Polar firn layering in radiative transfer models
NASA Astrophysics Data System (ADS)
Linow, Stefanie; Hoerhold, Maria
2016-04-01
For many applications in the geosciences, remote sensing is the only feasible method of obtaining data from large areas with limited accessibility. This is especially true for the cryosphere, where light conditions and cloud coverage additionally limit the use of optical sensors. Here, instruments operating at microwave frequencies become important, for instance in polar snow parameters / SWE (snow water equivalent) mapping. However, the interaction between snow and microwave radiation is a complex process and still not fully understood. RT (radiative transfer) models to simulate snow-microwave interaction are available, but they require a number of input parameters such as microstructure and density, which are partly ill-constrained. The layering of snow and firn introduces an additional degree of complexity, as all snow parameters show a strong variability with depth. Many studies on RT modeling of polar firn deal with layer variability by using statistical properties derived from previous measurements, such as the standard deviations of density and microstructure, to configure model input. Here, the variability of microstructure parameters, such as density and particle size, are usually assumed to be independent of each other. However, in the case of the firn pack of the polar ice sheets, we observe that microstructure evolution depends on environmental parameters, such as temperature and snow deposition. Accordingly, density and microstructure evolve together within the snow and firn. Based on CT (computer tomography) microstructure measurements of antarctic firn, we can show that: first, the variability of density and effective grain size are linked and can thus be implemented in the RT models as a coupled set of parameters. Second, the magnitude of layering is captured by the measured standard deviation. Based on high-resolution density measurements of an Antarctic firn core, we study the effect of firn layering at different microwave wavelengths. By means of
IPRT polarized radiative transfer model intercomparison project - Phase A
NASA Astrophysics Data System (ADS)
Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Korkin, Sergey; Ota, Yoshifumi; Labonnote, Laurent C.; Lyapustin, Alexei; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred
2015-10-01
The polarization state of electromagnetic radiation scattered by atmospheric particles such as aerosols, cloud droplets, or ice crystals contains much more information about the optical and microphysical properties than the total intensity alone. For this reason an increasing number of polarimetric observations are performed from space, from the ground and from aircraft. Polarized radiative transfer models are required to interpret and analyse these measurements and to develop retrieval algorithms exploiting polarimetric observations. In the last years a large number of new codes have been developed, mostly for specific applications. Benchmark results are available for specific cases, but not for more sophisticated scenarios including polarized surface reflection and multi-layer atmospheres. The International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to fill this gap. This paper presents the results of the first phase A of the IPRT project which includes ten test cases, from simple setups with only one layer and Rayleigh scattering to rather sophisticated setups with a cloud embedded in a standard atmosphere above an ocean surface. All scenarios in the first phase A of the intercomparison project are for a one-dimensional plane-parallel model geometry. The commonly established benchmark results are available at the IPRT website.
Backward and Forward Monte Carlo Method in Polarized Radiative Transfer
NASA Astrophysics Data System (ADS)
Yong, Huang; Guo-Dong, Shi; Ke-Yong, Zhu
2016-03-01
In general, the Stocks vector cannot be calculated in reverse in the vector radiative transfer. This paper presents a novel backward and forward Monte Carlo simulation strategy to study the vector radiative transfer in the participated medium. A backward Monte Carlo process is used to calculate the ray trajectory and the endpoint of the ray. The Stocks vector is carried out by a forward Monte Carlo process. A one-dimensional graded index semi-transparent medium was presented as the physical model and the thermal emission consideration of polarization was studied in the medium. The solution process to non-scattering, isotropic scattering, and the anisotropic scattering medium, respectively, is discussed. The influence of the optical thickness and albedo on the Stocks vector are studied. The results show that the U, V-components of the apparent Stocks vector are very small, but the Q-component of the apparent Stocks vector is relatively larger, which cannot be ignored.
NASA Astrophysics Data System (ADS)
Zhao, J. M.; Tan, J. Y.; Liu, L. H.
2012-02-01
Light transport in graded index media follows a curved trajectory determined by Fermat's principle. Besides the effect of variation of the refractive index on the transport of radiative intensity, the curved ray trajectory will induce geometrical effects on the transport of polarization ellipse. This paper presents a complete derivation of vector radiative transfer equation for polarized radiation transport in absorption, emission and scattering graded index media. The derivation is based on the analysis of the conserved quantities for polarized light transport along curved trajectory and a novel approach. The obtained transfer equation can be considered as a generalization of the classic vector radiative transfer equation that is only valid for uniform refractive index media. Several variant forms of the transport equation are also presented, which include the form for Stokes parameters defined with a fixed reference and the Eulerian forms in the ray coordinate and in several common orthogonal coordinate systems.
grtrans: Polarized general relativistic radiative transfer via ray tracing
NASA Astrophysics Data System (ADS)
Dexter, Jason
2016-05-01
grtrans calculates ray tracing radiative transfer in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics, for comparing theoretical models of black hole accretion flows and jets with observations. The code is written in Fortran 90 and parallelizes with OpenMP; the full code and several components have Python interfaces. grtrans includes Geokerr (ascl:1011.015) and requires cfitsio (ascl:1010.001) and pyfits (ascl:1207.009).
grtrans: Polarized general relativistic radiative transfer via ray tracing
NASA Astrophysics Data System (ADS)
Dexter, Jason
2016-05-01
grtrans calculates ray tracing radiative transfer in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics, for comparing theoretical models of black hole accretion flows and jets with observations. The code is written in Fortran 90 and parallelizes with OpenMP; the full code and several components have Python interfaces. grtrans requires Geokerr (ascl:1011.015), cfitsio (ascl:1010.001), and pyfits (ascl:1207.009).
NASA Astrophysics Data System (ADS)
Barlakas, Vasileios; Macke, Andreas; Wendisch, Manfred
2016-07-01
Non-spherical particles in the atmosphere absorb and scatter solar radiation. They change the polarization state of solar radiation depending on their shape, size, chemical composition and orientation. To quantify polarization effects, a new three-dimensional (3D) vector radiative transfer model, SPARTA (Solver for Polarized Atmospheric Radiative Transfer Applications) is introduced and validated against benchmark results. SPARTA employs the statistical forward Monte Carlo technique for efficient column-response pixel-based radiance calculations including polarization for 3D inhomogeneous cloudless and cloudy atmospheres. A sensitivity study has been carried out and exemplarily results are presented for two lidar-based mineral dust fields. The scattering and absorption properties of the dust particles have been computed for spheroids and irregular shaped particles. Polarized radiance fields in two-dimensional (2D) and one-dimensional (1D) inhomogeneous Saharan dust fields have been calculated at 532 nm wavelength. The domain-averaged results of the normalized reflected radiance are almost identical for the 1D and 2D modes. In the areas with large spatial gradient in optical thickness with expected significant horizontal photon transport, the radiance fields of the 2D mode differ by about ±12% for the first Stokes component (radiance, I) and ±8% for the second Stokes component (linear polarization, Q) from the fields of the 1D mode.
Polarized multi-dimensional radiative transfer using the discrete ordinates method
Haferman, J.L.; Smith, T.F.; Krajewski, W.F.
1996-11-01
A polarized multi-dimensional radiative transfer model based on the discrete-ordinates method is developed. The model solves the monochromatic vector radiative transfer equation (VRTE) that considers polarization using the four Stokes parameters. For the VRTE, the intensity of the scalar radiative transfer equation is replaced by the Stokes intensity vector; the position-dependent scalar extinction coefficient is replaced by a direction- and position-dependent 4 x 4 extinction matrix; the position-dependent scalar absorption coefficient is replaced by a direction- and position-dependent emission vector; and the scalar phase function is replaced by a scattering phase matrix. The model is capable of solving the VRTE in anisotropically scattering one-, two-, or three-dimensional Cartesian geometries. The model is validated for one-dimensional polarized radiative transfer by comparing its results to several benchmark cases available in the literature. The model results are accurate so long as a quadrature set is chosen so that all phase functions used for a given problem normalize to unity. The model has been developed using a parallel computing paradigm, where each Stokes parameter is solved for on a separate computer processing unit.
A Polarized Delta-Four-Stream Approximation for Infrared and Microwave Radiative Transfer: Part I.
NASA Astrophysics Data System (ADS)
Liou, K. N.; Ou, S. C.; Takano, Y.; Liu, Q.
2005-07-01
The delta-four-stream polarized (vector) thermal radiative transfer has been formulated and numerically tested specifically for application to satellite data assimilation in cloudy atmospheres. It is shown that for thermal emission in the earth's atmosphere, the [I, Q] component of the Stokes vector can be decoupled from the [U, V] component and that the solution of the vector equation set involving the four-stream approximation can be expressed in an analytic form similar to the scalar case. Thus, the computer time requirement can be optimized for the simulation of forward radiances and their derivatives. Computations have been carried out to illustrate the accuracy and efficiency of this method by comparing radiance and polarization results to those computed from the exact doubling method for radiative transfer for a number of thermal infrared and microwave frequencies. Excellent agreement within 1% is shown for the radiance results for all satellite viewing angles and cloud optical depths. For polarization, differences between the two are less than 5% if brightness temperature is used in the analysis. On balance of the computational speed and accuracy, the four-stream approximation for radiative transfer appears to be an attractive means for the simulation of cloudy radiances and polarization for research and data assimilation purposes.
Radiative Transfer Modeling of the Enigmatic Scattering Polarization in the Solar Na I D1 Line
NASA Astrophysics Data System (ADS)
Belluzzi, Luca; Trujillo Bueno, Javier; Landi Degl'Innocenti, Egidio
2015-12-01
The modeling of the peculiar scattering polarization signals observed in some diagnostically important solar resonance lines requires the consideration of the detailed spectral structure of the incident radiation field as well as the possibility of ground level polarization, along with the atom's hyperfine structure and quantum interference between hyperfine F-levels pertaining either to the same fine structure J-level, or to different J-levels of the same term. Here we present a theoretical and numerical approach suitable for solving this complex non-LTE radiative transfer problem. This approach is based on the density-matrix metalevel theory (where each level is viewed as a continuous distribution of sublevels) and on accurate formal solvers of the transfer equations and efficient iterative methods. We show an application to the D-lines of Na i, with emphasis on the enigmatic D1 line, pointing out the observable signatures of the various physical mechanisms considered. We demonstrate that the linear polarization observed in the core of the D1 line may be explained by the effect that one gets when the detailed spectral structure of the anisotropic radiation responsible for the optical pumping is taken into account. This physical ingredient is capable of introducing significant scattering polarization in the core of the Na i D1 line without the need for ground-level polarization.
NASA Astrophysics Data System (ADS)
Zhang, Yong; Kim, Yong-Jun; Yi, Hong-Liang; Xie, Ming; Tan, He-Ping
2016-08-01
The natural element method (NEM) is extended to solve the polarized radiative transfer problem in a two-dimensional scattering medium with complex geometries, in which the angular space is discretized by the discrete-ordinates approach, and the spatial discretization is conducted by the Galerkin weighted residuals approach. The Laplace interpolation scheme is adopted to obtain the shape functions used in the Galerkin weighted residuals approach. The NEM solution to the vector radiative transfer in a square enclosure filled with a Mie scattering medium is first examined to validate our program. We then study the polarized radiative transfer in two kinds of geometries filled with scattering medium which is equivalent to a suspension of latex spheres in water. Three sizes of spheres are considered. The results for non-dimensional polarized radiative flux along the boundaries and the angular distributions of the Stokes vector at specific positions are presented and discussed. For the complex geometry bounded by the square and circular object, numerical solutions are presented for the cases both with Lambertian (diffuse) reflection and with Fresnel reflection. Some interesting phenomenon are found and analyzed.
Subsurface radar sounding of the martian polar cap: radiative transfer approach
NASA Astrophysics Data System (ADS)
Ilyushin, Ya. A.; Seu, R.; Phillips, R. J.
2005-12-01
The problem of subsurface radar sounding of the martian polar caps [Ilyushin, 2004. Martian northern polar cap: layering and possible implications for radar sounding. Planet. Space Sci. 52, 1195-1207] is considered from the point of view of incoherent radiative transfer theory. Since it has been previously shown that the radar signal field within the polar cap has diffuse structure, there is a need for a statistical approach to the problem. Radiative transfer theory, which is now well developed, seems to be the most appropriate formalism for this approach. Several physical models of polar caps have been formulated. The asymptotic solutions for all proposed models are derived here. In the present paper only the case of orbital ground penetrating radar is considered, because it is of great interest in relationship to currently developed radar experiments. In principle, the approach is believed to be applicable to a wide class of short pulse and compressed chirp radar experiments, including both orbital and landed instruments and media more complicated than a simple plane parallel geometry. This work, however, is postponed to future papers. Techniques for retrieval of physical properties of polar caps from the radar measurements are proposed. From the observational data, the macroscopic parameters of the medium appearing in radiative transfer theory, i.e. the single scattering albedo and volume extinction coefficient can be estimated. These estimates put certain constraints on the physical parameters of the medium model introduced in the paper. With some additional information, known a priori or from other observations, these estimates can be used to retrieve physically meaningful information, for example, the average content of impurities in the ice.
PORTA: A Massively Parallel Code for 3D Non-LTE Polarized Radiative Transfer
NASA Astrophysics Data System (ADS)
Štěpán, J.
2014-10-01
The interpretation of the Stokes profiles of the solar (stellar) spectral line radiation requires solving a non-LTE radiative transfer problem that can be very complex, especially when the main interest lies in modeling the linear polarization signals produced by scattering processes and their modification by the Hanle effect. One of the main difficulties is due to the fact that the plasma of a stellar atmosphere can be highly inhomogeneous and dynamic, which implies the need to solve the non-equilibrium problem of generation and transfer of polarized radiation in realistic three-dimensional stellar atmospheric models. Here we present PORTA, a computer program we have developed for solving, in three-dimensional (3D) models of stellar atmospheres, the problem of the generation and transfer of spectral line polarization taking into account anisotropic radiation pumping and the Hanle and Zeeman effects in multilevel atoms. The numerical method of solution is based on a highly convergent iterative algorithm, whose convergence rate is insensitive to the grid size, and on an accurate short-characteristics formal solver of the Stokes-vector transfer equation which uses monotonic Bezier interpolation. In addition to the iterative method and the 3D formal solver, another important feature of PORTA is a novel parallelization strategy suitable for taking advantage of massively parallel computers. Linear scaling of the solution with the number of processors allows to reduce the solution time by several orders of magnitude. We present useful benchmarks and a few illustrations of applications using a 3D model of the solar chromosphere resulting from MHD simulations. Finally, we present our conclusions with a view to future research. For more details see Štěpán & Trujillo Bueno (2013).
Radiative transfer in layered media: Application to the radar sounding of Martian polar ices. II
NASA Astrophysics Data System (ADS)
Ilyushin, Ya. A.
2007-01-01
The paper addresses the problem of the retrieval of the physical parameters of the Martian polar ices from the ground-penetrating radar (GPR) measurements. The results of the previous paper [Ilyushin, Y.A., Seu, R., Phillips, R.J., 2005. Subsurface radar sounding of the Martian polar cap: radiative transfer approach. Planet. Space Sci. 53(14-15), 1427-1436, doi: 10.1016/j.pss.2005.08.002] are further developed. Several electrical models of the Martian polar caps are considered, and several radiative transfer models, appropriate for layered media, are reviewed and compared to each other. Both 1D case, applicable to the orbital GPR instruments, and 2D and 3D geometry, applicable to the landed radars, are studied. A technique for retrieval of the average loss in the medium, which can be attributed to the impurities content in the ice, is proposed. The retrieval technique is numerically tested with the exact solutions of electromagnetic equations for the waves in the layered media. Numerical tests show that the loss in the medium can be determined from the observed radar signal in the whole range of values, expected to be the case in Martian polar caps.
General relativistic polarized radiative transfer: building a dynamics-observations interface
NASA Astrophysics Data System (ADS)
Shcherbakov, Roman V.; Huang, Lei
2011-01-01
The rising number of polarized observations of relativistic sources necessitates a correct theory for proper model fitting. The equations for general relativistic (GR) polarized radiative transfer are derived starting from the Boltzmann equation and basic ideas of general relativity. The derivation is aimed at providing a practical guide to reproducing the synchrotron part of radio and submillimetre emission from low-luminosity active galactic nuclei (LLAGNs), in particular Sgr A*, and jets. A recipe for the fast exact calculation of cyclo-synchrotron emissivities, absorptivities, Faraday rotation and conversion coefficients is given for isotropic particle distributions. The multitude of physical effects influencing simulated spectra is discussed. The application of the prescribed technique is necessary to determine the black hole spin in LLAGNs. The observations of total flux, linear and circular polarization fractions, and electric vector position angle as functions of the observed frequency could substantially constrain the absolute value and orientation of spin.
NASA Technical Reports Server (NTRS)
Prigent, Catherine; Pardo, Juan R.; Mishchenko, Michael I.; Rossow, Willaim B.; Hansen, James E. (Technical Monitor)
2001-01-01
Special Sensor Microwave /Imager (SSM/I) observations in cloud systems are studied over the tropics. Over optically thick cloud systems, presence of polarized signatures at 37 and 85 GHz is evidenced and analyzed with the help of cloud top temperature and optical thickness extracted from visible and IR satellite observations. Scattering signatures at 85 GHz (TbV(85) less than or = 250 K) are associated with polarization differences greater than or = 6 K, approx. 50%, of the time over ocean and approx. 40% over land. In addition. over thick clouds the polarization difference at 37 GHz is rarely negligible. The polarization differences at 37 and 85 GHz do not stem from the surface but are generated in regions of relatively homogeneous clouds having high liquid water content. To interpret the observations, a radiative transfer model that includes the scattering by non-spherical particles is developed. based on the T-matrix approach and using the doubling and adding method. In addition to handling randomly and perfectly oriented particles, this model can also simulate the effect of partial orientation of the hydrometeors. Microwave brightness temperatures are simulated at SSM/I frequencies and are compared with the observations. Polarization differences of approx. 2 K can be simulated at 37 GHz over a rain layer, even using spherical drops. The polarization difference is larger for oriented non-spherical particles. The 85 GHz simulations are very sensitive to the ice phase of the cloud. Simulations with spherical particles or with randomly oriented non-spherical ice particles cannot replicate the observed polarization differences. However, with partially oriented non-spherical particles, the observed polarized signatures at 85 GHz are explained, and the sensitivity of the scattering characteristics to the particle size, asphericity, and orientation is analyzed. Implications on rain and ice retrievals are discussed.
You Yu; Zhai Pengwang; Kattawar, George W.; Yang Ping
2009-06-01
The hybrid matrix operator, Monte Carlo (HMOMC) method previously reported [Appl. Opt.47, 1063-1071 (2008)APOPAI0003-693510.1364/AO.47.001063] is improved by neglecting higher-order terms in the coupling of the matrix operators and by introducing a dual grid scheme. The computational efficiency for solving the vector radiative transfer equation in a full 3D coupled atmosphere-surface-ocean system is substantially improved, and, thus, large-scale simulations of the radiance distribution become feasible. The improved method is applied to the computation of the polarized radiance field under realistic surface waves simulated by the power spectral density method. To the authors' best knowledge, this is the first time that the polarized radiance field under a dynamic ocean surface and the underwater image of an object above such an ocean surface have been reported.
A polarized Radiative Transfer model based on successive order of scattering
NASA Astrophysics Data System (ADS)
Duan, Minzheng; Min, Qilong; Lü, Daren
2010-07-01
Based on Successive Order of Scattering approach, a full Vector Radiative Transfer model (SOSVRT) for vertically inhomogeneous plane-parallel media has been developed. To overcome the computational burdens of convergence, a simple approximation technique by truncating scattering orders with a geometric series is used to reduce computational time. Analytical Fourier decomposition of phase matrix with three symmetry relationships and two mutual inverse operators have been implemented to further improve the computational efficiency. To improve the accuracy, a post-processing procedure is implemented to accurately interpolate the Stokes vector at arbitrary angles. Comparisons with the benchmarks for an atmosphere of randomly orientated oblate spheroids show excellent agreement for each Stokes parameter (within 0.1%). SOSVRT has been tested for different atmospheric condition against RT3, which is based on doubling-adding method, and the results prove that SOSVRT is accurate and much more efficient in vector radiative transfer modeling, especially for optical thin atmosphere, which is the most common case in polarized radiative transfer simulations. SOSVRT is written in Fortran 90 and the code is freely accessible by contacting the author.
Pymiedap: a versatile radiative transfer code with polarization for terrestrial (exo)planets.
NASA Astrophysics Data System (ADS)
Rossi, Loïc; Stam, Daphne; Hogenboom, Michael
2016-04-01
Polarimetry promises to be an important method to detect exoplanets: the light of a star is usually unpolarized te{kemp1987} while scattering by gas and clouds in an atmosphere can generate high levels of polarization. Furthermore, the polarization of scattered light contains information about the properties of the atmosphere and surface of a planet, allowing a possible characterization te{stam2008}, a method already validated in the solar system with Venus te{hansen1974,rossi2015}. We present here Pymiedap (Python Mie Doubling-Adding Program): a set of Python objects interfaced with Fortran radiative transfer codes that allows to define a planetary atmosphere and compute the flux and polarization of the light that is scattered. Several different properties of the planet can be set interactively by the user through the Python interface such as gravity, distance to the star, surface properties, atmospheric layers, gaseous and aerosol composition. The radiative transfer calculations are then computed following the doubling-adding method te{deHaan1987}. We present some results of the code and show its possible use for different planetary atmospheres for both resolved and disk-integrated measurements. We investigate the effect of gas, clouds and aerosols composition and surface properties for horizontally homogeneous and inhomogenous planets, in the case of Earth-like planets. We also study the effect of gaseous absorption on the flux and polarization as a marker for gaseous abundance and cloud top altitude. [1]{kemp1987} Kemp et al. The optical polarization of the sun measured at a sensitivity of parts in ten million. Nature, 1987, 326, 270-273 [2]{stam2008} Stam, D. M. Spectropolarimetric signatures of Earth-like extrasolar planets. A&A, 2008, 482, 989-1007 [3]{hansen1974} Hansen, J. E. & Hovenier, J. W. Interpretation of the polarization of Venus. Journal of Atmospheric Sciences, 1974, 31, 1137-1160 [4]{rossi2015} Rossi et al. Preliminary study of Venus cloud layers
A Multiple Scattering Polarized Radiative Transfer Model: Application to HD 189733b
NASA Astrophysics Data System (ADS)
Kopparla, Pushkar; Natraj, Vijay; Zhang, Xi; Swain, Mark R.; Wiktorowicz, Sloane J.; Yung, Yuk L.
2016-01-01
We present a multiple scattering vector radiative transfer model that produces disk integrated, full phase polarized light curves for reflected light from an exoplanetary atmosphere. We validate our model against results from published analytical and computational models and discuss a small number of cases relevant to the existing and possible near-future observations of the exoplanet HD 189733b. HD 189733b is arguably the most well observed exoplanet to date and the only exoplanet to be observed in polarized light, yet it is debated if the planet’s atmosphere is cloudy or clear. We model reflected light from clear atmospheres with Rayleigh scattering, and cloudy or hazy atmospheres with Mie and fractal aggregate particles. We show that clear and cloudy atmospheres have large differences in polarized light as compared to simple flux measurements, though existing observations are insufficient to make this distinction. Futhermore, we show that atmospheres that are spatially inhomogeneous, such as being partially covered by clouds or hazes, exhibit larger contrasts in polarized light when compared to clear atmospheres. This effect can potentially be used to identify patchy clouds in exoplanets. Given a set of full phase polarimetric measurements, this model can constrain the geometric albedo, properties of scattering particles in the atmosphere, and the longitude of the ascending node of the orbit. The model is used to interpret new polarimetric observations of HD 189733b in a companion paper.
Enhancement of near-field radiative heat transfer using polar dielectric thin films.
Song, Bai; Ganjeh, Yashar; Sadat, Seid; Thompson, Dakotah; Fiorino, Anthony; Fernández-Hurtado, Víctor; Feist, Johannes; Garcia-Vidal, Francisco J; Cuevas, Juan Carlos; Reddy, Pramod; Meyhofer, Edgar
2015-03-01
Thermal radiative emission from a hot surface to a cold surface plays an important role in many applications, including energy conversion, thermal management, lithography, data storage and thermal microscopy. Recent studies on bulk materials have confirmed long-standing theoretical predictions indicating that when the gap between the surfaces is reduced to tens of nanometres, well below the peak wavelength of the blackbody emission spectrum, the radiative heat flux increases by orders of magnitude. However, despite recent attempts, whether such enhancements can be obtained in nanoscale dielectric films thinner than the penetration depth of thermal radiation, as suggested by theory, remains experimentally unknown. Here, using an experimental platform that comprises a heat-flow calorimeter with a resolution of about 100 pW (ref. 7), we experimentally demonstrate a dramatic increase in near-field radiative heat transfer, comparable to that obtained between bulk materials, even for very thin dielectric films (50-100 nm) when the spatial separation between the hot and cold surfaces is comparable to the film thickness. We explain these results by analysing the spectral characteristics and mode shapes of surface phonon polaritons, which dominate near-field radiative heat transport in polar dielectric thin films. PMID:25705866
XTAT: A New Multilevel-Multiline Polarized Radiative Transfer Code with PRD
NASA Astrophysics Data System (ADS)
Bommier, V.
2014-10-01
This work is intended to the interpretation of the so-called "Second Solar Spectrum" (Stenflo 1996), which is the spectrum of the linear polarization formed by scattering and observed close to the solar internal limb. The lines are also optically thick, and the problem is to solve in a coherent manner, the statistical equilibrium of the atomic density matrix and the polarized radiative transfer in the atmosphere. Following Belluzzi & Landi Degl'Innocenti (2009), 30 % of the solar visible line linear polarization profiles display the M-type shape typical of coherent scattering effect in the far wings. A new theory including both coherent (Rayleigh) and resonant scatterings was developed by Bommier (1997a,b). Raman scattering was later added (Bommier 1999, SPW2). In this theory, which is straightly derived from the Schrödinger equation for the atomic density matrix, the radiative line broadening appears as a non-Markovian process of atom-photon interaction. The collisional broadening is included. The Rayleigh (Raman) scattering appears as an additional term in the emissivity from the fourth order of the atom-photon interaction perturbation development. The development is pursued and finally summed up, leading to a non-perturbative final result. In this formalism, the use of redistribution functions is avoided. The published formalism was limited to the two-level atom without lower level alignment. But most of the solar lines are more complex. We will present how the theory has to be complemented for multi-level atom modeling, including lower level alignment. The role of the collisions as balancing coherent and resonant scatterings is fully taken into account. Progress report will be given about the development of a new code for the numerical iterative solution of the statistical equilibrium and polarized radiative transfer equations, for multi-level atoms and their multi-line spectrum. Fine and hyperfine structures, and Hanle, Kemp (Kemp et al. 1984), Zeeman
Chami, M; Santer, R; Dilligeard, E
2001-05-20
A radiative transfer code termed OSOA for the ocean-atmosphere system that is able to predict the total and the polarized signals has been developed. The successive-orders-of-scattering method is used. The air-water interface is modeled as a planar mirror. Four components grouped by their optical properties, pure seawater, phytoplankton, nonchlorophyllose matter, and yellow substances, are included in the water column. Models are validated through comparisons with standard models. The numerical accuracy of the method is better than 2%; high computational efficiency is maintained. The model is used to study the influence of polarization on the detection of suspended matter. Polarizing properties of hydrosols are discussed: phytoplankton cells exhibit weak polarization and small inorganic particles, which are strong backscatterers, contribute appreciably to the polarized signal. Therefore the use of the polarized signal to extract the sediment signature promises good results. Also, polarized radiance could improve characterization of aerosols when open ocean waters are treated. PMID:18357248
Graphene-assisted near-field radiative heat transfer between corrugated polar materials
Liu, X. L.; Zhang, Z. M.
2014-06-23
Graphene has attracted great attention in nanoelectronics, optics, and energy harvesting. Here, the near-field radiative heat transfer between graphene-covered corrugated silica is investigated based on the exact scattering theory. It is found that graphene can improve the radiative heat flux between silica gratings by more than one order of magnitude and alleviate the performance sensitivity to lateral shift. The underlying mechanism is mainly attributed to the improved photon tunneling of modes away from phonon resonances. Besides, coating with graphene leads to nonlocal radiative transfer that breaks Derjaguin's proximity approximation and enables corrugated silica to outperform bulk silica in near-field radiation.
NASA Astrophysics Data System (ADS)
Trujillo Bueno, Javier; Manso Sainz, Rafael
1999-05-01
This paper shows how to generalize to non-LTE polarization transfer some operator splitting methods that were originally developed for solving unpolarized transfer problems. These are the Jacobi-based accelerated Λ-iteration (ALI) method of Olson, Auer, & Buchler and the iterative schemes based on Gauss-Seidel and successive overrelaxation (SOR) iteration of Trujillo Bueno and Fabiani Bendicho. The theoretical framework chosen for the formulation of polarization transfer problems is the quantum electrodynamics (QED) theory of Landi Degl'Innocenti, which specifies the excitation state of the atoms in terms of the irreducible tensor components of the atomic density matrix. This first paper establishes the grounds of our numerical approach to non-LTE polarization transfer by concentrating on the standard case of scattering line polarization in a gas of two-level atoms, including the Hanle effect due to a weak microturbulent and isotropic magnetic field. We begin demonstrating that the well-known Λ-iteration method leads to the self-consistent solution of this type of problem if one initializes using the ``exact'' solution corresponding to the unpolarized case. We show then how the above-mentioned splitting methods can be easily derived from this simple Λ-iteration scheme. We show that our SOR method is 10 times faster than the Jacobi-based ALI method, while our implementation of the Gauss-Seidel method is 4 times faster. These iterative schemes lead to the self-consistent solution independently of the chosen initialization. The convergence rate of these iterative methods is very high; they do not require either the construction or the inversion of any matrix, and the computing time per iteration is similar to that of the Λ-iteration method.
NASA Astrophysics Data System (ADS)
Garcia, R. D. M.; Siewert, C. E.
2011-12-01
A simplified implementation of the analytical discrete ordinates (ADO) method in radiative transfer with polarization is presented in this work. The class of problems that can be solved with the simplified ADO approach consists of problems defined in plane-parallel geometry and driven by external illumination in the form of obliquely incident parallel rays. Numerical results of benchmark quality are tabulated for the albedo problem with polarization and Lambert reflection. The new results improve on a tabulation made available in a previous work by the authors that was based on the (less accurate) spherical harmonics method.
NASA Astrophysics Data System (ADS)
El-habashi, Ahmed; Ahmed, Samir
2016-05-01
Previous partial simulations and field measurements by us, had demonstrated the impact of the un-polarized nature of algal chlorophyll fluorescence to reduce the observed degree of polarization of the underwater light field in the spectral vicinity of fluorescence. (Polarization otherwise existing as a result of non-algal particulate (NAP) and molecular elastic scattering). The magnitude of this fluorescence driven dip in the observed degree of polarization was also seen to be theoretically related to the fluorescence magnitude. The recent availability to us of the RayXP vector radiative transfer code (VRTE) for the coupled atmosphere ocean system now permits us to make complete simulations of the underwater polarized light field, using measured inherent optical properties (IOPs) as inputs. Based on these simulations, a much more comprehensive analysis of the fluorescence impact is now possible. Combining the results of these new simulations with underwater field measurements in eutrophic waters using our hyperspectral multi angle polarimeter, we verified the theoretical relationship. In addition, comparisons of VRTE simulations and hyperspectral polarized field measurements for various coastal water conditions permit retrieval of fluorescence magnitudes. Comparisons of these polarization based fluorescence retrievals with retrievals obtained using fluorescence height over baseline or Hydrolight scalar simulations, together with total unpolarized radiance measurements, show good agreement.
NASA Technical Reports Server (NTRS)
Deglinnocenti, E. L.
1985-01-01
The main physical mechanisms responsible for the generation and transfer of polarized radiation in the solar atmosphere can be classified in a suitable bidimensional diagram with an indicator of the magnetic field strength on its vertical axis and an indicator of the radiation field anisotropy on its horizontal axis. The various polarimetric observations performed on solar spectral lines are interpreted with different theoretical schemes according to their classification in the diagram and to the optical depths involved. These theoretical schemes, and the associated diagnostic tools for inferring the magnetic field vector from observations are reviewed. In particular, the role of magneto-optical effects in determining the direction of the observed linear polarization in active regions is discussed in some detail.
3D Polarized Radiative Transfer for Solar System Applications Using the public-domain HYPERION Code
NASA Astrophysics Data System (ADS)
Wolff, M. J.; Robitaille, T.; Whitney, B. A.
2012-12-01
We present a public-domain radiative transfer tool that will allow researchers to examine a wide-range of interesting solar system applications. Hyperion is a new three-dimensional continuum Monte-Carlo radiative transfer code that is designed to be as general as possible, allowing radiative transfer to be computed through a variety of three-dimensional grids (Robitaille, 2011, Astronomy & Astrophysics 536 A79). The main part of the code is problem-independent, and only requires the user to define the three-dimensional density structure, and the opacity and the illumination properties (as well as a few parameters that control execution and output of the code). Hyperion is written in Fortran 90 and parallelized using the MPI-2 standard. It is bundled with Python libraries that enable very flexible pre- and post-processing options (arbitrary shapes, multiple aerosol components, etc.). These routines are very amenable to user-extensibility. The package is currently distributed at www.hyperion-rt.org. Our presentation will feature 1) a brief overview of the code, including a description of the solar system-specific modifications that we have made beyond the capabilities in the original release; 2) Several solar system applications (i.e., Deep Impact Plume, Martian atmosphere, etc.); 3) discussion of availability and distribution of code components via www.hyperion-rt.org.
NASA Astrophysics Data System (ADS)
Kleinboehl, A.; Friedson, A. J.; Schofield, J. T.
2014-12-01
The Mars Climate Sounder (MCS) is a mid- and far-infrared thermal emission radiometer on board the Mars Reconnaissance Orbiter (MRO). It measures radiances in limb and on-planet viewing geometries. From these radiance measurements, profiles of atmospheric temperature, dust and water ice are operationally retrieved from the surface to ~80 km altitude with a vertical resolution of ~5 km. While limb geometry provides superior vertical resolution over sounding in nadir geometry, it leads to significant horizontal averaging along the line-of-sight. This can lead to misrepresentations in the retrieved quantities in the presence of significant horizontal gradients of these quantities, if the retrieval assumes spherical symmetry. In MCS retrievals, this effect is particularly important in the polar winter regions due to the strong latitudinal gradients in atmospheric temperature. It leads to an apparent shift of the cold pole of the polar vortex away from the viewing direction of the instrument. The assumption of spherical symmetry can lead to misrepresentations of several K in temperature at a given latitude. Here we present an approach to consider these horizontal gradients by applying a two-dimensional radiative transfer scheme to the MCS retrieval. In a first pass a retrieval with the assumption of spherical symmetry is performed. From these retrieval results, horizontal gradients in temperature, pressure, dust and water ice are determined for all measurements along an MRO orbit. These gradient fields are then imposed on a second pass of the retrieval using a two-dimensional radiative transfer scheme. We show that the approach reduces misrepresentations in the retrieved temperature to typically less than 1-2 K in the wall of the polar vortex. Application of this approach to the operational MCS retrieval will lead to a significant improvement in the quality of the retrieved parameters, in particular of temperature in the winter polar regions, which have emerged as a
NASA Astrophysics Data System (ADS)
Mishchenko, Michael I.; Dlugach, Janna M.; Chowdhary, Jacek; Zakharova, Nadezhda T.
2015-05-01
We describe a simple yet efficient numerical algorithm for computing polarized bidirectional reflectance of an optically thick (semi-infinite), macroscopically flat layer composed of statistically isotropic and mirror symmetric random particles. The spatial distribution of the particles is assumed to be sparse, random, and statistically uniform. The 4×4 Stokes reflection matrix is calculated by iterating the Ambartsumian's vector nonlinear integral equation. The result is a numerically exact solution of the vector radiative transfer equation and as such fully satisfies the energy conservation law and the fundamental reciprocity relation. Since this technique bypasses the computation of the internal radiation field, it is very fast and highly accurate. The FORTRAN implementation of the technique is publicly available on the World Wide Web at
NASA Astrophysics Data System (ADS)
Garasev, M. A.; Derishev, E. V.; Kocharovsky, Vl. V.; Kocharovsky, V. V.
2016-06-01
We find the forms of the transfer equations for polarized cyclotron radiation in the atmospheres of compact stars, which are simple enough to allow practical implementation and still preserve all important physical effects. We take into account a frequency redistribution of radiation within the cyclotron line as well as the relativistic and quantum-electrodynamic effects. Our analysis is valid for the magnetic fields up to 1013 G and for temperatures well below 500 keV. We present and compare two forms of the radiation transfer equations. The first form, for the intensities of ordinary and extraordinary modes, is applicable for the compact stars with a moderate magnetic field strength up to 1011 G for typical neutron star and up to 109 G for magnetic white dwarfs. The second form, for the Stokes parameters, is more complex, but applicable even if a linear mode coupling takes place somewhere in the scattering-dominated atmosphere. Analysing dispersion properties of a magnetized plasma in the latter case, we describe a range of parameters where the linear mode coupling is possible and essential.
Polarization transfer NMR imaging
Sillerud, Laurel O.; van Hulsteyn, David B.
1990-01-01
A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.
Radiative Transfer: Methods and Applications
NASA Astrophysics Data System (ADS)
Mayer, Bernhard; Emde, Claudia; Buras, Robert; Kylling, Arve
Solar and terrestrial radiation is the driver of atmospheric dynamics and chemistry and can be exploited by remote sensing algorithms to determine atmospheric composition. For this purpose, accurate radiative transfer models are needed. Here, a modern radiative transfer tool developed over many years at the Institute of Atmospheric Physics is explained. As an application, the remote sensing of cloud microphysics using the angular distribution of reflected solar radiance in the rainbow and backscatter glory is shown, with special emphasis on the polarization of radiation.
Thermal radiation heat transfer.
NASA Technical Reports Server (NTRS)
Siegel, R.; Howell, J. R.
1972-01-01
A comprehensive discussion of heat transfer by thermal radiation is presented, including the radiative behavior of materials, radiation between surfaces, and gas radiation. Among the topics considered are property prediction by electromagnetic theory, the observed properties of solid materials, radiation in the presence of other modes of energy transfer, the equations of transfer for an absorbing-emitting gas, and radiative transfer in scattering and absorbing media. Also considered are radiation exchange between black isothermal surfaces, radiation exchange in enclosures composed of diffuse gray surfaces and in enclosures having some specularly reflecting surfaces, and radiation exchange between nondiffuse nongray surfaces. The use of the Monte Carlo technique in solving radiant-exchange problems and problems of radiative transfer through absorbing-emitting media is explained.
NASA Astrophysics Data System (ADS)
Štěpán, J.; Trujillo Bueno, J.; Leenaarts, J.; Carlsson, M.
2015-04-01
Probing the magnetism of the upper solar chromosphere requires measuring and modeling the scattering polarization produced by anisotropic radiation pumping in UV spectral lines. Here we apply PORTA (a novel radiative transfer code) to investigate the hydrogen Lyα line in a three-dimensional model of the solar atmosphere resulting from a state of the art magnetohydrodynamic (MHD) simulation. At full spatial resolution the linear polarization signals are very significant all over the solar disk, with a large fraction of the field of view (FOV) showing line-center amplitudes well above the 1% level. Via the Hanle effect the line-center polarization signals are sensitive to the magnetic field of the model's transition region, even when its mean field strength is only 15 G. The breaking of the axial symmetry of the radiation field produces significant forward-scattering polarization in Lyα, without the need of an inclined magnetic field. Interestingly, the Hanle effect tends to decrease such forward-scattering polarization signals in most of the points of the FOV. When the spatial resolution is degraded, the line-center polarization of Lyα drops below the 1% level, reaching values similar to those previously found in one-dimensional (1D) semi-empirical models (i.e., up to about 0.5 %). The center to limb variation (CLV) of the spatially averaged polarization signals is qualitatively similar to that found in 1D models, with the largest line-center amplitudes at μ =cos θ ≈ 0.4 (θ being the heliocentric angle). These results are important, both for designing the needed space-based instrumentation and for a reliable interpretation of future observations of the Lyα polarization.
Ultrafast charge transfer and atomic orbital polarization
Deppe, M.; Foehlisch, A.; Hennies, F.; Nagasono, M.; Beye, M.; Sanchez-Portal, D.; Echenique, P. M.; Wurth, W.
2007-11-07
The role of orbital polarization for ultrafast charge transfer between an atomic adsorbate and a substrate is explored. Core hole clock spectroscopy with linearly polarized x-ray radiation allows to selectively excite adsorbate resonance states with defined spatial orientation relative to the substrate surface. For c(4x2)S/Ru(0001) the charge transfer times between the sulfur 2s{sup -1}3p*{sup +1} antibonding resonance and the ruthenium substrate have been studied, with the 2s electron excited into the 3p{sub perpendicular}* state along the surface normal and the 3p{sub parallel}* state in the surface plane. The charge transfer times are determined as 0.18{+-}0.07 and 0.84{+-}0.23 fs, respectively. This variation is the direct consequence of the different adsorbate-substrate orbital overlap.
NASA Astrophysics Data System (ADS)
Gold, Roman; McKinney, Jonathan; Johnson, Michael; Doeleman, Sheperd; Event Horizon Telescope Collaboration
2016-03-01
Accreting black holes (BHs) are at the core of relativistic astrophysics as messengers of the strong-field regime of General Relativity and prime targets of several observational campaigns, including imaging the black hole shadow in SagA* and M87 with the Event Horizon Telescope. I will present results from general-relativistic, polarized radiatiative transfer models for the inner accretion flow in Sgr A*. The models use time dependent, global GRMHD simulations of hot accretion flows including standard-and-normal-evolution (SANE) and magnetically arrested disks (MAD). I present comparisons of these synthetic data sets to the most recent observations with the Event Horizon Telescope and show how the data distinguishes the models and probes the magnetic field structure.
Atmospheric Radiative Transfer
NASA Astrophysics Data System (ADS)
Perliski, Lori
Because radiative transfer cuts across many scientific disciplines with applications including remote sensing, climate, atmospheric chemistry, and photobiology, there is a need for comprehensive books on this subject that can appeal to a wide readership. While Atmospheric Radiative Transfer takes strides toward filling this niche by addressing a broad range of topics, it is dry reading and suffers from lack of detail. The book was based on a graduate-level course taught at the University of Sciences and Technologies in Lille, France, and indeed, the text reads much like an expanded outline perhaps derived from lecture notes.Part one deals with general radiative transfer, and part two covers Earth's radiation budget, the climate system, and remote sensing techniques. The radiative transfer equation and solutions for absorbing and scattering atmospheres are discussed as are the details of absorption, such as energy levels, line strengths, line intensities, equivalent widths, and weak- and strong-line limits.
NASA Astrophysics Data System (ADS)
Kalkofen, Wolfgang
2009-07-01
Preface; Introduction; Part I. Operator Perturbation: 1. Survey of operator perturbation methods W. Kalkofen; 2. Line formation in expanding atmospheres: multilevel calculations using approximate lambda operators W. R. Hamann; 3. Stellar atmospheres in non-LTE: model construction and line formation calculations using approximate lambda operators K. Werner; 4. Acceleration of convergence L. H. Auer; 5. Line formation in a time-dependent atmosphere W. Kalkofen; 6. Iterative solution of multilevel transfer problems Eugene H. Avrett and Rudolf Loeser; 7. An algorithm for the simultaneous solution of thousands of transfer equations under global constraints Lawrence S. Anderson; 8. Operator perturbation for differential equations W. Kalkofen; Part II. Polarised Radiation: 9. A gentle introduction to polarised radiative transfer David E. Rees; 10. Non-LTE polarised radiative transfer in special lines David E. Rees and Graham A. Murphy; 11. Transfer of polarised radiation using 4x4 matrices E. Landi Degli'Innocenti; 12. Radiative transfer in the presence of strong magnetic fields A. A. van Ballegooijen; 13. An integral operator technique of radiative transfer in spherical symmetry A. Peraiah; 14. Discrete ordinate matrix method M. Schmidt and R. Wehrse.
NASA Astrophysics Data System (ADS)
Kalkofen, Wolfgang
1988-01-01
Preface; Introduction; Part I. Operator Perturbation: 1. Survey of operator perturbation methods W. Kalkofen; 2. Line formation in expanding atmospheres: multilevel calculations using approximate lambda operators W. R. Hamann; 3. Stellar atmospheres in non-LTE: model construction and line formation calculations using approximate lambda operators K. Werner; 4. Acceleration of convergence L. H. Auer; 5. Line formation in a time-dependent atmosphere W. Kalkofen; 6. Iterative solution of multilevel transfer problems Eugene H. Avrett and Rudolf Loeser; 7. An algorithm for the simultaneous solution of thousands of transfer equations under global constraints Lawrence S. Anderson; 8. Operator perturbation for differential equations W. Kalkofen; Part II. Polarised Radiation: 9. A gentle introduction to polarised radiative transfer David E. Rees; 10. Non-LTE polarised radiative transfer in special lines David E. Rees and Graham A. Murphy; 11. Transfer of polarised radiation using 4x4 matrices E. Landi Degli'Innocenti; 12. Radiative transfer in the presence of strong magnetic fields A. A. van Ballegooijen; 13. An integral operator technique of radiative transfer in spherical symmetry A. Peraiah; 14. Discrete ordinate matrix method M. Schmidt and R. Wehrse.
LRAT: Lightning Radiative Transfer
NASA Technical Reports Server (NTRS)
Phanord, Dieudonne D.
1993-01-01
In this report, we extend to cloud physics the work done for single and multiple scattering of electromagnetic waves. We consider the scattering of light, visible or infrared, by a spherical cloud represented by a statistically homogeneous ensemble of configurations of N identical spherical water droplets whose centers are uniformly distributed in its volume V. The ensemble is specified by the average number rho of scatterers in unit volume and by rho f(R) with f(R) as the distribution function for separations R of pairs. The incident light, vector-phi(sub 0) a plane electromagnetic wave with harmonic time dependence, is from outside the cloud. The propagation parameter kappa(sub 0) and the index of refraction eta(sub 0) determine physically the medium outside the distribution of scatterers. We solve the interior problem separately to obtain the bulk parameters for the scatterer equivalent to the ensemble of spherical droplets. With the interior solution or the equivalent medium approach, the multiple scattering problem is reduced to that of an equivalent single scatterer excited from outside illumination. A dispersion relation which determines the bulk propagation parameter K and the bulk index of refraction eta of the cloud is given in terms of the vector equivalent scattering amplitude vector-G and the dyadic scattering amplitude tilde-g of the single object in isolation. Based on this transfer model we will have the ability to consider clouds composed of inhomogeneous distribution of water and/or ice particles and we will be able to take into account particle size distributions within the cloud. We will also be able to study the effects of cloud composition (i.e., particle shape, size, composition, orientation, location) on the polarization of the single or the multiple scattered waves. Finally, this study will provide a new starting point for studying the problem of lightning radiative transfer.
Polarization transfer of bremsstrahlung arising from spin-polarized electrons.
Märtin, R; Weber, G; Barday, R; Fritzsche, Y; Spillmann, U; Chen, W; DuBois, R D; Enders, J; Hegewald, M; Hess, S; Surzhykov, A; Thorn, D B; Trotsenko, S; Wagner, M; Winters, D F A; Yerokhin, V A; Stöhlker, Th
2012-06-29
We report on a study of the polarization transfer between transversely polarized incident electrons and the emitted x rays for electron-atom bremsstrahlung. By means of Compton polarimetry we performed for the first time an energy-differential measurement of the complete properties of bremsstrahlung emission related to linear polarization, i.e., the degree of linear polarization as well as the orientation of the polarization axis. For the high-energy end of the bremsstrahlung continuum the experimental results for both observables show a high sensitivity on the initial electron spin polarization and prove that the polarization orientation is virtually independent of the photon energy. PMID:23004992
Radiative transfer of visible radiation in turbid atmosphere
NASA Technical Reports Server (NTRS)
Yamamoto, G.; Tanaka, M.
1974-01-01
Methods are presented for solving radiative transfer problems; they include the doubling method and the closely related matrix method, iterative method, Chandrasekhar's method of discrete ordinates, and Monte Carlo method. To consider radiation transport through turbid atmosphere, an atmospheric model was developed characterizing aerosols by parameters. Intensity and polarization of radiation in turbid atmospheres is discussed, as well as lower atmospheric heating due to solar radiation absorption by aerosols.
Polarized vacuum ultraviolet and X-radiation
NASA Technical Reports Server (NTRS)
Samson, J. A. R.
1978-01-01
The most intense source of polarized vacuum UV and X radiation is synchrotron radiation, which exhibits a degree of partially polarized light between about 80-100%. However, the radiation transmitted by vacuum UV monochromators can also be highly polarized. The Seya-Namioka type of monochromator can produce partially polarized radiation between 50-80%. For certain experiments it is necessary to know the degree of polarization of the radiation being used. Also, when synchrotron radiation and a monochromator are combined the polarization characteristic of both should be known in order to make full use of these polarization properties. The polarizing effect of monochromators (i.e., diffraction gratings) have been measured at the Seya angle and at grazing angles for various spectral orders. Experimental evidence is presented which shows that the reciprocity law holds for polarization by reflection where the angle of incidence and diffraction are unequal. These results are reviewed along with the techniques for measuring the degree of polarization.
Vacuum polarization and Hawking radiation
NASA Astrophysics Data System (ADS)
Rahmati, Shohreh
Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.
Utrecht Radiative Transfer Courses
NASA Astrophysics Data System (ADS)
Rutten, R. J.
2003-01-01
The Utrecht course ``The Generation and Transport of Radiation'' teaches basic radiative transfer to second-year students. It is a much-expanded version of the first chapter of Rybicki & Lightman's ``Radiative Processes in Astrophysics''. After this course, students understand why intensity is measured per steradian, have an Eddington-Barbier feel for optically thick line formation, and know that scattering upsets LTE. The text is a computer-aided translation by Ruth Peterson of my 1992 Dutch-language course. My aim is to rewrite this course in non-computer English and make it web-available at some time. In the meantime, copies of the Peterson translation are made yearly at Uppsala -- ask them, not me. Eventually it should become a textbook. The Utrecht course ``Radiative Transfer in Stellar Atmospheres'' is a 30-hour course for third-year students. It treats NLTE line formation in plane-parallel stellar atmospheres at a level intermediate between the books by Novotny and Boehm-Vitense, and Mihalas' ``Stellar Atmospheres''. After this course, students appreciate that epsilon is small, that radiation can heat or cool, and that computers have changed the field. This course is web-available since 1995 and is regularly improved -- but remains incomplete. Eventually it should become a textbook. The three Utrecht exercise sets ``Stellar Spectra A: Basic Line Formation'', ``Stellar Spectra B: LTE Line Formation'', and ``Stellar Spectra C: NLTE Line Formation'' are IDL-based computer exercises for first-year, second-year, and third-year students, respectively. They treat spectral classification, Saha-Boltzmann population statistics, the curve of growth, the FAL-C solar atmosphere model, the role of H-minus in the solar continuum, LTE formation of Fraunhofer lines, inversion tactics, the Feautrier method, classical lambda iteration, and ALI computation. The first two sets are web-available since 1998; the third will follow. Acknowledgement. Both courses owe much to previous
Polarization Transfer by Solution in Laser-Polarized Liquid Xenon
NASA Astrophysics Data System (ADS)
Fitzgerald, R. J.; Sauer, K. L.; Happer, W.
1998-05-01
We have dissolved compounds in hyperpolarized liquid Xe, in which the ^129Xe polarization was ~ 20%, and have observed the transfer of polarization through cross-relaxation from ^129Xe to other spins in solution. We have measured enhanced NMR signals for ^1H that are more than a factor of 45 larger than thermal polarization signals at 200 K and 1.4 T. For ^13C, we have seen signal enhancements of over 70. The lifetimes of the enhancements were ~ 20 min. In dissolved toluene, we have further observed different enhancements of the ring and the methyl proton signals.
Radiative transfer model: matrix operator method.
Liu, Q; Ruprecht, E
1996-07-20
A radiative transfer model, the matrix operator method, is discussed here. The matrix operator method is applied to a plane-parallel atmosphere within three spectral ranges: the visible, the infrared, and the microwave. For a homogeneous layer with spherical scattering, the radiative transfer equation can be solved analytically. The vertically inhomogeneous atmosphere can be subdivided into a set of homogeneous layers. The solution of the radiative transfer equation for the vertically inhomogeneous atmosphere is obtained recurrently from the analytical solutions for the subdivided layers. As an example for the application of the matrix operator method, the effects of the cirrus and the stratocumulus clouds on the net radiation at the surface and at the top of the atmosphere are investigated. The relationship between the polarization in the microwave range and the rain rates is also studied. Copies of the FORTRAN program and the documentation of the FORTRAN program on a diskette are available. PMID:21102832
Polar solvation and electron transfer
Not Available
1993-04-13
The report is divided into the following sections: completion of previous studies on solvation dynamics, dipole lattice studies, inertial components of solvation response, simple models of solvation dynamics, rotational dynamics and dielectric friction, intramolecular electron transfer reactions, and intermolecular donor-acceptor complexes.
Polarization Transfer in Proton Compton Scattering at High Momentum Transfer
Hamilton, D.J.; Annand, J.R.M.; Mamyan, V.H.; Aniol, K.A.; Margaziotis, D.J.; Bertin, P.Y.; Camsonne, A.; Laveissiere, G.; Bosted, P.; Paschke, K.; Calarco, J.R.; Chang, G.C.; Horn, T.; Savvinov, N.; Chang, T.-H.; Danagoulian, A.; Nathan, A.M.; Roedelbronn, M.; Chen, J.-P.
2005-06-24
Compton scattering from the proton was investigated at s=6.9 GeV{sup 2} and t=-4.0 GeV{sup 2} via polarization transfer from circularly polarized incident photons. The longitudinal and transverse components of the recoil proton polarization were measured. The results are in disagreement with a prediction of perturbative QCD based on a two-gluon exchange mechanism, but agree well with a prediction based on a reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton.
Polarization Transfer in Proton Compton Scattering at High Momentum Transfer
D.J. Hamilton; Vahe Mamyan
2004-10-01
Compton scattering from the proton was investigated at s = 6.9 GeV{sup 2} and t = -4.0 TeV{sup 2} via polarization transfer from circularly polarized incident photons. The longitudinal and transverse components of the recoil proton polarization were measured. The results are in excellent agreement with a prediction based on a reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton and in disagreement with a prediction of pQCD based on a two-gluon exchange mechanism.
Radiative Transfer in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Graziani, L.; Aiello, S.; Belleni-Morante, A.; Cecchi-Pestellini, C.
2008-09-01
Abstract Protoplanetary disks are the precursors of planetary systems. All building materials needed to assembly the planetary systems are supplied by these reservoirs, including many organic molecules [1,2]. Thus, the physical and chemical properties in Protoplanetary disks set the boundary conditions for the formation and evolution of planets and other solar system bodies. In standard radiative scenario structure and chemistry of protoplanetary disks depend strongly on the nature of central star around which they formed. The dust temperature is manly set by the stellar luminosity, while the chemistry of the whole disk depends on the UV and X ray fluxes [3,4,6,8]. Therefore, a knowledge as accurate as possible of the radiative transfer (RT) inside disks is a prerequisite for their modelling. Actually, real disks are complex, stratified and inhomogeneous environments requiring a detailed dust mixture modelling and the ability to follow the radiation transfer across radial and vertical gradients. Different energetic processes as the mass accretion processes onto the star surface, the viscous dissipative heating dominating the midplane region, and the flared atmospheres radiation reprocessing, have a significant role in the disk structuring [4,5,8]. During the last 10 years many authors suggested various numerical and analytical techniques to resolve the disk temperature structure providing vertical temperature profiles and disk SED databases [4,6]. In this work we present the results of our semi analytical and numerical model solving the radiative transfer problem in two separate interesting disk regions: 1) Disk atmospheres at large radius, r > 10 AU. 2) Vertical disk structure over 1 < r < 10 AU and 10 < r < 100 AU. A simplified analytical approach based on P-N approximation [7] for a rectified disk surface (suitable for limited range of r) is compared and contrasted with a more accurate Monte Carlo integration [5]. Our code can handle arbitrary dust
Forward Monte Carlo Computations of Polarized Microwave Radiation
NASA Technical Reports Server (NTRS)
Battaglia, A.; Kummerow, C.
2000-01-01
Microwave radiative transfer computations continue to acquire greater importance as the emphasis in remote sensing shifts towards the understanding of microphysical properties of clouds and with these to better understand the non linear relation between rainfall rates and satellite-observed radiance. A first step toward realistic radiative simulations has been the introduction of techniques capable of treating 3-dimensional geometry being generated by ever more sophisticated cloud resolving models. To date, a series of numerical codes have been developed to treat spherical and randomly oriented axisymmetric particles. Backward and backward-forward Monte Carlo methods are, indeed, efficient in this field. These methods, however, cannot deal properly with oriented particles, which seem to play an important role in polarization signatures over stratiform precipitation. Moreover, beyond the polarization channel, the next generation of fully polarimetric radiometers challenges us to better understand the behavior of the last two Stokes parameters as well. In order to solve the vector radiative transfer equation, one-dimensional numerical models have been developed, These codes, unfortunately, consider the atmosphere as horizontally homogeneous with horizontally infinite plane parallel layers. The next development step for microwave radiative transfer codes must be fully polarized 3-D methods. Recently a 3-D polarized radiative transfer model based on the discrete ordinate method was presented. A forward MC code was developed that treats oriented nonspherical hydrometeors, but only for plane-parallel situations.
Radiative transfer in atmosphere-sea ice-ocean system
Jin, Z.; Stamnes, K.; Weeks, W.F.; Tsay, S.C.
1996-04-01
Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.
Radiation damage effects in polarized deuterated ammonia
P.M. McKee
2003-07-01
Solid polarized targets utilizing deuterated ammonia, {sup 15}ND{sub 3}, offer an attractive combination of high polarization, high dilution factor and high resistance to polarization losses from radiation damage. Jefferson Laboratory Experiment E93-026 used {sup 15}ND{sub 3} as a target material in a five-month form factor measurement, allowing a detailed study of it's performance. The dependence of the deuteron polarization on received dose by the ammonia and the effectiveness of annealing the material to recover performance lost to radiation damage will be discussed.
SHDOM: Spherical Harmonic Discrete Ordinate Method for atmospheric radiative transfer
NASA Astrophysics Data System (ADS)
Evans, K. Franklin
2015-08-01
The Spherical Harmonic Discrete Ordinate Method (SHDOM) radiative transfer model computes polarized monochromatic or spectral band radiative transfer in a one, two, or three-dimensional medium for either collimated solar and/or thermal emission sources of radiation. The model is written in a variant of Fortran 77 and in Fortran90 and requires a Fortran 90 compiler. Also included are programs for generating the optical property files input to SHDOM from physical properties of water cloud particles and aerosols.
Polarization effects in radiative decay of a polarized τ lepton
Gakh, G. I.; Konchatnij, M. I. Korchin, A. Yu.; Merenkov, N. P.
2015-02-15
The polarization effects in the one-meson radiative decay of a polarized τ lepton, τ → π{sup −}γν{sub τ}, are investigated. The inner bremsstrahlung and structural amplitudes are taken into account. The asymmetry of the differential decay width caused by the τ-lepton polarization and the Stokes parameters of the emitted photon itself are calculated depending on the polarization of the decaying τ lepton. These physical quantities are estimated numerically for an arbitrary direction of the τ lepton polarization 3-vector in the rest frame. The vector and axial-vector form factors describing the structure-dependent part of the decay amplitude are determined using the chiral effective theory with resonances (RχT)
Auroral resonance line radiative transfer
Gladstone, G.R. )
1992-02-01
A model is developed for simulating the two-dimensional radiative transfer of resonance line emissions in auroras. The method of solution utilizes Fourier decomposition of the horizontal dependence in the intensity field so that the two-dimensional problem becomes a set of one-dimensional problems having different horizontal wavenumbers. The individual one-dimensional problems are solved for using a Feautrier-type solution of the differential-integral form of the radiative transfer equation. In the limit as the horizontal wavenumber becomes much larger than the local line-center extinction coefficient, the scattering integral becomes considerably simplified, and the final source function is evaluated in closed form. The two-dimensional aspects of the model are tested against results for nonresonance radiative transfer studies, and the resonance line part of the model is tested against results of existing plane-parallel resonance line radiative transfer codes. Finally, the model is used to simulate the intensity field of O{sub I} 1,304{angstrom} for hard and soft auroras of various Gaussian horizontal widths. The results demonstrate the importance of considering the effects of two-dimensional radiative transfer when analyzing auroral resonance line data.
A FORMALISM FOR COVARIANT POLARIZED RADIATIVE TRANSPORT BY RAY TRACING
Gammie, Charles F.; Leung, Po Kin
2012-06-20
We write down a covariant formalism for polarized radiative transfer appropriate for ray tracing through a turbulent plasma. The polarized radiation field is represented by the polarization tensor (coherency matrix) N{sup {alpha}{beta}} {identical_to} (a{sup {alpha}}{sub k} a*{sup {beta}}{sub k}), where a{sub k} is a Fourier coefficient for the vector potential. Using Maxwell's equations, the Liouville-Vlasov equation, and the WKB approximation, we show that the transport equation in vacuo is k{sup {mu}}{nabla}{sub {mu}} N{sup {alpha}{beta}} = 0. We show that this is equivalent to Broderick and Blandford's formalism based on invariant Stokes parameters and a rotation coefficient, and suggest a modification that may reduce truncation error in some situations. Finally, we write down several alternative approaches to integrating the transfer equation.
Radiative transfer in realistic planetary atmospheres. [bibliographies
NASA Technical Reports Server (NTRS)
Plass, G. N.; Kattawar, G. W.
1982-01-01
Some 40 publications that appeared in scientific journals from 1973 to 1981 as well as 45 scientific reports issued during the grant period are listed by title. Topics cover the development of a matrix operator theory of radiative transfer which made possible the exact model calculations of the radiance as a function of height in planetary atmospheres; calculation of the Mie phase matrix for various types of particles as well as for radiance and polarization in planetary atmospheres; analysis of high dispersion spectroscopic observations of Venus; calculation of curves of growth for Venus; the development of a theory for calculating radiative transfer in spherical shell atmospheres; investigations of zonal winds on Venus; and examination of Rayleigh scattering.
The polarization of escaping terrestrial continuum radiation
NASA Technical Reports Server (NTRS)
Gurnett, D. A.; Calvert, W.; Huff, R. L.; Jones, D.; Sugiura, M.
1988-01-01
The polarization of an escaping terrestrial continuum radiation event that occurred on March 2, 1982, was determined using plasma wave measurements from the DE-1 spacecraft. The source of the radiation was determined to be located near the magnetic equator on the nightside of the earth at a radial distance of about 2.8-3.5 earth radii. Two meridional beams were detected, one directed north at an angle of about 20-30 deg with respect to the magnetic equator, and the other directed south at a comparable angle. Polarization measurements indicated that the radiation is right-hand polarized with respect to an outward directed E plane normal in the Northern Hemisphere and left-hand polarized in the Southern Hemisphere.
Principles of Invariance in Radiative Transfer
NASA Astrophysics Data System (ADS)
Peraiah, A.
1999-09-01
We have reviewed the principle of invariance, its applications and its usefulness for obtaining the radiation field in semi-infinite and finite atmospheres. Various laws of scattering in dispersive media and the consequent radiation field are studied. The H-functions and X- and Y-functions in semi-infinite and finite media respectively are derived in a few cases. The Discrete Space Theory (DST) which is a general form of the Principle of Invariance is described. The method of addition of layers with general properties, is shown to describe all the properties of multiple scattering. A few examples of the application of DST such as polarization, line formation in expanding stellar atmospheres, etc., and a numerical analysis of DST are presented. Other developments in the theory of radiative transfer are briefly described.
Polarization of Resonance Lines in the Case of Partially Polarized Primary Radiation Sources
NASA Astrophysics Data System (ADS)
Dementyev, A. V.
2016-06-01
The transfer of polarized radiation in a resonance line in a semi-infinite plane-parallel nonmagnetic atmosphere is examined. It is assumed that scattering takes place with complete frequency redistribution within the line and continuum absorption is taken into account. The primary radiation sources in the atmosphere are assumed to be partially polarized; here the function describing these sources is given by the product of a polynomial and an exponential of the optical depth. The Stokes vector of the emerging radiation is found using a general analytic theory of Î -matrices (the Î -matrix is a generalization of the scalar Chandrasekhar H-function). It is shown that the Stokes vector of the radiation emerging from an atmosphere in which primary sources of this form are distributed can be expressed in terms of the solution of a single, so-called standard problem.
Radiative transfer in spherical atmospheres
NASA Technical Reports Server (NTRS)
Kalkofen, W.; Wehrse, R.
1984-01-01
A method for defining spherical model atmospheres in radiative/convective and hydrostatic equilibrium is presented. A finite difference form is found for the transfer equation and a matrix operator is developed as the discrete space analog (in curvilinear coordinates) of a formal integral in plane geometry. Pressure is treated as a function of temperature. Flux conservation is maintained within the energy equation, although the correct luminosity transport must be assigned for any given level of the atmosphere. A perturbed integral operator is used in a complete linearization of the transfer and constraint equations. Finally, techniques for generating stable solutions in economical computer time are discussed.
Radiative corrections to polarization observables in electron-proton scattering
NASA Astrophysics Data System (ADS)
Borisyuk, Dmitry; Kobushkin, Alexander
2014-08-01
We consider radiative corrections to polarization observables in elastic electron-proton scattering, in particular, for the polarization transfer measurements of the proton form factor ratio μGE/GM. The corrections are of two types: two-photon exchange (TPE) and bremsstrahlung (BS); in the present work we pay special attention to the latter. Assuming small missing energy or missing mass cutoff, the correction can be represented in a model-independent form, with both electron and proton radiation taken into account. Numerical calculations show that the contribution of the proton radiation is not negligible. Overall, at high Q2 and energies, the total correction to μGE/GM grows, but is dominated by TPE. At low energies both TPE and BS may be significant; the latter amounts to ˜0.01 for some reasonable cut-off choices.
Polarization of the cosmic background radiation
Lubin, Philip M.; Smoot, George F.
1980-08-01
We discuss the technique and results of a measurement of the linear polarization of the Cosmic Background Radiation. Data taken between May 1978 and February 1980 from both the northern hemisphere (Berkeley Lat. 38{sup o}N) and the southern hemisphere (Lima Lat. 12{sup o}s) over 11 declinations from -37{sup o} to +63{sup o} show the radiation to be essentially unpolarized over all areas surveyed. Fitting all data gives the 95% confidence level limit on a linearly polarized component of 0.3 mK for spherical harmonics through third order. A fit of all data to the anisotropic axisymmetric model of Rees (1968) yields a 95% confidence level limit of 0.15 mK for the magnitude of the polarized component. Constraints on various cosmological models are discussed in light of these limits.
Polarization of the cosmic background radiation
Lubin, P.M.
1980-03-01
The results and technique of a measurement of the linear polarization of the Cosmic Background Radiation are discussed. The ground-based experiment utilizes a single horn (7/sup 0/ beam width) Dicke-type microwave polarimeter operating at 33 GHz (9.1 mm). Data taken between May 1978 and February 1980 from both the northern hemisphere (Berkeley Lat. = 38/sup 0/N) and the southern hemisphere (Lima Lat. = 12/sup 0/S) show the radiation to be essentially unpolarized over all areas surveyed. For the 38/sup 0/ declination data the 95% confidence level limit on a linearly polarized component is 0.3 mK for the average and 12 and 24 hour periods. Fitting all data gives the 95% confidence level limit on a linearly polarized component of 0.3 mK for spherical harmonics through third order. Constraints on various cosmological models are discussed in light of these limits.
Radiative Transfer Under Inhomogeneous Configurations
NASA Astrophysics Data System (ADS)
Bendicho, P. Fabiani
1998-06-01
We present, for the first time, three dimensional (3D) radiative transfer (RT) results with realistic atomic models (multilevel) and without using the local thermodinamical equilibrium approximation (non-LTE). We have developed a new code based on efficient iterative methods (Trujillo Bueno, and Fabiani Bendicho 1995; Fabiani Bendicho, Trujillo Bueno and Auer 1997) characterized by a very high convergence rate. With this 3D multilevel code and using a schematic atmospheric model we are able to demonstrate that one may need self-consistent multidimensional RT calculations in order to interpret high spatial resolution solar spectroscopic observations.
Radiative transfer in dusty nebulae
NASA Technical Reports Server (NTRS)
Dana, R. A.
1977-01-01
The effects of dust scattering on observable optical and infrared parameters, and the accuracy of approximate solutions were examined. The equation of radiative transfer in a static and homogeneous, but not necessarily uniform, distribution gas and dust around a central empty core with a point source of energy at its center was solved. The dust properties were characterized by a phenomenological extinction cross section, albedo and parameters describing the anisotropy of dust scattering. For ultraviolet photons, ionization equilibrium equations for the gas were solved, and for infrared photons a self-consistent dust temperature was calculated. Ray tracing was used to solve for the angular dependence of the intensity.
Microwave radiative transfer studies of precipitation
NASA Technical Reports Server (NTRS)
Bringi, V. N.; Vivekanandan, J.; Turk, F. Joseph
1993-01-01
Since the deployment of the DMSP SSM/I microwave imagers in 1987, increased utilization of passive microwave radiometry throughout the 10 - 100 GHz spectrum has occurred for measurement of atmospheric constituents and terrestrial surfaces. Our efforts have focused on observations and analysis of the microwave radiative transfer behavior of precipitating clouds. We have focused particular attention on combining both aircraft and SSM/I radiometer imagery with ground-based multiparameter radar observations. As part of this and the past NASA contract, we have developed a multi-stream, polarized radiative transfer model which incorporates scattering. The model has the capability to be initialized with cloud model output or multiparameter radar products. This model provides the necessary 'link' between the passive microwave radiometer and active microwave radar observations. This unique arrangement has allowed the brightness temperatures (TB) to be compared against quantities such as rainfall, liquid/ice water paths, and the vertical structure of the cloud. Quantification of the amounts of ice and water in precipitating clouds is required for understanding of the global energy balance.
Instabilities and the transport of polarized astrophysical maser radiation
NASA Technical Reports Server (NTRS)
Wallin, Bradley K.; Watson, William D.
1995-01-01
Time-dependent, radiative instabilities in the creation and transport of polarized astrophysical maser radiation in the presence of a magnetic field are calculated. The instabilities are similar to and occur under the same conditions as those found previously by Scappaticci & Watson for unpolarized maser radiation. The common limits in which the Zeeman splitting is much greater than, and much less than, the spectral line breadths are both considered in the current investigation. The resulting fluctuations in the emergent radiation are potentially relevant for the OH 1665 MHz masers which have been reported to fluctuate on timescales of 1000 s and which tend to be polarized. Instabilities occur and alter the transport of maser radiation only under a quite limited range of conditions. In particular, we find here that the instabilities do not occur for conditions that are appropriate for astrophysical masers with small Zeeman splittings such as the SiO and H2O masers. The time-independent, numerical solutions to the GKK equations of radiative transfer that have been obtained in previous investigations are thus essentially always valid except within a narrow range of conditions relevant for the OH masers.
Polarized Continuum Radiation from Stellar Atmospheres
NASA Astrophysics Data System (ADS)
Harrington, J. Patrick
2015-10-01
Continuum scattering by free electrons can be significant in early type stars, while in late type stars Rayleigh scattering by hydrogen atoms or molecules may be important. Computer programs used to construct models of stellar atmospheres generally treat the scattering of the continuum radiation as isotropic and unpolarized, but this scattering has a dipole angular dependence and will produce polarization. We review an accurate method for evaluating the polarization and limb darkening of the radiation from model stellar atmospheres. We use this method to obtain results for: (i) Late type stars, based on the MARCS code models (Gustafsson et al. 2008), and (ii) Early type stars, based on the NLTE code TLUSTY (Lanz and Hubeny 2003). These results are tabulated at http://www.astro.umd.edu/~jph/Stellar_Polarization.html. While the net polarization vanishes for an unresolved spherical star, this symmetry is broken by rapid rotation or by the masking of part of the star by a binary companion or during the transit of an exoplanet. We give some numerical results for these last cases.
Super-Eddington radiation transfer in soft gamma repeaters
NASA Astrophysics Data System (ADS)
Ulmer, Andrew
1994-12-01
Bursts from soft gamma repeaters (SGRs) have been shown to be super-Eddington by a factor of 1000 and have been persuasively associated with compact objects. Super-Eddington radiation transfer on the surface of a strongly magnetic (greater than or equal to 1013 G) neutron star is studied and related to the observational constraints on SGRs. In strong magnetic fields, Thompson scattering is suppressed in one polarization state, so super-Eddington fluxes can be radiated while the plasma remains in hydrostatic equilibrium. We discuss a model which offers a somewhat natural explanation for the observation that the energy spectra of bursts with varying intensity are similar. The radiation produced is found to be linearly polarized to one part in 1000 in a direction determined by the local magnetic field, and intensity variations between bursts are understood as a change in the radiating area on the source. The net polarization is inversely correlated with burst intensity. Further, it is shown that for radiation transfer calculations in limit of superstrong magnetic fields, it is sufficient to solve the radiation transfer for the low opacity state rather than the coupled equations for both. With this approximation, standard stellar atmosphere techniques are utilized to calculate the model energy spectrum.
Stochastic Radiative transfer and real cloudiness
Evans, F.
1995-09-01
Plane-parallel radiative transfer modeling of clouds in GCMs is thought to be an inadequate representation of the effects of real cloudiness. A promising new approach for studying the effects of cloud horizontal inhomogeneity is stochastic radiative transfer, which computes the radiative effects of ensembles of cloud structures described by probability distributions. This approach is appropriate because cloud information is inherently statistical, and it is the mean radiative effect of complex 3D cloud structure that is desired. 2 refs., 1 fig.
BART: Bayesian Atmospheric Radiative Transfer fitting code
NASA Astrophysics Data System (ADS)
Cubillos, Patricio; Blecic, Jasmina; Harrington, Joseph; Rojo, Patricio; Lust, Nate; Bowman, Oliver; Stemm, Madison; Foster, Andrew; Loredo, Thomas J.; Fortney, Jonathan; Madhusudhan, Nikku
2016-08-01
BART implements a Bayesian, Monte Carlo-driven, radiative-transfer scheme for extracting parameters from spectra of planetary atmospheres. BART combines a thermochemical-equilibrium code, a one-dimensional line-by-line radiative-transfer code, and the Multi-core Markov-chain Monte Carlo statistical module to constrain the atmospheric temperature and chemical-abundance profiles of exoplanets.
Angular distribution of photoelectrons at 584A using polarized radiation
NASA Technical Reports Server (NTRS)
Hancock, W. H.; Samson, J. A. R.
1975-01-01
Photoelectron angular distributions for Ar, Xe, N2, O2, CO, CO2, and NH3 were obtained at 584 A by observing the photoelectrons at a fixed angle and simply rotating the plane of polarization of a highly polarized photon source. The radiation from a helium dc glow discharge source was polarized (84%) using a reflection type polarizer.
Microwave frequency modulation for improving polarization transfer in DNP experiments
NASA Astrophysics Data System (ADS)
Guy, Mallory; Ramanathan, Chandrasekhar
Dynamic nuclear polarization (DNP) is a driven process that transfers the inherently high electron polarization to surrounding nuclear spins via microwave irradiation at or near the electron Larmor frequency. In a typical DNP experiment, the amplitude and frequency of the applied microwaves are constant. However, by adding time dependence in the form of frequency modulation, the electron excitation bandwidth is increased, thereby increasing the number of electron spins active in the polarization transfer process and improving overall efficiency. Both triangular and sinusoidal modulation show a 3 fold improvement over monochromatic irradiation. In the present study, we compare the nuclear spin polarization after DNP experiments with no modulation of the applied microwaves, triangular and sinusoidal modulation, and modulation schemes derived from the sample's ESR spectrum. We characterize the polarization as a function of the modulation amplitude and frequency and compare the optimal results from each modulation scheme. Working at a field of 3.34 T and at a temperature of 4 K, we show that by using a modulation scheme tailored to the electronic environment of the sample, polarization transfer is improved over other modulation schemes. Small-scale simulations of the spin system are developed to gain further insight into the dynamics of this driven open system. This understanding could enable the design of modulation schemes to achieve even higher polarization transfer efficiencies. With support from NSF (CHE-1410504) and by NIH (U19-A1091173).
NASA Astrophysics Data System (ADS)
González-Rodríguez, Pedro; Ilan, Boaz; Kim, Arnold D.
2016-06-01
We introduce the one-way radiative transfer equation (RTE) for modeling the transmission of a light beam incident normally on a slab composed of a uniform forward-peaked scattering medium. Unlike the RTE, which is formulated as a boundary value problem, the one-way RTE is formulated as an initial value problem. Consequently, the one-way RTE is much easier to solve. We discuss the relation of the one-way RTE to the Fokker-Planck, small-angle, and Fermi pencil beam approximations. Then, we validate the one-way RTE through systematic comparisons with RTE simulations for both the Henyey-Greenstein and screened Rutherford scattering phase functions over a broad range of albedo, anisotropy factor, optical thickness, and refractive index values. We find that the one-way RTE gives very good approximations for a broad range of optical property values for thin to moderately thick media that have moderately to sharply forward-peaked scattering. Specifically, we show that the error made by the one-way RTE decreases monotonically as the anisotropic factor increases and as the albedo increases. On the other hand, the error increases monotonically as the optical thickness increases and the refractive index mismatch at the boundary increases.
NASA Astrophysics Data System (ADS)
Paletou, Frederic; Faurobert-Scholl, Marianne
1997-12-01
The effects of partial frequency redistribution are implemented in the Polarized Accelerated Lambda Iteration (PALI) method of Faurobert-Scholl et al. (1997). The numerical scheme is an extension of the core-wing technique of Paletou & Auer (1995) originally developed for non-polarized line transfer problems. Using a new code, we validate theoretical results against those given by a Feautrier type code.
Basic theory for polarized, astrophysical maser radiation in a magnetic field
NASA Technical Reports Server (NTRS)
Watson, William D.
1994-01-01
Fundamental alterations in the theory and resulting behavior of polarized, astrophysical maser radiation in the presence of a magnetic field have been asserted based on a calculation of instabilities in the radiative transfer. I reconsider the radiative transfer and find that the relevant instabilities do not occur. Calculational errors in the previous investigation are identified. In addition, such instabilities would have appeared -- but did not -- in the numerous numerical solutions to the same radiative transfer equations that have been presented in the literature. As a result, all modifications that have been presented in a recent series of papers (Elitzur 1991, 1993) to the theory for polarized maser radiation in the presence of a magnetic field are invalid. The basic theory is thus clarified.
Reducing Cross-Polarized Radiation From A Microstrip Antenna
NASA Technical Reports Server (NTRS)
Huang, John
1991-01-01
Change in configuration of feed of nominally linearly polarized microstrip-patch transmitting array antenna reduces cross-polarized component of its radiation. Patches fed on opposing sides, in opposite phases. Combination of spatial symmetry and temporal asymmetry causes copolarized components of radiation from fundamental modes of patches to reinforce each other and cross-polarized components of radiation from higher-order modes to cancel each other.
Radiative heat transfer in porous uranium dioxide
Hayes, S.L.
1992-12-01
Due to low thermal conductivity and high emissivity of UO{sub 2}, it has been suggested that radiative heat transfer may play a significant role in heat transfer through pores of UO{sub 2} fuel. This possibility was computationally investigated and contribution of radiative heat transfer within pores to overall heat transport in porous UO{sub 2} quantified. A repeating unit cell was developed to model approximately a porous UO{sub 2} fuel system, and the heat transfer through unit cells representing a wide variety of fuel conditions was calculated using a finite element computer program. Conduction through solid fuel matrix as wekk as pore gas, and radiative exchange at pore surface was incorporated. A variety of pore compositions were investigated: porosity, pore size, shape and orientation, temperature, and temperature gradient. Calculations were made in which pore surface radiation was both modeled and neglected. The difference between yielding the integral contribution of radiative heat transfer mechanism to overall heat transport. Results indicate that radiative component of heat transfer within pores is small for conditions representative of light water reactor fuel, typically less than 1% of total heat transport. It is much larger, however, for conditions present in liquid metal fast breeder reactor fuel; during restructuring of this fuel type early in life, the radiative heat transfer mode was shown to contribute as much as 10-20% of total heat transport in hottest regions of fuel.
NASA Technical Reports Server (NTRS)
Strelkov, S. A.; Sushkevich, T. A.
1983-01-01
Spatial frequency characteristics (SFC) and the scattering functions were studied in the two cases of a uniform horizontal layer with absolutely black bottom, and an isolated layer. The mathematical model for these examples describes the horizontal heterogeneities in a light field with regard to radiation polarization in a three dimensional planar atmosphere, delimited by a heterogeneous surface with diffuse reflection. The perturbation method was used to obtain vector transfer equations which correspond to the linear and nonlinear systems of polarization radiation transfer. The boundary value tasks for the vector transfer equation that is a parametric set and one dimensional are satisfied by the SFC of the nonlinear system, and are expressed through the SFC of linear approximation. As a consequence of the developed theory, formulas were obtained for analytical calculation of albedo in solving the task of dissemination of polarization radiation in the planetary atmosphere with uniform Lambert bottom.
THE RADIATIVE TRANSFER OF SYNCHROTRON RADIATION THROUGH A COMPRESSED RANDOM MAGNETIC FIELD
Cawthorne, T. V.; Hughes, P. A.
2013-07-01
This paper examines the radiative transfer of synchrotron radiation in the presence of a magnetic field configuration resulting from the compression of a highly disordered magnetic field. It is shown that, provided Faraday rotation and circular polarization can be neglected, the radiative transfer equations for synchrotron radiation separate for this configuration, and the intensities and polarization values for sources that are uniform on large scales can be found straightforwardly in the case where opacity is significant. Although the emission and absorption coefficients must, in general, be obtained numerically, the process is much simpler than a full numerical solution to the transfer equations. Some illustrative results are given and an interesting effect, whereby the polarization increases while the magnetic field distribution becomes less strongly confined to the plane of compression, is discussed. The results are of importance for the interpretation of polarization near the edges of lobes in radio galaxies and of bright features in the parsec-scale jets of active galactic nuclei, where such magnetic field configurations are believed to exist.
Spin polarization transfer in exclusive phi electroproduction
NASA Astrophysics Data System (ADS)
Rakness, Gregory Leif
The helicity structure of the diffractive reaction γ* + A --> f + A was studied with f mesons produced by longitudinally polarized positrons scattering from nuclear targets. By moment analysis of the distributions of data in the azimuthal production angle and two f --> K+K -decay angles, values for the elements of the spin-density matrix of the f meson were measured. As the helicity structure of the photon is known from the theory of Quantum Electrodynamics, the target contribution to the helicity of the f meson can be inferred. The data indicate that the f meson preserves the helicity of the photon in the kinematic range of this experiment, with the magnitude of the helicity preserving amplitude measured to be |T11| = 1.28 +/- 0.05 and the magnitude of the largest helicity changing amplitude measured to be | T1-1| = 0.36 +/- 0.14. The predictions of a 2g exchange model based on perturbative Quantum Chromodynamics are compared to the data, and found not to agree with the observed matrix elements. With the observation that the helicity of the photon is preserved by the f , the ratio of the longitudinal to transverse polarized photoproduction cross sections for the f meson, Rf = σL /σT, can be computed from the measured longitudinal polarization of the f . The data are combined with previous published data, and fit to the parameterization Rf = (0.38 +/- 0.04) (Q2/ M2f )0.87+/-012, in approximate agreement with the Vector Meson Dominance model of the photon. The results are compared with the results for the ρ0 vector meson.
Millimeter wave radiative transfer studies for precipitation measurements
NASA Technical Reports Server (NTRS)
Vivekanandan, J.; Evans, Frank
1989-01-01
Scattering calculations using the discrete dipole approximation and vector radiative transfer calculations were performed to model multiparameter radar return and passive microwave emission for a simple model of a winter storm. The issue of dendrite riming was addressed by computing scattering properties of thin ice disks with varying bulk density. It was shown that C-band multiparameter radar contains information about particle density and the number concentration of the ice particles. The radiative transfer modeling indicated that polarized multifrequency passive microwave emission may be used to infer some properties of ice hydrometers. Detailed radar modeling and vector radiative transfer modeling is in progress to enhance the understanding of simultaneous radar and radiometer measurements, as in the case of the proposed TRMM field program. A one-dimensional cloud model will be used to simulate the storm structure in detail and study the microphysics, such as size and density. Multifrequency polarized radiometer measurements from the SSMI satellite instrument will be analyzed in relation to dual-frequency and dual-polarization radar measurements.
Spin polarization transfer by the radical pair mechanism
Zarea, Mehdi Ratner, Mark A.; Wasielewski, Michael R.
2015-08-07
In a three-site representation, we study a spin polarization transfer from radical pair spins to a nearby electron or nuclear spin. The quantum dynamics of the radical pair spins is governed by a constant exchange interaction between the radical pair spins which have different Zeeman frequencies. Radical pair spins can recombine to the singlet ground state or to lower energy triplet states. It is then shown that the coherent dynamics of the radical pair induces spin polarization on the nearby third spin in the presence of a magnetic field. The spin polarization transfer depends on the difference between Zeeman frequencies, the singlet and triplet recombination rates, and on the exchange and dipole-dipole interactions between the different spins. In particular, the sign of the polarization depends on the exchange coupling between radical pair spins and also on the difference between singlet and triplet recombination rate constants.
Methods of studying polarization of variable star radiation
NASA Technical Reports Server (NTRS)
Shakhovskoy, N. M.
1973-01-01
Polarized light from variable stars can be used to determine radiation intensity and wavelength. Various types of polarization analyzers are discussed (single-beam and double-beam) as well as their modes of use (continuous and discrete). Modulation of polarizers and determination of measurement accuracy are also covered.
Radiation heat transfer shapefactors for combustion systems
NASA Technical Reports Server (NTRS)
Emery, A. F.; Johansson, O.; Abrous, A.
1987-01-01
The computation of radiation heat transfer through absorbing media is commonly done through the zoning method which relies upon values of the geometric mean transmittance and absorptance. The computation of these values is difficult and expensive, particularly if many spectral bands are used. This paper describes the extension of a scan line algorithm, based upon surface-surface radiation, to the computation of surface-gas and gas-gas radiation transmittances.
Radiative Transfer In Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Beloborodov, Andrei
We propose to develop state-of-the-art numerical tools for radiative transfer calculations in gamma-ray bursts (GRBs). We will investigate two problems: (1) Production and heating of photons at the early (opaque) stage of the explosion, which controls the brightness and spectral shape of the jet photospheric emission. (2) Transfer of GRB radiation through the external blast wave. Our recent results suggest that this transfer generates the GeV flash observed in GRBs, providing key information on the explosion and its progenitor. We will test our models against observations.
Discrete Space Theory of Radiative Transfer: Application
NASA Astrophysics Data System (ADS)
Rao, M. Srinivasa
2010-06-01
The method of obtaining the solution of radiative transfer equation using discrete space theory (DST) is described with (1) interaction principle for different geometries (2) star product (3) calculation of radiation field at internal points. Some of the important steps to obtain the solution of radiative transfer equation in spherical symmetry are also mentioned. Applications of DST are discussed with their results in two cases (a) study of reflection effect in close binary systems and (b) to compute KI 769.9 nm emission line profiles from N-type stars.
Discrete Space Theory of Radiative Transfer: Application
NASA Astrophysics Data System (ADS)
Rao, M. Srinivasa
The method of obtaining the solution of radiative transfer equation using discrete space theory (DST) is described with (1) interaction principle for different geometries (2) star product (3) calculation of radiation field at internal points. Some of the important steps to obtain the solution of radiative transfer equation in spherical symmetry are also mentioned. Applications of DST are discussed with their results in two cases (a) study of reflection effect in close binary systems and (b) to compute KI 769.9 nm emission line profiles from N-type stars.
PRESTO polarization transfer to quadrupolar nuclei: Implications for dynamic nuclear polarization
Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek
2015-08-04
In this study, we show both experimentally and numerically on a series of model systems that in experiments involving transfer of magnetization from 1H to the quadrupolar nuclei under magic-angle-spinning (MAS), the PRESTO technique consistently outperforms traditionally used cross polarization (CP), affording more quantitative intensities, improved lineshapes, better overall sensitivity, and straightforward optimization. This advantage derives from the fact that PRESTO circumvents the convoluted and uncooperative spin dynamics during the CP transfer under MAS, by replacing the spin-locking of quadrupolar nuclei with a single central transition selective 90° pulse and using a symmetry-based recoupling sequence in the 1H channel. Thismore » is important in the context of dynamic nuclear polarization (DNP) NMR of quadrupolar nuclei, where the efficient transfer of enhanced 1H polarization is desired to obtain the highest sensitivity.« less
PRESTO polarization transfer to quadrupolar nuclei: Implications for dynamic nuclear polarization
Perras, Frederic A.; Kobayashi, Takeshi; Pruski, Marek
2015-08-04
In this study, we show both experimentally and numerically on a series of model systems that in experiments involving transfer of magnetization from ^{1}H to the quadrupolar nuclei under magic-angle-spinning (MAS), the PRESTO technique consistently outperforms traditionally used cross polarization (CP), affording more quantitative intensities, improved lineshapes, better overall sensitivity, and straightforward optimization. This advantage derives from the fact that PRESTO circumvents the convoluted and uncooperative spin dynamics during the CP transfer under MAS, by replacing the spin-locking of quadrupolar nuclei with a single central transition selective 90° pulse and using a symmetry-based recoupling sequence in the ^{1}H channel. This is important in the context of dynamic nuclear polarization (DNP) NMR of quadrupolar nuclei, where the efficient transfer of enhanced ^{1}H polarization is desired to obtain the highest sensitivity.
PRESTO polarization transfer to quadrupolar nuclei: implications for dynamic nuclear polarization.
Perras, Frédéric A; Kobayashi, Takeshi; Pruski, Marek
2015-09-21
We show both experimentally and numerically on a series of model systems that in experiments involving transfer of magnetization from (1)H to the quadrupolar nuclei under magic-angle-spinning (MAS), the PRESTO technique consistently outperforms traditionally used cross polarization (CP), affording more quantitative intensities, improved lineshapes, better overall sensitivity, and straightforward optimization. This advantage derives from the fact that PRESTO circumvents the convoluted and uncooperative spin dynamics during the CP transfer under MAS, by replacing the spin-locking of quadrupolar nuclei with a single central transition selective 90° pulse and using a symmetry-based recoupling sequence in the (1)H channel. This is of particular importance in the context of dynamic nuclear polarization (DNP) NMR of quadrupolar nuclei, where the efficient transfer of enhanced (1)H polarization is desired to obtain the highest sensitivity. PMID:26266874
Spectrally Invariant Approximation within Atmospheric Radiative Transfer
NASA Technical Reports Server (NTRS)
Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.
2011-01-01
Certain algebraic combinations of single scattering albedo and solar radiation reflected from, or transmitted through, vegetation canopies do not vary with wavelength. These spectrally invariant relationships are the consequence of wavelength independence of the extinction coefficient and scattering phase function in vegetation. In general, this wavelength independence does not hold in the atmosphere, but in cloud-dominated atmospheres the total extinction and total scattering phase function vary only weakly with wavelength. This paper identifies the atmospheric conditions under which the spectrally invariant approximation can accurately describe the extinction and scattering properties of cloudy atmospheres. The validity of the assumptions and the accuracy of the approximation are tested with 1D radiative transfer calculations using publicly available radiative transfer models: Discrete Ordinate Radiative Transfer (DISORT) and Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). It is shown for cloudy atmospheres with cloud optical depth above 3, and for spectral intervals that exclude strong water vapor absorption, that the spectrally invariant relationships found in vegetation canopy radiative transfer are valid to better than 5%. The physics behind this phenomenon, its mathematical basis, and possible applications to remote sensing and climate are discussed.
Nonaxisymmetric radiative transfer in cylindrical enclosures
Moder, J.P.; Lee, H.S.; Chai, J.C.; Parthasarathy, G.; Patankar, S.V.
1996-12-31
A finite-volume method for radiative transfer in cylindrical enclosures is presented. Angular redistribution terms in the equation of transfer are avoided by defining radiation directions in terms of angular coordinates measured with respect to Cartesian base vectors; this definition of radiation directions can result in control angles which overlap control-volume faces, depending on the type of spatial and angular grids used in the azimuthal direction. A simple treatment for such control-angle overlaps is presented which is also applicable to nonorthogonal curvilinear spatial-coordinates. A comparison of the present procedure with other similar methods is given. Solutions are presented for axisymmetric transfer through a cylinder and nonaxisymmetric transfer through two- and three-dimensional annular sectors. Results show that the procedure produces reasonable solutions for transparent and participating media in axisymmetric and nonaxisymmetric cylindrical enclosures.
Transient radiative transfer through scattering absorbing media
Mitra, K.; Kumar, S.
1996-12-31
This paper outlines the formulation of the different methods for determining transient radiative transfer through scattering absorbing media. A boundary driven radiative problem is considered in a one-dimensional plane-parallel slab. The different methods of solving the transient radiative transfer equation include the P{sub 1}, P{sub 3}, and P{sub 5} approximations, two-flux method, and eight, twelve and sixteen discrete ordinates methods. In addition, the general transient radiative transfer equation is also solved by direct numerical integration without any simplifying assumptions. Different orders of approximation for the phase function are considered as is a parametric analysis of the different parameters such as the scattering albedo and optical depth is performed. The propagation speed obtained and the magnitude of the transmitted and back-scattered fluxes for different models obtained are a function of the approximation used to represent the intensity distribution.
Three-Dimensional Radiative Transfer on a Massively Parallel Computer.
NASA Astrophysics Data System (ADS)
Vath, Horst Michael
1994-01-01
We perform three-dimensional radiative transfer calculations on the MasPar MP-1, which contains 8192 processors and is a single instruction multiple data (SIMD) machine, an example of the new generation of massively parallel computers. To make radiative transfer calculations efficient, we must re-consider the numerical methods and methods of storage of data that have been used with serial machines. We developed a numerical code which efficiently calculates images and spectra of astrophysical systems as seen from different viewing directions and at different wavelengths. We use this code to examine a number of different astrophysical systems. First we image the HI distribution of model galaxies. Then we investigate the galaxy NGC 5055, which displays a radial asymmetry in its optical appearance. This can be explained by the presence of dust in the outer HI disk far beyond the optical disk. As the formation of dust is connected to the presence of stars, the existence of dust in outer regions of this galaxy could have consequences for star formation at a time when this galaxy was just forming. Next we use the code for polarized radiative transfer. We first discuss the numerical computation of the required cyclotron opacities and use them to calculate spectra of AM Her systems, binaries containing accreting magnetic white dwarfs. Then we obtain spectra of an extended polar cap. Previous calculations did not consider the three -dimensional extension of the shock. We find that this results in a significant underestimate of the radiation emitted in the shock. Next we calculate the spectrum of the intermediate polar RE 0751+14. For this system we obtain a magnetic field of ~10 MG, which has consequences for the evolution of intermediate polars. Finally we perform 3D radiative transfer in NLTE in the two-level atom approximation. To solve the transfer equation in this case, we adapt the short characteristic method and examine different acceleration methods to obtain the
Lattice Boltzmann method for one-dimensional vector radiative transfer.
Zhang, Yong; Yi, Hongliang; Tan, Heping
2016-02-01
A one-dimensional vector radiative transfer (VRT) model based on lattice Boltzmann method (LBM) that considers polarization using four Stokes parameters is developed. The angular space is discretized by the discrete-ordinates approach, and the spatial discretization is conducted by LBM. LBM has such attractive properties as simple calculation procedure, straightforward and efficient handing of boundary conditions, and capability of stable and accurate simulation. To validate the performance of LBM for vector radiative transfer, four various test problems are examined. The first case investigates the non-scattering thermal-emitting atmosphere with no external collimated solar. For the other three cases, the external collimated solar and three different scattering types are considered. Particularly, the LBM is extended to solve VRT in the atmospheric aerosol system where the scattering function contains singularities and the hemisphere space distributions for the Stokes vector are presented and discussed. The accuracy and computational efficiency of this algorithm are discussed. Numerical results show that the LBM is accurate, flexible and effective to solve one-dimensional polarized radiative transfer problems. PMID:26906779
Session on modeling of radiative transfer processes
NASA Technical Reports Server (NTRS)
Flatau, Piotr
1993-01-01
The session on modeling of radiative transfer processes is reviewed. Six critical issues surfaced in the discussion concerning scale-interactive radiative processes relevent to the mesoscale convective systems (MCS's). These issues are the need to expand basic knowledge of how MCS's influence climate through extensive cloud shields and increased humidity in the upper troposphere; to improve radiation parameterizations used in mesoscale and General Circulation Model (GCM) models; to improve our basic understanding of the influence of radiation on MCS dynamics due to diabatic heating, production of condensate, and vertical and horizontal heat fluxes; to quantify our understanding of radiative impacts of MCS's on the surface and free atmosphere energy budgets; to quantify and identify radiative and microphysical processes important in the evolution of MCS's; and to improve the capability to remotely sense MCS radiative properties from space and ground-based systems.
NASA Astrophysics Data System (ADS)
Sen, K. K., Wilson, S. J.
The advancement of observational techniques over the years has led to the discovery of a large number of stars exhibiting complex spectral structures, thus necessitating the search for new techniques and methods to study radiative transfer in such stars with moving envelopes. This led to the introduction of the concept of "photon escape probability" and the wisdom of expressing the transfer equations in "comoving frames" (CMF). Radiative transfer problems in spherically moving media form a branch of mathematical physics which uses mathematics of a very distinctive kind. Radiative Transfer in Moving Media records the basic mathematical methodologies, both analytical and numerical, developed for solving radiation transfer problems in spherically symmetric moving media, in the consideration of macroscopic velocity fields only. Part I contains the basic notions of radiation-matter interaction in participating media and constructs the relevant transfer equations to be solved in the subsequent chapters. Part II considers the basic mathematical methods for solving the transfer problems in extensive moving atmospheres when it is observed in the lab frame. Part III introduces the analytical and numerical methods for solving radiative transfer problems in spherically symmetric moving atmospheres when expressed in the comoving frame. This book is addressed to graduate students and researchers in Astrophysics, in particular to those studying radiative transfer in stellar atmospheres.
NASA Astrophysics Data System (ADS)
Niibe, Masahito; Mukai, Mikihito; Kimura, Hiroaki; Shoji, Yoshihiko
2004-05-01
A rotating analyzer ellipsometry (RAE) system was developed with Cr/C multilayers that function as polarization elements for photon energy range of 110 - 280 eV. Polarization properties of a planar undulator change axisymmetrically in off-axial manner, and the second harmonic is more remarkable for the change. By using the RAE system, the polarization property of the second harmonic radiation from the NewSUBARU long undulator at the energy of 180 eV was examined. The degree of linear polarization of the on-axis radiation was over 0.996. The spatial distribution of the polarization azimuth was measured and was in fair agreement with the theoretical calculation. A peculiar behavior of the polarization property near the radiation peak of the second harmonic was observed by changing the height of the undulator gap.
Niibe, Masahito; Mukai, Mikihito; Shoji, Yoshihiko; Kimura, Hiroaki
2004-05-12
A rotating analyzer ellipsometry (RAE) system was developed with Cr/C multilayers that function as polarization elements for photon energy range of 110 - 280 eV. Polarization properties of a planar undulator change axisymmetrically in off-axial manner, and the second harmonic is more remarkable for the change. By using the RAE system, the polarization property of the second harmonic radiation from the NewSUBARU long undulator at the energy of 180 eV was examined. The degree of linear polarization of the on-axis radiation was over 0.996. The spatial distribution of the polarization azimuth was measured and was in fair agreement with the theoretical calculation. A peculiar behavior of the polarization property near the radiation peak of the second harmonic was observed by changing the height of the undulator gap.
Circularly polarized synchrotron radiation from the crossed undulator at BESSY
Bahrdt, J.; Gaupp, A.; Gudat, W.; Mast, M.; Molter, K.; Peatman, W.B.; Scheer, M.; Schroeter, T.; Wang, C. , Lentzeallee 100, D-1000 Berlin 33 )
1992-01-01
The first experimental results from a double undulator with crossed magnetic fields for producing circularly polarized synchrotron radiation in the vacuum ultraviolet-soft x-ray range are presented. The observed variation of the extent of circularly polarized radiation with photon energy is discussed. A strong dependence of the state and degree of polarization on the exact details of the tuning of the two undulators and the monochromator is observed. This probably accounts for the measured degree of polarization being smaller than theoretically expected.
NASA Technical Reports Server (NTRS)
Dennison, B. K.
1976-01-01
The gravitational field is probed in a search for polarization dependence in the light bending. This involves searching for a splitting of a source image into orthogonal polarizations as the radiation passes through the solar gravitational field. This search was carried out using the techniques of very long and intermediate baseline interferometry, and by seeking a relative phase delay in orthogonal polarizations of microwaves passing through the solar gravitational field. In this last technique a change in the total polarization of the Helios 1 carrier wave was sought as the spacecraft passed behind the sun. No polarization splitting was detected.
Di Giuseppe, Graziano; Cervia, Davide; Vallesi, Adriana
2012-02-01
Ultraviolet (UV) radiation has detrimental effects on marine ecosystems, in particular in the polar regions where stratospheric ozone reduction causes higher levels of solar radiation. We analyzed two polar species of Euplotes, Euplotes focardii and Euplotes nobilii, for the sensitivity to UV radiation in comparison with two akin species from mid-latitude and tropical waters. Results showed that they face UV radiation much more efficiently than the non-polar species by adopting alternative strategies that most likely reflect different times of colonization of the polar waters. While E. focardii, which is endemic to the Antarctic, survives for longer exposed to UV radiation, E. nobilii, which inhabits both the Antarctic and Arctic, recovers faster from UV-induced damage. PMID:21904954
Arabidopsis thalianafrom Polarization Transfer Solid-State NMR
White, Paul B; Wang, Tuo; Park, Yong Bum; Cosgrove, Daniel J; Hong, Mei
2014-07-23
Polysaccharide-rich plant cell walls are hydrated under functional conditions, but the molecular interactions between water and polysaccharides in the wall have not been investigated. In this work, we employ polarization transfer solid-state NMR techniques to study the hydration of primary-wall polysaccharides of the model plant, Arabidopsis thaliana. By transferring water 1H polarization to polysaccharides through distance- and mobility-dependent 1H–1H dipolar couplings and detecting it through polysaccharide 13C signals, we obtain information about water proximity to cellulose, hemicellulose, and pectins as well as water mobility. Both intact and partially extracted cell wall samples are studied. Our results show that water–pectin polarization transfer is much faster than water–cellulose polarization transfer in all samples, but the extent of extraction has a profound impact on the water–polysaccharide spin diffusion. Removal of calcium ions and the consequent extraction of homogalacturonan (HG) significantly slowed down spin diffusion, while further extraction of matrix polysaccharides restored the spin diffusion rate. These trends are observed in cell walls with similar water content, thus they reflect inherent differences in the mobility and spatial distribution of water. Combined with quantitative analysis of the polysaccharide contents, our results indicate that calcium ions and HG gelation increase the amount of bound water, which facilitates spin diffusion, while calcium removal disrupts the gel and gives rise to highly dynamic water, which slows down spin diffusion. The recovery of spin diffusion rates after more extensive extraction is attributed to increased water-exposed surface areas of the polysaccharides. Water–pectin spin diffusion precedes water–cellulose spin diffusion, lending support to the single-network model of plant primary walls in which a substantial fraction of the cellulose surface is surrounded by pectins.
Radiation-induced hydrogen transfer in metals
NASA Astrophysics Data System (ADS)
Tyurin, Yu I.; Vlasov, V. A.; Dolgov, A. S.
2015-11-01
The paper presents processes of hydrogen (deuterium) diffusion and release from hydrogen-saturated condensed matters in atomic, molecular and ionized states under the influence of the electron beam and X-ray radiation in the pre-threshold region. The dependence is described between the hydrogen isotope release intensity and the current density and the electron beam energy affecting sample, hydrogen concentration in the material volume and time of radiation exposure to the sample. The energy distribution of the emitted positive ions of hydrogen isotopes is investigated herein. Mechanisms of radiation-induced hydrogen transfer in condensed matters are suggested.
2-DUST: Dust radiative transfer code
NASA Astrophysics Data System (ADS)
Ueta, Toshiya; Meixner, Margaret
2016-04-01
2-DUST is a general-purpose dust radiative transfer code for an axisymmetric system that reveals the global energetics of dust grains in the shell and the 2-D projected morphologies of the shell that are strongly dependent on the mixed effects of the axisymmetric dust distribution and inclination angle. It can be used to model a variety of axisymmetric astronomical dust systems.
NASA Technical Reports Server (NTRS)
Kattawar, G. W.; Plass, G. N.; Hitzfelder, S. J.
1975-01-01
The complete radiation field is calculated for scattering layers of various optical thicknesses. Results obtained for Rayleigh and haze scattering are compared. Calculated radiances show differences as large as 23% compared to the approximate scalar theory of radiative transfer, while the same differences are approximately 0.1% for a continental haze phase function. The polarization of reflected and transmitted radiation is given for various optical thicknesses, solar zenith angles, and surface albedos. Two types of neutral points occur for aerosol phase functions. Rayleigh-like neutral points arise from zero polarization that occurs at scattering angles of 0 deg and 180 deg. For Rayleigh phase functions, the position of these points varies with the optical thickness of the scattering layer. Non-Rayleigh neutral points are associated with the zeros of polarization which occur between the end points of the single scattering curve, and are found over a wide range of azimuthal angles.
CIRCULAR POLARIZATION IN PULSARS DUE TO CURVATURE RADIATION
Gangadhara, R. T.
2010-02-10
The beamed radio emission from relativistic plasma (particles or bunches), constrained to move along the curved trajectories, occurs in the direction of velocity. We have generalized the coherent curvature radiation model to include the detailed geometry of the emission region in pulsar magnetosphere and deduced the polarization state in terms of Stokes parameters. By considering both the uniform and modulated emissions, we have simulated a few typical pulse profiles. The antisymmetric type of circular polarization survives only when there is modulation or discrete distribution in the emitting sources. Our model predicts a correlation between the polarization angle swing and sign reversal of circular polarization as a geometric property of the emission process.
Min, Hlaing; Sekar, Giridhar; Hilty, Christian
2015-09-01
Nuclear magnetic resonance (NMR) spectroscopy is a valuable technique for ligand screening, because it exhibits high specificity toward chemical structure and interactions. Dissolution dynamic nuclear polarization (DNP) is a recent advance in NMR methodology that enables the creation of non-equilibrium spin states, which can dramatically increase NMR sensitivity. Here, the transfer of such spin polarization from hyperpolarized ligand to protein is observed. Mixing hyperpolarized benzamidine with the serine protease trypsin, a "fingerprint" of enhanced protein signals is observed, which shows a different intensity profile than the equilibrium NMR spectrum of the protein, but coincides closely to the frequency profile of a saturation transfer difference (STD) NMR experiment. The DNP experiment benefits from hyperpolarization and enables observation of all frequencies in a single, rapid experiment. Based on these merits, it is an interesting alternative to the widely used STD experiment for identification of protein-ligand interactions. PMID:26315550
CRASH3: cosmological radiative transfer through metals
NASA Astrophysics Data System (ADS)
Graziani, L.; Maselli, A.; Ciardi, B.
2013-05-01
Here we introduce CRASH3, the latest release of the 3D radiative transfer code CRASH. In its current implementation, CRASH3 integrates into the reference algorithm the code CLOUDY to evaluate the ionization states of metals, self-consistently with the radiative transfer through H and He. The feedback of the heavy elements on the calculation of the gas temperature is also taken into account, making CRASH3 the first 3D code for cosmological applications which treats self-consistently the radiative transfer through an inhomogeneous distribution of metal-enriched gas with an arbitrary number of point sources and/or a background radiation. The code has been tested in idealized configurations, as well as in a more realistic case of multiple sources embedded in a polluted cosmic web. Through these validation tests, the new method has been proven to be numerically stable and convergent. We have studied the dependence of the results on a number of physical quantities such as the source characteristics (spectral range and shape, intensity), the metal composition, the gas number density and metallicity.
Infrared radiative energy transfer in gaseous systems
NASA Technical Reports Server (NTRS)
Tiwari, Surendra N.
1991-01-01
Analyses and numerical procedures are presented to investigate the radiative interactions in various energy transfer processes in gaseous systems. Both gray and non-gray radiative formulations for absorption and emission by molecular gases are presented. The gray gas formulations are based on the Planck mean absorption coefficient and the non-gray formulations are based on the wide band model correlations for molecular absorption. Various relations for the radiative flux and divergence of radiative flux are developed. These are useful for different flow conditions and physical problems. Specific plans for obtaining extensive results for different cases are presented. The procedure developed was applied to several realistic problems. Results of selected studies are presented.
Radiation measurements from polar and geosynchronous satellites
NASA Technical Reports Server (NTRS)
Vonderhaar, T. H.
1976-01-01
Towards understanding the role of radiation in the dynamics of climate, a climatology of radiation budget data has been compiled and several aspects of the problem are under study: (1) minimum albedoes; (2) diurnal variation in cloudiness and the radiation budget; (3) the partitioning of energy loss to space between land, ice, ocean and atmosphere; and (4) the effects of clouds on the radiation budget. Oceanic precipitation using Nimbus 5 microwave data, and a new study of mesoscale applications of satellite infrared temperature and moisture soundings are also described.
The Cosmic Microwave Background Radiation and its Polarization
NASA Astrophysics Data System (ADS)
Wollack, Edward
2016-03-01
The cosmic microwave background (CMB) radiation and its faint polarization have provided a unique means to constrain the physical state of the early Universe. Continued advances in instrumentation, observation, and analysis have revealed polarized radiation signatures associated with gravitational lensing and have heightened the prospects for using precision polarimetry to experimentally confront the inflationary paradigm. Characterization of this relic radiation field has the power to constrain or reveal the detailed properties of astroparticle species and long wave gravitational radiation. On going and planned CMB polarization efforts from the ground, balloon, and space borne platforms will be briefly surveyed. Recent community activities by the Inflation Probe Science Interest Group (IPSIG) will also be summarized. NASA PCOS mini-symposium (invited IPSIG talk).
RRTM: A rapid radiative transfer model
Mlawer, E.J.; Taubman, S.J.; Clough, S.A.
1996-04-01
A rapid radiative transfer model (RRTM) for the calculation of longwave clear-sky fluxes and cooling rates has been developed. The model, which uses the correlated-k method, is both accurate and computationally fast. The foundation for RRTM is the line-by-line radiative transfer model (LBLRTM) from which the relevant k-distributions are obtained. LBLRTM, which has been extensively validated against spectral observations e.g., the high-resolution sounder and the Atmospheric Emitted Radiance Interferometer, is used to validate the flux and cooling rate results from RRTM. Validations of RRTM`s results have been performed for the tropical, midlatitude summer, and midlatitude winter atmospheres, as well as for the four Intercomparison of Radiation Codes in Climate Models (ICRCCM) cases from the Spectral Radiance Experiment (SPECTRE). Details of some of these validations are presented below. RRTM has the identical atmospheric input module as LBLRTM, facilitating intercomparisons with LBLRTM and application of the model at the Atmospheric Radiation Measurement Cloud and Radiation Testbed sites.
Modeling of Radiative Transfer in Protostellar Disks
NASA Technical Reports Server (NTRS)
VonAllmen, Paul; Turner, Neal
2007-01-01
This program implements a spectral line, radiative transfer tool for interpreting Spitzer Space Telescope observations by matching them with models of protostellar disks for improved understanding of planet and star formation. The Spitzer Space Telescope detects gas phase molecules in the infrared spectra of protostellar disks, with spectral lines carrying information on the chemical composition of the material from which planets form. Input to the software includes chemical models developed at JPL. The products are synthetic images and spectra for comparison with Spitzer measurements. Radiative transfer in a protostellar disk is primarily affected by absorption and emission processes in the dust and in molecular gases such as H2, CO, and HCO. The magnitude of the optical absorption and emission is determined by the population of the electronic, vibrational, and rotational energy levels. The population of the molecular level is in turn determined by the intensity of the radiation field. Therefore, the intensity of the radiation field and the population of the molecular levels are inter-dependent quantities. To meet the computational challenges of solving for the coupled radiation field and electronic level populations in disks having wide ranges of optical depths and spatial scales, the tool runs in parallel on the JPL Dell Cluster supercomputer with C++ and Fortran compiler with a Message Passing Interface. Because this software has been developed on a distributed computing platform, the modeling of systems previously beyond the reach of available computational resources is possible.
Lactational transfer of mercury and polychlorinated biphenyls in polar bears.
Knott, Katrina K; Boyd, Daryle; Ylitalo, Gina M; O'Hara, Todd M
2012-07-01
We examined concentrations of total mercury (tHg, inorganic and methylated forms) and polychlorinated biphenyls (PCBs) in blood and milk from free-ranging Southern Beaufort-Chukchi Sea polar bears (Ursus maritimus) to assess maternal transfer of contaminants during lactation and the potential health risk to nursing young. Concentrations of contaminants in the blood of dependent and juvenile animals (ages 1-5 years) ranged from 35.9 to 52.2 μg kg(-1) ww for tHg and 13.9 to 52.2 μg kg(-1) ww (3255.81-11067.79 μg kg(-1) lw) for ΣPCB(7)s, similar to those of adult females, but greater than adult males. Contaminant concentrations in milk ranged from 5.7 to 71.8 μg tHg kg(-1)ww and 160 to 690 μg ΣPCB(11)s kg(-1) ww (547-5190 μg kg(-1) lw). The daily intake levels for tHg by milk consumption estimated for dependent young were below the tolerable daily intake level (TDIL) of tHg established for adult humans. Although the daily intake levels of PCBs through milk consumption for cubs of the year exceeded the TDIL thresholds, calculated dioxin equivalents for PCBs in milk were below adverse physiological thresholds for aquatic mammals. Relatively high concentrations of non-dioxin like PCBs in polar bear milk and blood could impact endocrine function of Southern Beaufort-Chukchi Sea polar bears, but this is uncertain. Transfer of contaminants during mid to late lactation likely limits bioaccumulation of dietary contaminants in female polar bears during spring. As polar bears respond to changes in their arctic sea ice habitat, the adverse health impacts associated with nutritional stress may be exacerbated by tHg and PCBs exposure, especially in ecologically and toxicologically sensitive polar bear cohorts such as reproductive females and young. PMID:22464860
Ou, S C; Liou, K N; Takano, Y; Wong, E; Hutchison, K; Samec, T
2005-10-10
To support the verification and implementation of the National Polar-Orbiting Operational Environmental Satellite System's Visible-Infrared Imaging-Radiometric Suite (VIIRS) algorithms used for inferring cloud environmental data records, an intercomparison effort has been carried out to assess the consistency between the simulated cloudy radiances-reflectances from the University of California at Los Angeles Line-by-Line Equivalent Radiative Transfer Model and those from the Moderate-Resolution Transmission Model (MODTRAN) with the 16 stream Discrete Ordinate Radiative Transfer Model (DISORT) incorporated. For typical ice and water cloud optical depths and particle sizes, we found discrepancies in the visible and near-infrared reflectances from the two models, which presumably are due to the difference in phase function (nonspherical versus Henyey-Greenstein), different numbers of phase function expansion terms (16 versus 200 terms), and different treatment of forward peak truncation in each model. Using the MODTRAN4, we also found substantial differences in the infrared radiances for optically thick clouds. These differences led to the discovery by MODTRAN4 developers of an inconsistency in the MODTRAN4-DISORT interface. MODTRAN4 developers corrected the inconsistency, which provided dramatic reductions in the differences between the two radiative transfer models. The comparison not only affects the prospective test plan for the VIIRS cloud algorithms but also should lead to improvements in future MODTRAN releases. PMID:16237946
Introductory Tools for Radiative Transfer Models
NASA Astrophysics Data System (ADS)
Feldman, D.; Kuai, L.; Natraj, V.; Yung, Y.
2006-12-01
Satellite data are currently so voluminous that, despite their unprecedented quality and potential for scientific application, only a small fraction is analyzed due to two factors: researchers' computational constraints and a relatively small number of researchers actively utilizing the data. Ultimately it is hoped that the terabytes of unanalyzed data being archived can receive scientific scrutiny but this will require a popularization of the methods associated with the analysis. Since a large portion of complexity is associated with the proper implementation of the radiative transfer model, it is reasonable and appropriate to make the model as accessible as possible to general audiences. Unfortunately, the algorithmic and conceptual details that are necessary for state-of-the-art analysis also tend to frustrate the accessibility for those new to remote sensing. Several efforts have been made to have web- based radiative transfer calculations, and these are useful for limited calculations, but analysis of more than a few spectra requires the utilization of home- or server-based computing resources. We present a system that is designed to allow for easier access to radiative transfer models with implementation on a home computing platform in the hopes that this system can be utilized in and expanded upon in advanced high school and introductory college settings. This learning-by-doing process is aided through the use of several powerful tools. The first is a wikipedia-style introduction to the salient features of radiative transfer that references the seminal works in the field and refers to more complicated calculations and algorithms sparingly5. The second feature is a technical forum, commonly referred to as a tiki-wiki, that addresses technical and conceptual questions through public postings, private messages, and a ranked searching routine. Together, these tools may be able to facilitate greater interest in the field of remote sensing.
ASIMUT on line radiative transfer code
NASA Astrophysics Data System (ADS)
Vandaele, A. C.; Neary, L.; Robert, S.; Letocart, V.; Giuranna, M.; Kasaba, Y.
2015-10-01
The CROSS DRIVE project aims to develop an innovative collaborative workspace infrastructure for space missions that will allow distributed scientific and engineering teams to collectively analyse and interpret scientific data as well as execute operations of planetary spacecraft. ASIMUT will be one of the tools that will be made available to the users. Here we describe this radiative transfer code and how it will be integrated into the virtual environment developed within CROSS DRIVE.
Enhancing radiative energy transfer through thermal extraction
NASA Astrophysics Data System (ADS)
Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu
2016-06-01
Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal
Elliptically polarized terahertz radiation from a chiral oxide
Takeda, R.; Kida, N. Sotome, M.; Okamoto, H.
2015-09-28
Polarization control of terahertz wave is a challenging subject in terahertz science and technology. Here, we report a simple method to control polarization state of the terahertz wave in terahertz generation process. At room temperature, terahertz radiation from a noncentrosymmetric and chiral oxide, sillenite Bi{sub 12}GeO{sub 20}, is observed by the irradiation of linearly polarized femtosecond laser pulses at 800 nm. The polarization state of the emitted terahertz wave is found to be elliptic with an ellipticity of ∼0.37 ± 0.10. Furthermore, the ellipticity was altered to a nearly zero (∼0.01 ± 0.01) by changing the polarization of the incident linearly polarized femtosecond laser pulses. Such a terahertz radiation characteristic is attributable to variation of the polarization state of the emitted terahertz waves, which is induced by retardation due to the velocity mismatch between the incident femtosecond laser pulse and generated terahertz wave and by the polarization tilting due to the optical activity at 800 nm.
Planar spin-transfer device with dynamical polarizer and analizer
NASA Astrophysics Data System (ADS)
Bazaliy, Yaroslaw; Kravchenko, Anton
2011-03-01
The behavior of the planar spin-transfer devices with monodomain magnetic layers can be described by the macrospin Landau-Lifshitz-Gilbert (LLG) equation with spin-transfer terms. The LLG description of a device with two layers is simplified after applying the overdamped, large easy-plane anisotropy approximation. A decrease of the magnetic layer thickness asymmetry creates a transition from the conventional polarizer-analizer (``fixed layer -- free layer'') operation regime to the regime of the nearly identical magnets. Here electric current leads to a ``Slonczewski windmill'' dynamic state, rather than producing the magnetic switching. The ``windmill'' precession state of a device with two free layers was investigated by numerical solution of the LLG equation.
Polarization in cyclotron radiation in strong magnetic fields
NASA Astrophysics Data System (ADS)
Semionova, Luidmila; Leahy, Denis; Paez, Jorge
2010-10-01
We revisit the problem of radiative transitions of electrons in the presence of a strong magnetic field. We derive fully relativistic cyclotron transition rates for an arbitrary magnetic field, for any orientation of electron spin and for any polarization of the emitted radiation. Also, we obtain the transition rates for any value of the initial electron's parallel momentum. For very strong magnetic fields, transitions to the ground state predominate. Transition rates summed over the electron's spin orientation and for unpolarized radiation are also obtained, which confirm previous results by Latal. Transition widths are calculated for different electron spin orientations and different polarizations of radiation. We obtain general expressions for transition rates that reduce to the results for the non-relativistic case and for unpolarized radiation. Additionally we get, for the non-relativistic approximation, the transition rates for any polarization of radiation. As an application, the first five emission lines are evaluated and compared to the X-ray emitting neutron star V0332+53, which has multiple observable cyclotron lines, taking into account gravitational redshift. The most probable polarization is in(2).
Polarimetric signatures of a coniferous forest canopy based on vector radiative transfer theory
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.; Amar, F.; Mougin, E.; Lopes, A.; Beaudoin, A.
1992-01-01
Complete polarization signatures of a coniferous forest canopy are studied by the iterative solution of the vector radiative transfer equations up to the second order. The forest canopy constituents (leaves, branches, stems, and trunk) are embedded in a multi-layered medium over a rough interface. The branches, stems and trunk scatterers are modeled as finite randomly oriented cylinders. The leaves are modeled as randomly oriented needles. For a plane wave exciting the canopy, the average Mueller matrix is formulated in terms of the iterative solution of the radiative transfer solution and used to determine the linearly polarized backscattering coefficients, the co-polarized and cross-polarized power returns, and the phase difference statistics. Numerical results are presented to investigate the effect of transmitting and receiving antenna configurations on the polarimetric signature of a pine forest. Comparison is made with measurements.
Radiative transfer effects in primordial hydrogen recombination
Ali-Haiemoud, Yacine; Hirata, Christopher M.; Grin, Daniel
2010-12-15
The calculation of a highly accurate cosmological recombination history has been the object of particular attention recently, as it constitutes the major theoretical uncertainty when predicting the angular power spectrum of cosmic microwave background anisotropies. Lyman transitions, in particular the Lyman-{alpha} line, have long been recognized as one of the bottlenecks of recombination, due to their very low escape probabilities. The Sobolev approximation does not describe radiative transfer in the vicinity of Lyman lines to a sufficient degree of accuracy, and several corrections have already been computed in other works. In this paper, we compute the impact of some radiative transfer effects that were previously ignored, or for which previous treatments were incomplete. First, the effect of Thomson scattering in the vicinity of the Lyman-{alpha} line is evaluated, using a full redistribution kernel incorporated into a radiative transfer code. The effect of feedback of distortions generated by the optically thick deuterium Lyman-{alpha} line blueward of the hydrogen line is investigated with an analytic approximation. It is shown that both effects are negligible during cosmological hydrogen recombination. Second, the importance of high-lying, nonoverlapping Lyman transitions is assessed. It is shown that escape from lines above Ly{gamma} and frequency diffusion in Ly{beta} and higher lines can be neglected without loss of accuracy. Third, a formalism generalizing the Sobolev approximation is developed to account for the overlap of the high-lying Lyman lines, which is shown to lead to negligible changes to the recombination history. Finally, the possibility of a cosmological hydrogen recombination maser is investigated. It is shown that there is no such maser in the purely radiative treatment presented here.
Search for Linear Polarization of the Cosmic Background Radiation
DOE R&D Accomplishments Database
Lubin, P. M.; Smoot, G. F.
1978-10-01
We present preliminary measurements of the linear polarization of the cosmic microwave background (3 deg K blackbody) radiation. These ground-based measurements are made at 9 mm wavelength. We find no evidence for linear polarization, and set an upper limit for a polarized component of 0.8 m deg K with a 95% confidence level. This implies that the present rate of expansion of the Universe is isotropic to one part in 10{sup 6}, assuming no re-ionization of the primordial plasma after recombination
Polarization Bremsstrahlung radiation on a nanosphere in a dielectric
NASA Astrophysics Data System (ADS)
Astapenko, V. A.
2011-11-01
Within the limits of a new approach based on the Mie scattering theory, polarization bremsstrahlung radiation (PBR), arising during electron scattering on a metallic nanosphere with radius from 10 to 100 nm placed in a dielectric medium is theoretically investigated. The spectral range close to the plasmon resonance is considered, where the contribution of the polarized channel to bremsstrahlung radiation dominates. Spectral, velocity, and angular PBR characteristics are calculated. The sensitivity of the PBR spectrum to the dielectric permittivity of the medium surrounding the nanosphere is demonstrated.
NASA Astrophysics Data System (ADS)
Degl'Innocenti, Egidio Landi
2015-10-01
The introductory lecture that has been delivered at this Symposium is a condensed version of an extended course held by the author at the XII Canary Island Winter School from November 13 to November 21, 2000. The full series of lectures can be found in Landi Degl'Innocenti (2002). The original reference is organized in 20 Sections that are here itemized: 1. Introduction, 2. Description of polarized radiation, 3. Polarization and optical devices: Jones calculus and Muller matrices, 4. The Fresnel equations, 5. Dichroism and anomalous dispersion, 6. Polarization in everyday life, 7. Polarization due to radiating charges, 8. The linear antenna, 9. Thomson scattering, 10. Rayleigh scattering, 11. A digression on Mie scattering, 12. Bremsstrahlung radiation, 13. Cyclotron radiation, 14. Synchrotron radiation, 15. Polarization in spectral lines, 16. Density matrix and atomic polarization, 17. Radiative transfer and statistical equilibrium equations, 18. The amplification condition in polarized radiative transfer, and 19. Coupling radiative transfer and statistical equilibrium equations.
Composite biasing in Monte Carlo radiative transfer
NASA Astrophysics Data System (ADS)
Baes, Maarten; Gordon, Karl D.; Lunttila, Tuomas; Bianchi, Simone; Camps, Peter; Juvela, Mika; Kuiper, Rolf
2016-05-01
Biasing or importance sampling is a powerful technique in Monte Carlo radiative transfer, and can be applied in different forms to increase the accuracy and efficiency of simulations. One of the drawbacks of the use of biasing is the potential introduction of large weight factors. We discuss a general strategy, composite biasing, to suppress the appearance of large weight factors. We use this composite biasing approach for two different problems faced by current state-of-the-art Monte Carlo radiative transfer codes: the generation of photon packages from multiple components, and the penetration of radiation through high optical depth barriers. In both cases, the implementation of the relevant algorithms is trivial and does not interfere with any other optimisation techniques. Through simple test models, we demonstrate the general applicability, accuracy and efficiency of the composite biasing approach. In particular, for the penetration of high optical depths, the gain in efficiency is spectacular for the specific problems that we consider: in simulations with composite path length stretching, high accuracy results are obtained even for simulations with modest numbers of photon packages, while simulations without biasing cannot reach convergence, even with a huge number of photon packages.
Accurate radiative transfer calculations for layered media.
Selden, Adrian C
2016-07-01
Simple yet accurate results for radiative transfer in layered media with discontinuous refractive index are obtained by the method of K-integrals. These are certain weighted integrals applied to the angular intensity distribution at the refracting boundaries. The radiative intensity is expressed as the sum of the asymptotic angular intensity distribution valid in the depth of the scattering medium and a transient term valid near the boundary. Integrated boundary equations are obtained, yielding simple linear equations for the intensity coefficients, enabling the angular emission intensity and the diffuse reflectance (albedo) and transmittance of the scattering layer to be calculated without solving the radiative transfer equation directly. Examples are given of half-space, slab, interface, and double-layer calculations, and extensions to multilayer systems are indicated. The K-integral method is orders of magnitude more accurate than diffusion theory and can be applied to layered scattering media with a wide range of scattering albedos, with potential applications to biomedical and ocean optics. PMID:27409700
Radiation measurements from polar and geosynchronous satellites
NASA Technical Reports Server (NTRS)
Vonderhaar, T. H.
1973-01-01
During the 1960's, radiation budget measurements from satellites have allowed quantitative study of the global energetics of our atmosphere-ocean system. A continuing program is planned, including independent measurement of the solar constant. Thus far, the measurements returned from two basically different types of satellite experiments are in agreement on the long term global scales where they are most comparable. This fact, together with independent estimates of the accuracy of measurement from each system, shows that the energy exchange between earth and space is now measured better than it can be calculated. Examples of application of the radiation budget data were shown. They can be related to the age-old problem of climate change, to the basic question of the thermal forcing of our circulation systems, and to the contemporary problems of local area energetics and computer modeling of the atmosphere.
Analysis for radiative heat transfer in a circulating fluidized bed
Steward, F.R.; Couturier, M.F.; Poolpol, S.
1995-12-31
The radiative heat transfer from the particles within a circulating fluidized bed has been determined for a number of different assumptions. Based on temperature profiles measured in an operating circulating fluidized bed burning coal, a procedure for predicting the radiative transfer from the solid particles to a cold wall is recommended. The radiative transfer from the solid particles to a cold wall makes up approximately 50% of the total heat transfer to the wall in a circulating fluidized bed combustor.
Studies of radiative transfer in planetary atmospheres
NASA Technical Reports Server (NTRS)
Irvine, W. M.; Schloerb, F. P.
1984-01-01
Progress is reported in modeling cometary emission in the 18-cm OH transition with specific application and predictions for Comet Halley. Radiative transfer is also being studied in rough and porous media. The kinematics of the cold, dark interstellar cloud Li34N were examined, and CO monitoring of Venus and Mars continues. Analysis of 3.4 mm maps of the lunar surface shows thermal anomalies associated with such surface features as the Crater Copernicus, Mare Imbrium, Mare Nubium, Mare Serenitatis, and Mare Tranquillatis.
Diffusion model for lightning radiative transfer
NASA Technical Reports Server (NTRS)
Koshak, William J.; Solakiewicz, Richard J.; Phanord, Dieudonne D.; Blakeslee, Richard J.
1994-01-01
A one-speed Boltzmann transport theory, with diffusion approximations, is applied to study the radiative transfer properties of lightning in optically thick thunderclouds. Near-infrared (lambda = 0.7774 micrometers) photons associated with a prominent oxygen emission triplet in the lightning spectrum are considered. Transient and spatially complex lightning radiation sources are placed inside a rectangular parallelepiped thundercloud geometry and the effects of multiple scattering are studied. The cloud is assumed to be composed of a homogeneous collection of identical spherical water droplets, each droplet a nearly conservative, anisotropic scatterer. Conceptually, we treat the thundercloud like a nuclear reactor, with photons replaced by neutrons, and utilize standard one-speed neutron diffusion techniques common in nuclear reactor analyses. Valid analytic results for the intensity distribution (expanded in spherical harmonics) are obtained for regions sufficiently far from sources. Model estimates of the arrival-time delay and pulse width broadening of lightning signals radiated from within the cloud are determined and the results are in good agreement with both experimental data and previous Monte Carlo estimates. Additional model studies of this kind will be used to study the general information content of cloud top lightning radiation signatures.
Electron transfer kinetics at polarized nanoscopic liquid/liquid interfaces.
Cai, Chenxin; Mirkin, Michael V
2006-01-11
Rapid kinetics of electron transfer (ET) reactions across the interface between water and 1,2-dichloroethane were measured by steady-state voltammetry at nanopipet electrodes (50- to 400-nm orifice radius). The origins of previously reported imperfect voltammetric responses of ET reactions at micropipets were investigated. Several new experimental systems were explored, and two of them yielded high-quality voltammograms suitable for kinetic experiments. The determined standard rate constants were compared to those measured previously at polarized and nonpolarized liquid/liquid interfaces. The effect of the interfacial dimensions on the magnitude of the apparent ET rate constant is discussed. A new approach to ET kinetic measurements based on the use of the scanning electrochemical microscope with a nanopipet tip and a metallic substrate has been developed and employed to check the validity of determined kinetic parameters. PMID:16390144
Spectromicroscopy Study of the Organic Molecules Utilizing Polarized Radiation
Hsu, Y.J.; Wei, D.H.; Yin, G.C.; Chung, S.C.; Hu, W.S.; Tao, Y.T.
2004-05-12
Spectromicroscopy combined with polarized synchrotron radiation is a powerful tool for imaging and characterizing the molecular properties on surface. In this work we utilized the photoemission electron microscopy (PEEM) with linear polarized radiation provided by an elliptically polarized undulator to investigate the molecular orientations of pentacene on self-assembled monolayer (SAMs) modified gold surface and to observe the cluster domain of mixed monolayers after reorganization on silver. Varying the electric vector parallel or perpendicular to the surface, the relative intensity of {pi}* and {sigma}* transition in carbon K-edge can be used to determine the orientation of the planar-shaped pentacene molecule or long carbon chain of carboxylic acids which are important for organic semiconductor.
Spectra of circularly polarized radiation from astrophysical OH masers
NASA Technical Reports Server (NTRS)
Nedoluha, Gerald E.; Watson, William D.
1990-01-01
A striking feature of astrophysical masers is the tendency for either one or the other of the circular polarizations to dominate in the radiation from the strong, widely observed masing transitions of OH at 18 cm. Spectral line profiles are calculated for polarized maser radiation due to the combined effects of a velocity gradient and, as is indicated for these transitions, a Zeeman splitting that is at least comparable with the thermal contributions to the breadths of the spectral lines. The resulting spectral features are similar in appearance, including the presence of large net circular polarization and narrow line breadths, to the commonly observed spectra of OH masers in molecular clouds. The calculations presented here are performed as a function of frequency without making the approximations of a large velocity gradient. Rapid cross relaxation, which has been advocated by others for the OH masers, is assumed.
Attosecond nonlinear polarization and light–matter energy transfer in solids
NASA Astrophysics Data System (ADS)
Sommer, A.; Bothschafter, E. M.; Sato, S. A.; Jakubeit, C.; Latka, T.; Razskazovskaya, O.; Fattahi, H.; Jobst, M.; Schweinberger, W.; Shirvanyan, V.; Yakovlev, V. S.; Kienberger, R.; Yabana, K.; Karpowicz, N.; Schultze, M.; Krausz, F.
2016-06-01
Electric-field-induced charge separation (polarization) is the most fundamental manifestation of the interaction of light with matter and a phenomenon of great technological relevance. Nonlinear optical polarization produces coherent radiation in spectral ranges inaccessible by lasers and constitutes the key to ultimate-speed signal manipulation. Terahertz techniques have provided experimental access to this important observable up to frequencies of several terahertz. Here we demonstrate that attosecond metrology extends the resolution to petahertz frequencies of visible light. Attosecond polarization spectroscopy allows measurement of the response of the electronic system of silica to strong (more than one volt per ångström) few-cycle optical (about 750 nanometres) fields. Our proof-of-concept study provides time-resolved insight into the attosecond nonlinear polarization and the light–matter energy transfer dynamics behind the optical Kerr effect and multi-photon absorption. Timing the nonlinear polarization relative to the driving laser electric field with sub-30-attosecond accuracy yields direct quantitative access to both the reversible and irreversible energy exchange between visible–infrared light and electrons. Quantitative determination of dissipation within a signal manipulation cycle of only a few femtoseconds duration (by measurement and ab initio calculation) reveals the feasibility of dielectric optical switching at clock rates above 100 terahertz. The observed sub-femtosecond rise of energy transfer from the field to the material (for a peak electric field strength exceeding 2.5 volts per ångström) in turn indicates the viability of petahertz-bandwidth metrology with a solid-state device.
Attosecond nonlinear polarization and light-matter energy transfer in solids.
Sommer, A; Bothschafter, E M; Sato, S A; Jakubeit, C; Latka, T; Razskazovskaya, O; Fattahi, H; Jobst, M; Schweinberger, W; Shirvanyan, V; Yakovlev, V S; Kienberger, R; Yabana, K; Karpowicz, N; Schultze, M; Krausz, F
2016-06-01
Electric-field-induced charge separation (polarization) is the most fundamental manifestation of the interaction of light with matter and a phenomenon of great technological relevance. Nonlinear optical polarization produces coherent radiation in spectral ranges inaccessible by lasers and constitutes the key to ultimate-speed signal manipulation. Terahertz techniques have provided experimental access to this important observable up to frequencies of several terahertz. Here we demonstrate that attosecond metrology extends the resolution to petahertz frequencies of visible light. Attosecond polarization spectroscopy allows measurement of the response of the electronic system of silica to strong (more than one volt per ångström) few-cycle optical (about 750 nanometres) fields. Our proof-of-concept study provides time-resolved insight into the attosecond nonlinear polarization and the light-matter energy transfer dynamics behind the optical Kerr effect and multi-photon absorption. Timing the nonlinear polarization relative to the driving laser electric field with sub-30-attosecond accuracy yields direct quantitative access to both the reversible and irreversible energy exchange between visible-infrared light and electrons. Quantitative determination of dissipation within a signal manipulation cycle of only a few femtoseconds duration (by measurement and ab initio calculation) reveals the feasibility of dielectric optical switching at clock rates above 100 terahertz. The observed sub-femtosecond rise of energy transfer from the field to the material (for a peak electric field strength exceeding 2.5 volts per ångström) in turn indicates the viability of petahertz-bandwidth metrology with a solid-state device. PMID:27251280
Monte Carlo Calculations of Polarized Microwave Radiation Emerging from Cloud Structures
NASA Technical Reports Server (NTRS)
Kummerow, Christian; Roberti, Laura
1998-01-01
The last decade has seen tremendous growth in cloud dynamical and microphysical models that are able to simulate storms and storm systems with very high spatial resolution, typically of the order of a few kilometers. The fairly realistic distributions of cloud and hydrometeor properties that these models generate has in turn led to a renewed interest in the three-dimensional microwave radiative transfer modeling needed to understand the effect of cloud and rainfall inhomogeneities upon microwave observations. Monte Carlo methods, and particularly backwards Monte Carlo methods have shown themselves to be very desirable due to the quick convergence of the solutions. Unfortunately, backwards Monte Carlo methods are not well suited to treat polarized radiation. This study reviews the existing Monte Carlo methods and presents a new polarized Monte Carlo radiative transfer code. The code is based on a forward scheme but uses aliasing techniques to keep the computational requirements equivalent to the backwards solution. Radiative transfer computations have been performed using a microphysical-dynamical cloud model and the results are presented together with the algorithm description.
Radiative energy transfer in disordered photonic crystals.
Erementchouk, M V; Deych, L I; Noh, H; Cao, H; Lisyansky, A A
2009-04-29
The difficulty of description of the radiative transfer in disordered photonic crystals arises from the necessity to consider on an equal footing the wave scattering by periodic modulations of the dielectric function and by its random inhomogeneities. We resolve this difficulty by approaching this problem from the standpoint of the general multiple scattering theory in media with an arbitrary regular profile of the dielectric function. We use the general asymptotic solution of the Bethe-Salpeter equation in order to show that for a sufficiently weak disorder the diffusion limit in disordered photonic crystals is presented by incoherent superpositions of the modes of the ideal structure with weights inversely proportional to the respective group velocities. The radiative transfer and the diffusion equations are derived as a relaxation of long scale deviations from this limiting distribution. In particular, it is shown that in general the diffusion is anisotropic unless the crystal has sufficiently rich symmetry, say, the square lattice in 2D or the cubic lattice in 3D. In this case, the diffusion is isotropic and only in this case can the effect of the disorder be characterized by a single mean free path depending on frequency. PMID:21825416
Radiative Transfer and Retrievals in EOF Domain
NASA Technical Reports Server (NTRS)
Liu, Xu; Zhou, Daniel K.; Larar, Allen; Smith, William L.; Schluessel, Peter
2008-01-01
The Infrared Atmospheric Sounding Interferometer (IASI) is a hyperspectral sensor with 8461 spectral channels and a nominal spectral resolution of 0.25 cm(sup -1). It is computationally intensive to perform radiative transfer calculations and inversions using all these channels. We will present a Principal Component-based Radiative Transfer Model (PCRTM) and a retrieval algorithm which perform all the necessary calculations in EOF domain. Since the EOFs are orthogonal to each other, only about 100 principal components are needed to represent the information content of the 8461 channels. The PCRTM provides the EOF coefficients and associated derivatives with respect to atmospheric and surface parameters needed by the inversion algorithm. The inversion algorithm is based on a non-linear Levenberg-Marquardt method with climatology covariance and a priori information as constraints. The retrieved parameters include atmospheric temperature, moisture and ozone profiles, cloud parameters, surface skin temperature, and surface emissivities. To make the retrieval system even more compact and stable. The atmospheric vertical profiles are compressed into the EOF space as well. The surface emissivities are also compressed into EOF space.
Effect of EHF-radiation polarization on yeast cells
Golant, M.B.; Mudrik, D.G.; Kruglyakova, O.P.
1994-07-01
It is known that millimeter-wave radiation can cause numerous changes in living organisms. The detection of changes in the states of living organisms is a very complex task, since a complete biological examination is extremely complicated if not practically impossible. As a result, some important aftereffects could be undiscovered. Here we present experimental data on the effects of EHF radiation with left and right circular polarization on a yeast cell culture (Saccharomyces Carlsbergensis). EHF circular polarizers were specially prepared for this. The radiation had a fixed frequency f = 42.19 GHz, power p = 0.12 mW/cm{sup 2}, and 1-hr exposure time. If cell division cycles are synchronized by synchronization of the generated or EHF oscillations under the influence of external coherent EHF radiation, it follows that EHF oscillations chiefly with left circular polarization are excited in the cells. On the other hand, the examined results can be considered evidence that objects with the dimensions of cells are the primary receivers of EHF radiation in the cell culture. A ratio value d{sub mol}/{lambda} {approx} 10{sup -6} is too low to produce space dispersion at the molecular level.
An operator perturbation method for polarized line transfer. I. Non-magnetic regime in 1D media.
NASA Astrophysics Data System (ADS)
Faurobert-Scholl, M.; Frisch, H.; Nagendra, K. N.
1997-06-01
In this paper we generalize an Approximate Lambda Iteration (ALI) technique developed for scalar transfer problems to a vectorial transfer problem for polarized radiation. Scalar ALI techniques are based on a suitable decomposition of the Lambda operator governing the integral form of the transfer equation. Lambda operators for scalar transfer equations are diagonally dominant, offering thus the possibility to use iterative methods of the Jacobi type where the iteration process is based on the diagonal of the Lambda operator (Olson et al., 1986, JQSRT 35, 431). Here we consider resonance polarization, created by the scattering of an anisotropic radiation field, for spectral lines formed with complete frequency redistribution in a 1D axisymmetric medium. The problem can be formulated as an integral equation for a 2-component vector (Rees, 1978PASJ...30..455R) or, as shown by Ivanov (1995A&A...303..621I), as an integral equation for a (2x2) matrix source function which involves the same generalized Lambda operator as the vector integral equation. We find that this equation holds also in the presence of a weak turbulent magnetic field. The generalized Lambda operator is a (2x2) matrix operator. The element {11} describes the propagation of the intensity and is identical to the Lambda operator of non-polarized problems. The element {22} describes the propagation of the polarization. The off-diagonal terms weakly couple the intensity and the polarization. We propose a block Jacobi iterative method and show that its convergence properties are controlled by the propagator for the intensity. We also show that convergence can be accelerated by an Ng acceleration method applied to each element of the source matrix. We extend to polarized transfer a convergence criterion introduced by Auer et al. (1994A&A...292..599A) based on the grid truncation error of the converged solution.
A rapid radiative transfer model for reflection of solar radiation
NASA Technical Reports Server (NTRS)
Xiang, X.; Smith, E. A.; Justus, C. G.
1994-01-01
A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over alternative two-stream solutions is that in addition to yielding the irradiance components, which turn out to be mathematically equivalent to the delta-Eddington approximation, the radiance field can also be expanded in a mathematically consistent fashion. Tests with the model against a more precise multistream discrete ordinate model over a wide range of input parameters demonstrate that the new approximate method typically produces average radiance differences of less than 5%, with worst average differences of approximately 10%-15%. By the same token, the computational speed of the new model is some tens to thousands times faster than that of the more precise model when its stream resolution is set to generate precise calculations.
Radiative transfer theory applied to ocean bottom modeling.
Quijano, Jorge E; Zurk, Lisa M
2009-10-01
Research on the propagation of acoustic waves in the ocean bottom sediment is of interest for active sonar applications such as target detection and remote sensing. The interaction of acoustic energy with the sea floor sublayers is usually modeled with techniques based on the full solution of the wave equation, which sometimes leads to mathematically intractable problems. An alternative way to model wave propagation in layered media containing random scatterers is the radiative transfer (RT) formulation, which is a well established technique in the electromagnetics community and is based on the principle of conservation of energy. In this paper, the RT equation is used to model the backscattering of acoustic energy from a layered elastic bottom sediment containing distributions of independent scatterers due to a constant single frequency excitation in the water column. It is shown that the RT formulation provides insight into the physical phenomena of scattering and conversion of energy between waves of different polarizations. PMID:19813787
Radiative Transfer Theory Verified by Controlled Laboratory Experiments
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Goldstein, Dennis H.; Chowdhary, Jacek; Lompado, Arthur
2013-01-01
We report the results of high-accuracy controlled laboratory measurements of the Stokes reflection matrix for suspensions of submicrometer-sized latex particles in water and compare them with the results of a numerically exact computer solution of the vector radiative transfer equation (VRTE). The quantitative performance of the VRTE is monitored by increasing the volume packing density of the latex particles from 2 to 10. Our results indicate that the VRTE can be applied safely to random particulate media with packing densities up to 2. VRTE results for packing densities of the order of 5 should be taken with caution, whereas the polarized bidirectional reflectivity of suspensions with larger packing densities cannot be accurately predicted. We demonstrate that a simple modification of the phase matrix entering the VRTE based on the so-called static structure factor can be a promising remedy that deserves further examination.
Radiative transfer theory verified by controlled laboratory experiments.
Mishchenko, Michael I; Goldstein, Dennis H; Chowdhary, Jacek; Lompado, Arthur
2013-09-15
We report the results of high-accuracy controlled laboratory measurements of the Stokes reflection matrix for suspensions of submicrometer-sized latex particles in water and compare them with the results of a numerically exact computer solution of the vector radiative transfer equation (VRTE). The quantitative performance of the VRTE is monitored by increasing the volume packing density of the latex particles from 2% to 10%. Our results indicate that the VRTE can be applied safely to random particulate media with packing densities up to ∼2%. VRTE results for packing densities of the order of 5% should be taken with caution, whereas the polarized bidirectional reflectivity of suspensions with larger packing densities cannot be accurately predicted. We demonstrate that a simple modification of the phase matrix entering the VRTE based on the so-called static structure factor can be a promising remedy that deserves further examination. PMID:24104804
Matrix operator theory of radiative transfer. I - Rayleigh scattering.
NASA Technical Reports Server (NTRS)
Plass, G. N.; Kattawar, G. W.; Catchings, F. E.
1973-01-01
An entirely rigorous method for the solution of the equations for radiative transfer based on the matrix operator theory is reviewed. The advantages of the present method are: (1) all orders of the reflection and transmission matrices are calculated at once; (2) layers of any thickness may be combined, so that a realistic model of the atmosphere can be developed from any arbitrary number of layers, each with different properties and thicknesses; (3) calculations can readily be made for large optical depths and with highly anisotropic phase functions; (4) results are obtained for any desired value of the surface albedo including the value unity and for a large number of polar and azimuthal angles; (5) all fundamental equations can be interpreted immediately in terms of the physical interactions appropriate to the problem; and (6) both upward and downward radiance can be calculated at interior points from relatively simple expressions.
Clouds Radiative Transfer Study at Microwave Region-RTM
NASA Astrophysics Data System (ADS)
Heredia, S. D.; Masuelli, S.; Caranti, G. M.; Jones, L.
2011-12-01
The objective of the recently launched SAC-D/Aquarius satellite mission is to globally and indirectly measure certain geophysical parameters such as: sea surface salinity (Sal), column water vapor (CWV), column liquid water (CLW), rain rate (RR), wind speed (WS), wind direction (WD), ice concentration (SIC) and others. On board the satellite there are several instruments designed for specific purposes like the passive microwave sensor MWR (Fig. 1) whose specifications are shown in Table 1. The aim of the latter is to determine the following parameters: CWV, CLW, RR, WS, WD and SIC. The MWR sensor measures brightness temperatures at two frequencies: 23.8 and 36.5GHz. In the case of 36.5GHz, it measures both polarizations (vertical and horizontal) while for 23.8GHz it only measures the horizontal component. Since this sensor measures brightness temperatures and not geophysical variables, it is necessary to establish a relationship that links both. These relationships are determined by radiative transfer models (RTM). In remote sensing there are two types of models, namely: Forward and Inverse Model. The radiative transfer model in the forward direction obtains brightness temperatures for a given configuration within the pixel (geophysical variables). The most important applications of these models are: * Simulator Development: spectral bands selection to meet the high-level requirements within the expected error. * Intercalibration: in the calculation of corrections due to differences in incidence angles and frequencies between sensors involved in this process. * Inverse Radiative Transfer Models to obtain geophysical variables from brightness temperatures. In this paper, we developed a module that simulates the interaction of radiation with cloud droplets and raindrops. These modules were incorporated into a radiative transfer model from CFRSL (Central Florida Remote Sensing Lab) to calculate the brightness temperatures that would measure a passive microwave sensor
Radiative energy transfer in molecular gases
NASA Technical Reports Server (NTRS)
Tiwari, Surendra N.
1992-01-01
Basic formulations, analyses, and numerical procedures are presented to study radiative interactions in gray as well as nongray gases under different physical and flow conditions. After preliminary fluid-dynamical considerations, essential governing equations for radiative transport are presented that are applicable under local and nonlocal thermodynamic equilibrium conditions. Auxiliary relations for relaxation times and spectral absorption models are also provided. For specific applications, several simple gaseous systems are analyzed. The first system considered consists of a gas bounded by two parallel plates having the same temperature. Within the gas there is a uniform heat source per unit volume. For this system, both vibrational nonequilibrium effects and radiation conduction interactions are studied. The second system consists of fully developed laminar flow and heat transfer in a parallel plate duct under the boundary condition of a uniform surface heat flux. For this system, effects of gray surface emittance are studied. With the single exception of a circular geometry, the third system is considered identical to the second system. Here, the influence of nongray walls is also studied.
Tunable Circularly Polarized Terahertz Radiation from Magnetized Gas Plasma.
Wang, W-M; Gibbon, P; Sheng, Z-M; Li, Y-T
2015-06-26
It is shown, by simulation and theory, that circularly or elliptically polarized terahertz radiation can be generated when a static magnetic (B) field is imposed on a gas target along the propagation direction of a two-color laser driver. The radiation frequency is determined by √[ω(p)(2)+ω(c)(2)/4]+ω(c)/2, where ω(p) is the plasma frequency and ω(c) is the electron cyclotron frequency. With the increase of the B field, the radiation changes from a single-cycle broadband waveform to a continuous narrow-band emission. In high-B-field cases, the radiation strength is proportional to ω(p)(2)/ω(c). The B field provides a tunability in the radiation frequency, spectrum width, and field strength. PMID:26197126
Radiative Transfer on Mesoscopic Spatial Scales
NASA Astrophysics Data System (ADS)
Gardner, Adam Ronald
Accurate predictions of light transport produced by illumination of turbid media such as biological tissues, cloudy atmospheres, terrestrial surfaces, and soft matter is essential in many applications including remote sensing, functional optical imaging, realistic image synthesis, and materials characterization. The inability to model light transport on mesoscopic scales limits the spatial resolution and information content that can be extracted from optical measurements. While effective approaches exist to model light transport in singly- and diffusely-scattering regimes, modeling light propagation over the mesoscopic spatial scales remains an important challenge. Radiative transfer on these scales must account for the complete 5-dimensional spatial and angular distributions of the radiant field. Here, we present novel stochastic and analytic methods to analyze and predict light propagation in turbid media generated by collimated illumination on mesoscopic scales. We also consider coupled transport problems, resulting from illumination and detection, to facilitate measurement design and inverse problems. Specifically, we introduce a coupled Forward-Adjoint Monte Carlo (cFAMC) method that leverages generalized optical reciprocity to enable the computation of spatially-resolved distributions of light interrogation for specific source-detector pairs. cFAMC can aid the design of optical diagnostic measurements by tailoring the light field to interrogate specific sub-volumes of interest. We use cFAMC to examine the effects of angular resolution on the resulting interrogation distributions and analyze a diagnostically-relevant compact fiber probe design for the detection of epithelial precancer. While Monte Carlo simulation is considered a gold standard method to solve the equation of radiative transfer (ERT), it is computationally expensive. Thus, methods to obtain ERT solutions at lower computational cost are valuable. We introduce a general analytical framework to
A stochastic formation of radiative transfer in clouds
Stephens, G.L.; Gabriel, P.M.
1993-03-01
The research carried out under this award dealt with issues involving deterministic radiative transfer, remote sensing, Stochastic radiative transfer, and parameterization of cloud optical properties. A number of different forms of radiative transfer models in one, two, and three dimensions were developed in an attempt to build an understanding of the radiative transfer in clouds with realistic spatial structure and to determine the key geometrical parameter that influence this transfer. The research conducted also seeks to assess the relative importance of these geometrical effects in contrast to microphysical effects of clouds. The main conclusion of the work is that geometry has a profound influence on all aspects of radiative transfer and the interpretation of this transfer. We demonstrate how this geometry can influence estimate of particle effective radius to the 30-50% level and also how geometry can significantly bias the remote sensing of cloud optical depth.
APPLICATION OF JITTER RADIATION: GAMMA-RAY BURST PROMPT POLARIZATION
Mao, Jirong; Wang, Jiancheng
2013-10-10
A high degree of polarization of gamma-ray burst (GRB) prompt emission has been confirmed in recent years. In this paper, we apply jitter radiation to study the polarization feature of GRB prompt emission. In our framework, relativistic electrons are accelerated by turbulent acceleration. Random and small-scale magnetic fields are generated by turbulence. We further determine that the polarization property of GRB prompt emission is governed by the configuration of the random and small-scale magnetic fields. A two-dimensional compressed slab, which contains a stochastic magnetic field, is applied in our model. If the jitter condition is satisfied, the electron deflection angle in the magnetic field is very small and the electron trajectory can be treated as a straight line. A high degree of polarization can be achieved when the angle between the line of sight and the slab plane is small. Moreover, micro-emitters with mini-jet structures are considered to be within a bulk GRB jet. The jet 'off-axis' effect is intensely sensitive to the observed polarization degree. We discuss the depolarization effect on GRB prompt emission and afterglow. We also speculate that the rapid variability of GRB prompt polarization may be correlated with the stochastic variability of the turbulent dynamo or the magnetic reconnection of plasmas.
Terahertz polarization imaging based on the continuous wave terahertz radiations
NASA Astrophysics Data System (ADS)
Liu, Ying; Shen, Yanchun; Zhao, Guozhong
2015-08-01
Terahertz (THz) imaging is a hot topic in the current imaging technology. THz imaging has the advantage to penetrate most of non-metal and non-polar materials for the detection of concealed objects, while it is harmless to biological organism. Continuous wave terahertz (THz) imaging is enable to offer a safe and noninvasive imaging for the investigated objects. In this paper, THz real-time polarization imaging system is demonstrated based on the SIFIR-50 THz laser as a radiation source and a NEC Terahertz Imager as an array detector. The experimental system employs two wire grid polarizers to acquire the intensity images in four different directions. The polarization information of the measured object is obtained based on the Stokes-Mueller matrix. Imaging experiments on the currency with water mark and the hollowed-out metal ring have been done. Their polarization images are acquired and analyzed. The results show that the extracted polarization images include the valuable information which can effectively detect and recognize the different kinds of objects.
Planetary Atmosphere Dynamics and Radiative Transfer
NASA Technical Reports Server (NTRS)
Atkinson, David H.
1996-01-01
This research program has dealt with two projects in the field of planetary atmosphere dynamics and radiative energy transfer, one theoretical and one experimental. The first project, in radiative energy transfer, incorporated the capability to isolate and quantify the contribution of individual atmospheric components to the Venus radiative balance and thermal structure to greatly improve the current understanding of the radiative processes occurring within the Venus atmosphere. This is possible by varying the mixing ratios of each gas species, and the location, number density and aerosol size distributions of the clouds. This project was a continuation of the work initiated under a 1992 University Consortium Agreement. Under the just completed grant, work has continued on the use of a convolution-based algorithm that provided the capability to calculate the k coefficients of a gas mixture at different temperatures, pressures and spectral intervals from the separate k-distributions of the individual gas species. The second primary goal of this research dealt with the Doppler wind retrieval for the Successful Galileo Jupiter probe mission in December, 1995. In anticipation of the arrival of Galileo at Jupiter, software development continued to read the radioscience and probe/orbiter trajectory data provided by the Galileo project and required for Jupiter zonal wind measurements. Sample experiment radioscience data records and probe/orbiter trajectory data files provided by the Galileo Radioscience and Navigation teams at the Jet Propulsion Laboratory, respectively, were used for the first phase of the software development. The software to read the necessary data records was completed in 1995. The procedure by which the wind retrieval takes place begins with initial consistency checks of the raw data, preliminary data reductions, wind recoveries, iterative reconstruction of the probe descent profile, and refined wind recoveries. At each stage of the wind recovery
Plasma effects in high frequency radiative transfer
Alonso, C.T.
1981-02-08
This paper is intended as a survey of collective plasma processes which can affect the transfer of high frequency radiation in a hot dense plasma. We are rapidly approaching an era when this subject will become important in the laboratory. For pedagogical reasons we have chosen to examine plasma processes by relating them to a particular reference plasma which will consist of fully ionized carbon at a temperature kT=1 KeV (10/sup 70/K) and an electron density N = 3 x 10/sup 23/cm/sup -3/, (which corresponds to a mass density rho = 1 gm/cm/sup 3/ and an ion density N/sub i/ = 5 x 10/sup 22/ cm/sup -3/). We will consider the transport in such a plasma of photons ranging from 1 eV to 1 KeV in energy. Such photons will probably be frequently used as diagnostic probes of hot dense laboratory plasmas.
Radiative Transfer Simulations of Infrared Dark Clouds
NASA Astrophysics Data System (ADS)
Pavlyuchenkov, Yaroslav; Wiebe, Dmitry; Fateeva, Anna; Vasyunina, Tatiana
2011-04-01
The determination of prestellar core structure is often based on observations of (sub)millimeter dust continuum. However, recently the Spitzer Space Telescope provided us with IR images of many objects not only in emission but also in absorption. We developed a technique to reconstruct the density and temperature distributions of protostellar objects based on radiation transfer (RT) simulations both in mm and IR wavelengths. Best-fit model parameters are obtained with the genetic algorithm. We apply the method to two cores of Infrared Dark Clouds and show that their observations are better reproduced by a model with an embedded heating source despite the lack of 70 μm emission in one of these cores. Thus, the starless nature of massive cores can only be established with the careful case-by-case RT modeling.
Flare loop radiative hydrodynamics. III - Nonlocal radiative transfer effects
NASA Technical Reports Server (NTRS)
Canfield, R. C.; Fisher, G. H.; Mcclymont, A. N.
1983-01-01
The study has three goals. The first is to demonstrate that processes exist whose intrinsic nonlocal nature cannot be represented by local approximations. The second is to elucidate the physical nature and origins of these nonlocal processes. The third is to suggest that the methods and results described here may prove useful in constructing semiempirical models of the chromosphere by means more efficient than trial and error. Matrices are computed that describe the effect of a temperature perturbation at an arbitrary point in the loop on density, hydrogen ionized fraction, total radiative loss rate, and radiative loss rate of selected hydrogen lines and continua at all other points. It is found that the dominant nonlocal radiative transfer effects can be separated into flux divergence coefficient effects and upper level population effects. The former are most important when the perturbation takes place in a region of significant opacity. Upper level population effects arise in both optically thick and thin regions in response to nonlocal density, ionization, and interlocking effects.
Simulation of solar radiative transfer in cumulus clouds
Zuev, V.E.; Titov, G.A.
1996-04-01
This work presents a 3-D model of radiative transfer which is used to study the relationship between the spatial distribution of cumulus clouds and fluxes (albedo and transmittance) of visible solar radiation.
A Consummate Radiative Transfer Package for Studying the Atmosphere and Oceans
NASA Astrophysics Data System (ADS)
Zhai, P.; Hu, Y.; Trepte, C. R.; Winker, D. M.
2015-12-01
We will present a radiative transfer package based on the successive order of scattering method. This code is capable to calculate the radiation field in turbid media, which can be either the atmosphere-land or atmosphere-ocean coupled systems. The outputs include all four Stokes parameters at arbitrary detector locations and viewing angles in the turbid medium. Both the elastic and inelastic scattering are implemented in the package. This radiative transfer tool has been used in various applications, for instance, generating an aerosol look-up table for atmospheric correction in ocean color remote sensing; retrieving water cloud size distribution using the polarized multi-angle measurements; simulating the OCO2 O2 A band radiance measurement, etc. Our radiative transfer package is a great tool to interpret and predict the measurements from the future polarimeters and multipolarization-state lidars for Earth observing missions.
Polarizing Grids, their Assemblies and Beams of Radiation
NASA Technical Reports Server (NTRS)
Houde, Martin; Akeson, Rachel L.; Carlstrom, John E.; Lamb, James W.; Schleuning, David A.; Woody, David P.
2001-01-01
This article gives an analysis of the behavior of polarizing grids and reflecting polarizers by solving Maxwell's equations, for arbitrary angles of incidence and grid rotation, for cases where the excitation is provided by an incident plane wave or a beam of radiation. The scattering and impedance matrix representations are derived and used to solve more complicated configurations of grid assemblies. The results are also compared with data obtained in the calibration of reflecting polarizers at the Owens Valley Radio Observatory (OVRO). From these analysis, we propose a method for choosing the optimum grid parameters (wire radius and spacing). We also provide a study of the effects of two types of errors (in wire separation and radius size) that can be introduced in the fabrication of a grid.
Lowest order QED radiative corrections to longitudinally polarized Moeller scattering
Ilyichev, A.; Zykunov, V.
2005-08-01
The total lowest-order electromagnetic radiative corrections to the observables in Moeller scattering of longitudinally polarized electrons have been calculated. The final expressions obtained by the covariant method for the infrared divergency cancellation are free from any unphysical cut-off parameters. Since the calculation is carried out within the ultrarelativistic approximation our result has a compact form that is convenient for computing. Basing on these expressions the FORTRAN code MERA has been developed. Using this code the detailed numerical analysis performed under SLAC (E-158) and JLab kinematic conditions has shown that the radiative corrections are significant and rather sensitive to the value of the missing mass (inelasticity) cuts.
Radiative Møller scattering involving polarized particles
NASA Astrophysics Data System (ADS)
Zykunov, V. A.
2015-06-01
A method for taking into account radiative events in experiments aimed at studying Møller scattering with polarized particles was developed for an arbitrary implementation of such experiments. A computer code used to perform a numerical analysis with allowance for the kinematical conditions of the MOLLER experiment at the Thomas Jefferson National Accelerator Facility (Jefferson Lab or JLab) was constructed. The respective results were compared with their counterparts obtained in the soft-photon approximation.
Radiative Møller scattering involving polarized particles
Zykunov, V. A.
2015-06-15
A method for taking into account radiative events in experiments aimed at studying Møller scattering with polarized particles was developed for an arbitrary implementation of such experiments. A computer code used to perform a numerical analysis with allowance for the kinematical conditions of the MOLLER experiment at the Thomas Jefferson National Accelerator Facility (Jefferson Lab or JLab) was constructed. The respective results were compared with their counterparts obtained in the soft-photon approximation.
Three-dimensional radiative transfer calculations on an SIMD machine applied to accretion disks
NASA Astrophysics Data System (ADS)
Vath, H.
We have developed a tool to solve the radiative transfer equation for a three-dimensional astrophysical object on the SIMD computer MasPar MP-1. With this tool we can rapidly calculate the image of such an object as seen from an arbitrary direction and at an arbitrary wavelength. Such images and spectra can then be used to directly compare observations with the model. This tool can be applied to many different areas in astrophysics, e.g., HI disks of galaxies and polarized radiative transfer of accretion columns onto white dwarfs. Here we use this tool to calculate the image and spectrum of a simple model of an accretion disk.
Polarization of terahertz radiation from laser generated plasma filaments
Dietze, Daniel; Darmo, Juraj; Roither, Stefan; Pugzlys, Audrius; Unterrainer, Karl; Heyman, James N.
2009-11-15
An analysis of the polarization of terahertz (THz) radiation from a laser-induced plasma source is presented. THz emission is achieved by mixing a laser pulse with its second harmonic after focusing through a {beta}-BaB{sub 2}O{sub 4} ({beta}-BBO) crystal. Numerical calculations, based on the nonlinear four-wave mixing model and the microscopic polarization model, are compared with experimental results. The main focus lies on the study of the dependence of THz polarization on the polarization and relative phase of the incident fundamental and second-harmonic pulses. We show that the modulation of the fundamental pulse by the BBO crystal has to be taken into account in order to describe experimental observations. By including the finite extension of the plasma and considering cross- and self-phase modulation of the two-color pump pulse, we are able to explain the observed ellipticity of the THz pulse as well as the orientation of the polarization axis.
Radiative effects in scattering of polarized leptons by polarized nucleons and light nuclei
Igor Akushevich; A. Ilyichev; N. Shumeiko
2001-07-01
Recent developments in the field of radiative effects in polarized lepton-nuclear scattering are reviewed. The processes of inclusive, semi-inclusive, diffractive and elastic scattering are considered. The explicit formulae obtained within the covariant approach are discussed. FORTRAN codes POLRAD, RADGEN, HAPRAD, DIFFRAD and MASCARAD created on the basis of the formulae are briefly described. Applications for data analysis of the current experiments on lepton-nuclear scattering at CERN, DESY, SLAC and TJNAF are illustrated by numerical results.
Radiative Transfer Modeling and Retrievals for Advanced Hyperspectral Sensors
NASA Technical Reports Server (NTRS)
Liu, Xu; Zhou, Daniel K.; Larar, Allen M.; Smith, William L., Sr.; Mango, Stephen A.
2009-01-01
A novel radiative transfer model and a physical inversion algorithm based on principal component analysis will be presented. Instead of dealing with channel radiances, the new approach fits principal component scores of these quantities. Compared to channel-based radiative transfer models, the new approach compresses radiances into a much smaller dimension making both forward modeling and inversion algorithm more efficient.
Martian Radiative Transfer Modeling Using the Optimal Spectral Sampling Method
NASA Technical Reports Server (NTRS)
Eluszkiewicz, J.; Cady-Pereira, K.; Uymin, G.; Moncet, J.-L.
2005-01-01
The large volume of existing and planned infrared observations of Mars have prompted the development of a new martian radiative transfer model that could be used in the retrievals of atmospheric and surface properties. The model is based on the Optimal Spectral Sampling (OSS) method [1]. The method is a fast and accurate monochromatic technique applicable to a wide range of remote sensing platforms (from microwave to UV) and was originally developed for the real-time processing of infrared and microwave data acquired by instruments aboard the satellites forming part of the next-generation global weather satellite system NPOESS (National Polarorbiting Operational Satellite System) [2]. As part of our on-going research related to the radiative properties of the martian polar caps, we have begun the development of a martian OSS model with the goal of using it to perform self-consistent atmospheric corrections necessary to retrieve caps emissivity from the Thermal Emission Spectrometer (TES) spectra. While the caps will provide the initial focus area for applying the new model, it is hoped that the model will be of interest to the wider Mars remote sensing community.
Radiative transfer during the reflooding step of a LOCA
NASA Astrophysics Data System (ADS)
Gérardin, J.; Seiler, N.; Ruyer, P.; Boulet, P.
2013-10-01
Within the evaluation of the heat transfer downstream a quench front during the reflood phase of a Loss of Coolant Accident (LOCA) in a nuclear power plant, a numerical study has been conducted on radiative transfer through a vapor-droplet medium. The non-grey behavior of the medium is obvious since it can be optically thin or thick depending on the wavelength. A six wide bands model has been tested, providing a satisfactory accuracy for the description of the radiative properties. Once the radiative properties of the medium computed, they have been introduced in a model solving the radiative heat transfer based on the Improved Differential Approximation. The fluxes and the flux divergence have been computed on a geometry characteristic of the reactor core showing that radiative transfer plays a relevant role, quite as important as convective heat transfer.
Xu, Feng; Davis, Anthony B; West, Robert A; Esposito, Larry W
2011-01-17
Building on the Markov chain formalism for scalar (intensity only) radiative transfer, this paper formulates the solution to polarized diffuse reflection from and transmission through a vertically inhomogeneous atmosphere. For verification, numerical results are compared to those obtained by the Monte Carlo method, showing deviations less than 1% when 90 streams are used to compute the radiation from two types of atmospheres, pure Rayleigh and Rayleigh plus aerosol, when they are divided into sublayers of optical thicknesses of less than 0.03. PMID:21263634
Studies of radiative transfer in planetary atmospheres
NASA Technical Reports Server (NTRS)
Irvine, W. M.; Schloerb, F. P.
1986-01-01
Schloerb and Claussen continued their analysis of the very high quality data set obtained on the 18 centimeter OH line from the Comet P/Halley with the NRAO 43 meter antenna. The high spectral resolution (0.22 km/sec) and high signal-to-noise of the OH spectra make them ideal for the study of kinematics in the coma. Synthetic profiles were initiated for comparison with the data. A vectorial model was developed using the Monte Carlo techniques originated by Combi and Delsemme. Analysis of the millimeter wavelength observations of HCN emission from P/Halley obtained throughout much of the recent apparition were continued using the University of Massachusetts 14 millimeter-wavelength (FCRAO) antenna. A detailed analysis of the HCN lineshpaes was performed over the last six months. The excitation of HCN in the coma was studied to obtain a detailed match to the observed spectra. The passive millimeter wave radiometer was used to probe the physical and chemical nature of comets from spacecraft. Work was continued on an improved theory of radiative transfer for rough and porous surfaces, such as the regoliths of satellites, asteroids, and comets.
NASA Astrophysics Data System (ADS)
Tolman, B. W.; Matzner, R. A.
1984-04-01
A quadrupole anisotropy in the expansion of the universe (shear) is considered in realistic cosmological models, and a calculation is made of the resulting anisotropies and polarization of the radiation. The role of spatial curvature is treated separately; it is found to have two profound effects. The first, in closed models only, is that the direction of polarization of the radiation will appear upon observation to be twisted in relation to the anisotropy; the existence of this twist is seen as implying that the closed universe has a handedness property. The second effect, in open models, is that a quadrupole anisotropy may be distorted by the spatial curvature so that it resembles a dipole; it is noted that in the extreme case all the anisotropy is confined to a region of small angular diameter (a 'spot'). On the basis of the work reported by Dautcourt and Rose (1978), a derivation is provided of a transfer equation for polarized radiation in a general curved space-time. An allowance is made for the effect of Thomson scattering by free electrons, and the equation is separated into those for the multipoles up to quadrupole by expanding in polynomials formed from spring-weighted spherical harmonics.
Wavelets in the solution of nongray radiative heat transfer equation
Bayazitoglu, Y.; Wang, B.Y.
1996-12-31
The wavelet basis functions are introduced into the radiative transfer equation in the frequency domain. The intensity of radiation is expanded in terms of Daubechies` wrapped around wavelet functions. It is shown that the wavelet basis approach to modeling nongrayness can be incorporated into any solution method for the equation of transfer. In this paper the resulting system of equations is solved for the one-dimensional radiative equilibrium problem using the P-N approximation.
Application of ray tracing in radiation heat transfer
NASA Technical Reports Server (NTRS)
Baumeister, Joseph F.
1993-01-01
This collection of presentation figures displays the capabilities of ray tracing for radiation propagation calculations as compared to an analytical approach. The goal is to introduce the terminology and solution process used in ray tracing, and provide insight into radiation heat transfer principles and analysis tools. A thermal analysis working environment is introduced that solves demanding radiation heat transfer problems based on ray tracing. This information may serve as a reference for designing and building ones own analysis environment.
NASA Astrophysics Data System (ADS)
Fomin, Boris; Falaleeva, Victoria
2016-07-01
A polarized high-resolution 1-D model has been presented for TIR (Thermal Infrared) remote sensing application. It is based on the original versions of MC (Monte Carlo) and LbL (Line-by-Line) algorithms, which have shown their effectiveness when modelling the thermal radiation atmospheric transfer, taking into account, the semi-transparent Ci-type and polar clouds scattering, as well as the direct consideration of the spectra of molecular absorption. This model may be useful in the planning of satellite experiments and in the validation of similar models, which use the "k-distribution" or other approximations, to account for gaseous absorption. The example simulations demonstrate that, the selective gas absorption does not only significantly affect the absorption and emission of radiation, but also, its polarization in the Ci-type clouds. As a result, the spectra of polarized radiation contain important information about the clouds, and a high-resolution polarized limb sounding in the TIR, seems to be a useful tool in obtaining information on cloud types and their vertical structures.
Radiative heat transfer in the extreme near field.
Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod
2015-12-17
Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer. PMID:26641312
MHD-based modeling of radiation and polarization signatures of blazar emission
NASA Astrophysics Data System (ADS)
Zhang, Haocheng; Li, Hui; Boettcher, Markus
2016-04-01
Observations have shown that sometimes strong multiwavelength flares are accompanied by drastic polarization variations, indicating active participation of magnetic fields during flares. We have developed a 3D numerical tool set of magnetohydrodynamics, Fokker-Planck particle evolution, and polarization-dependent radiation transfer codes. This allows us to study the snap-shot spectra, multiwavelength light curves, and time-dependent optical polarization signatures self-consistently. We have made a simultaneous fit of a multiwavelength flare with 180 degree polarization angle swing of the blazar 3C279 reported by Abdo et al. 2010. Our work has shown that this event requires an increase in the nonthermal particles, a decrease in the magnetic field strength, and a change in the magnetic field structure. We conclude that this event is likely due to a shock-initiated magnetic reconnection in an emission environment with relatively strong magnetic energy. We have performed magnetrohydrodynamic simulations to support this statement. Our simulations have found that the blazar emission region may be strongly magnetized. In this situation, polarization angle swings are likely to be correlated with strong gamma-ray flares.
Study on radiation transfer in human skin for cosmetics
NASA Astrophysics Data System (ADS)
Yamada, Jun; Kawamura, Ayumu; Miura, Yoshimasa; Takata, Sadaki; Ogawa, Katsuki
2005-06-01
In order to design cosmetics producing the optical properties that are required for a beautiful skin, the radiation transfer in the skin has been numerically investigated by the Monte Carlo method and the effects of skin texture and cosmetics on the radiation transfer have been empirically investigated using an artificial skin. The numerical analysis showed that the total internal reflection suppresses large portion of radiation going out through the skin surface Additionally, the experimental study revealed that skin texture and cosmetics not only diffusely reflect the incoming radiation, but also lead the internally reflected radiation to the outside of the skin.
Reverse electric field Monte Carlo simulation for vector radiative transfer in the atmosphere
NASA Astrophysics Data System (ADS)
Li, Xu-You; Sun, Bo; Yu, Ying-Ying
2014-06-01
In this paper, a reverse electric field Monte Carlo (REMC) method is proposed to study the vector radiation transfer in the atmosphere. The REMC is based on tracing the multiply scattered electric field to simulate the vector transmitted radiance. The reflected intensities with different total optical depth values are obtained, which accord well with the results in the previous research. Stokes vector and the degree of polarization are numerically investigated. The simulation result shows that when the solar zenith angle is determined, the zenith angle of detector has two points, of which the degree of polarization does not change with the ground albedo and the optical depth. The two points change regularly with the solar zenith angle. Moreover, our REMC method can be applied to the vector radiative transfer in the atmosphere—ocean system.
Vector radiative transfer in a multilayer medium by natural element method.
Zhang, Yong; Kim, Yong-Jun; Yi, Hong-Liang; Tan, He-Ping
2016-04-01
The vector radiative transfer problem in a vertically multilayer scattering medium with spatial changes in the index of refraction is solved by the natural element method (NEM). The top boundary of the multilayer medium is irradiated by a collimated beam. In our model, the angular space is discretized by the discrete ordinates approach, and the spatial discretization is conducted by the Galerkin weighted residuals approach. In the solution procedure, the collimated component for the Stokes parameters is first solved by NEM, and then it is embedded into the vector radiative transfer equation for the diffuse component as a source term. To keep the consistency of the directions in all the layers, angular interpolation of the Stokes parameters at the interfaces is adopted. The NEM approach for the collimated component is first validated. Then, the classical coupled atmosphere-water system irradiated by different states of collimated beam is examined to verify the numerical performance of the method. Numerical results show that the NEM is accurate, flexible, and effective in solving polarized radiative transfer in a multilayer medium. Finally, polarized radiative transfer in a four-layer system is investigated and analyzed. PMID:27140767
Han, Jiefei; Yang, Kecheng; Xia, Min; Sun, Liying; Cheng, Zao; Liu, Hao; Ye, Junwei
2015-04-10
Active polarization imaging technology is a convenient and promising method for imaging in a scattering medium such as fog and turbid water. However, few studies have investigated the influence of polarization on the resolution in underwater imaging. This paper reports on the effects of polarization detection on the resolution of underwater imaging by using active polarization imaging technology. An experimental system is designed to determine the influence under various polarization and water conditions. The modulation transfer function is introduced to estimate the resolution variations at different spatial frequencies. Results show that orthogonal detection supplies the best resolution compared with other polarization directions in the turbid water. The performance of the circular polarization method is better than the linear process. However, if the light propagates under low scattering conditions, such as imaging in clean water or at small optical thickness, the resolution enhancement is not sensitive to the polarization angles. PMID:25967316
Probing membrane protein structure using water polarization transfer solid-state NMR
NASA Astrophysics Data System (ADS)
Williams, Jonathan K.; Hong, Mei
2014-10-01
Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected 1H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins.
Probing Membrane Protein Structure Using Water Polarization Transfer Solid-State NMR
Williams, Jonathan K.; Hong, Mei
2014-01-01
Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected 1H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane peptide of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. PMID:25228502
Probing membrane protein structure using water polarization transfer solid-state NMR.
Williams, Jonathan K; Hong, Mei
2014-10-01
Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected (1)H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. PMID:25228502
Diffusive transfer of polarized 3He gas through depolarizing magnetic gradients
NASA Astrophysics Data System (ADS)
Maxwell, J. D.; Epstein, C. S.; Milner, R. G.
2015-03-01
Transfer of polarized 3He gas across spatially varying magnetic fields will facilitate a new source of polarized 3He ions for particle accelerators. In this context, depolarization of atoms as they pass through regions of significant transverse field gradients is a major concern. To understand these depolarization effects, we have built a system consisting of a Helmholtz coil pair and a solenoid, both with central magnetic fields of order 30 gauss. The atoms are polarized via metastability exchange optical pumping in the Helmholtz coil and are in diffusive contact via a glass tube with a second test cell in the solenoid. We have carried out measurements of the spin relaxation during transfer of polarization in 3He at 1 torr by diffusion. We explore the use of measurements of the loss of polarization taken in one cell to infer the polarization in the other cell.
Radiation heat transfer in two-phase media
Adzerikho, K.S.
1988-05-01
The state of the art of approximate and numerical methods of the theory of radiation heat transfer is analyzed. The principles for producing engineering methods of computing the radiation heat-transfer characteristics in power plants are examined. These principles include: the integration of the transport equation, computing the radiation heat transfer in nonisothermal two-phase media bounded by emitting and reflecting surfaces, the thermal efficiency of screens as a function of the optical properties of the boundary surfaces and the furnace medium, the scattering processes, temperature distribution, and a program NOTAK in the FORTRAN-IV language.
NASA Astrophysics Data System (ADS)
Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.; Vieth, Hans-Martin
2015-05-01
The magnetic field dependence of Chemically Induced Dynamic Nuclear Polarization (CIDNP) was studied for the amino acids N-acetyl histidine, N-acetyl tryptophan and N-acetyl tyrosine. It is demonstrated that at low field CIDNP is strongly affected by polarization redistribution in the diamagnetic molecules. Such a polarization transfer is of coherent nature and is due to spin coherences formed together with non-equilibrium population of the spin states. These coherences clearly manifest themselves in an oscillatory time dependence of polarization. Polarization transfer effects are most pronounced at nuclear spin Level Anti-Crossings (LACs), which also result in sharp features in the CIDNP field dependence. Thus, polarization transfer is an important factor, which has to be taken into account in order to interpret low-field CIDNP data on both qualitative and quantitative level. Possible applications of polarization transfer phenomena are also discussed in the paper. In particular, the role of LACs in spin order transfer is highlighted: LACs provide a new tool for precise manipulation of spin hyperpolarization and NMR enhancement of selected target spins.
Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Ivanov, Konstantin L; Vieth, Hans-Martin
2015-05-01
The magnetic field dependence of Chemically Induced Dynamic Nuclear Polarization (CIDNP) was studied for the amino acids N-acetyl histidine, N-acetyl tryptophan and N-acetyl tyrosine. It is demonstrated that at low field CIDNP is strongly affected by polarization redistribution in the diamagnetic molecules. Such a polarization transfer is of coherent nature and is due to spin coherences formed together with non-equilibrium population of the spin states. These coherences clearly manifest themselves in an oscillatory time dependence of polarization. Polarization transfer effects are most pronounced at nuclear spin Level Anti-Crossings (LACs), which also result in sharp features in the CIDNP field dependence. Thus, polarization transfer is an important factor, which has to be taken into account in order to interpret low-field CIDNP data on both qualitative and quantitative level. Possible applications of polarization transfer phenomena are also discussed in the paper. In particular, the role of LACs in spin order transfer is highlighted: LACs provide a new tool for precise manipulation of spin hyperpolarization and NMR enhancement of selected target spins. PMID:25797825
NASA Astrophysics Data System (ADS)
Wan Ismail, Wan Zakiah; Goldys, Ewa M.; Dawes, Judith M.
2016-02-01
We demonstrate long-wavelength operation (>700 nm) of random dye lasers (using a methylene blue dye) with the addition of rhodamine 6G and titania, enabled by radiative and non-radiative energy transfer. The pump energy is efficiently absorbed and transferred to the acceptors, to support lasing in random dye lasers in the near infrared. The optimum random laser performance with the highest emission intensity and the lowest lasing threshold was achieved for a concentration of methylene blue as the acceptor equal to 6× the concentration of rhodamine 6G (donor). Excessive levels of methylene blue increased the lasing threshold and broadened the methylene blue emission linewidth due to dye quenching from re-absorption. This is due to competition between the donor emission and energy transfer and between absorption loss and fluorescence quenching. The radiative and non-radiative energy transfer is analyzed as a function of the acceptor concentration and pump energy density, with consideration of the spectral overlap. The dependence of the radiative and non-radiative transfer efficiency on the acceptor concentration is obtained, and the energy transfer parameters, including the radiative and non-radiative energy transfer rate constants ( K R and K NR), are investigated using Stern-Volmer analysis. The analysis indicates that radiative energy transfer is the dominant energy transfer mechanism in this system.
Menelaou, Christopher; ter Schiphorst, Jeroen; Kendhale, Amol M; Parkinson, Patrick; Debije, Michael G; Schenning, Albertus P H J; Herz, Laura M
2015-04-01
Materials showing rapid intramolecular energy transfer and polarization switching are of interest for both their fundamental photophysics and potential for use in real-world applications. Here, we report two donor-acceptor-donor triad dyes based on perylene-bisimide subunits, with the long axis of the donors arranged either parallel or perpendicular to that of the central acceptor. We observe rapid energy transfer (<2 ps) and effective polarization control in both dye molecules in solution. A distributed-dipole Förster model predicts the excitation energy transfer rate for the linearly arranged triad but severely underestimates it for the orthogonal case. We show that the rapid energy transfer arises from a combination of through-bond coupling and through-space transfer between donor and acceptor units. As they allow energy cascading to an excited state with controllable polarization, these triad dyes show high potential for use in luminescent solar concentrator devices. PMID:26262968
NASA Technical Reports Server (NTRS)
Kattawar, G. W.; Plass, G. N.; Hitzfelder, S. J.
1976-01-01
The matrix operator method was used to calculate the polarization of radiation scattered on layers of various optical thicknesses, with results compared for Rayleigh scattering and for scattering from a continental haze. In both cases, there are neutral points arising from the zeros of the polarization of single scattered photons at scattering angles of zero and 180 degrees. The angular position of these Rayleigh-like neutral points (RNP) in the sky shows appreciable variation with the optical thickness of the scattering layer for a Rayleigh phase matrix, but only a small variation for haze L phase matrix. Another type of neutral point exists for non-Rayleigh phase functions that is associated with the zeros of the polarization for single scattering which occurs between the end points of the curve. A comparison of radiances calculated from the complete theory of radiative transfer using Stokes vectors with those obtained from the scalar theory shows that differences of the order of 23% may be obtained for Rayleigh scattering, while the largest difference found for a haze L phase function was of the order of 0.1%.
Measurement of the linear polarization of channeling radiation in silicon and diamond
Rzepka, M.; Buschhorn, G.; Diedrich, E.; Kotthaus, R.; Kufner, W.; Roessl, W.; Schmidt, K.H.; Hoffmann-Stascheck, P.; Genz, H.; Nething, U.; Richter, A.; Sellschop, J.P.F.
1995-07-01
Utilizing 90{degree} Compton scattering the linear polarization of channeling radiation produced at the superconducting accelerator S-DALINAC with 62 MeV electrons in silicon and diamond has been measured in the energy range between 50 and 400 keV. Planar channeling radiation due to transitions involving transversal bound as well as unbound states is completely linearly polarized perpendicular to the channeling plane. Axial channeling radiation does not show linear polarization.
NASA Astrophysics Data System (ADS)
Artyomov, K. P.; Ryzhov, V. V.; Naumenko, G. A.; Shevelev, M. V.
2012-05-01
Different types of polarization radiation generated by a relativistic electron beam are simulated using fully electromagnetic particle-in-cell (PIC) code KARAT. The simulation results for diffraction radiation, transition radiation, Smith-Purcell radiation and Vavilov-Cherenkov radiation are in a good agreement with experimental data and analytical models. Modern PIC simulation is a good tool to check and predict experimental results.
Discrete diffusion Monte Carlo for frequency-dependent radiative transfer
Densmore, Jeffrey D; Kelly, Thompson G; Urbatish, Todd J
2010-11-17
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations. In this paper, we develop an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold. Above this threshold we employ standard Monte Carlo. With a frequency-dependent test problem, we confirm the increased efficiency of our new DDMC technique.
Effect of radiation heat transfer on thermal diffusivity measurements
NASA Astrophysics Data System (ADS)
Araki, N.
1990-03-01
Experimental data on thermal conductivity and thermal diffusivity of a semitransparent material generally include an error due to the radiation heat transfer. This error varies in accordance with the experimental conditions such as the temperature level of the sample and the measuring method. In this paper, research on the influence of radiation heat transfer on thermal diffusivity are reviewed, and as an example, the method to correct the radiation component in the apparent thermal diffusivity measured by the stepwise heating technique is presented. The transient heat transfer by simultaneous thermal conduction and radiation in a semitransparent material is analyzed when the front surface is subjected to stepwise heating. The apparent thermal diffusivity, which includes the radiation component, is calculated for various parameters.
COMPARING THE EFFECT OF RADIATIVE TRANSFER SCHEMES ON CONVECTION SIMULATIONS
Tanner, Joel D.; Basu, Sarbani; Demarque, Pierre
2012-11-10
We examine the effect of different radiative transfer schemes on the properties of three-dimensional (3D) simulations of near-surface stellar convection in the superadiabatic layer, where energy transport transitions from fully convective to fully radiative. We employ two radiative transfer schemes that fundamentally differ in the way they cover the 3D domain. The first solver approximates domain coverage with moments, while the second solver samples the 3D domain with ray integrations. By comparing simulations that differ only in their respective radiative transfer methods, we are able to isolate the effect that radiative efficiency has on the structure of the superadiabatic layer. We find the simulations to be in good general agreement, but they show distinct differences in the thermal structure in the superadiabatic layer and atmosphere.
NASA Astrophysics Data System (ADS)
Sun, Wenbo; Lukashin, Constantine; Baize, Rosemary R.; Goldin, Daniel
2015-01-01
The Climate Absolute Radiance and Refractivity Observatory (CLARREO) is a high-priority NASA Decadal Survey mission recommended by the National Research Council in 2007. The CLARREO objectives are to conduct highly accurate decadal climate-change observations and to provide an on-orbit inter-calibration standard for relevant Earth observing sensors. The inter-calibration approach is based on providing highly accurate spectral reflectance measurements from the CLARREO Reflected Solar Spectrometer (RSS) as the reference for existing sensors and to monitor and characterize their response function parameters including gain, offset, non-linearity, optics spectral response, and sensitivity to polarization of light. The inter-calibration of instrument sensitivity to polarization requires on-orbit knowledge of polarization state of light as function of observed scene type and viewing geometry. In this study, we validate polarization parameters calculated with the adding-doubling radiative transfer model (ADRTM) for developing the Polarization Distribution Models (PDMs). These model results are compared with observations from the Polarization and Anisotropy of Reflectances for Atmospheric Science instrument coupled with Observations from a Lidar (PARASOL) data. Good agreement between model results and satellite data is shown for both liquid water clouds and ice clouds. Difference between model results and satellite measurements for clear-sky oceans is explained as due to the presence of undetected clouds, that are super-thin or whose spatial and temporal mean optical depth is small, in the PARASOL clear-sky scenes. These results demonstrate that the ADRTM provides a reliable approach for building spectral PDMs for the inter-calibration applications of the CLARREO mission.
Polarization Transfer in 4He(e-vector,e[prime]p-vector)3H
Michael Paolone
2007-10-01
Polarization transfer in quasi-elastic nucleon knockout is sensitive to the properties of the nucleon in the nuclear medium, including possible modification of the nucleon form factor and/or spinor. In our recently completed experiment E03-104 at Jefferson Lab we measured the proton recoil polarization in the 4He(e-vector,e[prime]p-vector)3H reaction at a Q2 of 0.8 (GeV/c)2 and 1.3 (GeV/c)2 with unprecedented precision. These data complement earlier data between 0.4 and 2.6 (GeV/c)2 from both Mainz and Jefferson Lab, in which the measured ratio of polarization-transfer coefficients differs from a fully relativistic DWIA calculation. Preliminary results hint at a possible unexpected Q2 dependence in the polarization transfer coefficient ratio. Final analysis will help constrain FSI models
General Relativistic Radiative Transfer: Applications to Black-Hole Systems
NASA Technical Reports Server (NTRS)
Wu, Kinwah; Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Branduardi-Raymont, Graziella; Lee, Khee-Gan
2007-01-01
We present general relativistic radiation transfer formulations which include opacity effects due to absorption, emission and scattering explicitly. We consider a moment expansions for the transfer in the presence of scattering. The formulation is applied to calculation emissions from accretion and outflows in black-hole systems. Cases with thin accretion disks and accretion tori are considered. Effects, such as emission anisotropy, non-stationary flows and geometrical self-occultation are investigated. Polarisation transfer in curved space-time is discussed qualitatively.
Thermal radiation heat transfer (3rd revised and enlarged edition)
NASA Astrophysics Data System (ADS)
Siegel, Robert; Howell, John R.
This book first reviews the overall aspects and background information related to thermal radiation heat transfer and incorporates new general information, advances in analytical and computational techniques, and new reference material. Coverage focuses on radiation from opaque surfaces, radiation interchange between various types of surfaces enclosing a vacuum or transparent medium, and radiation including the effects of partially transmitting media, such as combustion gases, soot, or windows. Boundary conditions and multiple layers are discussed with information on radiation in materials with nonunity refractive indices.
Radiative Transfer Reconsidered as a Quantum Kinetic Theory Problem
NASA Astrophysics Data System (ADS)
Rosato, J.
2015-12-01
We revisit the radiative transfer theory from first principles approach, inspired from quantum kinetic theory. The radiation field is described within the second quantization formalism. A master equation for the radiation density operator is derived and transformed into a balance relation in the phase space, which involves nonlocal terms owing to radiation coherence. In a perturbative framework, we focus on the lowest order term in ℏ-expansion and show that the radiation coherence results in an alteration of the photon group velocity. An application to the formation of hydrogen lines in stellar atmospheres is performed as an illustration.
A study of Monte Carlo radiative transfer through fractal clouds
Gautier, C.; Lavallec, D.; O`Hirok, W.; Ricchiazzi, P.
1996-04-01
An understanding of radiation transport (RT) through clouds is fundamental to studies of the earth`s radiation budget and climate dynamics. The transmission through horizontally homogeneous clouds has been studied thoroughly using accurate, discreet ordinates radiative transfer models. However, the applicability of these results to general problems of global radiation budget is limited by the plane parallel assumption and the fact that real clouds fields show variability, both vertically and horizontally, on all size scales. To understand how radiation interacts with realistic clouds, we have used a Monte Carlo radiative transfer model to compute the details of the photon-cloud interaction on synthetic cloud fields. Synthetic cloud fields, generated by a cascade model, reproduce the scaling behavior, as well as the cloud variability observed and estimated from cloud satellite data.
Radiation Transfer in the Atmosphere: Scattering
NASA Technical Reports Server (NTRS)
Mishchenko, M.; Travis, L.; Lacis, Andrew A.
2014-01-01
Sunlight illuminating the Earth's atmosphere is scattered by gas molecules and suspended particles, giving rise to blue skies, white clouds, and optical displays such as rainbows and halos. By scattering and absorbing the shortwave solar radiation and the longwave radiation emitted by the underlying surface, cloud and aerosol particles strongly affect the radiation budget of the terrestrial climate system. As a consequence of the dependence of scattering characteristics on particle size, morphology, and composition, scattered light can be remarkably rich in information on particle properties and thus provides a sensitive tool for remote retrievals of macro- and microphysical parameters of clouds and aerosols.
Polarization Analysis of Nonlinear Harmonic Radiation in a Crossed-Planar Undulator
Geng, H.; Ding, Y.; Huang, Z.; /SLAC
2009-06-23
There is growing interest in producing intense, coherent x-ray radiation with an adjustable and arbitrary polarization state. The crossed-planar undulator, which was first proposed by Kim, could achieve rapid polarization control in synchrotron radiation sources and free electron lasers (FELs) through the manipulation of a phase shifter. Recently, a statistical analysis shows that a polarization degree of over 80% is obtainable for a Self-Amplified Spontaneous Emission (SASE) FEL near saturation. In such a scheme, nonlinear harmonic radiation is also generated in each undulator and the polarization of the radiation is controllable in the same manner. In this paper, we study the degree of polarization achievable at the third harmonic in a crossed-planar undulator. We also propose a method for generating second harmonic radiation with arbitrary polarization.
Radiative interactions with micromachined surfaces: Spectral polarized emittance. Final report
Zemel, J.N.
1995-05-01
This report covers work aimed at obtaining additional information on the electromagnetic emissions from heated, microstructured surface. Earlier work had established that thermal emission was a useful means for obtaining broad band information on the electromagnetic properties of these surfaces. Among the earlier results obtained was a demonstration that there was an increased amount of coherent radiation emitted from these structures. Also found was that the nature of the emission was dependent on the carrier concentration of the emitting material as well as the details of the geometry of surface structures. Described in this report is the normal polarized emissivity of undoped silicon gratings of different dimensions measured with a new emissometer. Deep grating fabrication, formation of a titanium silicide layer, and wafer cutting is described.
Prediction of radiative heat transfer in rectangular enclosures
Jamaluddin, A.S.; Smith, P.J.
1987-01-01
Discrete ordinates solutions of the radiative transport equation have been obtained for two- and three-dimensional rectangular enclosures using the S/sub 2/ and S/sub 4/ approximations. Limited evaluations indicate that both S/sub 2/ and S/sub 4/ are suitable for predicting radiative transfer in two-dimensional enclosures. However, for the three-dimensional enclosures the S/sub 2/ approximation is found inadequate. It is inferred that S/sub 4/ or higher order approximations should be used to accurately predict radiative heat transfer in three-dimensional rectangular enclosures.
Spectrally-Invariant Approximation Within Atmospheric Radiative Transfer
NASA Technical Reports Server (NTRS)
Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.
2011-01-01
Certain algebraic combinations of single scattering albedo and solar radiation reflected from, or transmitted through, vegetation canopies do not vary with wavelength. These "spectrally invariant relationships" are the consequence of wavelength independence of the extinction coefficient and scattering phase function in vegetation. In general, this wavelength independence does not hold in the atmosphere, but in clouddominated atmospheres the total extinction and total scattering phase function vary only weakly with wavelength. This paper identifies the atmospheric conditions under which the spectrally invariant approximation can accurately describe the extinction. and scattering properties of cloudy atmospheres. The validity of the assumptions and the accuracy of the approximation are tested with ID radiative transfer calculations using publicly available radiative transfer models: Discrete Ordinate Radiative Transfer (DISORT) and Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). It is shown for cloudy atmospheres with cloud optical depth above 3, and for spectral intervals that exclude strong water vapor absorption, that the spectrally invariant relationships found in vegetation canopy radiative transfer are valid to better than 5%. The physics behind this phenomenon, its mathematical basis, and possible applications to remote sensing and climate are discussed.
Radiative heat transfer in low-dimensional systems -- microscopic mode
NASA Astrophysics Data System (ADS)
Woods, Lilia; Phan, Anh; Drosdoff, David
2013-03-01
Radiative heat transfer between objects can increase dramatically at sub-wavelength scales. Exploring ways to modulate such transport between nano-systems is a key issue from fundamental and applied points of view. We advance the theoretical understanding of radiative heat transfer between nano-objects by introducing a microscopic model, which takes into account the individual atoms and their atomic polarizabilities. This approach is especially useful to investigate nano-objects with various geometries and give a detailed description of the heat transfer distribution. We employ this model to study the heat exchange in graphene nanoribbon/substrate systems. Our results for the distance separations, substrates, and presence of extended or localized defects enable making predictions for tailoring the radiative heat transfer at the nanoscale. Financial support from the Department of Energy under Contract No. DE-FG02-06ER46297 is acknowledged.
NASA Technical Reports Server (NTRS)
Le, G.; Zheng, Y.; Russell, C. T.; Pfaff, R. F.; Slavin, J. A.; Lin, N.; Mozer, F.; Parks, G.; Petrinec, S. M.; Lucek, e. A.; Reme, Henri
2005-01-01
The phenomenon called flux transfer events (FTEs) is widely accepted as the manifestation of time-dependent reconnection. In this paper, we present an observational evidence of a flux transfer event observed simultaneously at low-latitude by Polar and high-latitude by Cluster. This event occurred on March 21, 2002, when both Cluster and Polar were located near the local noon but with large latitudinal distance. Cluster was moving outbound from polar cusp to the magnetosheath, and Polar was in the magnetosheath near the equatorial magnetopause. The observations show that a flux transfer event was formed between the equator and the northern cusp. Polar and Cluster observed the FTE's two open flux tubes: Polar saw the southward moving flux tube near the equator; and Cluster the , northward moving flux tube at high latitude. Unlike low-latitude FTEs, the high-latitude FTE did not exhibit the characteristic bi-polar BN signature. But the plasma data clearly showed its open flux tube configuration. Enhanced electric field fluctuations were observed within the FTE core, both at low- and high-attitudes. This event provides us a unique opportunity to understand high-latitude FTE signatures and the nature of time-varying reconnection.
3D Radiative Transfer in Cloudy Atmospheres
NASA Astrophysics Data System (ADS)
Marshak, Alexander; Davis, Anthony
Developments in three-dimensional cloud radiation over the past few decades are assessed and distilled into this contributed volume. Chapters are authored by subject-matter experts who address a broad audience of graduate students, researchers, and anyone interested in cloud-radiation processes in the solar and infrared spectral regions. After two introductory chapters and a section on the fundamental physics and computational techniques, the volume extensively treats two main application areas: the impact of clouds on the Earth's radiation budget, which is an essential aspect of climate modeling; and remote observation of clouds, especially with the advanced sensors on current and future satellite missions. http://www.springeronline.com/alert/article?a=3D1_1fva7w_1j826l_41z_6
Light-Cone Effect of Radiation Fields in Cosmological Radiative Transfer Simulations
NASA Astrophysics Data System (ADS)
Ahn, Kyungjin
2015-02-01
We present a novel method to implement time-delayed propagation of radiation fields in cosmo-logical radiative transfer simulations. Time-delayed propagation of radiation fields requires construction of retarded-time fields by tracking the location and lifetime of radiation sources along the corresponding light-cones. Cosmological radiative transfer simulations have, until now, ignored this "light-cone effect" or implemented ray-tracing methods that are computationally demanding. We show that radiative trans-fer calculation of the time-delayed fields can be easily achieved in numerical simulations when periodic boundary conditions are used, by calculating the time-discretized retarded-time Green's function using the Fast Fourier Transform (FFT) method and convolving it with the source distribution. We also present a direct application of this method to the long-range radiation field of Lyman-Werner band photons, which is important in the high-redshift astrophysics with first stars.
A portable cryostat for the cold transfer of polarized solid HD targets: HDice-I
Bass, C. D.; Bade, C.; Blecher, M.; Caracappa, A.; D'Angelo, A.; Deur, A.; Dezern, G.; Glueckler, H.; Hanretty, C.; Ho, D.; Honig, A.; Kageya, T.; Khandaker, M.; Laine, V.; Lincoln, F.; Lowry, M. M.; Mahon, J. C.; O'Connell, T.; Pap, M.; Peng, P.; Preedom, B.; Sandorfi, A. M.; Seyfarth, H.; Stroeher, H.; Thorn, C. E.; Wei, X.; Whisnant, C. S.
2014-02-01
We developed a device with moveable liquid nitrogen and liquid helium volumes that is capable of reaching over 2 m into the coldest regions of a cryostat or dilution refrigerator and reliably extracting or installing a target of solid, polarized hydrogen deuteride (HD). This Transfer Cryostat incorporates a cylindrical neodymium rare-earth magnet that is configured as a Halbach dipole, which is maintained at 77 K and produces a 0.1 T field around the HD target. Multiple layers provide a hermetic 77 K-shield as the device is used to maintain a target at 2 K during a transfer between cryostats. Our tests with frozen-spin HD show very little polarization loss for either H (-1±2%, relative) or D (0±3%, relative) over typical transfer periods. Multiple target transfers with this apparatus have shown an overall reliability of about 95% per transfer, which is a significant improvement over earlier versions of the device.
A portable cryostat for the cold transfer of polarized solid HD targets: HDice-I
Bass, Christopher D.; Sandorfi, Andy M.; Bade, C.; Blecher, M.; Caracappa, A.; D'Angelo, A.; Deur, A.; Dezern, G.; Glueckler, H.; Hanretty, C.; Ho, D.; Kageya, T.; Khandaker, M.; Laine, V.; Lincoln, F.; Lowry, M. M.; Mahon, J. C.; Connell, T. O.; Peng, P.; Preedom, B.; Seyfarth, H.; Stroeher, H.; Thorn, C. E.; Wei, X.; Whisnant, C. S.
2014-02-01
A device has been developed with moveable liquid nitrogen and liquid helium volumes that is capable of reaching over two meters into the coldest regions of a cryostat or dilution refrigerator and reliably extracting or installing a target of solid, polarized hydrogen deuteride (HD). This Transfer Cryostat incorporates a cylindrical neodymium rare-earth magnet that is configured as a Halbach dipole, which is maintained at 77 K and produces a 0.1 T field around the HD target. Multiple layers provide a hermetic 77 K-shield as the device is used to maintain a target at 2 K during a transfer between cryostats. Tests with frozen-spin HD show negligible polarization loss for either H or D over typical transfer periods. Multiple target transfers with this apparatus have shown an overall reliability of about 95% per transfer, which is a significant improvement over earlier versions of the device.
NASA Technical Reports Server (NTRS)
Liu, Xu; Smith, William L.; Zhou, Daniel K.; Larar, Allen
2005-01-01
Modern infrared satellite sensors such as Atmospheric Infrared Sounder (AIRS), Cosmic Ray Isotope Spectrometer (CrIS), Thermal Emission Spectrometer (TES), Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and Infrared Atmospheric Sounding Interferometer (IASI) are capable of providing high spatial and spectral resolution infrared spectra. To fully exploit the vast amount of spectral information from these instruments, super fast radiative transfer models are needed. This paper presents a novel radiative transfer model based on principal component analysis. Instead of predicting channel radiance or transmittance spectra directly, the Principal Component-based Radiative Transfer Model (PCRTM) predicts the Principal Component (PC) scores of these quantities. This prediction ability leads to significant savings in computational time. The parameterization of the PCRTM model is derived from properties of PC scores and instrument line shape functions. The PCRTM is very accurate and flexible. Due to its high speed and compressed spectral information format, it has great potential for super fast one-dimensional physical retrievals and for Numerical Weather Prediction (NWP) large volume radiance data assimilation applications. The model has been successfully developed for the National Polar-orbiting Operational Environmental Satellite System Airborne Sounder Testbed - Interferometer (NAST-I) and AIRS instruments. The PCRTM model performs monochromatic radiative transfer calculations and is able to include multiple scattering calculations to account for clouds and aerosols.
User's Manual: Routines for Radiative Heat Transfer and Thermometry
NASA Technical Reports Server (NTRS)
Risch, Timothy K.
2016-01-01
Determining the intensity and spectral distribution of radiation emanating from a heated surface has applications in many areas of science and engineering. Areas of research in which the quantification of spectral radiation is used routinely include thermal radiation heat transfer, infrared signature analysis, and radiation thermometry. In the analysis of radiation, it is helpful to be able to predict the radiative intensity and the spectral distribution of the emitted energy. Presented in this report is a set of routines written in Microsoft Visual Basic for Applications (VBA) (Microsoft Corporation, Redmond, Washington) and incorporating functions specific to Microsoft Excel (Microsoft Corporation, Redmond, Washington) that are useful for predicting the radiative behavior of heated surfaces. These routines include functions for calculating quantities of primary importance to engineers and scientists. In addition, the routines also provide the capability to use such information to determine surface temperatures from spectral intensities and for calculating the sensitivity of the surface temperature measurements to unknowns in the input parameters.
Hirota, Yuichi; Hattori, Ryo; Tani, Masahiko; Hangyo, Masanori
2006-05-15
Generation and modulation of circularly polarized terahertz electromagnetic radiation have been demonstrated by using a four-contact photoconductive antenna and a total-reflection Si prism. The quality of the circularly polarized terahertz pulsed radiation has been evaluated by using a polarization sensitive terahertz time-domain spectroscopy system. The characteristic of the dynamic modulation between the left and right circularly polarized states of the THz radiation is also evaluated. The ellipticity of the modulated circularly polarized THz radiation without a polarizer is not as good as that of the non-modulated because of the non-uniform bias field distribution and the asymmetric pump laser intensity profile on the photoconductive gap. PMID:19516602
Mentel, Kamila K; Nunes, Rui M D; Serpa, Carlos; Arnaut, Luis G
2015-06-18
Fluorescence quenching of p-xylene, naphthalene, or pyrene by fumaronitrile in apolar solvents and in solvents of intermediate polarities leads to weakly fluorescent radical ion pairs. This emission is assigned to ion pairs in close contact on the basis of their solvent polarity dependence, kinetics, and thermodynamics. The temperature-dependence of the intensity and fluorescence emission maxima of ion pairs in methyl acetate reveals that they have decay channels competitive with their thermal equilibration. The results presented in this work are consistent with the direct formation of contact ion pairs in weakly polar solvents and in solvents of intermediate polarities as the result of bimolecular photoinduced electron transfer reactions between aromatic hydrocarbons and nitriles. The implications of these findings in free-energy relationships of electron transfer reactions are discussed. PMID:25588979
Radiative interactions in transient energy transfer in gaseous systems
NASA Technical Reports Server (NTRS)
Tiwari, S. N.
1985-01-01
Analyses and numerical procedures are presented to investigate the radiative interactions in transient energy transfer processes in gaseous systems. The nongray radiative formulations are based on the wide-band model correlations for molecular absorption. Various relations for the radiative flux are developed; these are useful for different flow conditions and physical problems. Specific plans for obtaining extensive results for different cases are presented. The methods presented in this study can be extended easily to investigate the radiative interactions in realistic flows of hydrogen-air species in the scramjet engine.
Heat Transfer Analysis of a Closed Brayton Cycle Space Radiator
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2007-01-01
This paper presents a mathematical analysis of the heat transfer processes taking place in a radiator for a closed cycle gas turbine (CCGT), also referred to as a Closed Brayton Cycle (CBC) space power system. The resulting equations and relationships have been incorporated into a radiator sub-routine of a numerical triple objective CCGT optimization program to determine operating conditions yielding maximum cycle efficiency, minimum radiator area and minimum overall systems mass. Study results should be of interest to numerical modeling of closed cycle Brayton space power systems and to the design of fluid cooled radiators in general.
NASA Astrophysics Data System (ADS)
Fanelli, C.; Cisbani, E.; Hamilton, D. J.; Salmé, G.; Wojtsekhowski, B.; Ahmidouch, A.; Annand, J. R. M.; Baghdasaryan, H.; Beaufait, J.; Bosted, P.; Brash, E. J.; Butuceanu, C.; Carter, P.; Christy, E.; Chudakov, E.; Danagoulian, S.; Day, D.; Degtyarenko, P.; Ent, R.; Fenker, H.; Fowler, M.; Frlez, E.; Gaskell, D.; Gilman, R.; Horn, T.; Huber, G. M.; de Jager, C. W.; Jensen, E.; Jones, M. K.; Kelleher, A.; Keppel, C.; Khandaker, M.; Kohl, M.; Kumbartzki, G.; Lassiter, S.; Li, Y.; Lindgren, R.; Lovelace, H.; Luo, W.; Mack, D.; Mamyan, V.; Margaziotis, D. J.; Markowitz, P.; Maxwell, J.; Mbianda, G.; Meekins, D.; Meziane, M.; Miller, J.; Mkrtchyan, A.; Mkrtchyan, H.; Mulholland, J.; Nelyubin, V.; Pentchev, L.; Perdrisat, C. F.; Piasetzky, E.; Prok, Y.; Puckett, A. J. R.; Punjabi, V.; Shabestari, M.; Shahinyan, A.; Slifer, K.; Smith, G.; Solvignon, P.; Subedi, R.; Wesselmann, F. R.; Wood, S.; Ye, Z.; Zheng, X.
2015-10-01
Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The wide-angle Compton scattering polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of θcmp=70 ° . The longitudinal transfer KLL, measured to be 0.645 ±0.059 ±0.048 , where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton. However, the observed value is ˜3 times larger than predicted by the generalized-parton-distribution-based calculations, which indicates a significant unknown contribution to the scattering amplitude.
Fanelli, Cristiano V.
2015-10-06
Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The WACS polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of θ^{P}_{cm} = 70°. The longitudinal transfer K_{LL}, measured to be 0.645 ± 0.059 ± 0.048, where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton. However, the observed value is ~3 times larger than predicted by the GPD-based calculations, which indicates a significant unknown contribution to the scattering amplitude.
Fanelli, Cristiano V.
2015-10-06
Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The WACS polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of θPcm = 70°. The longitudinal transfer KLL, measured to be 0.645 ± 0.059 ± 0.048, where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton.more » However, the observed value is ~3 times larger than predicted by the GPD-based calculations, which indicates a significant unknown contribution to the scattering amplitude.« less
Fanelli, C; Cisbani, E; Hamilton, D J; Salmé, G; Wojtsekhowski, B; Ahmidouch, A; Annand, J R M; Baghdasaryan, H; Beaufait, J; Bosted, P; Brash, E J; Butuceanu, C; Carter, P; Christy, E; Chudakov, E; Danagoulian, S; Day, D; Degtyarenko, P; Ent, R; Fenker, H; Fowler, M; Frlez, E; Gaskell, D; Gilman, R; Horn, T; Huber, G M; de Jager, C W; Jensen, E; Jones, M K; Kelleher, A; Keppel, C; Khandaker, M; Kohl, M; Kumbartzki, G; Lassiter, S; Li, Y; Lindgren, R; Lovelace, H; Luo, W; Mack, D; Mamyan, V; Margaziotis, D J; Markowitz, P; Maxwell, J; Mbianda, G; Meekins, D; Meziane, M; Miller, J; Mkrtchyan, A; Mkrtchyan, H; Mulholland, J; Nelyubin, V; Pentchev, L; Perdrisat, C F; Piasetzky, E; Prok, Y; Puckett, A J R; Punjabi, V; Shabestari, M; Shahinyan, A; Slifer, K; Smith, G; Solvignon, P; Subedi, R; Wesselmann, F R; Wood, S; Ye, Z; Zheng, X
2015-10-01
Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The wide-angle Compton scattering polarization transfer was analyzed at an incident photon energy of 3.7 GeV at a proton scattering angle of θ_{cm}^{p}=70°. The longitudinal transfer K_{LL}, measured to be 0.645±0.059±0.048, where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton. However, the observed value is ~3 times larger than predicted by the generalized-parton-distribution-based calculations, which indicates a significant unknown contribution to the scattering amplitude. PMID:26550716
Radiation Heat Transfer Procedures for Space-Related Applications
NASA Technical Reports Server (NTRS)
Chai, John C.
2000-01-01
Over the last contract year, a numerical procedure for combined conduction-radiation heat transfer using unstructured grids has been developed. As a result of this research, one paper has been published in the Numerical Heat Transfer Journal. One paper has been accepted for presentation at the International Center for Heat and Mass Transfer's International Symposium on Computational Heat Transfer to be held in Australia next year. A journal paper is under review by my NASA's contact. A conference paper for the ASME National Heat Transfer conference is under preparation. In summary, a total of four (4) papers (two journal and two conference) have been published, accepted or are under preparation. There are two (2) to three (3) more papers to be written for the project. In addition to the above publications, one book chapter, one journal paper and six conference papers have been published as a result of this project. Over the last contract year, the research project resulted in one Ph.D. thesis and partially supported another Ph.D. student. My NASA contact and myself have formulated radiation heat transfer procedures for materials with different indices of refraction and for combined conduction-radiation heat transfer. We are trying to find other applications for the procedures developed under this grant.
Polarized Electrons for Experiments at Low Momentum Transfer SPIN S-DALINAC
Eckardt, C.; Barday, R.; Enders, J.; Goeoek, A.; Hessler, C.; Poltoratska, Y.; Wagner, M.; Mueller, W. F. O.; Steiner, B.; Weiland, T.
2009-08-04
The superconducting Darmstadt linear electron accelerator S-DALINAC will be expanded by a newly developed polarized injector concept called SPIN. The polarized beam program includes experiments to search for parity violation in photo induced fission, the investigation of the 5th structure function at low momentum transfer and break up reactions of few body systems. These experiments and an overview of the current experimental program will be covered in this paper.
Partial moment entropy approximation to radiative heat transfer
Frank, Martin . E-mail: frank@mathematik.uni-kl.de; Dubroca, Bruno . E-mail: Bruno.Dubroca@math.u-bordeaux.fr; Klar, Axel . E-mail: klar@mathematik.uni-kl.de
2006-10-10
We extend the half moment entropy closure for the radiative heat transfer equations presented in Dubroca and Klar [B. Dubroca, A. Klar, Half moment closure for radiative transfer equations, J. Comput. Phys. 180 (2002) 584-596] and Turpault et al. [R. Turpault, M. Frank, B. Dubroca, A. Klar, Multigroup half space moment approximations to the radiative heat transfer equations, J. Comput. Phys. 198 (2004) 363-371] to multi-D. To that end, we consider a partial moment system with general partitions of the unit sphere closed by an entropy minimization principle. We give physical and mathematical reasons for this choice of model and study its properties. Several numerical examples in different physical regimes are presented.
Radiative transfer theory for polarimetric remote sensing of pine forest
NASA Technical Reports Server (NTRS)
Hsu, C. C.; Han, H. C.; Shin, Robert T.; Kong, Jin AU; Beaudoin, A.; Letoan, T.
1992-01-01
The radiative transfer theory is applied to interpret polarimetric radar backscatter from pine forest with clustered vegetation structures. To take into account the clustered structures with the radiative transfer theory, the scattering function of each cluster is calculated by incorporating the phase interference of scattered fields from each component. Subsequently, the resulting phase matrix is used in the radiative transfer equations to evaluate the polarimetric backscattering coefficients from random medium layers embedded with vegetation clusters. Upon including the multi-scale structures, namely, trunks, primary and secondary branches, as well as needles, we interpret and simulate the polarimetric radar responses from pine forest for different frequencies and looking angles. The preliminary results are shown to be in good agreement with the measured backscattering coefficients at the Landes maritime pine forest during the MAESTRO-1 experiment.
Estimation of radiative heat transfer using a geometric human model.
Kakuta, N; Yokoyama, S; Nakamura, M; Mabuchi, K
2001-03-01
In order to provide a detailed estimate of radiative heat transfer between a human body and its surrounding environment, we have developed a geometric model of a human form and an algorithm. The model closely resembles the actual shape of a human body and is composed of small quadrilateral surfaces. Dealing with an object or a space with an arbitrary shape, the developed algorithm can judge efficiently whether there is an obstruction between a pair of surfaces. As a result, the angle factors between a pair of surfaces that only occur during radiative heat transfer can be defined. The distribution of the radiative heat transfer rates shows the characteristics of body shape and variations in posture. PMID:11327500
Polarization transfer in n-p scattering at 50 MeV
NASA Astrophysics Data System (ADS)
Woolverton, H. L.; Nath, S.; Hiebert, J. C.; Northcliffe, L. C.; Woodward, And W.
1985-05-01
The polarization transfer parameter Dt(180°) for n-p scattering has been measured at 50 MeV for the first time. Polarized neutrons produced in the 2H(darrow,narrow) 3He reaction were scattered from the hydrogen in a polyethylene target and the polarization of the recoil protons emitted at 0° was measured in a carbon polarimeter. The result of this measurement tests the prediction of Dt from a phase shift analysis of the N-N data and that of a theoretical proposal concerning n-p charge exchange.
Polarization dependence of charge-transfer excitations in La2CuO4
NASA Astrophysics Data System (ADS)
Lu, Li; Chabot-Couture, Guillaume; Hancock, Jason; Vajk, Owen; Yu, Guichuan; Ishii, Kenji; Mizuki, Jun'ichiro; Casa, Diego; Gog, Thomas; Greven, Martin
2006-03-01
We have carried out an extensive resonant inelastic x-ray scattering (RIXS) study of La2CuO4 at the Cu K-edge. Multiple charge-transfer excitations have been identified using the incident photon energy dependence of the cross section and studied carefully with polarizations E//c and E //ab. An analysis of the incident photon energy dependence, the polarization dependence, as well as the K-edge absorption spectra, indicates that the RIXS spectra reveal rich physics about the K-edge absorption process and momentum-dependent charge-transfer excitations in cuprates.
Coherent transfer of nuclear spin polarization in field-cycling NMR experiments
Pravdivtsev, Andrey N.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.; Vieth, Hans-Martin
2013-12-28
Coherent polarization transfer effects in a coupled spin network have been studied over a wide field range. The transfer mechanism is based on exciting zero-quantum coherences between the nuclear spin states by means of non-adiabatic field jump from high to low magnetic field. Subsequent evolution of these coherences enables conversion of spin order in the system, which is monitored after field jump back to high field. Such processes are most efficient when the spin system passes through an avoided level crossing during the field variation. The polarization transfer effects have been demonstrated for N-acetyl histidine, which has five scalar coupled protons; the initial spin order has been prepared by applying RF-pulses at high magnetic field. The observed oscillatory transfer kinetics is taken as a clear indication of a coherent mechanism; level crossing effects have also been demonstrated. The experimental data are in very good agreement with the theoretical model of coherent polarization transfer. The method suggested is also valid for other types of initial polarization in the spin system, most notably, for spin hyperpolarization.
Many-body radiative heat transfer theory.
Ben-Abdallah, Philippe; Biehs, Svend-Age; Joulain, Karl
2011-09-01
In this Letter, an N-body theory for the radiative heat exchange in thermally nonequilibrated discrete systems of finite size objects is presented. We report strong exaltation effects of heat flux which can be explained only by taking into account the presence of many-body interactions. Our theory extends the standard Polder and van Hove stochastic formalism used to evaluate heat exchanges between two objects isolated from their environment to a collection of objects in mutual interaction. It gives a natural theoretical framework to investigate the photon heat transport properties of complex systems at the mesoscopic scale. PMID:22026672
Radiative heat transfer in coal furnaces
Ahluwalia, R.K.; Im, K.H.
1992-01-01
A hybrid technique has been developed to solve three-dimensional spectral radiation transport equations for absorbing, emitting and anisotropically scattering media. An optimal mix of computational speed and accuracy is obtained by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P{sub 1} approximation for use in different range of optical thicknesses. The technique is used in conjunction with a char burnout model and spectroscopic data for H{sub 2}O, CO{sub 2}, CO, char, soot and ash to determine the influence of ash composition, ash content and coal preparation on furnace heat absorption.
Radiative heat transfer in coal furnaces
Ahluwalia, R.K.; Im, K.H.
1992-09-01
A hybrid technique has been developed to solve three-dimensional spectral radiation transport equations for absorbing, emitting and anisotropically scattering media. An optimal mix of computational speed and accuracy is obtained by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P{sub 1} approximation for use in different range of optical thicknesses. The technique is used in conjunction with a char burnout model and spectroscopic data for H{sub 2}O, CO{sub 2}, CO, char, soot and ash to determine the influence of ash composition, ash content and coal preparation on furnace heat absorption.
Combined conduction and radiation heat transfer in concentric cylindrical media
NASA Technical Reports Server (NTRS)
Pandey, D. K.
1987-01-01
The exact radiative transfer expressions for gray and nongray gases which are absorbing, emitting and nonscattering, contained between infinitely long concentric cylinders with black surfaces, are given in local thermodynamic equilibrium. Resulting energy equations due to the combination of conduction and radiation modes of heat transfer, under steady state conditions for gray and nongray media, are solved numerically using the undetermined parameters method. A single 4.3-micron band of CO2 is considered for the nongray problems. The present solutions for gray and nongray gases obtained in the plane-parallel limit (radius ratio approaches to one) are compared with the plane-parallel results reported in the literature.
Computation of Radiation Heat Transfer in Aeroengine Combustors
NASA Technical Reports Server (NTRS)
Patankar, S. V.
1996-01-01
In this report the highlights of the research completed for the NASA are summarized. This research has been completed in the form of two Ph.D. theses by Chai (1994) and Parthasarathy (1996). Readers are referred to these theses for a complete details of the work and lists of references. In the following sections, first objectives of this research are introduced, then the finite-volume method for radiation heat transfer is described, and finally computations of radiative heat transfer in non-gray participating media is presented.
A simplified scheme for computing radiation transfer in the troposphere
NASA Technical Reports Server (NTRS)
Katayama, A.
1973-01-01
A scheme is presented, for the heating of clear and cloudy air by solar and infrared radiation transfer, designed for use in tropospheric general circulation models with coarse vertical resolution. A bulk transmission function is defined for the infrared transfer. The interpolation factors, required for computing the bulk transmission function, are parameterized as functions of such physical parameters as the thickness of the layer, the pressure, and the mixing ratio at a reference level. The computation procedure for solar radiation is significantly simplified by the introduction of two basic concepts. The first is that the solar radiation spectrum can be divided into a scattered part, for which Rayleigh scattering is significant but absorption by water vapor is negligible, and an absorbed part for which absorption by water vapor is significant but Rayleigh scattering is negligible. The second concept is that of an equivalent cloud water vapor amount which absorbs the same amount of radiation as the cloud.
de Almeida, V.F.
2004-01-28
A phase-space discontinuous Galerkin (PSDG) method is presented for the solution of stellar radiative transfer problems. It allows for greater adaptivity than competing methods without sacrificing generality. The method is extensively tested on a spherically symmetric, static, inverse-power-law scattering atmosphere. Results for different sizes of atmospheres and intensities of scattering agreed with asymptotic values. The exponentially decaying behavior of the radiative field in the diffusive-transparent transition region and the forward peaking behavior at the surface of extended atmospheres were accurately captured. The integrodifferential equation of radiation transfer is solved iteratively by alternating between the radiative pressure equation and the original equation with the integral term treated as an energy density source term. In each iteration, the equations are solved via an explicit, flux-conserving, discontinuous Galerkin method. Finite elements are ordered in wave fronts perpendicularly to the characteristic curves so that elemental linear algebraic systems are solved quickly by sweeping the phase space element by element. Two implementations of a diffusive boundary condition at the origin are demonstrated wherein the finite discontinuity in the radiative intensity is accurately captured by the proposed method. This allows for a consistent mechanism to preserve photon luminosity. The method was proved to be robust and fast, and a case is made for the adequacy of parallel processing. In addition to classical two-dimensional plots, results of normalized radiative intensity were mapped onto a log-polar surface exhibiting all distinguishing features of the problem studied.
Radiative corrections in baryon semileptonic decays with the emission of a polarized baryon
Juarez-Leon, C.; Martinez, A.; Neri, M.; Torres, J. J.; Flores-Mendieta, R.
2010-07-29
We present an overview of the calculation of radiative corrections to the Dalitz plot of baryon semileptonic decays with angular correlation between polarized emitted baryons and charged leptons. We discuss both charged and neutral decaying baryons, restricted to the three-body region of the Dalitz plot. Our analysis is specialized to cover two possible scenarios: The center-of-mass frames of the emitted and the decaying baryons. We have accounted for terms up to order ({alpha}/{pi})(q/M{sub 1}){sup 0}, where q is the momentum-transfer and M{sup 1} is the mass of the decaying baryon, and neglected terms of order ({alpha}/{pi})(q/M{sub 1}){sup n} for n{>=}1. The expressions displayed are ready to obtain numerical results, suitable for model-independent experimental analyses.
Applications of circularly polarized radiation using synchrotron and other ordinary sources
Allen, F.; Bustamante, C.
1985-01-01
This volume has resulted from a meeting of people interested in all aspects of polarized radiation. A broad range of scientific disciplines was represented, including methods and applications of synchotron radiation, CIDS calculations on quartz at hard x-ray wavelengths, simulated synchotron radiation, measuring the Mueller matrix by a multimodulator scattering instrument, circular intensity differential scattering measurements of planar and focal conic orientations of cholesteric liquid crystals, high speed photoelastic modulation, and vibrational optical activity. The main emphasis was circular polarization.
Theory of heat transfer and hydraulic resistance of oil radiators
NASA Technical Reports Server (NTRS)
Mariamov, N B
1942-01-01
In the present report the coefficients of heat transfer and hydraulic resistance are theoretically obtained for the case of laminar flow of a heated viscous liquid in a narrow rectangular channel. The results obtained are applied to the computation of oil radiators, which to a first approximation may be considered as made up of a system of such channels. In conclusion, a comparison is given of the theoretical with the experimental results obtained from tests on airplane oil radiators.
Modelling of Radiation Heat Transfer in Reacting Hot Gas Flows
NASA Astrophysics Data System (ADS)
Thellmann, A.; Mundt, C.
2009-01-01
In this work the interaction between a turbulent flow including chemical reactions and radiation transport is investigated. As a first step, the state-of-the art radiation models P1 based on the moment method and Discrete Transfer Model (DTM) based on the discrete ordinate method are used in conjunction with the CFD code ANSYS CFX. The absorbing and emitting medium (water vapor) is modeled by Weighted Sum of Gray Gases. For the chemical reactions the standard Eddy dissipation model combined with the two equation turbulence model k-epsilon is employed. A demonstration experiment is identified which delivers temperature distribution, species concentration and radiative intensity distribution in the investigated combustion enclosure. The simulation results are compared with the experiment and reveals that the P1 model predicts the location of the maximal radiation intensity unphysically. On the other hand the DTM model does better but over predicts the maximum value of the radiation intensity. This radiation sensitivity study is a first step on the way to identify a suitable radiation transport and spectral model in order to implement both in an existing 3D Navier-Stokes Code. Including radiation heat transfer we intend to investigate the influence on the overall energy balance in a hydrogen/oxygen rocket combustion chamber.