Science.gov

Sample records for polarized human intestinal

  1. Ricin crosses polarized human intestinal cells and intestines of ricin-gavaged mice without evident damage and then disseminates to mouse kidneys.

    PubMed

    Flora, Alyssa D; Teel, Louise D; Smith, Mark A; Sinclair, James F; Melton-Celsa, Angela R; O'Brien, Alison D

    2013-01-01

    Ricin is a potent toxin found in the beans of Ricinus communis and is often lethal for animals and humans when aerosolized or injected and causes significant morbidity and occasional death when ingested. Ricin has been proposed as a bioweapon because of its lethal properties, environmental stability, and accessibility. In oral intoxication, the process by which the toxin transits across intestinal mucosa is not completely understood. To address this question, we assessed the impact of ricin on the gastrointestinal tract and organs of mice after dissemination of toxin from the gut. We first showed that ricin adhered in a specific pattern to human small bowel intestinal sections, the site within the mouse gut in which a variable degree of damage has been reported by others. We then monitored the movement of ricin across polarized human HCT-8 intestinal monolayers grown in transwell inserts and in HCT-8 cell organoids. We observed that, in both systems, ricin trafficked through the cells without apparent damage until 24 hours post intoxication. We delivered a lethal dose of purified fluorescently-labeled ricin to mice by oral gavage and followed transit of the toxin from the gastrointestinal tracts to the internal organs by in vivo imaging of whole animals over time and ex vivo imaging of organs at various time points. In addition, we harvested organs from unlabeled ricin-gavaged mice and assessed them for the presence of ricin and for histological damage. Finally, we compared serum chemistry values from buffer-treated versus ricin-intoxicated animals. We conclude that ricin transverses human intestinal cells and mouse intestinal cells in situ prior to any indication of enterocyte damage and that ricin rapidly reaches the kidneys of intoxicated mice. We also propose that mice intoxicated orally with ricin likely die from distributive shock. PMID:23874986

  2. Relationships between human intestinal absorption and polar interactions drug/phospholipids estimated by IAM-HPLC.

    PubMed

    Grumetto, Lucia; Russo, Giacomo; Barbato, Francesco

    2015-07-15

    Phospholipid affinity indexes (logkW(IAM)) for 15 structurally non-related basic, acidic, ampholytic, and neutral drugs were measured by HPLC on two different phospholipid stationary phases (immobilized artificial membrane - IAM). According to a method we previously proposed, polar and electrostatic forces involved in drug/membrane interactions were quantified both as ΔlogkW(IAM) and as Δ(')logkW(IAM). These values are the differences between the experimental logkW(IAM) and the values expected for a neutral compound having the lipophilicity value equal to either that of the neutral form of the analyte (logP(N)) or that of the mixture of charged and neutral forms of the analyte at jejunum pH 6.5 (logD(6.5)), respectively. Jejunum absorption values, logPeff, measured by the Loc-I-Gut technique, did not relate with logkW(IAM) values. A moderate linear relationship was observed with logP(N) values for all the analytes and a weak parabolic relationship was observed with logD(6.5) values, but only after the exclusion of two analytes. In contrast, a highly significant linear inverse relationship was observed with ΔlogkW(IAM) values. Therefore, differently from the results of our recent studies on blood-brain barrier passage, the intestinal absorption data for not only bases and zwitterions but also for acids relate significantly with ΔlogkW(IAM) and not with Δ(')logkW(IAM) values. The results suggest that membrane passage at jejunum level can be described according to the "flip-flop" model; indeed, the lipophilicity of the neutral forms (logP(N)) appears related to the passage through the non-polar inner moieties of phospholipids whereas ΔlogkW(IAM) parameter appears related to the "trapping" forces at their polar surfaces. The method, easy to perform and at medium throughput, could be of use for preliminary screening of new drugs based on oral absorption potential. PMID:25917756

  3. Polarized secretion of newly synthesized lipoproteins by the Caco-2 human intestinal cell line

    SciTech Connect

    Traber, M.G.; Kayden, H.J.; Rindler, M.J.

    1987-11-01

    Lipoprotein secretion by Caco-2 cells, a human intestinal cell line, was studied in cells grown on inserts containing a Millipore filter (0.45 micron), separating secretory products from the apical and basolateral membranes into separate chambers. Under these conditions, as observed by electron microscopy, the cells formed a monolayer of columnar epithelial cells with microvilli on the apical surface and tight junctions between cells. The electrical resistances of the cell monolayers were 250-500 ohms/cm2. Both /sup 14/C-labeled lipids and /sup 35/S-labeled proteins were used to assess lipoprotein secretion. After a 24-hr incubation with (/sup 14/C)oleic acid, 60-80% of the secreted triglyceride (TG) was in the basolateral chamber; 40% of the TG was present in the d less than 1.006 g/ml (chylomicron + VLDL) fraction and 50% in the 1.006 less than d less than 1.063 g/ml (LDL) fraction. After a 4-hr incubation with (/sup 35/S)methionine, apolipoproteins were found to be major secretory products with 75-100% secreted to the basolateral chamber. Apolipoproteins B-100, B-48, E, A-I, A-IV, and C-III were identified by immunoprecipitation. The d less than 1.006 g/ml fraction was found to contain all of the major apolipoproteins, while the LDL fraction contained primarily apoB-100 and apoE; the HDL (1.063 less than d less than 1.21 g/ml) fraction principally contained apoA-I and apoA-IV. Mn-heparin precipitated all of the (/sup 35/S)methionine-labeled apoB-100 and B-48 and a majority of the other apolipoproteins, and 80% of the (/sup 14/C)oleic acid-labeled triglyceride, but only 15% of the phospholipid, demonstrating that Caco-2 cells secrete triglyceride-rich lipoproteins containing apoB.

  4. Intermediate Filaments and Polarization in the Intestinal Epithelium.

    PubMed

    Coch, Richard A; Leube, Rudolf E

    2016-01-01

    The cytoplasmic intermediate filament cytoskeleton provides a tissue-specific three-dimensional scaffolding with unique context-dependent organizational features. This is particularly apparent in the intestinal epithelium, in which the intermediate filament network is localized below the apical terminal web region and is anchored to the apical junction complex. This arrangement is conserved from the nematode Caenorhabditis elegans to humans. The review summarizes compositional, morphological and functional features of the polarized intermediate filament cytoskeleton in intestinal cells of nematodes and mammals. We emphasize the cross talk of intermediate filaments with the actin- and tubulin-based cytoskeleton. Possible links of the intermediate filament system to the distribution of apical membrane proteins and the cell polarity complex are highlighted. Finally, we discuss how these properties relate to the establishment and maintenance of polarity in the intestine. PMID:27429003

  5. The pathogenic potential of Helicobacter cinaedi isolated from non-human sources: adherence, invasion and translocation ability in polarized intestinal epithelial Caco-2 cells in vitro.

    PubMed

    Taniguchi, Takako; Yamazaki, Wataru; Saeki, Yuji; Takajo, Ichiro; Okayama, Akihiko; Hayashi, Tetsuya; Misawa, Naoaki

    2016-05-01

    Helicobacter cinaedi infection has been recognized as an increasingly important emerging disease in humans. Infection with H. cinaedi causes bacteremia, cellulitis and enteritis. H. cinaedi has been isolated from non-human sources, including dogs, cats and rodents; however, it remains unclear whether animal strains are pathogenic in humans and as zoonotic pathogens. In this study, H. cinaedi isolates were recovered from a dog and a hamster, and the ability of these isolates to adhere to, invade and translocate across polarized human intestinal epithelial Caco-2 cells was examined in vitro. To better understand the pathogenic potential of animal H. cinaedi isolates, these results were compared with those for a human strain that was isolated from a patient with bacteremia. The animal and human strains adhered to and invaded Caco-2 cells, but to a lesser degree than the C. jejuni 81-176 strain, which was used as a control. The integrity of tight junctions was monitored by measuring transepithelial electrical resistance (TER) with a membrane insert system. The TER values for all H. cinaedi strains did not change during the experimental periods compared with those of the controls; however, translocation of H. cinaedi from the apical side to the basolateral side was confirmed by cultivation and H. cinaedi-specific PCR, suggesting that the H. cinaedi strains translocated by transcellular route. This study demonstrated that H. cinaedi strains of animal origin might have a pathogenic potential in human epithelial cells as observed in a translocation assay in vitro with a human isolate. PMID:26685883

  6. The pathogenic potential of Helicobacter cinaedi isolated from non-human sources: adherence, invasion and translocation ability in polarized intestinal epithelial Caco-2 cells in vitro

    PubMed Central

    TANIGUCHI, Takako; YAMAZAKI, Wataru; SAEKI, Yuji; TAKAJO, Ichiro; OKAYAMA, Akihiko; HAYASHI, Tetsuya; MISAWA, Naoaki

    2015-01-01

    Helicobacter cinaedi infection has been recognized as an increasingly important emerging disease in humans. Infection with H. cinaedi causes bacteremia, cellulitis and enteritis. H. cinaedi has been isolated from non-human sources, including dogs, cats and rodents; however, it remains unclear whether animal strains are pathogenic in humans and as zoonotic pathogens. In this study, H. cinaedi isolates were recovered from a dog and a hamster, and the ability of these isolates to adhere to, invade and translocate across polarized human intestinal epithelial Caco-2 cells was examined in vitro. To better understand the pathogenic potential of animal H. cinaedi isolates, these results were compared with those for a human strain that was isolated from a patient with bacteremia. The animal and human strains adhered to and invaded Caco-2 cells, but to a lesser degree than the C. jejuni 81–176 strain, which was used as a control. The integrity of tight junctions was monitored by measuring transepithelial electrical resistance (TER) with a membrane insert system. The TER values for all H. cinaedi strains did not change during the experimental periods compared with those of the controls; however, translocation of H. cinaedi from the apical side to the basolateral side was confirmed by cultivation and H. cinaedi-specific PCR, suggesting that the H. cinaedi strains translocated by transcellular route. This study demonstrated that H. cinaedi strains of animal origin might have a pathogenic potential in human epithelial cells as observed in a translocation assay in vitro with a human isolate. PMID:26685883

  7. Adhesion of Helicobacter pylori to polarized T84 human intestinal cell monolayers is pH dependent.

    PubMed Central

    Corthésy-Theulaz, I; Porta, N; Pringault, E; Racine, L; Bogdanova, A; Kraehenbuhl, J P; Blum, A L; Michetti, P

    1996-01-01

    Epithelial cells, which form tight polarized monolayers on porous substrates, constitute ideal model systems to study bacterial adhesion and invasion. The binding of Helicobacter pylori to the apical membrane of T84 cells, an epithelial cell line derived from a human colon carcinoma, was assessed biochemically and morphologically. Attachment was rapid, and binding remained constant over time, with a significant (P < 0.01, Mann-Whitney U test) ca. fourfold increase at pH 5.4 (76% +/- 22%) compared with pH 7.4 (18% +/- 7%). In contrast, adhesion of enteropathogenic Escherichia coli was not enhanced at pH 5.4. The transepithelial electrical resistance of the T84 cell monolayers was not affected by pH or by H. pylori. Following binding, H. pylori induced a reorganization of the brush border as reflected by actin condensation, facilitating the intimate association of the bacteria with the apical plasma membrane. H.pylori was not internalized, as shown by confocal microscopy. Some bacteria, found in deep invaginations of the apical membrane, were probably inaccessible to gentamicin, thus accounting for the observed tolerance to the antibiotic. These data provide the first evidence that an acidic environment favors Helicobacter adhesion and that binding is followed by survival of the survival of the bacteria in pockets of the apical membrane. PMID:8751935

  8. Listeria monocytogenes Stimulates Mucus Exocytosis in Cultured Human Polarized Mucosecreting Intestinal Cells through Action of Listeriolysin O

    PubMed Central

    Coconnier, Marie-Hélène; Dlissi, Elyess; Robard, Myriam; Laboisse, Christian L.; Gaillard, Jean-Louis; Servin, Alain L.

    1998-01-01

    When the intracellular pathogen Listeria monocytogenes infects cultured human mucosecreting polarized HT29-MTX cells apically, it induces the stimulation of mucus exocytosis without cell entry. Using a set of isogenic mutants and purified listeriolysin O (LLO), we identified the L. monocytogenes thiol-activated exotoxin LLO as the agonist of mucus secretion. We demonstrated that the LLO-induced mucus exocytosis did not result from the LLO membrane-damaging activity. We found that LLO-induced mucus exocytosis is an event requiring the binding of LLO to a brush border-associated receptor and membrane oligomerization of the exotoxin. By a pharmacological approach, we demonstrated that no regulatory system or intracellular transducing signal known to be involved in control of mucin exocytosis was activated by LLO. Based on the present data, the stimulatory action of LLO on mucin exocytosis could be accounted for either by an unknown signaling system which remains to be determined or by direct action of LLO with the membrane vesicle components involved in the intracellular vesicular transport of mucins. PMID:9673248

  9. TTC7A mutations disrupt intestinal epithelial apicobasal polarity

    PubMed Central

    Bigorgne, Amélie E.; Farin, Henner F.; Lemoine, Roxane; Mahlaoui, Nizar; Lambert, Nathalie; Gil, Marine; Schulz, Ansgar; Philippet, Pierre; Schlesser, Patrick; Abrahamsen, Tore G.; Oymar, Knut; Davies, E. Graham; Ellingsen, Christian Lycke; Leteurtre, Emmanuelle; Moreau-Massart, Brigitte; Berrebi, Dominique; Bole-Feysot, Christine; Nischke, Patrick; Brousse, Nicole; Fischer, Alain; Clevers, Hans; de Saint Basile, Geneviève

    2013-01-01

    Multiple intestinal atresia (MIA) is a rare cause of bowel obstruction that is sometimes associated with a combined immunodeficiency (CID), leading to increased susceptibility to infections. The factors underlying this rare disease are poorly understood. We characterized the immunological and intestinal features of 6 unrelated MIA-CID patients. All patients displayed a profound, generalized lymphocytopenia, with few lymphocytes present in the lymph nodes. The thymus was hypoplastic and exhibited an abnormal distribution of epithelial cells. Patients also had profound disruption of the epithelial barrier along the entire gastrointestinal tract. Using linkage analysis and whole-exome sequencing, we identified 10 mutations in tetratricopeptide repeat domain–7A (TTC7A), all of which potentially abrogate TTC7A expression. Intestinal organoid cultures from patient biopsies displayed an inversion of apicobasal polarity of the epithelial cells that was normalized by pharmacological inhibition of Rho kinase. Our data indicate that TTC7A deficiency results in increased Rho kinase activity, which disrupts polarity, growth, and differentiation of intestinal epithelial cells, and which impairs immune cell homeostasis, thereby promoting MIA-CID development. PMID:24292712

  10. Polarizing intestinal epithelial cells electrically through Ror2.

    PubMed

    Cao, Lin; McCaig, Colin D; Scott, Roderick H; Zhao, Siwei; Milne, Gillian; Clevers, Hans; Zhao, Min; Pu, Jin

    2014-08-01

    The apicobasal polarity of enterocytes determines where the brush border membrane (apical membrane) will form, but how this apical membrane faces the lumen is not well understood. The electrical signal across the epithelium could serve as a coordinating cue, orienting and polarizing enterocytes. Here, we show that applying a physiological electric field to intestinal epithelial cells, to mimic the natural electric field created by the transepithelial potential difference, polarized phosphorylation of the actin-binding protein ezrin, increased expression of intestinal alkaline phosphatase (ALPI, a differentiation marker) and remodeled the actin cytoskeleton selectively on the cathode side. In addition, an applied electric field also activated ERK1/2 and LKB1 (also known as STK11), key molecules in apical membrane formation. Disruption of the tyrosine protein kinase transmembrane receptor Ror2 suppressed activation of ERK1/2 and LKB1 significantly, and subsequently inhibited apical membrane formation in enterocytes. Our findings indicate that the endogenous electric field created by the transepithelial potential difference might act as an essential coordinating signal for apical membrane formation at a tissue level, through activation of LKB1 mediated by Ror2-ERK signaling. PMID:24928904

  11. Polarizing intestinal epithelial cells electrically through Ror2

    PubMed Central

    Cao, Lin; McCaig, Colin D.; Scott, Roderick H.; Zhao, Siwei; Milne, Gillian; Clevers, Hans; Zhao, Min; Pu, Jin

    2014-01-01

    ABSTRACT The apicobasal polarity of enterocytes determines where the brush border membrane (apical membrane) will form, but how this apical membrane faces the lumen is not well understood. The electrical signal across the epithelium could serve as a coordinating cue, orienting and polarizing enterocytes. Here, we show that applying a physiological electric field to intestinal epithelial cells, to mimic the natural electric field created by the transepithelial potential difference, polarized phosphorylation of the actin-binding protein ezrin, increased expression of intestinal alkaline phosphatase (ALPI, a differentiation marker) and remodeled the actin cytoskeleton selectively on the cathode side. In addition, an applied electric field also activated ERK1/2 and LKB1 (also known as STK11), key molecules in apical membrane formation. Disruption of the tyrosine protein kinase transmembrane receptor Ror2 suppressed activation of ERK1/2 and LKB1 significantly, and subsequently inhibited apical membrane formation in enterocytes. Our findings indicate that the endogenous electric field created by the transepithelial potential difference might act as an essential coordinating signal for apical membrane formation at a tissue level, through activation of LKB1 mediated by Ror2–ERK signaling. PMID:24928904

  12. Polarization-sensitive multispectral tissue characterization for optimizing intestinal anastomosis

    NASA Astrophysics Data System (ADS)

    Cha, Jaepyeong; Triana, Brian; Shademan, Azad; Krieger, Axel; Kim, Peter C. W.; Kang, Jin U.

    2014-03-01

    A novel imaging system that recommends potential suture placement for anastomosis to surgeons is developed. This is achieved by a multispectral imaging system coupled with polarizers and image analysis software. We performed preliminary imaging of ex vivo porcine intestine to evaluate the system. Vulnerable tissue regions including blood vessels were successfully identified and segmented. Thickness of different tissue areas is visualized. Strategies towards optimal points for suture placements have been discussed. Preliminary data suggest our imaging platform and analysis algorithm may be useful in avoiding blood vessels, identifying optimal regions for suture placements to perform safer operations in possibly reduced time.

  13. A geometric description of human intestine.

    PubMed

    Coşkun, Ihsaniye; Yildiz, Hüseyin; Arslan, Kadri; Yildiz, Bahri

    2007-01-01

    Mathematical models of natural phenomena play a central role in the physical sciences. Moreover, modeling of the organs draws from some beautiful areas of mathematics, such as nonlinear dynamics, multiscale transforms and stability analysis. In this study, a geometric recognition of the separate intestine sections (duodenum, jejunum, ileum, cecum and colon) of the human is presented. The human intestine was considered a tubular shape along a special curve and two male Turkish men were used for the modeling study. The length (cm) and diameter (mm) of the intestines were measured with a digital compass and formulated. These models were compared with their original photographs. It has been concluded that the geometric modeling and experimental work were consistent. These kinds of organ modeling techniques will also profit to medical lecturers to show 3-D figures to their students. PMID:17580658

  14. Icariin Metabolism by Human Intestinal Microflora.

    PubMed

    Wu, Hailong; Kim, Mihyang; Han, Jaehong

    2016-01-01

    Icariin is a major bioactive compound of Epimedii Herba, a traditional oriental medicine exhibiting anti-cancer, anti-inflammatory and anti-osteoporosis activities. Recently, the estrogenic activities of icariin drew significant attention, but the published scientific data seemed not to be so consistent. To provide fundamental information for the study of the icaritin metabolism, the biotransformation of icariin by the human intestinal bacteria is reported for the first time. Together with human intestinal microflora, the three bacteria Streptococcus sp. MRG-ICA-B, Enterococcus sp. MRG-ICA-E, and Blautia sp. MRG-PMF-1 isolated from human intestine were reacted with icariin under anaerobic conditions. The metabolites including icariside II, icaritin, and desmethylicaritin, but not icariside I, were produced. The MRG-ICA-B and E strains hydrolyzed only the glucose moiety of icariin, and icariside II was the only metabolite. However, the MRG-PMF-1 strain metabolized icariin further to desmethylicaritin via icariside II and icaritin. From the results, along with the icariin metabolism by human microflora, it was evident that most icariin is quickly transformed to icariside II before absorption in the human intestine. We propose the pharmacokinetics of icariin should focus on metabolites such as icariside II, icaritin and desmethylicaritin to explain the discrepancy between the in vitro bioassay and pharmacological effects. PMID:27589718

  15. Human and mouse tissue-engineered small intestine both demonstrate digestive and absorptive function.

    PubMed

    Grant, Christa N; Mojica, Salvador Garcia; Sala, Frederic G; Hill, J Ryan; Levin, Daniel E; Speer, Allison L; Barthel, Erik R; Shimada, Hiroyuki; Zachos, Nicholas C; Grikscheit, Tracy C

    2015-04-15

    Short bowel syndrome (SBS) is a devastating condition in which insufficient small intestinal surface area results in malnutrition and dependence on intravenous parenteral nutrition. There is an increasing incidence of SBS, particularly in premature babies and newborns with congenital intestinal anomalies. Tissue-engineered small intestine (TESI) offers a therapeutic alternative to the current standard treatment, intestinal transplantation, and has the potential to solve its biggest challenges, namely donor shortage and life-long immunosuppression. We have previously demonstrated that TESI can be generated from mouse and human small intestine and histologically replicates key components of native intestine. We hypothesized that TESI also recapitulates native small intestine function. Organoid units were generated from mouse or human donor intestine and implanted into genetically identical or immunodeficient host mice. After 4 wk, TESI was harvested and either fixed and paraffin embedded or immediately subjected to assays to illustrate function. We demonstrated that both mouse and human tissue-engineered small intestine grew into an appropriately polarized sphere of intact epithelium facing a lumen, contiguous with supporting mesenchyme, muscle, and stem/progenitor cells. The epithelium demonstrated major ultrastructural components, including tight junctions and microvilli, transporters, and functional brush-border and digestive enzymes. This study demonstrates that tissue-engineered small intestine possesses a well-differentiated epithelium with intact ion transporters/channels, functional brush-border enzymes, and similar ultrastructural components to native tissue, including progenitor cells, whether derived from mouse or human cells. PMID:25573173

  16. Tipping elements in the human intestinal ecosystem

    PubMed Central

    Lahti, Leo; Salojärvi, Jarkko; Salonen, Anne; Scheffer, Marten; de Vos, Willem M.

    2014-01-01

    The microbial communities living in the human intestine can have profound impact on our well-being and health. However, we have limited understanding of the mechanisms that control this complex ecosystem. Here, based on a deep phylogenetic analysis of the intestinal microbiota in a thousand western adults, we identify groups of bacteria that exhibit robust bistable abundance distributions. These bacteria are either abundant or nearly absent in most individuals, and exhibit decreased temporal stability at the intermediate abundance range. The abundances of these bimodally distributed bacteria vary independently, and their abundance distributions are not affected by short-term dietary interventions. However, their contrasting alternative states are associated with host factors such as ageing and overweight. We propose that the bistable groups reflect tipping elements of the intestinal microbiota, whose critical transitions may have profound health implications and diagnostic potential. PMID:25003530

  17. Polarization of human donor corneas.

    PubMed

    Parekh, Mohit; Ruzza, Alessandro; Ferrari, Stefano; Salvalaio, Gianni; Elbadawy, Hossein; Ponzin, Diego; Lipari, Eugenio

    2016-06-01

    To investigate the de-orientation effect of DSAEK grafts by observing the cross patterns and polarization power of human donor corneas using a polarizing device (Lumaxis(®)). Forty human donor corneas were placed in small petri-plates with epithelial side facing up. Polarizing power (arbitrary unit) and crosses were monitored and recorded by the software. The tissue was marked at 'Superior' position to ensure that the base and the polarizer are in alignment with each other after the cut. The anterior lamellar cut was performed using microkeratome. The lenticule was placed back in the same position as marked to mimic the alignment. The tissue was further rotated by 45° ensuring that the base of the cornea and the polarizer were in alignment. The polarization power and 'crosses' were identified at each step. The average of forty corneas from pre-cut to post-45° angular change showed statistically significant difference (p < 0.05) in terms of polarizing power. The cross-shaped pattern deformed and lost the sharpness towards 45° angle. However, multiple variances in terms of 'cross-patterns' were observed throughout the study. Lumaxis(®) was able to determine the worst quality tissue in terms of polarization (no black zone and crosses). Despite the quality of cross pattern which can be used as an additional objective parameter to evaluate the optical properties of the corneal tissue, this preliminary study needs to be further justified in terms of clinical relevance whether polarization changes with oriented or de-oriented grafts have any effects and consequences on the visual acuity. PMID:26920874

  18. Dkk-1 Inhibits Intestinal Epithelial Cell Migration by Attenuating Directional Polarization of Leading Edge Cells

    PubMed Central

    Koch, Stefan; Capaldo, Christopher T.; Samarin, Stanislav; Nava, Porfirio; Neumaier, Irmgard; Skerra, Arne; Sacks, David B.; Parkos, Charles A.

    2009-01-01

    Wnt signaling pathways regulate proliferation, motility, and survival in a variety of human cell types. Dickkopf-1 (Dkk-1) is a secreted Wnt antagonist that has been proposed to regulate tissue homeostasis in the intestine. In this report, we show that Dkk-1 is secreted by intestinal epithelial cells after wounding and that it inhibits cell migration by attenuating the directional orientation of migrating epithelial cells. Dkk-1 exposure induced mislocalized activation of Cdc42 in migrating cells, which coincided with a displacement of the polarity protein Par6 from the leading edge. Consequently, the relocation of the microtubule organizing center and the Golgi apparatus in the direction of migration was significantly and persistently inhibited in the presence of Dkk-1. Small interfering RNA-induced down-regulation of Dkk-1 confirmed that extracellular exposure to Dkk-1 was required for this effect. Together, these data demonstrate a novel role of Dkk-1 in the regulation of directional polarization of migrating intestinal epithelial cells, which contributes to the effect of Dkk-1 on wound closure in vivo. PMID:19776352

  19. The Human Intestinal Microbiome: A New Frontier of Human Biology

    PubMed Central

    Hattori, Masahira; Taylor, Todd D.

    2009-01-01

    To analyze the vast number and variety of microorganisms inhabiting the human intestine, emerging metagenomic technologies are extremely powerful. The intestinal microbes are taxonomically complex and constitute an ecologically dynamic community (microbiota) that has long been believed to possess a strong impact on human physiology. Furthermore, they are heavily involved in the maturation and proliferation of human intestinal cells, helping to maintain their homeostasis and can be causative of various diseases, such as inflammatory bowel disease and obesity. A simplified animal model system has provided the mechanistic basis for the molecular interactions that occur at the interface between such microbes and host intestinal epithelia. Through metagenomic analysis, it is now possible to comprehensively explore the genetic nature of the intestinal microbiome, the mutually interacting system comprising the host cells and the residing microbial community. The human microbiome project was recently launched as an international collaborative research effort to further promote this newly developing field and to pave the way to a new frontier of human biology, which will provide new strategies for the maintenance of human health. PMID:19147530

  20. Transmigration route of Campylobacter jejuni across polarized intestinal epithelial cells: paracellular, transcellular or both?

    PubMed

    Backert, Steffen; Boehm, Manja; Wessler, Silja; Tegtmeyer, Nicole

    2013-01-01

    Intact intercellular junctions and cellular matrix contacts are crucial structural components for the formation and maintenance of epithelial barrier functions in humans to control the commensal flora and protect against intruding microbes. Campylobacter jejuni is one of the most important zoonotic pathogens causing food-borne gastroenteritis and potentially more severe diseases such as reactive arthritis or Guillain-Barré syndrome. Crossing the intestinal epithelial barrier and host cell invasion by C. jejuni are considered to represent the primary reasons of gut tissue damage in humans and various animal model systems including monkeys, piglets, rabbits, hamsters and ferrets. C. jejuni is also able to invade underlying tissues such as the lamina propria, can enter the bloodstream, and possibly reach distinct organs such as spleen, liver or mesenteric lymph nodes. However, the molecular mechanisms as well as major bacterial and host cell factors involved in these activities are poorly understood. Various models exist by which the pathogen can trigger its own transmigration across polarized intestinal epithelial cells in vitro, the paracellular and/or transcellular mechanism. Recent studies suggest that bacterial factors such as flagellum, serine protease HtrA and lipooligosaccharide LOS may play an active role in bacterial transmigration. Here we review our knowledge on transmigration of C. jejuni as well as some other Campylobacter species, and discuss the pros and cons for the route(s) taken to travel across polarized epithelial cell monolayers. These studies provide fresh insights into the infection strategies employed by this important pathogen. PMID:24079544

  1. Transmigration route of Campylobacter jejuni across polarized intestinal epithelial cells: paracellular, transcellular or both?

    PubMed Central

    2013-01-01

    Intact intercellular junctions and cellular matrix contacts are crucial structural components for the formation and maintenance of epithelial barrier functions in humans to control the commensal flora and protect against intruding microbes. Campylobacter jejuni is one of the most important zoonotic pathogens causing food-borne gastroenteritis and potentially more severe diseases such as reactive arthritis or Guillain–Barré syndrome. Crossing the intestinal epithelial barrier and host cell invasion by C. jejuni are considered to represent the primary reasons of gut tissue damage in humans and various animal model systems including monkeys, piglets, rabbits, hamsters and ferrets. C. jejuni is also able to invade underlying tissues such as the lamina propria, can enter the bloodstream, and possibly reach distinct organs such as spleen, liver or mesenteric lymph nodes. However, the molecular mechanisms as well as major bacterial and host cell factors involved in these activities are poorly understood. Various models exist by which the pathogen can trigger its own transmigration across polarized intestinal epithelial cells in vitro, the paracellular and/or transcellular mechanism. Recent studies suggest that bacterial factors such as flagellum, serine protease HtrA and lipooligosaccharide LOS may play an active role in bacterial transmigration. Here we review our knowledge on transmigration of C. jejuni as well as some other Campylobacter species, and discuss the pros and cons for the route(s) taken to travel across polarized epithelial cell monolayers. These studies provide fresh insights into the infection strategies employed by this important pathogen. PMID:24079544

  2. A Three-Dimensional Cell Culture Model To Study Enterovirus Infection of Polarized Intestinal Epithelial Cells.

    PubMed

    Drummond, Coyne G; Nickerson, Cheryl A; Coyne, Carolyn B

    2016-01-01

    Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells. IMPORTANCE Coxsackievirus B (CVB), a member of the enterovirus family of RNA viruses, is associated with meningitis, pericarditis, diabetes, dilated cardiomyopathy, and myocarditis, among other pathologies. CVB is transmitted via the fecal-oral route and encounters the

  3. A Three-Dimensional Cell Culture Model To Study Enterovirus Infection of Polarized Intestinal Epithelial Cells

    PubMed Central

    Drummond, Coyne G.

    2015-01-01

    ABSTRACT Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells. IMPORTANCE Coxsackievirus B (CVB), a member of the enterovirus family of RNA viruses, is associated with meningitis, pericarditis, diabetes, dilated cardiomyopathy, and myocarditis, among other pathologies. CVB is transmitted via the fecal-oral route and

  4. Robust bioengineered 3D functional human intestinal epithelium

    PubMed Central

    Chen, Ying; Lin, Yinan; Davis, Kimberly M.; Wang, Qianrui; Rnjak-Kovacina, Jelena; Li, Chunmei; Isberg, Ralph R.; Kumamoto, Carol A.; Mecsas, Joan; Kaplan, David L.

    2015-01-01

    Intestinal functions are central to human physiology, health and disease. Options to study these functions with direct relevance to the human condition remain severely limited when using conventional cell cultures, microfluidic systems, organoids, animal surrogates or human studies. To replicate in vitro the tissue architecture and microenvironments of native intestine, we developed a 3D porous protein scaffolding system, containing a geometrically-engineered hollow lumen, with adaptability to both large and small intestines. These intestinal tissues demonstrated representative human responses by permitting continuous accumulation of mucous secretions on the epithelial surface, establishing low oxygen tension in the lumen, and interacting with gut-colonizing bacteria. The newly developed 3D intestine model enabled months-long sustained access to these intestinal functions in vitro, readily integrable with a multitude of different organ mimics and will therefore ensure a reliable ex vivo tissue system for studies in a broad context of human intestinal diseases and treatments. PMID:26374193

  5. Intestinal drug solubility estimation based on simulated intestinal fluids: comparison with solubility in human intestinal fluids.

    PubMed

    Clarysse, Sarah; Brouwers, Joachim; Tack, Jan; Annaert, Pieter; Augustijns, Patrick

    2011-07-17

    The purpose of this study was to validate both existing fasted and fed state simulated intestinal fluids (FaSSIF and FeSSIF), and simpler, alternative media for predicting intraluminal drug solubility during drug discovery and early drug development. For 17 model drugs, the solubilizing capacity of FaSSIF(c) and FeSSIF(c) (subscript indicates the use of crude taurocholate) and different concentrations of D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) in phosphate buffer were correlated with the solubilizing capacity of human intestinal fluids (HIF) in the fasted and the early postprandial state. A good correlation between solubility in fasted HIF and FaSSIF(c) and between solubility in fed HIF and FeSSIF(c) was obtained, indicated by R(2) values of 0.91 and 0.86, respectively. Comparable values were obtained for 0.1% TPGS for the fasted state (R(2)=0.84) and 2% TPGS for the fed state (R(2)=0.84). Direct estimation of intestinal drug solubility by the measured solubilities in FaSSIF(c) and FeSSIF(c) was acceptable. However, better estimates were obtained by calculating solubilities based on the equations describing the relationship between solubilities in FaSSIF(c) and FeSSIF(c) as function of observed solubilities in HIF. Using this approach, the predictive value of the TPGS-based solvent system was also acceptable and comparable to that of FaSSIF(c) and FeSSIF(c). In conclusion, FaSSIF(c) and FeSSIF(c) can be considered biorelevant media for intestinal solubility estimation. A simpler TPGS-based system may be a valuable alternative with improved stability and lower cost. PMID:21570465

  6. Human intestinal microbial metabolism of naringin.

    PubMed

    Zou, Wei; Luo, Yulong; Liu, Menghua; Chen, Si; Wang, Sheng; Nie, Yichu; Cheng, Guohua; Su, Weiwei; Zhang, Kejian

    2015-09-01

    Naringin, a major flavonoid in citrus fruits, has been proved to be a promising antitussive candidate. It undertakes complicated metabolism. In this study, human intestinal microbial metabolism of naringin was studied in vitro. Six persons' fecal water, which have intestinal microbial enzyme, were used in the first experiment. Naringin was metabolized by fecal water into naringenin. Subsequently, 3-(4-hydroxyphenyl)propionic acid (4-HPPA) was produced with naringenin degradation by a person's fecal water. However, 4-HPPA was not detected after naringenin degradation by the other 5 subjects' fecal water and the reason might be that the degrading velocity of 4-HPPA exceeded the producing velocity. To confirm the difference in degrading 4-HPPA among human feces, 22 healthy persons' feces were used for incubation. In this second experiment, 15 persons' feces could degrade 4-HPPA, but the other 7 subjects' could not. Human feces showed different ability of degrading 4-HPPA, and there are no gender differences. These results may be helpful for explaining findings in pharmacological and toxicological studies and are groundwork for clinical studies. PMID:24935725

  7. Age-associated modifications of intestinal permeability and innate immunity in human small intestine.

    PubMed

    Man, Angela L; Bertelli, Eugenio; Rentini, Silvia; Regoli, Mari; Briars, Graham; Marini, Mario; Watson, Alastair J M; Nicoletti, Claudio

    2015-10-01

    The physical and immunological properties of the human intestinal epithelial barrier in aging are largely unknown. Ileal biopsies from young (7-12 years), adult (20-40 years) and aging (67-77 years) individuals not showing symptoms of gastrointestinal (GI) pathologies were used to assess levels of inflammatory cytokines, barrier integrity and cytokine production in response to microbial challenges. Increased expression of interleukin (IL)-6, but not interferon (IFN)γ, tumour necrosis factor (TNF)-α and IL-1β was observed during aging; further analysis showed that cluster of differentiation (CD)11c(+) dendritic cells (DCs) are one of the major sources of IL-6 in the aging gut and expressed higher levels of CD40. Up-regulated production of IL-6 was accompanied by increased expression of claudin-2 leading to reduced transepithelial electric resistance (TEER); TEER could be restored in in vitro and ex vivo cultures by neutralizing anti-IL-6 antibody. In contrast, expression of zonula occludens-1 (ZO-1), occludin and junctional-adhesion molecule-A1 did not vary with age and overall permeability to macromolecules was not affected. Finally, cytokine production in response to different microbial stimuli was assessed in a polarized in vitro organ culture (IVOC). IL-8 production in response to flagellin declined progressively with age although the expression and distribution of toll-like receptor (TLR)-5 on intestinal epithelial cells (IECs) remained unchanged. Also, flagellin-induced production of IL-6 was less pronounced in aging individuals. In contrast, TNF-α production in response to probiotics (VSL#3) did not decline with age; however, in our experimental model probiotics did not down-regulate the production of IL-6 and expression of claudin-2. These data suggested that aging affects properties of the intestinal barrier likely to impact on age-associated disturbances, both locally and systemically. PMID:25948052

  8. A new approach to predict human intestinal absorption using porcine intestinal tissue and biorelevant matrices.

    PubMed

    Westerhout, Joost; van de Steeg, Evita; Grossouw, Dimitri; Zeijdner, Evelijn E; Krul, Cyrille A M; Verwei, Miriam; Wortelboer, Heleen M

    2014-10-15

    A reliable prediction of the oral bioavailability in humans is crucial and of high interest for pharmaceutical and food industry. The predictive value of currently used in silico methods, in vitro cell lines, ex vivo intestinal tissue and/or in vivo animal studies for human intestinal absorption, however, is often insufficient, especially when food-drug interactions are evaluated. Ideally, for this purpose healthy human intestinal tissue is used, but due to its limited availability there is a need for alternatives. The aim of this study was to evaluate the applicability of healthy porcine intestinal tissue mounted in a newly developed InTESTine™ system to predict human intestinal absorption of compounds with different chemical characteristics, and within biorelevant matrices. To that end, first, a representative set of compounds was chosen of which the apparent permeability (Papp) data in both Caco-2 cells and human intestinal tissue mounted in the Ussing chamber system, and absolute human oral bioavailability were reported. Thereafter, Papp values of the subset were determined in both porcine jejunal tissue and our own Caco-2 cells. In addition, the feasibility of this new approach to study regional differences (duodenum, jejunum, and ileum) in permeability of compounds and to study the effects of luminal factors on permeability was also investigated. For the latter, a comparison was made between the compatibility of porcine intestinal tissue, Caco-2 cells, and Caco-2 cells co-cultured with the mucin producing HT29-MTX cells with biorelevant samples as collected from an in vitro dynamic gastrointestinal model (TIM). The results demonstrated that for the paracellularly transported compounds atenolol, cimetidine, mannitol and ranitidine porcine Papp values are within 3-fold difference of human Papp values, whereas the Caco-2 Papp values are beyond 3-fold difference. Overall, the porcine intestinal tissue Papp values are more comparable to human Papp values (9 out

  9. Murine norovirus transcytosis across an in vitro polarized murine intestinal epithelial monolayer is mediated by M-like cells.

    PubMed

    Gonzalez-Hernandez, Mariam B; Liu, Thomas; Blanco, Luz P; Auble, Heather; Payne, Hilary C; Wobus, Christiane E

    2013-12-01

    Noroviruses (NoVs) are the causative agent of the vast majority of nonbacterial gastroenteritis worldwide. Due to the inability to culture human NoVs and the inability to orally infect a small animal model, little is known about the initial steps of viral entry. One particular step that is not understood is how NoVs breach the intestinal epithelial barrier. Murine NoV (MNV) is the only NoV that can be propagated in vitro by infecting murine macrophages and dendritic cells, making this virus an attractive model for studies of different aspects of NoV biology. Polarized murine intestinal epithelial mICcl2 cells were used to investigate how MNV interacts with and crosses the intestinal epithelium. In this in vitro model of the follicle-associated epithelium (FAE), MNV is transported across the polarized cell monolayer in the absence of viral replication or disruption of tight junctions by a distinct epithelial cell with microfold (M) cell properties. In addition to transporting MNV, these M-like cells also transcytose microbeads and express an IgA receptor. Interestingly, B myeloma cells cultured in the basolateral compartment underlying the epithelial monolayer did not alter the number of M-like cells but increased their transcytotic activity. Our data demonstrate that MNV can cross an intact intestinal epithelial monolayer in vitro by hijacking the M-like cells' intrinsic transcytotic pathway and suggest a potential mechanism for MNV entry into the host. PMID:24049163

  10. Murine Norovirus Transcytosis across an In Vitro Polarized Murine Intestinal Epithelial Monolayer Is Mediated by M-Like Cells

    PubMed Central

    Gonzalez-Hernandez, Mariam B.; Liu, Thomas; Blanco, Luz P.; Auble, Heather; Payne, Hilary C.

    2013-01-01

    Noroviruses (NoVs) are the causative agent of the vast majority of nonbacterial gastroenteritis worldwide. Due to the inability to culture human NoVs and the inability to orally infect a small animal model, little is known about the initial steps of viral entry. One particular step that is not understood is how NoVs breach the intestinal epithelial barrier. Murine NoV (MNV) is the only NoV that can be propagated in vitro by infecting murine macrophages and dendritic cells, making this virus an attractive model for studies of different aspects of NoV biology. Polarized murine intestinal epithelial mICcl2 cells were used to investigate how MNV interacts with and crosses the intestinal epithelium. In this in vitro model of the follicle-associated epithelium (FAE), MNV is transported across the polarized cell monolayer in the absence of viral replication or disruption of tight junctions by a distinct epithelial cell with microfold (M) cell properties. In addition to transporting MNV, these M-like cells also transcytose microbeads and express an IgA receptor. Interestingly, B myeloma cells cultured in the basolateral compartment underlying the epithelial monolayer did not alter the number of M-like cells but increased their transcytotic activity. Our data demonstrate that MNV can cross an intact intestinal epithelial monolayer in vitro by hijacking the M-like cells' intrinsic transcytotic pathway and suggest a potential mechanism for MNV entry into the host. PMID:24049163

  11. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids.

    PubMed

    Finkbeiner, Stacy R; Freeman, Jennifer J; Wieck, Minna M; El-Nachef, Wael; Altheim, Christopher H; Tsai, Yu-Hwai; Huang, Sha; Dyal, Rachel; White, Eric S; Grikscheit, Tracy C; Teitelbaum, Daniel H; Spence, Jason R

    2015-01-01

    Short bowel syndrome (SBS) is characterized by poor nutrient absorption due to a deficit of healthy intestine. Current treatment practices rely on providing supportive medical therapy with parenteral nutrition; while life saving, such interventions are not curative and are still associated with significant co-morbidities. As approaches to lengthen remaining intestinal tissue have been met with only limited success and intestinal transplants have poor survival outcomes, new approaches to treating SBS are necessary. Human intestine derived from embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs), called human intestinal organoids (HIOs), have the potential to offer a personalized and scalable source of intestine for regenerative therapies. However, given that HIOs are small three-dimensional structures grown in vitro, methods to generate usable HIO-derived constructs are needed. We investigated the ability of hESCs or HIOs to populate acellular porcine intestinal matrices and artificial polyglycolic/poly L lactic acid (PGA/PLLA) scaffolds, and examined the ability of matrix/scaffolds to thrive when transplanted in vivo. Our results demonstrate that the acellular matrix alone is not sufficient to instruct hESC differentiation towards an endodermal or intestinal fate. We observed that while HIOs reseed acellular porcine matrices in vitro, the HIO-reseeded matrices do not thrive when transplanted in vivo. In contrast, HIO-seeded PGA/PLLA scaffolds thrive in vivo and develop into tissue that looks nearly identical to adult human intestinal tissue. Our results suggest that HIO-seeded PGA/PLLA scaffolds are a promising avenue for developing the mucosal component of tissue engineered human small intestine, which need to be explored further to develop them into fully functional tissue. PMID:26459240

  12. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids

    PubMed Central

    Finkbeiner, Stacy R.; Freeman, Jennifer J.; Wieck, Minna M.; El-Nachef, Wael; Altheim, Christopher H.; Tsai, Yu-Hwai; Huang, Sha; Dyal, Rachel; White, Eric S.; Grikscheit, Tracy C.; Teitelbaum, Daniel H.; Spence, Jason R.

    2015-01-01

    ABSTRACT Short bowel syndrome (SBS) is characterized by poor nutrient absorption due to a deficit of healthy intestine. Current treatment practices rely on providing supportive medical therapy with parenteral nutrition; while life saving, such interventions are not curative and are still associated with significant co-morbidities. As approaches to lengthen remaining intestinal tissue have been met with only limited success and intestinal transplants have poor survival outcomes, new approaches to treating SBS are necessary. Human intestine derived from embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs), called human intestinal organoids (HIOs), have the potential to offer a personalized and scalable source of intestine for regenerative therapies. However, given that HIOs are small three-dimensional structures grown in vitro, methods to generate usable HIO-derived constructs are needed. We investigated the ability of hESCs or HIOs to populate acellular porcine intestinal matrices and artificial polyglycolic/poly L lactic acid (PGA/PLLA) scaffolds, and examined the ability of matrix/scaffolds to thrive when transplanted in vivo. Our results demonstrate that the acellular matrix alone is not sufficient to instruct hESC differentiation towards an endodermal or intestinal fate. We observed that while HIOs reseed acellular porcine matrices in vitro, the HIO-reseeded matrices do not thrive when transplanted in vivo. In contrast, HIO-seeded PGA/PLLA scaffolds thrive in vivo and develop into tissue that looks nearly identical to adult human intestinal tissue. Our results suggest that HIO-seeded PGA/PLLA scaffolds are a promising avenue for developing the mucosal component of tissue engineered human small intestine, which need to be explored further to develop them into fully functional tissue. PMID:26459240

  13. A Revised Model for Dosimetry in the Human Small Intestine

    SciTech Connect

    John Poston; Nasir U. Bhuiyan; R. Alex Redd; Neil Parham; Jennifer Watson

    2005-02-28

    A new model for an adult human gastrointestinal tract (GIT) has been developed for use in internal dose estimations to the wall of the GIT and to the other organs and tissues of the body from radionuclides deposited in the lumenal contents of the five sections of the GIT. These sections were the esophasgus, stomach, small intestine, upper large intestine, and the lower large intestine. The wall of each section was separated from its lumenal contents.

  14. Intestinal fructose transport and malabsorption in humans.

    PubMed

    Jones, Hilary F; Butler, Ross N; Brooks, Doug A

    2011-02-01

    Fructose is a hexose sugar that is being increasingly consumed in its monosaccharide form. Patients who exhibit fructose malabsorption can present with gastrointestinal symptoms that include chronic diarrhea and abdominal pain. However, with no clearly established gastrointestinal mechanism for fructose malabsorption, patient analysis by the proxy of a breath hydrogen test (BHT) is controversial. The major transporter for fructose in intestinal epithelial cells is thought to be the facilitative transporter GLUT5. Consistent with a facilitative transport system, we show here by analysis of past studies on healthy adults that there is a significant relationship between fructose malabsorption and fructose dose (r = 0.86, P < 0.001). Thus there is a dose-dependent and limited absorption capacity even in healthy individuals. Changes in fructose malabsorption with age have been observed in human infants, and this may parallel the developmental regulation of GLUT5 expression. Moreover, a GLUT5 knockout mouse has displayed the hallmarks associated with profound fructose malabsorption. Fructose malabsorption appears to be partially modulated by the amount of glucose ingested. Although solvent drag and passive diffusion have been proposed to explain the effect of glucose on fructose malabsorption, this could possibly be a result of the facilitative transporter GLUT2. GLUT5 and GLUT2 mRNA have been shown to be rapidly upregulated by the presence of fructose and GLUT2 mRNA is also upregulated by glucose, but in humans the distribution and role of GLUT2 in the brush border membrane are yet to be definitively decided. Understanding the relative roles of these transporters in humans will be crucial for establishing a mechanistic basis for fructose malabsorption in gastrointestinal patients. PMID:21148401

  15. Three-Dimensional Coculture Of Human Small-Intestine Cells

    NASA Technical Reports Server (NTRS)

    Wolf, David; Spaulding, Glen; Goodwin, Thomas J.; Prewett, Tracy

    1994-01-01

    Complex three-dimensional masses of normal human epithelial and mesenchymal small-intestine cells cocultured in process involving specially designed bioreactors. Useful as tissued models for studies of growth, regulatory, and differentiation processes in normal intestinal tissues; diseases of small intestine; and interactions between cells of small intestine and viruses causing disease both in small intestine and elsewhere in body. Process used to produce other tissue models, leading to advances in understanding of growth and differentiation in developing organisms, of renewal of tissue, and of treatment of myriad of clinical conditions. Prior articles describing design and use of rotating-wall culture vessels include "Growing And Assembling Cells Into Tissues" (MSC-21559), "High-Aspect-Ratio Rotating Cell-Culture Vessel" (MSC-21662), and "In Vitro, Matrix-Free Formation Of Solid Tumor Spheroids" (MSC-21843).

  16. Distinct Human Stem Cell Populations in Small and Large Intestine

    PubMed Central

    Cramer, Julie M.; Thompson, Timothy; Geskin, Albert; LaFramboise, William; Lagasse, Eric

    2015-01-01

    The intestine is composed of an epithelial layer containing rapidly proliferating cells that mature into two regions, the small and the large intestine. Although previous studies have identified stem cells as the cell-of-origin for intestinal epithelial cells, no studies have directly compared stem cells derived from these anatomically distinct regions. Here, we examine intrinsic differences between primary epithelial cells isolated from human fetal small and large intestine, after in vitro expansion, using the Wnt agonist R-spondin 2. We utilized flow cytometry, fluorescence-activated cell sorting, gene expression analysis and a three-dimensional in vitro differentiation assay to characterize their stem cell properties. We identified stem cell markers that separate subpopulations of colony-forming cells in the small and large intestine and revealed important differences in differentiation, proliferation and disease pathways using gene expression analysis. Single cells from small and large intestine cultures formed organoids that reflect the distinct cellular hierarchy found in vivo and respond differently to identical exogenous cues. Our characterization identified numerous differences between small and large intestine epithelial stem cells suggesting possible connections to intestinal disease. PMID:25751518

  17. Comparative analysis of fecal microbiota and intestinal microbial metabolic activity in captive polar bears.

    PubMed

    Schwab, Clarissa; Gänzle, Michael

    2011-03-01

    The composition of the intestinal microbiota depends on gut physiology and diet. Ursidae possess a simple gastrointestinal system composed of a stomach, small intestine, and indistinct hindgut. This study determined the composition and stability of fecal microbiota of 3 captive polar bears by group-specific quantitative PCR and PCR-DGGE (denaturing gradient gel electrophoresis) using the 16S rRNA gene as target. Intestinal metabolic activity was determined by analysis of short-chain fatty acids in feces. For comparison, other Carnivora and mammals were included in this study. Total bacterial abundance was approximately log 8.5 DNA gene copies·(g feces)-1 in all 3 polar bears. Fecal polar bear microbiota was dominated by the facultative anaerobes Enterobacteriaceae and enterococci, and the Clostridium cluster I. The detection of the Clostridium perfringens α-toxin gene verified the presence of C. perfringens. Composition of the fecal bacterial population was stable on a genus level; according to results obtained by PCR-DGGE, dominant bacterial species fluctuated. The total short-chain fatty acid content of Carnivora and other mammals analysed was comparable; lactate was detected in feces of all carnivora but present only in trace amounts in other mammals. In comparison, the fecal microbiota and metabolic activity of captive polar bears mostly resembled the closely related grizzly and black bears. PMID:21358758

  18. Ultrastructural and immunohistochemical analysis of intestinal myofibroblasts during the early organogenesis of the human small intestine.

    PubMed

    Artells, Rosa; Navarro, Alfons; Diaz, Tània; Monzó, Mariano

    2011-03-01

    Intestinal myofibroblasts (IMFs), also known as pericryptal fibroblasts, are found at the basement membrane of the intestinal epithelium. They are characterized by well-developed endoplasmic reticulum, cytoplasmic fibers, and fibrous extensions called fibronexi. IMFs have structural features in common both with fibroblasts and smooth cells. Vimentin, desmin, and α-smooth-muscle actin (α-SM) are markers commonly used to discriminate between IMFs and smooth muscle cells. Immunohistochemical studies have shown that, when α-SM and vimentin are positive in both IMFs and smooth muscle cells, desmin is negative in IMFs but positive in smooth muscle cells. In the adult intestine, IMFs play an important role in various functions, especially in tissue repair and scar formation during wound healing. In the embryonic intestine, however, wound healing does not occur, and to date, no studies have investigated the first appearance and subsequent evolution of IMFs. In this study, we have examined the human small intestine in embryos at 7, 9, and 11 weeks of development by ultrastructural and immunohistochemical analysis to shed light on the formation of IMFs during these early phases of organogenesis. At 7 weeks, the embryonic mesenchymal cells are similar to proto-myofibroblasts and may be the precursors of the IMFs detected at 9 weeks and more abundantly at 11 weeks by immunohistochemistry. These IMFs seem to mediate information flow between the epithelium and the mesenchyme and thus contribute to the development of the small intestine. PMID:21284092

  19. Human intestinal sarcosporidiosis: report of six cases.

    PubMed

    Bunyaratvej, S; Bunyawongwiroj, P; Nitiyanant, P

    1982-01-01

    Specimens of resected small intestine from six patients aged 3 to 70 years with acute enteritis contained sexual forms of sarcosporidia. Histopathologically, the diagnoses were either segmental eosinophilic enteritis or segmental necrotizing enteritis. The presence of sarcosporidia in market beef (Bos indicus), and the patients' habit of eating the beef uncooked in the form of chili-hot dishes, suggest that the species is an ox-man parasite similar to Sarcocystis hominis (Railliet and Lucet, 1891) Dubey, 1976. Presence of numerous Gram-positive bacilli in segmental necrotizing enteritis suggests an interplay between two etiological agents in producing the hosts' inflammatory responses. Five patients recovered after resection, but one died due to extensive necrosis of the intestinal wall and leakage at the site of anastomosis. Only conventional antibiotics were given after the operations. None of the five surviving patients has had recurrent enteritis for at least 1 year. PMID:6800273

  20. Intestine.

    PubMed

    Smith, J M; Skeans, M A; Horslen, S P; Edwards, E B; Harper, A M; Snyder, J J; Israni, A K; Kasiske, B L

    2016-01-01

    Intestine and intestine-liver transplant plays an important role in the treatment of intestinal failure, despite decreased morbidity associated with parenteral nutrition. In 2014, 210 new patients were added to the intestine transplant waiting list. Among prevalent patients on the list at the end of 2014, 65% were waiting for an intestine transplant and 35% were waiting for an intestine-liver transplant. The pretransplant mortality rate decreased dramatically over time for all age groups. Pretransplant mortality was highest for adult candidates, at 22.1 per 100 waitlist years compared with less than 3 per 100 waitlist years for pediatric candidates, and notably higher for candidates for intestine-liver transplant than for candidates for intestine transplant without a liver. Numbers of intestine transplants without a liver increased from a low of 51 in 2013 to 67 in 2014. Intestine-liver transplants increased from a low of 44 in 2012 to 72 in 2014. Short-gut syndrome (congenital and other) was the main cause of disease leading to both intestine and intestine-liver transplant. Graft survival improved over the past decade. Patient survival was lowest for adult intestine-liver recipients and highest for pediatric intestine recipients. PMID:26755265

  1. Transepithelial Transport of PAMAM Dendrimers Across Isolated Human Intestinal Tissue.

    PubMed

    Hubbard, Dallin; Enda, Michael; Bond, Tanner; Moghaddam, Seyyed Pouya Hadipour; Conarton, Josh; Scaife, Courtney; Volckmann, Eric; Ghandehari, Hamidreza

    2015-11-01

    Poly(amido amine) (PAMAM) dendrimers have shown transepithelial transport across intestinal epithelial barrier in rats and across Caco-2 cell monolayers. Caco-2 models innately lack mucous barriers, and rat isolated intestinal tissue has been shown to overestimate human permeability. This study is the first report of transport of PAMAM dendrimers across isolated human intestinal epithelium. It was observed that FITC labeled G4-NH2 and G3.5-COOH PAMAM dendrimers at 1 mM concentration do not have a statistically higher permeability compared to free FITC controls in isolated human jejunum and colonic tissues. Mannitol permeability was increased at 10 mM concentrations of G3.5-COOH and G4-NH2 dendrimers. Significant histological changes in human colonic and jejunal tissues were observed at G3.5-COOH and G4-NH2 concentrations of 10 mM implying that dose limiting toxicity may occur at similar concentrations in vivo. The permeability through human isolated intestinal tissue in this study was compared to previous rat and Caco-2 permeability data. This study implicates that PAMAM dendrimer oral drug delivery may be feasible, but it may be limited to highly potent drugs. PMID:26414679

  2. Reprogramming of the human intestinal epigenome by surgical tissue transposition

    PubMed Central

    Lay, Fides D.; Triche, Timothy J.; Tsai, Yvonne C.; Su, Sheng-Fang; Martin, Sue Ellen; Daneshmand, Siamak; Skinner, Eila C.; Liang, Gangning; Chihara, Yoshitomo; Jones, Peter A.

    2014-01-01

    Extracellular cues play critical roles in the establishment of the epigenome during development and may also contribute to epigenetic perturbations found in disease states. The direct role of the local tissue environment on the post-development human epigenome, however, remains unclear due to limitations in studies of human subjects. Here, we use an isogenic human ileal neobladder surgical model and compare global DNA methylation levels of intestinal epithelial cells pre- and post-neobladder construction using the Infinium HumanMethylation450 BeadChip. Our study is the first to quantify the effect of environmental cues on the human epigenome and show that the local tissue environment directly modulates DNA methylation patterns in normal differentiated cells in vivo. In the neobladder, the intestinal epithelial cells lose their tissue-specific epigenetic landscape in a time-dependent manner following the tissue’s exposure to a bladder environment. We find that de novo methylation of many intestine-specific enhancers occurs at the rate of 0.41% per month (P < 0.01, Pearson = 0.71), while demethylation of primarily non-intestine-specific transcribed regions occurs at the rate of −0.37% per month (P < 0.01, Pearson = −0.57). The dynamic resetting of the DNA methylome in the neobladder not only implicates local environmental cues in the shaping and maintenance of the epigenome but also illustrates an unexpected cross-talk between the epigenome and the cellular environment. PMID:24515120

  3. Intestinal-fatty acid binding protein and lipid transport in human intestinal epithelial cells

    SciTech Connect

    Montoudis, Alain; Delvin, Edgard; Menard, Daniel

    2006-01-06

    Intestinal-fatty acid binding protein (I-FABP) is a 14-15 kDa cytoplasmic molecule highly expressed in the enterocyte. Although different functions have been proposed for various FABP family members, the specific function of I-FABP in human intestine remains unclear. Here, we studied the role of I-FABP in molecularly modified normal human intestinal epithelial cells (HIEC-6). cDNA transfection resulted in 90-fold I-FABP overexpression compared to cells treated with empty pQCXIP vector. The high-resolution immunogold technique revealed labeling mainly in the cytosol and confirmed the marked phenotype abundance of I-FABP in cDNA transfected cells. I-FABP overexpression was not associated with alterations in cell proliferation and viability. Studies using these transfected cells cultured with [{sup 14}C]oleic acid did not reveal higher efficiency in de novo synthesis or secretion of triglycerides, phospholipids, and cholesteryl esters compared to cells treated with empty pQCXIP vector only. Similarly, the incubation with [{sup 35}S]methionine did not disclose a superiority in the biogenesis of apolipoproteins (apo) A-I, A-IV, B-48, and B-100. Finally, cells transfected with I-FABP did not exhibit an increased production of chylomicrons, VLDL, LDL, and HDL. Our observations establish that I-FABP overexpression in normal HIEC-6 is not related to cell proliferation, lipid esterification, apo synthesis, and lipoprotein assembly, and, therefore, exclude its role in intestinal fat transport.

  4. Quantitation of small intestinal permeability during normal human drug absorption

    PubMed Central

    2013-01-01

    Background Understanding the quantitative relationship between a drug’s physical chemical properties and its rate of intestinal absorption (QSAR) is critical for selecting candidate drugs. Because of limited experimental human small intestinal permeability data, approximate surrogates such as the fraction absorbed or Caco-2 permeability are used, both of which have limitations. Methods Given the blood concentration following an oral and intravenous dose, the time course of intestinal absorption in humans was determined by deconvolution and related to the intestinal permeability by the use of a new 3 parameter model function (“Averaged Model” (AM)). The theoretical validity of this AM model was evaluated by comparing it to the standard diffusion-convection model (DC). This analysis was applied to 90 drugs using previously published data. Only drugs that were administered in oral solution form to fasting subjects were considered so that the rate of gastric emptying was approximately known. All the calculations are carried out using the freely available routine PKQuest Java (http://www.pkquest.com) which has an easy to use, simple interface. Results Theoretically, the AM permeability provides an accurate estimate of the intestinal DC permeability for solutes whose absorption ranges from 1% to 99%. The experimental human AM permeabilities determined by deconvolution are similar to those determined by direct human jejunal perfusion. The small intestinal pH varies with position and the results are interpreted in terms of the pH dependent octanol partition. The permeability versus partition relations are presented separately for the uncharged, basic, acidic and charged solutes. The small uncharged solutes caffeine, acetaminophen and antipyrine have very high permeabilities (about 20 x 10-4 cm/sec) corresponding to an unstirred layer of only 45 μm. The weak acid aspirin also has a large AM permeability despite its low octanol partition at pH 7.4, suggesting

  5. Vesicular sorting controls the polarity of expanding membranes in the C. elegans intestine

    PubMed Central

    Zhang, Hongjie; Kim, Ahlee; Abraham, Nessy; Khan, Liakot A.; Göbel, Verena

    2013-01-01

    Biological tubes consist of polarized epithelial cells with apical membranes building the central lumen and basolateral membranes contacting adjacent cells or the extracellular matrix. Cellular polarity requires distinct inputs from outside the cell, e.g., the matrix, inside the cell, e.g., vesicular trafficking and the plasma membrane and its junctions.1 Many highly conserved polarity cues have been identified, but their integration during the complex process of polarized tissue and organ morphogenesis is not well understood. It is assumed that plasma-membrane-associated polarity determinants, such as the partitioning-defective (PAR) complex, define plasma membrane domain identities, whereas vesicular trafficking delivers membrane components to these domains, but lacks the ability to define them. In vitro studies on lumenal membrane biogenesis in mammalian cell lines now indicate that trafficking could contribute to defining membrane domains by targeting the polarity determinants, e.g., the PARs, themselves.2 This possibility suggests a mechanism for PARs’ asymmetric distribution on membranes and places vesicle-associated polarity cues upstream of membrane-associated polarity determinants. In such an upstream position, trafficking might even direct multiple membrane components, not only polarity determinants, an original concept of polarized plasma membrane biogenesis3,4that was largely abandoned due to the failure to identify a molecularly defined intrinsic vesicular sorting mechanism. Our two recent studies on C. elegans intestinal tubulogenesis reveal that glycosphingolipids (GSLs) and the well-recognized vesicle components clathrin and its AP-1 adaptor are required for targeting multiple apical molecules, including polarity regulators, to the expanding apical/lumenal membrane.5,6 These findings support GSLs’ long-proposed role in in vivo polarized epithelial membrane biogenesis and development and identify a novel function in apical polarity for classical

  6. Molecular Epidemiology of Human Intestinal Amoebas in Iran

    PubMed Central

    Hooshyar, H; Rostamkhani, P; Rezaian, M

    2012-01-01

    Many microscopic-based epidemiological surveys on the prevalence of human intestinal pathogenic and non-pathogenic protozoa including intestinal amoeba performed in Iran show a high prevalence of human intestinal amoeba in different parts of Iran. Such epidemiological studies on amoebiasis are confusing, mainly due to recently appreciated distinction between the Entamoeba histolytica, E. dispar and E. moshkovskii. Differential diagnosis can be done by some methods such as PCR-based methods, monoclonal antibodies and the analysis of isoenzyme typing, however the molecular study of these protozoa in Iran is low. Based on molecular studies, it seems that E. dispar is predominant species especially in the central and northern areas of Iran and amoebiasis due to E. histolytica is a rare infection in the country. It is suggested that infection with E. moshkovskii may be common among Iranians. Considering the importance of molecular epidemiology of amoeba in Iran and also the current data, the present study reviews the data currently available on the molecular distribution of intestinal human amoeba in Iran. PMID:23193500

  7. Unregulated smooth-muscle myosin in human intestinal neoplasia.

    PubMed

    Alhopuro, Pia; Phichith, Denis; Tuupanen, Sari; Sammalkorpi, Heli; Nybondas, Miranda; Saharinen, Juha; Robinson, James P; Yang, Zhaohui; Chen, Li-Qiong; Orntoft, Torben; Mecklin, Jukka-Pekka; Järvinen, Heikki; Eng, Charis; Moeslein, Gabriela; Shibata, Darryl; Houlston, Richard S; Lucassen, Anneke; Tomlinson, Ian P M; Launonen, Virpi; Ristimäki, Ari; Arango, Diego; Karhu, Auli; Sweeney, H Lee; Aaltonen, Lauri A

    2008-04-01

    A recent study described a recessive ATPase activating germ-line mutation in smooth-muscle myosin (smmhc/myh11) underlying the zebrafish meltdown (mlt) phenotype. The mlt zebrafish develops intestinal abnormalities reminiscent of human Peutz-Jeghers syndrome (PJS) and juvenile polyposis (JP). To examine the role of MYH11 in human intestinal neoplasia, we searched for MYH11 mutations in patients with colorectal cancer (CRC), PJS and JP. We found somatic protein-elongating frameshift mutations in 55% of CRCs displaying microsatellite instability and in the germ-line of one individual with PJS. Additionally, two somatic missense mutations were found in one microsatellite stable CRC. These two missense mutations, R501L and K1044N, and the frameshift mutations were functionally evaluated. All mutations resulted in unregulated molecules displaying constitutive motor activity, similar to the mutant myosin underlying mlt. Thus, MYH11 mutations appear to contribute also to human intestinal neoplasia. Unregulated MYH11 may affect the cellular energy balance or disturb cell lineage decisions in tumor progenitor cells. These data challenge our view on MYH11 as a passive differentiation marker functioning in muscle contraction and add to our understanding of intestinal neoplasia. PMID:18391202

  8. Solubility profiling of HIV protease inhibitors in human intestinal fluids.

    PubMed

    Wuyts, Benjamin; Brouwers, Joachim; Mols, Raf; Tack, Jan; Annaert, Pieter; Augustijns, Patrick

    2013-10-01

    The present study pursued to profile the intestinal solubility of nine HIV protease inhibitors (PIs) in fasted- and fed-state human intestinal fluids (FaHIF, FeHIF) aspirated from four volunteers. In addition, the ability of fasted- and fed-state simulated intestinal fluids (FaSSIF, FeSSIF) to predict the intestinal solubility was evaluated. All PIs were poorly soluble in FaHIF (from 7 μM for ritonavir to 327 μM for darunavir) and FeHIF (from 15 μM for atazanavir to 409μM for darunavir). For four of nine PIs, food intake significantly enhanced the solubilizing capacity of intestinal fluids (up to 18.4-fold increase for ritonavir). The intersubject variability (average coefficient of variance CVfed = 60.6%, CVfasted = 40.4%) was higher as compared with the intrasubject variability (CVfed = 41.3%, CVfasted = 20.5%). PI solubilities correlated reasonably well between FaSSIF and FaHIF (R = 0.817), but not between FeSSIF and FeHIF (R = 0.617). To conclude, postprandial conditions increased the inter- and intrasubject variability of the PIs. The inability of FeSSIF to accurately predict the FeHIF solubility emphasizes the need for a multivariate approach to determine solubility profiles, taking into account solid-state characteristics, pH, mixed bile acid/phospholipid micelles, and digestive products. PMID:23939880

  9. Application of the Human Intestinal Tract Chip to the non-human primate gut microbiota.

    PubMed

    Bello González, T D J; van Passel, M W J; Tims, S; Fuentes, S; De Vos, W M; Smidt, H; Belzer, C

    2015-01-01

    The human intestinal microbiota is responsible for various health-related functions, and its diversity can be readily mapped with the 16S ribosomal RNA targeting Human Intestinal Tract (HIT) Chip. Here we characterise distal gut samples from chimpanzees, gorillas and marmosets, and compare them with human gut samples. Our results indicated applicability of the HITChip platform can be extended to chimpanzee and gorilla faecal samples for analysis of microbiota composition and enterotypes, but not to the evolutionary more distant marmosets. PMID:25519524

  10. Localization of human intestinal defensin 5 in Paneth cell granules.

    PubMed Central

    Porter, E M; Liu, L; Oren, A; Anton, P A; Ganz, T

    1997-01-01

    Antibiotic peptides of higher animals include the defensins, first discovered in phagocytic cells but recently also found to be produced by epithelial cells. We biosynthesized recombinant human intestinal defensin 5 (rHD-5) using the baculovirus-insect cell expression system. Since insect cells process defensin incompletely and secrete the precursor proHD-5, we substituted a methionine for an alanine at a likely processing site to allow selective chemical cleavage with cyanogen bromide, and rHD-5 was used to elicit polyclonal antibodies. By the immunoperoxidase-staining technique, the antibodies selectively stained Paneth cells of the normal adult small intestine. Immunogold electron microscopy further localized HD-5 to the Paneth cell secretory granules. Since some defensins exert activity cytotoxic to mammalian cells, we assayed the effect of rHD-5 on the human intestinal cell lines Caco2 and Int407. proHD-5 did not exert cytotoxic activity, and rHD-5 showed only minimal activity against Int407 and was inert against Caco2. Since Paneth cells release their granules adjacent to the mitotic cells of the intestinal crypts, HD could protect this cell population against invasion and parasitization by microbes. PMID:9169779

  11. Src family kinase inhibitor PP2 accelerates differentiation in human intestinal epithelial cells.

    PubMed

    Seltana, Amira; Guezguez, Amel; Lepage, Manon; Basora, Nuria; Beaulieu, Jean-François

    2013-01-25

    The proto-oncogene Src is an important protein tyrosine kinase involved in signaling pathways that control cell adhesion, growth, migration and survival. Here, we investigated the involvement of Src family kinases (SFKs) in human intestinal cell differentiation. We first observed that Src activity peaked in early stages of Caco-2/15 cell differentiation. Inhibition of SFKs with PP2, a selective SFK inhibitor, accelerated the overall differentiation program. Interestingly, all polarization and terminal differentiation markers tested, including sucrase-isomaltase, lactase-phlorizin hydrolase and E and Li-cadherins were found to be significantly up-regulated after only 3 days of treatment in the newly differentiating cells. Further investigation of the effects of PP2 revealed a significant up-regulation of the two main intestinal epithelial cell-specific transcription factors Cdx2 and HNF1α and a reduction of polycomb PRC2-related epigenetic repressing activity as measured by a decrease in H3K27me3, two events closely related to the control of cell terminal differentiation in the intestine. Taken together, these data suggest that SFKs play a key role in the control of intestinal epithelial cell terminal differentiation. PMID:23274493

  12. Berberine Inhibits Intestinal Polyps Growth in Apc (min/+) Mice via Regulation of Macrophage Polarization.

    PubMed

    Piao, Meiyu; Cao, Hailong; He, NaNa; Yang, Boli; Dong, Wenxiao; Xu, Mengque; Yan, Fang; Zhou, Bing; Wang, Bangmao

    2016-01-01

    Antitumor effect of berberine has been reported in a wide spectrum of cancer, however, the mechanisms of which are not fully understood. The aim of this study was to investigate the hypothesis that berberine suppresses tumorigenesis in the familial adenomatous polyposis (FAP) by regulating the macrophage polarization in Apc (min/+) mouse model. Berberine was given to Apc (min/+) mice for 12 weeks. Primary macrophages were isolated; after berberine treatment, the change in signaling cascade was determined. The total number and size of polyps were reduced remarkably in berberine group, compared with control group. A significant decrease in protein levels of F4/80, mannose receptor (MR), and COX-2 in stroma of intestinal polyps and an increase in the level of iNOS were observed after berberine treatment. The mRNA level of MR and Arg-1 in berberine group was significantly lower than those in IL-10 or IL-4 group, while no significant difference in mRNA levels of iNOS and CXCL10 was observed. The migration and invasiveness assays in vitro showed that berberine could reduce the capability of migration and invasiveness. These findings suggest that berberine attenuates intestinal tumorigenesis by inhibiting the migration and invasion of colorectal tumor cells via regulation of macrophage polarization. PMID:27493671

  13. Berberine Inhibits Intestinal Polyps Growth in Apc (min/+) Mice via Regulation of Macrophage Polarization

    PubMed Central

    Piao, Meiyu; Cao, Hailong; He, NaNa; Yang, Boli; Dong, Wenxiao; Xu, Mengque; Yan, Fang; Zhou, Bing

    2016-01-01

    Antitumor effect of berberine has been reported in a wide spectrum of cancer, however, the mechanisms of which are not fully understood. The aim of this study was to investigate the hypothesis that berberine suppresses tumorigenesis in the familial adenomatous polyposis (FAP) by regulating the macrophage polarization in Apc (min/+) mouse model. Berberine was given to Apc (min/+) mice for 12 weeks. Primary macrophages were isolated; after berberine treatment, the change in signaling cascade was determined. The total number and size of polyps were reduced remarkably in berberine group, compared with control group. A significant decrease in protein levels of F4/80, mannose receptor (MR), and COX-2 in stroma of intestinal polyps and an increase in the level of iNOS were observed after berberine treatment. The mRNA level of MR and Arg-1 in berberine group was significantly lower than those in IL-10 or IL-4 group, while no significant difference in mRNA levels of iNOS and CXCL10 was observed. The migration and invasiveness assays in vitro showed that berberine could reduce the capability of migration and invasiveness. These findings suggest that berberine attenuates intestinal tumorigenesis by inhibiting the migration and invasion of colorectal tumor cells via regulation of macrophage polarization. PMID:27493671

  14. [Algorithm for the coproscopic diagnosis of human intestinal parasites].

    PubMed

    Dolbin, D A; Tiurin, Iu A; Khaĭrullin, R M

    2012-01-01

    The purpose of the study was to elaborate a detection algorithm for human intestinal helminth eggs. There is a broad spectrum ofcoproscopic methods recommended for the detection of Opisthorchis eggs in man and animals; these include Fulleborn's method, formalin-ether method, Goryachev's, Katoh's, Kalantaryan's, Shcherbovich's, and Kotelnikov-Varenichev methods. Combined coproscopic methods are significantly more effective in detecting the causative agents of enteric parasitoses than is Katoh's method. Among the considered coproscopic techniques for the diagnosis of human ascariasis, it is most rational to use a combined method for fecal examination, the basis for which is a multicomponent flotation system (such as the author's one). The Kotelnikov-Varenichev method is optimal for diagnosing opisthorchiasis. It is optimal to use 2-3 methods of different groups simultaneously for the screening diagnosis of intestinal parasitoses. PMID:22774504

  15. Drosophila melanogaster as a model for human intestinal infection and pathology

    PubMed Central

    Apidianakis, Yiorgos; Rahme, Laurence G.

    2011-01-01

    Recent findings concerning Drosophila melanogaster intestinal pathology suggest that this model is well suited for the study of intestinal stem cell physiology during aging, stress and infection. Despite the physiological divergence between vertebrates and insects, the modeling of human intestinal diseases is possible in Drosophila because of the high degree of conservation between Drosophila and mammals with respect to the signaling pathways that control intestinal development, regeneration and disease. Furthermore, the genetic amenability of Drosophila makes it an advantageous model species. The well-studied intestinal stem cell lineage, as well as the tools available for its manipulation in vivo, provide a promising framework that can be used to elucidate many aspects of human intestinal pathology. In this Perspective, we discuss recent advances in the study of Drosophila intestinal infection and pathology, and briefly review the parallels and differences between human and Drosophila intestinal regeneration and disease. PMID:21183483

  16. Survivability of Kudoa septempunctata in human intestinal conditions.

    PubMed

    Ohnishi, Takahiro; Fujiwara, Marina; Tomaru, Akiko; Yoshinari, Tomoya; Sugita-Konishi, Yoshiko

    2016-06-01

    To elucidate whether Kudoa septempunctata was able to live in the human intestine, we assessed viability of K. septempunctata sporoplasms under conditions that mimicked human and ragworm digestive tracts. To study the effect of osmotic pressure on viability, sporoplasms were incubated in 0.9 or 3.4 % sodium chloride solutions, which roughly corresponded to the osmotic pressure in human or ragworm tissues, respectively. While viability in 3.4 % sodium chloride did not change after 72 h, it dropped to 21 % in 0.9 % sodium chloride. To study the effect of temperature on viability, sporoplasms were incubated at 37, 15, or 25 °C, which were representative of human, winter ragworm, or summer ragworm temperatures, respectively. Viability decreased sharply to 8.4 % after 48 h at 37 °C, but remained essentially unchanged at 15 and 25 °C. In addition, sporoplasms showed strong susceptibility to bile. These results indicate that K. septempunctata could not live in the human intestine for a long time. PMID:27038250

  17. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    PubMed Central

    Moore, Aimee M.; Munck, Christian; Sommer, Morten O. A.; Dantas, Gautam

    2011-01-01

    The human intestinal microbiota encode multiple critical functions impacting human health, including metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity of this microbial community, its recalcitrance to standard cultivation, and the immense diversity of its encoded genes has necessitated the development of novel molecular, microbiological, and genomic tools. Functional metagenomics is one such culture-independent technique, used for decades to study environmental microorganisms, but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community, independent of identity to known genes, by subjecting the metagenome to functional assays in a genetically tractable host. Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex community and its human host. PMID:22022321

  18. Human milk hyaluronan enhances innate defense of the intestinal epithelium.

    PubMed

    Hill, David R; Rho, Hyunjin K; Kessler, Sean P; Amin, Ripal; Homer, Craig R; McDonald, Christine; Cowman, Mary K; de la Motte, Carol A

    2013-10-01

    Breast-feeding is associated with enhanced protection from gastrointestinal disease in infants, mediated in part by an array of bioactive glycan components in milk that act through molecular mechanisms to inhibit enteric pathogen infection. Human milk contains hyaluronan (HA), a glycosaminoglycan polymer found in virtually all mammalian tissues. We have shown that synthetic HA of a specific size range promotes expression of antimicrobial peptides in intestinal epithelium. We hypothesize that hyaluronan from human milk also enhances innate antimicrobial defense. Here we define the concentration of HA in human milk during the first 6 months postpartum. Importantly, HA isolated from milk has a biological function. Treatment of HT-29 colonic epithelial cells with human milk HA at physiologic concentrations results in time- and dose-dependent induction of the antimicrobial peptide human β-defensin 2 and is abrogated by digestion of milk HA with a specific hyaluronidase. Milk HA induction of human β-defensin 2 expression is also reduced in the presence of a CD44-blocking antibody and is associated with a specific increase in ERK1/2 phosphorylation, suggesting a role for the HA receptor CD44. Furthermore, oral administration of human milk-derived HA to adult, wild-type mice results in induction of the murine Hβ D2 ortholog in intestinal mucosa and is dependent upon both TLR4 and CD44 in vivo. Finally, treatment of cultured colonic epithelial cells with human milk HA enhances resistance to infection by the enteric pathogen Salmonella typhimurium. Together, our observations suggest that maternally provided HA stimulates protective antimicrobial defense in the newborn. PMID:23950179

  19. Human Milk Hyaluronan Enhances Innate Defense of the Intestinal Epithelium*

    PubMed Central

    Hill, David R.; Rho, Hyunjin K.; Kessler, Sean P.; Amin, Ripal; Homer, Craig R.; McDonald, Christine; Cowman, Mary K.; de la Motte, Carol A.

    2013-01-01

    Breast-feeding is associated with enhanced protection from gastrointestinal disease in infants, mediated in part by an array of bioactive glycan components in milk that act through molecular mechanisms to inhibit enteric pathogen infection. Human milk contains hyaluronan (HA), a glycosaminoglycan polymer found in virtually all mammalian tissues. We have shown that synthetic HA of a specific size range promotes expression of antimicrobial peptides in intestinal epithelium. We hypothesize that hyaluronan from human milk also enhances innate antimicrobial defense. Here we define the concentration of HA in human milk during the first 6 months postpartum. Importantly, HA isolated from milk has a biological function. Treatment of HT-29 colonic epithelial cells with human milk HA at physiologic concentrations results in time- and dose-dependent induction of the antimicrobial peptide human β-defensin 2 and is abrogated by digestion of milk HA with a specific hyaluronidase. Milk HA induction of human β-defensin 2 expression is also reduced in the presence of a CD44-blocking antibody and is associated with a specific increase in ERK1/2 phosphorylation, suggesting a role for the HA receptor CD44. Furthermore, oral administration of human milk-derived HA to adult, wild-type mice results in induction of the murine Hβ D2 ortholog in intestinal mucosa and is dependent upon both TLR4 and CD44 in vivo. Finally, treatment of cultured colonic epithelial cells with human milk HA enhances resistance to infection by the enteric pathogen Salmonella typhimurium. Together, our observations suggest that maternally provided HA stimulates protective antimicrobial defense in the newborn. PMID:23950179

  20. Nonsteroidal antiinflammatory drug-induced intestinal inflammation in humans

    SciTech Connect

    Bjarnason, I.; Zanelli, G.; Smith, T.; Prouse, P.; Williams, P.; Smethurst, P.; Delacey, G.; Gumpel, M.J.; Levi, A.J.

    1987-09-01

    This study examines the effects of nonsteroidal antiinflammatory drugs on the small intestine in humans. Using an /sup 111/In-leukocyte technique in patients with rheumatoid arthritis (n = 90) and osteoarthritis (n = 7), it appears that nonsteroidal antiinflammatory drugs cause small intestinal inflammation in two-thirds of patients on long-term treatment and on discontinuation, the inflammation may persist for up to 16 mo. The prevalence and magnitude of the intestinal inflammation was unrelated to the type and dose of nonsteroidal drugs and previous or concomitant second-line drug treatment. There was a significant inverse correlation (r = -0.29, p less than 0.05) between fecal /sup 111/In excretion and hemoglobin levels in patients treated with nonsteroidal antiinflammatory drugs. The kinetics of fecal indium 111 excretion in patients treated with nonsteroidal antiinflammatory drugs was almost identical to that of patients with small bowel Crohn's disease. Eighteen patients on nonsteroidal antiinflammatory drugs underwent a radiologic examination of the small bowel and 3 were found to have asymptomatic ileal disease with ulceration and strictures. Nineteen patients on nonsteroidal antiinflammatory drugs, 20 healthy controls, and 13 patients with Crohn's ileitis underwent a dual radioisotopic ileal function test with tauro 23 (/sup 75/Se) selena-25-homocholic acid and cobalt 58-labeled cyanocobalamine. On day 4, more than half of the patients with rheumatoid arthritis had evidence of bile acid malabsorption, but the ileal dysfunction was much milder than seen in patients with Crohn's ileitis.

  1. Diversity of human small intestinal Streptococcus and Veillonella populations.

    PubMed

    van den Bogert, Bartholomeus; Erkus, Oylum; Boekhorst, Jos; de Goffau, Marcus; Smid, Eddy J; Zoetendal, Erwin G; Kleerebezem, Michiel

    2013-08-01

    Molecular and cultivation approaches were employed to study the phylogenetic richness and temporal dynamics of Streptococcus and Veillonella populations in the small intestine. Microbial profiling of human small intestinal samples collected from four ileostomy subjects at four time points displayed abundant populations of Streptococcus spp. most affiliated with S. salivarius, S. thermophilus, and S. parasanguinis, as well as Veillonella spp. affiliated with V. atypica, V. parvula, V. dispar, and V. rogosae. Relative abundances varied per subject and time of sampling. Streptococcus and Veillonella isolates were cultured using selective media from ileostoma effluent samples collected at two time points from a single subject. The richness of the Streptococcus and Veillonella isolates was assessed at species and strain level by 16S rRNA gene sequencing and genetic fingerprinting, respectively. A total of 160 Streptococcus and 37 Veillonella isolates were obtained. Genetic fingerprinting differentiated seven Streptococcus lineages from ileostoma effluent, illustrating the strain richness within this ecosystem. The Veillonella isolates were represented by a single phylotype. Our study demonstrated that the small intestinal Streptococcus populations displayed considerable changes over time at the genetic lineage level because only representative strains of a single Streptococcus lineage could be cultivated from ileostoma effluent at both time points. PMID:23614882

  2. Comprehensive study on regional human intestinal permeability and prediction of fraction absorbed of drugs using the Ussing chamber technique.

    PubMed

    Sjöberg, Åsa; Lutz, Mareike; Tannergren, Christer; Wingolf, Caroline; Borde, Anders; Ungell, Anna-Lena

    2013-01-23

    The purpose of this study was to evaluate the use of human intestinal tissue in Ussing chamber to predict oral and colonic drug absorption and intestinal metabolism. Data on viability, correlation between apparent permeability coefficients (P(app)) and fraction absorbed (f(a)) after oral and colonic administration, regional permeability, active uptake and efflux of drugs as well as intestinal metabolism were compiled from experiments using 159 human donors. Permeability coefficients for up to 28 drugs were determined using one or several of four intestinal regions: duodenum, jejunum, ileum and colon and 10 drugs were studied bidirectionally. Viability was monitored simultaneously with transport experiments by recording potential difference (PD), short-circuit current (SCC) and the resistance (TER). Intestinal metabolism was studied using testosterone and midazolam as probe substrates. There was a steep sigmoidal correlation between P(app) in the Ussing chamber, using jejunal segments, and oral f(a) in humans, for a set of 25 drugs (R(2): 0.85, p<0.01). A clear sigmoidal relationship was also obtained between P(app) in colonic segments and f(a) after colonic administration in humans for a set of 10 drugs (R(2): 0.93, p<0.05). Regional permeability data showed a tendency for highly permeable compounds to have higher or similar P(app) in colon as in the small intestinal segments, while the colonic regions showed a lower P(app) for more polar compounds as well as for d-glucose and l-leucine. Bidirectional transport (mucosa to serosa and serosa to mucosa direction) in jejunum showed well functioning efflux- and uptake asymmetry. Intestinal metabolic extraction during transport across jejunum segments was found for both testosterone and midazolam. In conclusion, viable excised human intestine mounted in the Ussing chamber, is a powerful technique for predicting regional fraction absorbed (f(a)), transporter-mediated uptake or efflux as well as intestinal metabolism of

  3. Human milk and infant intestinal mucosal glycans guide succession of the neonatal intestinal microbiota.

    PubMed

    Newburg, David S; Morelli, Lorenzo

    2015-01-01

    Infants begin acquiring intestinal microbiota at parturition. Initial colonization by pioneer bacteria is followed by active succession toward a dynamic ecosystem. Keystone microbes engage in reciprocal transkingdom communication with the host, which is essential for human homeostasis and health; therefore, these bacteria should be considered mutualists rather than commensals. This review discusses the maternal role in providing infants with functional and stable microbiota. The initial fecal inoculum of microbiota results from the proximity of the birth canal and anus; the biological significance of this anatomic proximity could underlie observed differences in microbiota between vaginal and cesarean birth. Secondary sources of inocula include mouths and skin of kin, animals and objects, and the human milk microbiome, but guiding microbial succession may be a primary role of human milk. The unique glycans of human milk cannot be digested by the infant, but are utilized by mutualist bacteria. These prebiotic glycans support expansion of mutualist microbiota, which manifests as differences in microbiota among breastfed and artificially fed infants. Human milk glycans vary by maternal genotype. Milks of genetically distinct mothers and variations in infant mucosal glycan expression support discrete microbiota. Early colonization may permanently influence microbiota composition and function, with ramifications for health. PMID:25356747

  4. Functional Characterization of Cholera Toxin Inhibitors Using Human Intestinal Organoids.

    PubMed

    Zomer-van Ommen, Domenique D; Pukin, Aliaksei V; Fu, Ou; Quarles van Ufford, Linda H C; Janssens, Hettie M; Beekman, Jeffrey M; Pieters, Roland J

    2016-07-28

    Preclinical drug testing in primary human cell models that recapitulate disease can significantly reduce animal experimentation and time-to-the-clinic. We used intestinal organoids to quantitatively study the potency of multivalent cholera toxin inhibitors. The method enabled the determination of IC50 values over a wide range of potencies (15 pM to 9 mM). The results indicate for the first time that an organoid-based swelling assay is a useful preclinical method to evaluate inhibitor potencies of drugs that target pathogen-derived toxins. PMID:27347611

  5. Vasoactive intestinal peptide signaling axis in human leukemia

    PubMed Central

    Dorsam, Glenn Paul; Benton, Keith; Failing, Jarrett; Batra, Sandeep

    2011-01-01

    The vasoactive intestinal peptide (VIP) signaling axis constitutes a master “communication coordinator” between cells of the nervous and immune systems. To date, VIP and its two main receptors expressed in T lymphocytes, vasoactive intestinal peptide receptor (VPAC)1 and VPAC2, mediate critical cellular functions regulating adaptive immunity, including arresting CD4 T cells in G1 of the cell cycle, protection from apoptosis and a potent chemotactic recruiter of T cells to the mucosa associated lymphoid compartment of the gastrointestinal tissues. Since the discovery of VIP in 1970, followed by the cloning of VPAC1 and VPAC2 in the early 1990s, this signaling axis has been associated with common human cancers, including leukemia. This review highlights the present day knowledge of the VIP ligand and its receptor expression profile in T cell leukemia and cell lines. Also, there will be a discussion describing how the anti-leukemic DNA binding transcription factor, Ikaros, regulates VIP receptor expression in primary human CD4 T lymphocytes and T cell lymphoblastic cell lines (e.g. Hut-78). Lastly, future goals will be mentioned that are expected to uncover the role of how the VIP signaling axis contributes to human leukemogenesis, and to establish whether the VIP receptor signature expressed by leukemic blasts can provide therapeutic and/or diagnostic information. PMID:21765981

  6. Alpha2 adrenoceptors regulate proliferation of human intestinal epithelial cells

    PubMed Central

    Schaak, S; Cussac, D; Cayla, C; Devedjian, J; Guyot, R; Paris, H; Denis, C

    2000-01-01

    BACKGROUND AND AIMS—Previous studies on rodents have suggested that catecholamines stimulate proliferation of the intestinal epithelium through activation of α2 adrenoceptors located on crypt cells. The occurrence of this effect awaits demonstration in humans and the molecular mechanisms involved have not yet been elucidated. Here, we examined the effect of α2 agonists on a clone of Caco2 cells expressing the human α2A adrenoceptor.
METHODS—Cells were transfected with a bicistronic plasmid containing the α2C10 and neomycin phosphotransferase genes. G418 resistant clones were assayed for receptor expression using radioligand binding. Receptor functionality was assessed by testing its ability to couple Gi proteins and to inhibit cAMP production. Mitogen activated protein kinase (MAPK) phosphorylation was followed by western blot, and cell proliferation was estimated by measuring protein and DNA content.
RESULTS—Permanent transfection of Caco2 cells allowed us to obtain a clone (Caco2-3B) expressing α2A adrenoceptors at a density similar to that found in normal human intestinal epithelium. Caco2-3B retained morphological features and brush border enzyme expression characteristic of enterocytic differentiation. The receptor was coupled to Gi2/Gi3 proteins and its stimulation caused marked diminution of forskolin induced cAMP production. Treatment of Caco2-3B with UK14304 (α2 agonist) induced a rapid increase in the phosphorylation state of MAPK, extracellular regulated protein kinase 1 (Erk1), and 2 (Erk2). This event was totally abolished in pertussis toxin treated cells and in the presence of kinase inhibitors (genistein or PD98059). It was unaffected by protein kinase C downregulation but correlated with a transient increase in Shc tyrosine phosphorylation. Finally, sustained exposure of Caco2-3B to UK14304 resulted in modest but significant acceleration of cell proliferation. None of these effects was observed in the parental cell line Caco2.

  7. Multiscale analysis of the murine intestine for modeling human diseases

    PubMed Central

    Lyons, Jesse; Herring, Charles A.; Banerjee, Amrita; Simmons, Alan J.

    2015-01-01

    When functioning properly, the intestine is one of the key interfaces between the human body and its environment. It is responsible for extracting nutrients from our food and excreting our waste products. It provides an environment for a host of healthful microbes and serves as a first defense against pathogenic ones. These processes require tight homeostatic controls, which are provided by the interactions of a complex mix of epithelial, stromal, neural and immune cells, as well as the resident microflora. This homeostasis can be disrupted by invasive microbes, genetic lesions, and carcinogens, resulting in diseases such Clostridium difficile infection, inflammatory bowel disease (IBD) and cancer. Enormous strides have been made in understanding how this important organ functions in health and disease using everything from cell culture systems to animal models to human tissue samples. This has resulted in better therapies for all of these diseases, but there is still significant room for improvement. In the United States alone, 14000 people per year die of C. difficile, up to 1.6 million people suffer from IBD, and more than 50000 people die every year from colon cancer. Because these and other intestinal diseases arise from complex interactions between the different components of the gut ecosystem, we propose that systems approaches that address this complexity in an integrative manner may eventually lead to improved therapeutics that deliver lasting cures. This review will discuss the use of systems biology for studying intestinal diseases in vivo with particular emphasis on mouse models. Additionally, it will focus on established experimental techniques that have been used to drive this systems-level analysis, and emerging techniques that will push this field forward in the future. PMID:26040649

  8. Flagellin-induced tolerance of the Toll-like receptor 5 signaling pathway in polarized intestinal epithelial cells.

    PubMed

    Sun, Jun; Fegan, Pamela E; Desai, Anjali S; Madara, James L; Hobert, Michael E

    2007-03-01

    Salmonella typhimurium is a gram-negative enteric pathogen that invades the mucosal epithelium and is associated with diarrheal illness in humans. Flagellin from S. typhimurium and other gram-negative bacteria has been shown to be the predominant proinflammatory mediator through activation of the basolateral Toll-like receptor 5 (TLR5). Recent evidence has shown that prior exposure can render immune cells tolerant to subsequent challenges by TLR ligands. Accordingly, we examined whether prior exposure to purified flagellin would render human intestinal epithelial cells insensitive to future contact. We found that flagellin-induced tolerance is common to polarized epithelial cells and prevents further activation of proinflammatory signaling cascades by both purified flagellin and Salmonella bacteria but does not affect TNF-alpha stimulation of the same pathways. Flagellin tolerance is a rapid process that does not require protein synthesis, and that occurs within 1 to 2 h of flagellin exposure. Prolonged flagellin exposure blocks activation of the NF-kappaB, MAPK, and phosphoinositol 3-kinase signaling pathways and results in the internalization of a fraction of the basolateral TLR5 without affecting the polarity or total expression of TLR5. After removal of flagellin, cells require more than 24 h to fully recover their ability to mount a normal proinflammatory response. We have found that activation of phosphoinositol 3-kinase and Akt by flagellin has a small damping effect in the early stages of flagellin signaling but is not responsible for tolerance. Our study indicates that inhibition of TLR5-associated IL-1 receptor-associated kinase-4 activity occurs during the development of flagellin tolerance and is likely to be the cause of tolerance. PMID:17138965

  9. Transgenic Expression of Human Lysophosphatidic Acid Receptor LPA2 in Mouse Intestinal Epithelial Cells Induces Intestinal Dysplasia

    PubMed Central

    Yoshida, Michihiro; He, Peijian; Yun, C. Chris

    2016-01-01

    Lysophosphatidic acid (LPA) acts on LPA2 receptor to mediate multiple pathological effects that are associated with tumorigenesis. The absence of LPA2 attenuates tumor progression in rodent models of colorectal cancer, but whether overexpression of LPA2 alone can lead to malignant transformation in the intestinal tract has not been studied. In this study, we expressed human LPA2 in intestinal epithelial cells (IECs) under control of the villin promoter. Less than 4% of F1-generation mice had germline transmission of transgenic (TG) human LPA2; as such only 3 F1 mice out of 72 genotyped had TG expression. These TG mice appeared anemic with hematochezia and died shortly after birth. TG mice were smaller in size compared with the wild type mouse of the same age and sex. Morphological analysis showed that TG LPA2 colon had hyper-proliferation of IECs resulting in increased colonic crypt depth. Surprisingly, TG small intestine had villus blunting and decreased IEC proliferation and dysplasia. In both intestine and colon, TG expression of LPA2 compromised the terminal epithelial differentiation, consistent with epithelial dysplasia. Furthermore, we showed that epithelial dysplasia was observed in founder mouse intestine, correlating LPA2 overexpression with epithelial dysplasia. The current study demonstrates that overexpression of LPA2 alone can lead to intestinal dysplasia. PMID:27124742

  10. Antibiotic residues and drug resistance in human intestinal flora.

    PubMed Central

    Corpet, D E

    1987-01-01

    The effect of residual levels of ampicillin on the drug resistance of fecal flora was studied in human volunteers given 1.5 mg of ampicillin orally per day for 21 days. This treatment failed to have any significant reproducible effect on the number of resistant Escherichia coli in their feces. The effect of continuous administration of small doses of ampicillin, chlortetracycline, or streptomycin in the drinking water was studied in gnotobiotic mice inoculated with a human fecal flora. In this animal model, which is free of many interfering factors, an increase in the fecal concentration of resistant E. coli was observed when the mice were given 0.5 microgram of ampicillin or chlortetracycline per ml of water. This model is therefore a sensitive system for testing the effect of antimicrobial drugs on the resistance characteristics of the intestinal flora. PMID:3300533

  11. Three dimensional human small intestine models for ADME-Tox studies.

    PubMed

    Yu, Jiajie; Carrier, Rebecca L; March, John C; Griffith, Linda G

    2014-10-01

    In vitro human small intestine models play a crucial part in preclinical drug development. Although conventional 2D systems possess many advantages, such as facile accessibility and high-throughput capability, they can also provide misleading results due to their relatively poor recapitulation of in vivo physiology. Significant progress has recently been made in developing 3D human small intestine models, suggesting that more-reliable preclinical results could be obtained by recreating the 3D intestinal microenvironment in vitro. Although there are still many challenges, 3D human small intestine models have the potential to facilitate drug screening and drug development. PMID:24853950

  12. Excipient-mediated supersaturation stabilization in human intestinal fluids.

    PubMed

    Bevernage, Jan; Forier, Thomas; Brouwers, Joachim; Tack, Jan; Annaert, Pieter; Augustijns, Patrick

    2011-04-01

    It was the purpose of this study to investigate excipient-mediated precipitation inhibition upon induction of supersaturation of poorly water-soluble drugs in aspirated human intestinal fluids (HIF) representing both the fasted and fed state. Etravirine, ritonavir, loviride, danazol and fenofibrate were selected as model compounds. For comparative purposes, precipitation inhibition was also evaluated in simple aqueous buffer, and in intestinal simulation media representative for the fasted and fed state (FaSSIF and FeSSIF, respectively). Supersaturation was induced in the test media containing predissolved excipient (HPMC-AS, HPMC-E5, HPMC-E50, HPMC-E4M, HPMC-P and PVP) at a defined degree of supersaturation (DS = 20) using the solvent shift method. The results illustrate that cellulosic polymers can reduce the precipitation rate and stabilize supersaturation in HIF. The extent of stabilization was compound and excipient dependent but independent of the nutritional state. Whenever excipient effects were observed, the predictive value of simple buffer or FaSSIF/FeSSIF was rather limited. In general, excipient-mediated precipitation inhibition was less pronounced in HIF compared to simple aqueous buffer or FaSSIF/FeSSIF. However, excipients showing no effect in simple aqueous buffer or FaSSIF/FeSSIF also proved to be ineffective in HIF, indicating the value of these simulation media in the elimination of excipients during formulation development. PMID:21268663

  13. Adherence of Bilophila wadsworthia to cultured human embryonic intestinal cells.

    PubMed

    Gerardo, S H; Garcia, M M; Wexler, H M; Finegold, S M

    1998-02-01

    Adherence of Bilophila wadsworthia to the cultured human embryonic intestinal cell line, Intestine 407 (Int 407), varied among the strains tested from strongly adherent (76-100% cells positive for one or more adherent bacteria) to non- or weakly adherent (0-25% positive cells). Although negative staining revealed that infrequent cells of an adherent strain, WAL 9077, the adherent type-strain, WAL 7959, and a non-adherent strain, WAL 8448, expressed loosely associated fimbrial structures, a role for these structures in adhesion could not be confirmed with either scanning or thin-section electron micrography. Ruthenium red staining of thin-section preparations and subsequent electron microscopy failed to reveal an extensive extracellular polysaccharide layer. SDS-PAGE analysis of crude outer membrane fractions of WAL 9077 and WAL 8448 demonstrated clear differences in their major and minor outer membrane protein components. Thus, we postulate that the adherence of B. wadsworthia to Int 407 cells is mediated by an outer membrane or cell wall component. PMID:16887620

  14. Characterization and distribution of alpha 2-adrenergic receptors in the human intestinal mucosa.

    PubMed Central

    Valet, P; Senard, J M; Devedjian, J C; Planat, V; Salomon, R; Voisin, T; Drean, G; Couvineau, A; Daviaud, D; Denis, C

    1993-01-01

    The subtype and the expression of the alpha 2-adrenergic receptor were investigated in the normal mucosa from human intestine by means of radioligand binding, RNase mapping, and measurement of adenylate cyclase activity. The study of the binding of the alpha 2-adrenergic antagonist, [3H]RX821002, to epithelial cell membranes indicated the existence of a single class of noninteracting sites displaying a high affinity for the radioligand (Kd = 1.1 +/- 0.5 nM). The rank order of potency of antagonists to inhibit [3H]RX821002 binding (RX821002 > yohimbine = rauwolscine > phentolamine approximately idazoxan >> chlorpromazine > prazosin) suggested that the receptor is of the alpha 2A subtype. A conclusion which is confirmed by the fact that only alpha 2C10 transcripts were found in the human intestine mucosa. Competition curves with (-)-norepinephrine demonstrated that 60% of the receptor population exhibited high affinity for agonists. This high-affinity state was abolished by the addition of GTP plus Na+ or by prior treatment of the membranes with pertussis toxin indicating it corresponded to G protein-coupled receptors. [32P]ADP-ribosylation and immunoblotting experiments identified two pertussis toxin-sensitive G proteins corresponding to Gi2 and Gi3. The study of the distribution of the receptor indicated that (a) the proximal colon is the intestine segment exhibiting the highest receptor density and (b) the receptor is predominantly expressed in crypts and is preferentially located in the basolateral membrane of the polarized cell. The distribution of the receptor along the crypt-surface axis of the colon mucosa can be correlated with a higher level of alpha 2C10-specific mRNA and a higher efficiency of UK14304 to inhibit adenylate cyclase in crypt cells. Images PMID:8098045

  15. Fluoroquinolone (ciprofloxacin) secretion by human intestinal epithelial (Caco-2) cells

    PubMed Central

    Cavet, M E; West, M; Simmons, N L

    1997-01-01

    Human intestinal epithelial Caco-2 cells were used to investigate the mechanistic basis of transepithelial secretion of the fluoroquinolone antibiotic ciprofloxacin. Net secretion and cellular uptake of ciprofloxacin (at 0.1 mM) were not subject to competitive inhibition by sulphate, thiosulphate, oxalate, succinate and para-amino hippurate, probenecid (10 mM), taurocholate (100 μM) or bromosulphophthalein (100 μM). Similarly tetraethylammonium and N-′methylnicotinamide (10 mM) were without effect. Net secretion of ciprofloxacin was inhibited by the organic exchange inhibitor 4,4′-diisothiocyanostilbene-2-2′-disulphonic acid (DIDS, 400 μM). Net secretion of ciprofloxacin was partially inhibited by 100 μM verapamil, whilst net secretion of the P-glycoprotein substrate vinblastine was totally abolished under these conditions. Ciprofloxacin secretion was unaltered after preincubation of cells with two anti-P-glycoprotein antibodies (UIC2 and MRK16), which both significantly reduced secretory vinblastine flux (measured in the same cell batch). Ciprofloxacin (3 mM) failed to inhibit vinblastine net secretion in Caco-2 epithelia, and was not itself secreted by the P-glycoprotein expressing and vinblastine secreting dog kidney cell line, MDCK. Net secretion and cellular uptake of ciprofloxacin (at 0.1 mM) were not subject to alterations of either cytosolic or medium pH, or dependent on the presence of medium Na+, Cl− or K+ in the bathing media. The substrate specificity of the ciprofloxacin secretory transport in Caco-2 epithelia is distinct from both the renal organic anion and cation transport. A role for P-glycoprotein in ciprofloxacin secretion may also be excluded. A novel transport mechanism, sensitive to both DIDS and verapamil mediates secretion of ciprofloxacin by human intestinal Caco-2 epithelia. PMID:9283689

  16. Organ culture of mucosal biopsies of human small intestine.

    PubMed

    Browning, T H; Trier, J S

    1969-08-01

    In vitro experiments of small intestinal mucosal function and metabolism utilizing excised tissue have been limited to a few hours by rapid epithelial cell necrosis which occurs with current incubation methods. We describe a method for culturing human mucosal biopsies for up to 24 hr employing organ culture methodology and demonstrate its potential application to studies of mucosal function. Peroral biopsies were placed in organ culture plates and maintained with modified Trowell's medium in 95% O(2)-5% CO(2) at 37 degrees C for 6-24 hr. To study cell proliferation, 2 muc of thymidine-(3)H was added per ml of medium. To study fat absorption, biopsies were exposed to micellar solutions of linolenic acid, monoolein, and taurodeoxycholate in Krebs-Ringer buffer for 15 min after culture in vitro for 24 hr. After 24 hr of culture, villi were shorter and wider. Cells in the lamina were reduced in number. Light and electron microscopic morphology of epithelial cells compared favorably to those of control biopsies except in occasional areas of partial necrosis. Some absorptive cells were more cuboidal and contained more lysosomes; many appeared entirely normal. Most crypt cells appeared normal; some contained increased glycogen and lysosomes. Mitoses were present, and labeled cells were abundant in crypts of biopsies after 6 hr of incubation with thymidine-(3)H-containing medium. By 24 hr. labeled cells migrated to the base of the villi. When biopsies cultured in vitro were subsequently exposed to micellar lipid, numerous lipid droplets were identified in the cytoplasm of absorptive cells. Thus, after 24 hr in vitro under these culture conditions, many human small intestinal epithelial cells maintain near normal morphology, epithelial cell proliferation proceeds, and fat absorption occurs. PMID:5796354

  17. Human Intestinal Enteroids: a New Model To Study Human Rotavirus Infection, Host Restriction, and Pathophysiology

    PubMed Central

    Saxena, Kapil; Blutt, Sarah E.; Ettayebi, Khalil; Zeng, Xi-Lei; Broughman, James R.; Crawford, Sue E.; Karandikar, Umesh C.; Sastri, Narayan P.; Conner, Margaret E.; Opekun, Antone R.; Graham, David Y.; Qureshi, Waqar; Sherman, Vadim; Foulke-Abel, Jennifer; In, Julie; Kovbasnjuk, Olga; Zachos, Nicholas C.; Donowitz, Mark

    2015-01-01

    ABSTRACT Human gastrointestinal tract research is limited by the paucity of in vitro intestinal cell models that recapitulate the cellular diversity and complex functions of human physiology and disease pathology. Human intestinal enteroid (HIE) cultures contain multiple intestinal epithelial cell types that comprise the intestinal epithelium (enterocytes and goblet, enteroendocrine, and Paneth cells) and are physiologically active based on responses to agonists. We evaluated these nontransformed, three-dimensional HIE cultures as models for pathogenic infections in the small intestine by examining whether HIEs from different regions of the small intestine from different patients are susceptible to human rotavirus (HRV) infection. Little is known about HRVs, as they generally replicate poorly in transformed cell lines, and host range restriction prevents their replication in many animal models, whereas many animal rotaviruses (ARVs) exhibit a broader host range and replicate in mice. Using HRVs, including the Rotarix RV1 vaccine strain, and ARVs, we evaluated host susceptibility, virus production, and cellular responses of HIEs. HRVs infect at higher rates and grow to higher titers than do ARVs. HRVs infect differentiated enterocytes and enteroendocrine cells, and viroplasms and lipid droplets are induced. Heterogeneity in replication was seen in HIEs from different patients. HRV infection and RV enterotoxin treatment of HIEs caused physiological lumenal expansion detected by time-lapse microscopy, recapitulating one of the hallmarks of rotavirus-induced diarrhea. These results demonstrate that HIEs are a novel pathophysiological model that will allow the study of HRV biology, including host restriction, cell type restriction, and virus-induced fluid secretion. IMPORTANCE Our research establishes HIEs as nontransformed cell culture models to understand human intestinal physiology and pathophysiology and the epithelial response, including host restriction of

  18. Immunoregulatory properties of vasoactive intestinal peptide in human T cell subsets: implications for rheumatoid arthritis.

    PubMed

    Gutiérrez-Cañas, Irene; Juarranz, Yasmina; Santiago, Begoña; Martínez, Carmen; Gomariz, Rosa P; Pablos, José Luis; Leceta, Javier

    2008-03-01

    Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease whose pathogenesis is not completely understood. Unbalanced Th1/Th2 T-cell polarization has been suggested to play a pathogenetic role and therefore, modulation of T-cell polarization is a potential therapeutic target. Vasoactive intestinal peptide (VIP) is a broadly distributed peptide that exerts anti-inflammatory and immunomodulatory effects, in the collagen-induced arthritis (CIA) murine model of RA, and ex vivo, in synovial cells from RA patients. In the present study, we have found that polyclonal stimulation of peripheral blood lymphocytes (PBL) from RA patients produces higher levels of inflammatory mediators and lower levels of Th1 cytokines than PBL from healthy controls; moreover, VIP has negligible effects on inflammatory mediators and Th1 cytokines produced by PBL from healthy controls but favours Th2 profile and enhanced IL-10 production after stimulation. VIP increases the levels of IL-10 and IL-4 in the supernatant of human CD4(+)CD45RA(+) cells cultured in a non-conditioned or a Th2-conditioned situation. In contrast, VIP does not modify the production of these cytokines in a Th1-conditioned medium. In summary, VIP can differentially modify the functional capacity of human lymphocytes by inducing Th2/Treg differentiation depending on their previous phenotype. PMID:17951026

  19. Quantitative prediction of intestinal metabolism in humans from a simplified intestinal availability model and empirical scaling factor.

    PubMed

    Kadono, Keitaro; Akabane, Takafumi; Tabata, Kenji; Gato, Katsuhiko; Terashita, Shigeyuki; Teramura, Toshio

    2010-07-01

    This study aimed to establish a practical and convenient method of predicting intestinal availability (F(g)) in humans for highly permeable compounds at the drug discovery stage, with a focus on CYP3A4-mediated metabolism. We constructed a "simplified F(g) model," described using only metabolic parameters, assuming that passive diffusion is dominant when permeability is high and that the effect of transporters in epithelial cells is negligible. Five substrates for CYP3A4 (alprazolam, amlodipine, clonazepam, midazolam, and nifedipine) and four for both CYP3A4 and P-glycoprotein (P-gp) (nicardipine, quinidine, tacrolimus, and verapamil) were used as model compounds. Observed fraction of drug absorbed (F(a)F(g)) values for these compounds were calculated from in vivo pharmacokinetic (PK) parameters, whereas in vitro intestinal intrinsic clearance (CL(int,intestine)) was determined using human intestinal microsomes. The CL(int,intestine) for the model compounds corrected with that of midazolam was defined as CL(m,index) and incorporated into a simplified F(g) model with empirical scaling factor. Regardless of whether the compound was a P-gp substrate, the F(a)F(g) could be reasonably fitted by the simplified F(g) model, and the value of the empirical scaling factor was well estimated. These results suggest that the effects of P-gp on F(a) and F(g) are substantially minor, at least in the case of highly permeable compounds. Furthermore, liver intrinsic clearance (CL(int,liver)) can be used as a surrogate index of intestinal metabolism based on the relationship between CL(int,liver) and CL(m,index). F(g) can be easily predicted using a simplified F(g) model with the empirical scaling factor, enabling more confident selection of drug candidates with desirable PK profiles in humans. PMID:20354105

  20. Direct In Vivo Human Intestinal Permeability (Peff ) Determined with Different Clinical Perfusion and Intubation Methods.

    PubMed

    Dahlgren, David; Roos, Carl; Sjögren, Erik; Lennernäs, Hans

    2015-09-01

    Regional in vivo human intestinal effective permeability (Peff ) is calculated by measuring the disappearance rate of substances during intestinal perfusion. Peff is the most relevant parameter in the prediction of rate and extent of drug absorption from all parts of the intestine. Today, human intestinal perfusions are not performed on a routine basis in drug development. Therefore, it would be beneficial to increase the accuracy of the in vitro and in silico tools used to evaluate the intestinal Peff of novel drugs. This review compiles historical Peff data from 273 individual measurements of 80 substances from 61 studies performed in all parts of the human intestinal tract. These substances include: drugs, monosaccharaides, amino acids, dipeptides, vitamins, steroids, bile acids, ions, fatty acids, and water. The review also discusses the determination and prediction of Peff using in vitro and in silico methods such as quantitative structure-activity relationship, Caco-2, Ussing chamber, animal intestinal perfusion, and physiologically based pharmacokinetic (PBPK) modeling. Finally, we briefly outline how to acquire accurate human intestinal Peff data by deconvolution of plasma concentration-time profiles following regional intestinal bolus dosing. PMID:25410736

  1. Human in vivo regional intestinal permeability: quantitation using site-specific drug absorption data.

    PubMed

    Sjögren, Erik; Dahlgren, David; Roos, Carl; Lennernäs, Hans

    2015-06-01

    Application of information on regional intestinal permeability has been identified as a key aspect of successful pharmaceutical product development. This study presents the results and evaluation of an approach for the indirect estimation of site-specific in vivo intestinal effective permeability (Peff) in humans. Plasma concentration-time profiles from 15 clinical studies that administered drug solutions to specific intestinal regions were collected and analyzed. The intestinal absorption rate for each drug was acquired by deconvolution, using historical intravenous data as reference, and used with the intestinal surface area and the dose remaining in the lumen to estimate the Peff. Forty-three new Peff values were estimated (15 from the proximal small intestine, 11 from the distal small intestine, and 17 from the large intestine) for 14 active pharmaceutical ingredients representing a wide range of biopharmaceutical properties. A good correlation (r(2) = 0.96, slope = 1.24, intercept = 0.030) was established between these indirect jejunal Peff estimates and jejunal Peff measurements determined directly using the single-pass perfusion double balloon technique. On average, Peff estimates from the distal small intestine and large intestine were 90% and 40%, respectively, of those from the proximal small intestine. These results support the use of the evaluated deconvolution method for indirectly estimating regional intestinal Peff in humans. This study presents the first comprehensive data set of estimated human regional intestinal permeability values for a range of drugs. These biopharmaceutical data can be used to improve the accuracy of gastrointestinal absorption predictions used in drug development decision-making. PMID:25919764

  2. Cdx2 modulates proliferation in normal human intestinal epithelial crypt cells

    SciTech Connect

    Escaffit, Fabrice; Pare, Frederic; Gauthier, Remy; Rivard, Nathalie; Boudreau, Francois; Beaulieu, Jean-Francois . E-mail: Jean-Francois.Beaulieu@USherbrooke.ca

    2006-03-31

    The homeobox gene Cdx2 is involved in the regulation of the expression of intestine specific markers such as sucrase-isomaltase and lactase-phlorizin hydrolase. Previous studies performed with immortalized or transformed intestinal cell lines have provided evidence that Cdx2 can promote morphological and functional differentiation in these experimental models. However, no data exist concerning the implication of this factor in normal human intestinal cell physiology. In the present work, we have investigated the role of Cdx2 in normal human intestinal epithelial crypt (HIEC) cells that lack this transcription factor. The establishment of HIEC cells expressing Cdx2 in an inducible manner shows that forced expression of Cdx2 significantly alters the proliferation of intestinal crypt cells and stimulates dipeptidylpeptidase IV expression but is not sufficient to trigger intestinal terminal differentiation. These observations suggest that Cdx2 requires additional factors to activate the enterocyte differentiation program in normal undifferentiated cells.

  3. Human blood group activity of human and canine intestinal glycolipids containing fucose

    PubMed Central

    Smith, E. L.; Bowdler, A. J.; Bull, R. W.; McKibbin, J. M.

    1973-01-01

    A number of fucose-containing glycolipids (fuco-lipids), which are similar in composition to those of human normal and malignant gastrointestinal tissue, have been isolated from whole small intestines of individual dogs. Dogs from which these fuco-lipids were isolated fell into two types according to the qualitative sugar composition of their fuco-lipids. Glycolipids from type I dogs contained glucose, galactose, glucosamine, galactosamine and fucose, while those from type II dogs contained the same sugars but lacked galactosamine. Fucolipids isolated from type I and II dogs were tested for both canine blood group and human A, B, H and Lea and Leb blood group activity. At the concentrations tested, only human blood group A activity was found in significant amounts, and only in those fuco-lipids which contained galactosamine (type I dogs). Of the fuco-lipids with human blood group A activity, some had activity comparable to that of glycoprotein blood group substances, while others had lower, but significant, activity. These latter fuco-lipids also had marked chromatographic differences, indicating that they are of several different structural types, a finding similar to the A active glycolipids of human red cell stroma. None of the isolated intestinal fuco-lipids had canine blood group activity. A fuco-lipid with Lea activity was also isolated in relatively large amounts from a normal human whole small intestine. PMID:4753403

  4. Metabolism of green tea catechins by the human small intestine.

    PubMed

    Schantz, Markus; Erk, Thomas; Richling, Elke

    2010-10-01

    Numerous studies have shown that green tea polyphenols can be degraded in the colon, and there is abundant knowledge about the metabolites of these substances that appear in urine and plasma after green tea ingestion. However, there is very little information on the extent and nature of intestinal degradation of green tea catechins in humans. Therefore, the aim of this study was to examine in detail the microbial metabolism and chemical stability of these polyphenols in the small intestine using a well-established ex vivo model. For this purpose, fresh ileostomy fluids from two probands were incubated for 24 h under anaerobic conditions with (+)-catechin (C), (-)-epicatechin (EC), (-)-epicatechin 3-O-gallate (ECG), (-)-epigallocatechin (EGC), (-)-epigallocatchin 3-O-gallate (EGCG) and gallic acid (GA). After lyophilisation and extraction, metabolites were separated, identified and quantified by high performance liquid chromatography-photodiode array detection (HPLC-DAD) and HPLC-ESI-tandem mass spectrometry. Two metabolites of EC and C (3', 4', 5'-trihydroxyphenyl-γ-valerolactone and 3', 4'-dihydroxyphenyl-γ-valerolactone) were identified. In addition, 3', 4', 5'-trihydroxyphenyl-γ-valerolactone was detected as a metabolite of EGC, and (after 24-h incubation) pyrogallol as a degradation product of GA. Cleavage of the GA esters of EGCG and ECG was also observed, with variations dependent on the sources (probands) of the ileal fluids, which differed substantially microbiotically. The results provide new information about the degradation of green tea catechins in the gastrointestinal tract, notably that microbiota-dependent liberation of GA esters may occur before these compounds reach the colon. PMID:20931601

  5. Garlic inhibits microsomal triglyceride transfer protein gene expression in human liver and intestinal cell lines and in rat intestine.

    PubMed

    Lin, Marie C; Wang, Er-Jia; Lee, Catherine; Chin, K T; Liu, Depei; Chiu, Jen-Fu; Kung, Hsiang-Fu

    2002-06-01

    Epidemiologic studies have suggested that fresh garlic has lipid-lowering activity. Because the microsomal triglyceride transfer protein (MTP) plays a pivotal role in the assembly and secretion of apolipoprotein B (apoB)-containing lipoproteins, we evaluated the effect of garlic on the expression of the MTP gene in vitro in cell lines and in vivo in rats. Fresh garlic extract (FGE) reduced MTP mRNA levels in both the human hepatoma HepG2 and intestinal carcinoma Caco-2 cells in dose-dependent fashion; significant reductions were detected with 3 g/L FGE. Maximal 72 and 59% reductions, respectively, were observed with 6 g/L FGE. To evaluate the in vivo effect of garlic on MTP gene expression, rats were given a single oral dose of fresh garlic homogenate (FGH), with hepatic and intestinal MTP mRNA measured 3 h after dosing. Rats fed FGH had significantly (46% of the control) lower intestinal MTP mRNA levels compared with the control rats, whereas hepatic MTP mRNA levels were not affected. These results suggest a new mechanism for the hypolipidemic effect of fresh garlic. Long-term dietary supplementation of fresh garlic may exert a lipid-lowering effect partly through reducing intestinal MTP gene expression, thus suppressing the assembly and secretion of chylomicrons from intestine to the blood circulation. PMID:12042427

  6. Differentiation-dependent regulation of intestinal vitamin B2 uptake: studies utilizing human-derived intestinal epithelial Caco-2 cells and native rat intestine

    PubMed Central

    Subramanian, Veedamali S.; Ghosal, Abhisek; Subramanya, Sandeep B.; Lytle, Christian

    2013-01-01

    Intestinal epithelial cells undergo differentiation as they move from the crypt to the villi, a process that is associated with up- and downregulation in expression of a variety of genes, including those involved in nutrient absorption. Whether the intestinal uptake process of vitamin B2 [riboflavin (RF)] also undergoes differentiation-dependent regulation and the mechanism through which this occurs are not known. We used human-derived intestinal epithelial Caco-2 cells and native rat intestine as models to address these issues. Caco-2 cells showed a significantly higher carrier-mediated RF uptake in post- than preconfluent cells. This upregulation was associated with a significantly higher level of protein and mRNA expression of the RF transporters hRFVT-1 and hRFVT-3 in the post- than preconfluent cells; it was also accompanied with a significantly higher rate of transcription of the respective genes (SLC52A1 and SLC52A3), as indicated by the higher level of expression of heterogeneous nuclear RNA and higher promoter activity in post- than preconfluent cells. Studies with native rat intestine also showed a significantly higher RF uptake by epithelial cells of the villus tip than epithelial cells of the crypt; this again was accompanied by a significantly higher level of expression of the rat RFVT-1 and RFVT-3 at the protein, mRNA, and heterogeneous nuclear RNA levels. These findings show, for the first time, that the intestinal RF uptake process undergoes differentiation-dependent upregulation and suggest that this is mediated (at least in part) via transcriptional mechanisms. PMID:23413253

  7. Perceiving polarization with the naked eye: characterization of human polarization sensitivity.

    PubMed

    Temple, Shelby E; McGregor, Juliette E; Miles, Camilla; Graham, Laura; Miller, Josie; Buck, Jordan; Scott-Samuel, Nicholas E; Roberts, Nicholas W

    2015-07-22

    Like many animals, humans are sensitive to the polarization of light. We can detect the angle of polarization using an entoptic phenomenon called Haidinger's brushes, which is mediated by dichroic carotenoids in the macula lutea. While previous studies have characterized the spectral sensitivity of Haidinger's brushes, other aspects remain unexplored. We developed a novel methodology for presenting gratings in polarization-only contrast at varying degrees of polarization in order to measure the lower limits of human polarized light detection. Participants were, on average, able to perform the task down to a threshold of 56%, with some able to go as low as 23%. This makes humans the most sensitive vertebrate tested to date. Additionally, we quantified a nonlinear relationship between presented and perceived polarization angle when an observer is presented with a rotatable polarized light field. This result confirms a previous theoretical prediction of how uniaxial corneal birefringence impacts the perception of Haidinger's brushes. The rotational dynamics of Haidinger's brushes were then used to calculate corneal retardance.We suggest that psychophysical experiments, based upon the perception of polarized light, are amenable to the production of affordable technologies for self-assessment and longitudinal monitoring of visual dysfunctions such as age-related macular degeneration. PMID:26136441

  8. Perceiving polarization with the naked eye: characterization of human polarization sensitivity

    PubMed Central

    Temple, Shelby E.; McGregor, Juliette E.; Miles, Camilla; Graham, Laura; Miller, Josie; Buck, Jordan; Scott-Samuel, Nicholas E.; Roberts, Nicholas W.

    2015-01-01

    Like many animals, humans are sensitive to the polarization of light. We can detect the angle of polarization using an entoptic phenomenon called Haidinger's brushes, which is mediated by dichroic carotenoids in the macula lutea. While previous studies have characterized the spectral sensitivity of Haidinger's brushes, other aspects remain unexplored. We developed a novel methodology for presenting gratings in polarization-only contrast at varying degrees of polarization in order to measure the lower limits of human polarized light detection. Participants were, on average, able to perform the task down to a threshold of 56%, with some able to go as low as 23%. This makes humans the most sensitive vertebrate tested to date. Additionally, we quantified a nonlinear relationship between presented and perceived polarization angle when an observer is presented with a rotatable polarized light field. This result confirms a previous theoretical prediction of how uniaxial corneal birefringence impacts the perception of Haidinger's brushes. The rotational dynamics of Haidinger's brushes were then used to calculate corneal retardance. We suggest that psychophysical experiments, based upon the perception of polarized light, are amenable to the production of affordable technologies for self-assessment and longitudinal monitoring of visual dysfunctions such as age-related macular degeneration. PMID:26136441

  9. Involvement of Concentrative Nucleoside Transporter 1 in Intestinal Absorption of Trifluridine Using Human Small Intestinal Epithelial Cells.

    PubMed

    Takahashi, Koichi; Yoshisue, Kunihiro; Chiba, Masato; Nakanishi, Takeo; Tamai, Ikumi

    2015-09-01

    TAS-102, which is effective for refractory metastatic colorectal cancer, is a combination drug of anticancer trifluridine (FTD; which is derived from pyrimidine nucleoside) and FTD-metabolizing enzyme inhibitor tipiracil hydrochloride (TPI) at a molecular ratio of 1:0.5. To evaluate the intestinal absorption mechanism of FTD, the uptake and transcellular transport of FTD by human small intestinal epithelial cell (HIEC) monolayer as a model of human intestinal epithelial cells was investigated. The uptake and membrane permeability of FTD by HIEC monolayers were saturable, Na(+) -dependent, and inhibited by nucleosides. These transport characteristics are mostly comparable with those of concentrative nucleoside transporters (CNTs). Moreover, the uptake of FTD by CNT1-expressing Xenopus oocytes was the highest among human CNT transporters. The obtained Km and Vmax values of FTD by CNT1 were 69.0 μM and 516 pmol/oocyte/30 min, respectively. The transcellular transport of FTD by Caco-2 cells, where CNT1 is heterologously expressed, from apical to basolateral side was greater than that by Mock cells. In conclusion, these results demonstrated that FTD exhibits high oral absorption by the contribution of human CNT1. PMID:25900515

  10. Permeability of rhynchophylline across human intestinal cell in vitro.

    PubMed

    Ma, Bo; Wang, Jing; Sun, Jing; Li, Ming; Xu, Huibo; Sun, Guibo; Sun, Xiaobo

    2014-01-01

    Rhynchophylline (Rhy) is the major component of Uncaria species, which is used in Chinese traditional medicine for the treatment of central nervous system disorders. However, its oral bioavailability has not been known. This study aims to investigate the intestinal permeability and related mechanisms of Rhy using cultured human epithelial Caco-2 cells. The cytotoxicity of Rhy on Caco-2 cells was evaluated with MTT assay. The effect of Rhy on the integrity of Caco-2 cell monolayer was assayed with transepithelial electrical resistance. The permeability of Rhy across cell monolayer was assayed by measuring Rhy quantity in received side with HPLC. The effect of Rhy on the expression of P-glycoprotein and MDR1 was detected with Western blot and flow cytometry, respectively. In the concentration of Rhy, which did not produce toxicity on cell viability and integrity of Caco-2 cell monolayer, Rhy crossed the monolayer with velocity 2.76~5.57×10^-6 cm/sec and 10.68~15.66×10^-6 cm/sec from apical to basolateral side and from basolateral to apical side, respectively. The permeability of Rhy was increased by verapamil, a P-glycoprotein inhibitor, or rhodamine123, a P-glycoprotein substrate. Rhy revealed an induction effect on P-glycoprotein expression in Caco-2 cells. These results demonstrate the low permeability of Rhy in intro, and suggest that P-glycoprotein may underlie the mechanism. PMID:24966905

  11. The metabolic profile of acteoside produced by human or rat intestinal bacteria or intestinal enzyme in vitro employed UPLC-Q-TOF-MS.

    PubMed

    Cui, Qingling; Pan, Yingni; Xu, Xiaotong; Zhang, Wenjie; Wu, Xiao; Qu, Shouhe; Liu, Xiaoqiu

    2016-03-01

    Acteoside, the main and representative phenylethanoid glycosides of Herba Cistanches, possesses wide bioactivities but low oral bioavailability. It may serve as the prodrug and be converted into the active forms in gastrointestinal tract, which mainly occurred in intestinal tract composed of intestinal bacteria and intestinal enzyme. Intestinal bacteria, a new drug target, take a significant role on exerting pharmacological effects of drugs by oral administration. In this paper, acteoside was incubated with human or rat intestinal bacteria or rat intestinal enzyme for 36 h to seek metabolites responsible for pharmacodynamics. The samples were analyzed by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Besides the parent compound, 14 metabolites were detected and identified based on their retention times and fragmentation patterns in their MS spectra including 8 degradation metabolites, 2 isomers in intestinal bacteria and intestinal enzyme samples and 4 parent metabolites only found in intestinal enzymes. The metabolic pathway of acteoside was thus proposed. Identification of these metabolites of acteoside by the intestinal bacteria or intestinal enzyme gave an insight to clarify pharmacological mechanism of traditional Chinese medicines and identify the real active molecules. PMID:26705842

  12. Th17 polarization of memory Th cells in early arthritis: the vasoactive intestinal peptide effect.

    PubMed

    Jimeno, Rebeca; Leceta, Javier; Garín, Marina; Ortiz, Ana M; Mellado, Mario; Rodríguez-Frade, Jose Miguel; Martínez, Carmen; Pérez-García, Selene; Gomariz, Rosa P; Juarranz, Yasmina

    2015-08-01

    Several studies in humans indicate the implication of Th17 cells in RA. Therapies targeting their pathogenicity, as well as their plasticity to the Th17/1 phenotype, could ameliorate the progression of the pathology. The neuroendocrine environment has a major impact on the differentiation of lymphoid cells. VIP is present in the microenvironment of the joint, and its known therapeutic effects are supported by several studies on RA. We examine the ability of VIP to modulate the differentiation of Th17 cells. Peripheral blood CD4(+)CD45RO(+) T cells from HD and eRA patients were expanded under Th17-polarizing conditions in the presence of TGF-β. After 7 days, the higher IL-17A, IL-21, and IL-9 levels and lower IL-22 levels indicate the nonpathogenic profile for Th17 cells in HD. In contrast, Th17 cells from eRA patients produced significantly more IL-22 and IFN-γ, and these cells show a more Th17/1 profile, indicating a pathogenic phenotype. Interestingly, when VIP was present in the Th17 conditioned medium, increased levels of IL-10 and IL-9 were detected in HD and eRA patients. VIP also reduced the levels of IL-22 in eRA patients. These data suggest that VIP reduces the pathogenic profile of the Th17-polarized cells. This effect was accompanied by an increased in the Treg/Th17 profile, as shown by the increase levels of Foxp3. In conclusion, this report addresses a novel and interesting question on the effect of VIP on human Th17 cells and adds clinical relevance by analyzing, in parallel, HD and eRA patients. PMID:25957307

  13. Diet and the development of the human intestinal microbiome

    PubMed Central

    Voreades, Noah; Kozil, Anne; Weir, Tiffany L.

    2014-01-01

    The important role of the gut microbiome in maintaining human health has necessitated a better understanding of the temporal dynamics of intestinal microbial communities as well as the host and environmental factors driving these dynamics. Genetics, mode of birth, infant feeding patterns, antibiotic usage, sanitary living conditions and long term dietary habits contribute to shaping the composition of the gut microbiome. This review focuses primarily on diet, as it is one of the most pivotal factors in the development of the human gut microbiome from infancy to the elderly. The infant gut microbiota is characterized by a high degree of instability, only reaching a state similar to that of adults by 2–3 years of age; consistent with the establishment of a varied solid food diet. The diet-related factors influencing the development of the infant gut microbiome include whether the child is breast or formula-fed as well as how and when solid foods are introduced. In contrast to the infant gut, the adult gut microbiome is resilient to large shifts in community structure. Several studies have shown that dietary changes induce transient fluctuations in the adult microbiome, sometimes in as little as 24 h; however, the microbial community rapidly returns to its stable state. Current knowledge of how long-term dietary habits shape the gut microbiome is limited by the lack of long-term feeding studies coupled with temporal gut microbiota characterization. However, long-term weight loss studies have been shown to alter the ratio of the Bacteroidetes and Firmicutes, the two major bacterial phyla residing in the human gastrointestinal tract. With aging, diet-related factors such as malnutrition are associated with microbiome shifts, although the cause and effect relationship between these factors has not been established. Increased pharmaceutical usage is also more prevalent in the elderly and can contribute to reduced gut microbiota stability and diversity. Foods containing

  14. Transformation of trollioside and isoquercetin by human intestinal flora in vitro.

    PubMed

    Yuan, Ming; Shi, Duo-Zhi; Wang, Teng-Yu; Zheng, Shi-Qi; Liu, Li-Jia; Sun, Zhen-Xiao; Wang, Ru-Feng; Ding, Yi

    2016-03-01

    The present study was designed to determine the intestinal bacterial metabolites of trollioside and isoquercetin and their antibacterial activities. A systematic in vitro biotransformation investigation on trollioside and isoquercetin, including metabolite identification, metabolic pathway deduction, and time course, was accomplished using a human intestinal bacterial model. The metabolites were analyzed and identified by HPLC and HPLC-MS. The antibacterial activities of trollioside, isoquercetin, and their metabolites were evaluated using the broth microdilution method with berberine as a positive control, and their potency was measured as minimal inhibitory concentration (MIC). Our results indicated that trollioside and isoquercetin were metabolized by human intestinal flora through O-deglycosylation, yielding aglycones proglobeflowery acid and quercetin, respectively The antibacterial activities of both metabolites were more potent than that of their parent compounds. In conclusion, trollioside and isoquercetin are totally and rapidly transformed by human intestinal bacteria in vitro and the transformation favors the improvement of the antibacterial activities of the parent compounds. PMID:27025369

  15. Cooperation between HNF-1α, Cdx2, and GATA-4 in initiating an enterocytic differentiation program in a normal human intestinal epithelial progenitor cell line

    PubMed Central

    Benoit, Yannick D.; Paré, Fréderic; Francoeur, Caroline; Jean, Dominique; Tremblay, Eric; Boudreau, François; Escaffit, Fabrice

    2010-01-01

    In the intestinal epithelium, the Cdx, GATA, and HNF transcription factor families are responsible for the expression of differentiation markers such as sucrase-isomaltase. Although previous studies have shown that Cdx2 can induce differentiation in rat intestinal IEC-6 cells, no data are available concerning the direct implication of transcription factors on differentiation in human normal intestinal epithelial cell types. We investigated the role of Cdx2, GATA-4, and HNF-1α using the undifferentiated human intestinal epithelial crypt cell line HIEC. These transcription factors were tested on proliferation and expression of polarization and differentiation markers. Ectopic expression of Cdx2 or HNF-1α, alone or in combination, altered cell proliferation abilities through the regulation of cyclin D1 and p27 expression. HNF-1α and GATA-4 together induced morphological modifications of the cells toward polarization, resulting in the appearance of functional features such as microvilli. HNF-1α was also sufficient to induce the expression of cadherins and dipeptidylpeptidase, whereas in combination with Cdx2 it allowed the expression of the late differentiation marker sucrase-isomaltase. Large-scale analysis of gene expression confirmed the cooperative effect of these factors. Finally, although DcamKL1 and Musashi-1 expression were downregulated in differentiated HIEC, other intestinal stem cell markers, such as Bmi1, were unaffected. These observations show that, in cooperation with Cdx2, HNF-1α acts as a key factor on human intestinal cells to trigger the onset of their functional differentiation program whereas GATA-4 appears to promote morphological changes. PMID:20133952

  16. Regional distribution of solute carrier mRNA expression along the human intestinal tract.

    PubMed

    Meier, Yvonne; Eloranta, Jyrki J; Darimont, Jutta; Ismair, Manfred G; Hiller, Christian; Fried, Michael; Kullak-Ublick, Gerd A; Vavricka, Stephan R

    2007-04-01

    Intestinal absorption of drugs, nutrients, and other compounds is mediated by uptake transporters expressed at the apical enterocyte membrane. These compounds are returned to the intestinal lumen or released into portal circulation by intestinal efflux transporters expressed at apical or basolateral membranes, respectively. One important transporter superfamily, multiple members of which are intestinally expressed, are the solute carriers (SLCs). SLC expression levels may determine the pharmacokinetics of drugs that are substrates of these transporters. In this study we characterize the distribution of 15 human SLC transporter mRNAs in histologically normal biopsies from five regions of the intestine of 10 patients. The mRNA expression levels of CNT1, CNT2, apical sodium-dependent bile acid transporter (ABST), serotonin transporter (SERT), PEPT1, and OCTN2 exhibit marked differences between different regions of the intestine: the first five are predominantly expressed in the small intestine, whereas OCTN2 exhibits strongest expression in the colon. Two transporter mRNAs studied (OCTN1, OATP2B1) are expressed at similar levels in all gut sections. In addition, ENT2 mRNA is present at low levels across the colon, but not in the small intestine. The other six SLC mRNAs studied are not expressed in the intestine. Quantitative knowledge of transporter expression levels in different regions of the human gastrointestinal tract could be useful for designing intestinal delivery strategies for orally administered drugs. Furthermore, changes in transporter expression that occur in pathological states, such as inflammatory bowel disease, can now be defined more precisely by comparison with the expression levels measured in healthy individuals. PMID:17220238

  17. A breakdown in communication? Understanding the effects of aging on the human small intestine epithelium

    PubMed Central

    2015-01-01

    In the intestine, a single layer of epithelial cells sealed together at their apical surfaces by tight junctions helps to prevent the luminal commensal and pathogenic micro-organisms and their toxins from entering host tissues. The intestinal epithelium also helps to maintain homoeostasis in the mucosal immune system by expressing anti-inflammatory cytokines in the steady state and inflammatory cytokines in response to pathogens. Although the function of the mucosal immune system is impaired in elderly humans, the molecular mechanisms which cause this dramatic functional decline are poorly understood. Our current understanding of the effects of aging on the physical and immunological properties of the intestinal epithelial barrier is also very limited. In this issue of Clinical Science, Man et al. provide further insight into the effects of aging on small intestinal barrier function in humans and the influence that gut luminal micro-organisms may have on it. Using human terminal ileal biopsy tissues they show that intestinal permeability to solutes, but not macromolecules, was significantly increased in the intestines of elderly humans. This was accompanied by elevated expression of the pro-inflammatory cytokine interleukin (IL)-6 which appeared to modulate claudin-2 expression and solute permeability in the epithelium. Conversely, IL-8 synthesis in response to flagellin stimulation was reduced in intestines of the elderly subjects, but was not associated with effects on Toll-like receptor 5 (TLR5) expression. These data provide an important advance in our understanding on the effects of aging on intestinal permeability and innate mucosal immune responsiveness in elderly humans. PMID:26186738

  18. A Sensitive Medium-Throughput Method to Predict Intestinal Absorption in Humans Using Rat Intestinal Tissue Segments.

    PubMed

    Da Silva, Laís Cristina; Da Silva, Taynara Lourenço; Antunes, Alisson Henrique; Rezende, Kênnia Rocha

    2015-09-01

    A range of in vitro, ex vivo, and in vivo approaches are currently used for drug development. Highly predictive human intestinal absorption models remain lagging behind the times because of numerous variables concerning permeability through gastrointestinal tract in humans. However, there is a clear need for a drug permeability model early in the drug development process that can balance the requirements for high throughput and effective predictive potential. The present study developed a medium throughput screening Snapwell (MTS-Snapwell) ex vivo model to provide an alternative method to classify drug permeability. Rat small intestine tissue segments were mounted in commercial Snapwell™ inserts. Unidirectional drug transport (A-B) was measured by collecting samples at different time points. Viability of intestinal tissue segments was measured by examining transepithelial electric resistance (TEER) and phenol red and caffeine transport. As a result, the apparent permeability (Papp; ×10(-6) cm/s) was determined for atenolol (10.7 ± 1.2), caffeine (17.6 ± 3.1), cimetidine (6.9 ± 0.1), metoprolol (12.6 ± 0.7), theophylline (15.3 ± 1.6) and, ranitidine (3.8 ± 0.4). All drugs were classified in high/low permeability according to Biopharmaceutics Classification System showing high correlation with human data (r = 0.89). These findings showed a high correlation with human data (r = 0.89), suggesting that this model has potential predictive capacity for paracellular and transcellular passively absorbed molecules. PMID:25690454

  19. The role of disulphide bonds in human intestinal mucin

    PubMed Central

    Forstner, Janet F.; Jabbal, Inderjit; Qureshi, Rauf; Kells, David I. C.; Forstner, Gordon G.

    1979-01-01

    Goblet-cell mucin (mucin 1) was isolated and purified from human small-intestinal scrapings. After application of mucin 1 to DEAE-Bio-Gel (A) columns, most of the glycoprotein (76–94% of hexoses) was eluted in the first peak (designated mucin 2). Minor amounts of acidic glycoproteins were eluted with 0.2m- and 0.4m-NaCl in later peaks. Analyses of mucin 1 and mucin 2 revealed mucin 2 to be a monodisperse highly glycosylated glycoprotein containing 6.3% by wt. of protein, N-acetylgalactosamine, N-acetylglucosamine, galactose and fucose. Mucin 1 was similar in composition, but was polydisperse and contained more protein (12.3% by wt.) as well as N-acetylneuraminic acid. Analytical CsCl-gradient ultracentrifugation showed both mucin 1 and mucin 2 to have a major component with an average buoyant density of 1.47000g/ml. Mucin 1 also contained a slightly less-dense minor glycoprotein component. After exhaustive reduction and alkylation mucin 1 retained its major component, but partly dissociated into two lighter glycoprotein components. Mucin 2, in contrast, did not change its density distribution after reduction. Band ultracentrifugation in 2H2O-containing iso-osmotic buffers showed that mucin 1 contained a major fast-sedimenting component (so=37±2S), and a minor amount of a slower-sedimenting component. After reduction there was an increased quantity of the latter component, for which an so value of 14.5S was calculated. In contrast, mucin 2 was unaltered by reduction (so=33±2S). These findings indicate that the major component of goblet-cell mucin (mucin 2) does not dissociate after S–S-bond reduction, and thus does not apparently rely for its polymeric structure on the association of subunits through covalent disulphide bonds. However, the effects of reduction on mucin 1 suggest that in the native mucin intramolecular disulphide bonds in the minor glycoproteins may stabilize their structure, permitting secondary non-covalent interactions to develop with the

  20. Development of Functional Microfold (M) Cells from Intestinal Stem Cells in Primary Human Enteroids

    PubMed Central

    Rouch, Joshua D.; Scott, Andrew; Lei, Nan Ye; Solorzano-Vargas, R. Sergio; Wang, Jiafang; Hanson, Elaine M.; Kobayashi, Masae; Lewis, Michael; Stelzner, Matthias G.; Dunn, James C. Y.; Eckmann, Lars; Martín, Martín G.

    2016-01-01

    Background & Aims Intestinal microfold (M) cells are specialized epithelial cells that act as gatekeepers of luminal antigens in the intestinal tract. They play a critical role in the intestinal mucosal immune response through transport of viruses, bacteria and other particles and antigens across the epithelium to immune cells within Peyer’s patch regions and other mucosal sites. Recent studies in mice have demonstrated that M cells are generated from Lgr5+ intestinal stem cells (ISCs), and that infection with Salmonella enterica serovar Typhimurium increases M cell formation. However, it is not known whether and how these findings apply to primary human small intestinal epithelium propagated in an in vitro setting. Methods Human intestinal crypts were grown as monolayers with growth factors and treated with recombinant RANKL, and assessed for mRNA transcripts, immunofluorescence and uptake of microparticles and S. Typhimurium. Results Functional M cells were generated by short-term culture of freshly isolated human intestinal crypts in a dose- and time-dependent fashion. RANKL stimulation of the monolayer cultures caused dramatic induction of the M cell-specific markers, SPIB, and Glycoprotein-2 (GP2) in a process primed by canonical WNT signaling. Confocal microscopy demonstrated a pseudopod phenotype of GP2-positive M cells that preferentially take up microparticles. Furthermore, infection of the M cell-enriched cultures with the M cell-tropic enteric pathogen, S. Typhimurium, led to preferential association of the bacteria with M cells, particularly at lower inoculum sizes. Larger inocula caused rapid induction of M cells. Conclusions Human intestinal crypts containing ISCs can be cultured and differentiate into an epithelial layer with functional M cells with characteristic morphological and functional properties. This study is the first to demonstrate that M cells can be induced to form from primary human intestinal epithelium, and that S. Typhimurium

  1. Comparison of human liver and small intestinal glutathione S-transferase-catalyzed busulfan conjugation in vitro.

    PubMed

    Gibbs, J P; Yang, J S; Slattery, J T

    1998-01-01

    The apparent oral clearance of busulfan has been observed to vary as much as 10-fold in the population of children and adults receiving high-dose busulfan. The only identified elimination pathway for busulfan involves glutathione conjugation. The reaction is predominantly catalyzed by glutathione S-transferase (GST) A1-1, which is present in both liver and intestine. The purpose of this study was to compare busulfan Vmax/Km in cytosol prepared from adult human liver and small intestine. Tetrahydrothiophenium ion formation rate per milligram of cytosolic protein was constant along the length (assessed in 30-cm segments) of three individual small intestines. A 30-cm-long intestinal segment 90-180 cm from the pylorus was chosen to be representative of intestinal cytosolic busulfan conjugating activity. Busulfan Vmax/Km (mean +/- SD) in cytosol prepared from 23 livers and 12 small intestines was 0.166 +/- 0.066 and 0.176 +/- 0.085 microl/min/mg cytosolic protein, respectively, in incubations with 5 microM busulfan, 1 mM glutathione, and 2 mg of cytosolic protein. The relative content of GSTalpha (A1-1, A1-2, and A2-2) was compared for human liver and intestinal cytosol using Western blot. The levels of GSTalpha in liver and intestinal cytosol were 1.12 +/- 0.56 and 1.36 +/- 0.32 integrated optimal density units/5 microg cytosolic protein, respectively. Busulfan conjugation in vitro was comparable per milligram of cytosolic protein in liver and intestinal cytosol. PMID:9443852

  2. Certain canine weakly beta-hemolytic intestinal spirochetes are phenotypically and genotypically related to spirochetes associated with human and porcine intestinal spirochetosis.

    PubMed Central

    Duhamel, G E; Muniappa, N; Mathiesen, M R; Johnson, J L; Toth, J; Elder, R O; Doster, A R

    1995-01-01

    Four canine weakly beta-hemolytic intestinal spirochetes associated with intestinal spirochetosis (IS-associated WBHIS) were compared with IS-associated human and porcine WBHIS and the type species for Serpulina hyodysenteriae and S. innocens by using phenotypic and genotypic parameters. The IS-associated canine, human, and porcine WBHIS belonged to a phyletic group distinct from but related to previously described Serpulina type species. PMID:7559984

  3. Function, expression, and characterization of the serotonin transporter in the native human intestine

    PubMed Central

    Gill, Ravinder K.; Pant, Nitika; Saksena, Seema; Singla, Amika; Nazir, Talat M.; Vohwinkel, Lisa; Turner, Jerrold R.; Goldstein, Jay; Alrefai, Waddah A.; Dudeja, Pradeep K.

    2016-01-01

    The enteric serotonin transporter (SERT) plays a critical role in modulating serotonin availability and thus has been implicated in the pathogenesis of various intestinal disorders. To date, SERT expression and function in the human intestine have not been investigated. Current studies were designed to characterize the function, expression, distribution, and membrane localization of SERT in the native human intestine. Real-time PCR studies showed relatively higher SERT mRNA expression in the human small intestine compared with colon (ileum ≫ duodenum ≫ jejunum). Northern blot analysis revealed three mRNA hybridizing species encoding SERT (3.0, 4.9, and 6.8 kb) in the human ileum. Consistent with SERT mRNA expression, SERT immunostaining was mainly detected in the epithelial cells of human duodenal and ileal resected tissues. Notably, SERT expression was localized predominantly to the apical and intracellular compartments and was distributed throughout the crypt-villus axis. Immunoblotting studies detected a prominent protein band (~70 kDa) in the ileal apical plasma membrane vesicles (AMVs) isolated from mucosa obtained from organ-donor intestine. Functional studies showed that uptake of [3H]serotonin (150 nM) in human ileal AMVs was 1) significantly increased in the presence of both Na+ and Cl−; 2) inhibited (~50%) by the neuronal SERT inhibitor, fluoxetine (10 μM) and by unlabeled 5-HT; and 3) exhibited saturation kinetics indicating the presence of a carrier-mediated process. Our studies demonstrated differential expression of SERT across various regions of the human intestine and provide evidence for the existence of a functional SERT capable of removing intraluminal serotonin in human ileal epithelial cells. PMID:17991706

  4. Expression, Distribution and Role of Aquaporin Water Channels in Human and Animal Stomach and Intestines.

    PubMed

    Zhu, Cui; Chen, Zhuang; Jiang, Zongyong

    2016-01-01

    Stomach and intestines are involved in the secretion of gastrointestinal fluids and the absorption of nutrients and fluids, which ensure normal gut functions. Aquaporin water channels (AQPs) represent a major transcellular route for water transport in the gastrointestinal tract. Until now, at least 11 AQPs (AQP1-11) have been found to be present in the stomach, small and large intestines. These AQPs are distributed in different cell types in the stomach and intestines, including gastric epithelial cells, gastric glands cells, absorptive epithelial cells (enterocytes), goblet cells and Paneth cells. AQP1 is abundantly distributed in the endothelial cells of the gastrointestinal tract. AQP3 and AQP4 are mainly distributed in the basolateral membrane of epithelial cells in the stomach and intestines. AQP7, AQP8, AQP10 and AQP11 are distributed in the apical of enterocytes in the small and large intestines. Although AQP-null mice displayed almost no phenotypes in gastrointestinal tracts, the alterations of the expression and localization of these AQPs have been shown to be associated with the pathology of gastrointestinal disorders, which suggests that AQPs play important roles serving as potential therapeutic targets. Therefore, this review provides an overview of the expression, localization and distribution of AQPs in the stomach, small and large intestine of human and animals. Furthermore, this review emphasizes the potential roles of AQPs in the physiology and pathophysiology of stomach and intestines. PMID:27589719

  5. The nature of the natural killer (NK) cell of human intestinal mucosa and mesenteric lymph node.

    PubMed Central

    Gibson, P R; Jewell, D P

    1985-01-01

    The relationship of the mononuclear cell (MNC) from human intestinal mucosa and mesenteric lymph node mediating anti-K-562 activity with that of peripheral blood has been assessed. Depletion of macrophages did not alter the measured cytotoxicity confirming that the effector cells were lymphocytes. Complement lysis of Leu 7 and Leu 11b coated cells reduced intestinal natural killer (NK) activity by a similar degree to that of peripheral blood but mesenteric lymph node NK activity was affected to a lesser extent. The response in NK activity of mucosal and nodal MNC to short incubation with lymphoblastoid interferon was similar to that for peripheral blood MNC. Twenty-four hours incubation of MNC with low concentrations of purified interleukin-2 (IL-2) consistently augmented intestinal and nodal NK activity but failed to augment that of peripheral blood MNC. No differences between the inhibitory effects of cAMP and prostaglandin E2 on NK activity from the three sites were seen. In addition, inhibition of cyclo-oxygenase activity with indomethacin had no effect on NK activity of intestinal and peripheral blood MNC while the lipoxygenase inhibitor, nordihydroguaiaretic acid, suppressed intestinal and peripheral blood NK activity similarly. In conclusion, anti-K-562 activity by intestinal MNC is mediated by NK cells with similar phenotypic and functional properties to those of peripheral blood. However, the increased sensitivity of mucosal NK cells to IL-2 suggests that higher proportions of NK cell precursors may be present in intestinal MNC populations. PMID:2412737

  6. Circulating intestine-derived exosomal miR-328 in plasma, a possible biomarker for estimating BCRP function in the human intestines

    PubMed Central

    Gotanda, Keisuke; Hirota, Takeshi; Saito, Jumpei; Fukae, Masato; Egashira, Yu; Izumi, Noritomo; Deguchi, Mariko; Kimura, Miyuki; Matsuki, Shunji; Irie, Shin; Ieiri, Ichiro

    2016-01-01

    A variant in the breast cancer resistance protein (BCRP) gene, 421C> A is a useful biomarker for describing large inter-individual differences in the pharmacokinetics of sulfasalazine (SASP), a BCRP substrate. However, large intra-genotypic variability still exists in spite of the incorporation of this variant into the pharmacokinetics of SASP. Since miR-328 negatively regulates BCRP expression in human tissues, we hypothesized that exosomal miR-328 in plasma, which leaks from the intestines, is a possible biomarker for estimating BCRP activity in the human intestines. We established an immunoprecipitation-based quantitative method for circulating intestine-derived miR-328 in plasma using an anti-glycoprotein A33 antibody. A clinical study was conducted with an open-label, non-randomized, and single-arm design involving 33 healthy participants. Intestine-derived exosomal miR-328 levels positively correlated (P < 0.05) with SASP AUC0-48, suggesting that subjects with high miR-328 levels have low intestinal BCRP activity, resulting in the high AUC of SASP. Circulating intestine-derived exosomal miR-328 in plasma has potential as a possible biomarker for estimating BCRP function in the human intestines. PMID:27571936

  7. Circulating intestine-derived exosomal miR-328 in plasma, a possible biomarker for estimating BCRP function in the human intestines.

    PubMed

    Gotanda, Keisuke; Hirota, Takeshi; Saito, Jumpei; Fukae, Masato; Egashira, Yu; Izumi, Noritomo; Deguchi, Mariko; Kimura, Miyuki; Matsuki, Shunji; Irie, Shin; Ieiri, Ichiro

    2016-01-01

    A variant in the breast cancer resistance protein (BCRP) gene, 421C> A is a useful biomarker for describing large inter-individual differences in the pharmacokinetics of sulfasalazine (SASP), a BCRP substrate. However, large intra-genotypic variability still exists in spite of the incorporation of this variant into the pharmacokinetics of SASP. Since miR-328 negatively regulates BCRP expression in human tissues, we hypothesized that exosomal miR-328 in plasma, which leaks from the intestines, is a possible biomarker for estimating BCRP activity in the human intestines. We established an immunoprecipitation-based quantitative method for circulating intestine-derived miR-328 in plasma using an anti-glycoprotein A33 antibody. A clinical study was conducted with an open-label, non-randomized, and single-arm design involving 33 healthy participants. Intestine-derived exosomal miR-328 levels positively correlated (P < 0.05) with SASP AUC0-48, suggesting that subjects with high miR-328 levels have low intestinal BCRP activity, resulting in the high AUC of SASP. Circulating intestine-derived exosomal miR-328 in plasma has potential as a possible biomarker for estimating BCRP function in the human intestines. PMID:27571936

  8. The human milk oligosaccharide 2'-fucosyllactose augments the adaptive response to extensive intestinal.

    PubMed

    Mezoff, Ethan A; Hawkins, Jennifer A; Ollberding, Nicholas J; Karns, Rebekah; Morrow, Ardythe L; Helmrath, Michael A

    2016-03-15

    Intestinal resection resulting in short bowel syndrome (SBS) carries a heavy burden of long-term morbidity, mortality, and cost of care, which can be attenuated with strategies that improve intestinal adaptation. SBS infants fed human milk, compared with formula, have more rapid intestinal adaptation. We tested the hypothesis that the major noncaloric human milk oligosaccharide 2'-fucosyllactose (2'-FL) contributes to the adaptive response after intestinal resection. Using a previously described murine model of intestinal adaptation, we demonstrated increased weight gain from 21 to 56 days (P < 0.001) and crypt depth at 56 days (P < 0.0095) with 2'-FL supplementation after ileocecal resection. Furthermore, 2'-FL increased small bowel luminal content microbial alpha diversity following resection (P < 0.005) and stimulated a bloom in organisms of the genus Parabacteroides (log2-fold = 4.1, P = 0.035). Finally, transcriptional analysis of the intestine revealed enriched ontologies and pathways related to antimicrobial peptides, metabolism, and energy processing. We conclude that 2'-FL supplementation following ileocecal resection increases weight gain, energy availability through microbial community modulation, and histological changes consistent with improved adaptation. PMID:26702137

  9. Reduced expression of aquaporins in human intestinal mucosa in early stage inflammatory bowel disease

    PubMed Central

    Ricanek, Petr; Lunde, Lisa K; Frye, Stephan A; Støen, Mari; Nygård, Ståle; Morth, Jens P; Rydning, Andreas; Vatn, Morten H; Amiry-Moghaddam, Mahmood; Tønjum, Tone

    2015-01-01

    Objectives The aim of this study was to investigate the relationship between aquaporin (AQP) water channel expression and the pathological features of early untreated inflammatory bowel disease (IBD) in humans. Methods Patients suspected to have IBD on the basis of predefined symptoms, including abdominal pain, diarrhea, and/or blood in stool for more than 10 days, were examined at the local hospital. Colonoscopy with biopsies was performed and blood samples were taken. Patients who did not meet the diagnostic criteria for IBD and who displayed no evidence of infection or other pathology in the gut were included as symptomatic non-IBD controls. AQP1, 3, 4, 5, 7, 8, and 9 messenger RNA (mRNA) levels were quantified in biopsies from the distal ileum and colon by quantitative real-time polymerase chain reaction. Protein expression of selected AQPs was assessed by confocal microscopy. Through multiple alignments of the deduced amino acid sequences, the putative three-dimensional structures of AQP1, 3, 7, and 8 were modeled. Results AQP1, 3, 7, and 8 mRNAs were detected in all parts of the intestinal mucosa. Notably, AQP1 and AQP3 mRNA levels were reduced in the ileum of patients with Crohn’s disease, and AQP7 and AQP8 mRNA levels were reduced in the ileum and the colon of patients with ulcerative colitis. Immunofluorescence confocal microscopy showed localization of AQP3, 7, and 8 at the mucosal epithelium, whereas the expression of AQP1 was mainly confined to the endothelial cells and erythrocytes. The reduction in the level of AQP3, 7, and 8 mRNA was confirmed by immunofluorescence, which also indicated a reduction of apical immunolabeling for AQP8 in the colonic surface epithelium and crypts of the IBD samples. This could indicate loss of epithelial polarity in IBD, leading to disrupted barrier function. Conclusion AQPs 1 and 8 and the aquaglyceroporins AQPs 3 and 7 are the AQPs predominantly expressed in the lower intestinal tract of humans. Their expression is

  10. Fecal transplant: a safe and sustainable clinical therapy for restoring intestinal microbial balance in human disease?

    PubMed

    Vrieze, A; de Groot, P F; Kootte, R S; Knaapen, M; van Nood, E; Nieuwdorp, M

    2013-02-01

    Recent studies have suggested an association between intestinal microbiota composition and human disease, however causality remains to be proven. With hindsight, the application of fecal transplantation (FMT) does indeed suggest a causal relation between interfering with gut microbiota composition and a resultant cure of several disease states. In this review, we aim to show the available evidence regarding the involvement of intestinal microbiota and human (autoimmune) disease. Moreover, we refer to (mostly case report) studies showing beneficial or adverse effects of fecal transplantation on clinical outcomes in some of these disease states. If these findings can be substantiated in larger randomized controlled double blind trials also implementing gut microbiota composition before and after intervention, fecal transplantation might provide us with novel insights into causally related intestinal microbiota, that might be serve as future diagnostic and treatment targets in human disease. PMID:23768558

  11. Escherichia coli isolated from a Crohn's disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells.

    PubMed

    Eaves-Pyles, Tonyia; Allen, Christopher A; Taormina, Joanna; Swidsinski, Alexander; Tutt, Christopher B; Jezek, G Eric; Islas-Islas, Martha; Torres, Alfredo G

    2008-07-01

    Inflammatory diseases of the intestinal tract are a major health concern both in the United States and around the world. Evidence now suggests that a new category of Escherichia coli, designated Adherent Invasive E. coli (AIEC) is highly prevalent in Crohn's Disease (CD) patients. AIEC strains have been shown to colonize and adhere to intestinal epithelial cells (IEC). However, the role AIEC strains play in the induction of an inflammatory response is not known. Therefore, we examined several E. coli strains (designated LF82, O83:H1, 6604 and 6655) that were isolated from CD patients for their ability to induce inflammation in two IEC, Caco-2BBe and T-84 cells. Results showed that each strain had varying abilities to adhere to and invade IEC as well as induced cytokine secretion from polarized IEC. However, E. coli O83:H1 displayed the best characteristics of AIEC strains as compared to the prototype AIEC strain LF82, inducing cytokine secretion from IEC and promoting immune cell migration through IEC. Upon further analysis, E. coli O83:H1 did not harbor virulence genes present in known pathogenic intestinal organisms. Further characterization of E. coli O83:H1 virulence determinants showed that a non-flagellated O83:H1 strain significantly decreased the organism's ability to adhere to and invade both IEC and elicit IEC cytokine secretion compared to the wild type and complemented strains. These findings demonstrate that E. coli O83:H1 possesses the characteristics of the AIEC LF82 strain that may contribute to the low-grade, chronic inflammation observed in Crohn's disease. PMID:17900983

  12. Human intestinal capillariasis: a rare case report from non-endemic area (Andhra Pradesh, India).

    PubMed

    Vasantha, P L; Girish, N; Leela, K Sai

    2012-01-01

    Human intestinal capillariasis is caused by Capillaria philippinensis. This disease is endemic in Philippines and Thailand. To the best of our knowledge, we report the third case of human intestinal capillariasis from India and the first case from Andhra Pradesh, which is a non-endemic area. A 40-year-old female presented with diarrhoea, vomiting, decreased urinary output, ascitis, pedal oedema, hypoalbuminemia, and electrolyte imbalance. Microscopic examination of stool sample revealed the presence of ova, larvae, and adult worms of C. philippinensis. Patient recovered from the disease after taking albendazole 400 mg daily for 1 month along with supportive treatment. PMID:22664447

  13. Isolation and identification of intestinal CYP3A inhibitors from cranberry (Vaccinium macrocarpon) using human intestinal microsomes.

    PubMed

    Kim, Eunkyung; Sy-Cordero, Arlene; Graf, Tyler N; Brantley, Scott J; Paine, Mary F; Oberlies, Nicholas H

    2011-02-01

    Cranberry juice is used routinely, especially among women and the elderly, to prevent and treat urinary tract infections. These individuals are likely to be taking medications concomitantly with cranberry juice, leading to concern about potential drug-dietary substance interactions, particularly in the intestine, which, along with the liver, is rich in expression of the prominent drug metabolizing enzyme, cytochrome P450 3A (CYP3A). Using a systematic in vitro-in vivo approach, a cranberry juice product was identified recently that elicited a pharmacokinetic interaction with the CYP3A probe substrate midazolam in 16 healthy volunteers. Relative to water, cranberry juice inhibited intestinal first-pass midazolam metabolism. In vitro studies were initiated to identify potential enteric CYP3A inhibitors from cranberry via a bioactivity-directed fractionation approach involving dried whole cranberry [Vaccinium macrocarpon Ait. (Ericaceae)], midazolam, and human intestinal microsomes (HIM). Three triterpenes (maslinic acid, corosolic acid, and ursolic acid) were isolated. The inhibitory potency (IC(50)) of maslinic acid, corosolic acid, and ursolic acid was 7.4, 8.8, and < 10 µM, respectively, using HIM as the enzyme source and 2.8, 4.3, and < 10 µM, respectively, using recombinant CYP3A4 as the enzyme source. These in vitro inhibitory potencies, which are within the range of those reported for two CYP3A inhibitory components in grapefruit juice, suggest that these triterpenes may have contributed to the midazolam-cranberry juice interaction observed in the clinical study. PMID:20717876

  14. Isolation and Identification of Intestinal CYP3A Inhibitors from Cranberry (Vaccinium macrocarpon) using Human Intestinal Microsomes

    PubMed Central

    Kim, Eunkyung; Sy-Cordero, Arlene; Graf, Tyler N.; Brantley, Scott J.; Paine, Mary F.; Oberlies, Nicholas H.

    2010-01-01

    Cranberry juice is used routinely, especially among women and the elderly, to prevent and treat urinary tract infections. These individuals are likely to be taking medications concomitantly with cranberry juice, leading to concern about potential drug-dietary substance interactions, particularly in the intestine, which, along with the liver, is rich in expression of the prominent drug metabolizing enzyme, cytochrome P450 3A (CYP3A). Using a systematic in vitro-in vivo approach, a cranberry juice product was identified recently that elicited a pharmacokinetic interaction with the CYP3A probe substrate midazolam in 16 healthy volunteers. Relative to water, a cranberry juice inhibited intestinal first-pass midazolam metabolism. In vitro studies were initiated to identify potential enteric CYP3A inhibitors from cranberry via a bioactivity-directed fractionation approach involving dried whole cranberry [Vaccinium macrocarpon Ait. (Ericaceae)], midazolam, and human intestinal microsomes (HIM). Three triterpenes (maslinic acid, corosolic acid, and ursolic acid) were isolated. The inhibitory potency (IC50) of maslinic acid, corosolic acid, and ursolic acid was 7.4, 8.8, and <10 μM, respectively, using HIM as the enzyme source and was 2.8, 4.3, and <10 μM, respectively, using recombinant CYP3A4 as the enzyme source. These in vitro inhibitory potencies, which are within the range of those reported for two CYP3A inhibitory components in grapefruit juice, suggest that these triterpenes may have contributed to the midazolam-cranberry juice interaction observed in the clinical study. PMID:20717876

  15. Generating human intestinal tissues from pluripotent stem cells to study development and disease

    PubMed Central

    Sinagoga, Katie L; Wells, James M

    2015-01-01

    As one of the largest and most functionally complex organs of the human body, the intestines are primarily responsible for the breakdown and uptake of macromolecules from the lumen and the subsequent excretion of waste from the body. However, the intestine is also an endocrine organ, regulating digestion, metabolism, and feeding behavior. Intricate neuronal, lymphatic, immune, and vascular systems are integrated into the intestine and are required for its digestive and endocrine functions. In addition, the gut houses an extensive population of microbes that play roles in digestion, global metabolism, barrier function, and host–parasite interactions. With such an extensive array of cell types working and performing in one essential organ, derivation of functional intestinal tissues from human pluripotent stem cells (PSCs) represents a significant challenge. Here we will discuss the intricate developmental processes and cell types that are required for assembly of this highly complex organ and how embryonic processes, particularly morphogenesis, have been harnessed to direct differentiation of PSCs into 3-dimensional human intestinal organoids (HIOs) in vitro. We will further describe current uses of HIOs in development and disease research and how additional tissue complexity might be engineered into HIOs for better functionality and disease modeling. PMID:25792515

  16. In Vitro Polarization of Colonoids to Create an Intestinal Stem Cell Compartment

    PubMed Central

    Attayek, Peter J.; Ahmad, Asad A.; Wang, Yuli; Williamson, Ian; Sims, Christopher E.; Magness, Scott T.; Allbritton, Nancy L.

    2016-01-01

    The polarity of proliferative and differentiated cellular compartments of colonic crypts is believed to be specified by gradients of key mitogens and morphogens. Indirect evidence demonstrates a tight correlation between Wnt- pathway activity and the basal-luminal patterning; however, to date there has been no direct experimental manipulation demonstrating that a chemical gradient of signaling factors can produce similar patterning under controlled conditions. In the current work, colonic organoids (colonoids) derived from cultured, multicellular organoid fragments or single stem cells were exposed in culture to steep linear gradients of two Wnt-signaling ligands, Wnt-3a and R-spondin1. The use of a genetically engineered Sox9-Sox9EGFP:CAGDsRED reporter gene mouse model and EdU-based labeling enabled crypt patterning to be quantified in the developing colonoids. Colonoids derived from multicellular fragments cultured for 5 days under a Wnt-3a or a combined Wnt-3a and R-spondin1 gradient were highly polarized with proliferative cells localizing to the region of the higher morphogen concentration. In a Wnt-3a gradient, Sox9EGFP polarization was 7.3 times greater than that of colonoids cultured in the absence of a gradient; and the extent of EdU polarization was 2.2 times greater than that in the absence of a gradient. Under a Wnt-3a/R-spondin1 gradient, Sox9EGFP polarization was 8.2 times greater than that of colonoids cultured in the absence of a gradient while the extent of EdU polarization was 10 times greater than that in the absence of a gradient. Colonoids derived from single stem cells cultured in Wnt-3a/R-spondin1 gradients were most highly polarized demonstrated by a Sox9EGFP polarization 20 times that of colonoids grown in the absence of a gradient. This data provides direct evidence that a linear gradient of Wnt signaling factors applied to colonic stem cells is sufficient to direct patterning of the colonoid unit in culture. PMID:27100890

  17. A review of drug solubility in human intestinal fluids: implications for the prediction of oral absorption.

    PubMed

    Augustijns, Patrick; Wuyts, Benjamin; Hens, Bart; Annaert, Pieter; Butler, James; Brouwers, Joachim

    2014-06-16

    The purpose of this paper is to collate all recently published solubility data of orally administered drugs in human intestinal fluids (HIF) that were aspirated from the upper small intestine (duodenum and jejunum). The data set comprises in total 102 solubility values in fasted state HIF and 37 solubility values in fed state HIF, covering 59 different drugs. Despite differences in the protocol for HIF sampling and subsequent handling, this summary of HIF solubilities provides a critical reference data set to judge the value of simulated media for intestinal solubility estimation. In this regard, the review includes correlations between the reported solubilizing capacity of HIF and fasted or fed state simulated intestinal fluid (FaSSIF/FeSSIF). Correlating with HIF solubilities enables the optimal use of solubility measurements in simulated biorelevant media to obtain accurate estimates of intestinal solubility during drug development. Considering the fraction of poorly soluble new molecular entities in contemporary drug discovery, adequate prediction of intestinal solubility is critical for efficient lead optimization, early candidate profiling, and further development. PMID:23994640

  18. Intestinal Microbiota Distinguish Gout Patients from Healthy Humans

    PubMed Central

    Guo, Zhuang; Zhang, Jiachao; Wang, Zhanli; Ang, Kay Ying; Huang, Shi; Hou, Qiangchuan; Su, Xiaoquan; Qiao, Jianmin; Zheng, Yi; Wang, Lifeng; Koh, Eileen; Danliang, Ho; Xu, Jian; Lee, Yuan Kun; Zhang, Heping

    2016-01-01

    Current blood-based approach for gout diagnosis can be of low sensitivity and hysteretic. Here via a 68-member cohort of 33 healthy and 35 diseased individuals, we reported that the intestinal microbiota of gout patients are highly distinct from healthy individuals in both organismal and functional structures. In gout, Bacteroides caccae and Bacteroides xylanisolvens are enriched yet Faecalibacterium prausnitzii and Bifidobacterium pseudocatenulatum depleted. The established reference microbial gene catalogue for gout revealed disorder in purine degradation and butyric acid biosynthesis in gout patients. In an additional 15-member validation-group, a diagnosis model via 17 gout-associated bacteria reached 88.9% accuracy, higher than the blood-uric-acid based approach. Intestinal microbiota of gout are more similar to those of type-2 diabetes than to liver cirrhosis, whereas depletion of Faecalibacterium prausnitzii and reduced butyrate biosynthesis are shared in each of the metabolic syndromes. Thus the Microbial Index of Gout was proposed as a novel, sensitive and non-invasive strategy for diagnosing gout via fecal microbiota. PMID:26852926

  19. Insights from human congenital disorders of intestinal lipid metabolism

    PubMed Central

    Levy, Emile

    2015-01-01

    The intestine must challenge the profuse daily flux of dietary fat that serves as a vital source of energy and as an essential component of cell membranes. The fat absorption process takes place in a series of orderly and interrelated steps, including the uptake and translocation of lipolytic products from the brush border membrane to the endoplasmic reticulum, lipid esterification, Apo synthesis, and ultimately the packaging of lipid and Apo components into chylomicrons (CMs). Deciphering inherited disorders of intracellular CM elaboration afforded new insight into the key functions of crucial intracellular proteins, such as Apo B, microsomal TG transfer protein, and Sar1b GTPase, the defects of which lead to hypobetalipoproteinemia, abetalipoproteinemia, and CM retention disease, respectively. These “experiments of nature” are characterized by fat malabsorption, steatorrhea, failure to thrive, low plasma levels of TGs and cholesterol, and deficiency of liposoluble vitamins and essential FAs. After summarizing and discussing the functions and regulation of these proteins for reader’s comprehension, the current review focuses on their specific roles in malabsorptions and dyslipidemia-related intestinal fat hyperabsorption while dissecting the spectrum of clinical manifestations and managements. The influence of newly discovered proteins (proprotein convertase subtilisin/kexin type 9 and angiopoietin-like 3 protein) on fat absorption has also been provided. Finally, it is stressed how the overexpression or polymorphism status of the critical intracellular proteins promotes dyslipidemia and cardiometabolic disorders. PMID:25387865

  20. Intestinal Microbiota Distinguish Gout Patients from Healthy Humans.

    PubMed

    Guo, Zhuang; Zhang, Jiachao; Wang, Zhanli; Ang, Kay Ying; Huang, Shi; Hou, Qiangchuan; Su, Xiaoquan; Qiao, Jianmin; Zheng, Yi; Wang, Lifeng; Koh, Eileen; Danliang, Ho; Xu, Jian; Lee, Yuan Kun; Zhang, Heping

    2016-01-01

    Current blood-based approach for gout diagnosis can be of low sensitivity and hysteretic. Here via a 68-member cohort of 33 healthy and 35 diseased individuals, we reported that the intestinal microbiota of gout patients are highly distinct from healthy individuals in both organismal and functional structures. In gout, Bacteroides caccae and Bacteroides xylanisolvens are enriched yet Faecalibacterium prausnitzii and Bifidobacterium pseudocatenulatum depleted. The established reference microbial gene catalogue for gout revealed disorder in purine degradation and butyric acid biosynthesis in gout patients. In an additional 15-member validation-group, a diagnosis model via 17 gout-associated bacteria reached 88.9% accuracy, higher than the blood-uric-acid based approach. Intestinal microbiota of gout are more similar to those of type-2 diabetes than to liver cirrhosis, whereas depletion of Faecalibacterium prausnitzii and reduced butyrate biosynthesis are shared in each of the metabolic syndromes. Thus the Microbial Index of Gout was proposed as a novel, sensitive and non-invasive strategy for diagnosing gout via fecal microbiota. PMID:26852926

  1. Life and death at the mucosal-luminal interface: New perspectives on human intestinal ischemia-reperfusion

    PubMed Central

    Grootjans, Joep; Lenaerts, Kaatje; Buurman, Wim A; Dejong, Cornelis H C; Derikx, Joep P M

    2016-01-01

    Intestinal ischemia is a frequently observed phenomenon. Morbidity and mortality rates are extraordinarily high and did not improve over the past decades. This is in part attributable to limited knowledge on the pathophysiology of intestinal ischemia-reperfusion (IR) in man, the paucity in preventive and/or therapeutic options and the lack of early diagnostic markers for intestinal ischemia. To improve our knowledge and solve clinically important questions regarding intestinal IR, we developed a human experimental intestinal IR model. With this model, we were able to gain insight into the mechanisms that allow the human gut to withstand short periods of IR without the development of severe inflammatory responses. The purpose of this review is to overview the most relevant recent advances in our understanding of the pathophysiology of human intestinal IR, as well as the (potential) future clinical implications. PMID:26973414

  2. Chemical form of selenium affects its uptake, transport and glutathione peroxidase activity in the human intestinal Caco-2 cell model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining the effect of selenium (Se) chemical form on uptake and transport in human intestinal cells is critical to assess Se bioavailability. In the present study, we measured the uptake and transport of various Se compounds in the human intestinal Caco-2 cell model. We found that two sources...

  3. Identification of the transcriptional response of human intestinal mucosa to Lactobacillus plantarum WCFS1 in vivo

    PubMed Central

    Troost, Freddy J; van Baarlen, Peter; Lindsey, Patrick; Kodde, Andrea; de Vos, Willem M; Kleerebezem, Michiel; Brummer, Robert-Jan M

    2008-01-01

    Background There is limited knowledge on the extent and dynamics of the mucosal response to commensal and probiotic species in the human intestinal lumen. This study aimed to identify the acute, time-dependent responses of intestinal mucosa to commensal Lactobacillus plantarum WCFS1 in vivo in two placebo-controlled human intervention studies in healthy volunteers. Transcriptional changes in duodenal mucosa upon continuous intraduodenal infusion of L. plantarum WCFS1 for one- and six h, respectively, were studied using oro- and nasogastric intubations with dedicated orogastric catheters and tissue sampling by standard flexible gastroduodenoscopy. Results One- and six-h exposure of small intestinal mucosa to L. plantarum WCFS1 induced differential expression of 669 and 424 gene reporters, respectively. While short-term exposure to L. plantarum WCFS1 inhibited fatty acid metabolism and cell cycle progression, cells switched to a more proliferative phase after prolonged exposure with an overall expression profile characterized by upregulation of genes involved in lipid metabolism, cellular growth and development. Cell death and immune responses were triggered, but cell death-executing genes or inflammatory signals were not expressed. Proteome analysis showed differential expression of several proteins. Only the microsomal protein 'microsomal triglyceride transfer protein' was regulated on both the transcriptional and the protein level in all subjects. Conclusion Overall, this study showed that intestinal exposure to L. plantarum WCFS1 induced consistent, time-dependent transcriptional responses in healthy intestinal mucosa. This extensive exploration of the human response to L. plantarum WCFS1 could eventually provide molecular support for specific or probiotic activity of this strain or species, and exemplifies the strength of the applied technology to identify the potential bio-activity of microbes in the human intestine. PMID:18681965

  4. Effect of antidiuretic hormone on human small intestinal water and solute transport

    PubMed Central

    Soergel, Konrad H.; Whalen, George E.; Harris, John A.; Geenen, Joseph E.

    1968-01-01

    The effect of i.v. Pitressin (ADH) in a dose of 1 U/hr on permeability characteristics and on absorptive capacity of the normal human small intestine was investigated. The method of continuous intestinal perfusion was employed with polyethylene glycol 4000 as a nonabsorbable marker. Unidirectional flux rates of Na and H2O were calculated from the disappearance of 22Na and of 3HOH from isotonic saline solution within the intestinal lumen. Each study consisted of two successive perfusion periods: one while the subject was hydrated, the other during ADH infusion or while the subject was dehydrated. Water and sodium absorption from isotonic NaCl occurred in the hydrated state and was abolished by ADH as well as by dehydration in the jejunum. In some instances, net gain of water and sodium in the lumen occurred. In the ileum, ADH and dehydration caused a decrease in water and sodium absorption rate. By contrast, unidirectional flux into the intestinal lumen of water and sodium, as well as dextrose and D-xylose diffusion, remained unchanged by ADH. During perfusions with hypertonic urea solutions the rates of sodium and water entry into the intestine were greatly increased during i.v. ADH infusion, whereas urea loss from the study segment remained constant. ADH in the dosage used did not affect human intestinal motility. The results suggest that circulating ADH in physiologic concentrations affects the small intestine in one of two ways: increased secretion of water and salt into the lumen or direct interference with the active sodium transport mechanism. PMID:5645853

  5. Effect of Electronic Polarization to Human α-Thrombin

    NASA Astrophysics Data System (ADS)

    Duan, Li-Li; Li, Zong-Chao; He, Xiang; Zhang, Qing-Gang

    2014-04-01

    The polarized protein-specific charges (PPC) of human α-thrombin (thrombin) and its inhibitor (L86) are made possible by employing the recently developed molecular fractionation with conjugate caps approach incorporated the Poisson—Boltzmann model. Molecular dynamics (MD) simulations of thrombin have been carried out to investigate the dynamics and stability of the thrombin-inhibitor using PPC and AMBER charges respectively. Detailed analysis and comparison of MD results show that the PPC can correctly describe the polarized state of the thrombin and L86. Especially, the root-mean-square deviation of backbone atoms and the hydrogen bonds using PPC are more stable than the AMBER charge. The present results indicate that protein polarization plays critical roles in maintaining the compact structure of thrombin.

  6. CD4+CD25bright T cells in human intestinal lamina propria as regulatory cells.

    PubMed

    Makita, Shin; Kanai, Takanori; Oshima, Shigeru; Uraushihara, Koji; Totsuka, Teruji; Sawada, Taisuke; Nakamura, Tetsuya; Koganei, Kazutaka; Fukushima, Tsuneo; Watanabe, Mamoru

    2004-09-01

    It is well known that immune responses in the intestine remain in a state of controlled inflammation, suggesting that not only active suppression by regulatory T cells plays an important role in the normal intestinal homeostasis, but also its dysregulation leads to the development of inflammatory bowel disease. In this study, we demonstrate that the CD4(+)CD25(bright) T cells reside in the human intestinal lamina propria (LP) and functionally retain regulatory activities. All human LP CD4(+) T cells regardless of CD25 expression constitutively expressed CTLA-4, glucocorticoid-induced TNFR family-related protein, and Foxp3 and proliferate poorly. Although LP CD4(+)CD25(-) T cells showed an activated and anergic/memory phenotype, they did not retain regulatory activity. In LP CD4(+)CD25(+) T cells, however, cells expressing CD25 at high levels (CD4(+)CD25(bright)) suppressed the proliferation and various cytokine productions of CD4(+)CD25(-) T cells. LP CD4(+)CD25(bright) T cells by themselves produced fewer amounts of IL-2, IFN-gamma, and IL-10. Interestingly, LP CD4(+)CD25(bright) T cells with regulatory T activity were significantly increased in patients with active inflammatory bowel disease. These results suggest that CD4(+)CD25(bright) T cells found in the normal and inflamed intestinal mucosa selectively inhibit the host immune response and therefore may contribute to the intestinal immune homeostasis. PMID:15322172

  7. Glucose induces intestinal human UDP-glucuronosyltransferase (UGT) 1A1 to prevent neonatal hyperbilirubinemia.

    PubMed

    Aoshima, Naoya; Fujie, Yoshiko; Itoh, Tomoo; Tukey, Robert H; Fujiwara, Ryoichi

    2014-01-01

    Inadequate calorie intake or starvation has been suggested as a cause of neonatal jaundice, which can further cause permanent brain damage, kernicterus. This study experimentally investigated whether additional glucose treatments induce the bilirubin-metabolizing enzyme--UDP-glucuronosyltransferase (UGT) 1A1--to prevent the onset of neonatal hyperbilirubinemia. Neonatal humanized UGT1 (hUGT1) mice physiologically develop jaundice. In this study, UGT1A1 expression levels were determined in the liver and small intestine of neonatal hUGT1 mice that were orally treated with glucose. In the hUGT1 mice, glucose induced UGT1A1 in the small intestine, while it did not affect the expression of UGT1A1 in the liver. UGT1A1 was also induced in the human intestinal Caco-2 cells when the cells were cultured in the presence of glucose. Luciferase assays demonstrated that not only the proximal region (-1300/-7) of the UGT1A1 promoter, but also distal region (-6500/-4050) were responsible for the induction of UGT1A1 in the intestinal cells. Adequate calorie intake would lead to the sufficient expression of UGT1A1 in the small intestine to reduce serum bilirubin levels. Supplemental treatment of newborns with glucose solution can be a convenient and efficient method to treat neonatal jaundice while allowing continuous breastfeeding. PMID:25209391

  8. Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Action of human small intestinal brush border carbohydrate digesting enzymes is thought to involve only final hydrolysis reactions of oligosaccharides to monosaccharides. In vitro starch digestibility assays use fungal amyloglucosidase to provide this function. In this study, recombinant N-terminal ...

  9. Consensus hologram QSAR modeling for the prediction of human intestinal absorption.

    PubMed

    Moda, Tiago L; Andricopulo, Adriano D

    2012-04-15

    Consistent in silico models for ADME properties are useful tools in early drug discovery. Here, we report the hologram QSAR modeling of human intestinal absorption using a dataset of 638 compounds with experimental data associated. The final validated models are consistent and robust for the consensus prediction of this important pharmacokinetic property and are suitable for virtual screening applications. PMID:22425566

  10. Transport of quercetin di-sodium salt in the human intestinal epithelial Caco-2 cell monolayer 139.

    PubMed

    Milane, H A; Al Ahmad, A; Naitchabane, M; Vandamme, T F; Jung, L; Ubeaud, G

    2007-01-01

    Quercetin di-sodium salt (QDS), a water-soluble derivative of quercetin (Q), is a potent free radical scavenger. The aim of this study was to examine the in vitro intestinal transport of QDS compared to that of Q using the Caco-2 human intestinal epithelial cell line. The apical (A) to basolateral (B) transport of QDS was found to be higher than the B to A transport of this compound. This polarized transport involved the presence of a carrier protein system. The involvement of the sodium/glucose transporter-1 (SGLT-1) was shown by using phloridzin, a selective inhibitor of this conveyor system. However, the transport of Q was not affected by this inhibitor. Moreover, the influx of QDS was pH-sensitive and decreased at pH 5.5 compared with that observed at pH 7.4 and 6.5. The permeability of QDS was 10-fold higher than that of Q. This could be explained by the involvement of SLGT-1 and the absence of an active efflux pump in the absorption of QDS in comparison with Q. This finding was supported by comparing the solubility of Q with that of QDS. This study indicates that both the higher solubility of QDS and its dependence on the SGLT-1 transport system resulted in more efficient permeability compared to Q. PMID:18062406

  11. CFTR is a tumor suppressor gene in murine and human intestinal cancer

    PubMed Central

    Than, BLN; Linnekamp, JF; Starr, TK; Largaespada, DA; Rod, A; Zhang, Y; Bruner, V; Abrahante, J; Schumann, A; Luczak, T; Niemczyk, A; O’Sullivan, MG; Medema, JP; Fijneman, RJA; Meijer, GA; Van den Broek, E; Hodges, CA; Scott, PM; Vermeulen, L; Cormier, RT

    2016-01-01

    CFTR, the cystic fibrosis (CF) gene, encodes for the CFTR protein that plays an essential role in anion regulation and tissue homeostasis of various epithelia. In the gastrointestinal (GI) tract CFTR promotes chloride and bicarbonate secretion, playing an essential role in ion and acid–base homeostasis. Cftr has been identified as a candidate driver gene for colorectal cancer (CRC) in several Sleeping Beauty DNA transposon-based forward genetic screens in mice. Further, recent epidemiological and clinical studies indicate that CF patients are at high risk for developing tumors in the colon. To investigate the effects of CFTR dysregulation on GI cancer, we generated ApcMin mice that carried an intestinal-specific knockout of Cftr. Our results indicate that Cftr is a tumor suppressor gene in the intestinal tract as Cftr mutant mice developed significantly more tumors in the colon and the entire small intestine. In Apc+/+ mice aged to ~ 1 year, Cftr deficiency alone caused the development of intestinal tumors in >60% of mice. Colon organoid formation was significantly increased in organoids created from Cftr mutant mice compared with wild-type controls, suggesting a potential role of Cftr in regulating the intestinal stem cell compartment. Microarray data from the Cftr-deficient colon and the small intestine identified dysregulated genes that belong to groups of immune response, ion channel, intestinal stem cell and other growth signaling regulators. These associated clusters of genes were confirmed by pathway analysis using Ingenuity Pathway Analysis and gene set enrichment analysis (GSEA). We also conducted RNA Seq analysis of tumors from Apc+/+ Cftr knockout mice and identified sets of genes dysregulated in tumors including altered Wnt β-catenin target genes. Finally we analyzed expression of CFTR in early stage human CRC patients stratified by risk of recurrence and found that loss of expression of CFTR was significantly associated with poor disease

  12. CFTR is a tumor suppressor gene in murine and human intestinal cancer.

    PubMed

    Than, B L N; Linnekamp, J F; Starr, T K; Largaespada, D A; Rod, A; Zhang, Y; Bruner, V; Abrahante, J; Schumann, A; Luczak, T; Niemczyk, A; O'Sullivan, M G; Medema, J P; Fijneman, R J A; Meijer, G A; Van den Broek, E; Hodges, C A; Scott, P M; Vermeulen, L; Cormier, R T

    2016-08-11

    CFTR, the cystic fibrosis (CF) gene, encodes for the CFTR protein that plays an essential role in anion regulation and tissue homeostasis of various epithelia. In the gastrointestinal (GI) tract CFTR promotes chloride and bicarbonate secretion, playing an essential role in ion and acid-base homeostasis. Cftr has been identified as a candidate driver gene for colorectal cancer (CRC) in several Sleeping Beauty DNA transposon-based forward genetic screens in mice. Further, recent epidemiological and clinical studies indicate that CF patients are at high risk for developing tumors in the colon. To investigate the effects of CFTR dysregulation on GI cancer, we generated Apc(Min) mice that carried an intestinal-specific knockout of Cftr. Our results indicate that Cftr is a tumor suppressor gene in the intestinal tract as Cftr mutant mice developed significantly more tumors in the colon and the entire small intestine. In Apc(+/+) mice aged to ~1 year, Cftr deficiency alone caused the development of intestinal tumors in >60% of mice. Colon organoid formation was significantly increased in organoids created from Cftr mutant mice compared with wild-type controls, suggesting a potential role of Cftr in regulating the intestinal stem cell compartment. Microarray data from the Cftr-deficient colon and the small intestine identified dysregulated genes that belong to groups of immune response, ion channel, intestinal stem cell and other growth signaling regulators. These associated clusters of genes were confirmed by pathway analysis using Ingenuity Pathway Analysis and gene set enrichment analysis (GSEA). We also conducted RNA Seq analysis of tumors from Apc(+/+) Cftr knockout mice and identified sets of genes dysregulated in tumors including altered Wnt β-catenin target genes. Finally we analyzed expression of CFTR in early stage human CRC patients stratified by risk of recurrence and found that loss of expression of CFTR was significantly associated with poor disease

  13. Transcriptional Modulation of Intestinal Innate Defense/Inflammation Genes by Preterm Infant Microbiota in a Humanized Gnotobiotic Mouse Model

    PubMed Central

    Lu, Lei; Yu, Yueyue; Guo, Yuee; Wang, Yunwei; Chang, Eugene B.; Claud, Erika C.

    2015-01-01

    Background and Aims It is known that postnatal functional maturation of the small intestine is facilitated by microbial colonization of the gut. Preterm infants exhibit defects in gut maturation, weak innate immunity against intestinal infection and increased susceptibility to inflammatory disorders, all of which may be related to the inappropriate microbial colonization of their immature intestines. The earliest microbes to colonize the preterm infant gut encounter a naïve, immature intestine. Thus this earliest microbiota potentially has the greatest opportunity to fundamentally influence intestinal development and immune function. The aim of this study was to characterize the effect of early microbial colonization on global gene expression in the distal small intestine during postnatal gut development. Methods Gnotobiotic mouse models with experimental colonization by early (prior to two weeks of life) intestinal microbiota from preterm human infants were utilized. Microarray analysis was used to assess global gene expression in the intestinal epithelium. Results and Conclusion Multiple intestinal genes involved in metabolism, cell cycle regulation, cell-cell or cell-extracellular matrix communication, and immune function are developmental- and intestinal microbiota- regulated. Using a humanized gnotobiotic mouse model, we demonstrate that certain early preterm infant microbiota from prior to 2 weeks of life specifically induce increased NF-κB activation and a phenotype of increased inflammation whereas other preterm microbiota specifically induce decreased NF-κB activation. These fundamental differences correlate with altered clinical outcomes and suggest the existence of optimal early microbial communities to improve health outcomes. PMID:25928420

  14. Brachyury identifies a class of enteroendocrine cells in normal human intestinal crypts and colorectal cancer

    PubMed Central

    Pinto, Filipe; Sammut, Stephen J.; Williams, Geraint T.; Gollins, Simon; McFarlane, Ramsay J.; Reis, Rui Manuel; Wakeman, Jane A.

    2016-01-01

    Normal homeostasis of adult intestinal epithelium and repair following tissue damage is maintained by a balance of stem and differentiated cells, many of which are still only poorly characterised. Enteroendocrine cells of the gut are a small population of differentiated, secretory cells that are critical for integrating nutrient sensing with metabolic responses, dispersed amongst other epithelial cells. Recent evidence suggests that sub-sets of secretory enteroendocrine cells can act as reserve stem cells. Given the link between cells with stem-like properties and cancer, it is important that we identify factors that might provide a bridge between the two. Here, we identify a sub-set of chromogranin A-positive enteroendocrine cells that are positive for the developmental and cancer-associated transcription factor Brachyury in normal human small intestinal and colonic crypts. Whilst chromogranin A-positive enteroendocrine cells are also Brachyury-positive in colorectal tumours, expression of Brachyury becomes more diffuse in these samples, suggesting a more widespread function in cancer. The finding of the developmental transcription factor Brachyury in normal adult human intestinal crypts may extend the functional complexity of enteroendocrine cells and serves as a platform for assessment of the molecular processes of intestinal homeostasis that underpins our understanding of human health, cancer and aging. PMID:26862851

  15. Metabolism of heme and bilirubin in rat and human small intestinal mucosa.

    PubMed Central

    Hartmann, F; Bissell, D M

    1982-01-01

    Formation of heme, bilirubin, and bilirubin conjugates has been examined in mucosal cells isolated from the rat upper small intestine. Intact, viable cells were prepared by enzymatic dissociation using a combined vascular and luminal perfusion and incubated with an isotopically labeled precursor, delta-amino-[2,3-3H]levulinic acid. Labeled heme and bile pigment were formed with kinetics similar to those exhibited by hepatocytes. Moreover, the newly formed bilirubin was converted rapidly to both mono- and diglucuronide conjugates. In addition, cell-free extracts of small intestinal mucosa from rats or humans exhibited a bilirubin-UDP-glucuronyl transferase activity that was qualitatively similar to that present in liver. The data suggest that the small intestinal mucosa normally contributes to bilirubin metabolism. PMID:6806320

  16. Recombinant Human Epidermal Growth Factor Accelerates Recovery of Mouse Small Intestinal Mucosa After Radiation Damage

    SciTech Connect

    Lee, Kang Kyoo; Jo, Hyang Jeong; Hong, Joon Pio; Lee, Sang-wook Sohn, Jung Sook; Moon, Soo Young; Yang, Sei Hoon; Shim, Hyeok; Lee, Sang Ho; Ryu, Seung-Hee; Moon, Sun Rock

    2008-07-15

    Purpose: To determine whether systemically administered recombinant human epidermal growth factor (rhEGF) accelerates the recovery of mouse small intestinal mucosa after irradiation. Methods and Materials: A mouse mucosal damage model was established by administering radiation to male BALB/c mice with a single dose of 15 Gy applied to the abdomen. After irradiation, rhEGF was administered subcutaneously at various doses (0.04, 0.2, 1.0, and 5.0 mg/kg/day) eight times at 2- to 3-day intervals. The evaluation methods included histologic changes of small intestinal mucosa, change in body weight, frequency of diarrhea, and survival rate. Results: The recovery of small intestinal mucosa after irradiation was significantly improved in the mice treated with a high dose of rhEGF. In the mice that underwent irradiation without rhEGF treatment, intestinal mucosal ulceration, mucosal layer damage, and severe inflammation occurred. The regeneration of villi was noticeable in mice treated with more than 0.2 mg/kg rhEGF, and the villi recovered fully in mice given more than 1 mg/kg rhEGF. The frequency of diarrhea persisting for more than 3 days was significantly greater in the radiation control group than in the rhEGF-treated groups. Conclusions: Systemic administration of rhEGF accelerates recovery from mucosal damage induced by irradiation. We suggest that rhEGF treatment shows promise for the reduction of small intestinal damage after irradiation.

  17. Human, rat and chicken small intestinal Na+-Cl−-creatine transporter: functional, molecular characterization and localization

    PubMed Central

    Peral, M J; García-Delgado, M; Calonge, M L; Durán, J M; De La Horra, M C; Wallimann, T; Speer, O; Ilundáin, A A

    2002-01-01

    In spite of all the fascinating properties of oral creatine supplementation, the mechanism(s) mediating its intestinal absorption has(have) not been investigated. The purpose of this study was to characterize intestinal creatine transport. [14C]Creatine uptake was measured in chicken enterocytes and rat ileum, and expression of the creatine transporter CRT was examined in human, rat and chicken small intestine by reverse transcription-polymerase chain reaction, Northern blot, in situ hybridization, immunoblotting and immunohistochemistry. Results show that enterocytes accumulate creatine against its concentration gradient. This accumulation was electrogenic, Na+- and Cl−-dependent, with a probable stoichiometry of 2 Na+: 1 Cl−: 1 creatine, and inhibited by ouabain and iodoacetic acid. The kinetic study revealed a Km for creatine of 29 μm. [14C]Creatine uptake was efficiently antagonized by non-labelled creatine, guanidinopropionic acid and cyclocreatine. More distant structural analogues of creatine, such as GABA, choline, glycine, β-alanine, taurine and betaine, had no effect on intestinal creatine uptake, indicating a high substrate specificity of the creatine transporter. Consistent with these functional data, messenger RNA for CRT was detected only in the cells lining the intestinal villus. The sequences of partial clones, and of the full-length cDNA clone, isolated from human and rat small intestine were identical to previously cloned CRT cDNAs. Immunological analysis revealed that CRT protein was mainly associated with the apical membrane of the enterocytes. This study reports for the first time that mammalian and avian enterocytes express CRT along the villus, where it mediates high-affinity, Na+- and Cl−-dependent, apical creatine uptake. PMID:12433955

  18. Nitroreduction and formation of hemoglobin adducts in rats with a human intestinal microflora

    SciTech Connect

    Scheepers, P.T.J.; Straetemans, M.M.E.; Koopman, J.P.; Bos, R.P.

    1994-10-01

    In the covalent binding of nitroarenes to macromolecules, nitroreduction is an important step. The intestinal microflora represents an enormous potential of bacterial nitroreductase activity. As a consequence, the in vivo nitroreduction of orally administerednitroarenes is primarily located in the intestine. In this study, we have investigated the nitroreduction of 2-nitrofluorene (2-NF) by a human microflora in female Wistar rats. Germ-free (FG) rats were equipped with a bacterial flora derived from human feces. Nontreated GF rats and GF animals equipped with a conventional rat flora were used as controls. The composition of the human and the conventional microflora isolated from the rats were consistent with the microflora of the administered feces. In the rats receiving only sunflower seed oil, no adducts were detected. The animals equipped with a human or rat microflora that received 2-aminofluorene (2-AF) formed 2-AF hemoglobin (Hb)-adducts at average levels mean {+-} 0.003 and 0.043 {+-} 0.010 {mu}mole/g Hb, respectively. In the FG rats, an adduct level of 0.57 {+-} 0.09 was determined after 2-AF administration and non adducts were detected after 2-NF administration. The results show that nitroreduction by an acquired human intestinal microflora and subsequent adduct formation can be studied in the rate in vivo. 21 refs., 3 tabs.

  19. Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium

    PubMed Central

    Walsham, Alistair D. S.; MacKenzie, Donald A.; Cook, Vivienne; Wemyss-Holden, Simon; Hews, Claire L.; Juge, Nathalie; Schüller, Stephanie

    2016-01-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as human small intestinal biopsies were used. Adherence of L. reuteri to HT-29 cells was strain-specific, and the mucus-binding proteins CmbA and MUB increased binding to both HT-29 and LS174T cells. L. reuteri ATCC PTA 6475 and ATCC 53608 significantly inhibited EPEC binding to HT-29 but not LS174T cells. While pre-incubation of LS174T cells with ATCC PTA 6475 did not affect EPEC attaching/effacing (A/E) lesion formation, it increased the size of EPEC microcolonies. ATCC PTA 6475 and ATCC 53608 binding to the mucus layer resulted in decreased EPEC adherence to small intestinal biopsy epithelium. Our findings show that L. reuteri reduction of EPEC adhesion is strain-specific and has the potential to target either the epithelium or the mucus layer, providing further rationale for the selection of probiotic strains. PMID:26973622

  20. Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium.

    PubMed

    Walsham, Alistair D S; MacKenzie, Donald A; Cook, Vivienne; Wemyss-Holden, Simon; Hews, Claire L; Juge, Nathalie; Schüller, Stephanie

    2016-01-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as human small intestinal biopsies were used. Adherence of L. reuteri to HT-29 cells was strain-specific, and the mucus-binding proteins CmbA and MUB increased binding to both HT-29 and LS174T cells. L. reuteri ATCC PTA 6475 and ATCC 53608 significantly inhibited EPEC binding to HT-29 but not LS174T cells. While pre-incubation of LS174T cells with ATCC PTA 6475 did not affect EPEC attaching/effacing (A/E) lesion formation, it increased the size of EPEC microcolonies. ATCC PTA 6475 and ATCC 53608 binding to the mucus layer resulted in decreased EPEC adherence to small intestinal biopsy epithelium. Our findings show that L. reuteri reduction of EPEC adhesion is strain-specific and has the potential to target either the epithelium or the mucus layer, providing further rationale for the selection of probiotic strains. PMID:26973622

  1. Human Ghrelin Mitigates Intestinal Injury and Mortality after Whole Body Irradiation in Rats

    PubMed Central

    Wang, Zhimin; Yang, Weng Lang; Jacob, Asha; Aziz, Monowar; Wang, Ping

    2015-01-01

    Widespread use of ionizing radiation has led to the realization of the danger associated with radiation exposure. Although studies in radiation countermeasures were initiated a half century ago, an effective therapy for a radiomitigator has not been identified. Ghrelin is a gastrointestinal hormone, and administration of ghrelin is protective in animal models of injuries including radiation combined injury. To test whether ghrelin can be protective in whole body irradiaton (WBI) alone, male Sprague Dawley (SD) rats were treated with human ghrelin (20 nmol/rat) daily for 6 days starting at either 24 h or 48 h after 10 Gray (Gy) WBI and survival outcome was examined. The 10 Gy WBI produced a LD70/30 model in SD rats (30% survival in 30 days). The survival rate in rats treated with ghrelin starting at 24 h was significantly improved to 63% and when treatment was initiated at 48 h, the survival remained at 61%. At 7 days post WBI, plasma ghrelin was significantly reduced from the control value. Ghrelin treatment starting at 24 h after WBI daily for 6 days improved histological appearance of the intestine, reduced gut permeability, serum endotoxin levels and bacterial translocation to the liver by 38%, 42% and 61%, respectively at day 7 post WBI. Serum glucose and albumin were restored to near control levels with treatment. Ghrelin treatment also attenuated WBI-induced intestinal apoptosis by 62% as evidenced by TUNEL staining. The expression of anti-apoptotic cell regulator Bcl-xl was decreased by 38% in the vehicle and restored to 75% of the control with ghrelin treatment. Increased expression of intestinal CD73 and pAkt were observed with ghrelin treatment, indicating protection of the intestinal epithelium after WBI. These results indicate that human ghrelin attenuates intestinal injury and mortality after WBI. Thus, human ghrelin can be developed as a novel mitigator for radiation injury. PMID:25671547

  2. Enhancing the intestinal absorption of molecules containing the polar guanidino functionality: a double-targeted prodrug approach

    PubMed Central

    Sun, Jing; Dahan, Arik; Amidon, Gordon L.

    2011-01-01

    A prodrug strategy was applied to guanidino-containing analogs to increase oral absorption via hPEPT1 and hVACVase. L-Valine, L-isoleucine and L-phenylalanine esters of [3-(hydroxymethyl)phenyl]guanidine (3-HPG) were synthesized and evaluated for transport and activation. In HeLa/hPEPT1 cells, Val-3-HPG and Ile-3-HPG exhibited high affinity to hPEPT1 (IC50: 0.65 and 0.63 mM, respectively), and all three L-amino acid esters showed higher uptake (2.6- to 9-fold) than the parent compound 3-HPG. Val-3-HPG and Ile-3-HPG demonstrated remarkable Caco-2 permeability enhancement, and Val-3-HPG exhibited comparable permeability to valacyclovir. In rat perfusion studies, Val-3-HPG and Ile-3-HPG permeabilities were significantly higher than 3-HPG, and exceeded/matched the high-permeability standard metoprolol, respectively. All the L-amino acid 3-HPG esters were effectively activated in HeLa and Caco-2 cell homogenates, and were found to be good substrates of hVACVase (kcat/Km in mM−1·s−1: Val-3-HPG, 3370; Ile-3-HPG, 1580; Phe-3-HPG, 1660). In conclusion, a prodrug strategy is effective at increasing the intestinal permeability of polar guanidino analogs via targeting hPEPT1 for transport and hVACVase for activation. PMID:19957998

  3. Ardipusilloside-I Metabolites from Human Intestinal Bacteria and Their Antitumor Activity.

    PubMed

    Cao, Wei-Yu; Wang, Ya-Nan; Wang, Peng-Yuan; Lei, Wan; Feng, Bin; Wang, Xiao-Juan

    2015-01-01

    Ardipusilloside-I (ADS-I) is a triterpenoid saponin extracted from Ardisia pusilla DC, and has been demonstrated to have potent antitumor activity. However, ADS-I metabolism in humans has not been investigated. In this study, we studied the biotransformation of ADS-I in human intestinal bacteria, and examined the in vitro antitumor activity of the major metabolites. Ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was used to detect ADS-I biotransformation products, and their chemical structures were identified by high performance liquid chromatography-nuclear magnetic resonance (HPLC-NMR). The antitumor activity of the major metabolites was determined by the MTT assay. Here, we show that main reaction seen in the metabolism of ADS-I in human intestinal bacteria was deglycosylation, which produced a total of four metabolites. The structures of the two major metabolites M1 and M2 were confirmed by using NMR. MTT assay showed that ADS-I metabolites M1 and M2 have the same levels of inhibitory activities as ADS-I in cultured SMMC-7721 cells and MCF-7 cells. In conclusion, this study demonstrates deglycosylation as a primary pathway of ADS-I metabolism in human intestinal bacteria, and suggests that the pharmacological activity of ADS-I may be mediated, at least in part, by its metabolites. PMID:26610438

  4. Hydrolysis of pyrethroids by human and rat tissues: Examination of intestinal, liver and serum carboxylesterases

    SciTech Connect

    Crow, J. Allen; Borazjani, Abdolsamad; Potter, Philip M.; Ross, Matthew K. . E-mail: mross@cvm.msstate.edu

    2007-05-15

    Hydrolytic metabolism of pyrethroid insecticides in humans is one of the major catabolic pathways that clear these compounds from the body. Rodent models are often used to determine the disposition and clearance rates of these esterified compounds. In this study the distribution and activities of esterases that catalyze pyrethroid metabolism have been investigated in vitro using several human and rat tissues, including small intestine, liver and serum. The major esterase in human intestine is carboxylesterase 2 (hCE2). We found that the pyrethroid trans-permethrin is effectively hydrolyzed by a sample of pooled human intestinal microsomes (5 individuals), while deltamethrin and bioresmethrin are not. This result correlates well with the substrate specificity of recombinant hCE2 enzyme. In contrast, a sample of pooled rat intestinal microsomes (5 animals) hydrolyze trans-permethrin 4.5-fold slower than the sample of human intestinal microsomes. Furthermore, it is demonstrated that pooled samples of cytosol from human or rat liver are {approx} 2-fold less hydrolytically active (normalized per mg protein) than the corresponding microsomal fraction toward pyrethroid substrates; however, the cytosolic fractions do have significant amounts ({approx} 40%) of the total esteratic activity. Moreover, a 6-fold interindividual variation in carboxylesterase 1 protein expression in human hepatic cytosols was observed. Human serum was shown to lack pyrethroid hydrolytic activity, but rat serum has hydrolytic activity that is attributed to a single CE isozyme. We purified the serum CE enzyme to homogeneity to determine its contribution to pyrethroid metabolism in the rat. Both trans-permethrin and bioresmethrin were effectively cleaved by this serum CE, but deltamethrin, esfenvalerate, alpha-cypermethrin and cis-permethrin were slowly hydrolyzed. Lastly, two model lipase enzymes were examined for their ability to hydrolyze pyrethroids. However, no hydrolysis products could be

  5. Human small intestinal and colonic tissue mounted in the Ussing chamber as a tool for characterizing the intestinal absorption of drugs.

    PubMed

    Rozehnal, Veronika; Nakai, Daisuke; Hoepner, Ursula; Fischer, Thomas; Kamiyama, Emi; Takahashi, Masayuki; Yasuda, Satoru; Mueller, Juergen

    2012-08-15

    The purpose of this study was to validate human small intestinal and colonic tissue mounted in the Ussing chamber as a tool for predicting the oral drug absorption in humans with the main focus on moderately and poorly permeable compounds. The obtained apparent permeability coefficient (P(app)) of eleven test compounds was compared to their fraction absorbed (Fa) in humans taken from the literature. Beside the conventional P(app) a new parameter, the apparent permeability coefficient total (P(app,total)), involving both the apical-to-basolateral permeability and the time-dependent compound accumulation in the tissue was established. The permeability of lucifer yellow (LY), a fluorescent marker of the paracellular pathway and the test compounds showed no obvious differences between small intestine and colon. Furthermore, small intestinal and colonic tissue from a single donor showed similar permeability of both LY and a transcellularly transported compound metoprolol. All test compounds including low molecular weight hydrophilic compounds such as metformin, atenolol, sulpiride and famotidine showed adequate permeability reflecting human Fa values (R(2)=0.87). The P(app) values of digoxin, a P-glycoprotein (P-gp) substrate, were not significantly affected by the addition of verapamil, a P-gp inhibitor. In contrast, the P(app,total) values of digoxin increased approximately threefold in the presence of verapamil. In conclusion, both small intestinal and colonic tissue mounted in the Ussing chamber provide a good opportunity to predict the oral drug absorption rate in humans even for moderately and poorly absorbed compounds. The novel calculation of P(app,total) allows the study of the carrier-mediated drug-drug interactions in human intestine. PMID:22418036

  6. Comparative Genomics Analysis of Streptococcus Isolates from the Human Small Intestine Reveals their Adaptation to a Highly Dynamic Ecosystem

    PubMed Central

    Van den Bogert, Bartholomeus; Boekhorst, Jos; Herrmann, Ruth; Smid, Eddy J.; Zoetendal, Erwin G.; Kleerebezem, Michiel

    2013-01-01

    The human small-intestinal microbiota is characterised by relatively large and dynamic Streptococcus populations. In this study, genome sequences of small-intestinal streptococci from S. mitis, S. bovis, and S. salivarius species-groups were determined and compared with those from 58 Streptococcus strains in public databases. The Streptococcus pangenome consists of 12,403 orthologous groups of which 574 are shared among all sequenced streptococci and are defined as the Streptococcus core genome. Genome mining of the small-intestinal streptococci focused on functions playing an important role in the interaction of these streptococci in the small-intestinal ecosystem, including natural competence and nutrient-transport and metabolism. Analysis of the small-intestinal Streptococcus genomes predicts a high capacity to synthesize amino acids and various vitamins as well as substantial divergence in their carbohydrate transport and metabolic capacities, which is in agreement with observed physiological differences between these Streptococcus strains. Gene-specific PCR-strategies enabled evaluation of conservation of Streptococcus populations in intestinal samples from different human individuals, revealing that the S. salivarius strains were frequently detected in the small-intestine microbiota, supporting the representative value of the genomes provided in this study. Finally, the Streptococcus genomes allow prediction of the effect of dietary substances on Streptococcus population dynamics in the human small-intestine. PMID:24386196

  7. Biorelevant media resistant co-culture model mimicking permeability of human intestine.

    PubMed

    Antoine, Delphine; Pellequer, Yann; Tempesta, Camille; Lorscheidt, Stefan; Kettel, Bernadette; Tamaddon, Lana; Jannin, Vincent; Demarne, Frédéric; Lamprecht, Alf; Béduneau, Arnaud

    2015-03-15

    Cell culture models are currently used to predict absorption pattern of new compounds and formulations in the human gastro-intestinal tract (GIT). One major drawback is the lack of relevant apical incubation fluids allowing mimicking luminal conditions in the GIT. Here, we suggest a culture model compatible with biorelevant media, namely Fasted State Simulated Intestinal Fluid (FaSSIF) and Fed State Simulated Intestinal Fluid (FeSSIF). Co-culture was set up from Caco-2 and mucus-secreting HT29-MTX cells using an original seeding procedure. Viability and cytotoxicity assays were performed following incubation of FeSSIF and FaSSIF with co-culture. Influence of biorelevant fluids on paracellular permeability or transporter proteins were also evaluated. Results were compared with Caco-2 and HT29-MTX monocultures. While Caco-2 viability was strongly affected with FeSSIF, no toxic effect was detected for the co-cultures in terms of viability and lactate dehydrogenase release. The addition of FeSSIF to the basolateral compartment of the co-culture induced cytotoxic effects which suggested the apical mucus barrier being cell protective. In contrast to FeSSIF, FaSSIF induced a slight increase of the paracellular transport and both tested media inhibited partially the P-gp-mediated efflux in the co-culture. Additionally, the absorptive transport of propranolol hydrochloride, a lipophilic β-blocker, was strongly affected by biorelevant fluids. This study demonstrated the compatibility of the Caco-2/HT29-MTX model with some of the current biorelevant media. Combining biorelevant intestinal fluids with features such as mucus secretion, adjustable paracellular and P-gp mediated transports, is a step forward to more realistic in-vitro models of the human intestine. PMID:25601199

  8. Metabolomics analysis of Cistus monspeliensis leaf extract on energy metabolism activation in human intestinal cells.

    PubMed

    Shimoda, Yoichi; Han, Junkyu; Kawada, Kiyokazu; Smaoui, Abderrazak; Isoda, Hiroko

    2012-01-01

    Energy metabolism is a very important process to improve and maintain health from the point of view of physiology. It is well known that the intracellular ATP production is contributed to energy metabolism in cells. Cistus monspeliensis is widely used as tea, spices, and medical herb; however, it has not been focusing on the activation of energy metabolism. In this study, C. monspeliensis was investigated as the food resources by activation of energy metabolism in human intestinal epithelial cells. C. monspeliensis extract showed high antioxidant ability. In addition, the promotion of metabolites of glycolysis and TCA cycle was induced by C. monspeliensis treatment. These results suggest that C. monspeliensis extract has an ability to enhance the energy metabolism in human intestinal cells. PMID:22523469

  9. Diagnosis of edema and inflammation in human intestines using ultrawideband radar

    NASA Astrophysics Data System (ADS)

    Smith, Sonny; Narayanan, Ram M.; Messaris, Evangelos

    2015-05-01

    Human intestines are vital organs, which are often subjected to chronic issues. In particular, Crohn's disease is a bowel aliment resulting in inflammation along the lining of one's digestive tract. Moreover, such an inflammatory condition causes changes in the thickness of the intestines; and we posit induce changes in the dielectric properties detectable by radar. This detection hinges on the increase in fluid content in the afflicted area, which is described by effective medium approximations (EMA). In this paper, we consider one of the constitutive parameters (i.e. relative permittivity) of different human tissues and introduce a simple numerical, electromagnetic multilayer model. We observe how the increase in water content in one layer can be approximated to predict the effective permittivity of that layer. Moreover, we note trends in how such an accumulation can influence the total effective reflection coefficient of the multiple layers.

  10. Metabolomics Analysis of Cistus monspeliensis Leaf Extract on Energy Metabolism Activation in Human Intestinal Cells

    PubMed Central

    Shimoda, Yoichi; Han, Junkyu; Kawada, Kiyokazu; Smaoui, Abderrazak; Isoda, Hiroko

    2012-01-01

    Energy metabolism is a very important process to improve and maintain health from the point of view of physiology. It is well known that the intracellular ATP production is contributed to energy metabolism in cells. Cistus monspeliensis is widely used as tea, spices, and medical herb; however, it has not been focusing on the activation of energy metabolism. In this study, C. monspeliensis was investigated as the food resources by activation of energy metabolism in human intestinal epithelial cells. C. monspeliensis extract showed high antioxidant ability. In addition, the promotion of metabolites of glycolysis and TCA cycle was induced by C. monspeliensis treatment. These results suggest that C. monspeliensis extract has an ability to enhance the energy metabolism in human intestinal cells. PMID:22523469

  11. Generation of L-cells in mouse and human small intestine organoids

    PubMed Central

    Petersen, Natalia; Reimann, Frank; Bartfeld, Sina; Farin, Henner F.; Ringnalda, Femke C.; Vries, Robert G. J.; van den Brink, Stieneke; Clevers, Hans; Gribble, Fiona M.; de Koning, Eelco J. P.

    2015-01-01

    Upon a nutrient challenge, L-cells produce glucagon-like peptide 1 (GLP-1), a powerful stimulant of insulin release. Strategies to augment endogenous GLP-1 production include promoting L-cell differentiation and increasing L-cell number. Here we present a novel in vitro platform to generate functional L-cells from 3D cultures of mouse and human intestinal crypts. We show that short-chain fatty acids (SCFAs) selectively increase the number of L-cells resulting in an elevation of GLP-1 release. This is accompanied by up-regulation of transcription factors, associated with the endocrine lineage of intestinal stem cell development. Thus, our platform allows us to study and modulate the development of L-cells in mouse and human crypts as a potential basis for novel therapeutic strategies in type 2 diabetes. PMID:24130334

  12. Construction vs. development: polarizing models of human gestation.

    PubMed

    Stith, Richard

    2014-12-01

    This essay argues that the polarization of our public debate over embryo-destructive research may be due, to a large extent, not to different valuations of individual human life but to different conceptions of the process of gestation, with one group treating the process as a making or construction and the other treating it as a development. These two incompatible models of reproduction are shown to explain the various positions commonly encountered in this debate over the treatment of embryos, and to a significant degree those encountered in the debate over abortion as well. Finally, the historical, theoretical, and intuitive strengths of each model are examined. PMID:25638947

  13. Hierarchical radial and polar organisation of chromosomes in human sperm.

    PubMed

    Millan, N M; Lau, P; Hann, M; Ioannou, D; Hoffman, D; Barrionuevo, M; Maxson, W; Ory, S; Tempest, H G

    2012-10-01

    It is well established that chromosomes occupy distinct positions within the interphase nuclei, conferring a potential functional implication to the genome. In addition, alterations in the nuclear organisation patterns have been associated with disease phenotypes (e.g. cancer or laminopathies). The human sperm is the smallest cell in the body with specific DNA packaging and the mission of delivering the paternal genome to the oocyte during fertilisation. Studies of nuclear organisation in the sperm have postulated nonrandom chromosome position and have proposed a chromocentre model with the centromeres facing toward the interior and the telomeres toward the periphery of the nucleus. Most studies have assessed the nuclear address in the sperm longitudinally predominantly using centromeric or telomeric probes and to a lesser extent with whole chromosome paints. To date, studies investigating the radial organisation of human sperm have been limited. The purpose of this study was to utilise whole chromosome paints for six clinically important chromosomes (18, 19, 21, 22, X, and Y) to investigate nuclear address by assessing their radial and longitudinal nuclear organisation. A total of 10,800 sperm were analysed in nine normozoospermic individuals. The results have shown nonrandom chromosome position for all chromosomes using both methods of analysis. We present novel radial and polar analysis of chromosome territory localization within the human sperm nucleus. Specifically, a hierarchical organisation was observed radially with chromosomes organised from the interior to the periphery (chromosomes 22, 21, Y, X, 19, and 18 respectively) and polar organisation from the sperm head to tail (chromosomes X, 19, Y, 22, 21, and 18, respectively). We provide evidence of defined nuclear organisation in the human sperm and discuss the function of organisation and potential possible clinical ramifications of these results in regards to male infertility and early human development

  14. Human Carboxymethylenebutenolidase as a Bioactivating Hydrolase of Olmesartan Medoxomil in Liver and Intestine

    PubMed Central

    Ishizuka, Tomoko; Fujimori, Izumi; Kato, Mitsunori; Noji-Sakikawa, Chisa; Saito, Motoko; Yoshigae, Yasushi; Kubota, Kazuishi; Kurihara, Atsushi; Izumi, Takashi; Ikeda, Toshihiko; Okazaki, Osamu

    2010-01-01

    Olmesartan medoxomil (OM) is a prodrug type angiotensin II type 1 receptor antagonist widely prescribed as an antihypertensive agent. Herein, we describe the identification and characterization of the OM bioactivating enzyme that hydrolyzes the prodrug and converts to its pharmacologically active metabolite olmesartan in human liver and intestine. The protein was purified from human liver cytosol by successive column chromatography and was identified by mass spectrometry to be a carboxymethylenebutenolidase (CMBL) homolog. Human CMBL, whose endogenous function has still not been reported, is a human homolog of Pseudomonas dienelactone hydrolase involved in the bacterial halocatechol degradation pathway. The ubiquitous expression of human CMBL gene transcript in various tissues was observed. The recombinant human CMBL expressed in mammalian cells was clearly shown to activate OM. By comparing the enzyme kinetics and chemical inhibition properties between the recombinant protein and human tissue preparations, CMBL was demonstrated to be the primary OM bioactivating enzyme in the liver and intestine. The recombinant CMBL also converted other prodrugs having the same ester structure as OM, faropenem medoxomil and lenampicillin, to their active metabolites. CMBL exhibited a unique sensitivity to chemical inhibitors, thus, being distinguishable from other known esterases. Site-directed mutagenesis on the putative active residue Cys132 of the recombinant CMBL caused a drastic reduction of the OM-hydrolyzing activity. We report for the first time that CMBL serves as a key enzyme in the bioactivation of OM, hydrolyzing the ester bond of the prodrug type xenobiotics. PMID:20177059

  15. Human carboxymethylenebutenolidase as a bioactivating hydrolase of olmesartan medoxomil in liver and intestine.

    PubMed

    Ishizuka, Tomoko; Fujimori, Izumi; Kato, Mitsunori; Noji-Sakikawa, Chisa; Saito, Motoko; Yoshigae, Yasushi; Kubota, Kazuishi; Kurihara, Atsushi; Izumi, Takashi; Ikeda, Toshihiko; Okazaki, Osamu

    2010-04-16

    Olmesartan medoxomil (OM) is a prodrug type angiotensin II type 1 receptor antagonist widely prescribed as an antihypertensive agent. Herein, we describe the identification and characterization of the OM bioactivating enzyme that hydrolyzes the prodrug and converts to its pharmacologically active metabolite olmesartan in human liver and intestine. The protein was purified from human liver cytosol by successive column chromatography and was identified by mass spectrometry to be a carboxymethylenebutenolidase (CMBL) homolog. Human CMBL, whose endogenous function has still not been reported, is a human homolog of Pseudomonas dienelactone hydrolase involved in the bacterial halocatechol degradation pathway. The ubiquitous expression of human CMBL gene transcript in various tissues was observed. The recombinant human CMBL expressed in mammalian cells was clearly shown to activate OM. By comparing the enzyme kinetics and chemical inhibition properties between the recombinant protein and human tissue preparations, CMBL was demonstrated to be the primary OM bioactivating enzyme in the liver and intestine. The recombinant CMBL also converted other prodrugs having the same ester structure as OM, faropenem medoxomil and lenampicillin, to their active metabolites. CMBL exhibited a unique sensitivity to chemical inhibitors, thus, being distinguishable from other known esterases. Site-directed mutagenesis on the putative active residue Cys(132) of the recombinant CMBL caused a drastic reduction of the OM-hydrolyzing activity. We report for the first time that CMBL serves as a key enzyme in the bioactivation of OM, hydrolyzing the ester bond of the prodrug type xenobiotics. PMID:20177059

  16. [Human intestinal parasites in Subsaharan Africa. II. Sao Tomé and Principe].

    PubMed

    Pampiglione, S; Visconti, S; Pezzino, G

    1987-04-01

    In 1983 the authors carried out a survey in the Democratic Republic of São Tomé and Principe, analysing 1050 specimens of stools collected among the population from apparently healthy subjects chosen at random and in a number proportional to the distribution of the population in the regions of the country (about 1% of the population was examined). The examined subjects were divided into 3 age groups (0-3, 4-12, more than 12 years old), to have homogeneous groups in relation principally to modalities of life and nutritional patterns. There were 488 male subjects and 562 females. The survey was preceded by a sensitization of the people to the problem of intestinal parasites and by two preliminary surveys about the number of existing latrines and about people's believes and attitudes in relation to helmintiasis. The tests were made according to the modified Ritchie technique on fecal specimens preserved with 10% formol solution. The following results were found: a) Protozoa: Entamoeba coli, 43.0%; Iodamoeba buetschlii, 9.0%; Giardia intestinalis, 8.8%; Endolimax nana, 7.0%; E. histolytica, 5.5%; E. hartmanni, 2.5%; Chilomastix mesnili, 2.3%; Trichomonas intestinalis, 0.2%; Balantidium coli, 0.1%. b) Helminths: Trichuris trichiura, 87.7%; Ascaris lumbricoides, 64.3%; Ancylostomatidae, 40.5%; Strongyloides stercoralis, 6.8%; Hymenolepis diminuta, 0.3%; H. nana, 0.2%; Schistosoma haematobium, 0.2%. In 28.2% of the specimens (with more than 50% of subjects in some villages) eggs of Heterophyidae were found, very similar to Metagonimus yokogawai, but not yet identified by us, with the following characteristics: elliptical shape, average size 25 mu (22.2-27.7) X 18.5 mu (17-21), thick wall, operculum difficult to see, not sticking out from the outline but visible by focusing being in a different refractiveness, presence of a small polar knob, colour slightly brownish, asymmetric miracidium. Further investigations are necessary to identify the species of this trematode and

  17. Host-microbe interactions in the neonatal intestine: role of human milk oligosaccharides.

    PubMed

    Donovan, Sharon M; Wang, Mei; Li, Min; Friedberg, Iddo; Schwartz, Scott L; Chapkin, Robert S

    2012-05-01

    The infant intestinal microbiota is shaped by genetics and environment, including the route of delivery and early dietary intake. Data from germ-free rodents and piglets support a critical role for the microbiota in regulating gastrointestinal and immune development. Human milk oligosaccharides (HMO) both directly and indirectly influence intestinal development by regulating cell proliferation, acting as prebiotics for beneficial bacteria and modulating immune development. We have shown that the gut microbiota, the microbial metatranscriptome, and metabolome differ between porcine milk-fed and formula-fed (FF) piglets. Our goal is to define how early nutrition, specifically HMO, shapes host-microbe interactions in breast-fed (BF) and FF human infants. We an established noninvasive method that uses stool samples containing intact sloughed epithelial cells to quantify intestinal gene expression profiles in human infants. We hypothesized that a systems biology approach, combining i) HMO composition of the mother's milk with the infant's gut gene expression and fecal bacterial composition, ii) gene expression, and iii short-chain fatty acid profiles would identify important mechanistic pathways affecting intestinal development of BF and FF infants in the first few months of life. HMO composition was analyzed by HLPC Chip/time-of-flight MS and 3 HMO clusters were identified using principle component analysis. Initial findings indicated that both host epithelial cell mRNA expression and the microbial phylogenetic profiles provided strong feature sets that distinctly classified the BF and FF infants. Ongoing analyses are designed to integrate the host transcriptome, bacterial phylogenetic profiles, and functional metagenomic data using multivariate statistical analyses. PMID:22585924

  18. Host-Microbe Interactions in the Neonatal Intestine: Role of Human Milk Oligosaccharides123

    PubMed Central

    Donovan, Sharon M.; Wang, Mei; Li, Min; Friedberg, Iddo; Schwartz, Scott L.; Chapkin, Robert S.

    2012-01-01

    The infant intestinal microbiota is shaped by genetics and environment, including the route of delivery and early dietary intake. Data from germ-free rodents and piglets support a critical role for the microbiota in regulating gastrointestinal and immune development. Human milk oligosaccharides (HMO) both directly and indirectly influence intestinal development by regulating cell proliferation, acting as prebiotics for beneficial bacteria and modulating immune development. We have shown that the gut microbiota, the microbial metatranscriptome, and metabolome differ between porcine milk–fed and formula-fed (FF) piglets. Our goal is to define how early nutrition, specifically HMO, shapes host-microbe interactions in breast-fed (BF) and FF human infants. We an established noninvasive method that uses stool samples containing intact sloughed epithelial cells to quantify intestinal gene expression profiles in human infants. We hypothesized that a systems biology approach, combining i) HMO composition of the mother’s milk with the infant’s gut gene expression and fecal bacterial composition, ii) gene expression, and iii short-chain fatty acid profiles would identify important mechanistic pathways affecting intestinal development of BF and FF infants in the first few months of life. HMO composition was analyzed by HLPC Chip/time-of-flight MS and 3 HMO clusters were identified using principle component analysis. Initial findings indicated that both host epithelial cell mRNA expression and the microbial phylogenetic profiles provided strong feature sets that distinctly classified the BF and FF infants. Ongoing analyses are designed to integrate the host transcriptome, bacterial phylogenetic profiles, and functional metagenomic data using multivariate statistical analyses. PMID:22585924

  19. Supplementation transgenic cow's milk containing recombinant human lactoferrin enhances systematic and intestinal immune responses in piglets.

    PubMed

    Li, Qiuling; Hu, Wenping; Zhao, Jie; Wang, Jianwu; Dai, Yunping; Zhao, Yaofeng; Meng, Qingyong; Li, Ning

    2014-01-01

    Lactoferrin (LF) plays an important role in the body's immune system. However, the immunomodulatory effects of supplementation transgenic cow's milk containing recombinant human LF (rhLF) on the systemic and intestinal immune systems in infants remain unclear. Our laboratory has used genetic engineer to produce transgenic cow secreted rhLF. To assess the immune responses we took piglets as an animal model for infants. Eighteen piglets at 7 days of age were fed ordinary milk, 1:1 mix of ordinary and rhLF milk, or rhLF milk (LFM) for 30 days. The incidence of diarrhea in piglets in natural condition was observed. The protein abundances of immunoglobulin (Ig)G, IgA, IgM, IgE, histamine, interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-8, IL-10, IL-12 interferon, tumor necrosis factor in the plasma, spleen or intestine were measured by enzyme-linked immunosorbent assay. Intestinal structure was assessed by hematoxylin and eosin. The mRNA levels of immune and allergy-related genes were measured by quantitative reverse transcription-polymerase chain reaction. The results showed that LFM-fed significantly reduced incidence of diarrhea, enhanced humoral immunity, T helper (Th) 1, and Th2 cell responses, improved the structure of the intestinal mucosal and did not induce food allergy. LFM increased mRNA levels of toll-like receptor 2 and nuclear factor-κB p65 and decreased that of FCεRI β. In conclusion, rhLF-enriched formula could improve systematic and intestinal immune responses and did not elicit food allergies in neonatal piglets. PMID:24420858

  20. Carrageenan Induces Cell Cycle Arrest in Human Intestinal Epithelial Cells in Vitro1–3

    PubMed Central

    Bhattacharyya, Sumit; Borthakur, Alip; Dudeja, Pradeep K.; Tobacman, Joanne K.

    2016-01-01

    Multiple studies in animal models have shown that the commonly used food additive carrageenan (CGN) induces inflammation and intestinal neoplasia. We performed the first studies to determine the effects of CGN exposure on human intestinal epithelial cells (IEC) in tissue culture and tested the effect of very low concentrations (1–10 mg/L) of undegraded, high-molecular weight CGN. These concentrations of CGN are less than the anticipated exposure of the human colon to CGN from the average Western diet. In the human colonic epithelial cell line NCM460 and in primary human colonic epithelial cells that were exposed to CGN for 1–8 d, we found increased cell death, reduced cell proliferation, and cell cycle arrest compared with unexposed control cells. After 6–8 d of CGN exposure, the percentage of cells reentering G0–G1 significantly decreased and the percentages of cells in S and G2-M phases significantly increased. Increases in activated p53, p21, and p15 followed CGN exposure, consistent with CGN-induced cell cycle arrest. Additional data, including DNA ladder, poly ADP ribose polymerase Western blot, nuclear DNA staining, and activities of caspases 3 and 7, indicated no evidence of increased apoptosis following CGN exposure and were consistent with CGN-induced necrotic cell death. These data document for the first time, to our knowledge, marked adverse effects of low concentrations of CGN on survival of normal human IEC and suggest that CGN exposure may have a role in development of human intestinal pathology. PMID:18287351

  1. Inactivation of contraceptive steroid hormones by human intestinal clostridia.

    PubMed

    Bokkenheuser, V D; Winter, J; Cohen, B I; O'Rourke, S; Mosbach, E H

    1983-09-01

    Steroid hormones reduced in ring-A are devoid of hormonal activity. In metabolic experiments we found that human fecal flora reduced the delta 4-3-keto structure of natural progestins to 3 alpha-hydroxy, 5 beta-steroid metabolites (3 alpha,5 beta) and of synthetic progestins to a mixture of 3 alpha,5 beta and 3 beta,5 beta compounds. 3 alpha,5 beta-Reductase was synthesized by Clostridium paraputrificum and had a strong affinity for natural progestins such as progesterone. 3 beta,5 beta-Reductase was synthesized by Clostridium innoculin and had a stronger affinity for synthetic progestins. A third enzyme, 3 beta,5 alpha-reductase, was synthesized by St. Luke's strain 209 (Clostridium species "J-1") but was only observed when pure cultures were used. Ring-A reduction of synthetic progestins was 3 to 10 times slower than that of natural progestins, thus explaining the pharmacological superiority of synthetic progestins over naturally occurring analogs. PMID:6630441

  2. Permeability of plumbagin across human intestinal cell in vitro.

    PubMed

    Sumsakul, Wiriyaporn; Na-Bangchang, Kesara

    2016-03-01

    Plumbagin is the active compound isolated from plants used in traditional medicine for treatment of various diseases such as activities malaria, leishmaniasis, viral infections and cancers. The aim of the study was to investigate the permeability of plumbagin across Caco-2 (human epithelial colorectal adenocarcinoma) cell monolayer and its effects on the expression and function of P-glycoprotein. The integrity of Caco-2 cell monolayer was evaluated by measuring trans-epithelial electrical resistance and permeation (Papp) of Lucifer yellow across the cell monolayer. The effect of plumbagin on P-glycoprotein was detected by measuring its interference with the transport of the P-glycoprotein substrate (R123) and the effect on MDR-1 mRNA expression was detected by RT-PCR. The Papp of plumbagin (2-8 µM) for the apical to basolateral and basolateral to apical directions were 10.29-15.96 × 10(-6) and 7.40-9.02 × 10(-6) cm/s, respectively, with the efflux ratios of 0.57-0.73. Plumbagin is not either a substrate or inhibitor of P-glycoprotein. It did not interfere with the P-glycoprotein-mediated R123 transport across Caco-2 cell monolayer, as well as the function of P-glycoprotein and the expression of MDR-1 mRNA. Results suggest moderate permeability of plumbagin across the Caco-2 cell monolayer in both directions. The transport mechanism is likely to be a passive transport. PMID:26620575

  3. Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation.

    PubMed

    Liu, Yuying; Fatheree, Nicole Y; Mangalat, Nisha; Rhoads, Jon Marc

    2010-11-01

    Lactobacillus reuteri (L. reuteri) is a probiotic that inhibits the severity of enteric infections and modulates the immune system. Human-derived L. reuteri strains DSM17938, ATCC PTA4659, ATCC PTA 5289, and ATCC PTA 6475 have demonstrated strain-specific immunomodulation in cultured monocytoid cells, but information about how these strains affect inflammation in intestinal epithelium is limited. We determined the effects of the four different L. reuteri strains on lipopolysaccharide (LPS)-induced inflammation in small intestinal epithelial cells and in the ileum of newborn rats. IPEC-J2 cells (derived from the jejunal epithelium of a neonatal piglet) and IEC-6 cells (derived from the rat crypt) were treated with L. reuteri. Newborn rat pups were gavaged cow milk formula supplemented with L. reuteri strains in the presence or absence of LPS. Protein and mRNA levels of cytokines and histological changes were measured. We demonstrate that even though one L. reuteri strain (DSM 17938) did not inhibit LPS-induced IL-8 production in cultured intestinal cells, all strains significantly reduced intestinal mucosal levels of KC/GRO (∼IL-8) and IFN-γ when newborn rat pups were fed formula containing LPS ± L. reuteri. Intestinal histological damage produced by LPS plus cow milk formula was also significantly reduced by all four strains. Cow milk formula feeding (without LPS) produced mild gut inflammation, evidenced by elevated mucosal IFN-γ and IL-13 levels, a process that could be suppressed by strain 17938. Other cytokines and chemokines were variably affected by the different strains, and there was no toxic effect of L. reuteri on intestinal cells or mucosa. In conclusion, L. reuteri strains differentially modulate LPS-induced inflammation. Probiotic interactions with both epithelial and nonepithelial cells in vivo must be instrumental in modulating intrinsic anti-inflammatory effects in the intestine. We suggest that the terms anti- and proinflammatory be used only

  4. The mechanisms of sodium absorption in the human small intestine

    PubMed Central

    Fordtran, John S.; Rector, Floyd C.; Carter, Norman W.

    1968-01-01

    The present studies were designed to characterize sodium transport in the jejunum and ileum of humans with respect to the effects of water flow, sodium concentration, addition of glucose and galactose, and variations in aniomic composition of luminal fluid. In the ileum, sodium absorption occurred against very steep electrochemical gradients (110 mEq/liter, 5-15 mv), was unaffected by the rate or direction of water flow, and was not stimulated by addition of glucose, galactose, or bicarbonate. These findings led to the conclusion that there is an efficiently active sodium transport across a membrane that is relatively impermeable to sodium. In contrast, jejunal sodium (chloride) absorption can take place against only the modest concentration gradient of 13 mEq/liter, was dramatically influenced by water movement, and was stimulated by addition of glucose, galactose, and bicarbonate. The stimulatory effect of glucose and galactose was evident even when net water movement was inhibited to zero by mannitol. These observations led to the conclusion that a small fraction of jejunal sodium absorption was mediated by active transport coupled either to active absorption of bicarbonate or active secretion of hydrogen ions. The major part of sodium absorption, i.e. sodium chloride absorption, appeared to be mediated by a process of bulk flow of solution along osmotic pressure gradients. The stimulatory effect of glucose and galactose, even at zero water flow, was explained by a model in which the active transport of monosaccharide generates a local osmotic force for the absorption of solution (NaCl and water) from the jejunal lumen, which, in the presence of mannitol, is counterbalanced by a reverse flow of pure solvent (H2O) through a parallel set of channels which are impermeable to sodium. Support for the model was obtained by the demonstration that glucose and bicarbonate stimulated the absorption of the nonactively transported solute urea even when net water flow was

  5. Anthocyanin Absorption and Metabolism by Human Intestinal Caco-2 Cells—A Review

    PubMed Central

    Kamiloglu, Senem; Capanoglu, Esra; Grootaert, Charlotte; Van Camp, John

    2015-01-01

    Anthocyanins from different plant sources have been shown to possess health beneficial effects against a number of chronic diseases. To obtain any influence in a specific tissue or organ, these bioactive compounds must be bioavailable, i.e., effectively absorbed from the gut into the circulation and transferred to the appropriate location within the body while still maintaining their bioactivity. One of the key factors affecting the bioavailability of anthocyanins is their transport through the gut epithelium. The Caco-2 cell line, a human intestinal epithelial cell model derived from a colon carcinoma, has been proven to be a good alternative to animal studies for predicting intestinal absorption of anthocyanins. Studies investigating anthocyanin absorption by Caco-2 cells report very low absorption of these compounds. However, the bioavailability of anthocyanins may be underestimated since the metabolites formed in the course of digestion could be responsible for the health benefits associated with anthocyanins. In this review, we critically discuss recent findings reported on the anthocyanin absorption and metabolism by human intestinal Caco-2 cells. PMID:26370977

  6. The physiological relevance of the intestinal microbiota--contributions to human health.

    PubMed

    Tappenden, Kelly A; Deutsch, Andrew S

    2007-12-01

    The intestinal commensal microbiota is a dynamic mixture of essential microbes that develops under key influences of genetics, environment, diet and disease. Population profiles differ along the gastrointestinal tract, from the lumen to the mucosa, and among individuals. The total microbiota population outnumbers the cells in the human body and accounts for 35-50% of the volume of the colonic content. Key physiological functions of the commensal microbiota include protective effects exerted directly by specific bacterial species, control of epithelial cell proliferation and differentiation, production of essential mucosal nutrients, such as short-chain fatty acids and amino acids, prevention of overgrowth of pathogenic organisms, and stimulation of intestinal immunity. Oral probiotics are living microorganisms that upon ingestion in specific numbers exert health benefits beyond those of inherent basic nutrition. Emerging evidence indicates prophylactic and therapeutic utility for probiotic consumption in gastrointestinal health and disease. PMID:18187433

  7. Interleukin 10 Receptor Signaling: Master Regulator of Intestinal Mucosal Homeostasis in Mice and Humans

    PubMed Central

    Shouval, Dror S.; Ouahed, Jodie; Biswas, Amlan; Goettel, Jeremy A.; Horwitz, Bruce H.; Klein, Christoph; Muise, Aleixo M.; Snapper, Scott B.

    2016-01-01

    Interleukin 10 (IL10) is a key anti-inflammatory cytokine that can inhibit proinflammatory responses of both innate and adaptive immune cells. An association between IL10 and intestinal mucosal homeostasis became clear with the discovery that IL10 and IL10 receptor (IL10R)-deficient mice develop spontaneous intestinal inflammation. Similarly, patients with deleterious mutations in IL10, IL10RA, or IL10RB present with severe enterocolitis within the first months of life. Here, we review recent findings on how IL10- and IL10R-dependent signaling modulates innate and adaptive immune responses in the murine gastrointestinal tract, with implications of their role in the prevention of inflammatory bowel disease (IBD). In addition, we discuss the impact of IL10 and IL10R signaling defects in humans and their relationship to very early-onset IBD (VEO-IBD). PMID:24507158

  8. [Effects of trimebutine on motility of the small intestine in humans].

    PubMed

    Couturier, D; Chaussade, S; Grandjouan, S

    1989-02-15

    Trimebutine maleate induces a specific motor response in the human proximal small bowel: except for the few minutes lapse following the occurrence of a spontaneous phase 3, an intravenous injection of 100 mg trimebutine systematically produces, in fed or fasted state, a systemic propagated activity analogous to the spontaneous phase 3 of the migrating motor complex. In lower doses, this effect is not observed. The intraduodenal administration of a high dose (600 mg) induces a similar response to that observed after intravenous injection. Trimebutine possibly acts as a stimulator of peripheral receptors of the enkephalinergic nervous system. Theoretically, these results may result in recommending the therapeutic use of trimebutine in intestinal motility disorders where disappearance or depletion of phase 3 are observed. However, information is still lacking about the relationship between therapeutic activity and the effects on intestinal motility in pathological states. PMID:2537973

  9. Vasoactive Intestinal Peptide Inhibits Human Small-Cell Lung Cancer Proliferation in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Maruno, Kaname; Absood, Afaf; Said, Sami I.

    1998-11-01

    Small-cell lung carcinoma (SCLC) is an aggressive, rapidly growing and metastasizing, and highly fatal neoplasm. We report that vasoactive intestinal peptide inhibits the proliferation of SCLC cells in culture and dramatically suppresses the growth of SCLC tumor-cell implants in athymic nude mice. In both cases, the inhibition was mediated apparently by a cAMP-dependent mechanism, because the inhibition was enhanced by the adenylate cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine in proportion to increases in intracellular cAMP levels, and the inhibition was abolished by selective inhibition of cAMP-dependent protein kinase. If confirmed in clinical trials, this antiproliferative action of vasoactive intestinal peptide may offer a new and promising means of suppressing SCLC in human subjects, without the toxic side effects of chemotherapeutic agents.

  10. Interaction of macrolide antibiotics with intestinally expressed human and rat organic anion-transporting polypeptides.

    PubMed

    Lan, Tian; Rao, Anuradha; Haywood, Jamie; Davis, Charles B; Han, Chao; Garver, Eric; Dawson, Paul A

    2009-12-01

    The macrolide antibiotics azithromycin and clarithromycin are large molecular weight compounds that exhibit moderate to excellent oral bioavailability in preclinical species and humans. Previous concomitant dosing studies in rats using rifamycin SV, a general organic anion-transporting polypeptide (OATP) inhibitor, suggested that the high oral absorption of azithromycin and clarithromycin may be caused by facilitative uptake by intestinal Oatps. In this study, we used OATP/Oatp-expressing cells to investigate the interaction of macrolides with rat Oatp1a5, human OATP1A2, and human/rat OATP2B1/Oatp2b1. These experiments showed that azithromycin and clarithromycin were potent inhibitors of rat Oatp1a5-mediated taurocholate uptake with apparent inhibitor constant (K(i)) values of 3.3 and 2.4 microM, respectively. The macrolides functioned as noncompetitive inhibitors but were not transport substrates for rat Oatp1a5, as assessed by direct uptake measurements of radiolabeled azithromycin and clarithromycin. cis-Inhibition and direct uptake studies further showed that azithromycin and clarithromycin were only very weak inhibitors and not substrates for human OATP1A2 and human/rat OATP2B1/Oatp2b1. In summary, these results indicate that the macrolides azithromycin and clarithromycin potently inhibit rat Oatp1a5 but do not significantly interact with OATP1A2 and OATP2B1/Oatp2b1. These intestinally expressed OATP/Oatp(s) are not responsible for the postulated facilitative uptake of azithromycin and clarithromycin, and alternative facilitative pathways must exist for their intestinal absorption. PMID:19741038

  11. Commensal Streptococcus salivarius Modulates PPARγ Transcriptional Activity in Human Intestinal Epithelial Cells

    PubMed Central

    Couvigny, Benoît; de Wouters, Tomas; Kaci, Ghalia; Jacouton, Elsa; Delorme, Christine; Doré, Joël; Renault, Pierre; Blottière, Hervé M.

    2015-01-01

    The impact of commensal bacteria in eukaryotic transcriptional regulation has increasingly been demonstrated over the last decades. A multitude of studies have shown direct effects of commensal bacteria from local transcriptional activity to systemic impact. The commensal bacterium Streptococcus salivarius is one of the early bacteria colonizing the oral and gut mucosal surfaces. It has been shown to down-regulate nuclear transcription factor (NF-кB) in human intestinal cells, a central regulator of the host mucosal immune system response to the microbiota. In order to evaluate its impact on a further important transcription factor shown to link metabolism and inflammation in the intestine, namely PPARγ (peroxisome proliferator-activated receptor), we used human intestinal epithelial cell-lines engineered to monitor PPARγ transcriptional activity in response to a wide range of S. salivarius strains. We demonstrated that different strains from this bacterial group share the property to inhibit PPARγ activation independently of the ligand used. First attempts to identify the nature of the active compounds showed that it is a low-molecular-weight, DNase-, proteases- and heat-resistant metabolite secreted by S. salivarius strains. Among PPARγ-targeted metabolic genes, I-FABP and Angptl4 expression levels were dramatically reduced in intestinal epithelial cells exposed to S. salivarius supernatant. Both gene products modulate lipid accumulation in cells and down-regulating their expression might consequently affect host health. Our study shows that species belonging to the salivarius group of streptococci impact both host inflammatory and metabolic regulation suggesting a possible role in the host homeostasis and health. PMID:25946041

  12. Commensal Streptococcus salivarius Modulates PPARγ Transcriptional Activity in Human Intestinal Epithelial Cells.

    PubMed

    Couvigny, Benoît; de Wouters, Tomas; Kaci, Ghalia; Jacouton, Elsa; Delorme, Christine; Doré, Joël; Renault, Pierre; Blottière, Hervé M; Guédon, Eric; Lapaque, Nicolas

    2015-01-01

    The impact of commensal bacteria in eukaryotic transcriptional regulation has increasingly been demonstrated over the last decades. A multitude of studies have shown direct effects of commensal bacteria from local transcriptional activity to systemic impact. The commensal bacterium Streptococcus salivarius is one of the early bacteria colonizing the oral and gut mucosal surfaces. It has been shown to down-regulate nuclear transcription factor (NF-кB) in human intestinal cells, a central regulator of the host mucosal immune system response to the microbiota. In order to evaluate its impact on a further important transcription factor shown to link metabolism and inflammation in the intestine, namely PPARγ (peroxisome proliferator-activated receptor), we used human intestinal epithelial cell-lines engineered to monitor PPARγ transcriptional activity in response to a wide range of S. salivarius strains. We demonstrated that different strains from this bacterial group share the property to inhibit PPARγ activation independently of the ligand used. First attempts to identify the nature of the active compounds showed that it is a low-molecular-weight, DNase-, proteases- and heat-resistant metabolite secreted by S. salivarius strains. Among PPARγ-targeted metabolic genes, I-FABP and Angptl4 expression levels were dramatically reduced in intestinal epithelial cells exposed to S. salivarius supernatant. Both gene products modulate lipid accumulation in cells and down-regulating their expression might consequently affect host health. Our study shows that species belonging to the salivarius group of streptococci impact both host inflammatory and metabolic regulation suggesting a possible role in the host homeostasis and health. PMID:25946041

  13. The Modulatory Effect of Anthocyanins from Purple Sweet Potato on Human Intestinal Microbiota in Vitro.

    PubMed

    Zhang, Xin; Yang, Yang; Wu, Zufang; Weng, Peifang

    2016-03-30

    In order to investigate the modulatory effect of purple sweet potato anthocyanins (PSPAs) on human intestinal microbiota, PSPAs were prepared by column chromatography and their influence on intestinal microbiota was analyzed by monitoring the bacterial populations and analyzing short-chain fatty acid (SCFA) concentrations at different time points. The numbers (log10 cell/mL) of Bifidobacterium and Lactobacillus/Enterococcus spp., Bacteroides-Prevotella, Clostridium histolyticum, and total bacteria after 24 h of culture in anaerobic fermentation broth containing PSPAs were 8.44 ± 0.02, 8.30 ± 0.01, 7.80 ± 0.03, 7.60 ± 0.03, and 9.00 ± 0.02, respectively, compared with 8.21 ± 0.03, 8.12 ± 0.02, 7.95 ± 0.02, 7.77 ± 0.02, and 9.01 ± 0.03, respectively, in the controls. The results showed that PSPAs induced the proliferation of Bifidobacterium and Lactobacillus/Enterococcus spp., inhibited the growth of Bacteroides-Prevotella and Clostridium histolyticum, and did not affect the total bacteria number. Total SCFA concentrations in the cultures with PSPAs were significantly higher than in the controls (P < 0.05). Moreover, during the fermentation, the PSPAs were partially fragmented to phenolic acids, which may exert a better effect on intestinal microecology, suggesting that PSPAs may have prebiotic-like activity by generating SCFAs and modulating the intestinal microbiota, contributing to improvements in human health. PMID:26975278

  14. Intestinal Commitment and Maturation of Human Pluripotent Stem Cells Is Independent of Exogenous FGF4 and R-spondin1

    PubMed Central

    Tamminen, Kaisa; Balboa, Diego; Toivonen, Sanna; Pakarinen, Mikko P.; Wiener, Zoltan; Alitalo, Kari; Otonkoski, Timo

    2015-01-01

    Wnt/beta-catenin signaling plays a central role in guiding the differentiation of the posterior parts of the primitive gut tube into intestinal structures in vivo and some studies suggest that FGF4 is another crucial factor for intestinal development. The aim of this study was to define the effects of Wnt and FGF4 on intestinal commitment in vitro by establishing conditions for differentiation of human pluripotent stem cells (hPSC) into posterior endoderm (hindgut) and further to self-renewing intestinal-like organoids. The most prominent induction of the well-established intestinal marker gene CDX2 was achieved when hPSC-derived definitive endoderm cells were treated with Wnt agonist molecule CHIR99021 during differentiation to hindgut. FGF4 was found to be dispensable during intestinal commitment, but it had an early role in repressing development towards the hepatic lineage. When hindgut stage cells were further cultured in 3D, they formed self-renewing organoid structures containing all major intestinal cell types even without exogenous R-spondin1 (RSPO1), a crucial factor for the culture of epithelial organoids derived from adult intestine. This may be explained by the presence of a mesenchymal compartment in the hPSC-derived organoids. Addition of WNT3A increased the expression of the Paneth cell marker Lysozyme in hPSC-derived organoid cultures, whereas FGF4 inhibited both the formation and maturation of intestinal-like organoids. Similar hindgut and organoid cultures were established from human induced pluripotent stem cells, implying that this approach can be used to create patient-specific intestinal tissue models for disease modeling in vitro. PMID:26230325

  15. Entry of genital Chlamydia trachomatis into polarized human epithelial cells.

    PubMed Central

    Wyrick, P B; Choong, J; Davis, C H; Knight, S T; Royal, M O; Maslow, A S; Bagnell, C R

    1989-01-01

    To study the initial invasion process(es) of genital chlamydiae, a model system consisting of hormonally maintained primary cultures of human endometrial gland epithelial cells (HEGEC), grown in a polarized orientation on collagen-coated filters, was utilized. After Chlamydia trachomatis inoculation of the apical surface of polarized HEGEC, chlamydiae were readily visualized, by transmission electron microscopy, in coated pits and coated vesicles. This was true for HEGEC maintained in physiologic concentrations of estrogen (proliferative phase) and of estrogen plus progesterone (secretory phase), despite the finding that association of chlamydiae with secretory-phase HEGEC is significantly reduced (P = 0.025; A.S. Maslow, C.H. Davis, J. Choong, and P.B. Wyrick, Am. J. Obstet. Gynecol. 159:1006-1014, 1988). In contrast, chlamydiae were rarely observed in the clathrin-associated structures if the HEGEC were cultured on plastic surfaces. The same pattern of coated pit versus noncoated pit entry was reproducible in HeLa cells. The quantity of coated pits associated with isolated membrane sheets derived from HeLa cells, grown on poly-L-lysine-coated cover slips in medium containing the female hormones, was not significantly different as monitored by radiolabeling studies and by laser scanning microscopy. These data suggest that culture conditions which mimic in vivo cellular organization may enhance entry into coated pits for some obligate intracellular pathogens. Images PMID:2744852

  16. Mast cell expression of the serotonin1A receptor in guinea pig and human intestine.

    PubMed

    Wang, Guo-Du; Wang, Xi-Yu; Zou, Fei; Qu, Meihua; Liu, Sumei; Fei, Guijun; Xia, Yun; Needleman, Bradley J; Mikami, Dean J; Wood, Jackie D

    2013-05-15

    Serotonin [5-hydroxytryptamine (5-HT)] is released from enterochromaffin cells in the mucosa of the small intestine. We tested a hypothesis that elevation of 5-HT in the environment of enteric mast cells might degranulate the mast cells and release mediators that become paracrine signals to the enteric nervous system, spinal afferents, and secretory glands. Western blotting, immunofluorescence, ELISA, and pharmacological analysis were used to study expression of 5-HT receptors by mast cells in the small intestine and action of 5-HT to degranulate the mast cells and release histamine in guinea pig small intestine and segments of human jejunum discarded during Roux-en-Y gastric bypass surgeries. Mast cells in human and guinea pig preparations expressed the 5-HT1A receptor. ELISA detected spontaneous release of histamine in guinea pig and human preparations. The selective 5-HT1A receptor agonist 8-hydroxy-PIPAT evoked release of histamine. A selective 5-HT1A receptor antagonist, WAY-100135, suppressed stimulation of histamine release by 5-HT or 8-hydroxy-PIPAT. Mast cell-stabilizing drugs, doxantrazole and cromolyn sodium, suppressed the release of histamine evoked by 5-HT or 8-hydroxy-PIPAT in guinea pig and human preparations. Our results support the hypothesis that serotonergic degranulation of enteric mast cells and release of preformed mediators, including histamine, are mediated by the 5-HT1A serotonergic receptor. Association of 5-HT with the pathophysiology of functional gastrointestinal disorders (e.g., irritable bowel syndrome) underlies a question of whether selective 5-HT1A receptor antagonists might have therapeutic application in disorders of this nature. PMID:23518679

  17. Mast cell expression of the serotonin1A receptor in guinea pig and human intestine

    PubMed Central

    Wang, Guo-Du; Wang, Xi-Yu; Zou, Fei; Qu, Meihua; Liu, Sumei; Fei, Guijun; Xia, Yun; Needleman, Bradley J.; Mikami, Dean J.

    2013-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] is released from enterochromaffin cells in the mucosa of the small intestine. We tested a hypothesis that elevation of 5-HT in the environment of enteric mast cells might degranulate the mast cells and release mediators that become paracrine signals to the enteric nervous system, spinal afferents, and secretory glands. Western blotting, immunofluorescence, ELISA, and pharmacological analysis were used to study expression of 5-HT receptors by mast cells in the small intestine and action of 5-HT to degranulate the mast cells and release histamine in guinea pig small intestine and segments of human jejunum discarded during Roux-en-Y gastric bypass surgeries. Mast cells in human and guinea pig preparations expressed the 5-HT1A receptor. ELISA detected spontaneous release of histamine in guinea pig and human preparations. The selective 5-HT1A receptor agonist 8-hydroxy-PIPAT evoked release of histamine. A selective 5-HT1A receptor antagonist, WAY-100135, suppressed stimulation of histamine release by 5-HT or 8-hydroxy-PIPAT. Mast cell-stabilizing drugs, doxantrazole and cromolyn sodium, suppressed the release of histamine evoked by 5-HT or 8-hydroxy-PIPAT in guinea pig and human preparations. Our results support the hypothesis that serotonergic degranulation of enteric mast cells and release of preformed mediators, including histamine, are mediated by the 5-HT1A serotonergic receptor. Association of 5-HT with the pathophysiology of functional gastrointestinal disorders (e.g., irritable bowel syndrome) underlies a question of whether selective 5-HT1A receptor antagonists might have therapeutic application in disorders of this nature. PMID:23518679

  18. Meta-analysis of the turnover of intestinal epithelia in preclinical animal species and humans.

    PubMed

    Darwich, Adam S; Aslam, Umair; Ashcroft, Darren M; Rostami-Hodjegan, Amin

    2014-12-01

    Due to the rapid turnover of the small intestinal epithelia, the rate at which enterocyte renewal occurs plays an important role in determining the level of drug-metabolizing enzymes in the gut wall. Current physiologically based pharmacokinetic (PBPK) models consider enzyme and enterocyte recovery as a lumped first-order rate. An assessment of enterocyte turnover would enable enzyme and enterocyte renewal to be modeled more mechanistically. A literature review together with statistical analysis was employed to establish enterocyte turnover in human and preclinical species. A total of 85 studies was identified reporting enterocyte turnover in 1602 subjects in six species. In mice, the geometric weighted combined mean (WX) enterocyte turnover was 2.81 ± 1.14 days (n = 169). In rats, the weighted arithmetic mean enterocyte turnover was determined to be 2.37 days (n = 501). Humans exhibited a geometric WX enterocyte turnover of 3.48 ± 1.55 days for the gastrointestinal epithelia (n = 265), displaying comparable turnover to that of cytochrome P450 enzymes in vitro (0.96-4.33 days). Statistical analysis indicated humans to display longer enterocyte turnover as compared with preclinical species. Extracted data were too sparse to support regional differences in small intestinal enterocyte turnover in humans despite being indicated in mice. The utilization of enterocyte turnover data, together with in vitro enzyme turnover in PBPK modeling, may improve the predictions of metabolic drug-drug interactions dependent on enzyme turnover (e.g., mechanism-based inhibition and enzyme induction) as well as absorption of nanoparticle delivery systems and intestinal metabolism in special populations exhibiting altered enterocyte turnover. PMID:25233858

  19. Human intestinal parasites in non-biting synanthropic flies in Ogun State, Nigeria.

    PubMed

    Adenusi, Adedotun Adesegun; Adewoga, Thomas O Sunday

    2013-01-01

    Filth-feeding and breeding, non-biting synanthropic flies have been incriminated in the dissemination of human enteropathogens in the environment. This study determined the species of non-biting synanthropic flies associated with four filthy sites in Ilishan, Ogun State, southwest Nigeria, and assessed their potentials for mechanical transmission of human intestinal parasites. 7190 flies identified as Musca domestica (33.94%), Chrysomya megacephala (26.01%), Musca sorbens (23.23%), Lucilia cuprina (8.76%), Calliphora vicina (4.59%), Sarcophaga sp. (2.78%) and Fannia scalaris (0.70%) were examined for human intestinal parasites by the formol-ether concentration and modified Ziehl-Neelsen techniques. Eggs of the following parasites: Ascaris lumbricoides (34.08%), Trichuris trichiura (25.87%), hookworms (20.45%), Taenia sp. (2.36%), Hymenolepis nana (1.11%), Enterobius vermicularis (0.56%), Strongyloides stercoralis (larvae; 3.89%) and cysts of Entamoeba histolytica/dispar (27.26%), Entamoeba coli (22.67%), Giardia lamblia (3.34%) and Cryptosporidium sp. (1.81%) were isolated from the body surfaces and or gut contents of 75.24% of 719 pooled fly batches. The helminths A. lumbricoides and T. trichiura and the protozoans, E. histolytica/dispar and E. coli were the dominant parasites detected, both on body surfaces and in the gut contents of flies. C. megacephala was the highest carrier of parasites (diversity and number). More parasites were isolated from the gut than from body surfaces (P < 0.05). Flies from soiled ground often carried more parasites than those from abattoir, garbage or open-air market. Synanthropic fly species identified in this study can be of potential epidemiological importance as mechanical transmitters of human intestinal parasites acquired naturally from filth and carried on their body surfaces and or in the gut, because of their vagility and feeding mechanisms. PMID:23290716

  20. Multispectral tissue characterization for intestinal anastomosis optimization.

    PubMed

    Cha, Jaepyeong; Shademan, Azad; Le, Hanh N D; Decker, Ryan; Kim, Peter C W; Kang, Jin U; Krieger, Axel

    2015-10-01

    Intestinal anastomosis is a surgical procedure that restores bowel continuity after surgical resection to treat intestinal malignancy, inflammation, or obstruction. Despite the routine nature of intestinal anastomosis procedures, the rate of complications is high. Standard visual inspection cannot distinguish the tissue subsurface and small changes in spectral characteristics of the tissue, so existing tissue anastomosis techniques that rely on human vision to guide suturing could lead to problems such as bleeding and leakage from suturing sites. We present a proof-of-concept study using a portable multispectral imaging (MSI) platform for tissue characterization and preoperative surgical planning in intestinal anastomosis. The platform is composed of a fiber ring light-guided MSI system coupled with polarizers and image analysis software. The system is tested on ex vivo porcine intestine tissue, and we demonstrate the feasibility of identifying optimal regions for suture placement. PMID:26440616

  1. Multispectral tissue characterization for intestinal anastomosis optimization

    NASA Astrophysics Data System (ADS)

    Cha, Jaepyeong; Shademan, Azad; Le, Hanh N. D.; Decker, Ryan; Kim, Peter C. W.; Kang, Jin U.; Krieger, Axel

    2015-10-01

    Intestinal anastomosis is a surgical procedure that restores bowel continuity after surgical resection to treat intestinal malignancy, inflammation, or obstruction. Despite the routine nature of intestinal anastomosis procedures, the rate of complications is high. Standard visual inspection cannot distinguish the tissue subsurface and small changes in spectral characteristics of the tissue, so existing tissue anastomosis techniques that rely on human vision to guide suturing could lead to problems such as bleeding and leakage from suturing sites. We present a proof-of-concept study using a portable multispectral imaging (MSI) platform for tissue characterization and preoperative surgical planning in intestinal anastomosis. The platform is composed of a fiber ring light-guided MSI system coupled with polarizers and image analysis software. The system is tested on ex vivo porcine intestine tissue, and we demonstrate the feasibility of identifying optimal regions for suture placement.

  2. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency

    PubMed Central

    Jackson, Robert S.; Creemers, John W.M.; Farooqi, I. Sadaf; Raffin-Sanson, Marie-Laure; Varro, Andrea; Dockray, Graham J.; Holst, Jens J.; Brubaker, Patricia L.; Corvol, Pierre; Polonsky, Kenneth S.; Ostrega, Diane; Becker, Kenneth L.; Bertagna, Xavier; Hutton, John C.; White, Anne; Dattani, Mehul T.; Hussain, Khalid; Middleton, Stephen J.; Nicole, Thomasina M.; Milla, Peter J.; Lindley, Keith J.; O’Rahilly, Stephen

    2003-01-01

    We have previously described the only reported case of human proprotein convertase 1 (PC1) deficiency, in a female (Subject A) with obesity, hypogonadism, hypoadrenalism, and reactive hypoglycemia. We now report the second case of human PC1 deficiency (Subject B), also due to compound heterozygosity for novel missense and nonsense mutations. While both subjects shared the phenotypes of obesity, hypoadrenalism, reactive hypoglycemia, and elevated circulating levels of certain prohormones, the clinical presentation of Subject B was dominated by severe refractory neonatal diarrhea, malabsorptive in type. Subsequent investigation of Subject A revealed marked small-intestinal absorptive dysfunction, which was not previously clinically suspected. We postulate that PC1, presumably in the enteroendocrine cells, is essential for the normal absorptive function of the human small intestine. The differences in the nature and severity of presentation between the two cases cannot readily be explained on the basis of allelic heterogeneity, as the nonsense and missense mutations from both subjects had comparably severe effects on the catalytic activity of PC1. Despite Subject A’s negligible PC1 activity, some mature ACTH and glucagon-like peptide 17-36amide were detectable in her plasma, suggesting that the production of these hormones, at least in humans, does not have an absolute dependence on PC1. The presence of severe obesity and the absence of growth retardation in both subjects contrast markedly with the phenotype of mice lacking PC1 and suggest that the precise physiological repertoire of this enzyme may vary between mammalian species. PMID:14617756

  3. Subtractive transcriptomics : establishing polarity drives human endothelial morphogenesis

    SciTech Connect

    Glesne, D. A.; Zhang, W.; Mandava, S.; Ursos, L.; Buell, M. E.; Makowski, L.; Rodi, D. J.; Biosciences Division

    2006-04-15

    Although investigations of mature normal and tumor-derived capillaries have resulted in characterization of these structures at the phenotypic level, less is known regarding the initial molecular cues for cellular assembly of endothelial cells into human capillaries. Here, we employ a novel combination of microenvironmental manipulation and microarray data filtration over narrowly delineated temporal data series to identify the morphogenesis component apart from the proliferation component, as pooled human microvascular-derived endothelial cells are induced to form capillary-like structures in vitro in a murine tumor-derived matrix. The 217 morphogenesis-specific genes identified using this subtractive transcriptomics approach are mostly independent of the angiogenic proteins currently used as therapeutic targets for aberrant angiogenesis. Quantitative real-time PCR was used to validate 20% of these transcripts. Immunofluorescent analysis of proliferating and tube-forming cells validates at the protein level the morphogenesis-specific expression pattern of 16 of the 217 gene products identified. The transcripts that are selectively up-regulated in tube-forming endothelial cells reveal a temporal expression pattern of genes primarily associated with intracellular trafficking, guided migration, cytoskeletal reorganization, cellular adhesion, and proliferation inhibition. These data show that a sequential upregulation of genes that establish and maintain polarity occurs during migration and morphogenesis of in vitro human endothelial cells undergoing tubulogenesis; some of which may well be effective as novel antiangiogenic drug targets.

  4. Human Milk Oligosaccharides in Premature Infants: Absorption, Excretion and Influence on the Intestinal Microbiota

    PubMed Central

    Underwood, Mark A.; Gaerlan, Stephanie; De Leoz, M. Lorna A.; Dimapasoc, Lauren; Kalanetra, Karen M.; Lemay, Danielle G.; German, J. Bruce; Mills, David A.; Lebrilla, Carlito B.

    2015-01-01

    Background Human milk oligosaccharides (HMOs) shape the intestinal microbiota in term infants. In premature infants, alterations in the intestinal microbiota (dysbiosis) are associated with risk of necrotizing enterocolitis and sepsis and the influence of HMOs on the microbiota is unclear. Methods Milk, urine, and stool specimens from 14 mother-premature infant dyads were investigated by mass spectrometry for HMO composition. The stools were analyzed by next-generation sequencing (NGS) to complement a previous analysis. Results Percentages of fucosylated and sialylated HMOs were highly variable between individuals but similar in urine, feces and milk within dyads. Differences in urine and fecal HMO composition suggest variability in absorption. Secretor status of the mother correlated with the urine and fecal content of specific HMO structures. Trends toward higher levels of Proteobacteria and lower levels of Firmicutes, were noted in premature infants of non-secretor mothers. Specific HMO structures in the milk, urine and feces were associated with alterations in fecal Proteobacteria and Firmicutes. Conclusion HMOs may influence the intestinal microbiota in premature infants. Specific HMOs, for example those associated with secretor mothers, may have a protective effect by decreasing pathogens associated with sepsis and necrotizing enterocolitis while other HMOs may increase dysbiosis in this population. PMID:26322410

  5. Infection with fully mature Corynosoma cf. validum causes ulcers in the human small intestine.

    PubMed

    Takahashi, Keitaro; Ito, Takahiro; Sato, Tomonobu; Goto, Mitsuru; Kawamoto, Toru; Fujinaga, Akihiro; Yanagawa, Nobuyuki; Saito, Yoshinori; Nakao, Minoru; Hasegawa, Hideo; Fujiya, Mikihiro

    2016-06-01

    Corynosoma is a parasite that can normally be found in the intestinal tract of fish-eating mammals, particularly in seals and birds. The present case proposed that Corynosoma could attain full maturity in the human intestine. A 70-year-old female complained of abdominal pain. A computed tomography (CT) scan revealed a swelling of the intraperitoneal lymph nodes with no responsible lesion. Video capsule endoscopy and double-balloon endoscopy detected several ulcerations and one parasite in the ileum, which was tightly attached at the bottom of the ulcerations. The parasite was cylindrical and measured approximately 10 mm (long) x 3 mm (wide). Pathologically, the worm had a four-layered body wall and contained embryonated eggs. The sequences of the parasite-derived nuclear ribosomal DNA fragment and mitochondrial DNA fragment of cox1 were almost identical to those of Corynosoma validum. The patient's abdominal pain immediately improved after the administration of pyrantel pamoate (1,500 mg). Corynosoma was possibly the responsible disease in a patient who complained of abdominal pain and in whom no responsible lesion was detected by CT, gastroduodenoscopy or colonoscopy. Examinations of the small intestines should be aggressively performed in such cases. PMID:27098251

  6. Drug supersaturation in simulated and human intestinal fluids representing different nutritional states.

    PubMed

    Bevernage, Jan; Brouwers, Joachim; Clarysse, Sarah; Vertzoni, Maria; Tack, Jan; Annaert, Pieter; Augustijns, Patrick

    2010-11-01

    It was the purpose of this study to explore supersaturation of poorly soluble drugs in human intestinal fluids (HIF), and to assess potential food effects on the creation and maintenance of supersaturation. Duodenal fluids were collected from healthy volunteers and pooled according to three nutritional states (fasted-, fed-, and fat-enriched fed state). Supersaturation was created at a fixed degree of supersaturation (DS=20) using the solvent-shift method. Fasted- and fed-state simulated intestinal fluids (FaSSIF and FeSSIF) were used as intestinal simulation media. Supersaturation in HIF showed to be stable up to a certain degree for different poorly soluble drugs. In HIF as well as in FaSSIF and FeSSIF, supersaturation appeared to be compound and medium specific. Supersaturation stability was found to be inversely proportional to the solubility in the corresponding media. Food intake affected itraconazole supersaturation positively. On the contrary, etravirine and loviride supersaturation decreased upon food intake. Supersaturation experiments in FaSSIF and FeSSIF showed similar results as in HIF for etravirine and loviride, whereas itraconazole supersaturation behaved differently in HIF versus simulation media. The present study illustrates, for the first time, that supersaturation can be created and maintained in HIF, even in the absence of excipients. PMID:20845451

  7. Bovine and soybean milk bioactive compounds: Effects on inflammatory response of human intestinal Caco-2 cells.

    PubMed

    Calvello, Rosa; Aresta, Antonella; Trapani, Adriana; Zambonin, Carlo; Cianciulli, Antonia; Salvatore, Rosaria; Clodoveo, Maria Lisa; Corbo, Filomena; Franchini, Carlo; Panaro, Maria Antonietta

    2016-11-01

    In this study the effects of commercial bovine and soybean milks and their bioactive compounds, namely genistein, daidzein and equol, on the inflammatory responses induced by lipopolysaccharide (LPS) treatment of human intestinal Caco-2 cells were examined, in terms of nitric oxide (NO) release and inducible nitric oxide synthetase (iNOS) expression. Both milks and their bioactive compounds significantly inhibited, dose-dependently, the expression of iNOS mRNA and protein, resulting in a decreased NO production. The NF-κB activation in LPS-stimulated intestinal cells was also examined. In all cases we observed that cell pre-treatment before LPS activation inhibited the IkB phosphorylation. Accordingly, quantification of bioactive compounds by solid phase microextraction coupled with liquid chromatography has shown that they were absorbed, metabolized and released by Caco-2 cells in culture media. In conclusion, we demonstrated that milks and compounds tested are able to reduce LPS-induced inflammatory responses from intestinal cells, interfering with NF-kB dependent molecular mechanisms. PMID:27211648

  8. Specific-sized hyaluronan fragments promote expression of human β-defensin 2 in intestinal epithelium.

    PubMed

    Hill, David R; Kessler, Sean P; Rho, Hyunjin K; Cowman, Mary K; de la Motte, Carol A

    2012-08-31

    Hyaluronan (HA) is a glycosaminoglycan polymer found in the extracellular matrix of virtually all mammalian tissues. Recent work has suggested a role for small, fragmented HA polymers in initiating innate defense responses in immune cells, endothelium, and epidermis through interaction with innate molecular pattern recognition receptors, such as TLR4. Despite these advances, little is known regarding the effect of fragmented HA at the intestinal epithelium, where numerous pattern recognition receptors act as sentinels of an innate defense response that maintains epithelial barrier integrity in the presence of abundant and diverse microbial challenges. Here we report that HA fragments promote expression of the innate antimicrobial peptide human β-defensin 2 (HβD2) in intestinal epithelial cells. Treatment of HT-29 colonic epithelial cells with HA fragment preparations resulted in time- and dose-dependent up-regulated expression of HβD2 protein in a fragment size-specific manner, with 35-kDa HA fragment preparations emerging as the most potent inducers of intracellular HβD2. Furthermore, oral administration of specific-sized HA fragments promotes the expression of an HβD2 ortholog in the colonic epithelium of both wild-type and CD44-deficient mice but not in TLR4-deficient mice. Together, our observations suggest that a highly size-specific, TLR4-dependent, innate defense response to fragmented HA contributes to intestinal epithelium barrier defense through the induction of intracellular HβD2 protein. PMID:22761444

  9. Regulation of sucrase-isomaltase gene expression in human intestinal epithelial cells by inflammatory cytokines.

    PubMed

    Ziambaras, T; Rubin, D C; Perlmutter, D H

    1996-01-12

    Using metabolic labeling techniques in human intestinal epithelial cell lines in tissue culture and in situ hybridization techniques in normal and inflamed (Crohn's) intestine, recent studies have shown that there is synthesis of acute phase proteins in enterocytes. Moreover, these studies have shown that acute phase protein biosynthesis in enterocytes is regulated by inflammatory cytokines in a manner characteristic of the physiologic acute phase response. In the course of these studies it was noticed that one inflammatory cytokine, interleukin-6 (IL-6), mediated selective down-regulation of the enterocyte-specific, differentiation-dependent integral membrane protein sucrase-isomaltase (SI) in the Caco2 intestinal epithelial cell line. In the current study we examined the effect of several other inflammatory cytokines interleukin-1 (IL-1 beta), tumor necrosis factor alpha (TNF alpha), and interferon gamma (IFN gamma) on synthesis of SI in Caco2 cells, examined the possibility that inflammatory cytokines affect the synthesis of other enterocyte integral membrane proteins using lactase as a prototype, and examined the possibility that SI gene expression was down-regulated in villous enterocytes in vivo during the local inflammatory response of Crohn's disease. The results show that IL-6 and IFN gamma each mediate a decrease and TNF alpha mediates an increase in synthesis of SI in Caco2 cells. The magnitude of down-regulation by IL-6 and IFN gamma is significantly greater than the up-regulation by TNF alpha. IL-1 beta has no effect on synthesis of SI. Synthesis of lactase is not affected by any of the cytokines. There is a marked specific decrease in SI gene expression in villous enterocytes in acutely inflamed Crohn's ileum as compared to adjacent uninflamed ileum and normal ileum. Taken together, these data show that inflammatory cytokines have specific and selective effects on the expression of the brush border hydrolase SI in tissue culture and in vivo and

  10. Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius

    PubMed Central

    O'Hara, Ann M; O'Regan, Padraig; Fanning, Áine; O'Mahony, Caitlin; MacSharry, John; Lyons, Anne; Bienenstock, John; O'Mahony, Liam; Shanahan, Fergus

    2006-01-01

    Intestinal epithelial cells (IECs) and dendritic cells (DCs) play a pivotal role in antigen sampling and the maintenance of gut homeostasis. However, the interaction of commensal bacteria with the intestinal surface remains incompletely understood. Here we investigated immune cell responses to commensal and pathogenic bacteria. HT-29 human IECs were incubated with Bifidobacterium infantis 35624, Lactobacillus salivarius UCC118 or Salmonella typhimurium UK1 for varying times, or were pretreated with a probiotic for 2 hr prior to stimulation with S. typhimurium or flagellin. Gene arrays were used to examine inflammatory gene expression. Nuclear factor (NF)-κB activation, interleukin (IL)-8 secretion, pathogen adherence to IECs, and mucin-3 (MUC3) and E-cadherin gene expression were assayed by TransAM assay, enzyme-linked immunosorbent assay (ELISA), fluorescence, and real-time reverse transcriptase–polymerase chain reaction (RT-PCR), respectively. IL-10 and tumour necrosis factor (TNF)-α secretion by bacteria-treated peripheral blood-derived DCs were measured using ELISA. S. typhimurium increased expression of 36 of the 847 immune-related genes assayed, including NF-κB and IL-8. The commensal bacteria did not alter expression levels of any of the 847 genes. However, B. infantis and L. salivarius attenuated both IL-8 secretion at baseline and S. typhimurium-induced pro-inflammatory responses. B. infantis also limited flagellin-induced IL-8 protein secretion. The commensal bacteria did not increase MUC3 or E-cadherin expression, or interfere with pathogen binding to HT-29 cells, but they did stimulate IL-10 and TNF-α secretion by DCs. The data demonstrate that, although the intestinal epithelium is immunologically quiescent when it encounters B. infantis or L. salivarius, these commensal bacteria exert immunomodulatory effects on intestinal immune cells that mediate host responses to flagellin and enteric pathogens. PMID:16771855

  11. An earthworm-like robotic endoscope system for human intestine: design, analysis, and experiment.

    PubMed

    Wang, Kundong; Yan, Guozheng; Ma, Guanying; Ye, Dongdong

    2009-01-01

    The existing endoscope brings too much discomfort to patients because its slim and rigid rod is difficult to pass through alpha, gamma loop of the human intestine. A robotic endoscope, as a novel solution, is expected to replace the current endoscope in clinic. A microrobotic endoscope based on wireless power supply was developed in this paper. This robot is mainly composed of a locomotion mechanism, a wireless power supply subsystem, and a communication subsystem. The locomotion mechanism is composed of three liner-driving cells connected with each other through a two-freedom universal joint. The wireless power supply subsystem is composed of a resonance transmit coil to transmit an alternating magnetic field, and a secondary coil to receive the power. Wireless communication system could transmit the image to the monitor, or send the control commands to the robot. The whole robot was packaged in the waterproof bellows. Activating the three driving cells under some rhythm, the robot could creep forward or backward as a worm. A mathematic model is built to express the energy coupling efficiency. Some experiments are performed to test the efficiency and the capability of energy transferring. The results show the wireless energy supply has enough power capacity. The velocity and the navigation ability in a pig intestine were measured in in vitro experiments. The results demonstrated this robot can navigate the intestine easily. In general, the wireless power supply and the wireless communication remove the need of a connecting wire and improve the motion flexibility. Meanwhile, the presented locomotion mechanism and principle have a high reliability and a good adaptability to the in vitro intestine. This research has laid a good foundation for the real application of the robotic endoscope in the future. PMID:19003537

  12. Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius.

    PubMed

    O'Hara, Ann M; O'Regan, Padraig; Fanning, Aine; O'Mahony, Caitlin; Macsharry, John; Lyons, Anne; Bienenstock, John; O'Mahony, Liam; Shanahan, Fergus

    2006-06-01

    Intestinal epithelial cells (IECs) and dendritic cells (DCs) play a pivotal role in antigen sampling and the maintenance of gut homeostasis. However, the interaction of commensal bacteria with the intestinal surface remains incompletely understood. Here we investigated immune cell responses to commensal and pathogenic bacteria. HT-29 human IECs were incubated with Bifidobacterium infantis 35624, Lactobacillus salivarius UCC118 or Salmonella typhimurium UK1 for varying times, or were pretreated with a probiotic for 2 hr prior to stimulation with S. typhimurium or flagellin. Gene arrays were used to examine inflammatory gene expression. Nuclear factor (NF)-kappaB activation, interleukin (IL)-8 secretion, pathogen adherence to IECs, and mucin-3 (MUC3) and E-cadherin gene expression were assayed by TransAM assay, enzyme-linked immunosorbent assay (ELISA), fluorescence, and real-time reverse transcriptase-polymerase chain reaction (RT-PCR), respectively. IL-10 and tumour necrosis factor (TNF)-alpha secretion by bacteria-treated peripheral blood-derived DCs were measured using ELISA. S. typhimurium increased expression of 36 of the 847 immune-related genes assayed, including NF-kappaB and IL-8. The commensal bacteria did not alter expression levels of any of the 847 genes. However, B. infantis and L. salivarius attenuated both IL-8 secretion at baseline and S. typhimurium-induced pro-inflammatory responses. B. infantis also limited flagellin-induced IL-8 protein secretion. The commensal bacteria did not increase MUC3or E-cadherin expression, or interfere with pathogen binding to HT-29 cells, but they did stimulate IL-10 and TNF-alpha secretion by DCs. The data demonstrate that, although the intestinal epithelium is immunologically quiescent when it encounters B. infantis or L. salivarius, these commensal bacteria exert immunomodulatory effects on intestinal immune cells that mediate host responses to flagellin and enteric pathogens. PMID:16771855

  13. Metabolism of Kaempferia parviflora polymethoxyflavones by human intestinal bacterium Bautia sp. MRG-PMF1.

    PubMed

    Kim, Mihyang; Kim, Nayoung; Han, Jaehong

    2014-12-24

    Poylmethoxyflavones (PMFs) are major bioactive flavonoids, which exhibit various biological activities, such as anticancer effects. The biotransformation of PMFs and characterization of a PMF-metabolizing human intestinal bacterium were studied herein for the first time. Hydrolysis of aryl methyl ether functional groups by human fecal samples was observed from the bioconversion of various PMFs. Activity-guided screening for PMF-metabolizing intestinal bacteria under anaerobic conditions resulted in the isolation of a strict anaerobic bacterium, which was identified as Blautia sp. MRG-PMF1. The isolated MRG-PMF1 was able to metabolize various PMFs to the corresponding demethylated flavones. The microbial conversion of bioactive 5,7-dimethoxyflavone (5,7-DMF) and 5,7,4'-trimethoxyflavone (5,7,4'-TMF) was studied in detail. 5,7-DMF and 5,7,4'-TMF were completely metabolized to 5,7-dihydroxyflavone (chrysin) and 5,7,4'-trihydroxyflavone (apigenin), respectively. From a kinetics study, the methoxy group on the flavone C-7 position was found to be preferentially hydrolyzed. 5-Methoxychrysin, the intermediate of 5,7-DMF metabolism by Blautia sp. MRG-PMF1, was isolated and characterized by nuclear magnetic resonance spectroscopy. Apigenin was produced from the sequential demethylation of 5,7,4'-TMF, via 5,4'-dimethoxy-7-hydroxyflavone and 7,4'-dihydroxy-5-methoxyflavone (thevetiaflavone). Not only demethylation activity but also deglycosylation activity was exhibited by Blautia sp. MRG-PMF1, and various flavonoids, including isoflavones, flavones, and flavanones, were found to be metabolized to the corresponding aglycones. The unprecedented PMF demethylation activity of Blautia sp. MRG-PMF1 will expand our understanding of flavonoid metabolism in the human intestine and lead to novel bioactive compounds. PMID:25437273

  14. Transepithelial transport of ambroxol hydrochloride across human intestinal Caco-2 cell monolayers.

    PubMed

    Stetinová, Vera; Smetanová, Libuse; Kholová, Dagmar; Svoboda, Zbynek; Kvetina, Jaroslav

    2009-09-01

    This study aimed i) to characterize the transepithelial transport of the mucolytic agent ambroxol hydrochloride across the intestinal barrier, ii) to classify the ambroxol according to Biopharmaceutics Classification System (BCS) and iii) to predict ambroxol absorption in humans. Transport of ambroxol (100, 300 and 1000 micromol/l) was studied in a human colon carcinoma cell line Caco-2 in apical to basolateral and basolateral to apical direction, under iso-pH 7.4 and pH-gradient (6 vs. 7.4) conditions. The relative contribution of the paracellular route was estimated using Ca2+-free transport medium. Ambroxol samples from receiver compartments were analysed by HPLC with UV detection (242 nm). Results showed that ambroxol transport is linear with time, pH-dependent and direction-independent, displays non-saturable (first-order) kinetics. Thus, the transport seems to be transcellular mediated by passive diffusion. Estimated high solubility and high permeability (P(app) = 45 x 10(-6) cm/s) of ambroxol rank it among well absorbed compounds and class I of BCS. It can be expected that the oral dose fraction of ambroxol absorbed in human intestine is high. PMID:20037197

  15. Transformation of arctiin to estrogenic and antiestrogenic substances by human intestinal bacteria.

    PubMed

    Xie, Li-Hua; Ahn, Eun-Mi; Akao, Teruaki; Abdel-Hafez, Atef Abdel-Monem; Nakamura, Norio; Hattori, Masao

    2003-04-01

    After anaerobic incubation of arctiin (1) from the seeds of Arctium lappa with a human fecal suspension, six metabolites were formed, and their structures were identified as (-)-arctigenin (2), (2R,3R)-2-(3',4'-dihydroxybenzyl)-3-(3",4"-dimethoxybenzyl)butyrolactone (3), (2R,3R)-2-(3'-hydroxybenzyl)-3-(3",4"-dimethoxybenzyl)butyrolactone (4), (2R,3R)-2-(3'-hydroxybenzyl)-3-(3"-hydroxy-4"-methoxybenzyl)butyrolactone (5), (2R,3R)-2-(3'-hydroxybenzyl)-3-(3",4"-dihydroxybenzyl)butyrolactone (6), and (-)-enterolactone (7) by various spectroscopic means including two dimensional (2D)-NMR, mass spectrometry, and circular dichroism. A possible metabolic pathway was proposed on the basis of their structures and the time course of the transformation. Enterolactones obtained from the biotransformation of arctiin and secoisolariciresinol diglucoside (SDG, from the seeds of Linum usitatissium) by human intestinal bacteria were proved to be enantiomers, with the (-)-(2R,3R) and (+)-(2S,3S) configurations, respectively. Compound 6 showed the most potent proliferative effect on the growth of MCF-7 human breast cancer cells in culture among 1 and six metabolites, while it showed inhibitory activity on estradiol-mediated proliferation of MCF-7 cells at a concentration of 10 microM. These results indicate that the transformation of 1 by intestinal flora might be essential for the manifestation of the estrogenic and antiestrogenic activity of 1. PMID:12672988

  16. Combined Effects of Lipophilic Phycotoxins (Okadaic Acid, Azapsiracid-1 and Yessotoxin) on Human Intestinal Cells Models

    PubMed Central

    Ferron, Pierre-Jean; Dumazeau, Kevin; Beaulieu, Jean-François; Le Hégarat, Ludovic; Fessard, Valérie

    2016-01-01

    Phycotoxins are monitored in seafood because they can cause food poisonings in humans. Phycotoxins do not only occur singly but also as mixtures in shellfish. The aim of this study was to evaluate the in vitro toxic interactions of binary combinations of three lipophilic phycotoxins commonly found in Europe (okadaic acid (OA), yessotoxin (YTX) and azaspiracid-1 (AZA-1)) using the neutral red uptake assay on two human intestinal cell models, Caco-2 and the human intestinal epithelial crypt-like cells (HIEC). Based on the cytotoxicity of individual toxins, we studied the interactions between toxins in binary mixtures using the combination index-isobologram equation, a method widely used in pharmacology to study drug interactions. This method quantitatively classifies interactions between toxins in mixtures as synergistic, additive or antagonistic. AZA-1/OA, and YTX/OA mixtures showed increasing antagonism with increasing toxin concentrations. In contrast, the AZA-1/YTX mixture showed increasing synergism with increasing concentrations, especially for mixtures with high YTX concentrations. These results highlight the hazard potency of AZA-1/YTX mixtures with regard to seafood intoxication. PMID:26907345

  17. Intestinal Parasite Co-infection among Pulmonary Tuberculosis Cases without Human Immunodeficiency Virus Infection in a Rural County in China

    PubMed Central

    Li, Xin-Xu; Chen, Jia-Xu; Wang, Li-Xia; Tian, Li-Guang; Zhang, Yu-Ping; Dong, Shuang-Pin; Hu, Xue-Guang; Liu, Jian; Wang, Feng-Feng; Wang, Yue; Yin, Xiao-Mei; He, Li-Jun; Yan, Qiu-Ye; Zhang, Hong-Wei; Xu, Bian-Li; Zhou, Xiao-Nong

    2014-01-01

    Epidemiologic studies of co-infection with tuberculosis (TB) and intestinal parasites in humans have not been extensively investigated in China. A cross-section study was conducted in a rural county of Henan Province, China. Pulmonary TB (PTB) case-patients receiving treatment for infection with Mycobacterium tuberculosis and healthy controls matched for geographic area, age, and sex were surveyed by using questionnaires. Fecal and blood specimens were collected for detection of intestinal parasites, routine blood examination, and infection with human immunodeficiency virus. The chi-square test was used for univariate analysis and multivariate logistic regression models were used to adjust for potential confounding factors. A total of 369 persons with PTB and 366 healthy controls were included; all participants were negative for human immunodeficiency virus. The overall prevalence of intestinal parasites in persons with PTB was 14.9%, including intestinal protozoa (7.9%) and helminthes (7.6%). The infection spectrum of intestinal parasites was Entamoeba spp. (1.4%), Blastocystis hominis (6.2%), Trichomonas hominis (0.3%), Clonorchis sinensis (0.3%), Ascaris lumbricoides (0.5%), Trichuris trichiura (2.2%), and hookworm (4.6%). The prevalence of intestinal parasites showed no significant difference between persons with PTB and healthy controls after adjusting for potential confounding factors. There was no factor that affected infection rates for intestinal parasites between the two groups. Infection with intestinal parasites of persons with PTB was associated with female sex (adjusted odds ratio [AOR] = 2.05, 95% confidence interval [CI] = 1.01–4.17), body mass index ≤ 19 (AOR = 3.02, 95% CI = 1.47–6.20), and anemia (AOR = 2.43, 95% CI = 1.17–5.03). Infection of healthy controls was only associated with an annual labor time in farmlands > 2 months (AOR = 4.50, 95% CI = 2.03–10.00). In addition, there was no significant trend between rates of infection with

  18. Metabolism of Anandamide by Human Cytochrome P450 2J2 in the Reconstituted System and Human Intestinal Microsomes.

    PubMed

    Walker, Vyvyca J; Griffin, Alisha P; Hammar, Dagan K; Hollenberg, Paul F

    2016-06-01

    According to the Centers for Disease Control and Prevention, the incidence of inflammatory bowel diseases (IBD) is about 1 in 250 people in the United States. The disease is characterized by chronic or recurring inflammation of the gut. Because of the localization of the endocannabinoid system in the gastrointestinal tract, it may be a potential pharmacologic target for the treatment of IBD and other diseases. Fatty acid amide hydrolase (FAAH) is a potential candidate because it is upregulated in IBD. FAAH hydrolyzes and, as a consequence, inactivates anandamide (AEA), a prominent endocannabinoid. Inhibition of FAAH would lead to increases in the amount of AEA oxidized by cytochrome P450s (P450s). CYP2J2, the major P450 epoxygenase expressed in the heart, is also expressed in the intestine and has previously been reported to oxidize AEA. We have investigated the possibility that it may play a role in AEA metabolism in the gut and have demonstrated that purified human CYP2J2 metabolizes AEA to form the 20-hydroxyeicosatetraenoic acid ethanolamide (HETE-EA) and several epoxygenated products, including the 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EET-EAs), in the reconstituted system. Kinetic studies suggest that the KM values for these products range from approximately 10 to 468 μM and the kcat values from 0.2 to 23.3 pmol/min per picomole of P450. Human intestinal microsomes, which express CYP2J2, metabolize AEA to give the 5,6-, 8,9-, and 11,12-EET-EAs, as well as 20-HETE-EA. Studies using specific P450 inhibitors suggest that although CYP2J2 metabolizes AEA, it is not the primary P450 responsible for AEA metabolism in human intestines. PMID:27000802

  19. Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species.

    PubMed

    Selma, María V; Beltrán, David; García-Villalba, Rocío; Espín, Juan C; Tomás-Barberán, Francisco A

    2014-08-01

    Ellagitannin and ellagic acid metabolism to urolithins in the gut shows a large human interindividual variability and this has been associated with differences in the colon microbiota. In the present study we describe the isolation of one urolithin-producing strain from the human faeces of a healthy volunteer and the ellagic acid transformation to different urolithin metabolites by two species of intestinal bacteria. The isolate belongs to a new species described as Gordonibacter urolithinfaciens, sp. nov. The type strain of the Gordonibacter genus, Gordonibacter pamelaeae DSM 19378(T), was also demonstrated to produce urolithins. Both human intestinal bacteria grew similarly in the presence and absence of ellagic acid at 30 μM concentration. Ellagic acid catabolism and urolithin formation occurred during the stationary phase of the growth of the bacteria under anaerobic conditions. The HPLC-MS analyses showed the sequential production of pentahydroxy-urolithin (urolithin M-5), tetrahydroxy-urolithin (urolithin M-6) and trihydroxy-urolithin (urolithin C), while dihydroxy-urolithins (urolithin A and isourolithin A), and monohydroxy-urolithin (urolithin B) were not produced in pure cultures. Consequently, either other bacteria from the gut or the physiological conditions found in vivo are necessary for completing metabolism until the final urolithins (dihydroxy and monohydroxy urolithins) are produced. This is the first time that the urolithin production capacity of pure strains has been demonstrated. The identification of the urolithin-producing bacteria is a relevant outcome as urolithin implication in health (cardiovascular protection, anti-inflammatory and anticarcinogenic properties) has been supported by different bioassays and urolithins can be used in the development of functional foods and nutraceuticals. This study represents an initial work that opens interesting possibilities of describing enzymatic activities involved in urolithin production that can

  20. A cost-effective system for differentiation of intestinal epithelium from human induced pluripotent stem cells.

    PubMed

    Ogaki, Soichiro; Morooka, Mayu; Otera, Kaito; Kume, Shoen

    2015-01-01

    The human intestinal epithelium is a useful model for pharmacological studies of absorption, metabolism, drug interactions, and toxicology, as well as for studies of developmental biology. We established a rapid and cost effective system for differentiation of human induced pluripotent stem (iPS) cells into definitive endoderm (DE) cells. In the presence of dimethyl sulfoxide (DMSO), a low concentration of Activin at 6.25 ng/ml is sufficient to give a similar differentiation efficiency with that using Activin at 100 ng/ml at the presence of Wnt activator. In the presence of DMSO, Activin at low concentration triggered hiPS cells to undergo differentiation through G1 arrest, reduce apoptosis, and potentiate activation of downstream targets, such as SMAD2 phosphorylation and SOX17 expression. This increased differentiation into CDX2 + SOX17 + DE cells. The present differentiation procedure therefore permits rapid and efficient derivation of DE cells, capable of differentiating into intestinal epithelium upon BIO and DAPT treatment and of giving rise to functional cells, such as enterocytes. PMID:26616277

  1. A cost-effective system for differentiation of intestinal epithelium from human induced pluripotent stem cells

    PubMed Central

    Ogaki, Soichiro; Morooka, Mayu; Otera, Kaito; Kume, Shoen

    2015-01-01

    The human intestinal epithelium is a useful model for pharmacological studies of absorption, metabolism, drug interactions, and toxicology, as well as for studies of developmental biology. We established a rapid and cost effective system for differentiation of human induced pluripotent stem (iPS) cells into definitive endoderm (DE) cells. In the presence of dimethyl sulfoxide (DMSO), a low concentration of Activin at 6.25 ng/ml is sufficient to give a similar differentiation efficiency with that using Activin at 100 ng/ml at the presence of Wnt activator. In the presence of DMSO, Activin at low concentration triggered hiPS cells to undergo differentiation through G1 arrest, reduce apoptosis, and potentiate activation of downstream targets, such as SMAD2 phosphorylation and SOX17 expression. This increased differentiation into CDX2 + SOX17 + DE cells. The present differentiation procedure therefore permits rapid and efficient derivation of DE cells, capable of differentiating into intestinal epithelium upon BIO and DAPT treatment and of giving rise to functional cells, such as enterocytes. PMID:26616277

  2. Antigenic and structural features of goblet-cell mucin of human small intestine.

    PubMed Central

    Mantle, M; Forstner, G G; Forstner, J F

    1984-01-01

    With the use of a newly developed solid-phase radioimmunoassay method, the major antigenic determinants of human small-intestinal goblet-cell mucin were investigated and related to the overall tertiary structure of the mucin. Preliminary hapten inhibition studies with various oligosaccharides of known sequence and structure suggested that the determinants did not reside in carbohydrate. Exhaustive thiol reduction, however, almost abolished antigenicity, caused breakdown of the mucin into small heterogeneous glycopeptides, and liberated a 'link' peptide of Mr 118000. Western 'blots' of reduced mucin from polyacrylamide gels on to nitrocellulose sheets showed that a small amount of residual antigenicity remained in large-Mr glycopeptides (Mr greater than 200000). The 'link' peptide was not antigenic. Timed Pronase digestion of native mucin resulted in a progressive loss of antigenic determinants. Gel electrophoresis revealed that after 8h of digestion the 118000-Mr peptide had disappeared, whereas antigenicity, which was confined to large-Mr glycopeptides, was destroyed much more slowly with time (70% by 24h, 100% by 72h). Despite the loss of antigenicity, 72h-Pronase-digested glycopeptides retained all of the carbohydrate of the native mucin. Therefore the antibody to human small-intestinal mucin appears to recognize a 'naked' (non-glycosylated and Pronase-susceptible) peptide region(s) of mucin glycopeptides. For full antigenicity, however, disulphide bonds are required to stabilize a specific three-dimensional configuration of the 'naked' region. Images Fig. 4. Fig. 6. PMID:6199017

  3. Sugars increase non-heme iron bioavailability in human epithelial intestinal and liver cells.

    PubMed

    Christides, Tatiana; Sharp, Paul

    2013-01-01

    Previous studies have suggested that sugars enhance iron bioavailability, possibly through either chelation or altering the oxidation state of the metal, however, results have been inconclusive. Sugar intake in the last 20 years has increased dramatically, and iron status disorders are significant public health problems worldwide; therefore understanding the nutritional implications of iron-sugar interactions is particularly relevant. In this study we measured the effects of sugars on non-heme iron bioavailability in human intestinal Caco-2 cells and HepG2 hepatoma cells using ferritin formation as a surrogate marker for iron uptake. The effect of sugars on iron oxidation state was examined by measuring ferrous iron formation in different sugar-iron solutions with a ferrozine-based assay. Fructose significantly increased iron-induced ferritin formation in both Caco-2 and HepG2 cells. In addition, high-fructose corn syrup (HFCS-55) increased Caco-2 cell iron-induced ferritin; these effects were negated by the addition of either tannic acid or phytic acid. Fructose combined with FeCl3 increased ferrozine-chelatable ferrous iron levels by approximately 300%. In conclusion, fructose increases iron bioavailability in human intestinal Caco-2 and HepG2 cells. Given the large amount of simple and rapidly digestible sugars in the modern diet their effects on iron bioavailability may have important patho-physiological consequences. Further studies are warranted to characterize these interactions. PMID:24340076

  4. Phosphatidylcholine passes through lateral tight junctions for paracellular transport to the apical side of the polarized intestinal tumor cell-line CaCo2.

    PubMed

    Stremmel, Wolfgang; Staffer, Simone; Gan-Schreier, Hongying; Wannhoff, Andreas; Bach, Margund; Gauss, Annika

    2016-09-01

    Phosphatidylcholine (PC) is the most abundant phospholipid in intestinal mucus, indicative of a specific transport system across the mucosal epithelium to the intestinal lumen. To elucidate this transport mechanism, we employed a transwell tissue culture system with polarized CaCo2 cells. It was shown that PC could not substantially be internalized by the cells. However, after basal application of increasing PC concentrations, an apical transport of 47.1±6.3nmolh(-1)mMPC(-1) was observed. Equilibrium distribution studies with PC applied in equal concentrations to the basal and apical compartments showed a 1.5-fold accumulation on the expense of basal PC. Disruption of tight junctions (TJ) by acetaldehyde or PPARγ inhibitors or by treatment with siRNA to TJ proteins suppressed paracellular transport by at least 50%. Transport was specific for the choline containing the phospholipids PC, lysoPC and sphingomyelin. We showed that translocation is driven by an electrochemical gradient generated by apical accumulation of Cl(-) and HCO3(-) through CFTR. Pretreatment with siRNA to mucin 3 which anchors in the apical plasma membrane of mucosal cells inhibited the final step of luminal PC secretion. PC accumulates in intestinal mucus using a paracellular, apically directed transport route across TJs. PMID:27365309

  5. Expression of acyl-CoA synthetase 5 reflects the state of villus architecture in human small intestine.

    PubMed

    Gassler, Nikolaus; Kopitz, Jürgen; Tehrani, Arman; Ottenwälder, Birgit; Schnölzer, Martina; Kartenbeck, Jürgen; Lyer, Stefan; Autschbach, Frank; Poustka, Annemarie; Otto, Herwart F; Mollenhauer, Jan

    2004-02-01

    Several disorders of the small intestine are associated with disturbances in villus architecture. Thus, an understanding of the molecular mechanisms associated with the differentiation of villi represents an important step in the improvement of the understanding of small intestinal pathology. Screening of antibodies from a hybridoma library led to the identification of an acyl-CoA synthetase 5-specific monoclonal antibody. Protein synthesis, mRNA expression, and the enzyme activity of acyl-CoA synthetase 5 were studied by several methods in human small intestinal tissues with Crohn's disease or coeliac disease, respectively. Acyl-CoA synthetase 5 mRNA and protein levels were substantially reduced in injured small intestinal mucosa. Moreover, impaired synthesis of the acyl-CoA synthetase 5 protein was reflected by a decrease in intramucosal enzyme activity. Subtle changes of the acyl-CoA synthetase 5 pattern correlate with conversion of intestinal epithelial cells to a gastric phenotype. These results suggest that deranged acyl-CoA synthetase 5 expression, synthesis, and activity are closely related to the state of villus architecture and epithelial homeostasis in human small intestine. PMID:14743501

  6. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip

    PubMed Central

    Kim, Hyun Jung; Li, Hu; Collins, James J.; Ingber, Donald E.

    2016-01-01

    A human gut-on-a-chip microdevice was used to coculture multiple commensal microbes in contact with living human intestinal epithelial cells for more than a week in vitro and to analyze how gut microbiome, inflammatory cells, and peristalsis-associated mechanical deformations independently contribute to intestinal bacterial overgrowth and inflammation. This in vitro model replicated results from past animal and human studies, including demonstration that probiotic and antibiotic therapies can suppress villus injury induced by pathogenic bacteria. By ceasing peristalsis-like motions while maintaining luminal flow, lack of epithelial deformation was shown to trigger bacterial overgrowth similar to that observed in patients with ileus and inflammatory bowel disease. Analysis of intestinal inflammation on-chip revealed that immune cells and lipopolysaccharide endotoxin together stimulate epithelial cells to produce four proinflammatory cytokines (IL-8, IL-6, IL-1β, and TNF-α) that are necessary and sufficient to induce villus injury and compromise intestinal barrier function. Thus, this human gut-on-a-chip can be used to analyze contributions of microbiome to intestinal pathophysiology and dissect disease mechanisms in a controlled manner that is not possible using existing in vitro systems or animal models. PMID:26668389

  7. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip.

    PubMed

    Kim, Hyun Jung; Li, Hu; Collins, James J; Ingber, Donald E

    2016-01-01

    A human gut-on-a-chip microdevice was used to coculture multiple commensal microbes in contact with living human intestinal epithelial cells for more than a week in vitro and to analyze how gut microbiome, inflammatory cells, and peristalsis-associated mechanical deformations independently contribute to intestinal bacterial overgrowth and inflammation. This in vitro model replicated results from past animal and human studies, including demonstration that probiotic and antibiotic therapies can suppress villus injury induced by pathogenic bacteria. By ceasing peristalsis-like motions while maintaining luminal flow, lack of epithelial deformation was shown to trigger bacterial overgrowth similar to that observed in patients with ileus and inflammatory bowel disease. Analysis of intestinal inflammation on-chip revealed that immune cells and lipopolysaccharide endotoxin together stimulate epithelial cells to produce four proinflammatory cytokines (IL-8, IL-6, IL-1β, and TNF-α) that are necessary and sufficient to induce villus injury and compromise intestinal barrier function. Thus, this human gut-on-a-chip can be used to analyze contributions of microbiome to intestinal pathophysiology and dissect disease mechanisms in a controlled manner that is not possible using existing in vitro systems or animal models. PMID:26668389

  8. Binding of diarrheagenic Escherichia coli to 32- to 33-kilodalton human intestinal brush border proteins.

    PubMed Central

    Manjarrez-Hernandez, A; Gavilanes-Parra, S; Chavez-Berrocal, M E; Molina-Lopez, J; Cravioto, A

    1997-01-01

    We have detected human intestinal brush border proteins to which Escherichia coli strains adhere by means of a blotting-nitrocellulose method in which the binding of radiolabeled bacteria to sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated intestinal cell membranes was evaluated. The brush border fraction contained several polypeptides that bound only adherent E. coli strains. The most prominent and consistent of these proteins had apparent molecular masses of 32 to 33 kDa. Additional polypeptides ranging from 50 to 70, from 105 to 130, and from 180 to 200 kDa were also recognized by adherent E. coli strains, although with less intensity (in accordance with the number of bound bacteria to these polypeptides). Independently of the pattern of adherence (localized [LA], diffuse [DA], or aggregative [AggA]) all HEp-2-adhering strains recognized, with different intensities, the 32- to 33-kDa brush border proteins, whereas nonadhesive strains did not. The relative avidity of an LA strain to bind to the 32- to 33-kDa proteins was approximately seven- and sixfold higher than the binding of strains with aggregative and diffuse adherence, respectively. Thus, it is reasonable to think that LA, DA, and AggA strains have a common adhesin that mediates binding to the 32- to 33-kDa bands. Inhibition experiments using HEp-2 cells demonstrated that isolated 32- to 33-kDa proteins or specific antiserum blocked preferentially bacterial adherence of the LA pattern. Delipidization and protein digestion of the human brush borders confirmed that E. coli bound to structures of a proteinaceous nature. Deglycosylation studies and sodium meta-periodate oxidation of the intestinal cell membranes decreased bacterial binding activity significantly, indicating that E. coli bound to carbohydrate moieties in the glycoproteins. These results suggest that binding of E. coli strains, mainly of the LA phenotype, to the 32- to 33-kDa proteins could play a role in colonization through

  9. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function

    PubMed Central

    Chichlowski, Maciej; De Lartigue, Guillaume; German, J. Bruce; Raybould, Helen E.; Mills, David A.

    2012-01-01

    Objectives Human milk oligosaccharides (HMO) are the third most abundant component of breast milk. Our laboratory has previously revealed gene clusters specifically linked to HMO metabolism in select bifidobacteria isolated from fecal samples of infants. Our objective was to test the hypothesis that growth of select bifidobacteria on HMO stimulates the intestinal epithelium. Methods Caco-2 and HT-29 cells were incubated with lactose (LAC) or HMO-grown Bifidobacterium longum subsp. infantis (B. infantis) or B. bifidum. Bacterial adhesion and translocation was measured by real-time quantitative PCR. Expression of pro- and anti-inflammatory cytokines and tight junction proteins was analyzed by real time reverse transcriptase. Distribution of tight junction proteins was measured using immunofluorescent microscopy. Results We showed that HMO-grown B. infantis had significantly higher rate of adhesion to HT-29 cells compared to B. bifidum. B. infantis also induced expression of a cell membrane glycoprotein, P-selectin glycoprotein ligand -1. Both B. infantis and B. bifidum grown on HMO caused less occludin relocalization and higher expression of anti-inflammatory cytokine, interleukin (IL)-10 compared to LAC-grown bacteria in Caco-2 cells. B. bifidum grown on HMO showed higher expression of junctional adhesion molecule and occludin in Caco-2 cell and HT-29 cells. There were no significant differences between LAC or HMO treatments in bacterial translocation. Conclusions This study provides evidence for the specific relationship between HMO-grown bifidobacteria and intestinal epithelial cells. To our knowledge, this is the first study describing HMO-induced changes in the bifidobacteria-intestinal cells interaction. PMID:22383026

  10. Associations between common intestinal parasites and bacteria in humans as revealed by qPCR.

    PubMed

    O'Brien Andersen, L; Karim, A B; Roager, H M; Vigsnæs, L K; Krogfelt, K A; Licht, T R; Stensvold, C R

    2016-09-01

    Several studies have shown associations between groups of intestinal bacterial or specific ratios between bacterial groups and various disease traits. Meanwhile, little is known about interactions and associations between eukaryotic and prokaryotic microorganisms in the human gut. In this work, we set out to investigate potential associations between common single-celled parasites such as Blastocystis spp. and Dientamoeba fragilis and intestinal bacteria. Stool DNA from patients with intestinal symptoms were selected based on being Blastocystis spp.-positive (B+)/negative (B-) and D. fragilis-positive (D+)/negative (D-), and split into four groups of 21 samples (B+ D+, B+ D-, B- D+, and B- D-). Quantitative PCR targeting the six bacterial taxa Bacteroides, Prevotella, the butyrate-producing clostridial clusters IV and XIVa, the mucin-degrading Akkermansia muciniphila, and the indigenous group of Bifidobacterium was subsequently performed, and the relative abundance of these bacteria across the four groups was compared. The relative abundance of Bacteroides in B- D- samples was significantly higher compared with B+ D- and B+ D+ samples (P < 0.05 and P < 0.01, respectively), and this association was even more significant when comparing all parasite-positive samples with parasite-negative samples (P < 0.001). Additionally, our data revealed that a low abundance of Prevotella and a higher abundance of Clostridial cluster XIVa was associated with parasite-negative samples (P < 0.05 and P < 0.01, respectively). Our data support the theory that Blastocystis alone or combined with D. fragilis is associated with gut microbiota characterized by low relative abundances of Bacteroides and Clostridial cluster XIVa and high levels of Prevotella. PMID:27230509

  11. Intestinal steroidogenesis.

    PubMed

    Bouguen, Guillaume; Dubuquoy, Laurent; Desreumaux, Pierre; Brunner, Thomas; Bertin, Benjamin

    2015-11-01

    Steroids are fundamental hormones that control a wide variety of physiological processes such as metabolism, immune functions, and sexual characteristics. Historically, steroid synthesis was considered a function restricted to the adrenals and the gonads. In the past 20 years, a significant number of studies have demonstrated that steroids could also be synthesized or metabolized by other organs. According to these studies, the intestine appears to be a major source of de novo produced glucocorticoids as well as a tissue capable of producing and metabolizing sex steroids. This finding is based on the detection of steroidogenic enzyme expression as well as the presence of bioactive steroids in both the rodent and human gut. Within the intestinal mucosa, the intestinal epithelial cell layer is one of the main cellular sources of steroids. Glucocorticoid synthesis regulation in the intestinal epithelial cells is unique in that it does not involve the classical positive regulator steroidogenic factor-1 (SF-1) but a closely related homolog, namely the liver receptor homolog-1 (LRH-1). This local production of immunoregulatory glucocorticoids contributes to intestinal homeostasis and has been linked to pathophysiology of inflammatory bowel diseases. Intestinal epithelial cells also possess the ability to metabolize sex steroids, notably estrogen; this mechanism may impact colorectal cancer development. In this review, we contextualize and discuss what is known about intestinal steroidogenesis and regulation as well as the key role these functions play both in physiological and pathological conditions. PMID:25560486

  12. Fiber-based polarization-sensitive OCT of the human retina with correction of system polarization distortions

    PubMed Central

    Braaf, Boy; Vermeer, Koenraad A.; de Groot, Mattijs; Vienola, Kari V.; de Boer, Johannes F.

    2014-01-01

    In polarization-sensitive optical coherence tomography (PS-OCT) the use of single-mode fibers causes unpredictable polarization distortions which can result in increased noise levels and erroneous changes in calculated polarization parameters. In the current paper this problem is addressed by a new Jones matrix analysis method that measures and corrects system polarization distortions as a function of wavenumber by spectral analysis of the sample surface polarization state and deeper located birefringent tissue structures. This method was implemented on a passive-component depth-multiplexed swept-source PS-OCT system at 1040 nm which was theoretically modeled using Jones matrix calculus. High-resolution B-scan images are presented of the double-pass phase retardation, diattenuation, and relative optic axis orientation to show the benefits of the new analysis method for in vivo imaging of the human retina. The correction of system polarization distortions yielded reduced phase retardation noise, and better estimates of the diattenuation and the relative optic axis orientation in weakly birefringent tissues. The clinical potential of the system is shown by en face visualization of the phase retardation and optic axis orientation of the retinal nerve fiber layer in a healthy volunteer and a glaucoma patient with nerve fiber loss. PMID:25136498

  13. Stereomicroscopic 3D-pattern profiling of murine and human intestinal inflammation reveals unique structural phenotypes

    PubMed Central

    Rodriguez-Palacios, Alex; Kodani, Tomohiro; Kaydo, Lindsey; Pietropaoli, Davide; Corridoni, Daniele; Howell, Scott; Katz, Jeffry; Xin, Wei; Pizarro, Theresa T.; Cominelli, Fabio

    2015-01-01

    Histology is fundamental to assess two-dimensional intestinal inflammation; however, inflammatory bowel diseases (IBDs) are often indistinguishable microscopically on the basis of mucosal biopsies. Here, we use stereomicroscopy (SM) to rapidly profile the entire intestinal topography and assess inflammation. We examine the mucosal surface of >700 mice (encompassing >16 strains and various IBD-models), create a profiling catalogue of 3D-stereomicroscopic abnormalities and demonstrate that mice with comparable histological scores display unique sub-clusters of 3D-structure-patterns of IBD pathology, which we call 3D-stereoenterotypes, and which are otherwise indiscernible histologically. We show that two ileal IBD-stereoenterotypes (‘cobblestones' versus ‘villous mini-aggregation') cluster separately within two distinct mouse lines of spontaneous ileitis, suggesting that host genetics drive unique and divergent inflammatory 3D-structural patterns in the gut. In humans, stereomicroscopy reveals ‘liquefaction' lesions and hierarchical fistulous complexes, enriched with clostridia/segmented filamentous bacteria, running under healthy mucosa in Crohn's disease. We suggest that stereomicroscopic (3D-SMAPgut) profiling can be easily implemented and enable the comprehensive study of inflammatory 3D structures, genetics and flora in IBD. PMID:26154811

  14. Supersaturation and Precipitation of Posaconazole Upon Entry in the Upper Small Intestine in Humans.

    PubMed

    Hens, Bart; Brouwers, Joachim; Corsetti, Maura; Augustijns, Patrick

    2016-09-01

    The purpose of this study was to explore gastrointestinal dissolution, supersaturation and precipitation of the weakly basic drug posaconazole in humans, and to assess the impact of formulation pH and type on these processes. In a cross-over study, two posaconazole suspensions (40 mg dispersed in 240 mL water at pH 1.6 and pH 7.1, respectively) were intragastrically administered; subsequently, gastric and duodenal fluids were aspirated. In parallel, blood samples were collected. Additionally, posaconazole was intragastrically administered as a solution (20 mg in 240 mL water, pH 1.6). When posaconazole was administered as an acidified suspension, supersaturated duodenal concentrations of posaconazole were observed for approximately 45 min. However, extensive intestinal precipitation was observed. Administration of the neutral suspension resulted in subsaturated concentrations with a mean duodenal AUC0-120 min and Cmax being approximately twofold lower than for the acidified suspension. The mean plasma AUC0-8 h of posaconazole was also twofold higher following administration of the acidified suspension. Similar to the acidified suspension, significant intestinal precipitation (up to 92%) was observed following intragastric administration of the posaconazole solution. This study demonstrated for the first time the gastrointestinal behavior of a weakly basic drug administered in different conditions, and its impact on systemic exposure. PMID:26505884

  15. High-Throughput Quantitative Analysis of the Human Intestinal Microbiota with a Phylogenetic Microarray▿

    PubMed Central

    Paliy, Oleg; Kenche, Harshavardhan; Abernathy, Frank; Michail, Sonia

    2009-01-01

    Gut microbiota carry out key functions in health and participate in the pathogenesis of a growing number of diseases. The aim of this study was to develop a custom microarray that is able to identify hundreds of intestinal bacterial species. We used the Entrez nucleotide database to compile a data set of bacterial 16S rRNA gene sequences isolated from human intestinal and fecal samples. Identified sequences were clustered into separate phylospecies groups. Representative sequences from each phylospecies were used to develop a microbiota microarray based on the Affymetrix GeneChip platform. The designed microbiota array contains probes to 775 different bacterial phylospecies. In our validation experiments, the array correctly identified genomic DNA from all 15 bacterial species used. Microbiota array has a detection sensitivity of at least 1 pg of genomic DNA and can detect bacteria present at a 0.00025% level of overall sample. Using the developed microarray, fecal samples from two healthy children and two healthy adults were analyzed for bacterial presence. Between 227 and 232 species were detected in fecal samples from children, whereas 191 to 208 species were found in adult stools. The majority of identified phylospecies belonged to the classes Clostridia and Bacteroidetes. The microarray revealed putative differences between the gut microbiota of healthy children and adults: fecal samples from adults had more Clostridia and less Bacteroidetes and Proteobacteria than those from children. A number of other putative differences were found at the genus level. PMID:19363078

  16. Partial Characterization of Bacteriocins Produced by Two New Enterococcus faecium Isolated from Human Intestine.

    PubMed

    Turgis, Mélanie; Vu, Khanh Dang; Lacroix, Monique

    2013-06-01

    This study aimed at characterizing two novel bacteriocin-producing enterococcal strains isolated from human intestine. A total of 200 lactic acid bacteria were isolated from a woman stool sample. Two of them were selected for characterization due to their high antimicrobial activity against five strains of Listeria monocytogenes. The selected bacteria were identified as two different strains of Enterococcus faecium and designated MT 104 and MT 162. The bacteriocins produced by MT 104 and MT 162 were stable at different pH ranging from 2 to 11 and were active after different treatments such as heat, enzymes, detergents, and γ-irradiation. The two isolated strains exhibited some probiotic properties such as survival in simulated gastric fluid and intestinal fluid, lack of expression of bile salt hydrolase or hemolytic activity, adhesion to Caco-2 cells efficiently, and sensitivity to clinical antimicrobial agents. Thus, the two isolated strains of E. faecium could become new probiotic bacteria and their bacteriocins could be used for controlling L. monocytogenes in combination with irradiation for food preservation. PMID:26782736

  17. Glyceroglycolipids Affect Uptake of Carotenoids Solubilized in Mixed Micelles by Human Intestinal Caco-2 Cells.

    PubMed

    Kotake-Nara, Eiichi; Yonekura, Lina; Nagao, Akihiko

    2015-09-01

    We previously reported that phospholipids markedly affected the uptake of carotenoids solubilized in mixed micelles by human intestinal Caco-2 cells. In the present study, we found that two classes of dietary glyceroglycolipids and the corresponding lysoglyceroglycolipids affected uptake of β-carotene and lutein by differentiated Caco-2 cells. The levels of carotenoid uptake from micelles containing digalactosyldiacylglycerol or sulfoquinovosyldiacylglycerol were significantly lower than that from control micelles. On the other hand, the uptakes from micelles containing digalactosylmonoacylglycerol or sulfoquinovosylmonoacylglycerol were significantly higher than that from control micelles. In dispersed cells and Caco-2 cells with poor cell-to-cell adhesion, however, the levels of uptake from micelles containing these lyso-lipids were much lower than that from control micelles. The uptake levels from control micelles were markedly decreased depending on the development of cell-to-cell/cell-matrix adhesion in Caco-2 cells, but the uptake levels from the micelles containing these lyso-lipids were not substantially changed, suggesting that the intercellular barrier formed by cell-to-cell/cell-matrix adhesion inhibited the uptake from control micelles, but not from the lyso-lipid-containing micelles. The lyso-lipids appeared to enhance carotenoid uptake by decreasing the intercellular barrier integrity. The results showed that some types of glyceroglycolipids have the potential to modify the intestinal uptake of carotenoids. PMID:26012480

  18. Amount and fate of egg protein escaping assimilation in the small intestine of humans.

    PubMed

    Evenepoel, P; Claus, D; Geypens, B; Hiele, M; Geboes, K; Rutgeerts, P; Ghoos, Y

    1999-11-01

    Studies attempting to evaluate protein assimilation in humans have hitherto relied on either ileostomy subjects or intubation techniques. The availability of stable isotope-labeled protein allowed us to determine the amount and fate of dietary protein escaping digestion and absorption in the small intestine of healthy volunteers using noninvasive tracer techniques. Ten healthy volunteers were studied once after ingestion of a cooked test meal, consisting of 25 g of (13)C-, (15)N-, and (2)H-labeled egg protein, and once after ingestion of the same but raw meal. Amounts of 5.73% and 35.10% (P < 0.005) of cooked and raw test meal, respectively, escaped digestion and absorption in the small intestine. A significantly higher percentage of the malabsorbed raw egg protein was recovered in urine as fermentation metabolites. These results 1) confirm that substantial amounts of even easily digestible proteins may escape assimilation in healthy volunteers and 2) further support the hypothesis that the metabolic fate of protein in the colon is affected by the amount of protein made available. PMID:10564098

  19. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health.

    PubMed

    Ríos-Covián, David; Ruas-Madiedo, Patricia; Margolles, Abelardo; Gueimonde, Miguel; de Los Reyes-Gavilán, Clara G; Salazar, Nuria

    2016-01-01

    The colon is inhabited by a dense population of microorganisms, the so-called "gut microbiota," able to ferment carbohydrates and proteins that escape absorption in the small intestine during digestion. This microbiota produces a wide range of metabolites, including short chain fatty acids (SCFA). These compounds are absorbed in the large bowel and are defined as 1-6 carbon volatile fatty acids which can present straight or branched-chain conformation. Their production is influenced by the pattern of food intake and diet-mediated changes in the gut microbiota. SCFA have distinct physiological effects: they contribute to shaping the gut environment, influence the physiology of the colon, they can be used as energy sources by host cells and the intestinal microbiota and they also participate in different host-signaling mechanisms. We summarize the current knowledge about the production of SCFA, including bacterial cross-feedings interactions, and the biological properties of these metabolites with impact on the human health. PMID:26925050

  20. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health

    PubMed Central

    Ríos-Covián, David; Ruas-Madiedo, Patricia; Margolles, Abelardo; Gueimonde, Miguel; de los Reyes-Gavilán, Clara G.; Salazar, Nuria

    2016-01-01

    The colon is inhabited by a dense population of microorganisms, the so-called “gut microbiota,” able to ferment carbohydrates and proteins that escape absorption in the small intestine during digestion. This microbiota produces a wide range of metabolites, including short chain fatty acids (SCFA). These compounds are absorbed in the large bowel and are defined as 1-6 carbon volatile fatty acids which can present straight or branched-chain conformation. Their production is influenced by the pattern of food intake and diet-mediated changes in the gut microbiota. SCFA have distinct physiological effects: they contribute to shaping the gut environment, influence the physiology of the colon, they can be used as energy sources by host cells and the intestinal microbiota and they also participate in different host-signaling mechanisms. We summarize the current knowledge about the production of SCFA, including bacterial cross-feedings interactions, and the biological properties of these metabolites with impact on the human health. PMID:26925050

  1. Functional Comparison of Human Colonic Carcinoma Cell Lines and Primary Small Intestinal Epithelial Cells for Investigations of Intestinal Drug Permeability and First-Pass Metabolism.

    PubMed

    Yamaura, Yoshiyuki; Chapron, Brian D; Wang, Zhican; Himmelfarb, Jonathan; Thummel, Kenneth E

    2016-03-01

    To further the development of a model for simultaneously assessing intestinal absorption and first-pass metabolism in vitro, Caco-2, LS180, T84, and fetal human small intestinal epithelial cells (fSIECs) were cultured on permeable inserts, and the integrity of cell monolayers, CYP3A4 activity, and the inducibility of enzymes and transporters involved in intestinal drug disposition were measured. Caco-2, T84, and fSIECs all formed tight junctions, as assessed by immunofluorescence microscopy for zonula occludens-1, which was well organized into circumscribing strands in T84, Caco-2, and fSIECs but was diffuse in LS180 cells. The transepithelial electrical resistance value for LS180 monolayers was lower than that for Caco-2, T84, and fSIECs. In addition, the apical-to-basolateral permeability of the paracellular marker Lucifer yellow across LS180 monolayers was greater than in fSIECs, T84, and Caco-2 monolayers. The transcellular marker propranolol exhibited similar permeability across all cells. With regard to metabolic capacity, T84 and LS180 cells showed comparable basal midazolam hydroxylation activity and was inducible by rifampin and 1α,25(OH)2D3 in LS180 cells, but only marginally so in T84 cells. The basal CYP3A4 activity of fSIECs and Caco-2 cells was much lower and not inducible. Interestingly, some of the drug transporters expressed in LS180 and Caco-2 cells were induced by either 1α,25(OH)2D3 or rifampin or both, but effects were limited in the other two cell lines. These results suggest that none of the cell lines tested fully replicated the drug disposition properties of the small intestine and that the search for an ideal screening tool must continue. PMID:26700954

  2. Evaluation of fasted and fed state simulated and human intestinal fluids as solvent system in the Ussing chambers model to explore food effects on intestinal permeability.

    PubMed

    Wuyts, Benjamin; Riethorst, Danny; Brouwers, Joachim; Tack, Jan; Annaert, Pieter; Augustijns, Patrick

    2015-01-30

    The Ussing chambers model is almost exclusively used in the presence of plain aqueous phosphate buffers as solvent system. In an attempt to further elucidate the effect of luminal ingredients and postprandial conditions on intestinal permeability, pooled fasted and fed state human intestinal fluids (FaHIFpool, FeHIFpool) were used. In addition, simulated intestinal fluids of both nutritional states (FaSSIF, FeSSIF) were evaluated as possible surrogate media for HIF. The use of FaHIFpool generated a broad range of Papp values for a series of 16 model drugs, ranging from 0.03×10(-6)cm/s (carvedilol) to 33.8×10(-6)cm/s (naproxen). A linear correlation was observed between Papp values using FaSSIF and FaHIFpool as solvent system (R=0.990), justifying the use of FaSSIF as surrogate medium for FaHIF in the Ussing chambers. In exclusion of the outlier carvedilol, a strong sigmoidal relationship was found between Papp and fahuman of 15 model drugs, illustrated by correlation coefficients of 0.961 and 0.936 for FaHIFpool and FaSSIF, respectively. When addressing food effects on intestinal permeability, the use of FeHIFpool resulted in a significantly lower Papp value for nine out of sixteen compounds compared to fasting conditions. FeSSIF as solvent system significantly overestimated Papp values in FeHIFpool. To conclude, the optimized Ussing chambers model using biorelevant media as apical solvent system holds great potential to investigate food effects in a more integrative approach, taking into account drug solubilisation, supersaturation and formulation effects. PMID:25510602

  3. Human Milk Oligosaccharides: Evolution, Structures and Bioselectivity as Substrates for Intestinal Bacteria

    PubMed Central

    German, J. Bruce; Freeman, Samara L.; Lebrilla, Carlito B.; Mills, David A.

    2010-01-01

    Human milk contains a high concentration of diverse soluble oligosaccharides that are carbohydrate polymers formed from a relatively small number of different monosaccharides. Novel methods combining liquid chromatography with high resolution mass spectrometry have identified approximately 200 unique oligosaccharides structures varying from 3 to 22 sugars. The increasing structural complexity of oligosaccharides follows the general pattern of mammalian and primate evolution though the concentration and diversity of these structures in homo sapiens are strikingly more abundant. There is also considerable diversity among different human mothers in the structures of oligosaccharides. Milks from randomly selected mothers contain as few as 23 and as many as 130 different oligosaccharides. The functional implications of this diversity are not yet known. Despite the role of milk to serve as a sole nutrient source for mammalian infants, the majority of the oligosaccharides in milk are not digestible by human infants. This apparent paradox raises the obvious questions about the functions of these oligosaccharides and how their diverse molecular structures affect their functions. The nutritional function that is most frequently attributed to milk oligosaccharides is to serve as prebiotics –a form of indigestible carbohydrate that is selectively fermented by desirable gut microflora. This function was tested by purifying human milk oligosaccharides and providing these as the sole carbon source to various intestinal bacteria. Indeed, the selectively of providing the complex mixture of oligosaccharides pooled from dozens of human milk samples is remarkable. Among a variety of Bifidobacteria tested only Bifidobacteria longum biovar infantis was able to grow extensively on human milk oligosaccharides as sole carbon source. The genomic sequence of this strain revealed approximately 700 genes that are unique to infantis, including a variety of co-regulated glycosidases, relative

  4. Transcobalamin derived from bovine milk stimulates apical uptake of vitamin B12 into human intestinal epithelial cells.

    PubMed

    Hine, Brad; Boggs, Irina; Green, Ralph; Miller, Joshua W; Hovey, Russell C; Humphrey, Rex; Wheeler, Thomas T

    2014-11-01

    Intestinal uptake of vitamin B12 (hereafter B12) is impaired in a significant proportion of the human population. This impairment is due to inherited or acquired defects in the expression or function of proteins involved in the binding of diet-derived B12 and its uptake into intestinal cells. Bovine milk is an abundant source of bioavailable B12 wherein it is complexed with transcobalamin. In humans, transcobalamin functions primarily as a circulatory protein, which binds B12 following its absorption and delivers it to peripheral tissues via its cognate receptor, CD320. In the current study, the transcobalamin-B12 complex was purified from cows' milk and its ability to stimulate uptake of B12 into cultured bovine, mouse and human cell lines was assessed. Bovine milk-derived transcobalamin-B12 complex was absorbed by all cell types tested, suggesting that the uptake mechanism is conserved across species. Furthermore, the complex stimulated the uptake of B12 via the apical surface of differentiated Caco-2 human intestinal epithelial cells. These findings suggest the presence of an alternative transcobalamin-mediated uptake pathway for B12 in the human intestine other than that mediated by the gastric glycoprotein, intrinsic factor. Our findings highlight the potential for transcobalamin-B12 complex derived from bovine milk to be used as a natural bioavailable alternative to orally administered free B12 to overcome B12 malabsorption. PMID:24913691

  5. Expression of Epstein–Barr virus-induced gene 3 and other interleukin-12-related molecules by human intestinal epithelium

    PubMed Central

    Maaser, Christian; Egan, Laurence J; Birkenbach, Mark P; Eckmann, Lars; Kagnoff, Martin F

    2004-01-01

    Antigen-presenting cells, including dendritic cells, monocytes and macrophages, produce members of the interleukin-12 (IL-12) family that are important in initiating and maintaining cell-mediated immune responses. These include IL-12p35 and p19 that dimerize with IL-12p40 to form IL-12 (also termed IL-12p75) and IL-23, respectively, and Epstein–Barr virus-induced gene 3 (EBI3) protein (a protein related to IL-12p40), that forms a dimer with p28, termed IL-27. Intestinal epithelial cells, which are the initial site of contact between the host and enteric pathogens, can act as antigen-presenting cells, and are known to express mediators important in inflammatory and immune responses. In the current studies, we hypothesized that intestinal epithelial cells express members of the IL-12 family, which can function as an early signalling system important in mucosal immunity. Using in vitro and in vivo model systems of human intestinal epithelium, we demonstrate the regulated expression of EBI3, IL-12p35 and p19 by human intestinal epithelial cells. However, intestinal epithelial cells do not coexpress IL-12p40 or p28 that are required to generate heterodimeric IL-12p75, IL-23 and IL-27. To the extent that IL-12p35, p19 and EBI3 cannot form IL-12p75, IL-23 or IL-27 heterodimers in intestinal epithelial cells, these data suggest that those cells may express other, currently unknown, molecules that can associate with EBI3, IL-12p35 and/or p19 or, alternatively, intestinal epithelial cells may release IL-12-related molecules that by themselves, or in combination with other molecules in the mucosal microenvironment, mediate biological activities. PMID:15196212

  6. Bifidobacteria Prevent Tunicamycin-Induced Endoplasmic Reticulum Stress and Subsequent Barrier Disruption in Human Intestinal Epithelial Caco-2 Monolayers.

    PubMed

    Akiyama, Takuya; Oishi, Kenji; Wullaert, Andy

    2016-01-01

    Endoplasmic reticulum (ER) stress is caused by accumulation of unfolded and misfolded proteins in the ER, thereby compromising its vital cellular functions in protein production and secretion. Genome wide association studies in humans as well as experimental animal models linked ER stress in intestinal epithelial cells (IECs) with intestinal disorders including inflammatory bowel diseases. However, the mechanisms linking the outcomes of ER stress in IECs to intestinal disease have not been clarified. In this study, we investigated the impact of ER stress on intestinal epithelial barrier function using human colon carcinoma-derived Caco-2 monolayers. Tunicamycin-induced ER stress decreased the trans-epithelial electrical resistance of Caco-2 monolayers, concomitant with loss of cellular plasma membrane integrity. Epithelial barrier disruption in Caco-2 cells after ER stress was not caused by caspase- or RIPK1-dependent cell death but was accompanied by lysosomal rupture and up-regulation of the ER stress markers Grp78, sXBP1 and Chop. Interestingly, several bifidobacteria species inhibited tunicamycin-induced ER stress and thereby diminished barrier disruption in Caco-2 monolayers. Together, these results showed that ER stress compromises the epithelial barrier function of Caco-2 monolayers and demonstrate beneficial impacts of bifidobacteria on ER stress in IECs. Our results identify epithelial barrier loss as a potential link between ER stress and intestinal disease development, and suggest that bifidobacteria could exert beneficial effects on this phenomenon. PMID:27611782

  7. The epidemiology of human intestinal helminthiasis in Ibadan, South Western Nigeria.

    PubMed

    Ayanwale, F O; Esuruoso, G O; Dipeolu, O O

    1982-06-01

    An epidemiological survey of human faeces collected from open places in native quarters and from volunteers in modern housing areas was conducted so as to ascertain the intestinal helminth infections in Ibadan a town in South Western Nigeria. Out of four hundred and seventy eight stool samples examined between February 1980 and January 1981 in twenty nine localities grouped into 7 zones, Ascaris (Round worm) Trichuris (Whip worm) and hookworm were most prevalent. Ascaris and hookworms were three times as prevalent in native areas as in modern quarters. Two local dispensary records confirmed many reported cases of 'stomach aches' that responded to deworming therapy. The public health significance of open field defecation is discussed. The need to resuscitate the public sanitary inspectors' act as practiced prior to the country's independence in 1960 is also advocated. PMID:7174237

  8. Regulation of arylsulfate sulfotransferase from a human intestinal bacterium by nucleotides and magnesium ion.

    PubMed

    Konishi-Imamura, L; Kim, D H; Koizumi, M; Kobashi, K

    1995-01-01

    Arylsulfate sulfotransferase (ASST) from a human intestinal bacterium stoichiometrically catalyzed the transfer of a sulfate group from phenylsulfate esters to phenolic compounds. Pentachlorophenol, one of the selective inhibitors of phenol sulfoconjugation in mammalian tissues, inhibited both phenol and tyramine sulfation by ASST. Nucleotide triphosphates such as ATP, GTP, UTP and CTP, and pyrophosphate inhibited the ASST activity, whereas Mg2+ and Mn2+ activated the enzyme and prevented its inhibition by ATP and pyrophosphate. Equimolar binding of [alpha-] and [gamma-32P]ATP to the enzyme showed that the enzyme protein was not phosphorylated, but bound ATP. These results suggest that nucleotide triphosphates and divalent cations are important modulators in the control of ASST activity. PMID:7542320

  9. In vitro behavior of human intestinal mucosa. The influence of acetyl choline on ion transport.

    PubMed Central

    Isaacs, P E; Corbett, C L; Riley, A K; Hawker, P C; Turnberg, L A

    1976-01-01

    The possibility that the autonomic nervous system may influence the function of intestinal mucosa was investigated by assessing the effect of acetyl choline on ion transport in human intestine. Isolated pieces of stripped ileal mucosa were mounted in Perspex flux-chambers and bathed in isotonic glucose Ringer's solution. Acetyl choline caused a rise in mean potential difference (8.8-12.3 mV, P less than 0.002) and short circuit current (287.7-417.2 muA-cm-2, P less than 0.01) (n = 12), observable at a concentration of 0.01 mM and maximal at 0.1 mM. This effect was enhanced by neostigmine and blocked by atropine. Isotopic flux determinations revealed a change from a small mean net Cl absorption (58) to a net Cl secretion (-4.3mueq-cm-2-h-1P less than 0.001) due predominantly to an increase in the serosal to mucosal unidirectional flux of Cl (10.63-14.35 mueq-cm-2-h-1P less than 0.05) and a smaller reduction in the mucosal to serosal flux (11.22 to 10.02 mueq-cm-2-h-1P less than 0.05). Unidirectional and net Na transport was unaffected. A similar electrical and ion transport response was observed in a single study of two pieces of jejunal mucosa. In the absence of glucose net chloride secretion was produced and again an insignificant effect on net sodium transport was noted. Acetyl choline did not provoke a sustained effect on mucosal cyclic adenine nucleotide levels although a short-lived cyclic adenine nucleotide response was seen in some tissues 20-30 s after drug addition. These studies demonstrate that acetyl choline does influence human intestinal ion transport by stimulating chloride secretion and suggest a possible mechanism by which the parasympathetic nervous system could be concerned in the control of ion transport. Images PMID:182722

  10. SHP-2 Mediates Cryptosporidium parvum Infectivity in Human Intestinal Epithelial Cells

    PubMed Central

    Varughese, Eunice A.; Kasper, Susan; Anneken, Emily M.; Yadav, Jagjit S.

    2015-01-01

    The parasite, Cryptosporidium parvum, induces human gastroenteritis through infection of host epithelial cells in the small intestine. During the initial stage of infection, C. parvum is reported to engage host mechanisms at the host cell-parasite interface to form a parasitophorous vacuole. We determined that upon infection, the larger molecular weight proteins in human small intestinal epithelial host cells (FHs 74 Int) appeared to globally undergo tyrosine dephosphorylation. In parallel, expression of the cytoplasmic protein tyrosine phosphatase Src homology-2 domain-containing phosphatase 2 (SHP-2) increased in a time-dependent manner. SHP-2 co-localized with the C. parvum sporozoite and this interaction increased the rate of C. parvum infectivity through SH2-mediated SHP-2 activity. Furthermore, we show that one potential target that SHP-2 acts upon is the focal adhesion protein, paxillin, which undergoes moderate dephosphorylation following infection, with inhibition of SHP-2 rescuing paxillin phosphorylation. Importantly, treatment with an inhibitor to SHP-2 and with an inhibitor to paxillin and Src family kinases, effectively decreased the multiplicity of C. parvum infection in a dose-dependent manner. Thus, our study reveals an important role for SHP-2 in the pathogenesis of C. parvum. Furthermore, while host proteins can be recruited to participate in the development of the electron dense band at the host cell-parasite interface, our study implies for the first time that SHP-2 appears to be recruited by the C. parvum sporozoite to regulate infectivity. Taken together, these findings suggest that SHP-2 and its down-stream target paxillin could serve as targets for intervention. PMID:26556238

  11. Predicting the impact of diet and enzymopathies on human small intestinal epithelial cells

    PubMed Central

    Sahoo, Swagatika; Thiele, Ines

    2013-01-01

    Small intestinal epithelial cells (sIECs) have a significant share in whole body metabolism as they perform enzymatic digestion and absorption of nutrients. Furthermore, the diet plays a key role in a number of complex diseases including obesity and diabetes. The impact of diet and altered genetic backgrounds on human metabolism may be studied by using computational modeling. A metabolic reconstruction of human sIECs was manually assembled using the literature. The resulting sIEC model was subjected to two different diets to obtain condition-specific metabolic models. Fifty defined metabolic tasks evaluated the functionalities of these models, along with the respective secretion profiles, which distinguished between impacts of different dietary regimes. Under the average American diet, the sIEC model resulted in higher secretion flux for metabolites implicated in metabolic syndrome. In addition, enzymopathies were analyzed in the context of the sIEC metabolism. Computed results were compared with reported gastrointestinal (GI) pathologies and biochemical defects as well as with biomarker patterns used in their diagnosis. Based on our simulations, we propose that (i) sIEC metabolism is perturbed by numerous enzymopathies, which can be used to study cellular adaptive mechanisms specific for such disorders, and in the identification of novel co-morbidities, (ii) porphyrias are associated with both heme synthesis and degradation and (iii) disturbed intestinal gamma-aminobutyric acid synthesis may be linked to neurological manifestations of various enzymopathies. Taken together, the sIEC model represents a comprehensive, biochemically accurate platform for studying the function of sIEC and their role in whole body metabolism. PMID:23492669

  12. Transport of Aflatoxin M1 in Human Intestinal Caco-2/TC7 Cells

    PubMed Central

    Caloni, Francesca; Cortinovis, Cristina; Pizzo, Fabiola; De Angelis, Isabella

    2012-01-01

    Aflatoxin M1 (AFM1) is a hydroxylated metabolite of aflatoxin B1 (AFB1). After it is formed, it is secreted in the milk of mammals. Despite the potential risk of human exposure to AFM1, data reported in literature on the metabolism, toxicity, and bioavailability of this molecule are limited and out of date. The aim of the present research was to study the absorption profile of AFM1 and possible damage to tight junctions (TJ) of the intestinal Caco-2/TC7 clone grown on microporous filter supports. These inserts allowed for the separation of the apical and basolateral compartments which correspond to the in vivo lumen and the interstitial space/vascular systems of intestinal mucosa respectively. In this study, the Caco-2/TC7 cells were treated with different AFM1 concentrations (10–10,000 ng/kg) for short (40 min) and long periods of time (48 h). The AFM1 influx/efflux transport and effects on TJ were evaluated by measuring trans-epithelial electrical resistance and observing TJ protein (Zonula occludens-1 and occludin) localization. The results showed that: (i) when introduced to the apical and basolateral compartments, AFM1 was poorly absorbed by the Caco-2/TC7 cells but its transport across the cell monolayer occurred very quickly (Papp value of 105.10 ± 7.98 cm/s × 10−6). (ii) The integrity of TJ was not permanently compromised after exposure to the mycotoxin. Viability impairment or barrier damage did not occur either. The present results contribute to the evaluation of human risk exposure to AFM1, although the AFM1 transport mechanism need to be clarified. PMID:22701428

  13. GIARDIA LAMBLIA: STIMULATION OF GROWTH BY HUMAN INTESTINAL MUCUS AND EPITHELIAL CELLS IN SERUMFREE MEDIUM (JOURNAL VERSION)

    EPA Science Inventory

    Giardia lamblia trophozoites specifically colonize the upper human small intestine which is normally serum-free, but grow in vitro only in medium supplemented with serum or serum fractions. Recently, biliary lipids were shown to support the growth of G. lamblia without serum. Now...

  14. Ultrasound Elasticity Imaging for Detecting Intestinal Fibrosis and Inflammation in Rats and Humans With Crohn’s Disease

    PubMed Central

    Stidham, Ryan W.; Xu, Jingping; Johnson, Laura A.; Kim, Kang; Moons, David S.; Mckenna, Barbara J.; Rubin, Jonathan M.; Higgins, Peter D. R.

    2016-01-01

    BACKGROUND Intestinal fibrosis causes many complications of Crohn’s disease (CD). Available biomarkers and imaging modalities lack sufficient accuracy to distinguish intestinal inflammation from fibrosis. Transcutaneous ultrasound elasticity imaging (UEI) is a promising, noninvasive approach for measuring tissue mechanical properties. We hypothesized that UEI could differentiate inflammatory from fibrotic bowel wall changes in both animal models of colitis and humans with CD. METHODS Female Lewis rats underwent weekly trinitrobenzene sulfonic acid enemas yielding models of acute inflammatory colitis (n = 5) and chronic intestinal fibrosis (n = 6). UEI scanning used a novel speckle-tracking algorithm to estimate tissue strain. Resected bowel segments were evaluated for evidence of inflammation and fibrosis. Seven consecutive patients with stenotic CD were studied with UEI and their resected stenotic and normal bowel segments were evaluated by ex vivo elastometry and histopathology. RESULTS Transcutaneous UEI normalized strain was able to differentiate acutely inflamed (−2.07) versus chronic fibrotic (−1.10) colon in rat models of inflammatory bowel disease (IBD; P = .037). Transcutaneous UEI normalized strain also differentiated stenotic (−0.87) versus adjacent normal small bowel (−1.99) in human CD (P = .0008), and this measurement also correlated well with ex vivo elastometry (r = −0.81). CONCLUSIONS UEI can differentiate inflammatory from fibrotic intestine in rat models of IBD and can differentiate between fibrotic and unaffected intestine in a pilot study in humans with CD. UEI represents a novel technology with potential to become a new objective measure of progression of intestinal fibrosis. Prospective clinical studies in CD are needed. PMID:21784048

  15. Total Body Irradiation in the "Hematopoietic" Dose Range Induces Substantial Intestinal Injury in Non-Human Primates.

    PubMed

    Wang, Junru; Shao, Lijian; Hendrickson, Howard P; Liu, Liya; Chang, Jianhui; Luo, Yi; Seng, John; Pouliot, Mylene; Authier, Simon; Zhou, Daohong; Allaben, William; Hauer-Jensen, Martin

    2015-11-01

    The non-human primate has been a useful model for studies of human acute radiation syndrome (ARS). However, to date structural changes in various parts of the intestine after total body irradiation (TBI) have not been systematically studied in this model. Here we report on our current study of TBI-induced intestinal structural injury in the non-human primate after doses typically associated with hematopoietic ARS. Twenty-four non-human primates were divided into three groups: sham-irradiated control group; and total body cobalt-60 (60Co) 6.7 Gy gamma-irradiated group; and total body 60Co 7.4 Gy gamma-irradiated group. After animals were euthanized at day 4, 7 and 12 postirradiation, sections of small intestine (duodenum, proximal jejunum, distal jejunum and ileum) were collected and fixed in 10% formalin. The intestinal mucosal surface length, villus height and crypt depths were assessed by computer-assisted image analysis. Plasma citrulline levels were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Total bone marrow cells were counted and hematopoietic stem/progenitor cells in bone marrow were analyzed by flow cytometer. Histopathologically, all segments exhibited conspicuous disappearance of plicae circulares and prominent atrophy of crypts and villi. Intestinal mucosal surface length was significantly decreased in all intestinal segments on day 4, 7 and 12 after irradiation (P < 0.02-P < 0.001). Villus height was significantly reduced in all segments on day 4 and 7 (P = 0.02-0.005), whereas it had recovered by day 12 (P > 0.05). Crypt depth was also significantly reduced in all segments on day 4, 7 and 12 after irradiation (P < 0.04-P < 0.001). Plasma citrulline levels were dramatically reduced after irradiation, consistent with intestinal mucosal injury. Both 6.7 and 7.4 Gy TBI reduced total number of bone marrow cells. And further analysis showed that the number and function of CD45(+)CD34(+) hematopoietic stem/progenitors in bone

  16. Enterotoxigenic Escherichia coli TibA Glycoprotein Adheres to Human Intestine Epithelial Cells

    PubMed Central

    Lindenthal, Christoph; Elsinghorst, Eric A.

    2001-01-01

    Enterotoxigenic Escherichia coli (ETEC) is capable of invading epithelial cell lines derived from the human ileum and colon. Two separate invasion loci (tia and tib) that direct noninvasive E. coli strains to adhere to and invade cultured human intestine epithelial cells have previously been isolated from the classical ETEC strain H10407. The tib locus directs the synthesis of TibA, a 104-kDa outer membrane glycoprotein. Synthesis of TibA is directly correlated with the adherence and invasion phenotypes of the tib locus, suggesting that this protein is an adhesin and invasin. Here we report the purification of TibA and characterization of its biological activity. TibA was purified by continuous-elution preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified TibA was biotin labeled and then shown to bind to HCT8 human ileocecal epithelial cells in a specific and saturable manner. Unlabeled TibA competed with biotin-labeled TibA, suggesting the presence of a specific TibA receptor in HCT8 cells. These results show that TibA acts as an adhesin. Polyclonal anti-TibA antiserum inhibited invasion of ETEC strain H10407 and of recombinant E. coli bearing tib locus clones, suggesting that TibA also acts as an invasin. The ability of TibA to direct epithelial cell adhesion suggests a role for this protein in ETEC pathogenesis. PMID:11119488

  17. Enterotoxigenic Escherichia coli TibA glycoprotein adheres to human intestine epithelial cells.

    PubMed

    Lindenthal, C; Elsinghorst, E A

    2001-01-01

    Enterotoxigenic Escherichia coli (ETEC) is capable of invading epithelial cell lines derived from the human ileum and colon. Two separate invasion loci (tia and tib) that direct noninvasive E. coli strains to adhere to and invade cultured human intestine epithelial cells have previously been isolated from the classical ETEC strain H10407. The tib locus directs the synthesis of TibA, a 104-kDa outer membrane glycoprotein. Synthesis of TibA is directly correlated with the adherence and invasion phenotypes of the tib locus, suggesting that this protein is an adhesin and invasin. Here we report the purification of TibA and characterization of its biological activity. TibA was purified by continuous-elution preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Purified TibA was biotin labeled and then shown to bind to HCT8 human ileocecal epithelial cells in a specific and saturable manner. Unlabeled TibA competed with biotin-labeled TibA, suggesting the presence of a specific TibA receptor in HCT8 cells. These results show that TibA acts as an adhesin. Polyclonal anti-TibA antiserum inhibited invasion of ETEC strain H10407 and of recombinant E. coli bearing tib locus clones, suggesting that TibA also acts as an invasin. The ability of TibA to direct epithelial cell adhesion suggests a role for this protein in ETEC pathogenesis. PMID:11119488

  18. Human perception of visual stimuli modulated by direction of linear polarization.

    PubMed

    Misson, Gary P; Timmerman, Brenda H; Bryanston-Cross, Peter J

    2015-10-01

    This study explores both theoretically and experimentally the human perception of polarized light beyond that currently established. The radial analyser theory of Haidinger's phenomenon (HP) is used to predict the effect of observing visual stimuli comprising patterned zones characterized by orthogonal planes of linear polarization (linear polarization direction fields, LPD-fields). Any pattern can be represented as an LPD-field including optotypes and geometric forms. Simulated percepts differ from the original patterns although edges are mostly preserved. In edge-rich images a cross of attenuating contrast spanning the field of view is predicted. The mathematical model is verified experimentally using a liquid crystal display (LCD)-based polarization modulator imaged through a tangential (azimuthal) analyser with properties complementary to a radial analyser. The LCD device is then used in vivo to elicit perceptual responses in human subjects. Normal humans are found to readily detect spatially and temporally modulated isoluminant spatially-isochromatic, highly polarized LPD stimuli. Most subjects match the stimuli to corresponding images of theoretically predicted percepts. In particular edge perception and the presence of the contrast cross was confirmed. Unlike HP, static patterned LPD stimuli are perceived without difficulty. The simplest manifestation of human polarization perception is HP which is the fundamental element of an open set of stimulus-dependent percepts. This study demonstrates that humans have the ability to perceive and identify visual pattern stimuli defined solely by polarization state modulation. PMID:26291073

  19. Advancing the use of Lactobacillus acidophilus surface layer protein A for the treatment of intestinal disorders in humans.

    PubMed

    Sahay, Bikash; Ge, Yong; Colliou, Natacha; Zadeh, Mojgan; Weiner, Chelsea; Mila, Ashley; Owen, Jennifer L; Mohamadzadeh, Mansour

    2015-01-01

    Intestinal immunity is subject to complex and fine-tuned regulation dictated by interactions of the resident microbial community and their gene products with host innate cells. Deterioration of this delicate process may result in devastating autoinflammatory diseases, including inflammatory bowel disease (IBD), which primarily comprises Crohn's disease (CD) and ulcerative colitis (UC). Efficacious interventions to regulate proinflammatory signals, which play critical roles in IBD, require further scientific investigation. We recently demonstrated that rebalancing intestinal immunity via the surface layer protein A (SlpA) from Lactobacillus acidophilus NCFM potentially represents a feasible therapeutic approach to restore intestinal homeostasis. To expand on these findings, we established a new method of purifying bacterial SlpA, a new SlpA-specific monoclonal antibody, and found no SlpA-associated toxicity in mice. Thus, these data may assist in our efforts to determine the immune regulatory efficacy of SlpA in humans. PMID:26647142

  20. Commensal-Associated Molecular Patterns Induce Selective Toll-Like Receptor-Trafficking from Apical Membrane to Cytoplasmic Compartments in Polarized Intestinal Epithelium

    PubMed Central

    Cario, Elke; Brown, Dennis; McKee, Mary; Lynch-Devaney, Kathryn; Gerken, Guido; Podolsky, Daniel K.

    2002-01-01

    Commensal-associated molecular patterns, the major products of nonpathogenic bacteria, are present at high concentrations at the apical surface of the intestinal epithelium. However, the nature of the interaction of commensal-associated molecular patterns with the lumenal surface of the epithelium has not been defined. We have recently demonstrated that intestinal epithelial cells constitutively express several Toll-like receptors (TLRs) in vitro and in vivo that seem to be the key receptors responsible for immune cell activation in response to various bacterial products. In this study we characterize the subcellular distribution of two major TLRs, TLR2 and TLR4, and their ligand-specific dynamic regulation in the model human intestinal epithelial cell line T84. Immunocytochemical studies indicate that TLR2 and TLR4 are constitutively expressed at the apical pole of differentiated T84 cells. After stimulation with lipopolysaccharide or peptidoglycan, TLRs selectively traffic to cytoplasmic compartments near the basolateral membrane. Thus, we demonstrate that TLRs are positioned at the apical pole where they are poised to monitor the sensitive balance of the lumenal microbial array. The results of this dynamic epithelial surveillance can then be conveyed to the underlying cell populations of the lamina propria via these innate immune pattern recognition receptors. PMID:11786410

  1. An ex-vivo Human Intestinal Model to Study Entamoeba histolytica Pathogenesis

    PubMed Central

    Bansal, Devendra; Ave, Patrick; Kerneis, Sophie; Frileux, Pascal; Boché, Olivier; Baglin, Anne Catherine; Dubost, Geneviève; Leguern, Anne-Sophie; Prevost, Marie-Christine; Bracha, Rivka; Mirelman, David; Guillén, Nancy; Labruyère, Elisabeth

    2009-01-01

    Amoebiasis (a human intestinal infection affecting 50 million people every year) is caused by the protozoan parasite Entamoeba histolytica. To study the molecular mechanisms underlying human colon invasion by E. histolytica, we have set up an ex vivo human colon model to study the early steps in amoebiasis. Using scanning electron microscopy and histological analyses, we have established that E. histolytica caused the removal of the protective mucus coat during the first two hours of incubation, detached the enterocytes, and then penetrated into the lamina propria by following the crypts of Lieberkühn. Significant cell lysis (determined by the release of lactodehydrogenase) and inflammation (marked by the secretion of pro-inflammatory molecules such as interleukin 1 beta, interferon gamma, interleukin 6, interleukin 8 and tumour necrosis factor) were detected after four hours of incubation. Entamoeba dispar (a closely related non-pathogenic amoeba that also colonizes the human colon) was unable to invade colonic mucosa, lyse cells or induce an inflammatory response. We also examined the behaviour of trophozoites in which genes coding for known virulent factors (such as amoebapores, the Gal/GalNAc lectin and the cysteine protease 5 (CP-A5), which have major roles in cell death, adhesion (to target cells or mucus) and mucus degradation, respectively) were silenced, together with the corresponding tissue responses. Our data revealed that the signalling via the heavy chain Hgl2 or via the light chain Lgl1 of the Gal/GalNAc lectin is not essential to penetrate the human colonic mucosa. In addition, our study demonstrates that E. histolytica silenced for CP-A5 does not penetrate the colonic lamina propria and does not induce the host's pro-inflammatory cytokine secretion. PMID:19936071

  2. Monocarboxylate Transporter-Mediated Transport of γ-Hydroxybutyric Acid in Human Intestinal Caco-2 Cells

    PubMed Central

    Lam, Wing Ki; Felmlee, Melanie A.

    2010-01-01

    The objectives of this study were to determine mRNA expression of monocarboxylate transporters (MCT) and to evaluate intestinal transport of the MCT substrates γ-hydroxybutyrate (GHB) and d-lactate in human intestinal Caco-2 cells. The presence of mRNA for MCT1, 2, 3, and 4 was observed in Caco-2 cells. The uptake of both GHB and d-lactate in Caco-2 cells was demonstrated to be pH- and concentration-dependent and sodium-independent. The uptake of GHB and d-lactate was best described by a Michaelis-Menten equation with passive diffusion (GHB: Km = 17.6 ± 10.5 mM, Vmax = 17.3 ± 11.7 nmol/min/mg, and P = 0.38 ± 0.15 μl/min/mg; and d-lactate: Km = 6.0 ± 2.9 mM, Vmax = 35.0 ± 18.4 nmol/min/mg, and P = 1.3 ± 0.6 μl/min/mg). The uptake of GHB and d-lactate was significantly decreased by the known MCT inhibitor α-cyano-4-hydroxycinnamate and the MCT substrates GHB and d-lactate but not by the organic cation tetraethylammonium chloride. Directional flux studies with both GHB and d-lactate suggested the involvement of carrier-mediated transport with the permeability in the apical to basolateral direction higher than that in the basolateral to apical direction. These findings confirm the presence of MCT1–4 in Caco-2 cells and demonstrate GHB and d-lactate transport characteristics consistent with proton-dependent MCT-mediated transport. PMID:19952290

  3. Transport of levovirin prodrugs in the human intestinal Caco-2 cell line.

    PubMed

    Li, Fujun; Hong, Lei; Mau, Cheng-I; Chan, Rebecca; Hendricks, Than; Dvorak, Chuck; Yee, Calvin; Harris, Jason; Alfredson, Tom

    2006-06-01

    The transport of 10 amino acid ester prodrugs of levovirin (LVV) was investigated in the human intestinal Caco-2 cell line in order to overcome the poor oral bioavailability of LVV, an investigational drug for the treatment of hepatitis C infection. The prodrugs were designed to improve the permeability of LVV across the intestinal epithelium by targeting the di/tri-peptide carrier, PepT1. Caco-2 cell monolayers were employed to study the transport and hydrolysis properties of the prodrugs. Among all mono amino acid ester prodrugs studied, the LVV-5'-(L)-valine prodrug (R1518) exhibited the maximum increase (48-fold) in permeability with nearly complete conversion to LVV within 1 h. Di-amino acid esters did not offer significant enhancement in permeability comparing with mono amino acid esters and exhibited slower conversion to LVV in Caco2 cell monolayers. Pharmacokinetic screening studies of the prodrugs in rats yielded the highest fold increase (6.9-fold) of AUC with R1518 and in general displayed a similar trend to that observed in increases of permeability in Caco-2 cells. Mechanisms involved in the Caco-2 cell transport of R1518 were also investigated. Results of bi-directional transport studies support the involvement of carrier-mediated transport mechanisms for R1518, but not for the LVV-5'-(D)-valine prodrug or LVV. Moreover, the permeability of R1518 was found to be proton dependent. PepT1-mediated transport of R1518 was supported by results of competitive transport studies of R1518 with the PepT1 substrates enalapril, Gly-Sar, valganciclovir, and cephalexin. R1518 was also found to inhibit the permeability of valganciclovir and cephalexin. These results suggest that R1518 is a PepT1 substrate as well as an inhibitor. PMID:16634069

  4. Toxic mechanisms induced by fumonisin b1 mycotoxin on human intestinal cell line.

    PubMed

    Minervini, Fiorenza; Garbetta, Antonella; D'Antuono, Isabella; Cardinali, Angela; Martino, Nicola Antonio; Debellis, Lucantonio; Visconti, Angelo

    2014-07-01

    The gastrointestinal tract is the main target of exposure to mycotoxin fumonisin B1 (FB1), common natural contaminant in food. Previous studies reported that proliferating cells are more sensitive than confluent cells to the toxic effect of FB1. This study aims to investigate, by dose- and time-dependent experiments on human colon proliferating intestinal cell line (HT-29), the modifications induced by FB1 at concentrations ranging from 0.25 to 69 μM. The choice of highest FB1 concentration considered the low toxicity previously reported on intestinal cell lines, whereas the lowest one corresponded to the lower FBs levels permitted by European Commission Regulation. Different functional parameters were tested such as cell proliferation, oxidative status, immunomodulatory effect and changes in membrane microviscosity. In addition FB1-FITC localization in this cell line was assessed by using confocal laser scanning microscopy. Lipid peroxidation induction was the main and early (12 h) effect induced by FB1 at concentrations ranging from 0.5 to 69 μM, followed by inhibition of cell proliferation (up to 8.6 μM), the immunomodulatory effect (up to 17.2 μM), by assessing IL-8 secretion, and increase in membrane microviscosity (up to 34.5 μM). The toxic effects observed in different functional parameters were not dose-dependent and could be the consequence of the FB1 intracytoplasmatic localization as confirmed by confocal microscopy results. The different timescales and concentrations active of different functional parameters could suggest different cellular targets of FB1. PMID:24549592

  5. Synergy between bacterial infection and genetic predisposition in intestinal dysplasia.

    PubMed

    Apidianakis, Yiorgos; Pitsouli, Chrysoula; Perrimon, Norbert; Rahme, Laurence

    2009-12-01

    Accumulating evidence suggests that hyperproliferating intestinal stem cells (SCs) and progenitors drive cancer initiation, maintenance, and metastasis. In addition, chronic inflammation and infection have been increasingly recognized for their roles in cancer. Nevertheless, the mechanisms by which bacterial infections can initiate SC-mediated tumorigenesis remain elusive. Using a Drosophila model of gut pathogenesis, we show that intestinal infection with Pseudomonas aeruginosa, a human opportunistic bacterial pathogen, activates the c-Jun N-terminal kinase (JNK) pathway, a hallmark of the host stress response. This, in turn, causes apoptosis of enterocytes, the largest class of differentiated intestinal cells, and promotes a dramatic proliferation of SCs and progenitors that serves as a homeostatic compensatory mechanism to replenish the apoptotic enterocytes. However, we find that this homeostatic mechanism can lead to massive over-proliferation of intestinal cells when infection occurs in animals with a latent oncogenic form of the Ras1 oncogene. The affected intestines develop excess layers of cells with altered apicobasal polarity reminiscent of dysplasia, suggesting that infection can directly synergize with the genetic background in predisposed individuals to initiate SC-mediated tumorigenesis. Our results provide a framework for the study of intestinal bacterial infections and their effects on undifferentiated and mature enteric epithelial cells in the initial stages of intestinal cancer. Assessment of progenitor cell responses to pathogenic intestinal bacteria could provide a measure of predisposition for apoptotic enterocyte-assisted intestinal dysplasias in humans. PMID:19934041

  6. The High Affinity IgE Receptor FcεRI Is Expressed by Human Intestinal Epithelial Cells

    PubMed Central

    Starkl, Philipp; Bevins, Charles L.; Scheiner, Otto; Boltz-Nitulescu, George; Wrba, Fritz; Jensen-Jarolim, Erika

    2010-01-01

    Background IgE antibodies play a paramount role in the pathogenesis of various intestinal disorders. To gain insights in IgE-mediated pathophysiology of the gut, we investigated the expression of the high affinity IgE receptor FcεRI in human intestinal epithelium. Methodology/Principal Findings FcεRI α-chain, as detected by immunohistochemistry, was positive in epithelial cells for eight of eleven (8/11) specimens from colon cancer patients and 5/11 patients with inflammation of the enteric mucosa. The FcεRIα positive epithelial cells co-expressed FcεRIγ, whereas with one exception, none of the samples was positive for the β-chain in the epithelial layer. The functionality of FcεRI was confirmed in situ by human IgE binding. In experiments with human intestinal tumor cell lines, subconfluent Caco-2/TC7 and HCT-8 cells were found to express the α- and γ-chains of FcεRI and to bind IgE, whereas confluent cells were negative for γ-chains. Conclusions/Significance Our data provide the first evidence that the components of a functional FcεRI are in vitro expressed by the human intestinal epithelial cells depending on differentiation and, more importantly, in situ in epithelia of patients with colon cancer or gastrointestinal inflammations. Thus, a contribution of FcεRI either to immunosurveillance or pathophysiology of the intestinal epithelium is suggested. PMID:20126404

  7. Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interactions.

    PubMed Central

    Bernet, M F; Brassart, D; Neeser, J R; Servin, A L

    1993-01-01

    Thirteen human bifidobacterial strains were tested for their abilities to adhere to human enterocyte-like Caco-2 cells in culture. The adhering strains were also tested for binding to the mucus produced by the human mucus-secreting HT29-MTX cell line in culture. A high level of calcium-independent adherence was observed for Bifidobacterium breve 4, for Bifidobacterium infantis 1, and for three fresh human isolates from adults. As observed by scanning electron microscopy, adhesion occurs to the apical brush border of the enterocytic Caco-2 cells and to the mucus secreted by the HT29-MTX mucus-secreting cells. The bacteria interacted with the well-defined apical microvilli of Caco-2 cells without cell damage. The adhesion to Caco-2 cells of bifidobacteria did not require calcium and was mediated by a proteinaceous adhesion-promoting factor which was present both in the bacterial whole cells and in the spent supernatant of bifidobacterium culture. This adhesion-promoting factor appeared species specific, as are the adhesion-promoting factors of lactobacilli. We investigated the inhibitory effect of adhering human bifidobacterial strains against intestinal cell monolayer colonization by a variety of diarrheagenic bacteria. B. breve 4, B. infantis 1, and fresh human isolates were shown to inhibit cell association of enterotoxigenic, enteropathogenic, diffusely adhering Escherichia coli and Salmonella typhimurium strains to enterocytic Caco-2 cells in a concentration-dependent manner. Moreover, B. breve 4 and B. infantis 1 strains inhibited, dose dependently, Caco-2 cell invasion by enteropathogenic E. coli, Yersinia pseudotuberculosis, and S. typhimurium strains. Images PMID:8285709

  8. Molecular Paleoparasitological Hybridization Approach as Effective Tool for Diagnosing Human Intestinal Parasites from Scarce Archaeological Remains

    PubMed Central

    Jaeger, Lauren Hubert; Iñiguez, Alena Mayo

    2014-01-01

    Paleoparasitology is the science that uses parasitological techniques for diagnosing parasitic diseases in the past. Advances in molecular biology brought new insights into this field allowing the study of archaeological material. However, due to technical limitations a proper diagnosis and confirmation of the presence of parasites is not always possible, especially in scarce and degraded archaeological remains. In this study, we developed a Molecular Paleoparasitological Hybridization (MPH) approach using ancient DNA (aDNA) hybridization to confirm and complement paleoparasitological diagnosis. Eight molecular targets from four helminth parasites were included: Ascaris sp., Trichuris trichiura, Enterobius vermicularis, and Strongyloides stercoralis. The MPH analysis using 18th century human remains from Praça XV cemetery (CPXV), Rio de Janeiro, Brazil, revealed for the first time the presence E. vermicularis aDNA (50%) in archaeological sites of Brazil. Besides, the results confirmed T. trichiura and Ascaris sp. infections. The prevalence of infection by Ascaris sp. and E. vermicularis increased considerably when MPH was applied. However, a lower aDNA detection of T. trichiura (40%) was observed when compared to the diagnosis by paleoparasitological analysis (70%). Therefore, based on these data, we suggest a combination of Paleoparasitological and MPH approaches to verify the real panorama of intestinal parasite infection in human archeological samples. PMID:25162694

  9. Polysaccharide Degradation by the Intestinal Microbiota and Its Influence on Human Health and Disease.

    PubMed

    Cockburn, Darrell W; Koropatkin, Nicole M

    2016-08-14

    Carbohydrates comprise a large fraction of the typical diet, yet humans are only able to directly process some types of starch and simple sugars. The remainder transits the large intestine where it becomes food for the commensal bacterial community. This is an environment of not only intense competition but also impressive cooperation for available glycans, as these bacteria work to maximize their energy harvest from these carbohydrates during their limited transit time through the gut. The species within the gut microbiota use a variety of strategies to process and scavenge both dietary and host-produced glycans such as mucins. Some act as generalists that are able to degrade a wide range of polysaccharides, while others are specialists that are only able to target a few select glycans. All are members of a metabolic network where substantial cross-feeding takes place, as by-products of one organism serve as important resources for another. Much of this metabolic activity influences host physiology, as secondary metabolites and fermentation end products are absorbed either by the epithelial layer or by transit via the portal vein to the liver where they can have additional effects. These microbially derived compounds influence cell proliferation and apoptosis, modulate the immune response, and can alter host metabolism. This review summarizes the molecular underpinnings of these polysaccharide degradation processes, their impact on human health, and how we can manipulate them through the use of prebiotics. PMID:27393306

  10. Why do humans have two glucocorticoids: A question of intestinal fortitude.

    PubMed

    Morris, David J

    2015-10-01

    The main purpose of this review article is threefold (a) to try to address the question "why are two adrenal glucocorticoids, cortisol and corticosterone, secreted by humans and other mammalian species?", (b) to outline a hypothesis that under certain physiological conditions, corticosterone has additional biochemical functions over and above those of cortisol, and (c) to emphasize the role of gastrointestinal bacteria in chemically transforming corticosterone into metabolites and that these re-cycled metabolites can be reabsorbed from the enterohepatic circuit. Cortisol and its metabolites are not secreted into the bile and thus are excluded from the enterohepatic circuit. Corticosterone was the first steroid hormone isolated from adrenal gland extracts. Many believe that corticosterone functions identically to cortisol. Yet, corticosterone causes significant sodium retention and potassium secretion in Addisonian patients, unlike cortisol. In humans, corticosterone and its metabolite, 3α,5α-TH-corticosterone, are excreted via the bile in humans where they are transformed in the intestine by anaerobic bacteria into 21-dehydroxylated products: 11β-OH-progesterone or 11β-OH-(allo)-5α-preganolones. These metabolites inhibit 11β-HSD2 and 11β-HSD1 dehydrogenase, being many-fold more potent than 3α,5α-TH-cortisol. Corticosterone has significantly lower Km's for both 11β-HSD2 and 11β-HSD1 enzymatic dehydrogenase activity, compared to cortisol. Patients diagnosed with 17α-hydroxylase deficiency have elevated blood pressure and high levels of circulating corticosterone, 3α,5α-TH-corticosterone, and their 21-dehydroxlated corticosterone derivatives. In humans, these 5α-corticosterone metabolites are likely to influence blood pressure regulation and Na(+) retention by inhibiting the rate of deactivation of cortisol by 11β-HSD isoforms. PMID:26144050

  11. Vascular perfused segments of human intestine as a tool for drug absorption.

    PubMed

    Wei, Yansheng; Neves, Liomar A A; Franklin, Tammy; Klyuchnikova, Nadya; Placzek, Benjamin; Hughes, Helen M; Curtis, C Gerald

    2009-04-01

    Blood-based vascular perfusion of isolated segments of human jejunum was developed as a tool for drug absorption studies before clinical trials. Acceptance criteria for viable human gut preparations included stable blood flow, arterial pressure, glucose utilization, active peristalsis, oxygen uptake, less than 3% absorption of a 70,000 mol. wt. dextran, and a ratio of first-order absorption rate constants (k(a)) of antipyrine to terbutaline of > or =1.4. Mannitol absorption was less than that of antipyrine but larger than that of terbutaline and could not be used as a negative control in absorption studies with human intestine. In separate perfusions (n = 3) a cassette of nine drugs was administered into the gut lumen, and the net absorption of each drug into the circulation was measured over 75 min. Using the mean values of k(a), the test compounds could be ranked into four groups: group 1: sulfasalazine and furosemide, k(a) = 3.9 to 4.0 x 10(-3) min(-1); group 2: cimetidine, timolol, nadolol, and ranitidine, k(a) = 6.4 to 8.3 x 10(-3) min(-1); group 3: atenolol and metoprolol, k(a) = 9.6 x 10(-3) min(-1); and group 4: theophylline, k(a) = 17.5 x 10(-3) min(-1). The rationale for evaluating yet another oral absorption system was as follows: first, a human gut segment with an intact vascular system is the closest system available to a clinical trial without performing one; and second, the data generated would be a direct measure of net drug transport from the gut lumen into the vascular circulation under near physiological conditions, which is not possible in models lacking a blood supply. PMID:19118133

  12. Evaluation of physicochemical properties and intestinal permeability of six dietary polyphenols in human intestinal colon adenocarcinoma Caco-2 cells.

    PubMed

    Rastogi, Himanshu; Jana, Snehasis

    2016-02-01

    Phenolic compounds are common ingredients in many dietary supplements and functional foods. However, data concerning physicochemical properties and permeability of polyphenols on the intestinal epithelial cells are scarce. The aims of this study were to determine the experimental partition coefficient (Log P), and parallel artificial membrane permeability assay (PAMPA), to characterize the bi-directional transport of six phenolic compounds viz. caffeic acid, chrysin, gallic acid, quercetin, resveratrol and rutin in Caco-2 cells. The experimental Log P values of six polyphenols were correlated (R (2) = 0.92) well with the calculated Log P values. The apparent permeability (P app) range of all polyphenols in PAMPA for the apical (AP) to basolateral (BL) was 1.18 ± 0.05 × 10(-6) to 5.90 ± 0.16 × 10(-6) cm/s. The apparent Caco-2 permeability (P app) range for the AP-BL was 0.96 ± 0.03 × 10(-6) to 3.80 ± 0.45 × 10(-6) cm/s. The efflux ratio of P app (BL → AP) to P app (AP → BL) for all phenolics was <2, suggesting greater permeability in the absorptive direction. Six compounds exhibited strong correlations between Log P and PAMPA/Caco-2 cell monolayer permeation data. Dietary six polyphenols were poorly absorbed through PAMPA and Caco-2 cells, and their transepithelial transports were mainly by passive diffusion. PMID:25351179

  13. Microbiota/Host Crosstalk Biomarkers: Regulatory Response of Human Intestinal Dendritic Cells Exposed to Lactobacillus Extracellular Encrypted Peptide

    PubMed Central

    Al-Hassi, Hafid O.; Mann, Elizabeth R.; Urdaci, María C.; Knight, Stella C.; Margolles, Abelardo

    2012-01-01

    The human gastrointestinal tract is exposed to a huge variety of microorganisms, either commensal or pathogenic; at this site, a balance between immunity and immune tolerance is required. Intestinal dendritic cells (DCs) control the mechanisms of immune response/tolerance in the gut. In this paper we have identified a peptide (STp) secreted by Lactobacillus plantarum, characterized by the abundance of serine and threonine residues within its sequence. STp is encoded in one of the main extracellular proteins produced by such species, which includes some probiotic strains, and lacks cleavage sites for the major intestinal proteases. When studied in vitro, STp expanded the ongoing production of regulatory IL-10 in human intestinal DCs from healthy controls. STp-primed DC induced an immunoregulatory cytokine profile and skin-homing profile on stimulated T-cells. Our data suggest that some of the molecular dialogue between intestinal bacteria and DCs may be mediated by immunomodulatory peptides, encoded in larger extracellular proteins, secreted by commensal bacteria. These peptides may be used for the development of nutraceutical products for patients with IBD. In addition, this kind of peptides seem to be absent in the gut of inflammatory bowel disease patients, suggesting a potential role as biomarker of gut homeostasis. PMID:22606249

  14. Assessment of the mode of action underlying development of rodent small intestinal tumors following oral exposure to hexavalent chromium and relevance to humans

    PubMed Central

    Proctor, Deborah M.; Suh, Mina; Haws, Laurie C.; Kirman, Christopher R.; Harris, Mark A.

    2013-01-01

    Chronic exposure to high concentrations of hexavalent chromium (Cr(VI)) in drinking water causes intestinal adenomas and carcinomas in mice, but not in rats. Cr(VI) causes damage to intestinal villi and crypt hyperplasia in mice after only one week of exposure. After two years of exposure, intestinal damage and crypt hyperplasia are evident in mice (but not rats), as are intestinal tumors. Although Cr(VI) has genotoxic properties, these findings suggest that intestinal tumors in mice arise as a result of chronic mucosal injury. To better understand the mode of action (MOA) of Cr(VI) in the intestine, a 90-day drinking water study was conducted to collect histological, biochemical, toxicogenomic and pharmacokinetic data in intestinal tissues. Using MOA analyses and human relevance frameworks proposed by national and international regulatory agencies, the weight of evidence supports a cytotoxic MOA with the following key events: (a) absorption of Cr(VI) from the intestinal lumen, (b) toxicity to intestinal villi, (c) crypt regenerative hyperplasia and (d) clonal expansion of mutations within the crypt stem cells, resulting in late onset tumorigenesis. This article summarizes the data supporting each key event in the MOA, as well as data that argue against a mutagenic MOA for Cr(VI)-induced intestinal tumors. PMID:23445218

  15. Novel Resveratrol-Based Substrates for Human Hepatic, Renal, and Intestinal UDP-Glucuronosyltransferases

    PubMed Central

    2015-01-01

    Trans-Resveratrol (tRes) has been shown to have powerful antioxidant, anti-inflammatory, anticarcinogenic, and antiaging properties; however, its use as a therapeutic agent is limited by its rapid metabolism into its conjugated forms by UDP-glucuronosyltransferases (UGTs). The aim of the current study was to test the hypothesis that the limited bioavailability of tRes can be improved by modifying its structure to create analogs which would be glucuronidated at a lower rate than tRes itself. In this work, three synthetic stilbenoids, (E)-3-(3-hydroxy-4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)acrylic acid (NI-12a), (E)-2,4-dimethoxy-6-(4-methoxystyryl)benzaldehyde oxime (NI-ST-05), and (E)-4-(3,5-dimethoxystyryl)-2,6-dinitrophenol (DNR-1), have been designed based on the structure of tRes and synthesized in our laboratory. UGTs recognize and glucuronidate tRes at each of the 3 hydroxyl groups attached to its aromatic rings. Therefore, each of the above compounds was designed with the majority of the hydroxyl groups blocked by methylation and the addition of other novel functional groups as part of a drug optimization program. The activities of recombinant human UGTs from the 1A and 2B families were examined for their capacity to metabolize these compounds. Glucuronide formation was identified using HPLC and verified by β-glucuronidase hydrolysis and LC–MS/MS analysis. NI-12a was glucuronidated at both the −COOH and −OH functions, NI-ST-05 formed a novel N–O-glucuronide, and no product was observed for DNR-1. NI-12a is primarily metabolized by the hepatic and renal enzyme UGT1A9, whereas NI-ST-05 is primarily metabolized by an extrahepatic enzyme, UGT1A10, with apparent Km values of 240 and 6.2 μM, respectively. The involvement of hepatic and intestinal UGTs in the metabolism of both compounds was further confirmed using a panel of human liver and intestinal microsomes, and high individual variation in activity was demonstrated between donors. In summary

  16. Polarization correlometry of birefringence images of human blood layers

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Angelsky, P. O.; Karachevtsev, A. O.; Bodnar, G. B.; Koval, G. D.; Prydiy, O. G.; Marchuk, Yu.

    2013-12-01

    To analyze the coordinate-like structure of Stokes-parametric and Mueller-matrix images of optically anisotropic components of biological tissues, the two-point polarization-correlational approach was applied. On this basis parameters the method of cross-correlational definition of parameters (average sizes, asymmetry factor) of correlational contour was developed, which defines the topographical structure of the characteristic meanings of Stokes-parametric and Mueller-matrix images of histological sections of biological tissues.

  17. Structural and biochemical characterization of a novel aminopeptidase from human intestine.

    PubMed

    Tykvart, Jan; Bařinka, Cyril; Svoboda, Michal; Navrátil, Václav; Souček, Radko; Hubálek, Martin; Hradilek, Martin; Šácha, Pavel; Lubkowski, Jacek; Konvalinka, Jan

    2015-05-01

    N-acetylated α-linked acidic dipeptidase-like protein (NAALADase L), encoded by the NAALADL1 gene, is a close homolog of glutamate carboxypeptidase II, a metallopeptidase that has been intensively studied as a target for imaging and therapy of solid malignancies and neuropathologies. However, neither the physiological functions nor structural features of NAALADase L are known at present. Here, we report a thorough characterization of the protein product of the human NAALADL1 gene, including heterologous overexpression and purification, structural and biochemical characterization, and analysis of its expression profile. By solving the NAALADase L x-ray structure, we provide the first experimental evidence that it is a zinc-dependent metallopeptidase with a catalytic mechanism similar to that of glutamate carboxypeptidase II yet distinct substrate specificity. A proteome-based assay revealed that the NAALADL1 gene product possesses previously unrecognized aminopeptidase activity but no carboxy- or endopeptidase activity. These findings were corroborated by site-directed mutagenesis and identification of bestatin as a potent inhibitor of the enzyme. Analysis of NAALADL1 gene expression at both the mRNA and protein levels revealed the small intestine as the major site of protein expression and points toward extensive alternative splicing of the NAALADL1 gene transcript. Taken together, our data imply that the NAALADL1 gene product's primary physiological function is associated with the final stages of protein/peptide digestion and absorption in the human digestive system. Based on these results, we suggest a new name for this enzyme: human ileal aminopeptidase (HILAP). PMID:25752612

  18. Determination of tolerable fatty acids and cholera toxin concentrations using human intestinal epithelial cells and BALB/c mouse macrophages.

    PubMed

    Tamari, Farshad; Tychowski, Joanna; Lorentzen, Laura

    2013-01-01

    The positive role of fatty acids in the prevention and alleviation of non-human and human diseases have been and continue to be extensively documented. These roles include influences on infectious and non-infectious diseases including prevention of inflammation as well as mucosal immunity to infectious diseases. Cholera is an acute intestinal illness caused by the bacterium Vibrio cholerae. It occurs in developing nations and if left untreated, can result in death. While vaccines for cholera exist, they are not always effective and other preventative methods are needed. We set out to determine tolerable concentrations of three fatty acids (oleic, linoleic and linolenic acids) and cholera toxin using mouse BALB/C macrophages and human intestinal epithelial cells, respectively. We solubilized the above fatty acids and used cell proliferation assays to determine the concentration ranges and specific concentrations of the fatty acids that are not detrimental to human intestinal epithelial cell viability. We solubilized cholera toxin and used it in an assay to determine the concentration ranges and specific concentrations of cholera toxin that do not statistically decrease cell viability in BALB/C macrophages. We found the optimum fatty acid concentrations to be between 1-5 ng/μl, and that for cholera toxin to be < 30 ng per treatment. This data may aid future studies that aim to find a protective mucosal role for fatty acids in prevention or alleviation of cholera infections. PMID:23748896

  19. In vitro metabolism of the glycosidic sweeteners, stevia mixture and enzymatically modified stevia in human intestinal microflora.

    PubMed

    Koyama, E; Kitazawa, K; Ohori, Y; Izawa, O; Kakegawa, K; Fujino, A; Ui, M

    2003-03-01

    Stevia mixture, sweeteners extracted from the leaves of Stevia rebaudiana Bertoni, consists mainly of stevioside and rebaudioside A (glycosides of the diterpene derivative steviol). The aim of this study was to investigate human intestinal metabolism of stevia mixture and its alpha-glucose derivative (known in Japan as enzymatically modified stevia) by LC/MS/ESI analysis. Degradation was examined by incubating stevia mixture, enzymatically modified stevia, stevioside, rebaudioside A, alpha-monoglucosylstevioside, alpha-monoglucosylrebaudioside A and the aglycone, steviol with pooled human faecal homogenates (obtained from five healthy volunteers) for 0, 8 and 24 h under anaerobic conditions. Stevia mixture, enzymatically modified stevia, stevioside and rebaudioside A (0.2 mg/ml) were completely eliminated within 24 h, whereas no degradation of steviol (0.08 and 0.2 mg/ml) appeared to be found during the incubation period. Stevia mixture, stevioside and rebaudioside A appeared to be hydrolyzed to steviol by human intestinal microflora: this observation is consistent with previous rat metabolism studies. Similarly, enzymatically modified stevia appeared to be metabolized via stevia components and, finally, to steviol. This study suggests that there are apparently no species differences in intestinal metabolism of stevia mixture between rats and humans. PMID:12504168

  20. Rab11b Regulates the Apical Recycling of the Cystic Fibrosis Transmembrane Conductance Regulator in Polarized Intestinal Epithelial Cells

    PubMed Central

    Silvis, Mark R.; Bertrand, Carol A.; Ameen, Nadia; Golin-Bisello, Franca; Butterworth, Michael B.; Bradbury, Neil A.

    2009-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP/PKA-activated anion channel, undergoes efficient apical recycling in polarized epithelia. The regulatory mechanisms underlying CFTR recycling are understood poorly, yet this process is required for proper channel copy number at the apical membrane, and it is defective in the common CFTR mutant, ΔF508. Herein, we investigated the function of Rab11 isoforms in regulating CFTR trafficking in T84 cells, a colonic epithelial line that expresses CFTR endogenously. Western blotting of immunoisolated Rab11a or Rab11b vesicles revealed localization of endogenous CFTR within both compartments. CFTR function assays performed on T84 cells expressing the Rab11a or Rab11b GDP-locked S25N mutants demonstrated that only the Rab11b mutant inhibited 80% of the cAMP-activated halide efflux and that only the constitutively active Rab11b-Q70L increased the rate constant for stimulated halide efflux. Similarly, RNAi knockdown of Rab11b, but not Rab11a, reduced by 50% the CFTR-mediated anion conductance response. In polarized T84 monolayers, adenoviral expression of Rab11b-S25N resulted in a 70% inhibition of forskolin-stimulated transepithelial anion secretion and a 50% decrease in apical membrane CFTR as assessed by cell surface biotinylation. Biotin protection assays revealed a robust inhibition of CFTR recycling in polarized T84 cells expressing Rab11b-S25N, demonstrating the selective requirement for the Rab11b isoform. This is the first report detailing apical CFTR recycling in a native expression system and to demonstrate that Rab11b regulates apical recycling in polarized epithelial cells. PMID:19244346

  1. Effects of heat-killed Lactobacillus kunkeei YB38 on human intestinal environment and bowel movement: a pilot study.

    PubMed

    Asama, T; Kimura, Y; Kono, T; Tatefuji, T; Hashimoto, K; Benno, Y

    2016-06-01

    It is well known that lactic acid bacteria supplementation is beneficial for intestinal conditions such as microbiota; however, the effects of killed-lactic acid bacteria on intestinal conditions are largely unclear. This study aimed to evaluate the effect of heat-killed Lactobacillus kunkeei YB38 (YB38) at a dose of approximately 10 mg/day on human intestinal environment and bowel movement. This single-blind study enrolled 29 female subjects with a low defecation frequency who consumed heat-killed YB38 at four increasing dosage levels: 0 (placebo), 2, 10, and 50 mg. Each dose was consumed daily for two weeks, with a two-week baseline period preceding the dosing-period and a two-week washout period ending the study. Observed levels of Bacteroides fragilis group significantly decreased with intake of heat-killed YB38 at ≥10 mg/day compared with levels during placebo intake (P<0.01). Faecal pH significantly decreased with 10 and 50 mg/day intake (P<0.01 and 0.05, respectively). Acetic acid levels tended to increase in faeces at the 50 mg/day dose (P<0.1). Bowel movement tended to increase in all heat-killed YB38 intake periods (P<0.1). In conclusion, heat-killed YB38 altered human intestinal microbiota at doses of ≥10 mg/day and tended to increase bowel movement at ≥2 mg/day. This is the first study to show the intestinal microbiota-altering effect of L. kunkeei and to report the bowel movement-improving effect of heat-killed lactic acid bacteria. PMID:26839076

  2. Transglutaminase 2 expression is enhanced synergistically by interferon-γ and tumour necrosis factor-α in human small intestine

    PubMed Central

    Bayardo, M; Punzi, F; Bondar, C; Chopita, N; Chirdo, F

    2012-01-01

    Transglutaminase 2 (TG2) is expressed ubiquitously, has multiple physiological functions and has also been associated with inflammatory diseases, neurodegenerative disorders, autoimmunity and cancer. In particular, TG2 is expressed in small intestine mucosa where it is up-regulated in active coeliac disease (CD). The aim of this work was to investigate the induction of TG2 expression by proinflammatory cytokines [interleukin (IL)-1, IL-6, tumour necrosis factor (TNF)-α, interferon (IFN)-γ and IL-15] and the signalling pathways involved, in human epithelial and monocytic cells and in intestinal tissue from controls and untreated CD patients. Here we report that IFN-γ was the most potent inducer of TG2 expression in the small intestinal mucosa and in four [Caco-2, HT-29, Calu-6 and human acute monocytic leukaemia cell line (THP-1)] of five cell lines tested. The combination of TNF-α and IFN-γ produced a strong synergistic effect. The use of selective inhibitors of signalling pathways revealed that induction of TG2 by IFN-γ was mediated by phosphoinositide 3-kinase (PI3K), while c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) were required for TNF-α activation. Quantitative polymerase chain reaction (PCR), flow cytometry and Western blot analysis showed that TG2 expression was blocked completely when stimulation by either TNF-α or IFN-γ was performed in the presence of nuclear factor (NF)-κB inhibitors (sulphasalazine and BAY-117082). TG2 was up-regulated substantially by TNF-α and IFN-γ in intestinal mucosa in untreated CD compared with controls. This study shows that IFN-γ, a dominant cytokine in intestinal mucosa in active CD, is the most potent inducer of TG2, and synergism with TNF-α may contribute to exacerbate the pathogenic mechanism of CD. Selective inhibition of signalling pathways may be of therapeutic benefit. PMID:22385244

  3. Assessment and Molecular Characterization of Human Intestinal Parasites in Bivalves from Orchard Beach, NY, USA

    PubMed Central

    Tei, Freda F.; Kowalyk, Steven; Reid, Jhenelle A.; Presta, Matthew A.; Yesudas, Rekha; Mayer, D.C. Ghislaine

    2016-01-01

    Bivalves have been shown to be carriers of the human intestinal parasites Cryptosporidium parvum and Toxoplasma gondii. The goal of this study is to determine the prevalence of protozoan parasites in mollusks of New York City using a polymerase chain reaction (PCR)-based assay. Four species of mollusks, Mya arenaria, Geukensia demissa, Crassostrea virginica, and Mytilis edulis, were collected from Orchard Beach, NY in the fall of 2014, totaling 159 specimens. Each individual mollusk was dissected to harvest the digestive gland, the mantle, the gills, the foot and the siphon. The tissues were assayed for the presence of Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii DNA by using primers that target parasite-specific genes. C. parvum was found at a prevalence of 50%, 11.3%, and 1%, respectively, in Mya arenaria, G. demissa, and Mytilis edulis. C. parvum DNA was detected in all the tissues of these bivalve species, except the gills. Furthermore, G. lamblia was detected in Mya arenaria, G. demissa, Crassostrea virginica and Mytilis edulis at a prevalence of 37.5%, 4.5%, 60%, and 20.6%, respectively, while T. gondii DNA was not detected. PMID:27043590

  4. [Effect of trimebutine on the motility of the normal human small intestines: mechanism of action].

    PubMed

    Chaussade, S; Grandjouan, S; Couturier, D; Thierman-Duffaud, D; Henry, J F

    1987-01-01

    The effects of intravenous trimebutine (TMB) on duodenojejunal motility were investigated in normal subjects in fed and fasted states. The motility was recorded manometrically. In the fasting state TMB 100 mg, 25 min after a spontaneous phase 3 (P3) constantly induced a premature P3. The mean period (means +/- SE) of the migrating motor complex (MMC) cycle decreased from 84 +/- 10.9 to 32.5 +/- 1.0 min. TMB 50 mg, 3 and 25 min after a spontaneous P3 did not significantly modify the periodicity of MMC. TMB 100 mg initiated P3-like activity in post-prandial state. Previous administration of a low dose of naloxone suppressed the stimulating action of TMB. After a TMB injection the motilin plasma level did not vary; a brief increated of PP plasma level was observed. It may be concluded that in the human small intestine TMB included a typical modification of the motility pattern. Opiate receptors might be involved. PMID:3609631

  5. The Effect of Sex and Age on Small Intestinal Transit Times in Humans.

    PubMed

    Fischer, Monika; Fadda, Hala M

    2016-02-01

    This study utilizes a novel approach of small bowel video capsule endoscopy for investigating the influence of sex and age on small intestinal transit times (SITT) in humans. A total of 81 outpatients undergoing investigations with the small bowel video capsule endoscope (SB-VCE) and meeting inclusion criteria were included in this study. Following an overnight fast, patients swallowed the SB-VCE with a glass of water. SITT were calculated from the first duodenal image to the first cecal image. This study showed that the SB-VCE provides accurate and reliable measurements of SITT under real-life conditions. A large inter-individual variability in SITT was observed, with times ranging from 50 to 460 min. This variability can have implications on drug absorption and bioavailability. The median SITT were 219 min for females and 191 min for males. Although SITT were 28 min longer in females than males, this difference was not found to be statistically significant (p = 0.66). No correlation was found between age and SITT (Pearson correlation coefficient 0.19). Therefore, any drug bioavailability differences of modified release dosage preparations that are observed between adult patient groups of different age or sex are unlikely to be attributable to SITT. PMID:26308649

  6. Influence of Phenol-Enriched Olive Oils on Human Intestinal Immune Function.

    PubMed

    Martín-Peláez, Sandra; Castañer, Olga; Solà, Rosa; Motilva, María José; Castell, Margarida; Pérez-Cano, Francisco José; Fitó, Montserrat

    2016-01-01

    Olive oil (OO) phenolic compounds (PC) are able to influence gut microbial populations and metabolic output. Our aim was to investigate whether these compounds and changes affect the mucosal immune system. In a randomized, controlled, double blind cross-over human trial, for three weeks, preceded by two-week washout periods, 10 hypercholesterolemic participants ingested 25 mL/day of three raw virgin OO differing in their PC concentration and origin: (1) an OO containing 80 mg PC/kg (VOO); (2) a PC-enriched OO containing 500 mg PC/kg from OO (FVOO); and (3) a PC-enriched OO containing a mixture of 500 mg PC/kg from OO and thyme (1:1, FVOOT). Intestinal immunity (fecal immunoglobulin A (IgA) and IgA-coated bacteria) and inflammation markers (C-reactive protein (CRP) and fecal interleukin 6 (IL-6), tumor necrosis factor α (TNFα) and calprotectin) was analyzed. The ingestion of high amounts of OO PC, as contained in FVOO, tended to increase the proportions of IgA-coated bacteria and increased plasma levels of CRP. However, lower amounts of OO PC (VOO) and the combination of two PC sources (FVOOT) did not show significant effects on the variables investigated. Results indicate a potential stimulation of the immune system with very high doses of OO PC, which should be further investigated. PMID:27077879

  7. Influence of Phenol-Enriched Olive Oils on Human Intestinal Immune Function

    PubMed Central

    Martín-Peláez, Sandra; Castañer, Olga; Solà, Rosa; Motilva, María José; Castell, Margarida; Pérez-Cano, Francisco José; Fitó, Montserrat

    2016-01-01

    Olive oil (OO) phenolic compounds (PC) are able to influence gut microbial populations and metabolic output. Our aim was to investigate whether these compounds and changes affect the mucosal immune system. In a randomized, controlled, double blind cross-over human trial, for three weeks, preceded by two-week washout periods, 10 hypercholesterolemic participants ingested 25 mL/day of three raw virgin OO differing in their PC concentration and origin: (1) an OO containing 80 mg PC/kg (VOO); (2) a PC-enriched OO containing 500 mg PC/kg from OO (FVOO); and (3) a PC-enriched OO containing a mixture of 500 mg PC/kg from OO and thyme (1:1, FVOOT). Intestinal immunity (fecal immunoglobulin A (IgA) and IgA-coated bacteria) and inflammation markers (C-reactive protein (CRP) and fecal interleukin 6 (IL-6), tumor necrosis factor α (TNFα) and calprotectin) was analyzed. The ingestion of high amounts of OO PC, as contained in FVOO, tended to increase the proportions of IgA-coated bacteria and increased plasma levels of CRP. However, lower amounts of OO PC (VOO) and the combination of two PC sources (FVOOT) did not show significant effects on the variables investigated. Results indicate a potential stimulation of the immune system with very high doses of OO PC, which should be further investigated. PMID:27077879

  8. Assessment and Molecular Characterization of Human Intestinal Parasites in Bivalves from Orchard Beach, NY, USA.

    PubMed

    Tei, Freda F; Kowalyk, Steven; Reid, Jhenelle A; Presta, Matthew A; Yesudas, Rekha; Mayer, D C Ghislaine

    2016-01-01

    Bivalves have been shown to be carriers of the human intestinal parasites Cryptosporidium parvum and Toxoplasma gondii. The goal of this study is to determine the prevalence of protozoan parasites in mollusks of New York City using a polymerase chain reaction (PCR)-based assay. Four species of mollusks, Mya arenaria, Geukensia demissa, Crassostrea virginica, and Mytilis edulis, were collected from Orchard Beach, NY in the fall of 2014, totaling 159 specimens. Each individual mollusk was dissected to harvest the digestive gland, the mantle, the gills, the foot and the siphon. The tissues were assayed for the presence of Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii DNA by using primers that target parasite-specific genes. C. parvum was found at a prevalence of 50%, 11.3%, and 1%, respectively, in Mya arenaria, G. demissa, and Mytilis edulis. C. parvum DNA was detected in all the tissues of these bivalve species, except the gills. Furthermore, G. lamblia was detected in Mya arenaria, G. demissa, Crassostrea virginica and Mytilis edulis at a prevalence of 37.5%, 4.5%, 60%, and 20.6%, respectively, while T. gondii DNA was not detected. PMID:27043590

  9. In vitro extraction and fermentation of polyphenols from grape seeds (Vitis vinifera) by human intestinal microbiota.

    PubMed

    Zhou, Li; Wang, Wei; Huang, Jun; Ding, Yu; Pan, Zhouqiang; Zhao, Ya; Zhang, Renkang; Hu, Bing; Zeng, Xiaoxiong

    2016-04-20

    The effects of several parameters on the extraction yield of total polyphenols from grape seeds by pressurized liquid extraction were investigated. The highest recovery of total polyphenols occurred at 80 °C within 5 min, and a single extraction allowed a recovery of more than 97% of total polyphenols. Following the purification with macroporous resin, the effects of grape polyphenols (>94.8%) on human intestinal microbiota were monitored over 36 h incubation by fluorescence in situ hybridization, and short-chain fatty acids (SCFAs) were measured by HPLC. The result showed that the grape polyphenols promoted the changes in the relevant microbial populations and shifted the profiles of SCFAs. Fermentation of grape polyphenols resulted in a significant increase in the numbers of Bifidobacterium spp. and Lactobacillus-Enterococcus group and inhibition in the growth of the Clostridium histolyticum group and the Bacteroides-Prevotella group, with no significant effect on the population of total bacteria. The findings suggest that grape polyphenols have potential prebiotic effects on modulating the gut microbiota composition and generating SCFAs that contribute to the improvements of host health. PMID:26980065

  10. Heparin induces the expression of specific matrix proteins by human intestinal smooth muscle cells

    SciTech Connect

    Cochran, D.L.; Perr, H.; Graham, M.F.; Diegelmann, R.F.

    1986-03-01

    Human intestinal smooth muscle (HISM) cells have recently been identified as the major cell type responsible for stricture formation in Crohn's disease. Heparin, a sulfated glycosaminoglycan, has been shown to be a key modulator of vascular smooth muscle cell (VSMC) growth both in vivo and in vitro and to affect the phenotypic expression of proteins made by VSMC. Heparin has also been shown to effect the growth of HISM cells and in this report the authors demonstrate that heparin also has very specific effects on proteins released by HISM cells in vitro. Examination of the proteins in the culture medium of heparin-treated HISM cells observed at 3 time points following sparse plating and proliferation revealed an increase in /sup 35/S-methionine-labeled 200, 37, and 35 kd proteins. A transient effect on a 48 kd protein was observed in substrate-attached material left on the culture dish after the cells were removed with EGTA. No effects on intracellular labeled proteins could be demonstrated. The protein phenotype of HISM cells exposed to heparin appears very similar to that observed in VSMC. The release of specific proteins following exposure to heparin does not appear to be species specific. This response to heparin may reflect a significant influence of this glycosaminoglycan on the phenotypic expression of these cells.

  11. Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions

    PubMed Central

    Sedykh, Alexander; Fourches, Denis; Duan, Jianmin; Hucke, Oliver; Garneau, Michel; Zhu, Hao; Bonneau, Pierre; Tropsha, Alexander

    2013-01-01

    Purpose Membrane transporters mediate many biological effects of chemicals and play a major role in pharmacokinetics and drug resistance. The selection of viable drug candidates among biologically active compounds requires the assessment of their transporter interaction profiles. Methods Using public sources, we have assembled and curated the largest, to our knowledge, human intestinal transporter database (>5,000 interaction entries for >3,700 molecules). This data was used to develop thoroughly validated classification Quantitative Structure-Activity Relationship (QSAR) models of transport and/or inhibition of several major transporters including MDR1, BCRP, MRP1-4, PEPT1, ASBT, OATP2B1, OCT1, and MCT1. Results & Conclusions QSAR models have been developed with advanced machine learning techniques such as Support Vector Machines, Random Forest, and k Nearest Neighbors using Dragon and MOE chemical descriptors. These models afforded high external prediction accuracies of 71–100% estimated by 5-fold external validation, and showed hit retrieval rates with up to 20-fold enrichment in the virtual screening of DrugBank compounds. The compendium of predictive QSAR models developed in this study can be used for virtual profiling of drug candidates and/or environmental agents with the optimal transporter profiles. PMID:23269503

  12. Effect of linear alkylbenzene sulfonate (LAS) on human intestinal Caco-2 cells at non cytotoxic concentrations.

    PubMed

    Bradai, Mohamed; Han, Junkyu; Omri, Abdelfatteh El; Funamizu, Naoyuki; Sayadi, Sami; Isoda, Hiroko

    2016-08-01

    Linear alkylbenzene sulfonate (LAS) is a cytotoxic synthetic anionic surfactant widely present in the environment due to its large-scale production and intensive use in the detergency field. In this study, we investigated the effect of LAS (CAS No. 25155-30-0) at non cytotoxic concentrations on human intestinal Caco-2 cells using different in vitro bioassays. As results, LAS increased Caco-2 cell proliferation at concentrations ranging from 1 to 15 ppm, more significantly for shorter exposure time (24 h), confirmed using flow cytometry and trypan blue exclusion methods. Moreover, proteomics analysis revealed that this effect was associated with an over-expression of elongation factor 2 and dipeptidyl peptidase 3, and a down-regulation of 14-3-3 protein theta, confirmed at mRNA level using real-time PCR. These findings suggest that LAS at non cytotoxic concentrations, similar to those observed at wastewater treatment plants outlets, increases the growth rate of colon cancer cells, raising thereby its tumor promotion effect potential. PMID:25999174

  13. Functional alterations induced by the food contaminant furazolidone on the human tumoral intestinal cell line Caco-2.

    PubMed

    Vincentini, O; De Angelis, I; Stammati, A; Zucco, F

    1993-07-01

    Caco-2 cells, which are derived from a human colon carcinoma and are able to differentiate in culture, have been used to study the effect of furazolidone (FZ), a chemical belonging to the nitrofuran family which is frequently used for the prevention of animal infections. Its potentially toxic residues could remain in some food products of animal origin and affect human health. Toxicity has been measured by different parameters, either in undifferentiated cells (day 7 of culture), or on differentiated cells (day 21 of culture). Our results indicate that FZ may seriously affect the proliferating portion of the intestinal mucosa, while the differentiated cells appear to be more resistant. However, the slight effect recorded on the aspecific and specific functions of the differentiated cells may suggest that the specialized portion of the intestine can also be compromised by the drug. Caco 2 cells seem a good model for a deeper investigation of the mechanism involved in the toxic action of FZ. PMID:20732223

  14. Improvement in Human Immune Function with Changes in Intestinal Microbiota by Salacia reticulata Extract Ingestion: A Randomized Placebo-Controlled Trial

    PubMed Central

    Oda, Yuriko; Ueda, Fumitaka; Utsuyama, Masanori; Kamei, Asuka; Kakinuma, Chihaya; Abe, Keiko; Hirokawa, Katsuiku

    2015-01-01

    Plants belonging to the genus Salacia in the Hippocrateaceae family are known to inhibit sugar absorption. In a previous study, administration of Salacia reticulata extract in rats altered the intestinal microbiota and increased expression of immune-relevant genes in small intestinal epithelial cells. This study aimed to investigate the effect of S. reticulata extract in human subjects by examining the gene expression profiles of blood cells, immunological indices, and intestinal microbiota. The results revealed an improvement in T-cell proliferation activity and some other immunological indices. In addition, the intestinal microbiota changed, with an increase in Bifidobacterium and a decrease in Clostridium bacteria. The expression levels of many immune-relevant genes were altered in blood cells. We concluded that S. reticulata extract ingestion in humans improved immune functions and changed the intestinal microbiota. Trial Registration: UMIN Clinical Trials Registry UMIN000011732 PMID:26630568

  15. Arsenic Thiolation and the Role of Sulfate-Reducing Bacteria from the Human Intestinal Tract

    PubMed Central

    Alava, Pradeep; Zekker, Ivar; Du Laing, Gijs

    2014-01-01

    out after As exposure. Citation: DC.Rubin SS, Alava P, Zekker I, Du Laing G, Van de Wiele T. 2014. Arsenic thiolation and the role of sulfate-reducing bacteria from the human intestinal tract. Environ Health Perspect 122:817–822; http://dx.doi.org/10.1289/ehp.1307759 PMID:24833621

  16. Human crypt intestinal epithelial cells are capable of lipid production, apolipoprotein synthesis, and lipoprotein assembly.

    PubMed

    Levy, E; Beaulieu, J F; Delvin, E; Seidman, E; Yotov, W; Basque, J R; Ménard, D

    2000-01-01

    The recent availability of spontaneously proliferating, non-transformed human crypt intestinal epithelial cells (HIEC) affords an opportunity to investigate lipid metabolism in undifferentiated enterocytes. The major purpose of this study was to explore the capability of undifferentiated crypt cells to synthesize, assemble, and secrete lipids and apolipoproteins. HIEC were cultured in medium with 5% fetal bovine serum for 5 to 21 d. The cells were clearly able to incorporate [(14)C]oleic acid (dpm/mg protein) into triglycerides (128,279 +/- 16,988), phospholipids (30, 278 +/- 2,107), and cholesteryl esters (2,180 +/- 207). Although improvement in lipid secretion was noted with prolongation of cell culture periods, low efficiency of lipid export (10.3 +/- 2.2% of intracellular content) characterized the HIEC. All phospholipid classes were elaborated, with phosphatidylcholine accounting for 79. 3 +/- 1.3% of cellular phospholipids. Chylomicrons were the dominant (46.4%) lipoproteins secreted, followed by high, low, and very low density lipoproteins (HDL, LDL, and VLDL) comprising 22.5, 20.2, and 10.8% of the total, respectively. HIEC elaborated most of the major apolipoprotein (apo) classes (A-I, A-IV, B-100, C, and E), but were less efficient in producing apoB-48. In contrast to the production of apoA-I and C as early as 5 days after confluence, apoA-I and A-IV were maximally expressed at 11 d. Culture media accumulated much more apoB-100 than apoB-48 (B-48/B-100 ratio 0.21 +/- 0.03), reflecting limited apoB mRNA editing. HIEC demonstrated both endogenous cholesterol synthesis and LDL receptor expression. Cholesterol synthesis was sensitive to 25-hydroxycholesterol and mevinolin, but unresponsive to LDL treatment, suggesting independent regulation pathways. In contrast, LDL inhibited receptor activity. The present findings provide the first solid evidence that immature HIEC are capable of key fat absorptive functions of well-differentiated enterocytes. The

  17. The angiogenic effect of probiotic Bacillus polyfermenticus on human intestinal microvascular endothelial cells is mediated by IL-8

    PubMed Central

    Choi, Yoon Jeong; Kim, Cho Hee; Fiocchi, Claudio; Pothoulakis, Charalabos

    2009-01-01

    Angiogenesis is required for wound healing and repair, but dysregulated angiogenesis is involved in gastrointestinal inflammation. Bacillus polyfermenticus (B.P.) is a probiotic bacterium clinically used for a variety of intestinal disorders in East Asia. Here we investigated the effect of B.P. on angiogenesis of human intestinal microvascular endothelial cells (HIMECs) and wound healing in intestinal mucosa. Exposure of HIMECs to the conditioned medium of B.P. cultures (B.P. CM) increased cell migration, permeability, and tube formation. Production of the proangiogenic cytokine IL-8 was increased by B.P. CM, and neutralizing antibodies against IL-8 or IL-8 receptor CXCR2 reduced tube formation as well as actin stress fiber formation. B.P. CM also increased NF-κB activation, and inhibitors of NF-κB suppressed B.P. CM-induced tube formation and IL-8 production. Furthermore, B.P. facilitated recovery of mice from colitis as shown by increased body weight and reduced rectal bleeding and histological severity. B.P. also increased angiogenesis and mouse IL-8 production in the mucosal layer. Collectively, these results show that B.P. increases angiogenesis of HIMECs in a NF-κB/IL-8/CXCR2-dependent manner. Moreover, B.P. promotes angiogenesis in the mucosa during recovery of mice from colitis, suggesting that this probiotic may be clinically used to facilitate intestinal wound healing. PMID:20501448

  18. PDX1 regulation of FABP1 and novel target genes in human intestinal epithelial Caco-2 cells

    PubMed Central

    Chen, Chin; Fang, Rixun; Chou, Lin-Chiang; Lowe, Anson W.; Sibley, Eric

    2012-01-01

    The transcription factor pancreatic and duodenal homeobox 1 (PDX1) plays an essential role in pancreatic development and in maintaining proper islet function via target gene regulation. Few intestinal PDX1 targets, however, have been described. We sought to define novel PDX1-regulated intestinal genes. Caco-2 human intestinal epithelial cells were engineered to overexpress PDX1 and gene expression profiles relative to control cells were assessed. Expression of 80 genes significantly increased while that of 49 genes significantly decreased more than 4-fold following PDX1 overexpression in differentiated Caco-2 cells. Analysis of the differentially regulated genes with known functional annotations revealed genes encoding transcription factors, growth factors, kinases, digestive glycosidases, nutrient transporters, nutrient binding proteins, and structural components. The gene for fatty acid binding protein 1, liver, FABP1, is repressed by PDX1 in Caco-2 cells. PDX1 overexpression in Caco-2 cells also results in repression of promoter activity driven by the 0.6 kb FABP1 promoter. PDX1 regulation of promoter activity is consistent with the decrease in FABP1 RNA abundance resulting from PDX1 overexpression and identifies FABP1 as a candidate PDX1 target. PDX1 repression of FABP1, LCT, and SI suggests a role for PDX1 in patterning anterior intestinal development. PMID:22640736

  19. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota.

    PubMed

    Jernberg, Cecilia; Löfmark, Sonja; Edlund, Charlotta; Jansson, Janet K

    2007-05-01

    Antibiotic administration is known to cause short-term disturbances in the microbiota of the human gastrointestinal tract, but the potential long-term consequences have not been well studied. The aims of this study were to analyse the long-term impact of a 7-day clindamycin treatment on the faecal microbiota and to simultaneously monitor the ecological stability of the microbiota in a control group as a baseline for reference. Faecal samples from four clindamycin-exposed and four control subjects were collected at nine different time points over 2 years. Using a polyphasic approach, we observed highly significant disturbances in the bacterial community that persisted throughout the sampling period. In particular, a sharp decline in the clonal diversity of Bacteroides isolates, as assessed by repetitive sequence-based PCR (rep-PCR) and long-term persistence of highly resistant clones were found as a direct response to the antibiotic exposure. The Bacteroides community never returned to its original composition during the study period as assessed using the molecular fingerprinting technique, terminal restriction fragment length polymorphism (T-RFLP). Furthermore, using real-time PCR we found a dramatic and persistent increase in levels of specific resistance genes in DNA extracted from the faeces after clindamycin administration. The temporal variations in the microbiota of the control group were minor compared to the large and persistent shift seen in the exposed group. These results demonstrate that long after the selection pressure from a short antibiotic exposure has been removed, there are still persistent long term impacts on the human intestinal microbiota that remain for up to 2 years post-treatment. PMID:18043614

  20. Evidence for the role of a human intestinal adenovirus in the pathogenesis of coeliac disease.

    PubMed Central

    Kagnoff, M F; Paterson, Y J; Kumar, P J; Kasarda, D D; Carbone, F R; Unsworth, D J; Austin, R K

    1987-01-01

    We previously noted a region of amino acid sequence homology between A-gliadin, a major alpha-gliadin component known to activate coeliac disease, and the early region E1b protein of human adenovirus serotype 12 (Ad12), an adenovirus isolated from the human intestinal tract. In the present study sera from coeliac disease patients from the United Kingdom and the United States were assayed for neutralising antibody to Ad12 as evidence of past exposure to that virus and for antibody to synthetic peptides of A-gliadin from the region of shared sequence with the Ad12 E1b protein. Eighty nine per cent of untreated coeliac disease patients had evidence of previous Ad12 infection. There was also a significant increase in the prevalence of neutralising antibody to Ad12 among treated adults (33.3%) and children (30.8%) with coeliac disease compared with controls (0-12.8%) in the western USA and in London. There was no evidence for an increased prevalence of infection with a closely related adenovirus, adenovirus 18, or another enteric virus, Echovirus 11, among coeliac disease subjects. Additional studies documented that a region of A-gliadin that shares amino acid sequence homology with the adenovirus 12 E1b protein could be recognised as an antigenic determinant in active coeliac disease patients. Taken together, these data are compatible with the hypothesis that a viral protein may play a role in the pathogenesis of coeliac disease, perhaps by virtue of immunological cross reactivity between antigenic determinants shared by the viral protein and alpha-gliadins. PMID:2822550

  1. Endoscopic imaging of the human vocal cords using polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Pierce, Mark C.; Klein, Adam; Burns, James A.; Shishkov, Milen; Park, B. H.; Tearney, Guillermo J.; Bouma, Brett E.; Zeitels, Steven M.; de Boer, Johannes F.

    2005-04-01

    Endoscopic polarization-sensitive optical coherence tomography (PS-OCT) was used to obtain cross-sectional images of laryngeal tissues in human subjects, in vivo. Imaging in tissue to a depth of 1.2 mm and with axial resolution below 10 micrometers enabled the epithelial layer to be readily identified in OCT intensity images, with the underlying superficial lamina propria characterized by an increased backscatter signal, and increased birefringence in polarization-sensitive images.

  2. Development of genetically engineered human intestinal cells for regulated insulin secretion using rAAV-mediated gene transfer.

    PubMed

    Tang, Shiue-Cheng; Sambanis, Athanassios

    2003-04-01

    Cell-based therapies for treating insulin-dependent diabetes (IDD) can provide a more physiologic regulation of blood glucose levels in a less invasive fashion than daily insulin injections. Promising cells include intestinal enteroendocrine cells genetically engineered to secrete insulin in response to physiologic stimuli; responsiveness occurs at the exocytosis level to regulate the acute release of recombinant insulin. In this work, we established a human cellular model to demonstrate that meat hydrolysate can simultaneously stimulate glucagon-like peptide-1 (GLP-1, an enteroendocrine cell-derived incretin hormone) and recombinant insulin secretion from the engineered human NCI-H716 intestinal cell line. Cells were genetically modified using the recombinant adeno-associated virus (rAAV)-mediated insulin gene transfer. Recombinant cells were then differentiated to display endocrine features, in particular the formation of granule-like compartments. A fusion protein of insulin and enhanced green fluorescence protein (EGFP) was designed to reveal the compartments of localization of the fusion protein and assess its co-localization with endogenous GLP-1. Our work provides a unique human cellular model for regulated insulin release through genetic engineering of GLP-1-secreting intestinal cells, which is expected to be useful for cell-based therapies of IDD. PMID:12659868

  3. Vertebrate records in polar sediments: Biological responses to past climate change and human activities

    NASA Astrophysics Data System (ADS)

    Sun, L. G.; Emslie, S. D.; Huang, T.; Blais, J. M.; Xie, Z. Q.; Liu, X. D.; Yin, X. B.; Wang, Y. H.; Huang, W.; Hodgson, D. A.; Smol, J. P.

    2013-11-01

    Biological responses to climate and environmental changes in remote polar regions are of increasing interest in global change research. Terrestrial and marine polar ecosystems have suffered from impacts of both rapid climate change and intense human activities, and large fluctuations in the population sizes of seabirds, seals, and Antarctic krill have been observed in the past decades. To understand the mechanisms driving these regime shifts in polar ecosystems, it is important to first distinguish the influences of natural forcing from anthropogenic activities. Therefore, investigations of past changes of polar ecosystems prior to human contact are relevant for placing recent human-induced changes within a long-term historical context. Here we focus our review on the fossil, sub-fossil, archaeological, and biogeochemical remains of marine vertebrates in polar sediments. These remains include well-preserved tissues such as bones, hairs and feathers, and biogeochemical markers and other proxy indicators, including deposits of guano and excrement, which can accumulate in lake and terrestrial sediments over thousands of years. Analyses of these remains have provided insight into both natural and anthropogenic impacts on marine vertebrates over millennia and have helped identify the causal agents for these impacts. Furthermore, land-based seabirds and marine mammals have been shown to play an important role as bio-vectors in polar environments as they transport significant amounts of nutrients and anthropogenic contaminants between ocean and terrestrial ecosystems.

  4. The spatial arrangement of the human large intestinal wall blood circulation.

    PubMed

    Kachlik, David; Baca, Vaclav; Stingl, Josef

    2010-03-01

    The aim of the study was to describe and depict the spatial arrangement of the colon microcirculatory bed as a whole. Various parts of the large intestine and terminal ileum were harvested from either cadaver or section material or gained peroperatively. Samples were then injected with India ink or methylmetacrylate Mercox resin for microdissection and corrosion casting for scanning electron microscopy. The results showed that extramural vasa recta ramified to form the subserous plexus, some of them passing underneath the colon taeniae. Branches of both short and long vasa recta merged in the colon wall, pierced the muscular layer and spread out as the submucous plexus, which extended throughout the whole intestine without any interruption. The muscular layer received blood via both the centrifugal branches of the submucous plexus and the minor branches sent off by the subserous plexus. The mucosa was supplied by the mucous plexus, which sent capillaries into the walls of intestinal glands. The hexagonal arrangement of the intestinal glands reflected their vascular bed. All three presumptive critical points are only gross anatomical points of no physiological relevance in healthy individuals. Neither microscopic weak points nor regional differences were proven within the wall of the whole large intestine. The corrosion casts showed a huge density of capillaries under the mucosa of the large intestine. A regular hexagonal pattern of the vascular bed on the inner surface was revealed. No microvascular critical point proofs were confirmed and a correlation model to various pathological states was created. PMID:20447248

  5. NKX2-3 Transcriptional Regulation of Endothelin-1 and VEGF Signaling in Human Intestinal Microvascular Endothelial Cells

    PubMed Central

    Yu, Wei; Hegarty, John P.; Berg, Arthur; Chen, Xi; West, Gail; Kelly, Ashley A.; Wang, Yunhua; Poritz, Lisa S.; Koltun, Walter A.; Lin, Zhenwu

    2011-01-01

    Background NKX2-3 is associated with inflammatory bowel disease (IBD). NKX2-3 is expressed in microvascular endothelial cells and the muscularis mucosa of the gastrointestinal tract. Human intestinal microvascular endothelial cells (HIMECs) are actively involved in the pathogenesis of IBD and IBD-associated microvascular dysfunction. To understand the cellular function of NKX2-3 and its potential role underlying IBD pathogenesis, we investigated the genes regulated by NKX2-3 in HIMEC using cDNA microarray. Methodology/Principal Findings NKX2-3 expression was suppressed by shRNA in two HIMEC lines and gene expression was profiled by cDNA microarray. Pathway Analysis was used to identify gene networks according to biological functions and associated pathways. Validation of microarray and genes expression in intestinal tissues was assessed by RT-PCR. NKX2-3 regulated genes are involved in immune and inflammatory response, cell proliferation and growth, metabolic process, and angiogenesis. Several inflammation and angiogenesis related signaling pathways that play important roles in IBD were regulated by NKX2-3, including endothelin-1 and VEGF-PI3K/AKT-eNOS. Expression levels of NKX2-3, VEGFA, PI3K, AKT, and eNOS are increased in intestinal tissues from IBD patients and expression levels of EDN1 are decreased in intestinal tissues from IBD patients. These results demonstrated the important roles of NKX2-3, VEGF, PI3K, AKT, eNOS, and EDN1 in IBD pathogenesis. Correlation analysis showed a positive correlation between mRNA expression of NKX2-3 and VEGFA and a negative correlation between mRNA expression of NKX2-3 and EDN1 in intestinal tissues from IBD patients. Conclusion/Relevance NKX2-3 may play an important role in IBD pathogenesis by regulating endothelin-1 and VEGF signaling in HIMECs. PMID:21637825

  6. Rapid conversion of the ester prodrug abiraterone acetate results in intestinal supersaturation and enhanced absorption of abiraterone: in vitro, rat in situ and human in vivo studies.

    PubMed

    Stappaerts, Jef; Geboers, Sophie; Snoeys, Jan; Brouwers, Joachim; Tack, Jan; Annaert, Pieter; Augustijns, Patrick

    2015-02-01

    The aim of this study was to evaluate the intestinal disposition of abiraterone acetate, an ester prodrug of the anticancer agent abiraterone. Stability of the prodrug and solubility and dissolution characteristics of both abiraterone and abiraterone acetate were monitored in vitro. Moreover, the in vivo intraluminal concentrations of abiraterone and abiraterone acetate upon intake of one tablet of 250 mg abiraterone acetate were assessed in healthy volunteers. The intestinal absorption resulting from the intraluminal behavior of the ester prodrug was determined using the rat in situ intestinal perfusion technique with mesenteric blood sampling. Simulated and aspirated human intestinal fluids of the fasted state were used as solvent systems. Upon incubation of abiraterone acetate in human intestinal fluids in vitro, rapid hydrolysis of the prodrug was observed, generating abiraterone concentrations largely exceeding the apparent solubility of abiraterone, suggesting the existence of intestinal supersaturation. These findings were confirmed in vivo, by intraluminal sampling of duodenal fluids upon oral intake of an abiraterone acetate tablet by healthy volunteers. Rat in situ intestinal perfusion experiments performed with suspensions of abiraterone and abiraterone acetate in human intestinal fluids of the fasted state revealed significantly higher flux values upon perfusion with the prodrug than with abiraterone. Moreover, rat in situ intestinal perfusion with abiraterone acetate suspensions in simulated fluids of the fasted state in presence or absence of esterases demonstrated that increased hydrolytic activity of the perfusion medium was beneficial to the intestinal absorption of abiraterone. In conclusion, the rapid hydrolysis of abiraterone acetate in the intraluminal environment appears to result in fast and extensive generation of abiraterone supersaturation, creating a strong driving force for abiraterone absorption. PMID:25592324

  7. Intestinal Epithelial Barrier Disruption through Altered Mucosal MicroRNA Expression in Human Immunodeficiency Virus and Simian Immunodeficiency Virus Infections

    PubMed Central

    Gaulke, Christopher A.; Porter, Matthew; Han, Yan-Hong; Sankaran-Walters, Sumathi; Grishina, Irina; George, Michael D.; Dang, Angeline T.; Ding, Shou-Wei; Jiang, Guochun; Korf, Ian

    2014-01-01

    ABSTRACT Epithelial barrier dysfunction during human immunodeficiency virus (HIV) infection has largely been attributed to the rapid and severe depletion of CD4+ T cells in the gastrointestinal (GI) tract. Although it is known that changes in mucosal gene expression contribute to intestinal enteropathy, the role of small noncoding RNAs, specifically microRNA (miRNA), has not been investigated. Using the simian immunodeficiency virus (SIV)-infected nonhuman primate model of HIV pathogenesis, we investigated the effect of viral infection on miRNA expression in intestinal mucosa. SIV infection led to a striking decrease in the expression of mucosal miRNA compared to that in uninfected controls. This decrease coincided with an increase in 5′-3′-exoribonuclease 2 protein and alterations in DICER1 and Argonaute 2 expression. Targets of depleted miRNA belonged to molecular pathways involved in epithelial proliferation, differentiation, and immune response. Decreased expression of several miRNA involved in maintaining epithelial homeostasis in the gut was localized to the proliferative crypt region of the intestinal epithelium. Our findings suggest that SIV-induced decreased expression of miRNA involved in epithelial homeostasis, disrupted expression of miRNA biogenesis machinery, and increased expression of XRN2 are involved in the development of epithelial barrier dysfunction and gastroenteropathy. IMPORTANCE MicroRNA (miRNA) regulate the development and function of intestinal epithelial cells, and many viruses disrupt normal host miRNA expression. In this study, we demonstrate that SIV and HIV disrupt expression of miRNA in the small intestine during infection. The depletion of several key miRNA is localized to the proliferative crypt region of the gut epithelium. These miRNA are known to control expression of genes involved in inflammation, cell death, and epithelial maturation. Our data indicate that this disruption might be caused by altered expression of mi

  8. Soluble extracts from Helicobacter pylori induce dome formation in polarized intestinal epithelial monolayers in a laminin-dependent manner.

    PubMed

    Terrés, A M; Windle, H J; Ardini, E; Kelleher, D P

    2003-07-01

    Helicobacter pylori colonizes the stomach at the interface between the mucus layer and the apical pole of gastric epithelial cells. A number of secreted and shed products from the bacteria, such as proteins and lipopolysaccharide, are likely to have a role in the pathogenesis at the epithelial level. To determine the physiological response of transporting polarized epithelia to released soluble factors from the bacterium, we used the T84 cell line. Monolayers of T84 cells were exposed to soluble extracts from H. pylori. The extracts induced rapid "dome" formation as well as an immediate decrease in transepithelial electrical resistance. Domes are fluid-filled blister-like structures unique to polarized epithelia. Their formation has been linked to sodium-transporting events as well as to diminished adherence of the cells to the substrate. H. pylori-induced dome formation in T84 monolayers was exacerbated by amiloride and inhibited by ouabain. Furthermore, it was associated with changes in the expression of the laminin binding alpha 6 beta 4 integrin and the 67-kDa laminin receptor. Domes formed primarily on laminin-coated filters, rather than on fibronectin or collagen matrices, and their formation was inhibited by preincubating the bacterial extract with soluble laminin. This effect was specific to H. pylori and independent of the urease, vacA, cagA, and Lewis phenotype of the strains. These data indicate that released elements from H. pylori can alter the physiological balance and integrity of the epithelium in the absence of an underlying immune response. PMID:12819097

  9. Tracking the cell hierarchy in the human intestine using biochemical signatures derived by mid-infrared microspectroscopy.

    PubMed

    Walsh, Michael J; Hammiche, Azzedine; Fellous, Tariq G; Nicholson, James M; Cotte, Marine; Susini, Jean; Fullwood, Nigel J; Martin-Hirsch, Pierre L; Alison, Malcolm R; Martin, Francis L

    2009-07-01

    Markers of gastrointestinal (GI) stem cells remain elusive. We employed synchrotron Fourier-transform infrared (FTIR) microspectroscopy to derive mid-infrared (IR) spectra along the length of human GI crypts. Tissue sections (10-μm thick) were floated onto BaF2 windows and image maps were acquired of small intestine and large bowel crypts in transmission mode with an aperture of ≤10 μm×10 μm. Counting upwards in a step-size (≤10 μm) fashion from the crypt base, IR spectra were extracted from the image maps and each spectrum corresponding to a particular location was identified. Spectra were analyzed using principal component analysis plus linear discriminant analysis. Compared to putative crypt base columnar/Paneth cells, those assigned as label-retaining cells were chemically more similar to putative large bowel stem cells and, the small intestine transit-amplifying cells were closest to large bowel transit-amplifying cells; interestingly, the base of small intestine crypts was the most chemically-distinct. This study suggests that in the complex cell lineage of human GI crypts, chemical similarities as revealed by FTIR microspectroscopy between regions putatively assigned as stem cell, transit-amplifying and terminally-differentiated facilitates identification of cell function. PMID:19393589

  10. Acetonic Extract from the Feijoa sellowiana Berg. Fruit Exerts Antioxidant Properties and Modulates Disaccharidases Activities in Human Intestinal Epithelial Cells.

    PubMed

    Turco, Fabio; Palumbo, Ilaria; Andreozzi, Paolo; Sarnelli, Giovanni; De Ruberto, Francesca; Esposito, Giuseppe; Basile, Adriana; Cuomo, Rosario

    2016-08-01

    Feijoa sellowiana fruit has been shown to possess various biological activities, such as anti-bacterial and anti-cancer properties, in a variety of cellular models, but its activity on human intestinal epithelial cells has never been tested. The purpose of this study was to investigate the effects of the acetonic extract of F. sellowiana fruits on the viability, membrane peroxidation, disaccharidases activities and proliferation of in vitro models of human intestinal epithelial cells. To obtain this goal, Caco-2 and HT-29 cells were exposed to the acetonic extract for 24 h. Cell proliferation, viability, lactase and sucrase-isomaltase activity and H2 O2 -induced membrane lipid peroxidation were tested. We found that, compared to control conditions, the acetonic extract significantly increased lactase and sucrase-isomaltase activity in Caco-2, but not HT-29, cells, decreased proliferation, had no effects on viability and restored lipid peroxidation in both cell models. This study suggests that the acetonic extract improves lactase and sucrase-isomaltase activity, inhibits cell proliferation, have no cytotoxic effects and prevent lipid peroxidation of intestinal epithelial cells. These effects may be exploited in case of disaccharidases deficit and also as an adjuvant treatment of diseases related to oxidative stress. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27166598

  11. Proteomic responses of human intestinal Caco-2 cells exposed to silver nanoparticles and ionic silver.

    PubMed

    Oberemm, Axel; Hansen, Ulf; Böhmert, Linda; Meckert, Christine; Braeuning, Albert; Thünemann, Andreas F; Lampen, Alfonso

    2016-03-01

    Even although quite a number of studies have been performed so far to demonstrate nanoparticle-specific effects of substances in living systems, clear evidence of these effects is still under debate. The present study was designed as a comparative proteomic analysis of human intestinal cells exposed to a commercial silver nanoparticle reference material and ions from AgNO3. A two-dimensional gel electrophoresis/MALDI mass spectrometry (MS)-based proteomic analysis was conducted after 24-h incubation of differentiated Caco-2 cells with non-cytotoxic and low cytotoxic silver concentrations (2.5 and 25 µg ml(-1) nanosilver, 0.5 and 5 µg ml(-1) AgNO3). Out of an overall number of 316 protein spots differentially expressed at a fold change of ≥ 1.4 or ≤ -1.4 in all treatments, 169 proteins could be identified. In total, 231 spots were specifically deregulated in particle-treated groups compared with 41 spots, which were limited to AgNO3-treatments. Forty-four spots (14 %) were commonly deregulated by both types of treatment. A considerable fraction of the proteins differentially expressed after treatment with nanoparticles is related to protein folding, synthesis or modification of proteins as well as cellular assembly and organization. Overlays of networks obtained for particulate and ionic treatments showed matches, indicating common mechanisms of combined particle and ionic silver exposure and exclusive ionic silver treatment. However, proteomic responses of Caco-2 cells treated with higher concentrations of silver species also showed some differences, for example regarding proteins related to fatty acid and energy metabolism, suggesting an induction of also some different molecular mechanisms for particle exposure and ionic treatment. PMID:26434666

  12. Real-time cell analysis for monitoring cholera toxin-induced human intestinal epithelial cell response.

    PubMed

    Ye, Julian; Luo, Yun; Fang, Weijia; Pan, Junhang; Zhang, Zheng; Zhang, Yanjun; Chen, Zhiping; Jin, Dazhi

    2015-04-01

    The pathogenic mechanism of Vibrio cholerae manifests as diarrhea and causes life-threatening dehydration. Here, we observe the human intestinal epithelial cells (HIEC) response to Cholera toxin (CT) by a real-time cell analysis (RTCA) platform, and disclose the difference from CT-induced cytotoxicity and others in HIEC. An HIEC cell of 1.0 × 10(5) cells/mL was characterized as the suitable concentration for each well. For experimentation, the assay requires an inoculation of CT dissolved in Dulbecco's phosphate-buffered saline with 0.1 % gelatin for a period of 18-25 h. The dimensionless impedance cell index curve presented characteristic dose- and time-dependent drop responses at the first stage, and the CT-induced cytotoxicity was the most remarkable following exposure for 18-25 h (P = 0.0002). Following the obvious cytotoxic reaction, the CI curve gradually increased over time until the original CI value, indicating that self-recovery occurred. The CT-induced CI curve for HIEC was different from that induced by other toxins, including diphtheria and Clostridium difficile toxin. Collectively, these results suggest that the CT-induced cytotoxicity in HIEC was absolutely different from that induced by C. difficile and other toxins because of the different pathogeneses that were correlated with the specific CI curve generated by the RTCA system. In summary, our data show that the assay described here is a convenient and rapid high-throughput tool for real-time monitoring of host cellular responses to CT on the basis of the characteristic CI curve. PMID:25510171

  13. The dietary histone deacetylase inhibitor sulforaphane induces human β-defensin-2 in intestinal epithelial cells

    PubMed Central

    Schwab, Markus; Reynders, Veerle; Loitsch, Stefan; Steinhilber, Dieter; Schröder, Oliver; Stein, Jürgen

    2008-01-01

    Antimicrobial peptides like human β-defensin-2 (HBD-2) play an important role in the innate immune system protecting the intestinal mucosa against bacterial invasion. The dietary histone deacetylase (HDAC) inhibitors sulforaphane (SFN) and butyrate have received a great deal of attention because of their ability to simultaneously modulate multiple cellular targets involved in cellular protection. In this study the influence of SFN and butyrate on HBD-2 expression as well as the molecular pathways involved in SFN-mediated induction of HBD-2 were scrutinized. Treatment of Caco-2, HT-29 and SW480 cells with SFN led to a time- and dose-dependent upregulation of HBD-2 mRNA expression as determined by semi-quantitative reverse transcription–polymerase chain reaction. Moreover, HBD-2 protein production increased in response to SFN, measured by enzyme-linked immunosorbent assay. Induction of HBD-2 was also observed in response to butyrate. Immunofluorescence analysis revealed that the protein was localized in the cytosol. Coincubation of SFN with a vitamin D receptor (VDR), or an extracellular-regulated kinase 1/2 or a nuclear factor-κB inhibitor all reduced HBD-2 mRNA upregulation. In contrast, transfection of cells with a dominant-negative peroxisome proliferator-activated receptor γ (PPARγ) mutant vector to inhibit PPARγ wild-type action and inhibition of p38 mitogen-activated protein kinase (MAPK) signalling did not affect SFN-mediated upregulation of HBD-2 mRNA. Moreover, SFN induced the expression of VDR, PPARγ and phosphorylated ERK1/2 but did not affect p38 MAPK activation. The data clearly demonstrate for the first time that the dietary HDAC inhibitor SFN is able to induce antimicrobial peptides in colonocytes. In this process HBD-2 expression is regulated via VDR, mitogen-activated protein kinase kinase/extracellular-regulated kinase and nuclear factor-κB signalling. PMID:18373608

  14. Ecological Effect of Ceftaroline-Avibactam on the Normal Human Intestinal Microbiota

    PubMed Central

    Rashid, Mamun-Ur; Rosenborg, Staffan; Panagiotidis, Georgios; Söderberg-Löfdal, Karin; Weintraub, Andrej

    2015-01-01

    Ceftaroline-avibactam is a new combination of the antibiotic ceftaroline with a novel non-β-lactam β-lactamase inhibitor, avibactam. The purpose of the present study was to investigate the effect of ceftaroline-avibactam on the human intestinal microbiota. Fourteen healthy volunteers received ceftaroline-avibactam (600 mg ceftaroline fosamil and 600 mg avibactam) intravenously over 2 h every 8 h on days 1 to 6 and as a single dose on day 7. Fecal samples were collected on day −1 (within 24 h of the first infusion on day 1) and on days 2, 5, 7, 9, 14, and 21. Escherichia coli numbers decreased during the study and normalized on day 21. An increased number of Klebsiella bacteria appeared on day 14 and normalized on day 21. The number of other enterobacteria decreased during the study, and the number of enterococci decreased from days 2 to 7 and normalized on day 9. Candida numbers increased from days 5 to 9 and normalized after day 14. The number of lactobacilli decreased during the study and recovered on day 14. The number of bifidobacteria decreased on day 2 and normalized on day 21. The number of Bacteroides bacteria was unchanged. Clostridium difficile numbers decreased on days 7 and 9 and increased on days 14 and 21. A toxigenic C. difficile strain was detected in one volunteer on day 21 with no reported adverse events. Plasma samples were collected on days −1, 2, 5, and 7. Ceftaroline and avibactam concentrations were 0 to 34.5 mg/liter and 0 to 61.6 mg/liter, respectively, in plasma and 0 to 35.4 mg/kg and 0 to 98.5 mg/kg, respectively, in feces. (This study is registered in the European Clinical Trials Database [https://eudract.ema.europa.eu/] under number EudraCT 2012 004921-25.) PMID:25987638

  15. Ecological Effect of Ceftaroline-Avibactam on the Normal Human Intestinal Microbiota.

    PubMed

    Rashid, Mamun-Ur; Rosenborg, Staffan; Panagiotidis, Georgios; Söderberg-Löfdal, Karin; Weintraub, Andrej; Nord, Carl Erik

    2015-08-01

    Ceftaroline-avibactam is a new combination of the antibiotic ceftaroline with a novel non-β-lactam β-lactamase inhibitor, avibactam. The purpose of the present study was to investigate the effect of ceftaroline-avibactam on the human intestinal microbiota. Fourteen healthy volunteers received ceftaroline-avibactam (600 mg ceftaroline fosamil and 600 mg avibactam) intravenously over 2 h every 8 h on days 1 to 6 and as a single dose on day 7. Fecal samples were collected on day -1 (within 24 h of the first infusion on day 1) and on days 2, 5, 7, 9, 14, and 21. Escherichia coli numbers decreased during the study and normalized on day 21. An increased number of Klebsiella bacteria appeared on day 14 and normalized on day 21. The number of other enterobacteria decreased during the study, and the number of enterococci decreased from days 2 to 7 and normalized on day 9. Candida numbers increased from days 5 to 9 and normalized after day 14. The number of lactobacilli decreased during the study and recovered on day 14. The number of bifidobacteria decreased on day 2 and normalized on day 21. The number of Bacteroides bacteria was unchanged. Clostridium difficile numbers decreased on days 7 and 9 and increased on days 14 and 21. A toxigenic C. difficile strain was detected in one volunteer on day 21 with no reported adverse events. Plasma samples were collected on days -1, 2, 5, and 7. Ceftaroline and avibactam concentrations were 0 to 34.5 mg/liter and 0 to 61.6 mg/liter, respectively, in plasma and 0 to 35.4 mg/kg and 0 to 98.5 mg/kg, respectively, in feces. (This study is registered in the European Clinical Trials Database [https://eudract.ema.europa.eu/] under number EudraCT 2012 004921-25.). PMID:25987638

  16. Production of enterodiol from defatted flaxseeds through biotransformation by human intestinal bacteria

    PubMed Central

    2010-01-01

    Background The effects of enterolignans, e.g., enterodiol (END) and particularly its oxidation product, enterolactone (ENL), on prevention of hormone-dependent diseases, such as osteoporosis, cardiovascular diseases, hyperlipemia, breast cancer, colon cancer, prostate cancer and menopausal syndrome, have attracted much attention. To date, the main way to obtain END and ENL is chemical synthesis, which is expensive and inevitably leads to environmental pollution. To explore a more economic and eco-friendly production method, we explored biotransformation of enterolignans from precursors contained in defatted flaxseeds by human intestinal bacteria. Results We cultured fecal specimens from healthy young adults in media containing defatted flaxseeds and detected END from the culture supernatant. Following selection through successive subcultures of the fecal microbiota with defatted flaxseeds as the only carbon source, we obtained a bacterial consortium, designated as END-49, which contained the smallest number of bacterial types still capable of metabolizing defatted flaxseeds to produce END. Based on analysis with pulsed field gel electrophoresis, END-49 was found to consist of five genomically distinct bacterial lineages, designated Group I-V, with Group I strains dominating the culture. None of the individual Group I-V strains produced END, demonstrating that the biotransformation of substrates in defatted flaxseeds into END is a joint work by different members of the END-49 bacterial consortium. Interestingly, Group I strains produced secoisolariciresinol, an important intermediate of END production; 16S rRNA analysis of one Group I strain established its close relatedness with Klebsiella. Genomic analysis is under way to identify all members in END-49 involved in the biotransformation and the actual pathway leading to END-production. Conclusion Biotransformation is a very economic, efficient and environmentally friendly way of mass-producing enterodiol from

  17. For Application to Human Spaceflight and ISS Experiments: VESGEN Mapping of Microvascular Network Remodeling during Intestinal Inflammation.

    PubMed

    Parsons-Wingerter, Patricia; Reinecker, Hans-Christian

    2012-10-01

    Challenges to long-duration space exploration and colonization in microgravity and cosmic radiation environments by humans include poorly understood risks for gastrointestinal function and cancer. Nonetheless, constant remodeling of the intestinal microvasculature is critical for tissue viability, healthy wound healing, and successful prevention or recovery from vascular-mediated inflammatory or ischemic diseases such as cancer. Currently no automated image analysis programs provide quantitative assessments of the complex structure of the mucosal vascular system that are necessary for tracking disease development and tissue recovery. Increasing abnormalities to the microvascular network geometry were therefore mapped with VESsel GENeration Analysis (VESGEN) software from 3D tissue reconstructions of developing intestinal inflammation in a dextran sulfate sodium (DSS) mouse model. By several VESGEN parameters and a novel vascular network linking analysis, inflammation strongly disrupted the regular, lattice-like geometry that defines the normal microvascular network, correlating positively with the increased recruitment of dendritic cells during mucosal defense responses. PMID:25143705

  18. Single-Pass Intestinal Perfusion (SPIP) and prediction of fraction absorbed and permeability in humans: A study with antiretroviral drugs.

    PubMed

    Dezani, Thaisa Marinho; Dezani, André Bersani; Junior, João Batista da Silva; Serra, Cristina Helena Dos Reis

    2016-07-01

    In recent years, the prediction of oral drug absorption in humans has been a challenge for researchers and many techniques for permeability studies have been developed for several purposes, including biowaiver processes. The Single-Pass Intestinal Perfusion (SPIP) method performed in rats can provide permeability results closest to in vivo condition. The purpose of the present study was to evaluate the intestinal permeability of the antiretroviral drugs lamivudine, stavudine and zidovudine using the SPIP method in rats and to predict their permeability (Peff,humans) and fraction absorbed (Fa) in humans. Metoprolol and fluorescein were used as marker compounds of high and low permeability, respectively. The effective permeability (Peff) results showed that stavudine and zidovudine have high permeability characteristics while lamivudine presented the lowest result. From Peff values obtained in rats, the Peff,humans and Fa were calculated. The use of SPIP in rats and calculations for absorption prediction in humans may indicate the transport mechanisms and/or pre-systemic metabolism involved on permeation processes of drugs, since this model is the closest to in vivo conditions. PMID:27130787

  19. Prostate cancer chemoprevention by soy isoflavones: role of intestinal bacteria as the "second human genome".

    PubMed

    Akaza, Hideyuki

    2012-06-01

    It has been found that the composition of intestinal microbiota can indicate the risk of disease to each individual. The concepts of biodynamics as used by the Benziger Winery in California, which treats every part of an agricultural environment as a living, breathing entity, can be usefully used in the construction of a system for cancer prevention, which seeks to use the relationship of coexistence (symbiosis) shared between people and intestinal symbiosis, that is, microbiota. Changes in the incidence rate of cancer among Japanese emigrants to Hawaii demonstrate the effect of the changes in the living environment. This leads to the hypothesis that an intake of soy-derived food products and the metabolization of the isoflavones they contain by intestinal microbiota is one of the factors for the significant difference in the incidence rate of prostate cancer among Asian and European/North American populations. It is further hypothesized that isoflavones, particularly equol, are a key factor in the difference in incidence rate between Asia and the West. It is suggested that not having equol converting bacteria in the intestine (non-equol producers) can be a risk factor for prostate cancer and that one direction for future research will be to examine the possibility of improving the intestinal environment to enable equol production. PMID:22372745

  20. In vivo gene expression profiling of human intestinal epithelial cells: analysis by laser microdissection of formalin fixed tissues

    PubMed Central

    George, Michael D; Wehkamp, Jan; Kays, Robert J; Leutenegger, Christian M; Sabir, Sadiah; Grishina, Irina; Dandekar, Satya; Bevins, Charles L

    2008-01-01

    Background The small intestinal epithelium mediates vital functions of nutrient absorption and host defense. The spatial organization of the epithelial cells along the crypt-villus axis segregates them into regions of specialized function. However, the differences in transcriptional programming and the molecular machinery that governs the migration, adhesion, and differentiation of intestinal epithelial cell lineages in humans remain under-explored. To increase our understanding of these mechanisms, we have evaluated gene expression patterns of ileal epithelial cells isolated by laser capture microdissection from either the villus epithelial or crypt cell regions of healthy human small intestinal mucosa. Expression profiles in villus and crypt epithelium were determined by DNA microarray, quantitative real-time PCR, and immunohistochemistry based methods. The expression levels of selected epithelial biomarkers were also compared between gastrointestinal tissues. Results Previously established biomarkers as well as a novel and distinct set of genes believed to be linked to epithelial cell motility, adhesion, and differentiation were found to be enriched in each of the two corresponding cell populations (GEO accession: GSE10629). Additionally, high baseline expression levels of innate antimicrobials, alpha defensin 5 (HD5) and regenerating islet-derived 3 alpha (Reg3A), were detected exclusively within the small bowel crypt, most notably in the ileum in comparison to other sites along the gastrointestinal tract. Conclusion The elucidation of differential gene expression patterns between crypt and villus epithelial cell lineages in human ileal tissue provides novel insights into the molecular machinery that mediates their functions and spatial organization. Moreover, our findings establish an important framework of knowledge for future investigations of human gastrointestinal diseases. PMID:18457593

  1. [Studies of changes in human intestinal micro-biocenosis in health and in disease].

    PubMed

    Nesvizhkiĭ, Iu V

    2003-01-01

    The paper contains the generalized many-year research conducted by staff of the chair for microbiology (including virology and immunology) aimed at describing the universal principles related with forming an inter-individual diversity of gastric-and-intestinal micro-biocenosis. The research demonstrated a high dependence of qualitative and quantitative parameters of the analyzed biotope on various-genesis factors. It was established that the nature of violations in the gastric-and-intestinal micro-biocenosis is not dependent on peculiarities of an influencing pathogenetic factor, and its difference is related only with quantitative and qualitative (specific) changes in the microbial composition. The marked feature makes it possible to regard the gastric-and-intestinal micro-biocenosis as a non-specific indicator of the condition of a macro-organism and that of the environmental quality. PMID:12608086

  2. Ontogeny of Human Hepatic and Intestinal Transporter Gene Expression during Childhood: Age Matters

    PubMed Central

    Mooij, Miriam G.; Schwarz, Ute I.; de Koning, Barbara A. E.; Leeder, J. Steven; Gaedigk, Roger; Samsom, Janneke N.; Spaans, Edwin; van Goudoever, Johannes B.; Tibboel, Dick; Kim, Richard B.

    2014-01-01

    Many drugs prescribed to children are drug transporter substrates. Drug transporters are membrane-bound proteins that mediate the cellular uptake or efflux of drugs and are important to drug absorption and elimination. Very limited data are available on the effect of age on transporter expression. Our study assessed age-related gene expression of hepatic and intestinal drug transporters. Multidrug resistance protein 2 (MRP2), organic anion transporting polypeptide 1B1 (OATP1B1), and OATP1B3 expression was determined in postmortem liver samples (fetal n = 6, neonatal n = 19, infant n = 7, child n = 2, adult n = 11) and multidrug resistance 1 (MDR1) expression in 61 pediatric liver samples. Intestinal expression of MDR1, MRP2, and OATP2B1 was determined in surgical small bowel samples (neonates n = 15, infants n = 3, adults n = 14). Using real-time reverse-transcription polymerase chain reaction, we measured fetal and pediatric gene expression relative to 18S rRNA (liver) and villin (intestines), and we compared it with adults using the 2−∆∆Ct method. Hepatic expression of MRP2, OATP1B1, and OATP1B3 in all pediatric age groups was significantly lower than in adults. Hepatic MDR1 mRNA expression in fetuses, neonates, and infants was significantly lower than in adults. Neonatal intestinal expressions of MDR1 and MRP2 were comparable to those in adults. Intestinal OATP2B1 expression in neonates was significantly higher than in adults. We provide new data that show organ- and transporter-dependent differences in hepatic and intestinal drug transporter expression in an age-dependent fashion. This suggests that substrate drug absorption mediated by these transporters may be subject to age-related variation in a transporter dependent pattern. PMID:24829289

  3. Development and validation of a new dynamic computer-controlled model of the human stomach and small intestine.

    PubMed

    Guerra, Aurélie; Denis, Sylvain; le Goff, Olivier; Sicardi, Vincent; François, Olivier; Yao, Anne-Françoise; Garrait, Ghislain; Manzi, Aimé Pacifique; Beyssac, Eric; Alric, Monique; Blanquet-Diot, Stéphanie

    2016-06-01

    For ethical, regulatory, and economic reasons, in vitro human digestion models are increasingly used as an alternative to in vivo assays. This study aims to present the new Engineered Stomach and small INtestine (ESIN) model and its validation for pharmaceutical applications. This dynamic computer-controlled system reproduces, according to in vivo data, the complex physiology of the human stomach and small intestine, including pH, transit times, chyme mixing, digestive secretions, and passive absorption of digestion products. Its innovative design allows a progressive meal intake and the differential gastric emptying of solids and liquids. The pharmaceutical behavior of two model drugs (paracetamol immediate release form and theophylline sustained release tablet) was studied in ESIN during liquid digestion. The results were compared to those found with a classical compendial method (paddle apparatus) and in human volunteers. Paracetamol and theophylline tablets showed similar absorption profiles in ESIN and in healthy subjects. For theophylline, a level A in vitro-in vivo correlation could be established between the results obtained in ESIN and in humans. Interestingly, using a pharmaceutical basket, the swelling and erosion of the theophylline sustained release form was followed during transit throughout ESIN. ESIN emerges as a relevant tool for pharmaceutical studies but once further validated may find many other applications in nutritional, toxicological, and microbiological fields. Biotechnol. Bioeng. 2016;113: 1325-1335. © 2015 Wiley Periodicals, Inc. PMID:26616643

  4. Central role of the gut epithelial barrier in the pathogenesis of chronic intestinal inflammation: lessons learned from animal models and human genetics.

    PubMed

    Pastorelli, Luca; De Salvo, Carlo; Mercado, Joseph R; Vecchi, Maurizio; Pizarro, Theresa T

    2013-01-01

    The gut mucosa is constantly challenged by a bombardment of foreign antigens and environmental microorganisms. As such, the precise regulation of the intestinal barrier allows the maintenance of mucosal immune homeostasis and prevents the onset of uncontrolled inflammation. In support of this concept, emerging evidence points to defects in components of the epithelial barrier as etiologic factors in the pathogenesis of inflammatory bowel diseases (IBDs). In fact, the integrity of the intestinal barrier relies on different elements, including robust innate immune responses, epithelial paracellular permeability, epithelial cell integrity, as well as the production of mucus. The purpose of this review is to systematically evaluate how alterations in the aforementioned epithelial components can lead to the disruption of intestinal immune homeostasis, and subsequent inflammation. In this regard, the wealth of data from mouse models of intestinal inflammation and human genetics are pivotal in understanding pathogenic pathways, for example, that are initiated from the specific loss of function of a single protein leading to the onset of intestinal disease. On the other hand, several recently proposed therapeutic approaches to treat human IBD are targeted at enhancing different elements of gut barrier function, further supporting a primary role of the epithelium in the pathogenesis of chronic intestinal inflammation and emphasizing the importance of maintaining a healthy and effective intestinal barrier. PMID:24062746

  5. An In Vitro Model of the Human Colon: Studies of Intestinal Biofilms and Clostridium difficile Infection.

    PubMed

    Crowther, Grace S; Wilcox, Mark H; Chilton, Caroline H

    2016-01-01

    The in vitro gut model is an invaluable research tool to study indigenous gut microbiota communities, the behavior of pathogenic organisms, and the therapeutic and adverse effect of antimicrobial administration on these communities. The model has been validated against the intestinal contents of sudden death victims to reflect the physicochemical and microbiological conditions of the proximal to distal colon, and has been extensively used to investigate the interplay between gut microbiota populations, antibiotic exposure, and Clostridium difficile infection. More recently the gut model has been adapted to additionally model intestinal biofilm. Here we describe the structure, assembly, and application of the biofilm gut model. PMID:27507345

  6. Crohn disease–associated adherent-invasive E. coli bacteria target mouse and human Peyer’s patches via long polar fimbriae

    PubMed Central

    Chassaing, Benoit; Rolhion, Nathalie; de Vallée, Amélie; Salim, Sa’ad Y.; Prorok-Hamon, Maelle; Neut, Christel; Campbell, Barry J.; Söderholm, Johan D.; Hugot, Jean-Pierre; Colombel, Jean-Frédéric; Darfeuille-Michaud, Arlette

    2011-01-01

    Crohn disease (CD) is a multifactorial disease in which an abnormal immune response in the gastrointestinal (GI) tract leads to chronic inflammation. The small intestine, particularly the ileum, of patients with CD is colonized by adherent-invasive E. coli (AIEC) — a pathogenic group of E. coli able to adhere to and invade intestinal epithelial cells. As the earliest inflammatory lesions are microscopic erosions of the epithelium lining the Peyer’s patches (PPs), we investigated the ability of AIEC bacteria to interact with PPs and the virulence factors involved. We found that AIEC bacteria could interact with mouse and human PPs via long polar fimbriae (LPF). An LPF-negative AIEC mutant was highly impaired in its ability to interact with mouse and human PPs and to translocate across monolayers of M cells, specialized epithelial cells at the surface of PPs. The prevalence of AIEC strains harboring the lpf operon was markedly higher in CD patients compared with controls. In addition, increased numbers of AIEC, but not LPF-deficient AIEC, bacteria were found interacting with PPs from Nod2–/– mice compared with WT mice. In conclusion, we have identified LPF as a key factor for AIEC to target PPs. This could be the missing link between AIEC colonization and the presence of early lesions in the PPs of CD patients. PMID:21339647

  7. Evaluation of intestinal absorption enhancement and local mucosal toxicity of two promoters. I. Studies in isolated rat and human colonic mucosae.

    PubMed

    Maher, Sam; Kennelly, Rory; Bzik, Victoria A; Baird, Alan W; Wang, Xuexuan; Winter, Desmond; Brayden, David J

    2009-11-01

    The effects of two absorption promoters, (sodium caprate (C(10)) and melittin), on intestinal permeability and viability were measured in intact rat and human colonic epithelia mounted in Ussing chambers. Apical-side addition of C(10) (10 mM) and melittin (10-50 microM) rapidly reduced the transepithelial electrical resistance (TEER) and increased the apparent permeability coefficient (Papp) of [(14)C]-mannitol and FITC-dextran-4 kDa (FD4) across colonic mucosae from both species. Effects of C(10) on flux were greater than those of melittin at the concentrations selected. C(10) irreversibly decreased TEER, but the effects of melittin were partially reversible. Enhanced permeability of polar sugars (0.18-70 kDa) in colonic mucosae with C(10) was accompanied by significant release of lactate dehydrogenase (LDH) from the luminal surface as well as by inhibition of electrogenic chloride secretion induced by the muscarinic agonist, carbachol (0.1-10 microM). Although melittin did not alter electrogenic chloride secretion in rat or human colonic mucosae, it caused leakage of LDH from rat tissue. Gross histology and electron microscopy of rat and human colonic mucosae demonstrated that each permeation enhancer can induce colonic epithelial damage at concentrations required to increase marker fluxes. C(10) led to more significant mucosal damage than melittin, characterised by sloughing and mucosal erosion. Overall, these results indicate that while C(10) and melittin increase transport of paracellular flux markers across isolated human and rat colonic mucosae in vitro, these effects are associated with some cytotoxicity. PMID:19737613

  8. The intestine is a blender

    NASA Astrophysics Data System (ADS)

    Yang, Patricia; Lamarca, Morgan; Kravets, Victoria; Hu, David

    According to the U.S. Department of Health and Human Services, digestive disease affects 60 to 70 million people and costs over 140 billion annually. Despite the significance of the gastrointestinal tract to human health, the physics of digestion remains poorly understood. In this study, we ask a simple question: what sets the frequency of intestinal contractions? We measure the frequency of intestinal contractions in rats, as a function of distance down the intestine. We find that intestines Contract radially ten times faster than longitudinally. This motion promotes mixing and, in turn, absorption of food products by the intestinal wall. We calculate viscous dissipation in the intestinal fluid to rationalize the relationship between frequency of intestinal contraction and the viscosity of the intestinal contents. Our findings may help to understand the evolution of the intestine as an ideal mixer.

  9. The intestine is a blender

    NASA Astrophysics Data System (ADS)

    Yang, Patricia; Lamarca, Morgan; Hu, David

    2015-11-01

    According to the U.S. Department of Health and Human Services, digestive disease affects 60 to 70 million people and costs over 140 billion annually. Despite the significance of the gastrointestinal tract to human health, the physics of digestion remains poorly understood. In this study, we ask a simple question: what sets the frequency of intestinal contractions? We measure the frequency of intestinal contractions in rats, as a function of distance down the intestine. We find that intestines contract radially ten times faster than longitudinally. This motion promotes mixing and, in turn, absorption of food products by the intestinal wall. We calculate viscous dissipation in the intestinal fluid to rationalize the relationship between frequency of intestinal contraction and the viscosity of the intestinal contents. Our findings may help to understand the evolution of the intestine as an ideal mixer.

  10. Comparative Analysis of the Cytotoxic Effects of Okadaic Acid-Group Toxins on Human Intestinal Cell Lines

    PubMed Central

    Ferron, Pierre-Jean; Hogeveen, Kevin; Fessard, Valérie; Le Hégarat, Ludovic

    2014-01-01

    The phycotoxin, okadaic acid (OA) and dinophysistoxin 1 and 2 (DTX-1 and -2) are protein phosphatase PP2A and PP1 inhibitors involved in diarrhetic shellfish poisoning (DSP). Data on the toxicity of the OA-group toxins show some differences with respect to the in vivo acute toxicity between the toxin members. In order to investigate whether OA and congeners DTX-1 and -2 may induce different mechanisms of action during acute toxicity on the human intestine, we compared their toxicological effects in two in vitro intestinal cell models: the colorectal adenocarcinoma cell line, Caco-2, and the intestinal muco-secreting cell line, HT29-MTX. Using a high content analysis approach, we evaluated various cytotoxicity parameters, including apoptosis (caspase-3 activation), DNA damage (phosphorylation of histone H2AX), inflammation (translocation of NF-κB) and cell proliferation (Ki-67 production). Investigation of the kinetics of the cellular responses demonstrated that the three toxins induced a pro-inflammatory response followed by cell cycle disruption in both cell lines, leading to apoptosis. Our results demonstrate that the three toxins induce similar effects, as no major differences in the cytotoxic responses could be detected. However DTX-1 induced cytotoxic effects at five-fold lower concentrations than for OA and DTX-2. PMID:25196936

  11. SURVEY OF HOUSE RAT INTESTINAL PARASITES FROM SURABAYA DISTRICT, EAST JAVA, INDONESIA THAT CAN CAUSE OPPORTUNISTIC INFECTIONS IN HUMANS.

    PubMed

    Prasetyo, R H

    2016-03-01

    The purpose of this study was to investigate the prevalence of house rat zoonotic intestinal parasites from Surabaya District, East Java, Indonesia that have the potential to cause opportunistic infection in humans. House rat fecal samples were collected from an area of Surabaya District with a dense rat population during May 2015. Intestinal parasites were detected microscopically using direct smear of feces stained with Lugol's iodine and modified Ziehl-Neelsen stains. The fecal samples were also cultured for Strongyloides stercoralis. Ninety-eight house rat fecal samples were examined. The potential opportunistic infection parasite densities found in those samples were Strongyloides stercoralis in 53%, Hymenolepis nana in 42%, Cryptosporidium spp in 33%, and Blastocystis spp in 6%. This is the first report of this kind in Surabaya District. Measures need to be taken to control the house rat population in the study area to reduce the risk of the public health problem. Keywords: zoonotic intestinal parasites, opportunistic infection, house rat, densely populated area, Indonesia PMID:27244955

  12. Short-Chain Fatty Acids Regulate Secretion of IL-8 from Human Intestinal Epithelial Cell Lines in vitro.

    PubMed

    Asarat, M; Vasiljevic, T; Apostolopoulos, V; Donkor, O

    2015-01-01

    Short-chain fatty acids (SCFAs) including acetate, propionate and butyrate play an important role in the physiological functions of epithelial cells and colonocytes, such as immune response regulation. Human intestinal epithelial cells (IECs) contribute in intestinal immune response via different ways, such as production of different immune factors including Interleukin (IL) IL-8, which act as chemoattractant for neutrophils, and subsequently enhance inflammation. Therefore, we aimed to evaluate the effects of SCFAs on IECs viability and production of IL-8 in vitro. SCFAs were co-cultured with either normal intestinal epithelial (T4056) or adenocarcinoma derived (HT-29) cell lines for 24-96 h in the presence of E.coli lipopolysaccharides (LPS). Cell viability, proliferation, production of IL-8 and expression of IL-8 mRNA were determined in the cell cultures. The result showed that 20 mM of SCFAs was non-cytotoxic to T4056 and enhanced their growth, whereas the growth of HT-29 was inhibited. The SCFAs down regulated LPS-stimulated IL-8 secretion with different response patterns, but no obvious effects on the release of IL-8 from non LPS- stimulated cells. In conclusion, SCFAs showed regulatory effect on release of LPS-stimulated IL-8 as well as the expression of mRNA of IL-8; these might explain the anti-inflammatory and anti-carcinogenic mechanism of SCFAs. PMID:26436853

  13. Tumour necrosis factor-alpha up-regulates decay-accelerating factor gene expression in human intestinal epithelial cells.

    PubMed Central

    Andoh, A; Fujiyama, Y; Sumiyoshi, K; Sakumoto, H; Okabe, H; Bamba, T

    1997-01-01

    The increased expression of decay-accelerating factor (DAF) has been detected in intestinal epithelial cells at the inflamed mucosa. In this study, we examined the effects of tumour necrosis factor (TNF)-alpha on DAF expression in three intestinal epithelial cell lines. DAF mRNA expression was evaluated by Northern blot analysis, and DAF protein expression was analysed by biotin labelling and immunoprecipitation. TNF-alpha induced a marked increase in DAF mRNA and protein expression in HT-29, T84 and Caco-2 cells. In HT-29 cells, the effects of TNF-a on DAF mRNA accumulation were observed in a dose-dependent manner; DAF mRNA accumulation reached a maximum at 3-6 hr, and then gradually decreased. These effects of TNF-alpha required de novo protein synthesis. Messenger RNA stability studies suggested that TNF-alpha partially regulated DAF gene expression by a posttranscriptional mechanism. Moreover, the combination of TNF-alpha and interleukin (IL)-4 induced an additive increase in DAF mRNA accumulation in HT-29 and T84 cells. In human intestinal epithelial cells, TNF-alpha acts as a potent inducer of DAF mRNA expression, indicating an important role for TNF-alpha in the regulation of DAF expression at the inflamed mucosa. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 Figure 8 PMID:9155641

  14. Ecological Effect of Solithromycin on Normal Human Oropharyngeal and Intestinal Microbiota.

    PubMed

    Rashid, Mamun-Ur; Rosenborg, Staffan; Panagiotidis, Georgios; Holm, Johan; Söderberg Löfdal, Karin; Weintraub, Andrej; Nord, Carl Erik

    2016-07-01

    Solithromycin is a new fluoroketolide. The purpose of the present study was to investigate the effect of orally administered solithromycin on the human oropharyngeal and intestinal microbiota. Thirteen healthy volunteers (median age, 27.3 years) received oral solithromycin at 800 mg on day 1 followed by 400 mg daily on days 2 to 7. Fecal and saliva samples were collected at baseline and on days 2, 5, 7, 9, 14, and 21 for pharmacokinetic and microbiological analyses. Plasma samples were collected predose on days 2, 5, and 7 as proof of exposure, and solithromycin concentration ranges were 21.9 to 258 ng/ml, 18.0 to 386 ng/ml, and 16.9 to 417 ng/ml, respectively. The solithromycin concentrations in feces were 15.8 to 65.4 mg/kg, 24.5 to 82.7 mg/kg, 21.4 to 82.7 mg/kg, 12.1 to 72.4 mg/kg, 0.2 to 25.6 mg/kg, and 0 to 0.5 mg/kg on days 2, 5, 7, 9, 14, and 21, respectively. The numbers of enterobacteria and enterococci decreased and were normalized on day 14. The numbers of lactobacilli and bifidobacteria decreased from day 2 to day 14 and were normalized on day 21. The clostridia decreased on days 2, 7, and 14 and were normalized on day 21. No Clostridium difficile strains or toxins were detected during the study period. The number of Bacteroides strains was not significantly changed. The solithromycin concentrations in saliva were 0 to 1.2 mg/liter, 0 to 0.5 mg/liter, 0 to 0.5 mg/liter, and 0 to 0.1 mg/liter on days 2, 5, 7, and 9, respectively. The numbers of streptococci decreased on day 2 and were normalized on day 5. The numbers of lactobacilli, prevotellae, fusobacteria, and leptotrichiae decreased from day 2 and were normalized on day 21. PMID:27139483

  15. Growth hormone enhances amino acid uptake by the human small intestine.

    PubMed Central

    Inoue, Y; Copeland, E M; Souba, W W

    1994-01-01

    OBJECTIVE: The effects of growth hormone (GH) on the luminal transport of amino acids and glucose by the human small intestine were investigated. SUMMARY BACKGROUND DATA: The anabolic effect of growth hormone administration is associated with nitrogen retention and an increase muscle strength, but the impact of growth hormone on nutrient uptake from the gut lumen has not been examined. METHODS: Twelve healthy patients received a daily subcutaneous dose of low-dose GH (0.1 mg/kg), high-dose GH (0.2 mg/kg), or no treatment (controls) for 3 days before surgery. At operation, ileum (8 patients) or jejunum (4 patients) was resected, and brush border membrane vesicles (BBMVs) were prepared by differential centrifugation. Vesicle purity was confirmed by a 16-fold enrichment of marker enzymes. The carrier-mediated transport of glutamine (System B), leucine (System L), alanine (System B), arginine (System y+), MeAIB (methyl alpha-aminoisobutyric acid [System A]), and glucose (Na(+)-dependent glucose transporter) by BBMVs was measured by a rapid mixing/filtration technique. RESULTS: Treatment with low-dose GH resulted in a statistically insignificant increase in amino acid transport rates in jejunal and ileal BBMVs. High-dose GH resulted in a generalized 20%-to 70%-stimulation of amino acid transport, whereas glucose transport was not affected. The effects of GH were similar in ileum and jejunum. Kinetic analysis of the transport of glutamine (the most abundant amino acid in the body and the principal gut fuel) and the essential amino acid leucine revealed that the increase in transport was caused by a 50% increase in carrier Vmax, consistent with an increase in the number of functional carriers in the brush border membrane. Pooled analysis of transport velocities demonstrated that total rates of amino acid uptake from the gut lumen were increased significantly by 35% in GH-treated patients. CONCLUSIONS: The ability of GH to enhance amino acid uptake from the gut lumen

  16. Molecular interactions between dipeptides, drugs and the human intestinal H+ -oligopeptide cotransporter hPEPT1.

    PubMed

    Sala-Rabanal, Monica; Loo, Donald D F; Hirayama, Bruce A; Turk, Eric; Wright, Ernest M

    2006-07-01

    The human intestinal proton-coupled oligopeptide transporter hPEPT1 has been implicated in the absorption of pharmacologically active compounds. We have investigated the interactions between a comprehensive selection of drugs, and wild-type and variant hPEPT1s expressed in Xenopus oocytes, using radiotracer uptake and electrophysiological methods. The beta-lactam antibiotics ampicillin, amoxicillin, cephalexin and cefadroxil, the antineoplastics delta-aminolevulinic acid (delta-ALA) and bestatin, and the neuropeptide N-acetyl-Asp-Glu (NAAG), were transported, as judged by their ability to evoke inward currents. When the drugs were added in the presence of the typical substrate glycylsarcosine (Gly-Sar), the inward currents were equal or less than that induced by Gly-Sar alone. This suggests that the drugs are transported at a lower turnover rate than Gly-Sar, but may also point towards complex interactions between dipeptides, drugs and the transporter. Gly-Sar and the drugs also modified the kinetics of hPEPT1 presteady-state charge movement, by causing a reduction in maximum charge (Qmax) and a shift of the midpoint voltage (V0.5) to more negative potentials. Our results indicate that the substrate selectivity of hPEPT1 is: Gly-Sar > NAAG, delta-ALA, bestatin > cefadroxil, cephalexin > ampicillin, amoxicillin. Based on steady-state and presteady-state analysis of Gly-Sar and cefadroxil transport, we proposed an extension of the 6-state kinetic model for hPEPT1 function that globally accounts for the observed presteady-state and steady-state kinetics of neutral dipeptide and drug transport. Our model suggests that, under saturating conditions, the rate-limiting step of the hPEPT1 transport cycle is the reorientation of the empty carrier within the membrane. Variations in rates of drug cotransport are predicted to be due to differences in affinity and turnover rate. Oral availability of drugs may be reduced in the presence of physiological concentrations of dietary

  17. Pro-inflammatory flagellin proteins of prevalent motile commensal bacteria are variably abundant in the intestinal microbiome of elderly humans.

    PubMed

    Neville, B Anne; Sheridan, Paul O; Harris, Hugh M B; Coughlan, Simone; Flint, Harry J; Duncan, Sylvia H; Jeffery, Ian B; Claesson, Marcus J; Ross, R Paul; Scott, Karen P; O'Toole, Paul W

    2013-01-01

    Some Eubacterium and Roseburia species are among the most prevalent motile bacteria present in the intestinal microbiota of healthy adults. These flagellate species contribute "cell motility" category genes to the intestinal microbiome and flagellin proteins to the intestinal proteome. We reviewed and revised the annotation of motility genes in the genomes of six Eubacterium and Roseburia species that occur in the human intestinal microbiota and examined their respective locus organization by comparative genomics. Motility gene order was generally conserved across these loci. Five of these species harbored multiple genes for predicted flagellins. Flagellin proteins were isolated from R. inulinivorans strain A2-194 and from E. rectale strains A1-86 and M104/1. The amino-termini sequences of the R. inulinivorans and E. rectale A1-86 proteins were almost identical. These protein preparations stimulated secretion of interleukin-8 (IL-8) from human intestinal epithelial cell lines, suggesting that these flagellins were pro-inflammatory. Flagellins from the other four species were predicted to be pro-inflammatory on the basis of alignment to the consensus sequence of pro-inflammatory flagellins from the β- and γ- proteobacteria. Many fliC genes were deduced to be under the control of σ(28). The relative abundance of the target Eubacterium and Roseburia species varied across shotgun metagenomes from 27 elderly individuals. Genes involved in the flagellum biogenesis pathways of these species were variably abundant in these metagenomes, suggesting that the current depth of coverage used for metagenomic sequencing (3.13-4.79 Gb total sequence in our study) insufficiently captures the functional diversity of genomes present at low (≤1%) relative abundance. E. rectale and R. inulinivorans thus appear to synthesize complex flagella composed of flagellin proteins that stimulate IL-8 production. A greater depth of sequencing, improved evenness of sequencing and improved

  18. Pro-Inflammatory Flagellin Proteins of Prevalent Motile Commensal Bacteria Are Variably Abundant in the Intestinal Microbiome of Elderly Humans

    PubMed Central

    Neville, B. Anne; Sheridan, Paul O.; Harris, Hugh M. B.; Coughlan, Simone; Flint, Harry J.; Duncan, Sylvia H.; Jeffery, Ian B.; Claesson, Marcus J.; Ross, R. Paul; Scott, Karen P.; O'Toole, Paul W.

    2013-01-01

    Some Eubacterium and Roseburia species are among the most prevalent motile bacteria present in the intestinal microbiota of healthy adults. These flagellate species contribute “cell motility” category genes to the intestinal microbiome and flagellin proteins to the intestinal proteome. We reviewed and revised the annotation of motility genes in the genomes of six Eubacterium and Roseburia species that occur in the human intestinal microbiota and examined their respective locus organization by comparative genomics. Motility gene order was generally conserved across these loci. Five of these species harbored multiple genes for predicted flagellins. Flagellin proteins were isolated from R. inulinivorans strain A2-194 and from E. rectale strains A1-86 and M104/1. The amino-termini sequences of the R. inulinivorans and E. rectale A1-86 proteins were almost identical. These protein preparations stimulated secretion of interleukin-8 (IL-8) from human intestinal epithelial cell lines, suggesting that these flagellins were pro-inflammatory. Flagellins from the other four species were predicted to be pro-inflammatory on the basis of alignment to the consensus sequence of pro-inflammatory flagellins from the β- and γ- proteobacteria. Many fliC genes were deduced to be under the control of σ28. The relative abundance of the target Eubacterium and Roseburia species varied across shotgun metagenomes from 27 elderly individuals. Genes involved in the flagellum biogenesis pathways of these species were variably abundant in these metagenomes, suggesting that the current depth of coverage used for metagenomic sequencing (3.13–4.79 Gb total sequence in our study) insufficiently captures the functional diversity of genomes present at low (≤1%) relative abundance. E. rectale and R. inulinivorans thus appear to synthesize complex flagella composed of flagellin proteins that stimulate IL-8 production. A greater depth of sequencing, improved evenness of sequencing and improved

  19. Intestinal leiomyoma

    MedlinePlus

    Leiomyoma - intestine ... McLaughlin P, Maher MM. The duodenum and small intestine. In: Adam A, Dixon AK, Gillard JH, Schaefer- ... Roline CE, Reardon RF. Disorders of the small intestine. In: Marx JA, Hockberger RS, Walls RM, et ...

  20. Intestinal Cancer

    MedlinePlus

    ... connects your stomach to your large intestine. Intestinal cancer is rare, but eating a high-fat diet ... increase your risk. Possible signs of small intestine cancer include Abdominal pain Weight loss for no reason ...

  1. Tspan-1 interacts with the thiamine transporter-1 in human intestinal epithelial cells and modulates its stability

    PubMed Central

    Nabokina, Svetlana M.; Senthilkumar, Sundar Rajan

    2011-01-01

    The human thiamine transporter-1 (hTHTR-1) contributes to intestinal thiamine uptake, and its function is regulated at both the transcriptional and posttranscriptional levels. Nothing, however, is known about the protein(s) that may interact with hTHTR-1 and affects its cell biology and physiology. We addressed this issue in the present investigation using a bacterial two-hybrid system to screen a human intestinal cDNA library with the complete coding sequence of hTHTR-1 as a bait. Our results showed that a member of the tetraspanin family of proteins, Tspan-1, interacts with hTHTR-1. Coimmunoprecipitation and glutathione S-transferase (GST)-pulldown assays confirmed the existence of such an interaction between hTspan-1 and hTHTR-1 in human intestinal epithelial Caco-2 cells. Furthermore, live cell confocal imaging demonstrated that hTspan-1 and hTHTR-1 colocalize in human intestinal epithelial HuTu-80 cells. The importance of the interaction between hTspan-1 and hTHTR-1 for cell biology of the thiamine transporter was examined in HuTu-80 cells stably expressing hTHTR-1. Coexpression of hTspan-1 in these cells led to a significant decrease in the rate of degradation of hTHTR-1 compared with cells expressing the hTHTR-1 alone; in fact the half-life of the hTHTR-1 protein was twice longer in the former cell type compared with the latter cell type (12 h vs. 6 h, respectively). This finding was also confirmed at the functional level when a significantly higher thiamine uptake was observed in cycloheximide-treated (6 h) cells expressing hTHTR-1 together with hTspan-1 compared with those expressing hTHTR-1 alone. These studies demonstrate for the first time that Tspan-1 is an interacting partner with hTHTR-1 and that this interaction affects hTHTR-1 stability. PMID:21836059

  2. Further studies on a human intestinal bacterium Ruminococcus sp. END-1 for transformation of plant lignans to mammalian lignans.

    PubMed

    Jin, Jong-Sik; Hattori, Masao

    2009-08-26

    A human intestinal bacterium Ruminococcus (R.) sp. END-1 capable of oxidizing (-)-enterodiol to (-)-enterolactone, enantioselectively, was further investigated from the perspective of transformation of plant lignans to mammalian lignans; A cell-free extract of the bacterium transformed (-)-enterodiol to (-)-enterolactone through an intermediate, enterolactol. The bacterium showed not only oxidation but also demethylation and deglucosylation activities for plant lignans. Arctiin and secoisolariciresinol diglucoside were converted to (-)-dihydroxyenterolactone and (+)-dihydroxyenterodiol, respectively. Moreover, by coincubation with Eggerthella sp. SDG-2, the bacterium transformed arctiin and secoisolariciresinol diglucoside to (-)-enterolactone and (+)-enterodiol, respectively. PMID:19630415

  3. Immunohistochemical evidence for the occurrence of vasoactive intestinal polypeptide (VIP)-containing nerve fibres in human fetal abdominal paraganglia.

    PubMed

    Hervonen, A; Linnoila, I; Tainio, H; Vaalasti, A; Mascorro, J A

    1985-12-01

    The abdominal paraganglia in man represent a major source of catecholamines, and perhaps peptide hormones, during the fetal period. The nature of the innervation of the abdominal paraganglia was studied immunohistochemically by utilising antibodies to vasoactive intestinal polypeptide, enkephalin, substance-P and somatostatin. The paraganglia showed an abundant network of VIP-immunoreactive fibres, and similar nerve fibres were found within nerve bundles of the preaortic sympathetic plexus. Occasionally, VIP-immunoreactive fibres were seen within the prevertebral ganglia, but stained cell bodies were never observed. It may be suggested that VIP-containing nerves could regulate a secretory response from fetal human abdominal paraganglia. PMID:3870718

  4. Human podocytes perform polarized, caveolae-dependent albumin endocytosis

    PubMed Central

    Dobrinskikh, Evgenia; Okamura, Kayo; Kopp, Jeffrey B.; Doctor, R. Brian

    2014-01-01

    The renal glomerulus forms a selective filtration barrier that allows the passage of water, ions, and small solutes into the urinary space while restricting the passage of cells and macromolecules. The three layers of the glomerular filtration barrier include the vascular endothelium, glomerular basement membrane (GBM), and podocyte epithelium. Podocytes are capable of internalizing albumin and are hypothesized to clear proteins that traverse the GBM. The present study followed the fate of FITC-labeled albumin to establish the mechanisms of albumin endocytosis and processing by podocytes. Confocal imaging and total internal reflection fluorescence microscopy of immortalized human podocytes showed FITC-albumin endocytosis occurred preferentially across the basal membrane. Inhibition of clathrin-mediated endocytosis and caveolae-mediated endocytosis demonstrated that the majority of FITC-albumin entered podocytes through caveolae. Once internalized, FITC-albumin colocalized with EEA1 and LAMP1, endocytic markers, and with the neonatal Fc receptor, a marker for transcytosis. After preloading podocytes with FITC-albumin, the majority of loaded FITC-albumin was lost over the subsequent 60 min of incubation. A portion of the loss of albumin occurred via lysosomal degradation as pretreatment with leupeptin, a lysosomal protease inhibitor, partially inhibited the loss of FITC-albumin. Consistent with transcytosis of albumin, preloaded podocytes also progressively released FITC-albumin into the extracellular media. These studies confirm the ability of podocytes to endocytose albumin and provide mechanistic insight into cellular mechanisms and fates of albumin handling in podocytes. PMID:24573386

  5. Human Regional Pulmonary Gas Exchange with Xenon Polarization Transfer (XTC)

    NASA Astrophysics Data System (ADS)

    Muradian, Iga; Butler, James; Hrovat, Mirko; Topulos, George; Hersman, Elizabeth; Ruset, Iulian; Covrig, Silviu; Frederick, Eric; Ketel, Stephen; Hersman, F. W.; Patz, Samuel

    2007-03-01

    Xenon Transfer Contrast (XTC) is an existing imaging method (Ruppert et al, Magn Reson Med, 51:676-687, 2004) that measures the fraction F of ^129Xe magnetization that diffuses from alveolar gas spaces to septal parenchymal tissue in lungs in a specified exchange time. As previously implemented, XTC is a 2-breath method and has been demonstrated in anesthetized animals. To use XTC in humans and to avoid issues associated with obtaining identical gas volumes on subsequent breath-hold experiments as well as precise image registration in post-processing, a single breath XTC method was developed that acquires three consecutive gradient echo images in an 8s acquisition. We report here initial measurements of the mean and variance of F for 5 normal healthy subjects as well as 7 asymptomatic smokers. The experiments were performed at two lung volumes (˜45 and 65% of TLC). We found that both the mean and variance of F increased with smoking history. In comparison, standard pulmonary function tests such as DLCO FEV1 showed no correlation with smoking history.

  6. Polarized Integrin Mediates Human Keratinocyte Adhesion to Basal Lamina

    NASA Astrophysics Data System (ADS)

    de Luca, Michele; Tamura, Richard N.; Kajiji, Shama; Bondanza, Sergio; Rossino, Paola; Cancedda, Ranieri; Carlo Marchisio, Pier; Quaranta, Vito

    1990-09-01

    Epithelial cell interactions with matrices are critical to tissue organization. Indirect immunofluorescence and immunoprecipitations of cell lysates prepared from stratified cultures of human epidermal cells showed that the major integrins expressed by keratinocytes are α_Eβ_4 (also called α_6β_4) and α_2β_1/α_3β_1. The α_Eβ_4 integrin is localized at the surface of basal cells in contact with the basement membrane, whereas α_2β_1/ α_3β_1 integrins are absent from the basal surface and are localized only on the lateral surface of basal and spinous keratinocytes. Anti-β_4 antibodies potently inhibited keratinocyte adhesion to matrigel or purified laminin, whereas anti-β_1 antibodies were ineffective. Only anti-β_4 antibodies were able to detach established keratinocyte colonies. These data suggest that α_Eβ_4 mediates keratinocyte adhesion to basal lamina, whereas the β_1 subfamily is involved in cell-cell adhesion of keratinocytes.

  7. VESGEN Mapping of Bioactive Protection against Intestinal Inflammation: Application to Human Spaceflight and ISS Experiments

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, P. A.; Chen, X.; Kelly, C. P.; Reinecker, H. C.

    2011-01-01

    Challenges to successful space exploration and colonization include adverse physiological reactions to micro gravity and space radiation factors. Constant remodeling of the microvasculature is critical for tissue preservation, wound healing, and recovery after ischemia. Regulation of the vascular system in the intestine is particularly important to enable nutrient absorption while maintaining barrier function and mucosal defense against micro biota. Although tremendous progress has been made in understanding the molecular circuits regulating neovascularization, our knowledge of the adaptations of the vascular system to environmental challenges in the intestine remains incomplete. This is in part because of the lack of methods to observe and quantify the complex processes associated with vascular responses in vivo. Developed by GRC as a mature beta version, pre-release research software, VESsel GENeration Analysis (VESGEN) maps and quantifies the fractal-based complexity of vascular branching for novel insights into the cytokine, transgenic and therapeutic regulation of angiogenesis, lymphangiogenesis and microvascular remodeling. Here we demonstrate that VESGEN can be used to characterize the dynamic vascular responses to acute intestinal inflammation and mucosal recovery from in vivo confocal microscopic 3D image series. We induced transient intestinal inflammation in mice by DSS treatment and investigated whether the ability of the pro biotic yeast Saccharomyces boulardii (Sb) to protect against intestinal inflammation was due to regulation of vascular remodeling. A primary characteristic of inflammation is excessive neovascularization (angiogenesis) resulting in fragile vessels prone to bleeding. Morphological parameters for triplicate specimens revealed that Sb treatment greatly reduced the inflammatory response of vascular networks by an average of 78%. This resulted from Sb inhibition of vascular endothelial growth factor receptor signaling, a major

  8. Innate Lymphoid Cells Groups 1 and 3 in the Epithelial Compartment of Functional Human Intestinal Allografts.

    PubMed

    Talayero, P; Mancebo, E; Calvo-Pulido, J; Rodríguez-Muñoz, S; Bernardo, I; Laguna-Goya, R; Cano-Romero, F L; García-Sesma, A; Loinaz, C; Jiménez, C; Justo, I; Paz-Artal, E

    2016-01-01

    We examined intraepithelial lymphocytes (IELs) in 213 ileal biopsies from 16 bowel grafts and compared them with 32 biopsies from native intestines. During the first year posttransplantation, grafts exhibited low levels of IELs (percentage of CD103(+) cells) principally due to reduced CD3(+) CD8(+) cells, while CD103(+) CD3(-) cell numbers became significantly higher. Changes in IEL subsets did not correlate with histology results, isolated intestine, or multivisceral transplants, but CD3(-) IELs were significantly higher in patients receiving corticosteroids. Compared with controls, more CD3(-) IELs of the grafts expressed CD56, NKp44, interleukin (IL)-23 receptor, retinoid-related orphan receptor gamma t (RORγt), and CCR6. No difference was observed in granzyme B, and CD3(-) CD127(+) cells were more abundant in native intestines. Ex vivo, and after in vitro activation, CD3(-) IELs in grafts produced significantly more interferon (IFN)-γ and IL-22, and a double IFNγ(+) IL-22(+) population was observed. Epithelial cell-depleted grafts IELs were cytotoxic, whereas this was not observed in controls. In conclusion, different from native intestines, a CD3(-) IEL subset predominates in grafts, showing features of natural killer cells and intraepithelial ILC1 (CD56(+) , NKp44(+) , CCR6(+) , CD127(-) , cytotoxicity, and IFNγ secretion), ILC3 (CD56(+) , NKp44(+) , IL-23R(+) , CCR6(+) , RORγt(+) , and IL-22 secretion), and intermediate ILC1-ILC3 phenotypes (IFNγ(+) IL-22(+) ). Viability of intestinal grafts may depend on the balance among proinflammatory and homeostatic roles of ILC subsets. PMID:26317573

  9. Among plant lignans, pinoresinol has the strongest antiinflammatory properties in human intestinal Caco-2 cells.

    PubMed

    During, Alexandrine; Debouche, Céline; Raas, Thomas; Larondelle, Yvan

    2012-10-01

    Dietary lignans show some promising health benefits, but little is known about their fate and activities in the small intestine. The purpose of this study was thus to investigate whether plant lignans are taken up by intestinal cells and modulate the intestinal inflammatory response using the Caco-2 cell model. Six lignan standards [secoisolariciresinol diglucoside (SDG), secoisolariciresinol (SECO), pinoresinol (PINO), lariciresinol, matairesinol (MAT), and hydroxymatairesinol] and their colonic metabolites [enterolactone (ENL) and enterodiol] were studied. First, differentiated cells were exposed to SDG, SECO, PINO, or ENL at increasing concentrations for 4 h, and their cellular contents (before and after deconjugation) were determined by HPLC. Second, in IL-1β-stimulated confluent and/or differentiated cells, lignan effects were tested on different soluble proinflammatory mediators quantified by enzyme immunoassays and on the NF-κB activation pathway by using cells transiently transfected. SECO, PINO, and ENL, but not SDG, were taken up and partly conjugated by cells, which is a saturable conjugation process. PINO was the most efficiently conjugated (75% of total in cells). In inflamed cells, PINO significantly reduced IL-6 by 65% and 30% in confluent and differentiated cells, respectively, and cyclooxygenase (COX)-2-derived prostaglandin E(2) by 62% in confluent cells. In contrast, MAT increased significantly COX-2-derived prostaglandin E(2) in confluent cells. Moreover, PINO dose-dependently decreased IL-6 and macrophage chemoattractant protein-1 secretions and NF-κB activity. Our findings suggest that plant lignans can be absorbed and metabolized in the small intestine and, among the plant lignans tested, PINO exhibited the strongest antiinflammatory properties by acting on the NF-κB signaling pathway, possibly in relation to its furofuran structure and/or its intestinal metabolism. PMID:22955517

  10. Dietary fibers affect viscosity of solutions and simulated human gastric and small intestinal digesta.

    PubMed

    Dikeman, Cheryl L; Murphy, Michael R; Fahey, George C

    2006-04-01

    Two experiments were conducted to determine the viscosities of both soluble and insoluble dietary fibers. In Expt. 1, corn bran, defatted rice bran, guar gum, gum xanthan, oat bran, psyllium, soy hulls, stabilized rice bran, wheat bran, wood cellulose, and 2 methylcellulose controls (Ticacel 42, Ticacel 43) were hydrated in water overnight at 0.5, 1, 1.5, or 2% concentrations. In Expt. 2, guar gum, oat bran, psyllium, rice bran, wheat bran, and wood cellulose were subjected to a 2-stage in vitro gastric and small intestinal digestion simulation model. Viscosity was measured every 2 and 3 h during gastric and small intestinal simulation, respectively. Viscosities in both experiments were measured at multiple shear rates. Viscosities of all fiber solutions were concentration- and shear rate-dependent. Rice brans, soy hulls, and wood cellulose had the lowest viscosities, whereas guar gum, psyllium, and xanthan gum had the highest viscosities, regardless of concentration. During gastric simulation, viscosity was higher (P < 0.05) at 4 h than at 0 h for guar gum, psyllium, rice bran, and wheat bran. During small intestinal simulation, viscosities were higher (P < 0.05) between 3 and 9 h compared with 18 h for guar gum, oat bran, and rice bran. Guar gum, psyllium, and oat bran exhibited viscous characteristics throughout small intestinal simulation, indicating potential for these fibers to elicit blood glucose and lipid attenuation. Wheat and rice brans and wood cellulose did not exhibit viscous characteristics throughout small intestinal digestion; thus, they may be beneficial for laxation. PMID:16549450

  11. Are chitosan formulations mucoadhesive in the human small intestine? An evaluation based on gamma scintigraphy.

    PubMed

    Säkkinen, Mia; Marvola, Janne; Kanerva, Hanna; Lindevall, Kai; Ahonen, Aapo; Marvola, Martti

    2006-01-13

    Rapid passage through the proximal intestine can result in the low bioavailability of a drug substance with site-specific absorption characteristics in the upper gastrointestinal tract. To overcome this, there is increasing interest in developing gastro-retentive formulations and/or formulations that linger in the proximal parts of the small intestine, e.g. by using mucoadhesive polymers as excipients in formulations. In our recent study, we used neutron activation-based gamma scintigraphy to evaluate the gastro-retentive properties of formulations containing chitosan (Mw 150 kDa) in man. At the same time, we had an opportunity to monitor the transit of the formulations (40 or 95% of chitosan) in the small intestine. Gamma scintigraphic investigations revealed that although the chitosan studied had exhibited marked mucoadhesive capacities in vitro, retention of the chitosan formulations in the upper gastrointestinal tract was not sufficiently reproducible and the duration of retention was relatively short. In 3 volunteers out of 10, the formulation adhered to the gastric mucosa (retention times varied from 1.25 to 2.5 h) and in two volunteers to the upper small intestine (approximate retention time 45 min). In one case, the formulation adhered to the oesophagus. The system failed to increase the bioavailability of furosemide, a drug site-specifically absorbed in the upper gastrointestinal tract. As far as the kind of formulation studied is concerned, preparation of a system that is site-specific to the stomach and/or the upper small intestine seems difficult if the proposed mechanism of action is mucoadhesion. The results suggest that other mechanisms of action should also be studied. PMID:16310992

  12. Transcriptional regulation of the human Na{sup +}/H{sup +} exchanger NHE3 by serotonin in intestinal epithelial cells

    SciTech Connect

    Amin, Md Ruhul; Ghannad, Leda; Othman, Ahmad; Gill, Ravinder K.; Dudeja, Pradeep K.; Ramaswamy, Krishnamurthy; Malakooti, Jaleh

    2009-05-08

    Serotonin (5-HT) decreases NHE2 and NHE3 activities under acute conditions in human intestinal epithelial cells. Here, we have investigated the effects of 5-HT on expression of the human NHE3 gene and the mechanisms underlying its transcriptional regulation in differentiated C2BBe1 cells. Treatment of the human intestinal epithelial cell line, C2BBe1, with 5-HT (20 {mu}M) resulted in a significant decrease in NHE3 mRNA and protein expression. In transient transfection studies, 5-HT repressed the NHE3 promoter activity by {approx}55%. The repression of the NHE3 promoter activity in response to 5-HT was accompanied by reduced DNA-binding activity of transcription factors Sp1 and Sp3 to the NHE3 promoter without alteration in their nuclear levels. Pharmacological inhibitors of protein kinase C reversed the inhibitory effect of 5-HT on the promoter activity. Our data indicate that 5-HT suppresses the transcriptional activity of the NHE3 promoter and this effect may be mediated by PKC{alpha} and modulation of DNA-binding affinities of Sp1 and Sp3.

  13. Inhibitory effects of extractives from leaves of Morus alba on human and rat small intestinal disaccharidase activity.

    PubMed

    Oku, Tsuneyuki; Yamada, Mai; Nakamura, Mariko; Sadamori, Naoki; Nakamura, Sadako

    2006-05-01

    The inhibitory effect on human and rat intestinal disaccharidase by the extractive from the leaves of Morus alba (ELM) containing 0.24 % 1-deoxynojirimycin equivalent and its inhibitory activities were investigated by the modified Dahlqvist method. In the presence of 1000-fold diluted ELM solution, the sucrase activity of four human samples was inhibited by 96 % and that of maltase and isomaltase by 95 and 99 %, respectively. The activities of trehalase and lactase were inhibited by 44 and 38 %, respectively. The human disaccharidase activities varied from sample to sample because the samples were obtained from different resected regions after surgery. However, the ratio of the inhibitory effect for sucrase, maltase, isomaltase, trehalase and lactase was very similar among the four samples, and also that of resembled rat intestinal disaccharides. The inhibitory constant of the 1-deoxynojirimycin equivalent for sucrase, maltase and isomaltase was 2.1 x 10(-4), 2.5 x 10(-4) and 4.5 x 10(-4) mm, respectively, and these inhibitory activities were shown, using rat brush border membrane vesicles, to be competitive. These results demonstrate that digestion is inhibited when an appropriate amount of ELM is orally ingested with sucrose or polysaccharide in man. When ELM was orally administered in a sucrose solution to fasted rats, the elevation in blood glucose was significantly suppressed, depending on the concentration of ELM given. These results suggest that ELM could be used as an ingredient in health foods and in foods that help to prevent diabetes. PMID:16611383

  14. Inhibition of adhesion of enteroinvasive pathogens to human intestinal Caco-2 cells by Lactobacillus acidophilus strain LB decreases bacterial invasion.

    PubMed

    Coconnier, M H; Bernet, M F; Kernéis, S; Chauvière, G; Fourniat, J; Servin, A L

    1993-07-01

    Salmonella typhimurium and enteropathogenic Escherichia coli (EPEC) were found to adhere to the brush border of differentiated human intestinal epithelial Caco-2 cells in culture, whereas Yersinia pseudotuberculosis and Listeria monocytogenes adhered to the periphery of undifferentiated Caco-2 cells. All these enterovirulent strains invaded the Caco-2 cells. Using a heat-killed human Lactobacillus acidophilus (strain LB) which strongly adheres both to undifferentiated and differentiated Caco-2 cells, we have studied inhibition of cell association with and invasion within Caco-2 cells by enterovirulent bacteria. Living and heat-killed Lactobacillus acidophilus strain LB inhibited both cell association and invasion of Caco-2 cells by enterovirulent bacteria in a concentration-dependent manner. The mechanism of inhibition of both adhesion and invasion appears to be due to steric hindrance of human enterocytic pathogen receptors by whole-cell lactobacilli rather than to a specific blockade of receptors. PMID:8354463

  15. PDK1 in apical signaling endosomes participates in the rescue of the polarity complex atypical PKC by intermediate filaments in intestinal epithelia

    PubMed Central

    Mashukova, Anastasia; Forteza, Radia; Wald, Flavia A.; Salas, Pedro J.

    2012-01-01

    Phosphorylation of the activation domain of protein kinase C (PKC) isoforms is essential to start a conformational change that results in an active catalytic domain. This activation is necessary not only for newly synthesized molecules, but also for kinase molecules that become dephosphorylated and need to be refolded and rephosphorylated. This “rescue” mechanism is responsible for the maintenance of the steady-state levels of atypical PKC (aPKC [PKCι/λ and ζ]) and is blocked in inflammation. Although there is consensus that phosphoinositide-dependent protein kinase 1 (PDK1) is the activating kinase for newly synthesized molecules, it is unclear what kinase performs that function during the rescue and where the rescue takes place. To identify the activating kinase during the rescue mechanism, we inhibited protein synthesis and analyzed the stability of the remaining aPKC pool. PDK1 knockdown and two different PDK1 inhibitors—BX-912 and a specific pseudosubstrate peptide—destabilized PKCι. PDK1 coimmunoprecipitated with PKCι in cells without protein synthesis, confirming that the interaction is direct. In addition, we showed that PDK1 aids the rescue of aPKC in in vitro rephosphorylation assays using immunodepletion and rescue with recombinant protein. Surprisingly, we found that in Caco-2 epithelial cells and intestinal crypt enterocytes PDK1 distributes to an apical membrane compartment comprising plasma membrane and apical endosomes, which, in turn, are in close contact with intermediate filaments. PDK1 comigrated with the Rab11 compartment and, to some extent, with the transferrin compartment in sucrose gradients. PDK1, pT555-aPKC, and pAkt were dependent on dynamin activity. These results highlight a novel signaling function of apical endosomes in polarized cells. PMID:22398726

  16. Adaptive regulation of human intestinal thiamine uptake by extracellular substrate level: a role for THTR-2 transcriptional regulation

    PubMed Central

    Nabokina, Svetlana M.; Subramanian, Veedamali S.; Valle, Judith E.

    2013-01-01

    The intestinal thiamine uptake process is adaptively regulated by the level of vitamin in the diet, but the molecular mechanism involved is not fully understood. Here we used the human intestinal epithelial Caco-2 cells exposed to different levels of extracellular thiamine to delineate the molecular mechanism involved. Our results showed that maintaining Caco-2 cells in a thiamine-deficient medium resulted in a specific and significant increase of [3H]thiamine uptake compared with cell exposure to a high level of thiamine (1 mM). This adaptive regulation was also associated with a higher level of mRNA expression of thiamine transporter-2 (THTR-2), but not thiamine transporter-1 (THTR-1), in the deficient condition and a higher level of promoter activity of gene encoding THTR-2 (SLC19A3). Using 5′-truncated promoter-luciferase constructs, we identified the thiamine level-responsive region in the SLC19A3 promoter to be between −77 and −29 (using transcriptional start site as +1). By means of mutational analysis, a key role for a stimulating protein-1 (SP1)/guanosine cytidine box in mediating the effect of extracellular thiamine level on SLC19A3 promoter was established. Furthermore, extracellular level of thiamine was found to affect SP1 protein expression and binding pattern to the thiamine level-responsive region of SLC19A3 promoter in Caco-2 cells as shown by Western blotting and electrophoretic mobility shift assay analysis, respectively. These studies demonstrate that the human intestinal thiamine uptake is adaptively regulated by the extracellular substrate level via transcriptional regulation of the THTR-2 system, and report that SP1 transcriptional factor is involved in this regulation. PMID:23989004

  17. Short-Chain Fructo-Oligosaccharides Modulate Intestinal Microbiota and Metabolic Parameters of Humanized Gnotobiotic Diet Induced Obesity Mice

    PubMed Central

    Respondek, Frederique; Gerard, Philippe; Bossis, Mathilde; Boschat, Laura; Bruneau, Aurélia; Rabot, Sylvie; Wagner, Anne; Martin, Jean-Charles

    2013-01-01

    Prebiotic fibres like short-chain fructo-oligosaccharides (scFOS) are known to selectively modulate the composition of the intestinal microbiota and especially to stimulate Bifidobacteria. In parallel, the involvement of intestinal microbiota in host metabolic regulation has been recently highlighted. The objective of the study was to evaluate the effect of scFOS on the composition of the faecal microbiota and on metabolic parameters in an animal model of diet-induced obesity harbouring a human-type microbiota. Forty eight axenic C57BL/6J mice were inoculated with a sample of faecal human microbiota and randomly assigned to one of 3 diets for 7 weeks: a control diet, a high fat diet (HF, 60% of energy derived from fat)) or an isocaloric HF diet containing 10% of scFOS (HF-scFOS). Mice fed with the two HF gained at least 21% more weight than mice from the control group. Addition of scFOS partially abolished the deposition of fat mass but significantly increased the weight of the caecum. The analysis of the taxonomic composition of the faecal microbiota by FISH technique revealed that the addition of scFOS induced a significant increase of faecal Bifidobacteria and the Clostridium coccoides group whereas it decreased the Clostridium leptum group. In addition to modifying the composition of the faecal microbiota, scFOS most prominently affected the faecal metabolome (e.g. bile acids derivatives, hydroxyl monoenoic fatty acids) as well as urine, plasma hydrophilic and plasma lipid metabolomes. The increase in C. coccoides and the decrease in C. leptum, were highly correlated to these metabolic changes, including insulinaemia, as well as to the weight of the caecum (empty and full) but not the increase in Bifidobacteria. In conclusion scFOS induce profound metabolic changes by modulating the composition and the activity of the intestinal microbiota, that may partly explain their effect on the reduction of insulinaemia. PMID:23951074

  18. Failure of propagation of human norovirus in intestinal epithelial cells with microvilli grown in three-dimensional cultures

    PubMed Central

    Takanashi, Sayaka; Saif, Linda J.; Hughes, John H.; Meulia, Tea; Jung, Kwonil; Scheuer, Kelly A.; Wang, Qiuhong

    2013-01-01

    Human noroviruses (HuNoVs) are a leading cause of acute gastroenteritis. Establishment of a cell culture system for in vitro HuNoV growth remains challenging. Replication of HuNoVs in human intestinal cell lines (INT-407 and Caco-2) that differentiate to produce microvilli in rotation wall vessel (RWV) three-dimensional cultures has been reported (Straub et al., Emerg Infect Dis 13:396–403 2007, J Water Health 9:225–240 2011, and Water Sci Technol 67:863–868 2013). We used a similar RWV system, intestinal cell lines, and the same (Genogroup [G] I.1) plus additional (GII.4 and GII.12) HuNoV strains to test the system’s reproducibility and to expand the earlier findings. Apical microvilli were observed on the surface of both cell lines by light and electron microscopy. However, none of the cell types tested resulted in productive viral replication of any of the HuNoV strains, as confirmed by plateau or declining viral RNA titers in the supernatants and cell lysates of HuNoV-infected cells, determined by real-time reverse transcription PCR. These trends were the same when culture supplements were added that have been reported to be effective for replication of other fastidious enteric viruses in vitro. Additionally, by confocal microscopy and orthoslice analysis, viral capsid proteins were mainly observed above the actin filament signals, which suggested that the majority of viral antigens were on the cell surface. We conclude that even intestinal cells displaying microvilli were not sufficient to support HuNoV replication under the conditions tested. PMID:23974469

  19. Comparative Metaproteomics and Diversity Analysis of Human Intestinal Microbiota Testifies for Its Temporal Stability and Expression of Core Functions

    PubMed Central

    Kolmeder, Carolin A.; de Been, Mark; Nikkilä, Janne; Ritamo, Ilja; Mättö, Jaana; Valmu, Leena; Salojärvi, Jarkko; Palva, Airi; Salonen, Anne; de Vos, Willem M.

    2012-01-01

    The human intestinal tract is colonized by microbial communities that show a subject-specific composition and a high-level temporal stability in healthy adults. To determine whether this is reflected at the functional level, we compared the faecal metaproteomes of healthy subjects over time using a novel high-throughput approach based on denaturing polyacrylamide gel electrophoresis and liquid chromatography–tandem mass spectrometry. The developed robust metaproteomics workflow and identification pipeline was used to study the composition and temporal stability of the intestinal metaproteome using faecal samples collected from 3 healthy subjects over a period of six to twelve months. The same samples were also subjected to DNA extraction and analysed for their microbial composition and diversity using the Human Intestinal Tract Chip, a validated phylogenetic microarray. Using metagenome and single genome sequence data out of the thousands of mass spectra generated per sample, approximately 1,000 peptides per sample were identified. Our results indicate that the faecal metaproteome is subject-specific and stable during a one-year period. A stable common core of approximately 1,000 proteins could be recognized in each of the subjects, indicating a common functional core that is mainly involved in carbohydrate transport and degradation. Additionally, a variety of surface proteins could be identified, including potential microbes-host interacting components such as flagellins and pili. Altogether, we observed a highly comparable subject-specific clustering of the metaproteomic and phylogenetic profiles, indicating that the distinct microbial activity is reflected by the individual composition. PMID:22279554

  20. Influence of Camembert consumption on the composition and metabolism of intestinal microbiota: a study in human microbiota-associated rats.

    PubMed

    Lay, Christophe; Sutren, Malène; Lepercq, Pascale; Juste, Catherine; Rigottier-Gois, Lionel; Lhoste, Evelyne; Lemée, Riwanon; Le Ruyet, Pascale; Doré, Joël; Andrieux, Claude

    2004-09-01

    The objective of the present study was to evaluate the consequence of Camembert consumption on the composition and metabolism of human intestinal microbiota. Camembert cheese was compared with milk fermented by yoghurt starters and Lactobacillus casei as a probiotic reference. The experimental model was the human microbiota-associated (HM) rat. HM rats were fed a basal diet (HMB group), a diet containing Camembert made from pasteurised milk (HMCp group) or a diet containing fermented milk (HMfm group). The level of micro-organisms from dairy products was measured in faeces using cultures on a specific medium and PCR-temporal temperature gradient gel electrophoresis. The metabolic characteristics of the caecal microbiota were also studied: SCFA, NH3, glycosidase and reductase activities, and bile acid degradations. The results showed that micro-organisms from cheese comprised 10(5)-10(8) bacteria/g faecal sample in the HMCp group. Lactobacillus species from fermented milk were detected in HMfm rats. Consumption of cheese and fermented milk led to similar changes in bacterial metabolism: a decrease in azoreductase activity and NH3 concentration and an increase in mucolytic activities. However, specific changes were observed: in HMCp rats, the proportion of ursodeoxycholic resulting from chenodeoxycholic epimerisation was higher; in HMfm rats, alpha and beta-galactosidases were higher than in other groups and both azoreductases and nitrate reductases were lower. The results show that, as for fermented milk, Camembert consumption did not greatly modify the microbiota profile or its major metabolic activities. Ingested micro-organisms were able to survive in part during intestinal transit. These dairy products exert a potentially beneficial influence on intestinal metabolism. PMID:15469646

  1. Pilot study of diet and microbiota: interactive associations of fibers and polyphenols with human intestinal bacteria.

    PubMed

    Cuervo, Adriana; Valdés, Lorena; Salazar, Nuria; de los Reyes-Gavilán, Clara G; Ruas-Madiedo, Patricia; Gueimonde, Miguel; González, Sonia

    2014-06-11

    Several studies have addressed the use of dietary fibers in the modulation of intestinal microbiota; however, information about other highly correlated components in foods, such as polyphenols, is scarce. The aim of this work was to explore the association between the intake of fibers and polyphenols from a regular diet and fecal microbiota composition in 38 healthy adults. Food intake was recorded using an annual food frequency questionnaire (FFQ). Quantification of microbial populations in feces was performed by quantitative PCR. A negative association was found between the intake of pectins and flavanones from oranges and the levels of Blautia coccoides and Clostridium leptum. By contrast, white bread, providing hemicellulose and resistant starch, was directly associated with Lactobacillus. Because some effects on intestinal microbiota attributed to isolated fibers or polyphenols might be modified by other components present in the same food, future research should be focused on diet rather than individual compounds. PMID:24877654

  2. Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota.

    PubMed

    Ruas-Madiedo, Patricia; Gueimonde, Miguel; Fernández-García, María; de los Reyes-Gavilán, Clara G; Margolles, Abelardo

    2008-03-01

    The presence of the genes engBF (endo-alpha-N-acetylgalactosaminidase) and afcA (1,2-alpha-L-fucosidase) was detected in several intestinal Bifidobacterium isolates. Two strains of Bifidobacterium bifidum contained both genes, and they were able to degrade high-molecular weight porcine mucin in vitro. The expression of both genes was highly induced in the presence of mucin. PMID:18223105

  3. Calcitonin receptor-mediated CFTR activation in human intestinal epithelial cells

    PubMed Central

    Liu, Hongguang; Singla, Amika; Ao, Mei; Gill, Ravinder K; Venkatasubramanian, Jayashree; Rao, Mrinalini C; Alrefai, Waddah A; Dudeja, Pradeep K

    2011-01-01

    Abstract High levels of calcitonin (CT) observed in medullary thyroid carcinoma and other CT-secreting tumours cause severe diarrhoea. Previous studies have suggested that CT induces active chloride secretion. However, the involvement of CT receptor (CTR) and the molecular mechanisms underlying the modulation of intestinal electrolyte secreting intestinal epithelial cells have not been investigated. Therefore, current studies were undertaken to investigate the direct effects of CT on ion transport in intestinal epithelial cells. Real time quantitative RT-PCR and Western blot analysis demonstrated the expression of CTR in intestinal epithelial T84 cells. Exposure of T84 cells to CT from the basolateral but not from apical side significantly increased short circuit current (ISC) in a dose-dependent manner that was blocked by 1 μM of CTR antagonist, CT8–32. CT-induced ISC was blocked by replacing chloride in the bath solutions with equimolar gluconate and was significantly inhibited by the specific cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor, CFTR127inh. Further, biotinylation studies showed that CT increased CFTR levels on the apical membrane. The presence of either the Ca2+ chelator, bis(2-aminophenoxy)ethane tetraacetic acid-acetoxymethyl (BAPTA-AM) ester or the protein kinase A (PKA) inhibitor, H89, significantly inhibited ISC induced by CT (∼32–58% reduction). Response to CT was retained after permeabilization of the basolateral or the apical membranes of T84 cells with nystatin. In conclusion, the activation of CTR by CT induced chloride secretion across T84 monolayers via CFTR channel and the involvement of PKA- and Ca2+-dependent signalling pathways. These data elucidate the molecular mechanisms underlying CT-induced diarrhoea. PMID:21251218

  4. FOXA2 regulates a network of genes involved in critical functions of human intestinal epithelial cells.

    PubMed

    Gosalia, Nehal; Yang, Rui; Kerschner, Jenny L; Harris, Ann

    2015-07-01

    The forkhead box A (FOXA) family of pioneer transcription factors is critical for the development of many endoderm-derived tissues. Their importance in regulating biological processes in the lung and liver is extensively characterized, though much less is known about their role in intestine. Here we investigate the contribution of FOXA2 to coordinating intestinal epithelial cell function using postconfluent Caco2 cells, differentiated into an enterocyte-like model. FOXA2 binding sites genome-wide were determined by ChIP-seq and direct targets of the factor were validated by ChIP-qPCR and siRNA-mediated depletion of FOXA1/2 followed by RT-qPCR. Peaks of FOXA2 occupancy were frequent at loci contributing to gene ontology pathways of regulation of cell migration, cell motion, and plasma membrane function. Depletion of both FOXA1 and FOXA2 led to a significant reduction in the expression of multiple transmembrane proteins including ion channels and transporters, which form a network that is essential for maintaining normal ion and solute transport. One of the targets was the adenosine A2B receptor, and reduced receptor mRNA levels were associated with a functional decrease in intracellular cyclic AMP. We also observed that 30% of FOXA2 binding sites contained a GATA motif and that FOXA1/A2 depletion reduced GATA-4, but not GATA-6 protein levels. These data show that FOXA2 plays a pivotal role in regulating intestinal epithelial cell function. Moreover, that the FOXA and GATA families of transcription factors may work cooperatively to regulate gene expression genome-wide in the intestinal epithelium. PMID:25921584

  5. Immunomodulatory effect of a wild blueberry anthocyanin-rich extract in human Caco-2 intestinal cells.

    PubMed

    Taverniti, Valentina; Fracassetti, Daniela; Del Bo', Cristian; Lanti, Claudia; Minuzzo, Mario; Klimis-Zacas, Dorothy; Riso, Patrizia; Guglielmetti, Simone

    2014-08-20

    Intestinal inflammation is a natural process crucial for the maintenance of gut functioning. However, abnormal or prolonged inflammatory responses may lead to the onset of chronic degenerative diseases, typically treated by means of pharmacological interventions. Dietary strategies for the prevention of inflammation are a safer alternative to pharmacotherapy. Anthocyanins and other polyphenols have been documented to display anti-inflammatory activity. In the present study, three bioactive fractions (anthocyanin, phenolic, and water-soluble fractions) were extracted from a wild blueberry powder. The Caco-2 intestinal model was used to test the immunomodulatory effect of the above fractions. Only the anthocyanin-rich fraction reduced the activation of NF-κB, induced by IL-1β in intestinal epithelial Caco-2 cells. Specifically, concentrations of 50 and 100 μg mL(-1) decreased NF-κB activation by 68.9 and 85.2%, respectively (p ≤ 0.05). These preliminary results provide further support for the role of food bioactives as potential dietary anti-inflammatory agents. PMID:25075866

  6. Eosinophil granule-derived major basic protein induces IL-8 expression in human intestinal myofibroblasts.

    PubMed

    Furuta, G T; Ackerman, S J; Varga, J; Spiess, A M; Wang, M Y; Wershil, B K

    2000-10-01

    Eosinophil infiltration occurs in a variety of allergic and inflammatory diseases. The release of preformed mediators from eosinophils may contribute to inflammatory responses. We investigated the ability of eosinophil-derived major basic protein and eosinophil-derived neurotoxin to stimulate production of IL-8 from intestinal myofibroblasts. Intestinal myofibroblasts (18-Co cells) were incubated with major basic protein, eosinophil-derived neurotoxin, or a synthetic analogue of major basic protein, poly-L-arginine. Immunoreactive IL-8 was measured by ELISA and IL-8 mRNA levels were analysed by Northern blot or reverse transcription-polymerase chain assay. Major basic protein induced IL-8 mRNA production and release of significant levels of IL-8 immunoreactive protein. By contrast, eosinophil-derived neurotoxin stimulated little IL-8 release. The induction of IL-8 mRNA by poly-L-arginine was significantly inhibited by actinomycin D. These findings demonstrate a novel interaction between eosinophils and intestinal fibroblasts that may be involved in the pathogenesis of diseases associated with tissue eosinophilia. PMID:11012615

  7. Fourier-transform infrared spectroscopy of human cancerous and normal intestine

    NASA Astrophysics Data System (ADS)

    Mordechai, Shaul; Salman, Ahmad O.; Argov, Shmuel; Cohen, Beny; Erukhimovitch, Vitaly; Goldstein, Jed; Chaims, Orna; Hammody, Ziad

    2000-05-01

    FTIR employs a unique approach to optical diagnosis of tissue pathology based on the characteristic molecular vibrational spectra of the tissue. The architectural changes in the cellular and sub-cellular levels developing in abnormal tissue, including a majority of cancer forms, manifest themselves in different optical signatures, which can be detected in IR spectroscopy. The molecular vibrational modes, which are responsible for IR absorption spectra, are characteristic of the biochemistry of the cells and their sub-cellular components. The biological systems we have studied include adenocarcinoma and normal colonic tissues obtained from the department of pathology at Soroka Medical Center. Our method is based on microscopic IR study of thin tissue specimens and a direct comparison with normal histopathological analysis, which serves as a 'gold' reference. Several unique differences between normal and cancerous intestinal specimens have been observed. The cancerous intestine has weaker absorption strength over a wide region, which includes several significant vibrational bands. The results from microscopic IR absorption spectra from intestinal tissues have also been compared with other biological tissue samples.

  8. Study on human intestinal bacterium Blautia sp. AUH-JLD56 for the conversion of arctigenin to (-)-3'-desmethylarctigenin.

    PubMed

    Liu, Ming-Yue; Li, Meng; Wang, Xiu-Ling; Liu, Peng; Hao, Qing-Hong; Yu, Xiu-Mei

    2013-12-11

    Arctium lappa L. (A. lappa) is a popularly used vegetable as well as herbal medicine. Human intestinal microflora was reported to convert arctiin, the lignan compound with highest content in the dried fruits of Arctium lappa, to a series of metabolites. However, the specific bacterium responsible for the formation of 3'-desmethylarctigenin (3'-DMAG), the most predominant metabolite of arctiin by rat or human intestinal microflora, has not been isolated yet. In the present study, we isolated one single bacterium, which we named Blautia sp. AUH-JLD56, capable of solely biotransforming arctiin or arctigenin to (-)-3'-DMAG. The structure of the metabolite 3'-DMAG was elucidated by electrospray ionization mass spectrometry (ESI-MS) and (1)H and (13)C nuclear magnetic resonance spectroscopy. The biotransforming kinetics and maximum biotransforming capacity of strain AUH-JLD56 was investigated. In addition, the metabolite 3'-DMAG showed significantly higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity than that of the substrate arctigenin at the concentrations tested. PMID:24236649

  9. Farnesoid X receptor signal is involved in deoxycholic acid-induced intestinal metaplasia of normal human gastric epithelial cells.

    PubMed

    Li, Shu; Chen, Xin; Zhou, Lu; Wang, Bang-Mao

    2015-11-01

    The farnesoid X receptor (FXR) signaling pathway is known to be involved in the metabolism of bile acid, glucose and lipid. In the present study, we demonstrated that 400 µmol/l deoxycholic acid (DCA) stimulation promotes the proliferation of normal human gastric epithelial cells (GES-1). In addition, DCA activated FXR and increased the expression of intestinal metaplasia genes, including caudal-related homeobox transcription factor 2 (Cdx2) and mucin 2 (MUC2). The treatment of FXR agonist GW4064/antagonist guggulsterone (Gug.) significantly increased/decreased the expression levels of FXR, Cdx2 and MUC2 protein in DCA-induced GES-1 cells. GW4064/Gug. also enhanced/reduced the nuclear factor-κB (NF-κB) activity and binding of the Cdx2 promoter region and NF-κB, the most common subunit p50 protein. Taken together, the results indicated that DCA is capable of modulating the expression of Cdx2 and the downstream MUC2 via the nuclear receptor FXR-NF-κB activity in normal gastric epithelial cells. FXR signaling pathway may therefore be involved in the intestinal metaplasia of human gastric mucosa. PMID:26324224

  10. Purification and characterization of konjac glucomannan degrading enzyme from anaerobic human intestinal bacterium, Clostridium butyricum-Clostridium beijerinckii group.

    PubMed

    Nakajima, N; Matsuura, Y

    1997-10-01

    Konjac glucomannan degrading enzyme was purified to homogeneity from the culture broth of an anaerobic human intestinal bacterium, Clostridium butyricum-Clostridium beijerinckii group. The enzyme was composed of a single polypeptide chain with a molecular weight of 50,000-53,000. The enzyme was an endo-beta-mannanase that acted specifically on the polysaccharides such as konjac glucomannan and coffee mannan, producing exclusively their smaller oligosaccharides and the monosaccharides. The optimal pH of the enzyme for the hydrolysis of konjac glucomannan was around 7-8 and the enzyme was stable in rather alkaline pH range of 8-10. The enzyme reaction was activated by the addition of CaCl2 and dithiothreitol. It was suggested that the enzyme might contribute to the decomposition of konjac glucomannan in human digestive tract. PMID:9362121

  11. Degradation in the degree of polarization in human retinal nerve fiber layer

    NASA Astrophysics Data System (ADS)

    Yin, Biwei; Wang, Bingqing; Rylander, Henry G.; Milner, Thomas E.

    2014-01-01

    Using a fiber-based swept-source (SS) polarization-sensitive optical coherence tomography (PS-OCT) system, we investigate the degree of polarization (DOP) of light backscattered from the retinal nerve fiber layer (RNFL) in normal human subjects. Algorithms for processing data were developed to analyze the deviation in phase retardation and intensity of backscattered light in directions parallel and perpendicular to the nerve fiber axis (fast and slow axes of RNFL). Considering superior, inferior, and nasal quadrants, we observe the strongest degradation in the DOP with increasing RNFL depth in the temporal quadrant. Retinal ganglion cell axons in normal human subjects are known to have the smallest diameter in the temporal quadrant, and the greater degradation observed in the DOP suggests that higher polarimetric noise may be associated with neural structure in the temporal RNFL. The association between depth degradation in the DOP and RNFL structural properties may broaden the utility of PS-OCT as a functional imaging technique.

  12. Polarized location of SLC and ABC drug transporters in monolayer-cultured human hepatocytes.

    PubMed

    Le Vee, Marc; Jouan, Elodie; Noel, Gregory; Stieger, Bruno; Fardel, Olivier

    2015-08-01

    Human hepatocytes cultured in a monolayer configuration represent a well-established in vitro model in liver toxicology, notably used in drug transporter studies. Polarized status of drug transporters, i.e., their coordinated location at sinusoidal or canalicular membranes, remains however incompletely documented in these cultured hepatocytes. The present study was therefore designed to analyze transporter expression and location in such cells. Most of drug transporters were first shown to be present at notable mRNA levels in monolayer-cultured human hepatocytes. Cultured human hepatocytes, which morphologically exhibited bile canaliculi-like structures, were next demonstrated, through immunofluorescence staining, to express the influx transporters organic anion transporting polypeptide (OATP) 1B1, OATP2B1 and organic cation transporter (OCT) 1 and the efflux transporter multidrug resistance-associated protein (MRP) 3 at their sinusoidal pole. In addition, the efflux transporters P-glycoprotein and MRP2 were detected at the canalicular pole of monolayer-cultured human hepatocytes. Moreover, canalicular secretion of reference substrates for the efflux transporters bile salt export pump, MRP2 and P-glycoprotein as well as sinusoidal drug transporter activities were observed. This polarized and functional expression of drug transporters in monolayer-cultured human hepatocytes highlights the interest of using this human in vitro cell model in xenobiotic transport studies. PMID:25862123

  13. Active and Selective Transcytosis of Cell-Free Human Immunodeficiency Virus through a Tight Polarized Monolayer of Human Endometrial Cells

    PubMed Central

    Hocini, Hakim; Becquart, Pierre; Bouhlal, Hicham; Chomont, Nicolas; Ancuta, Petronela; Kazatchkine, Michel D.; Bélec, Laurent

    2001-01-01

    We report that both primary and laboratory-adapted infectious human immunodeficiency virus type 1 (HIV-1) isolates in a cell-free form are capable of transcytosis through a tight and polarized monolayer of human endometrial cells. Trancytosis of cell-free HIV occurs in a strain-selective fashion and appears to be dependent on interactions between HIV envelope glycoproteins and lectins on the apical membrane of the epithelial cells. These findings provide new insights into the initial events occurring during heterosexual transmission of the virus. PMID:11333919

  14. Comparison of the Flotac-400 Dual Technique and the Formalin-Ether Concentration Technique for Diagnosis of Human Intestinal Protozoon Infection▿

    PubMed Central

    Becker, Sören L.; Lohourignon, Laurent K.; Speich, Benjamin; Rinaldi, Laura; Knopp, Stefanie; N'Goran, Eliézer K.; Cringoli, Giuseppe; Utzinger, Jürg

    2011-01-01

    There is a need for accurate diagnosis of intestinal parasite infections in humans, but currently available copromicroscopic techniques have shortcomings, such as low sensitivity. We compared the diagnostic accuracy of a further modified version of the recently developed Flotac technique with that of the widely used formalin-ether concentration technique (FECT) for the detection of intestinal protozoa in human stool samples. Formaldehyde-preserved stool samples from 108 individuals in Côte d'Ivoire were subjected to the Flotac-400 dual technique, using two different flotation solutions (FS), and to the FECT. Stool samples were examined according to computer-generated random lists by an experienced laboratory technician blinded for the results of each method. Both methods detected the same eight intestinal protozoon species. While the Flotac-400 dual technique (results from both FS combined) found higher prevalences of Entamoeba coli (77.8% versus 71.3%, P < 0.001), Blastocystis hominis (20.4% versus 13.0%, P = 0.458), and Giardia intestinalis (8.3% versus 6.5%, P < 0.001), the FECT detected higher prevalences of Entamoeba histolytica/Entamoeba dispar (27.8% versus 20.4%, P = 0.019) and four species of nonpathogenic intestinal protozoa. The diagnostic agreement between the two methods differed considerably depending on the intestinal protozoon investigated (Cohen's kappa measures; range, 0.01 to 0.46). Our study confirmed that the Flotac-400 dual technique can be utilized for the diagnosis of intestinal protozoon infections in humans. Since Flotac is a sensitive technique for the detection of soil-transmitted helminths and Schistosoma mansoni, it might become a viable copromicroscopic technique for the concurrent diagnosis of helminths and intestinal protozoon infections. PMID:21525226

  15. Polarization sensitive optical low-coherence reflectometry for blood glucose monitoring in human subjects

    NASA Astrophysics Data System (ADS)

    Solanki, Jitendra; Choudhary, Om Prakash; Sen, P.; Andrews, J. T.

    2013-07-01

    A device based on polarization sensitive optical low-coherence reflectometry is developed to monitor blood glucose levels in human subjects. The device was initially tested with tissue phantom. The measurements with human subjects for various glucose concentration levels are found to be linearly dependent on the ellipticity obtainable from the home-made phase-sensitive optical low-coherence reflectometry device. The linearity obtained between glucose concentration and ellipticity are explained with theoretical calculations using Mie theory. A comparison of results with standard clinical methods establishes the utility of the present device for non-invasive glucose monitoring.

  16. Human cysticercosis and intestinal parasitism amongst the Ekari people of Irian Jaya.

    PubMed

    Muller, R; Lillywhite, J; Bending, J J; Catford, J C

    1987-12-01

    A random sample of 242 people showed that 42 had palpable cysts of Taenia solium. Faecal examination recovered eggs of T. solium in seven (3%), while Trichuris (83%), Ascaris (83%), hookworms (76%), Strongyloides stercoralis (10%) and Strongyloides sp. (29%), Entamoeba histolytica (14%), Entamoeba coli (22%), Entamoeba hartmanni (7%), Entamoeba polecki (7%), Balantidium coli (9%) and Dientamoeba fragilis (21%) were the most common other intestinal parasites encountered. ELISA tests, using antigens prepared from adults and eggs of T. solium and from cysticerci of T. saginata were not very sensitive, the last diagnosing less than half of known positives while still retaining good specificity. PMID:3430662

  17. Enhanced wound healing by recombinant Escherichia coli Nissle 1917 via human epidermal growth factor receptor in human intestinal epithelial cells: therapeutic implication using recombinant probiotics.

    PubMed

    Choi, Hye Jin; Ahn, Jung Hoon; Park, Seong-Hwan; Do, Kee Hun; Kim, Juil; Moon, Yuseok

    2012-03-01

    The gastrointestinal mucosa has a remarkable ability to repair damage with the support of epidermal growth factor (EGF), which stimulates epithelial migration and proliferative reepithelialization. For the treatment of mucosal injuries, it is important to develop efficient methods for the localized delivery of mucoactive biotherapeutics. The basic idea in the present study came from the assumption that an intestinal probiotic vehicle can carry and deliver key recombinant medicinal proteins to the injured epithelial target in patients with intestinal ulcerative diseases, including inflammatory bowel disease. The study was focused on the use of the safe probiotic E. coli Nissle 1917, which was constructed to secrete human EGF in conjunction with the lipase ABC transporter recognition domain (LARD). Using the in vitro physically wounded monolayer model, ABC transporter-mediated EGF secretion by probiotic E. coli Nissle 1917 was demonstrated to enhance the wound-healing migration of human enterocytes. Moreover, the epithelial wound closure was dependent on EGF receptor-linked activation, which exclusively involved the subsequent signaling pathway of the mitogen-activated protein kinase kinase (MEK) extracellular-related kinases 1 and 2 (ERK1/2). In particular, the migrating frontier of the wounded edge displayed the strongest EGF receptor-linked signaling activation in the presence of the recombinant probiotic. The present study provides a basis for the clinical application of human recombinant biotherapeutics via an efficient, safe probiotic vehicle. PMID:22184415

  18. An update discussion on the current assessment of the safety of veterinary antimicrobial drug residues in food with regard to their impact on the human intestinal microbiome.

    PubMed

    Cerniglia, Carl E; Pineiro, Silvia A; Kotarski, Susan F

    2016-05-01

    The human gastrointestinal tract ecosystem consists of complex and diverse microbial communities that have now been collectively termed the intestinal microbiome. Recent scientific breakthroughs and research endeavours have increased our understanding of the important role the intestinal microbiome plays in human health and disease. The use of antimicrobial new animal drugs in food-producing animals may result in the presence of low levels of drug residues in edible foodstuffs. There is concern that antimicrobial new animal drugs in or on animal-derived food products at residue-level concentrations could disrupt the colonization barrier and/or modify the antimicrobial resistance profile of human intestinal bacteria. Therapeutic doses of antimicrobial drugs have been shown to promote shifts in the intestinal microbiome, and these disruptions promote the emergence of antimicrobial-resistant bacteria. To assess the effects of antimicrobial new animal drug residues in food on human intestinal bacteria, many national regulatory agencies and international committees follow a harmonized process, VICH GL36(R), which was issued by a trilateral organization of the European Union, the USA, and Japan called the International Cooperation on Harmonization of Technical Requirements for Veterinary Medicinal Products (VICH). The guidance describes a general approach currently used by national regulatory agencies and international committees to assess the effects of antimicrobial new animal drug residues in animal-derived food on human intestinal bacteria. The purpose of this review is to provide an overview of this current approach as part of the antimicrobial new animal drug approval process in participating countries, give insights on the microbiological endpoints used in this safety evaluation, and discuss the availability of new information. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27443209

  19. Cytokine modulation (IL-6, IL-8, IL-10) by human breast milk lipids on intestinal epithelial cells (Caco-2).

    PubMed

    Barrera, Girolamo J; Sánchez, Gabriela

    2016-08-01

    Human breast milk is the best form of nourishment for infants during the first year of life. It is composed by a complex mixture of carbohydrates, proteins and fats. Breast milk provides nutrients and bioactive factors that themselves modulate maturation and development of the gastrointestinal tract. Many studies have shown that it provides protection against gastrointestinal tract inflammation. In this sense, this study aimed to evaluate the effect of human breast milk lipids on epithelial intestinal cells (Caco-2) cytokine regulation and the fatty acid transporter protein (FATP) involved in this process. Caco-2 cells were cultivated and stimulated with different concentration of human milk lipids from healthy human mothers (18-30-year-olds) or single commercial lipids for 48 h. We measured the concentrations and mRNA levels of IL-6, IL-8 and IL-10 cytokines by immunoassay (ELISA) and quantitative-PCR (qRT-PCR) technique, respectively. We observed a two to three times decrease in pro-inflammatory cytokine levels (p < 0.01) as well as an increase in anti-inflammatory IL-10 levels in cells stimulated with increasing concentrations of breast milk lipids. These results suggest that human breast milk lipids could have an important role on the cytokine modulation in the newborn bowel. PMID:26441050

  20. Clostridium difficile-mediated effects on human intestinal epithelia: Modelling host-pathogen interactions in a vertical diffusion chamber.

    PubMed

    Jafari, Nazila V; Kuehne, Sarah A; Minton, Nigel P; Allan, Elaine; Bajaj-Elliott, Mona

    2016-02-01

    Clostridium difficile infection is one of the leading causes of healthcare associated diarrhoea in the developed world. Although the contribution of C. difficile toxins to disease pathogenesis is now well understood, many facets of host-pathogen interactions between the human intestinal epithelia and the C. difficile bacterium that may contribute to asymptomatic carriage and/or clinical disease remain less clear. Herein, we tested the hypothesis that C. difficile strains mediate intestinal epithelial cell (IEC) antimicrobial immunity via toxin dependent and independent means and that the 'anaerobic' environment has a significant impact on bacterial-IEC interactions. Crosstalk between three C. difficile PCR ribotypes (RT) [RT027 (strain R20291), RT012 (strain 630) and RT017 (strains M68 and CF5)] and IEC cell-lines were investigated. All RTs showed significant engagement with human Toll-like receptors (TLR)-5, TLR2-CD14 and TLR2/6 as measured by IL-8 release from TLR-transfected HEK cells. Co-culture studies indicated minimal impact of R20291 and 630 TcdA and TcdB on bacterial adherence to Caco-2 cells. An apical anaerobic environment had a major effect on C. difficile-T84 crosstalk as significantly greater cytokine immunity and trans-epithelial electrical resistance (TEER) dysfunction was recorded when co-cultures were performed in an Ussing chamber system compared to standard 5% CO2 conditions. Overall, this study suggests that anaerobic C. difficile engagement with human IECs is a complex interplay that involves bacterial and toxin-mediated cellular events. PMID:26708704

  1. Hes1 promotes the IL-22-mediated antimicrobial response by enhancing STAT3-dependent transcription in human intestinal epithelial cells

    SciTech Connect

    Murano, Tatsuro; Okamoto, Ryuichi; Ito, Go; Nakata, Toru; Hibiya, Shuji; Shimizu, Hiromichi; Fujii, Satoru; Kano, Yoshihito; Mizutani, Tomohiro; Yui, Shiro; Akiyama-Morio, Junko; Nemoto, Yasuhiro; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Watanabe, Mamoru

    2014-01-17

    Highlights: •Hes1 enhances IL-22-STAT3 signaling in human intestinal epithelial cells. •Hes1 enhances REG family gene induction by IL-22-STAT3 signaling. •Protein level of Hes1 restricts the response to IL-22. •Present regulation of a cytokine signal represents a new mode of Hes1 function. -- Abstract: Notch signaling plays an essential role in the proliferation and differentiation of intestinal epithelial cells (IECs). We have previously shown that Notch signaling is up-regulated in the inflamed mucosa of ulcerative colitis (UC) and thereby plays an indispensable role in tissue regeneration. Here we show that in addition to Notch signaling, STAT3 signaling is highly activated in the inflamed mucosa of UC. Forced expression of the Notch target gene Hes1 dramatically enhanced the IL-22-mediated STAT3-dependent transcription in human IECs. This enhancement of STAT3-dependent transcription was achieved by the extended phosphorylation of STAT3 by Hes1. Microarray analysis revealed that Hes1-mediated enhancement of IL-22-STAT3 signaling significantly increased the induction of genes encoding antimicrobial peptides, such as REG1A, REG3A and REG3G, in human IECs. Conversely, the reduction of Hes1 protein levels with a γ-secretase inhibitor significantly down-regulated the induction of those genes in IECs, resulting in a markedly poor response to IL-22. Our present findings identify a new role for the molecular function of Hes1 in which the protein can interact with cytokine signals and regulate the immune response of IECs.

  2. Analysis of the human intestinal epithelial cell transcriptional response to Lactobacillus acidophilus, Lactobacillus salivarius, Bifidobacterium lactis and Escherichia coli.

    PubMed

    Putaala, H; Barrangou, R; Leyer, G J; Ouwehand, A C; Hansen, E Bech; Romero, D A; Rautonen, N

    2010-09-01

    The complex microbial population residing in the human gastrointestinal tract consists of commensal, potential pathogenic and beneficial species, which are probably perceived differently by the host and consequently could be expected to trigger specific transcriptional responses. Here, we provide a comparative analysis of the global in vitro transcriptional response of human intestinal epithelial cells to Lactobacillus acidophilus NCFM™, Lactobacillus salivarius Ls-33, Bifidobacterium animalis subsp. lactis 420, and enterohaemorrhagic Escherichia coli O157:H7 (EHEC). Interestingly, L. salivarius Ls-33 DCE-induced changes were overall more similar to those of B. lactis 420 than to L. acidophilus NCFM™, which is consistent with previously observed in vivo immunomodulation properties. In the gene ontology and pathway analyses both specific and unspecific changes were observed. Common to all was the regulation of apoptosis and adipogenesis, and lipid-metabolism related regulation by the probiotics. Specific changes such as regulation of cell-cell adhesion by B. lactis 420, superoxide metabolism by L. salivarius Ls-33, and regulation of MAPK pathway by L. acidophilus NCFM™ were noted. Furthermore, fundamental differences were observed between the pathogenic and probiotic treatments in the Toll-like receptor pathway, especially for adapter molecules with a lowered level of transcriptional activation of MyD88, TRIF, IRAK1 and TRAF6 by probiotics compared to EHEC. The results in this study provide insights into the relationship between probiotics and human intestinal epithelial cells, notably with regard to strain-specific responses, and highlight the differences between transcriptional responses to pathogenic and probiotic bacteria. PMID:21831765

  3. Interleukin-17 is a potent immuno-modulator and regulator of normal human intestinal epithelial cell growth

    SciTech Connect

    Schwartz, S.; Beaulieu, J.F. . E-mail: frank.ruemmele@nck.ap-hop-paris.fr

    2005-11-18

    Upregulation of the T-cell derived cytokine interleukin (IL-17) was reported in the inflamed intestinal mucosa of patients with inflammatory bowel disorders. In this study, we analyzed the effect of IL-17 on human intestinal epithelial cell (HIEC) turnover and functions. Proliferation and apoptosis in response to IL-17 was monitored in HIEC (cell counts, [{sup 3}H]thymidine incorporation method, and annexinV-PI-apoptosis assay). Signalling pathways were analyzed by Western blots, electromobility shift assay, and immunofluorescence studies. IL-17 proved to be a potent inhibitor of HIEC proliferation without any pro-apoptotic/necrotic effect. The growth inhibitory effect of IL-17 was mediated via the p38 stress kinase. Consequently, the p38-SAPkinase-inhibitor SB203580 abrogated this anti-mitotic effect. In parallel, IL-17 provoked the degradation of I{kappa}B{alpha}, allowing nuclear translocation of the p65 NF-{kappa}B subunit and induction of the NF-{kappa}B-controlled genes IL-6 and -8. IL-17 potently blocks epithelial cell turnover while at the same time amplifying an inflammatory response in a positive feedback manner.

  4. Effects of the Probiotic Enterococcus faecium and Pathogenic Escherichia coli Strains in a Pig and Human Epithelial Intestinal Cell Model

    PubMed Central

    Lodemann, Ulrike; Strahlendorf, Julia; Schierack, Peter; Klingspor, Shanti; Aschenbach, Jörg R.

    2015-01-01

    The aim of this study has been to elucidate the effect of the probiotic Enterococcus faecium NCIMB 10415 on epithelial integrity in intestinal epithelial cells and whether pre- and coincubation with this strain can reproducibly prevent damage induced by enterotoxigenic (ETEC) and enteropathogenic Escherichia coli (EPEC). Porcine (IPEC-J2) and human (Caco-2) intestinal epithelial cells were incubated with bacterial strains and epithelial integrity was assessed by measuring transepithelial electrical resistance (TEER) and mannitol flux rates. E. faecium alone increased TEER of Caco-2 cells without affecting mannitol fluxes whereas the E. coli strains decreased TEER and concomitantly increased mannitol flux rates in both cell lines. Preincubation with E. faecium had no effect on the TEER decrease induced by E. coli in preliminary experiments. However, in a second set of experiments using a slightly different protocol, E. faecium ameliorated the TEER decrease induced by ETEC at 4 h in IPEC-J2 and at 2, 4, and 6 h in Caco-2 cells. We conclude that E. faecium positively affected epithelial integrity in monoinfected Caco-2 cells and could ameliorate the damage on TEER induced by an ETEC strain. Reproducibility of the results is, however, limited when experiments are performed with living bacteria over longer periods. PMID:25883829

  5. Chronic arthritis induced in rats by cell wall fragments of Eubacterium species from the human intestinal flora.

    PubMed Central

    Severijnen, A J; van Kleef, R; Hazenberg, M P; van de Merwe, J P

    1990-01-01

    To investigate arthritis-inducing properties of Eubacterium species, which are major residents of the human intestinal flora, cell wall fragments (CWF) of several Eubacterium strains were prepared and tested in an animal model. After a single intraperitoneal injection in the rat, CWF of E. aerofaciens, E. contortum, and E. lentum induced a chronic polyarthritis. E. limosum and E. tortuosum CWF induced an acute self-limiting joint inflammation, whereas E. rectale CWF failed to do so. The rhamnose contents of the isolated CWF were not related to their arthritis-inducing properties. Paradoxically, the sensitivity of CWF to lysozyme digestion, which is regarded as a parameter for the clearance of CWF in tissues, appeared to be positively correlated with the ability of Eubacterium CWF to induce chronic joint inflammation. Our findings show the diversity in arthritis-inducing properties among different species of the anaerobic genus Eubacterium and underline the importance of the anaerobic intestinal flora in the induction of joint inflammation. Images PMID:2298490

  6. Butyrate produced by commensal bacteria potentiates phorbol esters induced AP-1 response in human intestinal epithelial cells.

    PubMed

    Nepelska, Malgorzata; Cultrone, Antonietta; Béguet-Crespel, Fabienne; Le Roux, Karine; Doré, Joël; Arulampalam, Vermulugesan; Blottière, Hervé M

    2012-01-01

    The human intestine is a balanced ecosystem well suited for bacterial survival, colonization and growth, which has evolved to be beneficial both for the host and the commensal bacteria. Here, we investigated the effect of bacterial metabolites produced by commensal bacteria on AP-1 signaling pathway, which has a plethora of effects on host physiology. Using intestinal epithelial cell lines, HT-29 and Caco-2, stably transfected with AP-1-dependent luciferase reporter gene, we tested the effect of culture supernatant from 49 commensal strains. We observed that several bacteria were able to activate the AP-1 pathway and this was correlated to the amount of short chain fatty acids (SCFAs) produced. Besides being a major source of energy for epithelial cells, SCFAs have been shown to regulate several signaling pathways in these cells. We show that propionate and butyrate are potent activators of the AP-1 pathway, butyrate being the more efficient of the two. We also observed a strong synergistic activation of AP-1 pathway when using butyrate with PMA, a PKC activator. Moreover, butyrate enhanced the PMA-induced expression of c-fos and ERK1/2 phosphorylation, but not p38 and JNK. In conclusion, we showed that SCFAs especially butyrate regulate the AP-1 signaling pathway, a feature that may contribute to the physiological impact of the gut microbiota on the host. Our results provide support for the involvement of butyrate in modulating the action of PKC in colon cancer cells. PMID:23300800

  7. The human intestinal fatty acid binding protein (hFABP2) gene is regulated by HNF-4{alpha}

    SciTech Connect

    Klapper, Maja . E-mail: klapper@molnut.uni-kiel.de; Boehme, Mike; Nitz, Inke; Doering, Frank

    2007-04-27

    The cytosolic human intestinal fatty acid binding protein (hFABP2) is proposed to be involved in intestinal absorption of long-chain fatty acids. The aim of this study was to investigate the regulation of hFABP2 by the endodermal hepatocyte nuclear factor 4{alpha} (HNF-4{alpha}), involved in regulation of genes of fatty acid metabolism and differentiation. Electromobility shift assays demonstrated that HNF-4{alpha} binds at position -324 to -336 within the hFABP2 promoter. Mutation of this HNF-4 binding site abolished the luciferase reporter activity of hFABP2 in postconfluent Caco-2 cells. In HeLa cells, this mutation reduced the activation of the hFABP2 promoter by HNF-4{alpha} by about 50%. Thus, binding element at position -336/-324 essentially determines the transcriptional activity of promoter and may be important in control of hFABP2 expression by dietary lipids and differentiation. Studying genotype interactions of hFABP2 and HNF-4{alpha}, that are both candidate genes for diabetes type 2, may be a powerful approach.

  8. Nutraceutical Improvement Increases the Protective Activity of Broccoli Sprout Juice in a Human Intestinal Cell Model of Gut Inflammation.

    PubMed

    Ferruzza, Simonetta; Natella, Fausta; Ranaldi, Giulia; Murgia, Chiara; Rossi, Carlotta; Trošt, Kajetan; Mattivi, Fulvio; Nardini, Mirella; Maldini, Mariateresa; Giusti, Anna Maria; Moneta, Elisabetta; Scaccini, Cristina; Sambuy, Yula; Morelli, Giorgio; Baima, Simona

    2016-01-01

    Benefits to health from a high consumption of fruits and vegetables are well established and have been attributed to bioactive secondary metabolites present in edible plants. However, the effects of specific health-related phytochemicals within a complex food matrix are difficult to assess. In an attempt to address this problem, we have used elicitation to improve the nutraceutical content of seedlings of Brassica oleracea grown under controlled conditions. Analysis, by LC-MS, of the glucosinolate, isothiocyanate and phenolic compound content of juices obtained from sprouts indicated that elicitation induces an enrichment of several phenolics, particularly of the anthocyanin fraction. To test the biological activity of basal and enriched juices we took advantage of a recently developed in vitro model of inflamed human intestinal epithelium. Both sprouts' juices protected intestinal barrier integrity in Caco-2 cells exposed to tumor necrosis factor α under marginal zinc deprivation, with the enriched juice showing higher protection. Multivariate regression analysis indicated that the extent of rescue from stress-induced epithelial dysfunction correlated with the composition in bioactive molecules of the juices and, in particular, with a group of phenolic compounds, including several anthocyanins, quercetin-3-Glc, cryptochlorogenic, neochlorogenic and cinnamic acids. PMID:27529258

  9. Structural Stability of Human Fibroblast Growth Factor-1 Is Essential for Protective Effects Against Radiation-Induced Intestinal Damage

    SciTech Connect

    Nakayama, Fumiaki; Umeda, Sachiko; Yasuda, Takeshi; Asada, Masahiro; Motomura, Kaori; Suzuki, Masashi; Zakrzewska, Malgorzata; Imamura, Toru; Imai, Takashi

    2013-02-01

    Purpose: Human fibroblast growth factor-1 (FGF1) has radioprotective effects on the intestine, although its structural instability limits its potential for practical use. Several stable FGF1 mutants were created increasing stability in the order, wild-type FGF1, single mutants (Q40P, S47I, and H93G), Q40P/S47I, and Q40P/S47I/H93G. This study evaluated the contribution of the structural stability of FGF1 to its radioprotective effect. Methods and Materials: Each FGF1 mutant was administered intraperitoneally to BALB/c mice in the absence of heparin 24 h before or after total body irradiation (TBI) with {gamma}-rays at 8-12 Gy. Several radioprotective effects were examined in the jejunum. Results: Q40P/S47I/H93G could activate all subtypes of FGF receptors in vitro much more strongly than the wild-type without endogenous or exogenous heparin. Preirradiation treatment with Q40P/S47I/H93G significantly increased crypt survival more than wild-type FGF1 after TBI at 10 or 12 Gy, and postirradiation treatment with Q40P/S47I/H93G was effective in promoting crypt survival after TBI at 10, 11, or 12 Gy. In addition, crypt cell proliferation, crypt depth, and epithelial differentiation were significantly promoted by postirradiation treatment with Q40P/S47I/H93G. The level of stability of FGF1 mutants correlated with their mitogenic activities in vitro in the absence of heparin; however, preirradiation treatment with the mutants increased the crypt number to almost the same level as Q40P/S47I/H93G. When given 24 h after TBI at 10 Gy, all FGF1 mutants increased crypt survival more than wild-type FGF1, and Q40P/S47I/H93G had the strongest mitogenic effects in intestinal epithelial cells after radiation damage. Moreover, Q40P/S47I/H93G prolonged mouse survival after TBI because of the repair of intestinal damage. Conclusion: These findings suggest that the structural stability of FGF1 can contribute to the enhancement of protective effects against radiation-induced intestinal

  10. The role of selective cyclooxygenase isoforms in human intestinal smooth muscle cell stimulated prostanoid formation and proliferation.

    PubMed Central

    Longo, W E; Erickson, B; Panesar, N; Mazuski, J E; Robinson, S; Kaminski, D L

    1998-01-01

    Intestinal smooth muscle plays a major role in the repair of injured intestine and contributes to the prostanoid pool during intestinal inflammatory states. Cyclooxygenase (COX), which catalyzes the conversion of arachidonic acid to prostanoids exists in two isoforms, COX-1 and COX-2. The purpose of this study was to determine the relative contributions of COX-1 and COX-2 in the production of prostanoids by human intestinal smooth muscle (HISM) cells when stimulated by interleukin-1beta (IL-1beta) and lipopolysaccharide (LPS). Furthermore the effects of specific COX-1 and COX-2 inhibitors on the proliferation of smooth muscle cells was also evaluated. Confluent monolayer cultures of HISM cells were incubated with IL-1beta or LPS for 0-24h while control cells received medium alone. PGE2 and PGI2 as 6-keto-PGF1alpha and LTB4 were measured by a specific radioimmunoassay. COX enzymes were evaluated by Western immunoblotting. Unstimulated and stimulated cells were exposed to the specific COX-1 inhibitor valerylsalicylic acid (VSA) and the COX-2 inhibitors NS-398 and SC-58125. The effects of serum on proliferation were then evaluated in the presence of each of the specific COX inhibitors by incorporation of 3H-thymidine into DNA. IL-1beta and LPS increased both PGE2 and 6-keto-PGF1alpha in a dose dependent fashion with enhanced production detected two hours following exposure. Neither stimulus stimulated LTB4 release. Immunoblot analysis using isoform-specific antibodies showed that both COX-1 and COX-2 were present constitutively. Furthermore, COX-1 was upregulated by each inflammatory stimulus. In a separate set of experiments cells were pretreated with either the selective COX-1 inhibitor VSA or the selective COX-2 inhibitors NS-398 or SC-58125 prior to treatment with IL-1beta or LPS. The COX-1 and COX-2 inhibitors decreased both basal and IL-1beta and LPS stimulated prostanoid release. Spontaneous DNA synthesis was present and serum consistently increased

  11. How to make an intestine

    PubMed Central

    Wells, James M.; Spence, Jason R.

    2014-01-01

    With the high prevalence of gastrointestinal disorders, there is great interest in establishing in vitro models of human intestinal disease and in developing drug-screening platforms that more accurately represent the complex physiology of the intestine. We will review how recent advances in developmental and stem cell biology have made it possible to generate complex, three-dimensional, human intestinal tissues in vitro through directed differentiation of human pluripotent stem cells. These are currently being used to study human development, genetic forms of disease, intestinal pathogens, metabolic disease and cancer. PMID:24496613

  12. Endothelin-1 potently stimulates chloride secretion and inhibits Na(+)-glucose absorption in human intestine in vitro.

    PubMed Central

    Kuhn, M; Fuchs, M; Beck, F X; Martin, S; Jähne, J; Klempnauer, J; Kaever, V; Rechkemmer, G; Forssmann, W G

    1997-01-01

    1. Serosally added synthetic endothelin-1 (ET-1) increased short-circuit current (Isc) across isolated muscle-stripped human colonic mucosa in vitro. Bumetanide inhibited Isc responses, indicating that ET-1 stimulates electrogenic Cl- secretion. 2. In isolated human jejunal mucosa, ET-1 exhibited a concentration-dependent dual action. At low concentrations it induced rapid increases in Isc and these were inhibited by bumetanide. At a higher concentration (0.1 microM), ET-1 provoked a drastic and progressive decrease in Isc below the baseline value. 3. Pretreatment with phlorizin or omission of glucose from the Krebs-Ringer solution at the apical (luminal) side of the jejunal mucosa prevented the decreases in Isc evoked by ET-1, suggesting that the peptide inhibits the glucose-coupled electrogenic Na+ absorption. Indeed, flux experiments with D-[14C]glucose demonstrated that ET-1 decreases jejunal glucose absorption by approximately 80% within 30 min. 4. Electron microprobe analyses of cryosections of human jejunum showed that ET-1 (0.1 microM) evokes a significant decrease in intracellular Na+ concentrations of villus (not crypt) epithelial cells, suggesting that the peptide attenuates apical Na(+)-glucose entry by reducing the activity of the Na(+)-glucose cotransporter, SGLT1. 5. In the presence of tetrodotoxin (TTX), ET-1-induced Cl- secretion was significantly reduced, in both human jejunal and colonic mucosa. However, the inhibitory effect on jejunal Na(+)-glucose absorption was not affected by TTX. 6. ET-1 increases electrogenic Cl- secretion across human intestinal mucosa in vitro. This effect is mediated in part via the activation of enteric nerves. Responses of the human jejunal mucosa to high ET-1 concentrations exhibit a second component, namely the rapid inhibition of electrogenic Na(+)-glucose absorption, which might be mediated by an inhibition of the transport activity of SGLT1. This effect is independent from neuronal mediators. Our results suggest

  13. Human small intestinal contractions and aboral traction forces during fasting and after feeding.

    PubMed Central

    Ahluwalia, N K; Thompson, D G; Barlow, J; Heggie, L

    1994-01-01

    Small intestinal intraluminal pressure activity and aboral traction forces were explored in 19 healthy volunteers using a combined manometry and traction force detecting assembly sited in the upper small intestine. Each aboral traction event was classified as being associated with either a propagating or a stationary contraction and its force measured. During phase I no contractions or traction events were seen. During phase II, traction events related to propagating contractions mean (SEM) (2.2 (0.2)/min) and to stationary contractions (0.3 (0.1)/min) generated similar force/event (7.5(0.9 g v 8.7 (1.4) g, p > 0.05). During phase III, all traction events were related to propagating contractions and generated 9.3 (2.4) g force/event (p > 0.05 v phase II). After feeding, traction events related to propagating contractions generated similar force/event to those related to stationary contractions (5.9 (1.0) g v 9.3 (2.7) g, p > 0.05 v each other and v fasting). No consistent pattern was seen in the temporal distribution of the traction events or in the pattern of the amplitude of the force of successive traction events. PMID:8200554

  14. Absorption of 3(2H)-furanones by human intestinal epithelial Caco-2 cells.

    PubMed

    Stadler, Nicole Christina; Somoza, Veronika; Schwab, Wilfried

    2009-05-13

    A number of 3(2H)-furanones are synthesized by fruits and have been found in cooked foodstuffs, where they impart flavor and odor because of their low perception thresholds. They show genotoxic properties in model studies but are also ranked among the antioxidants and anticarcinogens. This study examined the efficiency of intestinal absorption and metabolic conversion of 3(2H)-furanones by using Caco-2 cell monolayers as an intestinal epithelial cell model. The permeability of each agent was measured in both the apical to basal and basal to apical directions. 2,5-Dimethyl-4-methoxy-3(2H)-furanone (DMMF) showed the highest absorption rate in all experiments, while similar amounts of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF), 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone (HEMF), and 4-hydroxy-5-methyl-3(2H)-furanone (HMF) were taken up. HDMF-glucoside was almost not absorbed but was hydrolyzed to a small extent. The transport of 3(2H)-furanones could not be saturated even at levels of 500 microM and occurred in both directions. Because the uptake was only slightly reduced by apical hyperosmolarity, passive diffusion by paracellular transport is proposed. PMID:19338346

  15. Heparin modulates human intestinal smooth muscle (HISM) cell proliferation and matrix production

    SciTech Connect

    Graham, M.; Perr, H.; Drucker, D.E.; Diegelmann, R.F.

    1986-03-01

    (HISM) cell proliferation and collagen production may play a role in the pathogenesis of intestinal stricture in Crohn's disease. The present studies were performed to evaluate the effects of heparin, a known modulator of vascular smooth muscle cells, on HISM cell proliferation and collagen production. Heparin (100 ..mu..g/ml) was added daily to HISM cell cultures for cell proliferation studies and for 24 hours at various time points during culture for collagen synthesis studies. Collagen synthesis was determined by the uptake of /sup 3/H proline into collagenase-sensitive protein. Heparin completely inhibited cell proliferation for 7 days, after which cell numbers increased but at a slower rate than controls. Cells released from heparin inhibition demonstrated catch-up growth to control levels. Collagen production was significantly inhibited by 24 hours exposure to heparin but only at those times during culture when collagen synthesis was maximal (8 to 12 days). Non-collagen protein synthesis was inhibited by heparin at all time points during culture. Heparin through its modulation of HISM cells may play an important role in the control of the extracellular matrix of the intestinal wall.

  16. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions

    PubMed Central

    Baranwal, Somesh

    2015-01-01

    Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis. PMID:25792565

  17. Pancreatoduodenectomy as a source of human small intestine for Ussing chamber investigations and comparative studies with rat tissue.

    PubMed

    Haslam, Iain S; O'Reilly, Derek A; Sherlock, David J; Kauser, Ambareen; Womack, Chris; Coleman, Tanya

    2011-05-01

    A clear understanding of oral drug absorption is an important aspect of the drug development process. The permeability of drug compounds across intact sections of small intestine from numerous species, including man, has often been investigated using modified Ussing chambers. The maintenance of viable, intact tissue is critical to the success of this technique. This study therefore aimed to assess the viability and integrity of tissue from patients undergoing pancreatoduodenectomy, for use in cross-species Ussing chamber studies. Electrical parameters (potential difference, mV; short-circuit current, µA.cm(-2) ; resistance, Ω.cm(2) ) were monitored over the duration of each experiment, as was the permeability of the paracellular marker atenolol. The permeability values (Papp; cm/s × 10(-6) ) for a training-set of compounds, displaying a broad range of physicochemical properties and known human fraction absorbed values, were determined in both rat and human jejunum, as well as Caco-2 cell monolayers. The results indicate that human jejunum sourced from pancreatoduodenectomy remained viable and intact for the duration of experiments. Permeability values generated in rat and human jejunum correlate well (R(2) = 0.86), however the relationship between permeability in human tissue and Caco-2 cells was comparatively weak (R(2) = 0.58). Relating permeability to known human fraction absorbed (hFabs) values results in a remarkably similar relationship to both rat and human jejunum Papp values. It can be concluded that human jejunum sourced from pancreatoduodenectomy is a suitable source of tissue for Ussing chamber permeability investigations. The relationship between permeability and hFabs is comparable to results reported using alternative test compounds. PMID:21416475

  18. Environmental contaminants activate human and polar bear (Ursus maritimus) pregnane X receptors (PXR, NR1I2) differently

    SciTech Connect

    Lille-Langøy, Roger; Goldstone, Jared V.; Rusten, Marte; Milnes, Matthew R.; Male, Rune; Stegeman, John J.; Blumberg, Bruce; Goksøyr, Anders

    2015-04-01

    Background: Many persistent organic pollutants (POPs) accumulate readily in polar bears because of their position as apex predators in Arctic food webs. The pregnane X receptor (PXR, formally NR1I2, here proposed to be named promiscuous xenobiotic receptor) is a xenobiotic sensor that is directly involved in metabolizing pathways of a wide range of environmental contaminants. Objectives: In the present study, we comparably assess the ability of 51 selected pharmaceuticals, pesticides and emerging contaminants to activate PXRs from polar bears and humans using an in vitro luciferase reporter gene assay. Results: We found that polar bear PXR is activated by a wide range of our test compounds (68%) but has a slightly more narrow ligand specificity than human PXR that was activated by 86% of the 51 test compounds. The majority of the agonists identified (70%) produces a stronger induction of the reporter gene via human PXR than via polar bear PXR, however with some notable and environmentally relevant exceptions. Conclusions: Due to the observed differences in activation of polar bear and human PXRs, exposure of each species to environmental agents is likely to induce biotransformation differently in the two species. Bioinformatics analyses and structural modeling studies suggest that amino acids that are not part of the ligand-binding domain and do not interact with the ligand can modulate receptor activation. - Highlights: • Comparative study of ligand activation of human and polar bear PXRs. • Polar bear PXR is a promiscuous ligand-activated nuclear receptor but less so than human PXR. • Environmental contaminants activate human and polar bear PXRs differently. • Expression and ligand promiscuity indicate that PXR is a xenosensor in polar bears.

  19. Thimerosal compromises human dendritic cell maturation, IL-12 production, chemokine release, and T-helper polarization

    PubMed Central

    Loison, Emily; Gougeon, Marie-Lise

    2014-01-01

    Thimerosal is a preservative used in multidose vials of vaccine formulations to prevent bacterial and fungal contamination. We recently reported that nanomolar concentrations of thimerosal induce cell cycle arrest of human T cells activated via the TCR and inhibition of proinflammatory cytokine production, thus interfering with T-cell functions. Given the essential role of dendritic cells (DCs) in T-cell polarization and vaccine immunity, we studied the influence of non-toxic concentrations of thimerosal on DC maturation and functions. Ex-vivo exposure of human monocyte-derived DCs to nanomolar concentrations of thimerosal prevented LPS-induced DC maturation, as evidenced by the inhibition of morphological changes and a decreased expression of the maturation markers CD86 and HLA-DR. In addition thimerosal dampened their proinflammatory response, in particular the production of the Th1 polarizing cytokine IL-12, as well as TNF-α and IL-6. DC-dependent T helper polarization was altered, leading to a decreased production of IFN-γ IP10 and GM-CSF and increased levels of IL-8, IL-9, and MIP-1α. Although multi-dose vials of vaccines containing thimerosal remain important for vaccine delivery, our results alert about the ex-vivo immunomodulatory effects of thimerosal on DCs, a key player for the induction of an adaptive response PMID:25424939

  20. Comparative study of human intestinal and hepatic esterases as related to enzymatic properties and hydrolizing activity for ester-type drugs.

    PubMed

    Inoue, M; Morikawa, M; Tsuboi, M; Ito, Y; Sugiura, M

    1980-08-01

    In attempts to determine the exact role of intestinal esterase in the body, we purified esterases from human intestinal mucosa and liver, and compared the enzymatic properties and substrate specificities with those of purified esterases. Esterase from human liver was purified 58-fold, by treatment with butanol, DE-52 and DEAE Sephadex A-50 column chromatographies, Sephadex G-200 gel filtration, and isoelectric focusing. The purified preparation showed a single band by polyacylamide gel electrophoresis. The molecular weights of intestinal and hepatic esterases were determined to be 53,000-55,000 and 180,000, respectively, by gel filtration on Sephadex G-200. The activity of the purified intestinal and hepatic esterases was strongly inhibited by diethyl-p-nitrophenyl phosphate and diisopropyl fluorophosphate, and was not inhibited by eserine sulfate and p-chloromercuribenzoate. Moreover, the purified esterases hydrolyzed ester-type drugs such as aspirin, clofibrate, indanyl carbenicillin and procaine. Hepatic esterase had properties similar to those of intestinal esterase with respect to the sensitivity to organophosphate and the substrate specificity. However, the two purified esterases differed in properties such as molecular weight, isoelectric point, thermostability and optimal pH. PMID:7206363

  1. Application of Sequence-Dependent Electrophoresis Fingerprinting in Exploring Biodiversity and Population Dynamics of Human Intestinal Microbiota: What Can Be Revealed?

    PubMed Central

    Huys, Geert; Vanhoutte, Tom; Vandamme, Peter

    2008-01-01

    Sequence-dependent electrophoresis (SDE) fingerprinting techniques such as denaturing gradient gel electrophoresis (DGGE) have become commonplace in the field of molecular microbial ecology. The success of the SDE technology lays in the fact that it allows visualization of the predominant members of complex microbial ecosystems independent of their culturability and without prior knowledge on the complexity and diversity of the ecosystem. Mainly using the prokaryotic 16S rRNA gene as PCR amplification target, SDE-based community fingerprinting turned into one of the leading molecular tools to unravel the diversity and population dynamics of human intestinal microbiota. The first part of this review covers the methodological concept of SDE fingerprinting and the technical hurdles for analyzing intestinal samples. Subsequently, the current state-of-the-art of DGGE and related techniques to analyze human intestinal microbiota from healthy individuals and from patients with intestinal disorders is surveyed. In addition, the applicability of SDE analysis to monitor intestinal population changes upon nutritional or therapeutic interventions is critically evaluated. PMID:19277102

  2. DNA-methylome analysis of mouse intestinal adenoma identifies a tumour-specific signature that is partly conserved in human colon cancer.

    PubMed

    Grimm, Christina; Chavez, Lukas; Vilardell, Mireia; Farrall, Alexandra L; Tierling, Sascha; Böhm, Julia W; Grote, Phillip; Lienhard, Matthias; Dietrich, Jörn; Timmermann, Bernd; Walter, Jörn; Schweiger, Michal R; Lehrach, Hans; Herwig, Ralf; Herrmann, Bernhard G; Morkel, Markus

    2013-01-01

    Aberrant CpG methylation is a universal epigenetic trait of cancer cell genomes. However, human cancer samples or cell lines preclude the investigation of epigenetic changes occurring early during tumour development. Here, we have used MeDIP-seq to analyse the DNA methylome of APC(Min) adenoma as a model for intestinal cancer initiation, and we present a list of more than 13,000 recurring differentially methylated regions (DMRs) characterizing intestinal adenoma of the mouse. We show that Polycomb Repressive Complex (PRC) targets are strongly enriched among hypermethylated DMRs, and several PRC2 components and DNA methyltransferases were up-regulated in adenoma. We further demonstrate by bisulfite pyrosequencing of purified cell populations that the DMR signature arises de novo in adenoma cells rather than by expansion of a pre-existing pattern in intestinal stem cells or undifferentiated crypt cells. We found that epigenetic silencing of tumour suppressors, which occurs frequently in colon cancer, was rare in adenoma. Quite strikingly, we identified a core set of DMRs, which is conserved between mouse adenoma and human colon cancer, thus possibly revealing a global panel of epigenetically modified genes for intestinal tumours. Our data allow a distinction between early conserved epigenetic alterations occurring in intestinal adenoma and late stochastic events promoting colon cancer progression, and may facilitate the selection of more specific clinical epigenetic biomarkers. PMID:23408899

  3. Inulin-type fructan fermentation by bifidobacteria depends on the strain rather than the species and region in the human intestine.

    PubMed

    Selak, Marija; Rivière, Audrey; Moens, Frédéric; Van den Abbeele, Pieter; Geirnaert, Annelies; Rogelj, Irena; Leroy, Frédéric; De Vuyst, Luc

    2016-05-01

    Inulin-type fructans (ITF) are known to cause a health-promoting bifidogenic effect, although the ITF degradation capacity of bifidobacteria in different intestinal regions remains unclear. The present study aims at offering new insights into this link, making use of a collection of 190 bifidobacterial strains, encompassing strains from gut biopsies (terminal ileum and proximal colon; mucosa-associated strains) and the simulator of the human intestinal microbial ecosystem (SHIME®; proximal and distal colon vessels; lumen-associated strains). A multivariate data analysis of all fermentation data revealed four clusters corresponding with different types of ITF degradation fingerprints, which were not correlated with the region in the intestine, suggesting that the degradation of ITF is uniform along the human intestine. Strains from cluster 1 consumed fructose, while strains from cluster 2 consumed more oligofructose than fructose. Higher fructose and oligofructose consumption was characteristic for clusters 3 and 4 strains, which degraded inulin too. In general, the mucosa-associated strains from biopsy origin seemed to be more specialized in the consumption of fructose and oligofructose, while the lumen-associated strains from SHIME origin displayed a higher degradation degree of inulin. Further, intra-species variability in ITF degradation was found, indicating strain-specific variations. The coexistence of different bifidobacterial strains with different ITF degradation fingerprints within the same intestinal region suggests cooperation for the degradation of ITF, with opportunities for cross-feeding on strain and/or species level. PMID:26861055

  4. Cyclical DNA Methylation and Histone Changes Are Induced by LPS to Activate COX-2 in Human Intestinal Epithelial Cells

    PubMed Central

    Brancaccio, Mariarita; Coretti, Lorena; Florio, Ermanno; Pezone, Antonio; Calabrò, Viola; Falco, Geppino; Keller, Simona; Lembo, Francesca; Avvedimento, Vittorio Enrico; Chiariotti, Lorenzo

    2016-01-01

    Bacterial lipopolysaccharide (LPS) induces release of inflammatory mediators both in immune and epithelial cells. We investigated whether changes of epigenetic marks, including selected histone modification and DNA methylation, may drive or accompany the activation of COX-2 gene in HT-29 human intestinal epithelial cells upon exposure to LPS. Here we describe cyclical histone acetylation (H3), methylation (H3K4, H3K9, H3K27) and DNA methylation changes occurring at COX-2 gene promoter overtime after LPS stimulation. Histone K27 methylation changes are carried out by the H3 demethylase JMJD3 and are essential for COX-2 induction by LPS. The changes of the histone code are associated with cyclical methylation signatures at the promoter and gene body of COX-2 gene. PMID:27253528

  5. Immunohistochemical evidence for the occurrence of vasoactive intestinal polypeptide (VIP)-containing nerve fibres in human fetal abdominal paraganglia.

    PubMed Central

    Hervonen, A; Linnoila, I; Tainio, H; Vaalasti, A; Mascorro, J A

    1985-01-01

    The abdominal paraganglia in man represent a major source of catecholamines, and perhaps peptide hormones, during the fetal period. The nature of the innervation of the abdominal paraganglia was studied immunohistochemically by utilising antibodies to vasoactive intestinal polypeptide, enkephalin, substance-P and somatostatin. The paraganglia showed an abundant network of VIP-immunoreactive fibres, and similar nerve fibres were found within nerve bundles of the preaortic sympathetic plexus. Occasionally, VIP-immunoreactive fibres were seen within the prevertebral ganglia, but stained cell bodies were never observed. It may be suggested that VIP-containing nerves could regulate a secretory response from fetal human abdominal paraganglia. Images Fig. 1 Figs. 2-3 Fig. 4 Fig. 5 Fig. 6 Figs. 7-11 PMID:3870718

  6. Development of a Multicellular Three-dimensional Organotypic Model of the Human Intestinal Mucosa Grown Under Microgravity.

    PubMed

    Salerno-Goncalves, Rosangela; Fasano, Alessio; Sztein, Marcelo B

    2016-01-01

    Because cells growing in a three-dimensional (3-D) environment have the potential to bridge many gaps of cell cultivation in 2-D environments (e.g., flasks or dishes). In fact, it is widely recognized that cells grown in flasks or dishes tend to de-differentiate and lose specialized features of the tissues from which they were derived. Currently, there are mainly two types of 3-D culture systems where the cells are seeded into scaffolds mimicking the native extracellular matrix (ECM): (a) static models and (b) models using bioreactors. The first breakthrough was the static 3-D models. 3-D models using bioreactors such as the rotating-wall-vessel (RWV) bioreactors are a more recent development. The original concept of the RWV bioreactors was developed at NASA's Johnson Space Center in the early 1990s and is believed to overcome the limitations of static models such as the development of hypoxic, necrotic cores. The RWV bioreactors might circumvent this problem by providing fluid dynamics that allow the efficient diffusion of nutrients and oxygen. These bioreactors consist of a rotator base that serves to support and rotate two different formats of culture vessels that differ by their aeration source type: (1) Slow Turning Lateral Vessels (STLVs) with a co-axial oxygenator in the center, or (2) High Aspect Ratio Vessels (HARVs) with oxygenation via a flat, silicone rubber gas transfer membrane. These vessels allow efficient gas transfer while avoiding bubble formation and consequent turbulence. These conditions result in laminar flow and minimal shear force that models reduced gravity (microgravity) inside the culture vessel. Here we describe the development of a multicellular 3-D organotypic model of the human intestinal mucosa composed of an intestinal epithelial cell line and primary human lymphocytes, endothelial cells and fibroblasts cultured under microgravity provided by the RWV bioreactor. PMID:27500889

  7. Enhanced uptake and transport of (+)-catechin and (-)-epigallocatechin gallate in niosomal formulation by human intestinal Caco-2 cells.

    PubMed

    Song, Qinxin; Li, Danhui; Zhou, Yongzhi; Yang, Jie; Yang, Wanqi; Zhou, Guohua; Wen, Jingyuan

    2014-01-01

    The aim of this study was to evaluate (+)-catechin and (-)-epigallocatechin gallate (EGCG) cellular uptake and transport across human intestinal Caco-2 cell monolayer in both the absence and presence of niosomal carrier in variable conditions. The effect of free drugs and drug-loaded niosomes on the growth of Caco-2 cells was studied. The effects of time, temperature, and concentration on drug cellular uptake in the absence or presence of its niosomal delivery systems were investigated. The intestinal epithelial membrane transport of the drug-loaded niosomes was examined using the monolayer of the human Caco-2 cells. The kinetics of transport, and the effect of temperature, adenosine triphosphate inhibitor, permeability glycoprotein inhibitor, multidrug resistance-associated protein 2 inhibitor, and the absorption enhancer on transport mechanism were investigated. It was found that the uptake of catechin, EGCG, and their niosomes by Caco-2 cells was 1.22 ± 0.16, 0.90 ± 0.14, 3.25 ± 0.37, and 1.92 ± 0.22 μg/mg protein, respectively (n=3). The apparent permeability coefficient values of catechin, EGCG, and their niosomes were 1.68 ± 0.16, 0.88 ± 0.09, 2.39 ± 0.31, and 1.42 ± 0.24 cm/second (n=3) at 37°C, respectively. The transport was temperature- and energy-dependent. The inhibitors of permeability glycoprotein and multidrug resistance-associated protein 2 and the absorption enhancer significantly enhanced the uptake amount. Compared with the free drugs, niosomal formulation significantly enhanced drug absorption. Additionally, drug-loaded niosomes exhibited stronger stability and lower toxicity. These findings showed that the oral absorption of tea flavonoids could be improved by using the novel drug delivery systems. PMID:24855353

  8. Tick-Borne Encephalitis Virus Replication, Intracellular Trafficking, and Pathogenicity in Human Intestinal Caco-2 Cell Monolayers

    PubMed Central

    Möller, Lars; Schulzke, Joerg D.; Niedrig, Matthias; Bücker, Roland

    2014-01-01

    Tick-borne encephalitis virus (TBEV) is one of the most important vector-borne viruses in Europe and Asia. Its transmission mainly occurs by the bite of an infected tick. However, consuming milk products from infected livestock animals caused TBEV cases. To better understand TBEV transmission via the alimentary route, we studied viral infection of human intestinal epithelial cells. Caco-2 cells were used to investigate pathological effects of TBEV infection. TBEV-infected Caco-2 monolayers showed morphological changes including cytoskeleton rearrangements and cytoplasmic vacuolization. Ultrastructural analysis revealed dilatation of the rough endoplasmic reticulum and further enlargement to TBEV containing caverns. Caco-2 monolayers maintained an intact epithelial barrier with stable transepithelial electrical resistance (TER) during early stage of infection. Concomitantly, viruses were detected in the basolateral medium, implying a transcytosis pathway. When Caco-2 cells were pre-treated with inhibitors of cellular pathways of endocytosis TBEV cell entry was efficiently blocked, suggesting that actin filaments (Cytochalasin) and microtubules (Nocodazole) are important for PI3K-dependent (LY294002) virus endocytosis. Moreover, experimental fluid uptake assay showed increased intracellular accumulation of FITC-dextran containing vesicles. Immunofluorescence microscopy revealed co-localization of TBEV with early endosome antigen-1 (EEA1) as well as with sorting nexin-5 (SNX5), pointing to macropinocytosis as trafficking mechanism. In the late phase of infection, further evidence was found for translocation of virus via the paracellular pathway. Five days after infection TER was slightly decreased. Epithelial barrier integrity was impaired due to increased epithelial apoptosis, leading to passive viral translocation. These findings illuminate pathomechanisms in TBEV infection of human intestinal epithelial cells and viral transmission via the alimentary route. PMID

  9. Carriage of intestinal spirochaetes by humans: epidemiological data from Western Australia.

    PubMed Central

    Brook, C. J.; Clair, A. N.; Mikosza, A. S.; Riley, T. V.; Hampson, D. J.

    2001-01-01

    The purpose of this study was to investigate carriage of intestinal spirochaetes by selected population groups in Western Australia. Stool specimens from 293 rural patients with gastrointestinal disorders, and from 227 healthy migrants from developing countries were cultured. Spirochaete isolates were identified using PCR, and typed by pulsed field gel electrophoresis (PFGE). Brachyspira aalborgi was not isolated. Brachyspira pilosicoli was recovered from 15 rural patients, all Aboriginal. Prevalence was 9.9% in 151 Aboriginals and 0% in 142 non-Aboriginals. Carriage of B. pilosicoli amongst migrants was 10.6% (24/227). Carriage was significantly increased in Aboriginal children aged 2-5 years (P = 0.0027) and in migrant individuals from the Middle East and Africa (P = 0.0034). Carriage was significantly associated with detection of faecal protozoa in both Aboriginals (P = 0.0021) and migrants (P = 0.012). PFGE results indicated that the B. pilosicoli strains were genetically diverse. PMID:11693517

  10. Inflammation Controls Sensitivity of Human and Mouse Intestinal Epithelial Cells to Galectin-1.

    PubMed

    Muglia, Cecilia I; Gobbi, Rodrigo Papa; Smaldini, Paola; Delgado, María Lucía Orsini; Candia, Martín; Zanuzzi, Carolina; Sambuelli, Alicia; Rocca, Andrés; Toscano, Marta A; Rabinovich, Gabriel A; Docena, Guillermo H

    2016-07-01

    Galectins play key roles in the inflammatory cascade. In this study, we aimed to analyze the effect of galectin-1 (Gal-1) in the function of intestinal epithelial cells (IECs) isolated from healthy and inflamed mucosa. IECs isolated from mice or patients with inflammatory bowel diseases (IBD) were incubated with different pro-inflammatory cytokines, and Gal-1 binding, secretion of homeostatic factors and viability were assessed. Experimental models of food allergy and colitis were used to evaluate the in vivo influence of inflammation on Gal-1 binding and modulation of IECs. We found an enhanced binding of Gal-1 to: (a) murine IECs exposed to IL-1β, TNF, and IL-13; (b) IECs from inflamed areas in intestinal tissue from IBD patients; (c) small bowel of allergic mice; and (d) colon from mice with experimental colitis. Our results showed that low concentrations of Gal-1 favored a tolerogenic micro-environment, whereas high concentrations of this lectin modulated viability of IECs through mechanisms involving activation of caspase-9 and modulation of Bcl-2 protein family members. Our results showed that, when added in the presence of diverse pro-inflammatory cytokines such as tumor necrosis factor (TNF), IL-13 and IL-5, Gal-1 differentially promoted the secretion of growth factors including thymic stromal lymphopoietin (TSLP), epidermal growth factor (EGF), IL-10, IL-25, and transforming growth factor (TGF-β1 ). In conclusion, we found an augmented binding of Gal-1 to IECs when exposed in vitro or in vivo to inflammatory stimuli, showing different effects depending on Gal-1 concentration. These findings highlight the importance of the inflammatory micro-environment of mucosal tissues in modulating IECs susceptibility to the immunoregulatory lectin Gal-1 and its role in epithelial cell homeostasis. PMID:26566180

  11. Adhesion of marine cryptic Escherichia isolates to human intestinal epithelial cells

    PubMed Central

    Vignaroli, Carla; Sante, Laura Di; Magi, Gloria; Luna, Gian Marco; Di Cesare, Andrea; Pasquaroli, Sonia; Facinelli, Bruna; Biavasco, Francesca

    2015-01-01

    Five distinct cryptic lineages (clades I–V) have recently been recognized in the Escherichia genus. The five clades encompass strains that are phenotypically and taxonomically indistinguishable from Escherichia coli sensu stricto; however, scant data are available on their ecology, virulence and pathogenic properties. In this study 20 cryptic E. coli strains isolated from marine sediments were investigated to gain insights into their virulence characteristics and genetic traits. The ability to adhere to intestinal cells was highest among clade V strains, which also harbored the genes involved in gut colonization as well as the genes (pduC and eut operon) typically found in environmentally adapted E. coli strains. The pduC gene was significantly associated with clade V. Multilocus sequence typing of three representative clade V isolates revealed new sequence types (STs) and showed that the strains shared two allelic loci (adk 51 and recA 37). Our findings suggest that cryptic Escherichia lineages are common in coastal marine sediments and that this habitat may be suitable for their growth and persistence outside the host. On the other hand, detection in clade V strains of a gene repertoire and adhesion properties similar to those of intestinal pathogenic strains could indicate their potential virulence. It could be argued that there is a dual nature of cryptic clade V strains, where the ability to survive and persist in a secondary habitat does not involve the loss of the host-associated lifestyle. Clade V could be a group of closely related, environmentally adapted E. coli strains. PMID:25216085

  12. Genome sequence of Victivallis vadensis ATCC BAA-548, an anaerobic bacterium from the phylum Lentisphaerae, isolated from the human gastro-intestinal tract

    SciTech Connect

    Van Passel, Mark W.J.; Kant, Ravi; Palva, Airi; Lucas, Susan; Copeland, A; Lapidus, Alla L.; Glavina Del Rio, Tijana; Dalin, Eileen; Tice, Hope; Bruce, David; Goodwin, Lynne A.; Pitluck, Sam; Davenport, Karen W.; Sims, David; Detter, J. Chris; Han, Cliff; Larimer, Frank W; Land, Miriam L; Hauser, Loren John; Kyrpides, Nikos C; Ovchinnikova, Galina; Richardson, Paul; De Vos, Willem M.; Smidt, Hauke; Zoetendal, Erwin G.

    2011-01-01

    Victivallis vadensis ATCC BAA-548 represents the first cultured representative from the novel phylum Lentisphaerae, a deep-branching bacterial lineage. Few cultured bacteria from this phylum are known, and V. vadensis therefore represents an important organism for evolutionary studies. V. vadensis is a strictly anaerobic sugar-fermenting isolate from the human gastro-intestinal tract.

  13. A method for high purity intestinal epithelial cell culture from adult human and murine tissues for the investigation of innate immune function

    PubMed Central

    Graves, Christina L.; Harden, Scott W.; LaPato, Melissa; Nelson, Michael; Amador, Byron; Sorenson, Heather; Frazier, Charles J.; Wallet, Shannon M.

    2015-01-01

    Intestinal epithelial cells (IECs) serve as an important physiologic barrier between environmental antigens and the host intestinal immune system. Thus, IECs serve as a first line of defense and may act as sentinel cells during inflammatory insults. Despite recent renewed interest in IEC contributions to host immune function, the study of primary IEC has been hindered by lack of a robust culture technique, particularly for small intestinal and adult tissues. Here, a novel adaptation for culture of primary IEC is described for human duodenal organ donor tissue as well as duodenum and colon of adult mice. These epithelial cell cultures display characteristic phenotypes and are of high purity. In addition, the innate immune function of human primary IEC, specifically with regard to Toll-like receptor (TLR) expression and microbial ligand responsiveness, is contrasted with a commonly used intestinal epithelial cell line (HT-29). Specifically, TLR expression at the mRNA level and production of cytokine (IFNγ and TNFα) in response to TLR agonist stimulation is assessed. Differential expression of TLRs as well as innate immune responses to ligand stimulation is observed in human-derived cultures compared to that of HT-29. Thus, use of this adapted method to culture primary epithelial cells from adult human donors and from adult mice will allow for more appropriate studies of IECs as innate immune effectors. PMID:25193428

  14. Trefoil factor 3 (TFF3) from human breast milk activates PAR-2 receptors, of the intestinal epithelial cells HT-29, regulating cytokines and defensins.

    PubMed

    Barrera, G J; Tortolero, G Sanchez

    2016-01-01

    Trefoil factors are effector molecules in gastrointestinal tract physiology. Each one improves healing of the gastrointestinal tract. Trefoil factors may be grouped into three classes: the gastric peptides (TFF1), spasmolytic peptide (TFF2) and intestinal trefoil factor (TFF3). Significant amounts of TFF3 are present in human breast milk. Previously, we have reported that trefoil factor 3 isolated from human breast milk produces down regulation of cytokines and promotes human beta defensins expression in intestinal epithelial cells. This study aimed to determine the molecular mechanism involved. Here we showed that the presence of TFF3 strongly correlated with protease activated receptors 2 (PAR-2) activation in human intestinal cells. Intracellular calcium ((Ca2+)i)mobilization was induced by the treatment with: 1) TFF3, 2) synthetic PAR-2 agonist peptide. The co-treatment with a synthetic PAR-2 antagonist peptide and TFF3 eliminates the latter's effect. Additionally, we demonstrated the existence of interactions among TFF3 and PAR-2 receptors through far Western blot and co-precipitation. Finally, down regulation of PAR-2 by siRNA resulted in a decrease of TFF3 induced intracellular (Ca2+)i mobilization, cytokine regulation and defensins expression. These findings suggest that TFF3 activates intestinal cells through PAR-2 (Fig. 4, Ref. 19). PMID:27546365

  15. Acute Small-Bowel Obstruction From Intestinal Anisakiasis After the Ingestion of Raw Clams; Documenting a New Method of Marine-to-Human Parasitic Transmission

    PubMed Central

    Shweiki, Ehyal; Rittenhouse, David W.; Ochoa, Joana E.; Punja, Viren P.; Zubair, Muhammad H.; Baliff, Jeffrey P.

    2014-01-01

    Enteric anisakiasis is a known parasitic infection. To date, human infection has been reported as resulting from the inadvertent ingestion of the anisakis larvae when eating raw/undercooked fish, squid, or eel. We present a first reported case of intestinal obstruction caused by anisakiasis, after the ingestion of raw clams. PMID:25734153

  16. Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Human maltase-glucoamylase (MGAM) is one of the two enzymes responsible for catalyzing the last glucose-releasing step in starch digestion. MGAM is anchored to the small-intestinal brush-border epithelial cells and contains two homologous glycosyl hydrolase family 31 catalytic subunits: an N-termina...

  17. METABOLISM OF 1-NITROPYRENE BY HUMAN, RAT, AND MOUSE INTESTINAL FLORA: NYTAGENICITY OF ISOLATED METABOLITES BY DIRECT ANALYSIS OF HPLC FRACTIONS WITH A MICROSUSPENSION REVERSE MUTATION ASSAY

    EPA Science Inventory

    Among the nitro-substituted polycyclic aromatic hydrocarbons identified in environmental samples and known to be genotoxic, 1-nitropyrene is one of the most abundant. he biotransformation of 1-nitro[14C]pyrene by human, rat, and mouse intestinal microflora and the mutagenicity of...

  18. Adhering heat-killed human Lactobacillus acidophilus, strain LB, inhibits the process of pathogenicity of diarrhoeagenic bacteria in cultured human intestinal cells.

    PubMed

    Coconnier, M H; Bernet, M F; Chauvière, G; Servin, A L

    1993-12-01

    Heat-killed L. acidophilus, strain LB, was tested for its ability to adhere in vitro onto human enterocyte-like Caco-2 and muco-secreting HT29-MTX cells in culture. The heat-killed LB bacteria exhibited a high adhesive property. A diffuse pattern of adhesion was observed to the undifferentiated cells, the apical brush border of the enterocytic cells, and to the mucus layer that covered the surface of the mucus-secreting cells. The inhibitory effect of heat-killed LB organisms against the human intestinal Caco-2 cell-adhesion and cell-invasion by a large variety of diarrhoeagenic bacteria was investigated. The following dose-dependent inhibitions were obtained: (i) against the cell-association of enterotoxigenic, diffusely-adhering and enteropathogenic Escherichia coli, Listeria monocytogenes, Yersinia pseudotuberculosis, and Salmonella typhimurium; (ii) against the cell-invasion by enteropathogenic Escherichia coli, Yersinia pseudotuberculosis, Listeria monocytogenes and Salmonella typhimurium. PMID:8188996

  19. Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration

    NASA Astrophysics Data System (ADS)

    Brill, Nicolai; Wirtz, Mathias; Merhof, Dorit; Tingart, Markus; Jahr, Holger; Truhn, Daniel; Schmitt, Robert; Nebelung, Sven

    2016-07-01

    Polarization-sensitive optical coherence tomography (PS-OCT) is a light-based, high-resolution, real-time, noninvasive, and nondestructive imaging modality yielding quasimicroscopic cross-sectional images of cartilage. As yet, comprehensive parameterization and quantification of birefringence and tissue properties have not been performed on human cartilage. PS-OCT and algorithm-based image analysis were used to objectively grade human cartilage degeneration in terms of surface irregularity, tissue homogeneity, signal attenuation, as well as birefringence coefficient and band width, height, depth, and number. Degeneration-dependent changes were noted for the former three parameters exclusively, thereby questioning the diagnostic value of PS-OCT in the assessment of human cartilage degeneration.

  20. Transcriptomic Analysis of Human Polarized Macrophages: More than One Role of Alternative Activation?

    PubMed Central

    Derlindati, Eleonora; Dei Cas, Alessandra; Montanini, Barbara; Spigoni, Valentina; Curella, Valentina; Aldigeri, Raffaella; Ardigò, Diego; Zavaroni, Ivana; Bonadonna, Riccardo C.

    2015-01-01

    Background Macrophages are a heterogeneous cell population which in response to the cytokine milieu polarize in either classically activated macrophages (M1) or alternatively activated macrophages (M2). This plasticity makes macrophages essential in regulating inflammation, immune response and tissue remodeling and a novel therapeutic target in inflammatory diseases such as atherosclerosis. The aim of the study was to describe the transcriptomic profiles of differently polarized human macrophages to generate new hypotheses on the biological function of the different macrophage subtypes. Methods and Results Polarization of circulating monocytes/macrophages of blood donors was induced in vitro by IFN-γ and LPS (M1), by IL-4 (M2a), and by IL-10 (M2c). Unstimulated cells (RM) served as time controls. Gene expression profile of M1, M2a, M2c and RM was assessed at 6, 12 and 24h after polarization with Whole Human Genome Agilent Microarray technique. When compared to RM, M1 significantly upregulated pathways involved in immunity and inflammation, whereas M2a did the opposite. Conversely, decreased and increased expression of mitochondrial metabolism, consistent with insulin resistant and insulin sensitive patterns, was seen in M1 and M2a, respectively. The time sequence in the expression of some pathways appeared to have some specific bearing on M1 function. Finally, canonical and non-canonical Wnt genes and gene groups, promoting inflammation and tissue remodeling, were upregulated in M2a compared to RM. Conclusion Our data in in vitro polarized human macrophages: 1. confirm and extend known inflammatory and anti-inflammatory gene expression patterns; 2. demonstrate changes in mitochondrial metabolism associated to insulin resistance and insulin sensitivity in M1 and M2a, respectively; 3. highlight the potential relevance of gene expression timing in M1 function; 4. unveil enhanced expression of Wnt pathways in M2a suggesting a potential dual (pro-inflammatory and anti

  1. Intestinal Malrotation

    MedlinePlus

    ... the intestines don't position themselves normally during fetal development and aren't attached inside properly as a result. The exact reason this occurs is unknown. When a fetus develops in the womb, the intestines start out ...

  2. Intestinal obstruction

    MedlinePlus

    ... of the major causes of intestinal obstruction in infants and children. Causes of paralytic ileus may include: Bacteria or viruses that cause intestinal infections ( gastroenteritis ) Chemical, electrolyte, or mineral imbalances (such as decreased ...

  3. Intestinal capillariasis.

    PubMed Central

    Cross, J H

    1992-01-01

    Intestinal capillariasis caused by Capillaria philippinensis appeared first in the Philippines and subsequently in Thailand, Japan, Iran, Egypt, and Taiwan, but most infections occur in the Philippines and Thailand. As established experimentally, the life cycle involves freshwater fish as intermediate hosts and fish-eating birds as definitive hosts. Embryonated eggs from feces fed to fish hatch and grow as larvae in the fish intestines. Infective larvae fed to monkeys, Mongolian gerbils, and fish-eating birds develop into adults. Larvae become adults in 10 to 11 days, and the first-generation females produce larvae. These larvae develop into males and egg-producing female worms. Eggs pass with the feces, reach water, embryonate, and infect fish. Autoinfection is part of the life cycle and leads to hyperinfection. Humans acquire the infection by eating small freshwater fish raw. The parasite multiplies, and symptoms of diarrhea, borborygmus, abdominal pain, and edema develop. Chronic infections lead to malabsorption and hence to protein and electrolyte loss, and death results from irreversible effects of the infection. Treatment consists of electrolyte replacement and administration of an antidiarrheal agent and mebendazole or albendazole. Capillariasis philippinensis is considered a zoonotic disease of migratory fish-eating birds. The eggs are disseminated along flyways and infect the fish, and when fish are eaten raw, the disease develops. Images PMID:1576584

  4. CHRFAM7A: a human-specific α7-nicotinic acetylcholine receptor gene shows differential responsiveness of human intestinal epithelial cells to LPS

    PubMed Central

    Dang, Xitong; Eliceiri, Brian P.; Baird, Andrew; Costantini, Todd W.

    2015-01-01

    The human genome contains a unique, distinct, and human-specific α7-nicotinic acetylcholine receptor (α7nAChR) gene [CHRNA7 (gene-encoding α7-nicotinic acetylcholine receptor)] called CHRFAM7A (gene-encoding dup-α7-nicotinic acetylcholine receptor) on a locus of chromosome 15 associated with mental illness, including schizophrenia. Located 5′ upstream from the “wild-type” CHRNA7 gene that is found in other vertebrates, we demonstrate CHRFAM7A expression in a broad range of epithelial cells and sequenced the CHRFAM7A transcript found in normal human fetal small intestine epithelial (FHs) cells to prove its identity. We then compared its expression to CHRNA7 in 11 gut epithelial cell lines, showed that there is a differential response to LPS when compared to CHRNA7, and characterized the CHRFAM7A promoter. We report that both CHRFAM7A and CHRNA7 gene expression are widely distributed in human epithelial cell lines but that the levels of CHRFAM7A gene expression vary up to 5000-fold between different gut epithelial cells. A 3-hour treatment of epithelial cells with 100 ng/ml LPS increased CHRFAM7A gene expression by almost 1000-fold but had little effect on CHRNA7 gene expression. Mapping the regulatory elements responsible for CHRFAM7A gene expression identifies a 1 kb sequence in the UTR of the CHRFAM7A gene that is modulated by LPS. Taken together, these data establish the presence, identity, and differential regulation of the human-specific CHRFAM7A gene in human gut epithelial cells. In light of the fact that CHRFAM7A expression is reported to modulate ligand binding to, and alter the activity of, the wild-type α7nAChR ligand-gated pentameric ion channel, the findings point to the existence of a species-specific α7nAChR response that might regulate gut epithelial function in a human-specific fashion.—Dang, X., Eliceiri, B. P., Baird, A., Costantini, T. W. CHRFAM7A: a human-specific α7-nicotinic acetylcholine receptor gene shows differential

  5. The prevalence and diversity of intestinal parasitic infections in humans and domestic animals in a rural Cambodian village.

    PubMed

    Schär, Fabian; Inpankaew, Tawin; Traub, Rebecca J; Khieu, Virak; Dalsgaard, Anders; Chimnoi, Wissanuwat; Chhoun, Chamnan; Sok, Daream; Marti, Hanspeter; Muth, Sinuon; Odermatt, Peter

    2014-08-01

    In Cambodia, intestinal parasitic infections are prevalent in humans and particularly in children. Yet, information on potentially zoonotic parasites in animal reservoir hosts is lacking. In May 2012, faecal samples from 218 humans, 94 dogs and 76 pigs were collected from 67 households in Dong village, Preah Vihear province, Cambodia. Faecal samples were examined microscopically using sodium nitrate and zinc sulphate flotation methods, the Baermann method, Koga Agar plate culture, formalin-ether concentration technique and Kato Katz technique. PCR was used to confirm hookworm, Ascaris spp., Giardia spp. and Blastocystis spp. Major gastrointestinal parasitic infections found in humans included hookworms (63.3%), Entamoeba spp. (27.1%) and Strongyloides stercoralis (24.3%). In dogs, hookworm (80.8%), Spirometra spp. (21.3%) and Strongyloides spp. (14.9%) were most commonly detected and in pigs Isospora suis (75.0%), Oesophagostomum spp. (73.7%) and Entamoeba spp. (31.6%) were found. Eleven parasite species were detected in dogs (eight helminths and three protozoa), seven of which have zoonotic potential, including hookworm, Strongyloides spp., Trichuris spp., Toxocara canis, Echinostoma spp., Giardia duodenalis and Entamoeba spp. Five of the parasite species detected in pigs also have zoonotic potential, including Ascaris spp., Trichuris spp., Capillaria spp., Balantidium coli and Entamoeba spp. Further molecular epidemiological studies will aid characterisation of parasite species and genotypes and allow further insight into the potential for zoonotic cross transmission of parasites in this community. PMID:24704609

  6. Contributions of NanI Sialidase to Caco-2 Cell Adherence by Clostridium perfringens Type A and C Strains Causing Human Intestinal Disease

    PubMed Central

    Li, Jihong

    2014-01-01

    Previous studies showed that Clostridium perfringens type D animal disease strain CN3718 uses NanI sialidase for adhering to enterocyte-like Caco-2 cells. The current study analyzed whether NanI is similarly important when type A and C human intestinal disease strains attach to Caco-2 cells. A PCR survey determined that the nanI gene was absent from typical type A food poisoning (FP) strains carrying a chromosomal enterotoxin (CPE) gene or the genetically related type C Darmbrand (Db) strains. However, the nanI gene was present in type A strains from healthy humans, type A strains causing CPE-associated antibiotic-associated diarrhea (AAD) or sporadic diarrhea (SD), and type C Pig-Bel strains. Consistent with NanI sialidase being the major C. perfringens sialidase when produced, FP and Db strains had little supernatant sialidase activity compared to other type A or C human intestinal strains. All type A and C human intestinal strains bound to Caco-2 cells, but NanI-producing strains had higher attachment levels. When produced, NanI can contribute to host cell attachment of human intestinal disease strains, since a nanI null mutant constructed in type A SD strain F4969 had lower Caco-2 cell adhesion than wild-type F4969 or a complemented strain. Further supporting a role for NanI in host cell attachment, sialidase inhibitors reduced F4969 adhesion to Caco-2 cells. Collectively, these results suggest that NanI may contribute to the intestinal attachment and colonization needed for the chronic diarrhea of CPE-associated AAD and SD, but this sialidase appears to be dispensable for the acute pathogenesis of type A FP or type C enteritis necroticans. PMID:25135687

  7. Intestine Transplant

    MedlinePlus

    ... intestine segment, most intestine transplants involve a whole organ from a deceased donor. In addition, most intestine transplants are performed in ... blood before surgery. I am looking for ... allocation About UNOS Being a living donor Calculator - CPRA Calculator - KDPI Calculator - LAS Calculator - MELD ...

  8. Associations between the human intestinal microbiota, Lactobacillus rhamnosus GG and serum lipids indicated by integrated analysis of high-throughput profiling data.

    PubMed

    Lahti, Leo; Salonen, Anne; Kekkonen, Riina A; Salojärvi, Jarkko; Jalanka-Tuovinen, Jonna; Palva, Airi; Orešič, Matej; de Vos, Willem M

    2013-01-01

    Proteobacteria may be involved in the metabolism of dietary and endogenous lipids, and provide a scientific rationale for further human studies to explore the role of intestinal microbes in host lipid metabolism. PMID:23638368

  9. Fluorescence in situ hybridization and spectral imaging analysisof human oocytes and first polar bodies

    SciTech Connect

    Weier, Heinz-Ulli G.; Weier, Jingly F.; Oter Renom, Maria; Zheng,Xuezhong; Colls, Pere; Nureddin, Aida; Pham, Chau D.; Chu, Lisa W.; Racowsky, Catherine; Munne, Santiago

    2004-10-06

    We investigated the frequencies of abnormalities involving either chromosome 1, 16, 18 or 21 in failed-fertilized human oocytes.While abnormalities involving chromosome 16 showed an age-dependant increase, results for the other chromosomes did not show statistically significant differences between the three age groups <35 yrs, 35-39 yrs, and >39 yrs. The scoring of four chromosomes is likely to underestimate the true rate of aneuploid cells. Thus, for a pilot study investigating a more comprehensive analysis of oocytes and their corresponding first polar bodies (1PBs), we developed a novel 8-probe chromosome enumeration scheme using FISH and SIm.

  10. Impact of probiotic drugs, based on Enterobacter faecium autostrains, on human intestinal microflora in confined habitat

    NASA Astrophysics Data System (ADS)

    Viacheslav, Ilyin; Batov, Alexey; Usanova, Nonna

    The aim of research: Investigation of influence of probiotic drugs based on autostrains of Enter-obacter faecium, selected from the crew in long term isolation experiment in confined habitat. It is known that during long-term presence in confined habitat the risk of infectious diseases increases. One of the main infectious risk occurs during first 20 days of isolation as a result of exchange of strains and stress-mediated disbacterioses. Therefore it is necessary to evaluate activities of probiotics to avoid this risk. Furthermore, in case of super long term autonomous flight there should be possibilities of application of autochthonous microflora strains as pro-biotics to strengthen colonial resistance of crews. Materials and methods: In the experiment there were used probiotic drugs based on autostrains of E. faecium, selected from the crew before the experiment. Probiotic drugs were consumed during 30 days since the beginning of the experiment with the break of consumption between 10th to 19th day. Results: Comparing the state of intestinal microflora of the crew on the baseline and 14th day of experiment re-vealed remarkable changes of microflora: the increasing of concentration of bifidobacteria and E. faecium (approximately 10 times), elimination of hemolytic streptococcus, yeasts, reduction of the rate of S.aureus, hemolytic gramnegative non-fermenting rods, lactobacilli and normal E.coli. On the 45th day of isolation, 15 days after finishing of auto-strains administration, there fere signs of restoration of disbacteriosis: the quantitative decreasing lactobacilli, bifidobacteria and normal E.coli, increasing of the rate of S.aureus, hemolytic gramnegative nonfermentive rods. Conclusion: Thus we managed to avoid risk of pathogenicity potential growth in first 2 decades of isolation. Application of probiotic, based on the autostrains of E. faecium leads to insignificant changes of concentration of lactobacteries, bifidobacteries, normal E. coli and to

  11. Analysis of human knee osteoarthritic cartilage using polarization sensitive second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Kumar, Rajesh; Grønhaug, Kirsten M.; Romijn, Elisabeth I.; Drogset, Jon O.; Lilledahl, Magnus B.

    2014-05-01

    Osteoarthritis is one of the most prevalent joint diseases in the world. Although the cause of osteoarthritis is not exactly clear, the disease results in a degradation of the quality of the articular cartilage including collagen and other extracellular matrix components. We have investigated alterations in the structure of collagen fibers in the cartilage tissue of the human knee using mulitphoton microscopy. Due to inherent high nonlinear susceptibility, ordered collagen fibers present in the cartilage tissue matrix produces strong second harmonic generation (SHG) signals. Significant morphological differences are found in different Osteoarthritic grades of cartilage by SHG microscopy. Based on the polarization analysis of the SHG signal, we find that a few locations of hyaline cartilage (mainly type II collagen) is being replaced by fibrocartilage (mainly type I cartilage), in agreement with earlier literature. To locate the different types and quantify the alteration in the structure of collagen fiber, we employ polarization-SHG microscopic analysis, also referred to as _-tensor imaging. The image analysis of p-SHG image obtained by excitation polarization measurements would represent different tissue constituents with different numerical values at pixel level resolution.

  12. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human.

    PubMed

    Andzinski, Lisa; Kasnitz, Nadine; Stahnke, Stephanie; Wu, Ching-Fang; Gereke, Marcus; von Köckritz-Blickwede, Maren; Schilling, Bastian; Brandau, Sven; Weiss, Siegfried; Jablonska, Jadwiga

    2016-04-15

    The importance of tumor associated neutrophils (TANs) in cancer development is in the meantime well established. Numerous of clinical data document the adverse prognostic effects of neutrophil infiltration in solid tumors. However, certain tumor therapies need functional neutrophils to be effective, suggesting altered neutrophil polarization associated with different outcomes for cancer patients. Therefore, modulation of neutrophilic phenotypes represents a potent therapeutic option, but factors mediating neutrophil polarization are still poorly defined. In this manuscript we provide evidence that type I IFNs alter neutrophilic phenotype into anti-tumor, both in mice and human. In the absence of IFN-β, pro-tumor properties, such as reduced tumor cytotoxicity with low neutrophil extracellular traps (NETs) expression, low ICAM1 and TNF-α expression, dominated neutrophil phenotypes in primary lesion and premetastatic lung. Interestingly, such neutrophils have significantly prolonged life-span. Notably, interferon therapy in mice altered TAN polarization towards anti-tumor N1. Similar changes in neutrophil activation could be observed in melanoma patients undergoing type I IFN therapy. Altogether, these data highlight the therapeutic potential of interferons, suggesting optimization of its clinical use as potent anti-tumor agent. PMID:26619320

  13. The impact of in vitro digestion on bioaccessibility of polyphenols from potatoes and sweet potatoes and their influence on iron absorption by human intestinal cells.

    PubMed

    Miranda, Lisa; Deußer, Hannah; Evers, Danièle

    2013-11-01

    The composition of potatoes as determined by chemical extraction has been described extensively. It is thus quite well known that, among other compounds, potato is rich in polyphenols, vitamins and in some minerals. This paper underlines the important role of simulated gastro-intestinal in vitro digestion in the bioaccessibility of polyphenols (chlorogenic acid and derivatives, and rutin) from potatoes and sweet potatoes and their impact on iron uptake. Concentrations of polyphenols in the flesh of two potato cultivars (Nicola, white potato, and Vitelotte, purple potato) and sweet potato were measured by Ultra Performance Liquid Chromatography after boiling and after in vitro digestion. Chemical extraction underestimates polyphenol amounts that can be released during digestion and that are actually bioaccessible. Iron uptake, as evaluated by a ferritin assay, by intestinal human cells was decreased after incubation with the intestinal phase of in vitro digestion, presumably due to the presence of polyphenols. PMID:24056541

  14. Microstructural Analysis of Human White Matter Architecture Using Polarized Light Imaging: Views from Neuroanatomy

    PubMed Central

    Axer, Hubertus; Beck, Sindy; Axer, Markus; Schuchardt, Friederike; Heepe, Jörn; Flücken, Anja; Axer, Martina; Prescher, Andreas; Witte, Otto W.

    2011-01-01

    To date, there are several methods for mapping connectivity, ranging from the macroscopic to molecular scales. However, it is difficult to integrate this multiply-scaled data into one concept. Polarized light imaging (PLI) is a method to quantify fiber orientation in gross histological brain sections based on the birefringent properties of the myelin sheaths. The method is capable of imaging fiber orientation of larger-scale architectural patterns with higher detail than diffusion MRI of the human brain. PLI analyses light transmission through a gross histological section of a human brain under rotation of a polarization filter combination. Estimates of the angle of fiber direction and the angle of fiber inclination are automatically calculated at every point of the imaged section. Multiple sections can be assembled into a 3D volume. We describe the principles of PLI and present several studies of fiber anatomy as a synopsis of PLI: six brainstems were serially sectioned, imaged with PLI, and 3D reconstructed. Pyramidal tract and lemniscus medialis were segmented in the PLI datasets. PLI data from the internal capsule was related to results from confocal laser scanning microscopy, which is a method of smaller scale fiber anatomy. PLI fiber architecture of the extreme capsule was compared to macroscopical dissection, which represents a method of larger-scale anatomy. The microstructure of the anterior human cingulum bundle was analyzed in serial sections of six human brains. PLI can generate highly resolved 3D datasets of fiber orientation of the human brain and has high comparability to diffusion MR. To get additional information regarding axon structure and density, PLI can also be combined with classical histological stains. It brings the directional aspects of diffusion MRI into the range of histology and may represent a promising tool to close the gap between larger-scale diffusion orientation and microstructural histological analysis of connectivity. PMID

  15. High content analysis of cytotoxic effects of pDMAEMA on human intestinal epithelial and monocyte cultures.

    PubMed

    Rawlinson, Lee-Anne B; O'Brien, Peter J; Brayden, David J

    2010-08-17

    Poly(2-(dimethylamino ethyl)methacrylate) (pDMAEMA) is a cationic polymer with potential as an antimicrobial agent and as a non-viral gene delivery vector. The aim was to further elucidate the cytotoxicity of a selected pDMAEMA low molecular weight (MW) polymer against human U937 monocytes and Caco-2 intestinal epithelial cells using a novel multi-parameter high content analysis (HCA) assay and to investigate histological effects on isolated rat intestinal mucosae. Seven parameters of cytotoxicity were measured: nuclear intensity (NI), nuclear area (NA), intracellular calcium ([Ca(2+)]i), mitochondrial membrane potential (MMP), plasma membrane permeability (PMP), cell number (CN) and phospholipidosis. Histological effects of pDMAEMA on excised rat ileal and colonic mucosae were investigated in Ussing chambers. Following 24-72 h exposure, 25-50 microg/ml pDMAEMA induced necrosis in U937 cells, while 100-250 microg/ml induced apoptosis in Caco-2. pDMAEMA increased NA and NI and decreased [Ca(2+)]i, PMP, MMP and CN in U937 cells. In Caco-2, it increased NI and [Ca(2+)]i, but decreased NA, PMP, MMP and CN. Phospholipidosis was not observed in either cell line. pDMAEMA (10 mg/ml) did not induce any histological damage on rat colonic tissue and only mild damage to ileal tissue following exposure for 60 min. In conclusion, HCA reveals that pDMAEMA induces cytotoxicity in different ways on different cell types at different concentrations. HCA has potential for high throughput toxicity screening in drug formulation programmes. PMID:20457190

  16. Bacteria of food and human intestine are the most possible sources of the gad-trigger of type 1 diabetes.

    PubMed

    Mulder, Sieger Jeen

    2005-01-01

    Type 1 diabetes incidence increases at about 3% per year in the Western world. From genetically predisposed people only 20-50% develop the disease. To unravel these mysteries, literature was searched to determine the disease background and to find suggestions for research and prevention. A promising hypothesis was found: the enzyme glutamic acid decarboxylase (GAD) in bacteria may be the source of type 1 diabetes. Epidemiological data can be accounted for this possibility. GAD-containing bacteria can originate from raw foods, especially salted or dried or smoked raw meat and fish products or from proliferation in the ileum of the human small intestine. Proliferation of GAD-containing bacteria in the ileum is probably the most frequent causation of type 1 diabetes. This proliferation is stimulated by the consumption of nitrate-containing ingredients such as vegetables, fruits or nitrate-polluted water and by sugars dissolved in liquids, for example lactose in milk or sugars in juicy fruits and fruit-juices. In the ileum GAD is released from bacteria by endocrine enzymes of the small intestine. Released GAD enters Peyer's patches (PP) in the ileum wall, where it is bound or enclosed by immune cells. These cells move GAD by the lymph- and bloodstream to the immune system for priming and elimination. In case of type 1 diabetes, however, malfunction of PP causes GAD freely move in the lymph stream where it settles on vascular endothelial cells and pancreatic beta-cells. GAD-settlement on beta-cells gives an inflammatory immune response, leading to destruction of the beta-cells and to type 1 diabetes. A perspective for prevention of the disease in predisposed individuals is discussed. It is concluded that GAD-containing bacteria and malfunction of PP should be taken into account in future type 1 diabetes research. PMID:15922105

  17. Induction of phase 3 of the migrating motor complex in human small intestine by trimebutine.

    PubMed

    Chaussade, S; Grandjouan, S; Couturier, D; Thierman-Duffaud, D; Henry, J F

    1987-01-01

    The effects of trimebutine, a drug used in the treatment of various gastrointestinal motility disorders, have been investigated fed and fasted healthy subjects. Duodenojejunal motility was recorded manometrically with a 4-lumen probe. Trimebutine 50 or 100 mg was injected i.v. 3 or 25 min after observing a spontaneous Phase 3 complex in the fasted state. Other experiments were done in the postprandial state and after intravenous naloxone 0.8 mg. In the fasted state, trimebutine 100 mg, injected 25 min after a spontaneous Phase 3 complex consistently induced a premature Phase 3 complex. The mean duration of the migrating motor complex cycle decreased from 86.4 +/- 10.8 min to 32.5 +/- 1.0 min. Trimebutine 50 mg injected 3 and 25 min after a spontaneous Phase 3 complex did not significantly modify the periodicity of the migrating motor complex. Trimebutine 100 mg initiated Phase 3-like activity in the post-prandial state. Previous intravenous administration of naloxone 0.8 mg (Narcan) suppressed the stimulatory action of TMB. Thus, trimebutine is able to modify the motility pattern in the small intestine of man, possibly by acting at opioid receptors. PMID:2820749

  18. Quantitation of human MAO A and B in liver, intestine and placenta: Reassessment of activity

    SciTech Connect

    Riley, L.A.

    1989-01-01

    Monoamine oxidases (MAO) oxidize a variety of exogenous and endogenous amines including neurotransmitters such as serotonin, dopamine and norepinephrine as well as the potent dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). The two forms of MAO (A and B) differ in molecular weight and inhibitor selectivity, and are differentially expressed in the nervous system and many other tissues. Although some substrates are preferentially oxidized by one form of MAO, substrates that can be oxidized by only one MAO form have not been reported. How well each MAO oxidizes various substrates has not been thoroughly characterized because of difficulties in separating and quantitating MAO A and B active sites. By immunoblotting SDS-polyacrylamide gels of mitochondrial extracts with monoclonal antibodies specific for each form of MAO, MAO B protein was detected in intestine and placenta, tissues that have been reported to contain MAO A activity. An improved procedure was developed for quantitating the ratio and amounts of MAO A and B active sites, using the ligand ({sup 3}H)-pargyline to label MAO and specific monoclonal antibodies to separate MAO A from B. Data from liver, placenta and platelets were used to re-evaluate the molecular activity of both MAO A and B for six commonly studied substrates.

  19. Effect of absorbable and nonabsorbable sugars on intestinal calcium absorption in humans

    SciTech Connect

    Griessen, M.; Speich, P.V.; Infante, F.; Bartholdi, P.; Cochet, B.; Donath, A.; Courvoisier, B.; Bonjour, J.P.

    1989-03-01

    The effects of glucose, galactose, and lactitol on intestinal calcium absorption and gastric emptying were studied in 9, 8, and 20 healthy subjects, respectively. Calcium absorption was measured by using a double-isotope technique and the kinetic parameters were obtained by a deconvolution method. The gastric emptying rate was determined with /sup 99m/Tc-diethylenetriaminepentaacetic acid and was expressed as the half-time of the emptying curve. Each subject was studied under two conditions: (a) with calcium alone and (b) with calcium plus sugar. Glucose and galactose increased the calcium mean transit time and improved the total fractional calcium absorption by 30% (p less than 0.02). Lactitol decreased the mean rate of absorption (p less than 0.001) and reduced the total fractional calcium absorption by 15% (p less than 0.001). The gastric emptying rate did not appear to influence directly the kinetic parameters of calcium absorption. These results show that both glucose and galactose exert the same stimulatory effect as lactose on calcium absorption in subjects with normal lactase whereas lactitol mimics the effects of lactose in lactase-deficient patients. Thus the absorbability of sugars determines their effect on calcium absorption.

  20. Carrier-mediated uptake of nobiletin, a citrus polymethoxyflavonoid, in human intestinal Caco-2 cells.

    PubMed

    Kimura, Osamu; Ohta, Chiho; Koga, Nobuyuki; Haraguchi, Koichi; Kato, Yoshihisa; Endo, Tetsuya

    2014-07-01

    The mechanism of intestinal absorption of nobiletin (NBL) was investigated using Caco-2 cells. The uptake of NBL from the apical membranes of Caco-2 cells was rapid and temperature-dependent and the presence of metabolic inhibitors, NaN3 and carbonylcyanide p-trifluoromethoxyphenylhydrazone, did not cause a decrease in NBL uptake. The relationship between the initial uptake of NBL and its concentration was saturable, suggesting the involvement of a carrier-mediated process. The Km and uptake clearance (Vmax/Km) values for NBL were 50.6 and 168.1μl/mg protein/min, respectively. This clearance value was about 9-fold greater than that of the non-saturable uptake clearance (Kd: 18.5μl/mg protein/min). The presence of structurally similar compounds, such as quercetin and luteolin, competitively inhibited NBL uptake. These results suggest that uptake of NBL from the apical membranes of Caco-2 cells is mainly mediated by an energy-independent facilitated diffusion process. PMID:24518326

  1. New small-intestine modeling method for surface-based computational human phantoms.

    PubMed

    Yeom, Yeon Soo; Kim, Han Sung; Nguyen, Thang Tat; Choi, Chansoo; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E; Lee, Choonsik; Chung, Beom Sun

    2016-06-01

    When converting voxel phantoms to a surface format, the small intestine (SI), which is usually not accurately represented in a voxel phantom due to its complex and irregular shape on one hand and the limited voxel resolutions on the other, cannot be directly converted to a high-quality surface model. Currently, stylized pipe models are used instead, but they are strongly influenced by developer's subjectivity, resulting in unacceptable geometric and dosimetric inconsistencies. In this paper, we propose a new method for the construction of SI models based on the Monte Carlo approach. In the present study, the proposed method was tested by constructing the SI model for the polygon-mesh version of the ICRP reference male phantom currently under development. We believe that the new SI model is anatomically more realistic than the stylized SI models. Furthermore, our simulation results show that the new SI model, for both external and internal photon exposures, leads to dose values that are more similar to those of the original ICRP male voxel phantom than does the previously constructed stylized SI model. PMID:27007802

  2. Chip-based human liver-intestine and liver-skin co-cultures--A first step toward systemic repeated dose substance testing in vitro.

    PubMed

    Maschmeyer, Ilka; Hasenberg, Tobias; Jaenicke, Annika; Lindner, Marcus; Lorenz, Alexandra Katharina; Zech, Julie; Garbe, Leif-Alexander; Sonntag, Frank; Hayden, Patrick; Ayehunie, Seyoum; Lauster, Roland; Marx, Uwe; Materne, Eva-Maria

    2015-09-01

    Systemic repeated dose safety assessment and systemic efficacy evaluation of substances are currently carried out on laboratory animals and in humans due to the lack of predictive alternatives. Relevant international regulations, such as OECD and ICH guidelines, demand long-term testing and oral, dermal, inhalation, and systemic exposure routes for such evaluations. So-called "human-on-a-chip" concepts are aiming to replace respective animals and humans in substance evaluation with miniaturized functional human organisms. The major technical hurdle toward success in this field is the life-like combination of human barrier organ models, such as intestine, lung or skin, with parenchymal organ equivalents, such as liver, at the smallest biologically acceptable scale. Here, we report on a reproducible homeostatic long-term co-culture of human liver equivalents with either a reconstructed human intestinal barrier model or a human skin biopsy applying a microphysiological system. We used a multi-organ chip (MOC) platform, which provides pulsatile fluid flow within physiological ranges at low media-to-tissue ratios. The MOC supports submerse cultivation of an intact intestinal barrier model and an air-liquid interface for the skin model during their co-culture with the liver equivalents respectively at (1)/100.000 the scale of their human counterparts in vivo. To increase the degree of organismal emulation, microfluidic channels of the liver-skin co-culture could be successfully covered with human endothelial cells, thus mimicking human vasculature, for the first time. Finally, exposure routes emulating oral and systemic administration in humans have been qualified by applying a repeated dose administration of a model substance - troglitazone - to the chip-based co-cultures. PMID:25857839

  3. M2 Polarization of Human Macrophages Favors Survival of the Intracellular Pathogen Chlamydia pneumoniae

    PubMed Central

    Buchacher, Tanja; Ohradanova-Repic, Anna; Stockinger, Hannes

    2015-01-01

    Intracellular pathogens have developed various strategies to escape immunity to enable their survival in host cells, and many bacterial pathogens preferentially reside inside macrophages, using diverse mechanisms to penetrate their defenses and to exploit their high degree of metabolic diversity and plasticity. Here, we characterized the interactions of the intracellular pathogen Chlamydia pneumoniae with polarized human macrophages. Primary human monocytes were pre-differentiated with granulocyte macrophage colony-stimulating factor or macrophage colony-stimulating factor for 7 days to yield M1-like and M2-like macrophages, which were further treated with interferon-γ and lipopolysaccharide or with interleukin-4 for 48 h to obtain fully polarized M1 and M2 macrophages. M1 and M2 cells exhibited distinct morphology with round or spindle-shaped appearance for M1 and M2, respectively, distinct surface marker profiles, as well as different cytokine and chemokine secretion. Macrophage polarization did not influence uptake of C. pneumoniae, since comparable copy numbers of chlamydial DNA were detected in M1 and M2 at 6 h post infection, but an increase in chlamydial DNA over time indicating proliferation was only observed in M2. Accordingly, 72±5% of M2 vs. 48±7% of M1 stained positive for chlamydial lipopolysaccharide, with large perinuclear inclusions in M2 and less clearly bordered inclusions for M1. Viable C. pneumoniae was present in lysates from M2, but not from M1 macrophages. The ability of M1 to restrict chlamydial replication was not observed in M1-like macrophages, since chlamydial load showed an equal increase over time for M1-like and M2-like macrophages. Our findings support the importance of macrophage polarization for the control of intracellular infection, and show that M2 are the preferred survival niche for C. pneumoniae. M1 did not allow for chlamydial proliferation, but failed to completely eliminate chlamydial infection, giving further evidence

  4. M2 Polarization of Human Macrophages Favors Survival of the Intracellular Pathogen Chlamydia pneumoniae.

    PubMed

    Buchacher, Tanja; Ohradanova-Repic, Anna; Stockinger, Hannes; Fischer, Michael B; Weber, Viktoria

    2015-01-01

    Intracellular pathogens have developed various strategies to escape immunity to enable their survival in host cells, and many bacterial pathogens preferentially reside inside macrophages, using diverse mechanisms to penetrate their defenses and to exploit their high degree of metabolic diversity and plasticity. Here, we characterized the interactions of the intracellular pathogen Chlamydia pneumoniae with polarized human macrophages. Primary human monocytes were pre-differentiated with granulocyte macrophage colony-stimulating factor or macrophage colony-stimulating factor for 7 days to yield M1-like and M2-like macrophages, which were further treated with interferon-γ and lipopolysaccharide or with interleukin-4 for 48 h to obtain fully polarized M1 and M2 macrophages. M1 and M2 cells exhibited distinct morphology with round or spindle-shaped appearance for M1 and M2, respectively, distinct surface marker profiles, as well as different cytokine and chemokine secretion. Macrophage polarization did not influence uptake of C. pneumoniae, since comparable copy numbers of chlamydial DNA were detected in M1 and M2 at 6 h post infection, but an increase in chlamydial DNA over time indicating proliferation was only observed in M2. Accordingly, 72±5% of M2 vs. 48±7% of M1 stained positive for chlamydial lipopolysaccharide, with large perinuclear inclusions in M2 and less clearly bordered inclusions for M1. Viable C. pneumoniae was present in lysates from M2, but not from M1 macrophages. The ability of M1 to restrict chlamydial replication was not observed in M1-like macrophages, since chlamydial load showed an equal increase over time for M1-like and M2-like macrophages. Our findings support the importance of macrophage polarization for the control of intracellular infection, and show that M2 are the preferred survival niche for C. pneumoniae. M1 did not allow for chlamydial proliferation, but failed to completely eliminate chlamydial infection, giving further evidence

  5. Modulation of cholinergic neural bronchoconstriction by endogenous nitric oxide and vasoactive intestinal peptide in human airways in vitro.

    PubMed Central

    Ward, J K; Belvisi, M G; Fox, A J; Miura, M; Tadjkarimi, S; Yacoub, M H; Barnes, P J

    1993-01-01

    Human airway smooth muscle possesses an inhibitory nonadrenergic noncholinergic neural bronchodilator response mediated by nitric oxide (NO). In guinea pig trachea both endogenous NO and vasoactive intestinal peptide (VIP) modulate cholinergic neural contractile responses. To identify whether endogenous NO or VIP can modulate cholinergic contractile responses in human airways in vitro, we studied the effects of specific NO synthase inhibitors and the peptidase alpha-chymotrypsin on contractile responses evoked by electrical field stimulation (EFS) at three airway levels. Endogenous NO, but not VIP, was shown to inhibit cholinergic contractile responses at all airway levels but this inhibition was predominantly in trachea and main bronchus and less marked in segmental and subsegmental bronchi. To elucidate the mechanism of this modulation we then studied the effects of endogenous NO on acetylcholine (ACh) release evoked by EFS from tracheal smooth muscle strips. We confirmed that release was neural in origin, frequency dependent, and that endogenous NO did not affect ACh release. These findings show that endogenous NO, but not VIP, evoked by EFS can inhibit cholinergic neural responses via functional antagonism of ACh at the airway smooth muscle and that the contribution of this modulation is less marked in lower airways. PMID:8349813

  6. Differential Regulation of TLR Signaling on the Induction of Antiviral Interferons in Human Intestinal Epithelial Cells Infected with Enterovirus 71.

    PubMed

    Wang, Chunyang; Ji, Lianfu; Yuan, Xinhui; Jin, Yu; Cardona, Carol J; Xing, Zheng

    2016-01-01

    Enterovirus 71 (EV71) causes hand-foot-and-mouth disease, which can lead to fatal neurological complications in young children and infants. Few gastrointestinal symptoms are observed clinically, suggesting the presence of a unique immunity to EV71 in the gut. We reported a robust induction of interferons (IFNs) in human intestinal epithelial cells (HT-29), which was suppressed in other types such as RD and HeLa cells. The underlying mechanism for the apparent difference remains obscure. In this study we report that in EV71-infected HT-29 cells, TLR/TRIF signaling was essential to IFN induction; viral replication increased and the induction of IFN-α, -β, -ω, -κ, and -ε decreased markedly in TRIF-silenced HT-29 cells. Importantly, TRIF was degraded by viral 3Cpro in RD cells, but resisted cleavage, and IRF3 was activated and translocated into the nucleus in HT-29 cells. Taken together, our data suggest that IFNs were induced differentially in human HT-29 cells through an intact TLR/TRIF signaling, which differs from other cell types and may be implicated in viral pathogenesis in EV71 infection. PMID:27007979

  7. Differential Regulation of TLR Signaling on the Induction of Antiviral Interferons in Human Intestinal Epithelial Cells Infected with Enterovirus 71

    PubMed Central

    Wang, Chunyang; Ji, Lianfu; Yuan, Xinhui; Jin, Yu; Cardona, Carol J.; Xing, Zheng

    2016-01-01

    Enterovirus 71 (EV71) causes hand-foot-and-mouth disease, which can lead to fatal neurological complications in young children and infants. Few gastrointestinal symptoms are observed clinically, suggesting the presence of a unique immunity to EV71 in the gut. We reported a robust induction of interferons (IFNs) in human intestinal epithelial cells (HT-29), which was suppressed in other types such as RD and HeLa cells. The underlying mechanism for the apparent difference remains obscure. In this study we report that in EV71-infected HT-29 cells, TLR/TRIF signaling was essential to IFN induction; viral replication increased and the induction of IFN-α, -β, -ω, -κ, and -ε decreased markedly in TRIF-silenced HT-29 cells. Importantly, TRIF was degraded by viral 3Cpro in RD cells, but resisted cleavage, and IRF3 was activated and translocated into the nucleus in HT-29 cells. Taken together, our data suggest that IFNs were induced differentially in human HT-29 cells through an intact TLR/TRIF signaling, which differs from other cell types and may be implicated in viral pathogenesis in EV71 infection. PMID:27007979

  8. POF1B localizes to desmosomes and regulates cell adhesion in human intestinal and keratinocyte cell lines.

    PubMed

    Crespi, Arianna; Bertoni, Alessandra; Ferrari, Ilaria; Padovano, Valeria; Della Mina, Pamela; Berti, Emilio; Villa, Antonello; Pietrini, Grazia

    2015-01-01

    By means of morphological and biochemical criteria, we here provide evidence for the localization and function of premature ovarian failure, 1B (POF1B) in desmosomes. In monolayers of Caco-2 intestinal cells and in stratified HaCaT keratinocytes, endogenous POF1B colocalized with desmoplakin at desmosome plaques and in cytoplasmic particles aligned along intermediate filaments (IFs). POF1B predominantly co-fractionated with desmosomes and IF components and exhibited properties characteristic of desmosomes (i.e., detergent insolubility and calcium independence). The role of NH2 and COOH domains in the association of POF1B with desmosomes and IFs was revealed by transient expression of the truncated protein in Caco-2 cells and in cells lacking desmosomes. The function of POF1B in desmosomes was investigated in HaCaT keratinocytes stably downregulated for POF1B expression. Transmission electron microscopy analysis revealed a decrease in desmosome number and size, and desmosomes of the downregulated keratinocytes displayed weak electron-dense plaques. Desmosome alterations were associated with defects in cell adhesion, as revealed by the reduced resistance to mechanical stress in the dispase fragmentation assay. Moreover, desmosome localization of POF1B was restricted to granular layers in human healthy epidermis, whereas it largely increased in hyperproliferative human skin diseases, thus demonstrating the localization of POF1B also in desmosomes of multistratified epithelia. PMID:25084053

  9. Cell invasion and survival of Shiga toxin-producing Escherichia coli within cultured human intestinal epithelial cells.

    PubMed

    Cordeiro, Fabiana; da Silva, Rita Ifuoe K; Vargas-Stampe, Thaís L Z; Cerqueira, Aloysio M F; Andrade, João R C

    2013-08-01

    Shiga toxin-producing Escherichia coli (STEC) cause severe human infections and their virulence abilities are not fully understood. Cattle are a key reservoir, and the terminal rectum is the principal site of bacterial carriage. Most STEC possess a pathogenicity island termed the locus of enterocyte effacement (LEE). Nonetheless, LEE-negative STEC have been associated with disease. We found that invasion of LEE-positive and LEE-negative strains was higher for human enterocytic cell lines and for undifferentiated Caco-2 cells. Intracellular bacteria could be detected as early as 5 min after infection and transmission electron microscopy showed bacteria within membrane-bound vacuoles. STEC invasion depended on actin microfilaments and protein kinases. Scanning electron microscopy revealed that bacterial entry was not associated with membrane ruffling. Absence of macropinocytosis or actin rearrangement at the entry points suggests a zipper-like entry mechanism. Disruption of the tight junction by EGTA enhanced invasion of Caco-2 monolayers, and bacterial invasion mostly proceeded through the basolateral pole of enterocytes. STEC persisted within Caco-2 cells for up to 96 h without cell death and bacterial viability increased after 48 h, suggesting intracellular multiplication. The relatively harmless intracellular localization of STEC can be an efficient strategy to prevent its elimination from the bovine intestinal tract. PMID:23704791

  10. Determining the Long-term Effect of Antibiotic Administration on the Human Normal Intestinal Microbiota Using Culture and Pyrosequencing Methods.

    PubMed

    Rashid, Mamun-Ur; Zaura, Egijia; Buijs, Mark J; Keijser, Bart J F; Crielaard, Wim; Nord, Carl Erik; Weintraub, Andrej

    2015-05-15

    The purpose of the study was to assess the effect of ciprofloxacin (500 mg twice daily for 10 days) or clindamycin (150 mg 4 times daily for 10 days) on the fecal microbiota of healthy humans for a period of 1 year as compared to placebo. Two different methods, culture and microbiome analysis, were used. Fecal samples were collected for analyses at 6 time-points. The interval needed for the normal microbiota to be normalized after ciprofloxacin or clindamycin treatment differed for various bacterial species. It took 1-12 months to normalize the human microbiota after antibiotic administration, with the most pronounced effect on day 11. Exposure to ciprofloxacin or clindamycin had a strong effect on the diversity of the microbiome, and changes in microbial composition were observed until the 12th month, with the most pronounced microbial shift at month 1. No Clostridium difficile colonization or C. difficile infections were reported. Based on the pyrosequencing results, it appears that clindamycin has more impact than ciprofloxacin on the intestinal microbiota. PMID:25922405

  11. Polarization diversity of human CD4+ stem cell memory T cells.

    PubMed

    Takeshita, Masaru; Suzuki, Katsuya; Kassai, Yoshiaki; Takiguchi, Maiko; Nakayama, Yusuke; Otomo, Yuki; Morita, Rimpei; Miyazaki, Takahiro; Yoshimura, Akihiko; Takeuchi, Tsutomu

    2015-07-01

    T cells are considered to develop through three stages, from naïve T (Tn) into central memory T (Tcm) and finally into effector memory T (Tem). Among the subsets of Tn, stem cell memory T (Tscm) were recently found to be the least developed memory subset. While this subset was revealed to possess self-reproducibility and multipotentiality, little is known about the relationship between development and polarity. We conducted transcriptome analysis of human CD4(+) T subsets and found that Tscm was a clearly distinct subset, located between Tn and Tcm. Surface antigen analysis and differentiation assay showed that the flexibility of polarity and the cytokine production progressively changed as the differentiation of CD4(+) T cells advanced. Interestingly, we found that most cells of the CD45RO(-)CCR7(+)CCR6(+) subset, hitherto considered the naïve precursor of Th17, were in fact Tscm. These findings may advance our understanding of the highly heterogeneous human helper T cells. PMID:25931384

  12. Understanding Measurements of Intestinal Permeability in Healthy Humans with Urine Lactulose and Mannitol Excretion

    PubMed Central

    Camilleri, Michael; Nadeau, Ashley; Lamsam, Jesse; Nord, Sara Linker; Ryks, Michael; Burton, Duane; Sweetser, Seth; Zinsmeister, Alan R.; Singh, Ravinder

    2009-01-01

    Our aim was to understand the information from differential two-sugar excretion (2-SE) in measuring intestinal permeability. In a crossover study in 12 healthy volunteers, we compared urinary excretion ratios of lactulose (L) to mannitol [(M) LMR] after ingestion in liquid formulation (LF) or in delayed-release, methacrylate-coated capsules (CAP). Both formulations were radiolabeled. Urine was collected every 2 hours from 0–8h, and from 8–24h. Two hours after LF, gastric residual was 15.9 ± 6.2 % (SEM), and the percentage in colon was 49.6 ± 7.8 %; in 11/12 participants, liquid had entered colon within 2h. Average CAP arrival time in colon was 5.16 ± 0.46h (mode 6 h). After LF, mannitol was extensively absorbed in the first 8h; lactulose absorption was low thoughout the 24h. After the LF, the LMR (geometric mean, 95% CI/hour) in the 0–2h urine was 0.08 [0.05, 0.11]), which was lower than in 8–24h urine (0.32,[0.16, 0.46]; p<0.05). Urine LMRs at 8–24h were similar after LF or CAP. We concluded that, after LF, sugar excretion in 0–2h urine may reflect both SI and colon permeability. Colonic permeability is reflected by urine sugar excretion between 6 and 24h. CAP delivery reduces mannitol excreted at 0–6h, compared to LF. The 0 to 5 or 6h 2-SE urine likely reflects both SI and colon permeability; the higher LMR in the 8–24h urine relative to 0–2h urine should be interpreted with caution and does not mean that colon is more permeable than SI. PMID:19614866

  13. Consumption of Camembert cheese stimulates commensal enterococci in healthy human intestinal microbiota.

    PubMed

    Firmesse, Olivier; Rabot, Sylvie; Bermúdez-Humarán, Luis G; Corthier, Gérard; Furet, Jean-Pierre

    2007-11-01

    Enterococci are natural inhabitants of the human gastrointestinal tract and the main Gram-positive and facultative anaerobic cocci recovered in human faeces. They are also present in a variety of fermented dairy and meat products, and some rare isolates are responsible for severe infections such as endocarditis and meningitis. The aim of the present study was to evaluate the effect of Camembert cheese consumption by healthy human volunteers on the faecal enterococcal population. A highly specific real-time quantitative PCR approach was designed and used to type enterococcal species in human faeces. Two species were found, Enterococcus faecalis and Enterococcus faecium, and only the Enterococcus faecalis population was significantly enhanced after Camembert cheese consumption, whereas Escherichia coli population and the dominant microbiota remained unaffected throughout the trial. PMID:17956425

  14. MicroRNA-146a-mediated downregulation of IRAK1 protects mouse and human small intestine against ischemia/reperfusion injury

    PubMed Central

    Chassin, Cécilia; Hempel, Cordelia; Stockinger, Silvia; Dupont, Aline; Kübler, Joachim F; Wedemeyer, Jochen; Vandewalle, Alain; Hornef, Mathias W

    2012-01-01

    Intestinal ischemia/reperfusion (I/R) injury causes inflammation and tissue damage and is associated with high morbidity and mortality. Uncontrolled activation of the innate immune system through toll-like receptors (Tlr) plays a key role in I/R-mediated tissue damage but the underlying mechanisms have not been fully resolved. Here, we identify post-transcriptional upregulation of the essential Tlr signalling molecule interleukin 1 receptor-associated kinase (Irak) 1 as the causative mechanism for post-ischemic immune hyper-responsiveness of intestinal epithelial cells. Increased Irak1 protein levels enhanced epithelial ligand responsiveness, chemokine secretion, apoptosis and mucosal barrier disruption in an experimental intestinal I/R model using wild-type, Irak1−/− and Tlr4−/− mice and ischemic human intestinal tissue. Irak1 accumulation under hypoxic conditions was associated with reduced K48 ubiquitination and enhanced Senp1-mediated deSUMOylation of Irak1. Importantly, administration of microRNA (miR)-146a or induction of miR-146a by the phytochemical diindolylmethane controlled Irak1 upregulation and prevented immune hyper-responsiveness in mouse and human tissue. These findings indicate that Irak1 accumulation triggers I/R-induced epithelial immune hyper-responsiveness and suggest that the induction of miR-146a offers a promising strategy to prevent I/R tissue injury. PMID:23143987

  15. Aloe vera non-decolorized whole leaf extract-induced large intestinal tumors in F344 rats share similar molecular pathways with human sporadic colorectal tumors.

    PubMed

    Pandiri, Arun R; Sills, Robert C; Hoenerhoff, Mark J; Peddada, Shyamal D; Ton, Thai-Vu T; Hong, Hue-Hua L; Flake, Gordon P; Malarkey, David E; Olson, Greg R; Pogribny, Igor P; Walker, Nigel J; Boudreau, Mary D

    2011-12-01

    Aloe vera is one of the most commonly used botanicals for various prophylactic and therapeutic purposes. Recently, NTP/NCTR has demonstrated a dose-dependent increase in large intestinal tumors in F344 rats chronically exposed to Aloe barbadensis Miller (Aloe vera) non-decolorized whole leaf extract (AVNWLE) in drinking water. The morphological and molecular pathways of AVNWLE-induced large intestinal tumors in the F344 rats were compared to human colorectal cancer (hCRC) literature. Defined histological criteria were used to compare AVNWLE-induced large intestinal tumors with hCRC. The commonly mutated genes (Kras, Ctnnb1, and Tp53) and altered signaling pathways (MAPK, WNT, and TGF-β) important in hCRC were evaluated within AVNWLE-induced large intestinal tumors. Histological evaluation of the large intestinal tumors indicated eight of twelve adenomas (Ads) and four of twelve carcinomas (Cas). Mutation analysis of eight Ads and four Cas identified point mutations in exons 1 and 2 of the Kras gene (two of eight Ads, two of four Cas), and in exon 2 of the Ctnnb1 gene (three of eight Ads, one of four Cas). No Tp53 (exons 5-8) mutations were found in Ads or Cas. Molecular pathways important in hCRC such as MAPK, WNT, and TGF-β signaling were also altered in AVNWLE-induced Ads and Cas. In conclusion, the AVNWLE-induced large intestinal tumors in F344 rats share several similarities with hCRC at the morphological and molecular levels. PMID:21937742

  16. Aloe vera Non-Decolorized Whole Leaf Extract-Induced Large Intestinal Tumors in F344 Rats Share Similar Molecular Pathways with Human Sporadic Colorectal Tumors

    PubMed Central

    Pandiri, Arun R.; Sills, Robert C.; Hoenerhoff, Mark J.; Peddada, Shyamal D.; Ton, Thai-Vu T.; Hong, Hue-Hua L.; Flake, Gordon P.; Malarkey, David E.; Olson, Greg R.; Pogribny, Igor P.; Walker, Nigel J.; Boudreau, Mary D.

    2016-01-01

    Aloe vera is one of the most commonly used botanicals for various prophylactic and therapeutic purposes. Recently, NTP/NCTR has demonstrated a dose-dependent increase in large intestinal tumors in F344 rats chronically exposed to Aloe barbadensis Miller (Aloe vera) non-decolorized whole leaf extract (AVNWLE) in drinking water. The morphological and molecular pathways of AVNWLE-induced large intestinal tumors in the F344 rats were compared to human colorectal cancer (hCRC) literature. Defined histological criteria were used to compare AVNWLE-induced large intestinal tumors with hCRC. The commonly mutated genes (Kras, Ctnnb1, and Tp53) and altered signaling pathways (MAPK, WNT, and TGF-β) important in hCRC were evaluated within AVNWLE-induced large intestinal tumors. Histological evaluation of the large intestinal tumors indicated eight of twelve adenomas (Ads) and four of twelve carcinomas (Cas). Mutation analysis of eight Ads and four Cas identified point mutations in exons 1 and 2 of the Kras gene (two of eight Ads, two of four Cas), and in exon 2 of the Ctnnb1 gene (three of eight Ads, one of four Cas). No Tp53 (exons 5–8) mutations were found in Ads or Cas. Molecular pathways important in hCRC such as MAPK, WNT, and TGF-β signaling were also altered in AVNWLE-induced Ads and Cas. In conclusion, the AVNWLE-induced large intestinal tumors in F344 rats share several similarities with hCRC at the morphological and molecular levels. PMID:21937742

  17. Visualizing Collagen Network Within Human and Rhesus Monkey Vocal Folds Using Polarized Light Microscopy

    PubMed Central

    Julias, Margaret; Riede, Tobias; Cook, Douglas

    2014-01-01

    Objectives Collagen fiber content and orientation affect the viscoelastic properties of the vocal folds, determining oscillation characteristics during speech and other vocalization. The investigation and reconstruction of the collagen network in vocal folds remains a challenge, because the collagen network requires at least micron-scale resolution. In this study, we used polarized light microscopy to investigate the distribution and alignment of collagen fibers within the vocal folds. Methods Data were collected in sections of human and rhesus monkey (Macaca mulatta) vocal folds cut at 3 different angles and stained with picrosirius red. Results Statistically significant differences were found between different section angles, implying that more than one section angle is required to capture the network’s complexity. In the human vocal folds, the collagen fiber distribution continuously varied across the lamina propria (medial to lateral). Distinct differences in birefringence distribution were observed between the species. For the human vocal folds, high birefringence was observed near the thyroarytenoid muscle and near the epithelium. However, in the rhesus monkey vocal folds, high birefringence was observed near the epithelium, and lower birefringence was seen near the thyroarytenoid muscle. Conclusions The differences between the collagen networks in human and rhesus monkey vocal folds provide a morphological basis for differences in viscoelastic properties between species. PMID:23534129

  18. Human intestinal dendritic cells decrease cytokine release against Salmonella infection in the presence of Lactobacillus paracasei upon TLR activation.

    PubMed

    Bermudez-Brito, Miriam; Muñoz-Quezada, Sergio; Gomez-Llorente, Carolina; Matencio, Esther; Bernal, María J; Romero, Fernando; Gil, Angel

    2012-01-01

    Probiotic bacteria have been shown to modulate immune responses and could have therapeutic effects in allergic and inflammatory disorders. However, little is known about the signalling pathways that are engaged by probiotics. Dendritic cells (DCs) are antigen-presenting cells that are involved in immunity and tolerance. Monocyte-derived dendritic cells (MoDCs) and murine DCs are different from human gut DCs; therefore, in this study, we used human DCs generated from CD34+ progenitor cells (hematopoietic stem cells) harvested from umbilical cord blood; those DCs exhibited surface antigens of dendritic Langerhans cells, similar to the lamina propria DCs in the gut. We report that both a novel probiotic strain isolated from faeces of exclusively breast-fed newborn infants, Lactobacillus paracasei CNCM I-4034, and its cell-free culture supernatant (CFS) decreased pro-inflammatory cytokines and chemokines in human intestinal DCs challenged with Salmonella. Interestingly, the supernatant was as effective as the bacteria in reducing pro-inflammatory cytokine expression. In contrast, the bacterium was a potent inducer of TGF-β2 secretion, whereas the supernatant increased the secretion of TGF-β1 in response to Salmonella. We also showed that both the bacteria and its supernatant enhanced innate immunity through the activation of Toll-like receptor (TLR) signalling. These treatments strongly induced the transcription of the TLR9 gene. In addition, upregulation of the CASP8 and TOLLIP genes was observed. This work demonstrates that L. paracasei CNCM I-4034 enhanced innate immune responses, as evidenced by the activation of TLR signalling and the downregulation of a broad array of pro-inflammatory cytokines. The use of supernatants like the one described in this paper could be an effective and safe alternative to using live bacteria in functional foods. PMID:22905233

  19. Proteomic profiling of a mouse model of acute intestinal Apc deletion leads to identification of potential novel biomarkers of human colorectal cancer (CRC).

    PubMed

    Hammoudi, Abeer; Song, Fei; Reed, Karen R; Jenkins, Rosalind E; Meniel, Valerie S; Watson, Alastair J M; Pritchard, D Mark; Clarke, Alan R; Jenkins, John R

    2013-10-25

    Colorectal cancer (CRC) is the fourth most common cause of cancer-related death worldwide. Accurate non-invasive screening for CRC would greatly enhance a population's health. Adenomatous polyposis coli (Apc) gene mutations commonly occur in human colorectal adenomas and carcinomas, leading to Wnt signalling pathway activation. Acute conditional transgenic deletion of Apc in murine intestinal epithelium (AhCre(+)Apc(fl)(/)(fl)) causes phenotypic changes similar to those found during colorectal tumourigenesis. This study comprised a proteomic analysis of murine small intestinal epithelial cells following acute Apc deletion to identify proteins that show altered expression during human colorectal carcinogenesis, thus identifying proteins that may prove clinically useful as blood/serum biomarkers of colorectal neoplasia. Eighty-one proteins showed significantly increased expression following iTRAQ analysis, and validation of nine of these by Ingenuity Pathaway Analysis showed they could be detected in blood or serum. Expression was assessed in AhCre(+)Apc(fl)(/)(fl) small intestinal epithelium by immunohistochemistry, western blot and quantitative real-time PCR; increased nucelolin concentrations were also detected in the serum of AhCre(+)Apc(fl)(/)(fl) and Apc(Min)(/)(+) mice by ELISA. Six proteins; heat shock 60kDa protein 1, Nucleolin, Prohibitin, Cytokeratin 18, Ribosomal protein L6 and DEAD (Asp-Glu-Ala-Asp) box polypeptide 5,were selected for further investigation. Increased expression of 4 of these was confirmed in human CRC by qPCR. In conclusion, several novel candidate biomarkers have been identified from analysis of transgenic mice in which the Apc gene was deleted in the intestinal epithelium that also showed increased expression in human CRC. Some of these warrant further investigation as potential serum-based biomarkers of human CRC. PMID:23998936

  20. Intestinal transplantation.

    PubMed

    Rege, Aparna; Sudan, Debra

    2016-04-01

    Intestinal transplantation has now emerged as a lifesaving therapeutic option and standard of care for patients with irreversible intestinal failure. Improvement in survival over the years has justified expansion of the indications for intestinal transplantation beyond the original indications approved by Center for Medicare and Medicaid services. Management of patients with intestinal failure is complex and requires a multidisciplinary approach to accurately select candidates who would benefit from rehabilitation versus transplantation. Significant strides have been made in patient and graft survival with several advancements in the perioperative management through timely referral, improved patient selection, refinement in the surgical techniques and better understanding of the immunopathology of intestinal transplantation. The therapeutic efficacy of the procedure is well evident from continuous improvements in functional status, quality of life and cost-effectiveness of the procedure. This current review summarizes various aspects including current practices and evidence based recommendations of intestinal transplantation. PMID:27086894

  1. Moderate Ferulate and Diferulate Levels Do Not Impede Maize Cell Wall Degradation by Human Intestinal Microbiota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The degradation of plant fiber by human gut microbiota could be restricted by xylan substitution and cross-linking by ferulate and diferulates, for example by hindering the association of enzymes like xylanases with their substrates. To test the influence of feruloylation on cell wall degradability ...

  2. INTESTINAL TRANSPLANTATION

    PubMed Central

    Tzakis, Andreas G.; Todo, Satoru; Starzl, Thomas E.

    2010-01-01

    Intestinal transplantation is often the only alternative form of treatment for patients dependent on total parenteral nutrition for survival. Although a limited number of intestinal transplantations have been performed, results with FK 506 immunosuppression are comparable to those for other organ transplants. The impact of successful intestinal transplantation on gastroenterology will likely be similar to the impact of kidney and liver transplantation on nephrology and hepatology. PMID:7515221

  3. Spin-lattice relaxation of laser-polarized xenon in human blood.

    PubMed

    Wolber, J; Cherubini, A; Dzik-Jurasz, A S; Leach, M O; Bifone, A

    1999-03-30

    The nuclear spin polarization of 129Xe can be enhanced by several orders of magnitude by using optical pumping techniques. The increased sensitivity of xenon NMR has allowed imaging of lungs as well as other in vivo applications. The most critical parameter for efficient delivery of laser-polarized xenon to blood and tissues is the spin-lattice relaxation time (T1) of xenon in blood. In this work, the relaxation of laser-polarized xenon in human blood is measured in vitro as a function of blood oxygenation. Interactions with dissolved oxygen and with deoxyhemoglobin are found to contribute to the spin-lattice relaxation time of 129Xe in blood, the latter interaction having greater effect. Consequently, relaxation times of 129Xe in deoxygenated blood are shorter than in oxygenated blood. In samples with oxygenation equivalent to arterial and venous blood, the 129Xe T1s at 37 degrees C and a magnetic field of 1.5 T were 6.4 s +/- 0.5 s and 4.0 s +/- 0.4 s, respectively. The 129Xe spin-lattice relaxation time in blood decreases at lower temperatures, but the ratio of T1 in oxygenated blood to that in deoxygenated blood is the same at 37 degrees C and 25 degrees C. A competing ligand has been used to show that xenon binding to albumin contributes to the 129Xe spin-lattice relaxation in blood plasma. This technique is promising for the study of xenon interactions with macromolecules. PMID:10097094

  4. A Strategy for assessing potential drug-drug interactions of a concomitant agent against a drug absorbed via an intestinal transporter in humans.

    PubMed

    Mizuno-Yasuhira, Akiko; Nakai, Yasuhiro; Gunji, Emi; Uchida, Saeko; Takahashi, Teisuke; Kinoshita, Kohnosuke; Jingu, Shigeji; Sakai, Soichi; Samukawa, Yoshishige; Yamaguchi, Jun-Ichi

    2014-09-01

    A strategy for assessing potential drug-drug interactions (DDIs) based on a simulated intestinal concentration is described. The proposed prediction method was applied to the DDI assessment of luseogliflozin, a novel antidiabetic drug, against miglitol absorbed via the intestinal sodium-glucose cotransporter 1 (SGLT1). The method involves four steps: collection of physicochemical and pharmacokinetic parameters of luseogliflozin for use in a computer simulation; evaluation of the validity of these parameters by verifying the goodness of fit between simulated and observed plasma profiles; simulation of the intestinal luseogliflozin concentration-time profile using the Advanced Compartment Absorption and Transit (ACAT) model in a computer program and estimation of the time spent above a value 10-fold higher than the IC50 value (TAIC) for SGLT1; and evaluation of the DDI potential of luseogliflozin by considering the percentage of TAIC against the miglitol Tmax (time for Cmax) value (TAIC/Tmax). An initial attempt to prove the validity of this method was performed in rats. The resulting TAIC/Tmax in rats was 32%, suggesting a low DDI potential of luseogliflozin against miglitol absorption. The validity was then confirmed using an in vivo interaction study in rats. In humans, luseogliflozin was expected to have no DDI potential against miglitol absorption, since the TAIC/Tmax in humans was lower than that in rats. This prediction was proven, as expected, in a clinical interaction study. In conclusion, the present strategy based on a simulation of the intestinal concentration-time profile using dynamic modeling would be useful for assessing the clinical DDI potential of a concomitant agent against drugs absorbed via an intestinal transporter. PMID:25005603

  5. Inherited human cPLA2α deficiency is associated with impaired eicosanoid biosynthesis, small intestinal ulceration, and platelet dysfunction

    PubMed Central

    Adler, David H.; Cogan, Joy D.; Phillips, John A.; Schnetz-Boutaud, Nathalie; Milne, Ginger L.; Iverson, Tina; Stein, Jeffrey A.; Brenner, David A.; Morrow, Jason D.; Boutaud, Olivier; Oates, John A.

    2008-01-01

    Cytosolic phospholipase A2α (cPLA2α) hydrolyzes arachidonic acid from cellular membrane phospholipids, thereby providing enzymatic substrates for the synthesis of eicosanoids, such as prostaglandins and leukotrienes. Considerable understanding of cPLA2α function has been derived from investigations of the enzyme and from cPLA2α-null mice, but knowledge of discrete roles for this enzyme in humans is limited. We investigated a patient hypothesized to have an inherited prostanoid biosynthesis deficiency due to his multiple, complicated small intestinal ulcers despite no use of cyclooxygenase inhibitors. Levels of thromboxane B2 and 12-hydroxyeicosatetraenoic acid produced by platelets and leukotriene B4 released from calcium ionophore–activated blood were markedly reduced, indicating defective enzymatic release of the arachidonic acid substrate for the corresponding cyclooxygenase and lipoxygenases. Platelet aggregation and degranulation induced by adenosine diphosphate or collagen were diminished but were normal in response to arachidonic acid. Two heterozygous single base pair mutations and a known SNP were found in the coding regions of the patient’s cPLA2α genes (p.[Ser111Pro]+[Arg485His; Lys651Arg]). The total PLA2 activity in sonicated platelets was diminished, and the urinary metabolites of prostacyclin, prostaglandin E2, prostaglandin D2, and thromboxane A2 were also reduced. These findings characterize what we believe is a novel inherited deficiency of cPLA2. PMID:18451993

  6. An experimental platform using human intestinal epithelial cell lines to differentiate between hazardous and non-hazardous proteins.

    PubMed

    Hurley, Bryan P; Pirzai, Waheed; Eaton, Alex D; Harper, Marc; Roper, Jason; Zimmermann, Cindi; Ladics, Gregory S; Layton, Raymond J; Delaney, Bryan

    2016-06-01

    Human intestinal epithelial cell lines (T84, Caco-2, and HCT-8) grown on permeable Transwell™ filters serve as models of the gastrointestinal barrier. In this study, this in vitro model system was evaluated for effectiveness at distinguishing between hazardous and non-hazardous proteins. Indicators of cytotoxicity (LDH release, MTT conversion), monolayer barrier integrity ([(3)H]-inulin flux, horseradish peroxidase flux, trans-epithelial electrical resistance [TEER]), and inflammation (IL-8, IL-6 release) were monitored following exposure to hazardous or non-hazardous proteins. The hazardous proteins examined include streptolysin O (from Streptococcus pyogenes), Clostridium difficile Toxins A and B, heat-labile toxin from enterotoxigenic Escherichia coli, listeriolysin O (from Listeria monocytogenes), melittin (from bee venom), and mastoparan (from wasp venom). Non-hazardous proteins included bovine and porcine serum albumin, bovine fibronectin, and ribulose bisphosphate carboxylase/oxygenase (RuBisco) from spinach. Food allergenic proteins bovine milk β-lactoglobulin and peanut Ara h 2 were also tested as was the anti-nutritive food protein wheat germ agglutinin. Results demonstrated that this model system effectively distinguished between hazardous and non-hazardous proteins through combined analysis of multiple cells lines and assays. This experimental strategy may represent a useful adjunct to multi-component analysis of proteins with unknown hazard profiles. PMID:27060235

  7. Disassembly of F-Actin Cytoskeleton after Interaction of Bacillus cereus with Fully Differentiated Human Intestinal Caco-2 Cells

    PubMed Central

    Minnaard, Jessica; Lievin-Le Moal, Vanessa; Coconnier, Marie-Helene; Servin, Alain L.; Pérez, Pablo F.

    2004-01-01

    In the present study, the role of direct procaryote-eucaryote interactions in the virulence of Bacillus cereus was investigated. As a model of human enterocytes, differentiated Caco-2 cells were used. Infection of fully differentiated Caco-2 cells with B. cereus in the exponential phase of growth, in order to minimize the concentration of spores or sporulating microorganisms, shows that a strain-dependent cytopathic effect develops. Interestingly, addition of 3-h-old cultures of some strains resulted in complete detachment of the cultured cells after a 3-h infection whereas no such effect was found after a 3-h infection with 16-h-old cultures. Infection of enterocyte-like cells with B. cereus leads to disruption of the F-actin network and necrosis. Even though the effect of secreted factors cannot be ruled out, direct eucaryote-procaryote interaction seems to be necessary. In addition, we observed that some B. cereus strains were able to be internalized in Caco-2 cells. Our findings add a new insight into the mechanisms of virulence of B. cereus in the context of intestinal infection. PMID:15155611

  8. The influence of protein fractions from bovine colostrum digested in vivo and in vitro on human intestinal epithelial cell proliferation.

    PubMed

    Morgan, Alison J; Riley, Lisa G; Sheehy, Paul A; Wynn, Peter C

    2014-02-01

    Colostrum consists of a number of biologically active proteins and peptides that influence physiological function and development of a neonate. The present study investigated the biological activity of peptides released from first day bovine colostrum through in vitro and in vivo enzymatic digestion. This was asses