Science.gov

Sample records for pole space water

  1. Lunar South Pole space water extraction and trucking system

    SciTech Connect

    Zuppero, A. |; Zupp, G.; Schnitzler, B.; Larson, T.K.; Rice, J.W.

    1998-03-01

    This concept proposes to use thermal processes alone to extract water from the lunar South Pole and launch payloads to low lunar orbit. Thermal steam rockets would use water propellant for space transportation. The estimated mass of a space water tanker powered by a nuclear heated steam rocket suggests it can be designed for launch in the Space Shuttle bay. The performance depends on the feasibility of a nuclear reactor rocket engine producing steam at 1,100 degrees Kelvin, with a power density of 150 Megawatts per ton of rocket, and operating for thousands of 20 minute cycles. An example uses reject heat from a small nuclear electric power supply to melt 17,800 tons per year of lunar ice. A nuclear heated steam rocket would use the propellant water to launch and deliver 3,800 tons of water per year to a 100 km low lunar orbit.

  2. Pentachlorophenol Contamination of Private Drinking Water From Treated Utility Poles

    PubMed Central

    Cragin, Lori; Center, Gail; Giguere, Cary; Comstock, Jeff; Boccuzzo, Linda; Sumner, Austin

    2013-01-01

    In 2009, after resident calls regarding an odor, the Vermont Department of Health and state partners responded to 2 scenarios of private drinking water contamination from utility poles treated with pentachlorophenol (PCP), an organochlorine wood preservative used in the United States. Public health professionals should consider PCP contamination of private water if they receive calls about a chemical or gasoline-like odor with concurrent history of nearby utility pole replacement. PMID:23237185

  3. Transient water vapor at Europa's south pole.

    PubMed

    Roth, Lorenz; Saur, Joachim; Retherford, Kurt D; Strobel, Darrell F; Feldman, Paul D; McGrath, Melissa A; Nimmo, Francis

    2014-01-10

    In November and December 2012, the Hubble Space Telescope (HST) imaged Europa's ultraviolet emissions in the search for vapor plume activity. We report statistically significant coincident surpluses of hydrogen Lyman-α and oxygen OI 130.4-nanometer emissions above the southern hemisphere in December 2012. These emissions were persistently found in the same area over the 7 hours of the observation, suggesting atmospheric inhomogeneity; they are consistent with two 200-km-high plumes of water vapor with line-of-sight column densities of about 10(20) per square meter. Nondetection in November 2012 and in previous HST images from 1999 suggests varying plume activity that might depend on changing surface stresses based on Europa's orbital phases. The plume was present when Europa was near apocenter and was not detected close to its pericenter, in agreement with tidal modeling predictions. PMID:24336567

  4. Polarization and space charge analysis in thermally poled PVDF

    NASA Astrophysics Data System (ADS)

    Neagu, E. R.; Hornsby, J. S.; Das-Gupta, D. K.

    2002-06-01

    The spatial distribution of the polarization and space charge in thermally poled poly (vinylidene fluoride) is studied using the laser intensity modulation method. Injected space charge, localized near the electrode polymer interface, tends to prevent the formation of uniform polarization in the polymer bulk. The actual amount of charge existing in the poled specimen is determined using hysteresis measurements and thermally stimulated discharge current (TSDC) measurements. By using the peak cleaning technique and by measuring the pyroelectric current during the cooling of the specimen, the contribution of depolarization current and space charge detrapping to the TSDC measurement is considered. From hysteresis measurements a relaxation process was observed around 65°C which was related to the dipolar relaxation in the crystalline phase known as the αc relaxation. A significant increase of the TSDC at temperatures higher than 130°C was observed meaning that the dipolar charge and the space charge are very stable up to high temperature. In this temperature range, the pyroelectric current is significant. Two relaxation processes were identified for a polarizing temperature lower than 120°C. One is centred around the polarizing temperature and is related to space charge release. The second is related to dipole relaxation in the crystalline phase. The position of the last peak is determined by interaction between the dipoles and the internal electric field, resulting from the charge stored in the sample. We propose to call this as the αcρ interaction. The higher temperature of the dipolar peak was identified as 86°C with an activation energy of 0.52+/-0.04 eV.

  5. The Learning of Visually Guided Action: An Information-Space Analysis of Pole Balancing

    ERIC Educational Resources Information Center

    Jacobs, David M.; Vaz, Daniela V.; Michaels, Claire F.

    2012-01-01

    In cart-pole balancing, one moves a cart in 1 dimension so as to balance an attached inverted pendulum. We approached perception-action and learning in this task from an ecological perspective. This entailed identifying a space of informational variables that balancers use as they perform the task and demonstrating that they improve by traversing…

  6. Following up on the Discovery of Water Vapor at Europa's South Pole with HST

    NASA Astrophysics Data System (ADS)

    Roth, L.; Retherford, K. D.; Saur, J.; Strobel, D. F.; Feldman, P. D.; McGrath, M. A.; Nimmo, F.; Spencer, J. R.; Grava, C.; Bloecker, A.

    2014-12-01

    We will present new Hubble Space Telescope (HST) observations of Europa's UV aurora obtained within two campaigns in 2014 to follow up on the water vapor plume detection. HST aurora images taken in 2012 have revealed coincident signals from atomic hydrogen and oxygen pointing to the existence of transient water vapor plumes near the south pole. The water vapor was detected only during one HST visit in December 2012 when Europa was near apocenter position and was speculated to be correlated with changing tidal stresses along Europa's orbit. In a first follow-up campaign new aurora images were taken by HST early in 2014 with Europa near apocenter, but the initial detection was not confirmed. More HST aurora images will be obtained in the course of a larger Hubble observing campaign starting in November 2014. We will review all HST aurora imaging observations to date and discuss potential sources for varying plume activity and changing detectability by HST. In particular, we will examine various explanations for the non-detections in the early 2014 observations near apocenter.

  7. Space Station Water Quality

    NASA Technical Reports Server (NTRS)

    Willis, Charles E. (Editor)

    1987-01-01

    The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.

  8. Martian north pole summer temperatures - Dirty water ice

    NASA Technical Reports Server (NTRS)

    Kieffer, H. H.; Martin, T. Z.; Chase, S. C., Jr.; Miner, E. D.; Palluconi, F. D.

    1976-01-01

    Broadband thermal and reflectance observations of the Martian north polar region in late summer yield temperatures for the residual polar cap near 205 K with albedos near 43 percent. The residual cap and several outlying smaller deposits are water ice with included dirt; there is no evidence for any permanent carbon dioxide polar cap.

  9. Exposed water ice discovered near the south pole of Mars.

    PubMed

    Titus, Timothy N; Kieffer, Hugh H; Christensen, Phillip R

    2003-02-14

    The Mars Odyssey Thermal Emission Imaging System (THEMIS) has discovered water ice exposed near the edge of Mars' southern perennial polar cap. The surface H2O ice was first observed by THEMIS as a region that was cooler than expected for dry soil at that latitude during the summer season. Diurnal and seasonal temperature trends derived from Mars Global Surveyor Thermal Emission Spectrometer observations indicate that there is H2O ice at the surface. Viking observations, and the few other relevant THEMIS observations, indicate that surface H2O ice may be widespread around and under the perennial CO2 cap. PMID:12471268

  10. Exposed water ice discovered near the south pole of Mars

    USGS Publications Warehouse

    Titus, T.N.; Kieffer, H.H.; Christensen, P.R.

    2003-01-01

    The Mars Odyssey Thermal Emission Imaging System (THEMIS) has discovered water ice exposed near the edge of Mars' southern perennial polar cap. The surface H2O ice was first observed by THEMIS as a region that was cooler than expected for dry soil at that latitude during the summer season. Diurnal and seasonal temperature trends derived from Mars Global Surveyor Thermal Emission Spectrometer observations indicate that there is H2O ice at the surface. Viking observations, and the few other relevant THEMIS observations, indicate that surface H2O ice may be widespread around and under the perennial CO2 cap.

  11. Combinations of Earth Orientation Measurements: SPACE2004, COMB2004, and POLE2004

    NASA Technical Reports Server (NTRS)

    Gross, Richard R.

    2005-01-01

    Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the global positioning system have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2004, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to January 22, 2005, at daily intervals and is available in versions whose epochs are given at either midnight or noon. The space-geodetic measurements used to generate SPACE2004 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2004, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to January 22, 2005, at daily intervals and which is also available in versions whose epochs are given at either midnight or noon, and (2) POLE2004, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to January 20, 2005, at 30.4375-day intervals.

  12. Combinations of Earth Orientation Measurements: SPACE2005, COMB2005, and POLE2005

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.

    2006-01-01

    Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, by very long baseline interferometry, and by the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2005, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to January 7, 2006, at daily intervals and is available in versions whose epochs are given at either midnight or noon. The space-geodetic measurements used to generate SPACE2005 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2005, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to January 7, 2006, at daily intervals and which is also available in versions whose epochs are given at either midnight or noon; and (2) POLE2005, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to December 21, 2005, at 30.4375-day intervals.

  13. Combinations of Earth Orientation Measurements: SPACE2001, COMB2001, and POLE2001

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.

    2002-01-01

    Independent Earth-orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the global positioning system have been combined using a Kalman filter. The resulting combined Earth-orientation series, SPACE2001, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28.0, 1976 to January 19.0, 2002 at daily intervals. The space-geodetic measurements used to generate SPACE2001 have been combined with optical astrometric measurements to form two additional combined Earth-orientation series: (1) COMB2001, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20.0, 1962 to January 15.0, 2002 at five-day intervals, and (2) POLE2001, consisting of values and uncertainties for polar motion and its rates that span from January 20, 1900 to December 21, 2001 at 30.4375-day intervals.

  14. Combinations of Earth Orientation Measurements: SPACE2013, COMB2013, and POLE2013

    NASA Technical Reports Server (NTRS)

    Ratcliff, J. T.; Gross, R. S.

    2015-01-01

    Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2013, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to June 30, 2014, at daily intervals and is available in versions with epochs given at either midnight or noon. The space-geodetic measurements used to generate SPACE2013 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2013, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to June 30, 2014, at daily intervals and which are also available in versions with epochs given at either midnight or noon; and (2) POLE2013, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to June 22, 2014, at 30.4375-day intervals.

  15. Combinations of Earth Orientation Measurements: SPACE2014, COMB2014, and POLE2014

    NASA Technical Reports Server (NTRS)

    Ratcliff, J. T.; Gross, R. S.

    2015-01-01

    Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2013, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to June 30, 2014, at daily intervals and is available in versions with epochs given at either midnight or noon. The space-geodetic measurements used to generate SPACE2013 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2013, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to June 30, 2014, at daily intervals and which are also available in versions with epochs given at either midnight or noon; and (2) POLE2013, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to June 22, 2014, at 30.4375-day intervals.

  16. Combinations of Earth Orientation Measurements: SPACE2011, COMB2011, and POLE2011

    NASA Technical Reports Server (NTRS)

    Ratcliff, J. T.; Gross, R. S.

    2013-01-01

    Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2011, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to July 13, 2012, at daily intervals and is available in versions with epochs given at either midnight or noon. The space-geodetic measurements used to generate SPACE2011 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2011, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to July 13, 2012, at daily intervals and which are also available in versions with epochs given at either midnight or noon; and (2) POLE2011, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to June 21, 2012, at 30.4375-day intervals.

  17. Combinations of Earth Orientation Measurements: SPACE2012, COMB2012, and POLE2012

    NASA Technical Reports Server (NTRS)

    Ratcliff, J. T.; Gross, R. S.

    2013-01-01

    Independent Earth orientation measurements taken by the space-geodetic techniques of lunar and satellite laser ranging, very long baseline interferometry, and the Global Positioning System have been combined using a Kalman filter. The resulting combined Earth orientation series, SPACE2012, consists of values and uncertainties for Universal Time, polar motion, and their rates that span from September 28, 1976, to April 26, 2013, at daily intervals and is available in versions with epochs given at either midnight or noon. The space-geodetic measurements used to generate SPACE2012 have then been combined with optical astrometric measurements to form two additional combined Earth orientation series: (1) COMB2012, consisting of values and uncertainties for Universal Time, polar motion, and their rates that span from January 20, 1962, to April 26, 2013, at daily intervals and which are also available in versions with epochs given at either midnight or noon; and (2) POLE2012, consisting of values and uncertainties for polar motion and its rate that span from January 20, 1900, to May 22, 2013, at 30.4375-day intervals.

  18. Combinations of Earth Orientation Measurements: SPACE94, COMB94, and POLE94

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.

    1996-01-01

    A Kalman filter has been used to combine independent measurements of the Earth's orientation taken by the space-geodetic observing techniques of lunar laser ranging, satellite laser ranging, very long baseline interferometry, and the Global Positioning System. Prior to their combination, the data series were adjusted to have the same bias and rate, the stated uncertainties of the measurements were adjusted, and data points considered to be outliers were deleted. The resulting combination, SPACE94, consists of smoothed, interpolated polar motion and UT1-UTC values spanning October 6, 1976, to January 27, 1995, at 1-day intervals. The Kalman filter was then used to combine the space-geodetic series comprising SPACE94 with two different, independent series of Earth orientation measurements taken by the technique of optical astrometry. Prior to their combination with SPACE94, the bias, rate and annual term of the optical astrometric series were corrected, the stated uncertainties of the measurements were adjusted, and data points considered to be outliers were deleted. The adjusted optical astrometric series were then combined with SPACE94 in two steps: (1) the Bureau International de l'Heure (BIH) optical astrometric series was combined with SPACE94 to form COMB94, a combined series of smoothed, interpolated polar motion and UT1-UTC values spanning January 20, 1962, to January 27, 1995, at 5-day intervals, and (2) the International Latitude Service (ILS) optical astrometric series was combined with COMB94 to form POLE94, a combined series of smoothed, interpolated polar motion values spanning January 20, 1900, to January 21, 1995, at 30.4375-day intervals.

  19. Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles.

    PubMed

    Feldman, W C; Maurice, S; Binder, A B; Barraclough, B L; Elphic, R C; Lawrence, D J

    1998-09-01

    Maps of epithermal- and fast-neutron fluxes measured by Lunar Prospector were used to search for deposits enriched in hydrogen at both lunar poles. Depressions in epithermal fluxes were observed close to permanently shaded areas at both poles. The peak depression at the North Pole is 4.6 percent below the average epithermal flux intensity at lower latitudes, and that at the South Pole is 3.0 percent below the low-latitude average. No measurable depression in fast neutrons is seen at either pole. These data are consistent with deposits of hydrogen in the form of water ice that are covered by as much as 40 centimeters of desiccated regolith within permanently shaded craters near both poles. PMID:9727973

  20. Design of the annular suspension and pointing system /ASPS/ through decoupling and pole placement. [for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.; Lin, W. C. W.

    1980-01-01

    A decoupling and pole-placement technique has been developed for the Annular Suspension and Pointing System (ASPS) of the Space Shuttle which uses bandwidths as performance criteria. The dynamics of the continuous-data ASPS allows the three degrees of freedom to be totally decoupled by state feedback through constant gains, so that the bandwidth of each degree of freedom can be independently specified without interaction. Although it is found that the digital ASPS cannot be completely decoupled, the bandwidth requirements are satisfied by pole placement and a trial-and-error method based on approximate decoupling.

  1. A search for transient water frost at the lunar poles using LOLA

    NASA Astrophysics Data System (ADS)

    Lemelin, M.; Lucey, P. G.; Song, E.; Paige, D. A.; Greenhagen, B. T.; Siegler, M. A.; Hayne, P. O.; Mazarico, E.; Neumann, G.; Smith, D. E.; Zuber, M. T.

    2014-12-01

    The possibility of lunar polar ice has been considered since suggested by Harold Urey in the 1950's, and has likely been directly detected at the north pole of Mercury by MESSENGER. That detection was based on the presence of reflectance anomalies seen by the Mercury Laser Altimeter that occurred only where models of the surface temperature allow long-duration preservation of water ice against sublimation (Paige et al., 2013; Neumann et al., 2013). Similar characteristics are seen at the poles of the Moon, though the higher lunar albedo complicates the detection. In this study we seek evidence for transient water frost on polar surfaces using data from the Lunar Orbiter Laser Altimeter. The Lunar Orbiter Laser Altimeter (LOLA) measures the backscattered energy of the returning altimetric laser pulse at its wavelength of 1064 nm, and these data are used to map the reflectivity of the Moon at zero-phase angle with a photometrically uniform data set. Global maps have been produced at 4 pixels per degree (about 8 km at the equator) and 2 km resolution within 20° latitude of each pole. The zero-phase geometry is insensitive to lunar topography and enables the characterization of subtle variations in lunar albedo, even at high latitudes where such measurements are not possible with the Sun as the illumination source. We are currently searching the data set for evidence of transient surface frost by looking for changes in reflectance as a function of temperature based on the Diviner radiometer measurements and models. Thus far one candidate region has been identified, and we are refining the calibration to ensure that this and other detections are reliable.

  2. Study on the distortion of apparent resistivity curves caused by the 'infinite' electrode space of a Pole-Pole array and its correction

    NASA Astrophysics Data System (ADS)

    Xiao, Le-Le; Wei, Jiu-Chuan; Niu, Chao; Shi, Long-Qing; Zhai, Pei-He; Yin, Hui-Yong; Xie, Dao-Lei

    2015-07-01

    The Pole-Pole (PP) array is widely used for measurements that incorporate two-dimensional (2-D) and three-dimensional (3-D) multi-electrode electrical resistivity surveys, although an effective equilibrium has not yet been achieved between two factors, the location of 'infinite' electrodes and the data utilisation of the effective resistivity, which affects the detection accuracy; thus, the data collected under the conditions of 'infinite' electrodes that are as finite as possible are maximally effective. Studies have shown that the optimum 'infinite' electrode distance must be greater than 20 times the current-potential electrode distance AM; this value is much greater than the currently used value of 5 to 10 times AM. However, limitations imposed by landforms and topographic conditions, such as mountainous areas and coal mine roadways, often prevent the 'infinite' condition from being satisfied. In this study, a field test was designed and performed by adopting a particular PP array to collect sounding data under different 'infinite' electrode distances, and the differences were analysed in the apparent resistivity curves calculated with different geometric coefficients. The results reveal that when the 'infinite' electrode space is finite relative to AM, significant distortion may occur, and a minimum inflection point may appear in the sounding curve of apparent resistivity that is calculated with the geometric coefficient Kpp. Although the data past the minimum inflection point of ρs-mpp curve lose their value for the sounding application, a portion of the first segment of the distorted curve can be used, therefore, a correction formula under the condition of non-infinite electrode (Bing and Greenhalgh, 1998) space in a PP array is derived based on traditional electric field theories and formulas of apparent resistivity under different electrode arrays. The error analysis after correction indicates that the data utilisation ratio in the corrected effective

  3. Magnet pole tips

    DOEpatents

    Thorn, C.E.; Chasman, C.; Baltz, A.J.

    1981-11-19

    An improved magnet more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  4. Magnet pole tips

    DOEpatents

    Thorn, Craig E.; Chasman, Chellis; Baltz, Anthony J.

    1984-04-24

    An improved magnet which more easily provides a radially increasing magnetic field, as well as reduced fringe field and requires less power for a given field intensity. The subject invention comprises a pair of spaced, opposed magnetic poles which further comprise a pair of pole roots, each having a pole tip attached to its center. The pole tips define the gap between the magnetic poles and at least a portion of each pole tip is separated from its associated pole root. The separation begins at a predetermined distance from the center of the pole root and increases with increasing radial distance while being constant with azimuth within that portion. Magnets in accordance with the subject invention have been found to be particularly advantageous for use in large isochronous cyclotrons.

  5. Water Ice Permafrost at Lunar Poles: Observational Evidence from Lend Instrument Onboard Lro

    NASA Astrophysics Data System (ADS)

    Mitrofanov, I.; Sanin, A.; Litvak, M.; Boynton, W. V.; Chin, G.; Evans, L. G.; Garvin, J.; Harshman, K.; McClanahan, T. R.; Milikh, G. M.; Sagdeev, R.; Starr, R. D.

    2012-12-01

    Lunar Exploration Neutron Detector (LEND) of LRO measured the flux of epithermal neutrons with high spatial resolution of 10 km for the amplitude of 50 km. The LEND data from the polar caps above 80degree latitude were tested for the presence of local spots of epithermal Neutron Suppression Regions (NSRs) [1, 2]. Six such spots have been found, five at South pole and one at North pole. One of them, NSR S4 in the Cabeus crater, has been suggested, as the best impact site for direct evaluation of the content of lunar volatiles, including the water, by LCROSS instruments [3]. And indeed, a lot of water has been found in the plume, corresponding to 5.6 +/- 2.4 weight % [4]. Another interesting spot NSR S1 is identified with the crater Shoemaker, which PSR perfectly coincides with the contour of the strong neutron suppression. It was shown [5] that there is very good agreement between the profile of the crater depth and the decrease of the flux of epithermal neutrons. Concluding the LEND data analysis of NSRs, one may present two main results: (1) Only two of NSRs are associated with PSRs (Cabeus and Shoemaker), another large PSRs do not manifest a signature of local neutron suppression. (2) There are several NSRs, which have surface illuminated by Sun light. These results could be interpreted by the model of water ice perma-frost, which suggest that NSRs are associated with spots with permanently cold regolith with stable water ice in the porosity volume. In PSRs, the ice bearing layer is the upper most one. If the surface of NSR is periodically illuminated, the ice bearing layer should lie below the top layer of ice-free regolith. During a night, the cold top layer absorbs water molecules from the exosphere (still illuminated nearby hills could be source of these molecules). During a day, the top layer is heated, and water molecules diffuse from the porosity volume into the both directions: upward to exosphere, and downward to the cold layer of permafrost. Such

  6. 78 FR 15615 - Practice and Procedure; Pole Attachment Complaint Procedures; Allocation of Unusable Space Costs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... COMMISSION 47 CFR Part 1 Practice and Procedure; Pole Attachment Complaint Procedures; Allocation of Unusable... date. SUMMARY: This document announces the approval by the Office of Management and Budget (OMB) on... 63 FR 12026, March 12, 1998, has been approved by OMB and is effective March 12, 2013....

  7. Analysis of data from LEND instrument on LRO: May water deposits be expected on poles of Mercury?

    NASA Astrophysics Data System (ADS)

    Mitrofanov, I.

    2012-04-01

    Lunar Exploration Neutron Detector (LEND) of LRO measured the flux of epithermal neutrons with high spatial resolution ˜10 km for the amplitude of 50 km. The LEND data from the polar caps above 80° latitude were tested for the presence of local spots of epithermal Neutron Suppression Regions (NSRs), which have been identified with wa-ter ice permafrost. The model has been proposed, which explains the origin of water at lunar poles by chemical reactions between hydrogen of solar wind with oxygen of lunar regolith. The so-called solar water could be produced under the sunlit surface, and than migrate either at cold traps in he local vicinity from the irradiated spot of origin, or at cold subsur-face layer just below of the uppermost layer of origin. Similarly to the Moon, there are data of radio sensing of Mercury, which points out that this planet might have the water ice deposits at poles. Therefore, one may suspect that the main physics could also be similar at poles of the Moon and the Mercury: - if the water ice deposits are on the lunar poles, they should be at the Hermean poles as well; - if comets are not the main source for the water at lunar poles, they should not also be the main source for the polar water deposits on the Mercury. However, one should also take into account that the Moon and the Mercury have rather different physics of inter-action between the plasma of solar wind and the surface: - the Mercury have the dipole magnetic field, which is large enough to shield the equatorial belt of the planet from the direct interaction with the plasma of solar wind; - flux of solar wind and solar radiation at the orbit of Mercury are much larger than they are at the Earth orbit; - the average temperature of illuminated spots at Hermean poles is much larger than the temperature of illuminated spots at poles of the Moon. In addition to current neutron data from LRO, the data from MESSENGER should be studied for better under-standing of polar water ice

  8. Water recovery in space.

    PubMed

    Tamponnet, C; Savage, C J; Amblard, P; Lasserre, J C; Personne, J C; Germain, J C

    1999-03-01

    In the absence of recycling, water represents over 90% of the life-support consumables for a manned spacecraft. In addition, over 90% of the waste water generated can be classified as moderately or slightly contaminated (e.g. shower water, condensate from the air-conditioning system, etc.). The ability to recover potable water from moderately contaminated waste water hence enables significant savings to be made in resupply costs. A development model of such a water-recovery system, based on membrane technology has been produced and tested using "real waste water" based on used shower water Results indicate some 95% recovery of potable water meeting ESA standards, with total elimination of microbial contaminants such as bacteria, spores and viruses. PMID:11725802

  9. Pole pulling apparatus and method

    SciTech Connect

    McIntire, Gary L.

    1989-01-01

    An apparatus for removal of embedded utility-type poles which removes the poles quickly and efficiently from their embedded position without damage to the pole or surrounding structures. The apparatus includes at least 2 piston/cylinder members equally spaced about the pole, and a head member affixed to the top of each piston. Elongation of the piston induces rotation of the head into the pole to increase the gripping action and reduce slippage. Repeated actuation and retraction of the piston and head member will "jack" the pole from its embedded position.

  10. An explanation of bright areas inside Shackleton Crater at the Lunar South Pole other than water-ice deposits

    NASA Astrophysics Data System (ADS)

    Haruyama, Junichi; Yamamoto, Satoru; Yokota, Yasuhiro; Ohtake, Makiko; Matsunaga, Tsuneo

    2013-08-01

    water molecules of cometary and/or solar wind origin migrated to and accumulated in cold permanently shadowed areas at the lunar poles has long been debated from the perspective of scientific interest and expectations for future utilization. Recently, high reflectance condition was observed inside the lunar South Pole Shackleton Crater for the 1064.4 nm of the Lunar Orbiter Laser Altimeter on the Lunar Reconnaissance Orbiter, and the high reflectance was explained to perhaps be due to a surface frost layer in excess of 20% water-ice. Here we investigate the crater with the Selenological Engineering Explorer Multi-band imager that has nine bands in the visible to near-infrared range, including a 1050 nm band (62 m/pixel resolution). Part of the illuminated inner wall of Shackleton Crater exhibits high reflectance at 1050 nm but also exhibits the diagnostic 1250 nm spectral absorption, a signature that is consistent with naturally bright purest anorthosite.

  11. Simulation study of poled low-water ionomers with different architectures

    NASA Astrophysics Data System (ADS)

    Allahyarov, Elshad; Taylor, Philip L.; Löwen, Hartmut

    2011-11-01

    The role of the ionomer architecture in the formation of ordered structures in poled membranes is investigated by molecular dynamics computer simulations. It is shown that the length of the sidechain Ls controls both the areal density of cylindrical aggregates Nc and the diameter of these cylinders in the poled membrane. The backbone segment length Lb tunes the average diameter Ds of cylindrical clusters and the average number of sulfonates Ns in each cluster. A simple empirical formula is noted for the dependence of the number density of induced rod-like aggregates on the sidechain length Ls within the parameter range considered in this study.

  12. Space Station solar water heater

    NASA Technical Reports Server (NTRS)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  13. Control pole placement relationships

    NASA Technical Reports Server (NTRS)

    Ainsworth, O. R.

    1982-01-01

    Using a simplified Large Space Structure (LSS) model, a technique was developed which gives algebraic relationships for the unconstrained poles. The relationships, which were obtained by this technique, are functions of the structural characteristics and the control gains. Extremely interesting relationships evolve for the case when the structural damping is zero. If the damping is zero, the constrained poles are uncoupled from the structural mode shapes. These relationships, which are derived for structural damping and without structural damping, provide new insight into the migration of the unconstrained poles for the CFPPS.

  14. Measuring Surface Water From Space

    NASA Astrophysics Data System (ADS)

    Partsch, J.; Alsdorf, D.; Rodriguez, E.; Lettenmaier, D.; Mognard, N.; Participants, T.

    2006-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of the spatial and temporal dynamics of surface fresh water discharge and changes in storage globally. For example, we are unable to answer such basic questions as "What is the spatial and temporal variability of water stored on and near the surface of all continents?" Furthermore, key societal issues, such as the susceptibility of life to flood hazards, cannot be answered with the current global, in-situ networks designed to observe river discharge at points but not flood events. The measurements required to answer these hydrologic questions are surface water area, the elevation of the water surface (h), its slope (dh/dx), and temporal change (dh/dt). Advances in remote sensing hydrology, particularly over the past 10 years and even more recently, have demonstrated that these hydraulic variables can be measured reliably from orbiting platforms. Measurements of inundated area have been used to varying degrees of accuracy as proxies for discharge, but are successful only when in-situ data are available for calibration and fail to indicate the dynamic topography of water surfaces. Radar altimeters have a rich, multi-decadal history of successfully measuring elevations of the ocean surface and are now also accepted as capable tools for measuring h along orbital profiles crossing fresh water bodies. However, altimeters are profiling tools which, because of their orbital spacings, miss too many fresh water bodies to be useful hydrologically. High spatial resolution images of dh/dt have been observed with interferometric synthetic aperture radar (SAR), but the method requires emergent vegetation to scatter radar pulses back to the receiving antenna. Essentially, existing spaceborne methods have been used to measure components of surface water hydraulics, but none of the technologies can singularly supply the water volume and hydraulic measurements that are needed to accurately model the

  15. Measuring surface water from space

    NASA Astrophysics Data System (ADS)

    Alsdorf, Douglas E.; RodríGuez, Ernesto; Lettenmaier, Dennis P.

    2007-06-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of the spatial and temporal dynamics of surface freshwater discharge and changes in storage globally. For example, we are unable to answer such basic questions as "What is the spatial and temporal variability of water stored on and near the surface of all continents?" Furthermore, key societal issues, such as the susceptibility of life to flood hazards, cannot be answered with the current global, in situ networks designed to observe river discharge at points but not flood events. The measurements required to answer these hydrologic questions are surface water area, the elevation of the water surface (h), its slope (∂h/∂x), and temporal change (∂h/∂t). Advances in remote sensing hydrology, particularly over the past 10 years and even more recently, have demonstrated that these hydraulic variables can be measured reliably from orbiting platforms. Measurements of inundated area have been used to varying degrees of accuracy as proxies for discharge but are successful only when in situ data are available for calibration; they fail to indicate the dynamic topography of water surfaces. Radar altimeters have a rich, multidecadal history of successfully measuring elevations of the ocean surface and are now also accepted as capable tools for measuring h along orbital profiles crossing freshwater bodies. However, altimeters are profiling tools, which, because of their orbital spacings, miss too many freshwater bodies to be useful hydrologically. High spatial resolution images of ∂h/∂t have been observed with interferometric synthetic aperture radar, but the method requires emergent vegetation to scatter radar pulses back to the receiving antenna. Essentially, existing spaceborne methods have been used to measure components of surface water hydraulics, but none of the technologies can singularly supply the water volume and hydraulic measurements that are needed to accurately model

  16. Regeneration of water at space stations

    NASA Astrophysics Data System (ADS)

    Grigoriev, A. I.; Sinyak, Yu. E.; Samsonov, N. M.; Bobe, L. S.; Protasov, N. N.; Andreychuk, P. O.

    2011-05-01

    The history, current status and future prospects of water recovery at space stations are discussed. Due to energy, space and mass limitations physical/chemical processes have been used and will be used in water recovery systems of space stations in the near future. Based on the experience in operation of Russian space stations Salut, Mir and International space station (ISS) the systems for water recovery from humidity condensate and urine are described. A perspective physical/chemical system for water supply will be composed of an integrated system for water recovery from humidity condensate, green house condensate, water from carbon dioxide reduction system and condensate from urine system; a system for water reclamation from urine; hygiene water processing system and a water storage system. Innovative processes and new water recovery systems intended for Lunar and Mars missions have to be tested on the international space station.

  17. On the survival of an internal liquid water reservoir at Enceladus' south pole

    NASA Astrophysics Data System (ADS)

    Choblet, G.; Behounkova, M.; Tobie, G.; Cadek, O.

    2011-12-01

    The total heat power released at Enceladus' South pole is about 50 times larger than the available radiogenic power, implying that an additional source of energy exists. Tidal dissipation is the most likely candidate, but the observed power and its particular location at the south pole can be reproduced only if a liquid layer exists at depth (Tobie et al. Icarus 2008). Moreover, this liquid reservoir should spread over at least half of the southern hemisphere to induce sufficient tidal deformation at the pole. In order to determine the stability of this internal liquid reservoir and its effects on the dynamics of the overlying ice shell, we have developed a new tool that solves simultaneously mantle convection and tidal dissipation in 3D spherical geometry (Behounková et al. JGR, 2010). We also include in this new 3D technique the description of melt production and accumulation at the bottom of the ice shell. By systematically varying the orbital (eccentricity) and internal parameters (rheology, angular width of the deep liquid layer), we investigate the conditions under which the liquid reservoir could be stable. The nature of the viscous rheology for warm ice is found to play a major role on the thermal evolution of the ice shell, as it affects the optimal temperature at which a maximum tidal heating rate is produced. Whatever the rheology considered, the present day value of eccentricity does not induce sufficiently large amounts of tidal power to preserve a liquid layer. Nevertheless, when larger values of the eccentricity are considered (typically several times the present day value), possibly corresponding to earlier states in Enceladus' recent past, significant tidal power is produced for a sufficiently large ocean width (larger than 60°): in this case, large amounts of melt are obtained for reservoirs covering more than 120° around the south pole. However, the competing freezing effect caused by efficient convective heat loss can lead to ocean

  18. Low loss pole configuration for multi-pole homopolar magnetic bearings

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A. (Inventor); Hakun, Claef F. (Inventor)

    2001-01-01

    A new pole configuration for multi-pole homopolar bearings proposed in this invention reduces rotational losses caused by eddy-currents generated when non-uniform flux distributions exist along the rotor surfaces. The new homopolar magnetic bearing includes a stator with reduced pole-to-pole and exhibits a much more uniform rotor flux than with large pole-to-pole gaps. A pole feature called a pole-link is incorporated into the low-loss poles to provide a uniform pole-to-pole gap and a controlled path for pole-to-pole flux. In order to implement the low-loss pole configuration of magnetic bearings with small pole-to-pole gaps, a new stator configuration was developed to facilitate installation of coil windings. The stator was divided into sector shaped pieces, as many pieces as there are poles. Each sector-shaped pole-piece can be wound on a standard coil winding machine, and it is practical to wind precision layer wound coils. To achieve maximum actuation efficiency, it is desirable to use all the available space for the coil formed by the natural geometric configuration. Then, the coils can be wound in a tapered shape. After winding, the sectored-pole-pieces are installed into and fastened by bonding or other means, to a ring of material which encloses the sectored-pole-pieces, forming a complete stator.

  19. Inflatable Pole

    NASA Technical Reports Server (NTRS)

    Swan, Scott A.

    1995-01-01

    Lightweight, portable tool reaches object at height or across gap. Extends reach up to 20 feet (6 meters). When not in use, tool collapses to 3 to 5 percent of its inflated length. Developed for use as self-rescue device by astronaut who becomes untethered outside spacecraft: astronaut uses pole to reach grapple on spacecraft and pull to it. Useful on Earth as rescue device or in performing routine tasks like changing high light bulb without ladder. When task with inflatable pole completed, operator opens vent valve to deflate tube. Operator then opens gun, removes fabric cover, and repacks tube.

  20. Six pole/eight pole single-phase motor

    DOEpatents

    Kirschbaum, Herbert S.

    1984-01-01

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups which are connected to form eight poles for eight-pole operation and to form six poles for six-pole operation. Each group contains four series connected coil elements with each element spanning approximately one-seventh of the periphery of the machine. The coil groups are spaced 180 mechanical degrees apart such that each end coil of one group overlaps one of the end coils of the other group. An auxiliary stator winding having two coil groups with the same relative angular displacement as the main stator winding coil groups is included.

  1. Water Innovations and Lessons Learned From Water Recycling in Space

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2013-01-01

    This Presentation will cover technology and knowledge transfers from space exploration to earth and the tourism industry, for example, water and air preservation, green buildings and sustainable cities.

  2. Water: A Critical Material Enabling Space Exploration

    NASA Technical Reports Server (NTRS)

    Pickering, Karen D.

    2014-01-01

    Water is one of the most critical materials in human spaceflight. The availability of water defines the duration of a space mission; the volume of water required for a long-duration space mission becomes too large, heavy, and expensive for launch vehicles to carry. Since the mission duration is limited by the amount of water a space vehicle can carry, the capability to recycle water enables space exploration. In addition, water management in microgravity impacts spaceflight in other respects, such as the recent emergency termination of a spacewalk caused by free water in an astronaut's spacesuit helmet. A variety of separation technologies are used onboard spacecraft to ensure that water is always available for use, and meets the stringent water quality required for human space exploration. These separation technologies are often adapted for use in a microgravity environment, where water behaves in unique ways. The use of distillation, membrane processes, ion exchange and granular activated carbon will be reviewed. Examples of microgravity effects on operations will also be presented. A roadmap for future technologies, needed to supply water resources for the exploration of Mars, will also be reviewed.

  3. Third Pole Environment (TPE) program: a new base for the study of "water-ice-air-ecosystem-human" interactions on the Tibetan Plateau and surrounding areas

    NASA Astrophysics Data System (ADS)

    Yao, T.; Thompson, L. G.; Mosbrugger, V.; Ma, Y.; Zhang, F.; Yang, X.; Joswiak, D. R.; Wang, W.

    2011-12-01

    The Tibetan Plateau and surrounding mountains, referred to by scientists as the Third Pole, stretches from the Pamir and Hindu Kush in the west to the Hengduan Mountain in the east, from the Kunlun and Qilian mountain in the north to the Himalayas in the south, covering an area over 5000km2 with an elevation higher than 4000m. Like the Arctic and Antarctica, the Third Pole is one of the most sensitive areas responding to global climate change due to its high altitude and the presence of permafrost and glaciers, which are most sensitive to global warming. UNESCO, SCOPE and the Chinese Academy of Sciences are launching an international scientific program, the Third Pole Environment (TPE) Program, to attract international research institutions and academic talents to focus on a theme of "water-ice-air-ecosystem-human" interactions in the Third Pole region, to reveal environmental change processes and mechanisms on the Third Pole and their influences on and regional responses to global changes, and thus to serve for enhancement of human adaptation to the changing environment and realization of human-nature harmony (www.tpe.ac.cn/en/).

  4. The Sources and Significance of Stratospheric Water Vapor: Mechanistic Studies from Equator to Pole

    NASA Astrophysics Data System (ADS)

    Smith, Jessica Birte

    It is the future of the stratospheric ozone layer, which protects life at Earth's surface from harmful ultraviolet (UV) radiation, that is the focus of the present work. Fundamental changes in the composition and structure of the stratosphere in response to anthropogenic climate forcing may lead to catastrophic ozone loss under current, and even reduced, stratospheric halogen loading. In particular, the evolution toward a colder, wetter stratosphere, threatens to enhance the heterogeneous conversion of inorganic halogen from its reservoir species to its catalytically active forms, and thus promote in situ ozone loss. Water vapor concentrations control the availability of reactive surface area, which facilitates heterogeneous chemistry. Furthermore, the rates of the key heterogeneous processes are tightly controlled by the ambient humidity. Thus, credible predictions of UV dosage require a quantitative understanding of both the sensitivity of these chemical mechanisms to water vapor concentrations, and an elucidation of the processes controlling stratospheric water vapor concentrations. Toward this end, we present a set of four case studies utilizing high resolution in situ data acquired aboard NASA aircraft during upper atmospheric research missions over the past two decades. 1) We examine the broad scale humidity structure of the upper troposphere and lower stratosphere from the midlatitudes to the tropics, focusing on cirrus formation and dehydration at the cold-point tropical tropopause. The data show evidence for frequent supersaturation in clear air, and sustained supersaturation in the presence of cirrus. These results challenge the strict thermal control of the tropical tropopause. 2) We investigate the likelihood of cirrus-initiated activation of chlorine in the midlatitude lower stratosphere. At midlatitudes the transition from conditions near saturation below the local tropopause to undersaturated air above greatly reduces the probability of heterogeneous

  5. The observed relationship between the south pole 225-GHz atmospheric opacity and the water vapor column density

    NASA Astrophysics Data System (ADS)

    Chamberlin, Richard A.; Bally, John

    1995-05-01

    We compare our previously reported measurements of South Pole 225 GHz atmospheric opacity, τ, to the column of precipitable water vapor ( PWV) which was derived from concurrent upper air soundings. From this comparison we found that τ=(2.8±0.1)×10-2+(6.9±0.2)×10-2× PWV with τ in units of nepers/airmass and PWV in units of mm of precipitable H2O. We compared our results to predictions from Grossman's AT atmospheric transparency model which is widely used in the radio astronomy community. The coefficient of the second term of the above relation, 0.069, was consistent with the predictions from the model; however, the first term, 0.028, which represents the dry air opacity, was about five to ten times larger than expected. Most of this discrepancy between the observed and the predicted dry air opacity can be accounted for by including contributions from continuum emission from N2 and O2 as is done in Liebe's MPM atmospheric model.

  6. Vestoid cosmic spherules from the South Pole Water Well and Transantarctic Mountains (Antarctica): A major and trace element study

    NASA Astrophysics Data System (ADS)

    Cordier, Carole; Folco, Luigi; Taylor, Susan

    2011-03-01

    We present major and trace element data of five glass cosmic spherules (CS) with differentiated compositions recovered in the South Pole Water Well and the Transantarctic Mountains, Antarctica. The differentiated CS were first identified using Fe/Mg and Fe/Mn ratios and we have now added high Rare Earth Element concentrations (5 < REE N < 14), and low siderophile element abundances (e.g. Ni = 25 ± 27 ppm) as characteristics. We propose that the siderophile depletions observed in differentiated CS result from the segregation of these elements into the core of their parent body during differentiation. Then, the high Fe/Mg ratios of differentiated CS result from their low MgO contents. Combined with their high level of REE enrichment, this indicates that the precursors formed through basaltic melt extraction from the asteroid/planetary source. As Fe/Mn and Fe/Mg ratios cannot distinguish between a Martian or Vestoid origin, we measured trace elements (zinc, cobalt, and vanadium) whose chemical behavior depends on oxidation state, known to be higher in the Martian than in the Vestoid environment. The compositions of the differentiated CS studied in this work share the characteristics of eucrites for all these indicators, providing further evidence that these differentiated CS are samples of a Vesta-like asteroid. However, their precursors show a considerable diversity in their mineralogy when compared to eucrites, that results in a wider range of major (Ca and Al) and trace element (Ba, Sr, Sc, and V) composition in differentiated CS.

  7. Solar water heater for NASA's Space Station

    NASA Technical Reports Server (NTRS)

    Somers, Richard E.; Haynes, R. Daniel

    1988-01-01

    The feasibility of using a solar water heater for NASA's Space Station is investigated using computer codes developed to model the Space Station configuration, orbit, and heating systems. Numerous orbit variations, system options, and geometries for the collector were analyzed. Results show that a solar water heater, which would provide 100 percent of the design heating load and would not impose a significant impact on the Space Station overall design is feasible. A heat pipe or pumped fluid radial plate collector of about 10-sq m, placed on top of the habitat module was found to be well suited for satisfying water demand of the Space Station. Due to the relatively small area required by a radial plate, a concentrator is unnecessary. The system would use only 7 to 10 percent as much electricity as an electric water-heating system.

  8. Space Simulation Chamber Rescues Water Damaged Books.

    ERIC Educational Resources Information Center

    American School and University, 1981

    1981-01-01

    More than 4,000 valuable water-damaged books were restored by using a space-simulation chamber at the Lockheed Missile and Space Company. It was the fifth time that the chamber has been used for the restoration of valuable books and documents. (Author/MLF)

  9. Phase change water processing for Space Station

    NASA Technical Reports Server (NTRS)

    Zdankiewicz, E. M.; Price, D. F.

    1985-01-01

    The use of a vapor compression distillation subsystem (VCDS) for water recovery on the Space Station is analyzed. The self-contained automated system can process waste water at a rate of 32.6 kg/day and requires only 115 W of electric power. The improvements in the mechanical components of VCDS are studied. The operation of VCDS in the normal mode is examined. The VCDS preprototype is evaluated based on water quality, water production rate, and specific energy. The relation between water production rate and fluids pump speed is investigated; it is concluded that a variable speed fluids pump will optimize water production. Components development and testing currently being conducted are described. The properties and operation of the proposed phase change water processing system for the Space Station, based on vapor compression distillation, are examined.

  10. Solar Energy for Space Heating & Hot Water.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  11. Water sprays in space retrieval operations

    NASA Technical Reports Server (NTRS)

    Freesland, D. C.

    1977-01-01

    Experiments were conducted in a ground based vacuum chamber to determine physical properties of water-ice in a space-like environment. Additional ices, alcohol and ammonia, were also studied. An analytical analysis based on the conservation of angular momentum, resulted in despin performance parameters, i.e., total water mass requirements and despin times. The despin and retrieval of a disabled spacecraft was considered to illustrate a potential application of the water spray technique.

  12. Space shuttle galley water system test program

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A water system for food rehydration was tested to determine the requirements for a space shuttle gallery flight system. A new food package concept had been previously developed in which water was introduced into the sealed package by means of a needle and septum. The needle configuration was developed and the flow characteristics measured. The interface between the food package and the water system, oven, and food tray was determined.

  13. Rad Pole Cam Development

    SciTech Connect

    Heckendorn, F. M.; Odell, D. M. C; Harpring, L. J.; Peterson, K. D.

    2005-10-05

    The RadPoleCam was developed to provide Department Of Energy (DOE) first responders the capability to assess the radiological and visual condition of remote or inaccessible locations. Real time gamma isotopic identification is provided to the first responder in the form of audio feedback (i.e. spoken through head phones) from a gamma detector mounted on a collapsible pole that can extend from 1 to 9 meters (6 to 29 feet). Simultaneously, selectable direct and side looking visual images are provided from the 5cm (2in) diameter, waterproof probe tip. The lightweight, self contained, ruggedized, system will provide a rapidly deployable field system for visual and radiological search and assessment of confined spaces and extended reach locations.

  14. Space water electrolysis: Space Station through advance missions

    NASA Technical Reports Server (NTRS)

    Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

    1991-01-01

    Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

  15. Six pole/eight pole single-phase motor

    DOEpatents

    Kirschbaum, H.S.

    1984-07-31

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups which are connected to form eight poles for eight-pole operation and to form six poles for six-pole operation. Each group contains four series connected coil elements with each element spanning approximately one-seventh of the periphery of the machine. The coil groups are spaced 180 mechanical degrees apart such that each end coil of one group overlaps one of the end coils of the other group. An auxiliary stator winding having two coil groups with the same relative angular displacement as the main stator winding coil groups is included. 10 figs.

  16. Single phase four pole/six pole motor

    DOEpatents

    Kirschbaum, H.S.

    1984-10-09

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups each including the series connection of three coils. These coil groups can be connected in series for six pole operation and in parallel for four pole operation. The coils are approximately equally spaced around the periphery of the machine but are not of equal numbers of turns. The two coil groups are identically wound and spaced 180 mechanical degrees apart. One coil of each group has more turns and a greater span than the other two coils. 10 figs.

  17. Single phase four pole/six pole motor

    DOEpatents

    Kirschbaum, Herbert S.

    1984-01-01

    A single phase alternating current electric motor is provided with a main stator winding having two coil groups each including the series connection of three coils. These coil groups can be connected in series for six pole operation and in parallel for four pole operation. The coils are approximately equally spaced around the periphery of the machine but are not of equal numbers of turns. The two coil groups are identically wound and spaced 180 mechanical degrees apart. One coil of each group has more turns and a greater span than the other two coils.

  18. Challenges of Rover Navigation at the Lunar Poles

    NASA Technical Reports Server (NTRS)

    Nefian, Ara; Deans, Matt; Bouyssounouse, Xavier; Edwards, Larry; Dille, Michael; Fong, Terry; Colaprete, Tony; Miller, Scott; Vaughan, Ryan; Andrews, Dan; Allan, Mark; Furlong, Michael

    2015-01-01

    Observations from Lunar Prospector, LCROSS, Lunar Reconnaissance Orbiter (LRO), and other missions have contributed evidence that water and other volatiles exist at the lunar poles in permanently shadowed regions. Combining a surface rover and a volatile prospecting and analysis payload would enable the detection and characterization of volatiles in terms of nature, abundance, and distribution. This knowledge could have impact on planetary science, in-situ resource utilization, and human exploration of space. While Lunar equatorial regions of the Moon have been explored by manned (Apollo) and robotic missions (Lunokhod, Cheng'e), no surface mission has reached the lunar poles.

  19. Observing the Global Water Cycle from Space

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.

    2004-01-01

    This paper presents an approach to measuring all major components of the water cycle from space. Key elements of the global water cycle are discussed in terms of the storage of water-in the ocean, air, cloud and precipitation, in soil, ground water, snow and ice, and in lakes and rivers, and in terms of the global fluxes of water between these reservoirs. Approaches to measuring or otherwise evaluating the global water cycle are presented, and the limitations on known accuracy for many components of the water cycle are discussed, as are the characteristic spatial and temporal scales of the different water cycle components. Using these observational requirements for a global water cycle observing system, an approach to measuring the global water cycle from space is developed. The capabilities of various active and passive microwave instruments are discussed, as is the potential of supporting measurements from other sources. Examples of space observational systems, including TRMM/GPM precipitation measurement, cloud radars, soil moisture, sea surface salinity, temperature and humidity profiling, other measurement approaches and assimilation of the microwave and other data into interpretative computer models are discussed to develop the observational possibilities. The selection of orbits is then addressed, for orbit selection and antenna size/beamwidth considerations determine the sampling characteristics for satellite measurement systems. These considerations dictate a particular set of measurement possibilities, which are then matched to the observational sampling requirements based on the science. The results define a network of satellite instrumentation systems, many in low Earth orbit, a few in geostationary orbit, and all tied together through a sampling network that feeds the observations into a data-assimilative computer model.

  20. Observing the Global Water Cycle from Space

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter H.; Houser, Paul; Schlosser, C. Adam

    2003-01-01

    This paper presents an approach to measuring all major components of the water cycle from space. The goal of the paper is to explore the concept of using a sensor-web of satellites to observe the global water cycle. The details of the required measurements and observation systems are therefore only an initial approach and will undergo future refinement, as their details will be highly important. Key elements include observation and evaluation of all components of the water cycle in terms of the storage of water-in the ocean, air, cloud and precipitation, in soil, ground water, snow and ice, and in lakes and rivers-and in terms of the global fluxes of water between these reservoirs. For each component of the water cycle that must be observed, the appropriate temporal and spatial scales of measurement are estimated, along with the some of the frequencies that have been used for active and passive microwave observations of the quantities. The suggested types of microwave observations are based on the heritage for such measurements, and some aspects of the recent heritage of these measurement algorithms are listed. The observational requirements are based on present observational systems, as modified by expectations for future needs. Approaches to the development of space systems for measuring the global water cycle can be based on these observational requirements.

  1. International Space Station Water Balance Operations

    NASA Technical Reports Server (NTRS)

    Tobias, Barry; Garr, John D., II; Erne, Meghan

    2011-01-01

    In November 2008, the Water Regenerative System racks were launched aboard Space Shuttle flight, STS-126 (ULF2) and installed and activated on the International Space Station (ISS). These racks, consisting of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA), completed the installation of the Regenerative (Regen) Environmental Control and Life Support Systems (ECLSS), which includes the Oxygen Generation Assembly (OGA) that was launched 2 years prior. With the onset of active water management on the US segment of the ISS, a new operational concept was required, that of water balance . In November of 2010, the Sabatier system, which converts H2 and CO2 into water and methane, was brought on line. The Regen ECLSS systems accept condensation from the atmosphere, urine from crew, and processes that fluid via various means into potable water, which is used for crew drinking, building up skip-cycle water inventory, and water for electrolysis to produce oxygen. Specification (spec) rates of crew urine output, condensate output, O2 requirements, toilet flush water, and drinking needs are well documented and used as the best guess planning rates when Regen ECLSS came online. Spec rates are useful in long term planning, however, daily or weekly rates are dependent upon a number of variables. The constantly changing rates created a new challenge for the ECLSS flight controllers, who are responsible for operating the ECLSS systems onboard ISS from Mission Control in Houston. This paper reviews the various inputs to water planning, rate changes, and dynamic events, including but not limited to: crew personnel makeup, Regen ECLSS system operability, vehicle traffic, water storage availability, and Carbon Dioxide Removal Assembly (CDRA), Sabatier, and OGA capability. Along with the inputs that change the various rates, the paper will review the different systems, their constraints, and finally the operational challenges and means by which flight controllers

  2. Space Station Water Processor Process Pump

    NASA Technical Reports Server (NTRS)

    Parker, David

    1995-01-01

    This report presents the results of the development program conducted under contract NAS8-38250-12 related to the International Space Station (ISS) Water Processor (WP) Process Pump. The results of the Process Pumps evaluation conducted on this program indicates that further development is required in order to achieve the performance and life requirements for the ISSWP.

  3. Dynamics of a space module impacting water

    NASA Astrophysics Data System (ADS)

    Brooks, J. R.; Anderson, L. A.

    1994-05-01

    The dynamic response of a Water Landing Space Module (WLSM) during impact upon water was investigated. A 1/5th-scale model was tested in a water tank and the results were compared with those attained using analytical techniques and computer simulations. A knowledge of the response of the WLSM during impact is necessary to identify design choices that are within the physical limitations of crew members and materials. The purpose of this research was to use simulations to establish trends that occur when the variables of entry speed, angle, and weight are varied. Results suggest which initial conditions of the full-scale WLSM keep impact accelerations under specified limits.

  4. Water and sodium balance in space.

    PubMed

    Drummer, C; Norsk, P; Heer, M

    2001-09-01

    We have previously shown that fluid balances and body fluid regulation in microgravity (microG) differ from those on Earth (Drummer et al, Eur J Physiol 441:R66-R72, 2000). Arriving in microG leads to a redistribution of body fluid-composed of a shift of fluid to the upper part of the body and an exaggerated extravasation very early in-flight. The mechanisms for the increased vascular permeability are not known. Evaporation, oral hydration, and urinary fluid excretion, the major components of water balance, are generally diminished during space flight compared with conditions on Earth. Nevertheless, cumulative water balance and total body water content are stable during flight if hydration, nutritional energy supply, and protection of muscle mass are at an acceptable level. Recent water balance data disclose that the phenomenon of an absolute water loss during space flight, which has often been reported in the past, is not a consequence of the variable microG. The handling of sodium, however, is considerably affected by microG. Sodium-retaining endocrine systems, such as renin-aldosterone and catecholamines, are much more activated during microG than on Earth. Despite a comparable oral sodium supply, urinary sodium excretion is diminished and a considerable amount of sodium is retained-without accumulating in the intravascular space. An enormous storage capacity for sodium in the extravascular space and a mechanism that allows the dissociation between water and sodium handling likely contribute to the fluid balance adaptation in weightlessness. PMID:11532707

  5. The South Pole and the Ross Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image shows a rare clear view of the South Pole (lower right) and the Ross Sea, Antarctica. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) acquired the scene on December 26, 2001. The geographic South Pole is located in the center of Antarctica, at an altitude of 2,900 meters (9,300 feet). It rests on a continent-wide ice sheet that is 2,870 m thick, with the underlying bedrock only 30 m (98 feet) above sea level. The ice underlying the South Pole is as much as 140,000 years old, and is currently accumulating at about 82 cm (32 inches) per year. Roughly 2,500 km (1,550 miles) away is the green water of the Ross Sea, which indicates the presence of large numbers of phytoplankton. This is a highly productive part of the world's oceans. Also note the ice gathered around McMurdo Sound, seen toward the lefthand shoreline of the Ross Sea, at the edge of the Ross Ice Shelf. According to National Science Foundation researchers, this ice is making it difficult for penguins to reach their food supply. Separating the continental Antarctic ice sheet from the Ross Sea are the Queen Maud Mountains and the Ross Ice Shelf. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  6. Macro Fiber Piezocomposite Actuator Poling Study

    NASA Technical Reports Server (NTRS)

    Werlink, Rudy J.; Bryant, Robert G.; Manos, Dennis

    2002-01-01

    The performance and advantages of Piezocomposite Actuators are to provide a low cost, in-situ actuator/sensor that is flexible, low profile and high strain per volt performance in the same plane of poled voltage. This paper extends reported data for the performance of these Macrofiber Composite (MFC) Actuators to include 4 progressively narrower Intedigitized electrode configurations with several line widths and spacing ratios. Data is reported for max free strain, average strain per applied volt, poling (alignment of the electric dipoles of the PZT ceramic) voltage vs. strain and capacitance, time to poling voltage 95% saturation. The output strain per volt progressively increases as electrode spacing decreases, with saturation occurring at lower poling voltages. The narrowest spacing ratio becomes prone to voltage breakdown or short circuits limiting the spacing width with current fabrication methods. The capacitance generally increases with increasing poling voltage level but has high sensitivity to factors such as temperature, moisture and time from poling which limit its usefulness as a simple indicator. The total time of applied poling voltage to saturate or fully line up the dipoles in the piezoceramic was generally on the order of 5-20 seconds. Less sensitivity to poling due to the applied rate of voltage increase over a 25 to 500 volt/second rate range was observed.

  7. In-Space Propellant Production Using Water

    NASA Technical Reports Server (NTRS)

    Notardonato, William; Johnson, Wesley; Swanger, Adam; McQuade, William

    2012-01-01

    A new era of space exploration is being planned. Manned exploration architectures under consideration require the long term storage of cryogenic propellants in space, and larger science mission directorate payloads can be delivered using cryogenic propulsion stages. Several architecture studies have shown that in-space cryogenic propulsion depots offer benefits including lower launch costs, smaller launch vehicles, and enhanced mission flexibility. NASA is currently planning a Cryogenic Propellant Storage and Transfer (CPST) technology demonstration mission that will use existing technology to demonstrate long duration storage, acquisition, mass gauging, and transfer of liquid hydrogen in low Earth orbit. This mission will demonstrate key technologies, but the CPST architecture is not designed for optimal mission operations for a true propellant depot. This paper will consider cryogenic propellant depots that are designed for operability. The operability principles considered are reusability, commonality, designing for the unique environment of space, and use of active control systems, both thermal and fluid. After considering these operability principles, a proposed depot architecture will be presented that uses water launch and on orbit electrolysis and liquefaction. This could serve as the first true space factory. Critical technologies needed for this depot architecture, including on orbit electrolysis, zero-g liquefaction and storage, rendezvous and docking, and propellant transfer, will be discussed and a developmental path forward will be presented. Finally, use of the depot to support the NASA Science Mission Directorate exploration goals will be presented.

  8. Lunar South Pole Illumination

    NASA Video Gallery

    Simulated illumination conditions over the lunar South Pole region, from ~80°S to the pole. The movie runs for 28 days, centered on the LCROSS impact date on October 9th, 2009. The illumination ca...

  9. Moon - North Pole

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This view of the north polar region of the Moon was obtained by Galileo's camera during the spacecraft's flyby of the Earth-Moon system on December 7 and 8, 1992. The north pole is to the lower right of the image. The view in the upper left is toward the horizon across the volcanic lava plains of Mare Imbrium. The prominent crater with the central peak is Pythagoras, an impact crater some 130 kilometers (80 miles) in diameter. The image was taken at a distance of 121,000 kilometers (75,000 miles) from the Moon through the violet filter of Galileo's imaging system. According to team scientists, the viewing geometry provided by the spacecraft's pass over the north pole and the low sun-angle illumination provide a unique opportunity to assess the geologic relationships among the smooth plains, cratered terrain and impact ejecta deposits in this region of the Moon. JPL manages the Galileo Project for NASA's Office of Space Science and Applications.

  10. Orbiter escape pole

    NASA Technical Reports Server (NTRS)

    Goodrich, Winston D. (Inventor); Wesselski, Clarence J. (Inventor); Pelischek, Timothy E. (Inventor); Becker, Bruce H. (Inventor); Kahn, Jon B. (Inventor); Grimaldi, Margaret E. (Inventor); McManamen, John P. (Inventor); Castro, Edgar O. (Inventor)

    1989-01-01

    A Shuttle type of aircraft (10) with an escape hatch (12) has an arcuately shaped pole housing (16) attachable to an interior wall and ceiling with its open end adjacent to the escape hatch. The pole housing 16 contains a telescopically arranged and arcuately shaped primary pole member (22) and extension pole member (23) which are guided by roller assemblies (30,35). The extension pole member (23) is slidable and extendable relative to the primary pole member (22). For actuation, a spring actuated system includes a spring (52) in the pole housing. A locking member (90) engages both pole members (22,23) through notch portions (85,86) in the pole members. The locking member selectively releases the extension pole member (23) and the primary pole member (22). An internal one-way clutch or anti-return mechanism prevents retraction of the extension pole member from an extended position. Shock absorbers (54)(150,152) are for absoring the energy of the springs. A manual backup deployment system is provided which includes a canted ring (104) biased by a spring member (108). A lever member (100) with a slot and pin connection (102) permits the mechanical manipulation of the canted ring to move the primary pole member. The ring (104) also prevents retraction of the main pole. The crew escape mechanism includes a magazine (60) and a number of lanyards (62), each lanyard being mounted by a roller loop (68) over the primary pole member (22). The strap on the roller loop has stitching for controlled release, a protection sheath (74) to prevent tangling and a hook member (69) for attachment to a crew harness.

  11. MODIS Views North Pole

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color image over the North Pole was acquired by the MODerate-resolution Imaging Spectroradiometer (MODIS), flying aboard the Terra spacecraft, on May 5, 2000. The scene was received and processed by Norway's MODIS Direct Broadcast data receiving station, located in Svalbard, within seconds of photons hitting the sensor's detectors. (Click for more details about MODIS Direct Broadcast data.) In this image, the sea ice appears white and areas of open water, or recently refrozen sea surface, appear black. The irregular whitish shapes toward the bottom of the image are clouds, which are often difficult to distinguish from the white Arctic surface. Notice the considerable number of cracks, or 'leads,' in the ice that appear as dark networks of lines. Throughout the region within the Arctic Circle leads are continually opening and closing due to the direction and intensity of shifting wind and ocean currents. Leads are particularly common during the summer, when temperatures are higher and the ice is thinner. In this image, each pixel is one square kilometer. Such true-color views of the North Pole are quite rare, as most of the time much of the region within the Arctic Circle is cloaked in clouds. Image by Allen Lunsford, NASA GSFC Direct Readout Laboratory; Data courtesy Tromso receiving station, Svalbard, Norway

  12. Water Ice and Life's Roots in Space

    NASA Technical Reports Server (NTRS)

    Blake, David; Jenniskens, Peter; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Nearly three decades ago as Voyager 2 spacecraft raced out of the Solar System. NASA engineers turned its camera arm around (at the request of the American astronomer Carl Sagan) to take a parting snapshot of Earth. Earth's image was a single pale blue pixel, its color caused by the Rayleigh scattering of sunlight in the water of our oceans. Earth is a water planet, and this is the color of life. No matter how far we travel on our planet, no matter how high or deep, if we find liquid water, we find some form of life that manages to survive there. And yet there is a cruel irony. Water in its solid crystalline form is hostile to life. Organisms can roost in geysers, wallow in brine and gulp down acid, but they cowered from ice. The rigid ordering of water molecules in ice crystals expels impurities and tears organic tissue beyond repair. In fact, about the only good thing you can say about ice is that it gets out of the way: Its low density ensures that it floats and leaves the water dwelling creatures in peace. Recent discoveries have caused us to rethink this basic premise. New lines of evidence both observational and experimental - suggest that prebiotic organic compounds are not only comfortable in, but in fact had their origin in a peculiar form of solid water ice that is ubiquitous in interstellar space, but completely absent from Earth. Only recently have we been able to create even submicroscopic quantities of this ice in terrestrial laboratories, yet it constitutes the most abundant form of water in the universe. Interstellar ice is a far cry from the ice we are so familiar with on Earth. This interstellar ice has no crystalline structure, and despite the fact that its temperature is a scant few degrees above absolute zero (where all molecular motion ceases), it is highly reactive and can flow like water when exposed to radiation. It is in fact this ice's similarity to liquid water that allows it to participate in the creation of the very first organic

  13. The science of the lunar poles

    NASA Astrophysics Data System (ADS)

    Lucey, P. G.

    2011-12-01

    It was the great geochemist Harold Urey who first called attention to peculiar conditions at the poles of the Moon where the very small inclination of the lunar spin axis with respect to the sun causes craters and other depressions to be permanently shaded from sunlight allowing very low temperatures. Urey suggested that the expected low temperature surfaces could cold trap and collect any vapors that might transiently pass through the lunar environment. Urey's notion has led to studies of the poles as a new research area in lunar science. The conditions and science of the poles are utterly unlike those of the familiar Moon of Neil Armstrong, and the study of the poles is similar to our understanding of the Moon itself at the dawn of the space age, with possibilities outweighing current understanding. Broadly, we can treat the poles as a dynamic system of input, transport, trapping, and loss. Volatile sources range from continuous, including solar wind, the Earth's polar fountain and micrometeorites, to episodic, including comets and wet asteroids, to nearly unique events including late lunar outgassing and passage through giant molecular clouds. The lunar exosphere transports volatiles to the poles, complicated by major perturbances to the atmosphere by volatile-rich sources. Trapping includes cold trapping, but also in situ creation of more refractory species such as organics, clathrates and water-bearing minerals, as well as sequester by regolith overturn or burial by larger impacts. Finally, volatiles are lost to space by ionization and sweeping. Spacecraft results have greatly added to the understanding of the polar system. Temperatures have been precisely measured by LRO, and thermal models now allow determination of temperature over the long evolution of the lunar orbit, and show very significant changes in temperature and temperature distribution with time and depth. Polar topography is revealed in detail by Selene and LRO laser altimeters while direct

  14. The North Pole Environmental Observatory

    NASA Astrophysics Data System (ADS)

    Morison, J.; Aagaard, K.; Falkner, K.; Heiberg, A.; McPhee, M.; Moritz, D.; Overland, J.; Perovich, D.; Richter-Menge, J.; Shimada, K.; Steele, M.; Takizawa, T.; Woodgate, R.

    2001-12-01

    The Arctic environment is changing. The North Pole Environmental Observatory (NPEO) was established as a type of program of long-term observations required to understand Arctic change. The North Pole region was chosen because it is central to observed changes, there is a reasonable past history of measurements, and there is often a large gap there in the coverage of surface measurements. NPEO has three main components, (1) an automated drifting station composed of several buoys to measure atmospheric, upper ocean, and ice variables, (2) a sub-surface mooring at the Pole measuring ocean properties and ice draft, and (3) an airborne hydrographic survey that provides a snapshot spatial description of upper ocean properties. The first observatory was established at the Pole in April 2000 by aircraft flying out of Alert. The drifting station portion consisted of ocean ice and meteorological buoys. Over one year the drifting station passed south through Fram Strait and stopped operating in the Greenland Sea. The airborne hydrographic survey made 6 stations between Alert, the Pole, and beyond. The sub-surface mooring was not deployed. In 2001 the drifting station was similar, but the operation was expanded to deploy a 4000-m mooring at the Pole. The mooring includes current meters, C-T sensors, ADCP, and an ice draft-profiling sonar. It will be recovered in 2002. The hydrographic survey covered a new line from the Pole to 85N, 170W. The 2000 hydrographic survey showed that the changes characterizing the Pole region in the 1990s persist, but with some deepening and some slight retreat toward climatology. The section from Alert shows that upper ocean conditions near the coast have become much like the Western Arctic with low mixed layer salinity and a secondary shallow temperature maximum. The observations indicate a general counterclockwise shift in water mass locations. Among other things, the NPEO 2000 drifting station data indicate the cold halocline is still thinner

  15. Space Station Freedom regenerative water recovery system configuration selection

    NASA Technical Reports Server (NTRS)

    Reysa, R.; Edwards, J.

    1991-01-01

    The Space Station Freedom (SSF) must recover water from various waste water sources to reduce 90 day water resupply demands for a four/eight person crew. The water recovery system options considered are summarized together with system configuration merits and demerits, resource advantages and disadvantages, and water quality considerations used to select the SSF water recovery system.

  16. The Benefits of Past and Current Regional Hydroclimate Projects to the Third Pole Environment (TPE) Water and Energy Exchanges Studies

    NASA Astrophysics Data System (ADS)

    Benedict, Sam; van Oevelen, Peter

    2014-05-01

    To improve understanding of the various processes at work on spatial and temporal scales from regional to global the Regional Hydroclimate Projects (RHP's) are established as part of the Global Energy and Water Exchanges (GEWEX)Project to link the regional observations and process understanding to the global scale. This is done through exchange of observations, data, modeling, transferability studies etc. In this presentation the series of RHP's that were underway over North and South America, Europe and Asia continuously from the early 1990's up to the present will be examined, the reasons they were established, how they evolved and how they are evolving or are likely to evolve in the future, with an emphasis on where they can and should benefit similar work proposed for the TPE. The results will be presented in the context of the World Climate Research Programme (WCRP) Grand Challenge related to the development of a water strategy that addresses the issue of past and future changes in Water, in general, and the GEWEX science question on global water resource systems, in particular. This material will address issues associated with how changes in land surface and hydrology influence past and future changes in water availability and security, how new observations lead to improvements in water management and how models become better in global and regional climate predictions and projections of precipitation and how these outcomes relate to the TPE Water and Energy Exchanges Studies.

  17. Odyssey over Mars' South Pole

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Mars Odyssey spacecraft passes above Mars' south pole in this artist's concept illustration. The spacecraft has been orbiting Mars since October 24, 2001.

    NASA's Jet Propulsion Laboratory manages the Mars Odyssey mission for the NASA Office of Space Science, Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson, and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency and Institute for Space Research, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Space Systems, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Laser Provides First 3-D View of Mars' North Pole

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This first three-dimensional picture of Mars' north pole enables scientists to estimate the volume of its water ice cap with unprecedented precision, and to study its surface variations and the heights of clouds in the region for the first time.

    Approximately 2.6 million of these laser pulse measurements were assembled into a topographic grid of the north pole with a spatial resolution of 0.6 miles (one kilometer) and a vertical accuracy of 15-90 feet (5-30 meters).

    The principal investigator for MOLA is Dr. David E. Smith of Goddard. The MOLA instrument was designed and built by the Laser Remote Sensing Branch of Laboratory for Terrestrial Physics at Goddard. The Mars Global Surveyor Mission is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for the NASA Office of Space Science.

  19. Modeling the influence of a reduced equator-to-pole sea surface temperature gradient on the distribution of water isotopes in the Eocene

    NASA Astrophysics Data System (ADS)

    Speelman, E. N.; Sewall, J. O.; Noone, D. C.; Huber, M.; Sinninghe Damsté, J. S.; Reichart, G.

    2009-12-01

    Proxy-based climate reconstructions suggest the existence of a strongly reduced equator-to-pole temperature gradient during most of the Early Eocene. With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions related to Eocene (global) hydrological cycling facilitating these blooms arose. Changes in hydrological cycling, as a consequence of a reduced temperature gradient, are expected to be most clearly reflected in the isotopic composition (D, 18O) of precipitation. The interpretation of water isotopic records to quantitatively estimate past precipitation patterns is, however, hampered by the lack of detailed information on changes in their spatial and temporal distribution. Using the isotope-enabled global circulation model, Community Atmosphere Model v.3 (isoCAM3), relationships between water isotopes and past climates can be simulated. Here we examine the influence of a reduced meridional sea surface temperature gradient on the spatial distribution of precipitation and its isotopic composition in an Eocene setting. Overall, our combination of Eocene climate forcings, with superimposed TEX86-derived SST estimates and elevated pCO2 concentrations, produces a climate that agrees well with proxy data in locations around the globe. It shows the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. The Eocene model runs with a significantly reduced equator-to-pole temperature gradient in a warmer more humid world predict occurrence of less depleted precipitation, with δD values ranging only between 0 and -140‰ (as opposed to the present-day range of 0 to -300‰). Combining new results obtained from compound specific isotope analyses on terrestrially derived n-alkanes extracted from Eocene sediments, and model calculations, shows that the model not only captures the main features, but reproduces isotopic values

  20. Fireplace for heating indoor spaces and water for sanitary use

    SciTech Connect

    Piazzetta, D.

    1984-03-13

    An improved fireplace for heating indoor spaces and sanitary water comprises a hearth whereon wood can be burned such as to define a heat source, and, adjacent the hearth, an air circulating space and a sanitary hot water generating heat exchanger.

  1. Clouds Over the North Pole

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 29 June 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    Like yesterday's image, the linear 'ripples' are water-ice clouds. As spring is deepening at the North Pole these clouds are becoming more prevalent.

    Image information: VIS instrument. Latitude 68.9, Longitude 135.5 East (224.5 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter

  2. Landsat: A Space Age Water Gauge

    NASA Video Gallery

    Water specialists Rick Allen, Bill Kramber and Tony Morse use Landsat thermal band data to measure the amount of water evaporating from the soil and transpiring from plants’ leaves – a process call...

  3. The Totem Pole Recycled.

    ERIC Educational Resources Information Center

    Sewall, Susan Breyer

    1991-01-01

    Presents an activity that integrates science, environmental education, art, and social studies. Students identify and research an endangered species and construct a totem pole depicting the species using a recyclable material. (MDH)

  4. Space Station Environmental Health System water quality monitoring

    NASA Technical Reports Server (NTRS)

    Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    One of the unique aspects of the Space Station is that it will be a totally encapsulated environment and the air and water supplies will be reclaimed for reuse. The Environmental Health System, a subsystem of CHeCS (Crew Health Care System), must monitor the air and water on board the Space Station Freedom to verify that the quality is adequate for crew safety. Specifically, the Water Quality Subsystem will analyze the potable and hygiene water supplies regularly for organic, inorganic, particulate, and microbial contamination. The equipment selected to perform these analyses will be commercially available instruments which will be converted for use on board the Space Station Freedom. Therefore, the commercial hardware will be analyzed to identify the gravity dependent functions and modified to eliminate them. The selection, analysis, and conversion of the off-the-shelf equipment for monitoring the Space Station reclaimed water creates a challenging project for the Water Quality engineers and scientists.

  5. Effect of water on the space charge formation in XLPE

    SciTech Connect

    Miyata, Hiroyuki; Yokoyama, Ayako; Takahashi, Tohru; Yamamaoto, Syuji

    1996-12-31

    In this paper, the authors describe the effect of water on the space charge in crosslinked polyethylene (XLPE). In order to study the effects of water and by-products of crosslinking, they prepared two types of samples. The water in the first one (Type A) is controlled by immersing in water after removing the by-products, and the water in the other type (Type B) of samples is controlled by the water from the decomposition of cumyl-alcohol by heating. The authors measured the space charge formation by pulsed electro-acoustic (PEA) method. A large difference was observed between Type A and Type B. In Type A samples (containing only water) the space charge distribution changes from homogeneous to heterogeneous as the water content increases, whereas in Type B (containing water and by-product) all samples exhibit heterogeneous space charge distribution. However, merely the effect of water for both types was almost the same, including peculiar space charge behavior near the water solubility limit.

  6. CEOP-TPE- Concerted Earth Observation and Prediction of Water and Energy Cycles in the Third Pole Environment

    NASA Astrophysics Data System (ADS)

    Su, Z.; Ma, Y.; van der Velde, R.; Dente, L.; Wang, L.; Zeng, Y.; Chen, X.; Huang, Y.; Menenti, M.; Sobrino, J.; Li, Z.-L.; Sneeuw, N.; Wen, J.; He, Y.; Tang, B.; Zhong, L.

    2014-11-01

    In the past two years of the CEOP-TPE project, a number of progresses have been made. 1. The Tibetan Plateau SM & ST Observatory [1-3] has been further maintained and upgraded. 2. An assessment of ECMWF land surface analysis over the Tibetan plateau [4] has been conducted. 3. A blended soil moisture product over the Tibetan Plateau [5] has been generated. 4. A 10-year (2001-2010) land surface energy balance product for climate and ecohydrological studies has been developed [6,7] and on the basis of this data set it is concluded that the Tibetan plateau is a heating source for the atmosphere in particular in winter months. 5. A method for the quantification of water cycle components based on earth observation data and a comparison to reanalysis data has been developed. An analysis of the Yangtze river basin is preliminarily carried out and concluded that human influences are important in shorter terms, but climate influences seem dominate over direct human influences over longer terms.

  7. Space Station Water Processor Mostly Liquid Separator (MLS)

    NASA Technical Reports Server (NTRS)

    Lanzarone, Anthony

    1995-01-01

    This report presents the results of the development testing conducted under this contract to the Space Station Water Processor (WP) Mostly Liquid Separator (MLS). The MLS units built and modified during this testing demonstrated acceptable air/water separation results in a variety of water conditions with inlet flow rates ranging from 60 - 960 LB/hr.

  8. Modeling the influence of a reduced equator-to-pole sea surface temperature gradient on the distribution of water isotopes in the Early/Middle Eocene

    NASA Astrophysics Data System (ADS)

    Speelman, Eveline N.; Sewall, Jacob O.; Noone, David; Huber, Matthew; der Heydt, Anna von; Damsté, Jaap Sinninghe; Reichart, Gert-Jan

    2010-09-01

    Proxy-based climate reconstructions suggest the existence of a strongly reduced equator-to-pole temperature gradient during the Azolla interval in the Early/Middle Eocene, compared to modern. Changes in the hydrological cycle, as a consequence of a reduced temperature gradient, are expected to be reflected in the isotopic composition of precipitation (δD, δ 18O). The interpretation of water isotopic records to quantitatively reconstruct past precipitation patterns is, however, hampered by a lack of detailed information on changes in their spatial and temporal distribution. Using the isotope-enabled version of the National Center for Atmospheric Research (NCAR) atmospheric general circulation model, Community Atmosphere Model v.3 (isoCAM3), relationships between water isotopes and past climates can be simulated. Here we examine the influence of an imposed reduced meridional sea surface temperature gradient on the spatial distribution of precipitation and its isotopic composition in an Early/Middle Eocene setting. As a result of the applied forcings, the Eocene simulation predicts the occurrence of less depleted high latitude precipitation, with δD values ranging only between 0 and -140‰ (compared to Present-day 0 to -300‰). Comparison with Early/Middle Eocene-age isotopic proxy data shows that the simulation accurately captures the main features of the spatial distribution of the isotopic composition of Early/Middle Eocene precipitation over land in conjunction with the aspects of the modeled Early/Middle Eocene climate. Hence, the included stable isotope module quantitatively supports the existence of a reduced meridional temperature gradient during this interval.

  9. Using Field Observations and Satellite Data for the Energy and Water Cycle Study over Heterogeneous Landscape of the Third Pole Region

    NASA Astrophysics Data System (ADS)

    Ma, Y.

    2014-12-01

    The exchange of energy and water vapor transportation between land surface and atmosphere over the Tibetan Plateau area play an important role in the Asian monsoon system, which in turn is a major component of both the energy and water cycles of the global climate system. Supported by the Chinese Academy of Sciences and some international organizations, a Third Pole Environment (TPE) Research Platform (TPEP) is now implementing over the Tibetan Plateau and surrounding region. The background of the establishment of the TPEP, the establishing and monitoring plan of long-term scale (5-10 years) of the TPEP will be shown firstly. Then the preliminary observational analysis results, such as the characteristics of land surface heat fluxes and evapotranspiration (ET) partitioning (diurnal variation, inter-monthly variation and vertical variation etc), the characteristics of atmospheric and soil variables, the structure of the Atmospheric Boundary Layer (ABL) and the turbulent characteristics have also been shown in this study. The study on the regional distribution of land surface heat fluxes and ET are of paramount importance over heterogeneous landscape of the Tibetan Plateau. The parameterization methods based on satellite data (AVHRR and MODIS) and Atmospheric Boundary Layer (ABL) observations have been proposed and tested for deriving surface reflectance, surface temperature, net radiation flux, soil heat flux, sensible heat flux, latent heat flux and ET over heterogeneous landscape. As cases study, the methods were applied to the whole Tibetan Plateau area. Four scenes of AVHRR data and eight scenes of MODIS data were used in this study. And the results showed that the proposed methodology is reasonable for the deriving surface heat fluxes and ET over heterogeneous landscape.

  10. Advances in water resources monitoring from space

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.

    1974-01-01

    Nimbus-5 observations indicate that over the oceans the total precipitable water in a column of atmosphere can be estimated to within + or - 10%, the liquid water content of clouds can be estimated to within + or - 25%, areas of precipitation can be delineated, and broad estimates of the precipitation rate obtained. ERTS-1 observations permit the measurement of snow covered area to within a few percent of drainage basin area and snowline altitudes can be estimated to within 60 meters. Surface water areas as small as 1 hectare can be inventoried over large regions such as playa lakes region of West Texas and Eastern New Mexico. In addition, changes in land use on water-sheds occurring as a result of forest fires, urban development, clear cutting, or strip mining can be rapidly obtained.

  11. Space Station Freedom Water Recovery test total organic carbon accountability

    NASA Technical Reports Server (NTRS)

    Davidson, Michael W.; Slivon, Laurence; Sheldon, Linda; Traweek, Mary

    1991-01-01

    Marshall Space Flight Center's (MSFC) Water Recovery Test (WRT) addresses the concept of integrated hygiene and potable reuse water recovery systems baselined for Space Station Freedom (SSF). To assess the adequacy of water recovery system designs and the conformance of reclaimed water quality to established specifications, MSFC has initiated an extensive water characterization program. MSFC's goal is to quantitatively account for a large percentage of organic compounds present in waste and reclaimed hygiene and potable waters from the WRT and in humidity condensate from Spacelab missions. The program is coordinated into Phase A and B. Phase A's focus is qualitative and semi-quantitative. Precise quantitative analyses are not emphasized. Phase B's focus centers on a near complete quantitative characterization of all water types. Technical approaches along with Phase A and partial Phase B investigations on the compositional analysis of Total Organic Carbon (TOC) Accountability are presented.

  12. Analyzers Provide Water Security in Space and on Earth

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Resourcefulness is a key quality for living in space, and on the International Space Station (ISS), that means making the most of water supplies. In 2008, the installation of the Water Processing Assembly (WPA) onboard the ISS allowed the space station s crew to do just that. The WPA purifies moisture from nearly every possible source - sweat, water vapor, wastewater, and even urine - for drinking and oxygen generation. Capable of producing 35 gallons of potable, recycled water a day, the system has reduced the need for water delivered to the ISS by over 1,000 gallons a year, saving significant payload costs in the process. As with any drinking water, quality is a concern, particularly when that water has been recycled. This is an issue of particular interest in space, where ISS crewmembers would have to deal with any illness far from the nearest medical personnel and facilities. The WPA employs sensors that monitor water quality by measuring its conductivity, and rounding out the system s quality assurance methods is a device developed for NASA by a private industry partner. That company has now made the technology available for ensuring the purity of water for consumption and industrial uses on Earth.

  13. Supercritical water oxidation - Concept analysis for evolutionary Space Station application

    NASA Technical Reports Server (NTRS)

    Hall, John B., Jr.; Brewer, Dana A.

    1986-01-01

    The ability of a supercritical water oxidation (SCWO) concept to reduce the number of processes needed in an evolutionary Space Station design's Environmental Control and Life Support System (ECLSS), while reducing resupply requirements and enhancing the integration of separate ECLSS functions into a single Supercritical Water Oxidation process, is evaluated. While not feasible for an initial operational capability Space Station, the SCWO's application to the evolutionary Space Station configuration would aid the integration of eight ECLSS functions into a single one, thereby significantly reducing program costs.

  14. Neptune's 'Hot' South Pole

    NASA Technical Reports Server (NTRS)

    2007-01-01

    These thermal images show a 'hot' south pole on the planet Neptune. These warmer temperatures provide an avenue for methane to escape out of the deep atmosphere.

    The images were obtained with the Very Large Telescope in Chile, using an imager/spectrometer for mid-infrared wavelengths on Sept. 1 and 2, 2006. The telescope is operated by the European Organization for Astronomical Research in the Southern Hemisphere (known as ESO).

    Scientists say Neptune's south pole is 'hotter' than anywhere else on the planet by about 10 degrees Celsius (50 degrees Fahrenheit). The average temperature on Neptune is about minus 200 degrees Celsius (minus 392 degrees Fahrenheit).

    The upper left image samples temperatures near the top of Neptune's troposphere (near 100 millibar pressure, which is one-tenth the Earth atmospheric pressure at sea level). The hottest temperatures are indicated at the lower part of the image, at Neptune's south pole (see the graphic at the upper right). The lower two images, taken 6.3 hours apart, sample temperatures at higher altitudes in Neptune's stratosphere. They do show generally warmer temperatures near, but not at, the south pole. They also show a distinct warm area which can be seen in the lower left image and rotated completely around the back of the planet and returned to the earth-facing hemisphere in the lower right image.

  15. Applications of space technology to water resources management

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.

    1977-01-01

    Space technology transfer is discussed in terms of applying visible and infrared remote sensing measurement to water resources management. Mapping and monitoring of snowcovered areas, hydrologic land use, and surface water areas are discussed, using information acquired from LANDSAT and NOAA satellite systems.

  16. A LINE POLE 20, STUBBED HISTORIC POLE WITH ORIGINAL GLASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A LINE POLE 20, STUBBED HISTORIC POLE WITH ORIGINAL GLASS PIN-TYPE INSULATORS AND INTACT COMMUNICATION LINE CROSS ARM. VIEW TO WEST. - Mystic Lake Hydroelectric Facility, Electric Transmission A Line, Along West Rosebud Creek, Fishtail, Stillwater County, MT

  17. Using in-situ and satellite data for the energy and water cycle study over heterogeneous landscape of the Third Pole region

    NASA Astrophysics Data System (ADS)

    Ma, Y.

    2015-12-01

    The exchange of energy and water vapor between land surface and atmosphere over the Tibetan Plateau area play an important role in the Asian monsoon system, which in turn is a major component of both the energy and water cycles of the global climate system. Supported by the Chinese Academy of Sciences and some international organizations, a Third Pole Environment (TPE) Research Platform (TPEP) is now implementing over the Tibetan Plateau and surrounding area. The background of the establishment of the TPEP, the establishing and monitoring plan of long-term scale (5-10 years) of the TPEP will be shown firstly. Then the preliminary observational analysis results, such as the characteristics of land surface heat fluxes, and evapotranspiration (ET) partitioning, the characteristics of atmospheric variables, the structure of the Atmospheric Boundary Layer (ABL) and the turbulent characteristics have also been shown in this study. The study on the regional distribution of land surface heat fluxes and ET are of paramount importance over heterogeneous landscape of the Tibetan Plateau. The parameterization method based on satellite data and the ABL observations has been proposed and tested for deriving regional distribution and their ten years variations of land surface variables, land surface heat fluxes and ET over heterogeneous landscape of the whole Tibetan Plateau area. To validate the proposed method, the ground-measured s land surface variables and surface heat fluxes in the TPEP are compared to satellite derived values. The results show that the derived land surface variables, land surface heat fluxes and ET over the study area are in good accordance with the land surface status. These parameters show a wide range due to the strong contrast of surface features. The sensible heat flux is decreasing while the latent heat flux is increasing from 2001 to 2010 over the whole Tibetan Plateau. And the estimated land surface variables and land surface heat fluxes are in

  18. An automated water iodinating subsystem for manned space flight

    NASA Technical Reports Server (NTRS)

    Houck, O. K.; Wynveen, R. A.

    1974-01-01

    Controlling microbial growth by injecting iodine (l2) into water supplies is a widely acceptable technique, but requires a specialized injection method for space flight. An electrochemical l2 injection method and l2 level monitor are discussed in this paper, which also describe iodination practices previously used in the manned space program and major l2 biocidal characteristics. The development and design of the injector and monitor are described, and results of subsequent experiments are presented. Also presented are expected vehicle penalties for utilizing the l2 injector in certain space missions, especially the Space Shuttle, and possible injector failure modes and their criticality.

  19. Experimental study of the constituents of space wash water

    NASA Technical Reports Server (NTRS)

    Putnam, D. F.; Colombo, G. V.

    1975-01-01

    This report presents experimental data, obtained under controlled conditions, which quantify the various constituents of human origin that may be expected in space wash water. The experiments were conducted with a simulated crew of two male and two female subjects. The data show that the expected wash water contaminants originating from human secretions are substantially lower than theoretical projections indicated. The data presented are immediately useful and may have considerable impact on the tradeoff comparisons among various unit processes and systems under consideration by NASA for recycling space wash water.

  20. Recovery of hygiene water by multifiltration. [in space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    Putnam, David F.; Jolly, Clifford D.; Colombo, Gerald V.; Price, Don

    1989-01-01

    A multifiltration hygiene water reclamation process that utilizes adsorption and particulate filtration techniques is described and evaluated. The applicability of the process is tested using a simulation of a 4-man subsystem operation for 240 days. It is proposed the process has a 10 year life, weighs 236 kg, and uses 88 kg of expendable filters and adsorption beds to process 8424 kg of water. The data reveal that the multifiltration is an efficient nonphase change technique for hygiene water recovery and that the chemical and microbiological purity of the product water is within the standards specified for the Space Station hygiene water.

  1. Bioburden control for Space Station Freedom's Ultrapure Water System

    NASA Technical Reports Server (NTRS)

    Snodgrass, Donald W.; Rodgers, Elizabeth B.; Obenhuber, Don; Huff, Tim

    1991-01-01

    Bioburden control is one of the challenges for the Ultrapure Water System on Space Station Freedom. Bioburden control must enable the system to deliver water with a low bacterial count as well as maintain biological contamination at a manageable level, to permit continued production of quality water. Ozone has been chosen as the primary means of Bioburden control. Planned tests to determine the effectiveness of ozone on free-floating microbes and biofilms are described.

  2. Water quality program elements for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Ramanathan, Raghupathy; Straub, John E.; Schultz, John R.

    1991-01-01

    A strategy is outlined for the development of water-quality criteria and standards relevant to recycling and monitoring the in-flight water for the Space Station Freedom (SSF). The water-reclamation subsystem of the SSF's ECLSS is described, and the objectives of the water-quality are set forth with attention to contaminants. Quality parameters are listed for potable and hygiene-related water including physical and organic parameters, inorganic constituents, bactericides, and microbial content. Comparisons are made to the quality parameters established for the Shuttle's potable water and to the EPA's current standards. Specific research is required to develop in-flight monitoring techniques for unique SSF contaminants, ECLSS microbial control, and on- and off-line monitoring. After discussing some of the in-flight water-monitoring hardware it is concluded that water reclamation and recycling are necessary and feasible for the SSF.

  3. Advanced Water Recovery Technologies for Long Duration Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Liu, Scan X.

    2005-01-01

    Extended-duration space travel and habitation require recovering water from wastewater generated in spacecrafts and extraterrestrial outposts since the largest consumable for human life support is water. Many wastewater treatment technologies used for terrestrial applications are adoptable to extraterrestrial situations but challenges remain as constraints of space flights and habitation impose severe limitations of these technologies. Membrane-based technologies, particularly membrane filtration, have been widely studied by NASA and NASA-funded research groups for possible applications in space wastewater treatment. The advantages of membrane filtration are apparent: it is energy-efficient and compact, needs little consumable other than replacement membranes and cleaning agents, and doesn't involve multiphase flow, which is big plus for operations under microgravity environment. However, membrane lifespan and performance are affected by the phenomena of concentration polarization and membrane fouling. This article attempts to survey current status of membrane technologies related to wastewater treatment and desalination in the context of space exploration and quantify them in terms of readiness level for space exploration. This paper also makes specific recommendations and predictions on how scientist and engineers involving designing, testing, and developing space-certified membrane-based advanced water recovery technologies can improve the likelihood of successful development of an effective regenerative human life support system for long-duration space missions.

  4. Single phase two pole/six pole motor

    DOEpatents

    Kirschbaum, H.S.

    1984-09-25

    A single phase alternating current two pole/six pole motor is provided with a main stator winding having six coils disposed unequally around the periphery of the machine. These coils are divided into two groups. When these groups are connected such that their magnetomotive forces are additive, two pole motor operation results. When the polarity of one of the groups is then reversed, six pole motor operation results. An auxiliary stator winding which is similar to the main stator winding is displaced from the main stator winding by 90 electrical degrees on a two pole basis. 12 figs.

  5. Single phase two pole/six pole motor

    DOEpatents

    Kirschbaum, Herbert S.

    1984-01-01

    A single phase alternating current two pole/six pole motor is provided with a main stator winding having six coils disposed unequally around the periphery of the machine. These coils are divided into two groups. When these groups are connected such that their magnetomotive forces are additive, two pole motor operation results. When the polarity of one of the groups is then reversed, six pole motor operation results. An auxiliary stator winding which is similar to the main stator winding is displaced from the main stator winding by 90 electrical degrees on a two pole basis.

  6. Moon - North Pole Mosaic

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This view of the Moon's north pole is a mosaic assembled from 18 images taken by Galileo's imaging system through a green filter as the spacecraft flew by on December 7, 1992. The left part of the Moon is visible from Earth; this region includes the dark, lava-filled Mare Imbrium (upper left); Mare Serenitatis (middle left); Mare Tranquillitatis (lower left), and Mare Crisium, the dark circular feature toward the bottom of the mosaic. Also visible in this view are the dark lava plains of the Marginis and Smythii Basins at the lower right. The Humboldtianum Basin, a 650-kilometer (400-mile) impact structure partly filled with dark volcanic deposits, is seen at the center of the image. The Moon's north pole is located just inside the shadow zone, about a third of the way from the top left of the illuminated region.

  7. Constraining gluon poles

    NASA Astrophysics Data System (ADS)

    Anikin, I. V.; Teryaev, O. V.

    2015-12-01

    In this letter, we revise the QED gauge invariance for the hadron tensor of Drell-Yan type processes with the transversely polarized hadron. We perform our analysis within the Feynman gauge for gluons and make a comparison with the results obtained within the light-cone gauge. We demonstrate that QED gauge invariance leads, first, to the need of a non-standard diagram and, second, to the absence of gluon poles in the correlators < ψ bar γ⊥A+ ψ > related traditionally to dT (x , x) / dx. As a result, these terms disappear from the final QED gauge invariant hadron tensor. We also verify the absence of such poles by analyzing the corresponding light-cone Dirac algebra.

  8. South Pole Telescope optics.

    PubMed

    Padin, S; Staniszewski, Z; Keisler, R; Joy, M; Stark, A A; Ade, P A R; Aird, K A; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; Dobbs, M A; Halverson, N W; Heimsath, S; Hills, R E; Holzapfel, W L; Lawrie, C; Lee, A T; Leitch, E M; Leong, J; Lu, W; Lueker, M; McMahon, J J; Meyer, S S; Mohr, J J; Montroy, T E; Plagge, T; Pryke, C; Ruhl, J E; Schaffer, K K; Shirokoff, E; Spieler, H G; Vieira, J D

    2008-08-20

    The South Pole Telescope is a 10 m diameter, wide-field, offset Gregorian telescope with a 966-pixel, millimeter-wave, bolometer array receiver. The telescope has an unusual optical system with a cold stop around the secondary. The design emphasizes low scattering and low background loading. All the optical components except the primary are cold, and the entire beam from prime focus to the detectors is surrounded by cold absorber. PMID:18716649

  9. Photometric analysis of a space shuttle water venting

    NASA Technical Reports Server (NTRS)

    Viereck, R. A.; Murad, E.; Pike, C. P.; Kofsky, I. L.; Trowbridge, C. A.; Rall, D. L. A.; Satayesh, A.; Berk, A.; Elgin, J. B.

    1991-01-01

    Presented here is a preliminary interpretation of a recent experiment conducted on Space Shuttle Discovery (Mission STS 29) in which a stream of liquid supply water was vented into space at twilight. The data consist of video images of the sunlight-scattering water/ice particle cloud that formed, taken by visible light-sensitive intensified cameras both onboard the spacecraft and at the AMOS ground station near the trajectory's nadir. This experiment was undertaken to study the phenomenology of water columns injected into the low-Earth orbital environment, and to provide information about the lifetime of ice particles that may recontact Space Shuttle orbits later. The findings about the composition of the cloud have relevance to ionospheric plasma depletion experiments and to the dynamics of the interaction of orbiting spacecraft with the environment.

  10. Silver ion bactericide system. [for Space Shuttle Orbiter potable water

    NASA Technical Reports Server (NTRS)

    Jasionowski, W. J.; Allen, E. T.

    1974-01-01

    Description of a preliminary flight prototype system which uses silver ions as the bactericide to preserve sterility of the water used for human consumption and hygiene in the Space Shuttle Orbiter. The performance of silver halide columns for passively dosing fuel cell water with silver ions is evaluated. Tests under simulated Orbiter mission conditions show that silver ion doses of 0.05 ppm are bactericidal for Pseudomonas aeruginosa and Type IIIa, the two bacteria found in Apollo potable water systems. The design of the Advance Prototype Silver Ion Water Bactericide System now under development is discussed.

  11. Water and waste water reclamation in a 21st century space colony

    NASA Technical Reports Server (NTRS)

    Jebens, H. J.; Johnson, R. D.

    1977-01-01

    The paper presents the results of research on closed-life support systems initiated during a system design study on space colonization and concentrates on the water and waste water components. Metabolic requirements for the 10,000 inhabitants were supplied by an assumed earth-like diet from an intensive agriculture system. Condensed atmospheric moisture provided a source of potable water and a portion of the irrigation water. Waste water was reclaimed by wet oxidation. The dual-water supply required the condensation of 175 kg/person-day of atmospheric water and the processing of 250 kg/person-day of waste water.

  12. Process Control for Precipitation Prevention in Space Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam; Callahan, Michael R.; Muirhead, Dean

    2015-01-01

    The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, rotary distillation systems have been actively pursued by NASA as one of the technologies for water recovery from wastewater primarily comprised of human urine. A specific area of interest is the prevention of the formation of solids that could clog fluid lines and damage rotating equipment. To mitigate the formation of solids, operational constraints are in place that limits such that the concentration of key precipitating ions in the wastewater brine are below the theoretical threshold. This control in effected by limiting the amount of water recovered such that the risk of reaching the precipitation threshold is within acceptable limits. The water recovery limit is based on an empirically derived worst case wastewater composition. During the batch process, water recovery is estimated by monitoring the throughput of the system. NASA Johnson Space Center is working on means of enhancing the process controls to increase water recovery. Options include more precise prediction of the precipitation threshold. To this end, JSC is developing a means of more accurately measuring the constituent of the brine and/or wastewater. Another means would be to more accurately monitor the throughput of the system. In spring of 2015, testing will be performed to test strategies for optimizing water recovery without increasing the risk of solids formation in the brine.

  13. Simulating Space Capsule Water Landing with Explicit Finite Element Method

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Lyle, Karen H.

    2007-01-01

    A study of using an explicit nonlinear dynamic finite element code for simulating the water landing of a space capsule was performed. The finite element model contains Lagrangian shell elements for the space capsule and Eulerian solid elements for the water and air. An Arbitrary Lagrangian Eulerian (ALE) solver and a penalty coupling method were used for predicting the fluid and structure interaction forces. The space capsule was first assumed to be rigid, so the numerical results could be correlated with closed form solutions. The water and air meshes were continuously refined until the solution was converged. The converged maximum deceleration predicted is bounded by the classical von Karman and Wagner solutions and is considered to be an adequate solution. The refined water and air meshes were then used in the models for simulating the water landing of a capsule model that has a flexible bottom. For small pitch angle cases, the maximum deceleration from the flexible capsule model was found to be significantly greater than the maximum deceleration obtained from the corresponding rigid model. For large pitch angle cases, the difference between the maximum deceleration of the flexible model and that of its corresponding rigid model is smaller. Test data of Apollo space capsules with a flexible heat shield qualitatively support the findings presented in this paper.

  14. International Space Station Potable Water Characterization for 2013

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; Mudgett, Paul D.

    2014-01-01

    In this post-construction, operational phase of International Space Station (ISS) with an ever-increasing emphasis on its use as a test-bed for future exploration missions, the ISS crews continue to rely on water reclamation systems for the majority of their water needs. The onboard water supplies include U.S. Segment potable water from humidity condensate and urine, Russian Segment potable water from condensate, and ground-supplied potable water, as reserve. In 2013, the cargo returned on the Soyuz 32-35 flights included archival potable water samples collected from Expeditions 34-37. The former Water and Food Analytical Laboratory (now Toxicology and Evironmental Chemistry Laboratory) at the NASA Johnson Space Center continued its long-standing role of performing chemical analyses on ISS return water samples to verify compliance with potable water quality specifications. This paper presents and discusses the analytical results for potable water samples returned from Expeditions 34-37, including a comparison to ISS quality standards. During the summer of 2013, the U.S. Segment potable water experienced a third temporary rise and fall in total organic carbon (TOC) content, as the result of organic contamination breaking through the water system's treatment process. Analytical results for the Expedition 36 archival samples returned on Soyuz 34 confirmed that dimethylsilanediol was once again the responsible contaminant, just as it was for the previous comparable TOC rises in 2010 and 2012. Discussion herein includes the use of the in-flight total organic carbon analyzer (TOCA) as a key monitoring tool for tracking these TOC rises and scheduling appropriate remediation.

  15. International Space Station Potable Water Characterization for 2013

    NASA Technical Reports Server (NTRS)

    Straub, John E. II; Plumlee, Debrah K.; Schultz, John R..; Mudgett, Paul D.

    2014-01-01

    In this post-construction, operational phase of International Space Station (ISS) with an ever-increasing emphasis on its use as a test-bed for future exploration missions, the ISS crews continue to rely on water reclamation systems for the majority of their water needs. The onboard water supplies include US Segment potable water from humidity condensate and urine, Russian Segment potable water from condensate, and ground-supplied potable water, as reserve. In 2013, the cargo returned on the Soyuz 32-35 flights included archival potable water samples collected from Expeditions 34-37. The Water and Food Analytical Laboratory at the NASA Johnson Space Center continued its long-standing role of performing chemical analyses on ISS return water samples to verify compliance with potable water quality specifications. This paper presents and discusses the analytical results for potable water samples returned from Expeditions 34-37, including a comparison to ISS quality standards. During the summer of 2013, the U.S. Segment potable water experienced an anticipated temporary rise and fall in total organic carbon (TOC) content, as the result of organic contamination breaking through the water system's treatment process. Analytical results for the Expedition 36 archival samples returned on Soyuz 34 confirmed that dimethylsilanediol was once again the responsible contaminant, just as it was for comparable TOC rises in 2010 and 2012. Discussion herein includes the use of the in-flight Total Organic Carbon Analyzer (TOCA) as a key monitoring tool for tracking these TOC rises and scheduling appropriate remediation action.

  16. Integrated water management system - Description and test results. [for Space Station waste water processing

    NASA Technical Reports Server (NTRS)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  17. Evidence for Phyllosilicates near the Lunar South Pole

    NASA Astrophysics Data System (ADS)

    Vilas, Faith; Jensen, E.; Domingue, Deborah; McFadden, L.; Coombs, Cassandraa; Mendell, Wendell

    1998-01-01

    While theoretically water ice could be stable in permanently shadowed areas near the lunar poles, there is conflicting observational evidence for the existence of water ice at either pole. Clementine's bistatic radar resumed a weak signal commensurate with water ice in the South Pole Aitken Basin; however, groundbased radar searches have not detected such a signal at either pole. Lunar Prospector measured large amounts of H (attributed to water) at both poles; however, Galileo near-infrared spectral measurements of the north polar region did not detect the prominent 3.0 micron absorption feature due to interlayer and adsorbed water in phyllosilicates. Evidence for the existence of water at the lunar poles is still ambiguous and controversial. We present evidence, based on the analysis of Galileo SSI images, for the presence of phyllosilicates near the lunar south pole. Using the color image sequence (560 nm, 670 nm, 756 nm, and 889 nm) of Lunmap 14 taken during the Galileo Earth-Moon pass I, we have identified areas that show evidence for a 0.7 microns absorption feature present in Fe-bearing phyllosilicates.

  18. Wire Frame Holds Water-Soap Film in Space

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Expedition 6 astronaut Dr. Don Pettit photographed a cube shaped wire frame supporting a thin film made from a water-soap solution during his Saturday Morning Science aboard the International Space Station's (ISS) Destiny Laboratory. Food coloring was added to several faces to observe the effects of diffusion within the film.

  19. Membrane-Based Water Evaporator for a Space Suit

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; McCann, Charles J.; O'Connell, Mary K.; Andrea, Scott

    2004-01-01

    A membrane-based water evaporator has been developed that is intended to serve as a heat-rejection device for a space suit. This evaporator would replace the current sublimator that is sensitive to contamination of its feedwater. The design of the membrane-based evaporator takes advantage of recent advances in hydrophobic micropore membranes to provide robust heat rejection with much less sensitivity to contamination. The low contamination sensitivity allows use of the heat transport loop as feedwater, eliminating the need for the separate feedwater system used for the sublimator. A cross section of the evaporator is shown in the accompanying figure. The space-suit cooling loop water flows into a distribution plenum, through a narrow annulus lined on both sides with a hydrophobic membrane, into an exit plenum, and returns to the space suit. Two perforated metal tubes encase the membranes and provide structural strength. Evaporation at the membrane inner surface dissipates the waste heat from the space suit. The water vapor passes through the membrane, into a steam duct and is vented to the vacuum environment through a back-pressure valve. The back-pressure setting can be adjusted to regulate the heat-rejection rate and the water outlet temperature.

  20. Solar Space and Water Heating for School -- Dallas, Texas

    NASA Technical Reports Server (NTRS)

    1982-01-01

    90 page report gives overview of retrofitted solar space-heating and hot-water system installation for 61-year-old high school. Description, specifications, modifications, plan drawings for roof, three floors, basement, correspondence, and documents are part of report.

  1. Analytical chemistry in water quality monitoring during manned space missions

    NASA Astrophysics Data System (ADS)

    Artemyeva, Anastasia A.

    2016-09-01

    Water quality monitoring during human spaceflights is essential. However, most of the traditional methods require sample collection with a subsequent ground analysis because of the limitations in volume, power, safety and gravity. The space missions are becoming longer-lasting; hence methods suitable for in-flight monitoring are demanded. Since 2009, water quality has been monitored in-flight with colorimetric methods allowing for detection of iodine and ionic silver. Organic compounds in water have been monitored with a second generation total organic carbon analyzer, which provides information on the amount of carbon in water at both the U.S. and Russian segments of the International Space Station since 2008. The disadvantage of this approach is the lack of compound-specific information. The recently developed methods and tools may potentially allow one to obtain in-flight a more detailed information on water quality. Namely, the microanalyzers based on potentiometric measurements were designed for online detection of chloride, potassium, nitrate ions and ammonia. The recent application of the current highly developed air quality monitoring system for water analysis was a logical step because most of the target analytes are the same in air and water. An electro-thermal vaporizer was designed, manufactured and coupled with the air quality control system. This development allowed for liberating the analytes from the aqueous matrix and further compound-specific analysis in the gas phase.

  2. Atmosphere and water quality monitoring on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Niu, William

    1990-01-01

    In Space Station Freedom air and water will be supplied in closed loop systems. The monitoring of air and water qualities will ensure the crew health for the long mission duration. The Atmosphere Composition Monitor consists of the following major instruments: (1) a single focusing mass spectrometer to monitor major air constituents and control the oxygen/nitrogen addition for the Space Station; (2) a gas chromatograph/mass spectrometer to detect trace contaminants; (3) a non-dispersive infrared spectrometer to determine carbon monoxide concentration; and (4) a laser particle counter for measuring particulates in the air. An overview of the design and development concepts for the air and water quality monitors is presented.

  3. International Space Station (ISS) Water Transfer Hardware Logistics

    NASA Technical Reports Server (NTRS)

    Shkedi, Brienne D.

    2006-01-01

    Water transferred from the Space Shuttle to the International Space Station (ISS) is generated as a by-product from the Shuttle fuel cells, and is generally preferred over the Progress which has to launch water from the ground. However, launch mass and volume are still required for the transfer and storage hardware. Some of these up-mass requirements have been reduced since ISS assembly began due to changes in the storage hardware (CWC). This paper analyzes the launch mass and volume required to transfer water from the Shuttle and analyzes the up-mass savings due to modifications in the CWC. Suggestions for improving the launch mass and volume are also provided.

  4. Intelligent Space Tube Optimization for speeding ground water remedial design.

    PubMed

    Kalwij, Ineke M; Peralta, Richard C

    2008-01-01

    An innovative Intelligent Space Tube Optimization (ISTO) two-stage approach facilitates solving complex nonlinear flow and contaminant transport management problems. It reduces computational effort of designing optimal ground water remediation systems and strategies for an assumed set of wells. ISTO's stage 1 defines an adaptive mobile space tube that lengthens toward the optimal solution. The space tube has overlapping multidimensional subspaces. Stage 1 generates several strategies within the space tube, trains neural surrogate simulators (NSS) using the limited space tube data, and optimizes using an advanced genetic algorithm (AGA) with NSS. Stage 1 speeds evaluating assumed well locations and combinations. For a large complex plume of solvents and explosives, ISTO stage 1 reaches within 10% of the optimal solution 25% faster than an efficient AGA coupled with comprehensive tabu search (AGCT) does by itself. ISTO input parameters include space tube radius and number of strategies used to train NSS per cycle. Larger radii can speed convergence to optimality for optimizations that achieve it but might increase the number of optimizations reaching it. ISTO stage 2 automatically refines the NSS-AGA stage 1 optimal strategy using heuristic optimization (we used AGCT), without using NSS surrogates. Stage 2 explores the entire solution space. ISTO is applicable for many heuristic optimization settings in which the numerical simulator is computationally intensive, and one would like to reduce that burden. PMID:18754799

  5. Subsurface drip irrigation emitter spacing effects on soil water redistribution, corn yield, and water productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emitter spacings of 0.3 to 0.6 m are commonly used for subsurface drip irrigation (SDI) of corn on the deep, silt loam soils of the United States Great Plains. Subsurface drip irrigation emitter spacings of 0.3, 0.6, 0.9 and 1.2 m were examined for the resulting differences in soil water redistribut...

  6. Soil water content variability in the 3D 'support-spacing-extent' space of scale metrics

    NASA Astrophysics Data System (ADS)

    Pachepsky, Yakov; Martinez, Gonzalo; Vereecken, Harry

    2014-05-01

    Knowledge of soil water content variability provides important insight into soil functioning, and is essential in many applications. This variability is known to be scale-dependent, and divergent statements about the change of the variability magnitude with scale can be found in literature. We undertook a systematic review to see how the definition of scale can affect conclusions about the scale-dependence in soil water content variability. Support, spacing, and extent are three metrics used to characterize scale in hydrology. Available data sets describe changes in soil moisture variability with changes in one or more of these scale metrics. We found six types of experiments with the scale change. With data obtained without a change in extent, the scale change in some cases consisted in the simultaneous change of support and spacing. This was done with remote sensing data, and the power law decrease in variance with support increase was found. Datasets that were collected with different support or sample volumes for the same extent and spacing showed the decrease of variance as the sample size increased. A variance increase was common when the scale change consisted in change in spacing without the change in supports and extents. An increase in variance with the extent of the study area was demonstrated with data an evolution of variability with increasing size of the area under investigation (extent) without modification of support. The variance generally increased with the extent when the spacing was changed so that the change in variability at areas of different sizes was studied with the same number of samples with equal support. Finally, there are remote sensing datasets that document decrease in variability with a change in extent for a given support without modification of spacing. Overall, published information on the effect of scale on soil water content variability in the 3D space of scale metrics did not contain controversies in qualitative terms

  7. Video- Water Droplet Demonstration on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Dr. Pettit demonstrates a spilling phenomenon with films of water. After drawing a 100-200 micron thick film of pure water, which is impossible to do on Earth, Dr. Pettit oscillates the film back and forth like a drum head, forcing the water droplets to spill off. He observes that although the phenomenon looks much like drops of water that are ejected from the surface of a pool when a rock is dropped in, the underlying physics are very different.

  8. Universal Landau pole.

    PubMed

    Andrianov, A A; Espriu, D; Kurkov, M A; Lizzi, F

    2013-07-01

    Our understanding of quantum gravity suggests that at the Planck scale the usual geometry loses its meaning. If so, the quest for grand unification in a large non-Abelian group naturally endowed with the property of asymptotic freedom may also lose its motivation. Instead, we propose a unification of all fundamental interactions at the Planck scale in the form of a universal Landau pole, at which all gauge couplings diverge. The Higgs quartic coupling also diverges while the Yukawa couplings vanish. The unification is achieved with the addition of fermions with vector gauge couplings coming in multiplets and with hypercharges identical to those of the standard model. The presence of these particles also prevents the Higgs quartic coupling from becoming negative, thus avoiding the instability (or metastability) of the standard model vacuum. PMID:23862991

  9. Potable water supply in U.S. manned space missions

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Straub, John E., II

    1992-01-01

    A historical review of potable water supply systems used in the U.S. manned flight program is presented. This review provides a general understanding of the unusual challenges these systems have presented to the designers and operators of the related flight hardware. The presentation concludes with the projection of how water supply should be provided in future space missions - extended duration earth-orbital and interplanetary missions and lunar and Mars habitation bases - and the challenges to the biomedical community that providing these systems can present.

  10. Retrofitting Combined Space and Water Heating Systems. Laboratory Tests

    SciTech Connect

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olsen, R.; Hewett, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  11. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    SciTech Connect

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  12. [Water-salt homeostasis in rats during space flight].

    PubMed

    Natochin, Iu V; Serova, L V

    1995-01-01

    The paper generalized the results of s series of experiments aimed at studying liquid and electrolytes contents in various organs and tissues of rats following 3-week space flights (SF). The results ascertain high reliability of the water-salt homeostasis maintaining system which ensures stable water and electrolytes amounts in the majority of animal tissues in SF. The following alterations appear to be of greatest significance: deduced potassium levels in the heart ventricle tissues in male rats after short-duration (7-9 d) exposure in SF, zero-g-induced degradation of the body ability to bind potassium at injection of isotonic solution KCl into the stomach; redistribution of potassium ions between mother and developing fetuses in space experiments with pregnant animals. Simulated experiments showed that similar shifting of potassium ions in the mother-fetus system may be due not to weightlessness exclusively but other impacts, i.e. they are not specific. PMID:8664861

  13. Investigation of Supercritical Water Phenomena for Space and Extraterrestrial Application

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde, Uday G.; Fisher, John W.

    2012-01-01

    The cost of carrying or resupplying life support resources for long duration manned space exploration missions such as a mission to Mars is prohibitive and requires the development of suitable recycling technologies. Supercritical Water Oxidation (SCWO) has been identified as an attractive candidate for these extended missions because (i) pre-drying of wet waste streams is not required, (ii) product streams are relatively benign, microbially inert, and easily reclaimed, (iii) waste conversion is complete and relatively fast, and (iv) with proper design and operation, reactions can be self-sustaining. Initial work in this area at NASA was carried out at the Ames Research Center in the 1990 s with a focus on understanding the linkages between feed stock preparation (i.e., particle size and distribution) of cellulosic based waste streams and destruction rates under a range of operating temperatures and pressures. More recently, work in SCWO research for space and extra-terrestrial application has been performed at NASA s Glenn Research Center where various investigations, with a particular focus in the gravitational effects on the thermo-physical processes occurring in the bulk medium, have been pursued. In 2010 a collaborative NASA/CNES (the French Space Agency) experiment on the critical transition of pure water was conducted in the long duration microgravity environment on the International Space Station (ISS). A follow-on experiment, to study the precipitation of salt in sub-critical, trans-critical and supercritical water is scheduled to be conducted on the ISS in 2013. This paper provides a brief history of NASA s earlier work in SCWO, discusses the potential for application of SCWO technology in extended space and extraterrestrial missions, describes related research conducted on the ISS, and provides a list of future research activities to advance this technology in both terrestrial and extra-terrestrial applications.

  14. RESOLVE: An International Mission to Search for Volatiles at the Lunar Poles

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Quinn, Jacqueline W.; Sanders, Gerald B.; Colaprete, Anthony; Elphic, Richard C.; Picard, Martin

    2013-01-01

    Numerous studies have shown that the use of space resources to manufacture propellant and consumables can significantly reduce the launch mass of space exploration beyond earth orbit. Even the Moon, which has no atmosphere, is ricb in resources that can theoretically be harvested. A series of lunar missions over the last 20 years has shown an unexpected resource on the Moon. There is evidence that water ice and other volatiles useful for the production of propellants are located at the lunar poles, though most of it is located within permanently shadowed craters where accessing these resources is challenging.

  15. Beyond water, beyond boundaries: spaces of water management in the Krishna river basin, South India.

    PubMed

    Venot, Jean-Philippe; Bharati, Luna; Giordano, Mark; Molle, François

    2011-01-01

    As demand and competition for water resources increase, the river basin has become the primary unit for water management and planning. While appealing in principle, practical implementation of river basin management and allocation has often been problematic. This paper examines the case of the Krishna basin in South India. It highlights that conflicts over basin water are embedded in a broad reality of planning and development where multiple scales of decisionmaking and non-water issues are at play. While this defines the river basin as a disputed "space of dependence", the river basin has yet to acquire a social reality. It is not yet a "space of engagement" in and for which multiple actors take actions. This explains the endurance of an interstate dispute over the sharing of the Krishna waters and sets limits to what can be achieved through further basin water allocation and adjudication mechanisms – tribunals – that are too narrowly defined. There is a need to extend the domain of negotiation from that of a single river basin to multiple scales and to non-water sectors. Institutional arrangements for basin management need to internalise the political spaces of the Indian polity: the states and the panchayats. This re-scaling process is more likely to shape the river basin as a space of engagement in which partial agreements can be iteratively renegotiated, and constitute a promising alternative to the current interstate stalemate. PMID:21922685

  16. Cold Hole Over Jupiter's Pole

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Observations with two NASA telescopes show that Jupiter has an arctic polar vortex similar to a vortex over Earth's Antarctica that enables depletion of Earth's stratospheric ozone.

    These composite images of Jupiter's north polar region from the Hubble Space Telescope (right) and the Infrared Telescope Facility (left) show a quasi-hexagonal shape that extends vertically from the stratosphere down into the top of the troposphere. A sharp temperature drop, compared to surrounding air masses, creates an eastward wind that tends to keep the polar atmosphere, including the stratospheric haze, isolated from the rest of the atmosphere.

    The linear striations in the composite projections are artifacts of the image processing. The area closest to the pole has been omitted because it was too close to the edge of the planet in the original images to represent the planet reliably.

    The composite on the right combines images from the Wide Field and Planetary Camera 2 of the Hubble Space Telescope taken at a wavelength of 890 nanometers, which shows stratospheric haze particles.

    The sharp boundary and wave-like structure of the haze layer suggest a polar vortex and a similarity to Earth's stratospheric polar clouds. Images of Jupiter's thermal radiation clinch that identification. The composite on the left, for example, is made from images taken with Jet Propulsion Laboratory's Mid-Infrared Large-Well Imager at NASA's Infrared Telescope Facility at a wavelength of 17 microns. It shows polar air mass that is 5 to 6 degrees Celsius (9 to 10 degrees Fahrenheit) colder than its surroundings, with the same border as the stratospheric haze. Similar observations at other infrared wavelengths show the cold air mass extends at least as high as the middle stratosphere down to the top of the troposphere.

    These images were taken Aug. 11 through Aug. 13, 1999, near a time when Jupiter's north pole was most visible from Earth. Other Infrared Telescope Facility images at

  17. Multijet final states: exact results and the leading pole approximation

    SciTech Connect

    Ellis, R.K.; Owens, J.F.

    1984-09-01

    Exact results for the process gg ..-->.. ggg are compared with those obtained using the leading pole approximation. Regions of phase space where the approximation breaks down are discussed. A specific example relevant for background estimates to W boson production is presented. It is concluded that in this instance the leading pole approximation may underestimate the standard QCD background by more than a factor of two in certain kinematic regions of physical interest.

  18. Higher Pole Linear Traps for Atomic Clock Applications

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2000-01-01

    We investigate experimentally and theoretically higher pole linear ion traps for frequency standard use. We have built a 12-pole trap and have successfully loaded ions into it from a linear quadrupole trap. By solving the Boltzmann equation describing large ion clouds where space charge interactions are important, we show that clock frequency changes due to ion number fluctuations are much smaller in ion clocks based multipole traps than comparable clocks based on quadrupole linear traps.

  19. International Space Station USOS Potable Water Dispenser Development

    NASA Technical Reports Server (NTRS)

    Shaw, Laura A.; Barreda, Jose L.

    2008-01-01

    The International Space Station (ISS) Russian Segment currently provides potable water dispensing capability for crewmember food and beverage rehydration. All ISS crewmembers rehydrate Russian and U.S. style food packages from this location. A new United States On-orbit Segment (USOS) Potable Water Dispenser (PWD) is under development. This unit will provide additional potable water dispensing capability to support an onorbit crew of six. The PWD is designed to provide incremental quantities of hot and ambient temperature potable water to U.S. style food packages. It will receive iodinated water from the Fuel Cell Water Bus in the U.S. Laboratory element. The unit will provide potable-quality water, including active removal of biocidal iodine prior to dispensing. A heater assembly contained within the unit will be able to supply up to 2.0 liters of hot water (65 to 93oC) every thirty minutes. This quantity will allow three to four crewmembers to rehydrate their food and beverages from this location during a single meal. The unit is designed to remain functional for up to ten years with replacement of limited life items such as filters. It will be the size of two stacked Shuttle Middeck lockers (approximately the size of two small suitcases) and integrated into a science payload rack in the U.S. Laboratory element. Providing potable-quality water at the proper temperature for food and beverage reconstitution is critical to maintaining crew health and well-being. The numerous engineering challenges as well as human factors and safety considerations during the concept, design, and prototyping are outlined in this paper.

  20. Loss of Water to Space from Mars: Processes and Implications

    NASA Astrophysics Data System (ADS)

    Kass, D. M.

    2001-12-01

    One of the major sinks for water on Mars is the loss to space. This occurs via a complex series of processes that transport the individual atoms to the upper atmosphere, where several escape mechanisms remove them. Hydrogen and deuterium are lost primarily by Jeans escape. Non-thermal processes also remove H and D, but are only important in determining D loss at solar minimum under modern conditions. The present H loss rate is equivalent to the loss of 10-3~pr-\\micron~yr-1 of water. The loss of oxygen is more complicated. The three main processes are indirect (or ionospheric) sputtering, solar wind pickup of O+, and O2+ dissociative recombination. Their relative importance has varied over the history of Mars. The combined effect of the O loss processes is to remove a ~ 50~m global layer of water over the last 3.5 Gyr. Based on photochemical modeling, the loss of oxygen and hydrogen are balanced (over geological timescales) by a feedback process. During the early history of Mars, impact erosion and hydrodynamic blow-off may have removed significant water. But, it is difficult to estimate their quantitative effects. The transport of individual H, D and O atoms to the exosphere where they can escape is not completely understood. It occurs primarily via intermediate species, H2, HD, O2 and CO2. The H2 and HD are formed by photolysis of water and the odd hydrogen photochemistry. One open issue is the mechanism regulating the partitioning of D between HDO and HD (which controls the supply of D available for escape from the exosphere). The various loss processes isotopically enrich Martian water since the exospheric escape source region is depleted. Jeans escape and the transport from the lower atmosphere further fractionate hydrogen, the most useful isotopic system. Based on recent observations, the D/H fractionation factor, F ~ 0.02. Measurements of atmospheric water vapor indicate it is enriched in deuterium, with a D/H ratio ~ 5 times the terrestrial value. Since

  1. Third Pole Environment (TPE) -Latest Progress

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Yao, T.; Zhang, F.; Yang, X.; Wang, W.; Ping, F.

    2014-12-01

    Centered on the Tibetan Plateau, the Third Pole region is a unique geographical unit, which represents one of the largest ice masses on the Earth. The region has great impacts on environmental changes in China, the Northern Hemisphere and the globe.It also demonstrates sensitive feedbacks to global changes and the impacts of anthropogenic activities in surrounding regions. Like the Arctic and Antarctica, the Third Pole region is an especially sensitive area that draws great attention from the scientific community. In 2009, with support from the Chinese Academy of Sciences and international organizations, the Third Pole Environment (TPE) program, led by Chinese scientists, was officially launched. The program focuses on the theme of "water-ice-air-ecosystem-human" interactions, with the aim to address the following scientific questions, such as the spatial and temporal characteristics of past environmental changes in the Third pole, the interactions between hydrosphere and cryosphere and hazard processes, the ecological systems' impacts on and response to environmental changes, and the impacts of anthropogenic activities on environmental changes in the region and adaptation strategies. The goal of the program is to reveal environmental change processes and mechanisms on the Third Pole and their influences on and responses to global changes, and thus to serve for enhancement of human adaptation to the changing environment and realization of human-nature harmony. Under the leadership of the co-chairs, and relying on Scientific Committee and the TPE office, the program has accomplished a number of scientific tasks since its inauguration. TPE has made tremendous progress in the research of glacier changes, interactions between the westerlies and monsoon, establishment of field stations, data sharing and education.

  2. The South Pole Telescope

    SciTech Connect

    Ruhl, J.E.; Ade, P.A.R.; Carlstrom, J.E.; Cho, H.M.; Crawford,T.; Dobbs, M.; Greer, C.H.; Halverson, N.W.; Holzapfel, W.L.; Lanting,T.M.; Lee, A.T.; Leitch, E.M.; Leong, J.; Lu, W.; Lueker, M.; Mehl, J.; Meyer, S.S.; Mohr, J.J.; Padin, S.; Plagge, T.; Pryke, C.; Runyan, M.C.; Schwan, D.; Sharp, M.K.; Spieler, H.; Staniszewski, Z.; Stark, A.A.

    2004-11-04

    A new 10 meter diameter telescope is being constructed for deployment at the NSF South Pole research station. The telescope is designed for conducting large-area millimeter and sub-millimeter wave surveys of faint, low contrast emission, as required to map primary and secondary anisotropies in the cosmic microwave background. To achieve the required sensitivity and resolution, the telescope design employs an off-axis primary with a 10 m diameter clear aperture. The full aperture and the associated optics will have a combined surface accuracy of better than 20 microns rms to allow precision operation in the submillimeter atmospheric windows. The telescope will be surrounded with a large reflecting ground screen to reduce sensitivity to thermal emission from the ground and local interference. The optics of the telescope will support a square degree field of view at 2mm wavelength and will feed a new 1000-element micro-lithographed planar bolometric array with superconducting transition-edge sensors and frequency-multiplexed readouts. The first key project will be to conduct a survey over 4000 degrees for galaxy clusters using the Sunyaev-Zeldovich Effect. This survey should find many thousands of clusters with a mass selection criteria that is remarkably uniform with redshift. Armed with redshifts obtained from optical and infrared follow-up observations, it is expected that the survey will enable significant constraints to be placed on the equation of state of the dark energy.

  3. Lightweight extendable and retractable pole

    DOEpatents

    Warren, J.L.; Brandt, J.E.

    1994-08-02

    A lightweight extendable and retractable telescopic pole is disclosed comprising a plurality of non-metallic telescoping cylinders with sliding and sealing surfaces between the cylinders, a first plug member on the upper end of the smallest cylinder, and a second plug member on the lower end of the largest cylinder, whereby fluid pressure admitted to the largest cylinder will cause the telescoping cylinders to slide relative to one another causing the pole to extend. An elastomeric member connects the first plug member with one of the intermediate cylinders to urge the cylinders back into a collapsed position when the fluid pressure in the cylinders is vented. Annular elastomer members are provided which seal one cylinder to another when the pole is fully extended and further serve to provide a cushion to prevent damage to the cylinders when the pole is urged back into its retractable position by the elastomeric members and the venting of the pressure. A value mechanism associated with the pole is provided to admit a fluid under pressure to the interior of the telescoping cylinders of the pole while pressurizing a pressure relief port having an opening larger than the inlet port in a closed position whereby removal of the pressure on the relief port will cause the relief port to open to quickly lower the pressure in the interior of the telescoping cylinders to thereby assist in the rapid retraction of the extended pole. 18 figs.

  4. Lightweight extendable and retractable pole

    DOEpatents

    Warren, John L.; Brandt, James E.

    1994-01-01

    A lightweight extendable and retractable telescopic pole is disclosed comprising a plurality of non-metallic telescoping cylinders with sliding and sealing surfaces between the cylinders, a first plug member on the upper end of the smallest cylinder, and a second plug member on the lower end of the largest cylinder, whereby fluid pressure admitted to the largest cylinder will cause the telescoping cylinders to slide relative to one another causing the pole to extend. An elastomeric member connects the first plug member with one of the intermediate cylinders to urge the cylinders back into a collapsed position when the fluid pressure in the cylinders is vented. Annular elastomer members are provided which seal one cylinder to another when the pole is fully extended and further serve to provide a cushion to prevent damage to the cylinders when the pole is urged back into its retractable position by the elastomeric members and the venting of the pressure. A value mechanism associated with the pole is provided to admit a fluid under pressure to the interior of the telescoping cylinders of the pole while pressurizing a pressure relief port having an opening larger than the inlet port in a closed position whereby removal of the pressure on the relief port will cause the relief port to open to quickly lower the pressure in the interior of the telescoping cylinders to thereby assist in the rapid retraction of the extended pole.

  5. Albedo of Permanently Shadowed Regions of the Lunar Poles

    NASA Astrophysics Data System (ADS)

    Riner, M. A.; Lucey, P. G.; Bussey, B.; Cahill, J. T.; McGovern, A.

    2012-12-01

    Due to the slight tilt in the Moon's spin axis, some topographic depressions near the lunar poles experience permanent shadow and may serve as cold traps, harboring water ice and/or other volatile compounds [1]. Permanently shadowed regions (PSRs) provide an opportunity toward understanding the amount, nature and transport of volatiles on the Moon and may also be a potential resource for human exploration. While many different data sets have suggested the presence of water ice in PSRs near the lunar poles many questions remain. For example, ice does not appear to be uniformly distributed across identified PSRs. More work is needed to understand the distribution of ice in PSRs and how delivery and retention mechanisms influence the distribution. The active illumination of the Lunar Orbiter Laser Altimeter (LOLA) provides a unique contribution toward exploration PSR exploration. While LOLA is principally a laser altimeter used for quantitative topography and related cartographic and geodetic applications [2], LOLA also measures the intensity and width of the return laser pulse (1064 nm) from the surface. Here we use a global mosaic (4 pixels per degree) of LOLA albedo data corrected for instrumental drift, irregular variations, and calibrated to normal albedo using local equatorial measurements of normal albedo obtained by the Kaguya Multiband Imager [3]. Recent work using LOLA albedo shows the floor of Shackleton crater, near the lunar south pole, is brighter than the surrounding terrain (and the interior of nearby craters) at 1064 nm [4]. This albedo difference may be due to decreased space weathering due to shadowing from the Sun or to a 1 μm thick layer with 20% water ice a the surface of the crater floor [4]. Here we use LOLA dayside reflectance measurements to examine the albedo of PSRs catalogued by [5] derived from illumination modeling of a hybrid 100 m/pixel LOLA-LROC digital terrain model (DTM) up to 83° north and south latitudes. The upper latitude

  6. Europe's space telescope ISO finds water in distant places

    NASA Astrophysics Data System (ADS)

    1997-04-01

    Equally striking is ISO's discovery of water vapour in the outer planets, Saturn, Uranus and Neptune. As those chilly planets cannot release water from within, they probably have a supply of water coming from elsewhere in the Solar System. Since ISO went into orbit at the end of 1995, it has used its unique power of analysing infrared rays coming from the Universe to identify water vapour and water ice near dying stars and newborn stars. It has also measured the water vapour steaming from Comet Hale-Bopp. "Before ISO no instrument was capable of detecting water in so many places," comments ESA's director of science, Roger Bonnet. "To start revealing the cosmic history of the Earth's water is a big success for ESA and for the astronomers who use our unique infrared observatory. And ISO's discovery that water is commonplace in the Galaxy will encourage renewed speculation about life that may exist in the vicinity of other stars." Water amid the stars Primaeval hydrogen atoms make water by joining with oxygen atoms that are manufactured within stars, in nuclear reactions occurring towards the end of a star's life. Oxygen from defunct stars enriches the Galaxy, and abundant hydrogen is available to react with it. Although the existence of water in interstellar space is not surprising, the Earth's moist atmosphere makes life difficult for any astronomer who wishes to spot water vapour in the Universe with ground-based instruments. Observations from aircraft and balloons gave early hints of cosmic water, but thorough investigations had to wait for ISO's unhampered view from space. Three of the satellite's instruments, the Short Wavelength Spectrometer (SWS), the Long Wavelength Spectrometer (LWS) and the photometer ISOPHOT operating in spectroscopic mode, take part in the hunt for water. Last year, for example, users of both SWS and LWS reported water vapour in the vicinity of the aged star, W Hydrae, from which oxygen-rich winds blow into space. The bright infrared

  7. Recycling of treated wood poles

    SciTech Connect

    Fansham, P.

    1995-11-01

    There are approximately 150 million utilities poles in service in North America. Of the 3 million poles removed from service each year, many poles still contain a sound and structurally intact core and only the outer layer has deteriorated. Since most of the old poles are treated with either pentachlorophenol or creosote there are limited disposal options available to pole users. The practice of giving old poles away to farmers or other interested parties in falling into disfavour since this practice does not absolve the utility of the environmental liability associated with the treated wood. TWT has commercialised a thermolysis (Pyrolysis) based process capable of removing oil based preservatives from treated wood. The patented process involves: the shaving of the weathered pole exterior; the rapid distillation of oil based preservatives in an oxygen depleted environment; condensation of the vapours; and separation of liquids. TWT has constructed a 30,000 pole per year facility east of Calgary and has provided recycled poles for the construction of two power lines now in use by TransAlta Utilities Corporation, Canada`s largest investor owned electric utility. TWT has tested two thermolysis (Pyrolysis) technologies and has determined that contact thermolysis using a heated auger design performed better and with less plugging than a fast fluid bed reactor. The fluid bed reactor is prone to coke formation and contamination of the oil by fine char particles. Residual PCP concentration in the shavings was reduced from 9500 ppm to 10 ppm. Leachate testing on the char yielded a PCP concentration of 1.43 ppm in the Leachate, well below the EPA standard maximum of 100 ppm.

  8. Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems

    SciTech Connect

    Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

    2012-07-01

    The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

  9. Active space heating and hot water supply with solar energy

    SciTech Connect

    Karaki, S.; Loef, G. O.G.

    1981-04-01

    Technical and economic assessments are given of solar water heaters, both circulating, and of air-based and liquid-based solar space heating systems. Both new and retrofit systems are considered. The technical status of flat-plate and evacuated tube collectors and of thermal storage is also covered. Non-technical factors are also briefly discussed, including the participants in the use of solar heat, incentives and deterrents. Policy implications are considered as regards acceleration of solar use, goals for solar use, means for achieving goals, and interaction of governments, suppliers, and users. Government actions are recommended. (LEW)

  10. Urine pretreatment for waste water processing systems. [for space station

    NASA Technical Reports Server (NTRS)

    Winkler, H. E.; Verostko, C. E.; Dehner, G. F.

    1983-01-01

    Recovery of high quality water from urine is an essential part of life support on a Space Station to avoid costly launch and resupply penalties. Water can be effectively recovered from urine by distillation following pretreatment by a chemical agent to inhibit microorganism contamination and fix volatile ammonia constituents. This paper presents the results of laboratory investigations of several pretreatment chemicals which were tested at several concentration levels in combination with sulfuric acid in urine. The optimum pretreatment formulation was then evaluated with urine in the Hamilton Standard Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES). Over 2600 hours of test time was accumulated. Results of these laboratory and system tests are presented in this paper.

  11. Advancements in water vapor electrolysis technology. [for Space Station ECLSS

    NASA Technical Reports Server (NTRS)

    Chullen, Cinda; Heppner, Dennis B.; Sudar, Martin

    1988-01-01

    The paper describes a technology development program whose goal is to develop water vapor electrolysis (WVE) hardware that can be used selectively as localized topping capability in areas of high metabolic activity without oversizing the central air revitalization system on long-duration manned space missions. The WVE will be used primarily to generate O2 for the crew cabin but also to provide partial humidity control by removing water vapor from the cabin atmosphere. The electrochemically based WVE interfaces with cabin air which is controlled in the following ranges: dry bulb temperature of 292 to 300 K; dew point temperature of 278 to 289 K; relative humidity of 25 to 75 percent; and pressure of 101 + or - 1.4 kPa. Design requirements, construction details, and results for both single-cell and multicell module testing are presented, and the preliminary sizing of a multiperson subsystem is discussed.

  12. An Alternative Water Processor for Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Pickering, Karen D.; Meyer, Caitlin; Pennsinger, Stuart; Vega, Leticia; Flynn, Michael; Jackson, Andrew; Wheeler, Raymond

    2014-01-01

    A new wastewater recovery system has been developed that combines novel biological and physicochemical components for recycling wastewater on long duration human space missions. Functionally, this Alternative Water Processor (AWP) would replace the Urine Processing Assembly on the International Space Station and reduce or eliminate the need for the multi-filtration beds of the Water Processing Assembly (WPA). At its center are two unique game changing technologies: 1) a biological water processor (BWP) to mineralize organic forms of carbon and nitrogen and 2) an advanced membrane processor (Forward Osmosis Secondary Treatment) for removal of solids and inorganic ions. The AWP is designed for recycling larger quantities of wastewater from multiple sources expected during future exploration missions, including urine, hygiene (hand wash, shower, oral and shave) and laundry. The BWP utilizes a single-stage membrane-aerated biological reactor for simultaneous nitrification and denitrification. The Forward Osmosis Secondary Treatment (FOST) system uses a combination of forward osmosis (FO) and reverse osmosis (RO), is resistant to biofouling and can easily tolerate wastewaters high in non-volatile organics and solids associated with shower and/or hand washing. The BWP has been operated continuously for over 300 days. After startup, the mature biological system averaged 85% organic carbon removal and 44% nitrogen removal, close to stoichiometric maximum based on available carbon. To date, the FOST has averaged 93% water recovery, with a maximum of 98%. If the wastewater is slighty acidified, ammonia rejection is optimal. This paper will provide a description of the technology and summarize results from ground-based testing using real wastewater

  13. An Alternative Water Processor for Long Duration Space Missions

    NASA Astrophysics Data System (ADS)

    Barta, Daniel J.; Wheeler, Raymond; Jackson, William; Pickering, Karen; Meyer, Caitlin; Pensinger, Stuart; Vega, Leticia; Flynn, Michael

    A new wastewater recovery system has been developed that combines novel biological and physicochemical components for recycling wastewater on long duration space missions. Functionally, this Alternative Water Processor (AWP) would replace the Urine Processing Assembly on the International Space Station and reduce or eliminate the need for the multi-filtration beds of the Water Processing Assembly (WPA). At its center are two unique game changing technologies: 1) a biological water processor (BWP) to mineralize organic forms of carbon and nitrogen and 2) an advanced membrane processor (Forward Osmosis Secondary Treatment) for removal of solids and inorganic ions. The AWP is designed for recycling larger quantities of wastewater from multiple sources expected during future exploration missions, including urine, hygiene (hand wash, shower, oral and shave) and laundry. The BWP utilizes a single-stage membrane-aerated biological reactor for simultaneous nitrification and denitrification. The Forward Osmosis Secondary Treatment (FOST) system uses a combination of forward osmosis (FO) and reverse osmosis (RO), is resistant to biofouling and can easily tolerate wastewaters high in non-volatile organics and solids associated with shower and/or hand washing. The BWP has been operated continuously for over 300 days. After startup, the mature biological system averaged 85% organic carbon removal and 44% nitrogen removal, close to maximum based on available carbon. To date, the FOST has averaged 93% water recovery, with a maximum of 98%. If the wastewater is slighty acidified, ammonia rejection is optimal. This paper will provide a description of the technology and summarize results from ground-based testing using real wastewater.

  14. Amorphous and polycrystalline water ices in space environments

    NASA Astrophysics Data System (ADS)

    Andrade, Diana; Pilling, Sergio; Da Silveira, Enio; Barros, Ana

    2016-07-01

    Ices are an important reservoir of more complex molecular species in several space environments, containing information about the composition and formation of these regions. Water ice is the dominant constituent of interstellar ices in most lines of sight and is about 70 % of the composition in comets, being a key molecule in astrochemical models. It is believed that one of the reactive species possibly evaporated from the water ices is the hydronium ion, H_{3}O^{+}, which plays an important role in the oxygen chemistry network. This ion has been detected in the lunar surface of Enceladus and Titan, and toward the Sagittarius B2 molecular Clouds, where H_{2}O and OH were also identified. In this work, the ion desorption due to radiolysis in ices constituted by water at three different temperatures (40, 70 and 125 K) is studied, to investigate the different allotropic water ices. A discussion on the rate of H_{3}O^{+} and water delivered to gas phase, as well as the half-life of water ice grains, inside dense molecular clouds considering a constants cosmic ray flux is given. The ions desorbed from water ice have been mass/charge analyzed by a time-of-flight spectrometer. Among the results, it is seen that in the positive ion spectrum of high density amorphous water ice at 40 K the highest desorption yields (ejected ions/impact) correspond to H^{+}, H_{3}O^{+} and clusters formed by (H_{2}O)_{n}R^{+}, where R^{+} is H_{3}O^{+} and 1 ≤ n ≤ 25. At T = 125 K, the ice is in its low density polycrystalline form and new clusters are present, such as (H_{2}O)_{n}R^{+}, where R^{+} is H_{2}^{+} and H_{3}^{+} (for low n), beyond H_{3}O^{+}. Therefore, it is seen that (H_{2}O)_{n}H_{3}O^{+} series (with n between 1 and 25) is dominant in all cases. The H_{3}O^{+} desorption yield at 40 K is about 5times10^{-3} ions/impact. This value is 4-5 times higher than the one obtained at T > 125 K. This behavior is also seen to all series member and consequently to the sum (Yn).

  15. Cosmic water traced by Europe's space telescope ISO

    NASA Astrophysics Data System (ADS)

    1996-05-01

    In retracing this history, ISO also observes water in the form of ice in cooler regions around the stars, and in the dust surrounding young stars, from which planets could evolve. Comets represent an intermediate stage in planet-building, and they contain much water ice. According to one hypothesis the newly formed Earth received some of its water directly from impacting comets. Water vapour in the Earth's atmosphere has prevented telescopes on the ground from detecting the water vapour among the stars, except in very unusual circumstances. ISO orbiting in space escapes the impediment of the atmosphere. Excellent onboard instruments register the characteristic infrared signatures of water vapour, water ice and many other materials. When ISO scrutinizes selected objects, it detects emissions or absorptions of infrared rays at particular wavelengths, or "lines" in a spectrum, which reveal the presence of identifiable atoms, molecules and solids. The Short Wavelength Specrometer and the Long Wavelength Spectrometer provide detailed chemical diagnoses, and the photometer ISOPHOT and camera ISOCAM also have important spectroscopic capabilities. Examples of water detection were among many topics reviewed at the First ISO Science Workshop held at ESA's Research and Technology Centre (ESTEC) in Noordwijk, the Netherlands (29-31 May) when 300 astronomers from Europe, the USA and Japan gathered to assess results from ISO since its launch on 17 November 1995. The Long Wavelength Spectrometer has made remarkable observations of water-vapour lines in the vicinity of dying stars and in star-forming regions. So has the Short Wavelength Spectrometer, which also detects water ice. The photometer lSOPHOT has registered water ice in a large number of objects. Although fascinated by the natural history of water in the cosmos, astronomers have more technical reasons for welcoming ISO's observations. They can use thc details in a spectrum to reduce the abundance of water and its

  16. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    SciTech Connect

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost-effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads and found that the tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system, among other key findings.

  17. Rational Gauss-Chebyshev quadrature formulas for complex poles outside [-1,1

    NASA Astrophysics Data System (ADS)

    Deckers, Karl; van Deun, Joris; Bultheel, Adhemar

    2008-06-01

    In this paper we provide an extension of the Chebyshev orthogonal rational functions with arbitrary real poles outside [-1,1] to arbitrary complex poles outside [-1,1] . The zeros of these orthogonal rational functions are not necessarily real anymore. By using the related para-orthogonal functions, however, we obtain an expression for the nodes and weights for rational Gauss-Chebyshev quadrature formulas integrating exactly in spaces of rational functions with arbitrary complex poles outside [-1,1] .

  18. Technology Case Studies: Retrofit Integrated Space and Water Heating - Field Assessment

    SciTech Connect

    2014-05-01

    Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

  19. Calligraphic Poling for WGM Resonators

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Strekalov, Dmitry; Savchenkov, Anatoliy; Matsko, Andrey; Ilchenko, Vladimir; Maleki, Lute

    2007-01-01

    By engineering the geometry of a nonlinear optical crystal, the effective efficiency of all nonlinear optical oscillations can be increased dramatically. Specifically, sphere and disk shaped crystal resonators have been used to demonstrate nonlinear optical oscillations at sub-milliwatt input power when cs light propagates in a Whispering Gallery Mode (WGM) of such a resonant cavity. in terms of both device production and experimentation in quantum optics, some nonlinear optical effects with naturally high efficiency can occult the desired nonlinear scattering process. the structure to the crystal resonator. In this paper, I will discuss a new method for generating poling structures in ferroelectric crystal resonators called calligraphic poling. The details of the poling apparatus, experimental results and speculation on future applications will be discussed.

  20. Analysis of water from the Space Shuttle and Mir Space Station by ion chromatography and capillary electrophoresis

    NASA Technical Reports Server (NTRS)

    Orta, D.; Mudgett, P. D.; Ding, L.; Drybread, M.; Schultz, J. R.; Sauer, R. L.

    1998-01-01

    Drinking water and condensate samples collected from the US Space Shuttle and the Russian Mir Space Station are analyzed routinely at the NASA-Johnson Space Center as part of an ongoing effort to verify water quality and monitor the environment of the spacecraft. Water quality monitoring is particularly important for the Mir water supply because approximately half of the water consumed is recovered from humidity condensate. Drinking water on Shuttle is derived from the fuel cells. Because there is little equipment on board the spacecraft for monitoring the water quality, samples collected by the crew are transported to Earth on Shuttle or Soyuz vehicles, and analyzed exhaustively. As part of the test battery, anions and cations are measured by ion chromatography, and carboxylates and amines by capillary electrophoresis. Analytical data from Shuttle water samples collected before and after several missions, and Mir condensate and potable recovered water samples representing several recent missions are presented and discussed. Results show that Shuttle water is of distilled quality, and Mir recovered water contains various levels of minerals imparted during the recovery processes as designed. Organic ions are rarely detected in potable water samples, but were present in humidity condensate samples.

  1. Calligraphic Poling of Ferroelectric Material

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Strekalov, Dmitry; Savchenkov, Anatoliy; Matsko, Adrey; Maleki, Lute; Iltchenko, Vladimir

    2007-01-01

    Calligraphic poling is a technique for generating an arbitrary, possibly complex pattern of localized reversal in the direction of permanent polarization in a wafer of LiNbO3 or other ferroelectric material. The technique is so named because it involves a writing process in which a sharp electrode tip is moved across a surface of the wafer to expose the wafer to a polarizing electric field in the desired pattern. The technique is implemented by use of an apparatus, denoted a calligraphic poling machine (CPM), that includes the electrode and other components as described in more detail below.

  2. 21 CFR 1250.84 - Water in galleys and medical care spaces.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... care spaces. (a) Potable water, hot and cold, shall be available in the galley and pantry except that... least 170 °F before discharge from the heater. (c) Potable water, hot and cold, shall be available in... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water in galleys and medical care spaces....

  3. 21 CFR 1250.84 - Water in galleys and medical care spaces.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... care spaces. (a) Potable water, hot and cold, shall be available in the galley and pantry except that... least 170 °F before discharge from the heater. (c) Potable water, hot and cold, shall be available in... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Water in galleys and medical care spaces....

  4. Moon's North Pole

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Mariner 10 was launched on November 3, 1973, 12:45 am PST, from Cape Canaveral on an Atlas/Centaur rocket (a reconditioned Intercontinental Ballistic Missile - ICBM). Within 12 hours of launch the twin cameras were turned on and several hundred pictures of both the Earth and the Moon were acquired over the following days.

    In this unusual view eastern Mare Frigor is near the center of the disc, while Mare Crisiumis the large circular feature near the lower right limb. The heavily cratered region shown in the top of the mosaic shows portions of the Moon not seen from the Earth.

    This mosaic is composed of 22 frames acquired in orange (15), clear (4), UV (2), and UV-polarized (1) wavelengths by the Mariner 10 Spacecraft.

    The Mariner 10 mission is managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    Image Credit: NASA/JPL/Northwestern University

  5. Electrochemical control of iodine disinfectant for space transportation system and space station potable water

    NASA Technical Reports Server (NTRS)

    Geer, Richard D.

    1989-01-01

    An electrochemical microbial check valve method (EC-MCV) for controlling the iodine disinfectant in potable water (PW) for NASA's space operations was proposed. The factors affecting the design and performance of the unit were analyzed. This showed that it would be feasible to construct a recyclable unit in a small volume that will operate in either an iodine removal or addition mode. The EC-MCV should remove active iodine species rapidly from PW, but the rapid delivery rates at end-use may make complete removal of excess I(-) difficult under some conditions. Its performace change with AgI buildup needs to be investigated, as this controls the time for recycling the unit. The EC-MCV has advantages over the passive microbial check valve (MCV) method currently in use, as it would allow precise control of the I2 level and would not introduce excess I(-) to the water. The presence of oxygen in the EC-MCV needs to be investigated as it could affect the efficiency of I2 addition and excess I(-) removal.

  6. South-Pole Swiss Cheese

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 9 March 2004

    The Odyssey spacecraft has completed a full Mars year of observations of the red planet. For the next several weeks the Image of the Day will look back over this first mars year. It will focus on four themes: 1) the poles - with the seasonal changes seen in the retreat and expansion of the caps; 2) craters - with a variety of morphologies relating to impact materials and later alteration, both infilling and exhumation; 3) channels - the clues to liquid surface flow; and 4) volcanic flow features. While some images have helped answer questions about the history of Mars, many have raised new questions that are still being investigated as Odyssey continues collecting data as it orbits Mars.

    This image was collected December 29, 2003 during the southern summer season. This image shows the surface texture that the ice cap develops after long term sun exposure. The central portion of the image has an appearance similar to swiss cheese and represents surface ice loss.

    Image information: VIS instrument. Latitude 86.9, Longitude 356.4 East (3.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen

  7. IAU Poles and Rotation Rates

    NASA Technical Reports Server (NTRS)

    Simon, J. L.

    1997-01-01

    Every three years the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites revises tables giving the directions of the north poles rotation and the prime meridians of the planets, satellites, and asteriods and also tables of their sizes and shapes.

  8. A Southern Bald Eagle perches on a pole at KSC.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A Southern Bald Eagle perches on top of a utility pole at Kennedy Space Center. About a dozen bald eagles live in the Merritt Island National Wildlife Refuge, which shares a boundary with Kennedy Space Center. The Southern Bald Eagle ranges throughout Florida and along the coasts of California, Texas, Louisiana, and the south Atlantic states. Bald Eagles are listed as endangered in the U.S., except in five states where they are listed as threatened. The number of nesting pairs of the southern race once numbered several thousand; recent estimates are only 350-375. Most of the southern race nest in Florida. Eagles arrive at KSC during late summer and leave for the north in late spring. They move to nest sites in October and November and lay one to three eggs. The young fledge from February to April. The Refuge encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  9. Characterization and monitoring of microbial species in the international space station drinking water

    NASA Technical Reports Server (NTRS)

    Duc, M. T. La; Vankateswaran, K.; Sumner, R.; Pierson, D.

    2003-01-01

    The focus of this study is to develop procedures to characterize the microbial quality of the drinking water for the International Space Station (ISS) and shuttle at various stages of water treatment.

  10. Applying the Global Energy and Water Cycle Experiment (GEWEX) Hydroclimatology Panel's (GHP's) Regional Hydroclimate Projects (RHPs) framework to improve understanding of Hydrology of the Third Pole Environment (TPE).

    NASA Astrophysics Data System (ADS)

    van Oevelen, P.; Benedict, S.

    2012-04-01

    Better in-situ and remote sensing observations from TPE and analysis of these phenomena, and improving our ability to model and predict them will contribute to increasing information needed by society and decision makers for future planning. We believe TPE could benefit from becoming an element of the The Regional Hydroclimate Projects (RHPs) that are part of the GEWEX Hydroclimatology Panel (GHP). These Projects are a source of hydrologic science and modeling within GEWEX. GHP, through its network of Regional Projects, provides flux site data sets for different regions, seasons and variables, that can be used to evaluate remote sensing products with energy, water and carbon budget components. In turn, the scope of the contribution made by the RHPs through the application of in-situ and remote sensing data includes advances in seasonal forecasting, the detection and attribution of change and the development and analysis of climate projections. Challenges also remain for GHP in defining a cooperative framework in which to deal with monsoons and to help coordinate the multitude of national and region. By entraining TPE in this framework and in the cross cutting work underway in the High Elevations and water and energy budget study components of GHP there would be a mutual benefit to be gained. The TPE would provide the regional level science and implementation that yields results/tools that would contribute to GEWEX Imperatives and Grand Challenges, while GHP would provide the forum for fostering cross-collaboration between TPE and the existing RHPs in terms of expertise, instrumentation development, modeling exercises, observational data exchange etc. Additionally TPE would benefit from visibility at the programmatic level with the World Climate Research Program (WCRP) and its international sponsors, its presence on the web, newsletters, mailing lists, etc. We will report on how the existing TPE science and data scheme can be incorporated in an international

  11. Retrofit Integrated Space & Water Heating: Field Assessment, Minneapolis, Minnesota (Fact Sheet)

    SciTech Connect

    Not Available

    2014-05-01

    This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (EF of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

  12. Resonance poles in three-body systems

    NASA Astrophysics Data System (ADS)

    Pearce, B. C.; Afnan, I. R.

    1984-12-01

    We develop a method for finding resonance poles in Faddeev equations. The method is computationally simpler than previous methods and is based on the rotation of contour technique. It is applied to πd elastic scattering with coupling to the NΔ channel. The position of the pole is compared with predictions based on Argand diagram and speed analysis. We find that the conventional methods are unreliable if the pole is further from the real axis than the Δ resonance pole.

  13. Development of a multi-pole magnetorheological brake

    NASA Astrophysics Data System (ADS)

    Shiao, Yaojung; Nguyen, Quang-Anh

    2013-06-01

    This paper presents a new approach in the design and optimization of a novel multi-pole magnetorheological (MR) brake that employs magnetic flux more effectively on the surface of the rotor. MR brakes with conventional single ring-type electromagnetic poles have reached the limits of torque enhancement. One major reason is the limitation of the magnetic field strength within the active area of the MR fluid due to the geometric constraints of the coil. The multi-pole MR brake design features multiple electromagnetic poles surrounded by several coils. As a result, the active chaining areas for the MR fluid are greatly increased, and significant brake torque improvement is achieved. The coil structure, as a part of the stator, becomes flexible and customizable in terms of space usage for the winding and bobbin design. In addition, this brake offers extra options in its dimensions for torque enhancement because either the radial or the axial dimensions of the rotor can be increased. Magnetic circuit analysis was conducted to analyze the effects of the design parameters on the field torque. After that, simulations were done to find the optimal design under all major geometric constraints with a given power supply. The results show that the multi-pole MR brake provides a considerable braking torque increase while maintaining a compact and solid design. This is confirmation of its feasibility in actual braking applications.

  14. Third Pole Environment (TPE): a new frontier for interdisciplinary research

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Yao, T.; Thompson, L. G.; Mosbrugger, V.; Zhang, F.; Ma, Y.; Yang, X.; Wang, W.; Joswiak, D.; Liu, X.; Devkota, L. P.; Tayal, S.; Luo, T.

    2013-12-01

    The Tibetan Plateau and surrounding mountain ranges, referred to by scientists as the Third Pole (TP), represent one of the largest ice masses of the Earth. The region is one of the most sensitive areas responding to global climate change due to its high altitude and the presence of permafrost and glaciers. The near 100,000 km2 of glaciers ensure the permanent flow of major rivers in this region and provide water to 1.4 billion people in Asia. Thus, environmental changes taking place on the TP significantly influences social and economic development of countries in this region such as China, India, Nepal, Tajikistan, Pakistan, Afghanistan and Bhutan. With an average elevation higher than 4,000 metres above sea level, the Third Pole is characterized by complex interactions of atmospheric, cryospheric, hydrological, geological and environmental processes that bear special significance for the Earth's biodiversity, climate and water cycles. For a comprehensive understanding of the environment of the TP and its implications on the development of the region, we need to integrate different disciplines under a them of 'water-ice-air-ecosystem -human' interactions and reveal environmental change processes and mechanisms on the TP and their influences on and regional responses to global changes, and thus to serve for enhancement of human adaptation to the changing environment. Like Antarctica and the Arctic, the Third Pole region is drawing increased attention of the international academic community. A series of observations and monitoring programs in the Third Pole region has been widely implemented. However, data necessary to precisely assess the environmental, societal and economic changes caused by alterations in the Third Pole dynamics are either lacking or insufficient. The Third Pole Environment (TPE) program is thus established as a comprehensive and coordinated international research, monitoring and capacity building initiative, with goals to address the influence

  15. Pole orientation and shape of 12 asteroids.

    NASA Astrophysics Data System (ADS)

    Dotto, E.; De Angelis, G.; Di Martino, M.; Barucci, M. A.; Fulchignoni, M.; De Sanctis, G.; Burchi, R.

    1995-10-01

    We present the results of photometric observations of 12 asteroids, performed from 1985 through 1989 at the Astronomical Observatory of Teramo (Italy), Astronomical Observatory of Turin (Italy), and European Southern Observatory (ESO, La Silla, Chile). Using the EA pole determination method described in G. De Angelis ( Planet. Space Sci., 41, 285-290, 1993), we have obtained the first spin and shape solution of 85 to and 360 Carlova and an improvement of the previous determinations for 12 Victoria, 192 Nausikaa and 423 Diotima, for which we determined for the first time the sidereal period and the sense of rotation. We have checked the determinations obtained by other authors for the asteroids 3 Juno, 6 Hebe, 20 Massalia, 43 Ariadne, and 52 Europa, and suggested a very rough estimate of the spin and shape parameters of 115 Thyra.

  16. Assessing equitable access to urban green space: the role of engineered water infrastructure.

    PubMed

    Wendel, Heather E Wright; Downs, Joni A; Mihelcic, James R

    2011-08-15

    Urban green space and water features provide numerous social, environmental, and economic benefits, yet disparities often exist in their distribution and accessibility. This study examines the link between issues of environmental justice and urban water management to evaluate potential improvements in green space and surface water access through the revitalization of existing engineered water infrastructures, namely stormwater ponds. First, relative access to green space and water features were compared for residents of Tampa, Florida, and an inner-city community of Tampa (East Tampa). Although disparities were not found in overall accessibility between Tampa and East Tampa, inequalities were apparent when quality, diversity, and size of green spaces were considered. East Tampa residents had significantly less access to larger, more desirable spaces and water features. Second, this research explored approaches for improving accessibility to green space and natural water using three integrated stormwater management development scenarios. These scenarios highlighted the ability of enhanced water infrastructures to increase access equality at a variety of spatial scales. Ultimately, the "greening" of gray urban water infrastructures is advocated as a way to address environmental justice issues while also reconnecting residents with issues of urban water management. PMID:21728276

  17. Short periodical oscillations of pole coordinates determined by the Main Astronomical Observatory of the UAS from the Lageos laser ranging data in the MERIT campaign

    NASA Astrophysics Data System (ADS)

    Kosek, W.; Kolaczek, B.; Nurutdinov, K. Kh.; Taradii, V. K.; Tsesis, M. L.

    Pole coordinate variations in the MERIT campaign were computed from Lageos laser ranging data by the Kiev Geodynamics Program on the basis of pure numerical integration techniques, and they were compared with the pole coordinate variations computed by the Center for Space Researches (CSR), U.S.A. Short periodical variations of the pole coordinate variations have been analyzed.

  18. Problems in water recycling for Space Station Freedom and long duration life support

    NASA Technical Reports Server (NTRS)

    Janik, D. S.; Crump, W. J.; Macler, B. A.; Wydeven, T., Jr.; Sauer, R. L.

    1989-01-01

    A biologically-enhanced, physical/chemical terminal water treatment testbed for the Space Station Freedom is proposed. Recycled water requirements for human, animal, plant and/or combined crews for long duration space missions are discussed. An effective terminal treatment method for recycled water reclamation systems that is based on using granular activated carbon as the principal active agent and the controls of microbial contamination and growth within recycled water systems are examined. The roles of plants in water recycling within CELSS is studied.

  19. Space Techniques Used to Measure Change in Terrestrial Waters

    NASA Astrophysics Data System (ADS)

    Cazenave, A.; Milly, P. C. D.; Douville, H.; Benveniste, J.; Kosuth, P.; Lettenmaier, D.

    2004-02-01

    Terrestrial waters-including snowpack, glaciers, water in aquifers and other geological formations, water in the plant root zone, rivers, lakes, man-made reservoirs, wetlands, and inundated areas-represent less than a mere 1% of the total amount of water on Earth. However, they have a crucial impact on terrestrial life and human needs and play a major role in climate variability. Land waters are continuously exchanged with the atmosphere and oceans in vertical and horizontal mass fluxes through evaporation, transpiration, and surface and subsurface runoff. Although it is now recognized that improved description of the terrestrial branch of the global water cycle is of major importance for climate research and for inventory and management of water resources, the global distribution and spatial-temporal variations of terrestrial waters are still poorly known because routine in situ observations are not available globally. So far, global estimates of spatial-temporal change of land water stored in soils and in the snowpack essentially rely on hydrological models, either coupled with atmosphere/ocean global circulation models and/or forced by observations.

  20. 21 CFR 1250.84 - Water in galleys and medical care spaces.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and in connection with garbage disposal. Any tap discharging nonpotable water which is installed for... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Water in galleys and medical care spaces. 1250.84... CONVEYANCE SANITATION Sanitation Facilities and Conditions on Vessels § 1250.84 Water in galleys and...

  1. 21 CFR 1250.84 - Water in galleys and medical care spaces.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and in connection with garbage disposal. Any tap discharging nonpotable water which is installed for... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Water in galleys and medical care spaces. 1250.84... CONVEYANCE SANITATION Sanitation Facilities and Conditions on Vessels § 1250.84 Water in galleys and...

  2. Transition from ring to beam arc distributions of water ions near the Space Shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1990-01-01

    The distribution function of water ions produced near the Space Shuttle by charge exchange between ionospheric oxygen ions and outgassed water molecules is studied. The transition from a ring to a beam arc distribution function is described. The number density of water ions is found to increase monotonically with decreasing distance from the Shuttle.

  3. Method and apparatus for assembling a permanent magnet pole assembly

    DOEpatents

    Carl, Jr., Ralph James; Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Dawson, Richard Nils; Qu, Ronghai; Avanesov, Mikhail Avramovich

    2009-08-11

    A pole assembly for a rotor, the pole assembly includes a permanent magnet pole including at least one permanent magnet block, a plurality of laminations including a pole cap mechanically coupled to the pole, and a plurality of laminations including a base plate mechanically coupled to the pole.

  4. Regenerative water supply for an interplanetary space station: The experience gained on the space stations “Salut”, “Mir”, ISS and development prospects

    NASA Astrophysics Data System (ADS)

    Bobe, Leonid; Samsonov, Nikoly; Gavrilov, Lev; Novikov, Vladimir; Tomashpolskiy, Mihail; Andreychuk, Peter; Protasov, Nikoly; Synjak, Yury; Skuratov, Vladimir

    2007-06-01

    Based on the experience in operation of Russian space stations Salut, Mir and International space station ISS the station's water balance data, parameters and characteristics of the systems for water recovery have been obtained. Using the data design analysis an integrated water supply system for an interplanetary space station has been performed. A packaged physical/chemical system for water supply is composed of an integrated system for water recovery from humidity condensate, green house condensate, water from carbon dioxide reduction system and condensate from urine system; a system for water reclamation from urine; hygiene water processing system and a water storage system. The take off mass of the packaged water supply system (including expendables, redundancy hardware, equivalent mass of power consumption and of thermal control) is appropriate for Mars missions. The international space station is indispensable for verifying innovative processes and new water recovery systems intended for missions to Mars.

  5. A Southern Bald Eagle perches on a pole at KSC.

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A Southern Bald Eagle perched on top of a utility pole searches the area. About a dozen bald eagles live in the Merritt Island National Wildlife Refuge, which shares a boundary with Kennedy Space Center. The Southern Bald Eagle ranges throughout Florida and along the coasts of California, Texas, Louisiana, and the south Atlantic states. Bald Eagles are listed as endangered in the U.S., except in five states where they are listed as threatened. The number of nesting pairs of the southern race once numbered several thousand; recent estimates are only 350-375. Most of the southern race nest in Florida. Eagles arrive at KSC during late summer and leave for the north in late spring. They move to nest sites in October and November and lay one to three eggs. The young fledge from February to April. The Refuge encompasses 92,000 acres that are a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  6. Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System

    NASA Technical Reports Server (NTRS)

    Hill, Terry; Taylor ,Brandon W.

    2012-01-01

    Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System. With the U.S. Space Shuttle fleet retired, the supply of extremely high-quality water "super-Q" - required for the EMU Space suit cooling on this ISS - will become a significant operational hardware challenge in the very near future. A proposed potential solution is the use of a filtration system consisting of a semi-permeable membrane embedded with aquaporin proteins. Aquaporins are a special class of trans-membrane proteins that facilitate passive transport of water and other substances across a membrane. The specificity of these proteins is such that only water is allowed through the protein structure, and this novel property invites their adaptation for use in water filtration systems, specifically usage on the ISS for the EMU space suit system. These proteins are found in many living systems and have been developed for commercial use today.

  7. Solar Space and Water Heating for Hospital --Charlottesville, Virginia

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar heating system described in an 86-page report consists of 88 single-glazed selectively-coated baseplate collector modules, hot-water coils in air ducts, domestic-hot-water preheat tank, 3,000 Gallon (11,350-1) concrete urethane-insulated storage tank and other components.

  8. Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect

    Rudd, A.

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  9. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    SciTech Connect

    Rudd, Armin

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  10. Properties of filamentary sublimation residues from dispersions of clay in ice. [on Martian poles, comet nuclei, and icy satellites

    NASA Technical Reports Server (NTRS)

    Saunders, R. S.; Parker, T. J.; Stephens, J. B.; Fanale, F. P.; Sutton, S.

    1986-01-01

    Results are reported from experimental studies of the formation of ice mixed with mineral particles in an effort to simulate similar processes on natural surfaces such as at the Martian poles, on comet nuclei and on icy satellites. The study consisted of low-pressure, low-temperature sublimations of water ice from dilutions of water-clay (montmorillonite and Cabosil) dispersions of various component ratios. Liquid dispersions were sprayed into liquid nitrogen to form droplets at about -50 C. Both clay-water dispersions left a filamentary residue on the bottom of the Dewar after the water ice had sublimated off. The residue was studied with optical and SEM microscopy, the latter method revealing a high electrical conductivity in the residue. The results suggest that the sublimation of the water ice can leave a surface crust, which may be analogous to processes at the Martian poles and on comet nuclei. The process could proceed by the attachment of water molecules to salt crystals during the hottest part of the Martian year. The residue remaining was found to remain stable up to 370 C, be porous, and remain resilient, which could allow it to insulate ice bodies such as comets in space.

  11. Solar space and water heating system installed at Charlottesville, Virginia

    NASA Astrophysics Data System (ADS)

    1980-09-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, is described. The solar energy system consists of 88 single glazed, Sunworks 'Solector' copper base plate collector modules, hot water coils in the hot air ducts, a Domestic Hot Water (DHW) preheat tank, a 3,000 gallon concrete urethane insulated storage tank and other miscellaneous components. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  12. Water leaving polarization signal measured from space. Is it possible?

    NASA Astrophysics Data System (ADS)

    Piskozub, Jacek; Freda, Wlodzimierz

    2016-04-01

    Improvements in optical techniques for measuring linear polarization have renewed interest in using them to study ocean waters. However, some questions needed answering. Is there any useful information about ocean water optical properties in the polarization signal? Is it possible to discern it from polarization caused by atmospheric Rayleigh scattering polarization reflected by the sea surface and by the reflection itself? Will the signal be still detectable from the top of the atmosphere? We have recently answered affirmatively to the first question, showing that useful information about in-water single scattering albedo can be derived from the degree of polarization of water leaving radiation [1]. This information, can be combined with reflectance measurements to calculate for example the backscattering ratio of sea water components. Thus, at least in theory, optical remote sensing could be used to get information about the angular distribution of scattering. To answer the second and third questions, we have performed experiments [2] and used Monte Carlo modelling to study the water leaving polarization through a realistic (Cox-Munk distribution) sea surface. The results are promising, at least in some directions (mostly 90 degrees of azimuth angle from the sun blink). We also performed Monte Carlo calculations with a realistic atmosphere with both Rayleigh and aerosol scattering. The (new and unpublished) results show the polarization signal of water leaving can be also discerned from the top of the atmosphere making satellite remote sensing of ocean leaving polarization a realistic possibility. [1] Piskozub J. and Freda W, 2013, Signal of single scattering albedo in water leaving polarization, J. Europ. Opt. Soc.-Rapid, 8, 13055, http://dx.doi.org/10.2971/jeos.2013.13055 [2] Freda W., J. Piskozub, H. Toczek, 2015, Polarization imaging over sea surface - a method for measurements of Stokes components angular distribution, J. Eur. Opt. Soc.-Rapid, 10, 15060

  13. Water from Space: Real World Opportunities and Far Away Promises

    NASA Astrophysics Data System (ADS)

    Tayebi, N.; Garcia, L. E.; Serrat-Capdevila, A.

    2015-12-01

    A Global Initiative on Remote Sensing for Water Resources Management (Water RS) was launched in October 2013, financed by the World Bank's Water Partnership Program (WPP[1]) of the Global Water Program. It aims, among other things, to put together and disseminate, in collaboration with the Bank's operational staff as well as external partners, a clear picture of the potential role of Earth Observations (EO) in solution approaches to address particular water-related issues.The initiative focuses on the accuracy, reliability, and validity of the EO products to be used by decision makers in water related management and planning contexts. To make informed decisions, the client needs to know about the potential and the limitations of practical application of remote sensing technology and products, through informed recommendations and the development of practical, result-oriented tools. Thus, the objective of the Water RS initiative is to address this issue by taking a two-phase approach focusing respectively on: (i) identifying demand and priorities of the users while raising awareness on the potential and limitation of RS tools and (ii) bridging the gap between science and development of operational projects.While the first phase has come to completion, the second phase is being designed to tackle some of the reasons why there have been rather limited applications in the developing world (World Bank clients), such as: incentive issues, implementation capacity, costs and financing, and the overall issue of "How to do it?. An overview of the initiative and the lessons learned to date will be presented, setting the stage for muti-partner discussions. [1] The Water Partnership Program (WPP) is a longstanding alliance between the World Bank and the governments of the Netherlands, United Kingdom, Denmark, and Austria.

  14. Solar space and water heating system installed at Charlottesville, Virginia

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, is described. The solar energy system consists of 88 single glazed, Sunworks 'Solector' copper base plate collector modules, hot water coils in the hot air ducts, a Domestic Hot Water (DHW) preheat tank, a 3,000 gallon concrete urethane insulated storage tank and other miscellaneous components. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  15. Solar space and water heating system installed at Charlottesville, Virginia

    SciTech Connect

    Greer, Charles R.

    1980-09-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, consists of 88 single glazed, Sunworks Solector copper base plate collector modules; hot water coils in the hot air ducts; a domestic hot water (DHW) preheat tank; a 3,000 gallon concrete urethane-insulated storage tank and other miscellaneous components. This report includes extracts from the site files, specifications, drawings, installation, operation and maintenance instructions.

  16. Pole to Pole Videoconferences Connect Students and Scientists

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Lemone, P.; Yule, S.; Boger, R.; Galloni, M.; Kopplin, M. R.

    2008-12-01

    Alaskan and Argentinean students as well as arctic and antarctic scientists participated in two International Polar Year (IPY) Pole to Pole Videoconferences in 2007 and 2008. The videoconferences involved elementary, middle and high school students as well as scientists from Alaska, Argentina, Colorado and Washington DC. Alaska students were located in Fairbanks, Healy, Shageluk and Wasilla while the Argentinean students were located in Ushuaia, Argentina, at the southern tip of South America. The purpose was to ask each other and the scientists about local environmental changes, seasonal indicators, and climate change, and how to study the seasonal indicators to determine whether they are being affected by climate change. The videoconferences were followed by web chats and web forums to allow more students in other countries including those in non-polar regions, to interact with scientists, and help students develop ideas for their research projects. These activities are part of the Seasons and Biomes Project that engages K-12 teachers and students in Earth system science investigations as a way of teaching and learning science. This project also provides professional development workshops to teachers and teacher trainers. Seasons and Biomes is one of the projects in the University of the Arctic IPY Higher Education Outreach Cluster Project that has been approved by the IPY Joint Committee. As well, it is part of the GLOBE program, an international hands-on, inquiry-based Earth and environmental science and education program for primary and secondary students in 110 countries. The videoconferences, web chats and forums generated much interest and enthusiasm among students and scientists, and have provided the impetus for student research project initiations and collaborations between schools.

  17. Design package for a complete residential solar space heating and hot water system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information necessary to evaluate the design of a solar space heating and hot water system is reported. System performance specifications, the design data brochure, the system description, and other information pertaining to the design are included.

  18. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    SciTech Connect

    Kingston, T.; Scott, S.

    2013-03-01

    Homebuilders are exploring more cost effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads with the following key findings: 1) The tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system. 2) The tankless combo system consistently achieved better daily efficiencies (i.e. 84%-93%) than the storage combo system (i.e. 81%- 91%) when the air handler was sized adequately and adjusted properly to achieve significant condensing operation. When condensing operation was not achieved, both systems performed with lower (i.e. 75%-88%), but similar efficiencies. 3) Air handlers currently packaged with combo systems are not designed to optimize condensing operation. More research is needed to develop air handlers specifically designed for condensing water heaters. 4) System efficiencies greater than 90% were achieved only on days where continual and steady space heating loads were required with significant condensing operation. For days where heating was more intermittent, the system efficiencies fell below 90%.

  19. Video-Puff of Air Hits Ball of Water in Space Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Dr. Pettit demonstrates the phenomenon of a puff of air hitting a ball of water that is free floating in space. Watch the video to see why Dr. Pettit remarks 'I'd hate think that our planet would go through these kinds of gyrations if it got whacked by a big asteroid'.

  20. How do bacteria localize proteins to the cell pole?

    PubMed Central

    Laloux, Géraldine; Jacobs-Wagner, Christine

    2014-01-01

    ABSTRACT It is now well appreciated that bacterial cells are highly organized, which is far from the initial concept that they are merely bags of randomly distributed macromolecules and chemicals. Central to their spatial organization is the precise positioning of certain proteins in subcellular domains of the cell. In particular, the cell poles – the ends of rod-shaped cells – constitute important platforms for cellular regulation that underlie processes as essential as cell cycle progression, cellular differentiation, virulence, chemotaxis and growth of appendages. Thus, understanding how the polar localization of specific proteins is achieved and regulated is a crucial question in bacterial cell biology. Often, polarly localized proteins are recruited to the poles through their interaction with other proteins or protein complexes that were already located there, in a so-called diffusion-and-capture mechanism. Bacteria are also starting to reveal their secrets on how the initial pole ‘recognition’ can occur and how this event can be regulated to generate dynamic, reproducible patterns in time (for example, during the cell cycle) and space (for example, at a specific cell pole). Here, we review the major mechanisms that have been described in the literature, with an emphasis on the self-organizing principles. We also present regulation strategies adopted by bacterial cells to obtain complex spatiotemporal patterns of protein localization. PMID:24345373

  1. Plasma density fluctuations observed during Space Shuttle Orbiter water releases

    NASA Technical Reports Server (NTRS)

    Pickett, J. S.; D'Angelo, N.; Kurth, W. S.

    1989-01-01

    Observations by the Langmuir probe on the Plasma Diagnostics Package flown as part of the Spacelab 2 mission in the summer of 1985 show a strong increase in the level of turbulence near the Shuttle Orbiter during operations in which liquid water is released. The spectrum of the plasma density fluctuations peaks at the lowest frequencies measured (a few Hz) and extends up to a few kHz, near the lower hybrid frequency. Two potential mechanisms for generating the plasma turbulence are suggested which are both based on the production of water ions as a result of charge exchange with the ambient oxygen ions in the ionosphere. The first mechanism proposed is the ion-plasma instability which arises from the drift of the contaminant with respect to the ambient oxygen ions. The other mechanism proposed is the Ott-Farley instability, which is a result of the ring distribution formed by the 'pick-up' water ions.

  2. Video- Soldering Iron Inserted Through a Film of Water Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video, Dr. Pettit demonstrates the result of inserting a soldering iron into a thin film or sheet of water in space. Dr. Pettit makes comparative comments about the differences and similarities of boiling processes in space and on Earth.

  3. Selection of combined water electrolysis and resistojet propulsion for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.

    1988-01-01

    An analytical rationale is presented for the configuration of the NASA Space Station's two-element propulsion system, and attention is given to the cost benefits accruing to this system over the Space Station's service life. The principal system element uses gaseous oxygen and hydrogen obtained through water electrolysis to furnish attitude control, backup attitude control, and contingency maneuvering. The secondary element uses resistojets to augment Space Station reboost through the acceleration of waste gases in the direction opposite the Station's flight path.

  4. Analysis of the performance and space-conditioning impacts of dedicated heat-pump water heaters

    NASA Astrophysics Data System (ADS)

    Morrison, L.; Swisher, J.

    1980-12-01

    The operation of a newly marketed dedicated heat pump water heater (HPWH) which utilizes an air to water heat pump, costs about $1000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests, is a space conditioning benefit if an air conditioning load exists and a penalty if a space heating load exists. A simulation was developed to model the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics were adapted (Madison, Wisconsin; Washington, DC; and Ft. Worth, Texas) and the system was simulated for a year with typical weather data. For each city, HPWH COPs are calculated monthly and yearly. The water heating and space conditioning energy requirements of HPWH operation are compared with those of resistance water heater operation to determine the relative performance ratio of the HPWH.

  5. A LINE POLE 77A, HISTORIC POLE WITH HISTORIC REPLACEMENT PINTYPE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A LINE POLE 77A, HISTORIC POLE WITH HISTORIC REPLACEMENT PIN-TYPE INSULATORS MADE OF BROWN PORCELAIN. VIEW TO WEST-SOUTHWEST. - Mystic Lake Hydroelectric Facility, Electric Transmission A Line, Along West Rosebud Creek, Fishtail, Stillwater County, MT

  6. Tectonic Maps of the Poles

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These tectonic relief maps of the north (left, view large [540k]) and south (right, view large [411k]) poles are the result of new satellite-based technologies which are being used to analyze tectonic activity in the Earth's crust. These maps, known as Digital Tectonic Activity Maps (DTAMs), synoptically depict the architecture of the Earth's crust including current and past tectonic activity. This is significant because it permits researchers to view broad zones of activity over the entire surface of the Earth, rather than focusing on single boundary features. By looking at these 'big pictures,' scientists can possibly identify regions of activity which were not previously recognized or mapped using traditional methods. For more information, see: DTAM web site Putting Earthquakes in Their Place Images courtesy Brian Montgomery, NASA GSFC; data by Paul Lowman and Jacob Yates, NASA GSFC

  7. High pressure water electrolysis for space station EMU recharge

    NASA Technical Reports Server (NTRS)

    Lance, Nick; Puskar, Michael; Moulthrop, Lawrence; Zagaja, John

    1988-01-01

    A high pressure oxygen recharge system (HPORS), is being developed for application on board the Space Station. This electrolytic system can provide oxygen at up to 6000 psia without a mechanical compressor. The Hamilton standard HPORS based on a solid polymer electrolyte system is an extension of the much larger and succesful 3000 psia system of the U.S. Navy. Cell modules have been successfully tested under conditions beyond which spacecraft may encounter during launch. The control system with double redundancy and mechanical backups for all electronically controlled components is designed to ensure a safe shutdown.

  8. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  9. Space Station Environmental Control and Life Support Systems: An Update on Waste Water Reclamation

    NASA Technical Reports Server (NTRS)

    Ferner, Kathleen M.

    1994-01-01

    Since the mid-1980's, work has been ongoing In the development of the various environmental control and life support systems (ECLSS) for the space station. Part of this effort has been focused on the development of a new subsystem to reclaim waste water that had not been previously required for shuttle missions. Because of the extended manned missions proposed, reclamation of waste water becomes imperative to avoid the weight penalties associated with resupplying a crew's entire water needs for consumption and daily hygiene. Hamilton Standard, under contract to Boeing Aerospace and Electronics, has been designing the water reclamation system for space station use. Since June of 1991, Hamilton Standard has developed a combined water processor capable of reclaiming potable quality water from waste hygiene water, used laundry water, processed urine, Shuttle fuel cell water, humidity condensate and other minor waste water sources. The system was assembled and then tested with over 27,700 pounds of 'real' waste water. During the 1700 hours of system operation required to process this waste water, potable quality water meeting NASA and Boeing specifications was produced. This paper gives a schematic overview of the system, describes the test conditions and test results and outlines the next steps for system development.

  10. Reverse osmosis for wash water recovery in space vehicles.

    NASA Technical Reports Server (NTRS)

    Lawrence, R. W.; Saltonstall, C. W., Jr.

    1973-01-01

    Tests were carried out on both synthetic and real wash water derived from clothes laundry to determine the utility of reverse osmosis in recovering the water for recycle use. A blend membrane made from cellulose di- and triacetates, and a cross-linked cellulose acetate/methacrylate were evaluated. Both were found acceptable. A number of detergents were evaluated, including a cationic detergent, sodium dodecyl sulfate, potassium palmitate, and sodium dodecylbenzenesulfonate. The tests were all made at a temperature of 165 F to minimize microbial growth. Long-term (15 to 30 day) runs were made at 600 and 400 psi on laundry water which was pretreated either by alum addition and sand filtration or by filtration only through 0.5 micron filters. A 30-day run was made using a 2-in. diameter by 22-in. long spiral module at 400 psig with filtering as the pretreatment. The membrane fouling by colloidal matter was found to be controllable. The unit produced initially 55 gal/day and 27 gal/day after 30 days.

  11. Late 20th Century increase in South Pole snow accumulation

    USGS Publications Warehouse

    Mosley-Thompson, E.; Paskievitch, J.F.; Gow, A.J.; Thompson, L.G.

    1999-01-01

    A compilation of the 37-year history of net accumulation at the South Pole [Mosley-Thompson et al., 1995] suggests an increase in net annual accumulation since 1965. This record is sporadic and its quality is compromised by spatially restricted observations and nonsystematic measurement procedures. Results from a new, spatially extensive network of 236 accumulation poles document that the current 5-year (1992-1997) average annual net accumulation at the South Pole is 84.5??8.9 mm water equivalent (w.e.). This accumulation rate reflects a 30% increase since the 1960s when the best, although not optimal, records indicate that it was 65 mm w.e. Identification of two prominent beta radioactivity horizons (1954/1955 and 1964/1965) in six firn cores confirms an increase in accumulation since 1965. Viewed from a longer perspective of accumulation provided by ice cores and a snow mine study, the net accumulation of the 30-year period, 1965-1994, is the highest 30-year average of this millennium. Limited data suggest this recent accumulation increase extends beyond the South Pole region and may be characteristic of the high East Antarctic Plateau. Enhanced accumulation over the polar ice sheets has been identified as a potential early indicator of warmer sea surface temperatures and may offset a portion of the current rise in global sea level. Copyright 1999 by the American Geophysical Union.

  12. Video- Demonstration of Seltzer Tablet in Water Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Pettit demonstrates dropping an Alka Seltzer tablet into a film of water which becomes a floating ball of activity filled water. Watch the video to see the surprising results!

  13. Optical fiber poling by induction: analysis by 2D numerical modeling.

    PubMed

    De Lucia, F; Huang, D; Corbari, C; Healy, N; Sazio, P J A

    2016-04-15

    Since their first demonstration some 25 years ago, thermally poled silica fibers have been used to realize device functions such as electro-optic modulation, switching, polarization-entangled photons, and optical frequency conversion with a number of advantages over bulk free-space components. We have recently developed an innovative induction poling technique that could allow for the development of complex microstructured fiber geometries for highly efficient χ(2)-based device applications. To systematically implement these more advanced poled fiber designs, we report here the development of comprehensive numerical models of the induction poling mechanism itself via two-dimensional (2D) simulations of ion migration and space-charge region formation using finite element analysis. PMID:27082323

  14. Analysis of the performance and space-conditioning impacts of dedicated heat-pump water heaters

    SciTech Connect

    Morrison, L.; Swisher, J.

    1980-12-01

    A description is given of the development and testing of the newly-marketed dedicated heat pump water heater (HPWH), and an analysis is presented of its performance and space conditioning impacts. This system utilizes an air-to-water heat pump, costs about $1000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests. Since a HPWH is usually installed indoors and extracts heat from the air, its operation is a space conditioning benefit if an air conditioning load exists and a penalty if a space heating load exists. To investigate HPWH performance and a space conditioning impacts, a simulation has been developed to model the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics are adapted for three US geographical areas (Madison, Wisconsin; Washington, DC; and Ft. Worth, Texas), and the system is simulated for a year with typical weather data. For each city, HPWH COPs are calculated monthly and yearly. In addition, the water heating and space conditioning energy requirements of HPWH operation are compared with those of resistance water heater operation to determine the relative performance ratio (RPR) of the HPWH. The annual simulated RPRs range from 1.5 to 1.7, which indicate a substantial space heating penalty of HPWH operation in these cities.

  15. Water and energy dietary requirements and endocrinology of human space flight.

    PubMed

    Lane, Helen W; Feeback, Daniel L

    2002-10-01

    Fluid and energy metabolism and related endocrine changes have been studied nearly from the beginning of human space flight in association with short- and long-duration flights. Fluid and electrolyte nutrition status is affected by many factors including the microgravity environment, stress, changes in body composition, diet, exercise habits, sleep cycles, and ambient temperature and humidity conditions. Space flight exposes astronauts to all these factors and consequently poses significant challenges to establishing dietary water, sodium, potassium, and energy recommendations. The purpose of this article is to review the results of ground-based and space flight research studies that have led to current water, electrolyte, and energy dietary requirements for humans during space flight and to give an overview of related endocrinologic changes that have been observed in humans during short- and long-duration space flight. PMID:12361773

  16. Water and Energy Dietary Requirements and Endocrinology of Human Space Flight

    NASA Technical Reports Server (NTRS)

    Lane, Helen W.; Feeback, Daniel L.

    2002-01-01

    Fluid and energy metabolism and related endocrine changes have been studied nearly from the beginning of human space flight in association with short- and long-duration flights. Fluid and electrolyte nutrition status is affected by many factors including the microgravity environment, stress, changes in body composition, diet, exercise habits, sleep cycles, and ambient temperature and humidity conditions. Space flight exposes astronauts to all these factors and consequently poses significant challenges to establishing dietary water, sodium, potassium, and energy recommendations. The purpose of this article is to review the results of ground-based and space flight research studies that have led to current water, electrolyte, and energy dietary requirements for humans during space flight and to give an overview of related endocrinologic changes that have been observed in humans during short- and long-duration space flight.

  17. Vibration Monitoring of Power Distribution Poles

    SciTech Connect

    Clark Scott; Gail Heath; John Svoboda

    2006-04-01

    Some of the most visible and least monitored elements of our national security infrastructure are the poles and towers used for the distribution of our nation’s electrical power. Issues surrounding these elements within the United States include safety such as unauthorized climbing and access, vandalism such as nut/bolt removal or destructive small arms fire, and major vandalism such as the downing of power poles and towers by the cutting of the poles with a chainsaw or torches. The Idaho National Laboratory (INL) has an ongoing research program working to develop inexpensive and sensitive sensor platforms for the monitoring and characterization of damage to the power distribution infrastructure. This presentation covers the results from the instrumentation of a variety of power poles and wires with geophone assemblies and the recording of vibration data when power poles were subjected to a variety of stimuli. Initial results indicate that, for the majority of attacks against power poles, the resulting signal can be seen not only on the targeted pole but on sensors several poles away in the distribution network and a distributed sensor system can be used to monitor remote and critical structures.

  18. Modulation of water surface waves with a coiling-up-space metasurface

    NASA Astrophysics Data System (ADS)

    Sun, H. T.; Wang, J. S.; Cheng, Y.; Wei, Q.; Liu, X. J.

    2016-05-01

    We have designed a gradient-index (GRIN) metasurface to modulate water surface waves (WSWs). The metasurface is composed of an array of coiling-up-space units with a deep sub-wavelength scale, and can focus/scatter WSWs when the units are arranged elaborately and pierced into water. The modulation of WSWs has been ascribed to the relative effective refractive GRIN of the coiling-up-space units, which can be tuned by changing the parameters such as the plate length of units. This work may have potential application in energy extraction of water wave.

  19. The impact of integrated water management on the Space Station propulsion system

    NASA Technical Reports Server (NTRS)

    Schmidt, George R.

    1987-01-01

    The water usage of elements in the Space Station integrated water system (IWS) is discussed, and the parameters affecting the overall water balance and the water-electrolysis propulsion-system requirements are considered. With nominal IWS operating characteristics, extra logistic water resupply (LWR) is found to be unnecessary in the satisfaction of the nominal propulsion requirements. With the consideration of all possible operating characteristics, LWR will not be required in 65.5 percent of the cases, and for 17.9 percent of the cases LWR can be eliminated by controlling the stay time of theShuttle Orbiter orbiter.

  20. Pole placement with constant gain output feedback

    NASA Technical Reports Server (NTRS)

    Sridhar, B.; Lindorff, D. P.

    1972-01-01

    Given a linear time invariant multivariable system with m inputs and p outputs, it was shown that p closed loop poles of the system can be preassigned arbitrarily using constant gain output feedback provided (A circumflex, B circumflex) is controllable. These data show that if (A circumflex, B circumflex, C circumflex) is controllable and observable, and Rank B circumflex = m, Rank C circumflex = p, then max (m,p) poles of the system can be assigned arbitarily using constant gain output feedback. Further, it is shown that in some cases more than max (m,p) poles can be arbitrarily assigned. A least square design technique is outlined to approximate the desired pole locations when it is not possible to place all the poles.

  1. Use of Aquaporins to Achieve Needed Water Purity On ISS for the EMU Space Suit System

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.; Taylor, Brandon W.

    2011-01-01

    With the U.S. Space Shuttle fleet retired, the supply of extremely high-quality water 'super-Q' - required for the EMU Space suit cooling on this ISS - will become a significant operational hardware challenge in the very near future. A proposed potential solution is the use of a filtration system consisting of a semi-permeable membrane embedded with aquaporin proteins. Aquaporins are a special class of trans-membrane proteins that facilitate passive transport of water and other substances across a membrane. The specificity of these proteins is such that only water is allowed through the protein structure, and this novel property invites their adaptation for use in water filtration systems, specifically usage on the ISS for the EMU space suit system. These proteins are found in many living systems and have been developed for commercial use today.

  2. Effect of roof strength in injury mitigation during pole impact.

    PubMed

    Friedman, Keith; Hutchinson, John; Mihora, Dennis; Kumar, Sri; Frieder, Russell; Sances, Anthony

    2007-01-01

    Motor vehicle accidents involving pole impacts often result in serious head and neck injuries to occupants. Pole impacts are typically associated with rollover and side collisions. During such events, the roof structure is often deformed into the occupant survival space. The existence of a strengthened roof structure would reduce roof deformation and accordingly provide better protection to occupants. The present study examines the effect of reinforced (strengthened) roofs using experimental crash study and computer model simulation. The experimental study includes the production cab structure of a pickup truck. The cab structure was loaded using an actual telephone pole under controlled laboratory conditions. The cab structure was subjected to two separate load conditions at the A-pillar and door frame. The contact force and deformation were measured using a force gauge and potentiometer, respectively. A computer finite element model was created to simulate the experimental studies. The results of finite element model matched well with experimental data during two different load conditions. The validated finite element model was then used to simulate a reinforced roof structure. The reinforced roof significantly reduced the structural deformations compared to those observed in the production roof. The peak deformation was reduced by approximately 75% and peak velocity was reduced by approximately 50%. Such a reduction in the deformation of the roof structure helps to maintain a safe occupant survival space. PMID:17487059

  3. Moving water to South America as observed from space

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Xie, Xiaosu

    2006-01-01

    The approximate balance of the mass change rate measured by the Gravity Recovery and Climate Experiment (GRACE) with the moisture influx across the entire coastline less climatological river discharge for South America (SA), in agreement with the conservation principle, bolsters not only the credibility of the spacebased measurements, but supports the characterization of ocean's influence on the annual variation of continental water balance. The moisture transport integrated over the depth of the atmosphere is estimated using measurements by QuikSCAT and Special Sensor Microwave/Imager. The large-scale geographic patterns of precipitation from the Tropical Rain Measuring Mission (TRMM) and the mass change rate were found to follow similar annual changes over South America.

  4. Pole-to-pole biogeography of surface and deep marine bacterial communities

    PubMed Central

    Ghiglione, Jean-François; Galand, Pierre E.; Pommier, Thomas; Pedrós-Alió, Carlos; Maas, Elizabeth W.; Bakker, Kevin; Bertilson, Stefan; Kirchman, David L.; Lovejoy, Connie; Yager, Patricia L.; Murray, Alison E.

    2012-01-01

    The Antarctic and Arctic regions offer a unique opportunity to test factors shaping biogeography of marine microbial communities because these regions are geographically far apart, yet share similar selection pressures. Here, we report a comprehensive comparison of bacterioplankton diversity between polar oceans, using standardized methods for pyrosequencing the V6 region of the small subunit ribosomal (SSU) rRNA gene. Bacterial communities from lower latitude oceans were included, providing a global perspective. A clear difference between Southern and Arctic Ocean surface communities was evident, with 78% of operational taxonomic units (OTUs) unique to the Southern Ocean and 70% unique to the Arctic Ocean. Although polar ocean bacterial communities were more similar to each other than to lower latitude pelagic communities, analyses of depths, seasons, and coastal vs. open waters, the Southern and Arctic Ocean bacterioplankton communities consistently clustered separately from each other. Coastal surface Southern and Arctic Ocean communities were more dissimilar from their respective open ocean communities. In contrast, deep ocean communities differed less between poles and lower latitude deep waters and displayed different diversity patterns compared with the surface. In addition, estimated diversity (Chao1) for surface and deep communities did not correlate significantly with latitude or temperature. Our results suggest differences in environmental conditions at the poles and different selection mechanisms controlling surface and deep ocean community structure and diversity. Surface bacterioplankton may be subjected to more short-term, variable conditions, whereas deep communities appear to be structured by longer water-mass residence time and connectivity through ocean circulation. PMID:23045668

  5. Invariant poles feedback control of flexible, highly variable spacecraft.

    NASA Technical Reports Server (NTRS)

    Mendel, J. M.

    1972-01-01

    This paper describes a technique for single-axis control of a model of a highly flexible Space Station. Active damping of lower frequency flexibility modes is employed. In the control technique, referred to as invariant poles feedback control (IPFC), feedback gains are adjusted so that the closed-loop system's characteristic equation is matched to that of a reference model; hence, closed-loop system's poles will not move - they will be invariant (provided bending frequencies and parameters can be identified accurately). This is accomplished by obtaining the system's characteristic equation in closed form; equating respective coefficients between terms of like powers in s in the system and reference model characteristic equations; and, solving for the feedback gains. The feedback gains are explicit functions of system plant parameters and the coefficients of the reference model's characteristic equation, and are easily programmed for the digital computer.

  6. Invariant poles feedback control of flexible highly variable spacecraft.

    NASA Technical Reports Server (NTRS)

    Mendel, J. M.

    1972-01-01

    Description of a technique for single-axis control of a model of a highly flexible space station. Active damping of lower frequency flexibility modes is employed. In the control technique, referred to as invariant poles feedback control, feedback gains are adjusted so that the closed-loop system characteristic equation is matched to that of a reference model. Hence closed-loop system poles will not move; they will be invariant (provided that bending frequencies and parameters can be identified accurately). This is accomplished by obtaining the system characteristic equation in closed form; equating respective coefficients between terms of like powers in s in the system and reference model characteristic equations; and solving for the feedback gains. The feedback gains are explicit functions of system plant parameters and the coefficients of the reference model characteristic equation, and are easily programmed for the digital computer.

  7. Glacier melt on the Third Pole

    NASA Astrophysics Data System (ADS)

    Yao, T.

    2015-12-01

    With an average elevation above 4,000 metres, the Third Pole (TP) is a unique region with many high mountains centered on the Tibetan Plateau stretching over 5 million square kilometers. Major environmental changes are taking place on the TP characterized by complex interactions of atmospheric, cryospheric, hydrological, geological and environmental processes. These processes are critical for the well-being of the three billion people inhabiting the plateau and the surrounding regions. Glacier melt is one of the most significant environmental changes observed on the TP. Over the past decade, most of the glaciers on the TP have undergone considerable melt. The Third Pole Environment (TPE) has focused on the causes of the glacier melt by conducting large-scale ground in-situ observation and monitoring, analyzing satellite images and remote sensing data, and applying numerical modeling to environmental research on the TP. The studies of long-term record of water stable isotopes in precipitation and ice core throughout the TP have revealed different features with regions, thus proposing significant influence of atmospheric circulations on spatial precipitation pattern over the TP. Validation of the result by isotope-equipped general circulation models confirms the spatial distribution of different atmospheric circulation dominances on the TP, with northern part dominated by the westerlies, southern part by the summer monsoon, and central part featuring the influences of both circulation systems. Such unique circulation patterns also bear directly on the status of glaciers and lakes over the TP and its surroundings. The studies therefore found the largest glacier melt in the monsoon-dominated southern part, moderate melt in the central part of transition, and the least melt, or even slight advance in the westerlies-dominated northern TP. It is clear that some mountains on the TP are undergoing rapid melt and the consequence of without ice and snow will be very soon. The

  8. Air and Water System (AWS) Design and Technology Selection for the Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Kliss, Mark

    2005-01-01

    This paper considers technology selection for the crew air and water recycling systems to be used in long duration human space exploration. The specific objectives are to identify the most probable air and water technologies for the vision for space exploration and to identify the alternate technologies that might be developed. The approach is to conduct a preliminary first cut systems engineering analysis, beginning with the Air and Water System (AWS) requirements and the system mass balance, and then define the functional architecture, review the International Space Station (ISS) technologies, and discuss alternate technologies. The life support requirements for air and water are well known. The results of the mass flow and mass balance analysis help define the system architectural concept. The AWS includes five subsystems: Oxygen Supply, Condensate Purification, Urine Purification, Hygiene Water Purification, and Clothes Wash Purification. AWS technologies have been evaluated in the life support design for ISS node 3, and in earlier space station design studies, in proposals for the upgrade or evolution of the space station, and in studies of potential lunar or Mars missions. The leading candidate technologies for the vision for space exploration are those planned for Node 3 of the ISS. The ISS life support was designed to utilize Space Station Freedom (SSF) hardware to the maximum extent possible. The SSF final technology selection process, criteria, and results are discussed. Would it be cost-effective for the vision for space exploration to develop alternate technology? This paper will examine this and other questions associated with AWS design and technology selection.

  9. Heavy Cratering near Callisto's South Pole

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Images from NASA's Galileo spacecraft provide new insights into this region near Callisto's south pole. This two frame mosaic shows a heavily cratered surface with smooth plains in the areas between craters. North is to the top of the image. The smoothness of the plains appears to increase toward the south pole, approximately 480 kilometers (293 miles) south of the bottom of the image. This smoothness of Callisto's surface was not evident in images taken during the 1979 flyby of NASA's Voyager spacecraft because the resolution was insufficient to show the effect. This smooth surface, and the process(es) that cause it, are among the most intriguing aspects of Callisto. Although not fully understood, the process(es) responsible for this smoothing could include erosion by tiny meteorites and energetic ions. Some craters, such as Keelut, the 47 kilometer (29 mile) crater in the lower right corner, have sharp, well defined rims. Keelut contains an inner ring surrounding a central depression about 17 kilometers (11 miles) in diameter. Keelut, and the more irregularly shaped, degraded Reginleif, the 32 kilometer (19.5 mile) crater in the top center of the image, are very shallow and have flat floors. Crater forms can be seen down to less than 2 kilometers (1.2 miles) in diameter in the image. Each picture element (pixel) in this image is approximately 0.68 kilometers (0.41 miles) across.

    This image which was taken by the Galileo spacecraft's solid state imaging (CCD) system during its eighth orbit around Jupiter, on May 6th, 1997. The center of the image is located at 71.3 degrees south latitude, 97.6 degrees west longitude, and was taken when the spacecraft was approximately 35,470 kilometers (21,637 miles) from Callisto.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at

  10. Geometric Modelling of Octagonal Lamp Poles

    NASA Astrophysics Data System (ADS)

    Chan, T. O.; Lichti, D. D.

    2014-06-01

    Lamp poles are one of the most abundant highway and community components in modern cities. Their supporting parts are primarily tapered octagonal cones specifically designed for wind resistance. The geometry and the positions of the lamp poles are important information for various applications. For example, they are important to monitoring deformation of aged lamp poles, maintaining an efficient highway GIS system, and also facilitating possible feature-based calibration of mobile LiDAR systems. In this paper, we present a novel geometric model for octagonal lamp poles. The model consists of seven parameters in which a rotation about the z-axis is included, and points are constrained by the trigonometric property of 2D octagons after applying the rotations. For the geometric fitting of the lamp pole point cloud captured by a terrestrial LiDAR, accurate initial parameter values are essential. They can be estimated by first fitting the points to a circular cone model and this is followed by some basic point cloud processing techniques. The model was verified by fitting both simulated and real data. The real data includes several lamp pole point clouds captured by: (1) Faro Focus 3D and (2) Velodyne HDL-32E. The fitting results using the proposed model are promising, and up to 2.9 mm improvement in fitting accuracy was realized for the real lamp pole point clouds compared to using the conventional circular cone model. The overall result suggests that the proposed model is appropriate and rigorous.

  11. Water management requirements for animal and plant maintenance on the Space Station

    NASA Technical Reports Server (NTRS)

    Johnson, C. C.; Rasmussen, D.; Curran, G.

    1987-01-01

    Long-duration Space Station experiments that use animals and plants as test specimens will require increased automation and advanced technologies for water management in order to free scientist-astronauts from routine but time-consuming housekeeping tasks. The three areas that have been identified as requiring water management and that are discusseed are: (1) drinking water and humidity condensate of the animals, (2) nutrient solution and transpired water of the plants, and (3) habitat cleaning methods. Automation potential, technology assessment, crew time savings, and resupply penalties are also discussed.

  12. Feynman rules of higher-order poles in CHY construction

    NASA Astrophysics Data System (ADS)

    Huang, Rijun; Feng, Bo; Luo, Ming-xing; Zhu, Chuan-Jie

    2016-06-01

    In this paper, we generalize the integration rules for scattering equations to situations where higher-order poles are present. We describe the strategy to deduce the Feynman rules of higher-order poles from known analytic results of simple CHY-integrands, and propose the Feynman rules for single double pole and triple pole as well as duplex-double pole and triplex-double pole structures. We demonstrate the validation and strength of these rules by ample non-trivial examples.

  13. NASA's Marshall Space Flight Center Saves Water With High-Efficiency Toilet and Urinal Program

    SciTech Connect

    2011-02-22

    The National Aeronautics and Space Administration’s (NASA) Marshall Space Flight Center (MSFC) has a longstanding, successful sustainability program that focuses on energy and water efficiency as well as environmental protection. Because MSFC was built in the 1960s, most of the buildings house outdated, inefficient restroom fixtures. The facility engineering team at MSFC developed an innovative efficiency model for replacing these older toilets and urinals.

  14. Video-Bubbles Inserted Into a Floating Drop of Water on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Inserting a bubble into a floating ball of water in space is difficult, as Pettit demonstrates in this video. Blowing the bubble is the easy part. Getting it to stay in the center of the ball of water is much more difficult. Watch the video to see the technique Dr. Pettit finally uses and see the resulting visual surprise offered by the ensuing optical properties.

  15. Space Station propulsion - Advanced development testing of the water electrolysis concept at MSFC

    NASA Technical Reports Server (NTRS)

    Jones, Lee W.; Bagdigian, Deborah R.

    1989-01-01

    The successful demonstration at Marshall Space Flight Center (MSFC) that the water electrolysis concept is sufficiently mature to warrant adopting it as the baseline propulsion design for Space Station Freedom is described. In particular, the test results demonstrated that oxygen/hydrogen thruster, using gaseous propellants, can deliver more than two million lbf-seconds of total impulse at mixture ratios of 3:1 to 8:1 without significant degradation. The results alao demonstrated succcessful end-to-end operation of an integrated water electrolysis propulsion system.

  16. Thyroid Function Changes Related to Use of Iodinated Water in United States Space Program

    NASA Technical Reports Server (NTRS)

    McMonigal, Kathleen A.; Braverman, Lewis E.; Dunn, John T.; Stanbury, John B.; Wear, Mary L.; Hamm, Peggy B.; Sauer, Richard L.; Billica, Roger D.; Pool, Sam L.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) has used iodination as a method of microbial disinfection of potable water systems in United States spacecraft and long-duration habitability modules. A review of the effects on the thyroid following consumption o iodinated water by NASA astronauts was conducted. Pharmacological doses of iodine consumed by astronauts transiently decreased thyroid function, as reflected in serum TSH values. Although the adverse effects of excess iodine consumption in susceptible individuals are well documented, exposure to high doses of iodine during space flight did not result in a statistically significant increase in long-term thyroid disease in the astronaut population.

  17. Space Station water degradation study covering the first 24 months of exposure

    NASA Technical Reports Server (NTRS)

    Mcright, P. S.; Roman, M. C.

    1995-01-01

    This report describes the MSFC space station water degradation study (WDS) and presents interim results from the first 24 months of testing. The WDS simulates the stagnant storage of water in distribution lines before the activation of the space station's water processor by storing processed water at ambient temperature in valved sections of 1-in stainless steel and titanium tube. The WDS seeks to determine whether the water quality will degrade unacceptably and whether microbial growth will proceed to an unmanageable extent during extended stagnation. During the first 24 months, significant changes have occurred. Although iodine, which is used as a biocide, was nearly depleted within the first 6 months of testing, microbial growth has been minimal. This report describes the decrease in iodine concentration and the results of microbial and biofilm analyses. Increases in total organic carbon, iodide, chloride, nickel, iron, and chromium concentrations are presented and discussed. The observed increase in conductivity and the decreases in pH and turbidity are also presented. The authors conclude that, with proper preparation, potable water can be stored under stagnant conditions without unmanageable degradation in water quality; a flushing operation and subsequent processing of the degraded water should render the water system ready for use.

  18. Health-risk based approach to setting drinking water standards for long-term space missions

    NASA Technical Reports Server (NTRS)

    Macler, Bruce A.; Dunsky, Elizabeth C.

    1992-01-01

    In order to develop plausible and appropriate drinking water contaminant standards for longer-term NASA space missions, such as those planned for the Space Exploration Initiative, a human health risk characterization was performed using toxicological and exposure values typical of space operations and crew. This risk characterization showed that the greatest acute waterborne health concern was from microbial infection leading to incapacitating gastrointestinal illness. Ingestion exposure pathways for toxic materials yielded de minimus acute health risks unlikely to affect SEI space missions. Risks of chronic health problems were within acceptable public health limits. Our analysis indicates that current Space Station Freedom maximum contamination levels may be unnecessarily strict. We propose alternative environmental contaminant values consistent with both acceptable short and long-term crew health safety.

  19. Diagram of the Water Recovery and Management for the International Space Station

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This diagram shows the flow of water recovery and management in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection/ suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.

  20. Titan's Gas Behavior During the South Pole Fall

    NASA Astrophysics Data System (ADS)

    Cottini, Valeria; Nixon, Conor A.; Achterberg, Richard K.; Jennings, Donald E.; Gorius, Nicolas; Irwin, Patrick G. J.

    2015-11-01

    Titan’s southern middle atmosphere has been showing several changes since the start of fall season in 2009. In 2012 a large cloud appeared [1], [2], [3], temperatures became very low and condensation and gas concentration at the South Pole increased [3], [4].In this work we will show the results of gas abundances retrievals in the South Pole and their latitudinal variation changes as the cold season evolved with time.We analyzed several Cassini Composite InfraRed Spectrometer (CIRS [5]) mid-infrared observations of the South Pole acquired during 2013-2014. The data coordinates were converted in order to be centered on the atmospheric pole and refer to the 1 mbar level and not to the surface. We first determine stratospheric temperatures from the same data and latitudes from the n4 band of methane centered around 1300 cm-1. We retrieve the temperature profiles applying a radiative transfer forward model combined with a non-linear optimal estimation inversion method [6]. We then retrieve the main gases abundances and track their variation with latitude using the same method.Latitudinal changes of the main Titan’s gases - HC3N, C4H2, C6H6, C2H2, C2H4, C3H8 and HCN - show different trends in the Southern polar regions over 2014, when winter was getting closer. We observe a ring-shape in some of the gas abundance distributions, with a local maximum peak around -75 deg of latitude. We also observe an increase of abundance of most of the gases toward the south pole, as seen previously in the North during the winter. The observed increase of benzene over the South Pole is definitely evident and strong. References: [1] West, R. A. et al. (2013) BAAS, 45, 305.03. [2] Jennings, D. E. et al. (2012) ApJ, 754, L3. [3] de Kok, R. et al. (2014), Nature, 514, 7520, 65-67. [4] Vinatier S. et al. (2015) Icarus, Volume 250, p. 95-115. [5] Flasar et al. (2004) Space Sci. Rev., 115, 169-297. [6] Irwin, P.G.J. et al. (2008) J. Quant. Spectrosc. Radiat. Trans., 109, 1136-1150.

  1. The pole tide in deep oceans

    NASA Technical Reports Server (NTRS)

    Dickman, S. R.

    1990-01-01

    The fluid-dynamical theory of the pole tide is examined by describing the oceanic response to the Chandler wobble and assessing its implications for mantle anelasticity and low-frequency ocean dynamics. The Laplace tide equations accounting for bottom friction are given, and a spherical harmonic approach is delineated in which the time-independent portion of the tide height is expanded. Pole-tide height and related inertia products are linearly proportional to wobble amplitude, and the final equations are modified to account for mantle elasticity and oceanic loading. Results for pole tide effects are given for various earth models with attention to the role of boundary constraints. A dynamic effect is identified which lengthens the Chandler period by about 1 day more than static lengthening, a contribution that suggests a vigorous low-frequency response. The values derived are shown to agree with previous models that do not incorporate the effects of the pole tide.

  2. Status of the Space Station water reclamation and management subsystem design concept

    NASA Technical Reports Server (NTRS)

    Bagdigian, R. M.; Mortazavi, P. L.

    1987-01-01

    A development status report is presented for the NASA Space Station's water reclamation and management (WRM) system, for which the candidate phase change-employing processing technologies are an air evaporation subsystem, a thermoelectric integrated membrane evaporation subsystem, and the vapor compression distillation subsystem. These WRM candidates employ evaporation to effect water removal from contaminants, but differ in their control of the vapor/liquid interface in zero-gravity and in the recovery of the latent heat of vaporization.

  3. Water sprays in space retrieval operations. [for despinning or detumbling disabled spacecraft

    NASA Technical Reports Server (NTRS)

    Freesland, D. C.

    1977-01-01

    Recent experiments involving liquid jets exhausting into a vacuum have led to significant conclusions regarding techniques for detumbling and despinning disabled spacecraft during retrieval operations. A fine water spray directed toward a tumbling or spinning object may quickly form ice over its surface. The added mass of water will absorb angular momentum and slow the vehicle. As this ice sublimes it carries momentum away with it. Thus, a complete detumble or despin is possible by simply spraying water at a disabled vehicle. Experiments were conducted in a ground based vacuum chamber to determine physical properties of water-ice in a space-like environment. Additional ices, alcohol and ammonia, were also studied. An analytical analysis based on the conservation of angular momentum, resulted in despin performance parameters, i.e., total water mass requirements and despin times. The despin and retrieval of a disabled spacecraft was considered to illustrate a potential application of the water spray technique.

  4. Poles apart: Scott, Amundsen and science.

    PubMed

    Larson, Edward J

    2011-12-01

    One hundred years ago, teams led by Roald Amundsen and Robert Scott may have been heading in the same direction but they were poles apart in the way they sought their goals. Amundsen led a five-person team of expert Nordic skiers and dog-sledders with a single goal: getting to the South Pole first. He planned and executed the effort brilliantly. Scott, in contrast, led a complex and multi-faceted Antarctic expedition with 33 explorers and scientists, many of whom were focused on ambitious and often taxing scientific research projects that had nothing whatsoever to do with reaching the Pole. Although Scott failed to reach the South Pole first and died with four men on the return trip, his expedition made significant contributions to Antarctic science. Indeed, at least some of Scott's failure to reach the Pole first and the subsequent death of his polar party on the return trip can be attributed to burden of trying to do too much and not focusing on reaching the pole. PMID:22055019

  5. Pole movement in electronic and optoelectronic oscillators

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Pal, S.; Biswas, B. N.

    2013-12-01

    An RLC circuit with poles on the left half of the complex frequency plane is capable of executing transient oscillations. During this period, energy conversion from potential to kinetic and from kinetic to potential continuously goes on, until the stored energy is lost in dissipation through the resistance. On the other hand, in an electronic or opto-electronic oscillator with an embedded RLC circuit, the poles are forcibly placed on the right-half plane (RHP) and as far as practicable away from the imaginary axis in order to help the growth of oscillation as quickly as possible. And ultimately, it is imagined that, like the case of an ideal linear harmonic oscillator, the poles are frozen on the imaginary axis so that the oscillation neither grows nor decays. The authors feel that this act of holding the poles right on the imaginary axis is a theoretical conjecture in a soft or hard self-excited oscillator. In this article, a detailed discussion on pole movement in an electronic and opto-electronic oscillator is carried out from the basic concept. A new analytical method for estimating the time-dependent part of the pole is introduced here.

  6. Assessment of structural integrity of wooden poles

    NASA Astrophysics Data System (ADS)

    Craighead, Ian A.; Thackery, Steve; Redstall, Martin; Thomas, Matthew R.

    2000-05-01

    Despite recent advances in the development of new materials, wood continues to be used globally for the support of overhead cable networks used by telecommunications and electrical utility companies. As a natural material, wood is subject to decay and will eventually fail, causing disruption to services and danger to public and company personnel. Internal decay, due to basidomycetes fungi or attack by termites, can progress rapidly and is often difficult to detect by casual inspection. The traditional method of testing poles for decay involves hitting them with a hammer and listening to the sound that results. However, evidence suggests that a large number of poles are replaced unnecessarily and a significant number of poles continue to fail unexpectedly in service. Therefore, a more accurate method of assessing the structural integrity of wooden poles is required. Over the last 25 years there have been a number of attempts at improving decay detection. Techniques such as ultrasound, drilling X rays etc. have been developed but have generally failed to improve upon the practicality and accuracy of the traditional testing method. The paper describes the use of signal processing techniques to analyze the acoustic response of the pole and thereby determine the presence of decay. Development of a prototype meter is described and the results of initial tests on several hundred poles are presented.

  7. HIPPO (HIAPER Pole-to-Pole Observations) Data from CDIAC's HIPPO Data Archive

    DOE Data Explorer

    The HIPPO (HIAPER Pole-to-Pole Observations) study of the carbon cycle and greenhouse gases measured meteorology, atmospheric chemistry, and aerosol constituents along transects from approximately pole-to-pole over the Pacific Ocean. HIPPO flew hundreds of vertical profiles from the ocean/ice surface to as high as the tropopause, at five times during different seasons over a three year period from 2009-2011. HIPPO provides the first high-resolution vertically-resolved global survey of a comprehensive suite of atmospheric trace gases and aerosols pertinent to understanding the carbon cycle and challenging global climate models.

  8. Rapid toxicity detection in water quality control utilizing automated multispecies biomonitoring for permanent space stations

    NASA Technical Reports Server (NTRS)

    Morgan, E. L.; Young, R. C.; Smith, M. D.; Eagleson, K. W.

    1986-01-01

    The objective of this study was to evaluate proposed design characteristics and applications of automated biomonitoring devices for real-time toxicity detection in water quality control on-board permanent space stations. Simulated tests in downlinking transmissions of automated biomonitoring data to Earth-receiving stations were simulated using satellite data transmissions from remote Earth-based stations.

  9. 21 CFR 1250.84 - Water in galleys and medical care spaces.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Water in galleys and medical care spaces. 1250.84 Section 1250.84 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) REGULATIONS UNDER CERTAIN OTHER ACTS ADMINISTERED BY THE FOOD AND DRUG ADMINISTRATION INTERSTATE CONVEYANCE SANITATION...

  10. Status of the International Space Station Regenerative ECLSS Water Recovery and Oxygen Generation Systems

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert M.; Cloud, Dale

    2005-01-01

    NASA is developing three racks containing regenerative water recovery and oxygen generation systems (WRS and OGS) for deployment on the International Space Station (ISS). The major assemblies included in these racks are the Water Processor Assembly (WPA), Urine Processor Assembly (UPA), Oxygen Generation Assembly (OGA), and the Power Supply Module (PSM) supporting the OGA. The WPA and OGA are provided by Hamilton Sundstrand Space Systems International (HSSSI), Inc., while the UPA and PSM are developed in- house by the Marshall Space Flight Center (MSFC). The assemblies have completed the manufacturing phase and are in various stages of testing and integration into the flight racks. This paper summarizes the status as of April 2005 and describes some of the technical challenges encountered and lessons learned over the past year.