations highlight a central mechanism underlying miRNA regulation which could exist for other cell types during development. PMID:20550935

  6. Lineage-specific Virulence Determinants of Haemophilus influenzae Biogroup aegyptius

    PubMed Central

    Strouts, Fiona R.; Power, Peter; Croucher, Nicholas J.; Corton, Nicola; van Tonder, Andries; Quail, Michael A.; Langford, Paul R.; Hudson, Michael J.; Parkhill, Julian; Bentley, Stephen D.

    2012-01-01

    An emergent clone of Haemophilus influenzae biogroup aegyptius (Hae) is responsible for outbreaks of Brazilian purpuric fever (BPF). First recorded in Brazil in 1984, the so-called BPF clone of Hae caused a fulminant disease that started with conjunctivitis but developed into septicemic shock; mortality rates were as high as 70%. To identify virulence determinants, we conducted a pan-genomic analysis. Sequencing of the genomes of the BPF clone strain F3031 and a noninvasive conjunctivitis strain, F3047, and comparison of these sequences with 5 other complete H. influenzae genomes showed that >77% of the F3031 genome is shared among all H. influenzae strains. Delineation of the Hae accessory genome enabled characterization of 163 predicted protein-coding genes; identified differences in established autotransporter adhesins; and revealed a suite of novel adhesins unique to Hae, including novel trimeric autotransporter adhesins and 4 new fimbrial operons. These novel adhesins might play a critical role in host–pathogen interactions. PMID:22377449

  7. Adipose lineage specification of bone marrow-derived myeloid cells

    PubMed Central

    Majka, Susan M.; Miller, Heidi L.; Sullivan, Timothy; Erickson, Paul F.; Kong, Raymond; Weiser-Evans, Mary; Nemenoff, Raphael; Moldovan, Radu; Morandi, Shelley A.; Davis, James A.; Klemm, Dwight J.

    2012-01-01

    We have reported the production of white adipocytes in adipose tissue from hematopoietic progenitors arising from bone marrow. However, technical challenges have hindered detection of this adipocyte population by certain other laboratories. These disparate results highlight the need for sensitive and definitive techniques to identify bone marrow progenitor (BMP)-derived adipocytes. In these studies we exploited new models and methods to enhance detection of this adipocyte population. Here we showed that confocal microscopy with spectrum acquisition could effectively identify green fluorescent protein (GFP) positive BMP-derived adipocytes by matching their fluorescence spectrum to that of native GFP. Likewise, imaging flow cytometry made it possible to visualize intact unilocular and multilocular GFP-positive BMP-derived adipocytes and distinguished them from non-fluorescent adipocytes and cell debris in the cytometer flow stream. We also devised a strategy to detect marker genes in flow-enriched adipocytes from which stromal cells were excluded. This technique also proved to be an efficient means for detecting genetically labeled adipocytes and should be applicable to models in which marker gene expression is low or absent. Finally, in vivo imaging of mice transplanted with BM from adipocyte-targeted luciferase donors showed a time-dependent increase in luciferase activity, with the bulk of luciferase activity confined to adipocytes rather than stromal cells. These results confirmed and extended our previous reports and provided proof-of-principle for sensitive techniques and models for detection and study of these unique cells. PMID:23700536

  8. Lineage-specific biomarkers predict response to FGFR inhibition.

    PubMed

    Loch, David C; Pollock, Pamela M

    2012-12-01

    In this issue of Cancer Discovery, Guagnano and colleagues use a large and diverse annotated collection of cancer cell lines, the Cancer Cell Line Encyclopedia, to correlate whole-genome expression and genomic alteration datasets with cell line sensitivity data to the novel pan-fibroblast growth factor receptor (FGFR) inhibitor NVP-BGJ398. Their findings underscore not only the preclinical use of such cell line panels in identifying predictive biomarkers, but also the emergence of the FGFRs as valid therapeutic targets, across an increasingly broad range of malignancies. PMID:23230185

  9. IL12B expression is sustained by a heterogenous population of myeloid lineages during tuberculosis

    PubMed Central

    Reeme, Allison E.; Miller, Halli E.; Robinson, Richard T.

    2015-01-01

    Summary IL12B is required for resistance to Mycobacterium tuberculosis (Mtb) infection, promoting the initiation and maintenance of Mtb-specific effector responses. While this makes the IL12-pathway an attractive target for experimental tuberculosis (TB) therapies, data regarding what lineages express IL12B after infection is established are limited. This is not obvious in the lung, an organ in which both hematopoietic and non-hematopoietic lineages produce IL12p40 upon pathogen encounter. Here, we use radiation bone marrow chimeras and Yet40 reporter mice to determine what lineages produce IL12p40 during experimental TB. We observed that hematopoietic IL12p40-production was sufficient to control Mtb, with no contribution by non-hematopoietic lineages. Furthermore, rather than being produced by a single subset, IL12p40 was produced by cells that were heterogenous in their size, granularity, autofluorescence and expression of CD11c, CD11b and CD8α. While depending on the timepoint and tissue examined, the surface phenotype of IL12p40-producers most closely resembled macrophages based on previous surveys of lung myeloid lineages. Importantly, depletion of CDllchi cells during infection had no affect on lung IL12p40-concentrations. Collectively, our data demonstrate that IL12p40 production is sustained by a heterogenous population of myeloid lineages during experimental TB, and that redundant mechanisms of IL12p40-production exist when CD11chi lineages are absent. PMID:23491716

  10. Arborization pattern of engrailed-positive neural lineages reveal neuromere boundaries in the Drosophila brain neuropil.

    PubMed

    Kumar, Abhilasha; Fung, S; Lichtneckert, Robert; Reichert, Heinrich; Hartenstein, Volker

    2009-11-01

    The Drosophila brain is a highly complex structure composed of thousands of neurons that are interconnected in numerous exquisitely organized neuropil structures such as the mushroom bodies, central complex, antennal lobes, and other specialized neuropils. While the neurons of the insect brain are known to derive in a lineage-specific fashion from a stereotyped set of segmentally organized neuroblasts, the developmental origin and neuromeric organization of the neuropil formed by these neurons is still unclear. In this study we used genetic labeling techniques to characterize the neuropil innervation pattern of engrailed-expressing brain lineages of known neuromeric origin. We show that the neurons of these lineages project to and form most arborizations, in particular all of their proximal branches, in the same brain neuropil compartments in embryonic, larval and adult stages. Moreover, we show that engrailed-positive neurons of differing neuromeric origin respect boundaries between neuromere-specific compartments in the brain. This is confirmed by an analysis of the arborization pattern of empty spiracles-expressing lineages. These findings indicate that arborizations of lineages deriving from different brain neuromeres innervate a nonoverlapping set of neuropil compartments. This supports a model for neuromere-specific brain neuropil, in which a given lineage forms its proximal arborizations predominantly in the compartments that correspond to its neuromere of origin. PMID:19711412

  11. Brg1 modulates enhancer activation in mesoderm lineage commitment

    SciTech Connect

    Alexander, Jeffrey M.; Hota, Swetansu K.; He, Daniel; Thomas, Sean; Ho, Lena; Pennacchio, Len A.; Bruneau, B. G.

    2015-03-26

    The interplay between different levels of gene regulation in modulating developmental transcriptional programs, such as histone modifications and chromatin remodeling, is not well understood. Here, we show that the chromatin remodeling factor Brg1 is required for enhancer activation in mesoderm induction. In an embryonic stem cell-based directed differentiation assay, the absence of Brg1 results in a failure of cardiomyocyte differentiation and broad deregulation of lineage-specific gene expression during mesoderm induction. We find that Brg1 co-localizes with H3K27ac at distal enhancers and is required for robust H3K27 acetylation at distal enhancers that are activated during mesoderm induction. Brg1 is also required to maintain Polycomb-mediated repression of non-mesodermal developmental regulators, suggesting cooperativity between Brg1 and Polycomb complexes. Thus, Brg1 is essential for modulating active and repressive chromatin states during mesoderm lineage commitment, in particular the activation of developmentally important enhancers. In conclusion, these findings demonstrate interplay between chromatin remodeling complexes and histone modifications that, together, ensure robust and broad gene regulation during crucial lineage commitment decisions.

  12. Brg1 modulates enhancer activation in mesoderm lineage commitment

    DOE PAGESBeta

    Alexander, Jeffrey M.; Hota, Swetansu K.; He, Daniel; Thomas, Sean; Ho, Lena; Pennacchio, Len A.; Bruneau, B. G.

    2015-03-26

    The interplay between different levels of gene regulation in modulating developmental transcriptional programs, such as histone modifications and chromatin remodeling, is not well understood. Here, we show that the chromatin remodeling factor Brg1 is required for enhancer activation in mesoderm induction. In an embryonic stem cell-based directed differentiation assay, the absence of Brg1 results in a failure of cardiomyocyte differentiation and broad deregulation of lineage-specific gene expression during mesoderm induction. We find that Brg1 co-localizes with H3K27ac at distal enhancers and is required for robust H3K27 acetylation at distal enhancers that are activated during mesoderm induction. Brg1 is also requiredmore » to maintain Polycomb-mediated repression of non-mesodermal developmental regulators, suggesting cooperativity between Brg1 and Polycomb complexes. Thus, Brg1 is essential for modulating active and repressive chromatin states during mesoderm lineage commitment, in particular the activation of developmentally important enhancers. In conclusion, these findings demonstrate interplay between chromatin remodeling complexes and histone modifications that, together, ensure robust and broad gene regulation during crucial lineage commitment decisions.« less

  13. Cartilage on the Move: Cartilage Lineage Tracing During Tadpole Metamorphosis

    PubMed Central

    Kerney, Ryan R.; Brittain, Alison L.; Hall, Brian K.; Buchholz, Daniel R.

    2012-01-01

    The reorganization of cranial cartilages during tadpole metamorphosis is a set of complex processes. The fates of larval cartilage-forming cells (chondrocytes) and sources of adult chondrocytes are largely unknown. Individual larval cranial cartilages may either degenerate or remodel, while many adult cartilages appear to form de novo during metamorphosis. Determining the extent to which adult chondrocytes/cartilages are derived from larval chondrocytes during metamorphosis requires new techniques in chondrocyte lineage tracing. We have developed two transgenic systems to label cartilage cells throughout the body with fluorescent proteins. One system strongly labels early tadpole cartilages only. The other system inducibly labels forming cartilages at any developmental stage. We examined cartilages of the skull (viscero- and neurocranium), and identified larval cartilages that either resorb or remodel into adult cartilages. Our data show that the adult otic capsules, tecti anterius and posterius, hyale, and portions of Meckel’s cartilage are derived from larval chondrocytes. Our data also suggest that most adult cartilages form de novo, though we cannot rule out the potential for extreme larval chondrocyte proliferation or de- and re-differentiation, which could dilute our fluorescent protein signal. The transgenic lineage tracing strategies developed here are the first examples of inducible, skeleton-specific, lineage tracing in Xenopus. PMID:23036161

  14. Context-dependent regulation of hematopoietic lineage choice by HEBAlt.

    PubMed

    Wang, Duncheng; Claus, Carol L; Rajkumar, Paula; Braunstein, Marsela; Moore, Amanda J; Sigvardsson, Mikael; Anderson, Michele K

    2010-10-01

    Hematopoietic development is controlled by combinatorial interactions between E-protein transcription factors and other lineage regulators that operate in the context of gene-regulatory networks. The E-proteins HEB and E2A are critical for T cell and B cell development, but the mechanisms by which their activities are directed to different genes in each lineage are unclear. We found that a short form of HEB, HEBAlt, acts downstream of Delta-like (DL)-Notch signaling to promote T cell development. In this paper, we show that forced expression of HEBAlt in mouse hematopoietic progenitors inhibited B cell development, but it allowed them to adopt a myeloid fate. HEBAlt interfered with the activity of E2A homodimers and with the expression of the transcription factor Pax5, both of which are critical for B cell development. However, when combined with DL-Notch signaling, HEBAlt enhanced the generation of T cell progenitors at the expense of myeloid cells. The longer form of HEB, HEBCan, also inhibited E47 activity and Pax5 expression, but it did not collaborate with DL-Notch signaling to suppress myeloid potential. Therefore, HEBAlt can suppress B cell or myeloid potential in a context-specific manner, which suggests a role for this factor in maintaining T lineage priming prior to commitment. PMID:20826759

  15. Quantifying Selective Pressures Driving Bacterial Evolution Using Lineage Analysis

    NASA Astrophysics Data System (ADS)

    Lambert, Guillaume; Kussell, Edo

    2015-01-01

    Organisms use a variety of strategies to adapt to their environments and maximize long-term growth potential, but quantitative characterization of the benefits conferred by the use of such strategies, as well as their impact on the whole population's rate of growth, remains challenging. Here, we use a path-integral framework that describes how selection acts on lineages—i.e., the life histories of individuals and their ancestors—to demonstrate that lineage-based measurements can be used to quantify the selective pressures acting on a population. We apply this analysis to Escherichia coli bacteria exposed to cyclical treatments of carbenicillin, an antibiotic that interferes with cell-wall synthesis and affects cells in an age-dependent manner. While the extensive characterization of the life history of thousands of cells is necessary to accurately extract the age-dependent selective pressures caused by carbenicillin, the same measurement can be recapitulated using lineage-based statistics of a single surviving cell. Population-wide evolutionary pressures can be extracted from the properties of the surviving lineages within a population, providing an alternative and efficient procedure to quantify the evolutionary forces acting on a population. Importantly, this approach is not limited to age-dependent selection, and the framework can be generalized to detect signatures of other trait-specific selection using lineage-based measurements. Our results establish a powerful way to study the evolutionary dynamics of life under selection and may be broadly useful in elucidating selective pressures driving the emergence of antibiotic resistance and the evolution of survival strategies in biological systems.

  16. Archaeal Lineages within the Human Microbiome: Absent, Rare or Elusive?

    PubMed

    Horz, Hans-Peter

    2015-01-01

    Archaea are well-recognized components of the human microbiome. However, they appear to be drastically underrepresented compared to the high diversity of bacterial taxa which can be found on various human anatomic sites, such as the gastrointestinal environment, the oral cavity and the skin. As our "microbial" view of the human body, including the methodological concepts used to describe them, has been traditionally biased on bacteria, the question arises whether our current knowledge reflects the actual ratio of archaea versus bacteria or whether we have failed so far to unravel the full diversity of human-associated archaea. This review article hypothesizes that distinct archaeal lineages within humans exist, which still await our detection. First, previously unrecognized taxa might be quite common but they have eluded conventional detection methods. Two recent prime examples are described that demonstrate that this might be the case for specific archaeal lineages. Second, some archaeal taxa might be overlooked because they are rare and/or in low abundance. Evidence for this exists for a broad range of phylogenetic lineages, however we currently do not know whether these sporadically appearing organisms are mere transients or important members of the so called "rare biosphere" with probably basic ecosystem functions. Lastly, evidence exists that different human populations harbor different archaeal taxa and/or the abundance and activity of shared archaeal taxa may differ and thus their impact on the overall microbiome. This research line is rather unexplored and warrants further investigation. While not recapitulating exhaustively all studies on archaeal diversity in humans, this review highlights pertinent recent findings that show that the choice of appropriate methodological approaches and the consideration of different human populations may lead to the detection of archaeal lineages previously not associated with humans. This in turn will help understand

  17. SIg-E- ("null-cell") non-Hodgkin's lymphomas. Multiparametric determination of their B- or T-cell lineage.

    PubMed Central

    Knowles, D. M.; Dodson, L.; Burke, J. S.; Wang, J. M.; Bonetti, F.; Pelicci, P. G.; Flug, F.; Dalla-Favera, R.; Wang, C. Y.

    1985-01-01

    The authors performed immunophenotypic, functional, and molecular analysis of the neoplastic cells from 20 cases of SIg-, E-("null-cell") non-Hodgkin's lymphoma (NHL) in order to determine their lineage, better define this category of NHL, and evaluate the lineage specificity of selected phenotypic markers and the individual and collective utility of these approaches. They assigned 4 cases to the T-cell lineage, and 15 cases to the B-cell lineage, and 1 case remained indeterminant on the basis of immunophenotypic analysis. The cells from 2 cases assigned to the T-cell lineage expressed unusual phenotypes, but their T-cell derivation was confirmed by the demonstration of helper function in vitro. The 15 cases assigned to the B-cell lineage expressed a variety of B-cell-associated antigens, consistent with various stages of B-cell differentiation. Monoclonal antibodies OKT3, OKT4, OKT6, and OKT8 exhibited T-cell lineage restriction; and monoclonal antibodies OKB2, BL1, and B1 exhibited B-cell lineage restriction. Ia, TdT, cALLa, OKT9, and OKT10 exhibited lineage infidelity. Southern blot analysis for immunoglobulin heavy chain gene rearrangements confirmed 18 of the 19 lineage assignments made by immunophenotypic analysis and suggested that the 1 case of indeterminate phenotype was a B-cell neoplasm. One T-cell (OKT3+, T4+) neoplasm exhibited rearranged immunoglobulin heavy chain genes. Thus, neither immunophenotypic analysis nor the demonstration of rearranged immunoglobulin heavy chain genes alone permitted the satisfactory lineage assignment of every case of SIg-, E- NHL. However, combined immunophenotypic, functional, and genotypic analysis allowed us to assign every SIg-, E-NHL to the B- or T-cell lineage and to demonstrate that truly "null-cell" NHLs are probably very uncommon. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:2931028

  18. Irreversible fate commitment in the Arabidopsis stomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module

    PubMed Central

    Matos, Juliana L; Lau, On Sun; Hachez, Charles; Cruz-Ramírez, Alfredo; Scheres, Ben; Bergmann, Dominique C

    2014-01-01

    The presumed totipotency of plant cells leads to questions about how specific stem cell lineages and terminal fates could be established. In the Arabidopsis stomatal lineage, a transient self-renewing phase creates precursors that differentiate into one of two epidermal cell types, guard cells or pavement cells. We found that irreversible differentiation of guard cells involves RETINOBLASTOMA-RELATED (RBR) recruitment to regulatory regions of master regulators of stomatal initiation, facilitated through interaction with a terminal stomatal lineage transcription factor, FAMA. Disrupting physical interactions between FAMA and RBR preferentially reveals the role of RBR in enforcing fate commitment over its role in cell-cycle control in this developmental context. Analysis of the phenotypes linked to the modulation of FAMA and RBR sheds new light on the way iterative divisions and terminal differentiation are coordinately regulated in a plant stem-cell lineage. DOI: http://dx.doi.org/10.7554/eLife.03271.001 PMID:25303364

  19. Single-Cell RNA-Seq Reveals Lineage and X Chromosome Dynamics in Human Preimplantation Embryos.

    PubMed

    Petropoulos, Sophie; Edsgärd, Daniel; Reinius, Björn; Deng, Qiaolin; Panula, Sarita Pauliina; Codeluppi, Simone; Plaza Reyes, Alvaro; Linnarsson, Sten; Sandberg, Rickard; Lanner, Fredrik

    2016-05-01

    Mouse studies have been instrumental in forming our current understanding of early cell-lineage decisions; however, similar insights into the early human development are severely limited. Here, we present a comprehensive transcriptional map of human embryo development, including the sequenced transcriptomes of 1,529 individual cells from 88 human preimplantation embryos. These data show that cells undergo an intermediate state of co-expression of lineage-specific genes, followed by a concurrent establishment of the trophectoderm, epiblast, and primitive endoderm lineages, which coincide with blastocyst formation. Female cells of all three lineages achieve dosage compensation of X chromosome RNA levels prior to implantation. However, in contrast to the mouse, XIST is transcribed from both alleles throughout the progression of this expression dampening, and X chromosome genes maintain biallelic expression while dosage compensation proceeds. We envision broad utility of this transcriptional atlas in future studies on human development as well as in stem cell research. PMID:27062923

  20. Single-Cell RNA-Seq Reveals Lineage and X Chromosome Dynamics in Human Preimplantation Embryos

    PubMed Central

    Petropoulos, Sophie; Edsgärd, Daniel; Reinius, Björn; Deng, Qiaolin; Panula, Sarita Pauliina; Codeluppi, Simone; Plaza Reyes, Alvaro; Linnarsson, Sten; Sandberg, Rickard; Lanner, Fredrik

    2016-01-01

    Summary Mouse studies have been instrumental in forming our current understanding of early cell-lineage decisions; however, similar insights into the early human development are severely limited. Here, we present a comprehensive transcriptional map of human embryo development, including the sequenced transcriptomes of 1,529 individual cells from 88 human preimplantation embryos. These data show that cells undergo an intermediate state of co-expression of lineage-specific genes, followed by a concurrent establishment of the trophectoderm, epiblast, and primitive endoderm lineages, which coincide with blastocyst formation. Female cells of all three lineages achieve dosage compensation of X chromosome RNA levels prior to implantation. However, in contrast to the mouse, XIST is transcribed from both alleles throughout the progression of this expression dampening, and X chromosome genes maintain biallelic expression while dosage compensation proceeds. We envision broad utility of this transcriptional atlas in future studies on human development as well as in stem cell research. PMID:27062923

  1. Notch and hippo converge on Cdx2 to specify the trophectoderm lineage in the mouse blastocyst.

    PubMed

    Rayon, Teresa; Menchero, Sergio; Nieto, Andres; Xenopoulos, Panagiotis; Crespo, Miguel; Cockburn, Katie; Cañon, Susana; Sasaki, Hiroshi; Hadjantonakis, Anna-Katerina; de la Pompa, Jose Luis; Rossant, Janet; Manzanares, Miguel

    2014-08-25

    The first lineage choice in mammalian embryogenesis is that between the trophectoderm, which gives rise to the trophoblast of the placenta, and the inner cell mass, from which is derived the embryo proper and the yolk sac. The establishment of these lineages is preceded by the inside-versus-outside positioning of cells in the early embryo and stochastic expression of key transcription factors, which is then resolved into lineage-restricted expression. The regulatory inputs that drive this restriction and how they relate to cell position are largely unknown. Here, we show an unsuspected role of Notch signaling in regulating trophectoderm-specific expression of Cdx2 in cooperation with TEAD4. Notch activity is restricted to outer cells and is able to influence positional allocation of blastomeres, mediating preferential localization to the trophectoderm. Our results show that multiple signaling inputs at preimplantation stages specify the first embryonic lineages. PMID:25127056

  2. Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis.

    PubMed

    Pimkin, Maxim; Kossenkov, Andrew V; Mishra, Tejaswini; Morrissey, Christapher S; Wu, Weisheng; Keller, Cheryl A; Blobel, Gerd A; Lee, Dongwon; Beer, Michael A; Hardison, Ross C; Weiss, Mitchell J

    2014-12-01

    Combinatorial actions of relatively few transcription factors control hematopoietic differentiation. To investigate this process in erythro-megakaryopoiesis, we correlated the genome-wide chromatin occupancy signatures of four master hematopoietic transcription factors (GATA1, GATA2, TAL1, and FLI1) and three diagnostic histone modification marks with the gene expression changes that occur during development of primary cultured megakaryocytes (MEG) and primary erythroblasts (ERY) from murine fetal liver hematopoietic stem/progenitor cells. We identified a robust, genome-wide mechanism of MEG-specific lineage priming by a previously described stem/progenitor cell-expressed transcription factor heptad (GATA2, LYL1, TAL1, FLI1, ERG, RUNX1, LMO2) binding to MEG-associated cis-regulatory modules (CRMs) in multipotential progenitors. This is followed by genome-wide GATA factor switching that mediates further induction of MEG-specific genes following lineage commitment. Interaction between GATA and ETS factors appears to be a key determinant of these processes. In contrast, ERY-specific lineage priming is biased toward GATA2-independent mechanisms. In addition to its role in MEG lineage priming, GATA2 plays an extensive role in late megakaryopoiesis as a transcriptional repressor at loci defined by a specific DNA signature. Our findings reveal important new insights into how ERY and MEG lineages arise from a common bipotential progenitor via overlapping and divergent functions of shared hematopoietic transcription factors. PMID:25319996

  3. Role of LRF/Pokemon in lineage fate decisions.

    PubMed

    Lunardi, Andrea; Guarnerio, Jlenia; Wang, Guocan; Maeda, Takahiro; Pandolfi, Pier Paolo

    2013-04-11

    In the human genome, 43 different genes are found that encode proteins belonging to the family of the POK (poxvirus and zinc finger and Krüppel)/ZBTB (zinc finger and broad complex, tramtrack, and bric à brac) factors. Generally considered transcriptional repressors, several of these genes play fundamental roles in cell lineage fate decision in various tissues, programming specific tasks throughout the life of the organism. Here, we focus on functions of leukemia/lymphoma-related factor/POK erythroid myeloid ontogenic factor, which is probably one of the most exciting and yet enigmatic members of the POK/ZBTB family. PMID:23396304

  4. Paternal and maternal lineages in Guinea-Bissau population.

    PubMed

    Carvalho, M; Brito, P; Bento, A M; Gomes, V; Antunes, H; Costa, H Afonso; Lopes, V; Serra, A; Balsa, F; Andrade, L; Anjos, M J; Corte-Real, F; Gusmão, L

    2011-03-01

    The aim of the present work was to study the origin of paternal and maternal lineages in Guinea-Bissau population, inferred by phylogeographic analyses of mtDNA and Y chromosome defined haplogroups. To determine the male lineages present in Guinea-Bissau, 33 unrelated males were typed using a PCR-SNaPshot multiplex based method including 24 Y-SNPs, which characterize the main haplogroups in sub-Saharan Africa and Western Europe. In the same samples, 17 Y-STRs (included in the YFiler kit, Applied Biosystems) were additionally typed. The most frequent lineages observed were E1b1a (xE1b1a4,7)-M2 (68%) and E1a-M33 (15%). The European haplogroup R1b1-P25 was represented with a frequency of 12%. The two hypervariable mtDNA regions were sequenced in 79 unrelated individuals from Guinea-Bissau, and haplogroups were classified based on control region motifs using mtDNA manager. A high diversity of haplogroups was determined in our sample being the most frequent haplogroups characteristic of populations from sub-Saharan Africa, namely L2a1 (15%), L3d (13%), L2c (9%), L3e4 (9%), L0a1 (8%), L1b (6%) and L1c1 (6%). None of the typical European haplogroups (H, J and T) were found in the present sample of Guinea-Bissau. From our results, it is possible to confirm that Guinea-Bissau presents a typically West African profile, marked by a high frequency of the Y chromosome haplogroup E1b1a(xE1b1a4,7)-M2 and a high proportion of mtDNA lineages belonging to the sub-Saharan specific sub-clusters L1 to L3 (89%). A small European influx has been also detected, although restricted to the male lineages. PMID:21051306

  5. Diversity rankings among bacterial lineages in soil.

    PubMed

    Youssef, Noha H; Elshahed, Mostafa S

    2009-03-01

    We used rarefaction curve analysis and diversity ordering-based approaches to rank the 11 most frequently encountered bacterial lineages in soil according to diversity in 5 previously reported 16S rRNA gene clone libraries derived from agricultural, undisturbed tall grass prairie and forest soils (n=26,140, 28 328, 31 818, 13 001 and 53 533). The Planctomycetes, Firmicutes and the delta-Proteobacteria were consistently ranked among the most diverse lineages in all data sets, whereas the Verrucomicrobia, Gemmatimonadetes and beta-Proteobacteria were consistently ranked among the least diverse. On the other hand, the rankings of alpha-Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes and Chloroflexi varied widely in different soil clone libraries. In general, lineages exhibiting largest differences in diversity rankings also exhibited the largest difference in relative abundance in the data sets examined. Within these lineages, a positive correlation between relative abundance and diversity was observed within the Acidobacteria, Actinobacteria and Chloroflexi, and a negative diversity-abundance correlation was observed within the Bacteroidetes. The ecological and evolutionary implications of these results are discussed. PMID:18987677

  6. Towards One Generic Name for Monophyletic Lineages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the integration of asexually reproducing fungi into meaningful phylogenies, the need to use the same generic name for a monophyletic lineage has become urgent. At present Article 59 of the International Code of Botanical Nomenclature (ICBN) requires the use of a sexual state name for sexually r...

  7. Lineage Switching in Acute Leukemias: A Consequence of Stem Cell Plasticity?

    PubMed Central

    Dorantes-Acosta, Elisa; Pelayo, Rosana

    2012-01-01

    Acute leukemias are the most common cancer in childhood and characterized by the uncontrolled production of hematopoietic precursor cells of the lymphoid or myeloid series within the bone marrow. Even when a relatively high efficiency of therapeutic agents has increased the overall survival rates in the last years, factors such as cell lineage switching and the rise of mixed lineages at relapses often change the prognosis of the illness. During lineage switching, conversions from lymphoblastic leukemia to myeloid leukemia, or vice versa, are recorded. The central mechanisms involved in these phenomena remain undefined, but recent studies suggest that lineage commitment of plastic hematopoietic progenitors may be multidirectional and reversible upon specific signals provided by both intrinsic and environmental cues. In this paper, we focus on the current knowledge about cell heterogeneity and the lineage switch resulting from leukemic cells plasticity. A number of hypothetical mechanisms that may inspire changes in cell fate decisions are highlighted. Understanding the plasticity of leukemia initiating cells might be fundamental to unravel the pathogenesis of lineage switch in acute leukemias and will illuminate the importance of a flexible hematopoietic development. PMID:22852088

  8. Evolving lineages of Symbiodinium-like dinoflagellates based on ITS1 rDNA.

    PubMed

    Rodriguez-Lanetty, Mauricio

    2003-07-01

    Symbiodinium-like dinoflagellates have been shown to be a diverse group of endosymbionts that associate mutualistically with many kinds of coral reef dwellers, including cnidarians, molluscs, and protists. A high number of genetically ITS types of symbionts have been reported to date. However, whether these recently identified Symbiodinium ITS types indeed represent independent evolutionary lineages is still unsettled. Here I tested the null hypothesis that certain group of symbionts sampled from different geographical locations are derived from a single evolutionary lineage using a nested clade analysis (NCA). I analyzed a total of 174 ITS1 sequences from GenBank and pooled them into 74 ITS1 distinct haplotypes. Using these haplotypes, the statistical parsimony criterion produced 23 independent network trees, each one corresponding to a genetically independent evolving lineage. Some of these lineages revealed certain degree of specificity with some host groups at least at the phylum level. Within the previously described 28S-rDNA phylotype A, five ITS1 lineages were resolved. Phylotypes B and C resolved each in two ITS1 lineages. The highest ITS1 symbiont diversity was observed within the phylotype F, in which 11 lineages were resolved. Moreover, most of these lineages were associated uniquely with protist hosts from the group of foraminiferans. Here it is suggested that this high genetic diversity of endosymbionts associated with foraminiferans is linked with the evolution of soritacean foraminifera, which seems to have been driven by endosymbiosis. Lastly, the absence of genetic recombination presented in this study, suggest a lack of hybridisation at least among the major 28S-rDNA phylotypes within Symbiodinium-like dinoflagellates. This supports highly the idea that these phylotypes are indeed independent evolutionary units, which should be considered at least as different species. Whether they belong to the same genus or to different higher taxa still needs

  9. Lineage-based analysis of the development of the central complex of the Drosophila brain.

    PubMed

    Pereanu, Wayne; Younossi-Hartenstein, Amelia; Lovick, Jennifer; Spindler, Shana; Hartenstein, Volker

    2011-03-01

    Most neurons of the central complex belong to 10 secondary (larvally produced) lineages. In the late larva, undifferentiated axon tracts of these lineages form a primordium in which all of the compartments of the central complex can be recognized as discrete entities. Four posterior lineages (DPMm1, DPMpm1, DPMpm2, and CM4) generate the classes of small-field neurons that interconnect the protocerebral bridge, fan-shaped body, noduli, and ellipsoid body. Three lineages located in the anterior brain, DALv2, BAmv1, and DALcl2, form the large-field neurons of the ellipsoid body and fan-shaped body, respectively. These lineages provide an input channel from the optic tubercle and connect the central complex with adjacent anterior brain compartments. Three lineages in the posterior cortex, CM3, CP2, and DPMpl2, connect the posterior brain neuropil with specific layers of the fan-shaped body. Even though all of the compartments of the central complex are prefigured in the late larval brain by the axon tracts of the above-mentioned lineages, the neuropil differentiates during the first 2 days of the pupal period when terminal branches and synapses of secondary neurons are formed. During this phase the initially straight horizontal layers of the central complex bend in the frontal plane, which produces the characteristic shape of the fan-shaped and ellipsoid body. Our analysis provides a comprehensive picture of the lineages that form the central complex, and will facilitate future studies that address the structure or function of the central complex at the single cell level. PMID:21246549

  10. Lineage-instructive function of C/EBPα in multipotent hematopoietic cells and early thymic progenitors.

    PubMed

    Wölfler, Albert; Danen-van Oorschot, Astrid A; Haanstra, Jurgen R; Valkhof, Marijke; Bodner, Claudia; Vroegindeweij, Eric; van Strien, Paulette; Novak, Alexandra; Cupedo, Tom; Touw, Ivo P

    2010-11-18

    Hematopoiesis is tightly controlled by transcription regulatory networks, but how and when specific transcription factors control lineage commitment are still largely unknown. Within the hematopoietic stem cell (Lin(-)Sca-1(+)c-Kit(+)) compartment these lineage-specific transcription factors are expressed at low levels but are up-regulated with the process of lineage specification. CCAAT/enhancer binding protein α (C/EBPα) represents one of these factors and is involved in myeloid development and indispensable for formation of granulocytes. To track the cellular fate of stem and progenitor cells, which express C/EBPα, we developed a mouse model expressing Cre recombinase from the Cebpa promoter and a conditional EYFP allele. We show that Cebpa/EYFP(+) cells represent a significant subset of multipotent hematopoietic progenitors, which predominantly give rise to myeloid cells in steady-state hematopoiesis. C/EBPα induced a strong myeloid gene expression signature and down-regulated E2A-induced regulators of early lymphoid development. In addition, Cebpa/EYFP(+) cells compose a fraction of early thymic progenitors with robust myeloid potential. However, Cebpa/EYFP(+) multipotent hematopoietic progenitors and early thymic progenitors retained the ability to develop into erythroid and T-lymphoid lineages, respectively. These findings support an instructive but argue against a lineage-restrictive role of C/EBPα in multipotent hematopoietic and thymic progenitors. PMID:20807890

  11. Aspirin and clonidine in non-cardiac surgery: acute kidney injury substudy protocol of the Perioperative Ischaemic Evaluation (POISE) 2 randomised controlled trial

    PubMed Central

    Garg, Amit X; Kurz, Andrea; Sessler, Daniel I; Cuerden, Meaghan; Robinson, Andrea; Mrkobrada, Marko; Parikh, Chirag; Mizera, Richard; Jones, Philip M; Tiboni, Maria; Rodriguez, Raul Gonzalez; Popova, Ekaterina; Rojas Gomez, Maria Fernanda; Meyhoff, Christian S; Vanhelder, Tomas; Chan, Matthew T V; Torres, David; Parlow, Joel; de Nadal Clanchet, Miriam; Amir, Mohammed; Bidgoli, Seyed Javad; Pasin, Laura; Martinsen, Kristian; Malaga, German; Myles, Paul; Acedillo, Rey; Roshanov, Pavel; Walsh, Michael; Dresser, George; Kumar, Priya; Fleischmann, Edith; Villar, Juan Carlos; Painter, Tom; Biccard, Bruce; Bergese, Sergio; Srinathan, Sadeesh; Cata, Juan P; Chan, Vincent; Mehra, Bhupendra; Leslie, Kate; Whitlock, Richard; Devereaux, P J

    2014-01-01

    Introduction Perioperative Ischaemic Evaluation-2 (POISE-2) is an international 2×2 factorial randomised controlled trial of low-dose aspirin versus placebo and low-dose clonidine versus placebo in patients who undergo non-cardiac surgery. Perioperative aspirin (and possibly clonidine) may reduce the risk of postoperative acute kidney injury (AKI). Methods and analysis After receipt of grant funding, serial postoperative serum creatinine measurements began to be recorded in consecutive patients enrolled at substudy participating centres. With respect to the study schedule, the last of over 6500 substudy patients from 82 centres in 21 countries were randomised in December 2013. The authors will use logistic regression to estimate the adjusted OR of AKI following surgery (compared with the preoperative serum creatinine value, a postoperative increase ≥26.5 μmol/L in the 2 days following surgery or an increase of ≥50% in the 7 days following surgery) comparing each intervention to placebo, and will report the adjusted relative risk reduction. Alternate definitions of AKI will also be considered, as will the outcome of AKI in subgroups defined by the presence of preoperative chronic kidney disease and preoperative chronic aspirin use. At the time of randomisation, a subpopulation agreed to a single measurement of serum creatinine between 3 and 12 months after surgery, and the authors will examine intervention effects on this outcome. Ethics and dissemination The authors were competitively awarded a grant from the Canadian Institutes of Health Research for this POISE-2 AKI substudy. Ethics approval was obtained for additional kidney data collection in consecutive patients enrolled at participating centres, which first began for patients enrolled after January 2011. In patients who provided consent, the remaining longer term serum creatinine data will be collected throughout 2014. The results of this study will be reported no later than 2015. Clinical Trial

  12. Are Law Schools Poised for Innovation? Three Case Studies of Law Professors Teaching Online in American J.D. Programs

    ERIC Educational Resources Information Center

    Jaworowski, Susan

    2013-01-01

    The purpose of this qualitative case study is to describe the characteristics of three law professors teaching online courses to determine what type of adopter they were. This study used the Rogers diffusion of innovation theory, and specifically analyzed the participants on whether they were innovators or early adopters. These analyses are…

  13. The potential for gene flow in a dependent lineage system of a harvester ant: fair meiosis in the F1 generation.

    PubMed

    Curry, Meghan M; Wheeler, Diana E; Yang, Kimberly; Anderson, Kirk E

    2010-01-01

    We investigated the potential for gene flow in a dependent lineage (DL) system of the harvester ant Pogonomyrmex. Each DL system is composed of 2 reproductively isolated lineages that are locked in an obligate mutualism. The genetic components that produce the worker phenotype are acquired by hybridizing with the partner lineage. In the mating flight, queens of both lineages mate with multiple males from each lineage. During colony growth and reproduction, eggs fertilized by partner-lineage sperm produce F(1) hybrid workers with interlineage genomes, whereas eggs fertilized by same-lineage sperm result in the development of new queens with intralineage genomes. New males are typically produced from unfertilized eggs laid by the pure-lineage queen but in her absence may be produced by interlineage F(1) workers. We investigated the potential for interlineage gene flow in this system using 2 classes of lineage-specific nuclear markers to identify hybrid genome combinations. We confirmed the production of viable interlineage F(1) reproductive females in field colonies, the occurrence of which is associated with the relative frequencies of each lineage in the population: interlineage F(1) queens occurred only in the rare lineage of the population with dramatically skewed lineage frequencies. In laboratory colonies, we detected fair meiosis in interlineage F(1) workers leading to the production of viable and haploid interlineage F(2) males. We conclude that the genomes of each lineage recombine freely, suggesting that extrinsic postzygotic selection maintains the integrity of each lineage genome. We compare our findings with those of the H1/H2 DL system. PMID:20022894

  14. Lineage-restricted expression of homeobox-containing genes in human hematopoietic cell lines.

    PubMed Central

    Shen, W F; Largman, C; Lowney, P; Corral, J C; Detmer, K; Hauser, C A; Simonitch, T A; Hack, F M; Lawrence, H J

    1989-01-01

    We investigated the role of homeobox-containing genes in human hematopoiesis because homeobox genes (i) control cell fate in the Drosophila embryo, (ii) are expressed in specific patterns in human embryos, and (iii) appear to function as transcription factors that control cell phenotype in other mammalian organs. Using four homeobox probes from the HOX2 locus and a previously undescribed homeobox cDNA (PL1), we screened mRNAs from 18 human leukemic cell lines representing erythroid, myeloid, and T- and B-cell lineages. Complex patterns of lineage-restricted expression are observed: some are restricted to a single lineage, while others are expressed in multiple lineages. No single homeobox gene is expressed in all types of hematopoietic cells, but each cell type exhibits homeobox gene expression. HOX2.2 and -2.3 homeobox-containing cDNAs were cloned from an erythroleukemia cell (HEL) cDNA library, while the homeobox cDNA PL1 was isolated from a monocytic cell (U-937) library. Differentiation of HEL and K-562 cells with various inducers results in modulation of specific homeobox transcripts. In addition, HOX2.2 is expressed in normal bone marrow cells. We have demonstrated (i) lineage-restricted expression of five homeobox genes in erythroid and monocytic cell lines; (ii) expression of additional homeobox genes in other cell lineages (HL-60 and lymphoid cells); (iii) expression of one homeobox gene in normal marrow cells; and (iv) modulation of expression during differentiation. These data suggest that these genes play a role in human hematopoietic development and lineage commitment. Images PMID:2573064

  15. Loss of tumorigenic potential upon transdifferentiation from keratinocytic into melanocytic lineage

    PubMed Central

    Fehrenbach, Sabrina; Novak, Daniel; Bernhardt, Mathias; Larribere, Lionel; Boukamp, Petra; Umansky, Viktor; Utikal, Jochen

    2016-01-01

    Lineage-specific transcription factors determine the cell fate during development. Direct conversion of several cell types into other lineages has been achieved by the overexpression of specific transcription factors. Even cancer cells have been demonstrated to be amenable to transdifferentiation. Here, we identified a distinct set of transcription factors, which are sufficient to transform cells of the keratinocytic lineage to melanocyte-like cells. Melanocyte marker expression was induced and melanosome formation was observed in non-tumorigenic keratinocytes (HaCaT) and tumorigenic squamous cell carcinoma (MET-4) cells. Moreover, reduced proliferation, cell metabolism, invasion and migration were measured in vitro in transdifferentiated MT-MET-4 cells. A loss of tumorigenic potential of squamous cell carcinoma cells could be due to the upregulation of the melanocyte differentiation associated gene IL-24. Our data show that cells from the keratinocytic lineage can be transdifferented into the melanocytic lineage and provide a proof of principle for a potential new therapeutic strategy. PMID:27387763

  16. Establishment of trophectoderm and inner cell mass lineages in the mouse embryo

    PubMed Central

    Marikawa, Yusuke; Alarcón, Vernadeth B.

    2010-01-01

    The first cell lineage specification in mouse embryo development is the formation of trophectoderm (TE) and inner cell mass (ICM) of the blastocyst. This article is to review and discuss the current knowledge on the cellular and molecular mechanisms of this particular event. Several transcription factors have been identified as the critical regulators of the formation or maintenance of the two cell lineages. The establishment of TE manifests as the formation of epithelium, and is dependent on many structural and regulatory components that are commonly found and that function in many epithelial tissues. Distinct epithelial features start to emerge at the late 8-cell stage, but the fates of blastomeres are not fixed as TE or ICM until around 32-cell stage. The location of blastomeres at this stage, i.e., external or internal of the embryo, in effect defines the commitment towards the TE or ICM lineage, respectively. Some studies implicate the presence of a developmental bias among blastomeres at 2- or 4-cell stage, although it is unlikely to play a decisive role in the establishment of TE and ICM. The unique mode of cell lineage specification in the mouse embryo is further discussed in comparison with the formation of initial cell lineages, namely the three germ layers, in non-mammalian embryos. PMID:19479991

  17. Loss of tumorigenic potential upon transdifferentiation from keratinocytic into melanocytic lineage.

    PubMed

    Fehrenbach, Sabrina; Novak, Daniel; Bernhardt, Mathias; Larribere, Lionel; Boukamp, Petra; Umansky, Viktor; Utikal, Jochen

    2016-01-01

    Lineage-specific transcription factors determine the cell fate during development. Direct conversion of several cell types into other lineages has been achieved by the overexpression of specific transcription factors. Even cancer cells have been demonstrated to be amenable to transdifferentiation. Here, we identified a distinct set of transcription factors, which are sufficient to transform cells of the keratinocytic lineage to melanocyte-like cells. Melanocyte marker expression was induced and melanosome formation was observed in non-tumorigenic keratinocytes (HaCaT) and tumorigenic squamous cell carcinoma (MET-4) cells. Moreover, reduced proliferation, cell metabolism, invasion and migration were measured in vitro in transdifferentiated MT-MET-4 cells. A loss of tumorigenic potential of squamous cell carcinoma cells could be due to the upregulation of the melanocyte differentiation associated gene IL-24. Our data show that cells from the keratinocytic lineage can be transdifferented into the melanocytic lineage and provide a proof of principle for a potential new therapeutic strategy. PMID:27387763

  18. Evolution of dengue virus in Mexico is characterized by frequent lineage replacement.

    PubMed

    Carrillo-Valenzo, Erik; Danis-Lozano, Rogelio; Velasco-Hernández, Jorge X; Sánchez-Burgos, Gilma; Alpuche, Celia; López, Irma; Rosales, Claudia; Baronti, Cécile; de Lamballerie, Xavier; Holmes, Edward C; Ramos-Castañeda, José

    2010-09-01

    Both dengue fever and its more serious clinical manifestation, dengue hemorrhagic fever, represent major public health concerns in the Americas. To understand the patterns and dynamics of virus transmission in Mexico, a country characterized by a marked increase in dengue incidence in recent years, we undertook a molecular evolutionary analysis of the largest sample of Mexican strains of dengue virus compiled to date. Our E gene data set comprises sequences sampled over a period of 27 years and representing all of the Mexican states that are endemic for dengue. Our phylogenetic analysis reveals that, for each of the four dengue viruses (DENV-1 to DENV-4), there have been multiple introductions of viral lineages in Mexico, with viruses similar to those observed throughout the Americas, but there has been strikingly little co-circulation. Rather, dengue virus evolution in Mexico is typified by frequent lineage replacement, such that only a single viral lineage dominates in a specific serotype at a specific time point. Most lineage replacement events involve members of the same viral genotype, although a replacement event involving different genotypes was observed with DENV-2, and viral lineages that are new to Mexico are described for DENV-1, DENV-3 and DENV-4. PMID:20549264

  19. Derivation of lung mesenchymal lineages from the fetal mesothelium requires hedgehog signaling for mesothelial cell entry

    PubMed Central

    Dixit, Radhika; Ai, Xingbin; Fine, Alan

    2013-01-01

    Recent studies have shown that mesothelial progenitors contribute to mesenchymal lineages of developing organs. To what extent the overlying mesothelium contributes to lung development remains unknown. To rigorously address this question, we employed Wt1CreERT2/+ mice for high-fidelity lineage tracing after confirming that Cre recombinase was mesothelial specific and faithfully recapitulated endogenous Wilms’ tumor 1 (Wt1) gene expression. We visualized WT1+ mesothelial cell entry into the lung by live imaging and identified their progenies in subpopulations of bronchial smooth muscle cells, vascular smooth muscle cells and desmin+ fibroblasts by lineage tagging. Derivation of these lineages was only observed with Cre recombinase activation during early lung development. Using loss-of-function assays in organ cultures, and targeted mesothelial-restricted hedgehog loss-of-function mice, we demonstrated that mesothelial cell movement into the lung requires the direct action of hedgehog signaling. By contrast, hedgehog signaling was not required for fetal mesothelial heart entry. These findings further support a paradigm wherein the mesothelium is a source of progenitors for mesenchymal lineages during organogenesis and indicate that signals controlling mesothelial cell entry are organ specific. PMID:24130328

  20. Ancestral relationships of the major eukaryotic lineages.

    PubMed

    Sogin, M L; Morrison, H G; Hinkle, G; Silberman, J D

    1996-03-01

    Molecular systematics has revolutionized our understanding of microbial evolution. Phylogenetic frameworks relating all organisms in this biosphere can be inferred from comparisons of slowly evolving molecules such as the small and large subunit ribosomal RNAs. Unlike today's text book standard, the "Five Kingdoms" (plants, animals, fungi, protists and bacteria), molecular studies define three primary lines of descent (Eukaryotes, Eubacteria, and Archaebacteria). Within the Eukaryotes, the "higher" kingdoms (Fungi, Plantae, and Animalia) are joined by at least two novel complex evolutionary assemblages, the "Alveolates" (ciliates, dinoflagellates and apicomplexans) and the "Stramenopiles" (diatoms, oomycetes, labyrinthulids, brown algae and chrysophytes). The separation of these eukaryotic groups (described as the eukaryotic "crown") occurred approximately 10(9) years ago and was preceded by a succession of earlier diverging protist lineages, some as ancient as the separation of the prokaryotic domains. The molecular phylogenies suggest that multiple endosymbiotic events introduced plastids into discrete eukaryotic lineages. PMID:9019131

  1. Genome sequesnce of lineage III Listeria monocytogenes strain HCC23

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More than 98% of reported human listeriosis cases are caused by Listeria monocytogenes serotypes within lineages I and II. Serotypes within lineage III (4a and 4c) are commonly isolated from environmental and food specimens. We report the first complete genome sequence of a lineage III isolate, HCC2...

  2. Phylogenomics of the Zygomycete lineages: Exploring phylogeny and genome evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Zygomycete lineages mark the major transition from zoosporic life histories of the common ancestors of Fungi and the earliest diverging chytrid lineages (Chytridiomycota and Blastocladiomycota). Genome comparisons from these lineages may reveal gene content changes that reflect the transition to...

  3. Genetic Mosaics and the Germ Line Lineage

    PubMed Central

    Samuels, Mark E.; Friedman, Jan M.

    2015-01-01

    Genetic mosaics provide information about cellular lineages that is otherwise difficult to obtain, especially in humans. De novo mutations act as cell markers, allowing the tracing of developmental trajectories of all descendants of the cell in which the new mutation arises. De novo mutations may arise at any time during development but are relatively rare. They have usually been observed through medical ascertainment, when the mutation causes unusual clinical signs or symptoms. Mutational events can include aneuploidies, large chromosomal rearrangements, copy number variants, or point mutations. In this review we focus primarily on the analysis of point mutations and their utility in addressing questions of germ line versus somatic lineages. Genetic mosaics demonstrate that the germ line and soma diverge early in development, since there are many examples of combined somatic and germ line mosaicism for de novo mutations. The occurrence of simultaneous mosaicism in both the germ line and soma also shows that the germ line is not strictly clonal but arises from at least two, and possibly multiple, cells in the embryo with different ancestries. Whole genome or exome DNA sequencing technologies promise to expand the range of studies of genetic mosaics, as de novo mutations can now be identified through sequencing alone in the absence of a medical ascertainment. These technologies have been used to study mutation patterns in nuclear families and in monozygotic twins, and in animal model developmental studies, but not yet for extensive cell lineage studies in humans. PMID:25898403

  4. Environmental biology of the marine Roseobacter lineage.

    PubMed

    Wagner-Döbler, Irene; Biebl, Hanno

    2006-01-01

    The Roseobacter lineage is a phylogenetically coherent, physiologically heterogeneous group of alpha-Proteobacteria comprising up to 25% of marine microbial communities, especially in coastal and polar oceans, and it is the only lineage in which cultivated bacteria are closely related to environmental clones. Currently 41 subclusters are described, covering all major marine ecological niches (seawater, algal blooms, microbial mats, sediments, sea ice, marine invertebrates). Members of the Roseobacter lineage play an important role for the global carbon and sulfur cycle and the climate, since they have the trait of aerobic anoxygenic photosynthesis, oxidize the greenhouse gas carbon monoxide, and produce the climate-relevant gas dimethylsulfide through the degradation of algal osmolytes. Production of bioactive metabolites and quorum-sensing-regulated control of gene expression mediate their success in complex communities. Studies of representative isolates in culture, whole-genome sequencing, e.g., of Silicibacter pomeroyi, and the analysis of marine metagenome libraries have started to reveal the environmental biology of this important marine group. PMID:16719716

  5. Water relations traits of C4 grasses depend on phylogenetic lineage, photosynthetic pathway, and habitat water availability.

    PubMed

    Liu, Hui; Osborne, Colin P

    2015-02-01

    The repeated evolution of C4 photosynthesis in independent lineages has resulted in distinct biogeographical distributions in different phylogenetic lineages and the variants of C4 photosynthesis. However, most previous studies have only considered C3/C4 differences without considering phylogeny, C4 subtype, or habitat characteristics. We hypothesized that independent lineages of C4 grasses have structural and physiological traits that adapt them to environments with differing water availability. We measured 40 traits of 33 species from two major C4 grass lineages in a common glasshouse environment. Chloridoideae species were shorter, with narrower and longer leaves, smaller but denser stomata, and faster curling leaves than Panicoideae species, but overall differences in leaf hydraulic and gas exchange traits between the two lineages were weak. Chloridoideae species had two different ways to reach higher drought resistance potential than Panicoideae; NAD-ME species used water saving, whereas PCK species used osmotic adjustment. These patterns could be explained by the interactions of lineage×C4 subtype and lineage×habitat water availability in affected traits. Specifically, phylogeny tended to have a stronger influence on structural traits, and C4 subtype had more important effects on physiological traits. Although hydraulic traits did not differ consistently between lineages, they showed strong covariation and relationships with leaf structure. Thus, phylogenetic lineage, photosynthetic pathway, and adaptation to habitat water availability act together to influence the leaf water relations traits of C4 grasses. This work expands our understanding of ecophysiology in major C4 grass lineages, with implications for explaining their regional and global distributions in relation to climate. PMID:25504656

  6. Water relations traits of C4 grasses depend on phylogenetic lineage, photosynthetic pathway, and habitat water availability

    PubMed Central

    Liu, Hui; Osborne, Colin P.

    2015-01-01

    The repeated evolution of C4 photosynthesis in independent lineages has resulted in distinct biogeographical distributions in different phylogenetic lineages and the variants of C4 photosynthesis. However, most previous studies have only considered C3/C4 differences without considering phylogeny, C4 subtype, or habitat characteristics. We hypothesized that independent lineages of C4 grasses have structural and physiological traits that adapt them to environments with differing water availability. We measured 40 traits of 33 species from two major C4 grass lineages in a common glasshouse environment. Chloridoideae species were shorter, with narrower and longer leaves, smaller but denser stomata, and faster curling leaves than Panicoideae species, but overall differences in leaf hydraulic and gas exchange traits between the two lineages were weak. Chloridoideae species had two different ways to reach higher drought resistance potential than Panicoideae; NAD-ME species used water saving, whereas PCK species used osmotic adjustment. These patterns could be explained by the interactions of lineage×C4 subtype and lineage×habitat water availability in affected traits. Specifically, phylogeny tended to have a stronger influence on structural traits, and C4 subtype had more important effects on physiological traits. Although hydraulic traits did not differ consistently between lineages, they showed strong covariation and relationships with leaf structure. Thus, phylogenetic lineage, photosynthetic pathway, and adaptation to habitat water availability act together to influence the leaf water relations traits of C4 grasses. This work expands our understanding of ecophysiology in major C4 grass lineages, with implications for explaining their regional and global distributions in relation to climate. PMID:25504656

  7. Spectral sensitivity of cone photoreceptors and opsin expression in two colour-divergent lineages of the lizard Ctenophorus decresii.

    PubMed

    Yewers, Madeleine S; McLean, Claire A; Moussalli, Adnan; Stuart-Fox, Devi; Bennett, Andrew T D; Knott, Ben

    2015-05-15

    Intraspecific differences in sensory perception are rarely reported but may occur when a species range extends across varying sensory environments, or there is coevolution between the sensory system and a varying signal. Examples in colour vision and colour signals are rare in terrestrial systems. The tawny dragon lizard Ctenophorus decresii is a promising candidate for such intraspecific variation, because the species comprises two geographically and genetically distinct lineages in which throat colour (a social signal used in intra- and inter-specific interactions) is locally adapted to the habitat and differs between lineages. Male lizards from the southern lineage have UV-blue throats, whereas males from the northern lineage are polymorphic with four discrete throat colours that all show minimal UV reflectance. Here, we determine the cone photoreceptor spectral sensitivities and opsin expression of the two lineages, to test whether they differ, particularly in the UV wavelengths. Using microspectrophotometry on retinal cone photoreceptors, we identified a long-wavelength-sensitive (LWS) visual pigment, a 'short' and 'long' medium-wavelength-sensitive (MWS) pigment and a short-wavelength-sensitive (SWS) pigment, all of which did not differ in λmax between lineages. Through transcriptome analysis of opsin genes we found that both lineages express four cone opsin genes, including the SWS1 opsin with peak sensitivity in the UV range, and that amino acid sequences did not differ between lineages with the exception of a single leucine to valine substitution in the RH2 opsin. Counts of yellow and transparent oil droplets associated with LWS+MWS and SWS+UVS cones, respectively, showed no difference in relative cone proportions between lineages. Therefore, contrary to predictions, we find no evidence of differences between lineages in single cone photoreceptor spectral sensitivity or opsin expression. However, we confirm the presence of four single cone classes

  8. Genome Evolution and Innovation across the Four Major Lineages of Cryptococcus gattii

    PubMed Central

    Farrer, Rhys A.; Desjardins, Christopher A.; Sakthikumar, Sharadha; Gujja, Sharvari; Saif, Sakina; Zeng, Qiandong; Chen, Yuan; Voelz, Kerstin; Heitman, Joseph; May, Robin C.; Fisher, Matthew C.

    2015-01-01

    ABSTRACT Cryptococcus gattii is a fungal pathogen of humans, causing pulmonary infections in otherwise healthy hosts. To characterize genomic variation among the four major lineages of C. gattii (VGI, -II, -III, and -IV), we generated, annotated, and compared 16 de novo genome assemblies, including the first for the rarely isolated lineages VGIII and VGIV. By identifying syntenic regions across assemblies, we found 15 structural rearrangements, which were almost exclusive to the VGI-III-IV lineages. Using synteny to inform orthology prediction, we identified a core set of 87% of C. gattii genes present as single copies in all four lineages. Remarkably, 737 genes are variably inherited across lineages and are overrepresented for response to oxidative stress, mitochondrial import, and metal binding and transport. Specifically, VGI has an expanded set of iron-binding genes thought to be important to the virulence of Cryptococcus, while VGII has expansions in the stress-related heat shock proteins relative to the other lineages. We also characterized genes uniquely absent in each lineage, including a copper transporter absent from VGIV, which influences Cryptococcus survival during pulmonary infection and the onset of meningoencephalitis. Through inclusion of population-level data for an additional 37 isolates, we identified a new transcontinental clonal group that we name VGIIx, mitochondrial recombination between VGII and VGIII, and positive selection of multidrug transporters and the iron-sulfur protein aconitase along multiple branches of the phylogenetic tree. Our results suggest that gene expansion or contraction and positive selection have introduced substantial variation with links to mechanisms of pathogenicity across this species complex. PMID:26330512

  9. Molecular phylodynamic analysis indicates lineage displacement occurred in Chinese rabies epidemics between 1949 to 2010.

    PubMed

    Tao, Xiao-Yan; Tang, Qing; Rayner, Simon; Guo, Zhen-Yang; Li, Hao; Lang, Shu-Lin; Yin, Cui-Ping; Han, Na; Fang, Wei; Adams, James; Song, Miao; Liang, Guo-Dong

    2013-01-01

    Rabies remains a serious problem in China with three epidemics since 1949 and the country in the midst of the third epidemic. Significantly, the control of each outbreak has been followed by a rapid reemergence of the disease. In 2005, the government implemented a rabies national surveillance program that included the collection and screening of almost 8,000 samples. In this work, we analyzed a Chinese dataset comprising 320 glycoprotein sequences covering 23 provinces and eight species, spanning the second and third epidemics. Specifically, we investigated whether the three epidemics are associated with a single reemerging lineage or a different lineage was responsible for each epidemic. Consistent with previous results, phylogenetic analysis identified six lineages, China I to VI. Analysis of the geographical composition of these lineages revealed they are consistent with human case data and reflect the gradual emergence of China I in the third epidemic. Initially, China I was restricted to south China and China II was dominant. However, as the epidemic began to spread into new areas, China I began to emerge, whereas China II remained confined to south China. By the latter part of the surveillance period, almost all isolates were China I and contributions from the remaining lineages were minimal. The prevalence of China II in the early stages of the third epidemic and its established presence in wildlife suggests that it too replaced a previously dominant lineage during the second epidemic. This lineage replacement may be a consequence of control programs that were dominated by dog culling efforts as the primary control method in the first two epidemics. This had the effect of reducing dominant strains to levels comparable with other localized background stains. Our results indicate the importance of effective control strategies for long term control of the disease. PMID:23875035

  10. Recovering mitochondrial DNA lineages of extinct Amerindian nations in extant homopatric Brazilian populations

    PubMed Central

    2010-01-01

    Background Brazilian Amerindians have experienced a drastic population decrease in the past 500 years. Indeed, many native groups from eastern Brazil have vanished. However, their mitochondrial mtDNA haplotypes, still persist in Brazilians, at least 50 million of whom carry Amerindian mitochondrial lineages. Our objective was to test whether, by analyzing extant rural populations from regions anciently occupied by specific Amerindian groups, we could identify potentially authentic mitochondrial lineages, a strategy we have named 'homopatric targeting'. Results We studied 173 individuals from Queixadinha, a small village located in a territory previously occupied by the now extinct Botocudo Amerindian nation. Pedigree analysis revealed 74 unrelated matrilineages, which were screened for Amerindian mtDNA lineages by restriction fragment length polymorphism. A cosmopolitan control group was composed of 100 individuals from surrounding cities. All Amerindian lineages identified had their hypervariable segment HVSI sequenced, yielding 13 Amerindian haplotypes in Queixadinha, nine of which were not present in available databanks or in the literature. Among these haplotypes, there was a significant excess of haplogroup C (70%) and absence of haplogroup A lineages, which were the most common in the control group. The novelty of the haplotypes and the excess of the C haplogroup suggested that we might indeed have identified Botocudo lineages. To validate our strategy, we studied teeth extracted from 14 ancient skulls of Botocudo Amerindians from the collection of the National Museum of Rio de Janeiro. We recovered mtDNA sequences from all the teeth, identifying only six different haplotypes (a low haplotypic diversity of 0.8352 ± 0.0617), one of which was present among the lineages observed in the extant individuals studied. Conclusions These findings validate the technique of homopatric targeting as a useful new strategy to study the peopling and colonization of the New

  11. Hypermethylation of the spleen tyrosine kinase promoter in T-lineage acute lymphoblastic leukemia.

    PubMed

    Goodman, Patricia A; Burkhardt, Nicole; Juran, Brian; Tibbles, Heather E; Uckun, Faith M

    2003-04-24

    Sequence analysis of the noncoding first exon (exon 1) of the Syk gene demonstrated the presence of a previously cloned CpG island (GenBank #Z 65706). Transient transfection analysis in Daudi cells demonstrated promoter activity (18-fold increase over parental luciferase plasmid) for a 348 bp BstXI-BsrBI fragment containing this island. This region exhibits a high GC content (approximately 75%), contains several SP1 binding sites and a potential initiator sequence, but lacks a strong TATA consensus. Bisulfite sequencing and methylation-specific PCR (MSP) of this region demonstrated that the Syk promoter CpG island was largely unmethylated in B-lineage leukemia cell lines, control peripheral blood cells, human thymocytes and CD3(+) T lymphocytes. However, dense methylation was seen in four T-lineage leukemia cell lines, Jurkat, H9, Molt 3 and HUT 78. MSP screening of leukemia cells from six T-lineage acute lymphoblastic leukemia (ALL) patients demonstrated methylation of the Syk promoter CpG island in one T-lineage ALL patient. Promoter methylation was correlated with reduced to absent expression of Syk mRNA and SYK protein in the T-lineage leukemia cell lines. Treatment of the leukemia lines Ha and Molt 3, with the methylation inhibitor, 5-aza-2'-deoxycytidine (5-aza-CdR) resulted in increased Syk mRNA expression. The presence of a methylated promoter sequence in these T-lineage leukemia cell lines and in one T-lineage patient suggests a potential role for SYK as a tumor suppressor in T-ALL. PMID:12717427

  12. Human leukocyte antigen-G allele polymorphisms have evolved following three different evolutionary lineages based on intron sequences.

    PubMed

    Cervera, Isabel; Herraiz, Miguel Angel; Peñaloza, Jorge; Barbolla, Maria Luz; Jurado, Maria Luisa; Macedo, Jacqueline; Vidart, José Antonio; Martinez-Laso, Jorge

    2010-11-01

    Human leukocyte antigen (HLA)-G alleles follow a different pattern of polymorphism generation from those of the HLA classical I alleles. These polymorphisms have been defined as a result of random permitted point mutations in exons. However, this polymorphism maintenance could have an evolutionary specific pathways based on noncoding regions as introns, 14-bp deletion/insertion (exon 8), or promoter regions. Therefore a systematic sequencing study of HLA-G alleles was done obtaining the complete genomic sequence of 16 different HLA-G alleles: nine alleles were intron and exon confirmatory sequences, four were exon confirmatory and new intron described sequences, and three were new alleles. A 14-bp deletion/insertion polymorphism was also sequenced in these alleles. These sequences, together with those previously published, were compared, and phylogenetic and molecular evolutionary analyses were performed. Results showed the presence of three major specific evolutionary patterns, tentatively named lineages, and the other four as minor lineages (only one allele). The relative age of the major lineages could also be established based on the number of lineage-specific positions and the number of alleles of each lineage. Two main mechanisms are clearly defined in the generation of the lineages (introns), gene conversion, and/or convergent evolution following specific patterns. PMID:20650296

  13. Lineage and morphogenetic analysis of the cardiac valves.

    PubMed

    de Lange, Frederik J; Moorman, Antoon F M; Anderson, Robert H; Männer, Jörg; Soufan, Alexandre T; de Gier-de Vries, Corrie; Schneider, Michael D; Webb, Sandra; van den Hoff, Maurice J B; Christoffels, Vincent M

    2004-09-17

    We used a genetic lineage-labeling system to establish the material contributions of the progeny of 3 specific cell types to the cardiac valves. Thus, we labeled irreversibly the myocardial (alphaMHC-Cre+), endocardial (Tie2-Cre+), and neural crest (Wnt1-Cre+) cells during development and assessed their eventual contribution to the definitive valvar complexes. The leaflets and tendinous cords of the mitral and tricuspid valves, the atrioventricular fibrous continuity, and the leaflets of the outflow tract valves were all found to be generated from mesenchyme derived from the endocardium, with no substantial contribution from cells of the myocardial and neural crest lineages. Analysis of chicken-quail chimeras revealed absence of any substantial contribution from proepicardially derived cells. Molecular and morphogenetic analysis revealed several new aspects of atrioventricular valvar formation. Marked similarities are seen during the formation of the mural leaflets of the mitral and tricuspid valves. These leaflets form by protrusion and growth of a sheet of atrioventricular myocardium into the ventricular lumen, with subsequent formation of valvar mesenchyme on its surface rather than by delamination of lateral cushions from the ventricular myocardial wall. The myocardial layer is subsequently removed by the process of apoptosis. In contrast, the aortic leaflet of the mitral valve, the septal leaflet of the tricuspid valve, and the atrioventricular fibrous continuity between these valves develop from the mesenchyme of the inferior and superior atrioventricular cushions. The tricuspid septal leaflet then delaminates from the muscular ventricular septum late in development. PMID:15297379

  14. Analysis of paternal lineages in Brazilian and African populations

    PubMed Central

    2010-01-01

    The present-day Brazilian population is a consequence of the admixture of various peoples of very different origins, namely, Amerindians, Europeans and Africans. The proportion of each genetic contribution is known to be very heterogeneous throughout the country. The aim of the present study was to compare the male lineages present in two distinct Brazilian populations, as well as to evaluate the African contribution to their male genetic substrate. Thus, two Brazilian population samples from Manaus (State of Amazon) and Ribeirão Preto (State of São Paulo) and three African samples from Guinea Bissau, Angola and Mozambique were typed for a set of nine Y chromosome specific STRs. The data were compared with those from African, Amerindian and European populations. By using Y-STR haplotype information, low genetic distances were found between the Manaus and Ribeirão Preto populations, as well as between these and others from Iberia. Likewise, no significant distances were observed between any of the African samples from Angola, Mozambique and Guinea Bissau. Highly significant Rst values were found between both Brazilian samples and all the African and Amerindian populations. The absence of a significant Sub-Saharan African male component resulting from the slave trade, and the low frequency in Amerindian ancestry Y-lineages in the Manaus and Ribeirão Preto population samples are in accordance with the accentuated gender asymmetry in admixture processes that has been systematically reported in colonial South American populations. PMID:21637407

  15. Anterior dental evolution in the Australopithecus anamensis–afarensis lineage

    PubMed Central

    Ward, Carol V.; Plavcan, J. Michael; Manthi, Fredrick K.

    2010-01-01

    Australopithecus anamensis is the earliest known species of the Australopithecus–human clade and is the likely ancestor of Australopithecus afarensis. Investigating possible selective pressures underlying these changes is key to understanding the patterns of selection shaping the origins and early evolution of the Australopithecus–human clade. During the course of the Au. anamensis–afarensis lineage, significant changes appear to occur particularly in the anterior dentition, but also in jaw structure and molar form, suggesting selection for altered diet and/or food processing. Specifically, canine tooth crown height does not change, but maxillary canines and P3s become shorter mesiodistally, canine tooth crowns become more symmetrical in profile and P3s less unicuspid. Canine roots diminish in size and dimorphism, especially relative to the size of the postcanine teeth. Molar crowns become higher. Tooth rows become more divergent and symphyseal form changes. Dietary change involving anterior dental use is also suggested by less intense anterior tooth wear in Au. afarensis. These dental changes signal selection for altered dietary behaviour and explain some differences in craniofacial form between these taxa. These data identify Au. anamensis not just as a more primitive version of Au. afarensis, but as a dynamic member of an evolving lineage leading to Au. afarensis, and raise intriguing questions about what other evolutionary changes occurred during the early evolution of the Australopithecus–human clade, and what characterized the origins of the group. PMID:20855307

  16. Anterior dental evolution in the Australopithecus anamensis-afarensis lineage.

    PubMed

    Ward, Carol V; Plavcan, J Michael; Manthi, Fredrick K

    2010-10-27

    Australopithecus anamensis is the earliest known species of the Australopithecus-human clade and is the likely ancestor of Australopithecus afarensis. Investigating possible selective pressures underlying these changes is key to understanding the patterns of selection shaping the origins and early evolution of the Australopithecus-human clade. During the course of the Au. anamensis-afarensis lineage, significant changes appear to occur particularly in the anterior dentition, but also in jaw structure and molar form, suggesting selection for altered diet and/or food processing. Specifically, canine tooth crown height does not change, but maxillary canines and P(3)s become shorter mesiodistally, canine tooth crowns become more symmetrical in profile and P(3)s less unicuspid. Canine roots diminish in size and dimorphism, especially relative to the size of the postcanine teeth. Molar crowns become higher. Tooth rows become more divergent and symphyseal form changes. Dietary change involving anterior dental use is also suggested by less intense anterior tooth wear in Au. afarensis. These dental changes signal selection for altered dietary behaviour and explain some differences in craniofacial form between these taxa. These data identify Au. anamensis not just as a more primitive version of Au. afarensis, but as a dynamic member of an evolving lineage leading to Au. afarensis, and raise intriguing questions about what other evolutionary changes occurred during the early evolution of the Australopithecus-human clade, and what characterized the origins of the group. PMID:20855307

  17. Bazooka mediates secondary axon morphology in Drosophila brain lineages

    PubMed Central

    2011-01-01

    In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that multiple GAL4 drivers have been mapped to several lineages of the Drosophila brain enables investigation of the role of Bazooka from larval to adult stages Bazooka loss-of-function (LOF) clones had abnormal morphologies, including aberrant pathway choice of ventral projection neurons in the BAla1 lineage, ectopic branching in the DALv2 and BAmv1 lineages, and excess BLD5 lineage axon projections in the optic medulla. Exogenous expression of Bazooka protein in BAla1 neurons rescued defective guidance, supporting an intrinsic requirement for Bazooka in the post-mitotic neuron. Elimination of the Par-complex member Par6 recapitulated Bazooka phenotypes in some but not all lineages, suggesting that the Par complex functions in a lineage-dependent manner, and that Bazooka may act independently in some lineages. Importantly, this study highlights the potential of using a multilineage approach when studying gene function during neural development in Drosophila. PMID:21524279

  18. Bazooka mediates secondary axon morphology in Drosophila brain lineages.

    PubMed

    Spindler, Shana R; Hartenstein, Volker

    2011-01-01

    In the Drosophila brain, neural lineages project bundled axon tracts into a central neuropile. Each lineage exhibits a stereotypical branching pattern and trajectory, which distinguish it from other lineages. In this study, we used a multilineage approach to explore the neural function of the Par-complex member Par3/Bazooka in vivo. Drosophila bazooka is expressed in post-mitotic neurons of the larval brain and localizes within neurons in a lineage-dependent manner. The fact that multiple GAL4 drivers have been mapped to several lineages of the Drosophila brain enables investigation of the role of Bazooka from larval to adult stages Bazooka loss-of-function (LOF) clones had abnormal morphologies, including aberrant pathway choice of ventral projection neurons in the BAla1 lineage, ectopic branching in the DALv2 and BAmv1 lineages, and excess BLD5 lineage axon projections in the optic medulla. Exogenous expression of Bazooka protein in BAla1 neurons rescued defective guidance, supporting an intrinsic requirement for Bazooka in the post-mitotic neuron. Elimination of the Par-complex member Par6 recapitulated Bazooka phenotypes in some but not all lineages, suggesting that the Par complex functions in a lineage-dependent manner, and that Bazooka may act independently in some lineages. Importantly, this study highlights the potential of using a multilineage approach when studying gene function during neural development in Drosophila. PMID:21524279

  19. Real time PCR assay for detection of all known lineages of West Nile virus.

    PubMed

    Vázquez, Ana; Herrero, Laura; Negredo, Anabel; Hernández, Lourdes; Sánchez-Seco, María Paz; Tenorio, Antonio

    2016-10-01

    West Nile virus (WNV) is one of the most widespread arbovirus and a large variety of WNV strains and lineages have been described. The molecular methods for the diagnosis of WNV target mainly lineages 1 and 2, which have caused outbreaks in humans, equines and birds. But the last few years new and putative WNV lineages of unknown pathogenicity have been described. Here we describe a new sensitive and specific real-time PCR assay for the detection and quantification of all the WNV lineages described until now. Primers and probe were designed in the 3'-untranslated region (3'-UTR) of the WNV genome and were designed to match all sequenced WNV strains perfectly. The sensitivity of the assay ranged from 1,5 to 15 copies per reaction depending on the WNV lineage tested. The method was validated for WNV diagnosis using different viral strains, human samples (cerebrospinal fluid, biopsies, serum and plasma) and mosquito pools. The assay did not amplify any other phylogenetically or symptomatically related viruses. All of the above make it a very suitable tool for the diagnosis of WNV and for surveillance studies. PMID:27481597

  20. A microfluidic platform enabling single-cell RNA-seq of multigenerational lineages

    PubMed Central

    Kimmerling, Robert J.; Lee Szeto, Gregory; Li, Jennifer W.; Genshaft, Alex S.; Kazer, Samuel W.; Payer, Kristofor R.; de Riba Borrajo, Jacob; Blainey, Paul C.; Irvine, Darrell J.; Shalek, Alex K.; Manalis, Scott R.

    2016-01-01

    We introduce a microfluidic platform that enables off-chip single-cell RNA-seq after multi-generational lineage tracking under controlled culture conditions. We use this platform to generate whole-transcriptome profiles of primary, activated murine CD8+ T-cell and lymphocytic leukemia cell line lineages. Here we report that both cell types have greater intra- than inter-lineage transcriptional similarity. For CD8+ T-cells, genes with functional annotation relating to lymphocyte differentiation and function—including Granzyme B—are enriched among the genes that demonstrate greater intra-lineage expression level similarity. Analysis of gene expression covariance with matched measurements of time since division reveals cell type-specific transcriptional signatures that correspond with cell cycle progression. We believe that the ability to directly measure the effects of lineage and cell cycle-dependent transcriptional profiles of single cells will be broadly useful to fields where heterogeneous populations of cells display distinct clonal trajectories, including immunology, cancer, and developmental biology. PMID:26732280

  1. A nonclassical MHC class I U lineage locus in zebrafish with a null haplotypic variant

    PubMed Central

    Dirscherl, Hayley; Yoder, Jeffrey A.

    2015-01-01

    Three sequence lineages of MHC class I genes have been described in zebrafish (Danio rerio): U, Z, and L. The U lineage genes encoded on zebrafish chromosome 19 are predicted to provide the classical function of antigen presentation. This MHC class I locus displays significant haplotypic variation and is the only MHC class I locus in zebrafish that shares conserved synteny with the core mammalian MHC. Here we describe two MHC class I U lineage genes, mhc1ula and mhc1uma, that map to chromosome 22. Unlike the U lineage proteins encoded on chromosome 19, Ula and Uma likely play a nonclassical role as they lack conservation of key peptide binding residues, display limited polymorphic variation, and exhibit tissue-specific expression. We also describe a null haplotype at this chromosome 22 locus in which the mhc1ula and mhc1uma genes are absent due to a ∼30 kb deletion with no other MHC class I sequences present. Functional and non-functional transcripts of mhc1ula and mhc1uma were identified; however, mhc1uma transcripts were often not amplified or amplified at low levels from individuals possessing an apparently bona fide gene. These distinct U lineage genes may be restricted to the superorder Ostariophysi as similar sequences only could be identified from the blind cavefish (Astyanyx mexicanus), fathead minnow (Pimephales promelas), goldfish (Carassius auratus), and grass carp (Ctenopharyngodon idellus). PMID:26254596

  2. A nonclassical MHC class I U lineage locus in zebrafish with a null haplotypic variant.

    PubMed

    Dirscherl, Hayley; Yoder, Jeffrey A

    2015-09-01

    Three sequence lineages of MHC class I genes have been described in zebrafish (Danio rerio): U, Z, and L. The U lineage genes encoded on zebrafish chromosome 19 are predicted to provide the classical function of antigen presentation. This MHC class I locus displays significant haplotypic variation and is the only MHC class I locus in zebrafish that shares conserved synteny with the core mammalian MHC. Here, we describe two MHC class I U lineage genes, mhc1ula and mhc1uma, that map to chromosome 22. Unlike the U lineage proteins encoded on chromosome 19, Ula and Uma likely play a nonclassical role as they lack conservation of key peptide binding residues, display limited polymorphic variation, and exhibit tissue-specific expression. We also describe a null haplotype at this chromosome 22 locus in which the mhc1ula and mhc1uma genes are absent due to a ~30 kb deletion with no other MHC class I sequences present. Functional and non-functional transcripts of mhc1ula and mhc1uma were identified; however, mhc1uma transcripts were often not amplified or amplified at low levels from individuals possessing an apparently bona fide gene. These distinct U lineage genes may be restricted to the superorder Ostariophysi as similar sequences only could be identified from the blind cavefish (Astyanax mexicanus), fathead minnow (Pimephales promelas), goldfish (Carassius auratus), and grass carp (Ctenopharyngodon idella). PMID:26254596

  3. CRX Is a Diagnostic Marker of Retinal and Pineal Lineage Tumors

    PubMed Central

    Santagata, Sandro; Maire, Cecile L.; Idbaih, Ahmed; Geffers, Lars; Correll, Mick; Holton, Kristina; Quackenbush, John; Ligon, Keith L.

    2009-01-01

    Background CRX is a homeobox transcription factor whose expression and function is critical to maintain retinal and pineal lineage cells and their progenitors. To determine the biologic and diagnostic potential of CRX in human tumors of the retina and pineal, we examined its expression in multiple settings. Methodology/Principal Findings Using situ hybridization and immunohistochemistry we show that Crx RNA and protein expression are exquisitely lineage restricted to retinal and pineal cells during normal mouse and human development. Gene expression profiling analysis of a wide range of human cancers and cancer cell lines also supports that CRX RNA is highly lineage restricted in cancer. Immunohistochemical analysis of 22 retinoblastomas and 13 pineal parenchymal tumors demonstrated strong expression of CRX in over 95% of these tumors. Importantly, CRX was not detected in the majority of tumors considered in the differential diagnosis of pineal region tumors (n = 78). The notable exception was medulloblastoma, 40% of which exhibited CRX expression in a heterogeneous pattern readily distinguished from that seen in retino-pineal tumors. Conclusions/Significance These findings describe new potential roles for CRX in human cancers and highlight the general utility of lineage restricted transcription factors in cancer biology. They also identify CRX as a sensitive and specific clinical marker and a potential lineage dependent therapeutic target in retinoblastoma and pineoblastoma. PMID:19936203

  4. Transcriptome dynamics of the stomatal lineage: birth, amplification and termination of a self-renewing population

    PubMed Central

    Adrian, Jessika; Chang, Jessica; Ballenger, Catherine E.; Bargmann, Bastiaan O. R.; Alassimone, Julien; Davies, Kelli A.; Lau, On Sun; Matos, Juliana L.; Hachez, Charles; Lanctot, Amy; Vatén, Anne; Birnbaum, Kenneth D.; Bergmann, Dominique C.

    2015-01-01

    Summary Developmental transitions can be described in terms of morphology and the roles of individual genes, but also in terms of global transcriptional and epigenetic changes. Temporal dissections of transcriptome changes, however, are rare for intact, developing tissues. We used RNA sequencing and microarray platforms to quantify gene expression from labeled cells isolated by Fluorescence Activated Cell Sorting to generate cell-type specific transcriptomes during development of an adult stem-cell lineage in the Arabidopsis leaf. We show regulatory modules in this early lineage link cell types that had previously been considered to be under separate control and provide evidence for recruitment of individual members of gene families for different developmental decisions. Because stomata are physiologically important and because stomatal lineage cells exhibit exemplary division, cell fate and cell signaling behaviors, this dataset serves as a valuable resource for further investigations of fundamental developmental processes. PMID:25850675

  5. New Genetic Lineage of Tula Hantavirus in Microtus arvalis obscurus in Eastern Kazakhstan

    PubMed Central

    Plyusnina, Angelina; Laakkonen, Juha; Niemimaa, Jukka; Henttonen, Heikki; Plyusnin, Alexander

    2008-01-01

    Genomic sequences of Tula (TULV) hantavirus were recovered from tissue samples of European common voles Microtus arvalis (subspecies obscurus) captured in Kazakhstan, Central Asia. Phylogenetic analysis of the S genomic segment of Kazakh TULV strains showed that they form distinct, well supported genetic lineage and share a more ancient common ancestor with two Russian lineages of TULV. The deduced sequence of the nucleocapsid (N) protein of Kazakh TULV strains carried specific amino acid signature: T274Q276T281. The Microtus arvalis group includes several sibling species and/or subspecies in Eurasia, indicating recent and ongoing evolutionary radiation. Our data on TULV lineages in Central Asia, the region not studied for hantaviruses earlier, highlight the diversity of both Microtus host and the virus and also their co-evolution. PMID:19440462

  6. Bioinformatics Reveal Five Lineages of Oleosins and the Mechanism of Lineage Evolution Related to Structure/Function from Green Algae to Seed Plants.

    PubMed

    Huang, Ming-Der; Huang, Anthony H C

    2015-09-01

    Plant cells contain subcellular lipid droplets with a triacylglycerol matrix enclosed by a layer of phospholipids and the small structural protein oleosin. Oleosins possess a conserved central hydrophobic hairpin of approximately 72 residues penetrating into the lipid droplet matrix and amphipathic amino- and carboxyl (C)-terminal peptides lying on the phospholipid surface. Bioinformatics of 1,000 oleosins of green algae and all plants emphasizing biological implications reveal five oleosin lineages: primitive (in green algae, mosses, and ferns), universal (U; all land plants), and three in specific organs or phylogenetic groups, termed seed low-molecular-weight (SL; seed plants), seed high-molecular-weight (SH; angiosperms), and tapetum (T; Brassicaceae) oleosins. Transition from one lineage to the next is depicted from lineage intermediates at junctions of phylogeny and organ distributions. Within a species, each lineage, except the T oleosin lineage, has one to four genes per haploid genome, only approximately two of which are active. Primitive oleosins already possess all the general characteristics of oleosins. U oleosins have C-terminal sequences as highly conserved as the hairpin sequences; thus, U oleosins including their C-terminal peptide exert indispensable, unknown functions. SL and SH oleosin transcripts in seeds are in an approximately 1:1 ratio, which suggests the occurrence of SL-SH oleosin dimers/multimers. T oleosins in Brassicaceae are encoded by rapidly evolved multitandem genes for alkane storage and transfer. Overall, oleosins have evolved to retain conserved hairpin structures but diversified for unique structures and functions in specific cells and plant families. Also, our studies reveal oleosin in avocado (Persea americana) mesocarp and no acyltransferase/lipase motifs in most oleosins. PMID:26232488

  7. Bioinformatics Reveal Five Lineages of Oleosins and the Mechanism of Lineage Evolution Related to Structure/Function from Green Algae to Seed Plants1[OPEN

    PubMed Central

    Huang, Ming-Der; Huang, Anthony H.C.

    2015-01-01

    Plant cells contain subcellular lipid droplets with a triacylglycerol matrix enclosed by a layer of phospholipids and the small structural protein oleosin. Oleosins possess a conserved central hydrophobic hairpin of approximately 72 residues penetrating into the lipid droplet matrix and amphipathic amino- and carboxyl (C)-terminal peptides lying on the phospholipid surface. Bioinformatics of 1,000 oleosins of green algae and all plants emphasizing biological implications reveal five oleosin lineages: primitive (in green algae, mosses, and ferns), universal (U; all land plants), and three in specific organs or phylogenetic groups, termed seed low-molecular-weight (SL; seed plants), seed high-molecular-weight (SH; angiosperms), and tapetum (T; Brassicaceae) oleosins. Transition from one lineage to the next is depicted from lineage intermediates at junctions of phylogeny and organ distributions. Within a species, each lineage, except the T oleosin lineage, has one to four genes per haploid genome, only approximately two of which are active. Primitive oleosins already possess all the general characteristics of oleosins. U oleosins have C-terminal sequences as highly conserved as the hairpin sequences; thus, U oleosins including their C-terminal peptide exert indispensable, unknown functions. SL and SH oleosin transcripts in seeds are in an approximately 1:1 ratio, which suggests the occurrence of SL-SH oleosin dimers/multimers. T oleosins in Brassicaceae are encoded by rapidly evolved multitandem genes for alkane storage and transfer. Overall, oleosins have evolved to retain conserved hairpin structures but diversified for unique structures and functions in specific cells and plant families. Also, our studies reveal oleosin in avocado (Persea americana) mesocarp and no acyltransferase/lipase motifs in most oleosins. PMID:26232488

  8. Two myogenic lineages within the developing somite.

    PubMed

    Ordahl, C P; Le Douarin, N M

    1992-02-01

    It is well known that the muscles of the vertebrate body are derived from the somite. Precursor cells within the somite proper form the back or axial muscles while other precursor cells migrate away from the somite to populate the muscle of the limbs and ventral body wall. Although both types of muscle are generally thought of as arising from a common progenitor population, the myotome, recent evidence points to developmental differences in these two groups of muscles which may reflect different developmental lineages. To test the lineage hypothesis, we used microsurgery and the chick-quail nucleolar marker system to follow the developmental fate of the lateral and medial halves of somites at the wing level. The results showed that the structures of the mature somite (myotome and sclerotome) are derived virtually exclusively from cells residing in the medial half of the newly formed somite. On the other hand, virtually all of the cells residing in the lateral half of the newly formed somite are destined to leave the somite proper and populate the limb muscle and, probably, other somite-derived mesenchymal structures in the limb and ventral body wall. Switch-graft experiments show that the two halves of newly formed somites are largely interchangeable demonstrating that their ultimate developmental fate is position-dependent and that it becomes fixed as a result of extrinsic influences which act during later stages of somitogenesis. We conclude that at least two distinct myogenic lineages exist in the somite; one giving rise to the muscles of the back and the other giving rise to the limb musculature. PMID:1591996

  9. The arborization pattern of engrailed-positive neural lineages reveal neuromere boundaries in the Drosophila brain neuropile

    PubMed Central

    Kumar, Abhilasha; Fung, S.; Lichtneckert, Robert; Reichert, Heinrich; Hartenstein, Volker

    2010-01-01

    The Drosophila brain is a highly complex structure composed of thousands of neurons that are interconnected in numerous exquisitely organized neuropile structures such as the mushroom bodies, central complex, antennal lobes, and other specialized neuropiles. While the neurons of the insect brain are known to derive in a lineage-specific fashion from a stereotyped set of segmentally organized neuroblasts, the developmental origin and neuromeric organization of the neuropile formed by these neurons is still unclear. In this report, we use genetic labeling techniques to characterize the neuropile innervation pattern of engrailed-expressing brain lineages of known neuromeric origin. We show that the neurons of these lineages project to and form most arborizations, in particular all of their proximal branches, in the same brain neuropile compartments in embryonic, larval and adult stages. Moreover, we show that engrailed-positive neurons of differing neuromeric origin respect boundaries between neuromere-specific compartments in the brain. This is confirmed by an analysis of the arborization pattern of empty spiracles-expressing lineages. These findings indicate that arborizations of lineages deriving from different brain neuromeres innervate a non-overlapping set of neuropile compartments. This supports a model for neuromere-specific brain neuropile, in which a given lineage forms its proximal arborizations predominantly in the compartments that correspond to its neuromere of origin. PMID:19711412

  10. Cardiac Cell Lineages that Form the Heart

    PubMed Central

    Meilhac, Sigolène M.; Lescroart, Fabienne; Blanpain, Cédric; Buckingham, Margaret E.

    2014-01-01

    Myocardial cells ensure the contractility of the heart, which also depends on other mesodermal cell types for its function. Embryological experiments had identified the sources of cardiac precursor cells. With the advent of genetic engineering, novel tools have been used to reconstruct the lineage tree of cardiac cells that contribute to different parts of the heart, map the development of cardiac regions, and characterize their genetic signature. Such knowledge is of fundamental importance for our understanding of cardiogenesis and also for the diagnosis and treatment of heart malformations. PMID:25183852

  11. Direct lineage reprogramming to neural cells

    PubMed Central

    Kim, Janghwan; Ambasudhan, Rajesh; Ding, Sheng

    2016-01-01

    Recently we have witnessed an array of studies on direct reprogramming that describe induced inter conversion of mature cell types from higher organisms including human. While these studies reveal an unexpected level of plasticity of differentiated somatic cells, they also provide unprecedented opportunities to develop regenerative therapies for many debilitating disorders and model these ‘diseases-in-a-dish’ for studying their pathophysiology. Here we review the current state of the art in direct lineage reprogramming to neural cells, and discuss the challenges that need to be addressed toward achieving the full potential of this exciting new technology. PMID:22652035

  12. H3K27 demethylation by JMJD3 at a poised enhancer of anti-apoptotic gene BCL2 determines ERα ligand dependency

    PubMed Central

    Svotelis, Amy; Bianco, Stéphanie; Madore, Jason; Huppé, Gabrielle; Nordell-Markovits, Alexei; Mes-Masson, Anne-Marie; Gévry, Nicolas

    2011-01-01

    Chromatin represents a repressive barrier to the process of ligand-dependent transcriptional activity of nuclear receptors. Here, we show that H3K27 methylation imposes ligand-dependent regulation of the oestrogen receptor α (ERα)-dependent apoptotic response via Bcl-2 in breast cancer cells. The activation of BCL2 transcription is dependent on the simultaneous inactivation of the H3K27 methyltransferase, EZH2, and the demethylation of H3K27 at a poised enhancer by the ERα-dependent recruitment of JMJD3 in hormone-dependent breast cancer cells. We also provide evidence that this pathway is modified in cells resistant to anti-oestrogen (AE), which constitutively express BCL2. We show that the lack of H3K27 methylation at BCL2 regulatory elements due to the inactivation of EZH2 by the HER2 pathway leads to this constitutive activation of BCL2 in these AE-resistant cells. Our results describe a mechanism in which the epigenetic state of chromatin affects ligand dependency during ERα-regulated gene expression. PMID:21841772

  13. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics.

    PubMed

    Orsi, Renato H; den Bakker, Henk C; Wiedmann, Martin

    2011-02-01

    Listeria monocytogenes consists of at least 4 evolutionary lineages (I, II, III, and IV) with different but overlapping ecological niches. Most L. monocytogenes isolates seem to belong to lineages I and II, which harbor the serotypes more commonly associated with human clinical cases, including serotype 1/2a (lineage II) and serotypes 1/2b and 4b (lineage I). Lineage II strains are common in foods, seem to be widespread in the natural and farm environments, and are also commonly isolated from animal listeriosis cases and sporadic human clinical cases. Most human listeriosis outbreaks are associated with lineage I isolates though. In addition, a number of studies indicate that, in many countries, lineage I strains are overrepresented among human isolates, as compared to lineage II strains. Lineage III and IV strains on the other hand are rare and predominantly isolated from animal sources. The apparent differences in the distribution of strains representing the L. monocytogenes lineages has lead to a number of studies aimed at identifying phenotypic differences among the different lineages. Interestingly, lineage II isolates seem to carry more plasmids than lineage I isolates and these plasmids often confer resistance to toxic metals and possibly other compounds that may be found in the environment. Moreover, lineage II isolates seem to be more resistant to bacteriocins than lineage I isolates, which probably confers an advantage in environments where bacteriocin-producing organisms are abundant. A large number of lineage II isolates and strains have been shown to be virulence-attenuated due to premature stop codon mutations in inlA and mutations in prfA. A subset of lineage I isolates carry a listeriolysin S hemolysin, which is not present in isolates belonging to lineages II, III, or IV. While lineage II isolates also show higher recombination rates than lineage I isolates, possibly facilitating adaptation of lineage II strains to diverse environments, lineage I

  14. RBR ubiquitin ligases: Diversification and streamlining in animal lineages.

    PubMed

    Marín, Ignacio

    2009-07-01

    The patterns of emergence and disappearance in animal species of genes encoding RBR ubiquitin ligases are described. RBR genes can be classified into subfamilies (Parkin, Ariadne, Dorfin, ARA54, etc.) according to sequence and structural data. Here, I show that most animal-specific RBR subfamilies emerged early in animal evolution, and that ancient animals, before the cnidarian/bilaterian split, had a set of RBR genes, which was as complex as the one currently found in mammals. However, some lineages (nematodes, dipteran insects) have recently suffered multiple losses, leading to a highly simplified set of RBR genes. Genes of a particular RBR subfamily, characterized by containing a helicase domain and so far found only in plants, are present also in some animal species. The meaning of these patterns of diversification and streamlining are discussed at the light of functional data. Extreme evolutionary conservation may be related to gene products having housekeeping functions. PMID:19526189

  15. Chromatin Dynamics in Lineage Commitment and Cellular Reprogramming

    PubMed Central

    Shchuka, Virlana M.; Malek-Gilani, Nakisa; Singh, Gurdeep; Langroudi, Lida; Dhaliwal, Navroop K.; Moorthy, Sakthi D.; Davidson, Scott; Macpherson, Neil N.; Mitchell, Jennifer A.

    2015-01-01

    Dynamic structural properties of chromatin play an essential role in defining cell identity and function. Transcription factors and chromatin modifiers establish and maintain cell states through alteration of DNA accessibility and histone modifications. This activity is focused at both gene-proximal promoter regions and distally located regulatory elements. In the three-dimensional space of the nucleus, distal elements are localized in close physical proximity to the gene-proximal regulatory sequences through the formation of chromatin loops. These looping features in the genome are highly dynamic as embryonic stem cells differentiate and commit to specific lineages, and throughout reprogramming as differentiated cells reacquire pluripotency. Identifying these functional distal regulatory regions in the genome provides insight into the regulatory processes governing early mammalian development and guidance for improving the protocols that generate induced pluripotent cells. PMID:26193323

  16. Chromatin Dynamics in Lineage Commitment and Cellular Reprogramming.

    PubMed

    Shchuka, Virlana M; Malek-Gilani, Nakisa; Singh, Gurdeep; Langroudi, Lida; Dhaliwal, Navroop K; Moorthy, Sakthi D; Davidson, Scott; Macpherson, Neil N; Mitchell, Jennifer A

    2015-01-01

    Dynamic structural properties of chromatin play an essential role in defining cell identity and function. Transcription factors and chromatin modifiers establish and maintain cell states through alteration of DNA accessibility and histone modifications. This activity is focused at both gene-proximal promoter regions and distally located regulatory elements. In the three-dimensional space of the nucleus, distal elements are localized in close physical proximity to the gene-proximal regulatory sequences through the formation of chromatin loops. These looping features in the genome are highly dynamic as embryonic stem cells differentiate and commit to specific lineages, and throughout reprogramming as differentiated cells reacquire pluripotency. Identifying these functional distal regulatory regions in the genome provides insight into the regulatory processes governing early mammalian development and guidance for improving the protocols that generate induced pluripotent cells. PMID:26193323

  17. Multiple roles of NF1 in the melanocyte lineage.

    PubMed

    Larribère, Lionel; Utikal, Jochen

    2016-07-01

    NF1 is a tumour suppressor gene, germline mutations of which lead to neurofibromatosis type 1 syndrome. Patients develop benign tumours from several types of cells including neural crest-derived cells. NF1 somatic mutations also occur in 15% of sporadic melanoma, a cancer originating from melanocytes. Evidence now suggests the involvement of NF1 mutations in melanoma resistance to targeted therapies. Although NF1 is ubiquitously expressed, genetic links between NF1 and genes involved in melanocyte biology have been described, implying the lineage-specific mechanisms. In this review, we summarize and discuss the latest advances related to the roles of NF1 in melanocyte biology and in cutaneous melanoma. PMID:27155159

  18. Lineage and clonal development of gastric glands.

    PubMed

    Nomura, S; Esumi, H; Job, C; Tan, S S

    1998-12-01

    Individual gastric glands of the stomach are composed of cells of different phenotypes. These are derived from multipotent progenitor stem cells located at the isthmus region of the gland. Previous cell lineage analyses suggest that gastric glands, as in the colon and small intestine, are invariably monoclonal by adult stages. However, little is known about the ontogenetic progression of glandular clonality in the stomach. To examine this issue, we employed an in situ cell lineage marker in female mice heterozygous for an X-linked transgene. We found that stomach glands commence development as polyclonal units, but by adulthood (6 weeks), the majority progressed to monoclonal units. Our analysis suggests that at least three progenitor cells are required to initiate the development of individual gastric glands if they are analyzed just after birth. Hence, unlike the colon and small intestine, stomachs showed a significant fraction (10-25%) of polyclonal glands at adult stages. We suggest that these glands persist from polyclonal glands present in the embryonic stomach and hypothesize that they represent a subpopulation of glands with larger numbers of self-renewing stem cells. PMID:9851847

  19. Conditional Lineage Ablation to Model Human Diseases

    NASA Astrophysics Data System (ADS)

    Lee, Paul; Morley, Gregory; Huang, Qian; Fischer, Avi; Seiler, Stephanie; Horner, James W.; Factor, Stephen; Vaidya, Dhananjay; Jalife, Jose; Fishman, Glenn I.

    1998-09-01

    Cell loss contributes to the pathogenesis of many inherited and acquired human diseases. We have developed a system to conditionally ablate cells of any lineage and developmental stage in the mouse by regulated expression of the diphtheria toxin A (DTA) gene by using tetracycline-responsive promoters. As an example of this approach, we targeted expression of DTA to the hearts of adult mice to model structural abnormalities commonly observed in human cardiomyopathies. Induction of DTA expression resulted in cell loss, fibrosis, and chamber dilatation. As in many human cardiomyopathies, transgenic mice developed spontaneous arrhythmias in vivo, and programmed electrical stimulation of isolated-perfused transgenic hearts demonstrated a strikingly high incidence of spontaneous and inducible ventricular tachycardia. Affected mice showed marked perturbations of cardiac gap junction channel expression and localization, including a subset with disorganized epicardial activation patterns as revealed by optical action potential mapping. These studies provide important insights into mechanisms of arrhythmogenesis and suggest that conditional lineage ablation may have wide applicability for studies of disease pathogenesis.

  20. Astrocytes in Oligodendrocyte Lineage Development and White Matter Pathology

    PubMed Central

    Li, Jiasi; Zhang, Lei; Chu, Yongxin; Namaka, Michael; Deng, Benqiang; Kong, Jiming; Bi, Xiaoying

    2016-01-01

    White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be marginal. Research suggests that the failure of the re-myelination process may be the result of an unfavorable microenvironment. Astrocytes, are the most ample and diverse type of glial cells in central nervous system (CNS) which display multiple functions for the cells of the oligodendrocytes lineage. As such, much attention has recently been drawn to astrocyte function in terms of white matter myelin repair. They are different in white matter from those in gray matter in specific regards to development, morphology, location, protein expression and other supportive functions. During the process of demyelination and re-myelination, the functions of astrocytes are dynamic in that they are able to change functions in accordance to different time points, triggers or reactive pathways resulting in vastly different biologic effects. They have pivotal effects on oligodendrocytes and other cell types in the oligodendrocyte lineage by serving as an energy supplier, a participant of immunological and inflammatory functions, a source of trophic factors and iron and a sustainer of homeostasis. Astrocytic impairment has been shown to be directly linked to the development of neuromyelities optica (NMO). In addition, astroctyes have also been implicated in other white matter conditions such as psychiatric disorders and neurodegenerative diseases such as Alzheimer’s disease (AD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Inhibiting specifically detrimental signaling pathways in astrocytes while preserving their beneficial functions may be a promising approach for

  1. Astrocytes in Oligodendrocyte Lineage Development and White Matter Pathology.

    PubMed

    Li, Jiasi; Zhang, Lei; Chu, Yongxin; Namaka, Michael; Deng, Benqiang; Kong, Jiming; Bi, Xiaoying

    2016-01-01

    White matter is primarily composed of myelin and myelinated axons. Structural and functional completeness of myelin is critical for the reliable and efficient transmission of information. White matter injury has been associated with the development of many demyelinating diseases. Despite a variety of scientific advances aimed at promoting re-myelination, their benefit has proven at best to be marginal. Research suggests that the failure of the re-myelination process may be the result of an unfavorable microenvironment. Astrocytes, are the most ample and diverse type of glial cells in central nervous system (CNS) which display multiple functions for the cells of the oligodendrocytes lineage. As such, much attention has recently been drawn to astrocyte function in terms of white matter myelin repair. They are different in white matter from those in gray matter in specific regards to development, morphology, location, protein expression and other supportive functions. During the process of demyelination and re-myelination, the functions of astrocytes are dynamic in that they are able to change functions in accordance to different time points, triggers or reactive pathways resulting in vastly different biologic effects. They have pivotal effects on oligodendrocytes and other cell types in the oligodendrocyte lineage by serving as an energy supplier, a participant of immunological and inflammatory functions, a source of trophic factors and iron and a sustainer of homeostasis. Astrocytic impairment has been shown to be directly linked to the development of neuromyelities optica (NMO). In addition, astroctyes have also been implicated in other white matter conditions such as psychiatric disorders and neurodegenerative diseases such as Alzheimer's disease (AD), multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). Inhibiting specifically detrimental signaling pathways in astrocytes while preserving their beneficial functions may be a promising approach for

  2. The monosaccharide transporter gene family in land plants is ancient and shows differential subfamily expression and expansion across lineages

    PubMed Central

    Johnson, Deborah A; Hill, Jeffrey P; Thomas, Michael A

    2006-01-01

    Background In plants, tandem, segmental and whole-genome duplications are prevalent, resulting in large numbers of duplicate loci. Recent studies suggest that duplicate genes diverge predominantly through the partitioning of expression and that breadth of gene expression is related to the rate of gene duplication and protein sequence evolution. Here, we utilize expressed sequence tag (EST) data to study gene duplication and expression patterns in the monosaccharide transporter (MST) gene family across the land plants. In Arabidopsis, there are 53 MST genes that form seven distinct subfamilies. We created profile hidden Markov models of each subfamily and searched EST databases representing diverse land plant lineages to address the following questions: 1) Are homologs of each Arabidopsis subfamily present in the earliest land plants? 2) Do expression patterns among subfamilies and individual genes within subfamilies differ across lineages? 3) Has gene duplication within each lineage resulted in lineage-specific expansion patterns? We also looked for correlations between relative EST database representation in Arabidopsis and similarity to orthologs in early lineages. Results Homologs of all seven MST subfamilies were present in land plants at least 400 million years ago. Subfamily expression levels vary across lineages with greater relative expression of the STP, ERD6-like, INT and PLT subfamilies in the vascular plants. In the large EST databases of the moss, gymnosperm, monocot and eudicot lineages, EST contig construction reveals that MST subfamilies have experienced lineage-specific expansions. Large subfamily expansions appear to be due to multiple gene duplications arising from single ancestral genes. In Arabidopsis, one or a few genes within most subfamilies have much higher EST database representation than others. Most highly represented (broadly expressed) genes in Arabidopsis have best match orthologs in early divergent lineages. Conclusion The seven

  3. The Hippo transducer TAZ interacts with the SWI/SNF complex to regulate breast epithelial lineage commitment

    PubMed Central

    Skibinski, Adam; Breindel, Jerrica L.; Prat, Aleix; Galván, Patricia; Smith, Elizabeth; Rolfs, Andreas; Gupta, Piyush B.; LaBaer, Joshua; Kuperwasser, Charlotte

    2014-01-01

    Lineage-committed cells of many tissues exhibit substantial plasticity in contexts such as wound healing and tumorigenesis, but the regulation of this process is not well understood. Here, we identified the Hippo transducer WWTR1/TAZ in a screen of transcription factors able to prompt lineage switching of mammary epithelial cells. Forced expression of TAZ in luminal cells induces them to adopt basal characteristics, and depletion of TAZ in basal/myoepithelial cells leads to luminal differentiation. In human and mouse tissues, TAZ is active only in basal cells and is critical for basal cell maintenance during homeostasis. Accordingly, loss of TAZ affects mammary gland development, leading to an imbalance of luminal and basal populations as well as branching defects. Mechanistically, TAZ interacts with components of the SWI/SNF complex to modulate lineage-specific gene expression. Collectively, these findings uncover a new role for Hippo signaling in the determination of lineage identity through recruitment of chromatin remodeling complexes. PMID:24613358

  4. Global Phylogenomic Analysis of Nonencapsulated Streptococcus pneumoniae Reveals a Deep-Branching Classic Lineage That Is Distinct from Multiple Sporadic Lineages

    PubMed Central

    Hilty, Markus; Wüthrich, Daniel; Salter, Susannah J.; Engel, Hansjürg; Campbell, Samuel; Sá-Leão, Raquel; de Lencastre, Hermínia; Hermans, Peter; Sadowy, Ewa; Turner, Paul; Chewapreecha, Claire; Diggle, Mathew; Pluschke, Gerd; McGee, Lesley; Köseoğlu Eser, Özgen; Low, Donald E.; Smith-Vaughan, Heidi; Endimiani, Andrea; Küffer, Marianne; Dupasquier, Mélanie; Beaudoing, Emmanuel; Weber, Johann; Bruggmann, Rémy; Hanage, William P.; Parkhill, Julian; Hathaway, Lucy J.; Mühlemann, Kathrin; Bentley, Stephen D.

    2014-01-01

    The surrounding capsule of Streptococcus pneumoniae has been identified as a major virulence factor and is targeted by pneumococcal conjugate vaccines (PCV). However, nonencapsulated S. pneumoniae (non-Ec-Sp) have also been isolated globally, mainly in carriage studies. It is unknown if non-Ec-Sp evolve sporadically, if they have high antibiotic nonsusceptiblity rates and a unique, specific gene content. Here, whole-genome sequencing of 131 non-Ec-Sp isolates sourced from 17 different locations around the world was performed. Results revealed a deep-branching classic lineage that is distinct from multiple sporadic lineages. The sporadic lineages clustered with a previously sequenced, global collection of encapsulated S. pneumoniae (Ec-Sp) isolates while the classic lineage is comprised mainly of the frequently identified multilocus sequences types (STs) ST344 (n = 39) and ST448 (n = 40). All ST344 and nine ST448 isolates had high nonsusceptiblity rates to β-lactams and other antimicrobials. Analysis of the accessory genome reveals that the classic non-Ec-Sp contained an increased number of mobile elements, than Ec-Sp and sporadic non-Ec-Sp. Performing adherence assays to human epithelial cells for selected classic and sporadic non-Ec-Sp revealed that the presence of a integrative conjugative element (ICE) results in increased adherence to human epithelial cells (P = 0.005). In contrast, sporadic non-Ec-Sp lacking the ICE had greater growth in vitro possibly resulting in improved fitness. In conclusion, non-Ec-Sp isolates from the classic lineage have evolved separately. They have spread globally, are well adapted to nasopharyngeal carriage and are able to coexist with Ec-Sp. Due to continued use of PCV, non-Ec-Sp may become more prevalent. PMID:25480686

  5. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq.

    PubMed

    Treutlein, Barbara; Brownfield, Doug G; Wu, Angela R; Neff, Norma F; Mantalas, Gary L; Espinoza, F Hernan; Desai, Tushar J; Krasnow, Mark A; Quake, Stephen R

    2014-05-15

    The mammalian lung is a highly branched network in which the distal regions of the bronchial tree transform during development into a densely packed honeycomb of alveolar air sacs that mediate gas exchange. Although this transformation has been studied by marker expression analysis and fate-mapping, the mechanisms that control the progression of lung progenitors along distinct lineages into mature alveolar cell types are still incompletely known, in part because of the limited number of lineage markers and the effects of ensemble averaging in conventional transcriptome analysis experiments on cell populations. Here we show that single-cell transcriptome analysis circumvents these problems and enables direct measurement of the various cell types and hierarchies in the developing lung. We used microfluidic single-cell RNA sequencing (RNA-seq) on 198 individual cells at four different stages encompassing alveolar differentiation to measure the transcriptional states which define the developmental and cellular hierarchy of the distal mouse lung epithelium. We empirically classified cells into distinct groups by using an unbiased genome-wide approach that did not require a priori knowledge of the underlying cell types or the previous purification of cell populations. The results confirmed the basic outlines of the classical model of epithelial cell-type diversity in the distal lung and led to the discovery of many previously unknown cell-type markers, including transcriptional regulators that discriminate between the different populations. We reconstructed the molecular steps during maturation of bipotential progenitors along both alveolar lineages and elucidated the full life cycle of the alveolar type 2 cell lineage. This single-cell genomics approach is applicable to any developing or mature tissue to robustly delineate molecularly distinct cell types, define progenitors and lineage hierarchies, and identify lineage-specific regulatory factors. PMID:24739965

  6. The origins of the Polynesians: an interpretation from mitochondrial lineage analysis.

    PubMed

    Sykes, B; Leiboff, A; Low-Beer, J; Tetzner, S; Richards, M

    1995-12-01

    Using mitochondrial lineage analysis of 1,178 individuals from Polynesia, the western Pacific, and Taiwan, we show that the major prehistoric settlement of Polynesia was from the west and involved two or possibly three genetically distinct populations. The predominant lineage group, accounting for 94% of Polynesian mtDNA, shares a 9-bp COII/tRNA(Lys) intergenic deletion and characteristic control region transition variants, compared to the Cambridge reference sequence. In Polynesia, the diversity of this group is extremely restricted, while related lineages in Indonesia, the Philippines, and Taiwan are increasingly diverse. This suggests a relatively recent major eastward expansion into Polynesia, perhaps originating from Taiwan, in agreement with archeological and linguistic evidence, but which experienced one or more severe population bottlenecks. The second mitochondrial lineage group, accounting for 3.5% of Polynesian mtDNA haplotypes, does not have the 9-bp deletion and its characterized by an A-C transversional variant at nt position 16265. Specific oligonucleotides for this variant were used to select individuals from the population sample who, with other sequences, show that the Polynesian lineages were part of a diverse group in Vanuatu and Papua New Guinea. The very low overall diversity of both lineage groups in Polynesia suggests there was severe population restriction during the colonization of remote Oceania. A third group, represented by only four individuals (0.6%) in Polynesia but also present in the Philippines, shares variants at nt positions 16172 and 16304. Two Polynesians had unrelated haplotypes matching published sequences from native South Americans, which may be the first genetic evidence of prehistoric human contact between Polynesia and South America. PMID:8533777

  7. Systematic Review of Pharmacological Properties of the Oligodendrocyte Lineage

    PubMed Central

    Marinelli, Carla; Bertalot, Thomas; Zusso, Morena; Skaper, Stephen D.; Giusti, Pietro

    2016-01-01

    Oligodendrogenesis and oligodendrocyte precursor maturation are essential processes during the course of central nervous system development, and lead to the myelination of axons. Cells of the oligodendrocyte lineage are generated in the germinal zone from migratory bipolar oligodendrocyte precursor cells (OPCs), and acquire cell surface markers as they mature and respond specifically to factors which regulate proliferation, migration, differentiation, and survival. Loss of myelin underlies a wide range of neurological disorders, some of an autoimmune nature—multiple sclerosis probably being the most prominent. Current therapies are based on the use of immunomodulatory agents which are likely to promote myelin repair (remyelination) indirectly by subverting the inflammatory response, aspects of which impair the differentiation of OPCs. Cells of the oligodendrocyte lineage express and are capable of responding to a diverse array of ligand-receptor pairs, including neurotransmitters and nuclear receptors such as γ-aminobutyric acid, glutamate, adenosine triphosphate, serotonin, acetylcholine, nitric oxide, opioids, prostaglandins, prolactin, and cannabinoids. The intent of this review is to provide the reader with a synopsis of our present state of knowledge concerning the pharmacological properties of the oligodendrocyte lineage, with particular attention to these receptor-ligand (i.e., neurotransmitters and nuclear receptor) interactions that can influence oligodendrocyte migration, proliferation, differentiation, and myelination, and an appraisal of their therapeutic potential. For example, many promising mediators work through Ca2+ signaling, and the balance between Ca2+ influx and efflux can determine the temporal and spatial properties of oligodendrocytes (OLs). Moreover, Ca2+ signaling in OPCs can influence not only differentiation and myelination, but also process extension and migration, as well as cell death in mature mouse OLs. There is also evidence

  8. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro

    SciTech Connect

    Dykens, James A. Jamieson, Joseph; Marroquin, Lisa; Nadanaciva, Sashi; Billis, Puja A.; Will, Yvonne

    2008-12-01

    As a class, the biguanides induce lactic acidosis, a hallmark of mitochondrial impairment. To assess potential mitochondrial impairment, we evaluated the effects of metformin, buformin and phenformin on: 1) viability of HepG2 cells grown in galactose, 2) respiration by isolated mitochondria, 3) metabolic poise of HepG2 and primary human hepatocytes, 4) activities of immunocaptured respiratory complexes, and 5) mitochondrial membrane potential and redox status in primary human hepatocytes. Phenformin was the most cytotoxic of the three with buformin showing moderate toxicity, and metformin toxicity only at mM concentrations. Importantly, HepG2 cells grown in galactose are markedly more susceptible to biguanide toxicity compared to cells grown in glucose, indicating mitochondrial toxicity as a primary mode of action. The same rank order of potency was observed for isolated mitochondrial respiration where preincubation (40 min) exacerbated respiratory impairment, and was required to reveal inhibition by metformin, suggesting intramitochondrial bio-accumulation. Metabolic profiling of intact cells corroborated respiratory inhibition, but also revealed compensatory increases in lactate production from accelerated glycolysis. High (mM) concentrations of the drugs were needed to inhibit immunocaptured respiratory complexes, supporting the contention that bioaccumulation is involved. The same rank order was found when monitoring mitochondrial membrane potential, ROS production, and glutathione levels in primary human hepatocytes. In toto, these data indicate that biguanide-induced lactic acidosis can be attributed to acceleration of glycolysis in response to mitochondrial impairment. Indeed, the desired clinical outcome, viz., decreased blood glucose, could be due to increased glucose uptake and glycolytic flux in response to drug-induced mitochondrial dysfunction.

  9. Feedback, Lineages and Self-Organizing Morphogenesis

    PubMed Central

    Calof, Anne L.; Lowengrub, John S.; Lander, Arthur D.

    2016-01-01

    Feedback regulation of cell lineage progression plays an important role in tissue size homeostasis, but whether such feedback also plays an important role in tissue morphogenesis has yet to be explored. Here we use mathematical modeling to show that a particular feedback architecture in which both positive and negative diffusible signals act on stem and/or progenitor cells leads to the appearance of bistable or bi-modal growth behaviors, ultrasensitivity to external growth cues, local growth-driven budding, self-sustaining elongation, and the triggering of self-organization in the form of lamellar fingers. Such behaviors arise not through regulation of cell cycle speeds, but through the control of stem or progenitor self-renewal. Even though the spatial patterns that arise in this setting are the result of interactions between diffusible factors with antagonistic effects, morphogenesis is not the consequence of Turing-type instabilities. PMID:26989903

  10. Cell lineage in mammalian craniofacial mesenchyme.

    PubMed

    Yoshida, Toshiyuki; Vivatbutsiri, Philaiporn; Morriss-Kay, Gillian; Saga, Yumiko; Iseki, Sachiko

    2008-01-01

    We have analysed the contributions of neural crest and mesoderm to mammalian craniofacial mesenchyme and its derivatives by cell lineage tracing experiments in mouse embryos, using the permanent genetic markers Wnt1-cre for neural crest and Mesp1-cre for mesoderm, combined with the Rosa26 reporter. At the end of neural crest cell migration (E9.5) the two patterns are reciprocal, with a mutual boundary just posterior to the eye. Mesodermal cells expressing endothelial markers (angioblasts) are found not to respect this boundary; they are associated with the migrating neural crest from the 5-somite stage, and by E9.5 they form a pre-endothelial meshwork throughout the cranial mesenchyme. Mesodermal cells of the myogenic lineage also migrate with neural crest cells, as the branchial arches form. By E17.5 the neural crest-mesoderm boundary in the subectodermal mesenchyme becomes out of register with that of the underlying skeletogenic layer, which is between the frontal and parietal bones. At E13.5 the primordia of these bones lie basolateral to the brain, extending towards the vertex of the skull during the following 4-5 days. We used DiI labelling of the bone primordia in ex-utero E13.5 embryos to distinguish between two possibilities for the origin of the frontal and parietal bones: (1) recruitment from adjacent connective tissue or (2) proliferation of the original primordia. The results clearly demonstrated that the bone primordia extend vertically by intrinsic growth, without detectable recruitment of adjacent mesenchymal cells. PMID:18617001

  11. New native South American Y chromosome lineages.

    PubMed

    Jota, Marilza S; Lacerda, Daniela R; Sandoval, José R; Vieira, Pedro Paulo R; Ohasi, Dominique; Santos-Júnior, José E; Acosta, Oscar; Cuellar, Cinthia; Revollo, Susana; Paz-Y-Miño, Cesar; Fujita, Ricardo; Vallejo, Gustavo A; Schurr, Theodore G; Tarazona-Santos, Eduardo M; Pena, Sergio Dj; Ayub, Qasim; Tyler-Smith, Chris; Santos, Fabrício R

    2016-07-01

    Many single-nucleotide polymorphisms (SNPs) in the non-recombining region of the human Y chromosome have been described in the last decade. High-coverage sequencing has helped to characterize new SNPs, which has in turn increased the level of detail in paternal phylogenies. However, these paternal lineages still provide insufficient information on population history and demography, especially for Native Americans. The present study aimed to identify informative paternal sublineages derived from the main founder lineage of the Americas-haplogroup Q-L54-in a sample of 1841 native South Americans. For this purpose, we used a Y-chromosomal genotyping multiplex platform and conventional genotyping methods to validate 34 new SNPs that were identified in the present study by sequencing, together with many Y-SNPs previously described in the literature. We updated the haplogroup Q phylogeny and identified two new Q-M3 and three new Q-L54*(xM3) sublineages defined by five informative SNPs, designated SA04, SA05, SA02, SA03 and SA29. Within the Q-M3, sublineage Q-SA04 was mostly found in individuals from ethnic groups belonging to the Tukanoan linguistic family in the northwest Amazon, whereas sublineage Q-SA05 was found in Peruvian and Bolivian Amazon ethnic groups. Within Q-L54*, the derived sublineages Q-SA03 and Q-SA02 were exclusively found among Coyaima individuals (Cariban linguistic family) from Colombia, while Q-SA29 was found only in Maxacali individuals (Jean linguistic family) from southeast Brazil. Furthermore, we validated the usefulness of several published SNPs among indigenous South Americans. This new Y chromosome haplogroup Q phylogeny offers an informative paternal genealogy to investigate the pre-Columbian history of South America.Journal of Human Genetics advance online publication, 31 March 2016; doi:10.1038/jhg.2016.26. PMID:27030145

  12. Conversion of embryonic stem cells into extraembryonic lineages by CRISPR-mediated activators

    PubMed Central

    Wei, Shu; Zou, Qingjian; Lai, Sisi; Zhang, Quanjun; Li, Li; Yan, Quanmei; Zhou, Xiaoqing; Zhong, Huilin; Lai, Liangxue

    2016-01-01

    The recently emerged CRISPR/Cas9 technique has opened a new perspective on readily editing specific genes. When combined with transcription activators, it can precisely manipulate endogenous gene expression. Here, we enhanced the expression of endogenous Cdx2 and Gata6 genes by CRISPR-mediated activators, thus mouse embryonic stem cells (ESCs) were directly converted into two extraembryonic lineages, i.e., typical trophoblast stem cells (TSCs) and extraembryonic endoderm cells (XENCs), which exhibited characters of TSC or XENC derived from the blastocyst extraembryonic lineages such as cell morphology, specific gene expression, and differentiation ability in vitro and in vivo. This study demonstrates that the cell fate can be effectively manipulated by directly activating of specific endogenous gene expression with CRISPR-mediated activator. PMID:26782778

  13. Human paternal lineages, languages, and environment in the Caucasus.

    PubMed

    Tarkhnishvili, David; Gavashelishvili, Alexander; Murtskhvaladze, Marine; Gabelaia, Mariam; Tevzadze, Gigi

    2014-01-01

    Publications that describe the composition of the human Y-DNA haplogroup in diffferent ethnic or linguistic groups and geographic regions provide no explicit explanation of the distribution of human paternal lineages in relation to specific ecological conditions. Our research attempts to address this topic for the Caucasus, a geographic region that encompasses a relatively small area but harbors high linguistic, ethnic, and Y-DNA haplogroup diversity. We genotyped 224 men that identified themselves as ethnic Georgian for 23 Y-chromosome short tandem-repeat markers and assigned them to their geographic places of origin. The genotyped data were supplemented with published data on haplogroup composition and location of other ethnic groups of the Caucasus. We used multivariate statistical methods to see if linguistics, climate, and landscape accounted for geographical diffferences in frequencies of the Y-DNA haplogroups G2, R1a, R1b, J1, and J2. The analysis showed significant associations of (1) G2 with wellforested mountains, (2) J2 with warm areas or poorly forested mountains, and (3) J1 with poorly forested mountains. R1b showed no association with environment. Haplogroups J1 and R1a were significantly associated with Daghestanian and Kipchak speakers, respectively, but the other haplogroups showed no such simple associations with languages. Climate and landscape in the context of competition over productive areas among diffferent paternal lineages, arriving in the Caucasus in diffferent times, have played an important role in shaping the present-day spatial distribution of patrilineages in the Caucasus. This spatial pattern had formed before linguistic subdivisions were finally shaped, probably in the Neolithic to Bronze Age. Later historical turmoil had little influence on the patrilineage composition and spatial distribution. Based on our results, the scenario of postglacial expansions of humans and their languages to the Caucasus from the Middle East, western

  14. Analysis of Mycobacterium tuberculosis Genotypic Lineage Distribution in Chile and Neighboring Countries.

    PubMed

    Lagos, Jaime; Couvin, David; Arata, Loredana; Tognarelli, Javier; Aguayo, Carolina; Leiva, Tamara; Arias, Fabiola; Hormazabal, Juan Carlos; Rastogi, Nalin; Fernández, Jorge

    2016-01-01

    . Finally, we also observed exclusive emergence of patterns SIT4014/X1 and SIT4015 (unknown lineage signature) that have hitherto been found exclusively in Chile, indicating that conditions specific to Chile, along with the unique genetic makeup of the Chilean population, might have allowed for a possible co-evolution leading to the success of these emerging genotypes. PMID:27518286

  15. Analysis of Mycobacterium tuberculosis Genotypic Lineage Distribution in Chile and Neighboring Countries

    PubMed Central

    Lagos, Jaime; Couvin, David; Arata, Loredana; Tognarelli, Javier; Aguayo, Carolina; Leiva, Tamara; Arias, Fabiola; Hormazabal, Juan Carlos; Rastogi, Nalin; Fernández, Jorge

    2016-01-01

    . Finally, we also observed exclusive emergence of patterns SIT4014/X1 and SIT4015 (unknown lineage signature) that have hitherto been found exclusively in Chile, indicating that conditions specific to Chile, along with the unique genetic makeup of the Chilean population, might have allowed for a possible co-evolution leading to the success of these emerging genotypes. PMID:27518286

  16. A limited number of Y chromosome lineages is present in North American Holsteins.

    PubMed

    Yue, Xiang-Peng; Dechow, Chad; Liu, Wan-Sheng

    2015-04-01

    Holsteins are the most numerous dairy cattle breed in North America and the breed has undergone intensive selection for improving milk production and conformation. Theoretically, this intensive selection could lead to a reduction of the effective population size and reduced genetic diversity. The objective of this study was to investigate the effective population size of the Holstein Y chromosome and the effects of limited Y chromosome lineages on male reproduction and the future of the breed. Paternal pedigree information of 62,897 Holstein bulls born between 1950 and 2013 in North America and 220,872 bulls evaluated by multiple-trait across-country genetic evaluations of Interbull (Uppsala, Sweden) were collected and analyzed. The results indicated that the number of Y chromosome lineages in Holsteins has undergone a dramatic decrease during the past 50 years because of artificial selection and the application of artificial insemination (AI) technology. All current Holstein AI bulls in North America are the descendants of only 2 ancestors (Hulleman and Neptune H) born in 1880. These 2 ancestral Y-lineages are continued through 3 dominant pedigrees from the 1960s; namely, Pawnee Farm Arlinda Chief, Round Oak Rag Apple Elevation, and Penstate Ivanhoe Star, with a contribution of 48.78, 51.06, and 0.16% to the Holstein bull population in the 2010s, respectively. The Y-lineage of Penstate Ivanhoe Star is almost eliminated from the breed. The genetic variations in the 2 ancestral Y-lineages were evaluated among 257 bulls by determining the copy number variations (CNV) of 3 Y-linked gene families: PRAMEY, HSFY, and ZNF280BY, which are spread along the majority (95%) of the bovine Y chromosome male-specific region (MSY). No significant difference was found between the 2 ancestral Y-lineages, although large CNV were observed within each lineage. This study suggests minimal genetic diversity on the Y chromosome in Holsteins and provides a starting point for investigating

  17. Cryptic clonal lineages and genetic diversity in the loach Misgurnus anguillicaudatus (Teleostei: Cobitidae) inferred from nuclear and mitochondrial DNA analyses.

    PubMed

    Morishima, Kagayaki; Nakamura-Shiokawa, Yuka; Bando, Etsuko; Li, Ya-Juan; Boroń, Alicja; Khan, Md Mukhlesur Rahman; Arai, Katsutoshi

    2008-02-01

    In the loach Misgurnus anguillicaudatus, the asexual lineage, which produces unreduced clonal diploid eggs, has been identified. Among 833 specimens collected from 54 localities in Japan and two localities in China, 82 candidates of other lineage(s) of cryptic clones were screened by examining RFLP (restriction fragment length polymorphism)-PCR haplotypes in the control region of mtDNA. This analysis was performed because triploid loaches arise from the accidental incorporation of the sperm nucleus into unreduced diploid eggs of a clone. The categorization of members belonging to three newly identified lineages (clones 2-4) and the previously identified clonal lineage (clone 1) was verified by evaluating the genetic identity between two or more individuals from each clonal lineage based on RAPD (random amplified polymorphic DNA)-PCR and multilocus DNA fingerprints. We detected 75 haplotypes by observing the nucleotide status at variable sites from the control region of mtDNA. Phylogenic trees constructed from such sequences showed two highly diversified clades, A and B, that were beyond the level common for interspecific genetic differentiation. That result suggests that M. anguillicaudatus in Japan is not a single species entity. Two clone-specific mtDNA sequences were included in clade A, and the loaches with such sequences may be the maternal origin of the clones. PMID:17578669

  18. A genomic investigation of the putative contact zone between divergent Brown Creeper (Certhia americana) lineages: chromosomal patterns of genetic differentiation.

    PubMed

    Manthey, Joseph D; Robbins, Mark B; Moyle, Robert G

    2016-02-01

    Sky islands, or montane forest separated by different lowland habitats, are highly fragmented regions that potentially limit gene flow between isolated populations. In the sky islands of the Madrean Archipelago (Arizona, USA), various taxa display different phylogeographic patterns, from unrestricted gene flow among sky islands to complex patterns with multiple distinct lineages. Using genomic-level approaches allows the investigation of differential patterns of gene flow, selection, and genetic differentiation among chromosomes and specific genomic regions between sky island populations. Here, we used thousands of SNPs to investigate the putative contact zone of divergent Brown Creeper (Certhia americana) lineages in the Madrean Archipelago sky islands. We found the two lineages to be completely allopatric (during the breeding season) with a lack of hybridization and gene flow between lineages and no genetic structure among sky islands within lineages. Additionally, the two lineages inhabit different climatic and ecosystem conditions and have many local primary song dialects in the southern Arizona mountain ranges. We identified a positive relationship between genetic differentiation and chromosome size, but the sex chromosome (Z) was not found to be an outlier. Differential patterns of genetic differentiation per chromosome may be explained by genetic drift--possibly in conjunction with non-random mating and non-random gene flow--due to variance in recombination rates among chromosomes. PMID:26794151

  19. Cranial size variation and lineage diversity in early Pleistocene Homo.

    PubMed

    Scott, Jeremiah E

    2014-03-01

    A recent article in this journal concluded that a sample of early Pleistocene hominin crania assigned to genus Homo exhibits a pattern of size variation that is time dependent, with specimens from different time periods being more different from each other, on average, than are specimens from the same time period. The authors of this study argued that such a pattern is not consistent with the presence of multiple lineages within the sample, but rather supports the hypothesis that the fossils represent an anagenetically evolving lineage (i.e., an evolutionary species). However, the multiple-lineage models considered in that study do not reflect the multiple-species alternatives that have been proposed for early Pleistocene Homo. Using simulated data sets, I show that fossil assemblages that contain multiple lineages can exhibit the time-dependent pattern of variation specified for the single-lineage model under certain conditions, particularly when temporal overlap among fossil specimens attributed to the lineages is limited. These results do not reject the single-lineage hypothesis, but they do indicate that rejection of multiple lineages in the early Pleistocene Homo fossil record is premature, and that other sources of variation, such as differences in cranial shape, should be considered. PMID:24588348

  20. Phenotypic differences among three clonal lineages of Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are three major clonal lineages of Phytophthora ramorum present in North America and Europe named NA1, NA2, and EU1. Twenty-three isolates representing all three lineages were evaluated for phenotype including (i) aggressiveness on detached Rhododendron leaves and (ii) growth rate at minimum, ...

  1. Movement of a Hybrid Zone Between Lineages of the Australian Glass Shrimp (Paratya australiensis).

    PubMed

    Wilson, Jeremy D; Schmidt, Daniel J; Hughes, Jane M

    2016-09-01

    In 1993, a population of freshwater glass shrimp (Paratya australiensis) was translocated from Kilcoy Creek to Branch Creek in the Conondale Range, Queensland. Subsequent genetic analysis revealed that the translocated and resident shrimp belonged to different mitochondrial DNA (mtDNA) lineages that were capable of hybridizing. Monitoring of the pools along Branch Creek up until 2002 suggested that the translocated lineage had an advantage in upstream pools and the resident lineage dominated downstream. Differential temperature tolerance and hybridization barriers such as hybrid inviability and mate selection were factors proposed to explain hybrid zone structure. The major objective of this study was to combine nuclear and mtDNA markers to identify the structure of the hybrid zone in 2013 and identify any changes that had occurred since 2002. Specifically, we used genetic data to test for evidence of hybrid zone movement and used the inbreeding coefficient (F IS) to investigate whether mating was random in the contact zone where hybridization barriers could be present. The results revealed that the hybrid zone center has shifted 510 m downstream since 2002. Increased rainfall in the region since 2010 could have facilitated this. Secondly, mating appears significantly nonrandom in the pools where both lineages occur, supporting the existence of partial hybridization barriers. This study reveals a complex and dynamic hybrid zone and exemplifies why multiple temporal studies are necessary to understand hybrid zone structure. PMID:27225934

  2. Modeling lineage and phenotypic diversification in the New World monkey (Platyrrhini, Primates) radiation.

    PubMed

    Aristide, Leandro; Rosenberger, Alfred L; Tejedor, Marcelo F; Perez, S Ivan

    2015-01-01

    Adaptive radiations that have taken place in the distant past can now be more thoroughly studied with the availability of large molecular phylogenies and comparative data drawn from extant and fossil species. Platyrrhines are a good example of a major mammalian evolutionary radiation confined to a single continent, involving a relatively large temporal scale and documented by a relatively small but informative fossil record. Here, we present comparative evidence using data on extant and fossil species to explore alternative evolutionary models in an effort to better understand the process of platyrrhine lineage and phenotypic diversification. Specifically, we compare the likelihood of null models of lineage and phenotypic diversification versus various models of adaptive evolution. Moreover, we statistically explore the main ecological dimension behind the platyrrhine diversification. Contrary to the previous proposals, our study did not find evidence of a rapid lineage accumulation in the phylogenetic tree of extant platyrrhine species. However, the fossil-based diversity curve seems to show a slowdown in diversification rates toward present times. This also suggests an early high rate of extinction among lineages within crown Platyrrhini. Finally, our analyses support the hypothesis that the platyrrhine phenotypic diversification appears to be characterized by an early and profound differentiation in body size related to a multidimensional niche model, followed by little subsequent change (i.e., stasis). PMID:24287474

  3. Spatiotemporal analyses of neural lineages after embryonic and postnatal progenitor targeting combining different reporters

    PubMed Central

    Figueres-Oñate, Maria; García-Marqués, Jorge; Pedraza, Maria; De Carlos, Juan Andrés; López-Mascaraque, Laura

    2015-01-01

    Genetic lineage tracing with electroporation is one of the most powerful techniques to target neural progenitor cells and their progeny. However, the spatiotemporal relationship between neural progenitors and their final phenotype remain poorly understood. One critical factor to analyze the cell fate of progeny is reporter integration into the genome of transfected cells. To address this issue, we performed postnatal and in utero co-electroporations of different fluorescent reporters to label, in both cerebral cortex and olfactory bulb, the progeny of subventricular zone neural progenitors. By comparing fluorescent reporter expression in the adult cell progeny, we show a differential expression pattern within the same cell lineage, depending on electroporation stage and cell identity. Further, while neuronal lineages arise from many progenitors in proliferative zones after few divisions, glial lineages come from fewer progenitors that accomplish many cell divisions. Together, these data provide a useful guide to select a strategy to track the cell fate of a specific cell population and to address whether a different proliferative origin might be correlated with functional heterogeneity. PMID:25852461

  4. Fine Dissection of Human Mitochondrial DNA Haplogroup HV Lineages Reveals Paleolithic Signatures from European Glacial Refugia

    PubMed Central

    Sarno, Stefania; Sevini, Federica; Vianello, Dario; Tamm, Erika; Metspalu, Ene; van Oven, Mannis; Hübner, Alexander; Sazzini, Marco; Franceschi, Claudio; Pettener, Davide; Luiselli, Donata

    2015-01-01

    Genetic signatures from the Paleolithic inhabitants of Eurasia can be traced from the early divergent mitochondrial DNA lineages still present in contemporary human populations. Previous studies already suggested a pre-Neolithic diffusion of mitochondrial haplogroup HV*(xH,V) lineages, a relatively rare class of mtDNA types that includes parallel branches mainly distributed across Europe and West Asia with a certain degree of structure. Up till now, variation within haplogroup HV was addressed mainly by analyzing sequence data from the mtDNA control region, except for specific sub-branches, such as HV4 or the widely distributed haplogroups H and V. In this study, we present a revised HV topology based on full mtDNA genome data, and we include a comprehensive dataset consisting of 316 complete mtDNA sequences including 60 new samples from the Italian peninsula, a previously underrepresented geographic area. We highlight points of instability in the particular topology of this haplogroup, reconstructed with BEAST-generated trees and networks. We also confirm a major lineage expansion that probably followed the Late Glacial Maximum and preceded Neolithic population movements. We finally observe that Italy harbors a reservoir of mtDNA diversity, with deep-rooting HV lineages often related to sequences present in the Caucasus and the Middle East. The resulting hypothesis of a glacial refugium in Southern Italy has implications for the understanding of late Paleolithic population movements and is discussed within the archaeological cultural shifts occurred over the entire continent. PMID:26640946

  5. The coalescence of intrahost HIV lineages under symmetric CTL attack.

    PubMed

    Leviyang, Sivan

    2012-08-01

    Cytotoxic T lymphocytes (CTLs) are immune system cells that are thought to play an important role in controlling HIV infection. We develop a stochastic ODE model of HIV-CTL interaction that extends current deterministic ODE models. Based on this stochastic model, we consider the effect of CTL attack on intrahost HIV lineages assuming that CTLs attack several epitopes with equal strength. In this setting, we introduce a limiting version of our stochastic ODE under which we show that the coalescence of HIV lineages can be described through Poisson-Dirichlet distributions. Through numerical experiments, we show that our results under the limiting stochastic ODE accurately reflect HIV lineages under CTL attack when the HIV population size is on the low end of its hypothesized range. Current techniques of HIV lineage construction depend on the Kingman coalescent. Our results give an explicit connection between CTL attack and HIV lineages. PMID:22644341

  6. Reproductive isolation between phylogeographic lineages scales with divergence

    PubMed Central

    Singhal, Sonal; Moritz, Craig

    2013-01-01

    Phylogeographic studies frequently reveal multiple morphologically cryptic lineages within species. What is not yet clear is whether such lineages represent nascent species or evolutionary ephemera. To address this question, we compare five contact zones, each of which occurs between ecomorphologically cryptic lineages of skinks from the rainforests of the Australian Wet Tropics. Although the contacts probably formed concurrently in response to Holocene expansion from glacial refugia, we estimate that the divergence times (τ) of the lineage pairs range from 3.1 to 11.5 Ma. Multi-locus analyses of the contact zones yielded estimates of reproductive isolation that are tightly correlated with divergence time and, for lineages with older divergence times (τ > 5 Myr), substantial. These results show that phylogeographic splits of increasing depth represent stages along the speciation continuum, even in the absence of overt change in ecologically relevant morphology. PMID:24107536

  7. On the roles of Notch, Delta, kuzbanian, and inscuteable during the development of Drosophila embryonic neuroblast lineages.

    PubMed

    Udolph, Gerald; Rath, Priyadarshini; Tio, Murni; Toh, Joanne; Fang, Wanru; Pandey, Rahul; Technau, Gerhard M; Chia, William

    2009-12-15

    The generation of cellular diversity in the nervous system involves the mechanism of asymmetric cell division. Besides an array of molecules, including the Par protein cassette, a heterotrimeric G protein signalling complex, Inscuteable plays a major role in controlling asymmetric cell division, which ultimately leads to differential activation of the Notch signalling pathway and correct specification of the two daughter cells. In this context, Notch is required to be active in one sibling and inactive in the other. Here, we investigated the requirement of genes previously known to play key roles in sibling cell fate specification such as members of the Notch signalling pathway, e.g., Notch (N), Delta (Dl), and kuzbanian (kuz) and a crucial regulator of asymmetric cell division, inscuteable (insc) throughout lineage progression of 4 neuroblasts (NB1-1, MP2, NB4-2, and NB7-1). Notch-mediated cell fate specification defects were cell-autonomous and were observed in all neuroblast lineages even in cells born from late ganglion mother cells (GMC) within the lineages. We also show that Dl functions non-autonomously during NB lineage progression and clonal cells do not require Dl from within the clone. This suggests that within a NB lineage Dl is dispensable for sibling cell fate specification. Furthermore, we provide evidence that kuz is involved in sibling cell fate specification in the central nervous system. It is cell-autonomously required in the same postmitotic cells which also depend on Notch function. This indicates that KUZ is required to facilitate a functional Notch signal in the Notch-dependent cell for correct cell fate specification. Finally, we show that three neuroblast lineages (NB1-1, NB4-2, and NB7-1) require insc function for sibling cell fate specification in cells born from early GMCs whereas insc is not required in cells born from later GMCs of the same lineages. Thus, there is differential requirement for insc for cell fate specification

  8. Sox2+ Stem Cells Contribute to All Epithelial Lineages of the Tooth via Sfrp5+ Progenitors

    PubMed Central

    Juuri, Emma; Saito, Kan; Ahtiainen, Laura; Seidel, Kerstin; Tummers, Mark; Hochedlinger, Konrad; Klein, Ophir D.; Thesleff, Irma; Michon, Frederic

    2012-01-01

    SUMMARY The continuously growing mouse incisor serves as a valuable model to study stem cell regulation during organ renewal. Epithelial stem cells are localized in the proximal end of the incisor in the labial cervical loop. Here, we show that the transcription factor Sox2 is a specific marker for these stem cells. Sox2+ cells became restricted to the labial cervical loop during tooth morphogenesis, and they contributed to the renewal of enamel-producing ameloblasts as well as all other epithelial cell lineages of the tooth. The early progeny of Sox2-positive stem cells transiently expressed the Wnt inhibitor Sfrp5. Sox2 expression was regulated by the tooth initiation marker FGF8 and specific miRNAs, suggesting a fine-tuning to maintain homeostasis of the dental epithelium. The identification of Sox2 as a marker for the dental epithelial stem cells will facilitate further studies on their lineage segregation and differentiation during tooth renewal. PMID:22819339

  9. Reconstruction of the Mouse Otocyst and Early Neuroblast Lineage at Single Cell Resolution

    PubMed Central

    Durruthy-Durruthy, Robert; Gottlieb, Assaf; Hartman, Byron H.; Waldhaus, Jörg; Laske, Roman D.; Altman, Russ; Heller, Stefan

    2014-01-01

    Summary The otocyst harbors progenitors for most cell types of the mature inner ear. Developmental lineage analysis and gene expression studies suggest that distinct progenitor populations are compartmentalized to discrete axial domains in the early otocyst. Here, we conducted highly parallel quantitative RT-PCR reactions on 382 individual cells from the developing otocyst and neuroblast lineages to assay 96 genes representing established otic markers, signaling pathway associated transcripts, and novel otic-specific genes. By applying multivariate cluster, principal component and network analyses to the data matrix, we were able to readily distinguish the delaminating neuroblasts, and to describe progressive states of gene expression in this population at single cell resolution. It further established a three-dimensional model of the otocyst where each individual cell can be precisely mapped into spatial expression domains. Our bioinformatic modeling revealed spatial dynamics of different signaling pathways active during early neuroblast development and prosensory domain specification. PMID:24768691

  10. ES3: Automatic capture and reconstruction of science product lineage and metadata

    NASA Astrophysics Data System (ADS)

    Frew, J.; Slaughter, P.; Painter, T.

    2007-12-01

    The MODSCAG algorithm derives per-pixel fractional snow-covered area and snow grain size from MODIS imagery. The current implementation of MODSCAG is a combination of UNIX shell scripts, compiled C programs, and interpreted IDL programs. MODSCAG is under active development, and tracing its output products back to specific parameter settings or software versions is crucial for debugging and quality control. To this end, we are running MODSCAG on the Earth System Science Server (ES3), a suite of software that automatically captures run- time information about user processes and stores this information in an XML database, which can be queried to retrieve a specific MODSCAG output's complete lineage graph and any associated metadata. This poster/presentation will illustrate how this lineage/metadata capture operates without any modifications to either the host operating system or the science application code.

  11. Lineage management for on-demand data

    NASA Astrophysics Data System (ADS)

    Collins, J. A.; Brodzik, M.; Billingsley, B. W.

    2009-12-01

    Most data consumers would agree that data should be easily available, and welcome the ability to subset, reformat, and reproject archived data before they retrieve the data for local use. Although these features in a data delivery system potentially enhance the interdisciplinary or collaborative use of the data, they also raise concerns for the archive providing those data. The Searchlight project at the National Snow and Ice Data Center (NSIDC) has successfully dealt with many of the technical issues surrounding the dynamic delivery of user-defined data subsets. These data manipulation accomplishments only solve part of the dynamic data delivery problem: We now need to associate accurate provenance and processing information with the customized data product. The user needs the provenance and history in order to make accurate judgements regarding the appropriate use of the data. Our User Support team may need that provenance and history in order to provide a level of service similar to that available for our documented, archived data sets. This presentation will examine the Searchlight team's response to the emerging issue of handling lineage information associated with dynamically generated data products.

  12. Micromere lineages in the glossiphoniid leech Helobdella

    NASA Technical Reports Server (NTRS)

    Huang, Francoise Z.; Kang, Dongmin; Ramirez-Weber, Felipe-Andres; Bissen, Shirley T.; Weisblat, David A.

    2002-01-01

    In leech embryos, segmental mesoderm and ectoderm arise from teloblasts by lineages that are already relatively well characterized. Here, we present data concerning the early divisions and the definitive fate maps of the micromeres, a group of 25 small cells that arise during the modified spiral cleavage in leech (Helobdella robusta) and contribute to most of the nonsegmental tissues of the adult. Three noteworthy results of this work are as follows. (1) The c"' and dm' clones (3d and 3c in traditional nomenclature) give rise to a hitherto undescribed network of fibers that run from one end of the embryo to the other. (2) The clones of micromeres b" and b"' (2b and 3b in traditional nomenclature) die in normal development; the b" clone can be rescued to assume the normal c" fate if micromere c" or its clone are ablated in early development. (3) Two qualitative differences in micromere fates are seen between H. robusta (Sacramento) and another Helobdella sp. (Galt). First, in Helobdella sp. (Galt), the clone of micromere b" does not normally die, and contributes a subset of the cells arising exclusively from c" in H. robusta (Sacramento). Second, in Helobdella sp. (Galt), micromere c"' makes no definitive contribution, whereas micromere dm' gives rise to cells equivalent to those arising from c"' and dm' in H. robusta (Sacramento).

  13. Control of alveolar differentiation by the lineage transcription factors GATA6 and HOPX inhibits lung adenocarcinoma metastasis

    PubMed Central

    Cheung, William K.C.; Zhao, Minghui; Liu, Zongzhi; Stevens, Laura E.; Cao, Paul D.; Fang, Justin E.; Westbrook, Thomas F.; Nguyen, Don X.

    2013-01-01

    Summary Molecular programs that mediate normal cell differentiation are required for oncogenesis and tumor cell survival in certain cancers. How cell lineage restricted genes specifically influence metastasis is poorly defined. In lung cancers, we uncovered a transcriptional program that is preferentially associated with distal airway epithelial differentiation and lung adenocarcinoma (ADC) progression. This program is regulated in part by the lineage transcription factors GATA6 and HOPX. These factors can cooperatively limit the metastatic competence of ADC cells, by modulating overlapping alveolar differentiation and invasogenic target genes. Thus, GATA6 and HOPX are critical nodes in a lineage-selective pathway that directly links effectors of airway epithelial specification to the inhibition of metastasis in the lung ADC subtype. PMID:23707782

  14. Genetic sequence data reveals widespread sharing of Leucocytozoon lineages in corvids.

    PubMed

    Freund, Dave; Wheeler, Sarah S; Townsend, Andrea K; Boyce, Walter M; Ernest, Holly B; Cicero, Carla; Sehgal, Ravinder N M

    2016-09-01

    Leucocytozoon, a widespread hemosporidian blood parasite that infects a broad group of avian families, has been studied in corvids (family: Corvidae) for over a century. Current taxonomic classification indicates that Leucocytozoon sakharoffi infects crows and related Corvus spp., while Leucocytozoon berestneffi infects magpies (Pica spp.) and blue jays (Cyanocitta sp.). This intrafamily host specificity was based on the experimental transmissibility of the parasites, as well as slight differences in their morphology and life cycle development. Genetic sequence data from Leucocytozoon spp. infecting corvids is scarce, and until the present study, sequence data has not been analyzed to confirm the current taxonomic distinctions. Here, we predict the phylogenetic relationships of Leucocytozoon cytochrome b lineages recovered from infected American Crows (Corvus brachyrhynchos), yellow-billed magpies (Pica nuttalli), and Steller's jays (Cyanocitta stelleri) to explore the host specificity pattern of L. sakharoffi and L. berestneffi. Phylogenetic reconstruction revealed a single large clade containing nearly every lineage recovered from the three host species, while showing no evidence of the expected distinction between L. sakharoffi and L. berestneffi. In addition, five of the detected lineages were recovered from both crows and magpies. This absence of the previously described host specificity in corvid Leucocytozoon spp. suggests that L. sakharoffi and L. berestneffi be reexamined from a taxonomic perspective. PMID:27189064

  15. Meta-Boolean models of asymmetric division patterns in the C. elegans intestinal lineage

    PubMed Central

    Pettersson, Sofia; Forchheimer, Robert; Larsson, Jan-Åke

    2013-01-01

    The intestine of Caenorhabditis elegans is derived from 20 cells that are organized into nine intestinal rings. During embryogenesis, three of the rings rotate approximately 90 degrees in a process known as intestinal twist. The underlying mechanisms for this morphological event are not fully known, but it has been demonstrated that both left-right and anterior-posterior asymmetry is required for intestinal twist to occur. We have recently presented a rule-based meta-Boolean tree model intended to describe complex lineages. In this report we apply this model to the E lineage of C. elegans, specifically targeting the asymmetric anterior-posterior division patterns within the lineage. The resulting model indicates that cells with the same factor concentration are located next to each other in the intestine regardless of lineage origin. In addition, the shift in factor concentrations coincides with the boundary for intestinal twist. When modeling lit-1 mutant data according to the same principle, the factor distributions in each cell are altered, yet the concurrence between the shift in concentration and intestinal twist remains. This pattern suggests that intestinal twist is controlled by a threshold mechanism. In the current paper we present the factor concentrations for all possible combinations of symmetric and asymmetric divisions in the E lineage and relate these to the potential threshold by studying existing data for wild-type and mutant embryos. Finally, we discuss how the resulting models can serve as a basis for experimental design in order to reveal the underlying mechanisms of intestinal twist. PMID:24058861

  16. Cross-Species Transmission and Differential Fate of an Endogenous Retrovirus in Three Mammal Lineages

    PubMed Central

    Zhuo, Xiaoyu; Feschotte, Cédric

    2015-01-01

    Endogenous retroviruses (ERVs) arise from retroviruses chromosomally integrated in the host germline. ERVs are common in vertebrate genomes and provide a valuable fossil record of past retroviral infections to investigate the biology and evolution of retroviruses over a deep time scale, including cross-species transmission events. Here we took advantage of a catalog of ERVs we recently produced for the bat Myotis lucifugus to seek evidence for infiltration of these retroviruses in other mammalian species (>100) currently represented in the genome sequence database. We provide multiple lines of evidence for the cross-ordinal transmission of a gammaretrovirus endogenized independently in the lineages of vespertilionid bats, felid cats and pangolin ~13–25 million years ago. Following its initial introduction, the ERV amplified extensively in parallel in both bat and cat lineages, generating hundreds of species-specific insertions throughout evolution. However, despite being derived from the same viral species, phylogenetic and selection analyses suggest that the ERV experienced different amplification dynamics in the two mammalian lineages. In the cat lineage, the ERV appears to have expanded primarily by retrotransposition of a single proviral progenitor that lost infectious capacity shortly after endogenization. In the bat lineage, the ERV followed a more complex path of germline invasion characterized by both retrotransposition and multiple infection events. The results also suggest that some of the bat ERVs have maintained infectious capacity for extended period of time and may be still infectious today. This study provides one of the most rigorously documented cases of cross-ordinal transmission of a mammalian retrovirus. It also illustrates how the same retrovirus species has transitioned multiple times from an infectious pathogen to a genomic parasite (i.e. retrotransposon), yet experiencing different invasion dynamics in different mammalian hosts. PMID

  17. Single-cell analysis delineates a trajectory toward the human early otic lineage.

    PubMed

    Ealy, Megan; Ellwanger, Daniel C; Kosaric, Nina; Stapper, Andres P; Heller, Stefan

    2016-07-26

    Efficient pluripotent stem cell guidance protocols for the production of human posterior cranial placodes such as the otic placode that gives rise to the inner ear do not exist. Here we use a systematic approach including defined monolayer culture, signaling modulation, and single-cell gene expression analysis to delineate a developmental trajectory for human otic lineage specification in vitro. We found that modulation of bone morphogenetic protein (BMP) and WNT signaling combined with FGF and retinoic acid treatments over the course of 18 days generates cell populations that develop chronological expression of marker genes of non-neural ectoderm, preplacodal ectoderm, and early otic lineage. Gene expression along this differentiation path is distinct from other lineages such as endoderm, mesendoderm, and neural ectoderm. Single-cell analysis exposed the heterogeneity of differentiating cells and allowed discrimination of non-neural ectoderm and otic lineage cells from off-target populations. Pseudotemporal ordering of human embryonic stem cell and induced pluripotent stem cell-derived single-cell gene expression profiles revealed an initially synchronous guidance toward non-neural ectoderm, followed by comparatively asynchronous occurrences of preplacodal and otic marker genes. Positive correlation of marker gene expression between both cell lines and resemblance to mouse embryonic day 10.5 otocyst cells implied reasonable robustness of the guidance protocol. Single-cell trajectory analysis further revealed that otic progenitor cell types are induced in monolayer cultures, but further development appears impeded, likely because of lack of a lineage-stabilizing microenvironment. Our results provide a framework for future exploration of stabilizing microenvironments for efficient differentiation of stem cell-generated human otic cell types. PMID:27402757

  18. Cross-Species Transmission and Differential Fate of an Endogenous Retrovirus in Three Mammal Lineages.

    PubMed

    Zhuo, Xiaoyu; Feschotte, Cédric

    2015-01-01

    Endogenous retroviruses (ERVs) arise from retroviruses chromosomally integrated in the host germline. ERVs are common in vertebrate genomes and provide a valuable fossil record of past retroviral infections to investigate the biology and evolution of retroviruses over a deep time scale, including cross-species transmission events. Here we took advantage of a catalog of ERVs we recently produced for the bat Myotis lucifugus to seek evidence for infiltration of these retroviruses in other mammalian species (>100) currently represented in the genome sequence database. We provide multiple lines of evidence for the cross-ordinal transmission of a gammaretrovirus endogenized independently in the lineages of vespertilionid bats, felid cats and pangolin ~13-25 million years ago. Following its initial introduction, the ERV amplified extensively in parallel in both bat and cat lineages, generating hundreds of species-specific insertions throughout evolution. However, despite being derived from the same viral species, phylogenetic and selection analyses suggest that the ERV experienced different amplification dynamics in the two mammalian lineages. In the cat lineage, the ERV appears to have expanded primarily by retrotransposition of a single proviral progenitor that lost infectious capacity shortly after endogenization. In the bat lineage, the ERV followed a more complex path of germline invasion characterized by both retrotransposition and multiple infection events. The results also suggest that some of the bat ERVs have maintained infectious capacity for extended period of time and may be still infectious today. This study provides one of the most rigorously documented cases of cross-ordinal transmission of a mammalian retrovirus. It also illustrates how the same retrovirus species has transitioned multiple times from an infectious pathogen to a genomic parasite (i.e. retrotransposon), yet experiencing different invasion dynamics in different mammalian hosts. PMID

  19. Implications of Differential Age Distribution of Disease-Associated Meningococcal Lineages for Vaccine Development

    PubMed Central

    Trotter, Caroline L.; Ramsay, Mary E.; Chandra, Manosree; Jolley, Keith A.; van der Ende, Arie; Carion, Françoise; Berthelsen, Lene; Hoffmann, Steen; Harðardóttir, Hjördís; Vazquez, Julio A.; Murphy, Karen; Toropainen, Maija; Caniça, Manuela; Ferreira, Eugenia; Diggle, Mathew; Edwards, Giles F.; Taha, Muhamed-Kheir; Stefanelli, Paola; Kriz, Paula; Gray, Steve J.; Fox, Andrew J.; Jacobsson, Susanne; Claus, Heike; Vogel, Ulrich; Tzanakaki, Georgina; Heuberger, Sigrid; Caugant, Dominique A.; Frosch, Matthias; Maiden, Martin C. J.

    2014-01-01

    New vaccines targeting meningococci expressing serogroup B polysaccharide have been developed, with some being licensed in Europe. Coverage depends on the distribution of disease-associated genotypes, which may vary by age. It is well established that a small number of hyperinvasive lineages account for most disease, and these lineages are associated with particular antigens, including vaccine candidates. A collection of 4,048 representative meningococcal disease isolates from 18 European countries, collected over a 3-year period, were characterized by multilocus sequence typing (MLST). Age data were available for 3,147 isolates. The proportions of hyperinvasive lineages, identified as particular clonal complexes (ccs) by MLST, differed among age groups. Subjects <1 year of age experienced lower risk of sequence type 11 (ST-11) cc, ST-32 cc, and ST-269 cc disease and higher risk of disease due to unassigned STs, 1- to 4-year-olds experienced lower risk of ST-11 cc and ST-32 cc disease, 5- to 14-year-olds were less likely to experience ST-11 cc and ST-269 cc disease, and ≥25-year-olds were more likely to experience disease due to less common ccs and unassigned STs. Younger and older subjects were vulnerable to a more diverse set of genotypes, indicating the more clonal nature of genotypes affecting adolescents and young adults. Knowledge of temporal and spatial diversity and the dynamics of meningococcal populations is essential for disease control by vaccines, as coverage is lineage specific. The nonrandom age distribution of hyperinvasive lineages has consequences for the design and implementation of vaccines, as different variants, or perhaps targets, may be required for different age groups. PMID:24695776

  20. Lineage fusion in Galápagos giant tortoises.

    PubMed

    Garrick, Ryan C; Benavides, Edgar; Russello, Michael A; Hyseni, Chaz; Edwards, Danielle L; Gibbs, James P; Tapia, Washington; Ciofi, Claudio; Caccone, Adalgisa

    2014-11-01

    Although many classic radiations on islands are thought to be the result of repeated lineage splitting, the role of past fusion is rarely known because during these events, purebreds are rapidly replaced by a swarm of admixed individuals. Here, we capture lineage fusion in action in a Galápagos giant tortoise species, Chelonoidis becki, from Wolf Volcano (Isabela Island). The long generation time of Galápagos tortoises and dense sampling (841 individuals) of genetic and demographic data were integral in detecting and characterizing this phenomenon. In C. becki, we identified two genetically distinct, morphologically cryptic lineages. Historical reconstructions show that they colonized Wolf Volcano from Santiago Island in two temporally separated events, the first estimated to have occurred ~199 000 years ago. Following arrival of the second wave of colonists, both lineages coexisted for approximately ~53 000 years. Within that time, they began fusing back together, as microsatellite data reveal widespread introgressive hybridization. Interestingly, greater mate selectivity seems to be exhibited by purebred females of one of the lineages. Forward-in-time simulations predict rapid extinction of the early arriving lineage. This study provides a rare example of reticulate evolution in action and underscores the power of population genetics for understanding the past, present and future consequences of evolutionary phenomena associated with lineage fusion. PMID:25223395

  1. Genomic epidemiology of age-associated meningococcal lineages in national surveillance: an observational cohort study

    PubMed Central

    Hill, Dorothea M C; Lucidarme, Jay; Gray, Stephen J; Newbold, Lynne S; Ure, Roisin; Brehony, Carina; Harrison, Odile B; Bray, James E; Jolley, Keith A; Bratcher, Holly B; Parkhill, Julian; Tang, Christoph M; Borrow, Ray; Maiden, Martin C J

    2015-01-01

    Summary Background Invasive meningococcal disease (IMD) is a worldwide health issue that is potentially preventable with vaccination. In view of its sporadic nature and the high diversity of Neisseria meningitidis, epidemiological surveillance incorporating detailed isolate characterisation is crucial for effective control and understanding the evolving epidemiology of IMD. The Meningitis Research Foundation Meningococcus Genome Library (MRF-MGL) exploits whole-genome sequencing (WGS) for this purpose and presents data on a comprehensive and coherent IMD isolate collection from England and Wales via the internet. We assessed the contribution of these data to investigating IMD epidemiology. Methods WGS data were obtained for all 899 IMD isolates available for England and Wales in epidemiological years 2010–11 and 2011–12. The data had been annotated at 1720 loci, analysed, and disseminated online. Information was also available on meningococcal population structure and vaccine (Bexsero, GlaxoSmithKline, Brentford, Middlesex, UK) antigen variants, which enabled the investigation of IMD-associated genotypes over time and by patients' age groups. Population genomic analyses were done with a hierarchical gene-by-gene approach. Findings The methods used by MRF-MGL efficiently characterised IMD isolates and information was provided in plain language. At least 20 meningococcal lineages were identified, three of which (hyperinvasive clonal complexes 41/44 [lineage 3], 269 [lineage 2], and 23 [lineage 23]) were responsible for 528 (59%) of IMD isolates. Lineages were highly diverse and showed evidence of extensive recombination. Specific lineages were associated with IMD in particular age groups, with notable diversity in the youngest and oldest individuals. The increased incidence of IMD from 1984 to 2010 in England and Wales was due to successive and concurrent epidemics of different lineages. Genetically, 74% of isolates were characterised as encoding group B capsules

  2. Differential CD95 expression and function in T and B lineage acute lymphoblastic leukemia cells.

    PubMed

    Karawajew, L; Wuchter, C; Ruppert, V; Drexler, H; Gruss, H J; Dörken, B; Ludwig, W D

    1997-08-01

    CD95 (Fas/APO-1) is a cell surface receptor able to trigger apoptosis in a variety of cell types. The expression and function of the CD95 antigen on leukemic blasts from 42 patients with B lineage and 53 patients with T lineage acute lymphoblastic leukemia (ALL) were investigated using immunofluorescence staining and apoptosis assays. The CD95 surface antigen was expressed in most ALL cases, with the T lineage ALL usually showing a higher intensity of surface CD95 expression as compared with the B lineage ALL cells (relative fluorescence intensity, RFI: 4.8 +/- 0.47 vs 2.2 +/- 0.23, respectively, P < 0.01). Functional studies disclosed that upon oligomerization by anti-CD95 monoclonal antibodies the CD95 protein was either not able to initiate apoptosis of leukemic cells (75% of cases) or induced low rates of apoptosis (20% of cases). Only in 5% of cases did the apoptosis rate exceed the 20% level of the CD95-specific apoptosis. Most of the CD95-sensitive cases were found among T lineage ALLs (38% of T lineage vs 10% of B lineage ALLs). Overall, the extent of CD95-induced apoptosis did not correlate with the expression level of CD95. Similarly, no significant correlation between expression level and functionality of CD95 in human leukemia cell lines of B and T cell origin could be observed. Bcl-2 protein has been associated with prolonged cell survival and has been shown to block partially CD95-mediated apoptosis, but for ALL cells no correlation between bcl-2 expression and spontaneous or CD95-mediated apoptosis could be found. The results obtained in this study indicate that, despite constitutive expression of CD95, the ALL cells are mainly resistant to CD95-triggering. More detailed investigations of the molecular mechanisms involved in the intracellular apoptotic signal transduction, such as interactions of the bcl-2 and the other members of the bcl-2 family, and functionality of the interleukin-1beta converting enzyme (ICE) like-proteases, may give new

  3. Stat3 inhibition in neural lineage cells.

    PubMed

    Chiba, Tomohiro; Mack, Laura; Delis, Natalia; Brill, Boris; Groner, Bernd

    2012-06-01

    Abstract Deregulation of signal transducer and activator of transcription 3 (Stat3) is attracting attentions in neurological disorders of elderly populations, e.g., Stat3 is inactivated in hippocampal neurons of Alzheimer's disease (AD) brains, whereas it is often constitutively activated in glioblastoma multiforme (GBM), correlating with poor prognosis. Stat3-inhibiting drugs have been intensively developed for chemotherapy based on the fact that GBM, in many cases, are "addicted" to Stat3 activation. Stat3 inhibitors, however, potentially have unfavorable side effects on postmitotic neurons, normal permanent residents in the central nervous system. It is, therefore, of great importance to address detailed cellular responses of neural lineage cells including normal neurons, astrocytes, and neuronal/glial cancer cell lines to several classes of Stat3 inhibitors focusing on their effective concentrations. Here, we picked up five human and mouse cancer cell lines (Neuro-2a and SH-SY5Y neuroblastoma cell lines and Tu-9648, U-87MG, and U-373MG glioblastoma cell lines) and treated with various Stat3 inhibitors. Among them, Stattic, FLLL31, and resveratrol potently suppressed P-Stat3 and cell viability in all the tested cell lines. Stat3 knockdown or expression of dominant-negative Stat3 further sensitized cells to the inhibitors. Expression of familial AD-related mutant amyloid precursor protein sensitized neuronal cells, not glial cells, to Stat3 inhibitors by reducing P-Stat3 levels. Primary neurons and astrocytes also responded to Stat3 inhibitors with similar sensitivities to those observed in cancer cell lines. Thus, Stat3 inhibitors should be carefully targeted to GBM cells to avoid potential neurotoxicity leading to AD-like neuropsychiatric dysfunctions. PMID:25436682

  4. Abundance and novel lineages of thraustochytrids in Hawaiian waters.

    PubMed

    Li, Qian; Wang, Xin; Liu, Xianhua; Jiao, Nianzhi; Wang, Guangyi

    2013-11-01

    Thraustochydrids has been known for their ubiquitous distribution in the ocean. However, a few efforts have been made to investigate their ecology. In this study, we have applied molecular method, acriflavine direct detection, and classical oceanographic methods to investigate the abundance and diversity of thraustochytrids in the North Pacific subtropical gyre. Our results revealed interesting temporal and spatial variations of their population. Out of three seasons (spring, summer, and fall), cruise Hawaii Ocean Time-series (HOT)-216 during November 2009 obtained the highest abundance of thraustochytrids ranging from 1,890 (Station S1C1, 45 m) to 630,000 (Station S2C12, 100 m) cells L(-1) of seawater, which accounted for a 0.79 to 281.0 % biomass ratio to that of bacteria in terms of gram carbon per liter. A patchy distribution of these organisms was widely observed in the water column and they were somehow related to the maximum chlorophyll layers. A total of 25 operational taxonomic units (OTUs) from cruise HOT-216 formed four phylogroups in the specific labyrinthulomycetes 18S rRNA-based phylogenetic tree, with the largest group of 20 OTUs fell into the Aplanochytrium cluster and the others aligned with uncultured clones or none, thus appeared to be undescribed. This study indicates the presence of new thraustochytrids lineages and their quantitative importance in the marine water column. PMID:23942794

  5. B lymphocyte lineage cells and the respiratory system

    PubMed Central

    Kato, Atsushi; Hulse, Kathryn E.; Tan, Bruce K.; Schleimer, Robert P.

    2013-01-01

    Adaptive humoral immune responses in the airways are mediated by B cells and plasma cells that express highly evolved and specific receptors and produce immunoglobulins of most isotypes. In some cases, such as autoimmune diseases or inflammatory diseases caused by excessive exposure to foreign antigens, these same immune cells can cause disease by virtue of overly vigorous responses. This review discusses the generation, differentiation, signaling, activation and recruitment pathways of B cells and plasma cells, with special emphasis on unique characteristics of subsets of these cells functioning within the respiratory system. The primary sensitization events that generate B cells responsible for effector responses throughout the airways usually occur in the upper airways, in tonsils and adenoid structures that make up Waldeyer’s Ring. Upon secondary exposure to antigen in the airways, antigen-processing dendritic cells migrate into secondary lymphoid organs such as lymph nodes that drain the upper and lower airways and further B cell expansion takes place at those sites. Antigen exposure in the upper or lower airways can also drive expansion of B lineage cells in the airway mucosal tissue and lead to the formation of inducible lymphoid follicles or aggregates that can mediate local immunity or disease. PMID:23540615

  6. B-lymphocyte lineage cells and the respiratory system.

    PubMed

    Kato, Atsushi; Hulse, Kathryn E; Tan, Bruce K; Schleimer, Robert P

    2013-04-01

    Adaptive humoral immune responses in the airways are mediated by B cells and plasma cells that express highly evolved and specific receptors and produce immunoglobulins of most isotypes. In some cases, such as autoimmune diseases or inflammatory diseases caused by excessive exposure to foreign antigens, these same immune cells can cause disease by virtue of overly vigorous responses. This review discusses the generation, differentiation, signaling, activation, and recruitment pathways of B cells and plasma cells, with special emphasis on unique characteristics of subsets of these cells functioning within the respiratory system. The primary sensitization events that generate B cells responsible for effector responses throughout the airways usually occur in the upper airways, tonsils, and adenoid structures that make up the Waldeyer ring. On secondary exposure to antigen in the airways, antigen-processing dendritic cells migrate into secondary lymphoid organs, such as lymph nodes, that drain the upper and lower airways, and further B-cell expansion takes place at those sites. Antigen exposure in the upper or lower airways can also drive expansion of B-lineage cells in the airway mucosal tissue and lead to the formation of inducible lymphoid follicles or aggregates that can mediate local immunity or disease. PMID:23540615

  7. Lung development and repair: Contribution of the ciliated lineage

    PubMed Central

    Rawlins, Emma L.; Ostrowski, Lawrence E.; Randell, Scott H.; Hogan, Brigid L. M.

    2007-01-01

    The identity of the endogenous epithelial cells in the adult lung that are responsible for normal turnover and repair after injury is still controversial. In part, this is due to a paucity of highly specific genetic lineage tools to follow efficiently the fate of the major epithelial cell populations: the basal, secretory, ciliated, neuroendocrine, and alveolar cells. As part of a program to address this problem we have used a 1-kb FOXJ1 promoter to drive CreER in the ciliated cells of the embryonic and adult lung. Analysis of FOXJ1-GFP transgenic lungs shows that labeled cells appear in a proximal-distal pattern during embryogenesis and that the promoter drives expression in all ciliated cells. Using FOXJ1CreER adult mice, we have followed the fate of ciliated cells after epithelial injury by naphthalene or sulfur dioxide. From quantitative analysis and confocal microscopy we conclude that ciliated cells transiently change their morphology in response to lung injury but do not proliferate or transdifferentiate as part of the repair process. PMID:17194755

  8. A Method for Lineage Tracing of Corneal Cells Using Multi-color Fluorescent Reporter Mice

    PubMed Central

    Altshuler, Anna; Dbayat, Noora; Nasser, Waseem; Suss-Toby, Edith; Tiosano, Beatrice; Shalom-Feuerstein, Ruby

    2015-01-01

    Lineage tracing experiments define the origin, fate and behavior of cells in a specific tissue or organism. This technique has been successfully applied for many decades, revealing seminal findings in developmental biology. More recently, it was adopted by stem cell biologists to identify and track different stem cell populations with minimal experimental intervention. The recent developments in mouse genetics, the availability of a large number of mouse strains, and the advancements in fluorescent microscopy allow the straightforward design of powerful lineage tracing systems for various tissues with basic expertise, using commercially available tools. We have recently taken advantage of this powerful methodology to explore the origin and fate of stem cells at the ocular surface using R26R-Confetti mouse. This model offers a multi-color genetic system, for the expression of 4 fluorescent genes in a random manner. Here we describe the principles of this methodology and provide an adaptable protocol for designing lineage tracing experiments; specifically for the corneal epithelium as well as for other tissues. PMID:26709460

  9. Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells.

    PubMed

    Pathak, Medha M; Nourse, Jamison L; Tran, Truc; Hwe, Jennifer; Arulmoli, Janahan; Le, Dai Trang T; Bernardis, Elena; Flanagan, Lisa A; Tombola, Francesco

    2014-11-11

    Neural stem cells are multipotent cells with the ability to differentiate into neurons, astrocytes, and oligodendrocytes. Lineage specification is strongly sensitive to the mechanical properties of the cellular environment. However, molecular pathways transducing matrix mechanical cues to intracellular signaling pathways linked to lineage specification remain unclear. We found that the mechanically gated ion channel Piezo1 is expressed by brain-derived human neural stem/progenitor cells and is responsible for a mechanically induced ionic current. Piezo1 activity triggered by traction forces elicited influx of Ca(2+), a known modulator of differentiation, in a substrate-stiffness-dependent manner. Inhibition of channel activity by the pharmacological inhibitor GsMTx-4 or by siRNA-mediated Piezo1 knockdown suppressed neurogenesis and enhanced astrogenesis. Piezo1 knockdown also reduced the nuclear localization of the mechanoreactive transcriptional coactivator Yes-associated protein. We propose that the mechanically gated ion channel Piezo1 is an important determinant of mechanosensitive lineage choice in neural stem cells and may play similar roles in other multipotent stem cells. PMID:25349416

  10. Hdac3 Interaction with p300 Histone Acetyltransferase Regulates the Oligodendrocyte and Astrocyte Lineage Fate Switch.

    PubMed

    Zhang, Liguo; He, Xuelian; Liu, Lei; Jiang, Minqing; Zhao, Chuntao; Wang, Haibo; He, Danyang; Zheng, Tao; Zhou, Xianyao; Hassan, Aishlin; Ma, Zhixing; Xin, Mei; Sun, Zheng; Lazar, Mitchell A; Goldman, Steven A; Olson, Eric N; Lu, Q Richard

    2016-02-01

    Establishment and maintenance of CNS glial cell identity ensures proper brain development and function, yet the epigenetic mechanisms underlying glial fate control remain poorly understood. Here, we show that the histone deacetylase Hdac3 controls oligodendrocyte-specification gene Olig2 expression and functions as a molecular switch for oligodendrocyte and astrocyte lineage determination. Hdac3 ablation leads to a significant increase of astrocytes with a concomitant loss of oligodendrocytes. Lineage tracing indicates that the ectopic astrocytes originate from oligodendrocyte progenitors. Genome-wide occupancy analysis reveals that Hdac3 interacts with p300 to activate oligodendroglial lineage-specific genes, while suppressing astroglial differentiation genes including NFIA. Furthermore, we find that Hdac3 modulates the acetylation state of Stat3 and competes with Stat3 for p300 binding to antagonize astrogliogenesis. Thus, our data suggest that Hdac3 cooperates with p300 to prime and maintain oligodendrocyte identity while inhibiting NFIA and Stat3-mediated astrogliogenesis, and thereby regulates phenotypic commitment at the point of oligodendrocyte-astrocytic fate decision. PMID:26859354

  11. Lineage mapping identifies molecular and architectural similarities between the larval and adult Drosophila central nervous system

    PubMed Central

    Lacin, Haluk; Truman, James W

    2016-01-01

    Neurogenesis in Drosophila occurs in two phases, embryonic and post-embryonic, in which the same set of neuroblasts give rise to the distinct larval and adult nervous systems, respectively. Here, we identified the embryonic neuroblast origin of the adult neuronal lineages in the ventral nervous system via lineage-specific GAL4 lines and molecular markers. Our lineage mapping revealed that neurons born late in the embryonic phase show axonal morphology and transcription factor profiles that are similar to the neurons born post-embryonically from the same neuroblast. Moreover, we identified three thorax-specific neuroblasts not previously characterized and show that HOX genes confine them to the thoracic segments. Two of these, NB2-3 and NB3-4, generate leg motor neurons. The other neuroblast is novel and appears to have arisen recently during insect evolution. Our findings provide a comprehensive view of neurogenesis and show how proliferation of individual neuroblasts is dictated by temporal and spatial cues. DOI: http://dx.doi.org/10.7554/eLife.13399.001 PMID:26975248

  12. Nfil3-independent lineage maintenance and antiviral response of natural killer cells.

    PubMed

    Firth, Matthew A; Madera, Sharline; Beaulieu, Aimee M; Gasteiger, Georg; Castillo, Eliseo F; Schluns, Kimberly S; Kubo, Masato; Rothman, Paul B; Vivier, Eric; Sun, Joseph C

    2013-12-16

    Development of the natural killer (NK) cell lineage is dependent on the transcription factor Nfil3 (or E4BP4), which is thought to act downstream of IL-15 signaling. Nfil3-deficient mice lack NK cells, whereas other lymphocyte lineages (B, T, and NKT cells) remain largely intact. We report the appearance of Ly49H-expressing NK cells in Nfil3(-/-) mice infected with mouse cytomegalovirus (MCMV) or recombinant viruses expressing the viral m157 glycoprotein. Nfil3(-/-) NK cells at the peak of antigen-driven expansion were functionally similar to NK cells from infected wild-type mice with respect to IFN-γ production and cytotoxicity, and could comparably produce long-lived memory NK cells that persisted in lymphoid and nonlymphoid tissues for >60 d. We demonstrate that generation and maintenance of NK cell memory is an Nfil3-independent but IL-15-dependent process. Furthermore, specific ablation of Nfil3 in either immature NK cells in the bone marrow or mature peripheral NK cells had no observable effect on NK cell lineage maintenance or homeostasis. Thus, expression of Nfil3 is crucial only early in the development of NK cells, and signals through activating receptors and proinflammatory cytokines during viral infection can bypass the requirement for Nfil3, promoting the proliferation and long-term survival of virus-specific NK cells. PMID:24277151

  13. Histone demethylase KDM2B regulates lineage commitment in normal and malignant hematopoiesis

    PubMed Central

    Andricovich, Jaclyn; Kai, Yan; Peng, Weiqun; Foudi, Adlen; Tzatsos, Alexandros

    2016-01-01

    The development of the hematopoietic system is a dynamic process that is controlled by the interplay between transcriptional and epigenetic networks to determine cellular identity. These networks are critical for lineage specification and are frequently dysregulated in leukemias. Here, we identified histone demethylase KDM2B as a critical regulator of definitive hematopoiesis and lineage commitment of murine hematopoietic stem and progenitor cells (HSPCs). RNA sequencing of Kdm2b-null HSPCs and genome-wide ChIP studies in human leukemias revealed that KDM2B cooperates with polycomb and trithorax complexes to regulate differentiation, lineage choice, cytokine signaling, and cell cycle. Furthermore, we demonstrated that KDM2B exhibits a dichotomous role in hematopoietic malignancies. Specifically, we determined that KDM2B maintains lymphoid leukemias, but restrains RAS-driven myeloid transformation. Our study reveals that KDM2B is an important mediator of hematopoietic cell development and has opposing roles in tumor progression that are dependent on cellular context. PMID:26808549

  14. Histone demethylase KDM2B regulates lineage commitment in normal and malignant hematopoiesis.

    PubMed

    Andricovich, Jaclyn; Kai, Yan; Peng, Weiqun; Foudi, Adlen; Tzatsos, Alexandros

    2016-03-01

    The development of the hematopoietic system is a dynamic process that is controlled by the interplay between transcriptional and epigenetic networks to determine cellular identity. These networks are critical for lineage specification and are frequently dysregulated in leukemias. Here, we identified histone demethylase KDM2B as a critical regulator of definitive hematopoiesis and lineage commitment of murine hematopoietic stem and progenitor cells (HSPCs). RNA sequencing of Kdm2b-null HSPCs and genome-wide ChIP studies in human leukemias revealed that KDM2B cooperates with polycomb and trithorax complexes to regulate differentiation, lineage choice, cytokine signaling, and cell cycle. Furthermore, we demonstrated that KDM2B exhibits a dichotomous role in hematopoietic malignancies. Specifically, we determined that KDM2B maintains lymphoid leukemias, but restrains RAS-driven myeloid transformation. Our study reveals that KDM2B is an important mediator of hematopoietic cell development and has opposing roles in tumor progression that are dependent on cellular context. PMID:26808549

  15. A Method for Lineage Tracing of Corneal Cells Using Multi-color Fluorescent Reporter Mice.

    PubMed

    Amitai-Lange, Aya; Berkowitz, Eran; Altshuler, Anna; Dbayat, Noora; Nasser, Waseem; Suss-Toby, Edith; Tiosano, Beatrice; Shalom-Feuerstein, Ruby

    2015-01-01

    Lineage tracing experiments define the origin, fate and behavior of cells in a specific tissue or organism. This technique has been successfully applied for many decades, revealing seminal findings in developmental biology. More recently, it was adopted by stem cell biologists to identify and track different stem cell populations with minimal experimental intervention. The recent developments in mouse genetics, the availability of a large number of mouse strains, and the advancements in fluorescent microscopy allow the straightforward design of powerful lineage tracing systems for various tissues with basic expertise, using commercially available tools. We have recently taken advantage of this powerful methodology to explore the origin and fate of stem cells at the ocular surface using R26R-Confetti mouse. This model offers a multi-color genetic system, for the expression of 4 fluorescent genes in a random manner. Here we describe the principles of this methodology and provide an adaptable protocol for designing lineage tracing experiments; specifically for the corneal epithelium as well as for other tissues. PMID:26709460

  16. Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage

    PubMed Central

    2010-01-01

    The introduction of the highly active antiretroviral therapy (HAART) has greatly improved survival. However, these treatments fail to definitively cure the patients and unveil the presence of quiescent HIV-1 reservoirs like cells from monocyte-macrophage lineage. A purge, or at least a significant reduction of these long lived HIV-1 reservoirs will be needed to raise the hope of the viral eradication. This review focuses on the molecular mechanisms responsible for viral persistence in cells of the monocyte-macrophage lineage. Controversy on latency and/or cryptic chronic replication will be specifically evoked. In addition, since HIV-1 infected monocyte-macrophage cells appear to be more resistant to apoptosis, this obstacle to the viral eradication will be discussed. Understanding the intimate mechanisms of HIV-1 persistence is a prerequisite to devise new and original therapies aiming to achieve viral eradication. PMID:20380694

  17. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems.

    PubMed

    Burstein, David; Sun, Christine L; Brown, Christopher T; Sharon, Itai; Anantharaman, Karthik; Probst, Alexander J; Thomas, Brian C; Banfield, Jillian F

    2016-01-01

    Current understanding of microorganism-virus interactions, which shape the evolution and functioning of Earth's ecosystems, is based primarily on cultivated organisms. Here we investigate thousands of viral and microbial genomes recovered using a cultivation-independent approach to study the frequency, variety and taxonomic distribution of viral defence mechanisms. CRISPR-Cas systems that confer microorganisms with immunity to viruses are present in only 10% of 1,724 sampled microorganisms, compared with previous reports of 40% occurrence in bacteria and 81% in archaea. We attribute this large difference to the lack of CRISPR-Cas systems across major bacterial lineages that have no cultivated representatives. We correlate absence of CRISPR-Cas with lack of nucleotide biosynthesis capacity and a symbiotic lifestyle. Restriction systems are well represented in these lineages and might provide both non-specific viral defence and access to nucleotides. PMID:26837824

  18. Correlated evolution of nucleotide substitution rates and allelic variation in Mhc-DRB lineages of primates

    PubMed Central

    Garamszegi, László Z; de Groot, Natasja G; Bontrop, Ronald E

    2009-01-01

    Background The major histocompatibility complex (MHC) is a key model of genetic polymorphism. Selection pressure by pathogens or other microevolutionary forces may result in a high rate of non-synonymous substitutions at the codons specifying the contact residues of the antigen binding sites (ABS), and the maintenance of extreme MHC allelic variation at the population/species level. Therefore, selection forces favouring MHC variability for any reason should cause a correlated evolution between substitution rates and allelic polymorphism. To investigate this prediction, we characterised nucleotide substitution rates and allelic polymorphism (i.e. the number of alleles detected in relation to the number of animals screened) of several Mhc class II DRB lineages in 46 primate species, and tested for a correlation between them. Results First, we demonstrate that species-specific and lineage-specific evolutionary constraints favour species- and lineage-dependent substitution rate at the codons specifying the ABS contact residues (i.e. certain species and lineages can be characterised by high substitution rate, while others have low rate). Second, we show that although the degree of the non-synonymous substitution rate at the ABS contact residues was systematically higher than the degree of the synonymous substitution rate, these estimates were strongly correlated when we controlled for species-specific and lineage-specific effects, and also for the fact that different studies relied on different sample size. Such relationships between substitution rates of different types could even be extended to the non-contact residues of the molecule. Third, we provide statistical evidence that increased substitution rate along a MHC gene may lead to allelic variation, as a high substitution rate can be observed in those lineages in which many alleles are maintained. Fourth, we show that the detected patterns were independent of phylogenetic constraints. When we used phylogenetic

  19. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems

    PubMed Central

    Burstein, David; Sun, Christine L.; Brown, Christopher T.; Sharon, Itai; Anantharaman, Karthik; Probst, Alexander J.; Thomas, Brian C.; Banfield, Jillian F.

    2016-01-01

    Current understanding of microorganism–virus interactions, which shape the evolution and functioning of Earth's ecosystems, is based primarily on cultivated organisms. Here we investigate thousands of viral and microbial genomes recovered using a cultivation-independent approach to study the frequency, variety and taxonomic distribution of viral defence mechanisms. CRISPR-Cas systems that confer microorganisms with immunity to viruses are present in only 10% of 1,724 sampled microorganisms, compared with previous reports of 40% occurrence in bacteria and 81% in archaea. We attribute this large difference to the lack of CRISPR-Cas systems across major bacterial lineages that have no cultivated representatives. We correlate absence of CRISPR-Cas with lack of nucleotide biosynthesis capacity and a symbiotic lifestyle. Restriction systems are well represented in these lineages and might provide both non-specific viral defence and access to nucleotides. PMID:26837824

  20. Organization of the Mammalian Ionome According to Organ Origin, Lineage Specialization, and Longevity.

    PubMed

    Ma, Siming; Lee, Sang-Goo; Kim, Eun Bae; Park, Thomas J; Seluanov, Andrei; Gorbunova, Vera; Buffenstein, Rochelle; Seravalli, Javier; Gladyshev, Vadim N

    2015-11-17

    Trace elements are essential to all mammals, but their distribution and utilization across species and organs remains unclear. Here, we examined 18 elements in the brain, heart, kidney, and liver of 26 mammalian species and report the elemental composition of these organs, the patterns of utilization across the species, and their correlation with body mass and longevity. Across the organs, we observed distinct distribution patterns for abundant elements, transition metals, and toxic elements. Some elements showed lineage-specific patterns, including reduced selenium utilization in African mole rats, and positive correlation between the number of selenocysteine residues in selenoprotein P and the selenium levels in liver and kidney across mammals. Body mass was linked positively to zinc levels, whereas species lifespan correlated positively with cadmium and negatively with selenium. This study provides insights into the variation of mammalian ionome by organ physiology, lineage specialization, body mass, and longevity. PMID:26549444

  1. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems

    DOE PAGESBeta

    Burstein, David; Sun, Christine L.; Brown, Christopher T.; Sharon, Itai; Anantharaman, Karthik; Probst, Alexander J.; Thomas, Brian C.; Banfield, Jillian F.

    2016-02-03

    Here, current understanding of microorganism–virus interactions, which shape the evolution and functioning of Earth’s ecosystems, is based primarily on cultivated organisms. Here we investigate thousands of viral and microbial genomes recovered using a cultivation independent approach to study the frequency, variety and taxonomic distribution of viral defence mechanisms. CRISPR-Cas systems that confer microorganisms with immunity to viruses are present in only 10% of 1,724 sampled microorganisms, compared with previous reports of 40% occurrence in bacteria and 81% in archaea. We attribute this large difference to the lack of CRISPR-Cas systems across major bacterial lineages that have no cultivated representatives. Wemore » correlate absence of CRISPR-Cas with lack of nucleotide biosynthesis capacity and a symbiotic lifestyle. Restriction systems are well represented in these lineages and might provide both non-specific viral defence and access to nucleotides.« less

  2. Two Hemocyte Lineages Exist in Silkworm Larval Hematopoietic Organ

    PubMed Central

    Nakahara, Yuichi; Kanamori, Yasushi; Kiuchi, Makoto; Kamimura, Manabu

    2010-01-01

    Background Insects have multiple hemocyte morphotypes with different functions as do vertebrates, however, their hematopoietic lineages are largely unexplored with the exception of Drosophila melanogaster. Methodology/Principal Findings To study the hematopoietic lineage of the silkworm, Bombyx mori, we investigated in vivo and in vitro differentiation of hemocyte precursors in the hematopoietic organ (HPO) into the four mature hemocyte subsets, namely, plasmatocytes, granulocytes, oenocytoids, and spherulocytes. Five days after implantation of enzymatically-dispersed HPO cells from a GFP-expressing transgenic line into the hemocoel of normal larvae, differentiation into plasmatocytes, granulocytes and oenocytoids, but not spherulocytes, was observed. When the HPO cells were cultured in vitro, plasmatocytes appeared rapidly, and oenocytoids possessing prophenol oxidase activity appeared several days later. HPO cells were also able to differentiate into a small number of granulocytes, but not into spherulocytes. When functionally mature plasmatocytes were cultured in vitro, oenocytoids were observed 10 days later. These results suggest that the hemocyte precursors in HPO first differentiate into plasmatocytes, which further change into oenocytoids. Conclusions/Significance From these results, we propose that B. mori hemocytes can be divided into two major lineages, a granulocyte lineage and a plasmatocyte-oenocytoid lineage. The origins of the spherulocytes could not be determined in this study. We construct a model for the hematopoietic lineages at the larval stage of B. mori. PMID:20676370

  3. Rate variation of DNA sequence evolution in the Drosophila lineages.

    PubMed Central

    Takano, T S

    1998-01-01

    Rate constancy of DNA sequence evolution was examined for three species of Drosophila, using two samples: the published sequences of eight genes from regions of the normal recombination rates and new data of the four AS-C (ac, sc, l'sc and ase) and ci genes. The AS-C and ci genes were chosen because these genes are located in the regions of very reduced recombination in Drosophila melanogaster and their locations remain unchanged throughout the entire lineages involved, yielding less effect of ancestral polymorphism in the study of rate constancy. The synonymous substitution pattern of the three lineages was found to be erratic in both samples. The dispersion index for replacement substitution was relatively high for the per, G6pd and ac genes. A significant heterogeneity was found in the number of synonymous substitutions in the three lineages between the two samples of genes with different recombination rates. This is partly due to a lack of the lineage effect in the D. melanogaster and Drosophila simulans lineages in the AS-C and ci genes in contrast to Akashi's observation of genes in regions of normal recombination. The higher codon bias in Drosophila yakuba as compared with D. melanogaster and D. simulans was observed in the four AS-C genes, which suggests change(s) in action of natural selection involved in codon usage on these genes. Fluctuating selection intensity may also be responsible for the observed locus-lineage interaction effects in synonymous substitution. PMID:9611206

  4. Identification of human erythroid lineage-committed progenitors.

    PubMed

    Mori, Yasuo; Akashi, Koichi; Weissman, Irving L

    2016-05-01

    Elucidating the developmental pathway leading to erythrocytes and being able to isolate their progenitors is crucial to understanding and treating disorders of red cell imbalance such as anemia, myelodysplastic syndrome, and polycythemia vera. Endoglin (CD105) is a key marker for purifying mouse erythroid lineage-committed progenitors (EPs) from bone marrow. Herein, we show that human EPs can also be isolated from adult bone marrow. We identified three subfractions that possessed different expression patterns of CD105 and CD71 within the previously defined human megakaryocyte/erythrocyte progenitor (hMEP; Lineage-CD34(+)CD38(+)IL-3Rα(-)CD45RA(-)) population. Both CD71(-)CD105(-) and CD71(+)CD105(-) MEPs, at least in vitro, retained bipotency for the megakaryocyte (MegK) and erythrocyte (E) lineages, although the latter sub-population had a differentiation potential skewed toward the E-lineage. Notably, the differentiation output of the CD71(+)CD105(+) subset of cells within the MEP population was completely restricted to the E-lineage with the loss of MegK potential; thus, we termed CD71(+)CD105(-) MEPs and CD71(+)CD105(+) cells as E-biased MEPs (E-MEPs) and EPs, respectively. These previously unclassified populations may facilitate understanding of the molecular mechanisms governing human erythroid development and serve as potential therapeutic targets in disorders of the erythroid lineage. PMID:27263782

  5. Differentiation in Stem Cell Lineages and in Life: Explorations in the Male Germ Line Stem Cell Lineage.

    PubMed

    Fuller, Margaret T

    2016-01-01

    I have been privileged to work on cellular differentiation during a great surge of discovery that has revealed the molecular mechanisms and genetic regulatory circuitry that control embryonic development and adult tissue maintenance and repair. Studying the regulation of proliferation and differentiation in the male germ line stem cell lineage has allowed us investigate how the developmental program imposes layers of additional controls on fundamental cellular processes like cell cycle progression and gene expression to give rise to the huge variety of specialized cell types in our bodies. We are beginning to understand how local signals from somatic support cells specify self-renewal versus differentiation in the stem cell niche at the apical tip of the testis. We are discovering the molecular events that block cell proliferation and initiate terminal differentiation at the switch from mitosis to meiosis-a signature event of the germ cell program. Our work is beginning to reveal how the developmental program that sets up the dramatic new cell type-specific transcription program that prepares germ cells for meiotic division and spermatid differentiation is turned on when cells become spermatocytes. I have had the privilege of working with incredible students, postdocs, and colleagues who have discovered, brainstormed, challenged, and refined our science and our ideas of how developmental pathways and cellular mechanisms work together to drive differentiation. PMID:26970629

  6. Osteoblast Lineage Cells Play an Essential Role in Periodontal Bone Loss Through Activation of Nuclear Factor-Kappa B

    PubMed Central

    Pacios, Sandra; Xiao, Wenmei; Mattos, Marcelo; Lim, Jason; Tarapore, Rohinton S.; Alsadun, Sarah; Yu, Bo; Wang, Cun-Yu; Graves, Dana T.

    2015-01-01

    Bacterial pathogens stimulate periodontitis, the most common osteolytic disease in humans and the most common cause of tooth loss in adults. Previous studies identified leukocytes and their products as key factors in this process. We demonstrate for the first time that osteoblast lineage cells play a critical role in periodontal disease. Oral infection stimulated nuclear localization of NF-κB in osteoblasts and osteocytes in the periodontium of wild type but not transgenic mice that expressed a lineage specific dominant negative mutant of IKK (IKK-DN) in osteoblast lineage cells. Wild-type mice were also susceptible to bacteria induced periodontal bone loss but transgenic mice were not. The lack of bone loss in the experimental group was linked to reduced RANKL expression by osteoblast lineage cells that led to diminished osteoclast mediated bone resorption and greater coupled new bone formation. The results demonstrate that osteoblast lineage cells are key contributors to periodontal bone loss through an NF-κB mediated mechanism. PMID:26666569

  7. Widespread acquisition of antimicrobial resistance among Campylobacter isolates from UK retail poultry and evidence for clonal expansion of resistant lineages

    PubMed Central

    2013-01-01

    Background Antimicrobial resistance is increasing among clinical Campylobacter cases and is common among isolates from other sources, specifically retail poultry - a major source of human infection. In this study the antimicrobial susceptibility of isolates from a UK-wide survey of Campylobacter in retail poultry in 2001 and 2004–5 was investigated. The occurrence of phenotypes resistant to tetracycline, quinolones (ciprofloxacin and naladixic acid), erythromycin, chloramphenicol and aminoglycosides was quantified. This was compared with a phylogeny for these isolates based upon Multi Locus Sequence Typing (MLST) to investigate the pattern of antimicrobial resistance acquisition. Results Antimicrobial resistance was present in all lineage clusters, but statistical testing showed a non-random distribution. Erythromycin resistance was associated with Campylobacter coli. For all antimicrobials tested, resistant isolates were distributed among relatively distant lineages indicative of widespread acquisition. There was also evidence of clustering of resistance phenotypes within lineages; indicative of local expansion of resistant strains. Conclusions These results are consistent with the widespread acquisition of antimicrobial resistance among chicken associated Campylobacter isolates, either through mutation or horizontal gene transfer, and the expansion of these lineages as a proportion of the population. As Campylobacter are not known to multiply outside of the host and long-term carriage in humans is extremely infrequent in industrialized countries, the most likely location for the proliferation of resistant lineages is in farmed chickens. PMID:23855904

  8. Global divergence of the human follicle mite Demodex folliculorum: Persistent associations between host ancestry and mite lineages

    PubMed Central

    Palopoli, Michael F.; Fergus, Daniel J.; Minot, Samuel; Pei, Dorothy T.; Simison, W. Brian; Fernandez-Silva, Iria; Thoemmes, Megan S.; Dunn, Robert R.; Trautwein, Michelle

    2015-01-01

    Microscopic mites of the genus Demodex live within the hair follicles of mammals and are ubiquitous symbionts of humans, but little molecular work has been done to understand their genetic diversity or transmission. Here we sampled mite DNA from 70 human hosts of diverse geographic ancestries and analyzed 241 sequences from the mitochondrial genome of the species Demodex folliculorum. Phylogenetic analyses recovered multiple deep lineages including a globally distributed lineage common among hosts of European ancestry and three lineages that primarily include hosts of Asian, African, and Latin American ancestry. To a great extent, the ancestral geography of hosts predicted the lineages of mites found on them; 27% of the total molecular variance segregated according to the regional ancestries of hosts. We found that D. folliculorum populations are stable on an individual over the course of years and that some Asian and African American hosts maintain specific mite lineages over the course of years or generations outside their geographic region of birth or ancestry. D. folliculorum haplotypes were much more likely to be shared within families and between spouses than between unrelated individuals, indicating that transmission requires close contact. Dating analyses indicated that D. folliculorum origins may predate modern humans. Overall, D. folliculorum evolution reflects ancient human population divergences, is consistent with an out-of-Africa dispersal hypothesis, and presents an excellent model system for further understanding the history of human movement. PMID:26668374

  9. Hematopoietic expression of oncogenic BRAF promotes aberrant growth of monocyte-lineage cells resistant to PLX4720

    PubMed Central

    Kamata, Tamihiro; Dankort, David; Kang, Jing; Giblett, Susan; Pritchard, Catrin A.; McMahon, Martin; Leavitt, Andrew D.

    2013-01-01

    Mutational activation of BRAF leading to expression of the BRAFV600E oncoprotein was recently identified in a high percentage of specific hematopoietic neoplasms in monocyte/histiocyte and mature B-cell lineages. Although BRAFV600E is a driver oncoprotein and pharmacological target in solid tumors such as melanoma, lung and thyroid cancer, it remains unknown whether BRAFV600E is an appropriate therapeutic target in hematopoietic neoplasms. To address this critical question, we generated a mouse model expressing inducible BRAFV600E in the hematopoietic system, and evaluated the efficacy of pathway-targeted therapeutics against primary hematopoietic cells. In this model, BRAFV600E expression conferred cytokine-independent growth to monocyte/macrophage-lineage progenitors leading to aberrant in vivo and in vitro monocyte/macrophage expansion. Furthermore, transplantation of BRAFV600E-expressing bone marrow cells promoted an in vivo pathology most notable for monocytosis in hematopoietic tissues and visceral organs. In vitro analysis revealed that MEK inhibition, but not RAF inhibition, effectively suppressed cytokine-independent clonal growth of monocyte/macrophage-lineage progenitors. However, combined RAF and PI3K inhibition effectively inhibited cytokine-independent colony formation, suggesting autocrine PI3K pathway activation. Taken together, these results provide evidence that constitutively activated BRAFV600E drives aberrant proliferation of monocyte-lineage cells. This study supports the development of pathway-targeted therapeutics in the treatment of BRAFV600E-expressing hematopoietic neoplasms in the monocyte/histiocyte lineage. PMID:24152792

  10. Global divergence of the human follicle mite Demodex folliculorum: Persistent associations between host ancestry and mite lineages.

    PubMed

    Palopoli, Michael F; Fergus, Daniel J; Minot, Samuel; Pei, Dorothy T; Simison, W Brian; Fernandez-Silva, Iria; Thoemmes, Megan S; Dunn, Robert R; Trautwein, Michelle

    2015-12-29

    Microscopic mites of the genus Demodex live within the hair follicles of mammals and are ubiquitous symbionts of humans, but little molecular work has been done to understand their genetic diversity or transmission. Here we sampled mite DNA from 70 human hosts of diverse geographic ancestries and analyzed 241 sequences from the mitochondrial genome of the species Demodex folliculorum. Phylogenetic analyses recovered multiple deep lineages including a globally distributed lineage common among hosts of European ancestry and three lineages that primarily include hosts of Asian, African, and Latin American ancestry. To a great extent, the ancestral geography of hosts predicted the lineages of mites found on them; 27% of the total molecular variance segregated according to the regional ancestries of hosts. We found that D. folliculorum populations are stable on an individual over the course of years and that some Asian and African American hosts maintain specific mite lineages over the course of years or generations outside their geographic region of birth or ancestry. D. folliculorum haplotypes were much more likely to be shared within families and between spouses than between unrelated individuals, indicating that transmission requires close contact. Dating analyses indicated that D. folliculorum origins may predate modern humans. Overall, D. folliculorum evolution reflects ancient human population divergences, is consistent with an out-of-Africa dispersal hypothesis, and presents an excellent model system for further understanding the history of human movement. PMID:26668374

  11. Accessibility of host cell lineages to medaka stem cells depends on genetic background and irradiation of recipient embryos.

    PubMed

    Hong, Ni; Li, Mingyou; Zeng, Zhiqiang; Yi, Meisheng; Deng, Jiaorong; Gui, Jianfang; Winkler, Christoph; Schartl, Manfred; Hong, Yunhan

    2010-04-01

    Chimera formation is a powerful tool for analyzing pluripotency in vivo. It has been widely accepted that host cell lineages are generally accessible to embryonic stem (ES) cells with the actual contribution depending solely on the intrinsic pluripotency of transplanted donor cells. Here, we show in the fish medaka (Oryzias latipes) that the host accessibility to ES cell contribution exhibits dramatic differences. Specifically, of three albino host strains tested (i (1) , i (3) and af), only strain i (1) generated pigmented chimeras. Strikingly, this accessibility is completely lost in i (1) but acquired in i (3) after host gamma-irradiation. Host irradiation also differentially affected ES cell contribution to somatic organs and gonad. Therefore, the accessibility of various host cell lineages can vary considerably depending on host strains and cell lineages as well as on irradiation. Our findings underscore the importance of host genotypes for interpreting donor cell pluripotency and for improving ES-derived chimera production. PMID:20238480

  12. Exploring Massive Incomplete Lineage Sorting in Arctoids (Laurasiatheria, Carnivora).

    PubMed

    Doronina, Liliya; Churakov, Gennady; Shi, Jingjing; Brosius, Jürgen; Baertsch, Robert; Clawson, Hiram; Schmitz, Jürgen

    2015-12-01

    Freed from the competition of large raptors, Paleocene carnivores could expand their newly acquired habitats in search of prey. Such changing conditions might have led to their successful distribution and rapid radiation. Today, molecular evolutionary biologists are faced, however, with the consequences of such accelerated adaptive radiations, because they led to sequential speciation more rapidly than phylogenetic markers could be fixed. The repercussions being that current genealogies based on such markers are incongruent with species trees.Our aim was to explore such conflicting phylogenetic zones of evolution during the early arctoid radiation, especially to distinguish diagnostic from misleading phylogenetic signals, and to examine other carnivore-related speciation events. We applied a combination of high-throughput computational strategies to screen carnivore and related genomes in silico for randomly inserted retroposed elements that we then used to identify inconsistent phylogenetic patterns in the Arctoidea group, which is well known for phylogenetic discordances.Our combined retrophylogenomic and in vitro wet lab approach detected hundreds of carnivore-specific insertions, many of them confirming well-established splits or identifying and solving conflicting species distributions. Our systematic genome-wide screens for Long INterspersed Elements detected homoplasy-free markers with insertion-specific truncation points that we used to distinguish phylogenetically informative markers from conflicting signals. The results were independently confirmed by phylogenetic diagnostic Short INterspersed Elements. As statistical analysis ruled out ancestral hybridization, these doubly verified but still conflicting patterns were statistically determined to be genomic remnants from a time of ancestral incomplete lineage sorting that especially accompanied large parts of Arctoidea evolution. PMID:26337548

  13. Co-circulation of Peste-des-Petits-Ruminants Virus Asian lineage IV with Lineage II in Nigeria.

    PubMed

    Woma, T Y; Adombi, C M; Yu, D; Qasim, A M M; Sabi, A A; Maurice, N A; Olaiya, O D; Loitsch, A; Bailey, D; Shamaki, D; Dundon, W G; Quan, M

    2016-06-01

    Peste-des-petits-ruminants (PPR), a major small ruminant transboundary animal disease, is endemic in Nigeria. Strains of the causal agent, peste-des-petits-ruminants virus (PPRV), have been differentiated into four genetically distinct lineages based on the partial sequence of the virus nucleoprotein (N) or fusion (F) genes. Peste-des-petits-ruminants virus strains that were identified initially in Africa were grouped into lineages I, II and III and viruses from Asia were classified as lineage IV and referred to as the Asian lineage. Many recent reports indicate that the Asian lineage is now also present in Africa. With this in mind, this study was conducted to reassess the epidemiology of PPRV in Nigeria. A total of 140 clinical samples from 16 sheep and 63 goats with symptoms suggestive of PPR were collected from different states of Nigeria during a four-year period (2010-2013). They were analysed by the amplification of fragments of the N gene. Results for 33 (42%) animals were positive. The phylogenetic analysis of the N gene sequences with those available in GenBank showed that viruses that were detected belong to both lineage II and IV. Based on an analysis of the N gene sequences, the lineage IV isolates grouped into two clades, one being predominant in the north-eastern part of the country and the other found primarily in the southern regions of the country. This study reports the presence of PPRV Asian lineage IV in Nigeria for the first time. PMID:26095085

  14. De Novo Genes Arise at a Slow but Steady Rate along the Primate Lineage and Have Been Subject to Incomplete Lineage Sorting.

    PubMed

    Guerzoni, Daniele; McLysaght, Aoife

    2016-01-01

    De novo protein-coding gene origination is increasingly recognized as an important evolutionary mechanism. However, there remains a large amount of uncertainty regarding the frequency of these events and the mechanisms and speed of gene establishment. Here, we describe