Sample records for polarized atomic photofragments

  1. The parity-adapted basis set in the formulation of the photofragment angular momentum polarization problem: The role of the Coriolis interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shternin, Peter S.; Vasyutinskii, Oleg S.

    We present a theoretical framework for calculating the recoil-angle dependence of the photofragment angular momentum polarization taking into account both radial and Coriolis nonadiabatic interactions in the diatomic/linear photodissociating molecules. The parity-adapted representation of the total molecular wave function has been used throughout the paper. The obtained full quantum-mechanical expressions for the photofragment state multipoles have been simplified by using the semiclassical approximation in the high-J limit and then analyzed for the cases of direct photodissociation and slow predissociation in terms of the anisotropy parameters. In both cases, each anisotropy parameter can be presented as a linear combination of themore » generalized dynamical functions f{sub K}(q,q{sup '},q-tilde,q-tilde{sup '}) of the rank K representing contribution from different dissociation mechanisms including possible radial and Coriolis nonadiabatic transitions, coherent effects, and the rotation of the recoil axis. In the absence of the Coriolis interactions, the obtained results are equivalent to the earlier published ones. The angle-recoil dependence of the photofragment state multipoles for an arbitrary photolysis reaction is derived. As shown, the polarization of the photofragments in the photolysis of a diatomic or a polyatomic molecule can be described in terms of the anisotropy parameters irrespective of the photodissociation mechanism.« less

  2. Optical control of ground-state atomic orbital alignment: Cl(2P3/2) atoms from HCl(v=2,J=1) photodissociation.

    PubMed

    Sofikitis, Dimitris; Rubio-Lago, Luis; Martin, Marion R; Ankeny Brown, Davida J; Bartlett, Nathaniel C-M; Alexander, Andrew J; Zare, Richard N; Rakitzis, T Peter

    2007-10-14

    H(35)Cl(v=0,J=0) molecules in a supersonic expansion were excited to the H(35)Cl(v=2,J=1,M=0) state with linearly polarized laser pulses at about 1.7 microm. These rotationally aligned J=1 molecules were then selectively photodissociated with a linearly polarized laser pulse at 220 nm after a time delay, and the velocity-dependent alignment of the (35)Cl((2)P(32)) photofragments was measured using 2+1 REMPI and time-of-flight mass spectrometry. The (35)Cl((2)P(32)) atoms are aligned by two mechanisms: (1) the time-dependent transfer of rotational polarization of the H(35)Cl(v=2,J=1,M=0) molecule to the (35)Cl((2)P(32)) nuclear spin [which is conserved during the photodissociation and thus contributes to the total (35)Cl((2)P(32)) photofragment atomic polarization] and (2) the alignment of the (35)Cl((2)P(32)) electronic polarization resulting from the photoexcitation and dissociation process. The total alignment of the (35)Cl((2)P(32)) photofragments from these two mechanisms was found to vary as a function of time delay between the excitation and the photolysis laser pulses, in agreement with theoretical predictions. We show that the alignment of the ground-state (35)Cl((2)P(32)) atoms, with respect to the photodissociation recoil direction, can be controlled optically. Potential applications include the study of alignment-dependent collision effects.

  3. Highly Nuclear-Spin-Polarized Deuterium Atoms from the UV Photodissociation of Deuterium Iodide.

    PubMed

    Sofikitis, Dimitris; Glodic, Pavle; Koumarianou, Greta; Jiang, Hongyan; Bougas, Lykourgos; Samartzis, Peter C; Andreev, Alexander; Rakitzis, T Peter

    2017-06-09

    We report a novel highly spin-polarized deuterium (SPD) source, via the photodissociation of deuterium iodide at 270 nm. I(^{2}P_{3/2}) photofragments are ionized with m-state selectivity, and their velocity distribution measured via velocity-map slice imaging, from which the D polarization is determined. The process produces ∼100% electronically polarized D at the time of dissociation, which is then converted to ∼60% nuclear D polarization after ∼1.6  ns. These production times for SPD allow collision-limited densities of ∼10^{18}  cm^{-3} and at production rates of ∼10^{21}  s^{-1} which are 10^{6} and 10^{4} times higher than conventional (Stern-Gerlach separation) methods, respectively. We discuss the production of SPD beams, and combining high-density SPD with laser fusion, to investigate polarized D-T, D-^{3}He, and D-D fusion.

  4. Magnetic trapping of cold bromine atoms.

    PubMed

    Rennick, C J; Lam, J; Doherty, W G; Softley, T P

    2014-01-17

    Magnetic trapping of bromine atoms at temperatures in the millikelvin regime is demonstrated for the first time. The atoms are produced by photodissociation of Br2 molecules in a molecular beam. The lab-frame velocity of Br atoms is controlled by the wavelength and polarization of the photodissociation laser. Careful selection of the wavelength results in one of the pair of atoms having sufficient velocity to exactly cancel that of the parent molecule, and it remains stationary in the lab frame. A trap is formed at the null point between two opposing neodymium permanent magnets. Dissociation of molecules at the field minimum results in the slowest fraction of photofragments remaining trapped. After the ballistic escape of the fastest atoms, the trapped slow atoms are lost only by elastic collisions with the chamber background gas. The measured loss rate is consistent with estimates of the total cross section for only those collisions transferring sufficient kinetic energy to overcome the trapping potential.

  5. Photofragment Coincidence Imaging of Small I- (H2O)n Clusters Excited to the Charge-transfer-to-solvent State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumark, D. E. Szpunar, K. E. Kautzman, A. E. Faulhaber, and D. M.; Kautzman, K.E.; Faulhaber, A.E.

    2005-11-09

    The photodissociation dynamics of small I{sup -}(H{sub 2}O){sub n} (n = 2-5) clusters excited to their charge-transfer-to-solvent (CTTS) states have been studied using photofragment coincidence imaging. Upon excitation to the CTTS state, two photodissociation channels were observed. The major channel ({approx}90%) is a 2-body process forming neutral I + (H{sub 2}O){sub n} photofragments, and the minor channel is a 3-body process forming I + (H{sub 2}O){sub n-1} + H{sub 2}O fragments. Both process display translational energy (P(E{sub T})) distributions peaking at E{sub T} = 0 with little available energy partitioned into translation. Clusters excited to the detachment continuum rather thanmore » to the CTTS state display the same two channels with similar P(E{sub T}) distributions. The observation of similar P(E{sub T}) distributions from the two sets of experiments suggests that in the CTTS experiments, I atom loss occurs after autodetachment of the excited (I(H{sub 2}O){sub n}{sup -})* cluster, or, less probably, that the presence of the excess electron has little effect on the departing I atom.« less

  6. A velocity map imaging mass spectrometer for photofragments of fast ion beams

    NASA Astrophysics Data System (ADS)

    Johnston, M. David; Pearson, Wright L.; Wang, Greg; Metz, Ricardo B.

    2018-01-01

    We present the details of a fast ion velocity map imaging mass spectrometer that is capable of imaging the photofragments of trap-cooled (≥7 K) ions produced in a versatile ion source. The new instrument has been used to study the predissociation of N2O+ produced by electric discharge and the direct dissociation of Al2+ formed by laser ablation. The instrument's resolution is currently limited by the diameter of the collimating iris to a value of Δv/v = 7.6%. Photofragment images of N2O+ show that when the predissociative state is changed from 2Σ+(200) to 2Σ+(300) the dominant product channel shifts from a spin-forbidden ground state, N (4S) + NO+(v = 5), to a spin-allowed pathway, N*(2D) + NO+. The first photofragment images of Al2+ confirm the existence of a directly dissociative parallel transition (2Σ+u ← 2Σ+g) that yields products with a large amount of kinetic energy. D0 of ground state Al2+ (2Σ+g) measured from these images is 138 ± 5 kJ/mol, which is consistent with the published literature.

  7. Time delay in atomic photoionization with circularly polarized light

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2013-03-01

    We study time delay in atomic photoionization by circularly polarized light. By considering the Li atom in an excited 2p state, we demonstrate a strong time-delay asymmetry between the photoemission of the target electrons that are co- and counter-rotating with the electromagnetic field in the polarization plane. In addition, we observe the time-delay sensitivity to the polar angle of the photoelectron emission in the polarization plane. This modulation depends on the shape and duration of the electromagnetic pulse.

  8. Fast, High-Precision Optical Polarization Synthesizer for Ultracold-Atom Experiments

    NASA Astrophysics Data System (ADS)

    Robens, Carsten; Brakhane, Stefan; Alt, Wolfgang; Meschede, Dieter; Zopes, Jonathan; Alberti, Andrea

    2018-03-01

    We present a technique for the precision synthesis of arbitrary polarization states of light with a high modulation bandwidth. Our approach consists of superimposing two laser light fields with the same wavelength, but with opposite circular polarizations, where the phase and the amplitude of each light field are individually controlled. We find that the polarization-synthesized beam reaches a degree of polarization of 99.99%, which is mainly limited by static spatial variations of the polarization state over the beam profile. We also find that the depolarization caused by temporal fluctuations of the polarization state is about 2 orders of magnitude smaller. In a recent work, Robens et al. [Low-Entropy States of Neutral Atoms in Polarization-Synthesized Optical Lattices, Phys. Rev. Lett. 118, 065302 (2017), 10.1103/PhysRevLett.118.065302] demonstrated an application of the polarization synthesizer to create two independently controllable optical lattices which trap atoms depending on their internal spin state. We use ultracold atoms in polarization-synthesized optical lattices to give an independent, in situ demonstration of the performance of the polarization synthesizer.

  9. A polarized atomic-beam target for COSY-Jülich

    NASA Astrophysics Data System (ADS)

    Eversheim, P. D.; Altmeier, M.; Felden, O.; Glende, M.; Walker, M.; Hiemer, A.; Gebel, R.

    1998-01-01

    An atomic-beam target (ABT) for the EDDA experiment has been built in Bonn and was tested for the very first time at the cooler synchrotron COSY. The ABT differs from the polarized colliding-beams ion source for COSY in the DC-operation of the dissociator and the use of permanent 6-pole magnets. At present the beam optics of the ABT is set-up for maximum density in the interaction zone, but for target-cell operation it can be modified to give maximum intensity. The modular concept of this atomic ground-state target allows to provide all vector- (and tensor) polarizations for protons and deuterons, respectively. Up to now the polarization of the atomic-beam could be verified by the EDDA experiment to be ≳80% with a density in the interaction zone of ≳1011atoms/cm2.

  10. Photodissociation dynamics of the methyl perthiyl radical at 248 and 193 nm using fast-beam photofragment translational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Aaron W.; Ryazanov, Mikhail; Sullivan, Erin N.

    2016-07-14

    The photodissociation dynamics of the methyl perthiyl radical (CH{sub 3}SS) have been investigated using fast-beam coincidence translational spectroscopy. Methyl perthiyl radicals were produced by photodetachment of the CH{sub 3}SS{sup −} anion followed by photodissociation at 248 nm (5.0 eV) and 193 nm (6.4 eV). Photofragment mass distributions and translational energy distributions were measured at each dissociation wavelength. Experimental results show S atom loss as the dominant (96%) dissociation channel at 248 nm with a near parallel, anisotropic angular distribution and translational energy peaking near the maximal energy available to ground state CH{sub 3}S and S fragments, indicating that the dissociationmore » occurs along a repulsive excited state. At 193 nm, S atom loss remains the major fragmentation channel, although S{sub 2} loss becomes more competitive and constitutes 32% of the fragmentation. The translational energy distributions for both channels are very broad at this wavelength, suggesting the formation of the S{sub 2} and S atom products in several excited electronic states.« less

  11. Spin-polarized currents generated by magnetic Fe atomic chains.

    PubMed

    Lin, Zheng-Zhe; Chen, Xi

    2014-06-13

    Fe-based devices are widely used in spintronics because of high spin-polarization and magnetism. In this work, freestanding Fe atomic chains, the thinnest wires, were used to generate spin-polarized currents due to the spin-polarized energy bands. By ab initio calculations, the zigzag structure was found to be more stable than the wide-angle zigzag structure and had a higher ratio of spin-up and spin-down currents. By our theoretical prediction, Fe atomic chains have a sufficiently long thermal lifetime only at T ≦̸ 150 K, while C atomic chains are very stable even at T = 1000 K. This means that the spintronic devices based on Fe chains could work only at low temperatures. A system constructed by a short Fe chain sandwiched between two graphene electrodes could be used as a spin-polarized current generator, while a C chain could not be used in this way. The present work may be instructive and meaningful to further practical applications based on recent technical developments on the preparation of metal atomic chains (Proc. Natl. Acad. Sci. USA 107 9055 (2010)).

  12. Frequency redistribution function for the polarized two-term atom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casini, R.; Landi Degl'Innocenti, M.; Manso Sainz, R.

    2014-08-20

    We present a generalized frequency redistribution function for the polarized two-term atom in an arbitrary magnetic field. This result is derived within a new formulation of the quantum problem of coherent scattering of polarized radiation by atoms in the collisionless regime. The general theory, which is based on a diagrammatic treatment of the atom-photon interaction, is still a work in progress. However, the results anticipated here are relevant enough for the study of the magnetism of the solar chromosphere and of interest for astrophysics in general.

  13. Atomic vapor quantum memory for a photonic polarization qubit.

    PubMed

    Cho, Young-Wook; Kim, Yoon-Ho

    2010-12-06

    We report an experimental realization of an atomic vapor quantum memory for the photonic polarization qubit. The performance of the quantum memory for the polarization qubit, realized with electromagnetically-induced transparency in two spatially separated ensembles of warm Rubidium atoms in a single vapor cell, has been characterized with quantum process tomography. The process fidelity better than 0.91 for up to 16 μs of storage time has been achieved.

  14. A polarization converting device for an interfering enhanced CPT atomic clock.

    PubMed

    Wang, Kewei; Tian, Yuan; Yin, Yi; Wang, Yuanchao; Gu, Sihong

    2017-11-01

    With interfering enhanced coherent population trapping (CPT) signals, a CPT atomic clock with improved frequency stability performance can be realized. We explore an optical device that converts single-polarized bichromatic light to left and right circularly polarized superposed bichromatic light to generate interfering enhanced CPT resonance with atoms. We have experimentally studied a tabletop CPT atomic clock apparatus with a microfabricated 87 Rb atomic chip-scale cell, and the study results show that it is promising to realize a compact CPT atomic clock, even a chip-scale CPT atomic clock through microfabrication, with improved frequency stability performance.

  15. A polarization converting device for an interfering enhanced CPT atomic clock

    NASA Astrophysics Data System (ADS)

    Wang, Kewei; Tian, Yuan; Yin, Yi; Wang, Yuanchao; Gu, Sihong

    2017-11-01

    With interfering enhanced coherent population trapping (CPT) signals, a CPT atomic clock with improved frequency stability performance can be realized. We explore an optical device that converts single-polarized bichromatic light to left and right circularly polarized superposed bichromatic light to generate interfering enhanced CPT resonance with atoms. We have experimentally studied a tabletop CPT atomic clock apparatus with a microfabricated 87Rb atomic chip-scale cell, and the study results show that it is promising to realize a compact CPT atomic clock, even a chip-scale CPT atomic clock through microfabrication, with improved frequency stability performance.

  16. Above-threshold ionization of noble gases in elliptically polarized fields: Effects of atomic polarization on photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Wang, YanLan; Yu, ShaoGang; Lai, XuanYang; Liu, XiaoJun; Chen, Jing

    2017-06-01

    We theoretically investigate the atomic polarization effect on photoelectron angular distributions (PADs) in above-threshold ionization of noble gases with elliptically polarized laser fields at wavelength of 800 nm, ellipticity of 0.25, and intensity of 1.5 ×1014W/cm2 . Simulations based on a semiclassical model that includes both the ionic Coulomb potential and the atomic polarization effect show surprisingly little difference between PADs for Ar, Kr, and Xe, which is in good agreement with recent experimental observations. Our calculations reveal that the atomic polarization effect increases the distance of the tunnel exit point of the photoelectron to the parent ion and weakens the strength of the interaction between the parent ion and the photoelectron on its subsequent classical propagation. As a result, the forward-scattering electrons which contribute to the main lobes in PADs are substantially suppressed. Our results indicate that the insensitivity of PADs for Ar, Kr, and Xe may be closely related to the influence of the atomic polarization effect on the photoelectron dynamics in the strong laser field.

  17. Practical method for transversely measuring the spin polarization of optically pumped alkali atoms

    NASA Astrophysics Data System (ADS)

    Ding, Zhichao; Yuan, Jie; Long, Xingwu

    2018-06-01

    A practical method to measure the spin polarization of optically pumped alkali atoms is demonstrated. In order to realize transverse measurement, the transverse spin component of spin-polarized alkali atoms is created by a rotating exciting magnetic field, and detected using the optical rotation of a near-resonant probe beam for realizing a high detection sensitivity. The dependency of the optical rotation on the spin polarization of 133Cs atoms is derived theoretically and verified experimentally. By changing the direction of the rotating magnetic field, we realize the transverse measurement of the spin polarization of 133Cs atoms in either ground-state hyperfine level.

  18. Classical-trajectory simulation of accelerating neutral atoms with polarized intense laser pulses

    NASA Astrophysics Data System (ADS)

    Xia, Q. Z.; Fu, L. B.; Liu, J.

    2013-03-01

    In the present paper, we perform the classical trajectory Monte Carlo simulation of the complex dynamics of accelerating neutral atoms with linearly or circularly polarized intense laser pulses. Our simulations involve the ion motion as well as the tunneling ionization and the scattering dynamics of valence electron in the combined Coulomb and electromagnetic fields, for both helium (He) and magnesium (Mg). We show that for He atoms, only linearly polarized lasers can effectively accelerate the atoms, while for Mg atoms, we find that both linearly and circularly polarized lasers can successively accelerate the atoms. The underlying mechanism is discussed and the subcycle dynamics of accelerating trajectories is investigated. We have compared our theoretical results with a recent experiment [Eichmann Nature (London)NATUAS0028-083610.1038/nature08481 461, 1261 (2009)].

  19. Polarization-induced interference within electromagnetically induced transparency for atoms of double-V linkage

    NASA Astrophysics Data System (ADS)

    Sun, Yuan; Liu, Chang; Chen, Ping-Xing; Liu, Liang

    2018-02-01

    People have been paying attention to the role of atoms' complex internal level structures in the research of electromagnetically induced transparency (EIT) for a long time, where the various degenerate Zeeman levels usually generate complex linkage patterns for the atomic transitions. It turns out, with special choices of the atomic states and the atomic transitions' linkage structure, clear signatures of quantum interference induced by the probe and coupling light's polarizations can emerge from a typical EIT phenomena. We propose to study a four-state system with double-V linkage pattern for the transitions and analyze the polarization-induced interference under the EIT condition. We show that such interference arises naturally under mild conditions on the optical field and atom manipulation techniques. Moreover, we construct a variation form of double-M linkage pattern where the polarization-induced interference enables polarization-dependent cross modulation between incident weak lights that can be effective even at the few-photon level. The theme is to gain more insight into the essential question: how can we build a nontrivial optical medium where incident lights experience polarization-dependent nonlinear optical interactions, valid for a wide range of incidence intensities down to the few-photon level?

  20. Attosecond polarization control in atomic RABBITT-like experiments assisted by a circularly polarized laser

    NASA Astrophysics Data System (ADS)

    Boll, D. I. R.; Fojón, O. A.

    2017-12-01

    We study theoretically the single ionization of noble gas atoms by the combined action of an attosecond pulse train with linear polarization and an assistant laser field with circular polarization. We employ a non-perturbative model that under certain approximations gives closed-form expressions for the angular distributions of photoelectrons. Interestingly, our model allow us to interpret these angular distributions as two-centre interferences where the orientation and the modulus of the separation vector between the virtual emitters is governed by the assistant laser field. Additionally, we show that such a configuration of light fields is similar to the polarization control technique, where both the attosecond pulse train and the assistant laser field have linear polarizations whose relative orientation may be controlled. Moreover, in order to compare our results with the available experimental data, we obtain analytical expressions for the cross sections integrated over the photoelectron emission angles. By means of these expressions, we define the ‘magic time’ as the delay for which the total cross sections for atomic targets exhibit the same functional form as the one of the monochromatic photoionization of diatomic molecular targets.

  1. Polarized atomic orbitals for self-consistent field electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Lee, Michael S.; Head-Gordon, Martin

    1997-12-01

    We present a new self-consistent field approach which, given a large "secondary" basis set of atomic orbitals, variationally optimizes molecular orbitals in terms of a small "primary" basis set of distorted atomic orbitals, which are simultaneously optimized. If the primary basis is taken as a minimal basis, the resulting functions are termed polarized atomic orbitals (PAO's) because they are valence (or core) atomic orbitals which have distorted or polarized in an optimal way for their molecular environment. The PAO's derive their flexibility from the fact that they are formed from atom-centered linear-combinations of the larger set of secondary atomic orbitals. The variational conditions satisfied by PAO's are defined, and an iterative method for performing a PAO-SCF calculation is introduced. We compare the PAO-SCF approach against full SCF calculations for the energies, dipoles, and molecular geometries of various molecules. The PAO's are potentially useful for studying large systems that are currently intractable with larger than minimal basis sets, as well as offering potential interpretative benefits relative to calculations in extended basis sets.

  2. The atomic structure of polar and non-polar InGaN quantum wells and the green gap problem.

    PubMed

    Humphreys, C J; Griffiths, J T; Tang, F; Oehler, F; Findlay, S D; Zheng, C; Etheridge, J; Martin, T L; Bagot, P A J; Moody, M P; Sutherland, D; Dawson, P; Schulz, S; Zhang, S; Fu, W Y; Zhu, T; Kappers, M J; Oliver, R A

    2017-05-01

    We have used high resolution transmission electron microscopy (HRTEM), aberration-corrected quantitative scanning transmission electron microscopy (Q-STEM), atom probe tomography (APT) and X-ray diffraction (XRD) to study the atomic structure of (0001) polar and (11-20) non-polar InGaN quantum wells (QWs). This paper provides an overview of the results. Polar (0001) InGaN in QWs is a random alloy, with In replacing Ga randomly. The InGaN QWs have atomic height interface steps, resulting in QW width fluctuations. The electrons are localised at the top QW interface by the built-in electric field and the well-width fluctuations, with a localisation energy of typically 20meV. The holes are localised near the bottom QW interface, by indium fluctuations in the random alloy, with a localisation energy of typically 60meV. On the other hand, the non-polar (11-20) InGaN QWs contain nanometre-scale indium-rich clusters which we suggest localise the carriers and produce longer wavelength (lower energy) emission than from random alloy non-polar InGaN QWs of the same average composition. The reason for the indium-rich clusters in non-polar (11-20) InGaN QWs is not yet clear, but may be connected to the lower QW growth temperature for the (11-20) InGaN QWs compared to the (0001) polar InGaN QWs. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Photofragment image analysis using the Onion-Peeling Algorithm

    NASA Astrophysics Data System (ADS)

    Manzhos, Sergei; Loock, Hans-Peter

    2003-07-01

    With the growing popularity of the velocity map imaging technique, a need for the analysis of photoion and photoelectron images arose. Here, a computer program is presented that allows for the analysis of cylindrically symmetric images. It permits the inversion of the projection of the 3D charged particle distribution using the Onion Peeling Algorithm. Further analysis includes the determination of radial and angular distributions, from which velocity distributions and spatial anisotropy parameters are obtained. Identification and quantification of the different photolysis channels is therefore straightforward. In addition, the program features geometry correction, centering, and multi-Gaussian fitting routines, as well as a user-friendly graphical interface and the possibility of generating synthetic images using either the fitted or user-defined parameters. Program summaryTitle of program: Glass Onion Catalogue identifier: ADRY Program Summary URL:http://cpc.cs.qub.ac.uk/summaries/ADRY Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computer: IBM PC Operating system under which the program has been tested: Windows 98, Windows 2000, Windows NT Programming language used: Delphi 4.0 Memory required to execute with typical data: 18 Mwords No. of bits in a word: 32 No. of bytes in distributed program, including test data, etc.: 9 911 434 Distribution format: zip file Keywords: Photofragment image, onion peeling, anisotropy parameters Nature of physical problem: Information about velocity and angular distributions of photofragments is the basis on which the analysis of the photolysis process resides. Reconstructing the three-dimensional distribution from the photofragment image is the first step, further processing involving angular and radial integration of the inverted image to obtain velocity and angular distributions. Provisions have to be made to correct for slight distortions of the image, and to

  4. The HERMES Polarized Atomic Beam Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nass, A.

    2003-07-30

    The atomic beam source (ABS) provides nuclear polarized hydrogen or deuterium atoms for the HERMES target at flow rates of about 6.5 {center_dot} 1016H-vector/s (hydrogen in two hyperfine substates) and 6.0 {center_dot} 1016D-vector/s (deuterium in three hyperfine substates). The degree of dissociation of 93% for H (95% for D) at the entrance of the storage cell and the nuclear polarization of around 0.97 (H) and 0.92 (D) have been found to be constant within a a couple of percent over the whole running period of the HERMES experiment. A new dissociator (MWD) based on a microwave discharge at 2.45 GHzmore » has been developed and installed into the HERMES-ABS in 2000. Since the velocity distribution of the MWD differs from that of the RFD the intensity could be increased further with a modified sextupole magnet system. For this purpose the way for a new start generator for sextupole tracking calculations was opened. Monte-Carlo simulations were successfully used to describe the gas expansion between nozzle, skimmer and collimator. A new type of beam monitor was used to study the beam formation after the nozzle.« less

  5. DETECTION OF MERCURIC BROMIDE IN A GAS PHASE FLOW CELL BY LASER PHOTOFRAGMENT FLUORESCENCE SPECTROSCOPY. (R825380)

    EPA Science Inventory

    Photofragment fluorescence (PFF) spectroscopy offers real-time monitoring
    capability with high-analytical sensitivity and selectivity for volatile mercury
    compounds found in process gas streams, such as incinerator stacks. In this
    work, low concentrations (6 ppb to...

  6. New muonic-atom test of vacuum polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, M.S.; Carter, A.L.; Hincks, E.P.

    1975-12-15

    In order to check the discrepancy between calculation and experiment in muonic atoms, we have remeasured the 5g-4f transitions in Pb and the 5g-4f and the 4f-3d transitions in Ba. Our new results show no discrepancy and confirm recent theoretical calculations of vacuum polarization to within 0.5%. (AIP)

  7. Telecom-Wavelength Atomic Quantum Memory in Optical Fiber for Heralded Polarization Qubits.

    PubMed

    Jin, Jeongwan; Saglamyurek, Erhan; Puigibert, Marcel lí Grimau; Verma, Varun; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang

    2015-10-02

    Polarization-encoded photons at telecommunication wavelengths provide a compelling platform for practical realizations of photonic quantum information technologies due to the ease of performing single qubit manipulations, the availability of polarization-entangled photon-pair sources, and the possibility of leveraging existing fiber-optic links for distributing qubits over long distances. An optical quantum memory compatible with this platform could serve as a building block for these technologies. Here we present the first experimental demonstration of an atomic quantum memory that directly allows for reversible mapping of quantum states encoded in the polarization degree of freedom of a telecom-wavelength photon. We show that heralded polarization qubits at a telecom wavelength are stored and retrieved with near-unity fidelity by implementing the atomic frequency comb protocol in an ensemble of erbium atoms doped into an optical fiber. Despite remaining limitations in our proof-of-principle demonstration such as small storage efficiency and storage time, our broadband light-matter interface reveals the potential for use in future quantum information processing.

  8. Polarization spectroscopy of atomic erbium in a hollow cathode lamp

    NASA Astrophysics Data System (ADS)

    Ang'ong'a, Jackson; Gadway, Bryce

    2018-02-01

    In this work we perform polarization spectroscopy of erbium atoms in a hollow cathode lamp (HCL). We review the theory behind Doppler-free polarization spectroscopy, theoretically model the expected erbium polarization spectra, and compare the numerically calculated spectra to our experimental data. We further analyze the dependence of the measured spectra on the HCL current and the peak intensities of our pump and probe lasers to determine conditions. Applications include wavelength stabilization of diode laser radiation to the 400.91 nm erbium transition.

  9. A circularly polarized optical dipole trap and other developments in laser trapping of atoms

    NASA Astrophysics Data System (ADS)

    Corwin, Kristan Lee

    Several innovations in laser trapping and cooling of alkali atoms are described. These topics share a common motivation to develop techniques for efficiently manipulating cold atoms. Such advances facilitate sensitive precision measurements such as parity non- conservation and 8-decay asymmetry in large trapped samples, even when only small quantities of the desired species are available. First, a cold, bright beam of Rb atoms is extracted from a magneto-optical trap (MOT) using a very simple technique. This beam has a flux of 5 × 109 atoms/s and a velocity of 14 m/s, and up to 70% of the atoms in the MOT were transferred to the atomic beam. Next, a highly efficient MOT for radioactive atoms is described, in which more than 50% of 221Fr atoms contained in a vapor cell are loaded into a MOT. Measurements were also made of the 221Fr 7 2P1/2 and 7 2P3/2 energies and hyperfine constants. To perform these experiments, two schemes for stabilizing the frequency of the light from a diode laser were developed and are described in detail. Finally, a new type of trap is described and a powerful cooling technique is demonstrated. The circularly polarized optical dipole trap provides large samples of highly spin-polarized atoms, suitable for many applications. Physical processes that govern the transfer of large numbers of atoms into the trap are described, and spin-polarization is measured to be 98(1)%. In addition, the trap breaks the degeneracy of the atomic spin states much like a magnetic trap does. This allows for RF and microwave cooling via both forced evaporation and a Sisyphus mechanism. Preliminary application of these techniques to the atoms in the circularly polarized dipole trap has successfully decreased the temperature by a factor of 4 while simultaneously increasing phase space density.

  10. Angular distribution and polarization of atomic radiative emission in electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Jacobs, V. L.; Filuk, A. B.

    1999-09-01

    A density-matrix approach has been developed for the angular distribution and polarization of radiative emission during single-photon atomic transitions for a general set of steady-state excitation processes in an arbitrary arrangement of static (or quasistatic) electric and magnetic fields. Particular attention has been directed at spectroscopic observations in the intense fields of the high-power ion diodes on the Particle Beam Fusion Accelerator II (PBFA II) and SABRE devices at Sandia National Laboratories and at magnetic-field measurements in tokamak plasmas. The field-dependent atomic eigenstates are represented as expansions in a complete basis set of field-free bound and continuum eigenstates. Particular emphasis has been given to directed-electron collisional excitations, which may be produced by an anisotropic incident-electron velocity distribution. We have allowed for the possibility of the coherent excitation of the nearly degenerate field-dependent atomic substates, which can give rise to a complex spectral pattern of overlapping Stark-Zeeman components. Coherent excitations may be produced by a beam of electrons that are spin-polarized at an angle with respect to the propagation direction or by nonparallel electric and magnetic fields. Our main result is a general expression for the matrix elements of the photon-polarization density operator representing the total intensity, angular distribution, and polarization of the atomic radiative emission. For the observation of radiative emission in the direction of the magnetic field, the detection of linearly polarized emission, in addition to the usual circularly polarized radiation, can reveal the presence of a perpendicular electric field or a coherent excitation mechanism.

  11. Angular distribution and polarization of atomic radiative emission in electric and magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, V.L.; Filuk, A.B.

    A density-matrix approach has been developed for the angular distribution and polarization of radiative emission during single-photon atomic transitions for a general set of steady-state excitation processes in an arbitrary arrangement of static (or quasistatic) electric and magnetic fields. Particular attention has been directed at spectroscopic observations in the intense fields of the high-power ion diodes on the Particle Beam Fusion Accelerator II (PBFA II) and SABRE devices at Sandia National Laboratories and at magnetic-field measurements in tokamak plasmas. The field-dependent atomic eigenstates are represented as expansions in a complete basis set of field-free bound and continuum eigenstates. Particular emphasismore » has been given to directed-electron collisional excitations, which may be produced by an anisotropic incident-electron velocity distribution. We have allowed for the possibility of the coherent excitation of the nearly degenerate field-dependent atomic substates, which can give rise to a complex spectral pattern of overlapping Stark-Zeeman components. Coherent excitations may be produced by a beam of electrons that are spin-polarized at an angle with respect to the propagation direction or by nonparallel electric and magnetic fields. Our main result is a general expression for the matrix elements of the photon-polarization density operator representing the total intensity, angular distribution, and polarization of the atomic radiative emission. For the observation of radiative emission in the direction of the magnetic field, the detection of linearly polarized emission, in addition to the usual circularly polarized radiation, can reveal the presence of a perpendicular electric field or a coherent excitation mechanism.« less

  12. The polarized atomic-beam target for the EDDA experiment and the time-reversal invariance test at COSY

    NASA Astrophysics Data System (ADS)

    Eversheim, P. D.; Altmeier, M.; Felden, O.

    1997-02-01

    For the the EDDA experiment, which was set up to measure the p¯-p¯ excitation function during the acceleration ramp of the cooler synchrotron COSY at Jülich, a polarized atomic-beam target was designed regarding the restrictions imposed by the geometry of the EDDA detector. Later, when the time-reversal invariance experiment is to be performed, the EDDA detector will serve as efficient internal polarimeter and the source has to deliver tensor polarized deuterons. The modular design of this polarized atomic-beam target that allows to meet these conditions will be discussed in comparison to other existing polarized atomic-beam targets.

  13. Polarized electron beams elastically scattered by atoms as a tool for testing fundamental predictions of quantum mechanics.

    PubMed

    Dapor, Maurizio

    2018-03-29

    Quantum information theory deals with quantum noise in order to protect physical quantum bits (qubits) from its effects. A single electron is an emblematic example of a qubit, and today it is possible to experimentally produce polarized ensembles of electrons. In this paper, the theory of the polarization of electron beams elastically scattered by atoms is briefly summarized. Then the POLARe program suite, a set of computer programs aimed at the calculation of the spin-polarization parameters of electron beams elastically interacting with atomic targets, is described. Selected results of the program concerning Ar, Kr, and Xe atoms are presented together with the comparison with experimental data about the Sherman function for low kinetic energy of the incident electrons (1.5eV-350eV). It is demonstrated that the quantum-relativistic theory of the polarization of electron beams elastically scattered by atoms is in good agreement with experimental data down to energies smaller than a few eV.

  14. A UHV compatible source for a highly polarized thermal atomic beam of radioactive 8Li

    NASA Astrophysics Data System (ADS)

    Jänsch, H. J.; Kirchner, G.; Kühlert, O.; Lisowski, M.; Paggel, J. J.; Platzer, R.; Schillinger, R.; Tilsner, H.; Weindel, C.; Winnefeld, H.; Fick, D.

    2000-12-01

    A beam of the radioactive isotope 8Li is prepared at thermal velocities. The nuclei are highly spin polarized by transverse optical pumping of the thermal beam. The installation is ultra-high vacuum (UHV) compatible in a non-UHV accelerator environment. Since the atomic beam is used in a surface science experiment, where contamination must be avoided, special emphasis is given to the vacuum coupling of the accelerator/ 8Li production/surface experimental areas. The atomic beam is produced by stopping the nuclear reaction products and evaporating them again from high-temperature graphite. To enhance the atomic beam, a novel tubular thermalizer is applied. The thermal polarized atomic beam intensity is approximately 5×10 8 atoms/s sr.

  15. Atomic charge transfer-counter polarization effects determine infrared CH intensities of hydrocarbons: a quantum theory of atoms in molecules model.

    PubMed

    Silva, Arnaldo F; Richter, Wagner E; Meneses, Helen G C; Bruns, Roy E

    2014-11-14

    Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.

  16. New Ferroelectric Phase in Atomic-Thick Phosphorene Nanoribbons: Existence of in-Plane Electric Polarization.

    PubMed

    Hu, Ting; Wu, Haiping; Zeng, Haibo; Deng, Kaiming; Kan, Erjun

    2016-12-14

    Ferroelectrics have many significant applications in electric devices, such as capacitor or random-access memory, tuning the efficiency of solar cell. Although atomic-thick ferroelectrics are the necessary components for high-density electric devices or nanoscale devices, the development of such materials still faces a big challenge because of the limitation of intrinsic mechanism. Here, we reported that in-plane atomic-thick ferroelectricity can be induced by vertical electric field in phosphorene nanoribbons (PNRs). Through symmetry arguments, we predicted that ferroelectric direction is perpendicular to the direction of external electric field and lies in the plane. Further confirmed by the comprehensive first-principles calculations, we showed that such ferroelectricity is induced by the electron-polarization, which is different from the structural distortion in traditional ferroelectrics and the recent experimental discovery of in-plane atomic-thick ferroelectrics (Science 2016, 353, 274). Moreover, we found that the value of electronic polarization in bilayer is much larger than that in monolayer. Our results show that electron-polarization ferroelectricity maybe the most promising candidate for atomic-thick ferroelectrics.

  17. Effect of atomic noise on optical squeezing via polarization self-rotation in a thermal vapor cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, M. T. L.; Hetet, G.; Peng, A.

    2006-02-15

    The traversal of an elliptically polarized optical field through a thermal vapor cell can give rise to a rotation of its polarization axis. This process, known as polarization self-rotation (PSR), has been suggested as a mechanism for producing squeezed light at atomic transition wavelengths. We show results of the characterization of PSR in isotopically enhanced rubidium-87 cells, performed in two independent laboratories. We observed that, contrary to earlier work, the presence of atomic noise in the thermal vapor overwhelms the observation of squeezing. We present a theory that contains atomic noise terms and show that a null result in squeezingmore » is consistent with this theory.« less

  18. DFT study of the polarization behaviors of various distorted barium titanate crystals: The role of atomic displacements

    NASA Astrophysics Data System (ADS)

    Mirseraji, Mojtaba; Shahraki, Mehran Gholipour

    2018-06-01

    A Local Density Approximation (LDA) was employed to investigate the influence of applied strains on valence charge distributions, atomic displacements, Tisbnd O (3) bond distances and the total polarizations in barium titanate (BaTiO3). Four types of various strains were imposed on perfect tetragonal BaTiO3 along the a, c, ab and abc axial directions. Electromechanical properties of BaTiO3 were evaluated in LDA framework and a good agreement with previous results was achieved. The results show that, in the cases of a, ab strains, the values of polarization are almost constant in negative strains and increased by gradual increasing of the positive strains after a sudden enhancement at about +0.1% strain. In the case of c-strain, axial oxygen and Ti atoms underwent the highest displacements and the polarization linearly increased by applied strain. The case of abc-strain, represent the both types of features. In negative abc-strain show a similar polarization behavior like c-strain case and in positive region, polarization behavior is the same as a- and ab-strain cases. In the abc-strains of -0.3% and +0.1%, an abrupt jump in total polarization curve and a small change, are observed due to abnormal atomic displacements. In the most cases a direct relation between polarization and Tisbnd O (3) bond distance was also beheld. Finally, the effects of valence charge distributions on the atomic displacements and total polarizations are studied. It is found that there is a direct relation between polarization and Valence Charge Asymmetry of 3d -orbitals.

  19. Development of Two-Photon Pump Polarization Spectroscopy Probe Technique Tpp-Psp for Measurements of Atomic Hydrogen .

    NASA Astrophysics Data System (ADS)

    Satija, Aman; Lucht, Robert P.

    2015-06-01

    Atomic hydrogen (H) is a key radical in combustion and plasmas. Accurate knowledge of its concentration can be used to better understand transient phenomenon such as ignition and extinction in combustion environments. Laser induced polarization spectroscopy is a spatially resolved absorption technique which we have adapted for quantitative measurements of H atom. This adaptation is called two-photon pump, polarization spectroscopy probe technique (TPP-PSP) and it has been implemented using two different laser excitation schemes. The first scheme involves the two-photon excitation of 1S-2S transitions using a linearly polarized 243-nm beam. An anisotropy is created amongst Zeeman states in 2S-3P levels using a circularly polarized 656-nm pump beam. This anisotropy rotates the polarization of a weak, linearly polarized probe beam at 656 nm. As a result, the weak probe beam "leaks" past an analyzer in the detection channel and is measured using a PMT. This signal can be related to H atom density in the probe volume. The laser beams were created by optical parametric generation followed by multiple pulse dye amplification stages. This resulted in narrow linewidth beams which could be scanned in frequency domain and varied in energy. This allowed us to systematically investigate saturation and Stark effect in 2S-3P transitions with the goal of developing a quantitative H atom measurement technique. The second scheme involves the two-photon excitation of 1S-2S transitions using a linearly polarized 243-nm beam. An anisotropy is created amongst Zeeman states in 2S-4P transitions using a circularly polarized 486-nm pump beam. This anisotropy rotates the polarization of a weak, linearly polarized probe beam at 486 nm. As a result the weak probe beam "leaks" past an analyzer in the detection channel and is measured using a PMT. This signal can be related to H atom density in the probe volume. A dye laser was pumped by third harmonic of a Nd:YAG laser to create a laser beam

  20. A mini-photofragment translational spectrometer with ion velocity map imaging using low voltage acceleration

    NASA Astrophysics Data System (ADS)

    Qi, Wenke; Jiang, Pan; Lin, Dan; Chi, Xiaoping; Cheng, Min; Du, Yikui; Zhu, Qihe

    2018-01-01

    A mini time-sliced ion velocity map imaging photofragment translational spectrometer using low voltage acceleration has been constructed. The innovation of this apparatus adopts a relative low voltage (30-150 V) to substitute the traditional high voltage (650-4000 V) to accelerate and focus the fragment ions. The overall length of the flight path is merely 12 cm. There are many advantages for this instrument, such as compact structure, less interference, and easy to operate and control. Low voltage acceleration gives a longer turn-around time to the photofragment ions forming a thicker Newton sphere, which provides sufficient time for slicing. Ion trajectory simulation has been performed for determining the structure dimensions and the operating voltages. The photodissociation and multiphoton ionization of O2 at 224.999 nm is used to calibrate the ion images and examine the overall performance of the new spectrometer. The velocity resolution (Δν/ν) of this spectrometer from O2 photodissociation is about 0.8%, which is better than most previous results using high acceleration voltage. For the case of CF3I dissociation at 277.38 nm, many CF3 vibrational states have been resolved, and the anisotropy parameter has been measured. The application of low voltage acceleration has shown its advantages on the ion velocity map imaging (VMI) apparatus. The miniaturization of the VMI instruments can be realized on the premise of high resolution.

  1. Optical field induced rotation of polarization in rubidium atoms with the additional magnetic field

    NASA Astrophysics Data System (ADS)

    Ummal Momeen, M.; Hu, Jianping

    2017-11-01

    We present the magnetic and optical field induced rotation of polarization in 87Rb and 85Rb atoms at geophysical magnetic fields. The line shape varies considerably in the presence of a magnetic field of the order of a few mG. Multiple Zeeman sublevel EIT systems involving rubidium atoms are investigated. Theoretical formalism of optical field induced polarization rotation in the presence of a magnetic field is discussed by considering all the Zeeman sublevels. It is noted that the ground state population distribution also plays a major role.

  2. Polarization effects in the interaction between multi-level atoms and two optical fields

    NASA Astrophysics Data System (ADS)

    Colín-Rodríguez, R.; Flores-Mijangos, J.; Hernández-Gómez, S.; Jáuregui, R.; López-Hernández, O.; Mojica-Casique, C.; Ponciano-Ojeda, F.; Ramírez-Martínez, F.; Sahagún, D.; Volke-Sepúlveda, K.; Jiménez-Mier, J.

    2015-06-01

    Polarized velocity selective spectra for rubidium atoms in a room temperature cell are presented. The experiments were performed in the lambda configuration (D2 manifold) and in the 5s\\to 5{{p}3/2}\\to 5{{d}j} ladder configuration. For the lambda configuration the effect of the probe beam intensity in the absorption and polarization spectra are compared with results of a rate equation approximation. Good overall agreement between experiment and theory is found. The results indicate different saturation rates for each of the atomic transitions. Distinctive polarization signals with hyperfine-resolved components are found for the ladder 5{{d}3/2} and 5{{d}5/2} upper states. Fluorescence detection of the 420 nm that results from the second step in the cascade decay 5{{d}j}\\to 6{{p}{{j\\prime }}}\\to 5s was used in the ladder experiments. This fluorescence was also used for the detection of the 5{{p}3/2}\\to 6{{p}3/2} electric dipole forbidden transition in atomic rubidium that occurs at 911 nm. The 6{{p}3/2} hyperfine structure was resolved in this continuous wave, non-dipole excitation.

  3. Polarized internal target apparatus

    DOEpatents

    Holt, Roy J.

    1986-01-01

    A polarized internal target apparatus with a polarized gas target of improved polarization and density achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms.

  4. Polarized internal target apparatus

    DOEpatents

    Holt, R.J.

    1984-10-10

    A polarized internal target apparatus with a polarized gas target of improved polarization and density (achieved by mixing target gas atoms with a small amount of alkali metal gas atoms, and passing a high intensity polarized light source into the mixture to cause the alkali metal gas atoms to become polarized which interact in spin exchange collisions with target gas atoms yielding polarized target gas atoms) is described.

  5. Superfluidity of identical fermions in an optical lattice: Atoms and polar molecules

    NASA Astrophysics Data System (ADS)

    Fedorov, A. K.; Yudson, V. I.; Shlyapnikov, G. V.

    2018-02-01

    In this work we discuss the emergence of p-wave superfluids of identical fermions in 2D lattices. The optical lattice potential manifests itself in an interplay between an increase in the density of states on the Fermi surface and the modification of the fermion-fermion interaction (scattering) amplitude. The density of states is enhanced due to an increase of the effective mass of atoms. In deep lattices, for short-range interacting atoms the scattering amplitude is strongly reduced compared to free space due to a small overlap of wavefunctions of fermions sitting in the neighboring lattice sites, which suppresses the p-wave superfluidity. However, we show that for a moderate lattice depth there is still a possibility to create atomic p-wave superfluids with sizable transition temperatures. The situation is drastically different for fermionic polar molecules. Being dressed with a microwave field, they acquire a dipole-dipole attractive tail in the interaction potential. Then, due to a long-range character of the dipole-dipole interaction, the effect of the suppression of the scattering amplitude in 2D lattices is absent. This leads to the emergence of a stable topological px + ipy superfluid of identical microwave-dressed polar molecules.

  6. Atomic-scale inversion of spin polarization at an organic-antiferromagnetic interface

    NASA Astrophysics Data System (ADS)

    Caffrey, Nuala M.; Ferriani, Paolo; Marocchi, Simone; Heinze, Stefan

    2013-10-01

    Using first-principles calculations, we show that the magnetic properties of a two-dimensional antiferromagnetic transition-metal surface are modified on the atomic scale by the adsorption of small organic molecules. We consider benzene (C6H6), cyclooctatetraene (C8H8), and a small transition-metal-benzene complex (BzV) adsorbed on a single atomic layer of Mn deposited on the W(110) surface—a surface which exhibits a nearly antiferromagnetic alignment of the magnetic moments in adjacent Mn rows. Due to the spin dependent hybridization of the molecular pz orbitals with the d states of the Mn monolayer, there is a significant reduction of the magnetic moments in the Mn film. Furthermore, the spin polarization at this organic-antiferromagnetic interface is found to be modulated on the atomic scale, both enhanced and inverted, as a result of the molecular adsorption. We show that this effect can be resolved by spin-polarized scanning tunneling microscopy (SP-STM). Our simulated SP-STM images display a spatially dependent spin resolved vacuum charge density above an adsorbed molecule—i.e., different regions above the molecule sustain different signs of spin polarization. While states with s and p symmetry dominate the vacuum charge density in the vicinity of the Fermi energy for the clean magnetic surface, we demonstrate that after a molecule is adsorbed those d states, which are normally suppressed due to their symmetry, can play a crucial role in the vacuum due to their interaction with the molecular orbitals. We also model the effect of small deviations from perfect antiferromagnetic ordering, induced by the slight canting of magnetic moments due to the spin spiral ground state of Mn/W(110).

  7. Characterization of atomic spin polarization lifetime of cesium vapor cells with neon buffer gas

    NASA Astrophysics Data System (ADS)

    Lou, Janet W.; Cranch, Geoffrey A.

    2018-02-01

    The dephasing time of spin-polarized atoms in an atomic vapor cell plays an important role in determining the stability of vapor-cell clocks as well as the sensitivity of optically-pumped magnetometers. The presence of a buffer gas can extend the lifetime of these atoms. Many vapor cell systems operate at a fixed (often elevated) temperature. For ambient temperature operation with no temperature control, it is necessary to characterize the temperature dependence as well. We present a spin-polarization lifetime study of Cesium vapor cells with different buffer gas pressures, and find good agreement with expectations based on the combined effects of wall collisions, spin exchange, and spin destruction. For our (7.5 mm diameter) vapor cells, the lifetime can be increased by two orders of magnitude by introducing Ne buffer gas up to 100 Torr. Additionally, the dependence of the lifetime on temperature is measured (25 - 47 oC) and simulated for the first time to our knowledge with reasonable agreement.

  8. Polarized negative ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haeberli, W.

    1981-04-01

    This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited statemore » (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.« less

  9. Photodissociation dynamics of Mo(CO) sub 6 at 266 and 355 nm: CO photofragment kinetic-energy and internal-state distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buntin, S.A.; Cavanagh, R.R.; Richter, L.J.

    1991-06-15

    The internal-state and kinetic-energy distributions of the CO photofragments from the 266 and 355 nm photolysis of Mo(CO){sub 6} have been measured under collision-free conditions using vacuum-ultraviolet laser-induced fluorescence. The rotational-state distributions for CO({ital v}{double prime}=0) and ({ital v}{double prime}=1) are well represented by Boltzmann distributions with effective rotational temperatures'' of {ital T}{sub {ital r}}({ital v}{double prime}=0)=950{plus minus}70 K and {ital T}{sub {ital r}}({ital v}{double prime}=1)=935{plus minus}85 K for 266 nm and {ital T}{sub {ital r}}({ital v}{double prime}=0)=750{plus minus}70 K and {ital T}{sub {ital r}}({ital v}{double prime}=1)=1150{plus minus}250 K for 355 nm photolysis. The CO({ital v}{double prime}=1/{ital v}{double prime}=0) vibrational-statemore » ratios for 266 and 355 nm photolysis are 0.19{plus minus}0.03 and 0.09{plus minus}0.02, respectively. The Doppler-broadened CO photofragment line shapes indicate that the translational energy distributions are isotropic and Maxwellian. There is no photolysis-laser wavelength or internal-state dependence to the extracted translational temperatures.'' The observed energy partitioning and kinetic-energy distributions are inconsistent with an impulsive ejection of a single CO ligand. CO photofragment line shapes for 266 nm photolysis are not consistent with a mechanism involving the repulsive ejection of the first CO ligand, followed by the statistical decomposition of the Mo(CO){sub 5} fragment. While phase-space theories do not predict quantitatively the energy disposal, the photodissociation mechanism appears to be dominated by statistical considerations. The results also suggest that the photodissociation of Mo(CO){sub 6} at 266 and 355 nm involves a common initial state'' and that similar exit channel effects are operative.« less

  10. Quasistatic limit of the strong-field approximation describing atoms in intense laser fields: Circular polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Jaroslaw H.

    2011-03-15

    In the recent work of Vanne and Saenz [Phys. Rev. A 75, 063403 (2007)] the quasistatic limit of the velocity gauge strong-field approximation describing the ionization rate of atomic or molecular systems exposed to linearly polarized laser fields was derived. It was shown that in the low-frequency limit the ionization rate is proportional to the laser frequency {omega} (for a constant intensity of the laser field). In the present work I show that for circularly polarized laser fields the ionization rate is proportional to {omega}{sup 4} for H(1s) and H(2s) atoms, to {omega}{sup 6} for H(2p{sub x}) and H(2p{sub y})more » atoms, and to {omega}{sup 8} for H(2p{sub z}) atoms. The analytical expressions for asymptotic ionization rates (which become nearly accurate in the limit {omega}{yields}0) contain no summations over multiphoton contributions. For very low laser frequencies (optical or infrared) these expressions usually remain with an order-of-magnitude agreement with the velocity gauge strong-field approximation.« less

  11. Polarization insensitive frequency conversion for an atom-photon entanglement distribution via a telecom network.

    PubMed

    Ikuta, Rikizo; Kobayashi, Toshiki; Kawakami, Tetsuo; Miki, Shigehito; Yabuno, Masahiro; Yamashita, Taro; Terai, Hirotaka; Koashi, Masato; Mukai, Tetsuya; Yamamoto, Takashi; Imoto, Nobuyuki

    2018-05-21

    Long-lifetime quantum storages accessible to the telecom photonic infrastructure are essential to long-distance quantum communication. Atomic quantum storages have achieved subsecond storage time corresponding to 1000 km transmission time for a telecom photon through a quantum repeater algorithm. However, the telecom photon cannot be directly interfaced to typical atomic storages. Solid-state quantum frequency conversions fill this wavelength gap. Here we report on the experimental demonstration of a polarization-insensitive solid-state quantum frequency conversion to a telecom photon from a short-wavelength photon entangled with an atomic ensemble. Atom-photon entanglement has been generated with a Rb atomic ensemble and the photon has been translated to telecom range while retaining the entanglement by our nonlinear-crystal-based frequency converter in a Sagnac interferometer.

  12. Photodissociation dynamics in the first absorption band of pyrrole. II. Photofragment distributions for the 1A2(π σ* ) ←X˜ 1A1(π π ) transition

    NASA Astrophysics Data System (ADS)

    Picconi, David; Grebenshchikov, Sergy Yu.

    2018-03-01

    The analysis of the total kinetic energy release (TKER) of the photofragments pyrrolyl + H-atom formed in the photodissociation of pyrrole in the low-lying state 1A2(πσ*) is presented. The TKER distributions contain complementary and often more precise information on the fragmentation process than the broad diffuse absorption spectra. The distributions are calculated quantum mechanically for the diabatic state 1A2(πσ*) either isolated or coupled to the ground electronic state at an exit channel conical intersection. The calculations use the novel ab initio quasi-diabatic potential energy matrix constructed in the work of Picconi and Grebenshchikov [J. Chem. Phys. 148, 104103 (2018)]. The approximate overlap integral-based adiabatic mapping approach is introduced with which the quantum mechanical TKER distributions can be efficiently and accurately reproduced. Finally, the calculated TKERs are compared with the experimental results. The main features of the measured vibrationally resolved distributions are reproduced, and the spectral peaks are assigned and interpreted in detail.

  13. Quantum control and measurement of atomic spins in polarization spectroscopy

    NASA Astrophysics Data System (ADS)

    Deutsch, Ivan H.; Jessen, Poul S.

    2010-03-01

    Quantum control and measurement are two sides of the same coin. To affect a dynamical map, well-designed time-dependent control fields must be applied to the system of interest. To read out the quantum state, information about the system must be transferred to a probe field. We study a particular example of this dual action in the context of quantum control and measurement of atomic spins through the light-shift interaction with an off-resonant optical probe. By introducing an irreducible tensor decomposition, we identify the coupling of the Stokes vector of the light field with moments of the atomic spin state. This shows how polarization spectroscopy can be used for continuous weak measurement of atomic observables that evolve as a function of time. Simultaneously, the state-dependent light shift induced by the probe field can drive nonlinear dynamics of the spin, and can be used to generate arbitrary unitary transformations on the atoms. We revisit the derivation of the master equation in order to give a unified description of spin dynamics in the presence of both nonlinear dynamics and photon scattering. Based on this formalism, we review applications to quantum control, including the design of state-to-state mappings, and quantum-state reconstruction via continuous weak measurement on a dynamically controlled ensemble.

  14. Development of a linear-type double reflectron for focused imaging of photofragment ions from mass-selected complex ions

    NASA Astrophysics Data System (ADS)

    Okutsu, Kenichi; Nakashima, Yuji; Yamazaki, Kenichiro; Fujimoto, Keita; Nakano, Motoyoshi; Ohshimo, Keijiro; Misaizu, Fuminori

    2017-05-01

    An ion imaging apparatus with a double linear reflectron mass spectrometer has been developed, in order to measure velocity and angular distributions of mass-analyzed fragment ions produced by photodissociation of mass-selected gas phase complex ions. The 1st and the 2nd linear reflectrons were placed facing each other and controlled by high-voltage pulses in order to perform the mass-separation of precursor ions in the 1st reflectron and to observe the focused image of the photofragment ions in the 2nd reflectron. For this purpose, metal meshes were attached on all electrodes in the 1st reflectron, whereas the mesh was attached only on the last electrode in the 2nd reflectron. The performance of this apparatus was evaluated using imaging measurement of Ca+ photofragment ions from photodissociation reaction of Ca+Ar complex ions at 355 nm photoexcitation. The focused ion images were obtained experimentally with the double linear reflectron at the voltages of the reflection electrodes close to the predictions by ion trajectory simulations. The velocity and angular distributions of the produced Ca+ ([Ar] 4p1, 2P3/2) ion were analyzed from the observed images. The binding energy D0 of Ca+Ar in the ground state deduced in the present measurement was consistent with those determined theoretically and by spectroscopic measurements. The anisotropy parameter β of the transition was evaluated for the first time by this instrument.

  15. Photodissociation dynamics of the 2-propyl radical, C{sub 3}H{sub 7}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noller, Bastian; Fischer, Ingo

    2007-04-14

    The photodissociation of 2-propyl leading to propene+H was investigated with nanosecond time resolution. A supersonic beam of isolated 2-propyl radicals was produced by pyrolysis of 2-bromopopane. The kinetic energy release of the H-atom photofragment was monitored as a function of excitation wavelength by photofragment Doppler spectroscopy via the Lyman-{alpha} transition. The loss of hydrogen atoms after excitation proceeds in {alpha} position to the radical center with a rate constant of 5.8x10{sup 7} s{sup -1} at 254 nm. Approximately 20% of the excess energy is deposited as translation in the H-atom photofragment. In contrast 1-propyl does not lose H atoms tomore » a significant extent. The experimental results are compared to simple Rice-Ramsperger-Kassel-Marcus calculations. The possible reaction pathways are examined in hybrid density functional theory calculations.« less

  16. Determination of thermodynamic affinities of various polar olefins as hydride, hydrogen atom, and electron acceptors in acetonitrile.

    PubMed

    Cao, Ying; Zhang, Song-Chen; Zhang, Min; Shen, Guang-Bin; Zhu, Xiao-Qing

    2013-07-19

    A series of 69 polar olefins with various typical structures (X) were synthesized and the thermodynamic affinities (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the polar olefins obtaining hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the polar olefins (X(•-)) obtaining protons and hydrogen atoms, and the thermodynamic affinities of the hydrogen adducts of the polar olefins (XH(•)) obtaining electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The pure C═C π-bond heterolytic and homolytic dissociation energies of the polar olefins (X) in acetonitrile and the pure C═C π-bond homolytic dissociation energies of the radical anions of the polar olefins (X(•-)) in acetonitrile were estimated. The remote substituent effects on the six thermodynamic affinities of the polar olefins and their related reaction intermediates were examined using the Hammett linear free-energy relationships; the results show that the Hammett linear free-energy relationships all hold in the six chemical and electrochemical processes. The information disclosed in this work could not only supply a gap of the chemical thermodynamics of olefins as one class of very important organic unsaturated compounds but also strongly promote the fast development of the chemistry and applications of olefins.

  17. Polarization-dependent atomic dipole traps behind a circular aperture for neutral-atom quantum computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillen-Christandl, Katharina; Copsey, Bert D.

    2011-02-15

    The neutral-atom quantum computing community has successfully implemented almost all necessary steps for constructing a neutral-atom quantum computer. We present computational results of a study aimed at solving the remaining problem of creating a quantum memory with individually addressable sites for quantum computing. The basis of this quantum memory is the diffraction pattern formed by laser light incident on a circular aperture. Very close to the aperture, the diffraction pattern has localized bright and dark spots that can serve as red-detuned or blue-detuned atomic dipole traps. These traps are suitable for quantum computing even for moderate laser powers. In particular,more » for moderate laser intensities ({approx}100 W/cm{sup 2}) and comparatively small detunings ({approx}1000-10 000 linewidths), trap depths of {approx}1 mK and trap frequencies of several to tens of kilohertz are achieved. Our results indicate that these dipole traps can be moved by tilting the incident laser beams without significantly changing the trap properties. We also explored the polarization dependence of these dipole traps. We developed a code that calculates the trapping potential energy for any magnetic substate of any hyperfine ground state of any alkali-metal atom for any laser detuning much smaller than the fine-structure splitting for any given electric field distribution. We describe details of our calculations and include a summary of different notations and conventions for the reduced matrix element and how to convert it to SI units. We applied this code to these traps and found a method for bringing two traps together and apart controllably without expelling the atoms from the trap and without significant tunneling probability between the traps. This approach can be scaled up to a two-dimensional array of many pinholes, forming a quantum memory with single-site addressability, in which pairs of atoms can be brought together and apart for two-qubit gates for quantum

  18. Interfacial B-site atomic configuration in polar (111) and non-polar (001) SrIrO3/SrTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Anderson, T. J.; Zhou, H.; Xie, L.; Podkaminer, J. P.; Patzner, J. J.; Ryu, S.; Pan, X. Q.; Eom, C. B.

    2017-09-01

    The precise control of interfacial atomic arrangement in ABO3 perovskite heterostructures is paramount, particularly in cases where the subsequent electronic properties of the material exhibit geometrical preferences along polar crystallographic directions that feature inevitably complex surface reconstructions. Here, we present the B-site interfacial structure in polar (111) and non-polar (001) SrIrO3/SrTiO3 interfaces. The heterostructures were examined using scanning transmission electron microscopy and synchrotron-based coherent Bragg rod analysis. Our results reveal the preference of B-site intermixing across the (111) interface due to the polarity-compensated SrTiO3 substrate surface prior to growth. By comparison, the intermixing at the non-polar (001) interface is negligible. This finding suggests that the intermixing may be necessary to mitigate epitaxy along heavily reconstructed and non-stoichiometric (111) perovskite surfaces. Furthermore, this preferential B-site configuration could allow the geometric design of the interfacial perovskite structure and chemistry to selectively engineer the correlated electronic states of the B-site d-orbital.

  19. Effect of heavy atoms on photochemically induced dynamic nuclear polarization in liquids

    NASA Astrophysics Data System (ADS)

    Okuno, Yusuke; Cavagnero, Silvia

    2018-01-01

    Given its short hyperpolarization time (∼10-6 s) and mostly non-perturbative nature, photo-chemically induced dynamic nuclear polarization (photo-CIDNP) is a powerful tool for sensitivity enhancement in nuclear magnetic resonance. In this study, we explore the extent of 1H-detected 13C nuclear hyperpolarization that can be gained via photo-CIDNP in the presence of small-molecule additives containing a heavy atom. The underlying rationale for this methodology is the well-known external-heavy-atom (EHA) effect, which leads to significant enhancements in the intersystem-crossing rate of selected photosensitizer dyes from photoexcited singlet to triplet. We exploited the EHA effect upon addition of moderate amounts of halogen-atom-containing cosolutes. The resulting increase in the transient triplet-state population of the photo-CIDNP sensitizer fluorescein resulted in a significant increase in the nuclear hyperpolarization achievable via photo-CIDNP in liquids. We also explored the internal-heavy-atom (IHA) effect, which is mediated by halogen atoms covalently incorporated into the photosensitizer dye. Widely different outcomes were achieved in the case of EHA and IHA, with EHA being largely preferable in terms of net hyperpolarization.

  20. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms.

    PubMed

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; Lamar Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-02-09

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future.

  1. Two-Photon Emission of a Hydrogenlike Atom with Photon Polarization and Electron Spin States Taken into Account

    NASA Astrophysics Data System (ADS)

    Skobelev, V. V.

    2017-02-01

    The process of two-photon emission ( Ze)* → ( Ze) + 2 γ of a hydrogenlike atom is considered with spin states of the electron and polarization of the photons taken into account, which had not been done before. A general expression for the probability of the process per unit time has been obtained for different polarization states of the photons with a formulation of hard and soft selection rules for the quantum numbers m and l. It is shown that by virtue of the established specifics of the properties of the two-photon emission process (absence of a Zeeman effect and dependence of the probability on the polarization states of the photons), it can in principle be identified against the background of single-photon emission ( Ze)* → ( Ze) + γ, despite the presence of additional small factors: 1) α = e 2/ ћc ≈ 1/137 of the perturbation theory in e, and 2) the square of the atomic expansion parameter ( Zα)2 in the expression for the probability.

  2. Ultra-wideband, Wide Angle and Polarization-insensitive Specular Reflection Reduction by Metasurface based on Parameter-adjustable Meta-Atoms

    PubMed Central

    Su, Jianxun; Lu, Yao; Zhang, Hui; Li, Zengrui; (Lamar) Yang, Yaoqing; Che, Yongxing; Qi, Kainan

    2017-01-01

    In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future. PMID:28181593

  3. Effect of polarization forces on carbon deposition on a non-spherical nanoparticle. Monte Carlo simulations [Effect of polarization forces on atom deposition on a non-spherical nanoparticle. Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemchinsky, V.; Khrabry, A.

    Trajectories of a polarizable species (atoms or molecules) in the vicinity of a negatively charged nanoparticle (at a floating potential) are considered. The atoms are pulled into regions of strong electric field by polarization forces. The polarization increases the deposition rate of the atoms and molecules at the nanoparticle. The effect of the non-spherical shape of the nanoparticle is investigated by the Monte Carlo method. The shape of the non-spherical nanoparticle is approximated by an ellipsoid. The total deposition rate and its flux density distribution along the nanoparticle surface are calculated. As a result, it is shown that the fluxmore » density is not uniform along the surface. It is maximal at the nanoparticle tips.« less

  4. Effect of polarization forces on carbon deposition on a non-spherical nanoparticle. Monte Carlo simulations [Effect of polarization forces on atom deposition on a non-spherical nanoparticle. Monte Carlo simulations

    DOE PAGES

    Nemchinsky, V.; Khrabry, A.

    2018-02-01

    Trajectories of a polarizable species (atoms or molecules) in the vicinity of a negatively charged nanoparticle (at a floating potential) are considered. The atoms are pulled into regions of strong electric field by polarization forces. The polarization increases the deposition rate of the atoms and molecules at the nanoparticle. The effect of the non-spherical shape of the nanoparticle is investigated by the Monte Carlo method. The shape of the non-spherical nanoparticle is approximated by an ellipsoid. The total deposition rate and its flux density distribution along the nanoparticle surface are calculated. As a result, it is shown that the fluxmore » density is not uniform along the surface. It is maximal at the nanoparticle tips.« less

  5. Ion-Atom Cold Collisions and Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.

    1997-01-01

    Collisions between ultracold neutral atoms have for some time been the subject of investigation, initially with hydrogen and more recently with laser cooled alkali atoms. Advances in laser cooling and trapping of neutral atoms in a Magneto-Optic Trap (MOT) have made cold atoms available as the starting point for many laser cooled atomic physics investigations. The most spectacularly successful of these, the observation of Bose-Einstein Condensation (BEC) in a dilute ultra-cold spin polarized atomic vapor, has accelerated the study of cold collisions. Experimental and theoretical studies of BEC and the long range interaction between cold alkali atoms is at the boundary of atomic and low temperature physics. Such studies have been difficult and would not have been possible without the development and advancement of laser cooling and trapping of neutral atoms. By contrast, ion-atom interactions at low temperature, also very difficult to study prior to modern day laser cooling, have remained largely unexplored. But now, many laboratories worldwide have almost routine access to cold neutral atoms. The combined technologies of ion trapping, together with laser cooling of neutrals has made these studies experimentally feasible and several very important, novel applications might come out of such investigations . This paper is an investigation of ion-atom interactions in the cold and ultra-cold temperature regime. Some of the collisional ion-atom interactions present at room temperature are very much reduced in the low temperature regime. Reaction rates for charge transfer between unlike atoms, A + B(+) approaches A(+) + B, are expected to fall rapidly with temperature, approximately as T(sup 5/2). Thus, cold mixtures of atoms and ions are expected to coexist for very long times, unlike room temperature mixtures of the same ion-atom combination. Thus, it seems feasible to cool ions via collisions with laser cooled atoms. Many of the conventional collisional interactions

  6. Electronic Spectroscopy of Trapped PAH Photofragments

    NASA Astrophysics Data System (ADS)

    Joblin, Christine; Bonnamy, Anthony

    2016-06-01

    The PIRENEA set-up combines an ion cyclotron resonance cell mass spectrometer with cryogenic cooling in order to study the physical and chemical properties of polycyclic aromatic hydrocarbons (PAHs) of astrophysical interest. In space, PAHs are submitted to UV photons that lead to their dissociation. It is therefore of interest to study fragmentation pathways and search for species that might be good interstellar candidates because of their stability. Electronic spectroscopy can bring major insights into the structure of species formed by photofragmentation. This is also a way to identify new species in space as recently illustrated in the case of C60^+. In PIRENEA, the trapped ions are not cold enough, and thus we cannot use complexation with rare gas in order to record spectroscopy, as was nicely performed in the work by Campbell et al. on C60^+. We are therefore using the dissociation of the trapped ions themselves instead, which requires in general a multiple photon scheme. This leads to non-linear effects that affect the measured spectrum. We are working on improving this scheme in the specific case of the photofragment obtained by H-loss from 1-methylpyrene cation (CH_3-C16H9^+). A recent theoretical study has shown that a rearrangement can occur from 1-pyrenemethylium cation (CH_2-C16H9^+) to a system containing a seven membered ring (tropylium like pyrene system). This study also reports the calculated electronic spectra of both isomers, which are specific enough to distinguish them, and as a function of temperature. We will present experiments that have been performed to study the photophysics of these ions using the PIRENEA set-up and a two-laser scheme for the action spectroscopy. J. Montillaud, C. Joblin, D. Toublanc, Astron. & Astrophys. 552 (2013), id.A15 E.K. Campbell, M. Holz, D. Gerlich, and J.P. Maier, Nature 523 (2015), 322-323 F. Useli-Bacchitta, A. Bonnamy, G. Malloci, et al., Chem. Phys. 371 (2010), 16-23; J. Zhen, A. Bonnamy, G. Mulas, C

  7. Quantum Theory of Atoms in Molecules Charge-Charge Transfer-Dipolar Polarization Classification of Infrared Intensities.

    PubMed

    Duarte, Leonardo J; Richter, Wagner E; Silva, Arnaldo F; Bruns, Roy E

    2017-10-26

    Fundamental infrared vibrational transition intensities of gas-phase molecules are sensitive probes of changes in electronic structure accompanying small molecular distortions. Models containing charge, charge transfer, and dipolar polarization effects are necessary for a successful classification of the C-H, C-F, and C-Cl stretching and bending intensities. C-H stretching and in-plane bending vibrations involving sp 3 carbon atoms have small equilibrium charge contributions and are accurately modeled by the charge transfer-counterpolarization contribution and its interaction with equilibrium charge movement. Large C-F and C═O stretching intensities have dominant equilibrium charge movement contributions compared to their charge transfer-dipolar polarization ones and are accurately estimated by equilibrium charge and the interaction contribution. The C-F and C-Cl bending modes have charge and charge transfer-dipolar polarization contribution sums that are of similar size but opposite sign to their interaction values resulting in small intensities. Experimental in-plane C-H bends have small average intensities of 12.6 ± 10.4 km mol -1 owing to negligible charge contributions and charge transfer-counterpolarization cancellations, whereas their average out-of-plane experimental intensities are much larger, 65.7 ± 20.0 km mol -1 , as charge transfer is zero and only dipolar polarization takes place. The C-F bending intensities have large charge contributions but very small intensities. Their average experimental out-of-plane intensity of 9.9 ± 12.6 km mol -1 arises from the cancellation of large charge contributions by dipolar polarization contributions. The experimental average in-plane C-F bending intensity, 5.8 ± 7.3 km mol -1 , is also small owing to charge and charge transfer-counterpolarization sums being canceled by their interaction contributions. Models containing only atomic charges and their fluxes are incapable of describing electronic structure

  8. Electron impact polarization of atomic spectral lines. I - A general theoretical scheme

    NASA Technical Reports Server (NTRS)

    Fineschi, Silvano; Degl'innocenti, Egidio L.

    1992-01-01

    A suitable theoretical scheme able to describe, in a wide variety of astrophysical situations, the phenomenon of atomic line polarization by electron impact is developed. Starting from the general principles of quantum mechanics and assuming the Born approximation, the rate equations for the density matrix elements of a multilevel atomic system, interacting with a nonrelativistic electron beam having any kind of angular distribution, are derived in full generality. The resulting theory generalizes the previous ones by accounting for the collisional rates and the cross sections concerning both inelastic and superelastic collisions (in any geometrical situation), and, moreover, by taking into account the coherences among Zeeman sublevels split by a magnetic field. As an example of particular relevance, the general formulas derived in the first sections of the paper are subsequently particularized to the case of the electric dipole interaction.

  9. Three-dimensional infinite order sudden quantum theory for indirect photodissociation processes. Application to the photofragment yield spectrum of NOCl in the region of the T1(13A″) ←S0(11A') transition. Fragment rotational distributions and thermal averages

    NASA Astrophysics Data System (ADS)

    Grinberg, Horacio; Freed, Karl F.; Williams, Carl J.

    1997-08-01

    The analytical infinite order sudden (IOS) quantum theory of triatomic photodissociation, developed in paper I, is applied to study the indirect photodissociation of NOCl through a real or virtual intermediate state. The theory uses the IOS approximation for the dynamics in the final dissociative channels and an Airy function approximation for the continuum functions. The transition is taken as polarized in the plane of the molecule; symmetric top wave functions are used for both the initial and intermediate bound states; and simple semiempirical model potentials are employed for each state. The theory provides analytical expressions for the photofragment yield spectrum for producing particular final fragment ro-vibrational states as a function of the photon excitation energy. Computations are made of the photofragment excitation spectrum of NOCl in the region of the T1(13A″)←S0(11A') transition for producing the NO fragment in the vibrational states nNO=0, 1, and 2. The computed spectra for the unexcited nNO==0 and excited nNO=2 states are in reasonable agreement with experiment. However, some discrepancies are observed for the singly excited nNO=1 vibrational state, indicating deficiencies in the semiempirical potential energy surface. Computations for two different orientations of the in-plane transition dipole moment produce very similar excitation spectra. Calculations of fragment rotational distributions are performed for high values of the total angular momentum J, a feature that would be very difficult to perform with close-coupled methods. Computations are also made of the thermally averaged rotational energy distributions to simulate the conditions in actual supersonic jet experiments.

  10. Optical atomic magnetometer

    DOEpatents

    Budker, Dmitry; Higbie, James; Corsini, Eric P.

    2013-11-19

    An optical atomic magnetometers is provided operating on the principles of nonlinear magneto-optical rotation. An atomic vapor is optically pumped using linearly polarized modulated light. The vapor is then probed using a non-modulated linearly polarized light beam. The resulting modulation in polarization angle of the probe light is detected and used in a feedback loop to induce self-oscillation at the resonant frequency.

  11. Polarization switching detection method using a ferroelectric liquid crystal for dichroic atomic vapor laser lock frequency stabilization techniques.

    PubMed

    Dudzik, Grzegorz; Rzepka, Janusz; Abramski, Krzysztof M

    2015-04-01

    We present a concept of the polarization switching detection method implemented for frequency-stabilized lasers, called the polarization switching dichroic atomic vapor laser lock (PSDAVLL) technique. It is a combination of the well-known dichroic atomic vapor laser lock method for laser frequency stabilization with a synchronous detection system based on the surface-stabilized ferroelectric liquid crystal (SSFLC).The SSFLC is a polarization switch and quarter wave-plate component. This technique provides a 9.6 dB better dynamic range ratio (DNR) than the well-known two-photodiode detection configuration known as the balanced polarimeter. This paper describes the proposed method used practically in the VCSEL laser frequency stabilization system. The applied PSDAVLL method has allowed us to obtain a frequency stability of 2.7×10⁻⁹ and a reproducibility of 1.2×10⁻⁸, with a DNR of detected signals of around 81 dB. It has been shown that PSDAVLL might be successfully used as a method for spectra-stable laser sources.

  12. Investigating tunneling process of atom exposed in circularly polarized strong-laser field

    NASA Astrophysics Data System (ADS)

    Yuan, MingHu; Xin, PeiPei; Chu, TianShu; Liu, HongPing

    2017-03-01

    We propose a method for studying the tunneling process by analyzing the instantaneous ionization rate of a circularly polarized laser. A numerical calculation shows that, for an atom exposed to a long laser pulse, if its initial electronic state wave function is non-spherical symmetric, the delayed phase shift of the ionization rate vs the laser cycle period in real time in the region close to the peak intensity of the laser pulse can be used to probe the tunneling time. In this region, an obvious time delay phase shift of more than 190 attoseconds is observed. Further study shows that the atom has a longer tunneling time in the ionization under a shorter wavelength laser pulse. In our method, a Wigner rotation technique is employed to numerically solve the time-dependent Schrödinger equation of a single-active electron in a three-dimensional spherical coordinate system.

  13. Fluorine Gauche Effect Explained by Electrostatic Polarization Instead of Hyperconjugation: An Interacting Quantum Atoms (IQA) and Relative Energy Gradient (REG) Study.

    PubMed

    Thacker, Joseph C R; Popelier, Paul L A

    2018-02-08

    We present an interacting quantum atoms (IQA) study of the gauche effect by comparing 1,2-difluoroethane, 1,2-dichloroethane, and three conformers of 1,2,3,4,5,6-hexafluorocyclohexane. In the 1,2-difluoroethane, the gauche effect is observed in that the gauche conformation is more stable than the anti, whereas in 1,2-dichloroethane the opposite is true. The analysis performed here is exhaustive and unbiased thanks to using the recently introduced relative energy gradient (REG) method [ Thacker , J. C. R. ; Popelier , P. L. A. Theor. Chem. Acc . 2017 , 136 , 86 ], as implemented in the in-house program ANANKE. We challenge the common explanation that hyperconjugation is responsible for the gauche stability in 1,2-difluoroethane and instead present electrostatics as the cause of gauche stability. Our explanation of the gauche effect is also is seen in other molecules displaying local gauche conformations, such as the recently synthesized "all-cis" hexafluorocyclohexane and its conformers where all the fluorine atoms are in the equatorial positions. Using our extension of the traditional IQA methodology that allows for the partitioning of electrostatic terms into polarization and charge transfer, we propose that the cause of gauche stability is 1,3 C···F electrostatic polarization interactions. In other words, if a number of fluorine atoms are aligned, then the stability due to polarization of nearby carbon atoms is increased.

  14. Production, formation, and transport of high-brightness atomic hydrogen beam studies for the relativistic heavy ion collider polarized source upgrade.

    PubMed

    Kolmogorov, A; Atoian, G; Davydenko, V; Ivanov, A; Ritter, J; Stupishin, N; Zelenski, A

    2014-02-01

    The RHIC polarized H(-) ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H2 gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ∼0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce "geometrical" beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.

  15. Low energy collisions of spin-polarized metastable argon atoms with ground state argon atoms

    NASA Astrophysics Data System (ADS)

    Taillandier-Loize, T.; Perales, F.; Baudon, J.; Hamamda, M.; Bocvarski, V.; Ducloy, M.; Correia, F.; Fabre, N.; Dutier, G.

    2018-04-01

    The collision between a spin-polarized metastable argon atom in Ar* (3p54s, 3P2, M = +2) state slightly decelerated by the Zeeman slower-laser technique and a co-propagating thermal ground state argon atom Ar (3p6, 1S0), both merged from the same supersonic beam, but coming through adjacent slots of a rotating disk, is investigated at the center of mass energies ranging from 1 to 10 meV. The duration of the laser pulse synchronised with the disk allows the tuning of the relative velocity and thus the collision energy. At these sub-thermal energies, the ‘resonant metastability transfer’ signal is too small to be evidenced. The explored energy range requires using indiscernibility amplitudes for identical isotopes to have a correct interpretation of the experimental results. Nevertheless, excitation transfers are expected to increase significantly at much lower energies as suggested by previous theoretical predictions of potentials 2g(3P2) and 2u(3P2). Limits at ultra-low collisional energies of the order of 1 mK (0.086 μeV) or less, where gigantic elastic cross sections are expected, will also be discussed. The experimental method is versatile and could be applied using different isotopes of Argon like 36Ar combined with 40Ar, as well as other rare gases among which Krypton should be of great interest thanks to the available numerous isotopes present in a natural gas mixture.

  16. In-situ probing of coupled atomic restructuring and metallicity of oxide heterointerfaces induced by polar adsorbates

    NASA Astrophysics Data System (ADS)

    Ryu, S.; Zhou, H.; Paudel, T. R.; Irwin, J.; Podkaminer, J. P.; Bark, C. W.; Lee, D.; Kim, T. H.; Fong, D. D.; Rzchowski, M. S.; Tsymbal, E. Y.; Eom, C. B.

    2017-10-01

    Microscopic understanding of the surface-controlled conductivity of the two dimensional electron gas at complex oxide interfaces is crucial for developing functional interfaces. We observe conductivity and structural modification using in-situ synchrotron surface x-ray diffraction as the surface of a model LaAlO3/SrTiO3 (001) heterostructure is changed by polar adsorbates. We find that polar adsorbate-induced interfacial metallicity reduces polar distortions in the LaAlO3 layer. First-principles density functional theory calculations show that surface dipoles introduced by polar adsorbates lead to additional charge transfer and the reduction of polar displacements in the LaAlO3 layer, consistent with the experimental observations. Our study supports that internal structural deformations controlling functionalities can be driven without the application of direct electrical or thermal bias and offers a route to tuning interfacial properties. These results also highlight the important role of in-situ x-ray scattering with atomic resolution in capturing and exploring structural distortions and charge density changes caused by external perturbations such as chemical adsorption, redox reaction, and generation and/or annihilation of surface defects.

  17. In-situ probing of coupled atomic restructuring and metallicity of oxide heterointerfaces induced by polar adsorbates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, S.; Zhou, H.; Paudel, T. R.

    Microscopic understanding of the surface-controlled conductivity of the two dimensional electron gas at complex oxide interfaces is crucial for developing functional interfaces. We observe conductivity and structural modification using in-situ synchrotron surface x-ray diffraction as the surface of a model LaAlO3/SrTiO3 (001) heterostructure is changed by polar adsorbates. We find that polar adsorbate-induced interfacial metallicity reduces polar distortions in the LaAlO3 layer. First-principles density functional theory calculations show that surface dipoles introduced by polar adsorbates lead to additional charge transfer and the reduction of polar displacements in the LaAlO3 layer, consistent with the experimental observations. Our study supports that internalmore » structural deformations controlling functionalities can be driven without the application of direct electrical or thermal bias and offers a route to tuning interfacial properties. These results also highlight the important role of in-situ x-ray scattering with atomic resolution in capturing and exploring structural distortions and charge density changes caused by external perturbations such as chemical adsorption, redox reaction, and generation and/or annihilation of surface defects.« less

  18. Elliptical polarization of near-resonant linearly polarized probe light in optically pumped alkali metal vapor

    PubMed Central

    Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui

    2017-01-01

    Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements. PMID:28216649

  19. Measuring Gravitation Using Polarization Spectroscopy

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Yu, Nan; Maleki, Lute

    2004-01-01

    A proposed method of measuring gravitational acceleration would involve the application of polarization spectroscopy to an ultracold, vertically moving cloud of atoms (an atomic fountain). A related proposed method involving measurements of absorption of light pulses like those used in conventional atomic interferometry would yield an estimate of the number of atoms participating in the interferometric interaction. The basis of the first-mentioned proposed method is that the rotation of polarization of light is affected by the acceleration of atoms along the path of propagation of the light. The rotation of polarization is associated with a phase shift: When an atom moving in a laboratory reference interacts with an electromagnetic wave, the energy levels of the atom are Doppler-shifted, relative to where they would be if the atom were stationary. The Doppler shift gives rise to changes in the detuning of the light from the corresponding atomic transitions. This detuning, in turn, causes the electromagnetic wave to undergo a phase shift that can be measured by conventional means. One would infer the gravitational acceleration and/or the gradient of the gravitational acceleration from the phase measurements.

  20. Probing Membrane Order and Topography in Supported Lipid Bilayers by Combined Polarized Total Internal Reflection Fluorescence-Atomic Force Microscopy

    PubMed Central

    Oreopoulos, John; Yip, Christopher M.

    2009-01-01

    Determining the local structure, dynamics, and conformational requirements for protein-protein and protein-lipid interactions in membranes is critical to understanding biological processes ranging from signaling to the translocating and membranolytic action of antimicrobial peptides. We report here the application of a combined polarized total internal reflection fluorescence microscopy-in situ atomic force microscopy platform. This platform's ability to image membrane orientational order was demonstrated on DOPC/DSPC/cholesterol model membranes containing the fluorescent membrane probe, DiI-C20 or BODIPY-PC. Spatially resolved order parameters and fluorophore tilt angles extracted from the polarized total internal reflection fluorescence microscopy images were in good agreement with the topographical details resolved by in situ atomic force microscopy, portending use of this technique for high-resolution characterization of membrane domain structures and peptide-membrane interactions. PMID:19254557

  1. Towards Polarized Antiprotons at FAIR

    NASA Astrophysics Data System (ADS)

    Rathmann, Frank

    2007-06-01

    Understanding the interplay of the nuclear interaction with polarized protons and the electromagnetic interaction with polarized electrons in polarized atoms is crucial to progress towards the PAX goal to eventually produce stored polarized antiproton beams at FAIR. Presently, there exist two competing theoretical scenarios: one with substantial spin filtering of (anti)protons by atomic electrons, and a second one suggesting a self-cancellation of the electron contribution to spin filtering. After a brief review of the PAX physics case for polarized antiprotons at FAIR, a detailed discussion of future investigations, including spin-filtering experiments at COSY-Jülich and at the AD of CERN is presented.

  2. Polarization effects in recoil-induced resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazebnyi, D. B., E-mail: becks.ddf@gmail.com; Brazhnikov, D. V.; Taichenachev, A. V.

    2017-01-15

    The effect of the field polarization on the amplitude of recoil-induced resonances (RIRs) is considered for laser-cooled free atoms and for atoms in a working magneto-optical trap (MOT). For all closed dipole transitions, explicit analytical expressions are obtained for the polarization dependence of the resonance amplitudes within a perturbation theory. Optimal polarization conditions are found for the observation of resonances.

  3. VISIONS: Remote Observations of a Spatially-Structured Filamentary Source of Energetic Neutral Atoms near the Polar Cap Boundary During an Auroral Substorm

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Chornay, D.; Clemmons, J.; Keller, J. W.; Klenzing, J.; Kujawski, J.; McLain, J.; Pfaff, R.; Rowland, D.; Zettergren, M.

    2015-01-01

    We report initial results from the VISualizing Ion Outflow via Neutral atom imaging during a Substorm (VISIONS) rocket that flew through and near several regions of enhanced auroral activity and also sensed regions of ion outflow both remotely and directly. The observed neutral atom fluxes were largest at the lower energies and generally higher in the auroral zone than in the polar cap. In this paper, we focus on data from the latter half of the VISIONS trajectory when the rocket traversed the polar cap region. During this period, many of the energetic neutral atom spectra show a peak at 100 electronvolts. Spectra with peaks around 100 electronvolts are also observed in the Electrostatic Ion Analyzer (EIA) data consistent with these ions comprising the source population for the energetic neutral atoms. The EIA observations of this low energy population extend only over a few tens of kilometers. Furthermore, the directionality of the arriving energetic neutral atoms is consistent with either this spatially localized source of energetic ions extending from as low as about 300 kilometers up to above 600 kilometers or a larger source of energetic ions to the southwest.

  4. Nuclear reactivity control using laser induced polarization

    DOEpatents

    Bowman, Charles D.

    1991-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  5. Nuclear reactivity control using laser induced polarization

    DOEpatents

    Bowman, Charles D.

    1990-01-01

    A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neturons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

  6. Resonance line polarization and the Hanle effect in optically thick media. I - Formulation for the two-level atom

    NASA Astrophysics Data System (ADS)

    Landi Degl'Innocenti, E.; Bommier, V.; Sahal-Brechot, S.

    1990-08-01

    A general formalism is presented to describe resonance line polarization for a two-level atom in an optically thick, three-dimensional medium embedded in an arbitrary varying magnetic field and irradiated by an arbitrary radiation field. The magnetic field is supposed sufficiently small to induce a Zeeman splitting much smaller than the typical line width. By neglecting atomic polarization in the lower level and stimulated emission, an integral equation is derived for the multipole moments of the density matrix of the upper level. This equation shows how the multipole moments at any assigned point of the medium are coupled to the multipole moments relative at a different point as a consequence of the propagation of polarized radiation between the two points. The equation also accounts for the effect of the magnetic field, described by a kernel locally connecting multipole moments of the same rank, and for the role of inelastic and elastic (or depolarizing) collisions. After having given its formal derivation for the general case, the integral equation is particularized to the one-dimensional and two-dimensional cases. For the one-dimensional case of a plane parallel atmosphere, neglecting both the magnetic field and depolarizing collisions, the equation here derived reduces to a previous one given by Rees (1978).

  7. Robust valley polarization of helium ion modified atomically thin MoS2

    NASA Astrophysics Data System (ADS)

    Klein, J.; Kuc, A.; Nolinder, A.; Altzschner, M.; Wierzbowski, J.; Sigger, F.; Kreupl, F.; Finley, J. J.; Wurstbauer, U.; Holleitner, A. W.; Kaniber, M.

    2018-01-01

    Atomically thin semiconductors have dimensions that are commensurate with critical feature sizes of future optoelectronic devices defined using electron/ion beam lithography. Robustness of their emergent optical and valleytronic properties is essential for typical exposure doses used during fabrication. Here, we explore how focused helium ion bombardement affects the intrinsic vibrational, luminescence and valleytronic properties of atomically thin MoS2 . By probing the disorder dependent vibrational response we deduce the interdefect distance by applying a phonon confinement model. We show that the increasing interdefect distance correlates with disorder-related luminscence arising 180 meV below the neutral exciton emission. We perform ab initio density functional theory of a variety of defect related morphologies, which yield first indications on the origin of the observed additional luminescence. Remarkably, no significant reduction of free exciton valley polarization is observed until the interdefect distance approaches a few nanometers, namely the size of the free exciton Bohr radius. Our findings pave the way for direct writing of sub-10 nm nanoscale valleytronic devices and circuits using focused helium ions.

  8. Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide.

    PubMed

    Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J; Schlom, Darrell G; Alem, Nasim; Gopalan, Venkatraman

    2016-08-31

    Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure.

  9. Atomic scale imaging of competing polar states in a Ruddlesden–Popper layered oxide

    PubMed Central

    Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J.; Schlom, Darrell G.; Alem, Nasim; Gopalan, Venkatraman

    2016-01-01

    Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden–Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure. PMID:27578622

  10. Atomic scale imaging of competing polar states in a Ruddlesden-Popper layered oxide

    NASA Astrophysics Data System (ADS)

    Stone, Greg; Ophus, Colin; Birol, Turan; Ciston, Jim; Lee, Che-Hui; Wang, Ke; Fennie, Craig J.; Schlom, Darrell G.; Alem, Nasim; Gopalan, Venkatraman

    2016-08-01

    Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), An+1BnO3n+1, thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Srn+1TinO3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases. We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure.

  11. The photodissociation dynamics of alkyl radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giegerich, Jens; Fischer, Ingo, E-mail: ingo.fischer@uni-wuerzburg.de

    2015-01-28

    The photodisscociation dynamics of the alkyl radicals i-propyl (CH(CH{sub 3}){sub 2}) and t-butyl (C(CH{sub 3}){sub 3}) are investigated by H-atom photofragment imaging. While i-propyl is excited at 250 nm, the photodynamics of t-butyl are explored over a large energy range using excitation wavelengths between 347 nm and 233 nm. The results are compared to those obtained previously for ethyl, CH{sub 3}CH{sub 2}, and to those reported for t-butyl using 248 nm excitation. The translational energy (E{sub T}) distribution of the H-atom photofragments is bimodal and appears rather similar for all three radicals. The low E{sub T} part of the distributionmore » shows an isotropic photofragment angular distribution, while the high E{sub T} part is associated with a considerable anisotropy. Thus, for t-butyl, two H-atom loss channels of roughly equal importance have been identified in addition to the CH{sub 3}-loss channel reported previously. A mechanism for the photodissociation of alkyl radicals is suggested that is based on interactions between Rydberg- and valence states.« less

  12. Polarization of Lyman-Alpha Radiation from Atomic Hydrogen Excited by Electron Impact form Near Threshold to 1800 eV

    NASA Technical Reports Server (NTRS)

    James, G. K.; Slevin, J. A.; Dziczek, D.; McConkey, J. W.; Bray, Igor

    1998-01-01

    The polarization of Lyman-a radiation, produced by electron-impact excitation of atomic hydrogen, has been measured over the extended energy range from near threshold to 1800 eV. Measurements were obtained in a crossed-beam experiment using a silica-reflection linear polarization analyzer in tandem with a vacuum-ultraviolet monochromator to isolate the emitted line radiation. Comparison with various theoretical calculations shows that the present experimental results are in good agreement with theory over the entire range of electron-impact energies and, in particular, are in excellent agreement with theoretical convergent-close-coupling (CCC) calculations performed in the present work. Our polarization data are significantly different from the previous experimental measurements of Ott, Kauppila, and Fite.

  13. Photodissociation of HBr/LiF(001): A quantum mechanical model

    NASA Technical Reports Server (NTRS)

    Seideman, Tamar

    1993-01-01

    The photodissociation dynamics of HBr adsorbed on a LiF(001) surface is studied using time-independent quantum mechanics. The photodissociation lineshape and the Br(P(sub 1/2)-2)/Br(P(sub 3/2)-2) yield ratio are computed and compared with the corresponding quantities for gas phase photodissociation. The angular distribution of the hydrogen photofragments following excitation of adsorbed HBr is computed and found to agree qualitatively with experimental data. The effect of polarization of the photon is illustrated and discussed. The field polarization is found to affect significantly the magnitude of the photodissociation signal but not the angular dependence of the photofragment distribution, in agreement with experiment and in accord with expectations for a strongly aligned adsorbed phase.

  14. Photodissociation of HBr/LiF(001) - A quantum mechanical model

    NASA Technical Reports Server (NTRS)

    Seideman, Tamar

    1993-01-01

    The photodissociation dynamics of HBr adsorbed on an LiF(001) surface is studied using time-independent quantum mechanics. The photodissociation line shape and the Br(2P(1/2))/Br(2P(3/2)) yield ratio are computed and compared with the corresponding quantities for gas phase photodissociation. The angular distribution of the hydrogen photofragments following excitation of adsorbed HBr is computed and found to agree qualitatively with experimental data. The effect of polarization of the photon is illustrated and discussed. We find the field polarization to affect significantly the magnitude of the photodissociation signal but not the angular dependence of the photofragment distribution, in agreement with experiment and in accord with expectations for a strongly aligned adsorbed phase.

  15. Coherent population trapping with polarization modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Peter, E-mail: enxue.yun@obspm.fr; Guérandel, Stéphane; Clercq, Emeric de

    Coherent population trapping (CPT) is extensively studied for future vapor cell clocks of high frequency stability. In the constructive polarization modulation CPT scheme, a bichromatic laser field with polarization and phase synchronously modulated is applied on an atomic medium. A high contrast CPT signal is observed in this so-called double-modulation configuration, due to the fact that the atomic population does not leak to the extreme Zeeman states, and that the two CPT dark states, which are produced successively by the alternate polarizations, add constructively. Here, we experimentally investigate CPT signal dynamics first in the usual configuration, a single circular polarization.more » The double-modulation scheme is then addressed in both cases: one pulse Rabi interaction and two pulses Ramsey interaction. The impact and the optimization of the experimental parameters involved in the time sequence are reviewed. We show that a simple seven-level model explains the experimental observations. The double-modulation scheme yields a high contrast similar to the one of other high contrast configurations like push-pull optical pumping or crossed linear polarization scheme, with a setup allowing a higher compactness. The constructive polarization modulation is attractive for atomic clock, atomic magnetometer, and high precision spectroscopy applications.« less

  16. Detection of anisotropy in the electron velocity distribution produced by electron cyclotron resonance heating using the polarization of helium atom emission lines

    NASA Astrophysics Data System (ADS)

    Teramoto, Tatsuya; Shikama, Taiichi; Ueda, Akira; Hasuo, Masahiro

    2018-05-01

    The anisotropy in the electron velocity distribution (EVD) was measured using the polarization of two helium atom emission lines, 21P-31D (668 nm) and 23P-33D (588 nm), in a helium electron cyclotron resonance (ECR) discharge plasma. A small polarization degree of less than 4% was measured by adopting a temporal modulation technique. It was found that the polarization originated locally from around the ECR layer and that the anisotropic component of the EVD produced by ECR heating had an average kinetic energy of approximately 40 eV.

  17. Atomic scale imaging of competing polar states in a Ruddlesden–Popper layered oxide

    DOE PAGES

    Stone, Greg; Ophus, Colin; Birol, Turan; ...

    2016-08-31

    Layered complex oxides offer an unusually rich materials platform for emergent phenomena through many built-in design knobs such as varied topologies, chemical ordering schemes and geometric tuning of the structure. A multitude of polar phases are predicted to compete in Ruddlesden-Popper (RP), A n+1 B n O 3n+1 , thin films by tuning layer dimension (n) and strain; however, direct atomic-scale evidence for such competing states is currently absent. Using aberration-corrected scanning transmission electron microscopy with sub-Ångstrom resolution in Sr n+1 Ti n O 3n+1 thin films, we demonstrate the coexistence of antiferroelectric, ferroelectric and new ordered and low-symmetry phases.more » We also directly image the atomic rumpling of the rock salt layer, a critical feature in RP structures that is responsible for the competing phases; exceptional quantitative agreement between electron microscopy and density functional theory is demonstrated. The study shows that layered topologies can enable multifunctionality through highly competitive phases exhibiting diverse phenomena in a single structure.« less

  18. Optically stimulated slowing of polar heavy-atom molecules with a constant beat phase

    NASA Astrophysics Data System (ADS)

    Yin, Yanning; Xu, Supeng; Xia, Meng; Xia, Yong; Yin, Jianping

    2018-04-01

    Polar heavy-atom molecules have been well recognized as promising candidates for precision measurements and tests of fundamental physics. A much slower molecular beam to increase the interaction time should lead to a more sensitive measurement. Here we theoretically demonstrate the possibility of the stimulated longitudinal slowing of heavy-atom molecules by the coherent optical bichromatic force with a constant beat phase. Taking the YbF meolecule as an example, we show that a rapid and short-distance deceleration of heavy molecules by a phase-compensation method is feasible with moderate conditions. A molecular beam of YbF with a forward velocity of 120 m/s can be decelerated below 10 m/s within a distance of 3.5 cm and with a laser irradiance for each traveling wave of 107.2 W/cm 2 . Our proposed slowing method could be a promising approach to break through the space constraint or the limited capture efficiency of molecules loadable into a magneto-optical trap in traditional deceleration schemes, opening the possibility for a significant improvement of the precision measurement sensitivity.

  19. FAST TRACK COMMUNICATION: Generalized geometrical model for photoionization of polarized atoms: II. Magnetic dichroism in the 3p photoemission from the K 3p64s 2S1/2 ground state

    NASA Astrophysics Data System (ADS)

    Grum-Grzhimailo, A. N.; Cubaynes, D.; Heinecke, E.; Hoffmann, P.; Zimmermann, P.; Meyer, M.

    2010-10-01

    The generalized geometrical model for photoionization from polarized atoms is extended to include mixing of configurations in the initial atomic and/or the final photoion states. The theoretical results for angle-resolved linear and circular magnetic dichroism are in good agreement with new high-resolution photoelectron data for 3p-1 photoionization of potassium atoms polarized in the K 3p64s 2S1/2 ground state by laser optical pumping.

  20. Atomic origin of the spin-polarization of the Co2FeAl Heusler compound

    NASA Astrophysics Data System (ADS)

    Liang, Jaw-Yeu; Lam, Tu-Ngoc; Lin, Yan-Cheng; Chang, Shu-Jui; Lin, Hong-Ji; Tseng, Yuan-Chieh

    2016-02-01

    Using synchrotron x-ray techniques, we studied the Co2FeAl spin-polarization state that generates the half-metallicity of the compound during an A2 (low-spin)  →  B2 (high-spin) phase transition. Given the advantage of element specificity of x-ray techniques, we could fingerprint the structural and magnetic cross-reactions between Co and Fe within a complex Co2FeAl structure deposited on a MgO (0 0 1) substrate. X-ray diffraction and extended x-ray absorption fine structure investigations determined that the Co atoms preferably populate the (1/4,1/4,1/4) and (3/4,3/4,3/4) sites during the development of the B2 phase. X-ray magnetic spectroscopy showed that although the two magnetic elements were ferromagnetically coupled, they interacted in a competing manner via a charge-transfer effect, which enhanced Co spin polarization at the expense of Fe spin polarization during the phase transition. This means that the spin-polarization of Co2FeAl was electronically dominated by Fe in A2 whereas the charge transfer turned the dominance to Co upon B2 formation. Helicity-dependent x-ray absorption spectra also revealed that only the minority state of Co/Fe was involved in the charge-transfer effect whereas the majority state was independent of it. Despite an overall increase of Co2FeAl magnetization, the charge-transfer effect created an undesired trade-off during the Co-Fe exchange interactions, because of the presence of twice as many X sites (Co) as Y sites (Fe) in the Heusler X 2 YZ formula. This suggests that the spin-polarization of Co2FeAl is unfortunately regulated by compromising the enhanced X (Co) sites and the suppressed Y (Fe) sites, irrespective of the development of the previously known high-spin-polarization phase of B2. This finding provides a possible cause for the limited half-metallicity of Co2FeAl discovered recently. Electronic tuning between the X and Y sites is necessary to further increase the spin-polarization, and likely the half

  1. Synchrotron Radiation X-Ray Microfluorescence Reveals Polarized Distribution of Atomic Elements during Differentiation of Pluripotent Stem Cells

    PubMed Central

    Paulsen, Bruna S.; Rehen, Stevens K.

    2011-01-01

    The mechanisms underlying pluripotency and differentiation in embryonic and reprogrammed stem cells are unclear. In this work, we characterized the pluripotent state towards neural differentiated state through analysis of trace elements distribution using the Synchrotron Radiation X-ray Fluorescence Spectroscopy. Naive and neural-stimulated embryoid bodies (EB) derived from embryonic and induced pluripotent stem (ES and iPS) cells were irradiated with a spatial resolution of 20 µm to make elemental maps and qualitative chemical analyses. Results show that these embryo-like aggregates exhibit self-organization at the atomic level. Metallic elements content rises and consistent elemental polarization pattern of P and S in both mouse and human pluripotent stem cells were observed, indicating that neural differentiation and elemental polarization are strongly correlated. PMID:22195032

  2. Polarized deuterium internal target at AmPS (NIKHEF)

    NASA Astrophysics Data System (ADS)

    Ferro-Luzzi, M.; Zhou, Z.-L.; van den Brand, J. F. J.; Bulten, H. J.; Alarcon, R.; van Bakel, N.; Botto, T.; Bouwhuis, M.; van Buuren, L.; Comfort, J.; Doets, M.; Dolfini, S.; Ent, R.; Geurts, D.; Heimberg, P.; Higinbotham, D. W.; de Jager, C. W.; Lang, J.; de Lange, D. J.; Norum, B.; Passchier, I.; Poolman, H. R.; Six, E.; Steijger, J.; Szczerba, D.; Unal, O.; de Vries, H.

    1998-01-01

    We describe the polarized deuterium target internal to the NIKHEF medium-energy electron storage ring. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used to monitor the injected atomic beam intensity and polarization. An electrostatic ion-extraction system and a Wien filter were utilized to measure on-line the atomic fraction of the target gas in the storage cell. This device was supplemented with a tensor polarization analyzer using the neutron anisotropy of the 3H(d,n)α reaction at 60 keV. This method allows determining the density-averaged nuclear polarization of the target gas, independent of spatial and temporal variations. We address issues important for polarized hydrogen/deuterium internal targets, such as the effects of spin-exchange collisions and resonant transitions induced by the RF fields of the charged particle beam.

  3. Signatures of a quantum diffusion limited hydrogen atom tunneling reaction.

    PubMed

    Balabanoff, Morgan E; Ruzi, Mahmut; Anderson, David T

    2017-12-20

    We are studying the details of hydrogen atom (H atom) quantum diffusion in highly enriched parahydrogen (pH 2 ) quantum solids doped with chemical species in an effort to better understand H atom transport and reactivity under these conditions. In this work we present kinetic studies of the 193 nm photo-induced chemistry of methanol (CH 3 OH) isolated in solid pH 2 . Short-term irradiation of CH 3 OH at 1.8 K readily produces CH 2 O and CO which we detect using FTIR spectroscopy. The in situ photochemistry also produces CH 3 O and H atoms which we can infer from the post-photolysis reaction kinetics that display significant CH 2 OH growth. The CH 2 OH growth kinetics indicate at least three separate tunneling reactions contribute; (i) reactions of photoproduced CH 3 O with the pH 2 host, (ii) H atom reactions with the CH 2 O photofragment, and (iii) long-range migration of H atoms and reaction with CH 3 OH. We assign the rapid CH 2 OH growth to the following CH 3 O + H 2 → CH 3 OH + H → CH 2 OH + H 2 two-step sequential tunneling mechanism by conducting analogous kinetic measurements using deuterated methanol (CD 3 OD). By performing photolysis experiments at 1.8 and 4.3 K, we show the post-photolysis reaction kinetics change qualitatively over this small temperature range. We use this qualitative change in the reaction kinetics with temperature to identify reactions that are quantum diffusion limited. While these results are specific to the conditions that exist in pH 2 quantum solids, they have direct implications on the analogous low temperature H atom tunneling reactions that occur on metal surfaces and on interstellar grains.

  4. Constructive polarization modulation for coherent population trapping clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Peter, E-mail: enxue.yun@obspm.fr; Danet, Jean-Marie; Holleville, David

    2014-12-08

    We propose a constructive polarization modulation scheme for atomic clocks based on coherent population trapping (CPT). In this scheme, the polarization of a bichromatic laser beam is modulated between two opposite circular polarizations to avoid trapping the atomic populations in the extreme Zeeman sublevels. We show that if an appropriate phase modulation between the two optical components of the bichromatic laser is applied synchronously, the two CPT dark states which are produced successively by the alternate polarizations add constructively. Measured CPT resonance contrasts up to 20% in one-pulse CPT and 12% in two-pulse Ramsey-CPT experiments are reported, demonstrating the potentialmore » of this scheme for applications to high performance atomic clocks.« less

  5. Energy-dependent angular shifts in the photoelectron momentum distribution for atoms in elliptically polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Xie, Hui; Li, Min; Luo, Siqiang; Li, Yang; Zhou, Yueming; Cao, Wei; Lu, Peixiang

    2017-12-01

    We measure the photoelectron momentum distributions from atoms ionized by strong elliptically polarized laser fields at the wavelengths of 400 and 800 nm, respectively. The momentum distributions show distinct angular shifts, which sensitively depend on the electron energy. We find that the deflection angle with respect to the major axis of the laser ellipse decreases with the increase of the electron energy for large ellipticities. This energy-dependent angular shift is well reproduced by both numerical solutions of the time-dependent Schrödinger equation and the classical-trajectory Monte Carlo model. We show that the ionization time delays among the electrons with different energies are responsible for the energy-dependent angular shifts. On the other hand, for small ellipticities, we find the deflection angle increases with increasing the electron energy, which might be caused by electron rescattering in the elliptically polarized fields.

  6. Polarization functions for the modified m6-31G basis sets for atoms Ga through Kr.

    PubMed

    Mitin, Alexander V

    2013-09-05

    The 2df polarization functions for the modified m6-31G basis sets of the third-row atoms Ga through Kr (Int J Quantum Chem, 2007, 107, 3028; Int J. Quantum Chem, 2009, 109, 1158) are proposed. The performances of the m6-31G, m6-31G(d,p), and m6-31G(2df,p) basis sets were examined in molecular calculations carried out by the density functional theory (DFT) method with B3LYP hybrid functional, Møller-Plesset perturbation theory of the second order (MP2), quadratic configuration interaction method with single and double substitutions and were compared with those for the known 6-31G basis sets as well as with the other similar 641 and 6-311G basis sets with and without polarization functions. Obtained results have shown that the performances of the m6-31G, m6-31G(d,p), and m6-31G(2df,p) basis sets are better in comparison with the performances of the known 6-31G, 6-31G(d,p) and 6-31G(2df,p) basis sets. These improvements are mainly reached due to better approximations of different electrons belonging to the different atomic shells in the modified basis sets. Applicability of the modified basis sets in thermochemical calculations is also discussed. © 2013 Wiley Periodicals, Inc.

  7. Polarized deuterium internal target at AmPS (NIKHEF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norum, Blaine; De Jager, Cornelis; Geurts, D.

    1997-08-01

    We describe the polarized deuterium target internal to the NIKHEF medium-energy electron storage ring. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used to monitor the injected atomic beam intensity and polarization. An electrostatic ion-extraction system and a Wien filter were utilized to measure on-line the atomic fraction of the target gas in the storage cell. This device was supplemented with a tensor polarization analyzer using the neutron anisotropy of the 3H(d,n)sigma reaction at 60 keV. This method allows determining the density-averaged nuclear polarization of the targetmore » gas, independent of spatial and temporal variations. We address issues important for polarized hydrogen/deuterium internal targets, such as the effects of spin-exchange collisions and resonant transitions induced by the RF fields of the charged particle beam.« less

  8. Polarized deuterium internal target at AmPS (NIKHEF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferro-Luzzi, M.; NIKHEF, P.O. Box 41882, 1009 DB Amsterdam; Zhou, Z.-L.

    1998-01-20

    We describe the polarized deuterium target internal to the NIKHEF medium-energy electron storage ring. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used to monitor the injected atomic beam intensity and polarization. An electrostatic ion-extraction system and a Wien filter were utilized to measure on-line the atomic fraction of the target gas in the storage cell. This device was supplemented with a tensor polarization analyzer using the neutron anisotropy of the {sup 3}H(d,n){alpha} reaction at 60 keV. This method allows determining the density-averaged nuclear polarization of themore » target gas, independent of spatial and temporal variations. We address issues important for polarized hydrogen/deuterium internal targets, such as the effects of spin-exchange collisions and resonant transitions induced by the RF fields of the charged particle beam.« less

  9. Spin Polarization of Rb and Cs n p P2 3/2 (n =5 , 6) Atoms by Circularly Polarized Photoexcitation of a Transient Diatomic Molecule

    NASA Astrophysics Data System (ADS)

    Mironov, A. E.; Hewitt, J. D.; Eden, J. G.

    2017-03-01

    We report the selective population of Rb or Cs n p P2 3/2 (n =5 , 6; F =4 , 5) hyperfine states by the photodissociation of a transient, alkali-rare gas diatomic molecule. Circularly polarized (σ-), amplified spontaneous emission (ASE) on the D2 line of Rb or Cs (780.0 and 852.1 nm, respectively) is generated when Rb-Xe or Cs-Xe ground state collision pairs are photoexcited by a σ+-polarized optical field having a wavelength within the D2 blue satellite continuum, associated with the B Σ2 1/2 +←X Σ2 1/2 + (free←free ) transition of the diatomic molecule. The degree of spin polarization of Cs (6 p P3/2 2 ), specifically, is found to be dependent on the interatomic distance (R ) at which the excited complex is born, a result attributed to the structure of the B Σ2 1/2 + state. For Cs-Xe atomic pairs, tuning the wavelength of the optical field from 843 to 848 nm varies the degree of circular polarization of the ASE from 63% to almost unity because of the perturbation, in the 5 ≤R ≤6 Å interval, of the Σ2 1/2 + potential by a d σ molecular orbital associated with a higher Λ 2 electronic state. Monitoring only the Cs 6 p P3/2 2 spin polarization reveals a previously unobserved interaction of CsXe (B Σ2 1/2 + ) with the lowest vibrational levels of a Λ 2 state derived from Cs (5 d )+Xe . By inserting a molecular intermediate into the alkali atom excitation mechanism, these experiments realize electronic spin polarization through populating no more than two n p P2 3/2 hyperfine states, and demonstrate a sensitive spectroscopic

  10. Polarization of submillimetre lines from interstellar medium

    NASA Astrophysics Data System (ADS)

    Zhang, Heshou; Yan, Huirong

    2018-04-01

    Magnetic fields play important roles in many astrophysical processes. However, there is no universal diagnostic for the magnetic fields in the interstellar medium (ISM) and each magnetic tracer has its limitation. Any new detection method is thus valuable. Theoretical studies have shown that submillimetre fine-structure lines are polarized due to atomic alignment by ultraviolet photon-excitation, which opens up a new avenue to probe interstellar magnetic fields. We will, for the first time, perform synthetic observations on the simulated three-dimensional ISM to demonstrate the measurability of the polarization of submillimetre atomic lines. The maximum polarization for different absorption and emission lines expected from various sources, including star-forming regions are provided. Our results demonstrate that the polarization of submillimetre atomic lines is a powerful magnetic tracer and add great value to the observational studies of the submilimetre astronomy.

  11. Beyond Point Charges: Dynamic Polarization from Neural Net Predicted Multipole Moments.

    PubMed

    Darley, Michael G; Handley, Chris M; Popelier, Paul L A

    2008-09-09

    Intramolecular polarization is the change to the electron density of a given atom upon variation in the positions of the neighboring atoms. We express the electron density in terms of multipole moments. Using glycine and N-methylacetamide (NMA) as pilot systems, we show that neural networks can capture the change in electron density due to polarization. After training, modestly sized neural networks successfully predict the atomic multipole moments from the nuclear positions of all atoms in the molecule. Accurate electrostatic energies between two atoms can be then obtained via a multipole expansion, inclusive of polarization effects. As a result polarization is successfully modeled at short-range and without an explicit polarizability tensor. This approach puts charge transfer and multipolar polarization on a common footing. The polarization procedure is formulated within the context of quantum chemical topology (QCT). Nonbonded atom-atom interactions in glycine cover an energy range of 948 kJ mol(-1), with an average energy difference between true and predicted energy of 0.2 kJ mol(-1), the largest difference being just under 1 kJ mol(-1). Very similar energy differences are found for NMA, which spans a range of 281 kJ mol(-1). The current proof-of-concept enables the construction of a new protein force field that incorporates electron density fragments that dynamically respond to their fluctuating environment.

  12. Dynamics of trapped atoms around an optical nanofiber probed through polarimetry.

    PubMed

    Solano, Pablo; Fatemi, Fredrik K; Orozco, Luis A; Rolston, S L

    2017-06-15

    The evanescent field outside an optical nanofiber (ONF) can create optical traps for neutral atoms. We present a non-destructive method to characterize such trapping potentials. An off-resonance linearly polarized probe beam that propagates through the ONF experiences a slow axis of polarization produced by trapped atoms on opposite sides along the ONF. The transverse atomic motion is imprinted onto the probe polarization through the changing atomic index of refraction. By applying a transient impulse, we measure a time-dependent polarization rotation of the probe beam that provides both a rapid and non-destructive measurement of the optical trapping frequencies.

  13. Nuclear spin polarized H and D by means of spin-exchange optical pumping

    NASA Astrophysics Data System (ADS)

    Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank

    1998-01-01

    Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.

  14. Switchable polarization in an unzipped graphene oxide monolayer.

    PubMed

    Noor-A-Alam, Mohammad; Shin, Young-Han

    2016-08-14

    Ferroelectricity in low-dimensional oxide materials is generally suppressed at the scale of a few nanometers, and has attracted considerable attention from both fundamental and technological aspects. Graphene is one of the thinnest materials (one atom thick). Therefore, engineering switchable polarization in non-polar pristine graphene could potentially lead to two-dimensional (2D) ferroelectric materials. In the present study, based on density functional theory, we show that an unzipped graphene oxide (UGO) monolayer can exhibit switchable polarization due to its foldable bonds between the oxygen atom and two carbon atoms underneath the oxygen. We find that a free standing UGO monolayer exhibits antiferroelectric switchable polarization. A UGO monolayer can be obtained as an intermediate product during the chemical exfoliation process of graphene. Interestingly, despite its dimensionality, our estimated polarization in a UGO monolayer is comparable to that in bulk ferroelectric materials (e.g., ferroelectric polymers). Our calculations could help realize antiferroelectric switchable polarization in 2D materials, which could find various potential applications in nanoscale devices such as sensors, actuators, and capacitors with high energy-storage density.

  15. Atomic-scale compensation phenomena at polar interfaces.

    PubMed

    Chisholm, Matthew F; Luo, Weidong; Oxley, Mark P; Pantelides, Sokrates T; Lee, Ho Nyung

    2010-11-05

    The interfacial screening charge that arises to compensate electric fields of dielectric or ferroelectric thin films is now recognized as the most important factor in determining the capacitance or polarization of ultrathin ferroelectrics. Here we investigate using aberration-corrected electron microscopy and density-functional theory to show how interfaces cope with the need to terminate ferroelectric polarization. In one case, we show evidence for ionic screening, which has been predicted by theory but never observed. For a ferroelectric film on an insulating substrate, we found that compensation can be mediated by an interfacial charge generated, for example, by oxygen vacancies.

  16. Polarization Spectroscopy and Collisions in NaK

    NASA Astrophysics Data System (ADS)

    Wolfe, C. M.; Ashman, S.; Huennekens, J.; Beser, B.; Bai, J.; Lyyra, A. M.

    2009-05-01

    We report current work to study transfer of population and orientation in collisions of NaK molecules with argon and potassium atoms using polarization labeling (PL) and laser-induced fluorescence (LIF) spectroscopy. In the PL experiment, a circularly polarized pump laser excites a specific NaK A^1&+circ;(v=16, J) <- X^1&+circ;(v=0, J±1) transition, creating an orientation (non-uniform MJ level distribution) in both levels. The linear polarized probe laser is scanned over various 3^1π(v=8, J' ±1) <- A^1&+circ;(v=16, J') transitions. The probe laser passes through a crossed linear polarizer before detection, and signal is recorded if the probe laser polarization has been modified by the vapor (which occurs when it comes into resonance with an oriented level). In addition to strong direct transitions (J' = J), we also observe weak collisional satellite lines (J' = J±n with n = 1, 2, 3, ...) indicating that orientation is transferred to adjacent rotational levels during a collision. An LIF experiment (with linear polarized pump and probe beams) gives information on the collisional transfer of population. From these data, cross sections for both processes can be determined. We experimentally distinguish collisions of NaK with argon atoms from collisions with alkali atoms.

  17. Precision measurement of the nuclear polarization in laser-cooled, optically pumped 37 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fenker, B.; Behr, J. A.; Melconian, D.

    We report a measurement of the nuclear polarization of laser-cooled, optically pumped 37K atoms which will allow us to precisely measure angular correlation parameters in themore » $${\\beta }^{+}$$-decay of the same atoms. These results will be used to test the V ₋ A framework of the weak interaction at high precision. At the Triumf neutral atom trap (Trinat), a magneto-optical trap confines and cools neutral 37K atoms and optical pumping spin-polarizes them. We monitor the nuclear polarization of the same atoms that are decaying in situ by photoionizing a small fraction of the partially polarized atoms and then use the standard optical Bloch equations to model their population distribution. We obtain an average nuclear polarization of $$\\bar{P}=0.9913\\pm 0.0009$$, which is significantly more precise than previous measurements with this technique. Since our current measurement of the β-asymmetry has $$0.2 \\% $$ statistical uncertainty, the polarization measurement reported here will not limit its overall uncertainty. This result also demonstrates the capability to measure the polarization to $$\\lt 0.1 \\% $$, allowing for a measurement of angular correlation parameters to this level of precision, which would be competitive in searches for new physics.« less

  18. Precision measurement of the nuclear polarization in laser-cooled, optically pumped 37 K

    DOE PAGES

    Fenker, B.; Behr, J. A.; Melconian, D.; ...

    2016-07-13

    We report a measurement of the nuclear polarization of laser-cooled, optically pumped 37K atoms which will allow us to precisely measure angular correlation parameters in themore » $${\\beta }^{+}$$-decay of the same atoms. These results will be used to test the V ₋ A framework of the weak interaction at high precision. At the Triumf neutral atom trap (Trinat), a magneto-optical trap confines and cools neutral 37K atoms and optical pumping spin-polarizes them. We monitor the nuclear polarization of the same atoms that are decaying in situ by photoionizing a small fraction of the partially polarized atoms and then use the standard optical Bloch equations to model their population distribution. We obtain an average nuclear polarization of $$\\bar{P}=0.9913\\pm 0.0009$$, which is significantly more precise than previous measurements with this technique. Since our current measurement of the β-asymmetry has $$0.2 \\% $$ statistical uncertainty, the polarization measurement reported here will not limit its overall uncertainty. This result also demonstrates the capability to measure the polarization to $$\\lt 0.1 \\% $$, allowing for a measurement of angular correlation parameters to this level of precision, which would be competitive in searches for new physics.« less

  19. Polarization Facilities at COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eversheim, Dieter

    2008-02-06

    The cooler synchrotron COSY at the Forschungszentrum Juelich, Germany has been equipped with all necessary tools to accelerate polarized protons and deuterons to their maximum energy. For the EDDA and ANKE experiments two atomic beam targets for polarized protons and deuterons have been installed in the COSY-ring. Tests of the RF Spin-Flipper have been very successful. Externally polarization experiments are carried out by the TOF spectrometer. The performance of the relevant components and experiments is discussed.

  20. Polarization Facilities at COSY

    NASA Astrophysics Data System (ADS)

    Eversheim, Dieter

    2008-02-01

    The cooler synchrotron COSY at the Forschungszentrum Jülich, Germany has been equipped with all necessary tools to accelerate polarized protons and deuterons to their maximum energy. For the EDDA and ANKE experiments two atomic beam targets for polarized protons and deuterons have been installed in the COSY-ring. Tests of the RF Spin-Flipper have been very successful. Externally polarization experiments are carried out by the TOF spectrometer. The performance of the relevant components and experiments is discussed.

  1. Scattering of fast electrons by vapour-atoms and by solid-atoms - A comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshipura, K.N.; Mohanan, S.

    1988-08-01

    A comparative theoretical study has been done on the scattering of fast electrons by free (vapour) atoms and bound (solid) atoms, in particular, the alkali atoms, Al and Cu. The Born differential cross-sections (DCS), calculated with the static plus polarization electron-atom potential, are found in general, to be larger for free atoms that for bound atoms, at least at small angles of scattering. For Rb and Cs the two DCS tend to merge at very large angles only. The sample incident energies chosen are 400 eV and above.

  2. Stabilization of Polar Nanoregions in Pb-free Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Pramanick, A.; Dmowski, W.; Egami, T.; Budisuharto, A. Setiadi; Weyland, F.; Novak, N.; Christianson, A. D.; Borreguero, J. M.; Abernathy, D. L.; Jørgensen, M. R. V.

    2018-05-01

    The formation of polar nanoregions through solid-solution additions is known to enhance significantly the functional properties of ferroelectric materials. Despite considerable progress in characterizing the microscopic behavior of polar nanoregions (PNR), understanding their real-space atomic structure and dynamics of their formation remains a considerable challenge. Here, using the method of dynamic pair distribution function, we provide direct insights into the role of solid-solution additions towards the stabilization of polar nanoregions in the Pb-free ferroelectric of Ba (Zr ,Ti )O3 . It is shown that for an optimum level of substitution of Ti by larger Zr ions, the dynamics of atomic displacements for ferroelectric polarization are slowed sufficiently below THz frequencies, which leads to increased local correlation among dipoles within PNRs. The dynamic pair distribution function technique demonstrates a unique capability to obtain insights into locally correlated atomic dynamics in disordered materials, including new Pb-free ferroelectrics, which is necessary to understand and control their functional properties.

  3. The impacts of surface polarity on the solubility of nanoparticle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jianzhuo; Su, Jiguo, E-mail: jiguosu@ysu.edu.cn; Ou, Xinwen

    In order to study the dependence of water solubility and hydration behavior of nanoparticles on their surface polarity, we designed polar nanoparticles with varying surface polarity by assigning atomic partial charge to the surface of C60. The water solubility of the nanoparticle is enhanced by several orders of magnitude after the introduction of surface polarity. Nevertheless, when the atomic partial charge grows beyond a certain value (q{sub M}), the solubility continuously decreases to the level of nonpolar nanoparticle. It should be noted that such q{sub M} is comparable with atomic partial charge of a variety of functional groups. The hydrationmore » behaviors of nanoparticles were then studied to investigate the non-monotonic dependence of solubility on the surface polarity. The interaction between the polar nanoparticle and the hydration water is stronger than the nonpolar counterpart, which should facilitate the dissolution of the nanoparticles. On the other hand, the surface polarity also reduces the interaction of hydration water with the other water molecules and enhances the interaction between the nanoparticles which may hinder their dispersion. Besides, the introduction of surface polarity disturbs and even rearranges the hydration structure of nonpolar nanoparticle. Interestingly, the polar nanoparticle with less ordered hydration structure tends to have higher water solubility.« less

  4. Inducing electric polarization in ultrathin insulating layers

    NASA Astrophysics Data System (ADS)

    Martinez-Castro, Jose; Piantek, Marten; Persson, Mats; Serrate, David; Hirjibehedin, Cyrus F.

    Studies of ultrathin polar oxide films have attracted the interest of researchers for a long time due to their different properties compared to bulk materials. However they present several challenges such as the difficulty in the stabilization of the polar surfaces and the limited success in tailoring their properties. Moreover, recently developed Van der Waals materials have shown that the stacking of 2D-layers trigger new collective states thanks to the interaction between layers. Similarly, interface phenomena emerge in polar oxides, like induced ferroelectricity. This represents a promising way for the creation of new materials with customized properties that differ from those of the isolated layers. Here we present a new approach for the fabrication and study of atomically thin insulating films. We show that the properties of insulating polar layers of sodium chloride (NaCl) can be engineered when they are placed on top of a charge modulated template of copper nitride (Cu2N). STM studies carried out in ultra-high vacuum and at low temperatures over NaCl/Cu2N/Cu(001) show that we are able to build up and stabilize interfaces of polar surface at the limit of one atomic layer showing new properties not present before at the atomic scale.

  5. Single-atom gold catalysis in the context of developments in parahydrogen-induced polarization.

    PubMed

    Corma, Avelino; Salnikov, Oleg G; Barskiy, Danila A; Kovtunov, Kirill V; Koptyug, Igor V

    2015-05-04

    A highly isolated monoatomic gold catalyst, with single gold atoms dispersed on multiwalled carbon nanotubes (MWCNTs), has been synthesized, characterized, and tested in heterogeneous hydrogenation of 1,3-butadiene and 1-butyne with parahydrogen to maximize the polarization level and the contribution of the pairwise hydrogen addition route. The Au/MWCNTs catalyst was found to be active and efficient in pairwise hydrogen addition and the estimated contributions from the pairwise hydrogen addition route are at least an order of magnitude higher than those for supported metal nanoparticle catalysts. Therefore, the use of the highly isolated monoatomic catalysts is very promising for production of hyperpolarized fluids that can be used for the significant enhancement of NMR signals. A mechanism of 1,3-butadiene hydrogenation with parahydrogen over the highly isolated monoatomic Au/MWCNTs catalyst is also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effects of quantum coherence and interference in atoms near nanoparticles

    NASA Astrophysics Data System (ADS)

    Dhayal, Suman; Rostovtsev, Yuri V.

    2016-04-01

    Optical properties of ensembles of realistic quantum emitters coupled to plasmonic systems are studied by using adequate models that can take into account full atomic geometry. In particular, the coherent effects such as forming "dark states," optical pumping, coherent Raman scattering, and the stimulated Raman adiabatic passage (STIRAP) are revisited in the presence of metallic nanoparticles. It is shown that the dark states are still formed but they have more complicated structure, and the optical pumping and the STIRAP cannot be employed in the vicinity of plasmonic nanostructures. Also, there is a huge difference in the behavior of the local atomic polarization and the atomic polarization averaged over an ensemble of atoms homogeneously spread near nanoparticles. The average polarization is strictly related to the polarization induced by the external field, while the local polarization can be very different from the one induced by the external field. This is important for the excitation of single molecules, e.g., different components of scattering from single molecules can be used for their efficient detection.

  7. Experimental generation of tripartite polarization entangled states of bright optical beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Liang; Liu, Yanhong; Deng, Ruijie

    The multipartite polarization entangled states of bright optical beams directly associating with the spin states of atomic ensembles are one of the essential resources in the future quantum information networks, which can be conveniently utilized to transfer and convert quantum states across a network composed of many atomic nodes. In this letter, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The tripartite entangled states of light at the frequency resonant with D1 line of Rubidium atoms are transformed into the continuous variable polarization entanglement among three bright optical beams via an opticalmore » beam splitter network. The obtained entanglement is confirmed by the extended criterion for polarization entanglement of multipartite quantized optical modes.« less

  8. Detection of J-coupling using atomic magnetometer

    DOEpatents

    Ledbetter, Micah P.; Crawford, Charles W.; Wemmer, David E.; Pines, Alexander; Knappe, Svenja; Kitching, John; Budker, Dmitry

    2015-09-22

    An embodiment of a method of detecting a J-coupling includes providing a polarized analyte adjacent to a vapor cell of an atomic magnetometer; and measuring one or more J-coupling parameters using the atomic magnetometer. According to an embodiment, measuring the one or more J-coupling parameters includes detecting a magnetic field created by the polarized analyte as the magnetic field evolves under a J-coupling interaction.

  9. Electronegativity determination of individual surface atoms by atomic force microscopy.

    PubMed

    Onoda, Jo; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki

    2017-04-26

    Electronegativity is a fundamental concept in chemistry. Despite its importance, the experimental determination has been limited only to ensemble-averaged techniques. Here, we report a methodology to evaluate the electronegativity of individual surface atoms by atomic force microscopy. By measuring bond energies on the surface atoms using different tips, we find characteristic linear relations between the bond energies of different chemical species. We show that the linear relation can be rationalized by Pauling's equation for polar covalent bonds. This opens the possibility to characterize the electronegativity of individual surface atoms. Moreover, we demonstrate that the method is sensitive to variation of the electronegativity of given atomic species on a surface due to different chemical environments. Our findings open up ways of analysing surface chemical reactivity at the atomic scale.

  10. Electronegativity determination of individual surface atoms by atomic force microscopy

    PubMed Central

    Onoda, Jo; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki

    2017-01-01

    Electronegativity is a fundamental concept in chemistry. Despite its importance, the experimental determination has been limited only to ensemble-averaged techniques. Here, we report a methodology to evaluate the electronegativity of individual surface atoms by atomic force microscopy. By measuring bond energies on the surface atoms using different tips, we find characteristic linear relations between the bond energies of different chemical species. We show that the linear relation can be rationalized by Pauling's equation for polar covalent bonds. This opens the possibility to characterize the electronegativity of individual surface atoms. Moreover, we demonstrate that the method is sensitive to variation of the electronegativity of given atomic species on a surface due to different chemical environments. Our findings open up ways of analysing surface chemical reactivity at the atomic scale. PMID:28443645

  11. Signatures of a conical intersection in photofragment distributions and absorption spectra: Photodissociation in the Hartley band of ozone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picconi, David; Grebenshchikov, Sergy Yu., E-mail: Sergy.Grebenshchikov@ch.tum.de

    Photodissociation of ozone in the near UV is studied quantum mechanically in two excited electronic states coupled at a conical intersection located outside the Franck-Condon zone. The calculations, performed using recent ab initio PESs, provide an accurate description of the photodissociation dynamics across the Hartley/Huggins absorption bands. The observed photofragment distributions are reproduced in the two electronic dissociation channels. The room temperature absorption spectrum, constructed as a Boltzmann average of many absorption spectra of rotationally excited parent ozone, agrees with experiment in terms of widths and intensities of diffuse structures. The exit channel conical intersection contributes to the coherent broadeningmore » of the absorption spectrum and directly affects the product vibrational and translational distributions. The photon energy dependences of these distributions are strikingly different for fragments created along the adiabatic and the diabatic paths through the intersection. They can be used to reverse engineer the most probable geometry of the non-adiabatic transition. The angular distributions, quantified in terms of the anisotropy parameter β, are substantially different in the two channels due to a strong anticorrelation between β and the rotational angular momentum of the fragment O{sub 2}.« less

  12. Measuring the Quenching of no Fluorescence Produced from the Excitation of Photo-Fragmented Nitrobenzene Using a Picosecond Laser.

    NASA Astrophysics Data System (ADS)

    Lue, Christopher J.; Tanjaroon, Chakree; Johnson, J. Bruce; Reeve, Scott W.; Allen, Susan D.

    2013-06-01

    The military is interested in using spectroscopic methods to detect nitroaromatic compounds related to explosives. Upon absorption of a UV photon, nitrobenzene can dissociate into C_6H_5O and NO. Wynn, et al. have shown that looking at NO fluorescence from the photodissociated nitrobenzene could be a possible detection method. However, the fluorescence can easily be quenched by molecular oxygen and other constituents in air. We have measured fluorescence lifetimes of the nascent NO resulting from photo-fragmented nitrobenzene using a pulsed picosecond tunable laser (pulse width ≈15 ps) by means of a two-color process. In the two-color process, photons of a particular energy dissociated the nitrobenzene while photons of a different energy probed the A^2Σ^+← X^2Π_{(1/2,3/2)} NO band system between 225-260 nm. We have performed the measurements with different background pressures of He, N_2, and air. We present the results of these measurements which indicate considerable quenching of the NO fluorescence due to oxygen. Wynn, C. M.; Palmacci, S.; Kunz, R. R.; and Rothschild, M.Opt. Express, OSA, 2010, 18, 5399-5406

  13. Polarization squeezing of light by single passage through an atomic vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barreiro, S.; Valente, P.; Failache, H.

    We have studied relative-intensity fluctuations for a variable set of orthogonal elliptic polarization components of a linearly polarized laser beam traversing a resonant {sup 87}Rb vapor cell. Significant polarization squeezing at the threshold level (-3dB) required for the implementation of several continuous-variable quantum protocols was observed. The extreme simplicity of the setup, which is based on standard polarization components, makes it particularly convenient for quantum information applications.

  14. POLARIZED LINE FORMATION WITH LOWER-LEVEL POLARIZATION AND PARTIAL FREQUENCY REDISTRIBUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supriya, H. D.; Sampoorna, M.; Nagendra, K. N.

    2016-09-10

    In the well-established theories of polarized line formation with partial frequency redistribution (PRD) for a two-level and two-term atom, it is generally assumed that the lower level of the scattering transition is unpolarized. However, the existence of unexplained spectral features in some lines of the Second Solar Spectrum points toward a need to relax this assumption. There exists a density matrix theory that accounts for the polarization of all the atomic levels, but it is based on the flat-spectrum approximation (corresponding to complete frequency redistribution). In the present paper we propose a numerical algorithm to solve the problem of polarizedmore » line formation in magnetized media, which includes both the effects of PRD and the lower level polarization (LLP) for a two-level atom. First we derive a collisionless redistribution matrix that includes the combined effects of the PRD and the LLP. We then solve the relevant transfer equation using a two-stage approach. For illustration purposes, we consider two case studies in the non-magnetic regime, namely, the J {sub a} = 1, J {sub b} = 0 and J {sub a} = J {sub b} = 1, where J {sub a} and J {sub b} represent the total angular momentum quantum numbers of the lower and upper states, respectively. Our studies show that the effects of LLP are significant only in the line core. This leads us to propose a simplified numerical approach to solve the concerned radiative transfer problem.« less

  15. Electron emission perpendicular to the polarization direction in laser-assisted XUV atomic ionization

    NASA Astrophysics Data System (ADS)

    Gramajo, A. A.; Della Picca, R.; Arbó, D. G.

    2017-08-01

    We present a theoretical study of ionization of the hydrogen atom due to an XUV pulse in the presence of an infrared (IR) laser with both fields linearly polarized in the same direction. In particular, we study the energy distribution of photoelectrons emitted perpendicularly to the polarization direction. As we previously showed in Gramajo et al. [Phys. Rev. A 94, 053404 (2016), 10.1103/PhysRevA.94.053404] for parallel emission, by means of a very simple semiclassical model which considers electron trajectories born at different ionization times, the electron energy spectrum can be interpreted as the interplay of intra- and intercycle interferences. However, contrary to the case of parallel emission the intracycle interference pattern stems from the coherent superposition of four electron trajectories giving rise to (i) interference of electron trajectories born during the same half cycle (intra-half-cycle interference) and (ii) interference between electron trajectories born during the first half cycle with those born during the second half cycle (inter-half-cycle interference). The intercycle interference is responsible for the formation of the sidebands. We also show that the destructive inter-half-cycle interference for the absorption and emission of an even number of IR laser photons is responsible for the characteristic sidebands in the perpendicular direction separated by twice the IR photon energy. This contrasts with the emission along the polarization axis (all sideband orders are present) since intra-half-cycle interferences do not exist in that case. The intracycle interference pattern works as a modulation of the sidebands and, in the same way, it is modulated by the intra-half-cycle interference pattern. We analyze the dependence of the energy spectrum on the laser intensity and the time delay between the XUV pulse and the IR laser. Finally, we show that our semiclassical simulations are in very good agreement with quantum calculations within the

  16. Tracing Magnetic Fields With The Polarization Of Submillimeter Lines

    NASA Astrophysics Data System (ADS)

    Zhang, Heshou; Yan, Huirong

    2017-10-01

    Magnetic fields play important roles in many astrophysical processes. However, there is no universal diagnostic for the magnetic fields in the interstellar medium (ISM) and each magnetic tracer has its limitation. Any new detection method is thus valuable. Theoretical studies have shown that submillimeter fine-structure lines are polarized due to atomic alignment by Ultraviolet (UV) photon-excitation, which opens up a new avenue to probe interstellar magnetic fields. The method is applicable to all radiative-excitation dominant region, e.g., H II Regions, PDRs. The polarization of the submillimeter fine-structure lines induced by atomic alignment could be substantial and the applicability of using the spectro-polarimetry of atomic lines to trace magnetic fields has been supported by synthetic observations of simulated ISM in our recent paper. Our results demonstrate that the polarization of submillimeter atomic lines is a powerful magnetic tracer and add great value to the observational studies of the submilimeter astronomy.

  17. Photodissociation dynamics of the ortho- and para-xylyl radicals

    NASA Astrophysics Data System (ADS)

    Pachner, Kai; Steglich, Mathias; Hemberger, Patrick; Fischer, Ingo

    2017-08-01

    The photodissociation dynamics of the C8H9 isomers ortho- and para-xylyl are investigated in a free jet. The xylyl radicals are generated by flash pyrolysis from 2-(2-methylphenyl)- and 2-(4-methylphenyl) ethyl nitrite and are excited into the D3 state. REMPI- spectra show vibronic structure and the origin of the transition is identified at 32 291 cm-1 for the para- and at 32 132 cm-1 for the ortho-isomer. Photofragment H-atom action spectra show bands at the same energy and thus confirm H-atom loss from xylyl radicals. To gain further insight into the photodissociation dynamics, velocity map images of the hydrogen atom photofragments are recorded. Their angular distribution is isotropic and the translational energy release is in agreement with a dissociation to products in their electronic ground state. Photodissociation of para-xylyl leads to the formation of para-xylylene (C8H8), while the data for ortho-xylyl agree much better with the isomer benzocyclobutene as the dominant molecular fragment rather than ortho-xylylene. In computations we identified a new pathway for the reaction ortho-xylyl → benzocyclobutene + H with a barrier of 3.39 eV (27 340 cm-1), which becomes accessible at the employed excitation energy. It proceeds via a combination of scissoring and rotational motion of the -CH2 and -CH3 groups. However, the observed rate constants measured by delaying the excitation and ionization laser with respect to each other are significantly faster than computed ones, indicating intrinsic non-RRKM behaviour. A comparably high value of around 30% of the excess energy is released as translation of the H-atom photofragment.

  18. Photodissociation dynamics of the ortho- and para-xylyl radicals.

    PubMed

    Pachner, Kai; Steglich, Mathias; Hemberger, Patrick; Fischer, Ingo

    2017-08-28

    The photodissociation dynamics of the C 8 H 9 isomers ortho- and para-xylyl are investigated in a free jet. The xylyl radicals are generated by flash pyrolysis from 2-(2-methylphenyl)- and 2-(4-methylphenyl) ethyl nitrite and are excited into the D 3 state. REMPI- spectra show vibronic structure and the origin of the transition is identified at 32 291 cm -1 for the para- and at 32 132 cm -1 for the ortho-isomer. Photofragment H-atom action spectra show bands at the same energy and thus confirm H-atom loss from xylyl radicals. To gain further insight into the photodissociation dynamics, velocity map images of the hydrogen atom photofragments are recorded. Their angular distribution is isotropic and the translational energy release is in agreement with a dissociation to products in their electronic ground state. Photodissociation of para-xylyl leads to the formation of para-xylylene (C 8 H 8 ), while the data for ortho-xylyl agree much better with the isomer benzocyclobutene as the dominant molecular fragment rather than ortho-xylylene. In computations we identified a new pathway for the reaction ortho-xylyl → benzocyclobutene + H with a barrier of 3.39 eV (27 340 cm -1 ), which becomes accessible at the employed excitation energy. It proceeds via a combination of scissoring and rotational motion of the -CH 2 and -CH 3 groups. However, the observed rate constants measured by delaying the excitation and ionization laser with respect to each other are significantly faster than computed ones, indicating intrinsic non-RRKM behaviour. A comparably high value of around 30% of the excess energy is released as translation of the H-atom photofragment.

  19. The Physics of Polarization

    NASA Astrophysics Data System (ADS)

    Landi Degl'Innocenti, Egidio

    2015-10-01

    The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.

  20. Atomic magnetometer

    DOEpatents

    Schwindt, Peter [Albuquerque, NM; Johnson, Cort N [Albuquerque, NM

    2012-07-03

    An atomic magnetometer is disclosed which uses a pump light beam at a D1 or D2 transition of an alkali metal vapor to magnetically polarize the vapor in a heated cell, and a probe light beam at a different D2 or D1 transition to sense the magnetic field via a polarization rotation of the probe light beam. The pump and probe light beams are both directed along substantially the same optical path through an optical waveplate and through the heated cell to an optical filter which blocks the pump light beam while transmitting the probe light beam to one or more photodetectors which generate electrical signals to sense the magnetic field. The optical waveplate functions as a quarter waveplate to circularly polarize the pump light beam, and as a half waveplate to maintain the probe light beam linearly polarized.

  1. Quantum Drude oscillator model of atoms and molecules: Many-body polarization and dispersion interactions for atomistic simulation

    NASA Astrophysics Data System (ADS)

    Jones, Andrew P.; Crain, Jason; Sokhan, Vlad P.; Whitfield, Troy W.; Martyna, Glenn J.

    2013-04-01

    Treating both many-body polarization and dispersion interactions is now recognized as a key element in achieving the level of atomistic modeling required to reveal novel physics in complex systems. The quantum Drude oscillator (QDO), a Gaussian-based, coarse grained electronic structure model, captures both many-body polarization and dispersion and has linear scale computational complexity with system size, hence it is a leading candidate next-generation simulation method. Here, we investigate the extent to which the QDO treatment reproduces the desired long-range atomic and molecular properties. We present closed form expressions for leading order polarizabilities and dispersion coefficients and derive invariant (parameter-free) scaling relationships among multipole polarizability and many-body dispersion coefficients that arise due to the Gaussian nature of the model. We show that these “combining rules” hold to within a few percent for noble gas atoms, alkali metals, and simple (first-row hydride) molecules such as water; this is consistent with the surprising success that models with underlying Gaussian statistics often exhibit in physics. We present a diagrammatic Jastrow-type perturbation theory tailored to the QDO model that serves to illustrate the rich types of responses that the QDO approach engenders. QDO models for neon, argon, krypton, and xenon, designed to reproduce gas phase properties, are constructed and their condensed phase properties explored via linear scale diffusion Monte Carlo (DMC) and path integral molecular dynamics (PIMD) simulations. Good agreement with experimental data for structure, cohesive energy, and bulk modulus is found, demonstrating a degree of transferability that cannot be achieved using current empirical models or fully ab initio descriptions.

  2. Heralded entanglement of two remote atoms

    NASA Astrophysics Data System (ADS)

    Krug, Michael; Hofmann, Julian; Ortegel, Norbert; Gerard, Lea; Redeker, Kai; Henkel, Florian; Rosenfeld, Wenjamin; Weber, Markus; Weinfurter, Harald

    2012-06-01

    Entanglement between atomic quantum memories at remote locations will be a key resource for future applications in quantum communication. One possibility to generate such entanglement over large distances is entanglement swapping starting from two quantum memories each entangled with a photon. The photons can be transported to a Bell-state measurement where after the atomic quantum memories are projected onto an entangled state. We have set up two independently operated single atom experiments separated by 20 m. Via a spontaneous decay process each quantum memory, in our case a single Rb-87 atom, emits a single photon whose polarization is entangled with the atomic spin. The photons one emitted from each atom are collected into single-mode optical fibers guided to a non-polarizing 50-50 beam-splitter and detected by avalanche photodetectors. Bunching of indistinguishable photons allows to perform a Bell-state measurement on the photons. Conditioned on the registration of particular two-photon coincidences the spin states of both atoms are measured. The observed correlations clearly prove the entanglement of the two atoms. This is a first step towards creating a basic node of a quantum network as well as a key prerequisite for a future loophole-free test of Bell's inequality.

  3. Polarization-dependent photon switch in a one-dimensional coupled-resonator waveguide.

    PubMed

    Zhang, Zhe-Yong; Dong, Yu-Li; Zhang, Sheng-Li; Zhu, Shi-Qun

    2013-09-09

    Polarization-dependent photon switch is one of the most important ingredients in building future large-scale all-optical quantum network. We present a scheme for a single-photon switch in a one-dimensional coupled-resonator waveguide, where N(a) Λ-type three-level atoms are individually embedded in each of the resonator. By tuning the interaction between atom and field, we show that an initial incident photon with a certain polarization can be transformed into its orthogonal polarization state. Finally, we use the fidelity as a figure of merit and numerically evaluate the performance of our photon switch scheme in varieties of system parameters, such as number of atoms, energy detuning and dipole couplings.

  4. Solar Spectral Lines with Special Polarization Properties for the Calibration of Instrument Polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, W.; Casini, R.; Alemán, T. del Pino

    We investigate atomic transitions that have previously been identified as having zero polarization from the Zeeman effect. Our goal is to identify spectral lines that can be used for the calibration of instrumental polarization of large astronomical and solar telescopes, such as the Daniel K. Inouye Solar Telescope, which is currently under construction on Haleakala. We use a numerical model that takes into account the generation of scattering polarization and its modification by the presence of a magnetic field of arbitrary strength. We adopt values for the Landé factors from spectroscopic measurements or semi-empirical results, thus relaxing the common assumptionmore » of LS-coupling previously used in the literature. The mechanisms dominating the polarization of particular transitions are identified, and we summarize groups of various spectral lines useful for the calibration of spectropolarimetric instruments, classified according to their polarization properties.« less

  5. THE HANLE AND ZEEMAN POLARIZATION SIGNALS OF THE SOLAR Ca II 8542 Å LINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Štěpán, Jiri; Bueno, Javier Trujillo

    We highlight the main results of a three-dimensional (3D) multilevel radiative transfer investigation about the solar disk-center polarization of the Ca ii 8542 Å line. First, through the use of a 3D model of the solar atmosphere, we investigate the linear polarization that occurs due to the atomic level polarization produced by the absorption and scattering of anisotropic radiation, taking into account the symmetry-breaking effects caused by its thermal, dynamic, and magnetic structure. Second, we study the contribution of the Zeeman effect to the linear and circular polarization. Finally, we show examples of the Stokes profiles produced by the jointmore » action of the atomic level polarization and the Hanle and Zeeman effects. We find that the Zeeman effect tends to dominate the linear polarization signals only in the localized patches of opposite magnetic polarity, where the magnetic field is relatively strong and slightly inclined; outside such very localized patches, the linear polarization is often dominated by the contribution of atomic level polarization. We demonstrate that a correct modeling of this last contribution requires taking into account the symmetry-breaking effects caused by the thermal, dynamic, and magnetic structure of the solar atmosphere, and that in the 3D model used the Hanle effect in forward-scattering geometry (disk-center observation) mainly reduces the polarization corresponding to the zero-field case. We emphasize that, in general, a reliable modeling of the linear polarization in the Ca ii 8542 Å line requires taking into account the joint action of atomic level polarization and the Hanle and Zeeman effects.« less

  6. Optically-pumped spin-exchange polarized electron source

    NASA Astrophysics Data System (ADS)

    Pirbhai, Munir Hussein

    Polarized electron beams are an indispensable probe of spin-dependent phenomena in fields of atomic and molecular physics, magnetism and biophysics. While their uses have become widespread, the standard source based on negative electron affinity gallium arsenide (GaAs) remains technically complicated. This has hindered progress on many experiments involving spin-polarized electrons, especially those using target gas loads, which tend to adversely affect the performance of GaAs sources. A robust system based on an alternative way to make polarized electron beams has been devised in this study, which builds on previous work done in our lab. It involves spin-exchange collisions between free, unpolarized electrons and oriented rubidium atoms in the presence of a quenching gas. This system has less stringent vacuum requirements than those of GaAs sources, and is capable of operating in background pressures of ~1mTorr. Beams with ~24% polarization and 4μA of current have been recorded, which is comparable to the performance obtained with the earlier version built in our lab. The present system is however not as unstable as in the previous work, and has the potential to be developed into a "turn-key" source of polarized electron beams. It has also allowed us to undertake a study to find factors which affect the beam polarization in this scheme of producing polarized electrons. Such knowledge will help us to design better optically-pumped spin-exchange polarized electron sources.

  7. Master equation theory applied to the redistribution of polarized radiation in the weak radiation field limit. III. Theory for the multilevel atom

    NASA Astrophysics Data System (ADS)

    Bommier, Véronique

    2016-06-01

    Context. We discuss the case of lines formed by scattering, which comprises both coherent and incoherent scattering. Both processes contribute to form the line profiles in the so-called second solar spectrum, which is the spectrum of the linear polarization of such lines observed close to the solar limb. However, most of the lines cannot be simply modeled with a two-level or two-term atom model, and we present a generalized formalism for this purpose. Aims: The aim is to obtain a formalism that is able to describe scattering in line centers (resonant scattering or incoherent scattering) and in far wings (Rayleigh/Raman scattering or coherent scattering) for a multilevel and multiline atom. Methods: The method is designed to overcome the Markov approximation, which is often performed in the atom-photon interaction description. The method was already presented in the two first papers of this series, but the final equations of those papers were for a two-level atom. Results: We present here the final equations generalized for the multilevel and multiline atom. We describe the main steps of the theoretical development, and, in particular, how we performed the series development to overcome the Markov approximation. Conclusions: The statistical equilibrium equations for the atomic density matrix and the radiative transfer equation coefficients are obtained with line profiles. The Doppler redistribution is also taken into account because we show that the statistical equilibrium equations must be solved for each atomic velocity class.

  8. Complementarity and Young's interference fringes from two atoms

    NASA Astrophysics Data System (ADS)

    Itano, W. M.; Bergquist, J. C.; Bollinger, J. J.; Wineland, D. J.; Eichmann, U.; Raizen, M. G.

    1998-06-01

    The interference pattern of the resonance fluorescence from a J=1/2 to J=1/2 transition of two identical atoms confined in a three-dimensional harmonic potential is calculated. The thermal motion of the atoms is included. Agreement is obtained with experiments [U. Eichmann et al., Phys. Rev. Lett. 70, 2359 (1993)]. Contrary to some theoretical predictions, but in agreement with the present calculations, a fringe visibility greater than 50% can be observed with polarization-selective detection. The dependence of the fringe visibility on polarization has a simple interpretation, based on whether or not it is possible in principle to determine which atom emitted the photon.

  9. Atom Interferometry on Atom Chips - A Novel Approach Towards Precision Inertial Navigation System - PINS

    DTIC Science & Technology

    2010-06-01

    Demonstration of an area-enclosing guided-atom interferometer for rotation sensing, Phys. Rev. Lett. 99, 173201 (2007). 4. Heralded Single- Magnon Quantum...excitations are quantized spin waves ( magnons ), such that transitions between its energy levels ( magnon number states) correspond to highly directional...polarization storage in the form of a single collective-spin excitation ( magnon ) that is shared between two spatially overlapped atomic ensembles

  10. Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble.

    PubMed

    Vernaz-Gris, Pierre; Huang, Kun; Cao, Mingtao; Sheremet, Alexandra S; Laurat, Julien

    2018-01-25

    Quantum memory for flying optical qubits is a key enabler for a wide range of applications in quantum information. A critical figure of merit is the overall storage and retrieval efficiency. So far, despite the recent achievements of efficient memories for light pulses, the storage of qubits has suffered from limited efficiency. Here we report on a quantum memory for polarization qubits that combines an average conditional fidelity above 99% and efficiency around 68%, thereby demonstrating a reversible qubit mapping where more information is retrieved than lost. The qubits are encoded with weak coherent states at the single-photon level and the memory is based on electromagnetically-induced transparency in an elongated laser-cooled ensemble of cesium atoms, spatially multiplexed for dual-rail storage. This implementation preserves high optical depth on both rails, without compromise between multiplexing and storage efficiency. Our work provides an efficient node for future tests of quantum network functionalities and advanced photonic circuits.

  11. On-site monitoring of atomic density number for an all-optical atomic magnetometer based on atomic spin exchange relaxation.

    PubMed

    Zhang, Hong; Zou, Sheng; Chen, Xiyuan; Ding, Ming; Shan, Guangcun; Hu, Zhaohui; Quan, Wei

    2016-07-25

    We present a method for monitoring the atomic density number on site based on atomic spin exchange relaxation. When the spin polarization P ≪ 1, the atomic density numbers could be estimated by measuring magnetic resonance linewidth in an applied DC magnetic field by using an all-optical atomic magnetometer. The density measurement results showed that the experimental results the theoretical predictions had a good consistency in the investigated temperature range from 413 K to 463 K, while, the experimental results were approximately 1.5 ∼ 2 times less than the theoretical predictions estimated from the saturated vapor pressure curve. These deviations were mainly induced by the radiative heat transfer efficiency, which inevitably leaded to a lower temperature in cell than the setting temperature.

  12. Polar Metals by Geometric Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, T. H.; Puggioni, D.; Yuan, Y.

    2016-05-05

    Gauss's law dictates that the net electric field inside a conductor in electrostatic equilibrium is zero by effective charge screening; free carriers within a metal eliminate internal dipoles that may arise owing to asymmetric charge distributions(1). Quantum physics supports this view(2), demonstrating that delocalized electrons make a static macroscopic polarization, an ill-defined quantity in metals(3)-it is exceedingly unusual to find a polar metal that exhibits long-range ordered dipoles owing to cooperative atomic displacements aligned from dipolar interactions as in insulating phases(4). Here we describe the quantum mechanical design and experimental realization of room-temperature polar metals in thin-film ANiO(3) perovskite nickelatesmore » using a strategy based on atomic-scale control of inversion-preserving (centric) displacements(5). We predict with ab initio calculations that cooperative polar A cation displacements are geometrically stabilized with a non-equilibrium amplitude and tilt pattern of the corner-connected NiO6 octahedra-the structural signatures of perovskites-owing to geometric constraints imposed by the underlying substrate. Heteroepitaxial thin-films grown on LaAlO3 (111) substrates fulfil the design principles. We achieve both a conducting polar monoclinic oxide that is inaccessible in compositionally identical films grown on (001) substrates, and observe a hidden, previously unreported(6-10), non-equilibrium structure in thin-film geometries. We expect that the geometric stabilization approach will provide novel avenues for realizing new multifunctional materials with unusual coexisting properties.« less

  13. Can Internal Conversion BE Controlled by Mode-Specific Vibrational Excitation in Polyatomic Molecules

    NASA Astrophysics Data System (ADS)

    Portnov, Alexander; Epshtein, Michael; Bar, Ilana

    2017-06-01

    Nonadiabatic processes, dominated by dynamic passage of reactive fluxes through conical intersections (CIs) are considered to be appealing means for manipulating reaction paths. One approach that is considered to be effective in controlling the course of dissociation processes is the selective excitation of vibrational modes containing a considerable component of motion. Here, we have chosen to study the predissociation of the model test molecule, methylamine and its deuterated isotopologues, excited to well-characterized quantum states on the first excited electronic state, S_{1}, by following the N-H(D) bond fission dynamics through sensitive H(D) photofragment probing. The branching ratios between slow and fast H(D) photofragments, the internal energies of their counter radical photofragments and the anisotropy parameters for fast H photofragments, confirm correlated anomalies for predissociation initiated from specific rovibronic states, reflecting the existence of a dynamic resonance in each molecule. This resonance strongly depends on the energy of the initially excited rovibronic states, the evolving vibrational mode on the repulsive S_{1} part during N-H(D) bond elongation, and the manipulated passage through the CI that leads to radicals excited with C-N-H(D) bending and preferential perpendicular bond breaking, relative to the photolyzing laser polarization, in molecules containing the NH_{2} group. The indicated resonance plays an important role in the bifurcation dynamics at the CI and can be foreseen to exist in other photoinitiated processes and to control their outcome.

  14. Investigation of polar and stereoelectronic effects on pure excited-state hydrogen atom abstractions from phenols and alkylbenzenes.

    PubMed

    Pischel, Uwe; Patra, Digambara; Koner, Apurba L; Nau, Werner M

    2006-01-01

    The fluorescence quenching of singlet-excited 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by 22 phenols and 12 alkylbenzenes has been investigated. Quenching rate constants in acetonitrile are in the range of 10(8)-10(9) M(-1)s(-1) for phenols and 10(5)-10(6) M(-1)s(-1) for alkylbenzenes. In contrast to the quenching of triplet-excited benzophenone, no exciplexes are involved, so that a pure hydrogen atom transfer is proposed as quenching mechanism. This is supported by (1) pronounced deuterium isotope effects (kH/kD ca 4-6), which were observed for phenols and alkylbenzenes, and (2) a strongly endergonic thermodynamics for charge transfer processes (electron transfer, exciplex formation). In the case of phenols, linear free energy relationships applied, which led to a reaction constant of rho = -0.40, suggesting a lower electrophilicity of singlet-excited DBO than that of triplet-excited ketones and alkoxyl radicals. The reactivity of singlet-excited DBO exposes statistical, steric, polar and stereoelectronic effects on the hydrogen atom abstraction process in the absence of complications because of competitive exciplex formation.

  15. Chip-Scale Atomic Magnetometers

    NASA Astrophysics Data System (ADS)

    Knappe, Svenja

    2010-03-01

    Atomic magnetometers have reached sensitivities rivaling those of superconducting quantum interference devices (SQUIDs) in some frequency ranges [1]. A major advancement in atomic magnetometry was made possible by implementing interrogation schemes that suppress spin-exchange collisions between the alkali atoms [2]. Good signal-to-noise can be achieved by operation at very high alkali densities. At the same time, it introduces the challenge to create uniform spin-polarization and monitor the atomic precession about the magnetic field in atomic vapors with large optical densities. Off-resonant detection of the polarization rotation rather than the absorption is essential to operate in this regime. By use of microfabrication methods, we are miniaturizing such atomic magnetometers. They consist of miniature vapor cells with volumes of a few cubic millimeters integrated with micro-optical components. We present the advancement in sensitivities of such devices over nearly four orders of magnitude [3]. This allows for small low-power room-temperature devices with sensitivities that get close to those of SQUIDs in the frequency range around 100 Hz. We outline the current performance of chip-scale atomic magnetometers and the major challenges. Apart from efficient pumping and probing at high optical densities, these include magnetic noise caused by several sensor components and environmental factors, noise on the light fields, as well as magnetic fields from current-carrying parts, such as heaters, lasers, and photodetectors.[4pt] [1] Allred et al., Phys. Rev. Lett. 89, 130801 (2002) [0pt] [2] Happer and Tam, Phys. Rev. A 16, 1877 (1977) [0pt] [3] Griffith et al., Appl. Phys. Lett 94, 023502 (2009)

  16. Polarization momentum transfer collision: Faxen-Holtzmark theory and quantum dynamic shielding.

    PubMed

    Ki, Dae-Han; Jung, Young-Dae

    2013-04-21

    The influence of the quantum dynamic shielding on the polarization momentum transport collision is investigated by using the Faxen-Holtzmark theory in strongly coupled Coulomb systems. The electron-atom polarization momentum transport cross section is derived as a function of the collision energy, de Broglie wavelength, Debye length, thermal energy, and atomic quantum states. It is found that the dynamic shielding enhances the scattering phase shift as well as the polarization momentum transport cross section. The variation of quantum effect on the momentum transport collision due to the change of thermal energy and de Broglie wavelength is also discussed.

  17. Velocity distributions of hydrogen atoms and hydroxyl radicals produced through solar photodissociation of water

    NASA Astrophysics Data System (ADS)

    Wu, C. Y. R.; Chen, F. Z.

    1993-04-01

    The velocity distributions of H and OH fragments produced through solar photodissociation of gaseous H2O molecules under collisionless conditions are presented. The calculations are carried out using: the most recently available absolute partial cross sections for the production of H and OH through photodissociation of H2O from its absorption onset at 1860 A down to 500 A; the newly available vibrational and rotational energy distributions of both the excited and ground state OH photofragments; the calculated cross sections for the total dissociation processes; and the integrated solar flux in 10 A increments from 500 to 1860 A in the continuum regions and the specific wavelength and flux at the bright solar lines. The calculated results show that the H atoms and the OH radicals produced exhibit multiple velocity groups. Since most current cometary modeling uses a single velocity of 20 km/sec associated with the photodissociation of H2O, the present results may be useful in interpreting the many peaks observed in the velocity distributions of the H Lyman alpha and H alpha of comets.

  18. Magnetism of a relaxed single atom vacancy in graphene

    NASA Astrophysics Data System (ADS)

    Wu, Yunyi; Hu, Yonghong; Xue, Li; Sun, Tieyu; Wang, Yu

    2018-04-01

    It has been suggested in literature that defects in graphene (e.g. absorbed atoms and vacancies) may induce magnetizations due to unpaired electrons. The nature of magnetism, i.e. ferromagnetic or anti-ferromagnetic, is dependent on a number of structural factors including locations of magnetic moments and lattice symmetry. In the present work we investigated the influence of a relaxed single atom vacancy in garphnene on magnetization which were obtained under different pinning boundary conditions, aiming to achieve a better understanding of the magnetic behaviors of graphene. Through first principles calculations, we found that major spin polarizations occur on atoms that deviate slightly from their original lattice positions, and pinning boundaries could also affect the relaxed positions of atoms and determine which atom(s) would become the main source(s) of total spin polarizations and magnetic moments. When the pinning boundary condition is free, a special non-magnetic and semi-conductive structure may be obtained, suggesting that magnetization should more readily occur under pinning boundary conditions.

  19. Scattering Polarization in the Chromosphere

    NASA Technical Reports Server (NTRS)

    Keller, C. U.; Sheeley, N. R., Jr.

    1999-01-01

    Scattering polarization from the photosphere observed close to the solar limb has recently become of interest to study turbulent magnetic fields, abundances, and radiative transfer effects. We extend these studies by measuring the scattering polarization off the limb, i.e. in the chromosphere. However, instrumental effects are much more pronounced and more complicated than those affecting on-disk measurements. In particular, scattered light from the telescope mirrors leads to a new type of instrumental polarization that we describe in detail. The differences between the linearly polarized spectra on the disk and off the limb are often very substantial. Here we show the profiles of HeI D(sub 3), the OI triplet at 777 nm, and the Nal D lines. The change in the latter is in reasonable agreement with the recent modeling efforts of atomic polarization in the lower level by Landi Degl'Innocenti (1998).

  20. The polarization and the fundamental sensitivity of 39K (133Cs)-85Rb-4He hybrid optical pumping spin exchange relaxation free atomic magnetometers.

    PubMed

    Liu, Jian-Hua; Jing, Dong-Yang; Wang, Liang-Liang; Li, Yang; Quan, Wei; Fang, Jian-Cheng; Liu, Wu-Ming

    2017-07-28

    The hybrid optical pumping spin exchange relaxation free (SERF) atomic magnetometers can realize ultrahigh sensitivity measurement of magnetic field and inertia. We have studied the 85 Rb polarization of two types of hybrid optical pumping SERF magnetometers based on 39 K- 85 Rb- 4 He and 133 Cs- 85 Rb- 4 He respectively. Then we found that 85 Rb polarization varies with the number density of buffer gas 4 He and quench gas N 2 , pumping rate of pump beam and cell temperature respectively, which will provide an experimental guide for the design of the magnetometer. We obtain a general formula on the fundamental sensitivity of the hybrid optical pumping SERF magnetometer due to shot-noise. The formula describes that the fundamental sensitivity of the magnetometer varies with the number density of buffer gas and quench gas, the pumping rate of pump beam, external magnetic field, cell effective radius, measurement volume, cell temperature and measurement time. We obtain a highest fundamental sensitivity of 1.5073 aT/Hz 1/2 (1 aT = 10 -18 T) with 39 K- 85 Rb- 4 He magnetometer between above two types of magnetometers when 85 Rb polarization is 0.1116. We estimate the fundamental sensitivity limit of the hybrid optical pumping SERF magnetometer to be superior to 1.8359 × 10 -2 aT/Hz 1/2 , which is higher than the shot-noise-limited sensitivity of 1 aT/Hz 1/2 of K SERF atomic magnetometer.

  1. Determination of atomic site susceptibility tensors from neutron diffraction data on polycrystalline samples.

    PubMed

    Gukasov, A; Brown, P J

    2010-12-22

    Polarized neutron diffraction can provide information about the atomic site susceptibility tensor χ(ij) characterizing the magnetic response of individual atoms to an external magnetic field (Gukasov and Brown 2002 J. Phys.: Condens. Mater. 14 8831). The six independent atomic susceptibility parameters (ASPs) can be determined from polarized neutron flipping ratio measurements on single crystals and visualized as magnetic ellipsoids which are analogous to the thermal ellipsoids obtained from atomic displacement parameters (ADPs). We demonstrate now that the information about local magnetic susceptibility at different magnetic sites in a crystal can also be obtained from polarized and unpolarized neutron diffraction measurements on magnetized powder samples. The validity of the method is illustrated by the results of such measurements on a polycrystalline sample of Tb(2)Sn(2)O(7).

  2. Stabilization of Polar Nanoregions in Pb-free Ferroelectrics

    DOE PAGES

    Pramanick, A.; Dmowski, Wojciech; Egami, Takeshi; ...

    2018-05-18

    In this study, the formation of polar nanoregions through solid-solution additions is known to enhance significantly the functional properties of ferroelectric materials. Despite considerable progress in characterizing the microscopic behavior of polar nanoregions (PNR), understanding their real-space atomic structure and dynamics of their formation remains a considerable challenge. Here, using the method of dynamic pair distribution function, we provide direct insights into the role of solid-solution additions towards the stabilization of polar nanoregions in the Pb-free ferroelectric of Ba(Zr,Ti)O 3. It is shown that for an optimum level of substitution of Ti by larger Zr ions, the dynamics of atomicmore » displacements for ferroelectric polarization are slowed sufficiently below THz frequencies, which leads to increased local correlation among dipoles within PNRs. The dynamic pair distribution function technique demonstrates a unique capability to obtain insights into locally correlated atomic dynamics in disordered materials, including new Pb-free ferroelectrics, which is necessary to understand and control their functional properties.« less

  3. Stabilization of Polar Nanoregions in Pb-free Ferroelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pramanick, A.; Dmowski, Wojciech; Egami, Takeshi

    In this study, the formation of polar nanoregions through solid-solution additions is known to enhance significantly the functional properties of ferroelectric materials. Despite considerable progress in characterizing the microscopic behavior of polar nanoregions (PNR), understanding their real-space atomic structure and dynamics of their formation remains a considerable challenge. Here, using the method of dynamic pair distribution function, we provide direct insights into the role of solid-solution additions towards the stabilization of polar nanoregions in the Pb-free ferroelectric of Ba(Zr,Ti)O 3. It is shown that for an optimum level of substitution of Ti by larger Zr ions, the dynamics of atomicmore » displacements for ferroelectric polarization are slowed sufficiently below THz frequencies, which leads to increased local correlation among dipoles within PNRs. The dynamic pair distribution function technique demonstrates a unique capability to obtain insights into locally correlated atomic dynamics in disordered materials, including new Pb-free ferroelectrics, which is necessary to understand and control their functional properties.« less

  4. Dynamic Nuclear Polarization NMR in Human Cells Using Fluorescent Polarizing Agents.

    PubMed

    Albert, Brice J; Gao, Chukun; Sesti, Erika L; Saliba, Edward P; Alaniva, Nicholas; Scott, Faith J; Sigurdsson, Snorri Th; Barnes, Alexander B

    2018-06-20

    Solid-state nuclear magnetic resonance (NMR) enables atomic resolution characterization of molecular structure and dynamics within complex heterogeneous samples, but it is typically insensitive. Dynamic nuclear polarization (DNP) increases NMR signal intensity by orders of magnitude and can be performed in combination with magic angle spinning (MAS) for sensitive, high-resolution spectroscopy. Here we report MAS DNP experiments, for the first time, within intact human cells with >40-fold DNP enhancement and a sample temperature below 6 K. In addition to cryogenic MAS results below 6 K, we also show in-cell DNP enhancements of 57-fold at 90 K. In-cell DNP is demonstrated using biradicals and sterically-shielded monoradicals as polarizing agents. A novel trimodal polarizing agent is introduced for DNP, which contains a nitroxide biradical, a targeting peptide for cell penetration, and a fluorophore for subcellular localization with confocal microscopy. The fluorescent polarizing agent provides in-cell DNP enhancements of 63-fold at a concentration of 2.7 mM. These experiments pave the way for structural characterization of biomolecules in an endogenous cellular context.

  5. Interface control of bulk ferroelectric polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, P; Luo, Weidong; Yi, D.

    2012-01-01

    The control of material interfaces at the atomic level has led to no- vel interfacial properties and functionalities. In particular, the study of polar discontinuities at interfaces between complex oxides lies at the frontier of modern condensed matter research. Here we em- ploy a combination of experimental measurements and theoretical calculations to demonstrate the control of a bulk property, namely ferroelectric polarization, of a heteroepitaxial bilayer by precise atomic-scale interface engineering. More specifically, the control is achieved by exploiting the interfacial valence mismatch to influence the electrostatic potential step across the interface, which manifests itself as the biased-voltage in ferroelectricmore » hysteresis loops and determines the ferroelectric state. A broad study of diverse systems comprising different ferroelectrics and conducting perovskite un- derlayers extends the generality of this phenomenon.« less

  6. Sequential two-photon double ionization of noble gases by circularly polarized XUV radiation

    NASA Astrophysics Data System (ADS)

    Gryzlova, E. V.; Grum-Grzhimailo, A. N.; Kuzmina, E. I.; Strakhova, S. I.

    2014-10-01

    Photoelectron angular distributions (PADs) and angular correlations between two emitted electrons in sequential two-photon double ionization (2PDI) of atoms by circularly polarized radiation are studied theoretically. In particular, the sequential 2PDI of the valence n{{p}6} shell in noble gas atoms (neon, argon, krypton) is analyzed, accounting for the first-order corrections to the dipole approximation. Due to different selection rules in ionization transitions, the circular polarization of photons causes some new features of the cross sections, PADs and angular correlation functions in comparison with the case of linearly polarized photons.

  7. Iterative Methods for the Non-LTE Transfer of Polarized Radiation: Resonance Line Polarization in One-dimensional Atmospheres

    NASA Astrophysics Data System (ADS)

    Trujillo Bueno, Javier; Manso Sainz, Rafael

    1999-05-01

    This paper shows how to generalize to non-LTE polarization transfer some operator splitting methods that were originally developed for solving unpolarized transfer problems. These are the Jacobi-based accelerated Λ-iteration (ALI) method of Olson, Auer, & Buchler and the iterative schemes based on Gauss-Seidel and successive overrelaxation (SOR) iteration of Trujillo Bueno and Fabiani Bendicho. The theoretical framework chosen for the formulation of polarization transfer problems is the quantum electrodynamics (QED) theory of Landi Degl'Innocenti, which specifies the excitation state of the atoms in terms of the irreducible tensor components of the atomic density matrix. This first paper establishes the grounds of our numerical approach to non-LTE polarization transfer by concentrating on the standard case of scattering line polarization in a gas of two-level atoms, including the Hanle effect due to a weak microturbulent and isotropic magnetic field. We begin demonstrating that the well-known Λ-iteration method leads to the self-consistent solution of this type of problem if one initializes using the ``exact'' solution corresponding to the unpolarized case. We show then how the above-mentioned splitting methods can be easily derived from this simple Λ-iteration scheme. We show that our SOR method is 10 times faster than the Jacobi-based ALI method, while our implementation of the Gauss-Seidel method is 4 times faster. These iterative schemes lead to the self-consistent solution independently of the chosen initialization. The convergence rate of these iterative methods is very high; they do not require either the construction or the inversion of any matrix, and the computing time per iteration is similar to that of the Λ-iteration method.

  8. Direct Probing of Polarization Charge at Nanoscale Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Owoong; Seol, Daehee; Lee, Dongkyu

    Ferroelectric materials possess spontaneous polarization that can be used for multiple applications. Owing to a long-term development of reducing the sizes of devices, the preparation of ferroelectric materials and devices is entering the nanometer-scale regime. In order to evaluate the ferroelectricity, there is a need to investigate the polarization charge at the nanoscale. Nonetheless, it is generally accepted that the detection of polarization charges using a conventional conductive atomic force microscopy (CAFM) without a top electrode is not feasible because the nanometer-scale radius of an atomic force microscopy (AFM) tip yields a very low signal-to-noise ratio. But, the detection ismore » unrelated to the radius of an AFM tip and, in fact, a matter of the switched area. In this work, the direct probing of the polarization charge at the nanoscale is demonstrated using the positive-up-negative-down method based on the conventional CAFM approach without additional corrections or circuits to reduce the parasitic capacitance. The polarization charge densities of 73.7 and 119.0 µC cm -2 are successfully probed in ferroelectric nanocapacitors and thin films, respectively. The results we obtained show the feasibility of the evaluation of polarization charge at the nanoscale and provide a new guideline for evaluating the ferroelectricity at the nanoscale.« less

  9. Atomic magnetic gradiometer for room temperature high sensitivity magnetic field detection

    DOEpatents

    Xu, Shoujun [Berkeley, CA; Lowery, Thomas L [Belmont, MA; Budker, Dmitry [El Cerrito, CA; Yashchuk, Valeriy V [Richmond, CA; Wemmer, David E [Berkeley, CA; Pines, Alexander [Berkeley, CA

    2009-08-11

    A laser-based atomic magnetometer (LBAM) apparatus measures magnetic fields, comprising: a plurality of polarization detector cells to detect magnetic fields; a laser source optically coupled to the polarization detector cells; and a signal detector that measures the laser source after being coupled to the polarization detector cells, which may be alkali cells. A single polarization cell may be used for nuclear magnetic resonance (NMR) by prepolarizing the nuclear spins of an analyte, encoding spectroscopic and/or spatial information, and detecting NMR signals from the analyte with a laser-based atomic magnetometer to form NMR spectra and/or magnetic resonance images (MRI). There is no need of a magnetic field or cryogenics in the detection step, as it is detected through the LBAM.

  10. Understanding ultracold polar molecules

    NASA Astrophysics Data System (ADS)

    Julienne, Paul

    2009-05-01

    The successful production of a dense sample of ultracold ground state KRb polar molecules [1] opens the door to a new era of research with dipolar gases and lattices of such species. This feat was achieved by first associating a K and a Rb atom to make a weakly bound Feshbach molecule and then coherently transferring the population to the ground vibrational level of the molecule. This talk focuses on theoretical issues associated with making and using ultracold polar molecules, using KRb as an example [2]. Full understanding of this species and the processes by which it is made requires taking advantage of accurate molecular potentials [3], ab initio calculations [4], and the properties of the long-range potential. A highly accurate model is available for KRb for all bound states below the ground state separated atom limit and could be constructed for other species. The next step is to develop an understanding of the interactions between polar molecules, and their control in the ultracold domain. Understanding long-range interactions and threshold resonances will be crucial for future work. [1] K.-K. Ni, et al, Science 322, 231(2008). [2] P. S. Julienne, arXiv:0812:1233. [3] Pashov et al., Phys. Rev. A76, 022511 (2007). [4] S. Kotochigova, et al., arXiv:0901.1486.

  11. Evidence for Nuclear Tensor Polarization of Deuterium Molecules in Storage Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van den Brand, J.; Bulten, H.; Zhou, Z.

    1997-02-01

    Deuterium molecules were obtained by recombination, on a copper surface, of deuterium atoms prepared in specific hyperfine states. The molecules were stored for about 5ms in an open-ended cylindrical cell, placed in a 23mT magnetic field, and their tensor polarization was measured by elastic scattering of 704MeV electrons. The results of the measurements are consistent with the deuterium molecules retaining the tensor polarization of the initial atoms. {copyright} {ital 1997} {ital The American Physical Society}

  12. Quantum teleportation with atoms trapped in cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Jaeyoon; Lee, Hai-Woong

    2004-09-01

    We propose a scheme to implement the quantum teleportation protocol with single atoms trapped in cavities. The scheme is based on the adiabatic passage and the polarization measurement. We show that it is possible to teleport the internal state of an atom trapped in a cavity to an atom trapped in another cavity with the success probability of 1/2 and the fidelity of 1. The scheme is resistant to a number of considerable imperfections such as the violation of the Lamb-Dicke condition, weak atom-cavity coupling, spontaneous emission, and detection inefficiency.

  13. Electric polarization switching in an atomically thin binary rock salt structure

    NASA Astrophysics Data System (ADS)

    Martinez-Castro, Jose; Piantek, Marten; Schubert, Sonja; Persson, Mats; Serrate, David; Hirjibehedin, Cyrus F.

    2018-01-01

    Inducing and controlling electric dipoles is hindered in the ultrathin limit by the finite screening length of surface charges at metal-insulator junctions1-3, although this effect can be circumvented by specially designed interfaces4. Heterostructures of insulating materials hold great promise, as confirmed by perovskite oxide superlattices with compositional substitution to artificially break the structural inversion symmetry5-8. Bringing this concept to the ultrathin limit would substantially broaden the range of materials and functionalities that could be exploited in novel nanoscale device designs. Here, we report that non-zero electric polarization can be induced and reversed in a hysteretic manner in bilayers made of ultrathin insulators whose electric polarization cannot be switched individually. In particular, we explore the interface between ionic rock salt alkali halides such as NaCl or KBr and polar insulating Cu2N terminating bulk copper. The strong compositional asymmetry between the polar Cu2N and the vacuum gap breaks inversion symmetry in the alkali halide layer, inducing out-of-plane dipoles that are stabilized in one orientation (self-poling). The dipole orientation can be reversed by a critical electric field, producing sharp switching of the tunnel current passing through the junction.

  14. High precision optical spectroscopy and quantum state selected photodissociation of ultracold 88Sr2 molecules in an optical lattice

    NASA Astrophysics Data System (ADS)

    McDonald, Mickey

    2017-04-01

    Over the past several decades, rapid progress has been made toward the accurate characterization and control of atoms, epitomized by the ever-increasing accuracy and precision of optical atomic lattice clocks. Extending this progress to molecules will have exciting implications for chemistry, condensed matter physics, and precision tests of physics beyond the Standard Model. My thesis describes work performed over the past six years to establish the state of the art in manipulation and quantum control of ultracold molecules. We describe a thorough set of measurements characterizing the rovibrational structure of weakly bound 88Sr2 molecules from several different perspectives, including determinations of binding energies; linear, quadratic, and higher order Zeeman shifts; transition strengths between bound states; and lifetimes of narrow subradiant states. Finally, we discuss measurements of photofragment angular distributions produced by photodissociation of molecules in single quantum states, leading to an exploration of quantum-state-resolved ultracold chemistry. The images of exploding photofragments produced in these studies exhibit dramatic interference effects and strongly violate semiclassical predictions, instead requiring a fully quantum mechanical description.

  15. New parameter-free polarization potentials in low-energy positron collisions

    NASA Technical Reports Server (NTRS)

    Jain, Ashok

    1990-01-01

    The polarization potential plays a decisive role in shaping up the cross sections in low energy positron collisions with atoms and molecules. However, its inclusion without involving any adjustable parameter, is still a challenge. Various other techniques employed so far for positron collisions are summarized, and a new, nonadjustable and very simple form of the polarization potential for positron-atom (molecule) collisions below the threshold of positronium formation is discussed. This new recently proposed potential is based on the correlation energy of a single positron in a homogeneous electron gas. The correlation energy was calculated by solving the Schrodinger equation of the positron-electron system and fitted to an analytical form in various ranges of the density parameter. In the outside region, the correlation energy is joined smoothly with the correct asymptotic form. This new positron correlation polarization (PCOP) potential was tested on several atomic and molecular targets such as the Ar, CO, and CH4. The results on the total and differential cross sections on these targets are shown along with the experimental data where available.

  16. Recirculation of Laser Power in an Atomic Fountain

    NASA Technical Reports Server (NTRS)

    Enzer, Daphna G.; Klipstein, WIlliam M.; Moore, James D.

    2007-01-01

    A new technique for laser-cooling atoms in a cesium atomic fountain frequency standard relies on recirculation of laser light through the atom-collection region of the fountain. The recirculation, accomplished by means of reflections from multiple fixed beam-splitter cubes, is such that each of two laser beams makes three passes. As described below, this recirculation scheme offers several advantages over prior designs, including simplification of the laser system, greater optical power throughput, fewer optical and electrical connections, and simplification of beam power balancing. A typical laser-cooled cesium fountain requires the use of six laser beams arranged as three orthogonal pairs of counter-propagating beams to decelerate the atoms and hold them in a three-dimensional optical trap in vacuum. Typically, these trapping/cooling beams are linearly polarized and are positioned and oriented so that (1) counter-propagating beams in each pair have opposite linear polarizations and (2) three of the six orthogonal beams have the sum of their propagation directions pointing up, while the other three have the sum of their propagation directions pointing down. In a typical prior design, two lasers are used - one to generate the three "up" beams, the other to generate the three "down" beams. For this purpose, the output of each laser is split three ways, then the resulting six beams are delivered to the vacuum system, independently of each other, via optical fibers. The present recirculating design also requires two lasers, but the beams are not split before delivery. Instead, only one "up" beam and one oppositely polarized "down" beam are delivered to the vacuum system, and each of these beams is sent through the collection region three times. The polarization of each beam on each pass through the collection region is set up to yield the same combination of polarization and propagation directions as described above. In comparison with the prior design, the present

  17. Polarity control of GaN epitaxial films grown on LiGaO2(001) substrates and its mechanism.

    PubMed

    Zheng, Yulin; Wang, Wenliang; Li, Xiaochan; Li, Yuan; Huang, Liegen; Li, Guoqiang

    2017-08-16

    The polarity of GaN epitaxial films grown on LiGaO 2 (001) substrates by pulsed laser deposition has been well controlled. It is experimentally proved that the GaN epitaxial films grown on nitrided LiGaO 2 (001) substrates reveal Ga-polarity, while the GaN epitaxial films grown on non-nitrided LiGaO 2 (001) substrates show N-polarity. The growth mechanisms for these two cases are systematically studied by first-principles calculations based on density functional theory. Theoretical calculation presents that the adsorption of a Ga atom preferentially occurs at the center of three N atoms stacked on the nitrided LiGaO 2 (001) substrates, which leads to the formation of Ga-polarity GaN. Whereas the adsorption of a Ga atom preferentially deposits at the top of a N atom stacked on the non-nitrided LiGaO 2 (001) substrates, which results in the formation of N-polarity GaN. This work of controlling the polarity of GaN epitaxial films is of paramount importance for the fabrication of group-III nitride devices for various applications.

  18. Studies on Beam Formation in an Atomic Beam Source

    NASA Astrophysics Data System (ADS)

    Nass, A.; Stancari, M.; Steffens, E.

    2009-08-01

    Atomic beam sources (ABS) are widely used workhorses producing polarized atomic beams for polarized gas targets and polarized ion sources. Although they have been used for decades the understanding of the beam formation processes is crude. Models were used more or less successfully to describe the measured intensity and beam parameters. ABS's are also foreseen for future experiments, such as PAX [1]. An increase of intensity at a high polarization would be beneficial. A direct simulation Monte-Carlo method (DSMC) [2] was used to describe the beam formation of a hydrogen or deuterium beam in an ABS. For the first time a simulation of a supersonic gas expansion on a molecular level for this application was performed. Beam profile and Time-of-Flight measurements confirmed the simulation results. Furthermore a new method of beam formation was tested, the Carrier Jet method [3], based on an expanded beam surrounded by an over-expanded carrier jet.

  19. Interference of resonance fluorescence from two four-level atoms

    NASA Astrophysics Data System (ADS)

    Wong, T.; Tan, S. M.; Collett, M. J.; Walls, D. F.

    1997-02-01

    In a recent experiment by Eichmann et al. [Phys. Rev. Lett. 70, 2359 (1993)], polarization-sensitive measurements of the fluorescence from two four-level ions driven by a linearly polarized laser were made. Depending on the polarization chosen, different degrees of interference were observed. We carry out a theoretical and numerical study of this system, showing that the results can largely be understood by treating the atoms as independent radiators which are synchronized by the phase of the incident laser field. The interference and its loss may be described in terms of the difference between coherent and incoherent driving of the various atomic transitions in the steady state. In the numerical simulations, which are carried out using the Monte Carlo wave-function method, we remove the assumption that the atoms radiate independently and consider the photodetection process in detail. This allows us to see the total interference pattern build up from individual photodetections and also to see the effects of superfluorescence, which become important when the atomic separation is comparable to an optical wavelength. The results of the calculations are compared with the experiment. We also carry out simulations in the non-steady-state regime and discuss the relationship between the visibility of the interference pattern and which-path considerations.

  20. Recoil Inversion in the Photodissociation of Carbonyl Sulfide near 234 nm.

    PubMed

    Sofikitis, Dimitris; Suarez, Jaime; Schmidt, Johan A; Rakitzis, T Peter; Farantos, Stavros C; Janssen, Maurice H M

    2017-06-23

    We report the observation of recoil inversion of the CO (v=0, J_{CO}=66) state in the UV dissociation of lab-frame oriented carbonyl sulfide (OCS). This state is ejected in the opposite direction with respect to all other (>30) states and in absence of any OCS rotation, thus resulting in spatial filtering of this particular high-J rovibrational state. This inversion is caused by resonances occurring in shallow local minima of the molecular potential, which bring the sulfur closer to the oxygen than the carbon atom, and is a striking example where such subtleties severely modify the photofragment trajectories. The resonant behavior is observed only in the photofragment trajectories and not in their population, showing that stereodynamic measurements from oriented molecules offer an indispensable probe for exploring energy landscapes.

  1. Ab initio theory of noble gas atoms in bcc transition metals.

    PubMed

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; Gan, Jian

    2018-06-18

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe). Our charge density analysis indicates that the strong polarization of nearest-neighbor metal atoms by noble gas interstitials is the electronic origin of their high formation energies. Such polarization becomes more significant with an increasing gas atom size and interstitial charge density in the host bcc metal, which explains the similar trend followed by the unrelaxed formation energies of noble gas interstitials. Upon allowing for local relaxation, nearby metal atoms move farther away from gas interstitials in order to decrease polarization, albeit at the expense of increasing the elastic strain energy. Such atomic relaxation is found to play an important role in governing both the energetics and site preference of noble gas atoms in bcc metals. Our most notable finding is that the fully relaxed formation energies of noble gas interstitials are strongly correlated with the elastic shear modulus of the bcc metal, and the physical origin of this unexpected correlation has been elucidated by our theoretical analysis based on the effective-medium theory. The kinetic behavior of noble gas atoms and their interaction with pre-existing vacancies in bcc transition metals have also been discussed in this work.

  2. Chiral Nematic Structure of Cellulose Nanocrystal Suspensions and Films; Polarized Light and Atomic Force Microscopy

    PubMed Central

    Gray, Derek G.; Mu, Xiaoyue

    2015-01-01

    Cellulosic liquid crystalline solutions and suspensions form chiral nematic phases that show a rich variety of optical textures in the liquid crystalline state. These ordered structures may be preserved in solid films prepared by evaporation of solvent or suspending medium. Film formation from aqueous suspensions of cellulose nanocrystals (CNC) was investigated by polarized light microscopy, optical profilometry and atomic force microscopy (AFM). An attempt is made to interpret qualitatively the observed textures in terms of the orientation of the cellulose nanocrystals in the suspensions and films, and the changes in orientation caused by the evaporative process. Mass transfer within the evaporating droplet resulted in the formation of raised rings whose magnitude depended on the degree of pinning of the receding contact line. AFM of dry films at short length scales showed a radial orientation of the CNC at the free surface of the film, along with a radial height variation with a period of approximately P/2, ascribed to the anisotropic shrinkage of the chiral nematic structure. PMID:28793684

  3. Plasmonic metasurface for simultaneous detection of polarization and spectrum.

    PubMed

    Pelzman, Charles; Cho, Sang-Yeon

    2016-03-15

    We present a new plasmonic metasurface for simultaneous detection of polarization and spectrum of incident light. The demonstrated metasurface is a rationally designed cluster of artificial atoms that are engineered to exhibit polarization and wavelength-selective optical transmission. The fundamental building block of this structure is periodically coupled subwavelength aperture arrays with different orientations and lattice constants. When integrated with pixelated photodetectors, the metasurface can be used to measure the polarization and spectral information of an optical input. In this Letter, simultaneous detection of the polarization and spectrum of polarized light was experimentally demonstrated by analyzing the transmitted intensity distribution through the metasurface. The demonstrated metasurface offers great potential for many applications, such as polarimetric multispectral imaging and polarization-division multiplexing in optical communications.

  4. Generation of single attosecond pulse within one atomic unit by using multi-cycle inhomogeneous polarization gating technology in bowtie-shaped nanostructure

    NASA Astrophysics Data System (ADS)

    Feng, Liqiang; Liu, Hang

    2018-04-01

    The generations of high-order harmonic spectra and single attosecond pulses (SAPs) driven by the multi-cycle inhomogeneous polarization gating (PG) technology in the bowtie-shaped nanostructure have been theoretically investigated. It is found that by setting the bowtie-shaped nanostructure along the driven laser polarization direction, not only the extension of the harmonic cutoff can be achieved, caused by the surface plasmon polaritons, but also the modulations of the harmonics can be decreased, caused by the PG technology and the inhomogeneous effect. As a result, the contribution of the harmonic plateau is only from one harmonic emission peak with the dominant short quantum path. Further, by properly adding a half-cycle pulse into the driven laser field, the harmonic emission process can be precisely controlled in the half-cycle duration and a supercontinuum with the bandwidth of 263 eV can be obtained. Finally, by directly superposing the harmonics from this supercontinuum, a SAP with the full width at half maximum of 23 as can be obtained, which is shorter than one atomic unit.

  5. Modulation of spatial spin polarization at organic spinterface by side groups

    NASA Astrophysics Data System (ADS)

    Qiu, Shuai; Zhang, Zhao; Miao, Yuan-yuan; Zhang, Guang-ping; Ren, Jun-feng; Wang, Chuan-kui; Hu, Gui-chao

    2018-01-01

    Spin polarization at benzene/Ni organic/ferromagnetic interface is investigated by applying different substituting side groups. Based on first-principle calculations, it is demonstrated that the spin polarization of the states may be tuned in magnitude and sign by the side groups, which depends on the type of side groups as well as their position in the aromatic ring. Especially, a spatial spin polarization modulation is realized at the surface with the utilization of electron donating group sbnd NH2 or electron accepting group sbnd NO2. The analysis of projected density of states onto the pz orbital of carbon atoms indicates that the side group reduces the structural symmetry of the molecule and changes the pz orbital of carbon atom at different position, which further modifies the pz-d orbital hybridization as well as the spin transfer between the molecule and the ferromagnet. This work indicates a feasible way to modulate the spatial spin polarization at organic spinterface by side groups, which deserves to be measured by spin-polarized scanning tunneling microscopy.

  6. Contracted or uncontracted polarization functions? Comment on Dunning's correlation-consistent basis sets

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tomohiro; Hirao, Kimihiko; Tatewaki, Hiroshi

    1997-07-01

    For the sake of computational economy, the polarization functions given by Dunning are contracted by multiconfigurational SCF calculations for H, B, C, N, O, F and Ne atoms. For the first-row atoms, B through Ne, the generated contracted polarization functions are ( 2 d/1 d) and ( 3 d/2 d) and for H they are ( 2 p/1 p), ( 3 p/1 p), and ( 3 p/2 p) where the numbers before and after the slash are the numbers of uncontracted and contracted polarization functions. Numerical examples on some diatomic molecules and benzene illustrate a large improvement in going from ( 1 d/1 dto ( 2 d/1 d) for various molecular properties.

  7. Polarization properties of long-lived stimulated photon echo

    NASA Astrophysics Data System (ADS)

    Reshetov, V. A.; Popov, E. N.

    2015-01-01

    The polarization properties of the long-lived stimulated photon echo formed on the transition ja → jb with the atomic levels degenerate in the projections of the angular momenta are studied theoretically. The two particular transitions ja = 1 → jb = 0 and ja = 1 → jb = 1 with degenerate ground state ja = 1 are discussed. For the transitions ja = 1 → jb = 1 the polarizations and areas of the first (‘write’) and the third (‘read’) excitation pulses are found when the echo polarization faithfully reproduces the arbitrary polarization of the weak (single-photon) second (‘information’) pulse, so that this echo scheme may implement the quantum memory for a single-photon polarization qubit, while for the transitions ja = 1 → jb = 0 it is shown, that the echo polarization differs from that of the second pulse at any conditions.

  8. Homogeneous Atomic Fermi Gases

    NASA Astrophysics Data System (ADS)

    Mukherjee, Biswaroop; Yan, Zhenjie; Patel, Parth B.; Hadzibabic, Zoran; Yefsah, Tarik; Struck, Julian; Zwierlein, Martin W.

    2017-03-01

    We report on the creation of homogeneous Fermi gases of ultracold atoms in a uniform potential. In the momentum distribution of a spin-polarized gas, we observe the emergence of the Fermi surface and the saturated occupation of one particle per momentum state: the striking consequence of Pauli blocking in momentum space for a degenerate gas. Cooling a spin-balanced Fermi gas at unitarity, we create homogeneous superfluids and observe spatially uniform pair condensates. For thermodynamic measurements, we introduce a hybrid potential that is harmonic in one dimension and uniform in the other two. The spatially resolved compressibility reveals the superfluid transition in a spin-balanced Fermi gas, saturation in a fully polarized Fermi gas, and strong attraction in the polaronic regime of a partially polarized Fermi gas.

  9. Measurement-Based Entanglement of Noninteracting Bosonic Atoms

    NASA Astrophysics Data System (ADS)

    Lester, Brian J.; Lin, Yiheng; Brown, Mark O.; Kaufman, Adam M.; Ball, Randall J.; Knill, Emanuel; Rey, Ana M.; Regal, Cindy A.

    2018-05-01

    We demonstrate the ability to extract a spin-entangled state of two neutral atoms via postselection based on a measurement of their spatial configuration. Typically, entangled states of neutral atoms are engineered via atom-atom interactions. In contrast, in our Letter, we use Hong-Ou-Mandel interference to postselect a spin-singlet state after overlapping two atoms in distinct spin states on an effective beam splitter. We verify the presence of entanglement and determine a bound on the postselected fidelity of a spin-singlet state of (0.62 ±0.03 ). The experiment has direct analogy to creating polarization entanglement with single photons and hence demonstrates the potential to use protocols developed for photons to create complex quantum states with noninteracting atoms.

  10. Measurement-Based Entanglement of Noninteracting Bosonic Atoms.

    PubMed

    Lester, Brian J; Lin, Yiheng; Brown, Mark O; Kaufman, Adam M; Ball, Randall J; Knill, Emanuel; Rey, Ana M; Regal, Cindy A

    2018-05-11

    We demonstrate the ability to extract a spin-entangled state of two neutral atoms via postselection based on a measurement of their spatial configuration. Typically, entangled states of neutral atoms are engineered via atom-atom interactions. In contrast, in our Letter, we use Hong-Ou-Mandel interference to postselect a spin-singlet state after overlapping two atoms in distinct spin states on an effective beam splitter. We verify the presence of entanglement and determine a bound on the postselected fidelity of a spin-singlet state of (0.62±0.03). The experiment has direct analogy to creating polarization entanglement with single photons and hence demonstrates the potential to use protocols developed for photons to create complex quantum states with noninteracting atoms.

  11. UV Photodesorption of Methanol in Pure and CO-rich Ices: Desorption Rates of the Intact Molecule and of the Photofragments

    NASA Astrophysics Data System (ADS)

    Bertin, Mathieu; Romanzin, Claire; Doronin, Mikhail; Philippe, Laurent; Jeseck, Pascal; Ligterink, Niels; Linnartz, Harold; Michaut, Xavier; Fillion, Jean-Hugues

    2016-02-01

    Wavelength-dependent photodesorption rates have been determined using synchrotron radiation for condensed pure and mixed methanol ice in the 7-14 eV range. The VUV photodesorption of intact methanol molecules from pure methanol ices is found to be of the order of 10-5 molecules/photon, that is two orders of magnitude below what is generally used in astrochemical models. This rate gets even lower (<10-6 molecules/photon) when the methanol is mixed with CO molecules in the ices. This is consistent with a picture in which photodissociation and recombination processes are at the origin of intact methanol desorption from pure CH3OH ices. Such low rates are explained by the fact that the overall photodesorption process is dominated by the desorption of the photofragments CO, CH3, OH, H2CO, and CH3O/CH2OH, whose photodesorption rates are given in this study. Our results suggest that the role of the photodesorption as a mechanism to explain the observed gas phase abundances of methanol in cold media is probably overestimated. Nevertheless, the photodesorption of radicals from methanol-rich ices may stand at the origin of the gas phase presence of radicals such as CH3O, therefore, opening new gas phase chemical routes for the formation of complex molecules.

  12. FAST TRACK COMMUNICATION Determination of atomic site susceptibility tensors from neutron diffraction data on polycrystalline samples

    NASA Astrophysics Data System (ADS)

    Gukasov, A.; Brown, P. J.

    2010-12-01

    Polarized neutron diffraction can provide information about the atomic site susceptibility tensor χij characterizing the magnetic response of individual atoms to an external magnetic field (Gukasov and Brown 2002 J. Phys.: Condens. Mater. 14 8831). The six independent atomic susceptibility parameters (ASPs) can be determined from polarized neutron flipping ratio measurements on single crystals and visualized as magnetic ellipsoids which are analogous to the thermal ellipsoids obtained from atomic displacement parameters (ADPs). We demonstrate now that the information about local magnetic susceptibility at different magnetic sites in a crystal can also be obtained from polarized and unpolarized neutron diffraction measurements on magnetized powder samples. The validity of the method is illustrated by the results of such measurements on a polycrystalline sample of Tb2Sn2O7.

  13. The atomic structure and polarization of strained SrTiO3/Si

    NASA Astrophysics Data System (ADS)

    Kumah, D. P.; Reiner, J. W.; Segal, Y.; Kolpak, A. M.; Zhang, Z.; Su, D.; Zhu, Y.; Sawicki, M. S.; Broadbridge, C. C.; Ahn, C. H.; Walker, F. J.

    2010-12-01

    For thin film devices based on coupling ferroelectric polarization to charge carriers in semiconductors, the role of the interface is critical. To elucidate this role, we use synchrotron x-ray diffraction to determine the interface structure of epitaxial SrTiO3 grown on the (001) surface of Si. The average displacement of the O octahedral sublattice relative to the Sr sublattice determines the film polarization and is measured to be about 0.05 nm toward the Si, with Ti off-center displacements 0.009 nm away from the substrate. Measurements of films with different boundary conditions on the top of the SrTiO3 show that the polarization at the SrTiO3/Si interface is dominated by oxide-Si chemical interactions.

  14. X-ray line polarization spectroscopy of Li-like satellite line spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherrill, Manolo Edgar; Abdallah, Joseph; Zhang, Honglin

    2008-01-01

    We apply the magnetic-sublevel atomic kinetics model POLAR to the calculation of polarization properties of satellite lines in Li-like Si driven by subpicosecond-duration laser pulses. We identify spectral lines whose polarization can serve as a marker of plasma anisotropy due to anisotropy in the electron distribution function. We also discuss the utility and limitations of ur current theoretical approach and point out possible future improvements and directions.

  15. Storage rings for spin-polarized hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, D.; Lovelace, R.V.E.; Lee, D.

    1989-11-01

    A strong-focusing storage ring is proposed for the long-term magnetic confinement of a collisional gas of neutral spin-polarized hydrogen atoms in the Za{l arrow} and Zb{l arrow} hyperfine states. The trap uses the interaction of the magnetic moments of the gas atoms with a static magnetic field. Laser cooling and evaporative cooling can be utilized to enhance the confinement and to offset the influence of viscous heating. An important application of the trap is to the attainment of Bose--Einstein condensation.

  16. Three axis vector atomic magnetometer utilizing polarimetric technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, Swarupananda, E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com

    2016-09-15

    The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity fieldmore » gradient measurement as required for biomedical application.« less

  17. High-intensity polarized H- ion source for the RHIC SPIN physics

    NASA Astrophysics Data System (ADS)

    Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Kolmogorov, A.; Davydenko, V.

    2017-08-01

    A novel polarization technique had been successfully implemented for the RHIC polarized H- ion source upgrade to higher intensity and polarization. In this technique a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gas ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically-pumped Rb vapour. The use of high-brightness primary beam and large cross-sections of charge-exchange cross-sections resulted in production of high intensity H- ion beam of 85% polarization. High beam brightness and polarization resulted in 75% polarization at 23 GeV out of AGS and 60-65% beam polarization at 100-250 GeV colliding beams in RHIC. The status of un-polarized magnetron type (Cs-vapour loaded) BNL source is also discussed.

  18. Polarization rotation vector solitons in a graphene mode-locked fiber laser.

    PubMed

    Song, Yu Feng; Zhang, Han; Tang, Ding Yuan; Shen, De Yuan

    2012-11-19

    Polarization rotation vector solitons formed in a fiber laser passively mode locked with atomic layer graphene were experimentally investigated. It was found that different from the case of the polarization locked vector soliton formed in the laser, two extra sets of spectral sidebands always appear on the soliton spectrum of the polarization rotating vector solitons. We confirm that the new sets of spectral sidebands have the same formation mechanism as that of the Kelly sidebands.

  19. Atomic-level structure characterization of biomass pre- and post-lignin treatment by dynamic nuclear polarization-enhanced solid-state NMR

    DOE PAGES

    Perras, Frederic A.; Luo, Hao; Zhang, Ximing; ...

    2016-12-27

    Here, lignocellulosic biomass is a promising sustainable feedstock for the production of biofuels, biomaterials, and biospecialty chemicals. However, efficient utilization of biomass has been limited by our poor understanding of its molecular structure. Here, we report a dynamic nuclear polarization (DNP)-enhanced solid-state (SS)NMR study of the molecular structure of biomass, both pre- and postcatalytic treatment. This technique enables the measurement of 2D homonuclear 13C– 13C correlation SSNMR spectra under natural abundance, yielding, for the first time, an atomic-level picture of the structure of raw and catalytically treated biomass samples. We foresee that further such experiments could be used to determinemore » structure–function relationships and facilitate the development of more efficient, and chemically targeted, biomass-conversion technologies.« less

  20. Atomic-level structure characterization of biomass pre- and post-lignin treatment by dynamic nuclear polarization-enhanced solid-state NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perras, Frederic A.; Luo, Hao; Zhang, Ximing

    Here, lignocellulosic biomass is a promising sustainable feedstock for the production of biofuels, biomaterials, and biospecialty chemicals. However, efficient utilization of biomass has been limited by our poor understanding of its molecular structure. Here, we report a dynamic nuclear polarization (DNP)-enhanced solid-state (SS)NMR study of the molecular structure of biomass, both pre- and postcatalytic treatment. This technique enables the measurement of 2D homonuclear 13C– 13C correlation SSNMR spectra under natural abundance, yielding, for the first time, an atomic-level picture of the structure of raw and catalytically treated biomass samples. We foresee that further such experiments could be used to determinemore » structure–function relationships and facilitate the development of more efficient, and chemically targeted, biomass-conversion technologies.« less

  1. Spin-polarized electron emitter: Mn-doped GaN nanotubes and their arrays

    NASA Astrophysics Data System (ADS)

    Hao, Shaogang; Zhou, Gang; Wu, Jian; Duan, Wenhui; Gu, Bing-Lin

    2004-03-01

    The influences from the doping magnetic atom, Mn, on the geometry, electronic properties, and spin-polarization characteristics are demonstrated for open armchair gallium nitrogen (GaN) nanotubes and arrays by use of the first-principles calculations. The interaction between dangling bonds of Ga (Mn) and N atoms at the open-end promotes the self-close of the tube mouth and formation of a more stable open semicone top. Primarily owing to hybridization of Mn 3d and N 2p orbitals, one Mn atom introduces several impurity energy levels into the original energy gap, and the calculated magnetic moment is 4μB. The electron spin polarizations in the field emission are theoretically evaluated. We suggest that armchair open GaN nanotube arrays doped with a finite number of magnetic atoms may have application potential as the electron source of spintronic devices in the future.

  2. The physics of spin polarized gases

    NASA Astrophysics Data System (ADS)

    Cates, Gordon D.

    1995-01-01

    Most of our research was connected either directly or indirectly to the study of spin polarized atoms and nuclei, and their applications. In most cases we used lasers to optically pump, and hence polarize, alkali-metal vapors. Spin-exchange collisions were used to transfer the angular momentum to other systems. Of particular interest was our continuing study of the polarization of noble gas nuclei, which are characterized by extremely long spin relaxation times of minutes to many days. During this past research period we have demonstrated several applications of polarized noble gas nuclei that may have important implications for such diverse areas as nondestructive testing and medical diagnostics, as well as many areas in fundamental research. Of particular note is the use of spin-exchange polarized He-3 and Xe-129 for magnetic resonance imaging. At present, our imaging work has focused on the lungs of small animals such as mice and guinea pigs. We believe, however, that our technique would also be useful for nondestructive testing. We have also continued our study of Xe that is polarized in the gaseous state, and subsequently frozen. This novel technique for producing a highly polarized solid has received considerable attention in the NMR community.

  3. Density functional of a two-dimensional gas of dipolar atoms: Thomas-Fermi-Dirac treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Bess; Englert, Berthold-Georg

    We derive the density functional for the ground-state energy of a two-dimensional, spin-polarized gas of neutral fermionic atoms with magnetic-dipole interaction, in the Thomas-Fermi-Dirac approximation. For many atoms in a harmonic trap, we give analytical solutions for the single-particle spatial density and the ground-state energy, in dependence on the interaction strength, and we discuss the weak-interaction limit that is relevant for experiments. We then lift the restriction of full spin polarization and account for a time-independent inhomogeneous external magnetic field. The field strength necessary to ensure full spin polarization is derived.

  4. Quantized spin-momentum transfer in atom-sized magnetic systems

    NASA Astrophysics Data System (ADS)

    Loth, Sebastian

    2010-03-01

    Our ability to quickly access the vast amounts of information linked in the internet is owed to the miniaturization of magnetic data storage. In modern disk drives the tunnel magnetoresistance effect (TMR) serves as sensitive reading mechanism for the nanoscopic magnetic bits [1]. At its core lies the ability to control the flow of electrons with a material's magnetization. The inverse effect, spin transfer torque (STT), allows one to influence a magnetic layer by high current densities of spin-polarized electrons and carries high hopes for applications in non-volatile magnetic memory [2]. We show that equivalent processes are active in quantum spin systems. We use a scanning tunneling microscope (STM) operating at low temperature and high magnetic field to address individual magnetic structures and probe their spin excitations by inelastic electron tunneling [3]. As model system we investigate transition metal atoms adsorbed to a copper nitride layer grown on a Cu crystal. The magnetic atoms on the surface possess well-defined spin states [4]. Transfer of one magnetic atom to the STM tip's apex creates spin-polarization in the probe tip. The combination of functionalized tip and surface adsorbed atom resembles a TMR structure where the magnetic layers now consist of one magnetic atom each. Spin-polarized current emitted from the probe tip not only senses the magnetic orientation of the atomic spin system, it efficiently transfers spin angular momentum and pumps the quantum spin system between the different spin states. This enables further exploration of the microscopic mechanisms for spin-relaxation and stability of quantum spin systems. [4pt] [1] Zhu and Park, Mater. Today 9, 36 (2006).[0pt] [2] Huai, AAPPS Bulletin 18, 33 (2008).[0pt] [3] Heinrich et al., Science 306, 466 (2004).[0pt] [4] Hirjibehedin et al., Science 317, 1199 (2007).

  5. PST 2009: XIII International Workshop on Polarized Sources Targets and Polarimetry

    NASA Astrophysics Data System (ADS)

    Lenisa, Paolo

    2011-05-01

    The workshops on polarized sources, targets, and polarimetry are held every two years. In 2009 the meeting took place in Ferrara, Italy, and was organized by the University of Ferrara and INFN. Sessions on Polarized Proton and Deuterium Sources, Polarized Electron Sources, Polarimetry, Polarized Solid Targets, and Polarized Internal Targets, highlighted topics, recent developments, and progress in the field. A session dedicated to Future Facilities provided an overview of a number of new activities in the spin-physics sector at facilities that are currently in the planning stage. Besides presenting a broad overview of polarized ion sources, electron sources, solid and gaseous targets, and their neighbouring fields, the workshop also addressed the application of polarized atoms in applied sciences and medicine that is becoming increasingly important.

  6. Transmission Magnitude and Phase Control for Polarization-Preserving Reflectionless Metasurfaces

    NASA Astrophysics Data System (ADS)

    Kwon, Do-Hoon; Ptitcyn, Grigorii; Díaz-Rubio, Ana; Tretyakov, Sergei A.

    2018-03-01

    For transmissive applications of electromagnetic metasurfaces, an array of subwavelength Huygens' meta-atoms are typically used to eliminate reflection and achieve a high-transmission power efficiency together with a wide transmission phase coverage. We show that the underlying principle of low reflection and full control over transmission is asymmetric scattering into the specular reflection and transmission directions that results from a superposition of symmetric and antisymmetric scattering components, with Huygens' meta-atoms being one example configuration. Available for oblique illumination in TM polarization, a meta-atom configuration comprising normal and tangential electric polarizations is presented, which is capable of reflectionless, full-power transmission and a 2 π transmission phase coverage as well as full absorption. For lossy metasurfaces, we show that a complete phase coverage is still available for reflectionless designs for any value of absorptance. Numerical examples in the microwave and optical regimes are provided.

  7. First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engels, R.; Lorentz, B.; Prasuhn, D.

    2008-02-06

    For future few-nucleon interaction studies with polarized beams and targets at COSY-Juelich, a polarized internal storage-cell gas target was implemented at the magnet spectrometer ANKE in summer 2005. First commissioning of the polarized Atomic Beam Source (ABS) at ANKE was carried out and some improvements of the system have been done. Storage-cell tests to determine the COSY beam dimensions have been performed. Electron cooling combined with stacking and stochastic cooling have been studied. Experiments with N{sub 2} gas in the storage cell to simulate the background produced by beam interaction with the aluminum cell walls were performed to investigate themore » beam heating by the target gas. The analysis of the d-vector p-vector {yields}dp and d-vector p-vector{yields}(dp{sub sp}){pi}{sup 0} reactions showed that events from the extended target can be clearly identified in the ANKE detector system.The polarization of the atomic beam of the ABS, positioned close to the strong dipole magnet D2 of ANKE, was tuned with a Lamb-shift polarimeter (LSP) beneath the target chamber. With use of the known analyzing powers of the quasi-free np{yields}d{pi}{sup 0} reaction, the polarization in the storage cell was measured to be Q{sub y} = 0.79{+-}0.07 in the vertical stray field of the D2 magnet acting as a holding field. The achieved target thickness was 2x10{sup 13} atoms/cm{sup 2} for one hyperfine state populated in the ABS beam only. With a COSY beam intensity of 6x10{sup 9} stored polarized deuterons in the ring, the luminosity for double polarized experiments was 1x10{sup 29} cm{sup -2} s{sup -1}.« less

  8. First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engels, R.; Lorentz, B.; Prasuhn, D.

    2009-08-04

    For future few-nucleon interaction studies with polarized beams and targets at COSY-Juelich, a polarized internal storage-cell gas target was implemented at the magnet spectrometer ANKE. First commissioning of the polarized Atomic Beam Source (ABS) at ANKE was carried out and some improvements of the system have been done. Storage-cell tests to determine the COSY beam dimensions have been performed. Electron cooling combined with stacking and stochastic cooling have been studied. Experiments with N{sub 2} gas in the storage cell to simulate the background produced by beam interaction with the aluminum cell walls were performed to investigate the beam heating bymore » the target gas. The analysis of the d-vectorp-vector->dp and d-vectorp-vector->(dp{sub sp})pi{sup 0} reactions showed that events from different positions of the extended target can be clearly identified in the ANKE detector system. The polarization of the atomic beam of the ABS, positioned close to the strong dipole magnet D2 of ANKE, was tuned with a Lamb-shift polarimeter (LSP) beneath the target chamber. With use of the known analyzing powers of the quasi-free np->dpi{sup 0} reaction, the polarization in the storage cell was measured to be Q{sub y} = 0.79+-0.07 in the vertical stray field of the D2 magnet acting as a holding field. The target thickness achieved was 2x10{sup 13} atoms/cm{sup 2} for one hyperfine state populated in the ABS beam only. With a COSY beam intensity of 6x10{sup 9} stored polarized deuterons in the ring, the luminosity for double polarized experiments was 1x10{sup 29} cm{sup -2} s{sup -1}.« less

  9. Improving the lifetime in optical microtraps by using elliptically polarized dipole light

    NASA Astrophysics Data System (ADS)

    Garcia, Sébastien; Reichel, Jakob; Long, Romain

    2018-02-01

    Tightly focused optical dipole traps induce vector light shifts ("fictitious magnetic fields") which complicate their use for single-atom trapping and manipulation. The problem can be mitigated by adding a larger, real magnetic field, but this solution is not always applicable; in particular, it precludes fast switching to a field-free configuration. Here we show that this issue can be addressed elegantly by deliberately adding a small elliptical polarization component to the dipole trap beam. In our experiments with single 87Rb atoms laser-cooled in a chopped trap, we observe improvements up to a factor of 11 of the trap lifetime compared to the standard, seemingly ideal linear polarization. This effect results from a modification of heating processes via spin-state diffusion in state-dependent trapping potentials. We develop Monte Carlo simulations of the evolution of the atom's internal and motional states and find that they agree quantitatively with the experimental data. The method is general and can be applied in all experiments where the longitudinal polarization component is non-negligible.

  10. Correlative STED and Atomic Force Microscopy on Live Astrocytes Reveals Plasticity of Cytoskeletal Structure and Membrane Physical Properties during Polarized Migration

    PubMed Central

    Curry, Nathan; Ghézali, Grégory; Kaminski Schierle, Gabriele S.; Rouach, Nathalie; Kaminski, Clemens F.

    2017-01-01

    The plasticity of the cytoskeleton architecture and membrane properties is important for the establishment of cell polarity, adhesion and migration. Here, we present a method which combines stimulated emission depletion (STED) super-resolution imaging and atomic force microscopy (AFM) to correlate cytoskeletal structural information with membrane physical properties in live astrocytes. Using STED compatible dyes for live cell imaging of the cytoskeleton, and simultaneously mapping the cell surface topology with AFM, we obtain unprecedented detail of highly organized networks of actin and microtubules in astrocytes. Combining mechanical data from AFM with optical imaging of actin and tubulin further reveals links between cytoskeleton organization and membrane properties. Using this methodology we illustrate that scratch-induced migration induces cytoskeleton remodeling. The latter is caused by a polarization of actin and microtubule elements within astroglial cell processes, which correlates strongly with changes in cell stiffness. The method opens new avenues for the dynamic probing of the membrane structural and functional plasticity of living brain cells. It is a powerful tool for providing new insights into mechanisms of cell structural remodeling during physiological or pathological processes, such as brain development or tumorigenesis. PMID:28469559

  11. Artificial two-dimensional polar metal at room temperature.

    PubMed

    Cao, Yanwei; Wang, Zhen; Park, Se Young; Yuan, Yakun; Liu, Xiaoran; Nikitin, Sergey M; Akamatsu, Hirofumi; Kareev, M; Middey, S; Meyers, D; Thompson, P; Ryan, P J; Shafer, Padraic; N'Diaye, A; Arenholz, E; Gopalan, Venkatraman; Zhu, Yimei; Rabe, Karin M; Chakhalian, J

    2018-04-18

    Polar metals, commonly defined by the coexistence of polar crystal structure and metallicity, are thought to be scarce because the long-range electrostatic fields favoring the polar structure are expected to be fully screened by the conduction electrons of a metal. Moreover, reducing from three to two dimensions, it remains an open question whether a polar metal can exist. Here we report on the realization of a room temperature two-dimensional polar metal of the B-site type in tri-color (tri-layer) superlattices BaTiO 3 /SrTiO 3 /LaTiO 3 . A combination of atomic resolution scanning transmission electron microscopy with electron energy-loss spectroscopy, optical second harmonic generation, electrical transport, and first-principles calculations have revealed the microscopic mechanisms of periodic electric polarization, charge distribution, and orbital symmetry. Our results provide a route to creating all-oxide artificial non-centrosymmetric quasi-two-dimensional metals with exotic quantum states including coexisting ferroelectric, ferromagnetic, and superconducting phases.

  12. Avoiding polar catastrophe in the growth of polarly orientated nickel perovskite thin films by reactive oxide molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, H. F.; Liu, Z. T.; Fan, C. C.

    2016-08-15

    By means of the state-of-the-art reactive oxide molecular beam epitaxy, we synthesized (001)- and (111)-orientated polar LaNiO{sub 3} thin films. In order to avoid the interfacial reconstructions induced by polar catastrophe, screening metallic Nb-doped SrTiO{sub 3} and iso-polarity LaAlO{sub 3} substrates were chosen to achieve high-quality (001)-orientated films in a layer-by-layer growth mode. For largely polar (111)-orientated films, we showed that iso-polarity LaAlO{sub 3} (111) substrate was more suitable than Nb-doped SrTiO{sub 3}. In situ reflection high-energy electron diffraction, ex situ high-resolution X-ray diffraction, and atomic force microscopy were used to characterize these films. Our results show that special attentionsmore » need to be paid to grow high-quality oxide films with polar orientations, which can prompt the explorations of all-oxide electronics and artificial interfacial engineering to pursue intriguing emergent physics like proposed interfacial superconductivity and topological phases in LaNiO{sub 3} based superlattices.« less

  13. Avoiding polar catastrophe in the growth of polarly orientated nickel perovskite thin films by reactive oxide molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yang, H. F.; Liu, Z. T.; Fan, C. C.; Yao, Q.; Xiang, P.; Zhang, K. L.; Li, M. Y.; Liu, J. S.; Shen, D. W.

    2016-08-01

    By means of the state-of-the-art reactive oxide molecular beam epitaxy, we synthesized (001)- and (111)-orientated polar LaNiO3 thin films. In order to avoid the interfacial reconstructions induced by polar catastrophe, screening metallic Nb-doped SrTiO3 and iso-polarity LaAlO3 substrates were chosen to achieve high-quality (001)-orientated films in a layer-by-layer growth mode. For largely polar (111)-orientated films, we showed that iso-polarity LaAlO3 (111) substrate was more suitable than Nb-doped SrTiO3. In situ reflection high-energy electron diffraction, ex situ high-resolution X-ray diffraction, and atomic force microscopy were used to characterize these films. Our results show that special attentions need to be paid to grow high-quality oxide films with polar orientations, which can prompt the explorations of all-oxide electronics and artificial interfacial engineering to pursue intriguing emergent physics like proposed interfacial superconductivity and topological phases in LaNiO3 based superlattices.

  14. Polarizable atomic multipole-based force field for DOPC and POPE membrane lipids

    NASA Astrophysics Data System (ADS)

    Chu, Huiying; Peng, Xiangda; Li, Yan; Zhang, Yuebin; Min, Hanyi; Li, Guohui

    2018-04-01

    A polarizable atomic multipole-based force field for the membrane bilayer models 1,2-dioleoyl-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) has been developed. The force field adopts the same framework as the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) model, in which the charge distribution of each atom is represented by the permanent atomic monopole, dipole and quadrupole moments. Many-body polarization including the inter- and intra-molecular polarization is modelled in a consistent manner with distributed atomic polarizabilities. The van der Waals parameters were first transferred from existing AMOEBA parameters for small organic molecules and then optimised by fitting to ab initio intermolecular interaction energies between models and a water molecule. Molecular dynamics simulations of the two aqueous DOPC and POPE membrane bilayer systems, consisting of 72 model molecules, were then carried out to validate the force field parameters. Membrane width, area per lipid, volume per lipid, deuterium order parameters, electron density profile, etc. were consistent with experimental values.

  15. Electric and magnetic target polarization in quantum radar

    NASA Astrophysics Data System (ADS)

    Brandsema, Matthew J.; Narayanan, Ram M.; Lanzagorta, Marco

    2017-05-01

    In this paper, we discuss the effect that photon polarization has on the quantum radar cross section (QRCS) during the special case scenario of when the target is enveloped in either a uniform electric field or magnetic field and all of its atomic electric/magnetic dipole moments become aligned (target polarization). This target polarization causes the coupling between the photon and the matter to change and alter the scattering characteristics of the target. Most notably, it causes scattering to be very near zero at a specified angle. We also investigate the relationship between electric and magnetic types of coupling and find that the electric contribution dominates the QRCS response.

  16. Source of polarized ions for the JINR accelerator complex

    NASA Astrophysics Data System (ADS)

    Belov, A. S.; Donets, D. E.; Fimushkin, V. V.; Kovalenko, A. D.; Kutuzova, L. V.; Prokofichev, Yu V.; Shutov, V. B.; Turbabin, A. V.; Zubets, V. N.

    2017-12-01

    The JINR atomic beam type polarized ion source is described. Results of tests of the plasma ionizer with a storage cell and of tuning of high frequency transition units are presented. The source was installed in a linac injector hall of NUCLOTRON in May 2016. The source has been commissioned and used in the NUCLOTRON runs in 2016 and February - March 2017. Polarized and unpolarized deuteron beams were produced as well as polarized protons for acceleration in the NUCLOTRON. Polarized deuteron beam with pulsed current up to 2 mA has been produced. Deuteron beam polarization of 0.6-0.9 of theoretical values for different modes of high frequency transition units operation has been measured with the NUCLOTRON ring internal polarimeter for the accelerated deuteron and proton beams.

  17. Relativistic Ionization with Intense Linearly Polarized Light

    NASA Astrophysics Data System (ADS)

    Crawford, Douglas Plummer

    The Strong Field Approximation (SFA) method is used to derive relativistic ionization rate expressions for ground state hydrogen-like atoms in the presence of an intense electromagnetic field. The emitted particle, which is initially bound to a hydrogen nucleus, is either an electron described by the Dirac equation, with spin effects fully included, or a spinless "electron" described by the Klein-Gordon equation. The derivations and subsequent calculations for both particles are made assuming a linearly polarized electromagnetic field which is monochromatic and which exhibits neither diffraction nor temporal dependence. From each of the relativistic ionization rate expressions, the corresponding expression in the nonrelativistic limit is derived. The resultant expressions are found to be equivalent to those derived using the SFA with the nonrelativistic formalism. This comparison provides the first check of the validity for the core results of this dissertation. Intensity-dependent ionization rates are then calculated for two ultraviolet frequencies using a numerical implementation of the derived expressions. Calculations of ionization rates and related phenomena demonstrate that there are negligible differences between relativistic and nonrelativistic predictions for low intensities. In addition, the differences in behavior between linearly and circularly polarized ionizing fields and between particles with and without spin are explored. The spin comparisons provide additional confidence in the derivations by showing negligible differences between ionization rates for Dirac and Klein -Gordon particles in strong linearly-polarized fields. Also of interest are the differential transition rates which exhibit dynamic profiles as the intensity is increased. This behavior is interpreted as an indication of more atomic influence for linearly polarized electromagnetic (em) fields than for circularly polarized em fields.

  18. In situ observation of atomic movement in a ferroelectric film under an external electric field and stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyeon Jun; Guo, Er-Jia; Min, Taewon

    Atomic movement under application of external stimuli (i.e., electric field or mechanical stress) in oxide materials has not been observed due to a lack of experimental methods but has been well known to determine the electric polarization. Here, we investigated atomic movement arising from the ferroelectric response of BiFeO 3 thin films under the effect of an electric field and stress in real time using a combination of switching spectroscopy, time-resolved X-ray microdiffraction, and in situ stress engineering. Under an electric field applied to a BiFeO 3 film, the hysteresis loop of the reflected X-ray intensity was found to resultmore » from the opposing directions of displaced atoms between the up and down polarization states. An additional shift of atoms arising from the linearly increased dielectric component of the polarization in BiFeO 3 was confirmed through gradual reduction of the diffracted X-ray intensity. The electric-fieldinduced displacement of oxygen atoms was found to be larger than that of Fe atom for both ferroelectric switching and increase of the polarization. In conclusion, the effect of external stress on the BiFeO 3 thin film, which was controlled by applying an electric field to the highly piezoelectric substrate, showed smaller atomic shifts than for the case of applying an electric field to the film, despite the similar tetragonality.« less

  19. In situ observation of atomic movement in a ferroelectric film under an external electric field and stress

    DOE PAGES

    Lee, Hyeon Jun; Guo, Er-Jia; Min, Taewon; ...

    2017-12-28

    Atomic movement under application of external stimuli (i.e., electric field or mechanical stress) in oxide materials has not been observed due to a lack of experimental methods but has been well known to determine the electric polarization. Here, we investigated atomic movement arising from the ferroelectric response of BiFeO 3 thin films under the effect of an electric field and stress in real time using a combination of switching spectroscopy, time-resolved X-ray microdiffraction, and in situ stress engineering. Under an electric field applied to a BiFeO 3 film, the hysteresis loop of the reflected X-ray intensity was found to resultmore » from the opposing directions of displaced atoms between the up and down polarization states. An additional shift of atoms arising from the linearly increased dielectric component of the polarization in BiFeO 3 was confirmed through gradual reduction of the diffracted X-ray intensity. The electric-fieldinduced displacement of oxygen atoms was found to be larger than that of Fe atom for both ferroelectric switching and increase of the polarization. In conclusion, the effect of external stress on the BiFeO 3 thin film, which was controlled by applying an electric field to the highly piezoelectric substrate, showed smaller atomic shifts than for the case of applying an electric field to the film, despite the similar tetragonality.« less

  20. An atomic clock with 10(-18) instability.

    PubMed

    Hinkley, N; Sherman, J A; Phillips, N B; Schioppo, M; Lemke, N D; Beloy, K; Pizzocaro, M; Oates, C W; Ludlow, A D

    2013-09-13

    Atomic clocks have been instrumental in science and technology, leading to innovations such as global positioning, advanced communications, and tests of fundamental constant variation. Timekeeping precision at 1 part in 10(18) enables new timing applications in relativistic geodesy, enhanced Earth- and space-based navigation and telescopy, and new tests of physics beyond the standard model. Here, we describe the development and operation of two optical lattice clocks, both using spin-polarized, ultracold atomic ytterbium. A measurement comparing these systems demonstrates an unprecedented atomic clock instability of 1.6 × 10(-18) after only 7 hours of averaging.

  1. Interfacial coupling and polarization of perovskite ABO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Wu, Lijun; Wang, Zhen; Zhang, Bangmin; Yu, Liping; Chow, G. M.; Tao, Jing; Han, Myung-Geun; Guo, Hangwen; Chen, Lina; Plummer, E. W.; Zhang, Jiandi; Zhu, Yimei

    2017-02-01

    Interfaces with subtle difference in atomic and electronic structures in perovskite ABO3 heterostructures often yield intriguingly different properties, yet their exact roles remain elusive. In this article, we report an integrated study of unusual transport, magnetic, and structural properties of Pr0.67Sr0.33MnO3 (PSMO) films and La0.67Sr0.33MnO3 (LSMO) films of various thicknesses on SrTiO3 (STO) substrate. In particular, using atomically resolved imaging and electron energy-loss spectroscopy (EELS), we measured interface related local lattice distortion, BO6 octahedral rotation and cation-anion displacement induced polarization. In the very thin PSMO film, an unexpected interface-induced ferromagnetic polaronic insulator phase was observed during the cubic-to-tetragonal phase transition of the substrate STO, due to the enhanced electron-phonon interaction and atomic disorder in the film. On the other hand, for the very thin LSMO films we observed a remarkably deep polarization in non-ferroelectric STO substrate near the interface. Combining the experimental results with first principles calculations, we propose that the observed deep polarization is induced by an electric field originating from oxygen vacancies that extend beyond a dozen unit-cells from the interface, thus providing important evidence of the role of defects in the emergent interface properties of transition metal oxides.

  2. UV PHOTODESORPTION OF METHANOL IN PURE AND CO-RICH ICES: DESORPTION RATES OF THE INTACT MOLECULE AND OF THE PHOTOFRAGMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertin, Mathieu; Doronin, Mikhail; Philippe, Laurent

    2016-02-01

    Wavelength-dependent photodesorption rates have been determined using synchrotron radiation for condensed pure and mixed methanol ice in the 7–14 eV range. The VUV photodesorption of intact methanol molecules from pure methanol ices is found to be of the order of 10{sup −5} molecules/photon, that is two orders of magnitude below what is generally used in astrochemical models. This rate gets even lower (<10{sup −6} molecules/photon) when the methanol is mixed with CO molecules in the ices. This is consistent with a picture in which photodissociation and recombination processes are at the origin of intact methanol desorption from pure CH{sub 3}OHmore » ices. Such low rates are explained by the fact that the overall photodesorption process is dominated by the desorption of the photofragments CO, CH{sub 3}, OH, H{sub 2}CO, and CH{sub 3}O/CH{sub 2}OH, whose photodesorption rates are given in this study. Our results suggest that the role of the photodesorption as a mechanism to explain the observed gas phase abundances of methanol in cold media is probably overestimated. Nevertheless, the photodesorption of radicals from methanol-rich ices may stand at the origin of the gas phase presence of radicals such as CH{sub 3}O, therefore, opening new gas phase chemical routes for the formation of complex molecules.« less

  3. Anisotropic polarization π -molecular skeleton coupled dynamics in proton-displacive organic ferroelectrics

    NASA Astrophysics Data System (ADS)

    Fujioka, J.; Horiuchi, S.; Kida, N.; Shimano, R.; Tokura, Y.

    2009-09-01

    We have investigated the polarization π -molecular skeleton coupled dynamics for the proton-displacive organic ferroelectrics, cocrystal of phenazine with the 2,5-dihalo-3,6-dihydroxy-p-benzoquinones by measurements of the terahertz/infrared spectroscopy. In the course of the ferroelectric-to-paraelectric transition, the ferroelectric soft phonon mode originating from the intermolecular dynamical displacement is observed in the imaginary part of dielectric spectra γ2 , when the electric field of the light (E) is parallel to the spontaneous polarization (P) . The soft phonon mode is isolated from the intramolecular vibrational mode and hence the intramolecular skeleton dynamics is almost decoupled from the polarization fluctuation. In the spectra for E parallel to the hydrogen-bonded supramolecular chain, by contrast, the vibrational mode mainly originating from the oxygen atom motion within the π -molecular plane is anomalously blurred and amalgamated into the polarization relaxation mode concomitantly with the dynamical proton disorder. This indicates that the dynamical disorder of the intramolecular skeleton structure, specifically that of oxygen atom, is strongly enhanced by the proton fluctuation and is significantly coupled to the polarization fluctuation along the hydrogen-bonded supramolecular chain. The results are discussed in terms of the proton-mediated anisotropic polarization π -molecular skeleton interaction, which characterizes these emerging proton-displacive ferroelectrics.

  4. Out-of-plane spin polarization of edge currents in Chern insulator with Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Chen, Tsung-Wei; Hsiao, Chin-Lun; Hu, Chong-Der

    2016-07-01

    We investigate the change in the non-zero Chern number and out-of-plane spin polarization of the edge currents in a honeycomb lattice with the Haldane-Rashba interaction. This interaction breaks the time-reversal symmetry due to the Haldane phase caused by a current loop at the site-I and site-II atoms, and also accounts for the Rashba-type spin-orbit interaction. The Rashba spin-orbit interaction increases the number of Dirac points and the band-touching phenomenon can be generated by tuning the on-site potential in the non-zero Haldane phase. By using the Pontryagin winding number and numerical Berry curvature methods, we find that the Chern number pattern is {+2, -1, 0} and {-2, +1, 0} for the positive and negative Haldane phase, respectively. A non-zero Chern number is called a Chern-insulating phase. We discovered that changes in both the Haldane phase and on-site potential leads to a change in the orientation of the bulk spin polarization of site-I and site-II atoms. Interestingly, in a ribbon with a zigzag edge, which naturally has site-I atoms at one outer edge and site-II atoms at the opposite outer edge, the spin polarization of the edge states approximately obeys the properties of bulk spin polarization regardless of the change in the Chern number. In addition, even when the Chern number changes from  +2 to  -1 (or  -2 to  +1), by tuning the strength of the on-site potential, the sign of the spin polarization of the edge states persists. This approximate bulk-edge correspondence of the spin polarization in the Haldane-Rashba system would play an important role in spintronics, because it enables us to control the orientation of the spin polarization in a single Chern-insulating phase.

  5. Out-of-plane spin polarization of edge currents in Chern insulator with Rashba spin-orbit interaction.

    PubMed

    Chen, Tsung-Wei; Hsiao, Chin-Lun; Hu, Chong-Der

    2016-07-13

    We investigate the change in the non-zero Chern number and out-of-plane spin polarization of the edge currents in a honeycomb lattice with the Haldane-Rashba interaction. This interaction breaks the time-reversal symmetry due to the Haldane phase caused by a current loop at the site-I and site-II atoms, and also accounts for the Rashba-type spin-orbit interaction. The Rashba spin-orbit interaction increases the number of Dirac points and the band-touching phenomenon can be generated by tuning the on-site potential in the non-zero Haldane phase. By using the Pontryagin winding number and numerical Berry curvature methods, we find that the Chern number pattern is {+2, -1, 0} and {-2, +1, 0} for the positive and negative Haldane phase, respectively. A non-zero Chern number is called a Chern-insulating phase. We discovered that changes in both the Haldane phase and on-site potential leads to a change in the orientation of the bulk spin polarization of site-I and site-II atoms. Interestingly, in a ribbon with a zigzag edge, which naturally has site-I atoms at one outer edge and site-II atoms at the opposite outer edge, the spin polarization of the edge states approximately obeys the properties of bulk spin polarization regardless of the change in the Chern number. In addition, even when the Chern number changes from  +2 to  -1 (or  -2 to  +1), by tuning the strength of the on-site potential, the sign of the spin polarization of the edge states persists. This approximate bulk-edge correspondence of the spin polarization in the Haldane-Rashba system would play an important role in spintronics, because it enables us to control the orientation of the spin polarization in a single Chern-insulating phase.

  6. Polarization nondegenerate fiber Fabry-Perot cavities with large tunable splittings

    NASA Astrophysics Data System (ADS)

    Cui, Jin-Ming; Zhou, Kun; Zhao, Ming-Shu; Ai, Ming-Zhong; Hu, Chang-Kang; Li, Qiang; Liu, Bi-Heng; Peng, Jin-Lan; Huang, Yun-Feng; Li, Chuan-Feng; Guo, Guang-Can

    2018-04-01

    We demonstrate a type of microcavity with large tunable splitting of polarization modes. This polarization nondegenerate cavity consists of two ellipsoidal concave mirrors with controllable eccentricity by CO2 laser machining on fiber end facets. The experiment shows that the cavities can combine the advantages of high finesse above 104 and large tunable polarization mode splitting to the GHz range. As the splitting of the cavity can be finely controlled to match atom hyperfine levels or optomechanics phonons, it will blaze a way in experiments on cavity quantum electrodynamics and cavity optomechanics.

  7. Exploring Conceptual Frameworks of Models of Atomic Structures and Periodic Variations, Chemical Bonding, and Molecular Shape and Polarity: A Comparison of Undergraduate General Chemistry Students with High and Low Levels of Content Knowledge

    ERIC Educational Resources Information Center

    Wang, Chia-Yu; Barrow, Lloyd H.

    2013-01-01

    The purpose of the study was to explore students' conceptual frameworks of models of atomic structure and periodic variations, chemical bonding, and molecular shape and polarity, and how these conceptual frameworks influence their quality of explanations and ability to shift among chemical representations. This study employed a purposeful sampling…

  8. The polarization of continuum radiation in sunspots. I - Rayleigh and Thomson scattering

    NASA Technical Reports Server (NTRS)

    Finn, G. D.; Jefferies, J. T.

    1974-01-01

    Expressions are derived for the Stokes parameters of light scattered by a layer of free electrons and hydrogen atoms in a sunspot. A physically reasonable sunspot model was found so that the direction of the calculated linear polarization agrees reasonably with observations. The magnitude of the calculated values of the linear polarization agrees generally with values observed in the continuum at 5830 A. Circular polarization in the continuum also accompanies electron scattering in spot regions; however for commonly accepted values of the longitudinal magnetic field, the predicted circular polarization is much smaller than observed.

  9. Defect-Induced Hedgehog Polarization States in Multiferroics

    NASA Astrophysics Data System (ADS)

    Li, Linze; Cheng, Xiaoxing; Jokisaari, Jacob R.; Gao, Peng; Britson, Jason; Adamo, Carolina; Heikes, Colin; Schlom, Darrell G.; Chen, Long-Qing; Pan, Xiaoqing

    2018-03-01

    Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO3 . An array of charged NSNRs are produced in BiFeO3 thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.

  10. Defect-Induced Hedgehog Polarization States in Multiferroics.

    PubMed

    Li, Linze; Cheng, Xiaoxing; Jokisaari, Jacob R; Gao, Peng; Britson, Jason; Adamo, Carolina; Heikes, Colin; Schlom, Darrell G; Chen, Long-Qing; Pan, Xiaoqing

    2018-03-30

    Continuous developments in nanotechnology require new approaches to materials synthesis that can produce novel functional structures. Here, we show that nanoscale defects, such as nonstoichiometric nanoregions (NSNRs), can act as nano-building blocks for creating complex electrical polarization structures in the prototypical multiferroic BiFeO_{3}. An array of charged NSNRs are produced in BiFeO_{3} thin films by tuning the substrate temperature during film growth. Atomic-scale scanning transmission electron microscopy imaging reveals exotic polarization rotation patterns around these NSNRs. These polarization patterns resemble hedgehog or vortex topologies and can cause local changes in lattice symmetries leading to mixed-phase structures resembling the morphotropic phase boundary with high piezoelectricity. Phase-field simulations indicate that the observed polarization configurations are mainly induced by charged states at the NSNRs. Engineering defects thus may provide a new route for developing ferroelectric- or multiferroic-based nanodevices.

  11. Summary of the XIII International Workshop on Polarized Sources, Targets and Polarimetry

    NASA Astrophysics Data System (ADS)

    Rathmann, F.

    2011-01-01

    The workshops on polarized sources, targets, and polarimetry are held every two years. The present meeting took place in Ferrara, Italy, and was organized by the University of Ferrara. Sessions on Polarized Proton and Deuterium Sources, Polarized Electron Sources, Polarimetry, Polarized Solid Targets, and Polarized Internal Targets, highlighted topics, recent developments, and progress in the field. A session decicated to Future Facilities provided an overview of a number of new activities in the spin-physics sector at facilities that are currently in the planning stage. Besides presenting a broad overview of polarized ion sources, electron sources, solid and gaseous targets, and their neighboring fields, the workshop also addressed the application of polarized atoms in applied sciences and medicine that is becoming increasingly important.

  12. The control system of the polarized internal target of ANKE at COSY

    NASA Astrophysics Data System (ADS)

    Kleines, H.; Sarkadi, J.; Zwoll, K.; Engels, R.; Grigoryev, K.; Mikirtychyants, M.; Nekipelov, M.; Rathmann, F.; Seyfarth, H.; Kravtsov, P.; Vasilyev, A.

    2006-05-01

    The polarized internal target for the ANKE experiment at the Cooler Synchrotron COSY of the Forschungszentrum Jülich utilizes a polarized atomic beam source to feed a storage cell with polarized hydrogen or deuterium atoms. The nuclear polarization is measured with a Lamb-shift polarimeter. For common control of the two systems, industrial equipment was selected providing reliable, long-term support and remote control of the target as well as measurement and optimization of its operating parameters. The interlock system has been implemented on the basis of SIEMENS SIMATIC S7-300 family of programmable logic controllers. In order to unify the interfacing to the control computer, all front-end equipment is connected via the PROFIBUS DP fieldbus. The process control software was implemented using the Windows-based WinCC toolkit from SIEMENS. The variety of components, to be controlled, and the logical structure of the control and interlock system are described. Finally, a number of applications derived from the present development to other, new installations are briefly mentioned.

  13. Artificial two-dimensional polar metal at room temperature

    DOE PAGES

    Cao, Yanwei; Wang, Zhen; Park, Se Young; ...

    2018-04-18

    Polar metals, commonly defined by the coexistence of polar crystal structure and metallicity, are thought to be scarce because the long-range electrostatic fields favoring the polar structure are expected to be fully screened by the conduction electrons of a metal. Moreover, reducing from three to two dimensions, it remains an open question whether a polar metal can exist. Here we report on the realization of a room temperature two-dimensional polar metal of the B-site type in tri-color (tri-layer) superlattices BaTiO 3/SrTiO 3/LaTiO 3. A combination of atomic resolution scanning transmission electron microscopy with electron energy-loss spectroscopy, optical second harmonic generation,more » electrical transport, and first-principles calculations have revealed the microscopic mechanisms of periodic electric polarization, charge distribution, and orbital symmetry. Lastly, our results provide a route to creating all-oxide artificial non-centrosymmetric quasi-two-dimensional metals with exotic quantum states including coexisting ferroelectric, ferromagnetic, and superconducting phases.« less

  14. Artificial two-dimensional polar metal at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yanwei; Wang, Zhen; Park, Se Young

    Polar metals, commonly defined by the coexistence of polar crystal structure and metallicity, are thought to be scarce because the long-range electrostatic fields favoring the polar structure are expected to be fully screened by the conduction electrons of a metal. Moreover, reducing from three to two dimensions, it remains an open question whether a polar metal can exist. Here we report on the realization of a room temperature two-dimensional polar metal of the B-site type in tri-color (tri-layer) superlattices BaTiO 3/SrTiO 3/LaTiO 3. A combination of atomic resolution scanning transmission electron microscopy with electron energy-loss spectroscopy, optical second harmonic generation,more » electrical transport, and first-principles calculations have revealed the microscopic mechanisms of periodic electric polarization, charge distribution, and orbital symmetry. Lastly, our results provide a route to creating all-oxide artificial non-centrosymmetric quasi-two-dimensional metals with exotic quantum states including coexisting ferroelectric, ferromagnetic, and superconducting phases.« less

  15. POLARIZED SCATTERING OF LIGHT FOR ARBITRARY MAGNETIC FIELDS WITH LEVEL-CROSSINGS FROM THE COMBINATION OF HYPERFINE AND FINE STRUCTURE SPLITTINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowmya, K.; Nagendra, K. N.; Sampoorna, M.

    2015-12-01

    Interference between magnetic substates of the hyperfine structure states belonging to different fine structure states of the same term influences the polarization for some of the diagnostically important lines of the Sun's spectrum, like the sodium and lithium doublets. The polarization signatures of this combined interference contain information on the properties of the solar magnetic fields. Motivated by this, in the present paper, we study the problem of polarized scattering on a two-term atom with hyperfine structure by accounting for the partial redistribution in the photon frequencies arising due to the Doppler motions of the atoms. We consider the scatteringmore » atoms to be under the influence of a magnetic field of arbitrary strength and develop a formalism based on the Kramers–Heisenberg approach to calculate the scattering cross section for this process. We explore the rich polarization effects that arise from various level-crossings in the Paschen–Back regime in a single scattering case using the lithium atomic system as a concrete example that is relevant to the Sun.« less

  16. Quantum metrology of phase for accelerated two-level atom coupled with electromagnetic field with and without boundary

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Liu, Xiaobao; Wang, Jieci; Jing, Jiliang

    2018-03-01

    We study how to improve the precision of the quantum estimation of phase for an uniformly accelerated atom in fluctuating electromagnetic field by reflecting boundaries. We find that the precision decreases with increases of the acceleration without the boundary. With the presence of a reflecting boundary, the precision depends on the atomic polarization, position and acceleration, which can be effectively enhanced compared to the case without boundary if we choose the appropriate conditions. In particular, with the presence of two parallel reflecting boundaries, we obtain the optimal precision for atomic parallel polarization and the special distance between two boundaries, as if the atom were shielded from the fluctuation.

  17. Cavity enhanced atomic magnetometry

    PubMed Central

    Crepaz, Herbert; Ley, Li Yuan; Dumke, Rainer

    2015-01-01

    Atom sensing based on Faraday rotation is an indispensable method for precision measurements, universally suitable for both hot and cold atomic systems. Here we demonstrate an all-optical magnetometer where the optical cell for Faraday rotation spectroscopy is augmented with a low finesse cavity. Unlike in previous experiments, where specifically designed multipass cells had been employed, our scheme allows to use conventional, spherical vapour cells. Spherical shaped cells have the advantage that they can be effectively coated inside with a spin relaxation suppressing layer providing long spin coherence times without addition of a buffer gas. Cavity enhancement shows in an increase in optical polarization rotation and sensitivity compared to single-pass configurations. PMID:26481853

  18. Polarization retention in ultra-thin barium titanate films on Ge(001)

    NASA Astrophysics Data System (ADS)

    Cho, Yujin; Ponath, Patrick; Zheng, Lu; Hatanpaa, Benjamin; Lai, Keji; Demkov, Alexander A.; Downer, Michael C.

    2018-04-01

    We investigate polarization retention in 10 to 19 nm thick ferroelectric BaTiO3 (BTO) grown on Ge(001) by molecular beam epitaxy. The out-of-plane direction and reversibility of electric polarization were confirmed using piezoresponse force microscopy. After reverse-poling selected regions of the BTO films to a value P with a biased atomic-force microscope tip, we monitored relaxation of their net polarization for as long as several weeks using optical second-harmonic generation microscopy. All films retained reversed polarization throughout the observation period. 10 nm-thick BTO films relaxed monotonically to a saturation value of 0.9 P after 27 days and 19 nm films to 0.75 P after 24 h. Polarization dynamics are discussed in the context of a 1D polarization relaxation/kinetics model.

  19. Dynamical polarizability of atoms in arbitrary light fields: general theory and application to cesium

    NASA Astrophysics Data System (ADS)

    Le Kien, Fam; Schneeweiss, Philipp; Rauschenbeutel, Arno

    2013-05-01

    We present a systematic derivation of the dynamical polarizability and the ac Stark shift of the ground and excited states of atoms interacting with a far-off-resonance light field of arbitrary polarization. We calculate the scalar, vector, and tensor polarizabilities of atomic cesium using resonance wavelengths and reduced matrix elements for a large number of transitions. We analyze the properties of the fictitious magnetic field produced by the vector polarizability in conjunction with the ellipticity of the polarization of the light field.

  20. Observation of ionization enhancement in two-color circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Mancuso, Christopher A.; Dorney, Kevin M.; Hickstein, Daniel D.; Chaloupka, Jan L.; Tong, Xiao-Min; Ellis, Jennifer L.; Kapteyn, Henry C.; Murnane, Margaret M.

    2017-08-01

    When atoms are irradiated by two-color circularly polarized laser fields the resulting strong-field processes are dramatically different than when the same atoms are irradiated by a single-color ultrafast laser. For example, electrons can be driven in complex two-dimensional trajectories before rescattering or circularly polarized high harmonics can be generated, which was once thought impossible. Here, we show that two-color circularly polarized lasers also enable control over the ionization process itself and make a surprising finding: the ionization rate can be enhanced by up to 700 % simply by switching the relative helicity of the two-color circularly polarized laser field. This enhancement is experimentally observed in helium, argon, and krypton over a wide range of intensity ratios of the two-color field. We use a combination of advanced quantum and fully classical calculations to explain this ionization enhancement as resulting in part due to the increased density of excited states available for resonance-enhanced ionization in counter-rotating fields compared with co-rotating fields. In the future, this effect could be used to probe the excited state manifold of complex molecules.

  1. Polarized Continuum Radiation from Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Harrington, J. Patrick

    2015-10-01

    Continuum scattering by free electrons can be significant in early type stars, while in late type stars Rayleigh scattering by hydrogen atoms or molecules may be important. Computer programs used to construct models of stellar atmospheres generally treat the scattering of the continuum radiation as isotropic and unpolarized, but this scattering has a dipole angular dependence and will produce polarization. We review an accurate method for evaluating the polarization and limb darkening of the radiation from model stellar atmospheres. We use this method to obtain results for: (i) Late type stars, based on the MARCS code models (Gustafsson et al. 2008), and (ii) Early type stars, based on the NLTE code TLUSTY (Lanz and Hubeny 2003). These results are tabulated at http://www.astro.umd.edu/~jph/Stellar_Polarization.html. While the net polarization vanishes for an unresolved spherical star, this symmetry is broken by rapid rotation or by the masking of part of the star by a binary companion or during the transit of an exoplanet. We give some numerical results for these last cases.

  2. First principles calculation of the structural, electronic, and magnetic properties of Au-Pd atomic chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dave, Mudra R., E-mail: mdave-phy@yahoo.co.in; Sharma, A. C.

    2015-06-24

    The structural, electronic and magnetic properties of free standing Au-Pd bimetallic atomic chain is studied using ab-initio method. It is found that electronic and magnetic properties of chains depend on position of atoms and number of atoms. Spin polarization factor for different atomic configuration of atomic chain is calculated predicting a half metallic behavior. It suggests a total spin polarised transport in these chains.

  3. Spin polarization of {sup 87}Rb atoms with ultranarrow linewidth diode laser: Numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Z. G.; Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha, 410073; College of Science, National University of Defense Technology, Changsha, 410073

    2016-08-15

    In order to polarize {sup 87}Rb vapor effectively with ultranarrow linewidth diode laser, we studied the polarization as a function of some parameters including buffer gas pressure and laser power. Moreover, we also discussed the methods which split or modulate the diode laser frequency so as to pump the two ground hyperfine levels efficiently. We obtained some useful results through numerical simulation. If the buffer gas pressure is so high that the hyperfine structure is unresolved, the polarization is insensitive to laser frequency at peak absorption point so frequency splitting and frequency modulation methods do not show improvement. At lowmore » pressure and laser power large enough, where the hyperfine structure is clearly resolved, frequency splitting and frequency modulation methods can increase polarization effectively. For laser diodes, frequency modulation is easily realized with current modulation, so this method is attractive since it does not add any other components in the pumping laser system.« less

  4. Atomic-level imaging, processing and characterization of semiconductor surfaces

    DOEpatents

    Kazmerski, Lawrence L.

    1995-01-01

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe.

  5. Atomic-level imaging, processing and characterization of semiconductor surfaces

    DOEpatents

    Kazmerski, L.L.

    1995-08-22

    A method for selecting and removing single specific atoms from a solid material surface uses photon biasing to break down bonds that hold the selected atom in the lattice and to reduce barrier effects that hold the atom from transferring to a probe. The photon bias is preferably light or other electromagnetic radiation with a wavelength and frequency that approximately matches the wave function of the target atom species to be removed to induce high energy, selective thermionic-like vibration. An electric field potential is then applied between the probe and the surface of the solid material to pull the atom out of the lattice and to transfer the atom to the probe. Different extrinsic atoms can be installed in the lattice sites that are vacated by the removed atoms by using a photon bias that resonates the extrinsic atom species, reversing polarity of the electric field, and blowing gas comprising the extrinsic atoms through a hollow catheter probe. 8 figs.

  6. Parallel Low-Loss Measurement of Multiple Atomic Qubits

    NASA Astrophysics Data System (ADS)

    Kwon, Minho; Ebert, Matthew F.; Walker, Thad G.; Saffman, M.

    2017-11-01

    We demonstrate low-loss measurement of the hyperfine ground state of rubidium atoms by state dependent fluorescence detection in a dipole trap array of five sites. The presence of atoms and their internal states are minimally altered by utilizing circularly polarized probe light and a strictly controlled quantization axis. We achieve mean state detection fidelity of 97% without correcting for imperfect state preparation or background losses, and 98.7% when corrected. After state detection and correction for background losses, the probability of atom loss due to the state measurement is <2 % and the initial hyperfine state is preserved with >98 % probability.

  7. Alleviating polarity-conflict at the heterointerfaces of KTaO{sub 3}/GdScO{sub 3} polar complex-oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, J.; Nichols, J.; Connell, J. G.

    2014-09-08

    We have synthesized and investigated the heterointerfaces of KTaO{sub 3} (KTO) and GdScO{sub 3} (GSO), which are both polar complex-oxides along the pseudo-cubic [001] direction. Since their layers have the same, conflicting net charges at interfaces, i.e., KO(−1)/ScO{sub 2}(−1) or TaO{sub 2}(+1)/GdO(+1), forming the heterointerface of KTO/GSO should be forbidden due to strong Coulomb repulsion, the so-called polarity conflict. However, we have discovered that atomic reconstruction occurs at the heterointerfaces between KTO thin-films and GSO substrates, which effectively alleviates the polarity conflict without destroying the hetero-epitaxy. Our result demonstrates one of the important ways to create artificial heterostructures from polarmore » complex-oxides.« less

  8. Selective absorption processes as the origin of puzzling spectral line polarization from the Sun.

    PubMed

    Trujillo Bueno, J; Landi Degl'Innocenti, E; Collados, M; Merenda, L; Manso Sainz, R

    2002-01-24

    Magnetic fields play a key role in most astrophysical systems, from the Sun to active galactic nuclei. They can be studied through their effects on atomic energy levels, which produce polarized spectral lines. In particular, anisotropic radiation 'pumping' processes (which send electrons to higher atomic levels) induce population imbalances that are modified by weak magnetic fields. Here we report peculiarly polarized light in the He I 10,830-A multiplet observed in a coronal filament located at the centre of the solar disk. We show that the polarized light arises from selective absorption from the ground level of the triplet system of helium, and that it implies the presence of magnetic fields of the order of a few gauss that are highly inclined with respect to the solar radius vector. This disproves the common belief that population imbalances in long-lived atomic levels are insignificant in the presence of inclined fields of the order of a few gauss, and opens up a new diagnostic window for the investigation of solar magnetic fields.

  9. Polarization-selective optical transmission through a plasmonic metasurface.

    PubMed

    Pelzman, Charles; Cho, Sang-Yeon

    2015-06-22

    We present the design, fabrication, and experimental characterization of a nanoslit-based metasurface that offers polarization-selective optical transmission for advanced imaging applications. The metasurface consists of an array of meta-atoms, constructed with two orthogonally coupled subwavelength apertures. Highly enhanced optical transmission was achieved by selective excitation of surface plasmon waves on the metasurface. By rotating the orientation of the linearly polarized incident beam, switching of enhanced optical transmission bands through the metasurface was experimentally demonstrated. This demonstration is a significant step towards developing advanced multispectral imaging devices.

  10. Polarization-selective optical transmission through a plasmonic metasurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelzman, Charles; Cho, Sang-Yeon, E-mail: sangycho@nmsu.edu

    2015-06-22

    We present the design, fabrication, and experimental characterization of a nanoslit-based metasurface that offers polarization-selective optical transmission for advanced imaging applications. The metasurface consists of an array of meta-atoms, constructed with two orthogonally coupled subwavelength apertures. Highly enhanced optical transmission was achieved by selective excitation of surface plasmon waves on the metasurface. By rotating the orientation of the linearly polarized incident beam, switching of enhanced optical transmission bands through the metasurface was experimentally demonstrated. This demonstration is a significant step towards developing advanced multispectral imaging devices.

  11. Ultra-sensitive atomic magnetometer for studying magnetization fields produced by hyperpolarized helium-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Sheng; Zhang, Hong; Fang, Jian-cheng, E-mail: fangjiancheng@buaa.edu.cn

    2016-04-14

    An ingenious approach to acquire the absolute magnetization fields produced by polarized atoms has been presented in this paper. The method was based on detection of spin precession signal of the hyperpolarized helium-3 with ultra-sensitive atomic magnetometer of potassium by referring to time-domain analysis. At first, dynamic responses of the mixed spin ensembles in the presence of variant external magnetic fields have been analyzed by referring to the Bloch equation. Subsequently, the relevant equipment was established to achieve the functions of hyperpolarizing helium-3 and detecting the precession of spin-polarized noble gas. By analyzing the transient response of the magnetometer inmore » time domain, we obtained the relevant damping ratio and natural frequency. When the value of damping ratio reached the maximum value of 0.0917, the combined atomic magnetometer was in equilibrium. We draw a conclusion from the steady response: the magnetization fields of the polarized electrons and the hyperpolarized nuclei were corresponding 16.12 nT and 90.74 nT. Under this situation, the nuclear magnetization field could offset disturbing magnetic fields perpendicular to the orientation of the electronic polarization, and it preserved the electronic spin staying in a stable axis. Therefore, the combined magnetometer was particularly attractive for inertial measurements.« less

  12. Hyperfine state entanglement of spinor BEC and scattering atom

    NASA Astrophysics Data System (ADS)

    Li, Zhibing; Bao, Chengguang; Zheng, Wei

    2018-05-01

    Condensate of spin-1 atoms frozen in a unique spatial mode may possess large internal degrees of freedom. The scattering amplitudes of polarized cold atoms scattered by the condensate are obtained with the method of fractional parentage coefficients that treats the spin degrees of freedom rigorously. Channels with scattering cross sections enhanced by the square of the atom number of the condensate are found. Entanglement between the condensate and the propagating atom can be established by scattering. Entanglement entropy is analytically obtained for arbitrary initial states. Our results also give a hint for the establishment of quantum thermal ensembles in the hyperfine space of spin states.

  13. Measurements of Excitation Functions and Line Polarizations for Electron Impact Excitation of the n = 2, 3 States of Atomic Hydrogen in the Energy Range 11 - 2000 eV

    NASA Technical Reports Server (NTRS)

    James, G. K.; Ajello, J. M.; Kanik, I.; Slevin, J.; Franklin, B.; Shemansky, D.

    1993-01-01

    The electron-atomic hydrogen scattering system is an important testing ground for theoretical models and has received a great deal of attention from experimentalists and theoreticians alike over the years. A complete description of the excitation process requires a knowledge of many different parameters, and experimental measurements of these parameters have been performed in various laboratories around the world. As far as total cross section data are concerned it has been noted that the discrepancy between the data of Long et al. and Williams for n = 2 excitations needs to be resolved in the interests of any further refinement of theory. We report new measurements of total cross sections and atomic line polarizations for both n=2 and n=3 excitations at energies from threshold to 2000 eV...

  14. Faraday spectroscopy of ultracold atoms guided in hollow core optical fibers

    NASA Astrophysics Data System (ADS)

    Fatemi, Fredrik; Pechkis, Joseph

    2013-05-01

    We have performed spatially and temporally resolved magnetometry using Faraday spectroscopy of ultracold rubidium atoms confined in hollow core optical fibers. We first guide 105 Rb atoms into a 3-cm-long, 100-micron-core hollow fiber using blue-detuned hollow waveguide modes. Inside the fiber, the atoms are exposed to an optical pumping pulse, and the Larmor precession is monitored by the polarization rotation of a probe laser beam detuned by 50 GHz. The intense guide beams can perturb the detected Larmor precession frequencies, but we show that by confining the atoms to the intensity null of higher order blue-detuned hollow modes, these perturbations are reduced by over 95% compared to red-detuned guides. By adjusting the guide beam detuning and polarization, the deleterious effects of both photon scattering and frequency shifts can be suppressed such that multiple magnetic field measurements with sensitivity of 30 nT per sampling pulse can be obtained throughout the length of the fiber in a single loading cycle. Work supported by ONR and DARPA.

  15. Resonance fluorescence from an atom in a squeezed vacuum

    NASA Astrophysics Data System (ADS)

    Carmichael, H. J.; Lane, A. S.; Walls, D. F.

    1987-06-01

    The fluorescent spectrum for a two-level atom which is damped by a squeezed vacuum shows striking differences from the spectrum for ordinary resonance fluorescence. For strong coherent driving fields the Mollow triplet depends on the relative phase of the driving field and the squeezed vacuum field. The central peak may have either subnatural linewidth or supernatural linewidth depending on this phase. The mean atomic polarization also shows a phase sensitivity.

  16. First-principles calculation of the polarization-dependent force driving the Eg mode in bismuth under optical excitation.

    NASA Astrophysics Data System (ADS)

    Murray, Eamonn; Fahy, Stephen

    2014-03-01

    Using first principles electronic structure methods, we calculate the induced force on the Eg (zone centre transverse optical) phonon mode in bismuth immediately after absorption of polarized light. When radiation with polarization perpendicular to the c-axis is absorbed in bismuth, the distribution of excited electrons and holes breaks the three-fold rotational symmetry and leads to a net force on the atoms in the direction perpendicular to the axis. We calculate the initial excited electronic distribution as a function of photon energy and polarization and find the resulting transverse and longitudinal forces experienced by the atoms. Using the measured, temperature-dependent rate of decay of the transverse force[2], we predict the approximate amplitude of induced atomic motion in the Eg mode as a function of temperature and optical fluence. This work is supported by Science Foundation Ireland and a Marie Curie International Incoming Fellowship.

  17. Spin-polarized electron current from carbon-doped open armchair boron nitride nanotubes: Implication for nano-spintronic devices

    NASA Astrophysics Data System (ADS)

    Zhou, Gang; Duan, Wenhui

    2007-03-01

    Spin-polarized density functional calculations show that the substitutional doping of carbon (C) atom at the mouth changes the atomic and spin configurations of open armchair boron nitride nanotubes (BNNTs). The occupied/unoccupied deep gap states are observed with the significant spin-splitting. The structures and spin-polarized properties are basically stable under the considerable electric field, which is important for practical applications. The magnetization mechanism is attributed to the interactions of s, p states between the C and its neighboring B or N atoms. Ultimately, advantageous geometrical and electronic effects mean that C-doped open armchair BNNTs would have promising applications in nano-spintronic devices.

  18. Toward Single Atom Chains with Exfoliated Tellurium.

    PubMed

    Churchill, Hugh O H; Salamo, Gregory J; Yu, Shui-Qing; Hironaka, Takayuki; Hu, Xian; Stacy, Jeb; Shih, Ishiang

    2017-08-10

    We demonstrate that the atom chain structure of Te allows it to be exfoliated as ultra-thin flakes and nanowires. Atomic force microscopy of exfoliated Te shows that thicknesses of 1-2 nm and widths below 100 nm can be exfoliated with this method. The Raman modes of exfoliated Te match those of bulk Te, with a slight shift (4 cm -1 ) due to a hardening of the A 1 and E modes. Polarized Raman spectroscopy is used to determine the crystal orientation of exfoliated Te flakes. These experiments establish exfoliation as a route to achieve nanoscale trigonal Te while also demonstrating the potential for fabrication of single atom chains of Te.

  19. First principle study of the electronic and magnetic properties of a single iron atomic chain encapsulated in boron nitrite nanotubes

    NASA Astrophysics Data System (ADS)

    Fathalian, Ali; Jalilian, Jaafar; Shahidi, Sahar

    2011-11-01

    The electronic and magnetic properties for a single Fe atom chain wrapped in armchair (n,n) boron nitride nanotubes (BNNTs) ( 4≤n≤6) are investigated through the density functional theory. By increasing the nanotube diameter, the magnetic moments, total magnetic moments and spin polarization of Fe@(n,n) systems are increased. We have calculated the majority and minority density of states (DOS) of armchair Fe@(6,6) BNNT. Our results show that the magnetic moment of the system come mostly from the Fe atom chain. The magnetic moment on an Fe atom, the total magnetic moment and spin polarization decrease by increasing the axial separation of the Fe atom chain for the Fe@(6,6) system. The Fe@(6,6) BNNT can be used in the magnetic nanodevices because of higher magnetic moment and spin polarization.

  20. The photoexcitation of crystalline ice and amorphous solid water: A molecular dynamics study of outcomes at 11 K and 125 K.

    PubMed

    Crouse, J; Loock, H-P; Cann, N M

    2015-07-21

    Photoexcitation of crystalline ice Ih and amorphous solid water at 7-9 eV is examined using molecular dynamics simulations and a fully flexible water model. The probabilities of photofragment desorption, trapping, and recombination are examined for crystalline ice at 11 K and at 125 K and for amorphous solid water at 11 K. For 11 K crystalline ice, a fully rigid water model is also employed for comparison. The kinetic energy of desorbed H atoms and the distance travelled by trapped fragments are correlated to the location and the local environment of the photoexcited water molecule. In all cases, H atom desorption is found to be the most likely outcome in the top bilayer while trapping of all photofragments is most probable deeper in the solid where the likelihood for recombination of the fragments into H2O molecules also rises. Trajectory analysis indicates that the local hydrogen bonding network in amorphous solid water is more easily distorted by a photodissociation event compared to crystalline ice. Also, simulations indicate that desorption of OH radicals and H2O molecules are more probable in amorphous solid water. The kinetic energy distributions for desorbed H atoms show a peak at high energy in crystalline ice, arising from photoexcited water molecules in the top monolayer. This peak is less pronounced in amorphous solid water. H atoms that are trapped may be displaced by up to ∼10 water cages, but migrate on average 3 water cages. Trapped OH fragments tend to stay near the original solvent cage.

  1. Titanium magnetic polarization at the Fe/BaTiO3 interfaces: An effect of ferroelectric polarization discontinuity

    NASA Astrophysics Data System (ADS)

    Paul, Amitesh; Zheng, Jian-Guo; Aoki, Toshihiro

    2017-10-01

    The exotic magnetic phenomena and the associated functionalities have attracted extensive scientific interest in fundamental physics and cater to the purpose of the novel material search. In this article, with a combination of the electron energy-loss spectroscopy and the X-ray absorption spectroscopy, we have investigated the interfacial Fe atoms and the induced ferromagnetic moment of Ti atoms in Fe/BaTiO3 (BTO) heterostructures. The samples were grown with two different BTO thicknesses, thus resulting in two different states of distorted oxygen environments or different electrostatic potentials. We demonstrate that in these systems, the electronic and magnetic proximity effects remain coupled as the ferroelectric polar discontinuity is held responsible for an induced transfer of the interface electrons. These electrons migrate from the Fe2+ layers to the Ti(4+)-δ layers with the hybridization via O-2p oxide orbitals into Ti orbitals to screen the ferroelectric polarization. These findings, in charge neutral BaO-TiO2 and FeO layers or nonpolar/nopolar interface, essentially underline the central role of the covalent bonding in defining the spin-electronic properties.

  2. Laser theory with finite atom-field interacting time

    NASA Astrophysics Data System (ADS)

    Yu, Deshui; Chen, Jingbiao

    2008-07-01

    We investigate the influence of atomic transit time τ on the laser linewidth by the quantum Langevin approach. With comparing the bandwidths of cavity mode κ , atomic polarization γab , and atomic transit broadening τ-1 , we study the laser linewidth in different limits. We also discuss the spectrum of fluctuations of output field and the influence of pumping statistics on the output field.The influence of atomic transit time τ on laser field has not been carefully discussed before, to our knowledge. In particular, a laser operating in the region of γab≪τ-1≪κ/2 appears not to have been analyzed in previous laser theories. Our work could be a useful complementarity to laser theory. It is also an important theoretical foundation for the recently proposed active optical atomic clock based on bad-cavity laser mechanism.

  3. SCALAR MULTI-PASS ATOMIC MAGNETOMETER

    DTIC Science & Technology

    2017-08-01

    primarily by atomic shot noise. Furthermore, the spectrum of quantum spin noise provides information on the time correlation between the spins and...the resulting light to be shot -noise-limited both with and without the polarizer in place. Newer Vixar VCSELs with internal gratings on output...described on inside pages STINFO COPY AIR FORCE RESEARCH LABORATORY SENSORS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320

  4. Molecule-assisted ferromagnetic atomic chain formation

    NASA Astrophysics Data System (ADS)

    Kumar, Manohar; Sethu, Kiran Kumar Vidya; van Ruitenbeek, Jan M.

    2015-06-01

    One dimensional systems strongly enhance the quantum character of electron transport. Such systems can be realized in 5 d transition metals Au, Pt, and Ir, in the form of suspended monatomic chains between bulk leads. Atomic chains between ferromagnetic leads would open up many perspectives in the context of spin-dependent transport and spintronics, but the evidence suggests that for pure metals only the mentioned three 5 d metals are susceptible to chain formation. It has been argued that the stability of atomic chains made up from ferromagnetic metals is compromised by the same exchange interaction that produces the local moments. Here we demonstrate that magnetic atomic chains can be induced to form in break junctions under the influence of light molecules. Explicitly, we find deuterium assisted chain formation in the 3 d ferromagnetic transition metals Fe and Ni. Chain lengths up to eight atoms are formed upon stretching the ferromagnetic atomic contact in deuterium atmosphere at cryogenic temperatures. From differential conductance spectra vibronic states of D2 can be identified, confirming the presence of deuterium in the atomic chains. Shot noise spectroscopy indicates the presence of weakly spin polarized transmission channels.

  5. Dynamical Negative Differential Resistance in Antiferromagnetically Coupled Few-Atom Spin Chains

    NASA Astrophysics Data System (ADS)

    Rolf-Pissarczyk, Steffen; Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; McMurtrie, Gregory; Loth, Sebastian

    2017-11-01

    We present the appearance of negative differential resistance (NDR) in spin-dependent electron transport through a few-atom spin chain. A chain of three antiferromagnetically coupled Fe atoms (Fe trimer) was positioned on a Cu2 N /Cu (100 ) surface and contacted with the spin-polarized tip of a scanning tunneling microscope, thus coupling the Fe trimer to one nonmagnetic and one magnetic lead. Pronounced NDR appears at the low bias of 7 mV, where inelastic electron tunneling dynamically locks the atomic spin in a long-lived excited state. This causes a rapid increase of the magnetoresistance between the spin-polarized tip and Fe trimer and quenches elastic tunneling. By varying the coupling strength between the tip and Fe trimer, we find that in this transport regime the dynamic locking of the Fe trimer competes with magnetic exchange interaction, which statically forces the Fe trimer into its high-magnetoresistance state and removes the NDR.

  6. Analytical transition-matrix treatment of electric multipole polarizabilities of hydrogen-like atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharchenko, V.F., E-mail: vkharchenko@bitp.kiev.ua

    2015-04-15

    The direct transition-matrix approach to the description of the electric polarization of the quantum bound system of particles is used to determine the electric multipole polarizabilities of the hydrogen-like atoms. It is shown that in the case of the bound system formed by the Coulomb interaction the corresponding inhomogeneous integral equation determining an off-shell scattering function, which consistently describes virtual multiple scattering, can be solved exactly analytically for all electric multipole polarizabilities. Our method allows to reproduce the known Dalgarno–Lewis formula for electric multipole polarizabilities of the hydrogen atom in the ground state and can also be applied to determinemore » the polarizability of the atom in excited bound states. - Highlights: • A new description for electric polarization of hydrogen-like atoms. • Expression for multipole polarizabilities in terms of off-shell scattering functions. • Derivation of integral equation determining the off-shell scattering function. • Rigorous analytic solving the integral equations both for ground and excited states. • Study of contributions of virtual multiple scattering to electric polarizabilities.« less

  7. Physics of Spin-Polarized Media

    DTIC Science & Technology

    2007-11-21

    midsection of the cell serving as the cathode, and liquid molten salt outside the cell serving as the anode [5]. This new method is very promising for of...filling atomic clock and magnetometer cells by electrolysis through the glass walls; (6) new investigations of optical pumping and magnetic resonances...cesium vapor can be used to polarize 3 Cs nuclei in CsH salt that coats the walls of a vapor cell. This result, an important first step, has been

  8. Strong polarization enhancement in asymmetric three-component ferroelectric superlattices

    NASA Astrophysics Data System (ADS)

    Lee, Ho Nyung; Christen, Hans M.; Chisholm, Matthew F.; Rouleau, Christopher M.; Lowndes, Douglas H.

    2005-01-01

    Theoretical predictions-motivated by recent advances in epitaxial engineering-indicate a wealth of complex behaviour arising in superlattices of perovskite-type metal oxides. These include the enhancement of polarization by strain and the possibility of asymmetric properties in three-component superlattices. Here we fabricate superlattices consisting of barium titanate (BaTiO3), strontium titanate (SrTiO3) and calcium titanate (CaTiO3) with atomic-scale control by high-pressure pulsed laser deposition on conducting, atomically flat strontium ruthenate (SrRuO3) layers. The strain in BaTiO3 layers is fully maintained as long as the BaTiO3 thickness does not exceed the combined thicknesses of the CaTiO3 and SrTiO3 layers. By preserving full strain and combining heterointerfacial couplings, we find an overall 50% enhancement of the superlattice global polarization with respect to similarly grown pure BaTiO3, despite the fact that half the layers in the superlattice are nominally non-ferroelectric. We further show that even superlattices containing only single-unit-cell layers of BaTiO3 in a paraelectric matrix remain ferroelectric. Our data reveal that the specific interface structure and local asymmetries play an unexpected role in the polarization enhancement.

  9. Spin relaxation in ultracold collisions of molecular radicals with alkali-metal atoms

    NASA Astrophysics Data System (ADS)

    Tscherbul, Timur; Klos, Jacek; Zukowski, Piotr

    2016-05-01

    We present accurate quantum scattering calculations of spin relaxation in ultracold collisions of alkali-metal atoms and polar 2 Σ molecules CaH, SrF, and SrOH. The calculations employ state-of-the-art ab initio interaction potentials and a rigorous quantum theory of atom-molecule collisions in a magnetic field based on the total angular momentum representation. We will further discuss the relevance of the results to atom-molecule sympathetic cooling experiments in a magnetic trap.

  10. Magneto-optical polarization rotation in a ladder-type atomic system for tunable offset locking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parniak, Michał, E-mail: michal.parniak@fuw.edu.pl; Leszczyński, Adam; Wasilewski, Wojciech

    2016-04-18

    We demonstrate an easily tunable locking scheme for stabilizing frequency-sum of two lasers on a two-photon ladder transition based on polarization rotation in warm rubidium vapors induced by magnetic field and circularly polarized drive field. Unprecedented tunability of the two-photon offset frequency is due to strong splitting and shifting of magnetic states in external field. In our experimental setup, we achieve two-photon detuning of up to 700 MHz.

  11. Plasmon-induced nonlinear response of silver atomic chains.

    PubMed

    Yan, Lei; Guan, Mengxue; Meng, Sheng

    2018-05-10

    Nonlinear response of a linear silver atomic chain upon ultrafast laser excitation has been studied in real time using the time-dependent density functional theory. We observe the presence of nonlinear responses up to the fifth order in tunneling current, which is ascribed to the excitation of high-energy electrons generated by Landau damping of plasmons. The nonlinear effect is enhanced after adsorption of polar molecules such as water due to the enhanced damping rates during plasmon decay. Increasing the length of atomic chains also increases the nonlinear response, favoring higher-order plasmon excitation. These findings offer new insights towards a complete understanding and ultimate control of plasmon-induced nonlinear phenomena to atomic precision.

  12. Studies on an ultrasonic atomization feed direct methanol fuel cell.

    PubMed

    Wu, Chaoqun; Liu, Linghao; Tang, Kai; Chen, Tao

    2017-01-01

    Direct methanol fuel cell (DMFC) is promising as an energy conversion device for the replacement of conventional chemical cell in future, owing to its convenient fuel storage, high energy density and low working temperature. The development of DMFC technology is currently limited by catalyst poison and methanol crossover. To alleviate the methanol crossover, a novel fuel supply system based on ultrasonic atomization is proposed. Experimental investigations on this fuel supply system to evaluate methanol permeation rates, open circuit voltages (OCVs) and polarization curves under a series of conditions have been carried out and reported in this paper. In comparison with the traditional liquid feed DMFC system, it can be found that the methanol crossover under the ultrasonic atomization feed system was significantly reduced because the DMFC reaches a large stable OCV value. Moreover, the polarization performance does not vary significantly with the liquid feed style. Therefore, the cell fed by ultrasonic atomization can be operated with a high concentration methanol to improve the energy density of DMFC. Under the supply condition of relatively high concentration methanol such as 4M and 8M, the maximum power density fed by ultrasonic atomization is higher than liquid by 6.05% and 12.94% respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Polarization Dependent X-ray Absorption Spectroscopy of the TiO2 Polymorphs Anatase (001) and Rutile (001)

    NASA Astrophysics Data System (ADS)

    Ederer, D. L.; Ruzycki, N.; Schuler, T.; Zhang, G. P.; Callcott, T. A.; Nachimuthu, P.; Perera, R. C. C.

    2002-03-01

    Polarization Dependent X-ray Absorption Spectroscopy of the TiO2 Polymorphs Anatase (001) and Rutile (001) N. Ruzycki^a, T. Schuler^a, D.L. Ederer^a, T. A. Callcott^, G. P. Zhang^b, P. Nachimuthu^c,d, and R.C.C. Perera^c a-Tulane University, Department of Physics, New Orleans, LA, 70118 b- Univesity of Tennessee, Department of Physics and Astronomy, Knoxville, TN, 37996 c- Center for X-ray Optics, Lawrence Berkeley Laboratory, Berkeley, CA, d- Department of Chemistry, University of Nevada Las Vegas, Las Vegas NV, 89154 TiO2 is a useful industrial catalyst and has applications in gas sensing and photoelectric devices. All structures consist of octrahedrally-coordinated Ti atoms and three-fold coordinated O atoms. Anatase and rutile differ mainly in the amount of distortion in the octahedra. Because Soft X-ray Absorption Spectroscoy (SXAS) is sensitive to the ligand field, these small differences are reflected the spectra. In the experiment the electronic polarization vector was varied angulary along the equatorial and the longitudnal axes of the sixfold coordinated titanium atoms. This study showed a strong polarization dependence at the oxygen K-edge for rutile (001) and the anatase (001) in the t_2g and eg region for the equatorial bonds. The Titanium L-edge showed a smaller polarization dependence. There was no polarization dependence in the longitudinal direction for anatase (001) or rutile (001) in either the oxygen K-edge or the Ti-L edge. These data are compared with calculations of polarization-dependent matrix elements of the transitions.

  14. Study of the injection molding of a polarizing beam splitter.

    PubMed

    Jose de Carvalho, Edson; Braga, Edmundo da Silva; Cescato, Lucila H

    2006-01-01

    We describe the replication of a relief grating that behaves like a polarizing beam splitter by injection molding. Measurements of the grating master, nickel shim, and replica, performed by atomic force microscopy, allow establishing a limit for the injection molding technique (currently used in CD fabrication) to aspect ratios of approximately 0.15. Although this limit strongly reduces the diffraction efficiency of the elements as well as their polarizing properties, extinction ratios of approximately 10:1 were measured for the replicas in a large range of wavelengths.

  15. Toroidal silicon polarization analyzer for resonant inelastic x-ray scattering

    DOE PAGES

    Gao, Xuan; Casa, Diego; Kim, Jungho; ...

    2016-08-15

    Resonant Inelastic X-ray Scattering (RIXS) is a powerful probe for studying electronic excitations in materials. Standard high energy RIXS measurements do not measure the polarization of the scattered x-rays, which is unfortunate since it carries information about the nature and symmetry of the excitations involved in the scattering process. Moreover we report the fabrication of thin Si-based polarization analyzers with a double-concave toroidal surface, useful for L-edge RIXS studies in heavier atoms such as the 5-d transition metals.

  16. Visualizing molecular polar order in tissues via electromechanical coupling

    PubMed Central

    Denning, Denise; Alilat, Sofiane; Habelitz, Stefan; Fertala, Andrzej; Rodriguez, Brian J.

    2015-01-01

    Electron microscopy (EM) and atomic force microscopy (AFM) techniques have long been used to characterize collagen fibril ordering and alignment in connective tissues. These techniques, however, are unable to map collagen fibril polarity, i.e., the polar orientation that is directed from the amine to the carboxyl termini. Using a voltage modulated AFM-based technique called piezoresponse force microscopy (PFM), we show it is possible to visualize both the alignment of collagen fibrils within a tissue and the polar orientation of the fibrils with minimal sample preparation. We demonstrate the technique on rat tail tendon and porcine eye tissues in ambient conditions. In each sample, fibrils are arranged into domains whereby neighboring domains exhibit opposite polarizations, which in some cases extend to the individual fibrillar level. Uniform polarity has not been observed in any of the tissues studied. Evidence of anti-parallel ordering of the amine to carboxyl polarity in bundles of fibrils or in individual fibrils is found in all tissues, which has relevance for understanding mechanical and biofunctional properties and the formation of connective tissues. The technique can be applied to any biological material containing piezoelectric biopolymers or polysaccharides. PMID:22985991

  17. Impact of molecular packing on electronic polarization in organic crystals: the case of pentacene vs TIPS-pentacene.

    PubMed

    Ryno, Sean M; Risko, Chad; Brédas, Jean-Luc

    2014-04-30

    Polarization energy corresponds to the stabilization of the cation or anion state of an atom or molecule when going from the gas phase to the solid state. The decrease in ionization energy and increase in electron affinity in the solid state are related to the (electronic and nuclear) polarization of the surrounding atoms and molecules in the presence of a charged entity. Here, through a combination of molecular mechanics and quantum mechanics calculations, we evaluate the polarization energies in two prototypical organic semiconductors, pentacene and 6,13-bis(2-(tri-isopropylsilyl)ethynyl)pentacene (TIPS-pentacene). Comparison of the results for the two systems reveals the critical role played by the molecular packing configurations in the determination of the polarization energies and provides physical insight into the experimental data reported by Lichtenberger and co-workers (J. Amer. Chem. Soc. 2010, 132, 580; J. Phys. Chem. C 2010, 114, 13838). Our results underline that the impact of packing configurations, well established in the case of the charge-transport properties, also extends to the polarization properties of π-conjugated materials.

  18. Understanding the impact of the central atom on the ionic liquid behavior: phosphonium vs ammonium cations.

    PubMed

    Carvalho, Pedro J; Ventura, Sónia P M; Batista, Marta L S; Schröder, Bernd; Gonçalves, Fernando; Esperança, José; Mutelet, Fabrice; Coutinho, João A P

    2014-02-14

    The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed.

  19. Understanding the impact of the central atom on the ionic liquid behavior: Phosphonium vs ammonium cations

    NASA Astrophysics Data System (ADS)

    Carvalho, Pedro J.; Ventura, Sónia P. M.; Batista, Marta L. S.; Schröder, Bernd; Gonçalves, Fernando; Esperança, José; Mutelet, Fabrice; Coutinho, João A. P.

    2014-02-01

    The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed.

  20. Spectrum of spin waves in cold polarized gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreeva, T. L., E-mail: phdocandreeva@yandex.ru

    2017-02-15

    The spin dynamics of cold polarized gases are investigated using the Boltzmann equation. The dispersion relation for spin waves (transverse component of the magnetic moment) and the spin diffusion coefficient of the longitudinal component of the magnetic moment are calculated without using fitting parameters. The spin wave frequency and the diffusion coefficient for rubidium atoms are estimated numerically.

  1. Selected Growth of Cubic and Hexagonal GaN Epitaxial Films on Polar MgO(111)

    NASA Astrophysics Data System (ADS)

    Lazarov, V. K.; Zimmerman, J.; Cheung, S. H.; Li, L.; Weinert, M.; Gajdardziska-Josifovska, M.

    2005-06-01

    Selected molecular beam epitaxy of zinc blende (111) or wurtzite (0001) GaN films on polar MgO(111) is achieved depending on whether N or Ga is deposited first. The cubic stacking is enabled by nitrogen-induced polar surface stabilization, which yields a metallic MgO(111)-(1×1)-ON surface. High-resolution transmission electron microscopy and density functional theory studies indicate that the atomically abrupt semiconducting GaN(111)/MgO(111) interface has a Mg-O-N-Ga stacking, where the N atom is bonded to O at a top site. This specific atomic arrangement at the interface allows the cubic stacking to more effectively screen the substrate and film electric dipole moment than the hexagonal stacking, thus stabilizing the zinc blende phase even though the wurtzite phase is the ground state in the bulk.

  2. Production and detection of atomic hexadecapole at Earth's magnetic field.

    PubMed

    Acosta, V M; Auzinsh, M; Gawlik, W; Grisins, P; Higbie, J M; Jackson Kimball, D F; Krzemien, L; Ledbetter, M P; Pustelny, S; Rochester, S M; Yashchuk, V V; Budker, D

    2008-07-21

    Optical magnetometers measure magnetic fields with extremely high precision and without cryogenics. However, at geomagnetic fields, important for applications from landmine removal to archaeology, they suffer from nonlinear Zeeman splitting, leading to systematic dependence on sensor orientation. We present experimental results on a method of eliminating this systematic error, using the hexadecapole atomic polarization moment. In particular, we demonstrate selective production of the atomic hexadecapole moment at Earth's magnetic field and verify its immunity to nonlinear Zeeman splitting. This technique promises to eliminate directional errors in all-optical atomic magnetometers, potentially improving their measurement accuracy by several orders of magnitude.

  3. Polarity Control of Heteroepitaxial GaN Nanowires on Diamond.

    PubMed

    Hetzl, Martin; Kraut, Max; Hoffmann, Theresa; Stutzmann, Martin

    2017-06-14

    Group III-nitride materials such as GaN nanowires are characterized by a spontaneous polarization within the crystal. The sign of the resulting sheet charge at the top and bottom facet of a GaN nanowire is determined by the orientation of the wurtzite bilayer of the different atomic species, called N and Ga polarity. We investigate the polarity distribution of heteroepitaxial GaN nanowires on different substrates and demonstrate polarity control of GaN nanowires on diamond. Kelvin Probe Force Microscopy is used to determine the polarity of individual selective area-grown and self-assembled nanowires over a large scale. At standard growth conditions, mixed polarity occurs for selective GaN nanowires on various substrates, namely on silicon, on sapphire and on diamond. To obtain control over the growth orientation on diamond, the substrate surface is modified by nitrogen and oxygen plasma exposure prior to growth, and the growth parameters are adjusted simultaneously. We find that the surface chemistry and the substrate temperature are the decisive factors for obtaining control of up to 93% for both polarity types, whereas the growth mode, namely selective area or self-assembled growth, does not influence the polarity distribution significantly. The experimental results are discussed by a model based on the interfacial bonds between the GaN nanowires, the termination layer, and the substrate.

  4. Fast divide-and-conquer algorithm for evaluating polarization in classical force fields

    NASA Astrophysics Data System (ADS)

    Nocito, Dominique; Beran, Gregory J. O.

    2017-03-01

    Evaluation of the self-consistent polarization energy forms a major computational bottleneck in polarizable force fields. In large systems, the linear polarization equations are typically solved iteratively with techniques based on Jacobi iterations (JI) or preconditioned conjugate gradients (PCG). Two new variants of JI are proposed here that exploit domain decomposition to accelerate the convergence of the induced dipoles. The first, divide-and-conquer JI (DC-JI), is a block Jacobi algorithm which solves the polarization equations within non-overlapping sub-clusters of atoms directly via Cholesky decomposition, and iterates to capture interactions between sub-clusters. The second, fuzzy DC-JI, achieves further acceleration by employing overlapping blocks. Fuzzy DC-JI is analogous to an additive Schwarz method, but with distance-based weighting when averaging the fuzzy dipoles from different blocks. Key to the success of these algorithms is the use of K-means clustering to identify natural atomic sub-clusters automatically for both algorithms and to determine the appropriate weights in fuzzy DC-JI. The algorithm employs knowledge of the 3-D spatial interactions to group important elements in the 2-D polarization matrix. When coupled with direct inversion in the iterative subspace (DIIS) extrapolation, fuzzy DC-JI/DIIS in particular converges in a comparable number of iterations as PCG, but with lower computational cost per iteration. In the end, the new algorithms demonstrated here accelerate the evaluation of the polarization energy by 2-3 fold compared to existing implementations of PCG or JI/DIIS.

  5. Theoretical Issues Involving Traps for Neutral Spin-Polarized Atoms.

    DTIC Science & Technology

    1984-11-15

    U. S. and he has promised to send us his potential curve calculation when he returns to France. In the meantime, we have adopted a Lennard - Jones ...4He for cooling initially because temperatures -1.5 K can be readily achieved with high cooling power by pumping on liquid helium and because 4He is...3 " . He (which is roughly half the vapor pressure of liquid helium at 1.5 K)), each K atom undergoes a very large number of collisions (-10 8/sec

  6. Pulse radiolysis studies of the reactions of bromine atoms and dimethyl sulfoxide bromine atom complexes with alcohols

    NASA Astrophysics Data System (ADS)

    Sumiyoshi, Takashi; Fujiyoshi, Ryoko; Katagiri, Miho; Sawamura, Sadashi

    2007-05-01

    Dimethylsulfoxide (DMSO)-Br complexes were generated by pulse radiolysis of DMSO/bromomethane mixtures and the formation mechanism and spectral characteristics of the formed complexes were investigated in detail. The rate constant for the reaction of bromine atoms with DMSO and the extinction coefficient of the complex were obtained to be 4.6×10 9 M -1 s -1 and 6300 M -1 cm -1 at the absorption maximum of 430 nm. Rate constants for the reaction of bromine atoms with a series of alcohols were determined in CBrCl 3 solutions applying a competitive kinetic method using the DMSO-Br complex as the reference system. The obtained rate constants were ˜10 8 M -1 s -1, one or two orders larger than those reported for highly polar solvents. Rate constants of DMSO-Br complexes with alcohols were determined to be ˜ 10 7 M -1 s -1. A comparison of the reactivities of Br atoms and DMSO-Br complexes with those of chlorine atoms and chlorine atom complexes which are ascribed to hydrogen abstracting reactants strongly indicates that hydrogen abstraction from alcohols is not the rate determining step in the case of Br atoms and DMSO-Br complexes.

  7. Evidence for concerted ring opening and C-Br bond breaking in UV-excited bromocyclopropane.

    PubMed

    Pandit, Shubhrangshu; Preston, Thomas J; King, Simon J; Vallance, Claire; Orr-Ewing, Andrew J

    2016-06-28

    Photodissociation of gaseous bromocyclopropane via its A-band continuum has been studied at excitation wavelengths ranging from 230 nm to 267 nm. Velocity-map images of ground-state bromine atoms (Br), spin-orbit excited bromine atoms (Br(∗)), and C3H5 hydrocarbon radicals reveal the kinetic energies of these various photofragments. Both Br and Br(∗) atoms are predominantly generated via repulsive excited electronic states in a prompt photodissociation process in which the hydrocarbon co-fragment is a cyclopropyl radical. However, the images obtained at the mass of the hydrocarbon radical fragment identify a channel with total kinetic energy greater than that deduced from the Br and Br(∗) images, and with a kinetic energy distribution that exceeds the energetic limit for Br + cyclopropyl radical products. The velocity-map images of these C3H5 fragments have lower angular anisotropies than measured for Br and Br(∗), indicating molecular restructuring during dissociation. The high kinetic energy C3H5 signals are assigned to allyl radicals generated by a minor photochemical pathway which involves concerted C-Br bond dissociation and cyclopropyl ring-opening following single ultraviolet (UV)-photon absorption. Slow photofragments also contribute to the velocity map images obtained at the C3H5 radical mass, but the corresponding slow Br atoms are not observed. These features in the images are attributed to C3H5 (+) from the photodissociation of the C3H5Br(+) molecular cation following two-photon ionization of the parent compound. This assignment is confirmed by 118-nm vacuum ultraviolet ionization studies that prepare the molecular cation in its ground electronic state prior to UV photodissociation.

  8. Polarization Properties of Semiconductor Nanorod Heterostructures: From Single Particles to the Ensemble.

    PubMed

    Hadar, Ido; Hitin, Gal B; Sitt, Amit; Faust, Adam; Banin, Uri

    2013-02-07

    Semiconductor heterostructured seeded nanorods exhibit intense polarized emission, and the degree of polarization is determined by their morphology and dimensions. Combined optical and atomic force microscopy were utilized to directly correlate the emission polarization and the orientation of single seeded nanorods. For both the CdSe/CdS sphere-in-rod (S@R) and rod-in-rod (R@R), the emission was found to be polarized along the nanorod's main axis. Statistical analysis for hundreds of single nanorods shows higher degree of polarization, p, for R@R (p = 0.83), in comparison to S@R (p = 0.75). These results are in good agreement with the values inferred by ensemble photoselection anisotropy measurements in solution, establishing its validity for nanorod samples. On this basis, photoselection photoluminescence excitation anisotropy measurements were carried out providing unique information concerning the symmetry of higher excitonic transitions and allowing for a better distinction between the dielectric and the quantum-mechanical contributions to polarization in nanorods.

  9. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    NASA Astrophysics Data System (ADS)

    Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob

    2013-05-01

    We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.

  10. Polarization switching of sodium guide star laser for brightness enhancement

    NASA Astrophysics Data System (ADS)

    Fan, Tingwei; Zhou, Tianhua; Feng, Yan

    2016-07-01

    The efficiency of optical pumping that enhances the brightness of sodium laser guide star with circularly polarized light is reduced substantially due to the precession of sodium atoms in geomagnetic field. Switching the laser between left and right circular polarization at the Larmor frequency is proposed to improve the photon return. With ESO's cw laser guide star system at Paranal as example, numerical simulation for both square-wave and sine-wave polarization modulation is conducted. For the square-wave switching case, the return flux is increased when the angle between geomagnetic field and laser beam is larger than 60°, as much as 40% at 90°. The method can also be applied for remote measurement of magnetic field with available cw guide star laser.

  11. Room Temperature Memory for Few Photon Polarization Qubits

    NASA Astrophysics Data System (ADS)

    Kupchak, Connor; Mittiga, Thomas; Jordan, Bertus; Nazami, Mehdi; Nolleke, Christian; Figueroa, Eden

    2014-05-01

    We have developed a room temperature quantum memory device based on Electromagnetically Induced Transparency capable of reliably storing and retrieving polarization qubits on the few photon level. Our system is realized in a vapor of 87Rb atoms utilizing a Λ-type energy level scheme. We create a dual-rail storage scheme mediated by an intense control field to allow storage and retrieval of any arbitrary polarization state. Upon retrieval, we employ a filtering system to sufficiently remove the strong pump field, and subject retrieved light states to polarization tomography. To date, our system has produced signal-to-noise ratios near unity with a memory fidelity of >80 % using coherent state qubits containing four photons on average. Our results thus demonstrate the feasibility of room temperature systems for the storage of single-photon-level photonic qubits. Such room temperature systems will be attractive for future long distance quantum communication schemes.

  12. The physics of polarization

    NASA Astrophysics Data System (ADS)

    Landi Degl'Innocenti, Egidio

    ). Finally, the third part (Sects. 15-19) is devoted to give a sketch of the theory of the generation and transfer of polarized radiation in spectral lines. After a general introduction to the argument (Sect. 15), the concepts of density-matrix and of atomic polarization are illustrated in Sect. 16. In Sect. 17, a parallelism is established, within the framework of the theory of stellar atmospheres, between the usual formalism, which neglects polarization phenomena, and the more involved formalism needed for the interpretation of spectro-polarimetric observations. Some consequences of the radiative transfer equations for polarized radiation, pointing to the importance of dichroism phenomena in establishing the amplification condition via stimulated emission, are discussed in Sect. 18. The last section (Sect. 19) is devoted to introduce the problem of finding a self-consistent solution of the radiative transfer equations for polarized radiation and of the statistical equilibrium equations for the density matrix (non-LTE of the 2nd kind).

  13. Majorana spin in magnetic atomic chain systems

    NASA Astrophysics Data System (ADS)

    Li, Jian; Jeon, Sangjun; Xie, Yonglong; Yazdani, Ali; Bernevig, B. Andrei

    2018-03-01

    In this paper, we establish that Majorana zero modes emerging from a topological band structure of a chain of magnetic atoms embedded in a superconductor can be distinguished from trivial localized zero energy states that may accidentally form in this system using spin-resolved measurements. To demonstrate this key Majorana diagnostics, we study the spin composition of magnetic impurity induced in-gap Shiba states in a superconductor using a hybrid model. By examining the spin and spectral densities in the context of the Bogoliubov-de Gennes (BdG) particle-hole symmetry, we derive a sum rule that relates the spin densities of localized Shiba states with those in the normal state without superconductivity. Extending our investigations to a ferromagnetic chain of magnetic impurities, we identify key features of the spin properties of the extended Shiba state bands, as well as those associated with a localized Majorana end mode when the effect of spin-orbit interaction is included. We then formulate a phenomenological theory for the measurement of the local spin densities with spin-polarized scanning tunneling microscopy (STM) techniques. By combining the calculated spin densities and the measurement theory, we show that spin-polarized STM measurements can reveal a sharp contrast in spin polarization between an accidental-zero-energy trivial Shiba state and a Majorana zero mode in a topological superconducting phase in atomic chains. We further confirm our results with numerical simulations that address generic parameter settings.

  14. Photoionization of the hydrogen atom in strong magnetic fields

    NASA Technical Reports Server (NTRS)

    Potekhin, Aleksandr IU.; Pavlov, George G.

    1993-01-01

    The photoionization of the hydrogen atom in magnetic fields B about 10 exp 11 - 10 exp 13 G typical of the surface layers of neutron stars is investigated analytically and numerically. We consider the photoionization from various tightly bound and hydrogen-like states of the atom for photons with arbitrary polarizations and wave-vector directions. It is shown that the length form of the interaction matrix elements is more appropriate in the adiabatic approximation than the velocity form, at least in the most important frequency range omega much less than omega(B), where omega(B) is the electron cyclotron frequency. Use of the length form yields nonzero cross sections for photon polarizations perpendicular to the magnetic field at omega less than omega(B); these cross sections are the ones that most strongly affect the properties of the radiation escaping from an optically thick medium, e.g., from the atmosphere of a neutron star. The results of the numerical calculations are fitted by simple analytical formulas.

  15. Opto-valleytronic imaging of atomically thin semiconductors

    DOE PAGES

    Neumann, Andre; Lindlau, Jessica; Colombier, Léo; ...

    2017-01-16

    Transition metal dichalcogenide semiconductors represent elementary components of layered heterostructures for emergent technologies beyond conventional opto-electronics. In their monolayer form they host electrons with quantized circular motion and associated valley polarization and valley coherence as key elements of opto-valleytronic functionality. Here, we introduce two-dimensional polarimetry as means of direct imaging of the valley pseudospin degree of freedom in monolayer transition metal dichalcogenides. Using MoS 2 as a representative material with valley-selective optical transitions, we establish quantitative image analysis for polarimetric maps of extended crystals, and identify valley polarization and valley coherence as sensitive probes of crystalline disorder. Moreover, we findmore » site-dependent thermal and non-thermal regimes of valley-polarized excitons in perpendicular magnetic fields. Finally, we demonstrate the potential of widefield polarimetry for rapid inspection of opto-valleytronic devices based on atomically thin semiconductors and heterostructures.« less

  16. Opto-valleytronic imaging of atomically thin semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neumann, Andre; Lindlau, Jessica; Colombier, Léo

    Transition metal dichalcogenide semiconductors represent elementary components of layered heterostructures for emergent technologies beyond conventional opto-electronics. In their monolayer form they host electrons with quantized circular motion and associated valley polarization and valley coherence as key elements of opto-valleytronic functionality. Here, we introduce two-dimensional polarimetry as means of direct imaging of the valley pseudospin degree of freedom in monolayer transition metal dichalcogenides. Using MoS 2 as a representative material with valley-selective optical transitions, we establish quantitative image analysis for polarimetric maps of extended crystals, and identify valley polarization and valley coherence as sensitive probes of crystalline disorder. Moreover, we findmore » site-dependent thermal and non-thermal regimes of valley-polarized excitons in perpendicular magnetic fields. Finally, we demonstrate the potential of widefield polarimetry for rapid inspection of opto-valleytronic devices based on atomically thin semiconductors and heterostructures.« less

  17. Spontaneous dressed-state polarization in the strong driving regime of cavity QED.

    PubMed

    Armen, Michael A; Miller, Anthony E; Mabuchi, Hideo

    2009-10-23

    We utilize high-bandwidth phase-quadrature homodyne measurement of the light transmitted through a Fabry-Perot cavity, driven strongly and on resonance, to detect excess phase noise induced by a single intracavity atom. We analyze the correlation properties and driving-strength dependence of the atom-induced phase noise to establish that it corresponds to the long-predicted phenomenon of spontaneous dressed-state polarization. Our experiment thus provides a demonstration of cavity quantum electrodynamics in the strong-driving regime in which one atom interacts strongly with a many-photon cavity field to produce novel quantum stochastic behavior.

  18. Spin accumulation in thin Cs salts on contact with optically polarized Cs vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, Kiyoshi

    2011-09-15

    The spin angular momentum accumulates in the Cs nuclei of salt on contact with optically pumped Cs vapor. The spin polarization in stable chloride as well as dissociative hydride indicates that nuclear dipole interaction works in spin transferring with a lesser role of atom exchange. In the solid film, not only the spin buildup but also the decay of enhanced polarization is faster than the thermal recovery rate for the bulk salt. Eliminating the signal of thick salt, we find that the nuclear spin polarization in the chloride film reaches over 100 times the thermal equilibrium.

  19. Photon statistics and polarization correlations at telecommunications wavelengths from a warm atomic ensemble.

    PubMed

    Willis, R T; Becerra, F E; Orozco, L A; Rolston, S L

    2011-07-18

    We present measurements of the polarization correlation and photon statistics of photon pairs that emerge from a laser-pumped warm rubidium vapor cell. The photon pairs occur at 780 nm and 1367 nm and are polarization entangled. We measure the autocorrelation of each of the generated fields as well as the cross-correlation function, and observe a strong violation of the two-beam Cauchy-Schwartz inequality. We evaluate the performance of the system as source of heralded single photons at a telecommunication wavelength. We measure the heralded autocorrelation and see that coincidences are suppressed by a factor of ≈ 20 from a Poissonian source at a generation rate of 1500 s(-1), a heralding efficiency of 10%, and a narrow spectral width.

  20. Kinetic-limited etching of magnesium doping nitrogen polar GaN in potassium hydroxide solution

    NASA Astrophysics Data System (ADS)

    Jiang, Junyan; Zhang, Yuantao; Chi, Chen; Yang, Fan; Li, Pengchong; Zhao, Degang; Zhang, Baolin; Du, Guotong

    2016-01-01

    KOH based wet etchings were performed on both undoped and Mg-doped N-polar GaN films grown by metal-organic chemical vapor deposition. It is found that the etching rate for Mg-doped N-polar GaN gets slow obviously compared with undoped N-polar GaN. X-ray photoelectron spectroscopy analysis proved that Mg oxide formed on N-polar GaN surface is insoluble in KOH solution so that kinetic-limited etching occurs as the etching process goes on. The etching process model of Mg-doped N-polar GaN in KOH solution is tentatively purposed using a simplified ideal atomic configuration. Raman spectroscopy analysis reveals that Mg doping can induce tensile strain in N-polar GaN films. Meanwhile, p-type N-polar GaN film with a hole concentration of 2.4 ÿ 1017 cm⿿3 was obtained by optimizing bis-cyclopentadienyl magnesium flow rates.

  1. Design and Development of a Microscopic Model for Polarization

    ERIC Educational Resources Information Center

    Petridou, E.; Psillos, D.; Hatzikraniotis, E.; Viiri, J.

    2009-01-01

    As research shows that the knowledge and use of models and modelling by teachers is limited, particularly for predicting phenomena, we developed and applied a sequence of three representations of a simulated model focusing on polarization and specifically showing the behaviour of an atom, and forces exerted on a dipole and an insulator, when a…

  2. Sequential double photodetachment of He- in elliptically polarized laser fields

    NASA Astrophysics Data System (ADS)

    Génévriez, Matthieu; Dunseath, Kevin M.; Terao-Dunseath, Mariko; Urbain, Xavier

    2018-02-01

    Four-photon double detachment of the helium negative ion is investigated experimentally and theoretically for photon energies where the transient helium atom is in the 1 s 2 s 3S or 1 s 2 p P3o states, which subsequently ionize by absorption of three photons. Ionization is enhanced by intermediate resonances, giving rise to series of peaks in the He+ spectrum, which we study in detail. The He+ yield is measured in the wavelength ranges from 530 to 560 nm and from 685 to 730 nm and for various polarizations of the laser light. Double detachment is treated theoretically as a sequential process, within the framework of R -matrix theory for the first step and effective Hamiltonian theory for the second step. Experimental conditions are accurately modeled, and the measured and simulated yields are in good qualitative and, in some cases, quantitative agreement. Resonances in the double detachment spectra can be attributed to well-defined Rydberg states of the transient atom. The double detachment yield exhibits a strong dependence on the laser polarization which can be related to the magnetic quantum number of the intermediate atomic state. We also investigate the possibility of nonsequential double detachment with a two-color experiment but observe no evidence for it.

  3. An Integrated Imaging Detector of Polarization and Spectral Content

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Thompson, K. E.

    1993-01-01

    A new type of image detector has been designed to simultaneously analyze the polarization of light at all picture elements in a scene. The Integrated Dual Imaging Detector (IDID) consists of a polarizing beamsplitter bonded to a charge-coupled device (CCD), with signal-analysis circuitry and analog-to-digital converters, all integrated on a silicon chip. It should be capable of 1:10(exp 4) polarization discrimination. The IDID should simplify the design and operation of imaging polarimeters and spectroscopic imagers used, for example, in atmospheric and solar research. Innovations in the IDID include (1) two interleaved 512 x 1024-pixel imaging arrays (one for each polarization plane); (2) large dynamic range (well depth of 10(exp 6) electrons per pixel); (3) simultaneous readout of both images at 10 million pixels per second each; (4) on-chip analog signal processing to produce polarization maps in real time; (5) on-chip 10-bit A/D conversion. When used with a lithium-niobate Fabry-Perot etalon or other color filter that can encode spectral information as polarization, the IDID can collect and analyze simultaneous images at two wavelengths. Precise photometric analysis of molecular or atomic concentrations in the atmosphere is one suggested application. When used in a solar telescope, the IDID will charge the polarization, which can then be converted to maps of the vector magnetic fields on the solar surface.

  4. Polarization effects in silver delafossite systems

    NASA Astrophysics Data System (ADS)

    Panapitiya, Gihan; Lewis, James P.

    Delafossites are a promising class of materials which has applications in catalysis and optoelectronic devices. Even though much work has been carried out on the cuprate family of delafossites, little is known about the structural and electronic properties of it's silver counterpart. In this work, we present a computational study for two delafossite oxides of the form AgB1 - x FexO2 (For B = Al,Ga). A large number of structures are studied by varying the Fe alloying percentage(x) from 0 to 5 and by choosing the impurity sites randomly. We find that the local structural changes occurring at the vicinity of Fe atoms in these two systems have opposite trends with regard to the O-O distance. The reason for this difference in the trends is identified as the polarization effects on the inter-atomic distances caused by the displacements in O atoms resulting from the incorporation of Fe in sites, previously occupied by either Al or Ga. We believe that these effects are mediated by the differences in the atomic radii of Fe, Al and Ga. Higher alloying levels coupled with nearest neighbor Fe atoms can intensify these distortions in the structure creating deformations in the O-Ag-O bonds, which are directly related to the formation of the conduction band edge in these systems.

  5. Atomic-Scale Mechanisms of Defect-Induced Retention Failure in Ferroelectrics.

    PubMed

    Li, Linze; Zhang, Yi; Xie, Lin; Jokisaari, Jacob R; Beekman, Christianne; Yang, Jan-Chi; Chu, Ying-Hao; Christen, Hans M; Pan, Xiaoqing

    2017-06-14

    The ability to switch the ferroelectric polarization using an electric field makes ferroelectrics attractive for application in nanodevices such as high-density memories. One of the major challenges impeding this application, however, has been known as "retention failure", which is a spontaneous process of polarization back-switching that can lead to data loss. This process is generally thought to be caused by the domain instability arising from interface boundary conditions and countered by defects, which can pin the domain wall and impede the back-switching. Here, using in situ transmission electron microscopy and atomic-scale scanning transmission electron microscopy, we show that the polarization retention failure can be induced by commonly observed nanoscale impurity defects in BiFeO 3 thin films. The interaction between polarization and the defects can also lead to the stabilization of novel functional nanodomains with mixed-phase structures and head-to-head polarization configurations. Thus, defect engineering provides a new route for tuning properties of ferroelectric nanosystems.

  6. Polarization response of clathrate hydrates capsulated with guest molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Qun; Li, Jinshan, E-mail: ljs915@263.net, E-mail: myang@scu.edu.cn; Huang, Hui

    2016-05-28

    Clathrate hydrates are characterized by their water cages encapsulating various guest atoms or molecules. The polarization effect of these guest-cage complexes was studied with combined density functional theory and finite-field calculations. An addition rule was noted for these systems whose total polarizability is approximately equal to the polarizability sum of the guest and the cage. However, their distributional polarizability computed with Hirshfeld partitioning scheme indicates that the guest–cage interaction has considerable influence on their polarization response. The polarization of encapsulated guest is reduced while the polarization of water cage is enhanced. The counteraction of these two opposite effects leads tomore » the almost unchanged total polarizability. Further analysis reveals that the reduced polarizability of encapsulated guest results from the shielding effect of water cage against the external field and the enhanced polarizability of water cage from the enhanced bonding of hydrogen bonds among water molecules. Although the charge transfer through the hydrogen bonds is rather small in the water cage, the polarization response of clathrate hydrates is sensitive to the changes of hydrogen bonding strength. The guest encapsulation strengthens the hydrogen bonding network and leads to enhanced polarizability.« less

  7. Efficient approach to include molecular polarizations using charge and atom dipole response kernels to calculate free energy gradients in the QM/MM scheme.

    PubMed

    Asada, Toshio; Ando, Kanta; Sakurai, Koji; Koseki, Shiro; Nagaoka, Masataka

    2015-10-28

    An efficient approach to evaluate free energy gradients (FEGs) within the quantum mechanical/molecular mechanical (QM/MM) framework has been proposed to clarify reaction processes on the free energy surface (FES) in molecular assemblies. The method is based on response kernel approximations denoted as the charge and the atom dipole response kernel (CDRK) model that include explicitly induced atom dipoles. The CDRK model was able to reproduce polarization effects for both electrostatic interactions between QM and MM regions and internal energies in the QM region obtained by conventional QM/MM methods. In contrast to charge response kernel (CRK) models, CDRK models could be applied to various kinds of molecules, even linear or planer molecules, without using imaginary interaction sites. Use of the CDRK model enabled us to obtain FEGs on QM atoms in significantly reduced computational time. It was also clearly demonstrated that the time development of QM forces of the solvated propylene carbonate radical cation (PC˙(+)) provided reliable results for 1 ns molecular dynamics (MD) simulation, which were quantitatively in good agreement with expensive QM/MM results. Using FEG and nudged elastic band (NEB) methods, we found two optimized reaction paths on the FES for decomposition reactions to generate CO2 molecules from PC˙(+), whose reaction is known as one of the degradation mechanisms in the lithium-ion battery. Two of these reactions proceed through an identical intermediate structure whose molecular dipole moment is larger than that of the reactant to be stabilized in the solvent, which has a high relative dielectric constant. Thus, in order to prevent decomposition reactions, PC˙(+) should be modified to have a smaller dipole moment along two reaction paths.

  8. The photoexcitation of crystalline ice and amorphous solid water: A molecular dynamics study of outcomes at 11 K and 125 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crouse, J.; Loock, H.-P., E-mail: hploock@chem.queensu.ca; Cann, N. M., E-mail: ncann@chem.queensu.ca

    2015-07-21

    Photoexcitation of crystalline ice Ih and amorphous solid water at 7-9 eV is examined using molecular dynamics simulations and a fully flexible water model. The probabilities of photofragment desorption, trapping, and recombination are examined for crystalline ice at 11 K and at 125 K and for amorphous solid water at 11 K. For 11 K crystalline ice, a fully rigid water model is also employed for comparison. The kinetic energy of desorbed H atoms and the distance travelled by trapped fragments are correlated to the location and the local environment of the photoexcited water molecule. In all cases, H atommore » desorption is found to be the most likely outcome in the top bilayer while trapping of all photofragments is most probable deeper in the solid where the likelihood for recombination of the fragments into H{sub 2}O molecules also rises. Trajectory analysis indicates that the local hydrogen bonding network in amorphous solid water is more easily distorted by a photodissociation event compared to crystalline ice. Also, simulations indicate that desorption of OH radicals and H{sub 2}O molecules are more probable in amorphous solid water. The kinetic energy distributions for desorbed H atoms show a peak at high energy in crystalline ice, arising from photoexcited water molecules in the top monolayer. This peak is less pronounced in amorphous solid water. H atoms that are trapped may be displaced by up to ∼10 water cages, but migrate on average 3 water cages. Trapped OH fragments tend to stay near the original solvent cage.« less

  9. Total angular momenta of high-lying odd levels of U I at ∼ 4 eV using resonance ionization laser polarization spectroscopy

    NASA Astrophysics Data System (ADS)

    Rath, Asawari D.; Kundu, S.; Ray, A. K.

    2018-02-01

    Laser induced photoionization of atoms shows significant dependence on the choice of polarizations of lasers. In multi-step, multi-photon excitation and subsequent ionization of atoms different polarization combinations of the exciting lasers lead to distinctly different ion yields. This fact is exploited in this work to determine total angular momenta of odd-parity energy levels of U I lying at ∼ 4 eV from its ground level using resonance ionization laser polarization spectroscopy in time of flight mass spectrometer. These levels are populated by two-step resonant excitation using two pulsed dye lasers with preset polarizations of choice followed by nonresonant ionization by third laser. The dependence of ionization yield on specific polarizations of the first two lasers is studied experimentally for each level under consideration. This dependence when compared to simulations makes possible unambiguous assignment of J angular momenta to these levels.

  10. Hierarchical atom type definitions and extensible all-atom force fields.

    PubMed

    Jin, Zhao; Yang, Chunwei; Cao, Fenglei; Li, Feng; Jing, Zhifeng; Chen, Long; Shen, Zhe; Xin, Liang; Tong, Sijia; Sun, Huai

    2016-03-15

    The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  11. A simple atomic-level hydrophobicity scale reveals protein interfacial structure.

    PubMed

    Kapcha, Lauren H; Rossky, Peter J

    2014-01-23

    Many amino acid residue hydrophobicity scales have been created in an effort to better understand and rapidly characterize water-protein interactions based only on protein structure and sequence. There is surprisingly low consistency in the ranking of residue hydrophobicity between scales, and their ability to provide insightful characterization varies substantially across subject proteins. All current scales characterize hydrophobicity based on entire amino acid residue units. We introduce a simple binary but atomic-level hydrophobicity scale that allows for the classification of polar and non-polar moieties within single residues, including backbone atoms. This simple scale is first shown to capture the anticipated hydrophobic character for those whole residues that align in classification among most scales. Examination of a set of protein binding interfaces establishes good agreement between residue-based and atomic-level descriptions of hydrophobicity for five residues, while the remaining residues produce discrepancies. We then show that the atomistic scale properly classifies the hydrophobicity of functionally important regions where residue-based scales fail. To illustrate the utility of the new approach, we show that the atomic-level scale rationalizes the hydration of two hydrophobic pockets and the presence of a void in a third pocket within a single protein and that it appropriately classifies all of the functionally important hydrophilic sites within two otherwise hydrophobic pores. We suggest that an atomic level of detail is, in general, necessary for the reliable depiction of hydrophobicity for all protein surfaces. The present formulation can be implemented simply in a manner no more complex than current residue-based approaches. © 2013.

  12. Cylindrical Vector Beams for Rapid Polarization-Dependent Measurements in Atomic Systems

    DTIC Science & Technology

    2011-12-05

    www.opticsinfobase.org/abstract.cfm?URI=oe-18-24-25035. 16. S. Tripathi and K. C. Toussaint, Jr., “Rapid Mueller matrix polarimetry based on parallelized...optical trapping [11], atom guiding [12], laser machining [13], charged particle acceleration [14,15], and polarimetry [16]. Yet despite numerous

  13. Tunable plasmon-induced transparency effect based on self-asymmetric H-shaped resonators meta-atoms

    NASA Astrophysics Data System (ADS)

    Cheng, Zhaoxiang; Chen, Lin; Zang, Xiaofei; Cai, Bin; Peng, Yan; Zhu, Yiming

    2015-03-01

    We have proposed and demonstrated a tunable plasmon-induced transparency (PIT) effect from two ways, based on self-asymmetric H-shaped resonators (AHR) meta-atoms. The tunable PIT effect is realized via varying polarization angles and coupling distances. First, by proper design, transition from PIT mode to dipole mode is theoretically and experimentally demonstrated by simply adjusting the polarization angle. Also, the manipulation of ‘dark-mode’ resonance intensity from strong to weak is achieved by varying coupling strength with different distances, which provided insight into the magnetic coupling hybridization mechanism. Prospectively, due to its special tunable characteristics, the AHR meta-atoms may be widely used in slow light, filters and switch devices.

  14. Real-time detection of S(1D2) photofragments produced from the 1B2(1Σu+) state of CS2 by vacuum ultraviolet photoelectron imaging using 133 nm probe pulses

    NASA Astrophysics Data System (ADS)

    Horio, Takuya; Spesyvtsev, Roman; Furumido, Yu; Suzuki, Toshinori

    2017-07-01

    Ultrafast photodissociation dynamics from the 1B2(1Σu+) state of CS2 are studied by time-resolved photoelectron imaging using the fourth (4ω, 198 nm) and sixth (6ω, 133 nm) harmonics of a femtosecond Ti:sapphire laser. The 1B2 state of CS2 was prepared with the 4ω pulses, and subsequent dynamics were probed using the 6ω vacuum ultraviolet (VUV) pulses. The VUV pulses enabled real-time detection of S(1D2) photofragments, produced via CS2*(1B2(1Σu+)) → CS(X 1Σ+) + S(1D2). The photoionization signal of dissociating CS2*(1B2(1Σu+)) molecules starts to decrease at about 100 fs, while the S(1D2) fragments appear with a finite (ca. 400 fs) delay time after the pump pulse. Also discussed is the configuration interaction of the 1B2(1Σu+) state based on relative photoionization cross-sections to different cationic states.

  15. Polarization of seven MBM clouds at high Galactic latitude

    NASA Astrophysics Data System (ADS)

    Neha, S.; Maheswar, G.; Soam, A.; Lee, C. W.

    2018-06-01

    We made R-band polarization measurements of 234 stars towards the direction of the MBM 33-39 cloud complex. The distance of the MBM 33-39 complex was determined as 120 ± 10 pc using polarization results and near-infrared photometry from the 2MASS survey. The magnetic field geometry of the individual clouds inferred from our polarimetric results reveals that the field lines are in general consistent with the global magnetic field geometry of the region obtained from previous studies. This implies that the clouds in the complex are permeated by the interstellar magnetic field. Multi-wavelength polarization measurements of a few stars projected on to the complex suggest that the size of the dust grains in these clouds is similar to those found in the normal interstellar medium of the Milky Way. We studied a possible formation scenario of the MBM 33-39 complex by combining the polarization results from our study with those from the literature and by identifying the distribution of ionized, atomic and molecular (dust) components of material in the region.

  16. Valley spin polarization of Tl/Si(111)

    NASA Astrophysics Data System (ADS)

    Stolwijk, Sebastian D.; Schmidt, Anke B.; Sakamoto, Kazuyuki; Krüger, Peter; Donath, Markus

    2017-11-01

    The metal/semiconductor hybrid system Tl/Si(111)-(1 ×1 ) exhibits a unique Tl-derived surface state with remarkable properties. It lies within the silicon band gap and forms spin-momentum-locked valleys close to the Fermi energy at the K ¯ and K¯' points. These valleys are completely spin polarized with opposite spin orientation at K ¯ and K¯' and show a giant spin splitting of more than 0.5 eV. We present a detailed preparation study of the surface system and demonstrate that the electronic valleys are extremely robust, surviving exposure to 100 L hydrogen and 500 L oxygen. We investigate the influence of additional Tl atoms on the spin-polarized valleys. By combining photoemission and inverse photoemission, we prove the existence of fully spin-polarized valleys crossing the Fermi level. Moreover, these metallic valleys carry opposite Berry curvature at K ¯ and K¯', very similar to WSe2, promising a large spin Hall effect. Thus, Tl/Si(111)-(1 ×1 ) possesses all necessary key properties for spintronic applications.

  17. Effect of tip polarity on Kelvin probe force microscopy images of thin insulator CaF2 films on Si(111)

    NASA Astrophysics Data System (ADS)

    Yurtsever, Ayhan; Sugimoto, Yoshiaki; Fukumoto, Masaki; Abe, Masayuki; Morita, Seizo

    2012-08-01

    We investigate thin insulating CaF2 films on a Si (111) surface using a combination of noncontact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy (KPFM). Atomic-scale NC-AFM and KPFM images are obtained in different imaging modes by employing two different tip polarities. The KPFM image contrast and the distance-dependent variation of the local contact potential difference (LCPD) give rise to a tip-polarity-dependent contrast inversion. Ca2+ cations had a higher LCPD contrast than F- anions for a positively terminated tip, while the LCPD provided by a negatively charged tip gave a higher contrast for F- anions. Thus, this result implies that it is essential to determine the tip apex polarity to correctly interpret LCPD signals acquired by KPFM.

  18. Laser diagnostics of welding plasma by polarization spectroscopy.

    PubMed

    Lucas, Owen; Alwahabi, Zeyad T; Linton, Valerie; Meeuwissen, Karel

    2007-05-01

    The application of polarization spectroscopy (PS) to detect atomic species in an atmospheric pressure welding plasma has been demonstrated. PS spectra of Na atoms, seeded in the shielding gas flow of a gas tungsten arc welding (GTAW) plasma, are presented at different pump beam energies. The nature of the PS technique was found to be very efficient in suppressing the high background emission associated with the welding plasma. The PS spectral profiles appear to be Lorentzian and Lorentzian cubed for high and low pump beam energy, respectively. The effect of beam steering, due to the thermal gradient in the interaction plasma zone, was addressed. It was found that there is 2% unavoidable error in the detectable PS signal.

  19. Two-dimensional ferroelectric topological insulators in functionalized atomically thin bismuth layers

    NASA Astrophysics Data System (ADS)

    Kou, Liangzhi; Fu, Huixia; Ma, Yandong; Yan, Binghai; Liao, Ting; Du, Aijun; Chen, Changfeng

    2018-02-01

    We introduce a class of two-dimensional (2D) materials that possess coexisting ferroelectric and topologically insulating orders. Such ferroelectric topological insulators (FETIs) occur in noncentrosymmetric atomic layer structures with strong spin-orbit coupling (SOC). We showcase a prototype 2D FETI in an atomically thin bismuth layer functionalized by C H2OH , which exhibits a large ferroelectric polarization that is switchable by a ligand molecule rotation mechanism and a strong SOC that drives a band inversion leading to the topologically insulating state. An external electric field that switches the ferroelectric polarization also tunes the spin texture in the underlying atomic lattice. Moreover, the functionalized bismuth layer exhibits an additional quantum order driven by the valley splitting at the K and K' points in the Brillouin zone stemming from the symmetry breaking and strong SOC in the system, resulting in a remarkable state of matter with the simultaneous presence of the quantum spin Hall and quantum valley Hall effect. These phenomena are predicted to exist in other similarly constructed 2D FETIs, thereby offering a unique quantum material platform for discovering novel physics and exploring innovative applications.

  20. Sensitivity optimization of Bell-Bloom magnetometers by manipulation of atomic spin synchronization

    NASA Astrophysics Data System (ADS)

    Ranjbaran, M.; Tehranchi, M. M.; Hamidi, S. M.; Khalkhali, S. M. H.

    2018-05-01

    Many efforts have been devoted to the developments of atomic magnetometers for achieving the high sensitivity required in biomagnetic applications. To reach the high sensitivity, many types of atomic magnetometers have been introduced for optimization of the creation and relaxation rates of atomic spin polarization. In this paper, regards to sensitivity optimization techniques in the Mx configuration, we have proposed a novelty approach for synchronization of the spin precession in the Bell-Bloom magnetometers. We have utilized the phenomenological Bloch equations to simulate the spin dynamics when modulation of pumping light and radio frequency magnetic field were both used for atomic spin synchronization. Our results showed that the synchronization process, improved the magnetometer sensitivity respect to the classical configurations.

  1. Titanium induced polarity inversion in ordered (In,Ga)N/GaN nanocolumns.

    PubMed

    Kong, X; Li, H; Albert, S; Bengoechea-Encabo, A; Sanchez-Garcia, M A; Calleja, E; Draxl, C; Trampert, A

    2016-02-12

    We report on the formation of polarity inversion in ordered (In,Ga)N/GaN nanocolumns grown on a Ti-masked GaN-buffered sapphire substrate by plasma assisted molecular beam epitaxy. High-resolution transmission electron microscopy and electron energy-loss spectroscopy reveal a stacking fault-like planar defect at the homoepitaxial GaN interface due to Ti incorporation, triggering the generation of N-polar domains in Ga-polar nanocolumns. Density functional theory calculations are applied to clarify the atomic configurations of a Ti monolayer occupation on the GaN (0002) plane and to prove the inversion effect. The polarity inversion leads to an enhanced indium incorporation in the subsequent (In,Ga)N segment of the nanocolumn. This study provides a deeper understanding of the effects of Ti mask in the well-controlled selective area growth of (In,Ga)N/GaN nanocolumns.

  2. Manipulating the polar mismatch at the LaNi O 3 / SrTi O 3 (111) interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saghayezhian, M.; Wang, Zhen; Guo, Hangwen

    2017-04-20

    Heteroepitaxial growth of transition-metal oxide films on the open (111) surface of SrTi O 3 results in significant restructuring due to the polar mismatch. Monitoring the structure and composition on an atomic scale of LaNi O 3 / SrTi O 3 (111) interface as a function of processing conditions has enabled the avoidance of the expected polar catastrophe. Using atomically resolved transmission electron microscopy and spectroscopy as well as low-energy electron diffraction, the structure of the thin film, from interface to the surface, has been studied. Here, we show that the proper processing can lead to a structure that ismore » ordered, coherent with the substrate without intermediate structural phase. Using angle-resolved x-ray photoemission spectroscopy we show that the oxygen content of thin films increases with the film thickness, which indicates that the polar mismatch is avoided by the presence of oxygen vacancies.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandit, Shubhrangshu; Preston, Thomas J.; Orr-Ewing, Andrew J., E-mail: a.orr-ewing@bristol.ac.uk

    Photodissociation of gaseous bromocyclopropane via its A-band continuum has been studied at excitation wavelengths ranging from 230 nm to 267 nm. Velocity-map images of ground-state bromine atoms (Br), spin-orbit excited bromine atoms (Br{sup ∗}), and C{sub 3}H{sub 5} hydrocarbon radicals reveal the kinetic energies of these various photofragments. Both Br and Br{sup ∗} atoms are predominantly generated via repulsive excited electronic states in a prompt photodissociation process in which the hydrocarbon co-fragment is a cyclopropyl radical. However, the images obtained at the mass of the hydrocarbon radical fragment identify a channel with total kinetic energy greater than that deduced frommore » the Br and Br{sup ∗} images, and with a kinetic energy distribution that exceeds the energetic limit for Br + cyclopropyl radical products. The velocity-map images of these C{sub 3}H{sub 5} fragments have lower angular anisotropies than measured for Br and Br{sup ∗}, indicating molecular restructuring during dissociation. The high kinetic energy C{sub 3}H{sub 5} signals are assigned to allyl radicals generated by a minor photochemical pathway which involves concerted C–Br bond dissociation and cyclopropyl ring-opening following single ultraviolet (UV)-photon absorption. Slow photofragments also contribute to the velocity map images obtained at the C{sub 3}H{sub 5} radical mass, but the corresponding slow Br atoms are not observed. These features in the images are attributed to C{sub 3}H{sub 5}{sup +} from the photodissociation of the C{sub 3}H{sub 5}Br{sup +} molecular cation following two-photon ionization of the parent compound. This assignment is confirmed by 118-nm vacuum ultraviolet ionization studies that prepare the molecular cation in its ground electronic state prior to UV photodissociation.« less

  4. POLARIZED LINE FORMATION IN NON-MONOTONIC VELOCITY FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in

    2016-12-10

    For a correct interpretation of the observed spectro-polarimetric data from astrophysical objects such as the Sun, it is necessary to solve the polarized line transfer problems taking into account a realistic temperature structure, the dynamical state of the atmosphere, a realistic scattering mechanism (namely, the partial frequency redistribution—PRD), and the magnetic fields. In a recent paper, we studied the effects of monotonic vertical velocity fields on linearly polarized line profiles formed in isothermal atmospheres with and without magnetic fields. However, in general the velocity fields that prevail in dynamical atmospheres of astrophysical objects are non-monotonic. Stellar atmospheres with shocks, multi-componentmore » supernova atmospheres, and various kinds of wave motions in solar and stellar atmospheres are examples of non-monotonic velocity fields. Here we present studies on the effect of non-relativistic non-monotonic vertical velocity fields on the linearly polarized line profiles formed in semi-empirical atmospheres. We consider a two-level atom model and PRD scattering mechanism. We solve the polarized transfer equation in the comoving frame (CMF) of the fluid using a polarized accelerated lambda iteration method that has been appropriately modified for the problem at hand. We present numerical tests to validate the CMF method and also discuss the accuracy and numerical instabilities associated with it.« less

  5. Power and polarization dependences of ultra-narrow electromagnetically induced absorption (EIA) spectra of 85 Rb atoms in degenerate two-level system

    NASA Astrophysics Data System (ADS)

    Qureshi, Muhammad Mohsin; Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae

    2016-05-01

    We have investigated ultra-narrow EIA spectral features with respect to variations of polarizations and powers of pump laser beam in a degenerate two-level system of the transition of 85 Rb D2 transition line. Polarizations of the probe laser beam in two separate experiments were fixed at right circular and horizontal linear polarizations, respectively while the polarizations of the pump lasers were varied from initial polarizations same as the probe laser beams to orthogonal to probe polarizations. One homemade laser combined with AOMs was used to the pump and probe laser beams instead of two different lasers to overcome broad linewidths of the homemade lasers. Theoretically, probe absorption coefficients have been calculated from optical Bloch equations of the degenerate two level system prepared by a pump laser beam. In the case of the circular polarization, EIA signal was obtained as expected theoretically although both pump and probe beams have same polarization. The EIA signal become smaller as power increases and polarizations of the pump and probe beams were same. When the polarization of the pump beam was linear polarization, maximum EIA signal was obtained theoretically and experimentally. Experimental EIA spectral shapes with respect to variations of the pump beam polarization shows similar trends as the theoretical results.

  6. Polarization and resistive switching behavior of ferroelectric tunnel junctions with transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Li, Tao; Lipatov, Alexey; Sharma, Pankaj; Lee, Hyungwoo; Eom, Chang-Beom; Sinitskii, Alexander; Gruverman, Alexei; Alexei Gruverman Team; Alexander Sinitskii Team; Chang-Beom Eom Team

    Transition metal dichalcogenides (TMDs) are emerging 2-dimensional (2D) materials of the MX2 type, where M is a transition metal atom (Mo, W, Ti, Sn, Zr, etc.) and X is a chalcogen atom (S, Se, or Te.). Comparing to graphene, TMDs have a sizable band gap and can be metal, half-metal, semiconductor or superconductor. Their band structures can be tuned by external bias voltage, mechanical force, or light illumination. Their rich physical properties make TMDs potential candidates for a variety of applications in nanoelectronics and optoelectronics. Ferroelectric tunnel junctions (FTJs) are actively studied as a next-generation of non-volatile memory elements. An FTJ comprises a ferroelectric tunnel barrier sandwiched between two electrodes. In this work, we investigate the resistive switching behavior of MoS2/BaTiO3-based FTJs. The ON/OFF ratio can be modulated via electric or mechanical control of the switched polarization fraction opening a possibility of tunable electroresistance effect. Effect of optical illumination on the polarization reversal dynamics has been observed and analyzed based on the polarization-induced modulation of the MoS2 layered electronic properties.

  7. The UKB prescription and the heavy atom effects on the nuclear magnetic shielding of vicinal heavy atoms.

    PubMed

    Maldonado, Alejandro F; Aucar, Gustavo A

    2009-07-21

    Fully relativistic calculations of NMR magnetic shielding on XYH3 (X = C, Si, Ge and Sn; Y = Br, I), XHn (n = 1-4) molecular systems and noble gases performed with a fully relativistic polarization propagator formalism at the RPA level of approach are presented. The rate of convergence (size of basis set and time involved) for calculations with both kinetic balance prescriptions, RKB and UKB, were investigated. Calculations with UKB makes it feasible to obtain reliable results for two or more heavy-atom-containing molecules. For such XYH3 systems, the influence of heavy vicinal halogen atoms on sigma(X) is such that heavy atom effects on heavy atoms (vicinal plus their own effects or HAVHA + HAHA effects) amount to 30.50% for X = Sn and Y = I; being the HAHA effect of the order of 25%. So the vicinal effect alone is of the order of 5.5%. The vicinal heavy atom effect on light atoms (HALA effect) is of the order of 28% for X = C and Y = I. A similar behaviour, but of opposite sign, is observed for sigma(Y) for which sigmaR-NR (I; X = C) (HAHA effect) is around 27% and sigmaR-NR(I; X = Sn) (HAVHA + HAHA effects) is close to 21%. Its electronic origin is paramagnetic for halogen atoms but both dia- and paramagnetic for central atoms. The effect on two bond distant hydrogen atoms is such that the largest variation of sigma(H) within the same family of XYH3 molecules appears for X = Si and Y = I: around 20%. In this case sigma(H; X = Sn, Y = I) = 33.45 ppm and sigma(H; X = Sn, Y = H) = 27.82 ppm.

  8. The inverse Wiener polarity index problem for chemical trees.

    PubMed

    Du, Zhibin; Ali, Akbar

    2018-01-01

    The Wiener polarity number (which, nowadays, known as the Wiener polarity index and usually denoted by Wp) was devised by the chemist Harold Wiener, for predicting the boiling points of alkanes. The index Wp of chemical trees (chemical graphs representing alkanes) is defined as the number of unordered pairs of vertices (carbon atoms) at distance 3. The inverse problems based on some well-known topological indices have already been addressed in the literature. The solution of such inverse problems may be helpful in speeding up the discovery of lead compounds having the desired properties. This paper is devoted to solving a stronger version of the inverse problem based on Wiener polarity index for chemical trees. More precisely, it is proved that for every integer t ∈ {n - 3, n - 2,…,3n - 16, 3n - 15}, n ≥ 6, there exists an n-vertex chemical tree T such that Wp(T) = t.

  9. Photoionization of sodium atoms and electron scattering from ionized sodium

    NASA Technical Reports Server (NTRS)

    Dasgupta, A.; Bhatia, A. K.

    1985-01-01

    The polarized-orbital method of Temkin (1957) is applied using polarized orbitals determined from Sternheimer's equation to compute the photoionization cross sections of Na atoms from threshold to about 60 eV. The approximations involved in the analysis are explained in detail; the explicit forms of the integrals and matrix expressions are given in appendices; and the results are presented in tables and graphs. Good agreement is found with the results of Chang and Kelly (1975), and the possibility that small amounts of molecular vapor in Na-photoionization experiments are responsible for the discrepancies between calculated and measured cross sections is considered.

  10. Probing the positron moderation process using high-intensity, highly polarized slow-positron beams

    NASA Technical Reports Server (NTRS)

    Van House, J.; Zitzewitz, P. W.

    1984-01-01

    A highly polarized (P = 0.48 + or - 0.02) intense (500,000/sec) beam of 'slow' (Delta E = about 2 eV) positrons (e+) is generated, and it is shown that it is possible to achieve polarization as high as P = 0.69 + or - 0.04 with reduced intensity. The measured polarization of the slow e+ emitted by five different positron moderators showed no dependence on the moderator atomic number (Z). It is concluded that only source positrons with final kinetic energy below 17 keV contribute to the slow-e+ beam, in disagreement with recent yield functions derived from low-energy measurements. Measurements of polarization and yield with absorbers of different Z between the source and moderator show the effects of the energy and angular distributions of the source positrons on P. The depolarization of fast e+ transmitted through high-Z absorbers has been measured. Applications of polarized slow-e+ beams are discussed.

  11. Spin polarized first principles study of Mn doped gallium nitride monolayer nanosheet

    NASA Astrophysics Data System (ADS)

    Sharma, Venus; Kaur, Sumandeep; Srivastava, Sunita; Kumar, Tankeshwar

    2017-05-01

    The structural, electronic and magnetic properties of gallium nitride nanosheet (GaNs) doped with Mn atoms have been studied using spin polarized density functional theory. The binding energy per atom, Energy Band gap, Fermi energy, magnetic moment, electric dipole moment have been found. The doped nanosheet is found to be more stable than pure GaN monolayer nanosheet. Adsorption of Mn atom has been done at four different sites on GaNs which affects the fermi level position. It is found that depending on the doping site, Mn can behave both like p-type semiconductor and also as n-type semiconductor. Also, it is ascertained that Mn doped GaNs (GaNs-Mn) exhibits ferromagnetic behavior.

  12. Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning.

    PubMed

    Cole, Daniel J; Vilseck, Jonah Z; Tirado-Rives, Julian; Payne, Mike C; Jorgensen, William L

    2016-05-10

    Molecular mechanics force fields, which are commonly used in biomolecular modeling and computer-aided drug design, typically treat nonbonded interactions using a limited library of empirical parameters that are developed for small molecules. This approach does not account for polarization in larger molecules or proteins, and the parametrization process is labor-intensive. Using linear-scaling density functional theory and atoms-in-molecule electron density partitioning, environment-specific charges and Lennard-Jones parameters are derived directly from quantum mechanical calculations for use in biomolecular modeling of organic and biomolecular systems. The proposed methods significantly reduce the number of empirical parameters needed to construct molecular mechanics force fields, naturally include polarization effects in charge and Lennard-Jones parameters, and scale well to systems comprised of thousands of atoms, including proteins. The feasibility and benefits of this approach are demonstrated by computing free energies of hydration, properties of pure liquids, and the relative binding free energies of indole and benzofuran to the L99A mutant of T4 lysozyme.

  13. Theoretical description of transverse measurements of polarization in optically-pumped Rb vapor cells

    NASA Astrophysics Data System (ADS)

    Dreiling, Joan; Tupa, Dale; Norrgard, Eric; Gay, Timothy

    2012-06-01

    In optical pumping of alkali-metal vapors, the polarization of the atoms is typically determined by probing along the entire length of the pumping beam, resulting in an averaged value of polarization over the length of the cell. Such measurements do not give any information about spatial variations of the polarization along the pump beam axis. Using a D1 probe beam oriented perpendicular to the pumping beam, we have demonstrated a heuristic method for determining the polarization along the pump beam's axis. Adapting a previously developed theory [1], we provide an analysis of the experiment which explains why this method works. The model includes the effects of Rb density, buffer gas pressure, and pump detuning. [4pt] [1] E.B. Norrgard, D. Tupa, J.M. Dreiling, and T.J. Gay, Phys. Rev. A 82, 033408 (2010).

  14. An Intelligent Polar Cyberinfrastrucuture to Support Spatiotemporal Decision Making

    NASA Astrophysics Data System (ADS)

    Song, M.; Li, W.; Zhou, X.

    2014-12-01

    In the era of big data, polar sciences have already faced an urgent demand of utilizing intelligent approaches to support precise and effective spatiotemporal decision-making. Service-oriented cyberinfrastructure has advantages of seamlessly integrating distributed computing resources, and aggregating a variety of geospatial data derived from Earth observation network. This paper focuses on building a smart service-oriented cyberinfrastructure to support intelligent question answering related to polar datasets. The innovation of this polar cyberinfrastructure includes: (1) a problem-solving environment that parses geospatial question in natural language, builds geoprocessing rules, composites atomic processing services and executes the entire workflow; (2) a self-adaptive spatiotemporal filter that is capable of refining query constraints through semantic analysis; (3) a dynamic visualization strategy to support results animation and statistics in multiple spatial reference systems; and (4) a user-friendly online portal to support collaborative decision-making. By means of this polar cyberinfrastructure, we intend to facilitate integration of distributed and heterogeneous Arctic datasets and comprehensive analysis of multiple environmental elements (e.g. snow, ice, permafrost) to provide a better understanding of the environmental variation in circumpolar regions.

  15. High-harmonic generation by two-color mixing of circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Milošević, D. B.; Becker, W.; Kopold, R.

    2000-06-01

    Dipole selection rules prevent harmonic generation by an atom in a circularly polarized laser field. However, this is not the case for a superposition of several circularly polarized fields, such as two circularly polarized fields with frequencies ω and 2ω that corotate or counter-rotate in the same plane. Harmonic generation in this environment has been observed and, in fact, found to be very intense in the counter-rotating case [1]. In a certain frequency region, the harmonics may be stronger than those radiated in a linearly polarized field of either frequency. The selection rules dictate that the harmonics are circularly polarized with a helicity that alternates from one harmonic to the next. Besides their practical interest, these harmonics are also intriguing from a fundamental point of view: the standard simple-man picture does not apply since orbits that start with zero velocity in this field almost never return to their point of departure. In terms of quantum trajectories, we discuss the mechanism that generates these harmonics. In several interesting ways, it is complementary to the case of linear polarization. [1] H. Eichmann et al., Phys. Rev. A 51, R3414 (1995)

  16. Quantum storage of a photonic polarization qubit in a solid.

    PubMed

    Gündoğan, Mustafa; Ledingham, Patrick M; Almasi, Attaallah; Cristiani, Matteo; de Riedmatten, Hugues

    2012-05-11

    We report on the quantum storage and retrieval of photonic polarization quantum bits onto and out of a solid state storage device. The qubits are implemented with weak coherent states at the single photon level, and are stored for a predetermined time of 500 ns in a praseodymium doped crystal with a storage and retrieval efficiency of 10%, using the atomic frequency comb scheme. We characterize the storage by using quantum state tomography, and find that the average conditional fidelity of the retrieved qubits exceeds 95% for a mean photon number μ=0.4. This is significantly higher than a classical benchmark, taking into account the poissonian statistics and finite memory efficiency, which proves that our crystal functions as a quantum storage device for polarization qubits. These results extend the storage capabilities of solid state quantum light matter interfaces to polarization encoding, which is widely used in quantum information science.

  17. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seyedhosseini, E., E-mail: Seyedhosseini@ua.pt; Ivanov, M.; Bdikin, I.

    2015-08-21

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulsemore » duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias.« less

  18. A constructive model potential method for atomic interactions

    NASA Technical Reports Server (NTRS)

    Bottcher, C.; Dalgarno, A.

    1974-01-01

    A model potential method is presented that can be applied to many electron single centre and two centre systems. The development leads to a Hamiltonian with terms arising from core polarization that depend parametrically upon the positions of the valence electrons. Some of the terms have been introduced empirically in previous studies. Their significance is clarified by an analysis of a similar model in classical electrostatics. The explicit forms of the expectation values of operators at large separations of two atoms given by the model potential method are shown to be equivalent to the exact forms when the assumption is made that the energy level differences of one atom are negligible compared to those of the other.

  19. Remote detection of rotating machinery with a portable atomic magnetometer.

    PubMed

    Marmugi, Luca; Gori, Lorenzo; Hussain, Sarah; Deans, Cameron; Renzoni, Ferruccio

    2017-01-20

    We demonstrate remote detection of rotating machinery, using an atomic magnetometer at room temperature and in an unshielded environment. The system relies on the coupling of the AC magnetic signature of the target with the spin-polarized, precessing atomic vapor of a radio-frequency optical atomic magnetometer. The AC magnetic signatures of rotating equipment or electric motors appear as sidebands in the power spectrum of the atomic sensor, which can be tuned to avoid noisy bands that would otherwise hamper detection. A portable apparatus is implemented and experimentally tested. Proof-of-concept investigations are performed with test targets mimicking possible applications, and the operational conditions for optimum detection are determined. Our instrument provides comparable or better performance than a commercial fluxgate and allows detection of rotating machinery behind a wall. These results demonstrate the potential for ultrasensitive devices for remote industrial and usage monitoring, security, and surveillance.

  20. Trapped atom number in millimeter-scale magneto-optical traps

    NASA Astrophysics Data System (ADS)

    Hoth, Gregory W.; Donley, Elizabeth A.; Kitching, John

    2012-06-01

    For compact cold-atom instruments, it is desirable to trap a large number of atoms in a small volume to maximize the signal-to-noise ratio. In MOTs with beam diameters of a centimeter or larger, the slowing force is roughly constant versus velocity and the trapped atom number scales as d^4. For millimeter-scale MOTs formed from pyramidal reflectors, a d^6 dependence has been observed [Pollack et al., Opt. Express 17, 14109 (2009)]. A d^6 scaling is expected for small MOTs, where the slowing force is proportional to the atom velocity. For a 1 mm diameter MOT, a d^6 scaling results in 10 atoms, and the difference between a d^4 and a d^6 dependence corresponds to a factor of 1000 in atom number and a factor of 30 in the signal-to-noise ratio. We have observed >10^4 atoms in 1 mm diameter MOTs, consistent with a d^4 dependence. We are currently performing measurements for sub-mm MOTs to determine where the d^4 to d^6 crossover occurs in our system. We are also exploring MOTs based on linear polarization, which can potentially produce stronger slowing forces due to stimulated emission [Emile et al., Europhys. Lett. 20, 687 (1992)]. It may be possible to trap more atoms in small volumes with this method, since high intensities can be easily achieved.

  1. Orientation observed by Zeeman spectra of dissociated atoms and the interference in photoexcitations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Yasuyuki; Kasahara, Shunji; Kato, Hajime

    2003-06-01

    In a magnetic field, the wave number of a pump laser light polarized along the field was fixed to the isolated Cs{sub 2}D {sup 1}{sigma}{sub u}{sup +}(v=46, J=54)(leftarrow)X {sup 1}{sigma}{sub g}{sup +}(v=0, J=55) line, and the excitation spectrum of the dissociated Cs(6p {sup 2}P{sub 3/2}) atoms was measured by scanning the wave number of a probe laser light polarized perpendicular to the field. The population of each sublevel 6p {sup 2}P{sub 3/2,m{sub j}} of the dissociated atoms was determined from the line intensities in the m{sub j}-resolved excitation spectrum. The unequal population between the 6p {sup 2}P{sub 3/2,+verticalbarm{sub j}}{sub verticalbar}more » and 6p {sup 2}P{sub 3/2,-verticalbarm{sub j}}{sub verticalbar} levels (atomic orientation) was observed and it was enhanced as the magnetic-field strength was increased. The atomic orientation is shown to be induced by the interference between the indirect predissociation, which occurs by a combination of the spin-orbit coupling of the D {sup 1}{sigma}{sub u}{sup +} state with the (2){sup 3}{pi}{sub 0u} state and the L-uncoupling and Zeeman interactions between the (2){sup 3}{pi}{sub 0u} and dissociative (2){sup 3}{sigma}{sub u}{sup +} states, and the dissociation following a direct excitation to the (2){sup 3}{sigma}{sub u}{sup +} state, which is allowed by spin-orbit coupling of the (2){sup 3}{sigma}{sub u}{sup +} state with the B {sup 1}{pi}{sub u} state. It is demonstrated that the atomic orientation is produced by the photodissociation in the presence of an external magnetic field even when all degenerated molecular M=J,...,0,...,-J sublevels are excited by a light polarized linearly along the field.« less

  2. Direct Determination of Atomic Structure and Magnetic Coupling of Magnetite Twin Boundaries.

    PubMed

    Chen, Chunlin; Li, Hongping; Seki, Takehito; Yin, Deqiang; Sanchez-Santolino, Gabriel; Inoue, Kazutoshi; Shibata, Naoya; Ikuhara, Yuichi

    2018-03-27

    Clarifying how the atomic structure of interfaces/boundaries in materials affects the magnetic coupling nature across them is of significant academic value and will facilitate the development of state-of-the-art magnetic devices. Here, by combining atomic-resolution transmission electron microscopy, atomistic spin-polarized first-principles calculations, and differential phase contrast imaging, we conduct a systematic investigation of the atomic and electronic structures of individual Fe 3 O 4 twin boundaries (TBs) and determine their concomitant magnetic couplings. We demonstrate that the magnetic coupling across the Fe 3 O 4 TBs can be either antiferromagnetic or ferromagnetic, which directly depends on the TB atomic core structures and resultant electronic structures within a few atomic layers. Revealing the one-to-one correspondence between local atomic structures and magnetic properties of individual grain boundaries will shed light on in-depth understanding of many interesting magnetic behaviors of widely used polycrystalline magnetic materials, which will surely promote the development of advanced magnetic materials and devices.

  3. Observation of the Forbidden Magnetic Dipole Transition 6{sup 2}P{sub ?} --> 7{sup 2}P{sub ?} in Atomic Thallium

    DOE R&D Accomplishments Database

    Chu, S.

    1976-10-01

    A measurement of the 6{sup 2}P{sub ?} --> 7{sup 2}P{sub ?} forbidden magnetic dipole matrix element in atomic thallium is described. A pulsed, linearly polarized dye laser tuned to the transition frequency is used to excite the thallium vapor from the 6{sup 2}P{sub ?} ground state to the 7{sup 2}P{sub ?} excited state. Interference between the magnetic dipole M1 amplitude and a static electric field induced E1 amplitude results in an atomic polarization of the 7{sup 2}P{sub ?} state, and the subsequent circular polarization of 535 nm fluorescence. The circular polarization is seen to be proportional to / as expected, and measured for several transitions between hyperfine levels of the 6{sup 2}P{sub ?} and 7{sup 2}P{sub ?} states. The result is = -(2.11 +- 0.30) x 10{sup -5} parallel bar e parallel bar dirac constant/2mc, in agreement with theory.

  4. Synchronous optical pumping of quantum revival beats for atomic magnetometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seltzer, S. J.; Meares, P. J.; Romalis, M. V.

    2007-05-15

    We observe quantum beats with periodic revivals due to nonlinear spacing of Zeeman levels in the ground state of potassium atoms, and demonstrate their synchronous optical pumping by double modulation of the pumping light at the Larmor frequency and the revival frequency. We show that synchronous pumping increases the degree of spin polarization by a factor of 4. As a practical example, we explore the application of this double-modulation technique to atomic magnetometers operating in the geomagnetic field range, and find that it can increase the sensitivity and reduce magnetic-field-orientation-dependent measurement errors endemic to alkali-metal magnetometers.

  5. Studies of local polarization in complex oxide multiferroic interfaces by aberration corrected STEM-EELS

    NASA Astrophysics Data System (ADS)

    Sanchez-Santolino, Gabriel; Tornos, Javier; Leon, Carlos; Varela, María; Pennycook, Stephen J.; Santamaría, Jacobo

    2014-03-01

    Interfaces in complex oxide heterostructures are responsible for exciting new physics, which is directly related to the chemical, structural and electronic properties at the atomic scale. Here, we study artificial multiferroic heterostructures combining ferromagnetic La0.7Sr0.3MnO3 with ferroelectric BaTiO3 by atomic resolution aberration-corrected scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy. Measurements of the atomic positions in the STEM images permit calculating relative displacements and hence, local polarization. Polarization gradients can be observed in annular bright field images which seem to be correlated to strain gradients associated with the large lattice mismatch between barriers and electrodes. Spectroscopic measurements suggest the presence of O vacancies through the ferroelectric layers. Understanding the effect of the charge carriers associated with the oxygen vacancies may be the key to control the dynamics of domain walls in these heterostructures. Acknowledgements ORNL: U.S. DOE-BES, Materials Sciences and Engineering Division. UCM: ERC Starting Investigator Award, Spanish MICINN MAT2011-27470-C02 and Consolider Ingenio 2010 - CSD2009-00013 (Imagine), CAM S2009/MAT-1756 (Phama).

  6. Spin polarization properties of benzene/graphene with transition metals as dopants: First principles calculations

    NASA Astrophysics Data System (ADS)

    Yuan, X. B.; Tian, Y. L.; Zhao, X. W.; Yue, W. W.; Hu, G. C.; Ren, J. F.

    2018-05-01

    First principles calculations are used to study the spin polarization properties of benzene molecule adsorbed on the graphene surface which doped with transition metals including Mn, Cr, Fe, Co, and Ni. The densities of states (DOS) of the benzene molecule can be induced to be spin split at the Fermi level only when it is adsorbed on Mn-, and Cr-doped graphene. The p-orbital of the benzene molecule will interact with the d orbital of the doped atoms, which will generate new spin coupling states and lead to obvious spin polarization of the benzene molecule. The spin-polarized density distributions as well as the differential charge density distributions of the systems also suggest that Mn-doped graphene will induce bigger spin polarization than that of Cr-doped graphene. Benzene molecule could be spin-polarized when it is adsorbed on the graphene surface with transition metal dopants, which could be a new method for researching graphene-based organic spintronic devices.

  7. Alignment relaxation of Ne*(2pi [J = 1]) atoms in He-Ne* glow discharges

    NASA Astrophysics Data System (ADS)

    Bahrim, Cristian; Khadilkar, Vaibhav; Matsukuma, Hiraku; Hasuo, Masahiro

    2009-11-01

    Alignment relaxation of the Ne*(2p5 3p; 2pi [J = 1]) atoms (where i = 2, 5, 7 or 10) induced by collisions with He atoms in glow discharges at 77 K < T < 1,000 K are reported. Close-coupling many-channel quantum calculations using a model potential for the Ne*(2p5 3p) - He system are compared with measurements of the alignment relaxation using the LIFS technique and the Hanle effect. The addition of the dipole polarization potential of the Ne*(2pi [J = 1]) atoms to the spin-orbit coupling and the electrostatic interaction between Ne* and He atoms leads to good agreement between theory and experiment.

  8. Imprint control of BaTiO 3 thin films via chemically induced surface polarization pinning

    DOE PAGES

    Lee, Hyungwoo; Kim, Tae Heon; Patzner, Jacob J.; ...

    2016-02-22

    Surface-adsorbed polar molecules can significantly alter the ferroelectric properties of oxide thin films. Thus, fundamental understanding and controlling the effect of surface adsorbates are crucial for the implementation of ferroelectric thin film devices, such as ferroelectric tunnel junctions. Herein, we report an imprint control of BaTiO 3 (BTO) thin films by chemically induced surface polarization pinning in the top few atomic layers of the water-exposed BTO films. Our studies based on synchrotron X-ray scattering and coherent Bragg rod analysis demonstrate that the chemically induced surface polarization is not switchable but reduces the polarization imprint and improves the bistability of ferroelectricmore » phase in BTO tunnel junctions. Here, we conclude that the chemical treatment of ferroelectric thin films with polar molecules may serve as a simple yet powerful strategy to enhance functional properties of ferroelectric tunnel junctions for their practical applications.« less

  9. Photofragment slice imaging studies of pyrrole and the Xe…pyrrole cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubio-Lago, L.; Zaouris, D.; Sakellariou, Y.

    The photolysis of pyrrole has been studied in a molecular beam at wavelengths 250 nm, 240 nm and 193.3 nm, using 2 different carrier gases, He and Xe. A broad bimodal distribution of H atom fragment velocities has been observed at all wavelengths. Near threshold at both 240 and 250 nm, , sharp features have been observed in the fast part of the H-atom distribution. Under appropriate molecular beam conditions, these sharp features and the photolysis of pyrrole at both 240 and 250 nm disappear when using Xe as opposed to He as the carrier gas. We attribute this phenomenonmore » to cluster formation between Xe and pyrrole, and this assumption is supported by observation of resonance enhanced multiphoton ionization spectra for the (Xe…pyrrole) cluster followed by photofragmentation of the nascent cation cluster. Ab initio calculations are performed to support the experimental data. Part of this work is supported by the transfer of knowledge program SOUTHERN DYNAMICS MTKD-CT-2004-014306. The experimental work was performed at the Ultraviolet Laser Facility operating at IESL-FORTH and has been supported in part by the European Commission through the Research Infrastructures activity of FP6 (“Laserlab- Europe” RII3-CT-2003-506350). We also wish to thank the graduate program Applied Molecular Spectroscopy (EPEAEK). Part of this work was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, US Department of Energy with Battelle Memorial Institute, which operates the Pacific Northwest National Laboratory. Computer resources were provided by the Office of Science, US Department of Energy.« less

  10. Evaluating and interpreting the chemical relevance of the linear response kernel for atoms II: open shell.

    PubMed

    Boisdenghien, Zino; Fias, Stijn; Van Alsenoy, Christian; De Proft, Frank; Geerlings, Paul

    2014-07-28

    Most of the work done on the linear response kernel χ(r,r') has focussed on its atom-atom condensed form χAB. Our previous work [Boisdenghien et al., J. Chem. Theory Comput., 2013, 9, 1007] was the first effort to truly focus on the non-condensed form of this function for closed (sub)shell atoms in a systematic fashion. In this work, we extend our method to the open shell case. To simplify the plotting of our results, we average our results to a symmetrical quantity χ(r,r'). This allows us to plot the linear response kernel for all elements up to and including argon and to investigate the periodicity throughout the first three rows in the periodic table and in the different representations of χ(r,r'). Within the context of Spin Polarized Conceptual Density Functional Theory, the first two-dimensional plots of spin polarized linear response functions are presented and commented on for some selected cases on the basis of the atomic ground state electronic configurations. Using the relation between the linear response kernel and the polarizability we compare the values of the polarizability tensor calculated using our method to high-level values.

  11. First-principle study of single TM atoms X (X=Fe, Ru or Os) doped monolayer WS2 systems

    NASA Astrophysics Data System (ADS)

    Zhu, Yuan-Yan; Zhang, Jian-Min

    2018-05-01

    We report the structural, magnetic and electronic properties of the pristine and single TM atoms X (X = Fe, Ru or Os) doped monolayer WS2 systems based on first-principle calculations. The results show that the W-S bond shows a stronger covalent bond, but the covalency is obviously weakened after the substitution of W atom with single X atoms, especially for Ru (4d75s1) with the easily lost electronic configuration. The smaller total energies of the doped systems reveal that the spin-polarized states are energetically favorable than the non-spin-polarized states, and the smallest total energy of -373.918 eV shows the spin-polarized state of the Os doped monolayer WS2 system is most stable among three doped systems. In addition, although the pristine monolayer WS2 system is a nonmagnetic-semiconductor with a direct band gap of 1.813 eV, single TM atoms Fe and Ru doped monolayer WS2 systems transfer to magnetic-HM with the total moments Mtot of 1.993 and 1.962 μB , while single TM atom Os doped monolayer WS2 systems changes to magnetic-metal with the total moments Mtot of 1.569 μB . Moreover, the impurity states with a positive spin splitting energies of 0.543, 0.276 and 0.1999 eV near the Fermi level EF are mainly contributed by X-dxy and X-dx2-y2 states hybridized with its nearest-neighbor atom W-dz2 states for Fe, Ru and Os doped monolayer WS2 system, respectively. Finally, we hope that the present study on monolayer WS2 will provide a useful theoretical guideline for exploring low-dimensional spintronic materials in future experiments.

  12. Polarity-driven oxygen vacancy formation in ultrathin LaNiO 3 films on SrTiO 3

    DOE PAGES

    Tung, I-Cheng; Luo, Guangfu; Lee, June Hyuk; ...

    2017-10-18

    Oxide heterostructures offer a pathway to control emergent phases in complex oxides, but their creation often leads to boundaries that have a polar discontinuity. In order to fabricate atomic-scale arrangements of dissimilar materials, we need a clear understanding of the pathways by which materials resolve polarity issues. By examining the real-time lattice structure in-situ during growth for the case of polar LaNiO 3 synthesized on non-polar SrTiO 3 (001), we demonstrate how films in ultra-thin limit form as LaNiO 2.5 and then evolve into LaNiO 3 as the thickness increases. Theory explains how the polar energetics drives the formation ofmore » oxygen vacancies and the stability of these phases with thickness and structure.« less

  13. Demystifying Introductory Chemistry. Part 3: Ionization Energies, Electronegativity, Polar Bonds, and Partial Charges.

    ERIC Educational Resources Information Center

    Spencer, James; And Others

    1996-01-01

    Shows how ionization energies provide a convenient method for obtaining electronegativity values that is simpler than the conventional methods. Demonstrates how approximate atomic charges can be calculated for polar molecules and how this method of determining electronegativities may lead to deeper insights than are typically possible for the…

  14. Laser cooling of 85Rb atoms to the recoil-temperature limit

    NASA Astrophysics Data System (ADS)

    Huang, Chang; Kuan, Pei-Chen; Lan, Shau-Yu

    2018-02-01

    We demonstrate the laser cooling of 85Rb atoms in a two-dimensional optical lattice. We follow the two-step degenerate Raman sideband cooling scheme [Kerman et al., Phys. Rev. Lett. 84, 439 (2000), 10.1103/PhysRevLett.84.439], where a fast cooling of atoms to an auxiliary state is followed by a slow cooling to a dark state. This method has the advantage of independent control of the heating rate and cooling rate from the optical pumping beam. We operate the lattice at a Lamb-Dicke parameter η =0.45 and show the cooling of spin-polarized 85Rb atoms to the recoil temperature in both dimensions within 2.4 ms with the aid of adiabatic cooling.

  15. Robust quantum logic in neutral atoms via adiabatic Rydberg dressing

    DOE PAGES

    Keating, Tyler; Cook, Robert L.; Hankin, Aaron M.; ...

    2015-01-28

    We study a scheme for implementing a controlled-Z (CZ) gate between two neutral-atom qubits based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate from decoherence due to random phase errors that typically arise because of atomic thermal motion. In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterpropagating lasers in a σ +/σ - orthogonal polarization geometry that further reduces motional errors due to Doppler shifts. The residual motional error is dominated by dipole-dipolemore » forces acting on doubly-excited Rydberg atoms when the blockade is imperfect. As a result, for reasonable parameters, with qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a CZ gate in < 10 μs with error probability on the order of 10 -3.« less

  16. Partition coefficients of methylated DNA bases obtained from free energy calculations with molecular electron density derived atomic charges.

    PubMed

    Lara, A; Riquelme, M; Vöhringer-Martinez, E

    2018-05-11

    Partition coefficients serve in various areas as pharmacology and environmental sciences to predict the hydrophobicity of different substances. Recently, they have also been used to address the accuracy of force fields for various organic compounds and specifically the methylated DNA bases. In this study, atomic charges were derived by different partitioning methods (Hirshfeld and Minimal Basis Iterative Stockholder) directly from the electron density obtained by electronic structure calculations in a vacuum, with an implicit solvation model or with explicit solvation taking the dynamics of the solute and the solvent into account. To test the ability of these charges to describe electrostatic interactions in force fields for condensed phases, the original atomic charges of the AMBER99 force field were replaced with the new atomic charges and combined with different solvent models to obtain the hydration and chloroform solvation free energies by molecular dynamics simulations. Chloroform-water partition coefficients derived from the obtained free energies were compared to experimental and previously reported values obtained with the GAFF or the AMBER-99 force field. The results show that good agreement with experimental data is obtained when the polarization of the electron density by the solvent has been taken into account, and when the energy needed to polarize the electron density of the solute has been considered in the transfer free energy. These results were further confirmed by hydration free energies of polar and aromatic amino acid side chain analogs. Comparison of the two partitioning methods, Hirshfeld-I and Minimal Basis Iterative Stockholder (MBIS), revealed some deficiencies in the Hirshfeld-I method related to the unstable isolated anionic nitrogen pro-atom used in the method. Hydration free energies and partitioning coefficients obtained with atomic charges from the MBIS partitioning method accounting for polarization by the implicit solvation model

  17. N-polar InGaN-based LEDs fabricated on sapphire via pulsed sputtering

    NASA Astrophysics Data System (ADS)

    Ueno, Kohei; Kishikawa, Eiji; Ohta, Jitsuo; Fujioka, Hiroshi

    2017-02-01

    High-quality N-polar GaN epitaxial films with an atomically flat surface were grown on sapphire (0001) via pulsed sputtering deposition, and their structural and electrical properties were investigated. The crystalline quality of N-polar GaN improves with increasing film thickness and the full width at half maximum values of the x-ray rocking curves for 0002 and 101 ¯ 2 diffraction were 313 and 394 arcsec, respectively, at the film thickness of 6 μ m . Repeatable p-type doping in N-polar GaN films was achieved using Mg dopant, and their hole concentration and mobility can be controlled in the range of 8 × 1016-2 × 1018 cm-3 and 2-9 cm2V-1s-1, respectively. The activation energy of Mg in N-polar GaN based on a temperature-dependent Hall measurement was estimated to be 161 meV, which is comparable to that of the Ga-polar GaN. Based on these results, we demonstrated the fabrication of N-polar InGaN-based light emitting diodes with the long wavelength up to 609 nm.

  18. The enhanced spin-polarized transport behaviors through cobalt benzene-porphyrin-benzene molecular junctions: the effect of functional groups

    NASA Astrophysics Data System (ADS)

    Cheng, Jue-Fei; Zhou, Liping; Wen, Zhongqian; Yan, Qiang; Han, Qin; Gao, Lei

    2017-05-01

    The modification effects of the groups amino (NH2) and nitro (NO2) on the spin polarized transport properties of the cobalt benzene-porphyrin-benzene (Co-BPB) molecule coupled to gold (Au) nanowire electrodes are investigated by the nonequilibrium Green’s function method combined with the density functional theory. The calculation results show that functional groups can lead to the significant spin-filter effect, enhanced low-bias negative differential resistance (NDR) behavior and novel reverse rectifying effect in Co-BPB molecular junction. The locations and types of functional groups have distinct influences on spin-polarized transport performances. The configuration with NH2 group substituting H atom in central porphyrin ring has larger spin-down current compared to that with NO2 substitution. And Co-BPB molecule junction with NH2 group substituting H atom in side benzene ring shows reverse rectifying effect. Detailed analyses confirm that NH2 and NO2 group substitution change the spin-polarized transferred charge, which makes the highest occupied molecular orbitals (HOMO) of spin-down channel of Co-BPB closer to the Fermi level. And the shift of HOMO strengthens the spin-polarized coupling between the molecular orbitals and the electrodes, leading to the enhanced spin-polarized behavior. Our findings might be useful in the design of multi-functional molecular devices in the future.

  19. Ultrafast Coulomb-Induced Intervalley Coupling in Atomically Thin WS2.

    PubMed

    Schmidt, Robert; Berghäuser, Gunnar; Schneider, Robert; Selig, Malte; Tonndorf, Philipp; Malić, Ermin; Knorr, Andreas; Michaelis de Vasconcellos, Steffen; Bratschitsch, Rudolf

    2016-05-11

    Monolayers of semiconducting transition metal dichalcogenides hold the promise for a new paradigm in electronics by exploiting the valley degree of freedom in addition to charge and spin. For MoS2, WS2, and WSe2, valley polarization can be conveniently initialized and read out by circularly polarized light. However, the underlying microscopic processes governing valley polarization in these atomically thin equivalents of graphene are still not fully understood. Here, we present a joint experiment-theory study on the ultrafast time-resolved intervalley dynamics in monolayer WS2. Based on a microscopic theory, we reveal the many-particle mechanisms behind the observed spectral features. We show that Coulomb-induced intervalley coupling explains the immediate and prominent pump-probe signal in the unpumped valley and the seemingly low valley polarization degrees typically observed in pump-probe measurements compared to photoluminescence studies. The gained insights are also applicable to other light-emitting monolayer transition metal dichalcogenides, such as MoS2 and WSe2, where the Coulomb-induced intervalley coupling also determines the initial carrier dynamics.

  20. Fibrinogen adsorption onto 316L stainless steel under polarized conditions.

    PubMed

    Gettens, Robert T T; Gilbert, Jeremy L

    2008-04-01

    Adsorption of the plasma protein fibrinogen onto electrically polarized 316L stainless steel was observed and quantified using both in situ and ex situ atomic force microscopy (AFM) techniques. Significant differences in fibrinogen adsorption were observed across voltages. Ex situ studies showed significantly lower area coverage (theta) and height of adsorbed Fb on cathodically polarized surfaces when compared to anodically polarized surfaces. Conformational differences in the protein may explain the distinctions in Fb surface area coverage (theta) and height between the anodic and cathodic cases. In situ studies showed significantly slower kinetics of Fb adsorption onto surfaces below -100 mV (vs. Ag/AgCl) compared to surfaces polarized above -100 mV. Electrochemical current density data showed large charge transfer processes (approximately 1 x 10(-5) to 1 x 10(-4) A/cm(2)) taking place on the 316L SS surfaces at voltages below -100 mV (vs. Ag/AgCl). These relatively large current densities point to flux of ionic species away from the surface as a major source of the reduction in adsorption kinetics rather than just hydrophilic or electrostatic effects. Copyright 2007 Wiley Periodicals, Inc.

  1. Optical-model potential for electron and positron elastic scattering by atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvat, Francesc

    2003-07-01

    An optical-model potential for systematic calculations of elastic scattering of electrons and positrons by atoms and positive ions is proposed. The electrostatic interaction is determined from the Dirac-Hartree-Fock self-consistent atomic electron density. In the case of electron projectiles, the exchange interaction is described by means of the local-approximation of Furness and McCarthy. The correlation-polarization potential is obtained by combining the correlation potential derived from the local density approximation with a long-range polarization interaction, which is represented by means of a Buckingham potential with an empirical energy-dependent cutoff parameter. The absorption potential is obtained from the local-density approximation, using the Born-Ochkurmore » approximation and the Lindhard dielectric function to describe the binary collisions with a free-electron gas. The strength of the absorption potential is adjusted by means of an empirical parameter, which has been determined by fitting available absolute elastic differential cross-section data for noble gases and mercury. The Dirac partial-wave analysis with this optical-model potential provides a realistic description of elastic scattering of electrons and positrons with energies in the range from {approx}100 eV up to {approx}5 keV. At higher energies, correlation-polarization and absorption corrections are small and the usual static-exchange approximation is sufficiently accurate for most practical purposes.« less

  2. QED effects on individual atomic orbital energies

    NASA Astrophysics Data System (ADS)

    Kozioł, Karol; Aucar, Gustavo A.

    2018-04-01

    Several issues, concerning QED corrections, that are important in precise atomic calculations are presented. The leading QED corrections, self-energy and vacuum polarization, to the orbital energy for selected atoms with 30 ≤ Z ≤ 118 have been calculated. The sum of QED and Breit contributions to the orbital energy is analyzed. It has been found that for ns subshells the Breit and QED contributions are of comparative size, but for np and nd subshells the Breit contribution takes a major part of the QED+Breit sum. It has also, been found that the Breit to leading QED contributions ratio for ns subshells is almost independent of Z. The Z-dependence of QED and Breit+QED contributions per subshell is shown. The fitting coefficients may be used to estimate QED effects on inner molecular orbitals. We present results of our calculations for QED contributions to orbital energy of valence ns-subshell for group 1 and 11 atoms and discuss about the reliability of these numbers by comparing them with experimental first ionization potential data.

  3. Realization of reliable solid-state quantum memory for photonic polarization qubit.

    PubMed

    Zhou, Zong-Quan; Lin, Wei-Bin; Yang, Ming; Li, Chuan-Feng; Guo, Guang-Can

    2012-05-11

    Faithfully storing an unknown quantum light state is essential to advanced quantum communication and distributed quantum computation applications. The required quantum memory must have high fidelity to improve the performance of a quantum network. Here we report the reversible transfer of photonic polarization states into collective atomic excitation in a compact solid-state device. The quantum memory is based on an atomic frequency comb (AFC) in rare-earth ion-doped crystals. We obtain up to 0.999 process fidelity for the storage and retrieval process of single-photon-level coherent pulse. This reliable quantum memory is a crucial step toward quantum networks based on solid-state devices.

  4. Improving sodium laser guide star brightness by polarization switching

    PubMed Central

    Fan, Tingwei; Zhou, Tianhua; Feng, Yan

    2016-01-01

    Optical pumping with circularly polarized light has been used to enhance the brightness of sodium laser guide star. But the benefit is reduced substantially due to the precession of sodium atoms in geomagnetic field. Switching the laser between left and right circular polarization at the Larmor frequency is proposed to improve the return. With ESO’s laser guide star system at Paranal as example, numerical simulation shows that the return flux is increased when the angle between geomagnetic field and laser beam is larger than 60°, as much as 50% at 90°. The proposal is significant since most astronomical observation is at angle between 60° and 90° and it only requires a minor addition to the delivery optics of present laser system. PMID:26797503

  5. In Silico Design of DNP Polarizing Agents: Can Current Dinitroxides Be Improved?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perras, Frédéric A.; Sadow, Aaron; Pruski, Marek

    Numerical calculations of enhancement factors offered by dynamic nuclear polarization in solids under magic angle spinning (DNP-MAS) were performed to determine the optimal EPR parameters for a dinitroxide polarizing agent. We found that the DNP performance of a biradical is more tolerant to the relative orientation of the two nitroxide moieties than previously thought. In general, any condition in which the gyy tensor components of both radicals are perpendicular to one another is expected to have near-optimal DNP performance. These results highlight the important role of the exchange coupling, which can lessen the sensitivity of DNP performance to the inter-radicalmore » distance, but also lead to lower enhancements when the number of atoms in the linker becomes less than three. Finally, the calculations showed that the electron T1e value should be near 500μs to yield optimal performance. Importantly, the newest polarizing agents already feature all of the qualities of the optimal polarizing agent, leaving little room for further improvement. Further research into DNP polarizing agents should then target non-nitroxide radicals, as well as improvements in sample formulations to advance high-temperature DNP and limit quenching and reactivity.« less

  6. In Silico Design of DNP Polarizing Agents: Can Current Dinitroxides Be Improved?

    DOE PAGES

    Perras, Frédéric A.; Sadow, Aaron; Pruski, Marek

    2017-06-09

    Numerical calculations of enhancement factors offered by dynamic nuclear polarization in solids under magic angle spinning (DNP-MAS) were performed to determine the optimal EPR parameters for a dinitroxide polarizing agent. We found that the DNP performance of a biradical is more tolerant to the relative orientation of the two nitroxide moieties than previously thought. In general, any condition in which the gyy tensor components of both radicals are perpendicular to one another is expected to have near-optimal DNP performance. These results highlight the important role of the exchange coupling, which can lessen the sensitivity of DNP performance to the inter-radicalmore » distance, but also lead to lower enhancements when the number of atoms in the linker becomes less than three. Finally, the calculations showed that the electron T1e value should be near 500μs to yield optimal performance. Importantly, the newest polarizing agents already feature all of the qualities of the optimal polarizing agent, leaving little room for further improvement. Further research into DNP polarizing agents should then target non-nitroxide radicals, as well as improvements in sample formulations to advance high-temperature DNP and limit quenching and reactivity.« less

  7. Gradient echo quantum memory in warm atomic vapor.

    PubMed

    Pinel, Olivier; Hosseini, Mahdi; Sparkes, Ben M; Everett, Jesse L; Higginbottom, Daniel; Campbell, Geoff T; Lam, Ping Koy; Buchler, Ben C

    2013-11-11

    Gradient echo memory (GEM) is a protocol for storing optical quantum states of light in atomic ensembles. The primary motivation for such a technology is that quantum key distribution (QKD), which uses Heisenberg uncertainty to guarantee security of cryptographic keys, is limited in transmission distance. The development of a quantum repeater is a possible path to extend QKD range, but a repeater will need a quantum memory. In our experiments we use a gas of rubidium 87 vapor that is contained in a warm gas cell. This makes the scheme particularly simple. It is also a highly versatile scheme that enables in-memory refinement of the stored state, such as frequency shifting and bandwidth manipulation. The basis of the GEM protocol is to absorb the light into an ensemble of atoms that has been prepared in a magnetic field gradient. The reversal of this gradient leads to rephasing of the atomic polarization and thus recall of the stored optical state. We will outline how we prepare the atoms and this gradient and also describe some of the pitfalls that need to be avoided, in particular four-wave mixing, which can give rise to optical gain.

  8. Gradient Echo Quantum Memory in Warm Atomic Vapor

    PubMed Central

    Pinel, Olivier; Hosseini, Mahdi; Sparkes, Ben M.; Everett, Jesse L.; Higginbottom, Daniel; Campbell, Geoff T.; Lam, Ping Koy; Buchler, Ben C.

    2013-01-01

    Gradient echo memory (GEM) is a protocol for storing optical quantum states of light in atomic ensembles. The primary motivation for such a technology is that quantum key distribution (QKD), which uses Heisenberg uncertainty to guarantee security of cryptographic keys, is limited in transmission distance. The development of a quantum repeater is a possible path to extend QKD range, but a repeater will need a quantum memory. In our experiments we use a gas of rubidium 87 vapor that is contained in a warm gas cell. This makes the scheme particularly simple. It is also a highly versatile scheme that enables in-memory refinement of the stored state, such as frequency shifting and bandwidth manipulation. The basis of the GEM protocol is to absorb the light into an ensemble of atoms that has been prepared in a magnetic field gradient. The reversal of this gradient leads to rephasing of the atomic polarization and thus recall of the stored optical state. We will outline how we prepare the atoms and this gradient and also describe some of the pitfalls that need to be avoided, in particular four-wave mixing, which can give rise to optical gain. PMID:24300586

  9. Photoexcitation of atoms by Laguerre-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Peshkov, A. A.; Seipt, D.; Surzhykov, A.; Fritzsche, S.

    2017-08-01

    In a recent experiment, Schmiegelow et al. [Nat. Commun. 7, 12998 (2016), 10.1038/ncomms12998] investigated the magnetic sublevel population of Ca+ ions in a Laguerre-Gaussian light beam if the target atoms were just centered along the beam axis. They demonstrated in this experiment that the sublevel population of the excited atoms is uniquely defined by the projection of the orbital angular momentum of the incident light. However, little attention has been paid so far to the question of how the magnetic sublevels are populated when atoms are displaced from the beam axis by some impact parameter b . Here, we analyze this sublevel population for different atomic impact parameters in first-order perturbation theory and by making use of the density-matrix formalism. Detailed calculations are performed especially for the 4 s 1/2 2S →3 d 5/2 2 transition in Ca+ ions and for the vector potential of a Laguerre-Gaussian beam in Coulomb gauge. It is shown that the magnetic sublevel population of the excited 5/2 2D level varies significantly with the impact parameter and is sensitive to the polarization, the radial index, as well as the orbital angular momentum of the incident light beam.

  10. Electronic transport in gadolinium atomic-size contacts

    NASA Astrophysics Data System (ADS)

    Olivera, B.; Salgado, C.; Lado, J. L.; Karimi, A.; Henkel, V.; Scheer, E.; Fernández-Rossier, J.; Palacios, J. J.; Untiedt, C.

    2017-02-01

    We report on the fabrication, transport measurements, and density functional theory (DFT) calculations of atomic-size contacts made of gadolinium (Gd). Gd is known to have local moments mainly associated with f electrons. These coexist with itinerant s and d bands that account for its metallic character. Here we explore whether and how the local moments influence electronic transport properties at the atomic scale. Using both scanning tunneling microscope and lithographic mechanically controllable break junction techniques under cryogenic conditions, we study the conductance of Gd when only few atoms form the junction between bulk electrodes made of the very same material. Thousands of measurements show that Gd has an average lowest conductance, attributed to single-atom contact, below 2/e2 h . Our DFT calculations for monostrand chains anticipate that the f bands are fully spin polarized and insulating and that the conduction may be dominated by s , p , and d bands. We also analyze the electronic transport for model nanocontacts using the nonequilibrium Green's function formalism in combination with DFT. We obtain an overall good agreement with the experimental results for zero bias and show that the contribution to the electronic transport from the f channels is negligible and that from the d channels is marginal.

  11. Invited article: Broadband highly-efficient dielectric metadevices for polarization control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruk, Sergey; Hopkins, Ben; Kravchenko, Ivan I.

    Metadevices based on dielectric nanostructured surfaces with both electric and magnetic Mie-type resonances have resulted in the best efficiency to date for functional flat optics with only one disadvantage: a narrow operational bandwidth. Here we experimentally demonstrate broadband transparent all-dielectric metasurfaces for highly efficient polarization manipulation. We utilize the generalized Huygens principle, with a superposition of the scattering contributions from several electric and magnetic multipolar modes of the constituent meta-atoms, to achieve destructive interference in reflection over a large spectral bandwidth. Furthermore, by employing this novel concept, we demonstrate reflectionless (~90% transmission) half-wave plates, quarter-wave plates, and vector beam q-platesmore » that can operate across multiple telecom bands with ~99% polarization conversion efficiency.« less

  12. Invited article: Broadband highly-efficient dielectric metadevices for polarization control

    DOE PAGES

    Kruk, Sergey; Hopkins, Ben; Kravchenko, Ivan I.; ...

    2016-06-06

    Metadevices based on dielectric nanostructured surfaces with both electric and magnetic Mie-type resonances have resulted in the best efficiency to date for functional flat optics with only one disadvantage: a narrow operational bandwidth. Here we experimentally demonstrate broadband transparent all-dielectric metasurfaces for highly efficient polarization manipulation. We utilize the generalized Huygens principle, with a superposition of the scattering contributions from several electric and magnetic multipolar modes of the constituent meta-atoms, to achieve destructive interference in reflection over a large spectral bandwidth. Furthermore, by employing this novel concept, we demonstrate reflectionless (~90% transmission) half-wave plates, quarter-wave plates, and vector beam q-platesmore » that can operate across multiple telecom bands with ~99% polarization conversion efficiency.« less

  13. Intramolecular interactions in polymethylenic chains with polar end groups: The spectroscopic signature

    NASA Astrophysics Data System (ADS)

    Milani, Alberto; Castiglioni, Chiara; Brambilla, Luigi; Zerbi, Giuseppe

    2012-02-01

    We present a computational study based on DFT simulations of the infrared spectra of several short alkyl chains carrying polar end groups. The work aims to provide guidelines for the detection of marker bands signalling the occurrence of specific intramolecular interactions between the polar head and CH2 groups at different distances. In particular, the CH stretching region is investigated and new features assigned to normal modes localized on the CH2 groups nearest to the electron-withdrawing atom are identified. The study has been extended also to the rationalization of the experimental IR features shown by a 1-Chloroeicosane (C20H41Cl) sample.

  14. Toggle switch from optical bistability to multistability via an elliptically polarized field

    NASA Astrophysics Data System (ADS)

    Yan, Xiang-An; Ren, Bo-Quan; Wang, Li-Qiang; Liu, Yao-Wu; Yu, Hua-Wa

    2017-06-01

    In this paper, we propose a scheme for manipulating the behavior of optical bistability (OB) and optical multistability (OM) in an N-type four-level atomic system. In the scheme, quantum interference is optimized by the left-handed and the right-handed fields of an elliptically polarized field (EPF). The threshold and the hysteresis cycle shape of OB and OM can be controlled by modulating the intensity of the EPF. Especially, the transition from OB to OM or vice versa can also be easily realized by proper tuning the phase difference between the left-handed and right-handed polarized fields under the optimal intensity of the EPF.

  15. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission

    NASA Astrophysics Data System (ADS)

    Li, Tao; Deng, Fu-Guo

    2015-10-01

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication.

  16. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission.

    PubMed

    Li, Tao; Deng, Fu-Guo

    2015-10-27

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication.

  17. Electron collisions with coherently prepared atomic targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trajmar, S.; Kanik, I.; LeClair, L.R.

    1998-02-01

    The subject of electron scattering by laser-excited atoms is briefly reviewed. To demonstrate some aspects of these electron collision processes, the authors describe the procedures and the results of a joint experimental and theoretical study concerning elastic scattering by coherently excited {sup 138}Ba (...6s6p {sup 1}P{sub 1}) atoms. Examples of experimental and theoretical collision parameters and magnetic sublevel differential cross sections for elastic scattering are given and compared. The convergent close coupling calculations (with the neglect of spin-orbit interaction) are in good agreement with experiment at 20 eV impact energy and 10, 15 and 20{degree} scattering angles and can bemore » expected to yield reliable integral magnetic sublevel and alignment creation cross sections. The role of these quantities in plasma polarization spectroscopy is pointed out.« less

  18. Piezotronic Effect in Polarity-Controlled GaN Nanowires.

    PubMed

    Zhao, Zhenfu; Pu, Xiong; Han, Changbao; Du, Chunhua; Li, Linxuan; Jiang, Chunyan; Hu, Weiguo; Wang, Zhong Lin

    2015-08-25

    Using high-quality and polarity-controlled GaN nanowires (NWs), we studied the piezotronic effect in crystal orientation defined wurtzite structures. By applying a normal compressive force on c-plane GaN NWs with an atomic force microscopy tip, the Schottky barrier between the Pt tip and GaN can be effectively tuned by the piezotronic effect. In contrast, the normal compressive force cannot change the electron transport characteristics in m-plane GaN NWs whose piezoelectric polarization axis is turned in the transverse direction. This observation provided solid evidence for clarifying the difference between the piezotronic effect and the piezoresistive effect. We further demonstrated a high sensitivity of the m-plane GaN piezotronic transistor to collect the transverse force. The integration of c-plane GaN and m-plane GaN indicates an overall response to an external force in any direction.

  19. On solar radiation-driven surface transport of sodium atoms at Mercury

    NASA Astrophysics Data System (ADS)

    Ip, W.-H.

    1990-06-01

    The ballistic motion of the exospheric sodium atoms on the surface Mercury is modeled, taking into account the solar radiation pressure acceleration and partial surface thermal accommodation. The Monte Carlo simulations show that there should be a significant degree of limb brightening as well as brightness enhancement over the poles. To maintain the observed sodium optical emission, a surface production rate on the order of 5-9 x 10 to the 24th atoms/s is needed. It is also found that, under the present set of assumptions, a reasonable agreement can be reached between theoretical results and ground-based measurements for the dependence of the disk-averaged abundance of the sodium atoms on the solar radiation pressure acceleration. If the low-altitude portion of the planetary surface is shielded from the magnetospheric convective electric field, the effective loss rate of the sodium atoms via photoionization and magnetospheric pickup may be reduced to about 2 x 10 to the 24th atoms/s, with the polar regions acting as the main area of ion outflows.

  20. Spontaneous lateral atomic recoil force close to a photonic topological material

    NASA Astrophysics Data System (ADS)

    Hassani Gangaraj, S. Ali; Hanson, George W.; Antezza, Mauro; Silveirinha, Mário G.

    2018-05-01

    We investigate the quantum recoil force acting on an excited atom close to the surface of a nonreciprocal photonic topological insulator (PTI). The main atomic emission channel is the unidirectional surface plasmon propagating at the PTI-vacuum interface, and we show that it enables a spontaneous lateral recoil force that scales at short distances as 1 /d4 , where d is the atom-PTI separation. Remarkably, the sign of the recoil force is polarization and orientation independent, and it occurs in a translation-invariant homogeneous system in thermal equilibrium. Surprisingly, the recoil force persists for very small values of the gyration pseudovector, which, for a biased plasma, corresponds to very low cyclotron frequencies. The ultrastrong recoil force is rooted in the quasihyperbolic dispersion of the surface plasmons. We consider both an initially excited atom and a continuous pump scenario, the latter giving rise to a steady lateral force whose direction can be changed at will by simply varying the orientation of the biasing magnetic field. Our predictions may be tested in experiments with cold Rydberg atoms and superconducting qubits.

  1. Creating high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses

    NASA Astrophysics Data System (ADS)

    Xin, PeiPei; Cheng, Hong; Zhang, ShanShan; Wang, HanMu; Xu, ZiShan; Liu, HongPing

    2018-04-01

    We propose a method of producing high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses. The first positive-polarity optical half-cycle pulse is used to prepare an excited-state wave packet while the second one is less intense, but with opposite polarity and time delayed, and is employed to drag back the escaping free electron and clip the shape of the bound Rydberg wave packet, selectively increasing or decreasing a fraction of the angular-momentum components. An intelligent choice of laser parameters such as phase and amplitude helps us to control the orbital-angular-momentum composition of an electron wave packet with more facility; thus, a specified angular-momentum state with high purity can be achieved. This scheme of producing high-purity angular-momentum-state Rydberg atoms has significant application in quantum-information processing.

  2. Control of Ultracold Photodissociation with Magnetic Fields

    NASA Astrophysics Data System (ADS)

    McDonald, M.; Majewska, I.; Lee, C.-H.; Kondov, S. S.; McGuyer, B. H.; Moszynski, R.; Zelevinsky, T.

    2018-01-01

    Photodissociation of a molecule produces a spatial distribution of photofragments determined by the molecular structure and the characteristics of the dissociating light. Performing this basic reaction at ultracold temperatures allows its quantum mechanical features to dominate. In this regime, weak applied fields can be used to control the reaction. Here, we photodissociate ultracold diatomic strontium in magnetic fields below 10 G and observe striking changes in photofragment angular distributions. The observations are in excellent agreement with a multichannel quantum chemistry model that includes nonadiabatic effects and predicts strong mixing of partial waves in the photofragment energy continuum. The experiment is enabled by precise quantum-state control of the molecules.

  3. Nanophotonic Optical Isolator Controlled by the Internal State of Cold Atoms

    NASA Astrophysics Data System (ADS)

    Sayrin, Clément; Junge, Christian; Mitsch, Rudolf; Albrecht, Bernhard; O'Shea, Danny; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno

    2015-10-01

    The realization of nanophotonic optical isolators with high optical isolation even at ultralow light levels and low optical losses is an open problem. Here, we employ the link between the local polarization of strongly confined light and its direction of propagation to realize low-loss nonreciprocal transmission through a silica nanofiber at the single-photon level. The direction of the resulting optical isolator is controlled by the spin state of cold atoms. We perform our experiment in two qualitatively different regimes, i.e., with an ensemble of cold atoms where each atom is weakly coupled to the waveguide and with a single atom strongly coupled to the waveguide mode. In both cases, we observe simultaneously high isolation and high forward transmission. The isolator concept constitutes a nanoscale quantum optical analog of microwave ferrite resonance isolators, can be implemented with all kinds of optical waveguides and emitters, and might enable novel integrated optical devices for fiber-based classical and quantum networks.

  4. Atomic-Scale Origin of Long-Term Stability and High Performance of p-GaN Nanowire Arrays for Photocatalytic Overall Pure Water Splitting.

    PubMed

    Kibria, Md Golam; Qiao, Ruimin; Yang, Wanli; Boukahil, Idris; Kong, Xianghua; Chowdhury, Faqrul Alam; Trudeau, Michel L; Ji, Wei; Guo, Hong; Himpsel, F J; Vayssieres, Lionel; Mi, Zetian

    2016-10-01

    The atomic-scale origin of the unusually high performance and long-term stability of wurtzite p-GaN oriented nanowire arrays is revealed. Nitrogen termination of both the polar (0001¯) top face and the nonpolar (101¯0) side faces of the nanowires is essential for long-term stability and high efficiency. Such a distinct atomic configuration ensures not only stability against (photo) oxidation in air and in water/electrolyte but, as importantly, also provides the necessary overall reverse crystal polarization needed for efficient hole extraction in p-GaN. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    PubMed

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  6. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    PubMed Central

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D.; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J.; Mancuso, Christopher A.; Hogle, Craig W.; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L.; Dorney, Kevin M.; Chen, Cong; Shpyrko, Oleg G.; Fullerton, Eric E.; Cohen, Oren; Oppeneer, Peter M.; Milošević, Dejan B.; Becker, Andreas; Jaroń-Becker, Agnieszka A.; Popmintchev, Tenio; Murnane, Margaret M.; Kapteyn, Henry C.

    2015-01-01

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992

  7. A dual polarized antenna system using a meanderline polarizer

    NASA Technical Reports Server (NTRS)

    Burger, H. A.

    1978-01-01

    Certain applications of synthetic aperture radars require transmitting on one linear polarization and receiving on two orthogonal linear polarizations for adequate characterization of the surface. To meet the current need at minimum cost, it was desirable to use two identical horizontally polarized shaped beam antennas and to change the polarization of one of them by a polarization conversion plate. The plate was realized as a four-layer meanderline polarizer designed to convert horizontal polarization to vertical.

  8. Tunable charge donation and spin polarization of metal adsorbates on graphene using an applied electric field

    NASA Astrophysics Data System (ADS)

    Parq, Jae-Hyeon; Yu, Jaejun; Kwon, Young-Kyun; Kim, Gunn

    2010-11-01

    Metal atoms on graphene, when ionized, can act as a point-charge impurity to probe a charge response of graphene with the Dirac cone band structure. To understand the microscopic physics of the metal-atom-induced charge and spin polarization in graphene, we present scanning tunneling spectroscopy (STS) simulations based on density-functional theory calculations. We find that a Cs atom on graphene is fully ionized with a significant band-bending feature in the STS whereas the charge and magnetic states of Ba and La atoms on graphene appear to be complicated due to orbital hybridization and Coulomb interaction. By applying external electric field, we observe changes in charge donations and spin magnetic moments of the metal adsorbates on graphene.

  9. Atom-by-atom assembly

    NASA Astrophysics Data System (ADS)

    Hla, Saw Wai

    2014-05-01

    Atomic manipulation using a scanning tunneling microscope (STM) tip enables the construction of quantum structures on an atom-by-atom basis, as well as the investigation of the electronic and dynamical properties of individual atoms on a one-atom-at-a-time basis. An STM is not only an instrument that is used to ‘see’ individual atoms by means of imaging, but is also a tool that is used to ‘touch’ and ‘take’ the atoms, or to ‘hear’ their movements. Therefore, the STM can be considered as the ‘eyes’, ‘hands’ and ‘ears’ of the scientists, connecting our macroscopic world to the exciting atomic world. In this article, various STM atom manipulation schemes and their example applications are described. The future directions of atomic level assembly on surfaces using scanning probe tips are also discussed.

  10. Three-dimensional polarization algebra for all polarization sensitive optical systems.

    PubMed

    Li, Yahong; Fu, Yuegang; Liu, Zhiying; Zhou, Jianhong; Bryanston-Cross, P J; Li, Yan; He, Wenjun

    2018-05-28

    Using three-dimensional (3D) coherency vector (9 × 1), we develop a new 3D polarization algebra to calculate the polarization properties of all polarization sensitive optical systems, especially when the incident optical field is partially polarized or un-polarized. The polarization properties of a high numerical aperture (NA) microscope objective (NA = 1.25 immersed in oil) are analyzed based on the proposed 3D polarization algebra. Correspondingly, the polarization simulation of this high NA optical system is performed by the commercial software VirtualLAB Fusion. By comparing the theoretical calculations with polarization simulations, a perfect matching relation is obtained, which demonstrates that this 3D polarization algebra is valid to quantify the 3D polarization properties for all polarization sensitive optical systems.

  11. Isotropic Inelastic Collisions in a Multiterm Atom with Hyperfine Structure

    NASA Astrophysics Data System (ADS)

    Belluzzi, Luca; Landi Degl'Innocenti, Egidio; Trujillo Bueno, Javier

    2015-10-01

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron-atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D1 and D2 lines is presented.

  12. ISOTROPIC INELASTIC COLLISIONS IN A MULTITERM ATOM WITH HYPERFINE STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belluzzi, Luca; Landi Degl’Innocenti, Egidio; Bueno, Javier Trujillo

    2015-10-10

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron–atom interaction ismore » described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D{sub 1} and D{sub 2} lines is presented.« less

  13. Correlation of Hydrogen-Atom Abstraction Reaction Efficiencies for Aryl Radicals with their Vertical Electron Affinities and the Vertical Ionization Energies of the Hydrogen Atom Donors

    PubMed Central

    Jing, Linhong; Nash, John J.

    2009-01-01

    The factors that control the reactivities of aryl radicals toward hydrogen-atom donors were studied by using a dual-cell Fourier-transform ion cyclotron resonance mass spectrometer (FT – ICR). Hydrogen-atom abstraction reaction efficiencies for two substrates, cyclohexane and isopropanol, were measured for twenty-three structurally different, positively-charged aryl radicals, which included dehydrobenzenes, dehydronaphthalenes, dehydropyridines, and dehydro(iso)quinolines. A logarithmic correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) vertical electron affinities (EA) of the aryl radicals. Transition state energies calculated for three of the aryl radicals with isopropanol were found to correlate linearly with their (calculated) EAs. No correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) enthalpy changes for the reactions. Measurement of the reaction efficiencies for the reactions of several different hydrogen-atom donors with a few selected aryl radicals revealed a logarithmic correlation between the hydrogen-atom abstraction reaction efficiencies and the vertical ionization energies (IE) of the hydrogen-atom donors, but not the lowest homolytic X – H (X = heavy atom) bond dissociation energies of the hydrogen-atom donors. Examination of the hydrogen-atom abstraction reactions of twenty-nine different aryl radicals and eighteen different hydrogen-atom donors showed that the reaction efficiency increases (logarithmically) as the difference between the IE of the hydrogen-atom donor and the EA of the aryl radical decreases. This dependence is likely to result from the increasing polarization, and concomitant stabilization, of the transition state as the energy difference between the neutral and ionic reactants decreases. Thus, the hydrogen-atom abstraction reaction efficiency for an aryl radical can be “tuned” by structural changes that influence either

  14. Influence of residual ion polarization on the coplanar symmetric (e, 2e) cross sections for calcium and argon

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Qing; Chen, Zhan-Bin; Wang, Yang; Wang, Kai

    2017-03-01

    Detailed calculations using a modified distorted wave Born approximation (DWBA) are carried out for the triple differential cross section (TDCS) in the coplanar symmetric single ionization of calcium and argon atoms. The effects of residual ion polarization on the TDCS are investigated systematically. Our results show that the residual ion polarization, arising from the interaction between the target ion and the two outgoing electrons in the final state, may lead to a considerable change in the TDCS with a more pronounced effect in the large scattering angle region at intermediate energies. The present attempt significantly improves the agreement between theoretical and experimental results. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  15. Chip-based microtrap arrays for cold polar molecules

    NASA Astrophysics Data System (ADS)

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2017-12-01

    Compared to the atomic chip, which has been a powerful platform to perform an astonishing range of applications from rapid Bose-Einstein condensate (BEC) production to the atomic clock, the molecular chip is only in its infant stages. Recently a one-dimensional electric lattice was demonstrated to trap polar molecules on a chip. This excellent work opens up the way to building a molecular chip laboratory. Here we propose a two-dimensional (2D) electric lattice on a chip with concise and robust structure, which is formed by arrays of squared gold wires. Arrays of microtraps that originate in the microsize electrodes offer a steep gradient and thus allow for confining both light and heavy polar molecules. Theoretical analysis and numerical calculations are performed using two types of sample molecules, N D3 and SrF, to justify the possibility of our proposal. The height of the minima of the potential wells is about 10 μm above the surface of the chip and can be easily adjusted in a wide range by changing the voltages applied on the electrodes. These microtraps offer intriguing perspectives for investigating cold molecules in periodic potentials, such as quantum computing science, low-dimensional physics, and some other possible applications amenable to magnetic or optical lattice. The 2D adjustable electric lattice is expected to act as a building block for a future gas-phase molecular chip laboratory.

  16. An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches

    DOE PAGES

    Huang, Jing; Mei, Ye; König, Gerhard; ...

    2017-01-24

    Here in this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PADmore » energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R 2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other eleven solute molecules, while the PAD model has a much better performance with R 2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. Lastly, this suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.« less

  17. An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches.

    PubMed

    Huang, Jing; Mei, Ye; König, Gerhard; Simmonett, Andrew C; Pickard, Frank C; Wu, Qin; Wang, Lee-Ping; MacKerell, Alexander D; Brooks, Bernard R; Shao, Yihan

    2017-02-14

    In this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PAD energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R 2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other 11 solute molecules, while the PAD model has a much better performance with R 2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. This suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.

  18. An Estimation of Hybrid Quantum Mechanical Molecular Mechanical Polarization Energies for Small Molecules Using Polarizable Force-Field Approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jing; Mei, Ye; König, Gerhard

    Here in this work, we report two polarizable molecular mechanics (polMM) force field models for estimating the polarization energy in hybrid quantum mechanical molecular mechanical (QM/MM) calculations. These two models, named the potential of atomic charges (PAC) and potential of atomic dipoles (PAD), are formulated from the ab initio quantum mechanical (QM) response kernels for the prediction of the QM density response to an external molecular mechanical (MM) environment (as described by external point charges). The PAC model is similar to fluctuating charge (FQ) models because the energy depends on external electrostatic potential values at QM atomic sites; the PADmore » energy depends on external electrostatic field values at QM atomic sites, resembling induced dipole (ID) models. To demonstrate their uses, we apply the PAC and PAD models to 12 small molecules, which are solvated by TIP3P water. The PAC model reproduces the QM/MM polarization energy with a R 2 value of 0.71 for aniline (in 10,000 TIP3P water configurations) and 0.87 or higher for other eleven solute molecules, while the PAD model has a much better performance with R 2 values of 0.98 or higher. The PAC model reproduces reference QM/MM hydration free energies for 12 solute molecules with a RMSD of 0.59 kcal/mol. The PAD model is even more accurate, with a much smaller RMSD of 0.12 kcal/mol, with respect to the reference. Lastly, this suggests that polarization effects, including both local charge distortion and intramolecular charge transfer, can be well captured by induced dipole type models with proper parametrization.« less

  19. Polarization asymmetry in two-electron photodetachment - A cogent test of the ionization threshold law

    NASA Technical Reports Server (NTRS)

    Temkin, A.; Bhatia, A. K.

    1988-01-01

    A very sensitive test of the electron-atom ionization threshold law is suggested: for spin-aligned heavy negative ions it consists of measuring the polarization asymmetry A(PA) coming from double detachment by left- versus right-circularly polarized light. The respective yields are worked out for the Te(-) (5p)5 2P(3/2) ion. The Coulomb-dipole theory predicts A(PA) to be the ratio of two oscillating functions in sharp contrast to any power law (specifically that of Wannier, 1953) for which the ratio is expected to be a smooth function of energy.

  20. Effect of cathodic polarization on coating doxycycline on titanium surfaces.

    PubMed

    Geißler, Sebastian; Tiainen, Hanna; Haugen, Håvard J

    2016-06-01

    Cathodic polarization has been reported to enhance the ability of titanium based implant materials to interact with biomolecules by forming titanium hydride at the outermost surface layer. Although this hydride layer has recently been suggested to allow the immobilization of the broad spectrum antibiotic doxycycline on titanium surfaces, the involvement of hydride in binding the biomolecule onto titanium remains poorly understood. To gain better understanding of the influence this immobilization process has on titanium surfaces, mirror-polished commercially pure titanium surfaces were cathodically polarized in the presence of doxycycline and the modified surfaces were thoroughly characterized using atomic force microscopy, electron microscopy, secondary ion mass spectrometry, and angle-resolved X-ray spectroscopy. We demonstrated that no hydride was created during the polarization process. Doxycycline was found to be attached to an oxide layer that was modified during the electrochemical process. A bacterial assay using bioluminescent Staphylococcus epidermidis Xen43 showed the ability of the coating to reduce bacterial colonization and planktonic bacterial growth. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Atomic electron energies including relativistic effects and quantum electrodynamic corrections

    NASA Technical Reports Server (NTRS)

    Aoyagi, M.; Chen, M. H.; Crasemann, B.; Huang, K. N.; Mark, H.

    1977-01-01

    Atomic electron energies have been calculated relativistically. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all orbitals in all atoms with 2 less than or equal to Z less than or equal to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. These results will serve for detailed comparison of calculations based on other approaches. The magnitude of quantum electrodynamic corrections is exhibited quantitatively for each state.

  2. Coherent Multiple Light Scattering in Ultracold Atomic Rb

    NASA Astrophysics Data System (ADS)

    Kulatunga, Pasad; Sukenik, C. I.; Balik, Salim; Havey, M. D.; Kupriyanov, D. V.; Sokolov, I. M.

    2003-05-01

    Wave transport in mesoscopic systems can be strongly influenced by coherent multiple scattering,which can lead to novel magneto-optic, transmission, and backscattering effects of light in atomic vapors. Although related to traditional studies of radiation trapping, in ultracold vapors negligible frequency or phase redistribution takes place in the scattering, and high-order coherent light scattering occurs. Among other things, this leads to enhancement of the influence of otherwise small non-resonant terms in the scattering amplitudes. We report investigation of multiple coherent light scattering from ultracold Rb atoms confined in a magneto-optic trap (MOT). In experimental studies, measurements are made of the angular, spectral, and polarization-dependent coherent backscattering profile of a low-intensity probe beam tuned near the F = 3 - F' = 4 hyperfine transition. The influence of higher probe beam intensity is also studied. In a theoretical study of angular intensity enhancement of backscattered light, we consider scattering orders up to 10 and a realistic and asymmetric Gaussian atom distribution in the MOT. Supported by NSF, NATO, and RFBR.

  3. Narrow-line magneto-optical cooling and trapping of strongly magnetic atoms.

    PubMed

    Berglund, Andrew J; Hanssen, James L; McClelland, Jabez J

    2008-03-21

    Laser cooling on weak transitions is a useful technique for reaching ultracold temperatures in atoms with multiple valence electrons. However, for strongly magnetic atoms a conventional narrow-line magneto-optical trap (MOT) is destabilized by competition between optical and magnetic forces. We overcome this difficulty in Er by developing an unusual narrow-line MOT that balances optical and magnetic forces using laser light tuned to the blue side of a narrow (8 kHz) transition. The trap population is spin polarized with temperatures reaching below 2 muK. Our results constitute an alternative method for laser cooling on weak transitions, applicable to rare-earth-metal and metastable alkaline earth elements.

  4. Global Geospace Science/Polar Plasma Laboratory: POLAR

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Global Geospace Science (GGS) Project is discussed as part of the International Solar-Terrestrial Physics (ISTP) Science Initiative. The objectives of Polar Plasma Laboratory (POLAR), one of the two spacecraft to be used by the Project to fill critical gaps in the scientific understanding of solar and plasma physics, are outlined. POLAR Laboratory is described, along with POLAR instrumentation, support subsystems, and orbits. Launch vehicle and injection into orbit are also addressed.

  5. When measured spin polarization is not spin polarization

    NASA Astrophysics Data System (ADS)

    Dowben, P. A.; Wu, Ning; Binek, Christian

    2011-05-01

    Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO2 and Cr2O3 illustrate some of the complications which hinders comparisons of spin polarization values.

  6. Laser cooling of rubidium atoms in a 2D optical lattice

    NASA Astrophysics Data System (ADS)

    Wei, Chunhua; Kuhn, Carlos C. N.

    2018-06-01

    Lossless polarization gradient cooling of ?? atoms in a far-detuned 2D optical lattice is demonstrated. Temperatures down to ?K and phase space densities as high as 1 / 1000 are achieved in a total duty cycle of ?. It is shown that utilizing the vector component of the optical lattice allows lower temperatures to be achieved when compared with pure scalar lattices.

  7. Using polarized muons as ultrasensitive spin labels in free radical chemistry

    NASA Astrophysics Data System (ADS)

    McKenzie, Iain; Roduner, Emil

    2009-08-01

    In a chemical sense, the positive muon is a light proton. It is obtained at the ports of accelerators in beams with a spin polarization of 100%, which makes it a highly sensitive probe of matter. The muonium atom is a light hydrogen isotope, nine times lighter than H, with a muon as its nucleus. It reacts the same way as H, and by addition to double bonds it is implemented in free radicals in which the muon serves as a fully polarized spin label. It is reviewed here how the muon can be used to obtain information about muonium and radical reaction rates, radical structure, dynamics, and local environments. It can even tell us what a fragrance molecule does in a shampoo.

  8. Photometry of Polar-Ring Galaxies

    NASA Astrophysics Data System (ADS)

    Godínez-Martínez, A.; Watson, A. M.; Matthews, L. D.; Sparke, L. S.

    2007-10-01

    We have obtained photometry in B and R for seven confirmed or probable polar-ring galaxies from the Polar-Ring Catalog of Whitmore et al. (1990). The rings show a range of colors from B - R ≈ 0.6 to B - R ≈ 1.7. The bluest rings have bright H II regions, which are direct evidence for recent star formation. The minimum age of the reddest ring, that in PRC B-20, is somewhat uncertain because of a lack of knowledge of the internal reddening and metallicity, but appears to be at least 1.2 Gyr. As such, this ring is likely to be stable for at least several rotation periods. This ring is an excellent candidate for future studies that might better determine if it is truly old.

  9. FAST TRACK COMMUNICATION: Controllable optical bistability and multistability in a double two-level atomic system

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Lü, Xin-You; Zheng, Li-Li

    2010-08-01

    We theoretically investigate the behaviour of optical bistability (OB) and optical multistability (OM) in a generic double two-level atomic system driven by two orthogonally polarized fields (a π-polarized control field and a σ-polarized probe field). It is found that the behaviour of OB can be controlled by adjusting the intensity or the frequency detuning of the control field. Interestingly enough, our numerical results also show that it is easy to realize the transition from OB to OM or vice versa by adjusting the relative phase between the control and probe fields. This investigation can be used for the development of new types of devices for realizing an all-optic switching process.

  10. Direct atomic force microscopic evidence of hydrogen bonding interaction in phosphatidic acid Langmuir-Blodgett bilayer

    NASA Astrophysics Data System (ADS)

    Chunbo, Yuan; Ying, Wu; Yueming, Sun; Zuhong, Lu; Juzheng, Liu

    1997-12-01

    Molecularly resolved atomic force microscopic images of phosphatidic acid Langmuir-Blodgett bilayers show that phosphate groups in polar region of the films are packing in a distorted hexagonal organization with long-range orientational and positional order. Intermolecular hydrogen bonding interactions, which should be responsible for the ordering and stability of bilayers, are visualized directly between adjacent phosphate groups in the polar region of the bilayer. Some adjacent phosphatidic acid molecules link each other through the formation of intermolecular hydrogen bonds between phosphate groups in polar region to form local supramolecules, which provide the bilayer's potential as a functionized film in the investigation on the lateral conductions of protons in the biological bilayers.

  11. Selective sp3 C-H alkylation via polarity-match-based cross-coupling.

    PubMed

    Le, Chip; Liang, Yufan; Evans, Ryan W; Li, Ximing; MacMillan, David W C

    2017-07-06

    The functionalization of carbon-hydrogen (C-H) bonds is one of the most attractive strategies for molecular construction in organic chemistry. The hydrogen atom is considered to be an ideal coupling handle, owing to its relative abundance in organic molecules and its availability for functionalization at almost any stage in a synthetic sequence. Although many C-H functionalization reactions involve C(sp 3 )-C(sp 2 ) coupling, there is a growing demand for C-H alkylation reactions, wherein sp 3 C-H bonds are replaced with sp 3 C-alkyl groups. Here we describe a polarity-match-based selective sp 3 C-H alkylation via the combination of photoredox, nickel and hydrogen-atom transfer catalysis. This methodology simultaneously uses three catalytic cycles to achieve hydridic C-H bond abstraction (enabled by polarity matching), alkyl halide oxidative addition, and reductive elimination to enable alkyl-alkyl fragment coupling. The sp 3 C-H alkylation is highly selective for the α-C-H of amines, ethers and sulphides, which are commonly found in pharmaceutically relevant architectures. This cross-coupling protocol should enable broad synthetic applications in de novo synthesis and late-stage functionalization chemistry.

  12. Selective sp3 C–H alkylation via polarity-match-based cross-coupling

    PubMed Central

    Le, Chip; Liang, Yufan; Evans, Ryan W.; Li, Ximing; MacMillan, David W. C.

    2017-01-01

    The functionalization of carbon–hydrogen (C–H) bonds is one of the most attractive strategies for molecular construction in organic chemistry. The hydrogen atom is considered to be an ideal coupling handle, owing to its relative abundance in organic molecules and its availability for functionalization at almost any stage in a synthetic sequence1. Although many C–H functionalization reactions involve C(sp3)–C(sp2) coupling, there is a growing demand for C–H alkylation reactions, wherein sp3 C–H bonds are replaced with sp3 C–alkyl groups. Here we describe a polarity-match-based selective sp3 C–H alkylation via the combination of photoredox, nickel and hydrogen-atom transfer catalysis. This methodology simultaneously uses three catalytic cycles to achieve hydridic C–H bond abstraction (enabled by polarity matching), alkyl halide oxidative addition, and reductive elimination to enable alkyl–alkyl fragment coupling. The sp3 C–H alkylation is highly selective for the α-C–H of amines, ethers and sulphides, which are commonly found in pharmaceutically relevant architectures. This cross-coupling protocol should enable broad synthetic applications in de novo synthesis and late-stage functionalization chemistry. PMID:28636596

  13. Selective sp3 C-H alkylation via polarity-match-based cross-coupling

    NASA Astrophysics Data System (ADS)

    Le, Chip; Liang, Yufan; Evans, Ryan W.; Li, Ximing; MacMillan, David W. C.

    2017-07-01

    The functionalization of carbon-hydrogen (C-H) bonds is one of the most attractive strategies for molecular construction in organic chemistry. The hydrogen atom is considered to be an ideal coupling handle, owing to its relative abundance in organic molecules and its availability for functionalization at almost any stage in a synthetic sequence. Although many C-H functionalization reactions involve C(sp3)-C(sp2) coupling, there is a growing demand for C-H alkylation reactions, wherein sp3 C-H bonds are replaced with sp3 C-alkyl groups. Here we describe a polarity-match-based selective sp3 C-H alkylation via the combination of photoredox, nickel and hydrogen-atom transfer catalysis. This methodology simultaneously uses three catalytic cycles to achieve hydridic C-H bond abstraction (enabled by polarity matching), alkyl halide oxidative addition, and reductive elimination to enable alkyl-alkyl fragment coupling. The sp3 C-H alkylation is highly selective for the α-C-H of amines, ethers and sulphides, which are commonly found in pharmaceutically relevant architectures. This cross-coupling protocol should enable broad synthetic applications in de novo synthesis and late-stage functionalization chemistry.

  14. Origin of the transition voltage in gold-vacuum-gold atomic junctions.

    PubMed

    Wu, Kunlin; Bai, Meilin; Sanvito, Stefano; Hou, Shimin

    2013-01-18

    The origin and the distance dependence of the transition voltage of gold-vacuum-gold junctions are investigated by employing first-principles quantum transport simulations. Our calculations show that atomic protrusions always exist on the electrode surface of gold-vacuum-gold junctions fabricated using the mechanically controllable break junction (MCBJ) method. The transition voltage of these gold-vacuum-gold junctions with atomically sharp electrodes is determined by the local density of states (LDOS) of the apex gold atom on the electrode surface rather than by the vacuum barrier shape. More specifically, the absolute value of the transition voltage roughly equals the rising edge of the LDOS peak contributed by the 6p atomic orbitals of the gold atoms protruding from the electrode surface, whose local Fermi level is shifted downwards when a bias voltage is applied. Since the LDOS of the apex gold atom depends strongly on the exact shape of the electrode, the transition voltage is sensitive to the variation of the atomic configuration of the junction. For asymmetric junctions, the transition voltage may also change significantly depending on the bias polarity. Considering that the occurrence of the transition voltage requires the electrode distance to be larger than a critical value, the interaction between the two electrodes is actually rather weak. Consequently, the LDOS of the apex gold atom is mainly determined by its local atomic configuration and the transition voltage only depends weakly on the electrode distance as observed in the MCBJ experiments.

  15. Spin-Polarized Scanning Tunneling Microscope for Atomic-Scale Studies of Spin Transport, Spin Relaxation, and Magnetism in Graphene

    DTIC Science & Technology

    2017-11-09

    to correlate the atomic-scale magnetism and spin density with the macroscopic spin transport properties of 2D materials. This is a long-term effort...devices, our goal is to correlate the atomic-scale magnetism and spin density with the macroscopic spin transport properties of 2D materials. This is a... correlate the change in transport with the atomic structure of hydrogen-doped graphene, we subsequently use the STM to investigate the graphene

  16. Polar catastrophe and the structure of KTa 1-xNb xO₃ surfaces: Results from elastic and inelastic helium atom scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flaherty, F. A.; Trelenberg, T. W.; Li, J. A.

    2015-07-13

    The structure and dynamics of cleaved (001) surfaces of potassium tantalates doped with niobium, KTa 1-xNb xO₃ (KTN), with x ranging from 0% to 30%, were measured by helium atom scattering (HAS). Through HAS time-of-flight (TOF) experiments, a dispersionless branch (Einstein phonon branch) with energy of 13-14 meV was observed across the surface Brillouin zone in all samples. When this observation is combined with the results from earlier experimental and theoretical studies on these materials, a consistent picture of the stable surface structure emerges: After cleaving the single-crystal sample, the surface should be composed of equal areas of KO andmore » TaO₂/NbO₂ terraces. The data, however, suggest that K⁺ and O²⁻ ions migrate from the bulk to the surface, forming a charged KO lattice that is neutralized primarily by additional K⁺ ions bridging pairs of surface oxygens. This structural and dynamic modification at the (001) surface of KTN appears due to its formally charged KO(-1) and TaO₂/NbO₂(+1) layers and avoids a “polar catastrophe.” This behavior is contrasted with the (001) surface behavior of the fluoride perovskite KMnF₃ with its electrically neutral KF and MnF₂ layers.« less

  17. Generation of circularly polarized XUV and soft-x-ray high-order harmonics by homonuclear and heteronuclear diatomic molecules subject to bichromatic counter-rotating circularly polarized intense laser fields

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.

    2017-12-01

    Recently, studies of bright circularly polarized high-harmonic beams from atoms in the soft-x-ray region as a source for x-ray magnetic circular dichroism measurement in a tabletop-scale setup have received considerable attention. In this paper, we address the problem with molecular targets and perform a detailed quantum study of H2 +, CO, and N2 molecules in bichromatic counter-rotating circularly polarized laser fields where we adopt wavelengths (1300 and 790 nm) and intensities (2 ×1014W /cm2 ) reported in a recent experiment [Proc. Natl. Acad. Sci. USA 112, 14206 (2015), 10.1073/pnas.1519666112]. Our treatment of multiphoton processes in homonuclear and heteronuclear diatomic molecules is nonperturbative and based on the time-dependent density-functional theory for multielectron systems. The calculated radiation spectrum contains doublets of left and right circularly polarized harmonics with high-energy photons in the XUV and soft-x-ray ranges. Our results reveal intriguing and substantially different nonlinear optical responses for homonuclear and heteronuclear diatomic molecules subject to circularly polarized intense laser fields. We study in detail the below- and above-threshold harmonic regions and analyze the ellipticity and phase of the generated harmonic peaks.

  18. Probing membrane protein structure using water polarization transfer solid-state NMR.

    PubMed

    Williams, Jonathan K; Hong, Mei

    2014-10-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected (1)H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. Copyright © 2014 Elsevier Inc. All

  19. Imprint of the Sun’s Evolving Polar Winds on IBEX Energetic Neutral Atom All-sky Observations of the Heliosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zirnstein, E. J.; McComas, D. J.; Dayeh, M. A.

    2017-09-01

    With 7 years of Interstellar Boundary Explorer ( IBEX ) measurements of energetic neutral atoms (ENAs), IBEX has shown a clear correlation between dynamic changes in the solar wind and the heliosphere’s response in the formation of ENAs. In this paper, we investigate temporal variations in the latitudinal-dependent ENA spectrum from IBEX and their relationship to the solar wind speed observed at 1 au. We find that the variation in latitude of the transition in ENA spectral indices between low (≲1.8) and high (≳1.8) values, as well as the distribution of ENA spectral indices at high and low latitudes, correlatesmore » well with the evolution of the fast and slow solar wind latitudinal structure observed near 1 au. This correlation includes a delay due to the time it takes the solar wind to propagate to the termination shock and into the inner heliosheath, and for ENAs to be generated via charge-exchange and travel back toward 1 au. Moreover, we observe a temporal asymmetry in the steepening of the ENA spectrum in the northern and southern hemispheres, consistent with asymmetries observed in the solar wind and polar coronal holes. While this asymmetry is observed near the upwind direction of the heliosphere, it is not yet observed in the tail direction, suggesting a longer line-of-sight integration distance or different processing of the solar wind plasma downstream of the termination shock.« less

  20. Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer.

    PubMed

    Kurz, Christoph; Schug, Michael; Eich, Pascal; Huwer, Jan; Müller, Philipp; Eschner, Jürgen

    2014-11-21

    A quantum network combines the benefits of quantum systems regarding secure information transmission and calculational speed-up by employing quantum coherence and entanglement to store, transmit and process information. A promising platform for implementing such a network are atom-based quantum memories and processors, interconnected by photonic quantum channels. A crucial building block in this scenario is the conversion of quantum states between single photons and single atoms through controlled emission and absorption. Here we present an experimental protocol for photon-to-atom quantum state conversion, whereby the polarization state of an absorbed photon is mapped onto the spin state of a single absorbing atom with >95% fidelity, while successful conversion is heralded by a single emitted photon. Heralded high-fidelity conversion without affecting the converted state is a main experimental challenge, in order to make the transferred information reliably available for further operations. We record >80 s(-1) successful state transfer events out of 18,000 s(-1) repetitions.

  1. Enhanced ferroelectric polarization and possible morphotrophic phase boundary in PZT-based alloys

    DOE PAGES

    Parker, David S.; Singh, David; McGuire, Michael A.; ...

    2016-05-16

    We present a combined theoretical and experimental study of alloys of the high performance piezoelectric PZT (PbZr 0.5Ti 0.5O 3) with BZnT (BiZn 0.5Ti 0.5O 3) and BZnZr (BiZn 0.5Zr 0.5O 3), focusing on atomic displacements, ferroelectric polarization, and elastic stability. From theory we find that the 75-25 PZT-BZnT alloy has substantially larger cation displacements, and hence ferroelectric polarization than the PZT base material, on the tetragonal side of the phase diagram. We also find a possible morphotrophic phase boundary in this system by comparing displacement patterns and optimized c/a ratios. Elastic stability calculations find the structures to be essentiallymore » stable. Lastly, experiments indicate the feasibility of sample synthesis within this alloy system, although measurements do not find significant polarization, probably due to a large coercive field.« less

  2. Polarization correlation study of the electron-impact excitation of neon and argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khakoo, M.A.; McConkey, J.W.

    1986-08-11

    The recent development of a circular polarization analyzer for the vacuum ultraviolet spectral region has enabled a Stokes parameter analysis to be carried out for the excitation of neon and argon by 80-eV incident electrons. The results show that the transfer of angular momentum to the atom is positive and is in fact surprisingly ''heliumlike.'' Small deviations from total coherence were observed and are discussed.

  3. Introducing double polar heads to highly fluorescent Thiazoles: Influence on supramolecular structures and photonic properties.

    PubMed

    Kaufmann, M; Hupfer, M L; Sachse, T; Herrmann-Westendorf, F; Weiß, D; Dietzek, B; Beckert, R; Presselt, M

    2018-04-30

    Supramolecular structures determine properties of optoelectronically active materials and can be tailored via the Langmuir-Blodgett (LB) technique. Interactions between dyes can cause high crystallinities of Langmuir monolayers, thus rendering retaining their integrity during the LB-deposition challenging. However, increasing degrees of freedom exclusively at the polar anchoring moieties of dyes might improve processability without perturbing the dye's optoelectronic properties nor the function-determining crystallinity of the layer. (Amphiphilic) thiazole dyes without, with a mono-polar, and with a double-polar anchor were synthesized, whereas the two constituting polar moieties of the latter derivate are separated by a flexible alkyl chain. The supramolecular structures and crystallinities of Langmuir and LB monolayers were characterized by means of LB isotherms, atomic force microscopy and polarization-resolved fluorescence spectroscopy. As compared to the mono-polar reference the introduction of a flexible double-polar head did not deteriorate UV-vis absorption, emission or electrochemical properties of the thiazole but significantly extended the range of constant compressibility modulus, thus indicating improved processability of the Langmuir monolayers. Indeed, AFM studies revealed that the integrity of the monolayers could be retained during LB-deposition. Additionally, also the underlying supramolecular structure of the chromophore moieties is largely identical to those obtained from the mono-polar reference thiazoles. Copyright © 2018. Published by Elsevier Inc.

  4. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    DOE PAGES

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; ...

    2015-11-03

    Here, we demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantummore » trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N 4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.« less

  5. Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission

    PubMed Central

    Li, Tao; Deng, Fu-Guo

    2015-01-01

    Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication. PMID:26502993

  6. Using a sharp metal tip to control the polarization and direction of emission from a quantum dot.

    PubMed

    Ghimire, Anil; Shafran, Eyal; Gerton, Jordan M

    2014-09-24

    Optical antennas can be used to manipulate the direction and polarization of radiation from an emitter. Usually, these metallic nanostructures utilize localized plasmon resonances to generate highly directional and strongly polarized emission, which is determined predominantly by the antenna geometry alone, and is thus not easily tuned. Here we show experimentally that the emission polarization can be manipulated using a simple, nonresonant scanning probe consisting of the sharp metallic tip of an atomic force microscope; finite element simulations reveal that the emission simultaneously becomes highly directional. Together, the measurements and simulations demonstrate that interference between light emitted directly into the far field with that elastically scattered from the tip apex in the near field is responsible for this control over polarization and directionality. Due to the relatively weak emitter-tip coupling, the tip must be positioned very precisely near the emitter, but this weak coupling also leads to highly tunable emission properties with a similar degree of polarization and directionality compared to resonant antennas.

  7. Lasing by driven atoms-cavity system in collective strong coupling regime.

    PubMed

    Sawant, Rahul; Rangwala, S A

    2017-09-12

    The interaction of laser cooled atoms with resonant light is determined by the natural linewidth of the excited state. An optical cavity is another optically resonant system where the loss from the cavity determines the resonant optical response of the system. The near resonant combination of an optical Fabry-Pérot cavity with laser cooled and trapped atoms couples two distinct optical resonators via light and has great potential for precision measurements and the creation of versatile quantum optics systems. Here we show how driven magneto-optically trapped atoms in collective strong coupling regime with the cavity leads to lasing at a frequency red detuned from the atomic transition. Lasing is demonstrated experimentally by the observation of a lasing threshold accompanied by polarization and spatial mode purity, and line-narrowing in the outcoupled light. Spontaneous emission into the cavity mode by the driven atoms stimulates lasing action, which is capable of operating as a continuous wave laser in steady state, without a seed laser. The system is modeled theoretically, and qualitative agreement with experimentally observed lasing is seen. Our result opens up a range of new measurement possibilities with this system.

  8. A new interpretation of Serkowski's polarization law

    NASA Astrophysics Data System (ADS)

    Papoular, R.

    2018-06-01

    The basic tenets of the alternative interpretation to be presented here are that the spectral profiles of the star light polarization peaks observed in the visible and near IR are a result of the optical properties of silicate grains in the same spectral range, not of the grain size, provided it remains within the range of Rayleigh's approximation. The silicate properties are those obtained experimentally by Scott and Duley (1996) for the non-iron bearing amorphous forsterite and enstatite. The whole range of observed Serkowski polarization profiles can be simulated with mixtures made of forsterite plus an increasing fraction (0 to 0.5) of enstatite as the spectral peak shifts from 0.8 to 0.3 μm. Fits to individual observed polarization spectra are also demonstrated. The optical extinction of silicates in the vis/IR (the "transparency range") can be understood by analogy with the thoroughly studied amorphous hydrogenated carbons and amorphous silica. It is due to structural disorder (dangling bonds and coordination defects) and impurities, which give rise to electronic states in the forbidden gap of semi-conductors. Because they are partially localized, their extinction power is dramatically reduced and has been ignored or simply described by a low, flat plateau. As their number density depends on the environment, one expects variations in the ratio of optical extinction coefficients in the visible and mid-IR. It is also argued that the measured steep rise of extinction beyond 3 μm-1 into the UV is due to atomic transitions, and so cannot give rise to coherent molecular polarization, but only localized extinction.

  9. Potential scattering in the presence of a static magnetic field and a radiation field of arbitrary polarization

    NASA Astrophysics Data System (ADS)

    Ferrante, G.; Zarcone, M.; Nuzzo, S.; McDowell, M. R. C.

    1982-05-01

    Expressions are obtained for the total cross sections for scattering of a charged particle by a potential in the presence of a static uniform magnetic field and a radiation field of arbitrary polarization. For a Coulomb field this is closely related to the time reverse of photoionization of a neutral atom in a magnetic field, including multiphoton effects off-resonance. The model is not applicable when the radiation energy approaches one of the quasi-Landau state separations. The effects of radiation field polarization are examined in detail.

  10. Polar Rain Gradients and Field-Aligned Polar Cap Potentials

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.; Wing, S.; Newell, P. T.; Ruohoniemi, J. M.; Gosling, J. T.; Skoug, R. M.

    2008-01-01

    ACE SWEPAM measurements of solar wind field-aligned electrons have been compared with simultaneous measurements of polar rain electrons precipitating over the polar cap and detected by DMSP spacecraft. Such comparisons allow investigation of cross-polar-cap gradients in the intensity of otherwise-steady polar rain. The generally good agreement of the distribution functions, f, from the two data sources confirms that direct entry of solar electrons along open field lines is indeed the cause of polar rain. The agreement between the data sets is typically best on the side of the polar cap with most intense polar rain but the DMSP f's in less intense regions can be brought into agreement with ACE measurements by shifting all energies by a fixed amounts that range from tens to several hundred eV. In most cases these shifts are positive which implies that field-aligned potentials of these amounts exist on polar cap field lines which tend to retard the entry of electrons and produce the observed gradients. These retarding potentials undoubtedly appear in order to prevent the entry of low-energy electrons and maintain charge quasi-neutrality that would otherwise be violated since most tailward flowing magnetosheath ions are unable to follow polar rain electrons down to the polar cap. In more limited regions near the boundary of the polar cap there is sometimes evidence for field-aligned potentials of the opposite sign that accelerate polar rain electrons. A solar electron burst is also studied and it is concluded that electrons from such bursts can enter the magnetotail and precipitate in the same manner as polar rain.

  11. Polarized iridescence of the multilayered elytra of the Japanese jewel beetle, Chrysochroa fulgidissima

    PubMed Central

    Stavenga, Doekele G.; Wilts, Bodo D.; Leertouwer, Hein L.; Hariyama, Takahiko

    2011-01-01

    The elytra of the Japanese jewel beetle Chrysochroa fulgidissima are metallic green with purple stripes. Scanning electron microscopy and atomic force microscopy demonstrated that the elytral surface is approximately flat. The accordingly specular green and purple areas have, with normal illumination, 100–150 nm broad reflectance bands, peaking at about 530 and 700 nm. The bands shift progressively towards shorter wavelengths with increasing oblique illumination, and the reflection then becomes highly polarized. Transmission electron microscopy revealed that the epicuticle of the green and purple areas consists of stacks of 16 and 12 layers, respectively. Assuming gradient refractive index values of the layers between 1.6 and 1.7 and applying the classical multilayer theory allowed modelling of the measured polarization- and angle-dependent reflectance spectra. The extreme polarized iridescence exhibited by the elytra of the jewel beetle may have a function in intraspecific recognition. PMID:21282175

  12. The polarization response in InAs quantum dots: theoretical correlation between composition and electronic properties.

    PubMed

    Usman, Muhammad; Tasco, Vittorianna; Todaro, Maria Teresa; De Giorgi, Milena; O'Reilly, Eoin P; Klimeck, Gerhard; Passaseo, Adriana

    2012-04-27

    III-V growth and surface conditions strongly influence the physical structure and resulting optical properties of self-assembled quantum dots (QDs). Beyond the design of a desired active optical wavelength, the polarization response of QDs is of particular interest for optical communications and quantum information science. Previous theoretical studies based on a pure InAs QD model failed to reproduce experimentally observed polarization properties. In this work, multi-million atom simulations are performed in an effort to understand the correlation between chemical composition and polarization properties of QDs. A systematic analysis of QD structural parameters leads us to propose a two-layer composition model, mimicking In segregation and In-Ga intermixing effects. This model, consistent with mostly accepted compositional findings, allows us to accurately fit the experimental PL spectra. The detailed study of QD morphology parameters presented here serves as a tool for using growth dynamics to engineer the strain field inside and around the QD structures, allowing tuning of the polarization response.

  13. Anomalously deep polarization in SrTiO3 (001) interfaced with an epitaxial ultrathin manganite film

    DOE PAGES

    Wang, Zhen; Tao, Jing; Yu, Liping; ...

    2016-10-17

    Using atomically-resolved imaging and spectroscopy, we reveal a remarkably deep polarization in non-ferroelectric SrTiO 3 near its interface with an ultrathin nonmetallic film of La 2/3Sr 1/3MnO 3. Electron holography shows an electric field near the interface in SrTiO 3, yielding a surprising spontaneous polarization density of ~ 21 μC/cm 2. Combining the experimental results with first principles calculations, we propose that the observed deep polarization is induced by the electric field originating from oxygen vacancies that extend beyond a dozen unit-cells from the interface, thus providing important evidence of the role of defects in the emergent interface properties ofmore » transition metal oxides.« less

  14. Study of the Effect of Active Regions on the Scattering Polarization in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Derouich, M.; Badruddin

    2018-03-01

    The solar photospheric/chromospheric light exciting atoms/ions is not homogeneous because of the presence of active regions (ARs). The effect of ARs on the scattering polarization at the coronal level is an important ingredient for a realistic determination of the magnetic field. This effect is usually disregarded or mixed with other effects in the sense that the degree of its importance is not well known. The aim of this paper is to study the effect of atmospheric inhomogeneities on the coronal scattering polarization. We determined quantitatively the importance of the atmospheric inhomogeneities by using given geometries of solar ARs (plages and sunspots).

  15. Long lifetime and high-fidelity quantum memory of photonic polarization qubit by lifting zeeman degeneracy.

    PubMed

    Xu, Zhongxiao; Wu, Yuelong; Tian, Long; Chen, Lirong; Zhang, Zhiying; Yan, Zhihui; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi

    2013-12-13

    Long-lived and high-fidelity memory for a photonic polarization qubit (PPQ) is crucial for constructing quantum networks. We present a millisecond storage system based on electromagnetically induced transparency, in which a moderate magnetic field is applied on a cold-atom cloud to lift Zeeman degeneracy and, thus, the PPQ states are stored as two magnetic-field-insensitive spin waves. Especially, the influence of magnetic-field-sensitive spin waves on the storage performances is almost totally avoided. The measured average fidelities of the polarization states are 98.6% at 200  μs and 78.4% at 4.5 ms, respectively.

  16. Solid Solution Photocatalyst with Spontaneous Polarization Exhibiting Low Recombination Toward Efficient CO2 Photoreduction.

    PubMed

    Zhou, Peng; Wang, Xin; Yan, Shicheng; Zou, Zhigang

    2016-08-23

    Decreasing the recombination of photogenerated carriers is a major challenge for efficiently converting solar energy into chemical energy by photocatalysis. Here, we have demonstrated that growth of a polar GaN:ZnO solid solution single crystal along its polarization axis is beneficial to efficient separation of photogenerated carriers, owing to the periodic potential barriers and wells generated from the periodically positive and negative atom arrangements in crystal structure. Local charge imbalance caused by replacing Ga(3+) with Zn(2+) leads to a polarization vector in the {0 0 0 1} planes of GaN:ZnO solid solution, thus forming a 1 D electron transport path along [2 1‾  1‾  0] in the {0 0 0 1} planes of GaN:ZnO solid solution to decrease recombination. Shorting the hole-transport distance by synthesizing porous nanoplates can further decrease recombination under the polarization field and improve the performance of polar photocatalyst in photoreduction of CO2 into CH4 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Light effects in the atomic-motion-induced Ramsey narrowing of dark resonances in wall-coated cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breschi, E.; Schori, C.; Di Domenico, G.

    2010-12-15

    We report on light shift and broadening in the atomic-motion-induced Ramsey narrowing of dark resonances prepared in alkali-metal vapors contained in wall-coated cells without buffer gas. The atomic-motion-induced Ramsey narrowing is due to the free motion of the polarized atomic spins in and out of the optical interaction region before spin relaxation. As a consequence of this effect, we observe a narrowing of the dark resonance linewidth as well as a reduction of the ground states' light shift when the volume of the interaction region decreases at constant optical intensity. The results can be intuitively interpreted as a dilution ofmore » the intensity effect similar to a pulsed interrogation due to the atomic motion. Finally the influence of this effect on the performance of compact atomic clocks is discussed.« less

  18. Chemical nuclear polarization effects in photoreactions of 1,4-diazabicyclo[2.2.2]octane with carbonyl-containing compounds

    NASA Astrophysics Data System (ADS)

    Porkhun, V. I.; Rakhimov, A. I.

    2012-11-01

    Elementary acts of the photoreaction of diamine with 2,6-diphenyl- p-benzoquinone are determined from the effects of chemical nuclear polarization effects. Hydrogen atom transfer is shown to occur in two stages with the participation of a radical ion pair.

  19. Circular Dichroism Control of Tungsten Diselenide (WSe2) Atomic Layers with Plasmonic Metamolecules.

    PubMed

    Lin, Hsiang-Ting; Chang, Chiao-Yun; Cheng, Pi-Ju; Li, Ming-Yang; Cheng, Chia-Chin; Chang, Shu-Wei; Li, Lance L J; Chu, Chih-Wei; Wei, Pei-Kuen; Shih, Min-Hsiung

    2018-05-09

    Controlling circularly polarized (CP) states of light is critical to the development of functional devices for key and emerging applications such as display technology and quantum communication, and the compact circular polarization-tunable photon source is one critical element to realize the applications in the chip-scale integrated system. The atomic layers of transition metal dichalcogenides (TMDCs) exhibit intrinsic CP emissions and are potential chiroptical materials for ultrathin CP photon sources. In this work, we demonstrated CP photon sources of TMDCs with device thicknesses approximately 50 nm. CP photoluminescence from the atomic layers of tungsten diselenide (WSe 2 ) was precisely controlled with chiral metamolecules (MMs), and the optical chirality of WSe 2 was enhanced more than 4 times by integrating with the MMs. Both the enhanced and reversed circular dichroisms had been achieved. Through integrations of the novel gain material and plasmonic structure which are both low-dimensional, a compact device capable of efficiently manipulating emissions of CP photon was realized. These ultrathin devices are suitable for important applications such as the optical information technology and chip-scale biosensing.

  20. Partial polarizer filter

    NASA Technical Reports Server (NTRS)

    Title, A. M. (Inventor)

    1978-01-01

    A birefringent filter module comprises, in seriatum. (1) an entrance polarizer, (2) a first birefringent crystal responsive to optical energy exiting the entrance polarizer, (3) a partial polarizer responsive to optical energy exiting the first polarizer, (4) a second birefringent crystal responsive to optical energy exiting the partial polarizer, and (5) an exit polarizer. The first and second birefringent crystals have fast axes disposed + or -45 deg from the high transmitivity direction of the partial polarizer. Preferably, the second crystal has a length 1/2 that of the first crystal and the high transmitivity direction of the partial polarizer is nine times as great as the low transmitivity direction. To provide tuning, the polarizations of the energy entering the first crystal and leaving the second crystal are varied by either rotating the entrance and exit polarizers, or by sandwiching the entrance and exit polarizers between pairs of half wave plates that are rotated relative to the polarizers. A plurality of the filter modules may be cascaded.

  1. Stimulated electromagnetic emission polarization under different polarizations of pump waves

    NASA Astrophysics Data System (ADS)

    Tereshchenko, E. D.; Yurik, R. Y.; Baddeley, L.

    2015-03-01

    The results of investigations into the stimulated electromagnetic emission (SEE) polarization under different modes of the pump wave polarization are presented. The present results were obtained in November 2012 during a heating campaign utilizing the SPEAR (Space Plasma Exploration by Active Radar) heating facility, transmitting in both O- and X-mode polarization, and a PGI (Polar Geophysical Institute) radio interferometer capable of recording the polarization of the received radiation. The polarization ellipse parameters of the SEE DM (downshifted maximum) components were determined under both O-mode and X-mode polarization of the pump waves. The polarization direction of the SEE DM component was preserved under different polarizations of the pump waves. Different polarizations of the pump waves have a different SEE generation efficiency. The intensity of the DM component is observed to be greater during O-mode pumping. In addition, the numbers of observed SEE features are also greater during O-mode pumping.

  2. Protecting a quantum memory for a photonic polarization qubit in a cold atomic ensemble by dynamical decoupling.

    PubMed

    Wu, Yuelong; Chen, Lirong; Xu, Zhongxiao; Wang, Hai

    2014-09-22

    We report an experimental demonstration of storage of photonic polarization qubit (PPQ) protected by dynamical decoupling (DD). PPQ's states are stored as a superposition of two spin waves by electromagnetically-induced-transparency (EIT). Carr-Purcell-Meiboom-Gill (CPMG) DD sequences are applied to the spin-wave superposition to suppress its decoherence. Thus, the quantum process fidelity remains better than 0.8 for up to 800 μs storage time, which is 3.4-times longer than the corresponding storage time of ~180 μs without the CPMG sequences. This work is a key step towards the storage of single-photon polarization qubit protected by the CPMG sequences.

  3. Ultrafast time scale X-rotation of cold atom storage qubit using Rubidium clock states

    NASA Astrophysics Data System (ADS)

    Song, Yunheung; Lee, Han-Gyeol; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook

    2017-04-01

    Ultrafast-time-scale optical interaction is a local operation on the electronic subspace of an atom, thus leaving its nuclear state intact. However, because atomic clock states are maximally entangled states of the electronic and nuclear degrees of freedom, their entire Hilbert space should be accessible only with local operations and classical communications (LOCC). Therefore, it may be possible to achieve hyperfine qubit gates only with electronic transitions. Here we show an experimental implementation of ultrafast X-rotation of atomic hyperfine qubits, in which an optical Rabi oscillation induces a geometric phase between the constituent fine-structure states, thus bringing about the X-rotation between the two ground hyperfine levels. In experiments, cold atoms in a magneto-optical trap were controlled with a femtosecond laser pulse from a Ti:sapphire laser amplifier. Absorption imaging of the as-controlled atoms initially in the ground hyperfine state manifested polarization dependence, strongly agreeing with the theory. The result indicates that single laser pulse implementations of THz clock speed qubit controls are feasible for atomic storage qubits. Samsung Science and Technology Foundation [SSTF-BA1301-12].

  4. Gate control of spin-polarized conductance in alloyed transitional metal nanocontacts

    NASA Astrophysics Data System (ADS)

    Sivkov, Ilia N.; Brovko, Oleg O.; Rungger, Ivan; Stepanyuk, Valeri S.

    2017-03-01

    To date, endeavors in nanoscale spintronics are dominated by the use of single-electron or single-spin transistors having at their heart a semiconductor, metallic, or molecular quantum dot whose localized states are non-spin-degenerate and can be controlled by an external bias applied via a gate electrode. Adjusting the bias of the gate one can realign those states with respect to the chemical potentials of the leads and thus tailor the spin-polarized transmission properties of the device. Here we show that similar functionality can be achieved in a purely metallic junction comprised of a metallic magnetic chain attached to metallic paramagnetic leads and biased by a gate electrode. Our ab initio calculations of electron transport through mixed Pt-Fe (Fe-Pd and Fe-Rh) atomic chains suspended between Pt (Pd and Rh) electrodes show that spin-polarized confined states of the chain can be shifted by the gate bias causing a change in the relative contributions of majority and minority channels to the nanocontact's conductance. As a result, we observe strong dependence of conductance spin polarization on the applied gate potential. In some cases the spin polarization of conductance can even be reversed in sign upon gate potential application, which is a remarkable and promising trait for spintronic applications.

  5. XUV and x-ray elastic scattering of attosecond electromagnetic pulses on atoms

    NASA Astrophysics Data System (ADS)

    Rosmej, F. B.; Astapenko, V. A.; Lisitsa, V. S.

    2017-12-01

    Elastic scattering of electromagnetic pulses on atoms in XUV and soft x-ray ranges is considered for ultra-short pulses. The inclusion of the retardation term, non-dipole interaction and an efficient scattering tensor approximation allowed studying the scattering probability in dependence of the pulse duration for different carrier frequencies. Numerical calculations carried out for Mg, Al and Fe atoms demonstrate that the scattering probability is a highly nonlinear function of the pulse duration and has extrema for pulse carrier frequencies in the vicinity of the resonance-like features of the polarization charge spectrum. Closed expressions for the non-dipole correction and the angular dependence of the scattered radiation are obtained.

  6. Entangled photons from single atoms and molecules

    NASA Astrophysics Data System (ADS)

    Nordén, Bengt

    2018-05-01

    The first two-photon entanglement experiment performed 50 years ago by Kocher and Commins (KC) provided isolated pairs of entangled photons from an atomic three-state fluorescence cascade. In view of questioning of Bell's theorem, data from these experiments are re-analyzed and shown sufficiently precise to confirm quantum mechanical and dismiss semi-classical theory without need for Bell's inequalities. Polarization photon correlation anisotropy (A) is useful: A is near unity as predicted quantum mechanically and well above the semi-classic range, 0 ⩽ A ⩽ 1 / 2 . Although yet to be found, one may envisage a three-state molecule emitting entangled photon pairs, in analogy with the KC atomic system. Antibunching in fluorescence from single molecules in matrix and entangled photons from quantum dots promise it be possible. Molecules can have advantages to parametric down-conversion as the latter photon distribution is Poissonian and unsuitable for producing isolated pairs of entangled photons. Analytical molecular applications of entangled light are also envisaged.

  7. Coherent backscattering of light by an inhomogeneous cloud of cold atoms

    NASA Astrophysics Data System (ADS)

    Labeyrie, Guillaume; Delande, Dominique; Müller, Cord A.; Miniatura, Christian; Kaiser, Robin

    2003-03-01

    When a quasiresonant laser beam illuminates an optically thick cloud of laser-cooled rubidium atoms, the average diffuse intensity reflected off the sample is enhanced in a narrow angular range around the direction of exact backscattering. This phenomenon is known as coherent backscattering (CBS). By detuning the laser from resonance, we are able to modify the light scattering mean-free path inside the sample and we record accordingly the variations of the CBS cone shape. We then compare the experimental data with theoretical calculations and Monte Carlo simulations including the effect of the light polarization and of the internal structure of the atoms. We confirm that the internal structure strongly affects the enhancement factor of the cone and we show that the unusual shape of the atomic medium—approximately a spherically-symmetric, Gaussian density profile—strongly affects the width and shape of the cone.

  8. Polar Rain Gradients and Field-Aligned Polar Cap Potentials

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.; Wing, S.; Newell, P. T.; Ruohoniemi, J. M.; Gosling, J. T.; Skoug, R. M.

    2008-01-01

    ACE SWEPAM measurements of solar wind field-aligned electrons have been compared with simultaneous measurements of polar rain electrons precipitating over the polar cap and detected by DMSP spacecraft. Such comparisons allow investigation of cross-polarcap gradients in the intensity of otherwise-steady polar rain. The generally good agreement of the distribution functions, f, from the two data sources confirms that direct entry of solar electrons along open field lines is indeed the cause of polar rain. The agreement between the data sets is typically best on the side of the polar cap with most intense polar rain but the DMSP f's in less intense regions can be brought into agreement with ACE measurements by shifting all energies by a fixed amounts that range from tens to several hundred eV. In most cases these shifts are positive which implies that field-aligned potentials of these amounts exist on polar cap field lines which tend to retard the entry of electrons and produce the observed gradients. These retarding potentials undoubtedly appear in order to prevent the entry of low-energy electrons and maintain charge quasi-neutrality that would otherwise be violated since most tailward flowing magnetosheath ions are unable to follow polar rain electrons down to the polar cap. In more limited regions near the boundary of the polar cap there is sometimes evidence for field-aligned potentials of the opposite sign that accelerate polar rain electrons. A solar electron burst is also studied and it is concluded that electrons from such bursts can enter the magnetotail and precipitate in the same manner as polar rain.

  9. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals

    NASA Astrophysics Data System (ADS)

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.

    2016-06-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit.

  10. A numerical study on liquid charging inside electrostatic atomizers

    NASA Astrophysics Data System (ADS)

    Kashir, Babak; Perri, Anthony; Sankaran, Abhilash; Staszel, Christopher; Yarin, Alexander; Mashayek, Farzad

    2016-11-01

    The charging of the dielectric liquid inside an electrostatic atomizer is studied numerically by developing codes based on the OpenFOAM platform. Electrostatic atomization is an appealing technology in painting, fuel injection and oil coating systems due to improved particle-size distribution, enhanced controlability of droplets' trajectories and lower power consumption. The numerical study is conducted concurrently to an experimental investigation to facilitate the validation and deliver feedback for further development. The atomizer includes a pin electrode that is placed at the center of a converging chamber. The chamber orifice is located at a known distance from the electrode tip. The pin electrode is connected to a high voltage that leads to the charging of the liquid. In the present work, the theoretical foundations of separated treatment of the polarized layer and the electronuetral bulk flow are set by describing the governing equations, relevant boundary conditions and the matching condition between these two domains. The resulting split domains are solved numerically to find the distribution of velocity and electrostatic fields over the specified regions. National Science Foundation Award Number: 1505276.

  11. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)

    NASA Astrophysics Data System (ADS)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-07-01

    The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the

  12. Giant Ferroelectric Polarization in Ultrathin Ferroelectrics via Boundary-Condition Engineering.

    PubMed

    Xie, Lin; Li, Linze; Heikes, Colin A; Zhang, Yi; Hong, Zijian; Gao, Peng; Nelson, Christopher T; Xue, Fei; Kioupakis, Emmanouil; Chen, Longqing; Schlom, Darrel G; Wang, Peng; Pan, Xiaoqing

    2017-08-01

    Tailoring and enhancing the functional properties of materials at reduced dimension is critical for continuous advancement of modern electronic devices. Here, the discovery of local surface induced giant spontaneous polarization in ultrathin BiFeO 3 ferroelectric films is reported. Using aberration-corrected scanning transmission electron microscopy, it is found that the spontaneous polarization in a 2 nm-thick ultrathin BiFeO 3 film is abnormally increased up to ≈90-100 µC cm -2 in the out-of-plane direction and a peculiar rumpled nanodomain structure with very large variation in c/a ratios, which is analogous to morphotropic phase boundaries (MPBs), is formed. By a combination of density functional theory and phase-field calculations, it is shown that it is the unique single atomic Bi 2 O 3 - x layer at the surface that leads to the enhanced polarization and appearance of the MPB-like nanodomain structure. This finding clearly demonstrates a novel route to the enhanced functional properties in the material system with reduced dimension via engineering the surface boundary conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. New generation high performance in situ polarized 3He system for time-of-flight beam at spallation sources.

    PubMed

    Jiang, C Y; Tong, X; Brown, D R; Glavic, A; Ambaye, H; Goyette, R; Hoffmann, M; Parizzi, A A; Robertson, L; Lauter, V

    2017-02-01

    Modern spallation neutron sources generate high intensity neutron beams with a broad wavelength band applied to exploring new nano- and meso-scale materials from a few atomic monolayers thick to complicated prototype device-like systems with multiple buried interfaces. The availability of high performance neutron polarizers and analyzers in neutron scattering experiments is vital for understanding magnetism in systems with novel functionalities. We report the development of a new generation of the in situ polarized 3 He neutron polarization analyzer for the Magnetism Reflectometer at the Spallation Neutron Source at Oak Ridge National Laboratory. With a new optical layout and laser system, the 3 He polarization reached and maintained 84% as compared to 76% in the first-generation system. The polarization improvement allows achieving the transmission function varying from 50% to 15% for the polarized neutron beam with the wavelength band of 2-9 Angstroms. This achievement brings a new class of experiments with optimal performance in sensitivity to very small magnetic moments in nano systems and opens up the horizon for its applications.

  14. Metasurface polarization splitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slovick, Brian A.; Zhou, You; Yu, Zhi Gang

    Polarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are among the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here, we show that a rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other. We show that the polarization splitting arises from the anisotropic permittivity and permeability of the metasurface due to the twofold rotational symmetry of the rectangular unit cell. Lastly, the high polarization efficiency,more » low loss and low profile make these metasurface polarization splitters ideally suited for monolithic integration with optoelectronic and photonic circuits.« less

  15. Metasurface polarization splitter

    DOE PAGES

    Slovick, Brian A.; Zhou, You; Yu, Zhi Gang; ...

    2017-02-20

    Polarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are among the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here, we show that a rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other. We show that the polarization splitting arises from the anisotropic permittivity and permeability of the metasurface due to the twofold rotational symmetry of the rectangular unit cell. Lastly, the high polarization efficiency,more » low loss and low profile make these metasurface polarization splitters ideally suited for monolithic integration with optoelectronic and photonic circuits.« less

  16. Local structure and polarization resistance of Ce doped SrMnO{sub 3} using extended x-ray fine structure analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Jiseung; Lee, Heesoo, E-mail: heesoo@pusan.ac.kr

    2014-09-15

    Changes to the local structure of Sr and Mn atoms in Sr{sub 1−x}Ce{sub x}MnO{sub 3} (SCM) according to increasing Ce content and the effect of the structural change on the polarization resistance of SCM were investigated. The reduction of manganese was confirmed by the absorption edge shift of the Mn K-edge toward lower energies. The noise of oscillation in extended X-ray absorption fine structure k{sup 3}χ data at Mn K-edge reveals the distortion of the local structure of Mn atoms, and the peak that indicates the bonding length of Mn-O, Sr/Ce, and -Mn decreased with the addition of Ce contentmore » in Fourier transformations of the Mn K-edge. The distortion of the local structure at Mn atoms was affected by the reduced manganese ions having larger ionic radii than Mn{sup 4+}. Meanwhile, few distortions of local atomic structures of Sr atoms occurred, and the average nearest neighboring distances of Sr-O and Sr-Mn are ∼2.13 Å and ∼2.95 Å, respectively. The average bonding lengths of the Ce-O and Ce-Mn increased because the ionic radius of substituted Ce ion with 12 coordination number is smaller than that of Sr ion, which leads the reduction of Mn ions and the distortion of local structure at the substituted A-site. Therefore, we reasoned that the distortion of the local atomic structure at Mn atoms in MnO{sub 6} and Ce atoms in A-site is one of the causes for interrupting oxygen ion transfers as a geometric factor, which results in an increase in the polarization resistance of SCM within the Ce composition range from 10 mol. % to 30 mol. %.« less

  17. Embedded dielectric water "atom" array for broadband microwave absorber based on Mie resonance

    NASA Astrophysics Data System (ADS)

    Gogoi, Dhruba Jyoti; Bhattacharyya, Nidhi Saxena

    2017-11-01

    A wide band microwave absorber at X-band frequency range is demonstrated numerically and experimentally by embedding a simple rectangular structured dielectric water "atom" in flexible silicone substrate. The absorption peak of the absorber is tuned by manipulating the size of the dielectric water "atom." The frequency dispersive permittivity property of the water "atom" shows broadband absorption covering the entire X-band above 90% efficiency with varying the size of the water "atom." Mie resonance of the proposed absorber provides the desired impedance matching condition at the air-absorber interface across a wide frequency range in terms of electric and magnetic resonances. Multipole decomposition of induced current densities is used to identify the nature of observed resonances. Numerical absorptivity verifies that the designed absorber is polarization insensitive for normal incidence and can maintain an absorption bandwidth of more than 2 GHz in a wide-angle incidence. Additionally, the tunability of absorption property with temperature is shown experimentally.

  18. Space Environmental Erosion of Polar Icy Regolith

    NASA Technical Reports Server (NTRS)

    Farrell, William M.; Killen, R. M.; Vondrak, R. R.; Hurley, D. M.; Stubbs, T. J.; Delory, G. T.; Halekas, J. S.; Zimmerman, M. I.

    2011-01-01

    While regions at the floors of permanently shadowed polar craters are isolated from direct sunlight, these regions are still exposed to the harsh space environment, including the interplanetary Lyman-a background, meteoric impacts, and obstacle-affected solar wind. We demonstrate that each of these processes can act to erode the polar icy regolith located at or near the surface along the crater floor. The Lyman-a background can remove/erode the icy-regolith via photon stimulated desorption [1], meteoric impacts can vaporize the regolith [2], and redirected solar wind ions can sputter the ice-regolith mix [3]. As an example we shall examine in detail the inflow of solar wind ions and electrons into polar craters, One might expect such ions to flow horizontally over the crater top (see Figure). However, we find that plasma ambipolar processes act to deflect passing ions into the craters [3]. We examine this plasma process and determine the ion flux as a function of position across a notional crater floor. We demonstrate that inflowing solar wind ions can indeed create sputtering along the crater floor, effectively eroding the surface. Erosion time scales rrom sputtering will be presented. We shall also consider the effect of impact vaporization on buried icy-regolith regions. There will also be a discussion of solar wind electrons that enter into the PSR, demonstrating that these also have the ability rree surface-bound atoms via electron stimulated desorption processes [l].

  19. p-GaN/n-ZnO heterojunction nanowires: optoelectronic properties and the role of interface polarity.

    PubMed

    Schuster, Fabian; Laumer, Bernhard; Zamani, Reza R; Magén, Cesar; Morante, Joan Ramon; Arbiol, Jordi; Stutzmann, Martin

    2014-05-27

    In this work, simulations of the electronic band structure of a p-GaN/n-ZnO heterointerface are presented. In contrast to homojunctions, an additional energy barrier due to the type-II band alignment hinders the flow of majority charge carriers in this heterojunction. Spontaneous polarization and piezoelectricity are shown to additionally affect the band structure and the location of the recombination region. Proposed as potential UV-LEDs and laser diodes, p-GaN/n-ZnO heterojunction nanowires were fabricated by plasma-assisted molecular beam epitaxy (PAMBE). Atomic resolution annular bright field scanning transmission electron microscopy (STEM) studies reveal an abrupt and defect-free heterointerface with a polarity inversion from N-polar GaN to Zn-polar ZnO. Photoluminescence measurements show strong excitonic UV emission originating from the ZnO-side of the interface as well as stimulated emission in the case of optical pumping above a threshold of 55 kW/cm(2).

  20. 2D Semiconductors for Valley-Polarized LEDs and Photodetectors

    NASA Astrophysics Data System (ADS)

    Yu, Ting

    The recently discovered two-dimensional (2D) semiconductors, such as transitional-metal-dichalcogenide monolayers, have aroused great interest due to the underlying quantum physics and the appealing optoelectronic applications like atomically thin light-emitting diodes (LEDs) and photodetectors. On the one hand, valley-polarized electroluminescence and photocurrent from such monolayers have not caused enough attention but highly demanded as building blocks for the new generation valleytronic applications. On the other hand, most reports on these devices are based on the mechanically exfoliated small samples. Considering real applications, a strategy which could offer mass-product and high compatibility to the current planar processes is greatly demanded. Large-area samples prepared by chemical vapour deposition (CVD) are perfect candidates towards such a goal. Here, we report electrically tunable valley-polarized electroluminescence and the selective spin-valley-coupled photocurrent in optoelectronic devices based on monolayer WS2 and MoS2 grown by CVD, exhibiting large electroluminescence and photocurrent dichroisms of 81% and 60%, respectively. The controllable valley polarization and emission components of the electroluminescence have been realized by varying electrical injection of carriers. For the observed helicity-dependent photocurrent, the circular photogalvanic effect at resonant excitations has been found to take the dominant responsibility.

  1. Metasurface polarization splitter

    PubMed Central

    Slovick, Brian A.; Zhou, You; Yu, Zhi Gang; Kravchenko, Ivan I.; Briggs, Dayrl P.; Moitra, Parikshit; Krishnamurthy, Srini

    2017-01-01

    Polarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are among the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here, we show that a rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other. We show that the polarization splitting arises from the anisotropic permittivity and permeability of the metasurface due to the twofold rotational symmetry of the rectangular unit cell. The high polarization efficiency, low loss and low profile make these metasurface polarization splitters ideally suited for monolithic integration with optoelectronic and photonic circuits. This article is part of the themed issue ‘New horizons for nanophotonics’. PMID:28220002

  2. Polarization splitter and polarization rotator designs based on transformation optics.

    PubMed

    Kwon, Do-Hoon; Werner, Douglas H

    2008-11-10

    The transformation optics technique is employed in this paper to design two optical devices - a two-dimensional polarization splitter and a three-dimensional polarization rotator for propagating beams. The polarization splitter translates the TM- and the TE-polarized components of an incident beam in opposite directions (i.e., shifted up or shifted down). The polarization rotator rotates the polarization state of an incoming beam by an arbitrary angle. Both optical devices are reflectionless at the entry and exit interfaces. Design details and full-wave simulation results are provided.

  3. Polarity Control and Growth of Lateral Polarity Structures in AlN

    DTIC Science & Technology

    2013-05-10

    domains. Transmission electron microscopy shows mixed edge-screw type dislocations with polarity-dependent dislocation bending. Raman 1. REPORT DATE (DD-MM...polarity-dependent dislocation bending. Raman spectroscopy reveals compressively strained Al-polar and relaxed N-polar domains. The near band edge...dislocation bending. Raman spectroscopy reveals compressively strained Al-polar and relaxed N-polar domains. The near band edge luminescence consists of

  4. A study on high NA and evanescent imaging with polarized illumination

    NASA Astrophysics Data System (ADS)

    Yang, Seung-Hune

    Simulation techniques are developed for high NA polarized microscopy with Babinet's principle, partial coherence and vector diffraction for non-periodic geometries. A mathematical model for the Babinet approach is developed and interpreted. Simulation results of the Babinet's principle approach are compared with those of Rigorous Coupled Wave Theory (RCWT) for periodic structures to investigate the accuracy of this approach and its limitations. A microscope system using a special solid immersion lens (SIL) is introduced to image Blu-Ray (BD) optical disc samples without removing the protective cover layer. Aberration caused by the cover layer is minimized with a truncated SIL. Sub-surface imaging simulation is achieved by RCWT, partial coherence, vector diffraction and Babinet's Principle. Simulated results are compared with experimental images and atomic force microscopy (AFM) measurement. A technique for obtaining native and induced using a significant amount of evanescent energy is described for a solid immersion lens (SIL) microscope. Characteristics of native and induced polarization images for different object structures and materials are studied in detail. Experiments are conducted with a NA = 1.48 at lambda = 550nm microscope. Near-field images are simulated and analyzed with an RCWT approach. Contrast curve versus object spatial frequency calculations are compared with experimental measurements. Dependencies of contrast versus source polarization angles and air gap for native and induced polarization image profiles are evaluated. By using the relationship between induced polarization and topographical structure, an induced polarization image of an alternating phase shift mask (PSM) is converted into a topographical image, which shows very good agreement with AFM measurement. Images of other material structures include a dielectric grating, chrome-on-glass grating, silicon CPU structure, BD-R and BD-ROM.

  5. Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential.

    PubMed

    Blakeley, Matthew P; Hasnain, Samar S; Antonyuk, Svetlana V

    2015-07-01

    The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å) has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden) and Sirius (Brazil) under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å), for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59%) were released since 2010. Sub-mm(3) crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å) are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H(+)) remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place. Neutron

  6. New observations and a photographic atlas of polar-ring galaxies

    NASA Technical Reports Server (NTRS)

    Whitmore, Bradley C.; Lucas, Ray A.; Mcelroy, Douglas B.; Steiman-Cameron, Thomas Y.; Sackett, Penny D.

    1990-01-01

    A photographic atlas of polar-ring galaxies and related objects is presented. The atlas includes kinematically confirmed polar-ring galaxies (category A), good candidates based on their morphological appearance (category B), possible candidates (category C), and possibly related objects (category D). New photometric and kinematic observations are reported for several galaxies in the catalog, including observations that show that UGC 7576 and UGC 9796 ( = II ZW 73) are S0 galaxies with polar rings. Roughly 0.5 percent of all nearby S0 galaxies appear to have polar rings. When corrected for various selection effects (e.g., nonoptimal viewing orientation, possible dimming, or limited lifetime of the ring) the percentage increases to about 5 percent of S0 galaxies which have, or have had a polar ring.

  7. Adiabatic perturbation theory for atoms and molecules in the low-frequency regime

    NASA Astrophysics Data System (ADS)

    Martiskainen, Hanna; Moiseyev, Nimrod

    2017-12-01

    There is an increasing interest in the photoinduced dynamics in the low frequency, ω, regime. The multiphoton absorptions by molecules in strong laser fields depend on the polarization of the laser and on the molecular structure. The unique properties of the interaction of atoms and molecules with lasers in the low-frequency regime imply new concepts and directions in strong-field light-matter interactions. Here we represent a perturbational approach for the calculations of the quasi-energy spectrum in the low-frequency regime, which avoids the construction of the Floquet operator with extremely large number of Floquet channels. The zero-order Hamiltonian in our perturbational approach is the adiabatic Hamiltonian where the atoms/molecules are exposed to a dc electric field rather than to ac-field. This is in the spirit of the first step in the Corkum three-step model. The second-order perturbation correction terms are obtained when i ℏ ω ∂/∂ τ serves as a perturbation and τ is a dimensionless variable. The second-order adiabatic perturbation scheme is found to be an excellent approach for calculating the ac-field Floquet solutions in our test case studies of a simple one-dimensional time-periodic model Hamiltonian. It is straightforward to implement the perturbation approach presented here for calculating atomic and molecular energy shifts (positions) due to the interaction with low-frequency ac-fields using high-level electronic structure methods. This is enabled since standard quantum chemistry packages allow the calculations of atomic and molecular energy shifts due to the interaction with dc-fields. In addition to the shift of the energy positions, the energy widths (inverse lifetimes) can be obtained at the same level of theory. These energy shifts are functions of the laser parameters (low frequency, intensity, and polarization).

  8. Collective atomic scattering and motional effects in a dense coherent medium

    PubMed Central

    Bromley, S. L.; Zhu, B.; Bishof, M.; Zhang, X.; Bothwell, T.; Schachenmayer, J.; Nicholson, T. L.; Kaiser, R.; Yelin, S. F.; Lukin, M. D.; Rey, A. M.; Ye, J.

    2016-01-01

    We investigate collective emission from coherently driven ultracold 88Sr atoms. We perform two sets of experiments using a strong and weak transition that are insensitive and sensitive, respectively, to atomic motion at 1 μK. We observe highly directional forward emission with a peak intensity that is enhanced, for the strong transition, by >103 compared with that in the transverse direction. This is accompanied by substantial broadening of spectral lines. For the weak transition, the forward enhancement is substantially reduced due to motion. Meanwhile, a density-dependent frequency shift of the weak transition (∼10% of the natural linewidth) is observed. In contrast, this shift is suppressed to <1% of the natural linewidth for the strong transition. Along the transverse direction, we observe strong polarization dependences of the fluorescence intensity and line broadening for both transitions. The measurements are reproduced with a theoretical model treating the atoms as coherent, interacting radiating dipoles. PMID:26984643

  9. Comparison of collimated blue-light generation in 85Rb atoms via the D1 and D2 lines

    NASA Astrophysics Data System (ADS)

    Prajapati, Nikunj; Akulshin, Alexander M.; Novikova, Irina

    2018-05-01

    We experimentally studied the characteristics of the collimated blue light (CBL) produced in ${}^{85}$Rb vapor by two resonant laser fields exciting atoms into the $5D_{3/2}$ state, using either the $5P_{1/2}$ or the $5P_{3/2}$ intermediate state. We compared the CBL output at different values of frequency detunings, powers, and polarizations of the pump lasers in these two cases, and confirmed the observed trends using a simple theoretical model. We also demonstrated that the addition of the repump laser, preventing the accumulation of atomic population in the uncoupled hyperfine ground state, resulted in nearly an order of magnitude increase in CBL power output. Overall, we found that the $5S_{1/2} - 5P_{1/2} - 5D_{3/2}$ excitation pathway results in stronger CBL generation, as we detected up to $4.25~\\mu$W using two pumps of the same linear polarization. The optimum CBL output for the $5S_{1/2} - 5P_{3/2} - 5D_{3/2}$ excitation pathway required the two pump lasers to have the same circular polarization, but resulted only in a maximum CBL power of $450$~nW.

  10. A multi-ion generalized transport model of the polar wind

    NASA Technical Reports Server (NTRS)

    Demars, H. G.; Schunk, R. W.

    1994-01-01

    The higher-order generalizations of the equations of standard hydrodynamics, known collectively as generalized transport theories, have been used since the early 1980s to describe the terrestrial polar wind. Inherent in the structure of generalized transport theories is the ability to describe not only interparticle collisions but also certain non-Maxwellian processes, such as heat flow and viscous stress, that are characteristic of any plasma flow that is not collision dominated. Because the polar wind exhibits a transition from collision-dominated to collisionless flow, generalized transport theories possess advantages for polar wind modeling not shared by either collision-dominated models (such as standard hydrodynamics) or collisionless models (such as those based on solving the collisionless Boltzmann equation). In general, previous polar wind models have used generalized transport equations to describe electrons and only one species of ion (H(+)). If other ion species were included in the models at all, it was in a simplified or semiempirical manner. The model described in this paper is the first polar wind model that uses a generalized transport theory (bi-Maxwellian-based 16-moment theory) to describe all of the species, both major and minor, in the polar wind plasma. In the model, electrons and three ion species (H(+), He(+), O(+)) are assumed to be major and several ion species are assumed to be minor (NO(+), Fe(+), O(++)). For all species, a complete 16-moment transport formulation is used, so that profiles of density, drift velocity, parallel and perpendicular temperatures, and the field-aligned parallel and perpendicular energy flows are obtained. In the results presented here, emphasis is placed on describing those constituents of the polar wind that have received little attention in past studies. In particular, characteristic solutions are presented for supersonic H(+) outflow and for both supersonic and subsonic outflows of the major ion He

  11. Transmission of linearly polarized light in seawater: implications for polarization signaling.

    PubMed

    Shashar, Nadav; Sabbah, Shai; Cronin, Thomas W

    2004-09-01

    Partially linearly polarized light is abundant in the oceans. The natural light field is partially polarized throughout the photic range, and some objects and animals produce a polarization pattern of their own. Many polarization-sensitive marine animals take advantage of the polarization information, using it for tasks ranging from navigation and finding food to communication. In such tasks, the distance to which the polarization information propagates is of great importance. Using newly designed polarization sensors, we measured the changes in linear polarization underwater as a function of distance from a standard target. In the relatively clear waters surrounding coral reefs, partial (%) polarization decreased exponentially as a function of distance from the target, resulting in a 50% reduction of partial polarization at a distance of 1.25-3 m, depending on water quality. Based on these measurements, we predict that polarization sensitivity will be most useful for short-range (in the order of meters) visual tasks in water and less so for detecting objects, signals, or structures from far away. Navigation and body orientation based on the celestial polarization pattern are predicted to be limited to shallow waters as well, while navigation based on the solar position is possible through a deeper range.

  12. Electron-Poor Polar Intermetallics: Complex Structures, Novel Clusters, and Intriguing Bonding with Pronounced Electron Delocalization.

    PubMed

    Lin, Qisheng; Miller, Gordon J

    2018-01-16

    Intermetallic compounds represent an extensive pool of candidates for energy related applications stemming from magnetic, electric, optic, caloric, and catalytic properties. The discovery of novel intermetallic compounds can enhance understanding of the chemical principles that govern structural stability and chemical bonding as well as finding new applications. Valence electron-poor polar intermetallics with valence electron concentrations (VECs) between 2.0 and 3.0 e - /atom show a plethora of unprecedented and fascinating structural motifs and bonding features. Therefore, establishing simple structure-bonding-property relationships is especially challenging for this compound class because commonly accepted valence electron counting rules are inappropriate. During our efforts to find quasicrystals and crystalline approximants by valence electron tuning near 2.0 e - /atom, we observed that compositions close to those of quasicrystals are exceptional sources for unprecedented valence electron-poor polar intermetallics, e.g., Ca 4 Au 10 In 3 containing (Au 10 In 3 ) wavy layers, Li 14.7 Mg 36.8 Cu 21.5 Ga 66 adopting a type IV clathrate framework, and Sc 4 Mg x Cu 15-x Ga 7.5 that is incommensurately modulated. In particular, exploratory syntheses of AAu 3 T (A = Ca, Sr, Ba and T = Ge, Sn) phases led to interesting bonding features for Au, such as columns, layers, and lonsdaleite-type tetrahedral frameworks. Overall, the breadth of Au-rich polar intermetallics originates, in part, from significant relativistics effect on the valence electrons of Au, effects which result in greater 6s/5d orbital mixing, a small effective metallic radius, and an enhanced Mulliken electronegativity, all leading to ultimate enhanced binding with nearly all metals including itself. Two other successful strategies to mine electron-poor polar intermetallics include lithiation and "cation-rich" phases. Along these lines, we have studied lithiated Zn-rich compounds in which structural

  13. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies

    NASA Astrophysics Data System (ADS)

    Abbott, D.; Adderley, P.; Adeyemi, A.; Aguilera, P.; Ali, M.; Areti, H.; Baylac, M.; Benesch, J.; Bosson, G.; Cade, B.; Camsonne, A.; Cardman, L. S.; Clark, J.; Cole, P.; Covert, S.; Cuevas, C.; Dadoun, O.; Dale, D.; Dong, H.; Dumas, J.; Fanchini, E.; Forest, T.; Forman, E.; Freyberger, A.; Froidefond, E.; Golge, S.; Grames, J.; Guèye, P.; Hansknecht, J.; Harrell, P.; Hoskins, J.; Hyde, C.; Josey, B.; Kazimi, R.; Kim, Y.; Machie, D.; Mahoney, K.; Mammei, R.; Marton, M.; McCarter, J.; McCaughan, M.; McHugh, M.; McNulty, D.; Mesick, K. E.; Michaelides, T.; Michaels, R.; Moffit, B.; Moser, D.; Muñoz Camacho, C.; Muraz, J.-F.; Opper, A.; Poelker, M.; Réal, J.-S.; Richardson, L.; Setiniyaz, S.; Stutzman, M.; Suleiman, R.; Tennant, C.; Tsai, C.; Turner, D.; Ungaro, M.; Variola, A.; Voutier, E.; Wang, Y.; Zhang, Y.; PEPPo Collaboration

    2016-05-01

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19 MeV /c , limited only by the electron beam polarization. This technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

  14. Photofragment slice imaging studies of pyrrole and the Xe{center_dot}{center_dot}{center_dot}pyrrole cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubio-Lago, L.; Zaouris, D.; Sakellariou, Y.

    The photolysis of pyrrole has been studied in a molecular beam at wavelengths of 250, 240, and 193.3 nm, using two different carrier gases, He and Xe. A broad bimodal distribution of H-atom fragment velocities has been observed at all wavelengths. Near threshold at both 240 and 250 nm, sharp features have been observed in the fast part of the H-atom distribution. Under appropriate molecular beam conditions, the entire H-atom loss signal from the photolysis of pyrrole at both 240 and 250 nm (including the sharp features) disappear when using Xe as opposed to He as the carrier gas. Wemore » attribute this phenomenon to cluster formation between Xe and pyrrole, and this assumption is supported by the observation of resonance enhanced multiphoton ionization spectra for the (Xe{center_dot}{center_dot}{center_dot}pyrrole) cluster followed by photofragmentation of the nascent cation cluster. Ab initio calculations are presented for the ground states of the neutral and cationic (Xe{center_dot}{center_dot}{center_dot}pyrrole) clusters as a means of understanding their structural and energetic properties.« less

  15. Polarized electron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prepost, R.

    1994-12-01

    The fundamentals of polarized electron sources are described with particular application to the Stanford Linear Accelerator Center. The SLAC polarized electron source is based on the principle of polarized photoemission from Gallium Arsenide. Recent developments using epitaxially grown, strained Gallium Arsenide cathodes have made it possible to obtain electron polarization significantly in excess of the conventional 50% polarization limit. The basic principles for Gallium and Arsenide polarized photoemitters are reviewed, and the extension of the basic technique to strained cathode structures is described. Results from laboratory measurements of strained photocathodes as well as operational results from the SLAC polarized sourcemore » are presented.« less

  16. Promoting Diversity Through Polar Interdisciplinary Coordinated Education (Polar ICE)

    NASA Astrophysics Data System (ADS)

    McDonnell, J. D.; Hotaling, L. A.; Garza, C.; Van Dyk, P. B.; Hunter-thomson, K. I.; Middendorf, J.; Daniel, A.; Matsumoto, G. I.; Schofield, O.

    2017-12-01

    Polar Interdisciplinary Coordinated Education (ICE) is an education and outreach program designed to provide public access to the Antarctic and Arctic regions through polar data and interactions with the scientists. The program provides multi-faceted science communication training for early career scientists that consist of a face-to face workshop and opportunities to apply these skills. The key components of the scientist training workshop include cultural competency training, deconstructing/decoding science for non-expert audiences, the art of telling science stories, and networking with members of the education and outreach community and reflecting on communication skills. Scientists partner with educators to provide professional development for K-12 educators and support for student research symposia. Polar ICE has initiated a Polar Literacy initiative that provides both a grounding in big ideas in polar science and science communication training designed to underscore the importance of the Polar Regions to the public while promoting interdisciplinary collaborations between scientists and educators. Our ultimate objective is to promote STEM identity through professional development of scientists and educators while developing career awareness of STEM pathways in Polar science.

  17. Polarization-independent broadband meta-holograms via polarization-dependent nanoholes.

    PubMed

    Zhang, Xiaohu; Li, Xiong; Jin, Jinjin; Pu, Mingbo; Ma, Xiaoliang; Luo, Jun; Guo, Yinghui; Wang, Changtao; Luo, Xiangang

    2018-05-17

    Composed of ultrathin metal or dielectric nanostructures, metasurfaces can manipulate the phase, amplitude and polarization of electromagnetic waves at a subwavelength scale, which is promising for flat optical devices. In general, metasurfaces composed of space-variant anisotropic units are sensitive to the incident polarization due to the inherent polarization dependent geometric phase. Here, we implement polarization-independent broadband metasurface holograms constructed by polarization-dependent anisotropic elliptical nanoholes by elaborate design of complex amplitude holograms. The fabricated meta-hologram exhibits a polarization insensitive feature with an acceptable image quality. We verify the feasibility of the design algorithm for three-dimensional (3D) meta-holograms with simulation and the feasibility for two-dimensional (2D) meta-holograms is experimentally demonstrated at a broadband wavelength range from 405 nm to 632.8 nm. The effective polarization-independent broadband complex wavefront control with anisotropic elliptical nanoholes proposed in this paper greatly promotes the practical applications of the metasurface in technologies associated with wavefront manipulation, such as flat lens, colorful holographic displays and optical storage.

  18. Polarized and non-polarized leaf reflectances of Coleus blumei

    NASA Technical Reports Server (NTRS)

    Grant, Lois; Daughtry, C. S. T.; Vanderbilt, V. C.

    1987-01-01

    A polarization photometer has been used to measure the reflectance of three variegated portions of Coleus blumei, Benth. in five wavelength bands of the visible and near-infrared spectrum. The polarized component of the reflectance factor was found to be independent of wavelength, indicating that the polarized reflectance arises from the leaf surface. It is suggested that differences in the polarized component result from variations in surface features. The nonpolarized component of the reflectance factor is shown to be related to the internal leaf structure. The variation of the degree of polarization with wavelength was found to be greatest in the regions of the spectrum where absorption occurs.

  19. Excitation of trapped modes from a metasurface composed of only Z-shaped meta-atoms

    NASA Astrophysics Data System (ADS)

    Dhouibi, Abdallah; Nawaz Burokur, Shah; Lupu, Anatole; de Lustrac, André; Priou, Alain

    2013-10-01

    A printed planar Z-shaped meta-atom has recently been proposed as an alternative design to the conventional electric-LC resonator for achieving negative permittivity. Transforming the LC topology of the resonator helps to facilitate transposition of geometrical parameters for the optical regime and also to improve the metamaterial homogeneity. In this work, we discuss about the excitation of a dark or trapped mode in such Z-shaped meta-atom. The electromagnetic behavior of the meta-atom has been investigated through both simulations and experiments in the microwave regime. Our results show that the Z meta-atom exhibits a trapped mode resonance. Depending on the orientation of the polarized electromagnetic field with respect to the Z atom topology and the incident plane, the excitation of the dark mode can lead either to a narrowband resonance in reflection or to a very asymmetric Fano-like resonance in transmission, analog of electromagnetically induced transparency. Compared to other structures, the Z meta-atom presents the advantage of having the dark mode resonance spectrally spaced with respect to the bright mode resonances, which could simplify the observation of the dark mode at much shorter wavelengths.

  20. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies

    DOE PAGES

    Abbott, D.; Adderley, P.; Adeyemi, A.; ...

    2016-05-27

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19~MeV/c, limited only by the electron beam polarization. We report that this technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

  1. Tuning of polarization sensitivity in closely stacked trilayer InAs/GaAs quantum dots induced by overgrowth dynamics.

    PubMed

    Tasco, Vittorianna; Usman, Muhammad; De Giorgi, Milena; Passaseo, Adriana

    2014-02-07

    Tailoring of electronic and optical properties of self-assembled InAs quantum dots (QDs) is a critical limit for the design of several QD-based optoelectronic devices operating in the telecom frequency range. We describe how fine control of the strain-induced surface kinetics during the growth of vertically stacked multiple layers of QDs allows for the engineering of their self-organization process. Most noticeably, this study shows that the underlying strain field induced along a QD stack can be modulated and controlled by time-dependent intermixing and segregation effects occurring after capping with a GaAs spacer. This leads to a drastic increase of the TM/TE polarization ratio of emitted light, not accessible from conventional growth parameters. Our detailed experimental measurements, supported by comprehensive multi-million atom simulations of strain, electronic and optical properties, provide in-depth analysis of the grown QD samples allowing us to give a clear picture of the atomic scale phenomena affecting the proposed growth dynamics and consequent QD polarization response.

  2. Polarization digital holographic microscopy using low-cost liquid crystal polarization rotators

    NASA Astrophysics Data System (ADS)

    Dovhaliuk, Rostyslav Yu

    2018-02-01

    Polarization imaging methods are actively used to study anisotropic objects. A number of methods and systems, such as imaging polarimeters, were proposed to measure the state of polarization of light that passed through the object. Digital holographic and interferometric approaches can be used to quantitatively measure both amplitude and phase of a wavefront. Using polarization modulation optics, the measurement capabilities of such interference-based systems can be extended to measure polarization-dependent parameters, such as phase retardation. Different kinds of polarization rotators can be used to alternate the polarization of a reference beam. Liquid crystals are used in a rapidly increasing number of different optoelectronic devices. Twisted nematic liquid crystals are widely used as amplitude modulators in electronic displays and light valves or shutter glass. Such devices are of particular interest for polarization imaging, as they can be used as polarization rotators, and due to large-scale manufacturing have relatively low cost. A simple Mach-Zehnder polarized holographic setup that uses modified shutter glass as a polarization rotator is demonstrated. The suggested approach is experimentally validated by measuring retardation of quarter-wave film.

  3. Ultra-sensitive inertial sensors via neutral-atom interferometry

    NASA Technical Reports Server (NTRS)

    Clauser, John F.

    1989-01-01

    Upon looking at the various colossal interferometers, etc., discussed at this conference to test gravitational theory, one cannot avoid feeling that easier approaches exist. The use of low velocity, neutral atom matter waves in place of electromagnetic waves in sensitive inertial interferometer configurations is proposed. For applications, spacecraft experiments to sense a drag-free condition, to measure the Lense-Thirring precession, to measure the gravitomagnetic effect and/or the earth's geopotential (depending on altitude), and to detect long period gravitational waves are considered. Also, a terrestrial precision test of the equivalence principle on spin polarized atoms, capable of detecting effects of the 5th force is considered. While the ideas described herein are preliminary, the orders of magnitude are sufficiently tantalizing to warrant further study. Although existing proposed designs may be adequate for some of these experiments, the use of matter-wave interferometry offers reduced complexity and cost, and an absence of cryogenics.

  4. Determination of the Kinematics of the Qweak Experiment and Investigation of an Atomic Hydrogen Moller Polarimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, Valerie M.

    The Q weak experiment has tested the Standard Model through making a precise measurement of the weak charge of the proton (more » $$Q^p_W$$). This was done through measuring the parity-violating asymmetry for polarized electrons scattering off of unpolarized protons. The parity-violating asymmetry measured is directly proportional to the four-momentum transfer ($Q^2$) from the electron to the proton. The extraction of $$Q^p_W$$ from the measured asymmetry requires a precise $Q^2$ determination. The Q weak experiment had a $Q^2$ = 24.8 ± 0.1 m(GeV 2) which achieved the goal of an uncertainty of <= 0.5%. From the measured asymmetry and $Q^2$, $$Q^p_W$$ was determined to be 0.0719 ± 0.0045, which is in good agreement with the Standard Model prediction. This puts a 7.5 TeV lower limit on possible "new physics". This dissertation describes the analysis of Q^2 for the Q weak experiment. Future parity-violating electron scattering experiments similar to the Q weak experiment will measure asymmetries to high precision in order to test the Standard Model. These measurements will require the beam polarization to be measured to sub-0.5% precision. Presently the electron beam polarization is measured through Moller scattering off of a ferromagnetic foil or through using Compton scattering, both of which can have issues reaching this precision. A novel Atomic Hydrogen Moller Polarimeter has been proposed as a non-invasive way to measure the polarization of an electron beam via Moller scattering off of polarized monatomic hydrogen gas. This dissertation describes the development and initial analysis of a Monte Carlo simulation of an Atomic Hydrogen Moller Polarimeter.« less

  5. Local conductance: A means to extract polarization and depolarizing fields near domain walls in ferroelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, A. M.; Kumar, A.; Gregg, J. M.

    Conducting atomic force microscopy images of bulk semiconducting BaTiO{sub 3} surfaces show clear stripe domain contrast. High local conductance correlates with strong out-of-plane polarization (mapped independently using piezoresponse force microscopy), and current-voltage characteristics are consistent with dipole-induced alterations in Schottky barriers at the metallic tip-ferroelectric interface. Indeed, analyzing current-voltage data in terms of established Schottky barrier models allows relative variations in the surface polarization, and hence the local domain structure, to be determined. Fitting also reveals the signature of surface-related depolarizing fields concentrated near domain walls. Domain information obtained from mapping local conductance appears to be more surface-sensitive than thatmore » from piezoresponse force microscopy. In the right materials systems, local current mapping could therefore represent a useful complementary technique for evaluating polarization and local electric fields with nanoscale resolution.« less

  6. Libre: Freeing Polar Data in an Information Commons

    NASA Astrophysics Data System (ADS)

    Duerr, R. E.; Parsons, M. A.

    2010-12-01

    As noted in the session description “The polar regions are at the forefront of modern environmental change, currently experiencing the largest and fastest changes in climate and environment”. Wise use of resources, astute management of our environment, improved decision support, and effective international cooperation on natural resource and geopolitical issues require a deeper understanding of, and an ability to predict change and its impact. Understanding and knowledge are built on data and information, yet polar information is scattered, scarce, and sporadic. Rapid change demands rapid data access. We envision a system where investigators quickly expose their data to the world and share them, without restriction, through open protocols on the Internet. A single giant, central archive is not practical for all polar data held around the world. Instead, we seek a collaborative, virtual space, where scientific data and information could be shared ethically and with minimal constraints. Inspired by the Antarctic Treaty of 1959 that established the Antarctic as a global commons to generate greater scientific understanding, the International Council of Science leads the Polar Information Commons (PIC). The PIC, engendered by the International Polar Year (IPY) and work on the IPY data policy, serves as an open, virtual repository for vital scientific data and information. An international network of scientific and data management organizations concerned with the scientific quality, integrity, and stewardship of data is developing the PIC. The PIC utilizes the Science Commons Protocol for Implementing Open Access Data, including establishment of community norms to encourage appropriate contributions to and use of PIC content. Data descriptions (metadata) are not necessarily registered in formal repositories or catalogues. They may simply be exposed to search engines or broadcast through syndication services such as RSS or Atom. The data are labeled or branded as part

  7. Dynamic Nuclear Polarization of 17O: Direct Polarization

    PubMed Central

    Michaelis, Vladimir K.; Corzilius, Björn; Smith, Albert A.; Griffin, Robert G.

    2014-01-01

    Dynamic nuclear polarization of 17O was studied using four different polarizing agents – the biradical TOTAPOL, and the monoradicals trityl and SA-BDPA, as well as a mixture of the latter two. Field profiles, DNP mechanisms and enhancements were measured to better understand and optimize directly polarizing this low-gamma quadrupolar nucleus using both mono- and bi-radical polarizing agents. Enhancements were recorded < 88 K and were > 100 using the trityl (OX063) radical and < 10 with the other polarizing agents. The > 10,000 fold savings in acquisition time enabled a series of biologically relevant small molecules to be studied with small sample sizes and the measurement of various quadrupolar parameters. The results are discussed with comparison to room temperature studies and GIPAW quantum chemical calculations. These experimental results illustrate the strength of high field DNP and the importance of radical selection for studying low-gamma nuclei. PMID:24195759

  8. Dynamic nuclear polarization of 17O: direct polarization.

    PubMed

    Michaelis, Vladimir K; Corzilius, Björn; Smith, Albert A; Griffin, Robert G

    2013-12-05

    Dynamic nuclear polarization of (17)O was studied using four different polarizing agents: the biradical TOTAPOL and the monoradicals trityl and SA-BDPA, as well as a mixture of the latter two. Field profiles, DNP mechanisms, and enhancements were measured to better understand and optimize directly polarizing this low-gamma quadrupolar nucleus using both mono- and biradical polarizing agents. Enhancements were recorded at <88 K and were >100 using the trityl (OX063) radical and <10 with the other polarizing agents. The >10,000-fold savings in acquisition time enabled a series of biologically relevant small molecules to be studied with small sample sizes and the measurement of various quadrupolar parameters. The results are discussed with comparison to room temperature studies and GIPAW quantum chemical calculations. These experimental results illustrate the strength of high field DNP and the importance of radical selection for studying low-gamma nuclei.

  9. Lid opening and conformational stability of T1 Lipase is mediated by increasing chain length polar solvents

    PubMed Central

    Mohamad Ali, Mohd Shukuri; Salleh, Abu Bakar; Rahman, Raja Noor Zaliha Raja Abd; Normi, Yahaya M.; Mohd Shariff, Fairolniza

    2017-01-01

    The dynamics and conformational landscape of proteins in organic solvents are events of potential interest in nonaqueous process catalysis. Conformational changes, folding transitions, and stability often correspond to structural rearrangements that alter contacts between solvent molecules and amino acid residues. However, in nonaqueous enzymology, organic solvents limit stability and further application of proteins. In the present study, molecular dynamics (MD) of a thermostable Geobacillus zalihae T1 lipase was performed in different chain length polar organic solvents (methanol, ethanol, propanol, butanol, and pentanol) and water mixture systems to a concentration of 50%. On the basis of the MD results, the structural deviations of the backbone atoms elucidated the dynamic effects of water/organic solvent mixtures on the equilibrium state of the protein simulations in decreasing solvent polarity. The results show that the solvent mixture gives rise to deviations in enzyme structure from the native one simulated in water. The drop in the flexibility in H2O, MtOH, EtOH and PrOH simulation mixtures shows that greater motions of residues were influenced in BtOH and PtOH simulation mixtures. Comparing the root mean square fluctuations value with the accessible solvent area (SASA) for every residue showed an almost correspondingly high SASA value of residues to high flexibility and low SASA value to low flexibility. The study further revealed that the organic solvents influenced the formation of more hydrogen bonds in MtOH, EtOH and PrOH and thus, it is assumed that increased intraprotein hydrogen bonding is ultimately correlated to the stability of the protein. However, the solvent accessibility analysis showed that in all solvent systems, hydrophobic residues were exposed and polar residues tended to be buried away from the solvent. Distance variation of the tetrahedral intermediate packing of the active pocket was not conserved in organic solvent systems, which

  10. Normalized Polarization Ratios for the Analysis of Cell Polarity

    PubMed Central

    Shimoni, Raz; Pham, Kim; Yassin, Mohammed; Ludford-Menting, Mandy J.; Gu, Min; Russell, Sarah M.

    2014-01-01

    The quantification and analysis of molecular localization in living cells is increasingly important for elucidating biological pathways, and new methods are rapidly emerging. The quantification of cell polarity has generated much interest recently, and ratiometric analysis of fluorescence microscopy images provides one means to quantify cell polarity. However, detection of fluorescence, and the ratiometric measurement, is likely to be sensitive to acquisition settings and image processing parameters. Using imaging of EGFP-expressing cells and computer simulations of variations in fluorescence ratios, we characterized the dependence of ratiometric measurements on processing parameters. This analysis showed that image settings alter polarization measurements; and that clustered localization is more susceptible to artifacts than homogeneous localization. To correct for such inconsistencies, we developed and validated a method for choosing the most appropriate analysis settings, and for incorporating internal controls to ensure fidelity of polarity measurements. This approach is applicable to testing polarity in all cells where the axis of polarity is known. PMID:24963926

  11. Lunar true polar wander inferred from polar hydrogen.

    PubMed

    Siegler, M A; Miller, R S; Keane, J T; Laneuville, M; Paige, D A; Matsuyama, I; Lawrence, D J; Crotts, A; Poston, M J

    2016-03-24

    The earliest dynamic and thermal history of the Moon is not well understood. The hydrogen content of deposits near the lunar poles may yield insight into this history, because these deposits (which are probably composed of water ice) survive only if they remain in permanent shadow. If the orientation of the Moon has changed, then the locations of the shadowed regions will also have changed. The polar hydrogen deposits have been mapped by orbiting neutron spectrometers, and their observed spatial distribution does not match the expected distribution of water ice inferred from present-day lunar temperatures. This finding is in contrast to the distribution of volatiles observed in similar thermal environments at Mercury's poles. Here we show that polar hydrogen preserves evidence that the spin axis of the Moon has shifted: the hydrogen deposits are antipodal and displaced equally from each pole along opposite longitudes. From the direction and magnitude of the inferred reorientation, and from analysis of the moments of inertia of the Moon, we hypothesize that this change in the spin axis, known as true polar wander, was caused by a low-density thermal anomaly beneath the Procellarum region. Radiogenic heating within this region resulted in the bulk of lunar mare volcanism and altered the density structure of the Moon, changing its moments of inertia. This resulted in true polar wander consistent with the observed remnant polar hydrogen. This thermal anomaly still exists and, in part, controls the current orientation of the Moon. The Procellarum region was most geologically active early in lunar history, which implies that polar wander initiated billions of years ago and that a large portion of the measured polar hydrogen is ancient, recording early delivery of water to the inner Solar System. Our hypothesis provides an explanation for the antipodal distribution of lunar polar hydrogen, and connects polar volatiles to the geologic and geophysical evolution of the Moon

  12. Laser Assisted Free-Free Transition in Electron - Atom Collision

    NASA Technical Reports Server (NTRS)

    Sinha, C.; Bhatia, A. K.

    2011-01-01

    Free-free transition is studied for electron-Hydrogen atom system in ground state at very low incident energies in presence of an external homogeneous, monochromatic and linearly polarized laser field. The incident electron is considered to be dressed by the laser in a non perturbative manner by choosing the Volkov solutions in both the channels. The space part of the scattering wave function for the electron is solved numerically by taking into account the effect of electron exchange, short range as well as of the long range interactions. Laser assisted differential as well as elastic total cross sections are calculated for single photon absorption/emission in the soft photon limit, the laser intensity being much less than the atomic field intensity. A strong suppression is noted in the laser assisted cross sections as compared to the field free situations. Significant difference is noted in the singlet and the triplet cross sections.

  13. Atom Skimmers and Atom Lasers Utilizing Them

    NASA Technical Reports Server (NTRS)

    Hulet, Randall; Tollett, Jeff; Franke, Kurt; Moss, Steve; Sackett, Charles; Gerton, Jordan; Ghaffari, Bita; McAlexander, W.; Strecker, K.; Homan, D.

    2005-01-01

    Atom skimmers are devices that act as low-pass velocity filters for atoms in thermal atomic beams. An atom skimmer operating in conjunction with a suitable thermal atomic-beam source (e.g., an oven in which cesium is heated) can serve as a source of slow atoms for a magneto-optical trap or other apparatus in an atomic-physics experiment. Phenomena that are studied in such apparatuses include Bose-Einstein condensation of atomic gases, spectra of trapped atoms, and collisions of slowly moving atoms. An atom skimmer includes a curved, low-thermal-conduction tube that leads from the outlet of a thermal atomic-beam source to the inlet of a magneto-optical trap or other device in which the selected low-velocity atoms are to be used. Permanent rare-earth magnets are placed around the tube in a yoke of high-magnetic-permeability material to establish a quadrupole or octupole magnetic field leading from the source to the trap. The atoms are attracted to the locus of minimum magnetic-field intensity in the middle of the tube, and the gradient of the magnetic field provides centripetal force that guides the atoms around the curve along the axis of the tube. The threshold velocity for guiding is dictated by the gradient of the magnetic field and the radius of curvature of the tube. Atoms moving at lesser velocities are successfully guided; faster atoms strike the tube wall and are lost from the beam.

  14. Polar Bears

    USGS Publications Warehouse

    Amstrup, Steven C.; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Polar bears (Ursus maritimus) are hunted throughout most of their range. In addition to hunting polar bears of the Beaufort Sea region are exposed to mineral and petroleum extraction and related human activities such as shipping road-building, and seismic testing (Stirling 1990).Little was known at the start of this project about how polar bears move about in their environment, and although it was understood that many bears travel across political borders, the boundaries of populations had not been delineated (Amstrup 1986, Amstrup et al. 1986, Amstrup and DeMaster 1988, Garner et al. 1994, Amstrup 1995, Amstrup et al. 1995, Amstrup 2000).As human populations increase and demands for polar bears and other arctic resources escalate, managers must know the sizes and distributions of the polar bear populations. Resource managers also need reliable estimates of breeding rates, reproductive intervals, litter sizes, and survival of young and adults.Our objectives for this research were 1) to determine the seasonal and annual movements of polar bears in the Beaufort Sea, 2) to define the boundaries of the population(s) using this region, 3) to determine the size and status of the Beaufort Sea polar bear population, and 4) to establish reproduction and survival rates (Amstrup 2000).

  15. Polarity inversion of AlN film grown on nitrided a-plane sapphire substrate with pulsed DC reactive sputtering

    NASA Astrophysics Data System (ADS)

    Noorprajuda, Marsetio; Ohtsuka, Makoto; Fukuyama, Hiroyuki

    2018-04-01

    The effect of oxygen partial pressure (PO2) on polarity and crystalline quality of AlN films grown on nitrided a-plane sapphire substrates by pulsed direct current (DC) reactive sputtering was investigated as a fundamental study. The polarity inversion of AlN from nitrogen (-c)-polarity to aluminum (+c)-polarity occurred during growth at a high PO2 of 9.4×103 Pa owing to Al-O octahedral formation at the interface of nitrided layer and AlN sputtered film which reset the polarity of AlN. The top part of the 1300 nm-thick AlN film sputtered at the high PO2 was polycrystallized. The crystalline quality was improved owing to the high kinetic energy of Al sputtered atom in the sputtering phenomena. Thinner AlN films were also fabricated at the high PO2 to eliminate the polycrystallization. For the 200 nm-thick AlN film sputtered at the high PO2, the full width at half-maximum values of the AlN (0002) and (10-12) X-ray diffraction rocking curves were 47 and 637 arcsec, respectively.

  16. Low-Energy Electron Effects on the Polar Wind Observed by the POLAR Spacecraft

    NASA Technical Reports Server (NTRS)

    Horwitz, J. L.; Su, Y.-J.; Dors, E. E.; Moore, Thomas E.; Giles, Barbara L.; Chandler, Michael O.; Craven, Paul D.; Chang, S.-W.; Scudder, J.

    1998-01-01

    Large ion outflow velocity variation at POLAR apogee have been observed. The observed H+ flow velocities were in the range of 23-110 km/s and 0+ flow velocities were in the range of 5-25 km/s. These velocity ranges lie between those predicted by simulations of the photoelectron-driven polar wind and "baseline" polar wind. The electric current contributions of the photoelectrons and polar rain are expected to control the size and altitude of an electric potential drop which accelerates the polar wind at relatively high altitudes. In this presentation, we compare polar wind characteristics observed near 5000 km and 8 RE altitudes by the Thermal Ion Dynamics Experiment (TIDE) with measurements of low-energy electrons sampled by HYDRA, both from the POLAR spacecraft, to examine possible effects of the polar rain and photoelectrons on the polar wind. Both correlations and anti-correlations are found between the polar wind velocities and the polar rain fluxes at POLAR apogee during different polar cap crossings. Also, the low-altitude upward/downward photoelectron spectra are used to estimates the potential drops above the spacecraft. We interpret these observations in terms of the effects that both photoelectrons and polar rain may have on the electric potential and polar wind acceleration along polar cap magnetic field lines.

  17. Bonded Radii and the Contraction of the Electron Density of the Oxygen Atom by Bonded Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Gerald V.; Ross, Nancy L.; Cox, David F.

    2013-02-21

    The bonded radii for more than 550 bonded pairs of atoms, comprising more than 50 crystals, determined from experimental and theoretical electron density distributions, are compared with the effective ionic, ri(M), and crystal radii, rc(M), for metal atoms, M, bonded to O atoms. At odds with the fixed ionic radius of 1.40 Å, assumed for the O atom in the compilation of the ionic radii, the bonded radius for the atom, rb(O), is not fixed but displays a relatively wide range of values as the O atom is progressively polarized by the M-O bonded interactions: as such, rb(O) decreases systematicallymore » from 1.40 Å (the Pauling radius of the oxide anion) as bond lengths decrease when bonded to an electropositive atom like sodium, to 0.64 Å (Bragg’s atomic radius of the O atom) when bonded to an electronegative atom like nitrogen. Both rb(M) and rb(O) increase in tandum with the increasing coordination number of the M atom. The bonded radii of the M atoms are highly correlated with both ri(M) and rc(M), but they both depart systematically from rb(M) and become smaller as the electronegativity of the M atom increases and the M-O bond length decreases. The well-developed correlations between both sets of radii and rb(M) testifies to the relative precision of both sets of radii and the fact that both sets are highly correlated the M-O bond 1 lengths. On the other hand, the progressive departure of rb(O) from the fixed ionic radius of the O atom with the increasing electronegativity of the bonded M atom indicates that any compilation of sets of ionic radii, assuming that the radius for the oxygen atom is fixed in value, is problematical and impacts on the accuracy of the resulting sets of ionic and crystal radii thus compiled. The assumption of a fixed O atom radius not only results in a negative ionic radii for several atoms, but it also results in values of rb(M) that are much as ~ 0.6 Å larger than the ri(M) and rc(M) values, respectively, particularly for the

  18. Ultra-narrow EIA spectra of 85Rb atom in a degenerate Zeeman multiplet system

    NASA Astrophysics Data System (ADS)

    Rehman, Hafeez Ur; Qureshi, Muhammad Mohsin; Noh, Heung-Ryoul; Kim, Jin-Tae

    2015-05-01

    Ultra-narrow EIA spectral features of thermal 85Rb atom with respect to coupling Rabi frequencies in a degenerate Zeeman multiplet system have been unraveled in the cases of same (σ+ -σ+ , π ∥ π) and orthogonal (σ+ -σ- , π ⊥ π)polarization configurations. The EIA signals with subnatural linewidth of ~ 100 kHz even in the cases of same circular and linear polarizations of coupling and probe laser have been obtained for the first time theoretically and experimentally. In weak coupling power limit of orthogonal polarization configurations, time-dependent transfer of coherence plays major role in the splitting of the EIA spectra while in strong coupling power, Mollow triplet-like mechanism due to strong power bring into broad split feature. The experimental ultra-narrow EIA features using one laser combined with an AOM match well with simulated spectra obtained by using generalized time-dependent optical Bloch equations.

  19. Polarization-balanced beamsplitter

    DOEpatents

    Decker, D.E.

    1998-02-17

    A beamsplitter assembly is disclosed that includes several beamsplitter cubes arranged to define a plurality of polarization-balanced light paths. Each polarization-balanced light path contains one or more balanced pairs of light paths, where each balanced pair of light paths includes either two transmission light paths with orthogonal polarization effects or two reflection light paths with orthogonal polarization effects. The orthogonal pairing of said transmission and reflection light paths cancels polarization effects otherwise caused by beamsplitting. 10 figs.

  20. Potential surfaces for O atom-polymer reactions

    NASA Technical Reports Server (NTRS)

    Laskowski, B. C.; Jaffe, R. L.

    1987-01-01

    Ab initio quantum chemistry methods are used to study the energetics of interactions of O atoms with organic compounds. Polyethylene (CH2)n has been chosen as the model system to study the interactions of O(3P) and O(1D) atoms with polymers. In particular, H abstraction is investigated and polyethylene is represented by a C3 (propane) oligomeric model. The gradient method, as implemented in the GRADSCF package of programs, is used to determine the geometries and energies of products and reactants. The saddle point, barrier geometry is determined by minimizing the squares of the gradients of the potential with respect to the internal coordinates. To correctly describe the change in bonding during the reaction at least a two configuration MCSCF (multiconfiguration self consistent field) or GVB (generalized valence bond) wave function has to be used. Basis sets include standard Pople and Dunning sets, however, increased with polarization functions and diffuse p functions on both the C and O atoms. The latter is important due to the O(-) character of the wave function at the saddle point and products. Normal modes and vibrational energy levels are given for the reactants, saddle points and products. Finally, quantitative energetics are obtained by implementing a small CAS (complete active space) approach followed by limited configuration interaction (CI) calculations. Comparisons are made with available experimental data.